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Preface

Photonics deals with the generation, propagation, manipulation, and detection of
(usually coherent) light waves. This book provides a comprehensive introduction
into this important field, from the electrodynamic and quantum mechanic funda-
mentals to the level of photonic components and building blocks such as lasers,
amplifiers, modulators, waveguides, and detectors.

The book is intended for senior level and graduate students of applied physics
and electrical engineering as well as engineers in fields such as laser technology,
optical communications, laser materials processing, and medical laser applications
who wish to gain an in-depth understanding of photonics.

I have to thank many friends, colleagues, and students for improving, with their
comments and questions, the contents and didactic line of the book. I am particularly
indebted to Martin Hofer, who has produced many of the illustrations and has
contributed indispensable advice. The students who have helped to improve the
book over the past years are too numerous to be mentioned by name; I wish to
express special thanks to Christian Hartl and Florian Höller for their extraordinary
support, however.

As a scientific writer, I am aware of standing on the shoulders of others,
and I wish to thank the authors of seminal books and articles that have fostered
my understanding of photonics, in particular H. Haus, R.B. Boyd, T.F. Heinz,
H. Kogelnik, A.E. Siegman, O. Svelto, and A. Yariv.

Finally, I sincerely wish to thank Silvia Schilgerius and Kay Stoll (Springer), and
Fathima Rizwana (SPi Global) for their great support and patience.

Vienna, Austria Georg A. Reider
June 2015

vii





How to Use This Book

This book is supposed to be self-contained; practically all results are derived from
basic principles such as the equations of Maxwell and Schrödinger, respectively,
and fundamental mathematical concepts such as Fourier transformation and linear
systems. The mathematics used is senior undergraduate level throughout; the steps
of derivation and the approximations used are carefully commented. Sections
marked with an asterisk (�) are intended for a more specialized readership and can
be omitted without loss of understanding of the remaining text.

The book does not contain explicit “exercises”; instead, the reader is encouraged
to follow the derivations in writing. Important equations are set in shaded boxes
and, unless they are actually definitions, should be derived by heart after reading.
The book includes many representative examples; most figures, in particular, have
been produced using the theory and formalisms presented in the text, and the
interested reader is encouraged to reproduce them and vary the input parameters; the
general availability of computers and (public domain) mathematical and graphical
software (such as Gnuplot and Matlab) renders such simulations a relatively easy
yet extremely instructive exercise.

At the end of each chapter, a summary points out the central issues tackled; its
purpose is to put the contents of the chapter into a broader context. It is followed by
a set of problems that are intended to deepen the understanding of the material.
Some of them are quite easy, others more demanding. Many make reference to
previous sections of the book, with the goal to provide a “global” understanding
of the subject.

A bibliography containing references and suggestions for further reading con-
cludes each chapter; the selected references are not only sources but (with the
exception of data bases, of course) highly recommended reading.

ix





Contents

1 Electrodynamic Theory of Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The Electromagnetic Field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Complex Wave Functions and Amplitudes .. . . . . . . . . . . . . . . . . . . 6
1.2.2 Plane Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Propagation Velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 Phase Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Group Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.3 Beam Velocity� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Energy Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.1 Average Energy Flux Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.2 Energy Exchange Field/Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.3 Energy Transport: Plane Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Polarization States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.1 Jones Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.2 Polarization Optics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5.3 Transformation of Jones Vectors and Matrices . . . . . . . . . . . . . . . . 27
1.5.4 Elliptically Polarized States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.5.5 Poincaré Sphere� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.6 Inhomogeneous Waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.8 Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
References and Suggested Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2 Wave Propagation in Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1 Transition Between Different Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.1.1 Phase Matching at a Boundary .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.1.2 Reflection and Transmission Coefficients . . . . . . . . . . . . . . . . . . . . . 45
2.1.3 Total Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2 Optical Properties of Isotropic Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.2.1 Linear Oscillator Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.2.2 Absorption and Reflection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.2.3 Free Electron Gas Model of Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.2.4 Kramers–Kronig Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

xi



xii Contents

2.3 Wave Propagation in Anisotropic Media. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.3.1 Symmetry Properties of Crystals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.3.2 Propagation Along the Principal Axes . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.3.3 Propagation in Arbitrary Directions� . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.3.4 Electro-Optic Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.3.5 Liquid Crystal Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.4 Other Propagation Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2.4.1 Optical Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2.4.2 Magneto-Optic Faraday Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
2.4.3 Wave Propagation in Moving Media� . . . . . . . . . . . . . . . . . . . . . . . . . 95

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.6 Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
References and Suggested Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3 Optical Beams and Pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.1 Beam Propagation.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.1.1 Paraxial Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.1.2 Gaussian Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.1.3 Optical Components and Gaussian Beams . . . . . . . . . . . . . . . . . . . . 110
3.1.4 ABCD-Transformation of Gaussian Beams . . . . . . . . . . . . . . . . . . . 117
3.1.5 Hermite–Gaussian Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.1.6 Fourier Optical Treatment of Beam Propagation .. . . . . . . . . . . . . 128

3.2 Pulse Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
3.2.1 Dispersive Propagation Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
3.2.2 Nonlinear Propagation Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
3.4 Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
References and Suggested Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4 Optical Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.1 Two Field Interference .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.1.1 Michelson Interferometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.1.2 Mach–Zehnder and Sagnac Interferometers .. . . . . . . . . . . . . . . . . . 162
4.1.3 S-Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.1.4 Young’s Double Slit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

4.2 Multiple Wave Interference .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
4.2.1 Optical Gratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.2.2 Dielectric Multilayer Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
4.2.3 Fabry–Perot Interferometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

4.3 Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
4.3.1 Spherical Mirror Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
4.3.2 3D Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

4.4 Coherence� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
4.4.1 Temporal Coherence .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
4.4.2 Spatial Coherence.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193



Contents xiii

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
4.6 Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
References and Suggested Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

5 Dielectric Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
5.1 Planar Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

5.1.1 Eigenmodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
5.1.2 Transverse Mode Profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
5.1.3 Waveguide Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

5.2 Fiber Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
5.2.1 Step Index Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
5.2.2 Fiber Losses and Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
5.2.3 Gradient Index Fibers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

5.3 Integrated Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
5.3.1 Waveguide Couplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
5.3.2 Splitters and Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
5.3.3 Waveguide Gratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
5.3.4 Waveguide-Interferometers and Modulators . . . . . . . . . . . . . . . . . . 237
5.3.5 Active Waveguide Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
5.3.6 Photonic Band Gap Fibers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
5.5 Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
References and Suggested Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

6 Light–Matter Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
6.1 Optical Interactions with Two Level Systems . . . . . . . . . . . . . . . . . . . . . . . . . 245

6.1.1 Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
6.1.2 Absorption and Stimulated Emission . . . . . . . . . . . . . . . . . . . . . . . . . . 253
6.1.3 Spontaneous Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
6.1.4 Line Broadening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
6.1.5 Saturation of Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

6.2 Light Amplification by Stimulated Emission . . . . . . . . . . . . . . . . . . . . . . . . . . 267
6.2.1 Four-Level Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
6.2.2 Three-Level Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
6.2.3 Pulse Amplification and Absorption .. . . . . . . . . . . . . . . . . . . . . . . . . . 272

6.3 Optical Interactions with Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
6.3.1 Electronic States in Semiconductors .. . . . . . . . . . . . . . . . . . . . . . . . . . 275
6.3.2 Optical Transitions in Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . 283
6.3.3 Optical Gain Condition .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
6.3.4 Low Dimensional Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
6.3.5 Carrier Induced Refractive Index Change . . . . . . . . . . . . . . . . . . . . . 293

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
6.5 Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
References and Suggested Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296



xiv Contents

7 Optical Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
7.1 Stationary Performance .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

7.1.1 Rate Equations, Four-Level System . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
7.1.2 Laser Output Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
7.1.3 Three-Level Laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

7.2 Frequency and Time Behavior of Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
7.2.1 Multi-Line vs. Single Line Operation.. . . . . . . . . . . . . . . . . . . . . . . . . 305
7.2.2 Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
7.2.3 Laser Line Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
7.2.4 Relaxation Oscillations and Gain Modulation.. . . . . . . . . . . . . . . . 309

7.3 Pulsed Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
7.3.1 Q-Switching .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
7.3.2 Mode Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
7.3.3 Carrier Envelope Phase, CEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

7.4 Atomic and Molecular Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
7.4.1 Atomic Solid State Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
7.4.2 Gas Lasers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

7.5 Semiconductor Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
7.5.1 Heterostructure Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
7.5.2 Quantum Well Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
7.5.3 Performance and Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

7.6 Free Electron Lasers� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
7.6.1 “Spontaneous” Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
7.6.2 Light-Electron Coupling and Amplification .. . . . . . . . . . . . . . . . . . 344

7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
7.8 Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
References and Suggested Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

8 Nonlinear Optics and Acousto-Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
8.1 Nonlinear Susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

8.1.1 Frequency Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
8.1.2 Anharmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

8.2 Second Order Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
8.2.1 Second Harmonic Generation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
8.2.2 Phase Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
8.2.3 Optical Parametric Amplification .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
8.2.4 Parametric Frequency Conversion� . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
8.2.5 Second Order Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

8.3 Third Order Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
8.3.1 Third Harmonic Generation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
8.3.2 Optical Kerr Effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
8.3.3 Third Order Parametric Amplification . . . . . . . . . . . . . . . . . . . . . . . . . 384
8.3.4 Two-Photon Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
8.3.5 Raman Amplification .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388



Contents xv

8.3.6 Brillouin Amplification .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
8.3.7 Phase Conjugation� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

8.4 Electro-Optic Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
8.4.1 Linear Electro-Optic Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
8.4.2 Quadratic Electro-Optic Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
8.4.3 Field Induced Second Harmonic Generation� . . . . . . . . . . . . . . . . . 403

8.5 Acousto-Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
8.5.1 Light Scattering at Sound Waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
8.5.2 Acousto-Optic Modulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
8.7 Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
References and Suggested Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

9 Photodetection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
9.1 Photoelectric Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

9.1.1 Photoelectron Multiplier Tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
9.1.2 Semiconductor Photodetectors .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
9.1.3 Detector Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
9.1.4 Photoresistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

9.2 Characteristic Parameters of Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
9.3 Photon Statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
9.4 Photometry and Colorimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

9.4.1 Photometry .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
9.4.2 Colorimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
9.6 Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
References and Suggested Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437



1Electrodynamic Theory of Light

Electrodynamics describes light as electromagnetic radiation in the frequency range
of approximately 1015 Hz; in this theory, matter is treated as continuous, with the
primary material response being the electric polarization. As in any other frequency
range, the electromagnetic field and its interaction with matter is described by
Maxwell’s equations.

These equations do not imply any natural time- or length scale; they do, however,
imply a relation between the two scales in the form of a dispersion relation that
relies on c0, the vacuum speed of light. Electrodynamic phenomena therefore can be
scaled arbitrarily if the ratio between time and length scale is conserved. The electric
and magnetic properties of matter, however, depend very strongly on the frequency.
Magnetization, for example, is practically negligible at optical frequencies and is
usually not taken into account in optics.

Many important optical phenomena can be understood only within a quantum
mechanical treatment of matter, because they reflect its atomic structure. The
concept of electrons, for example, is not implied in electrodynamics (where charge
is continuous); emission and detection of light are among the most obvious quantum
mechanical effects. A small set of physical constants, most notably the charge
and the mass of the electron and Planck’s constant, are responsible for the optical
properties of matter and, in particular, their spectral dependence. A remarkable
consequence of the value of these constants is the existence of a spectral window
where a wide range of (condensed) materials is highly transparent and, at the same
time, has a very noticeable impact on the phase propagation of electromagnetic
waves. This window is what we call the visible spectral range, complemented by
adjacent spectral bands in the so-called near infrared and near ultraviolet. Outside
this window, condensed matter is either strongly absorbing or does not interact with
electromagnetic radiation at all. This is the reason why photonics—the technology
of electromagnetic radiation in condensed matter—is staged in the visible and the
near infrared.

© Springer International Publishing Switzerland 2016
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2 1 Electrodynamic Theory of Light

Because of the central role the electron and its atomic environment is playing
in photonics, it is very convenient to adopt the atomic energy scale of electronvolts
(1 eV = 1:602 � 10�19 J). As we shall see, the energy exchange between light and
matter is essentially an energy exchange between individual electrons or atoms and
the electromagnetic field and involves a discrete energy quantum of E D „!, where
! is the angular frequency of the field and „ D h=2� , h D 6:626 � 10�34 Js
is Planck’s constant; such a quantum of electromagnetic energy is often called a
photon, which does not, however, imply that a photon is a “particle”; at this level,
it is just a consequence of the atomic (discrete) structure of matter. Expressed in
units of eV, the frequency range of main stream photonics lies between several
100 meV and several eV, corresponding to a wavelength range between several �m
and 100 nm. Advanced fields of photonics also operate in the Terahertz and XUV
range.

Another frequency range of interest is that of thermal radiation, which can be a
major source of noise; expressed in units of eV, it ranges up to several kBT, where
kB D 1:381�10�23 JK�1 is Boltzmann’s constant and T is the absolute temperature
in units of Kelvin. At room temperature, kBT � 26meV, which is significantly less
than typical photonic energies. Thermal noise is therefore usually not a critical issue
in photonics, another reason for the enormous success of this technology.

A deeper analysis of electromagnetic radiation shows that it requires a treatment
similar to the quantum mechanics of matter. In the framework of quantum electro-
dynamics, electromagnetic radiation is shown to behave in many respects similar to
quantum mechanical oscillators and the term “photon” assumes a meaning that is far
beyond the aforementioned “token” of energy exchange. One of the most obvious
consequences of the quantized nature of electromagnetic radiation is spontaneous
emission of light by atoms, a phenomenon that cannot be explained by a semiclassi-
cal theory that treats matter quantum mechanically and light electrodynamically.
Another fascinating consequence of the quantization of light is the existence of
“entangled” photons, the basis of quantum cryptography. Much of the theoretical
background of photonics, however, can be treated within a semiclassical treatment,
which is also employed throughout this book.

1.1 The Electromagnetic Field

Maxwell’s equations, relating the electric field E [Vm�1] and the magnetic field H
[Am�1] in a medium with polarization density P [Asm�2], magnetization density
M [Am�1], density of free charges � [Asm�3], and current density j [Am�2], have
the form

r � E D ��0 @H
@t

� �0
@M
@t

(1.1)

r � H D "0
@E
@t

C @P
@t

C j (1.2)
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r � ."0E/ D �r � P C � (1.3)

r � .�0H/ D �r � .�0M/; (1.4)

where "0 D 8:854 � 10�12 AsV�1 m�1 is the vacuum permittivity and
�0 = 4�10�7 VsA�1 m�1 the magnetic constant (also called vacuum permeability).
In cartesian coordinates, the differential operator r is given by

r D
2
4
@=@x
@=@y
@=@z

3
5 (1.5)

or

r D Œ@=@x; @=@y; @=@z� ; (1.6)

depending on the vector operation. P is the response of the medium to the electric
field and, for moderate optical fields, a linear function of E,

P D "0�EI (1.7)

� is the (dimensionless) electric susceptibility and represents the dielectric proper-
ties of the medium. It is common to introduce the electric displacement density D
[Asm�2]

D WD "0E C P (1.8)

that combines the “vacuum displacement density” "0E with the material polarization
density. With Eq. (1.7), we obtain

D D "0.1 C �/E WD "0"E; (1.9)

where

" D 1 C � (1.10)
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is known as relative electric permittivity.1 In similar fashion, �0H and �0M are
combined to B [Vsm�2]

B D �0.H C M/: (1.11)

At optical frequencies, the magnetization M is usually negligible, so that

B D �0H: (1.12)

In the absence of free charges and currents (� D 0, j D 0), the fields are therefore
described by

r � E D ��0 @H
@t

r � H D @D
@t

I

(1.13)

(1.14)

Eqs. (1.3) and (1.4) are implied in Eqs. (1.13) and (1.14) since the divergence of the
rotation of a vector field is zero, r�.r�a/ D 0. From Eqs. (1.13) and (1.14) follows,
using Stokes’s theorem, the continuity of the tangential component of E and H at
an interface between different media. The continuity of the normal component of D
and H is implied for solutions of Eqs. (1.13) and (1.14).

In the optical spectral range, the susceptibility � represents the fundamental
response of matter to electromagnetic radiation; it is, however, not a “material
constant” but rather a (tensorial) response function giving rise to a wide range of
photonic phenomena:

– A medium does not respond instantaneously to the electric field, which implies
that � is frequency dependent; consequences are phase- and group velocity
dispersion as well as light absorption by a medium (Sect. 2.2);

– In anisotropic media, the polarization vector is generally not parallel to electric
field vector, resulting in effects such as birefringence (Sect. 2.3);

– At sufficiently high electric fields, the relation between electric field and
polarization is not linear any more, giving rise to a variety of nonlinear optical
effects such as the electro-optic effect (Sect. 2.3.4), self-focusing of optical
beams (Sect. 3.1.3), soliton propagation (Sect. 3.2.2.2), and frequency mixing
and multiplication (Chap. 8).

– The polarization may be nonlocal in the sense that the polarization at a certain
point in space is determined not only by the electric field in this point, but
also by the field in the vicinity of the point; a manifestation is optical activity
(Sect. 2.4.1).

1In the following, we will refer to " simply as “permittivity.”
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1.2 Wave Equation

We can eliminate the magnetic field from Eqs. (1.13) and (1.14) to obtain a single
wave equation for the electric field: taking the rotation of Eq. (1.13) and substituting
the time derivative of Eq. (1.14), we obtain

r � .r � E/C �0
@2D
@t2

D 0: (1.15)

In isotropic media, the relation between P and E is expressed by a scalar suscepti-
bility �, and " D 1C �. From Eq. (1.3) in the form r � D D r � ""0E D 0 follows,
for homogeneous media, r � E D 0. With the identity

r � .r � a/ D r.r � a/� r2a; (1.16)

we can formulate Eq. (1.15) as

� r2E C �0
@2D
@t2

D 0; (1.17)

where the Laplace operator r2, in cartesian coordinates, is given by

r2 D @2

@x2
C @2

@y2
C @2

@z2
: (1.18)

With

c0 WD 1p
"0�0

; (1.19)

Eq. (1.17) assumes the form

r2E.x; t/ � "

c20

@2E.x; t/
@t2

D 0I (1.20)

for reasons that will become obvious, c0 D 2:998�108ms�1 is called vacuum speed
of light. Equation (1.20) is the wave equation for the electric field in isotropic, linear,
and local media.
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1.2.1 ComplexWave Functions and Amplitudes

The structure of Eq. (1.20) allows us to factorize its solutions E.x; t/ into a spatial
and a temporal part. For the temporal part, we choose harmonically oscillating
functions: not only do they describe the output of a single mode laser very well,
they also represent the base for the Fourier decomposition of more general time
varying signals. The ansatz

E.x; t/ D Re
h QE.x;!/ej!t

i
D 1

2

h QE.x; !/ej!t C c:c:
i
; (1.21)

where ! is the angular frequency and c:c: stands for “complex conjugate,” is a
solution of Eq. (1.20), if QE.x; !/ is a solution of the Helmholtz equation

r2 QE.x; !/C !2"

c20
QE.x; !/ D 0: (1.22)

In cartesian coordinates, each component of QEi must be a solution of the scalar
Helmholtz equation

�
@2

@x2
C @2

@y2
C @2

@z2
C !2"

c20

�
QEi.x; !/ D 0: (1.23)

A particularly simple solution is the harmonically oscillating function

QE.x; !/ D QE.k; !/e�jk�x (1.24)

where k is known as wave vector and its absolute value k as angular wave number2

or propagation constant. The complete electric wave function is then

E.x; t/ D Re
h QE.x; t/

i
; (1.25)

where

QE.x; t/ D QE.k; !/e�j.k�x�!t/ (1.26)

is the so-called complex wave function and QE.k; !/ the complex amplitude; the
imaginary part of the argument of the exponential function is called phase. Inserting
Eq. (1.26) into the Helmholtz equation Eq. (1.22) establishes a fundamental relation

2In spectroscopy, the term “wave number” usually refers to k=2� .
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between the angular frequency ! and the wave number k

k2 D !2

c20
"I (1.27)

this dispersion relation is usually written in the form

k D !

c0
n; (1.28)

where

n WD p
" (1.29)

is the so-called propagation- or refractive index; in vacuum, the dispersion relation
is

k D k0 WD !

c0
: (1.30)

As observable quantity, the electromagnetic field is always real valued; its repre-
sentation as real part of a complex function offers a number of formal advantages,
however. In particular, a phase offset of a component can be incorporated in the
complex amplitude: the amplitude

QE.k; !/ D QE0 D
2
4

E0;xej�.x/

E0;yej�.y/

E0;zej�.z/

3
5 ; (1.31)

for example, represents the wave

Ex.x; t/ D E0;x cosŒ!t � .kxx C kyy C kzz/C �.x/�

Ey.x; t/ D E0;y cosŒ!t � .kxx C kyy C kzz/C �.y/�

Ez.x; t/ D E0;z cosŒ!t � .kxx C kyy C kzz/C �.z/�: (1.32)

Another advantage of the complex representation is that the action of differential
operators on Eq. (1.26) can be replaced by simple (vector) operations

@

@t
! j!

r ! �jk: (1.33)
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Fig. 1.1 Surfaces of
constant phase of a plane
wave

k

λ

In the following, we will deal with complex wave functions instead of their real part
and take the real part only if necessary; care has to be taken if nonlinear operations
come into play, such as multiplication of fields in nonlinear optics (Chap. 8), or if
the power of the electric field is evaluated; such calculations are based on the real
part of the field.

1.2.2 Plane Waves

Surfaces of constant phase of Eq. (1.26), k �x�!t D const., are planes normal to the
wave vector k (Fig. 1.1); these waves therefore are called plane waves; the distance
between planes of equal phase are separated by integer multiples of the so-called
wavelength

	 WD 2�

jkj : (1.34)

The number k=2� is equal to the number of spatial periods per unit length, measured
in the direction of k; k is therefore also called spatial (angular) frequency. In vacuum,

	0 D 2�

k0
D 2�

c0
!

I (1.35)

the vacuum wavelength in the optical region of the electromagnetic spectrum is
of the order of 1�m. The corresponding temporal oscillation period, 2�=!, is
about 3 � 10�15 s, or 3 femtoseconds (fs).

Similar to harmonically oscillating temporal functions that allow “synthesizing”
arbitrary temporal functions, plane waves can be used to synthesize arbitrary spatial
wave functions via a Fourier integral over all possible wave vectors (Sect. 3.1.6).

In practice, there are different conventions to specify the frequency of a wave:
the temporal frequency 
 D !=2� , the quantum energy „!, the spatial vacuum
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Table 1.1 Relations between different parameters characterizing the frequency of an optical
wave: frequency 
 [THz], wave number .k=2�/ [cm�1], quantum energy „! [meV], and vacuum
wave length 	0 [�m], expressed in the appropriate units


 [THz] .k=2�/ [cm�1] „! [meV] 	0 [�m]


 [THz] 0:0300.k=2�/ 0:242„! 300=	0

.k=2�/ [cm�1] 33:4
 8:07„! 104=	0

„! [meV] 4:14
 0:124.k=2�/ 1240=	0

	0 [�m] 300=
 104=.k=2�/ 1240=„!

frequency (spectroscopic wave number) k=2� D 1=	0, or the vacuum wave length
	0. Table 1.1 summarizes the relations between the different parameters.

1.3 Propagation Velocities

1.3.1 Phase Velocity

To determine the phase velocity of the wave function Eq. (1.26), we choose a certain
value of the phase

k � x � !t D const.; (1.36)

and calculate the speed at which it propagates through space by taking the spatial
derivative

k � dx
dt

� ! D 0: (1.37)

The phase velocity in the direction of the wave vector is then, using Eq. (1.28),

vph D
ˇ̌
ˇ̌ dx

dt

ˇ̌
ˇ̌ D !

k
D c0

n
: (1.38)

In vacuum, n D p
" D 1 and the phase velocity is equal to the vacuum velocity of

light, c0. In the visible, this is also a good approximation for the phase velocity in
gasses at moderate pressure; the propagation index of transparent condensed media
ranges between 1 and about 3, the corresponding phase velocity between c0 and
c0=3. The phase velocity is the relevant velocity for the description of interference
effects (Chap. 4). The propagation of optical pulses is governed by the so-called
group velocity, which we discuss in the following.
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1.3.2 Group Velocity

According to the Fourier theorem, wave packets can be understood as superpositions
of monochromatic waves. Since the permittivity " and thus the phase velocity of the
individual Fourier components is frequency dependent, the propagation velocity of
the wave packet may be difficult to define and evaluate. We will treat this problem
in some detail in Sect. 3.2. As a first approach, we superimpose two waves with
slightly different frequencies and determine the propagation velocity of the resulting
“beating” envelope. The two frequencies!0˙�! correspond to two wave numbers
k0 ˙�k; assuming equal amplitudes of the two waves, the total field is given by

E.z; t/ D Re
h
E0e�jŒ.k0C�k/z�.!0C�!/t� C E0e�jŒ.k0��k/z�.!0��!/t�

i

D 2E0 cos.z�k � t�!/ cos.!0t � k0z/; (1.39)

which is an amplitude modulated wave with the carrier frequency !0 and the
envelope cos.z�k � t�!/ (Fig. 1.2). The envelope propagates at the velocity
dz= dt D �!=�k, while the phase fronts move at the phase velocity of the carrier,

t

E-field
Envelope

Fig. 1.2 Superposition of two monochromatic waves of slightly different frequencies, resulting in
a beat signal
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vph D !0=k0. For �! ! 0, the Taylor expansion

�! D d!

dk
�k C : : : ; (1.40)

allows us to identify�!=�k with d!= dk, so that the group velocity can be defined
as

vg WD d!

dk
: (1.41)

The group delay time 1=vg (the time that the envelope needs to propagate over the
unit length) is related to the propagation index n.!/ by

1

vg
D dk

d!
D d

d!

�
n!

c0

�
D 1

c0

�
n C !

dn

d!

�
: (1.42)

Therefore,

vg D c0
n C !. dn= d!/

D c0
n � 	0. dn= d	0/

I (1.43)

the second relation follows from d!=! D � d	0=	0 [see Eq. (1.35)]; since the
propagation index is usually tabulated as a function of 	0, this relation is of
particular practical importance.

Depending on the frequency, the derivative dn= d	0 may be positive or negative
for a given material, so that the group velocity can be larger or smaller than the
phase velocity. Within the transparency range of a medium, the derivative is usually
negative dn= d	0 < 0, so that vg < vph. These spectral ranges of “normal”
dispersion alternate with frequency bands of “anomalous” dispersion (dn= d	0 >
0).3 The mechanism behind the dispersion of a medium will be discussed in
Sect. 2.2; its impact on pulse propagation and broadening will be treated in Sect. 3.2.

1.3.3 Beam Velocity�

As already mentioned, wave packets can be tailored in time and space to form an
optical (pulsed) beam (Sect. 3.1.6). The wave vectors of the Fourier components of
such a beam are grouped around a central wave vector k0 that defines the direction

3In spectral ranges of very high anomalous dispersion, the group velocity can exceed c0; this
does not contradict special relativity, however, which refers to the signal velocity; for details,
see Brillouin (1960) and Jackson (1999).



12 1 Electrodynamic Theory of Light

of the beam: k D k0C�k; each wave vector is related to a frequency! D !0C�!
according to the dispersion relation !.k/ that can be expanded as

!.k/ D !0 C @!

@k
�k C : : : (1.44)

The wave packet can be written as three-dimensional integral over�k,

QE.x; t/ D
Z

QE.�k/e�jŒ.k0C�k/�x�!.k/t� d3�k

D e�j.k0�x�!0t/
Z

QE.�k/e�j�k�Œx�.@!=@k/t� d3�k; (1.45)

where QE.�k/ is the amplitude corresponding to the wave vector k0 C �k. The
result is a plane carrier wave expŒ�j.k0 � x � !0t/� with a spatial-temporal envelope
represented by the integral; the vectorial group velocity vray is obtained by choosing
a certain value of the envelope phase�k � Œx � .@!=@k/t� D const. and extracting Px
from the temporal derivative

vray D Px D
2
4
@!=@kx

@!=@ky

@!=@kz

3
5 D rk!.k/: (1.46)

In isotropic media, the dispersion relation Eq. (1.28) does not depend on the
direction of the wave vector,

! D c0
n

q
k2x C k2y C k2z (1.47)

and the group velocity is parallel to k0

vray D vg
k0

jk0j : (1.48)

In anisotropic media, however, the direction of the beam velocity generally differs
from k0, as we shall see in Sect. 2.3.

1.4 Energy Transport

The energy transport of electromagnetic waves is described by Poynting’s theorem;
to derive it, we multiply Eq. (1.13) with H, and (1.14) with E

E � .r � H/ D E � @
@t
."0E C P/ (1.49)
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H � .r � E/ D �H �
�
�0
@H
@t

�
I (1.50)

after subtraction and using 2a � .@a=@t/ D @.a � a/=@t, we obtain the equation

E � .r � H/� H � .r � E/ D @

@t

�
"0

E � E
2

C �0
H � H
2

�
C E � @P

@t
(1.51)

which, using the identity b � .r � a/ � a � .r � b/ D r � .a � b/, we convert into
Poynting’s theorem in its differential form

� r � .E � H/ D @

@t

�
"0

E � E
2

C �0
H � H
2

�
C E � @P

@t
: (1.52)

For the interpretation of the individual terms, we employ the divergence-theorem

Z
V
.r � u/ dV D

Z
A

u � n dA; (1.53)

where A is the surface of the volume V , n is the outward pointing unit normal vector
of a surface element, and dV , dA are differential volume and surface elements,
respectively, to transform Eq. (1.52) into

Z
A
Œ.E � H/ � n� dA D �

Z
V

�
@

@t

�
"0

E � E
2

C �0
H � H
2

�
C E � @P

@t

�
dV: (1.54)

The terms "0E �E=2 and �0H �H=2 represent the electric and magnetic contributions
to the vacuum-energy density of the field, while E � .@P=@t/ is the power density
that is exchanged between the field and the medium. Thus, the right-hand side of
Eq. (1.54) is equal to the temporal change of the energy stored in volume V . The
left-hand side can therefore be interpreted as energy flux through the surface A, and
the Poynting vector

S D E � H (1.55)

as energy flux density [W m�2] of the electromagnetic field.

1.4.1 Average Energy Flux Density

Due to the high frequency (1014 to 1015 Hz) of optical fields, most detectors can
only measure the time average of the energy flux density and related quantities. We
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denote the average of a real valued function a.t/ by brackets ha.t/i and define it as

ha.t/i D lim
T!1

1

T

Z T=2

�T=2
a.t/ dt: (1.56)

In the complex notation that we have introduced, the average can be expressed very
conveniently: assuming two real vectors a.t/, b.t/ with the complex representation

a.t/ D 1
2

�Qa.!/ej!t C Qa�.!/e�j!t
�

b.t/ D 1
2

h Qb.!/ej!t C Qb�.!/e�j!t
i
; (1.57)

we obtain

ha.t/ � b.t/i D 1
2
Re
h
Qa.!/ � Qb�.!/

i
(1.58)

and

ha.t/ � b.t/i D 1
2
Re
h
Qa.!/ � Qb�.!/

i
; (1.59)

because he˙j2!ti D 0. The average energy flux density can therefore be expressed
as

hSi D 1
2
Re
h QE.!/ � QH�.!/

i
: (1.60)

1.4.2 Energy Exchange Field/Matter

The average electric vacuum field energy density of a stationary field is constant,
since

�
@

@t

"0E � E
2

	
D
�
"0E � @E

@t

	
D 1

2
Re
h
�j!"0 QE.!/ � QE�.!/

i
D 0I (1.61)

the same applies to the magnetic vacuum field energy, so that, according to
Eq. (1.54) (and not surprisingly), the average energy flux through a closed surface
vanishes in vacuum. In the presence of a polarizable medium, this is generally
not the case because of the last term in Eq. (1.54), which is the product of the
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polarization current density @P=@t and the electric field. In complex notation,
P.t/ D ReŒ QP.t/� with

QP.t/ D QP.!/ej!tI (1.62)

according to Eq. (1.7),

QP.!/ D "0 Q� QE.!/; (1.63)

where we assume the susceptibility to be scalar but complex, Q� D �0Cj�00 (implying
a phase shift between the electric field and the polarization); the polarization current
density is therefore

@ QP.t/
@t

D j!"0 Q� QE.t/ (1.64)

and

�
E � @P

@t

	
D 1

2
Re
h QE.!/ �

h
j!"0 Q� QE.!/

i �i D ��00!"0
QE.!/ � QE�.!/

2
I

(1.65)

this is the power density that is transferred from the field to the medium; it is
proportional to the imaginary part of the susceptibility and vanishes only if the
polarization is exactly in phase with the electric field (compare Sect. 2.2). The
complex polarization current density @ QP=@t D j! QP is then �=2 out of phase with
the electric field and the power exchange is purely reactive, which means that the
energy deposited in the medium in one half cycle is returned to the field in the
consecutive one. Thus, only the quadrature component of the polarization gives rise
to a net energy exchange (Fig. 1.3).

1.4.3 Energy Transport: Plane Waves

The results obtained so far are applicable to spatially arbitrary, harmonically
oscillating waves; for plane waves Eq. (1.26), Maxwell’s equations Eqs. (1.13) and
(1.14) simplify to

k � E D �0!H

k � H D �!D:

(1.66)

(1.67)
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Fig. 1.3 Relative phases of
QE, QP, and @QP=@t in a medium
with complex susceptibility,
shown in the complex plane

Ẽ

P̃

∂P̃/∂t

Im[ ]

Re[ ]

ε0χ Ẽ

ε0χ Ẽ

Fig. 1.4 Geometric relation
of the vectors E, D, H, k, and
S of a plane wave in an
isotropic medium

The vectors D, H, and k are mutually orthogonal (Fig. 1.4); in isotropic media, the
additional relation EkD applies. Since jkj D n!=c0 D n!

p
"0�0, the absolute

values of H and E are then related by

jHj D n
r
"0

�0
jEj DW n

Z0
jEj; (1.68)

where

Z0 D
r
�0

"0
' 377� (1.69)

is called vacuum impedance.
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The Poynting vector S D E � H is orthogonal to E and H; in isotropic media it
is also parallel to k,

S D E � H D 1

�0!
E � .k � E/ D E � E

�0!
k (1.70)

(the second equality follows from a � .b � c/ D b.a � c/� c.a � b/ and is generally
valid only in isotropic media where E � k D 0). Using Eq. (1.59), its time average
can be expressed as

I D jhSij D n
QE.!/ � QE�.!/

2Z0
D n

E20
2Z0

(1.71)

and is called irradiance or intensity I.4 From this equation follows the useful relation

jE0j D
r
2Z0I

n
(1.72)

that allows us to calculate the electric field amplitude from a given energy flow
density. The electric field of a 1 mW laser with a beam cross section of 1 mm2, for
example, is about 103 V/m.

If the area illuminated by the wave is not normal to the wave vector, the intensity
is given by the normal projection

n � hSi D nE20
2Z0

cos 
; (1.73)

where 
 is the angle of incidence, measured in reference to the surface normal
(Fig. 1.5).

Fig. 1.5 Electromagnetic
energy flux density at oblique
incidence on a surface

θ

S

|S| cos θ

n

4In photonics, the term intensity is generally used instead of irradiance.
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1.5 Polarization States

An important property of an optical wave is its polarization state, i.e., the orientation
of the electric field vector in space; it influences, among other things, the reflection
and transmission behavior at interfaces between different media. According to
Eq. (1.67), the electric field vector lies in a plane normal to k and has two degrees
of freedom.5 In general, the electric field vector of a harmonically oscillating wave
describes an ellipse in this plane, rotating with a period of 2�=!; depending on the
sense of rotation, this state is called left or right elliptically polarized. If the ellipse
degenerates to a line, the state is linearly polarized; another special case is circularly
polarized light.

It is convenient to describe these states in a cartesian coordinate system whose
z-axis is chosen to be parallel to k. The electric field can then be represented by a
two-dimensional vector; the general case Eq. (1.32) is given by

Ex.z; t/ D E0;x cos.!t � kz/

Ey.z; t/ D E0;y cos.!t � kz C��/I (1.74)

for convenience, the origin of the time coordinate is chosen such that �.x/ D 0 and
�.y/ D ��.

If the two field components are in phase (�� D 0), E oscillates along a line
oriented under the angle ' D arctan.E0;y=E0;x/ in respect to the x-axis; such a field
is called linearly polarized.

If the phase difference is �� D ˙�=2 and E0;x D E0;y D E0, then the field
vector in a given plane z D 0 describes a circle

Ex.t/ D E0 cos!t

Ey.t/ D �E0 sin!t (1.75)

and the wave is called circularly polarized. For an observer facing the light wave,
the temporal rotation is clockwise (cw) for�� D �=2 and counterclockwise (ccw)
for �� D ��=2, respectively; the two states are called right (cw) or left (ccw)
circularly polarized and denoted by the symbols �C, ��. A snapshot (t D 0) of
the spatial trace of the field vector of right (left) polarized light shows a right (left)-
handed helix

Ex.z/ D E0 cos kz

Ey.z/ D ˙E0 sin kz (1.76)

with a pitch length of 	 D 2�=k (Fig. 1.6).

5This statement is generally valid only in isotropic media; in anisotropic media, the electric field
can have a longitudinal component and this and the following statements refer to the transverse
component of E.
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Fig. 1.6 Snapshot of left circularly polarized light and its decomposition into two linearly
polarized waves

The general case, with arbitrary ratio E0;y=E0;x and arbitrary phase difference��
will be discussed in detail in Sect. 1.5.4.

1.5.1 Jones Formalism

Since the absolute value of the amplitude is irrelevant for the polarization state,
states can be represented by unit vectors, called Jones vectors J (Table 1.2).

Linearly polarized light is represented by

�
cos'
sin '

�
; (1.77)

circularly polarized fields by

�˙ D 1p
2

�
1

e˙j�=2

�
D 1p

2

�
1

˙j

�
: (1.78)
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Table 1.2 Jones vectors of
selected polarization states; '
denotes the angle between
polarization and x-axis

Polarization state Jones vector

Linear
2
64

cos '

sin'

3
75

Right circular �C

1
p

2

2
64
1

j

3
75

Left circular ��

1
p

2

2
64
1

�j

3
75

General (elliptical)
2
64

cos ˛

sin˛ ej��

3
75

For the interpretation of ˛ and��, see
Sect. 1.5.4

The general, elliptically polarized state Eq. (1.74) corresponds to the Jones vector

1q
E20;x C E20;y

�
E0;x

E0;yej��

�
D
�

cos˛
sin˛ej��

�
(1.79)

and will be discussed in Sect. 1.5.4.

1.5.1.1 Orthogonal Polarization States
Two Jones vectors are called orthogonal if their scalar product is zero,

J.1/ � J.2/� D 0: (1.80)

Examples are two linearly polarized states oriented along ' and ' C �=2, respec-
tively, or left/right circularly polarized states �C, ��. A state orthogonal to
Eq. (1.79) is obviously

�
sin˛

� cos˛ej��

�
: (1.81)

A pair of orthogonal states (Jones vectors) establishes a base that allows
constructing any other state by appropriate linear combination. In particular, any
other orthogonal base can be constructed; for example, the sum and difference,
respectively, of �C and �� produce a linearly polarized orthogonal base

1p
2
.�C C ��/ D

�
1

0

�
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1

j
p
2
.�C � ��/ D

�
0

1

�
; (1.82)

and a circularly polarized base can be obtained from a linearly polarized base by a
complex-valued combination

�˙ D 1p
2

�
1

0

�
C 1p

2
e˙j�=2

�
0

1

�
: (1.83)

These relations are not only mathematical transformations, but also represent
physical reality, since linearly polarized light, for example, can be synthesized by
two superimposed circularly polarized waves and vice versa.

The polarization state can change during propagation; as we will see, however,
for a given propagation system there are always so-called eigenstates that are
conserved during propagation (Sect. 1.5.2.5). In lossless media, these states can
be shown to be orthogonal to each other and represent a “natural base” for the
description of wave propagation in the respective system.

1.5.2 Polarization Optics

1.5.2.1 Wave Plates
In Sect. 2.3, we will encounter various optical components that can alter the
polarization state; their operation can be represented by a specific Jones matrix T,
that relates an arbitrary input state Jin to the corresponding output state Jout

Jout D TJinI (1.84)

Table 1.3 summarizes Jones matrices of important components. Many of these
elements rely on the dependence of the phase velocity on the polarization state.
In birefringent materials (Sect. 2.3), for example, there are two orthogonal, linearly
polarized eigenstates Jf;s with different phase velocities, denoted as “fast” and
“slow”; the corresponding propagation indices are nf and ns. An incoming field of
arbitrary polarization is decomposed in two waves / Jf;se�j.nf;sk0�x�!t/ that develop,
during propagation, a phase difference of

��V D .ns � nf/k0d; (1.85)

where d is the thickness of the medium; such plates are called retarders or wave
plates (Fig. 1.7). In a coordinate system with the x-axis parallel to Jf, the Jones
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Table 1.3 Jones matrices of important polarization optical elements

Optical element Orientation Jones matrix

Linear polarizer kx-axis
2
64
1 0

0 0

3
75

Linear polarizer ' to x-axis
2
64

cos2 ' sin' cos '

sin' cos ' sin2 '

3
75

Polarization rotator
2
64

cos' � sin'

sin' cos '

3
75

	=2-Wave plate fkx-axis
2
64
1 0

0 �1

3
75

	=4-Wave plate fkx-axis
2
64
1 0

0 �j

3
75

	=4-Wave plate f˙45ı to x-axis
1

p

2

2
64
1 �j

�j 1

3
75

��V-Wave plate fkx-axis
2
64
1 0

0 e�j��V

3
75

Right circular polarizer
2
64
1 �j

j 1

3
75

Left circular polarizer
2
64

1 j

�j 1

3
75

Mirror, normal incidence
2
64
1 0

0 �1

3
75

matrix has the form

T D
�
1 0

0 e�j��V

�
: (1.86)
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Fig. 1.7 Evolution of linearly polarized light (' D 45ı) in a 	=2-wave plate: in the middle of the
plate, the light is circularly polarized, the state at the output is the mirror image of the input state

A so-called half-wave plate produces a phase shift of � (corresponding to 	=2), and
is represented by

T D
�
1 0

0 �1
�
; (1.87)

which is equivalent to a mirror operation about the x-axis. Linearly polarized light
emerges linearly polarized from such a component, but its polarization direction is
flipped from ' to �'; for ' D 45ı, the output is actually orthogonal to the input
state (note that this change of the polarization direction is not due to a rotation; a
rotator would rotate all states by the same angle). Circularly polarized light changes
its sense of rotation. A mirror has the same effect, resulting, however, from the
inversion of the propagation direction.
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A quarter wave plate (��V D �=2) with the Jones matrix

T D
�
1 0

0 �j

�
; (1.88)

converts circularly polarized into linearly polarized light and vice versa.

1.5.2.2 Polarization Rotators
Optically active and magneto-optic materials (Sects. 2.4.1 and 2.4.2) have circularly
polarized eigenstates with the propagation indices n˙; they act as circular retarders,
inducing a phase shift of

��V D .n� � nC/k0d (1.89)

between the two circularly polarized states. In a circularly polarized base
[Eq. (1.78)], the Jones matrix has the form

Tc D
�
1 0

0 e�j��V

�

c

; (1.90)

which, as we shall see from an inspection of Eq. (1.124), corresponds to a
polarization rotator that rotates an incoming state by an angle of

' D ���V=2 D .nC � n�/k0d=2: (1.91)

1.5.2.3 Polarizers
Polarizers (also called polarization filters) are components that transmit one partic-
ular polarization state only; an incoming state is decomposed into the transmitted
eigenstate and its orthogonal complement, which is absorbed or directed into a
different direction; in other words, a polarizer projects the input state onto the
transmitted eigenstate. The matrix of a polarizer for x-polarized light is therefore

T D
�
1 0

0 0

�
: (1.92)

1.5.2.4 Composite Systems
A series of polarization optical elements with Jones matrices Ti can be represented
by a single system Jones matrix that is the product of the individual matrices in the
exact sequence of transmission
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Fig. 1.8 Effect of a series of
polarizers: (a) two crossed
polarizers block the
transmission completely; (b)
addition of a third polarizer,
rotated by 45ı, results in a
transmission of up to 25 %
(depending on the input state)

I0 I0 0

I0 I0 I0/4I0/2

(a)

(b)

Ttotal D : : :T3T2T1: (1.93)

A pair of two mutually orthogonal linear polarizers (first y, then x polarized,
Fig. 1.8a), for example, has the system matrix

T D
�
1 0

0 0

� �
0 0

0 1

�
D
�
0 0

0 0

�
; (1.94)

and transmits no light at all. Adding a third polarizer, oriented under 45ı, between
the two polarizers (Fig. 1.8b), results in the matrix

T D 1
2

�
1 0

0 0

� �
1 1

1 1

� �
0 0

0 1

�
D 1

2

�
0 1

0 0

�
; (1.95)

which is equivalent to an x-polarizer with 50 % attenuation. The same 45ı polarizer
inserted before or after the original pair of crossed polarizers would, of course, not
alter the zero transmission; this is an instructive example demonstrating the non-
commutativity of polarization optics.

1.5.2.5 Polarization Eigenstates
An eigenvector or eigenstate (or eigenmode) of a matrix T is a vector that,
if multiplied with T, remains unchanged apart from a (complex) factor, called
eigenvalue. The eigenvectors of a Jones matrix are the polarization eigenstates of
the corresponding optical element; to determine these states, we have to solve the
equation

TJ D 	TJ (1.96)
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or

.T � 	T1/J D 0; (1.97)

where 1 is the unit matrix

1 WD
�
1 0

0 1

�
I (1.98)

explicitly,

�
T11 � 	T T12

T21 T22 � 	T

� �
J1
J2

�
D 0: (1.99)

For this system to have non-trivial (i.e., non-zero) solutions, the determinant det.T�
	T1/ must be zero. Thus, the characteristic equation

.T11 � 	T/.T22 � 	T/ � T21T12 D 0 (1.100)

has to be solved, yielding two eigenvalues	.1/T and 	.2/T . Corresponding eigenvectors
J.1;2/ are found by inserting the values 	T into one of the equation of Eq. (1.99); the
length of the eigenvectors is not defined, since any multiple aJ of an eigenvector J
is also an eigenvector. It is, however, convenient to normalize the eigenvectors to
unit length.

Once the set of eigenvectors is given, any arbitrary state can be written as a linear
combination of these eigenvectors,

J D a1J.1/ C a2J.2/I (1.101)

the output state of the optical element represented by T is then

TJ D a1	
.1/
T J.1/ C a2	

.2/
T J.2/: (1.102)

1.5.2.6 Lossless Systems
Since Jones vectors represent electric fields, Eq. (1.71) implies

JoutJ�out D JinJ�in; (1.103)

provided the system is lossless and the input and output propagation indices are
equal. Following the arguments regarding the scattering matrix of lossless systems
[Eq. (4.19)], we find that the Jones matrix of a lossless elements is unitary

�
T�
�T D T�1: (1.104)
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Such matrices can be shown to have orthogonal, generally elliptic eigenvectors J1;2
with eigenvalues of unit modulus, i.e., 	.1;2/T D e�j�1;2 . In the eigenvector base “b”
formed by J1;2, the Jones matrix is diagonal and can be written as

T D
�
1 0

0 e�j��V

�

b

; (1.105)

where ��V D �2 � �1, and an irrelevant common factor has been dropped. In
the eigenbase, the action of the optical element is to introduce a phase shift of
��V between the eigenstates. Thus, any lossless polarization optical system can
be understood as retarder acting on its eigenstates.

1.5.3 Transformation of Jones Vectors andMatrices

Jones vectors and matrices are usually represented in a certain cartesian coordinate
system. The corresponding base vectors are linearly polarized states along the
coordinate axes. It is often useful to express them in a different, for example,
circularly polarized base or in a linearly polarized base that is rotated in respect
to the original; this can be achieved by simple linear transformations.

1.5.3.1 Rotated Cartesian Base
We assume a Jones vector that is represented, in the original cartesian system, by

Jl D
�

Jl;1

Jl;2

�
and try to find the components Jl0 D

�
Jl0 ;1

Jl0 ;2

�
of the same vector in

a system rotated by 'R. In the original system, the components can be expressed
by Jl;1 D r cos', Jl;2 D r sin' (Fig. 1.9). Rotating the coordinate system by 'R

changes ' to ' � 'R. Using cos.' � 'R/ D cos' cos'R C sin ' sin 'R and sin.' �
'R/ D � cos' sin 'R C sin ' cos'R we obtain

Jl0;1 D r cos.' � 'R/ D Jl;1 cos'R C Jl;2 sin 'R

Jl0;2 D r sin.' � 'R/ D �Jl;1 sin 'R C Jl;2 cos'R: (1.106)

Fig. 1.9 Coordinates of a
vector in two different
cartesian reference frames,
rotated by 'R in respect to
each other
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This can be expressed by

Jl0 D Al!l0Jl; (1.107)

where Al!l0 is the rotation matrix

Al!l0 D A'R D
�

cos'R sin 'R

� sin 'R cos'R

�
: (1.108)

The inverse transformation is obtained by multiplication of Jl0 with the inverse
matrix

Jl D Al0!lJl0 D A�1l!l0Jl0 ; (1.109)

where

A�1l!l0 D A�'R : (1.110)

To transform a Jones matrix into the rotated system, we multiply Eq. (1.84) by
Al!l0 and obtain, with Eqs. (1.107) and (1.109),

Jl0;out D Al!l0Jl;out D Al!l0TJl;in D Al!l0TA�1l!l0Jl0;in; (1.111)

so that

Jl0 ;out D Tl0Jl0;in (1.112)

with the transformed Jones matrix

Tl0 D Al!l0TA�1l!l0 : (1.113)

Equations (1.107) and (1.113) are not restricted to rotations, but constitute the
general coordinate transformation rules for Jones vectors and matrices.

1.5.3.2 Physical Rotation of Polarization States and Optical
Components

In practice, one frequently knows the matrix T of a polarization optical component
in a certain orientation and needs to know the matrix T' of the component in
a different orientation. Rotating the element by ' is mathematically (but not
physically) equivalent to a rotation of the reference frame by �'. The matrix of
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the rotated element is therefore

T' D A�'TA': (1.114)

The Jones matrix, for example, of a linear polarizer rotated by ' in respect to the
x-axis is

T D A�'
�
1 0

0 0

�
A' D

�
cos2 ' cos' sin '

cos' sin ' sin2 '

�
: (1.115)

By the same argument, the components of a Jones vector that has been physically
rotated (by a polarization rotator) by an angle ' are equal to that of the original
vector in a reference frame rotated by �'. The Jones matrix of a polarization rotator
is therefore

T D A�'R D
�

cos' � sin '
sin' cos'

�
: (1.116)

1.5.3.3 Transformation to a Circularly Polarized Base
Next, we analyze the transformation between a linearly and a circularly polarized
base; we indicate the reference base by a subscript l and c, respectively. In a
circularly polarized base, the states �C; �� [Eq. (1.78)] are represented by

�C D
�
1

0

�

c

; �� D
�
0

1

�

c

: (1.117)

The transformation matrix Ac!l must be such that

1p
2

�
1

j

�

l

D
�

A11 A12
A21 A22

�

c!l

�
1

0

�

c

(1.118)

1p
2

�
1

�j

�

l

D
�

A11 A12
A21 A22

�

c!l

�
0

1

�

c

: (1.119)

Obviously, the columns of Ac!l are given by the representation of �˙ in the linear
base

Ac!l D 1p
2

�
1 1

j �j

�
; (1.120)
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and the inverse matrix is

Al!c D A�1c!l D 1p
2

�
1 �j
1 j

�
: (1.121)

The transformation of Jones matrices follows Eq. (1.113)

Tl D Ac!lTcA�1c!lI (1.122)

the matrix Eq. (1.90) of a circular retarder,

Tc D
�
1 0

0 e�j��V

�

c

(1.123)

in particular, is transformed to

�
cos.��V=2/ � sin.��V=2/

sin.��V=2/ cos.��V=2/

�

l

(1.124)

in the linear base. Comparison with Eq. (1.116) shows that a circular retarder with
retardation ��V acts as polarization rotator that rotates an arbitrary input state by
' D ���V=2.

1.5.3.4 Eigenbase
Of particular interest is a base consisting of the (normalized) eigenvectors of a
polarization optical device. In its eigenbase, the Jones matrix of the device has the
form

"
	
.1/
T 0

0 	
.2/
T

#

b

/
2
4 1 0

0
	
.2/
T

	
.1/
T

3
5

b

; (1.125)

as follows from Eq. (1.102); for lossless systems with 	.1;2/T D e�j�1;2 , this is the
matrix of a retarder [Eq. (1.105)]; as stated above, any lossless polarization optical
element simply acts as a retarder on its eigenvectors.

1.5.4 Elliptically Polarized States

In a circular base, a general state

EC�C C E�ej��c�C (1.126)
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is represented by

�
EC

E�ej��c

�

c

(1.127)

where E˙ are assumed to be non-negative and real. For the special case ��c D 0,
the representation in the linear base is

1p
2

�
1 1

j �j

� �
EC
E�

�

c

D 1p
2

�
EC C E�

j.EC � E�/

�

l

I (1.128)

this corresponds, at z D 0, to the wave Eq. (1.74)

E.t/ D Re
h QEej!t

i
D 1p

2

�
.EC C E�/ cos!t
.E� C E�/ sin.!t/

�

l

I (1.129)

the locus of the electric field vector is obtained by elimination of t

E2x
.EC C E�/2

C E2y
.EC � E�/2

D 1; (1.130)

which is an ellipse with major axis .EC C E�/ and minor axis jEC � E�j; the sign
of EC � E� determines the handedness of the corresponding elliptically polarized
wave. According to Eq. (1.124), the phase shift ��c is equivalent to a rotation
by ��c=2, so that the general state Eq. (1.127) is elliptically polarized, with an
ellipticity of

tan � D EC � E�

EC C E�
; (1.131)

rotated by the angle

' D ��c=2 (1.132)

in respect to the x-axis.
Because of these simple relations, the easiest way to determine the ellipticity and

orientation of an arbitrary state, given in an arbitrary base, is to transform it into the
circular base where it can be expressed in the form

eE0
�

cos˛c

sin ˛cej��c

�

c

: (1.133)
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Since the scalar (complex) multiplier eE0 does not influence the polarization state,
the polarization ellipse can then be determined using Eqs. (1.131) and (1.132). For
the general state in a linear base,

�
cos˛l

sin ˛lej��l

�

l

; (1.134)

in particular, we obtain after a somewhat lengthy, but simple calculation (see, e.g.,
Kliger et al. 1990)

sin 2� D sin 2˛l sin��l

tan 2' D tan 2˛l cos��l:

(1.135)

(1.136)

In an analogue fashion, the inverse relations

cos 2˛l D cos 2� cos 2'

cot��l D cot 2� sin 2'

(1.137)

(1.138)

are obtained. An arbitrary state (Fig. 1.10) can thus be characterized alternatively by
the parameter pair .�; '/ or .˛l; ��l/, that refer to the circularly or linearly polarized
base, respectively.

1.5.5 Poincaré Sphere�

The identification of a polarization state by two angular parameters allows associat-
ing it with a point on a sphere. If, in particular, 2� is associated with the “geographic
latitude,” and 2' with the “geographic longitude,” one obtains a spherical map of
all possible polarization states, known as Poincaré sphere (Fig. 1.11). North- and
south-pole, respectively, correspond to right and left circularly polarized states. The
equator, with � D 0, comprises all linearly polarized states, and its intersection with

Fig. 1.10 The locus of the
electric field vector of
elliptically polarized light is
an ellipse with ellipticity
tan �, oriented at the
azimuthal angle '

ϕ
Ex

Ey

(E0,x,E0,y)

αl
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Fig. 1.11 On the Poincaré
sphere, every polarization
state is represented by a point
P with the latitude 2� and the
longitude 2'. Relations
(1.35) to (1.138) follow from
spherical geometry by
identifying HP D 2˛l and
^XHP D ��l: in a
right-angled spherical
triangle, the hypothenuse c
and the two legs a; b are
related by cos cD cos a cos b,
and the angel A opposite a is
given by cot AD cot a sin b,
for example (see Fig. 1.10 for
the meaning of �, ', and ˛l)

2
Δφl

2ϕ

2αl

H

V

P

X

S

N

the 0-meridian (' D 0) denotes horizontal polarization. Mutually orthogonal states
occupy antipodal positions: using Eq. (1.81), we obtain for the state orthogonal to
.2�; 2'/ the coordinates 2�0 D �2�, 2' 0 D 2' C � .

The parameter set .2�; 2'/ relates to the circular base. As we have seen above,
a circular retarder Eq. (1.123) with phase shift ��V rotates any state by the angle
' D ���V=2. On the Poincaré sphere, this means that a state is moved zonally
(with constant 2�) by the angle ���V. The poles, as eigenstates of the circular
rotator, are not affected, and define the rotation axis.

Mathematically, the circular base is just one out of an infinite set of possible
orthogonal bases. Its practical significance results from the fact that the parameter
set .2�; 2'/ allows for an intuitive geometric interpretation. As we have seen,
however, any lossless polarization optical device generates an eigenbase, that
corresponds to two antipodal points on the Poincaré sphere; the action of such
a device is that of a retarder that changes the phase shift ��b of the input state
(represented in the eigenbase)

�
Eb;1

Eb;2ej��b

�

b

; (1.139)

to ��b � ��V while keeping the ratio Eb;2=Eb;1 unchanged. An input state is
therefore rotated on a circle around the axis constituted by the two eigenstates by an
angle of ���V (Fig. 1.12). Varying ��V, any state on the circle can be reached. If
the circle intersects the equator or a pole, for example, the retarder can convert the
input state into linearly or circularly polarized light, respectively.

Rotating the retarder itself (around an axis parallel to the propagation direction)
by an angle 'R moves its eigenstates by an angle of 2'R on a zonal circle of the
Poincaré sphere. Rotation of a linear retarder (with eigenstates on the equator)
allows positioning its antipodal eigenstates anywhere on the equator. A linear
retarder (and only a linear retarder) of variable phase shift and orientation can
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P

P R

R

ΔφV

Fig. 1.12 Wave plates can be represented on the Poincaré sphere by an axis through their
eigenstates R;R0. The transformation of a state P by the wave plate is equivalent to the rotation
of P around the axis by an angle equal to the phase shift of the wave plate

EyEyEy

Ex

Ey

Ex

Fig. 1.13 One and the same polarization state occupies different “boxes” in differently oriented
cartesian coordinate systems. A birefringent wave plate with axes parallel to the coordinate axes
can transform a state into any other state within the box by appropriate choice of its phase shift

convert any given input state into any desired output state: for this purpose, one
has to construct the symmetry plane between the input state and the target state and
position the linear retarder at the intersection between this plane and the equator.
Note that a circular retarder, by comparison, can only convert states of identical
ellipticity into each other.

The practical importance of birefringent wave plates (i.e., of linear retarders)
merits a few further remarks on its action. The two linearly polarized eigenstates of
such a wave plate generate a cartesian coordinate system in which a given state has
the coordinates (Fig. 1.13)

1q
E20;x C E20;y

�
E0;x

E0;yej��l

�
D
�

cos˛l

sin ˛lej��l

�
I (1.140)

the retarder changes the value of ��l, but does not affect the aspect ratio tan ˛l D
E0;y=E0;x. If the phase shift of the retarder is adjustable, any state within a box
defined by the corner points .˙E0;x;˙E0;y/ can be accessed. Rotating the wave plate
generates a new cartesian coordinate system in which the same input state occupies
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a different box; again, any state within this box can be reached by appropriate choice
of the phase shift. To transform a given input state to a selected output state, one has
to find the box that contains both states; the orientation of this box indicates the
required orientation of the wave plate.

A linear retarder of variable phase shift can be realized by stacking two wedges
of a birefringent material, one of them movable in respect to the other, on top of each
other to form a parallel plate of variable thickness and corresponding phase shift. If
the setup is mounted on a rotation stage, one obtains full control over orientation
and phase shift of the retarder. Such a Babinet–Soleil compensator can, as already
stated, transform any polarization state into any other. An alternative scheme is to
use a rotatable electro-optic Pockels cell (Sect. 2.3.4) whose birefringence can be
controlled by an external electric field.

1.6 Inhomogeneous Waves

Plane waves as defined in Eq. (1.26) are spatially homogeneous in the sense that
the (complex) amplitude QE.k; !/ does not depend on x. Many relations derived in
this chapter refer to such waves. We now want to discuss a superposition of two
such waves; we will encounter superpositions of plane waves in the discussion
of interference, in the theory of planar optical waveguides, in the Fourier optical
treatment of optical beams and other phenomena.

We choose two waves with orthogonal waves vectors, parallel to the x; z plane

k1;2 D k0

p
2

2
Œ1; 0;˙1� : (1.141)

Particularly instructing is the situation where both waves are linearly polarized and
coplanar to the wave vectors

QE1;2.x; t/ D eE0
p
2

2

2
4

�1
0

1

3
5 e�j.k1;2�x�!t/: (1.142)

Figure 1.14 shows the resulting total field; the surfaces of constant phase are planes
normal to k1 C k2, moving at the phase velocity

p
2c0 > c0. There are planes

of purely longitudinal electric field, normal and parallel, respectively, to the phase
fronts, and other planes, with purely transverse electric field. Between these planes,
the electric field has transverse as well as longitudinal components and the electric
field vector actually rotates parallel to the plane spanned by the wave vectors. The
Poynting vector vanishes in the planes of purely longitudinal electric field, because,
as can be easily shown, the magnetic field vanishes in these planes; it reaches its
maximum value in the planes of purely transverse electric field, where it is directed
normal to the phase fronts. Between these planes, it exhibits transverse components
that cancel when averaged over an oscillation period. This example shows that
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(a)
k1

k2

(b)
k1

k2

S=0

S=0

Fig. 1.14 Superposition of two plane waves with orthogonal wave vectors k1;2, linearly polarized
coplanar with the wave vectors: (a) snapshot of the electric field, (b) snapshot of the Poynting
vector

superpositions of plane waves have properties that are quite different from that of
homogeneous waves and have to be carefully considered, especially if the angle
between the wave vectors is large. This is the case, for example, in tightly focused
laser beams or in waveguides with strong guiding.

1.7 Summary

Photonics is predominantly concerned with electromagnetic fields that have a well-
defined phase, frequency, and propagation direction. Plane monochromatic waves
are therefore very useful and popular elements to describe photonic processes. In
this Chapter, the properties of such fields are discussed in detail. An important
parameter of light waves is the propagation velocity; in addition to the phase
velocity, which is defined for a monochromatic plane wave, the concept of group-
and ray velocity is introduced which applies to “packages” of plane waves, i.e., to
light pulses and beams, and is discussed in more detail in the respective sections of
Chap. 3.

Particular emphasis is laid in this Chapter on the polarization state of light
waves, a property that is exploited in many photonic devices. The analysis of
polarization optical devices in terms of eigenstates, eigenvalues, and eigenbases
in the framework of the Jones vector formalism has, in addition to its practical
importance, a didactic purpose as it familiarizes the reader with the mathematical
concept of the Hilbert space, where wave functions are treated as vectors. This
concept is fundamental not only for the understanding of quantum mechanics
(Chap. 6) but also for the coupling of modes in waveguides and other processes; even
though it is not explicitly elaborated on in this book, it pervades large parts of it.



References and Suggested Reading 37

1.8 Problems

1. A laser beam is focussed onto an area of 5�m2; what beam power is needed to
reach an electric field strength equal to that experienced by an electron in an H-
atom (Eat D e=4��0a20, a0 D 5:3 � 10�11 m)? With a pulsed laser (5 fs pulses),
what pulse energy is needed for that?

2. Reproduce Fig. 1.2, assuming vg D 0:9 vph with two frequencies that differ by
10 % and plot the wave as function of time and of distance, respectively; vary z
in steps of 	 and observe what happens.

3. Plot a snapshot of the vector field of the Poynting vector of a plane wave at t D 0

in a fashion similar to Fig. 1.14; compare linearly and circularly polarized light.
4. Reproduce Fig. 1.14 (a) for QE1;2 coplanar with k1;2, (b) for QE1;2 ? k1;2, (c) QE1

coplanar with k1;2 and QE2 ? k1;2; step up the time in increments of T=8 and
observe what happens.

5. Visualize the general polarization state Eq. (1.79) in a plot similar to Fig. 1.10;
vary �� and ˛ and observe what happens.

6. Assume a stack of two 	=4 wave plates, rotated by 45ı in respect to each
other. What are the polarization eigenstates of this system? Express linearly and
circularly polarized light, respectively, in this eigenbase.

7. Derive the transmittance of an electro-optic modulator that consists of two
polarizers oriented along the x-axis and an electrically controlled variable
retarder that is rotated by 45ı in respect to the x-axis as a function of the phase
delay ��V.
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2Wave Propagation in Matter

While the focus of Chap. 1 was on the properties of electromagnetic waves, we now
turn to the optical properties of matter and their impact on wave propagation. To
emphasize this perspective, we use Eq. (1.8) to write Eq. (1.17) in the form

r2E � "0�0
@2E
@t2

D �0
@2P
@t2

: (2.1)

The right-hand side of this differential equation can be understood as a source term
driving a new field that is superimposed on the original field.

Consider a very thin sheet of an isotropic, lossless material with susceptibility
�, suspended in vacuum and irradiated by a plane wave under normal incidence.
The polarization induced in the sheet gives rise to a new wave which, for symmetry
reasons, consists of a forward and a backward propagating plane wave of equal
amplitude. The forward propagating component is added to the driving field; since
it is out of phase by �=2 [compare Eq. (8.40)], however, the resulting forward
wave is slightly retarded in comparison to the original field. If we introduce a
second sheet at a distance of a quarter wavelength after the first one, essentially the
same happens: the total forward propagating field is further retarded, and a second
backward propagating wave is generated. In reference to the first one, however, this
wave is delayed by half a wave length (or �) and will cancel the contribution from
the first sheet.

If we fill up the entire space with such sheets, the forward propagating wave is
continuously retarded and propagates at a phase velocity smaller than c0; the degree
of retardation increases with the susceptibility of the medium, since the amplitude
of the partial waves is proportional to �. There will, however, be no backward
propagating field because for any chosen sheet there is another one that produces
a cancelling wave. The situation changes if the medium is inhomogeneous, or if, for
example, only a half space is filled with the medium: the backward contributions
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from a quarter wavelength thick front layer of the medium are not compensated and
add up to a reflected wave.

The mathematical treatment of his process is rather complicated and is the
subject of the Ewald–Oseen extinction theorem1; the amplitudes of the reflected
and transmitted waves can be calculated quite easily using boundary conditions,
however, as we will show in the following.

2.1 Transition BetweenDifferent Media

2.1.1 PhaseMatching at a Boundary

2.1.1.1 Reflection and Refraction
Before we evaluate the amplitudes of the reflected and transmitted waves, respec-
tively, we first want to find their propagation directions, i.e., their respective wave
vectors. Assume a plane wave

Ei D Ei
0e
�j.ki�x�!t/ (2.2)

incident on a plane interface between two dielectric media (i) and (t) with the
propagation indices ni and nt, respectively. Both media are supposed to be lossless
and isotropic; depending on the relative magnitude of ni and nt, a medium is called
optically denser or thinner than the other.

The reflected and transmitted waves are also expected to be plane waves

Er;t D Er;t
0 e�j.kr;t�x�!t/I (2.3)

each wave vector can be decomposed into a component ki;r;t
?

normal to the interface,
and a tangential component ki;r;t

k

. Right at the interface, there is no contribution of
ki;r;t

?

to the wave functions

Ei;r;t
ˇ̌
IF D Ei;r;t

0 e�j.ki;r;t
k

�x�!t/
: (2.4)

Because of the translational invariance of the planar interface, the ratios

e�j.kr;t
k

�x�!t/
=e�j.ki

k

�x�!t/ must be independent of x and the tangential components of
the participating wave vectors must consequently be equal

ki
k

D kr
k

D kt
k

: (2.5)

1See, e.g., Born and Wolf (1999).
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Fig. 2.1 Wave vectors of
incident, transmitted and
reflected waves at a planar
shift invariant interface: the
tangential components must
satisfy the phase matching
condition ki

k

D kr
k

D kt
k

, the
length of the respective
vectors is given by the
dispersion relation
jki;r;tj D ni;r;tk0

ki

ki

kr

kt

kt

kr

θrθi

θt

ni

nt

From this phase matching condition follows immediately that the three wave vectors
are parallel to the plane of incidence, defined by the incident wave vector and
the surface normal. The normal components of the wave vectors follows from the
dispersion relation (1.28) jki;r;tj D ki;r;t D ni;r;tk0 to be

.ki;r;t
?

/2 D .ni;r;tk0/
2 � jki;r;t

k

j2; (2.6)

where nr D ni, so that the wave vectors are fully determined (Fig. 2.1). Introducing
the angles 
 i;r;t between the surface normal and the respective wave vectors, we
obtain the relations

sin 
 r D sin 
 i (2.7)

for the reflected wave, and Snell’s law

nt sin 
 t D ni sin 
 i (2.8)

for the transmitted wave; the change of the propagation direction of the transmitted
wave is known as refraction.

2.1.1.2 Total Reflection
Inspection of Fig. 2.2 shows that if medium (i) is optically denser than medium (t)
(ni > nt), then for sufficiently large angles of incidence, the tangential component
of the wave vector in medium (t) is larger than its length. In this case, there exists
no refracted wave and the energy contained in the incident wave is completely
transferred to the reflected wave, a process called total internal reflection. The
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Fig. 2.2 Same as Fig. 2.1,
showing the situation
jkt

k

j > jktj, resulting in total
reflection

ki

ki

kr

kt

kr

θrθi

ni

nt

condition for total reflection is

jki
k

j D nik0 sin 
 i > ntk0; (2.9)

and can be expressed as


 i > 
crit D arcsin
nt

ni
; (2.10)

where 
crit is called critical angle of total reflection.

2.1.1.3 Diffraction
If the boundary between the two media is not invariant under translation, the above
argument Eq. (2.5) does not hold and the fields radiated in the forward or backward
direction are, in general, diffusely scattered waves. An important exception is that
of a spatially periodic boundary; such structures are called line gratings and play an
important role in photonics. The ratio between incident and transmitted or reflected
wave, evaluated at the surface, can then be written as a Fourier series

e�j.kr;t
k

�x�!t/
=e�j.ki

k

�x�!t/ /
1X

mD�1
Fme�jmKg�x; (2.11)

where Kg is a vector parallel to the interface and normal to the lines of the
grating, with an absolute value of 2�=�, � is the spatial period, and Fm are the
Fourier components. Consequently, the wave vectors of the emitted waves have the
tangential components (Fig. 2.3)

kr;t
k

D ki
k

C mKg (2.12)
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m=0 m=1m=−1m=−2m=−3

ki

ki

kr

θr
1

θt
1

2π/Λ

Λ(a)

(b)

ni

nt

Fig. 2.3 Geometric relations of the diffracted wave vectors: (a) surface profile, (b) diffracted wave
vectors
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Fig. 2.4 Diffraction at a periodically modulated interface (line grating) with lines oriented normal
to the plane of incidence; the integers denote the order of diffraction

with integer m. Provided that jki
k

C mKgj < ni;tk0, so-called diffracted waves of
order m are radiated in addition to the “ordinary” reflected and transmitted waves
(m D 0).

If Kgkki
k (i.e., if the lines of the grating are normal to the plane of incidence,

Fig. 2.4), the wave vectors of the diffracted waves lie in the plane of incidence; the
diffraction angles 
 r;t

m are obtained from Eq. (2.6)

nr;t sin 
 r;t
m D ni sin 
 i C m	0=�; (2.13)
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Fig. 2.5 Same as Fig. 2.4,
but for a grating with lines
oriented parallel to the plane
of incidence
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as illustrated in Fig. 2.3; obviously, m is restricted to values jni sin 
 i C m	0=�j �
nr;t.2 The number of diffracted waves increases with the ratio�=	0; if� < 	0=2ni;t,
there exist no propagating diffracted waves and the boundary, in regard to the
scattering of light waves, behaves like a translationally invariant interface.

The applicability of Eq. (2.11) is not limited to line gratings oriented normal to
the plane of incidence. A grating with lines parallel to the plane of incidence, for
example, produces diffracted waves whose wave vectors are constructed according
to Fig. 2.5 and lie on a cone with a half top angle equal to 90ı � 
 i; a similar
construction allows us to calculate the diffracted wave vectors for gratings of
arbitrary orientation.

Under conditions of total internal reflection (
 i > arcsin nt
ni

), a periodically
modulated boundary can mediate the radiation of transmitted waves, as illustrated in
Fig. 2.6; coupling of waves with the aid of gratings is a frequently employed scheme
in photonics.

The diffraction angles Eq. (2.12) depend on the wavelength of the incident light;
line gratings are therefore important components for spectral filtering and analysis;
in Sects. 3.1.6 and 4.2.1, we will discuss these applications in more detail. Another
important application is the temporal compression of light pulses (Sect. 3.2.1.7).

Note that all findings of Sect. 2.1.1 are independent of the nature of the waves;
they apply to plane electromagnetic, acoustic, as well as quantum mechanical
DeBroglie waves. The amplitudes of the respective waves can be calculated from
specific boundary conditions, as we shall see in the following section for the
reflected and transmitted electromagnetic waves. For the amplitudes of diffracted
electromagnetic waves see, e.g., Petit (1980).

2Higher diffraction orders exist as so-called evanescent waves, compare Sect. 2.1.3.



2.1 Transition Between Different Media 45

Fig. 2.6 An interface grating
allows producing transmitted
waves under conditions of
total internal reflection, in the
illustrated case diffracted
waves of order mD �1;�2
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2.1.2 Reflection and Transmission Coefficients

From Maxwell’s equations follows the continuity of the tangential components of
E and H at a boundary. The amplitudes of the transmitted and reflected waves
must be such that the sum of the incident and reflected fields on the one hand,
and the transmitted on the other have equal tangential components. To simplify
the treatment of this problem, we decompose the incident field into two linearly
polarized components, one of which is polarized normal to the plane of incidence
(�-polarized—not to be confused with �˙ polarized light), the other one parallel
to the plane of incidence (�-polarized).3 It follows immediately from the boundary
conditions that the polarization state of these two components is conserved during
reflection and transmission, so that we are dealing with polarization eigenstates of
reflection and transmission at a plane surface.

In our coordinate system Fig. 2.7 (with the xz-plane as plane of incidence), the
wave vectors are

ki;r;t D �
ki;r;t

x ; 0; ki;r;t
z

�
: (2.14)

The boundary conditions for �-polarized light are

Ei
y C Er

y D Et
y (2.15)

Hi
x C Hr

x D Ht
x: (2.16)

3The terms � - and �-polarized are derived from the German terms senkrecht and parallel.
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Fig. 2.7 Coordinate convention for incident, reflected, and transmitted � -polarized waves; the
actual magnitudes and signs of the fields are obtained after multiplying the base vectors with the
reflection and transmission coefficients r� and t� , respectively. Note that the orientation of the
coordinate systems is a matter of convention—each of them could also be rotated by 180ı around
the wave vector, resulting in different signs for the coefficients

With Eq. (1.66), Eq. (2.16) can be expressed as

.ki � Ei/x C .kr � Er/x D .kt � Et/x; (2.17)

so that

ki
zE

i
y C kr

zE
r
y D kt

zE
t
y: (2.18)

Using Eq. (2.15), kr
z D �ki

z and Ei;r;t
y D Ei;r;t, we obtain the relations

Er D 1� kt
z=ki

z

1C kt
z=ki

z

Ei DW r�Ei (2.19)

Et D 2

1C kt
z=ki

z

Ei DW t�Ei: (2.20)

Substituting ki;t
z D ni;tk0 cos 
 i;t, these equations can be cast in the form

r� D ni cos 
 i � nt cos 
 t

ni cos 
 i C nt cos 
 t

t� D 2ni cos 
 i

ni cos 
 i C nt cos 
 t
;

(2.21)

(2.22)
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Fig. 2.8 Same as Fig. 2.7 for �-polarized light

where cos 
 t follows from Eq. (2.8)

cos 
 t D
q
1 � .ni=nt/

2 sin2 
 i: (2.23)

Equations (2.21) and (2.22) are known as Fresnel coefficients for the reflected and
transmitted electric field (see the summary Table 2.1 and Figs. 2.9 and 2.10).

For �-polarized light we choose the coordinate system Fig. 2.8 and follow the
above calculations with the roles of E and H interchanged: the boundary conditions
are

Hi
y C Hr

y D Ht
y (2.24)

Ei
x C Er

x D Et
x: (2.25)

With Eq. (1.67) we convert Eq. (2.25) to

1

"i



ki

zH
i
y C kr

zH
r
y

� D 1

"t
kt

zH
t
yI (2.26)

from Eq. (2.24) and Hi;r;t
y D Hi;r;t follows

Hr

Hi
D "tki

z � "ikt
z

"tki
z C "ikt

z

Ht

Hi
D 2"tki

z

"tki
z C "ikt

z

I (2.27)
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according to Eq. (1.68), Er;t=Ei D p
"i="i;t.Hr;t=Hi/, so that we finally obtain the

Fresnel coefficients for �-polarized fields

r� D 1 � "ikt
z="tki

z

1C "ikt
z="tki

z

(2.28)

t� D 2
p
"i="t

1C "ikt
z="tki

z

; (2.29)

or, with ki;t
z D ni;tk0 cos 
 i;t and ni;t D p

"i;t

r� D nt cos 
 i � ni cos 
 t

nt cos 
 i C ni cos 
 t

t� D 2ni cos 
 i

nt cos 
 i C ni cos 
 t
:

(2.30)

(2.31)

The total field on the input side is the vectorial sum of incident and reflected
field; for �-polarized light, the two contributing electric fields have only components
normal to the plane of incidence, so that the total electric field is also normal to the
wave vector. For this reason, �-polarized light is called TE-(transverse electric). The
superposition of incident and reflected electric field for �-polarized light displays a
rather complex structure with a spatially varying longitudinal component (compare
Sect. 1.6); the magnetic field, however, has only a component normal to the plane
of incidence and � polarized light is consequently denoted as TM-(transverse
magnetic).

Figure 2.9 shows exemplary (nt=ni D 1:5) Fresnel coefficients for either
polarization as a function of the angle of incidence. At normal incidence (
 i D 0)
the signs of r� and r� are opposite; the reason for this seemingly contradictory result
is the sign convention in Figs. 2.8 and 2.7. The phase change of the reflected light
at normal incidence depends on the sign of ni � nt and is � for ni < nt and 0
for ni > nt. Figure 2.10 shows the Fresnel coefficients at the interface between a
dense and a thin medium (ni=nt D 1:5); above the critical angle of total reflection
Eq. (2.10), the absolute value of the reflection coefficient is equal to 1, a situation
that will be discussed in more detail in Sect. 2.1.3.

Table 2.1 Fresnel coefficients r and t, reflectance R and transmittance T, and phase shift � for
total reflection, at a boundary between media with refractive indices ni, nt; 
 i and 
 t are related by

cos 
 t D
q
1� .n2i =n2t / sin2 
 i

r t R T tan
�
�

2




� ni cos 
 i
�nt cos 
 t

ni cos 
 i
Cnt cos 
 t

2ni cos 
 i

ni cos 
 i
Cnt cos 
 t jr� j2 nt

ni

cos 
 t

cos 
 i jt� j2
p

n2i sin2 
 i
�n2t

ni cos 
 i

� nt cos 
 i
�ni cos 
 t

nt cos 
 i
Cni cos 
 t

2ni cos 
 i

nt cos 
 i
Cni cos 
 t jr� j2 nt

ni

cos 
 t

cos 
 i jt� j2 n2i
n2t

p
n2i sin2 
 i

�nt

ni cos 
 i
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Fig. 2.9 Reflection and transmission coefficients r�;� and t�;� at a planar interface between two
dielectrics as a function of the angle of incidence, shown for nt=ni D 1:5
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Fig. 2.10 Same as Fig. 2.9 at the boundary between an optically dense and an optically thin
medium (ni=nt D 1:5); for 
 i > 
crit, r�;� is complex with an absolute value jr�;� j D 1

2.1.2.1 Reflectance and Transmittance
The Fresnel coefficients refer to the (complex) amplitudes of the reflected and
transmitted electric fields. In practice, the incident field is often a collimated light
“beam” that can be approximated by a plane wave with finite lateral extension,
carrying a certain input power. The fraction of the reflected and transmitted beam
power relative to the input power is given by the reflectance R and transmittance
T, respectively. To obtain R and T, we choose an area element on the interface and
calculate the energy flows on both sides of the interface by projecting the respective
Poynting-vectors onto the surface normal [Eq. (1.73)]. Energy conservation requires

nijEij2
2Z0

cos 
 i D nijErj2
2Z0

cos 
 r C ntjEtj2
2Z0

cos 
 t: (2.32)
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Fig. 2.11 The lateral extension of a transmitted light beam, measured in the plane of incidence,
differs from that of the incident and reflected beam by the ratio cos 
 t= cos 
 i

With Er D r�;�Ei and Et D t�;�Ei we obtain

1 D jr�;� j2 C nt

ni

cos 
 t

cos 
 i
jt�;� j2: (2.33)

The two terms on the right-hand side can be identified with the reflectance and
transmittance, respectively,

R�;� D jr�;� j2

T�;� D nt

ni

cos 
 t

cos 
 i
jt�;� j2:

(2.34)

(2.35)

The ratio cos 
 t=cos 
 i takes into account that the lateral extension of the transmitted
beam, measured in the plane of incidence, differs from that of the incident beam by
this factor; an input beam with circular cross section is refracted into a beam with
elliptical cross section (Fig. 2.11).

Inspection of Fig. 2.12 shows that R� increases with 
 i and approaches 1 at
grazing incidence; R� follows the same trend for grazing incidence, but vanishes
at the so-called Brewster angle 
 i;B, which, according to Eq. (2.30), must satisfy

nt cos 
 i D ni cos 
 t: (2.36)

To solve this equation, we combine it with Snell’s law Eq. (2.8) in the form

nt cos.90ı � 
 t/ D ni cos.90ı � 
 i/ (2.37)

to find that the two angles must be complementary, 90ı � 
 t D 
 i, i.e., sin 
 t D
cos 
 i. The electric field and thus the polarization density P in the second medium
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Fig. 2.12 Reflectance R and transmittance T for � - and �-polarized light as a function of the
angle of incidence (nt=ni D 1:5)

then oscillate exactly parallel to the reflected wave vector; since, as we have argued
earlier, the source of the reflected wave is the polarization density (more precisely,
the displacement density) in the second medium, and the reflected field must be
transverse, the amplitude of the reflected wave is zero. With Snell’s law Eq. (2.8),
the Brewster-condition sin 
 t D cos 
 i can be expressed in the form


 i;B D arctan
nt

ni
: (2.38)

The existence of the Brewster angle is frequently exploited in photonic setups to
avoid undesired reflections by appropriate arrangement of optical elements in the
light path.

At normal incidence, Eqs. (2.21) and (2.30) yield

R D
�

nt � ni

nt C ni

�2
D
�

nt=ni � 1

nt=ni C 1

�2
: (2.39)

Figure 2.13 shows the reflectance at a boundary between air and different media;
R increases with the optical density of the medium. Glasses with typical refractive
indices between 1.3 and 1.8 reflect several % of the input power at normal incidence;
semiconductors may exhibit much higher refractive indices and reflectance values
above 30 %.

2.1.2.2 Reflection and Transmission for Arbitrary Polarization
We now employ the Jones formalism (Sect. 1.5.1) to analyze the reflection and
transmission of light with arbitrary polarization. As we have seen, the polarization
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Fig. 2.13 Reflectance at an interface between air (ni D 1) and a medium of refractive index
nt D n at normal incidence

eigenstates of a reflecting interface are �- and �-polarized waves, respectively. In
this eigenbase, the Jones matrices describing reflection and transmission are

Tr D
�

r� 0

0 r�

�
; (2.40)

Tt D
�

t� 0
0 t�

�
: (2.41)

Provided that r; t are real numbers, linearly polarized light remains linearly polar-
ized, but in general changes the plane of polarization. At Brewster’s angle,

Tr D
�
0 0

0 r�

�
; (2.42)

so that a dielectric surface acts as (lossy) linear reflective polarizer. Since jr� j � jr� j,
“natural” light is predominantly �-polarized after reflection at a dielectric surface.
This effect is used in photography to reduce specular reflections by employing
polarization filters of appropriate orientation.

2.1.3 Total Reflection

Under conditions of total reflection [Figs. 2.2 and 2.10, Eq. (2.10)], the normal
component of the wave vector turns imaginary

kt
z D k0

q
n2t � n2i sin2 
 i DW �j� t: (2.43)
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In medium (t), for which we assume z > 0, the field is then given by

Et D Et
0e
�j.k�x�!t/ D Et

0e
�� tze�j.ki

xx�!t/: (2.44)

The amplitude of this inhomogeneous, so-called evanescent wave decays expo-
nentially with increasing distance from the interface so that the wave is essentially
confined to a layer of thickness 1=� t. This penetration depth is on the order of a
wavelength unless the angle of incidence is very close to the critical angle, where it
grows quickly and approaches infinity at 
 i D 
crit [Eq. (2.43)].

According to Eq. (2.19), the reflection coefficient for �-polarized light under total
reflection conditions is

r� D 1C j.� t=ki
z/

1� j.� t=ki
z/

DW e j�� ; (2.45)

while the reflectance is R D rr� D 1; the reflectance of a metallic mirror, for
comparison, is usually less than 0.9. According to Eq. (2.45), r� is complex and
introduces a phase shift of the reflected wave that amounts to

��

2
D arctan

� t

ki
z

D arctan



n2i sin2 
 i � n2t

�1=2
ni cos 
 i

(2.46)

(Fig. 2.14). For �-polarized light, Eq. (2.28) yields

r� D 1C j.ni=nt/
2.� t=ki

z/

1 � j.ni=nt/2.� t=ki
z/

DW ej�� (2.47)

with

��

2
D arctan

n2i
n2t

� t

ki
z

D arctan
n2i
n2t



n2i sin2 
 i � n2t

�1=2
ni cos 
 i

: (2.48)

The phase shifts for �- and �-polarized differ by an amount that depends on 
 i and
the ratio ni=nt (Fig. 2.14). The Jones matrix for total reflection is

Tr D
�

ej�� 0

0 ej��

�
D ej��

�
1 0

0 ej.�����/
�
; (2.49)
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Fig. 2.14 Phase shift of the electric field induced by (total) reflection at an optically thinner
medium (nt=ni D 1=1:5)
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Fig. 2.15 Broadband 	=2-retarder, based upon the phase difference �� � �� at total reflection
inside Fresnel rhombs

equivalent to that of a retarder (see Table 1.3). For a sufficiently large ratio ni=nt, a
phase shift difference of ����� D �=4 can be obtained. Multiple internal reflection
inside a so-called Fresnel rhomb (Fig. 2.15) allows implementing the equivalent of
	=4 or 	=2 wave plates. Since �� � �� depends only slightly on the wavelength,
such retarders work over a broad spectral range.

Next we want to evaluate the total field in the input half space z < 0, which is
the superposition of the incident and reflected wave; for �-polarized light, the latter
differs from the incident wave only by the sign of the normal component of its wave
vector, kr

z D �ki
z, and the phase shift Eq. (2.46)

Etot D Ei C Er

D Ei
0e
�j.ki

xx�!t/
h
e�jki

zz C ej�� ejki
zz
i

D Ei
0e
�j.ki

xx�!t��� =2/
h
e�j.ki

zzC��=2/ C ej.ki
zzC��=2/

i

D Etot
0 cos.ki

zz C ��=2/e�j.ki
xx�!t/; (2.50)
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Fig. 2.16 Intensity distribution resulting from total reflection of a � -polarized wave; the energy
flow is parallel to the interface

where Etot
0 D 2Ei

0e
j��=2. The phase fronts of this inhomogeneous wave are planes

normal to the interface and the plane of incidence, and travel at a phase velocity of
!=ki

x D c0=.ni sin 
 i/ < c0=nt. The amplitude is a spatially oscillating function of
the distance from the interface with a period of 2�=ki

z D 	0=.ni sin 
 i/ exhibiting
nodal planes of zero electric field, as illustrated in Fig. 2.16. The cosine function
describing the spatial modulation of the amplitude is shifted by ��=2 away from the
interface. This is a consequence of the boundary conditions that require the field at
the interface to be continuously differentiable.

Total internal reflection is of fundamental importance for the operation of
dielectric waveguides; we will return to this matter in Chap. 5.
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2.1.3.1 Optical Tunneling Effect
If the optically thinner medium (refraction index nL) is sandwiched between two
optically dense media (nH;1, nH;2), a light wave can be transmitted through the
optically thin medium even under total reflection conditions jk

k

j > nLk0, provided
that the refractive index of the output medium is large enough to support a
propagating wave, nH;2k0 > jk

k

j; the transmission coefficient decreases roughly
exponentially with distance / e�� td and the direction of the wave vector of the
transmitted wave is given by Snell’s law, nH;2 sin 
 t D ni sin 
H;1. This so-called
optical tunnel effect is used in various photonic components (for example, high
power beam splitters) and is the basis of scanning–tunneling optical microscopy
that allows “tapping” the evanescent light scattered from sub-wavelength features
of a specimen.

2.2 Optical Properties of Isotropic Media

We have introduced the propagation or refractive index n D p
" D p

1C � as a
function of the susceptibility of the medium, which relates the polarization density
to the electric field; the susceptibility itself was treated as a phenomenological
property of the medium that was considered as a continuum. We now want to present
a simple mechanistic model of the susceptibility that qualitatively explains, among
other things, the frequency dependence of the refractive index and the absorption
coefficient of a medium. The approach of this Drude–Lorentz model is to treat the
medium as containing discrete charges (electrons or ions) of a certain mass, held
in place by a force that resembles a spring. In this picture, the polarization density
of a medium is the vectorial sum over all microscopic dipole moments per unit
volume. As we will see, the mass of the oscillating charged particles limits the
frequency up to which they can contribute to the polarization; in the visible and
near infrared region of the electromagnetic frequency spectrum, only electrons and
protons (hydrogen ions) are light enough to contribute.

2.2.1 Linear Oscillator Model

The model assumes charged particles of mass me that are elastically tied to
their respective equilibrium position by a restoring force ax proportional to the
displacement x; any movement of the particles is damped by a term bPx that scales
linearly with the velocity. The light field acts on the charged particles via the
Coulomb force �eE; the Lorentz force �e Px � B by the magnetic component of
the light field can usually be neglected in comparison to the Coulomb force. The
equation of motion for such a particle is

me Rx C bPx C ax D �eE.t/; (2.51)
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where E is the local electric field, which we assume to oscillate at a frequency
!, E.t/ D E.!/ cos!t. We use complex notation [Eq. (1.21)] for all oscillating
quantities, a.t/ D Re

�Qa.!/ej!t
�
, and assume stationary conditions. The complex

displacement amplitude is then

Qx.!/ D �e=me

.!20 � !2/C j!�
QE.!/; (2.52)

where

!20 D a=me (2.53)

is the resonance frequency of the linear oscillator and � D b=me is the damping
coefficient. The corresponding dipole moment Qp D �e Qx is given by

Qp.!/ D e2=me

.!20 � !2/C j!�
QE.!/; (2.54)

and gives rise to a polarization density of

QP.!/ D ne
e2=me

.!20 � !2/C j!�
QE.!/; (2.55)

where ne is the particle density. The ratio between induced dipole moment and local
field is called polarizability. The local field is usually different from the external field
because it is influenced by the dipoles in the immediate environment of the particle;
for a coarse description of the relevant processes, we will neglect this difference,
however.

Comparison of Eq. (2.55) with Eq. (1.7) yields the (complex) susceptibility

Q�.!/ D �0 C j�00 D nee2

"0me

1

.!20 � !2/C j!�
(2.56)

that we can decompose into its real and imaginary part

�0 D �0
1 � .!=!0/

2

Œ1 � .!=!0/2�
2 C .!� =!20/

2
(2.57)

�00 D ��0 .!� =!20/

Œ1 � .!=!0/2�2 C .!� =!20/
2
; (2.58)

where �0 WD nee2="0me!
2
0 is the (real valued) low-frequency susceptibility.
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Fig. 2.17 Frequency dependence of �0 and j�00j according to the linear oscillator model

The resulting frequency dependence (dispersion) of �0 and �00 is shown in
Fig. 2.17: outside a narrow range in the vicinity of the resonance frequency !0,
�0 is a monotonically increasing function of ! (so-called normal dispersion,
see Sect. 1.3.2). Within the resonance range, �0 decreases with ! (anomalous
dispersion). The imaginary part �00 shows a bell-shaped frequency dependence,
centered roughly at !0, with a width of � � .

In the vicinity of the resonance, ! � !0, we can apply the approximations
.!20 � !2/ D .!0 C !/.!0 � !/ � 2!0.!0 � !/ and !� � !0� ; Eq. (2.56)
then simplifies to

Q�.!/ � �0
!0=2

.!0 � !/C j� =2
(2.59)

so that

�0 � �0
Œ1 � .!=!0/�=2

Œ1 � .!=!0/�2 C .� =!0/2=4

�00 � ��0 .� =!0/=4

Œ1 � .!=!0/�2 C .� =!0/2=4
:

(2.60)

(2.61)

The resulting functional shape of j�00.!/j is known as Lorentz line shape, with a
peak value of j�00maxj D �0!0=� at ! D !0 that scales inversely with the damping
coefficient � . In this approximation, � is equal to the FWHM (full width at half
maximum)-line width of j�00j and also equal to the width of the range of anomalous
dispersion.
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2.2.2 Absorption and Reflection

Plane monochromatic waves

QE.x; t/ D QE0e�j.k�x�!t/ (2.62)

are solutions of the wave equation Eq. (1.20), even if the permittivity Q" D Q� C 1 is
complex. The dispersion relation Eq. (1.27) requires

Qk2 D Q"
�
!

c0

�2
DW Qn2k20; (2.63)

implying a complex propagation index

Qn D p
"0 C j"00 DW n � j�I (2.64)

n and � are obtained from Q" by setting

n2 � �2 D "0; 2n� D �"00: (2.65)

Elimination of � yields

4n4 � 4n2"0 � "002 D 0 (2.66)

so that

n D
s
."

02 C "
002/1=2 C "0
2

� D
s
."

02 C "
002/1=2 � "0
2

:

(2.67)

(2.68)

Figure 2.18 shows the frequency dependence of these two parameters for the Q".!/
shown in Fig. 2.17. Equation (2.62) then assumes the form

QE.x; t/ D QE0e��k0ze�j.nk0�x�!t/I (2.69)
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Fig. 2.18 Real and imaginary part of the complex refractive index nC j� of a single resonance
dielectric medium as a function of frequency

obviously, the imaginary part � of the complex propagation index Qn is responsible
for an exponential spatial decay of the field amplitude. According to Eq. (1.71), the
intensity is proportional to the absolute square of the amplitude, so that

I.z/

I.0/
D e�2�k0z DW e�˛z (2.70)

with

˛ D 2�k0I (2.71)

˛ is known as absorption coefficient and the distance 1=˛ D 1=2�k0 is called
absorption length, that is the distance after which the intensity is reduced to a
fraction of 1=e. The phase term e�jnk0z determines the phase velocity cph D c0=n.

2.2.2.1 Multiple Resonances
The Drude–Lorentz model can be extended to systems with several different reso-
nance frequencies!0;i by adding up the individual contributions of the susceptibility,
weighted by their respective density ne;i, so that Eq. (2.56) is modified to

Q�.!/ D
X

i

�0;i
!20;i

.!20;i � !2/C j!�i
(2.72)



2.2 Optical Properties of Isotropic Media 61

ω0,1 ω0,2

n
,

α

ω

n

α

Fig. 2.19 Refractive index n and absorption coefficient ˛ of a medium with two resonances; while
significant absorption is confined to narrow bands near the resonance frequencies, the refractive
index is influenced by the resonances over the entire spectral range

with �0;i WD ne;ie2="0me!
2
0;i. As can be seen in Fig. 2.19, showing the calculated

refractive index and absorption coefficient of a medium with two resonances, there
is a spectral range between the resonances where absorption is very low while the
impact of the resonances on the dispersion is quite significant. The reason for this
is that the imaginary part of the susceptibility, which is, according to Eq. (1.65),
responsible for the energy transfer from the field to the medium, decreases with
1=.! � !0/2, while the real part follows a broader 1=.! � !0/—dependence.

The resonance frequency scales with 1=
p

me; assuming that the “spring constant”
a is similar for different microscopic systems, the resonance frequencies of an
electron and a hydrogen ion (with a mass of 1836 me), respectively, differ be a factor
of

p
1836 � 40; since typical electronic resonance frequencies lie in the near UV

spectral range, vibrational resonances of ions and atoms are located in the IR. The
large spectral separation between electronic and vibronic resonances is responsible
for the unique “spectral window” between IR and UV, i.e., for the transparency of
most dielectrics in the visible.

2.2.2.2 DilutedMaterials
Many photonic materials consist of a transparent host material with refractive index
nw that is doped with (or contaminated by) absorbing atoms, ions, or molecules in
low concentrations. The susceptibility of the composite material is then a sum of the
dominating, real valued host susceptibility �w D n2w � 1 and the complex dopant
contribution Q�dot that is relatively small due to the low concentration; the resulting
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complex refractive index is given by

n � j� D
q
.1C �w/C �0dot C j�00dot D nw

�
1C �0dot

n2w
C j

�00dot

n2w

�1=2
: (2.73)

Assuming j Q�dotj=n2w 	 1, we can use the approximation
p
1C x � 1 C x=2 to

obtain

n D nw C �0dot

2nw

� D ��
00
dot

2nw
;

(2.74)

(2.75)

and, with Eq. (2.71)

˛ D ��
00
dot

nw
k0: (2.76)

In “diluted” media, the spectral shape of � therefore follows the Lorentz lineshape
of �00dot.!/ [Eq. (2.61)]; this also holds for the absorption coefficient ˛, provided that
the bandwidth of the resonance is small.

2.2.2.3 Reflectance of Strongly AbsorbingMedia
The Fresnel coefficients (Table 2.1) and related equations are also valid for complex-
valued refractive index. At normal incidence, in particular, the reflectance at the
interface between air (ni D 1) and an absorber Qnt D n � j� is given by

R D .n � 1/2 C �2

.n C 1/2 C �2
: (2.77)

The complex refractive index as displayed in Fig. 2.18 yields a reflectance as shown
in Fig. 2.20. It is interesting to note that strong resonant absorption results in a
spectral band of high reflectance.

2.2.3 Free Electron GasModel of Metals

The resonant behavior discussed above is due to the restoring force ax in the
equation of motion Eq. (2.51) and is characteristic for bound electrons. Many optical
and electronic properties of metals, on the other hand, can be described in good
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Fig. 2.20 Reflectance R and
absorption coefficient ˛ of an
absorbing dielectric medium
according to the
Drude–Lorentz model
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approximation by modeling the conduction electrons as a free electron gas, i.e., by
setting the restoring force in the equation of motion equal to zero

Rx C � Px D � e

me
E.t/I (2.78)

the complex susceptibility Q�.!/ according to Eq. (2.56) is then

Q�.!/ D �
�

nee2

"0me

�
1

!2 � j!�
: (2.79)

The physical source of the damping term in metals are electron collisions that
occur within an average collision time �e; to establish a relation between � and
�e, we expose the electrons to a constant electric field; the stationary velocity of the
electrons according to Eq. (2.78) is

Px D � e

me�
E: (2.80)

Assuming that the electron velocity is completely randomized by a collision and
the average velocity immediately after a collision is consequently equal to zero, the
average velocity of the electrons in the static field is also equal to the acceleration of
the electrons, �.e=me/E.t/, multiplied with the average time �e between consecutive
collisions

Px D � e

me
�eE; (2.81)
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so that we can set

� D 1

�e
: (2.82)

In order to relate �e to a macroscopic observable (namely the conductivity), we
multiply Px with the density of free electrons ne and the electron charge �e to obtain
the current density

j D �neePx D ne�ee2

me
E D �eE; (2.83)

where �e is the conductivity of the metal, so that we finally obtain

� D 1

�e
D nee2

�eme
: (2.84)

Equation (2.79) can now be cast in the form

�0 D � !2p�
2
e

1C !2�2e
; (2.85)

�00 D � !2p�e

!.1C !2�2e /
; (2.86)

where

!2p WD nee2

"0me
(2.87)

is the so-called plasma frequency.
Aluminum, for example, has a conductivity of �e D 36 � 106 ˝�1m�1 and

an electron density of ne D 0:18 � 1030 m�3, so that �e � 7 � 10�15 s. The
plasma frequency of aluminum, according to Eq. (2.87), is !p D 24 � 1015 s�1,
corresponding to a photon energy of 15.8 eV or a wavelength of 78 nm (UV).

At frequencies below !p, � is very large (Fig. 2.21), resulting in the high
reflectance and short penetration depth that is characteristic for metals (Fig. 2.22).
For ! > !p, the assumption !�e 
 1 is usually justified, so that one can use the
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Fig. 2.21 Real and imaginary part of the complex refractive index of aluminum: measured values
(dots) and theoretical values according to the Drude model; data from Palik (1997)
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approximations

�0 � �!
2
p

!2
; �00 � 0 (2.88)

and therefore

n D p
�C 1 �

 
1 � !2p

!2

!1=2
� 1 � !2p

2!2
: (2.89)
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In the vicinity of the plasma frequency, the refractive index is much smaller than 1,
implying a very large value of the phase velocity and of the ratio 	=	0; this means
that the electron plasma oscillates in phase over a large distance. Above !p, the
refractive index remains n < 1 and � � 0; metals therefore become transparent
in the far UV and provide, at large angles of incidence, total external reflection for
light incident from the vacuum. The latter effect is exploited for the design of UV-
and X-ray reflective optics (refractive optics cannot be realized in this spectral range
because of n � 1).

The detailed optical properties of metals are, of course, more complicated—the
excellent agreement of the experimental data for aluminum with the Drude model is
rather exceptional. Nonetheless, important features of the optics of metals in general
are predicted correctly by the model. The electrons of doped semiconductors can
also be modeled as a free electron gas; since the electron density ne can be controlled
by the doping level, the plasma frequency can be tuned over a wide range, allowing
one to produce, for example, IR-mirrors with a sharp cutoff at !p.

2.2.4 Kramers–Kronig Relations

The polarization P.t/ (represented here as a scalar) at a given instant of time is the
integrated response of the medium to the electric field up to that instant. Provided
that the interaction is linear, we can write

P.t/ D
Z 1
�1

h.t � t0/"0E.t0/ dt0; (2.90)

where h.t/ represents the “memory function” of the medium. To understand the
meaning of h.t/, we assume that the incident field is proportional to a Dirac delta-
impulse E.t0/ / ı.t0/ arriving at t0 D 0. The resulting time dependent polarization is
then proportional to h.t/, which is consequently called impulse response function.

If we apply, instead, an oscillating field E.t/ D Re
� QE.!/ej!t

�
, then P.t/ D

Re
� QP.!/ej!t

�
will oscillate at ! and we obtain, with t00 WD t � t0

QP.!/ej!t D
Z 1
�1

h.t � t0/"0 QE.!/ej!t0 dt0

D "0 QE.!/ej!t
Z 1
�1

h.t00/e�j!t00 dt00: (2.91)

Therefore,

QP.!/ D "0 QE.!/ QH.!/; (2.92)
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where

QH.!/ D
Z 1
�1

h.t/e�j!t dt (2.93)

is the Fourier transform of the impulse response. A comparison with Eq. (1.7) shows
that this so-called transfer function is identical to the susceptibility

Q�.!/ D �0.!/C j�00.!/ D H.!/: (2.94)

As a response function relating two real valued observables, h.t/ must also be real
valued. Moreover, h.t/ must vanish for negative times, h.t < 0/ D 0 since in a
causal system, the response cannot precede the stimulus. We therefore can write,
with Eq. (2.93),

�0.!/ D
Z 1
0

h.t/ cos!t dt

�00.!/ D �
Z 1
0

h.t/ sin!t dt (2.95)

which are the Fourier (Co)Sinus-transforms of h.t/; obviously,�0.�!/ D �0.!/ and
�00.�!/ D ��00.!/, and therefore Q�.�!/ D Q��.!/. The inverse transformation

h.t/ D 1

2�

Z 1
�1

Q�.!/ej!t d! (2.96)

can be written as

h.t/ D 1

�

Z 1
0

�
�0.!/ cos!t � �00.!/ sin!t

�
d!: (2.97)

For t � 0, h.�t/ D 0 and h.t/ D h.t/˙ h.�t/ and we obtain

h.t/ D 2

�

Z 1
0

�0.!/ cos!t d! D

D � 2
�

Z 1
0

�00.!/ sin!t d!: (2.98)

As a consequence of causality, there is a one-to-one relation between the real
and imaginary parts of the transfer function. To obtain a more explicit result, we
substitute Eq. (2.98) in Eq. (2.95)

�0.!/ D � 2

�

Z 1
0

cos!t
Z 1
0

�00.!0/ sin!0t d!0 dt
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�00.!/ D � 2

�

Z 1
0

sin!t
Z 1
0

�0.!0/ cos!0t d!0 dt (2.99)

and obtain

�0.!/ D � 2

�

Z 1
0

�00.!0/
Z 1
0

cos!t sin!0t dt d!0

�00.!/ D � 2

�

Z 1
0

�0.!0/
Z 1
0

sin!t cos!0t dt d!0: (2.100)

Applying

Z 1
0

cos!t sin!0t dt D !0

!02 � !2
Z 1
0

sin!t cos!0t dt D !

!2 � !02
(2.101)

we finally obtain the so-called Kramers–Kronig relations

�0.!/ D � 2

�
P
Z 1
0

!0�00.!0/
!02 � !2 d!0

�00.!/ D � 2

�
P
Z 1
0

!�0.!0/
!2 � !02

d!0; (2.102)

where P denotes the Cauchy principal value. These relations show that any
absorption mechanism inevitably produces dispersion. Moreover, it allows us to
calculate, for example, the dispersion from experimentally obtained absorption data.

The Kramers–Kronig relations also apply to other complex material properties
(Hodgson 1970; Lucarini et al. 2005; Toll 1956) such as Qn D n � j�. To warrant the
convergence of the integrals, one uses .n � 1/ as real part and obtains

n.!/� 1 D 2

�
P
Z 1
0

!0�.!0/
!02 � !2

d!0

�.!/ D 2

�
P
Z 1
0

!Œn.!0/� 1�

!2 � !
02

d!0:

(2.103)

(2.104)

Similar relations hold for the complex reflection coefficient r D .Qn � 1/=.Qn C 1/ D
jrjej� at the surface of an absorptive medium with complex refractive index Qn; for
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ln r D ln jrj C j� one obtains

�.!/ D � 2
�
P
Z 1
0

! ln jr.!0/j
!2 � !02

d!0; (2.105)

which is an important relation because jrj can be measured relatively easily,
allowing one to determine Qn.

2.3 Wave Propagation in Anisotropic Media

We now extend our treatment of wave propagation to optically anisotropic media
(usually crystals), where the relation between P and E (and therefore D and E)
depends on the direction of E within the medium. In the framework of the linear
oscillator model, the reason for this is the anisotropy of the restoring force.

One consequence of optical anisotropy is the dependence of the propagation
index on the direction of the wave vector and the polarization state of the wave.
As we shall see, for a given direction of the wave vector there exist two linear
polarization states with well defined, generally different propagation indices. At a
border between an anisotropic medium and another one, the two states are refracted
in different directions—this is the reason why anisotropic media are also called
birefringent.

In an anisotropic, linear medium, the vectors P and E are generally not collinear,
but related by the more general linear equation

P1 D "0�11E1 C "0�12E2 C "0�13E3

P2 D "0�21E1 C "0�22E2 C "0�23E3

P3 D "0�31E1 C "0�32E2 C "0�33E3; (2.106)

or

Pi D "0

3X
jD1

�ijEjI (2.107)

in the following we will adopt Einstein’s convention, according to which the double
occurrence of an index in one term implies summation over the values of this index,
so that Eq. (2.107) can be written as

Pi D "0�ijEj: (2.108)
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In vector notation,

P D "0�E; (2.109)

where � is the susceptibility tensor4 with the components �ij.

2.3.1 Symmetry Properties of Crystals

2.3.1.1 Transformation of Tensors
Tensors are usually represented in a cartesian coordinate system and are written in
matrix form; the number of indices of the tensor components indicates the rank
of the tensor—P and E are tensors of first rank and � is a second rank tensor,
for example. The matrix representation of one and the same tensor is, of course,
different in different reference systems—we have discussed this fact already in
the context of the Jones formalism. The results Eqs. (1.107) and (1.113) for the
transformation of two-dimensional Jones vectors and matrices can be immediately
extended to three-dimensional vectors and tensors: if the transformation between
the two (cartesian) coordinate systems is given by the matrix Aij, i; j D 1 : : : 3, then
a vector a with the original coordinates ai is transformed to

a0i D AijajI (2.110)

the inverse transformation is

ak D A�1kl a0l: (2.111)

A tensor m with components mjk is transformed to

m0il D AijmjkA�1kl : (2.112)

The transformations relevant in the present context are rotations, mirror operations
including inversion, and combinations thereof; Table 2.2 summarizes the corre-
sponding transformation matrices.

A common property of these transformation matrices is that the inverse matrix is
obtained by transposition, A�1ik D Aki; the transformation (2.112) can therefore be
written as

m0il D AijAlkmjk: (2.113)

4An excellent introduction into tensors can be found in Nye (1985).
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Table 2.2 Selected
symmetry operations and
corresponding transformation
matrices

Operation Transformation matrix

Rotation around z-axis
2
666664

cos 'R sin'R 0

� sin'R cos'R 0

0 0 1

3
777775

Reflection at xy-plane
2
666664

1 0 0

0 1 0

0 0 �1

3
777775

Inversion
2
666664

�1 0 0

0 �1 0

0 0 �1

3
777775

As in the case of Jones matrices, a transformation of the reference system is
closely related to a physical transformation of the system under study: the tensor
components of a crystal that is rotated by an angle �'R are equal to the components
of the crystal in a reference system rotated by 'R. By the same token, physical
reflection and inversion of the crystal (even if it is not physically possible) is
equivalent to reflection and inversion of the reference frame.

Crystalline materials are characterized by their symmetry, i.e., by the invariance
of their properties under certain transformations; threefold rotational symmetry,
for example, means that the material is indistinguishable from the same material,
rotated by 120ı around a certain axis. The tensor components of such a medium
must therefore be solutions of the equation m0 D m

AijAlkmjk D mil; (2.114)

where Aij is any of the symmetry operations of the material. If the system is
invariant under several different transformations, one obtains a set of such equations,
forcing certain components to be zero and others to be linearly dependent of each
other. Isotropic media, for example, are invariant under arbitrary rotations, and
centrosymmetric media are invariant under inversion. As a result, the susceptibility
tensor of isotropic, centrosymmetric media has the form �ij D ıij�, where �
is a scalar; all off-diagonal components are zero and the diagonal elements are
identical.5

5An isotropic medium is not necessarily centrosymmetric; a chiral liquid is an example of an
isotropic, yet non-centrosymmetric medium, see Sect. 2.4.1.
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In Chap. 8, we will encounter tensors of higher rank such as the quadratic
nonlinear susceptibility �.2/ that links the square of the electric field to the nonlinear
polarization,

P.2/

i D "0�
.2/

ijkEjEk: (2.115)

As can be easily shown, the transformation of such a third rank tensor follows the
pattern of Eq. (2.113)

m0lmn D AliAmjAnkmijkI (2.116)

for a fourth rank tensor,

m0rsuv D AriAsjAukAvlmijkl: (2.117)

2.3.1.2 Principal Axes
The vectors D and E are related by Eq. (1.8)

D D "0E C P D "0"E D "0E.1 C �/ (2.118)

where " is the permittivity tensor and

1 D
2
4
1 0 0

0 1 0

0 0 1

3
5 (2.119)

is the second rank unit tensor. In tensor notation,

" D 1 C �: (2.120)

In nonmagnetic, lossless media, the tensors " and � are symmetric (see, e.g., Haus
1984)

"ij D "ji (2.121)

so that they can be diagonalized, i.e., a coordinate system can be found where " has
the form

" D
2
4
"11 0 0

0 "22 0

0 0 "33

3
5 DW

2
4
".x/ 0 0

0 ".y/ 0

0 0 ".z/

3
5 : (2.122)
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Fig. 2.23 If the E vector of a
wave is parallel to a principal
axis .i/ of a birefringent
medium, the wave is a
polarization eigenstate with
the propagation index
n.i/ D "

1=2

.i/ ; the corresponding
k vector is normal to .i/ and
has the length k0n.i/

(i)

(k)

(j)

E

k

The axes of this reference frame are called principal axes of the medium, and ".i/
are called principal values of ".

If E is parallel to a principal axis .i/, then D D "0"E D "0".i/E. If " is not
yet diagonal, the principal axes can therefore be found by solving the equation
"E D ".i/E, i.e., by finding the eigenvectors of the matrix "; the eigenvectors define
the direction of the principal axes and the corresponding eigenvalues are equal to
the principal values. Since symmetric matrices have orthogonal eigenvectors, the
reference frame generated by the principal axes is orthogonal.

The scalar relation D D "0".i/E that is valid for eigenstates of " is formally
identical to the relation between D and E in an isotropic medium. A light wave with
an electric field parallel to a principal axis .i/ therefore propagates, according to
the dispersion relation Eq. (1.28) for isotropic media, with the phase velocity c0=n.i/
where n.i/ D "

1=2

.i/ . The corresponding wave vector is normal to .i/ and has the length
k0n.i/ (Fig. 2.23).

The square roots of the principal values, n.i/ WD "
1=2

.i/ , are denoted as refractive
indices of the medium (Table 2.3). If all principal values are different, the medium
is called, for reasons that will become clear below, biaxial; if two out of the
three principal values are equal, and different from the third, the medium is called
uniaxial; in this case, the axis corresponding to the deviating principal value is
identified with the z-axis and n.z/ is called extraordinary refractive index ne, while
n.x/ D n.y/ D no is called ordinary refractive index.

2.3.1.3 Impermeability
In electro-optics and magneto-optics, the relation inverse to Eq. (1.8),

E D "�10 �D (2.123)
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Table 2.3 Refractive indices
(principal values) of selected
isotropic, uni- and biaxial
materials

Material n.x/ n.y/ n.z/
Water 1.333 n.x/ n.x/
BK1 (Bor crown glass) 1.510 n.x/ n.x/
F3 (Flint glass) 1.613 n.x/ n.x/
NaCl 1.544 n.x/ n.x/
Quartz 1.544 n.x/ 1.553

Rutile 2.616 n.x/ 2.903

Calcite 1.658 n.x/ 1.486

Sapphire 1.768 n.x/ 1.660

Tourmaline 1.642 n.x/ 1.622

Mica 1.560 1.594 1.599

Kalium nitrate 1.335 1.505 1.506

Fig. 2.24 If k is parallel to a
principal axis .i/ of an
anisotropic medium, the two
polarization eigenstates are
parallel to the . j; k/-axes,
respectively, and propagate
with the phase velocities
c0=n. j;k/

(k)

(i)

(j)

k

E(k)

E(j)

is used, where � D "�1 is known as the impermeability tensor; if " is given in
diagonal form, � is also diagonal and �ii D 1="ii

� D
2
4
�11 0 0

0 �22 0

0 0 �33

3
5 D

2
64
"�1.x/ 0 0

0 "�1.y/ 0

0 0 "�1.z/

3
75 D

2
64

n�2.x/ 0 0

0 n�2.y/ 0

0 0 n�2.z/

3
75 : (2.124)

2.3.2 Propagation Along the Principal Axes

If the wave vector is parallel to a principal axis, then there are actually two
polarization states that oscillate parallel to one of the remaining axes and represent
polarization eigenstates (Fig. 2.24). If, for example, k is parallel to the y-axis, then
the two eigenstates are polarized along the x and z-axis, respectively, having the
wave numbers k0n.x/ and k0n.z/. A plate of thickness d, cut parallel to the x; z-plane,
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therefore serves as a linear retarder with

��V D Œn.z/ � n.x/�k0d (2.125)

as described in Sect. 1.5.2; to be consistent with Table 1.3, we identify the x-axis
with the “fast” axis, i.e., the one with the smaller refractive index.

2.3.3 Propagation in Arbitrary Directions�

Consider a plane wave

E D E0e�j.k�x�!t/ (2.126)

with a wave vector

k D nk0e; (2.127)

where the unit vector e defines the direction of the wave vector. To find the
corresponding propagation index n, we substitute this ansatz into the wave equa-
tion (1.15)

r � .r � E/C @2D

"0c20@t2
D 0 (2.128)

and use Eq. (1.33) to obtain

k � .k � E/ D � !2

"0c20
DI (2.129)

with Eq. (2.127) and k0 D !=c0, this can be written as

�!
2n2

c20
e � .e � E/ D !2

"0c20
D: (2.130)

Using the identity a � .b � c/ D b.a � c/ � c.a � b/ and the relation D D "0"E, we
obtain

"0n
2ŒE � e.e � E/� � "0"E D 0I (2.131)

note that E � e.e � E/ D �e � .e � E/ is simply the transverse component of E.
Equation (2.131) can be cast in matrix form

ME D 0 (2.132)
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with

M D
2
4

n2.1 � e2x/� ".x/ �n2exey �n2exez

�n2exey n2.1 � e2y/� ".y/ �n2eyez

�n2exez �n2eyez n2.1 � e2z /� ".z/

3
5 ; (2.133)

where we have assumed that " is diagonal. A condition for a non-trivial solution
n ¤ 0 is

det M D 0I (2.134)

since the cubic terms cancel, this is a quadratic equation in the variable n2. For
a given direction e, Eq. (2.134) provides two solutions Œn.1;2/�2, corresponding to
two wave vectors k D n.1;2/k0e; the directions of the corresponding E-vectors
(which are the polarization eigenstates for propagation in the direction e) result
from Eq. (2.132) after substitution of n.1;2/. As we shall show, the two eigenstates
are mutually orthogonal because of the symmetry of ".

An alternative way of finding n2 is to write Eq. (2.131) in the form

.n21 � "/E D n2e.e � E/ (2.135)

to obtain three equations

Ei D n2ei

n2 � ".i/
e � E: (2.136)

Multiplying both sides with ei and taking the sum of the resulting equations, we
obtain

e � E D
X

i

n2e2i
n2 � ".i/ e � E (2.137)

and finally the convenient (quadratic) equation

e2xn2

n2 � ".x/ C e2yn2

n2 � ".y/ C e2z n2

n2 � ".z/
D 1: (2.138)

2.3.3.1 k-Surfaces
For a given frequency !, we can represent all possible k-vectors in a cartesian
coordinate system with coordinates kx; ky; kz (the k-space): we select a direc-
tion e, calculate the corresponding propagation indices n.1;2/ and plot points at
n.1;2/.!=c0/e, respectively; varying e, we obtain two surfaces that are called k-
surfaces (Fig. 2.25) and are actually surfaces of constant ! in k-space. It is
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Fig. 2.25 Normalized k-surfaces for (a) isotropic, (b) uniaxial, and (c) biaxial media

instructive to calculate the intersection of these surfaces with one of the coordinate
planes, say the ky/kz-plane (defined by ex D 0). Equation (2.134) yields

det M D M11.M22M33 � M23M32/ D 0; (2.139)

where Mij are the components of M. With e2x Ce2y Ce2z D 1 and ".i/ D n2.i/ we obtain
two equations

n2e2y C n2e2z � n2.x/ D 0

�
n2e2y � n2.z/


 �
n2e2z � n2.y/



� n4e2ye2z D 0 (2.140)

which, because of kj D nk0ej, are equivalent to

k2y C k2z D n2.x/k
2
0 (2.141)

k2y
n2.z/k

2
0

C k2z
n2.y/k

2
0

D 1; (2.142)

that is a circle with radius k0n.x/ and an ellipse with axes k0n.y/ and k0n.z/.
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Fig. 2.26 Cross section through the (normalized) k-surfaces of a uniaxial medium; solid circles
refer to ordinary waves, dashed curves are ellipses and refer to extraordinary waves

For a uniaxial medium (n.x/ D n.y/ D no and n.z/ D ne), the k-surface is
rotationally symmetric around the kz-axis, forming a sphere and an ellipsoid

k2x C k2y C k2z D .nok0/
2

k2x
.nek0/2

C k2y
.nek0/2

C k2z
.nok0/2

D 1;

(2.143)

(2.144)

respectively, that touch each other at the poles of the rotation axis (Fig. 2.25b).
Light travelling along this axis has the propagation index no (the ordinary refractive
index), independent of its polarization; such an axis is called optical axis (o.a.).

In any other propagation direction, there are two distinct polarization eigenstates
with different propagation indices. Because of the rotational symmetry, the direction
of the wave vector is fully characterized by the angle 
 between k and the optical
axis (Fig. 2.26a). According to Eq. (2.143), one propagation index is equal to the
ordinary index no; evidently, the corresponding eigenvector is normal to the plane
formed by k and the optical axis. The second value follows, with ky D n.
/k0 sin 

and kz D n.
/k0 cos 
 , from Eq. (2.144) to be

1

n2.
/
D cos2 


n2o
C sin2 


n2e
: (2.145)

Because of the orthogonality of the eigenstates (which will be proven below), the
corresponding eigenvector is coplanar with k and the optical axis.

In the fully anisotropic case (n.x/ ¤ n.y/ ¤ n.z/), the cross section of the
normalized k-surface (Fig. 2.25c) with a plane normal to the principal axis .k/
consists of a circle with radius n.k/ and an ellipse with axes n.i/ and n. j/, where
i; j; k are different from each other (Fig. 2.27). Obviously, circle and ellipse intersect
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Fig. 2.27 Cross sections of the (normalized) k-surface of a biaxial medium with n.x/ < n.y/ < n.z/
along planes containing two of the principal axes

each other only if n.k/ is intermediate between n.i/ and n. j/. The four points of
intersection define two directions for which the propagation index is independent
of the polarization and are, by definition, optical axes. These axes lie in the plane
normal to principal axis .k/ and enclose the angle 
a


a D ˙ arctan
n. j/

n.i/

vuut n2.i/ � n2.k/
n2.k/ � n2. j/

(2.146)

with the axis .i/; as the refractive indices depend on the wavelength of the light, so
does the direction of the optical axes in biaxial media.

2.3.3.2 Polarization Eigenstates
For uniaxial media, the orientation of the eigenstates can be summarized as follows:

1. if k k o.a., (Fig. 2.26a), any polarization is an eigenstate (the eigenstates are
degenerate) with propagation index no

2. if k ? o.a., (Fig. 2.26b), one eigenstate with propagation index ne D n.z/ is k o.a.,
the second, with index no D n.x;y/, is ? o.a. and ? k

3. for any other direction of k (Fig. 2.26a), one eigenstate with the index no (the
“ordinary” wave) is polarized perpendicular to the plane formed by o.a. and k,
the second one (the “extraordinary” wave) is polarized parallel to this plane, and
its propagation index is given by Eq. (2.145).

In biaxial media, the polarization eigenstates in general must be found by sub-
stituting the eigenvalues n2 into Eq. (2.132) and solving for the ratios Ei=Ej that
determine the direction of the respective eigenvector. If the wave vector happens to
be perpendicular to a principal axis .i/, the situation is simplified (Fig. 2.27):

1. if k k. j/, one eigenstate, with propagation index n.i/, is k.i/, while the second,
with index n.k/ is k.k/
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Table 2.4 Geometric
relations between various
field vectors; each of the
triples H, D, k and H, E, S,
respectively, constitutes an
orthogonal tripod (Fig. 2.28).
D.1/ and D.2/ represent pairs
of polarization eigenstates

D D � 1
!

k�H! D ? H

! D ? k

H D 1
�0!

k� E ! k ? H

! E ? H

S D E�H ! S ? H

! E ? S

"ij D "ji ! D.1/ ? D.2/

2. if k k o.a., any polarization is an eigenstate (the eigenstates are degenerate) with
propagation index n.i/

3. for any other k ? .i/, one eigenstate with the index n.i/ is k .i/, while the second
one (the “extraordinary” wave) lies in the plane ? .i/ and its propagation index
is given by

1

n2.
/
D cos2 


n2. j/

C sin2 


n2.k/
; (2.147)

where 
 is the angle between k and .k/.

2.3.3.3 Orthogonality of the Eigenstates
We now want to prove that the polarization eigenstates .1/ and .2/ of an anisotropic
medium are mutually orthogonal. From Maxwell’s equation follows that E, D, and
k D ke lie in a common plane normal to H (Table 2.4); this plane is also the plane of
polarization (Fig. 2.28). Since D is normal to k, we have to show that D.1/ ? D.2/.
The term e.e � E/ in Eq. (2.131) is the longitudinal component EL of E, so that
ET D ŒE � e.e � E/� is the transverse component, and Eq. (2.131) can be written as

D.1;2/ D "0
�
n.1;2/

�2
E.1;2/T : (2.148)

From "ij D "ji follows the reciprocity relation E.1/i "ijE
.2/
j D E.2/j "jiE

.1/
i (in Einstein

notation), i.e.,

E.1/ � D.2/ D E.2/ � D.1/I (2.149)

substituting Eq. (2.148) in Eq. (2.149) results in

�
n.2/

�2
E.1/ � E.2/T D �

n.1/
�2

E.2/ � E.1/T : (2.150)
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Fig. 2.28 Vectors k, E, D,
H, and S in an anisotropic
medium (compare Table 2.4):
D and H are parallel to the
phase front, which is normal
to the wave vector k; E, D, S,
and k are coplanar

Since E.1/ � E.2/T D
�

E.1/L C E.1/T



� E.2/T D E.1/T � E.2/T , we obtain

h�
n.1/

�2 � �
n.2/

�2i
E.1/T � E.2/T D 0: (2.151)

For non-degenerate eigenstates n.1/ 6D n.2/ follows E.1/T ? E.2/T and with Eq. (2.148)
finally D.1/ ? D.2/.

2.3.3.4 Index Ellipsoid
The k-surface is just one out of a manifold of graphical descriptions of wave
propagation in anisotropic materials. Another one is the so-called indicatrix or index
ellipsoid (Fig. 2.29), a surface given by the equation

x2

n2.x/
C y2

n2.y/
C z2

n2.z/
D 1: (2.152)

As can be shown (see, e.g., Nye 1985 or Born and Wolf 1999), this scheme allows us
to determine, for a given direction e of the wave vector, the polarization eigenstates
and their respective propagation index: the intersection of the ellipsoid with a plane
? e through the origin is an ellipse with half-axes that are parallel to the eigenstates
and have a length equal to the corresponding n.

For uniaxial media, the indicatrix is rotationally symmetric, and the intersection
with a plane normal to the k-vector is an ellipse with half-axes of length no and
.cos2 
=n2o C sin2 
=n2e/

�1=2, where 
 is the angle between e and the optical axis;
this result is in agreement with Eq. (2.145).
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Fig. 2.29 Indicatrix (index
ellipsoid) of a biaxial
material; also shown is the
graphical construction of the
eigenstates and corresponding
propagation indices for a
given direction e of the wave
vector

Index ellipse

e

e

Index ellipsoid

e

2.3.3.5 Anisotropic Media: Reflection and Refraction
The phase matching condition Eq. (2.5), ki

k

D kr
k

D kt
k

, at interfaces between
different media applies also to anisotropic media. The fact, however, that the
absolute value of the transmitted wave vector depends on the polarization, results
in the existence of two refracted waves (a phenomenon called birefringence).
Figure 2.30 demonstrates this effect for the simple example of an interface between
an isotropic medium and a uniaxial medium with the optical axis parallel to the
plane of incidence. The �-component of the incident wave propagates as ordinary
transmitted wave and is refracted according to

sin 
 t;o D ni

no
sin 
 i; (2.153)
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Fig. 2.30 Refraction and
reflection at an interface
between an isotropic and a
uniaxial medium: the
refracted wave vectors
terminate at the k-surfaces at
k

k

D ki
k

o.a

ki kr

kt,o

ki ki

kt,e

Se

while the �-polarized component propagates as extraordinary wave with a wave
vector direction given by

n.
 t;e/ sin 
 t;e D n1 sin 
 i: (2.154)

If the optical axis is normal to the interface plane,

sin 
 t;e D nen1q
n2on2e C n21.n

2
e � n2o/ sin2 
 i

sin 
 i: (2.155)

As we shall see, the direction of the refracted extraordinary beam deviates from
this direction; for extraordinary waves, Snell’s law applies only to the phase front
normal, not to the energy flow.

2.3.3.6 Anisotropic Media: Energy Transport
The energy transport of the electromagnetic field is given by the Poynting vector
S D E � H [Eq. (1.55)]. If E is not normal to k, the direction of the energy

flow deviates from that of the wave vector (Fig. 2.28). Since D ? k and E ? S
(Table 2.4), the angle � between S and k is equal to that between E D "�1D and D

� D arccos
D"�1D

jDk"�1Dj : (2.156)

Although the ray or beam velocity Eq. (1.46) vray D rk!.k/, is defined without
regard to the Poynting vector S, the two must have the same direction because the
energy flow is spatially confined to the beam. Since the k-surface is the surface of
constant ! in k-space, the direction of the ray velocity is given by the k-surface
normal (Fig. 2.31). The extraordinary k-surface Eq. (2.144) of a uniaxial material,
for example, has a normal vector

�
ex="e; ey="e; ez="o

�
, where e is the unit vector in

the direction of k. Assuming e to lie in the x; z-plane, enclosing an angle of 
 with
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Fig. 2.31 Phase front normal (kk) and ray velocity (kS) in a uniaxial medium: (a) ordinary wave,
(b) extraordinary wave
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Fig. 2.32 Angle � between k and S for various uniaxial materials; 
 is the angle between the
k-vector and the optical axis

the z-axis, we obtain

� D arccos
sin2 
="e C cos2 
="o

Œ.sin 
="e/2 C .cos 
="o/2�
1=2
; (2.157)

in agreement with Eq. (2.156); Fig. 2.32 shows the deviation for three different
uniaxial materials as a function of 
 .

The deviation between the direction of k and S is particularly striking if a beam
is transmitted through an anisotropic medium under normal incidence: according
to Snell’s law, the wave vector of the transmitted light is not refracted, while the
transmitted beam is split into an ordinary beam, normal to the boundary, and an
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Fig. 2.33 Beam refraction in
a uniaxial material under
normal incidence

o. out
e.o. out

mixed pol in

uniaxial crystal

Fig. 2.34 A Glan–
Thompson prism consisting
of two trigonal prisms of
calcite (no > ne), connected
by a thin layer of cement with
a refractive index matching
ne; while the �-polarized
component of the incoming
wave is totally reflected, the
� -polarized component is
almost completely
transmitted

Ordinary wave

Extraordinary wave

Optical axis

Total reflection Cement

extraordinary that propagates under the angle � given by Eq. (2.157) in respect to
the interface normal (Fig. 2.33).

In Sect. 2.3.2, we have already described the realization of linear retarders using
thin plates of anisotropic media, usually cut normal to one of the principal axes
to avoid any beam walk-off between the two polarization eigenstates as described
above.

The beam offset shown in Fig. 2.33 can be exploited to build a polarizer that
separates the two polarization components of an incident beam into two parallel
output beams, provided that the crystal is long enough. Another scheme to realize a
polarization beam splitter is based on the polarization dependence of the critical
angle of total reflection at an interface between a birefringent material and a
medium of lower optical density. A high quality polarization beam splitter, the
Glan–Thompson prism, relies on this effect; its design principle is shown in
Fig. 2.34.



86 2 Wave Propagation in Matter

2.3.4 Electro-Optic Devices

The susceptibility and thus the permittivity tensor of a material can be altered by an
external electrostatic field. This effect is called Pockels- or electro-optic Kerr effect,
respectively, depending on whether the change is a linear or a quadratic function
of he applied field. We will discuss these effects in more detail in Sect. 8.4.1; as
an important application of the Pockels effect, we describe here an electrically
controlled linear retarder, known as Pockels cell. Such a cell is typically a slab of
KDP (KH2PO4), cut normal to its z-axis. In the absence of an electrostatic field,
KDP is a uniaxial crystal; if an electric field Edc is applied in z-direction it becomes
biaxial with new principal axes x0 and y0 (Fig. 2.35) and corresponding principal

Transparent 
 electrodes

KDP crystal 

Fig. 2.35 Electro-optic wave plate (Pockels cell); the phase delay between the two polarization
eigenstates is controlled by the applied voltage
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values of the propagation index [Eq. (8.206)]

n.x0;y0/ D no � n3o
2

r63E
dc
3 : (2.158)

For light propagating along the z-axis, the slab of thickness d acts as linear retarder
inducing a phase difference of �� D n3or63Edc

3 k0d D �.U=U�/, where U is the
applied voltage so that Edc

3 D U=d, and U� D 	0
2n3or63

is the voltage required to reach

a phase difference of � . In the x0-y0-coordinate frame, the Jones matrix of the plate
is then given by

T D
�
1 0

0 e�j�.U=U� /

�
I (2.159)

note that the thickness of the slab does not influence the induced phase difference.
With the values given in Table 8.4, we obtain U� D 14:6 kV at a wavelength of
	0 D 1:064�m. At U D U� , the cell acts as a half-wave plate (Table 1.3) that
converts an input polarization state into its mirror image.

Such a retarder, placed between two polarizers, can act as an electronically
controlled optical shutter or modulator (Fig. 2.36). If the polarizers are oriented
under 45o in respect to the x0-y0-system (see Table 1.3), the Jones matrix of this
sequence in the x0/y0 reference frame is

T D 1
4

�
1 1

1 1

��
1 0

0 e�j�.U=U� /

��
1 1

1 1

�
: (2.160)

With the input state Jin D
�
1

1

�
, the output state is

Jout D Jin cos2
�
�

U

2U�

�
: (2.161)

The Pockels cell can be operated as a switch (with an extinction ratio of up to 10�4)
or a modulator; for the latter purpose the phase difference at U D 0 is shifted to
�=2 by inserting a quarter wave plate so as to operate in the linear range of the
transmission function.

There are other possible geometries to realize such a retarder in KDP, but the
advantage of this longitudinal geometry (Edckk) is that the aperture of the cell can
be very large and does not influence the required voltage. The electrodes for the
application of the electric field need, of course, to be transparent and are usually
made out of transparent conductive oxides (TCOs).
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Fig. 2.36 Pockels cell as
electro-optic switch or
modulator, respectively
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A transverse geometry can be realized by using the same orientation of the elec-
tric field but choosing the wave propagation along the y0-axis. The phase difference
between the polarization components parallel to z and x0-axes, respectively, is then
2�
�
.no � ne/� n3or63Edc

3 =2
�

l=	0. In waveguides, with transverse dimensions in the
�m-range, one can, with an applied voltage of a few Volt, obtain a phase modulation
of � within an interaction length of a few mm. Electro-optic waveguide structures
(Sect. 5.3) are usually based on lithium niobate, but the principle of operation is the
same.

2.3.5 Liquid Crystal Devices

Liquid crystals (LC) are liquid phases of molecules that arrange themselves
spontaneously in long-range order. In the nematic phase, for example, rod-like
molecules align themselves along a common direction, which can be prescribed,
e.g., by a glass substrate that is treated with some sort of brushing in the desired
direction.
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Fig. 2.37 Alignment of an
LC-molecule in an electric
field

The principle of operation of LC-devices relies on the anisotropic molecular
polarizability that gives rise to an anisotropic permeability of the nematic phase;
a liquid crystal film can thus be understood as a thin uniaxial slab with the optical
axis parallel to the long axis of the molecules. Light propagating normal to the film
plane has two polarization eigenstates, one parallel to the optical axis, with refractive
index no, the other one normal to it with refractive index ne. An LC film of thickness
d thus acts as a linear retarder with a phase difference of 2�.no � ne/d=	0.

A (quasi-static) electric field E normal to the glass substrate exerts a torque on
the molecules that tends to align them parallel to the field (Fig. 2.37), even if the
molecules do not have an intrinsic dipole moment: molecules that are (because of
their thermal motion) oriented slightly out of plane experience a field component
along their axis, which induces a dipole moment proportional to the field; as the
torque is proportional to the field and to the dipole moment, it scales with the square
of the field. Depending on the resulting average angle 
.E/ of the molecular axis in
respect to the surface normal, the propagation index of light polarized along the
initial direction of the molecules is then given by Eq. (2.147)

1

n2.U/
D cos2 
.U/

n2o
C sin2 
.U/

n2e
: (2.162)

The resulting refractive index anisotropy can therefore adjusted between the values
no � ne and 0 (Fig. 2.38).

Arranged between two polarizers, or a polarizer and a mirror, such LC films
can operate as optical shutters or modulators, similar to a Pockels cell; since the
response is independent of the sign of the electric field, however, it rather resembles
the (quadratic) electro-optic Kerr effect. As the variation of the refractive properties
of LC films requires the rotation of molecules in a viscous environment, it is much
slower than the Kerr effect, which is of purely electronic nature.

The most important application of such electro-optic LC-devices is in the field
of display technology, where an array of small pixels of LCs is controlled by
localized electrodes (see, e.g., Lueder 2010). In combination with polarizers, they
act as spatially resolved transmittance modulators; in certain photonic applications,
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(a) (b)

U

Incident light Incident light

Fig. 2.38 Liquid crystal (LC) film between transparent electrodes: (a) without applied voltage,
(b) with applied (AC) voltage

they are also employed as phase modulators that can modify the phase front of
transmitted light.

2.4 Other Propagation Effects

2.4.1 Optical Activity

Optical activity is a manifestation of circular birefringence: for a given wave vector,
there are two circularly polarized eigenstates �˙ with different propagation indices
n˙. An optically active medium of thickness d is therefore a circular retarder
inducing a phase difference of

��V D 2�.n� � nC/
d

	0
(2.163)

between the two eigenstates. According to Eq. (1.124), such a retarder rotates any
input state by

' D �.nC � n�/
d

	0
: (2.164)

We restrict our discussion of optical activity to isotropic media; additional linear
birefringence is possible in anisotropic media, and can be observed, for example, in
crystalline quartz. The symmetry requirement for optical activity is, as we shall see,
the lack of centrosymmetry; an example for an isotropic, optically active medium
is a liquid solution of chiral molecules such as dextrose. The microscopic origin of
optical activity is the rotating current induced in a molecule by the oscillating B-field
of the light. In chiral molecules (that structurally resemble a helix), this (helical)
current produces an electric dipole moment proportional to @B=@t D �r � E; the
total electric displacement density then has the form

D D "0"E C "0�r � E: (2.165)
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The appearance of the r-operator in this equation implies that the response of the
medium in a point x does not depend only on the electric field in this point but also
on the field in the neighborhood—just as the response at time t generally depends
on the field in the past—in other words, the response of the medium is nonlocal.
The general expression for the electric displacement density including nonlocal
contributions is, in Einstein notation,

Di D "0"ijEj C "0�ijkrjEk (2.166)

where � is a material property that relates three vectors—r , E, and D, and is
therefore a third rank tensor. In isotropic, centrosymmetric media, all components of
� must satisfy �ijk D .�1/3�ijk and are consequently zero; in non-centrosymmetric
isotropic media, symmetry requires �ijk D �ijk�, where �ijk is the permutation
symbol. Thus, �123 D �231 D �312 D ��132 D ��213 D ��321 D �, while all
remaining components are zero. For a plane wave with wave vector k, Eq. (1.33)
allows us to replace r with �jk; in isotropic media, we can, without loss of
generality, choose the z- axis as propagation direction, so that k D Œ0; 0; k�.
Equation (2.166) then assumes the form

D D "0

2
4
" �j�k 0

j�k " 0

0 0 "

3
5E: (2.167)

Substituting this result in wave equation Eq. (2.130), we obtain the eigenvalue
equation ME D 0 with

M D
2
4

n2 � " �j�k 0

j�k n2 � " 0

0 0 "

3
5 : (2.168)

From det M D 0 we obtain the eigenvalues

n˙ D p
"˙ �k � n0 ˙ �k

2n0
; (2.169)

with n0 D p
", corresponding to circularly polarized eigenstates �˙. The resulting

rotation angle is given by Eq. (2.164).
Analog to the case of anisotropic media, the two eigenstates are usually refracted

in different directions at an interface of an optically active medium; circular
polarizers can be realized by exploiting the different critical angles of total reflection
at an interface.
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2.4.2 Magneto-Optic Faraday Effect

Optical activity can be understood as resulting from the magnetic component of the
electromagnetic light wave; we now want to consider the effect of a static, external
magnetic field with flux density Bext on wave propagation; similar to the treatment
of the electro-optic effect (Sect. 8.4.1) we start by expanding the permittivity as a
function of Bext:

"ij.Bext/ D "0ij C �ijkBext
k C : : : ; (2.170)

where �ijk are the components of the magneto-optic tensor. Unlike the electro-
optic tensor or the nonlocal permittivity tensor �ijk, the magneto-optic tensor does
not vanish in centrosymmetric media, because Bext, in contrast to D and E, is a
pseudo-vector that does not change sign under inversion (this can by understood by
considering the fact that a circular loop current which produces a magnetic field is
also invariant under inversion). Isotropy requires �ijk D �j�ijk� , where �ijk is the
permutation symbol; in lossless media, " must be Hermitian ("ij D "�ji ) for reasons
of energy conservation, so that �ijk must be imaginary.

Assuming Bext to be parallel to the z-axis, the resulting electric displacement
density is

D D "0

2
4

" �j�Bext 0

j�Bext " 0

0 0 "

3
5E: (2.171)

For propagation in the z-direction, this relation resembles Eq. (2.167)—with similar
consequences for the wave propagation: the eigenstates are circularly polarized �˙,
with the propagation indices [compare Eq. (2.169)]

n˙ D p
"˙ �Bext � n0 ˙ �Bext

2n0
: (2.172)

According to Eq. (2.164), the Faraday effect results in a rotation of the input
polarization state by the angle

' D ��

n0	0
Bextd DW VBextd; (2.173)

where V is the material specific and frequency dependent Verdet constant. Typ-
ical values for glasses are on the order of 1 rad T�1 m�1 at 1�m wavelength;
selected (paramagnetic) rare earth doped materials show values of more than
�100 rad T�1 m�1 at 1�m wavelength.
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2.4.2.1 Faraday Isolator
While the polarization rotation (which is defined in respect to the propagation direc-
tion) in isotropic optically active materials is independent of the direction of k, the
Faraday rotation depends on the orientation of k in respect to Bext: if the propagation
direction is reversed, the rotation also changes sign. The difference between the
two effects becomes particularly obvious if we consider the combination of an
optically active or magneto-optic medium, respectively, and a mirror, and look at
the polarization state of the light reflected by this setup. The corresponding Jones
matrix in the case of an optically active medium is

�
cos' � sin'

sin ' cos'

� �
1 0

0 �1

� �
cos' � sin '

sin' cos'

�
D
�
1 0

0 �1

�
; (2.174)

which is equivalent to simple reflection; the rotation due to optical activity is
compensated. Using a magneto-optic medium instead, the matrix is

�
cos.�'/ � sin.�'/
sin.�'/ cos.�'/

� �
1 0

0 �1

� �
cos' � sin'

sin ' cos'

�
D
�
1 0

0 �1

� �
cos 2' sin 2'

sin 2' cos 2'

�
; (2.175)

that is a rotation by 2', followed by a reflection. In combination with a linear input
polarizer, a Faraday rotator with a rotation of ' D 45o per pass blocks reflections
completely, acting as so-called Faraday isolator (Fig. 2.39).

2.4.2.2 Drude–Lorentz Model of the Faraday Effect
We now want to understand the Faraday effect within the Drude–Lorentz model; for
this purpose we supplement the force term in the equation of motion Eq. (2.51) with
the Lorentz force �e.v � Bext/ that acts on an electron moving at velocity v in a
magnetic field Bext

me Rx C bPx C ax D �e
�
E.t/C Px � Bext

� I (2.176)

as above, we assume that Bext and k are parallel to e D Œ0; 0; 1�. We use complex
amplitudes in the following and choose a circularly polarized base

QE˙ D QE˙�˙ (2.177)

Qx˙ D Qx˙�˙; (2.178)

where the base vectors �˙ D Œ1;˙j; 0� 1p
2

have the property �˙ � e D ˙j�˙.
Equation (2.52) then becomes

Qx˙.!;Bext/ D �e=me

.!20 � !2/C j!� � !.e=me/Bext
QE˙; (2.179)
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Polarizer 1

Polarizer 2

Faraday rotator

(b)

(a)

Fig. 2.39 Nonreciprocal transmittance of a Faraday isolator: (a) forward propagation, (b) back-
ward propagation

and the susceptibility for circularly polarized light is given by the correspondingly
modified Eq. (2.56)

Q�˙.Bext/ D nee2

"0me

1

Œ.!20 � !2/C j!� �� !.e=me/Bext
: (2.180)

This expression has the form a
b�x , which can be approximated by a

b ˙ a
b

x
b for x 	 b.

Since the Lorentz term is much smaller than the other terms in the denominator, we
can write

Q�˙.Bext/ � Q�.0/˙ FBext D Q�.0/˙� Q�.Bext/; (2.181)

where

F D !
e

me

1

Œ!20 � !2 C j!� �
Q�.0/ � !e

!20me
Q�.0/I (2.182)
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the approximation is valid well below the resonance, ! 	 !0. With � Q� D �Q", the
permittivity tensor in the circular base is

" D
2
4
"C F.!/Bext 0 0

0 " � F.!/Bext 0

0 0 "

3
5

c

I (2.183)

transformation into the linear base is obtained by Eq. (1.122), resulting in

" D
2
4

" �jF.!/Bext 0

jF.!/Bext " 0

0 0 "

3
5

l

I (2.184)

comparison with Eq. (2.171) allows us to identify

� D F.!/ (2.185)

and to calculate the Verdet constant according to Eq. (2.173), using Eq. (2.182) and
	0 D 2�c0=!

V D �F.!/

n0	0
D
�
!

!0

�2 e

mec0

Q�.0/
2n0

: (2.186)

The susceptibility of glass at a wavelength of 1�m is about Q� D n2�1 D 1:25; if we
assume the resonance to be in the UV (!=!0 � 10�1), Eq. (2.186) yields a Verdet
constant of about 1 rad T�1 m�1, in surprisingly good agreement with experimental
values.

2.4.3 Wave Propagation inMovingMedia�

A number of optical phenomena rely on effects that derive from the relative motion
of source, medium, and/or detector. The treatment of these effects is provided by
the theory of relativity and relies on the postulate that the vacuum velocity of light
is identical in two reference systems that move relative to each other at a constant
velocity. It is convenient to use a four-dimensional space time reference frame to
describe relativistic phenomena, where a point is given by the four-vector

x D

2
664

x
y
z

jc0t

3
775 : (2.187)
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nmv

kmv

zlb

θmv
zmv

xmv

xlb

ωmv

v

Fig. 2.40 A light wave propagating in a medium with optical density nmv that moves at a velocity
v relative to the observer; in the moving frame, the wave has the frequency !mv and the wave
vector kmv; the observer in the lab reference frame measures !lb and klb

Let us assume a medium that is, measured in our lab reference frame, moving along
the z-axis at velocity v. A point with coordinates xmv in the moving reference system
has the coordinates xlb in the lab system, with xmv and xlb related by the Lorentz
transformation (see, e.g., Jackson 1999)

xmv D Lxlb (2.188)

where

L D

2
66664

1 0 0 0

0 1 0 0

0 0 1p
1�.v=c0/2

j .v=c0/p
1�.v=c0/2

0 0 �j .v=c0/p
1�.v=c0/2

1p
1�.v=c0/2

3
77775
: (2.189)

Consider a plane wave Eq. (1.26) that propagates with the phase velocity c0=nmv in
the moving medium (Fig. 2.40); in four-vector notation, the wave function has the
form

QE.xmv/ D QEe�jkmvxmv ; (2.190)

where

kmv D !mv

c0

�
nmv sin 
mv; 0; nmv cos 
mv; j

�
(2.191)

is the wave four-vector and 
mv is the angle between wave vector and z-axis.
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For an observer in the lab reference frame, the wave has the frequency !lb and
the wave vector klb

klb D !lb

c0

�
nlb sin 
lb; 0; nlb cos 
lb; j

�
: (2.192)

Since xmv and xlb describe identical points, the respective phase of the wave must
be the same, kmvxmv D klbxlb D kmvLxlb, so that the wave four-vector in the lab
system is

klb D kmvL: (2.193)

Comparison of the components of the vectors on both sides of this equation allows
us to extract the wave parameters in the lab system; for the frequency in the lab
frame, we obtain

!lb D !mv
1C nmv.v=c0/ cos 
mvp

1 � .v=c0/2
; (2.194)

the phase velocity is c0=nlb with

nlb D
s
1C .n2mv � 1/Œ1 � .v=c0/2�

Œ1C nmv.v=c0/ cos 
mv�2
; (2.195)

and the direction of the wave vector in respect to the z-axis is

tan 
lb D nmv

p
1 � .v=c0/2 sin 
mv

nmv cos 
mv C .v=c0/
: (2.196)

The dependence of the frequency on the relative velocity is known as Doppler
effect; an important case is 
mv D 0 (longitudinal Doppler effect); if nmv D 1, we
obtain

!lb D !mv

s
1C v=c0
1� v=c0

� !mv.1C v=c0/; (2.197)

where the approximation is valid for jv=c0j 	 1. A frequency shift is also observed
if the propagation direction in the moving frame is orthogonal to the motion of the
system (
mv D 90o): this transverse Doppler-shift is given by

!lb D !mv
1p

1 � .v=c0/2
: (2.198)
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The propagation index of a medium moving parallel to the wave vector, measured
in the lab frame, finally is

nlb D nmv C v=c0
nmvv=c0 C 1

(2.199)

and the phase velocity in the lab frame amounts to

vlb D c0=nlb D c0=nmv C v

1C v=nmvc0
� c0=nmv C v.1 � 1=n2mv/I (2.200)

the term 1 � 1=n2mv is known as Fresnel’s drag coefficient.

2.5 Summary

The electric field of a light wave induces oscillations of the electrons in matter, and
the oscillating electrons generate an electromagnetic wave: this is the core of the
classical theory of light–matter interaction. Reflection and refraction at boundaries,
absorption, dispersion, birefringence, optical activity, or the magneto-optic effect
are examples for the enormous variety of optical phenomena that result from this
interplay. The fundamental response of matter to a light wave is described by the
polarization density; the relation between electric field and polarization density is
provided by the susceptibility.

The optical polarization density is a wave, and coupling of incident and outgoing
waves, for example, at an interface, requires phase matching between polarization
wave and electromagnetic wave. The laws of reflection and refraction at a smooth
interface, and that of diffraction at a periodic grating follow immediately from this
condition.

Mathematically, the representation of harmonically oscillating real quantities
by complex amplitudes turns out to be extremely advantageous; provided that
the response of a medium to the electric field is linear, the theory of linear
systems can be utilized to describe light–matter interactions. The susceptibility,
for example, can be understood as a complex transfer function, with the imaginary
part being responsible for the energy transfer between light field and matter, and
the real part essentially determining the propagation velocity of the light wave.
The Kramers–Kronig relations are a special case of the Hilbert transformation that
relates the real and imaginary part of the transfer function of a causal system and
constitute an important tool for the analysis of photonic elements.

The response of the electrons can be modeled, with astonishing success, by
a simple harmonic oscillator (Drude–Lorentz model). The restoring force and
the damping constant determine the magnitude, resonance frequency, and phase
behavior of the susceptibility. A possible anisotropy of the restoring force results in
optical birefringence. In centrosymmetric lossless media, the susceptibility tensor
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can always be represented by a diagonal matrix and the eigenstates of propagation
are linearly polarized; in non-centrosymmetric media, additional nonlocal terms can
lead to imaginary off-diagonal elements, giving rise to optical activity. The presence
of a static magnetic field has a similar effect, exhibited by the Faraday rotation of
the transmitted polarization state.

The basic optical response of metals can also be understood in the framework
of the Drude-Lorentz model as that of media without restoring force; in particular,
the very high reflectivity of metals up to the plasma frequency, and a phase velocity
exceeding c0 are correctly predicted by the model.

Finally, some consequences of special relativity on the optical properties of
moving media, as observed from a system at rest, are derived. The results are of
particular interest for sensing applications, but also for Doppler effects in laser
media.

2.6 Problems

1. Assume a plane wave incident on a surface at an oblique angle of incidence;
what is the velocity of the phase fronts, measured in the surface plane?

2. Assume a stack of plane parallel plates of index n2 to nj�1 between two media
with n1 and nj. Calculate the angle of transmission into medium j as a function
of the angle of incidence in medium 1.

3. Calculate Brewster’s angle for ni > nt by finding the angle of incidence where
r� D 0. If it exists, compare it to Brewster’s angle for reverse propagation and
check whether the two angles are related by Snell’s law.

4. A line grating can be used to “retroreflect” light incident under an oblique
angle into itself (in a laser resonator, for example). For a given wavelength
and grating period, calculate the angular condition for retroreflection. Also
calculate the derivative of the retroreflected wavelength with respect to the angle
of incidence; derive the spectral resolution of the “grating mirror” in terms of
the spread of the angle of incidence. In Chap. 3, we will see that the angular
spread of a collimated light field is related to its transverse dimensions; use
Eq. (3.19) to express the spectral resolution as a function of the incident beam
diameter.

5. For �-polarized light, the total electric field E.z/ and its derivative dE= dz
must be continuous at the interface between two media (z is normal to the
interface): (a) derive this statement from Maxwell’s equations; (b) based upon
these boundary conditions, calculate the phase shift (the complex reflection
coefficient) of totally reflected �-polarized light; plot the field amplitude in a
manner similar to Fig. 2.16.

6. Assume a material having a volumetric heat capacity of 2 � 106 J m�3 K�1;
further assume a 1 ns long laser pulse of 100 mJ energy, focussed to a circular
area of 1 mm diameter, being completely absorbed by the medium within an
absorption length of 20�m. Neglecting heat diffusion, what is the temperature
increase of the irradiated volume of the medium? The radiation pressure
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associated with the electromagnetic field is I=c0; calculate the peak pressure
on the irradiated medium.

7. Looking into a fish tank with vertical windows, what is the maximum angle
in respect to the window surface normal under which you can observe total
reflection at the horizontal water surface? Take the influence of the window
glass (refractive index 1.6) into account. If you lie on your back on the floor
of a pool, with your diving goggle glasses horizontal, can you observe total
reflection at the water surface? Can you see people sitting at the pool side?

8. The complex refractive index of silicon (silver) at a wavelength of 500 nm is
4:298�0:073j (0:050�3:13j). Calculate the reflectance at 45ı angle of incidence
for � and � polarized light. Calculate the absorption length under this angle of
incidence (vertical penetration depth) using the imaginary part of the normal
component of the transmitted wave vector.

9. Design a Glan–Thompson prism from calcite (orientation and cutting angles).
10. Design a Fresnel rhomb from a glass with refractive index of 1.6.
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3Optical Beams and Pulses

The treatment of optical wave propagation given so far was restricted to monochro-
matic plane waves. These simple solutions allow us to study effects such as
reflection and refraction or propagation in birefringent media. Plane waves are, how-
ever, somewhat unrealistic because they extend over the entire space, with a constant
amplitude, and carry infinite total energy; monochromatic waves, moreover, extend
over infinite times.

Optical beams and pulses are electromagnetic waves concentrated in space and/or
time; they have finite energy content and can be produced by optical sources such
as lasers. The following discussion relates to the propagation of coherent beams and
pulses, that are characterized by completely controlled spatial and temporal phase.

3.1 Beam Propagation

3.1.1 Paraxial Wave Equation

As we have seen earlier, the time- and space dependence of an optical wave function
can be treated separately. In the following description of optical beams, we will
assume a harmonic (monochromatic) time dependence. One way to construct a
beam-like wave function is to multiply a plane carrier wave with a transverse profile
function A.x/ that is concentrated along an axis (parallel to the wave vector of
the carrier wave) and falls off rapidly with increasing distance from the beam axis
(which we identify with the z-axis)

E.x; t/ D A.x/ne�j.kz�!t/I (3.1)

© Springer International Publishing Switzerland 2016
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n is a unit vector defining the polarization state of the wave.1 Substituting this ansatz
into the scalar Helmholtz equation Eq. (1.23), we obtain the differential equation

r2A � 2jk
@A

@z
D 0 (3.2)

for A.x/. We assume that A.x; y; z/ changes only slowly along z on the scale of a
wavelength, so that j.@A=@z/j 	 2�jAj=	 and

ˇ̌
ˇ̌
ˇ̌
@
�
@A
@z




@z

ˇ̌
ˇ̌
ˇ̌ 	 2�

	

ˇ̌
ˇ̌@A

@z

ˇ̌
ˇ̌ : (3.3)

Under this so-called slowly varying envelope approximation, we can neglect
.@2A=@z2/ in comparison to k.@A=@z/ D .2�=	/.@A=@z/ and obtain the paraxial
Helmholtz equation

r2
TA � 2jk

@A

@z
D 0 (3.4)

where r2
T WD @2=@x2 C @2=@y2. This equation shows immediately that in a

homogeneous medium, where k is constant, the transverse variation of the amplitude
entails an axial variation and vice versa. In general, the transverse profile changes its
shape during propagation, and the profiles at two distant points of propagation may
show hardly any similarity. Some selected profiles, however, are conserved during
propagation and only change their spatial extension. One of these profiles is the
Gaussian profile jAj / expŒ.x2 C y2/=w2.z/�. As we shall see in Sect. 3.1.6, propa-
gation over a large distance converts an initial profile into its Fourier transform; the
Gaussian profile is one out of the set of functions that are similar to their Fourier
transform.

3.1.2 Gaussian Beams

The wave function of a Gaussian beam—i.e., a beam with a Gaussian profile—can
be obtained from a paraxial approximation of a spherical wave .A0=jxj/ e�jkjxjej!t,
combined with a complex coordinate transformation of the z-component (an
alternative derivation of the wave function will be given in Sect. 3.1.6). The phase

1In general, n must also be a function of x for Eq. (3.1) to be a solution of the Helmholtz equation;
here, we neglect this fact and assume that n ? k, so that Eq. (3.1) describes actually the transverse
component of the field (which we assume to dominate). If one interprets Eq. (3.1) as vector
potential, one obtains exact solutions for the fields (Haus 1984).
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Fig. 3.1 Spherical wave:
surfaces of constant phase

Spherical phase fronts

fronts (kjxj D const.) of a spherical wave are concentric spheres (Fig. 3.1) that
expand (or collapse) with the phase velocity vph D !=k. The prefactor 1=jxj reduces
the amplitude so that the total power flowing through a given sphere is conserved.
Looking for a beam-like solution, we approximate the term jxj D p

x2 C y2 C z2 in
the vicinity of the z-axis (x2 C y2 	 z2) using

p
1C u � 1C u=2

jxj D z

s
1C r2

z2
� z C r2

2z
; (3.5)

where r WD p
x2 C y2 is the distance from the z-axis. The spatial part of the wave

function is then

A0
jxj e�jkjxj � A0

z
e�jkr2=2ze�jkz; (3.6)

where the second order expansion was used only in the highly sensitive phase term.
This coincides with the carrier wave ansatz Eq. (3.1) with the amplitude function

A.x/ D A0
z

e�jkr2=2zI (3.7)

it is easy to verify that this amplitude function satisfies the paraxial Helmholtz
equation Eq. (3.4).
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The singularity at z D 0 can be removed by the complex transformation
(Kogelnik and Li 1966)

z ! q WD z C jz0I (3.8)

the meaning of z0 will become obvious immediately. To analyze the resulting
amplitude function

A.x/ D A0
q

e�jkr2=2q

D A0
z C jz0

exp

�
�j

kr2

2.z C jz0/

�
I (3.9)

we split 1=q into its real and imaginary part

1

q
D 1

z C jz0
D z � jz0

z2 C z20
DW 1

R
� j

2

kw2.z/
; (3.10)

where w.z/ and R.z/ are given by

w2.z/ D w20

"
1C

�
z

z0

�2#
(3.11)

with

w20 D 2z0=k; (3.12)

and

R.z/ D z

"
1C

�
z0
z

�2#
: (3.13)

Thus, the exponential term

e�jkr2=2q D exp

�
� r2

w2.z/

�
exp

�
�jk

r2

2R.z/

�
(3.14)
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in Eq. (3.9) is the product of a Gaussian amplitude profile of width w and a parabolic
phase term that represents an approximately spherical with curvature 1=R. The
prefactor A0=q in Eq. (3.9) can be written as

A0
z C jz0

D A00
w0
w

e j�.z/; (3.15)

where A00 WD A0=jz0 and

�.z/ D arctan
z

z0
(3.16)

is a slowly varying phase term called Gouy phase that is, as we shall see, responsible
for a z-dependent phase velocity in the focal region. The entire wave function
(including the carrier) is then

a.x/ D A00
w0

w.z/„ ƒ‚ …
amplitude

exp

�
� r2

w2.z/

�

„ ƒ‚ …
profile

exp

�
�jk

r2

2R.z/

�

„ ƒ‚ …
phase curvature

e�jŒkz��.z/�„ ƒ‚ …
carrier

: (3.17)

3.1.2.1 Axial and Radial Field Distribution
The first factor in Eq. (3.17) denotes the amplitude on the axis (r D 0); it peaks at
z D 0 and falls off with 1=z for jzj 
 z0. Radially, the amplitude follows a Gauss
function (second factor); the third and fourth factors are transverse and axial phase
terms, respectively. The intensity distribution I.x/ / aa� is given by

I.x/ D I0
w20

w2.z/
e�2r2=w2.z/; (3.18)

where I0 WD I.0/ is the intensity maximum; Fig. 3.2 shows axial and transverse
beam cross sections.

Because of the quadratic intensity–amplitude relation, the width of the transverse
intensity profile is smaller than the amplitude profile by a factor of

p
2. The radial

distance w.z/ denotes the 1=e (1=e2) point of the amplitude (intensity) profile and is
called beam radius; it is a hyperbolic function of z, with the minimum beam radius
w0 at z D 0 defining the so-called beam waist.
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Phase fronts

Fig. 3.2 Transverse and axial intensity profiles of a Gaussian beam; the transverse profiles are
taken at z D 0 and z � 2z0, respectively. The 1=e2-radius w.z/ of the profile follows a hyperbola
with the axes z0 and w0

The axial range jzj � z0 is called confocal range, and z0 is called confocal
parameter (frequently in the literature, z0 is called Rayleigh range and the confocal
parameter is defined as 2z0); compared to the peak intensity in the waist, the axial
intensity drops to one half at z D ˙z0. Note that z0 and w0 are not independent,
but related by Eq. (3.12), so that only one of the two parameters can be chosen at a
given wavelength. In the far-field jzj 
 z0, the beam radius grows approximately
linearly, w.z/ � z
0, where

2
0 D 2 arctan
w0
z0

� 2
w0
z0

D 2	

�w0
D 2

s
	

�z0
(3.19)

is the angle of divergence in [rad]; the axial intensity decreases with 1=z2 like that of
any other light source in the far field. At a given wavelength, w0
0 Dconst, implying
a trade-off between the waist diameter and the beam divergence: well collimated
beams necessarily have a waist much bigger than the wavelength, while a small
beam waist implies a large divergence.

Strictly speaking, the field amplitude of a Gaussian beam does not vanish at any
distance from the axis. The definition of the beam radius and diameter (and thus the
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beam divergence) is therefore somewhat arbitrary and a matter of convention; an
important practical measure is the full width of the intensity profile at half maximum
(FWHM), that can be readily related to w.z/

dFWHM D w.z/
p
2 ln 2: (3.20)

There is a variety of other measures for the beam width, for example the diameter of
the circle that contains a certain percentage of the total beam power. For a Gaussian
beam, all these measures are related to the beam radius w.z/ by some characteristic
number (

p
2 ln 2 in the case of FWHM). As there are different definitions of

the beam diameter, there are also different definitions of the beam divergence,
which generally is the ratio of beam diameter to confocal parameter. The confocal
parameter, however, is uniquely defined as the distance of the point of maximum
phase front curvature (see below) from the beam waist.

Beams emerging from real light sources can be compared to the “ideal” beam by
comparing the product of beam radius and beam divergence with that of a Gaussian
beam; this ratio is called M2-parameter and is a spatial quality measure of the light
source (ISO-Standard 2005).

In a lossless medium, the power transported by the beam is independent of z and
is obtained by integration over the cross section

P D
Z 1
0

I.r; 0/ 2r� dr D 1
2
I0�w20I (3.21)

this allows us to relate the peak intensity to beam power

I0 D 2P

�w20
: (3.22)

Equation (3.18) can therefore be written as

I.x/ D 2P

�w2.z/
e�2r2=w2.z/: (3.23)

3.1.2.2 Phase Front Curvature
The phase distribution of an optical wave function does not show up in the local
intensity; nonetheless, it is a very important property that has a critical influence on
the spatial evolution. The phase fronts of a Gaussian beam are determined by the
factor e�jkr2=2R.z/ in Eq. (3.17) and are paraboloid, or approximately spherical with
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Fig. 3.3 Phase front radius of curvature of a Gaussian beam as a function of propagation distance

the curvature 1=R.z/, where the radius R.z/ is given by Eq. (3.13): jRj is infinite in
the beam waist, drops to its minimum value at z D z0 , and approaches R � z for
z 
 z0 (Fig. 3.3).

If the phase front radii R1 and R2 are given at two different axial positions,
separated by a distance d, Eq. (3.13) yields the equations

R1 D z2 C z20
z

(3.24)

R2 D .z C d/2 C z20
z C d

; (3.25)

where z is the (unknown) distance of the first mirror from the beam waist; after
subtraction of the two equations, we obtain

z D d.d � R2/

R2 � R1 � 2d
(3.26)
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Table 3.1 Gaussian beam parameters; for expressions in terms of q, see Table 3.2

w2.z/ D w20

�
1C

�
z
z0


2�
R.z/ D z

�
1C

�
z0
z


2�
I.x/ D 2P

�w2 e�2r2=w2

w20 D 2z0=k z0 D kw20=2 
0 D 	
�w0
D
q

	
�z0

qD zC jz0 Re Œ1=q� D 1=R.z/ Im Œ1=q� D �2=kw2.z/

and, with Eq. (3.24), the confocal parameter

z20 D d.d � R2/.d C R1/.R2 � R1 � d/

.R2 � R1 � 2d/2
: (3.27)

This result allows us, for example, to calculate the mode parameters of a laser
resonator, where the curvature of the phase front of a mode must match that of
the (spherical) mirrors.

3.1.2.3 Characteristic Parameters
Table 3.1 lists various parameters characterizing a Gaussian beam. Once the
wavelength and the location of the beam waist (defining z D 0) are given, there
is only one free parameter left; this can be w0, z0, or one of the parameters R, w at a
particular distance z from the beam waist. The q-parameter Eq. (3.8), as a complex
number, actually contains two parameters: if q D z C jz0 is given at some point on
the axis, the distance from the beam waist is given by the real part of q, while the
confocal parameter is equal to the imaginary part

z D Re Œq�

z0 D Im Œq� : (3.28)

The local values of R and w then follow from Eq. (3.10)

R D 1

Re Œq�1�

w2 D 2

kjIm Œq�1� j : (3.29)

If, on the other hand, R and w are given at a point on the axis, Eq. (3.10) yields

q D
�
1

R
� j
	

�

1

w2.z/

��1
D z C jz0I (3.30)
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comparing the respective real and imaginary parts, we find

z D R

1C .	R=�w2/2
(3.31)

z0 D 	R2=�w2

1C .	R=�w2/2
(3.32)

and, with Eq. (3.12)

w0 D w

Œ1C .�w2=	R/2�1=2
: (3.33)

As we will see in Sect. 3.1.4, q is a particularly valuable beam parameter that helps
to simplify the treatment of beam propagation problems to a great extent.

3.1.3 Optical Components and Gaussian Beams

A Gaussian beam can be modified by optical elements and transformed into another
one, with different waist location and waist radius; in this way, the output beam of
a given laser can be matched to the requirements of a particular application.

3.1.3.1 AmplitudeModification
If a Gaussian beam Eq. (3.17) is transmitted through a “soft” aperture with the
transmission coefficient

t.r/ D e�r2=w2a ; (3.34)

the beam profile changes from e�r2=w2 in front of the aperture to e�r2=w
02

immedi-
ately behind it, where

1

w02
D 1

w2
C 1

w2a
; (3.35)

while the phase curvature remains unchanged, R0 D R. With Eqs. (3.31) and (3.33),
the new waist location and radius can be readily calculated.

3.1.3.2 Phase Front Modification
Beam transformation by shaping the amplitude profile implies beam power losses. It
is therefore more efficient to locally change the phase front curvature while leaving
the local beam profile unchanged. To see how this works, we start with a (thin)
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plane parallel, dielectric plate of thickness d and propagation index n. A paraxial
plane wave e�jk�x incident on such a plate experiences a phase retardation that can
be expressed by a transmission factor

t � e�jnk0d: (3.36)

An optical lens (Fig. 3.4) is a dielectric plate with varying thickness d.r/, where r
is the distance from the axis. Usually, the propagation index n within the plate is
constant and the surfaces are spherical (or planar). We consider a plano-convex lens
(Fig. 3.5) with an axial thickness d0 and a front surface radius of curvature Rl: in
addition to the phase shift �k0d0 that an empty slice of thickness d0 imposes on a
transmitted wave, the dielectric medium contributes the phase shift �k0.n � 1/d.r/.
As can be seen from Fig. 3.5, the local thickness d.r/ is given by

d.r/ D
q

R2l � r2 � .Rl � d0/ � d0 � r2

2Rl
; (3.37)

Incident wave

Transmitted wave

Fig. 3.4 The phase retardation by a dielectric lens induces a spherical deformation of the incident
phase front
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Fig. 3.5 Thin spherical
plano convex lens

d0

d(r)

Rl
r

Rl

so that the phase change is approximately

�
�

k0d0 C .n � 1/k0

�
d0 � r2

2Rl

��
D �

�
d0nk0 � k0

.n � 1/r2
2Rl

�
(3.38)

and can be expressed by the transmission factor

e j.n�1/k0r2=2Rl D e jk0r2=2f ; (3.39)

where

f WD Rl

n � 1
(3.40)

is called focal length and its reciprocal value

1

f
D n � 1

Rl
(3.41)

is known as focusing power (measured in diopters). The constant phase factor
e�jd0nk0 has been dropped in Eq. (3.39) as it has no impact on the shape of the phase
front.

The assumption of a thin lens implies that the incident beam profile (with radius
w) will emanate from the lens unchanged,

w0.z/ D w.z/: (3.42)

The phase front, however, is transformed from e�jk0r2=2R to

e�jk0r2=2Rejk0r2=2f D e�jk0r2=2R0

; (3.43)
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constituting a new beam with the local phase front curvature

1

R0
D 1

R
� 1

f
I (3.44)

the new beam waist follows from Eq. (3.33) to be

w00 D w

Œ1C .�w2=	R0/2�1=2
(3.45)

and the distance of the new waist from the lens is, according to Eq. (3.31),

z0 D � R0

1C .	R0=�w2/2
(3.46)

(note that z is measured from the waist, which accounts for the negative sign in this
expression).

3.1.3.3 Gradient Index Lens
The radial phase change introduced by a thin phase object is given, in the paraxial
approximation, by the radial variation of k0.n � 1/d; in a conventional lens, n is
constant and d is a function of r. The same effect on the phase front can be achieved
by a phase object with constant d but varying propagation index,

n.r/ D n0
�
1 � 1

2
˛2gr2



(3.47)

(Fig. 3.6). If the thickness of such a so-called gradient index lens (GRIN-lens) is
so small that the beam radius does not significantly change during the propagation,
the action of a GRIN-lens on a paraxial wave function can be expressed by the
transmission factor e j k0n0˛2gr2d=2 (where a constant phase factor has been dropped);
comparison with Eq. (3.39) shows that the GRIN-lens has the effect of a conven-
tional lens with the focusing power

1

fgrin
D n0˛

2
gd: (3.48)
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Incident wave

Transmitted wave

Fig. 3.6 Effect of a thin gradient index lens on an incident plane wave

3.1.3.4 Thin Kerr Lens
An interesting variant of a GRIN-lens is the so-called Kerr lens, where the radial
index variation is not built in, but dynamically induced by the transmitted beam. As
we shall see in Sect. 8.3.2, the propagation index depends slightly on the intensity,

n.I/ D n0 C n2I; (3.49)

where the coefficient n2 is positive in most materials and on the order of several
10�20 m2 W�1 in glasses; obviously, it takes high values of intensity to get notice-
able index changes, but such intensities are available, for example, inside laser
resonators or from pulsed lasers.

Using exp.�x2/ � 1 � x2, the radial intensity distribution Eq. (3.23) of a
Gaussian beam can be approximated by

I.r/ � 2P

�w2

�
1 � 2r2

w2

�
I (3.50)

the propagation index in the range r < w is therefore

n.r/ � n0 C 2n2P

�w2

�
1 � 2r2

w2

�
� n0

�
1 � 1

2
˛2g kerr

r2


; (3.51)

where the (small) term 2n2P=�w2 has been dropped as it does not depend on r. For
a given beam power and radius, this corresponds to a GRIN-lens [Eq. (3.47)] with

˛gkerr D 2

w2

s
2n2P

�n0
(3.52)
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and a focusing power of

1

fkerr
D 8n2Pd

w4�
: (3.53)

At sufficiently high power, this effect is strong enough to focus the beam by
(over)compensating its natural divergence, a phenomenon called self-focusing
(Sect. 8.3.2). Inside the medium, the beam then induces a channel of increased
propagation index that acts as a gradient index waveguide (Sect. 5.2.3). For an
estimate of the required power, we treat the beam as a superposition of plane waves
(see Sect. 3.1.6) whose wave vectors enclose an angle 
 with the axis, ranging from 0
to a
0 D a	=�w0, where 
0 is the beam divergence (Fig. 3.2) and a is a beam profile
dependent factor of order 1; to ensure guiding, the index increase in the channel must
be large enough to provide total internal reflection for all wave vectors; according to
Eq. (2.10), this is the case if the axial component cos 
k0Œn0 C 2n2P=�w20� is larger
than the wave number k0n0 in the surrounding medium. Using cos x � 1� x2=2, we
obtain the inequality .1 � a2
20 =2/k0Œn0 C 2n2P=�w20� > k0n0, from which follows
the so-called critical power for the onset of self-focusing,

Pcrit D a2
	20

4�n2n0
: (3.54)

Typical values for Pcrit are several MW in glass materials at 	0 D 1�m; in air, with
an n2 of 4 � 10�23 m2 W�1, the critical power is in the GW-range. Note that the
self-focusing condition is independent of the beam diameter and refers to the power
and not to the beam intensity, as Eq. (3.49) might suggest.

3.1.3.5 Spherical Mirror
Another optical component that modifies the phase front is a curved mirror; Fig. 3.7
shows a plane wave impinging on a spherical concave mirror. The incident phase
fronts are first reflected by the rim of the mirror; the axial sections of the wavefront
have to travel a further distance of d.r/ before they arrive at the mirror apex,
while the outer sections have already travelled the same distance in backward
direction, so that the total phase difference amounts to 2k0d.r/. In the approximationp
1 � x2 � 1� x2=2, we can set d.r/ D Rs �pR2s � r2 � �r2=2Rs, where Rs is the

radius of curvature of the mirror (the curvature of a concave surface is negative by
convention). Thus, the action of a spherical mirror on a phase front is represented
by the phase factor e�jk0r2=Rs . This is equivalent to the action of a lens with focusing
power

1

f
D � 2

Rs
; (3.55)
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r

Refl. phase front

Incident phase front

Rs
Rs/2

d(r)≈−r2/2Rs

Mirror

≈2d(r)

Fig. 3.7 Phase front modification by a spherical mirror

and the formulas obtained for a thin lens apply accordingly.

3.1.3.6 Dielectric Half Space
If a Gaussian beam propagates from a dielectric half space of index n into a half
space of index n0, separated by a plane boundary normal to the beam axis, the radial
wave function [Eq. (3.17)] at the interface does not change, so that

e�r2=w02

e�jk0r2=2R0 D e�r2=w2e�jkr2=2R: (3.56)

Nonetheless, the beam is modified, as a comparison of real and imaginary parts of
the exponents shows:

w0 D w; R0 D k0

k
R D n0

n
R: (3.57)

Equation (3.31) yields the distance of the new waist from the interface

z0 D R0

1C .	0R0=�w2/2
D n0

n
z; (3.58)

where 	0=	 D n=n0 was used and z is the position of the interface relative to the
original beam waist; note that the original and the new beam waists are always on
the same side of the interface; only one of them is real, the other one is “virtual”
(Fig. 3.8). From Eq. (3.33) follows that the waist radius remains unaltered

w00 D w

Œ1C .�w2=	0R0/2�1=2
D w0 (3.59)
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d =d(n /n)

d

2w02w0

nn

Fig. 3.8 Beam transition between different media: the beam is stretched axially by the factor
n0=n, while the waist radius remains unchanged

since 	0R0 D 	R, while the new confocal parameter is

z00 D .n0=n/z0: (3.60)

In other words, the effect of the transition is an axial stretching of the beam by the
factor n0=n (Fig. 3.8).

3.1.4 ABCD-Transformation of Gaussian Beams

The effect of the optical components discussed above can also be expressed in terms
of a transformation q ! q0 of the q-parameter measured in the in- and output plane
of the component, respectively (Fig. 3.9). As we shall see, this so-called ABCD-
transformation greatly simplifies the calculation of beam propagation in optical
systems.

From the definition of q D zCjz0 follows immediately that free propagation over
the distance d is, independent of the refractive index of the medium, equivalent to

q0 D q C d; (3.61)

and the transition between two dielectric media [Eq. (3.57)] can be described, using
Eq. (3.10) by

q0 D n0

n
q; (3.62)
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Fig. 3.9 A paraxial optical system consisting of lenses, spherical mirrors, and free space,
arranged between an input and an output plane, can be represented by a single ABCD matrix
that relates the q-parameter of the incident beam, measured in the input plane, to the q0-parameter
of the transmitted beam, measured in the output plane

if the input- and output planes are located immediately at the interface. With the
same choice of reference planes, Eqs. (3.10), (3.42), and (3.44) allow us to describe
the action of a thin lens (or a spherical mirror) by

1

q0
D 1

q
� 1

f
; (3.63)

while a “soft” aperture [Eq. (3.35)] results in the transformation

1

q0
D 1

R
� j

2

kw02.z/
D 1

q
� j

2

kw2a.z/
: (3.64)

These transformations can be cast in the generalized form

q0 D Aq C B

Cq C D
; (3.65)

where the four coefficients constitute the so-called ABCD matrix

M D
�

A B
C D

�
(3.66)



3.1 Beam Propagation 119

Table 3.2 ABCD-matrices of selected optical elements, and relations between q and other
characteristic beam parameters; the spherical mirror resonator is treated in Sect. 4.3.1

Element ABCD matrix

Free propagation
"
1 d

0 1

#

Transition n! n0

"
1 0

0 n=n0

#

Dielectric plate
"
1 .n=n0/d

0 1

#

Gaussian aperture
"

1 0

�j2=kw2a 1

#

Thin lens
"

1 0

�1=f 1

#

Spherical mirror
"
1 0

2=R 1

#

GRIN-lens
"

cos˛gd .1=n0˛g/ sin˛gd

�n0˛g sin˛gd cos˛gd

#

Single lens system
"
1� d0=f dC d0 � dd0=f

�1=f 1� d=f

#

Sph. mirror resonator
"
.1C 2d=Rs1/.1C 2d=Rs2/C 2d=Rs2 d .2C 2d=Rs1/

2.1C 2d=Rs2/=Rs1 C 2=Rs2 2d=Rs1 C 1

#

q0 D AqCB
CqCD z D Re Œq� R D 1

ReŒq�1� 
20 D 2
kImŒq�

q0�1 D CCDq�1

ACBq�1 z0 D Im Œq� w2 D 2
kjImŒq�1�

j

w20 D 2ImŒq�
k

given in Table 3.2; to show the validity for transformations that modify the phase
curvature (lens and spherical mirror), it is convenient to write Eq. (3.65) in the form

1

q0
D C C D=q

A C B=q
: (3.67)

The power of this formalism lies in the fact that a sequence of optical elements
can be represented by the product of the elementary matrices: if a beam is
propagated through a series of optical elements with matrices M1;M2; : : : ;Mn (in
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this sequence), then the system matrix is given by

Mt D
�

At Bt

Ct Dt

�
DW Mn : : :M2M1 (3.68)

and the relation between input and output parameter is

q0 D Atq C Bt

Ctq C Dt
I (3.69)

the proof of this statement is left to the reader as an exercise.

3.1.4.1 Transformed Parameters
We now want to derive a few useful formulas for the transformation of Gaussian
beams by systems that consist of lenses (or spherical mirrors) and sections of free
propagation. Since we are free in the choice of the input plane, we put it in the waist
of the incident beam, so that the input q-parameter is q D jz0; the output parameter
is then

q0 D jz0A C B

jz0C C D
D .BD C ACz20/C jz0.AD � BC/

D2 C z20C
2

: (3.70)

The distance d0 of the new beam waist, measured from the output plane, is the
negative value of the real part of q0,

d0 D �Re
�
q0
�
: (3.71)

The imaginary part of q0 is the output confocal parameter z00,

z00 D z0
D2 C z20C

2
DW M2z0; (3.72)

where we have used the fact that det M D AD � BC D 1 (provided that the input
and output medium have the same propagation index). The factor

M WD 1q
D2 C z20C

2

(3.73)
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has the meaning of a magnification

M D
s

z00
z0

D w00
w0

D 
0


 00
(3.74)

as follows from Eq. (3.12) in the form w00=w0 D p
z00=z0.

As an example, we consider a single lens of focusing power 1=f , positioned at a
distance d from the input beam waist. The matrix of the system, stretching from the
input beam waist to the backside of the lens, is

Mdf D
�

1 0

�1=f 1

� �
1 d
0 1

�
D
�

1 d
�1=f 1 � d=f

�
; (3.75)

from which we obtain the magnification

M D
s

f 2

.d � f /2 C z20
: (3.76)

The distance of the new beam waist from the lens, d0 D �Re Œq0� is related to d by
the equation

d0 � f

d � f
D M2: (3.77)

If d D 0 (Fig. 3.10), the input wave at the lens has a planar phase front, and the new
beam waist with the radius [Eq. (3.74)]

w00 D w0

Œ1C .z0=f /2�1=2
D w0�

1C .w20�=	f /2
�1=2 (3.78)

is formed at the distance

d0 D f

1C . f=z0/2
< f ; (3.79)

which is, somewhat surprisingly, shorter than the focal length f of the lens unless
z0 
 f .

As an inspection of Eq. (3.78) shows, the strategy to minimize w00 is to use an
input beam with large waist radius w0 and a lens with large focusing power 1=f ; w00
is then approximately 	f=�w0. Since the input beam radius w0 is limited by the lens
radius D=2,
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Lens FPBW

f

2w0
2w0

Fig. 3.10 Beam transformation by a single lens; note that the location of the beam waist (BW)
does not coincide with the focal plane (FP) but is shifted towards the lens; this effect is negligible
only if f � z0

Lens FPBW

f

2w0<D

2w0

Fig. 3.11 Beam focusing with a lens: the beam waist is minimized if the input beam fills the
entire lens aperture D

w00 >
2	f

�D
I (3.80)

this limit is proportional to the f -number .f=D/ of the lens, which should be as
small as possible for that purpose (Fig. 3.11). The FWHM [Eq. (3.20)] of the focus
is given by

dFWHM >
2
p
2 ln 2

�

�
f

D

�
	 � 0:75

�
f

D

�
	: (3.81)
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3.1.4.2 Thick Dielectric Plate
We now turn to the derivation of the ABCD matrix of several important optical
elements. First we consider a dielectric plate of thickness d and propagation index
n0. The propagation through such a plate can be split into three steps: transition
n ! n0, free propagation over d, and finally transition n0 ! n; the system matrix is

M D
�
1 0

0 n0

n

� �
1 d
0 1

� �
1 0

0 n
n0

�
D
�
1 d n

n0

0 1

�
(3.82)

which is equivalent to a free space propagation in the original medium over a
distance d.n=n0/.

3.1.4.3 Thick Lens
A thick lens can be understood as a set of two thin lenses separated by a thick
dielectric plate of refractive index n0, and its matrix is obtained by multiplication
of the respective matrices shown in Table 3.2. Since the expression Eq. (3.41) for
the focusing power of a thin lens implies empty space in front and behind the lens,
we have to introduce an infinitely thin layer of empty space between the lenses and
the plate, and set n D 1 in matrix Eq. (3.82). The system matrix is therefore, with
C1;2 D � 1

f1;2
,

Mt D
�
1 0

C2 1

� �
1 d=n0
0 1

� �
1 0

C1 1

�
D
�

At Bt

Ct Dt

�
; (3.83)

where At;Dt D 1C d
n0

C1;2, Bt D d
n0

, and

Ct D C1 C C2 C d
n0

C1C2: (3.84)

The input and output planes of this “system” are the front and rear faces of the
thick lens. We can normalize this matrix by choosing alternate reference planes
H1;2, where the distance of H1 to the front face is h1 and the distance from the rear
face to H2 is h2. The new system matrix is then

M� D
�

A� B�
C� D�

�
D
�

At C h2Ct h1At C Bt C h1h2Ct C h2Dt

Ct h1Ct C Dt

�
: (3.85)
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Fig. 3.12 Any system with
a non-vanishing Ct coefficient
can be represented by a set of
two principal planes H1;2 in
respect to which the system
performs like a thin lens

H1 H2FP1 FP2

ff

We choose h1;2 so that A� D D� D 1; then it turns out that B� D 0, because the
determinant of Mt (and all other involved matrices) is equal to 1. With

h1 D 1 � D�

C�

h2 D 1 � A�

C�
; (3.86)

the ABCD matrix of the thick lens,

M� D
"
1 0

� 1
ft
1

#
; (3.87)

is equal to that of a thin lens with focal length ft D �1=Ct, with the only difference
that the reference planes are the so-called principal planes H1;2 (Fig. 3.12). Note that
this normalization can be performed for any system with a non-vanishing C�, i.e.,
any such system is equivalent to a thin lens.

3.1.4.4 Beam Expander
Setting n0 D 1 in Eq. (3.83), we obtain the matrix of a system of two lenses,
separated by a distance d. The case d D f1 C f2 is of particular interest, because
the resulting Ct D 0; such a system is a telescope with the matrix

Mt D
"

� f2
f1

d

0 � f1
f2

#
(3.88)
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Fig. 3.13 A confocal
two-lens system acting as
beam expander with
magnification MD f2

f1

Lens 1 Lens 2

d=f1+f2

2w0

2w0

and cannot be replaced by a thin lens. If we position the input beam waist (radius w0)
at the location of the first lens (Fig. 3.13), the magnification according to Eq. (3.73)
is M D f2

f1
and the output beam waist follows from (3.74) to be

w00 D Mw0 D f2
f1

w0: (3.89)

Such systems, with j f2j 
 j f1j, are frequently used to expand a beam waist and
reduce the divergence


 00 D 
0=M D f1
f2

0: (3.90)

3.1.4.5 Thick GRIN-Lens
Another interesting system is the GRIN-lens of arbitrary thickness d, where the
change of the beam radius due to the propagation cannot be neglected. We slice the
GRIN-lens into m thin sections of thickness ız D d=m. Focusing and propagation
effects of a single slice are treated separately by embedding a thin lens with focusing
power n0˛2gız [Eq. (3.48)] between two homogeneous slices of thickness ız=2 and
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index n0; the matrix of such a slice is then

Mı D
�
1 ız=2n0
0 1

�"
1 0

�n0˛2gız 1

#�
1 ız=2n0
0 1

�

�
"
1 � ız2˛2g=2 ız=n0

�n0˛2gız 1 � ız2˛2g=2

#
: (3.91)

The GRIN-lens is composed of m such slices and is accordingly represented by

Mgrin D Mm
ı : (3.92)

For the evaluation of this expression, we use the relation

�
cos 
 .1=K/ sin 


�K sin 
 cos 


�m

D
�

cos m
 .1=K/ sin m

�K sin m
 cos m


�
; (3.93)

whose validity can be shown by induction, and substitute 
 D ˛g ız and K D ˛gn0.
Since ız is assumed to be small, sin 
 � 
 and cos 
 � 1 � 
2=2, so that the
resulting matrix is approximately equal to Mm

ı . With m ız D d we obtain

MGRIN D
�

cos˛gd .1=n0˛g/ sin ˛gd
�n0˛g sin˛gd cos˛gd

�
: (3.94)

3.1.5 Hermite–Gaussian Beams

The Gaussian beam belongs to an infinite set of solutions of the paraxial wave
equation with spherical phase fronts. Related solutions can be generated, for
example, by multiplying the Gaussian wave function Eq. (3.17) with transverse
functions X.u/ and Y.v/

a.x/ D A00X.u/Y.v/ejZ.z/ w0
w.z/

exp

�
� r2

w2.z/

�
exp

�
�jk

r2

2R.z/

�
e�jkzCj�.z/; (3.95)

where u D p
2x=w.z/ and v D p

2y=w.z/ are transverse coordinates normalized
by the local radius w.z/ of the Gaussian profile. Substituting this ansatz in
Eq. (3.4) yields differential equations for X and Y whose solutions are the Hermite
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polynomials of order l

H0.u/ D 1

H1.u/ D 2u

H2.u/ D 4u2 � 2
: : :

HlC1.u/ D 2uHl.u/� 2lHl�1.u/I (3.96)

l is also the number of real valued roots of the polynomial. For a given set of
polynomials X D Hl and Y D Hm, the additional phase term Z is given by

Z.z/ D .l C m/�.z/; (3.97)

where � D arctan.z=z0/ [Eq. (3.16)].
The intensity distribution of a Hermite–Gaussian beam of order .l;m/ is

I D I0

�
w0

w.z/

�2
H2

l

 p
2x

w.z/

!
H2

m

 p
2y

w.z/

!
e�2Œx2Cy2�=w2.z/ (3.98)

and is characterized by l and m nodal lines parallel to the y- and x-axis, respectively,
as shown in Fig. 3.14. Since the polynomials diverge for large values of x; y, the

Fig. 3.14 Transverse intensity profiles of Hermite–Gaussian beams of order (0,0) to (2,2); the
order is equal to the number of nodes
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beam power is redistributed to larger radial distances in comparison to a Gaussian
beam.

The phase front curvature of a Hermite–Gaussian beam is determined by the
confocal parameter z0 of the underlying Gaussian beam. Hermite–Gaussian beams
are therefore fully characterized by the order l;m of the polynomials and the
q-parameter of the Gaussian “carrier.” Because of their small longitudinal electric
field components, these waves are also called TEMlm-modes. Since any linear com-
bination of Hermite–Gaussian beams is also a solution of the paraxial Helmholtz
equation, any superposition of Hermite–Gaussian wave functions with identical
q-parameter forms a beam with spherical phase fronts of curvature Re Œ1=q�. Note,
however, that the radial profile of such a superposition is generally not conserved
during propagation, because Hermite–Gaussians of different order have different
axial phases Eq. (3.97). Since laser resonators (Sect. 4.3) control primarily the
phase front curvature of the generated laser beam, lasers tend to produce such
superpositions.

3.1.6 Fourier Optical Treatment of Beam Propagation

Because of the linearity of Maxwell’s equations, any propagating electromagnetic
field, and beams in particular, can be synthesized by a superposition of plane waves.
Neglecting polarization, each of these waves is characterized by its wave vector
k and a complex amplitude A.k/. At a given frequency !, the wave vector is

constrained by the dispersion relation jkj D
q

k2x C k2y C k2z D k D !=c, so that

only two of its three components, say kx and ky are free variables.

3.1.6.1 Spatial Fourier Transform
Consider a monochromatic beam with the (scalar) wave function a.x; yI z/ propa-
gating in the z-direction. The semicolon separating the z-variable indicates that we
study the transverse field distribution in the plane z = const. In such a plane, the
function can be written as two-dimensional Fourier integral

a.x; yI z/ D F�1 ˚Akx;ky.z/
� D 1

.2�/2

1“

�1
Akx;ky.z/e

�jkxxe�jkyy dkx dky;

(3.99)
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Fig. 3.15 Two-dimensional Fourier components: left panel Œkx; ky� D Œ6�; 2��, right panel
Œkx; ky� D Œ�9�; 6�� and larger amplitude

where kx and ky have the meaning of spatial frequency components (Fig. 3.15) and

Akx;ky.z/ D F fa.x; yI z/g D
1“

�1
a.x; yI z/ejkxxejkyy dx dy (3.100)

is the two-dimensional Fourier transform of a.x; yI z/.
Equation (3.99) (and its integrand) has to satisfy the Helmholtz equation

Eq. (1.22) in the form

�
@2

@x2
C @2

@y2
C @2

@z2
C k2

�
a.x/ D 0: (3.101)

Since Akx;ky.z/ depends only on z, this can be simplified to

�
k2 � k2x � k2y C @2

@z2

�
Akx;ky.z/ D 0 (3.102)

with the solution

Akx;ky.z/ D Akx;ky.0/e
�j

p
k2�k2x�k2y z: (3.103)

The integrand in Eq. (3.99) can thus be written as

Akx;ky.0/e
�j.kxxCkyyCkzz/ (3.104)

with kz D
q

k2 � k2x � k2y . This is exactly the plane wave mentioned above, with

the wave vector Œkx; ky; kz� and the complex amplitude Akx;ky.0/, and (3.99) is the
aforementioned superposition of plane waves. Note that a (monochromatic) beam
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is therefore completely determined if its complex amplitude in an arbitrary plane is
known.

3.1.6.2 Transfer Function
In the following we assume that Akx;ky.0/ is negligible outside the paraxial range
k2x C k2y 	 k2; this restriction to low transverse spatial frequencies implies that
a.x; yI 0/ varies only slowly on the scale of 1=k D 	=2� and that, in particular,
the beam radius is significantly larger than the wavelength. The angle 
 between
the corresponding wave vectors and the beam axis is then also small and can be
approximated by


 � sin 
 D
q

k2x C k2y

k
I (3.105)

the axial component of the wave vector is approximately

kz D
q

k2 � k2x � k2y � k � k2x C k2y
2k

: (3.106)

With these approximations, Eq. (3.103) can be written as

Akx;ky.z/ D Akx;ky.0/e
j

k2x Ck2y
2k ze�jkz: (3.107)

The factor

H.kx; kyI z/ D ej
k2x Ck2y
2k ze�jkz (3.108)

relating the output-Fourier transform to the input is called the transfer function of a
system, in our case of the free space propagation over the distance z.

We can now cast (3.99) in the form

a.x; yI z/ D 1

.2�/2

1“

�1
Akx;ky.0/e

j
k2x Ck2y
2k ze�j.kxxCkyy/ dkx dkye

�jkz (3.109)

or

a.x; yI z/ D F�1 ˚H.kx; kyI z/Akx;ky.0/
�
: (3.110)

Knowing the complex amplitude profile in an arbitrary plane (and the propagation
direction), Eq. (3.110) allows calculating the complete wave function.
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3.1.6.3 Example: Gaussian Beam
Let the spatial amplitude profile at z D 0 be a two-dimensional Gaussian function

a.x; yI 0/ D a00e�.x
2Cy2/=w20 I (3.111)

the Fourier transform

Akx;ky.0/ D �w20A
0
0e
�.k2xCk2y /w

2
0=4 (3.112)

is a Gaussian in the kx; ky spatial frequency plane, with a 1=e half width of 4=w20.
According to Eq. (3.105), the angle between the corresponding wave vectors and the
beam axis is distributed between 0 and


0 D 2

w0k
D 	

�w0
I (3.113)

note that this angle coincides exactly with the beam divergence Eq. (3.19).
With this spectrum, Eq. (3.110) yields

a.x; yI z/ D A00
.2�/2

1“

�1
e�.k2xCk2y /.w

2
0=4�jz=2k/e�j.kxxCkyy/ dkx dky

D A00w20
C2

e�.x2Cy2/=C2 ; (3.114)

where C2 D w20 � 2jz=k. To perform the integration, the integrand was multi-
plied with e.x

2Cy2/=C2e�.x2Cy2/=C2 to obtain a quadratic exponent and the identity
1R
�1

e�x2=a2 dx D p
a� was used. As can be easily shown, Re

�
1=C2

� D 1=w2 as

given by Eq. (3.11) and Im
�
1=C2

� D �k=2R [Eq. (3.13)]; moreover, w20=C2 D
w0=w.z/e�j�.z/ with �.z/ given by Eq. (3.16). With these substitutions, Eq. (3.114)
agrees completely with the wave function Eq. (3.17).

The power of Eq. (3.110) lies in the fact that it allows calculating the beam
resulting from any paraxial amplitude distribution.

3.1.6.4 Point Spread Function
An optical propagation system such as free space or a lens system transforms an
input amplitude distribution ain.x; yI zin/ into an output distribution aout.x; yI zout/,
where zin; zout are the positions of input and output planes, respectively. This can be
formally written as

aout D S faing ; (3.115)
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where the operator S represents the system. If S is linear, one can apply concepts
of the theory of linear systems to relate this real-space description to the frequency-
space description above.2

Exploiting the properties of the Dirac ı-distribution, we can write ain.x; y/ in the
form

ain.x; y/ D
1“

�1
ain.x

0; y0/ı.x � x0; y � y0/ dx0 dy0; (3.116)

which is a superposition of weighted ı-distributions located at all possible points
x0; y0 of the input plane. Assuming that the system is linear and the response [that is
the output function at .x; y/] to a ı-distribution in .x0; y0/ is

h.x; y; x0; y0/ D S ˚ı.x � x0; y � y0/
�
; (3.117)

the output is

aout.x; y/ D
1“

�1
ain.x

0; y0/h.x; y; x0; y0/ dx0 dy0I (3.118)

h.x; y; x0; y0/ is called point spread function of the system.
If we further assume that the system is invariant under a transverse shift, the

point spread function is not an explicit function of the coordinates, but only of their
respective differences, h.x; y; x0; y0/ D h.x � x0; y � y0/, and we obtain

aout.x; y/ D
1“

�1
h.x � x0; y � y0/ain.x

0; y0/ dx0 dy0: (3.119)

Thus, the output amplitude of a linear, shift invariant optical system is the
convolution of the input function with the point spread function h.

Since the Fourier transform of a convolution of two functions is equal to the
product of their respective Fourier transforms, we can write

F faoutg D F fhgF faing : (3.120)

Comparison with Eq. (3.110) shows that F fhg D H, and the point spread function
is consequently the inverse Fourier transform h D F�1 fHg of the transfer function.

2See, e.g., Goodman (1996).
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For free space propagation within the paraxial approximation, we obtain, using
Eq. (3.108), h.x � 0; y � 0/ D F�1 ˚exp.jkz/ exp

�
j�	z.k2x C k2y/

��
, so that

h.x � 0; y � 0/ D h0 exp

�
�jk

x2 C y2

2z

�
; (3.121)

where h0 D .j=	z/ exp.�jkz/. Thus, the point spread function of free space is a
spherical wave Eq. (3.6), centered at the point .x0; y0/. The response of free space to
an arbitrary input distribution is therefore the convolution

aout.x; yI z/ D h0

1“

�1
ain.x

0; y0/ exp

�
�jk

.x � x0/2 C .y � y0/2

2z

�
dx0 dy0:

(3.122)

3.1.6.5 Fourier Transformation by Far-Field Propagation
Equation (3.122) can be cast in the form

aout.x; yI z/ D e�jk x2Cy2

2z

1“

�1
e�jk x

02
Cy

02

2z ain.x
0; y0/ej2� xx0

Cyy0

	z dx0 dy0; (3.123)

where the constant factor h0 has been dropped as irrelevant. In the far field, i.e., for

propagation distances d satisfying x02Cy02

	d 	 1,

aout.x; yI d/ � exp

�
�j�

x2 C y2

	d

� 1“

�1
ain.x

0; y0/ exp

�
j2�

xx0 C yy0

	d

�
dx0 dy0:

(3.124)
Associating the output coordinates x; y with the spatial frequencies

kx $ 2�
x

	d
; ky $ 2�

y

	d
; (3.125)
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aout can be interpreted as the Fourier transform of the input function, multiplied with
a parabolic phase factor,

aout.x; y/ � e�jk.x2Cy2/=2dAkx;ky I (3.126)

the output intensity distribution does not include the phase factor and represents
the undistorted two-dimensional power spectrum of the input function. It should

be noted that the far-field condition x02Cy02

	d 	 1 is quite restrictive: for an input-
diameter of 1 mm, d 
1 m for visible light.

3.1.6.6 Fourier Transformation by a Lens
As we have seen in Sect. 3.1.3.2, a thin lens adds a phase term Eq. (3.39) to an input
function al, so that the output function a0l immediately behind the lens is

a0l.x0; y0/ D alejk.x0

2Cy0

2
/=2f : (3.127)

The further propagation behind the lens can be described by the convolution
Eq. (3.122). In the focal plane z D f , in particular,

aout.x; yI f / D e�jk.x2Cy2/=2f

1“

�1
al.x
0; y0/ exp

�
j2�

xx0 C yy0

	f

�
dx0 dy0; (3.128)

since the quadratic terms under the integral cancel. If we again associate the
coordinates x; y of the focal plane with the spatial frequencies

kx $ 2�x

	f
D k

x

f
; ky $ 2�y

	f
D k

y

f
; (3.129)

we obtain a result similar to Eq. (3.126): the amplitude in the focal plane is equal
to the Fourier transform of the wave function at the entrance of the lens, multiplied
with a parabolic phase factor

aout.x; yI f / D e�jk.x2Cy2/=2fF ˚al.x
0; y0/

�
: (3.130)

The phase distortion can be omitted if we move the input plane to the front focal
plane of the lens (creating a so-called 2f -system): let ain be the input amplitude
distribution in the front focal plane; then we know from Eq. (3.108) that the Fourier
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transform of the field at the entrance of the lens is

F falg D HF faing ; (3.131)

where H is

H D ejk.x2Cy2/=2f : (3.132)

Substituting Eq. (3.131) in Eq. (3.130), we obtain

aout D F faing : (3.133)

Thus, a 2f -system produces an undistorted Fourier transform of the front focal plane
in the rear focal plane.

3.1.6.7 4f-System
Since the inverse Fourier transform differs from the direct transform only by the sign
of the coordinates, a second 2f -system can be used for the inverse transformation.
Such a 4f -system images the front focal plane of the first lens onto the rear focal
plane of the second plane with a magnification of �1. In the joint central focal
plane, the Fourier transform is accessible and can be manipulated with phase-
and amplitude objects, in particular with electronically controlled spatial light
modulators (SLMs) made of liquid crystal panels (Sect. 2.3.5). In this way, an SLM
can realize an arbitrary transfer function with an appropriate transmission function
H.kx; ky/ D t.x; y/ exp j�.x; y/.

3.1.6.8 Grating Spectrometer
The spatial Fourier transform capabilities of a lens (or a concave mirror) can
also be employed to perform spectrum analysis of light. The concept of the
spectrum of polychromatic light will be discussed in detail in Sect. 4.4.1. Roughly
speaking, a polychromatic light field can be decomposed into monochromatic
waves with complex amplitudes a! . The function ja!j2 (or ja	0 j2 D ja!j2 d!

d	0
) is

called the power spectrum of the signal and is measured with a spectrometer. A
grating spectrometer consists of a grating that disperses the individual frequency
components of the incoming light into plane waves with wave vectors pointing in
different directions (Fig. 3.16). If a collimated optical signal is incident orthogonally
(ki

k

D 0) on a grating with period �, the diffracted wave vectors (with length
jkj D !=c0 D 2�=	0) have a common transverse component of kd

x D m.2�=�/,
where the integer m is the order of diffraction (Fig. 2.5). According to Eq. (3.129), a
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Fig. 3.16 A spectrometer consists of a dispersive element (grating) and a lens acting as Fourier
transformer. The polychromatic signal is incident from the left, the arrows indicate wave vectors
with length 2�=	0

lens images these waves onto the position

x D kd
x

k0
f D m

	0

�
f (3.134)

in its rear focal plane. Because of the linear relation between x and 	0, d	0 / dx,
and the power density jaj2.x/ in the focal plane (measured with a linear detector
array) can be identified with ja	0 j2.

3.2 Pulse Propagation

Similar to a beam that is a concentration of electromagnetic radiation in space, a
light pulse is a concentration of radiation in time. The mathematical treatment of
both phenomena is similar; in particular, both can be understood as superpositions
of monochromatic waves that propagate through a medium. Since the phase velocity
in dielectrics is frequency dependent, the relative phase of the Fourier components
changes along the propagation, and the pulse shape (and duration) generally
changes during propagation; the underlying mechanism is the frequency dependent
susceptibility of dielectrics (dispersion). In contrast, the transverse profile of a beam
changes because its spatial Fourier components have different axial phase velocities
for geometric reasons.

Pulse broadening due to dispersion is of particular relevance for the propagation
of pulses in (very long) glass fibers in optical communications since the resulting
temporal overlap of consecutive pulses limits the data rate. For extremely short
pulses, even the transmission through a glass plate or lens can significantly increase
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the pulse duration and thus reduce the peak power, which can deteriorate, for
example, ultrafast laser ablation of materials.

3.2.1 Dispersive Propagation Effects

Consider an electromagnetic wave E.z; t/ D Re Œa.z; t/�, where a.z; t/ is the product
of a carrier wave e�j.k0z�!0t/ and a slowly varying (complex) envelope A.z; t/

a.z; t/ D A.z; t/e�j.k0z�!0t/I (3.135)

!0 and k0 are the frequency and wave number of the carrier, respectively. The pulse
intensity according to Eq. (1.71) is I D njAj2=2Z0, where n is the propagation index
and jA.z; t/j2 is the z-dependent pulse shape.

3.2.1.1 Temporal Fourier Transform
The Fourier transform of the envelope function A.z; t/,

A�!.z/ D
Z 1
�1

A.z; t/e�j�!t dt; (3.136)

is concentrated around �! D 0 within a bandwidth that we assume to be much
smaller than !0. The inverse transform is

A.z; t/ D 1

2�

Z 1
�1

A�!.z/ej�!t d�!: (3.137)

We can also express the complete wave function Eq. (3.135) as a Fourier integral

a.z; t/ D 1

2�

Z 1
�1

a!.z/e
j!t d!; (3.138)

where

a!.z/ D
Z 1
�1

A.z; t/e�j.k0z�!0t/e�j!t dt: (3.139)
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With the substitution ! D !0 C�!, this can be written as

a!0C�!.z/ D e�jk0z
Z 1
�1

A.z; t/e�j�!t dt; (3.140)

so that

a!.z/ D A�!.z/e�jk0zI (3.141)

apart from a common phase factor, the Fourier component of the complex wave
function at !0 C�! is equal to the Fourier component of the envelope at �!.

3.2.1.2 Spectral Characterization
According to Parseval’s theorem, the pair of functions A.t/, A�! is related by

Z 1
�1

jA.t/j2 dt D
Z 1
�1

jA�!j2 d�!: (3.142)

Since the left-hand side of this equation is the pulse energy, the integrand on the
right-hand side, jA�!j2 d!, can be interpreted as the differential energy in the
frequency interval Œ!; ! C d!�, and

S.�!/ WD jA�!j2 (3.143)

represents the spectral energy distribution, or energy spectrum of the pulse.
As an example, we choose a (real) Gaussian envelope

A.0; t/ D A0e
�t2=�20 ; (3.144)

where 2�0 denotes the time between the 1=e (1=e2/ points of the amplitude
(intensity) envelope. In practice, the pulse duration is frequently given as the
FWHM-width of the intensity I.t/ D jA.0; t/j2 / e�2t2=�20 ,

�FWHM D p
2 ln 2�0 D 1:1774 �0: (3.145)

The Fourier transform of the envelope is also Gaussian

A�! D p
��0A0e�.�!/

2�20 =4; (3.146)
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and the energy spectrum

jA�!j2 / �20 e�.�!/2�20 =2 (3.147)

has an FWHM-width of

�!FWHM D 2
p
2 ln 2

1

�0
; (3.148)

which scales with 1=�0.
It is important to note that a given power spectrum jA�!j2 allows for an infinite

number of amplitude spectra A�! , differing by the relative phases of the individual
frequency components. Since the Fourier integral (3.137) is very phase sensitive,
the corresponding temporal pulse profiles jA.t/j2 may vary greatly in shape and
duration. It is quite obvious, however, that if all Fourier components happen to have
the same phase (0, for example), the pulse shape jA.t/j2 reaches the highest possible
peak value. Since the pulse energy (given by the area under jA.t/j2) is independent
of the phase, this pulse is also the shortest possible, and is called Fourier limited for
that reason. The product of the pulse duration and the width of the power spectrum
has therefore a lower limit; for a Gaussian spectrum, it can be expressed as

�FWHM�!FWHM � 4 ln 2 � 0:44 � 2�: (3.149)

3.2.1.3 Propagation Effects in the Frequency Domain
The Fourier component a! of a propagating pulse corresponds to the plane wave
a!.0/e�j.kz�!t/ D �

a!.0/e�jkz
�

ej!t, so that

a!.z/ D a!.0/e�jkz: (3.150)

Substituting Eq. (3.141) and introducing�k WD k�k0, we obtain the analog relation
for the envelope

A�!.z/ D A�!.0/e�j�kz: (3.151)

This equation has the structure

A�!.z/ D A�!.0/H.�!/; (3.152)
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where H.�!/ D e�j�kz is the transfer function of the propagation process. To
account for the dispersion k D k.!/, we use the expansion

�k D dk

d!
�! C d2k

2 d!2
.�!/2 C : : : (3.153)

D 1

vg
�! C D!

2
.�!/2 C : : : (3.154)

to obtain

H.�!/ D e�j.�!=vgCD!.�!/2=2C ::: /z: (3.155)

The first term of the exponent is responsible for a propagation delay of the
pulse envelope by the time z=vg and can be taken into account by a coordinate
transformation to a system co-propagating with the pulse at vg [see Eq. (3.165)].
The second term is equivalent to the spatial transfer function Eq. (3.108) for beam
propagation and has the effect of changing the envelope during propagation. The
envelope A.z; t/ at an arbitrary distance is the inverse Fourier transformation of
Eq. (3.152),

A.z; t/ D 1

2�

Z 1
�1

A�!.z/e
j�!t d�!: (3.156)

Note that the power spectrum

jA�!.z/j2 D jA�!.0/j2 (3.157)

is conserved during propagation, provided that the expansion Eq. (3.154) is real
valued.

The term

1

vg
D dk

d!
(3.158)

is the inverse of the group velocity vg as introduced in Eq. (1.41) and denotes the
group delay l=vg per unit length. The so-called dispersion coefficient

D! WD d2k

d!2
D d

d!

�
1

vg

�
(3.159)
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represents the frequency dependence of the group delay and is a measure of the
group velocity dispersion (GVD); D! is given in [(ps)2 km�1] (1 ps = 10�12 s). An
alternative definition is D	 WD . d= d	0/.1=vg/ which represents the wavelength
dependence of the group delay. Since D	 d	0 D D! d! and ! D 2�c0=	0, the two
quantities are related by

D	 D �2� c0
	20

D!: (3.160)

If the propagation index is given as a function of 	0, it follows from Eq. (1.43) that

1

vg
D 1

c0

�
n � 	0

dn

d	0

�
(3.161)

and

D	 D d.1=vg/

d	0
D �	0

c0

d2n

d	20
; (3.162)

given in units of [ps nm�1 km�1]. Depending on the sign of the dispersion coef-
ficient D! , one distinguishes normal (or positive) GVD (D! > 0) and anomalous
(negative) GVD (D! < 0); note that D! and D	 have opposite sign.

The dispersion coefficient is frequency dependent; according to Eq. (3.162), D	 is
a measure of the curvature of the function n.	0/, which can change from positive to
negative (Fig. 3.17). At the inflection points, the GVD is zero, which has important
consequences for pulse propagation.

3.2.1.4 Propagation Effects in the Time Domain
Differentiation of Eq. (3.152) yields

@

@z
A�! D �j

�
1

vg
�! C D!

2
.�!/2

�
A�!; (3.163)

where cubic and higher terms in the transfer function Eq. (3.155) have been
neglected. According to Eq. (3.156), the differentiation @n=@tn of the envelope A.z; t/
is equivalent to a multiplication of its Fourier components with . j�!/n and vice
versa. We therefore can convert Eq. (3.163) into a differential equation for A.z; t/
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Fig. 3.17 Refractive index,
group velocity, and dispersion
coefficient of quartz glass;
n.	/ exhibits an inflection
point at 	0 D 1:27 �m, so
that vg assumes an extremal
value and D! (D	) is zero at
this wavelength
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using the substitution j�! ! @=@t and .�!/2 ! �@2=@t2

�
@

@z
C 1

vg

@

@t
� jD!

2

@2

@t2

�
A.z; t/ D 0: (3.164)

With the aforementioned transformation to a moving frame

� WD t � z

vg
; � WD z; (3.165)

and using @
@z D @

@�

@�

@z C @
@�
@�
@z D @

@�
� 1

vg

@
@�

, @
@t D @

@�
, Eq. (3.164) assumes the form

�
@

@�
� jD!

2

@2

@�2

�
A.�; �/ D 0: (3.166)

In the absence of GVD, Eq. (3.166) reduces to @A.�; �/=@� D 0 and the envelope
propagates without change3 at the velocity vg (Fig. 3.18),

3This statement is, of course, only valid if the higher terms in Eq. (3.154) are negligible.
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Power spectrum

Fig. 3.18 Development of a light pulse during propagation over a distance d: (a) if n is constant
over the entire pulse spectrum, the pulse remains completely unchanged and is delayed by d=vph;
(b) in the absence of GVD (D	 D 0), the temporal pulse profile is conserved, but experiences a
propagation delay d=vg, different from the phase delay d=vph of the carrier; (c) in the general case
(D	 ¤ 0), the pulse profile changes and the momentary frequency becomes time dependent

A.�; �/ D A.0; �/: (3.167)

3.2.1.5 Gaussian Pulses
For D! ¤ 0, Eq. (3.166) can be written in the form

�
@2

@�2
C 2j

1

D!

@

@�

�
A.�; �/ D 0: (3.168)



144 3 Optical Beams and Pulses

With the substitutions x ! � , z ! �, k ! �1=D! , this corresponds to the paraxial
Helmholtz equation Eq. (3.4), reduced, however, to two dimensions

�
@2

@x2
� 2jk

@

@z

�
A.z; x/ D 0: (3.169)

A solution of the three-dimensional Helmholtz equation was discussed as Gaussian
beam Eq. (3.9) in Sect. 3.1.2. As can be easily shown, Eq. (3.168) has a very similar
solution

A.�; �/ D A0

p
j�0p

� C j�0
exp

�
j

�2

2D!.� C j�0/

�

D A0

s
j�0

� C j�0
exp

�
�2

2D!

�0

�2 C �20

�
exp

�
j
�2

2D!

�

�2 C �20

�
: (3.170)

Apart from the square root in the leading factor, there is a one-to-one corre-
spondence with Eq. (3.9). In particular, the real valued exponential factor can be
interpreted as Gaussian envelope exp.��2=�2p / with the 1=e half width �p given by

�2p .�/ WD �20

�
1C �2

�20

�
; (3.171)

where �0 D �p.0/ is related to �0 by

�0 WD � �20
2D!

I (3.172)

note that while �0 can be positive or negative, depending on the sign of D! , �0=D!

in Eq. (3.170) is always negative.
Before discussing the phase terms, we calculate the pulse intensity njAj2=2Z0

I.�; �/ D I0
�0

�
exp

"
�2�

2

�2p

#
; (3.173)

where I0 D I.0; 0/ [note the different prefactor in Eq. (3.18)]; this is a Gaussian
pulse with an FWHM-width of �p

p
2 ln 2. At a distance j�0j from the point of

minimum pulse width, the pulse duration has increased by a factor
p
2 (Fig. 3.19).
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Peak intensity

Pulse duration

Fig. 3.19 Pulse duration and peak intensity of a Gaussian pulse as a function of propagation
distance in a dispersive medium

This characteristic distance

j�0j D �20
2jD!j ; (3.174)

plays the same role as the confocal parameter z0 for beam propagation and is called
dispersion length. For j�j 
 j�0j, the pulse duration grows almost linearly

�p.�/ � �0

ˇ̌
ˇ̌ �
�0

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌2D!

�0
�

ˇ̌
ˇ̌ D �!FWHMp

2 ln 2
jD!j�I (3.175)

the increase is proportional to D! and 1=�0, which is essentially the spectral width
of the pulse [Eq. (3.148)].

The dispersion length depends on the propagation medium, the wavelength, and
the (Fourier limited) pulse duration; in silica at a wavelength of 1�m, for example,
the dispersion coefficient is D! � 20 ps2 km�1 (Fig. 3.17); the dispersion length
for a 1 ns pulse is 5 � 104 km, and pulse broadening is negligible in practice. For a
1 ps pulse, it amounts to 50 m, implying that long distance optical communications
in silica fibers is not feasible in this operating regime, since at 1 km the pulse
broadening is already 20-fold. For ultrashort (10 fs) pulses, the dispersion length
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is reduced to a few mm, so that even the transmission through a lens results in
significant pulse broadening.

3.2.1.6 Frequency Chirp
With Eqs. (3.171) and (3.172), Eq. (3.170) assumes the form

A.�; �/ D A0

s
j�0

� C j�0
exp

"
��

2

�2p

#
exp

�
�j
�2

�20

.�=�0/

.�=�0/2 C 1

�
: (3.176)

To understand the implications of the phase term, it is useful to introduce the concept
of momentary frequency,

!.�/ D @�=@� I (3.177)

for a monochromatic plane wave with the phase �kzC!0t, the momentary frequency
is, of course, constant !.�/ D !0. For a pulse Eq. (3.135) with a Gaussian envelope
Eq. (3.176), we find

!.�/ D !0 C @

@�

�
��

2

�20

.�=�0/

.�=�0/2 C 1

�
D !0 � .�=�0/

.�=�0/2 C 1

2�

�20
I (3.178)

during the pulse duration �p, the momentary frequency varies between the values
!.� �p

2
/ and !.�p

2
/; for �

j�0j 
 1, the sweep covers the range

!0 ˙ j�0j
�

�p

�0

1

�0
D !0 ˙ 1

�0
; (3.179)

which according to (3.148) is approximately equal to the entire pulse spectrum.
Long distance pulse propagation thus provides spectral pulse analysis, just as far-
field propagation of beams provides spatial Fourier transformation.

Depending on the sign of the slope, one refers to the sweep as positive or
negative chirp; for normal GVD and � > 0, the chirp is positive (from low to
high frequencies), as shown in Fig. 3.20. This is what one might expect, because
for normal GVD, higher frequencies travel slower than lower ones; note, however,
that it is the dispersion of the group velocity, not of the phase velocity that matters.

3.2.1.7 Chirp Compensation and Pulse Compression
As can be seen from Eq. (3.171) and Fig. 3.19, a pulse can actually also get shorter
during propagation. In a medium with normal dispersion, for example, a pulse that
starts with a negative chirp contracts for some distance until it reaches its minimum
duration and begins to broaden, acquiring a positive chirp. If such a positively
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chirp-freeneg. chirp pos. chirpFourier limited

Fig. 3.20 Gaussian pulse propagating in a positive dispersive medium: (a) pulse duration, (b)
normalized wave function at three selected points; for � < 0 (� > 0), the pulse exhibits a negative
(positive) “chirp”; at � D 0, the pulse is chirp-free and the pulse duration is minimal (Fourier limit)

chirped pulse is launched into a medium of anomalous dispersion, the broadening
is reversed and the pulse, after a certain distance, reaches its minimum duration
again. Thus, the chirp (and the broadening) introduced by one medium can, in
principle, always be compensated by another medium. In practice, however, media
with sufficient anomalous dispersion are not always available.
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Fig. 3.21 Compression of a positively chirped pulse with the aid of a pair of gratings; the inset
shows the group delay as a function of wavelength, and the (normalized) power spectrum of two
short pulses

For that reason, compensation schemes have been developed that employ
different mechanisms, but are mathematically equivalent. One such scheme relies on
diffraction of the pulse from a grating that splits the incoming signal into its Fourier
components [see Sect. 3.1.6.8]. As shown in Fig. 3.21, a second diffraction grating
collimates the diverging light; after reflection at a mirror, the signal path is reversed.
Since, however, the distance travelled by the long-wavelength components is longer
than that of the short-wavelength components, a positive chirp can be compensated
by proper adjustment of the distance between the gratings. As frequency chirp
and envelope broadening are just different aspects of the same phenomenon, the
incoming pulse is also compressed by this scheme, ideally to its Fourier limited
duration. Schemes like that are indispensable for the generation and application of
ultrashort pulses.

Pulse compression is only possible if the phases of the spectral components of a
pulse are not randomly distributed; incoherent pulses therefore exhibit a much larger
time–bandwidth product than coherent, Fourier limited pulses [Eq. (3.149)].

3.2.2 Nonlinear Propagation Effects

The optical Kerr effect Eq. (3.49),

n.I/ D n0 C n2I; (3.180)

that we have encountered in the context of beam propagation is also responsible for
interesting pulse propagation effects. The intensity envelope of the pulse produces a
time dependent variation ın of the refractive index and thus of the wave number; this
effect is called self-phase modulation (SPM) and will be discussed in more detail
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in Sect. 8.3.2. We can include it in the propagation equation by appending the term
ı k.I/ D k0ın D !

c0
ın in the expansion Eq. (3.154). With I D njAj2=2Z0 we obtain

ık D n2
!

c0

n

2Z0
jA.�; �/j2 D �kjA.�; �/j2; (3.181)

where

�k WD n2
!

c0

n

2Z0
: (3.182)

Equation (3.154) then assumes the form

�k D 1

vg
�! C D!

2
.�!/2 C �kjAj2 C : : : : (3.183)

If we incorporate the Kerr term in Eq. (3.166), we obtain the nonlinear propagation
equation

�
@

@�
� jD!

2

@2

@�2
C j�kjA.�; �/j2

�
A.�; �/ D 0: (3.184)

3.2.2.1 Spectral Broadening
Let us first discuss the case of vanishing GVD: Eq. (3.184) then is reduced to

@

@�
A.�; �/ D �j�kjA.�; �/j2A.�; �/I (3.185)

with the trial assumption that the intensity profile is not affected by the nonlinear
propagation, we can integrate the equation to obtain

A.�; �/ D A.0; �/e�j�kjA.0;�/j2� ; (3.186)

consistent with our assumption of �-independent pulse shape,

jA.�; �/j2 D jA.0; �/j2: (3.187)

The pulse amplitude, however, acquires a time and space dependent phase
(Fig. 3.22) that results in the production of new frequency components.
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Re[ejω0τ ]

Im[ejω0τ ]
(b)
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Fig. 3.22 Self-phase modulation of a short intense light pulse, shown in the complex amplitude
plane as a function of time: (a) carrier; (b)–(d) envelope at � D 0; � D 5 �NL; � D 20 �NL. During
propagation, the intensity dependent phase ��kjA.0; �/j2� is added to the complex amplitude,
“wrapping” it up and resulting in a rotating amplitude phasor (note the rotation reversal at � D 0);
the time dependent phase is added to the carrier, shifting the momentary frequency up (� > 0) or
down (� < 0)

For a Gaussian pulse A.0; �/ D A0e��
2=�20 , Eq. (3.177) yields

!.�; �/ D !0 C @

@�


��kjAj2�� D !0 C 4�

�20

�

�NL
e�2�2=�20 ; (3.188)

where

�NL WD 1

�kjA0j2 D c0
n2!nI0

D 	0

2�n2nI0
(3.189)
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Fig. 3.23 Propagation of a Gaussian pulse in a nonlinear, dispersion free medium: (a) temporal
intensity profile, (b) initial power spectrum, (c) instantaneous frequency due to the Kerr effect,
(d) power spectrum after propagation over 15�NL (note that spectra (b) and (d) are scaled
differently)

is called nonlinear length and I0 D njA0j2=2Z0 is the peak intensity of the pulse
(Fig. 3.23). Since n2 is usually positive, the momentary frequency in the rising
(falling) section of the pulse is red (blue)-shifted (Fig. 3.23c). Approximating the
central section of the pulse by exp.�x2/ � 1� x2, we obtain a linear, positive chirp

!.�/ � !0 C 4�

�20

�

�NL
: (3.190)

The manifestations of dispersion and SPM are somewhat complementary: dis-
persion conserves the power spectrum but modifies the pulse shape, while SPM
conserves the pulse shape and modifies the power spectrum. The resulting spectrum
is not only broader than the original, but may also show oscillatory features
(Fig. 3.23d) that result from spectral interference, since the same frequency may
be generated at different times. As the total pulse energy is conserved, the new
frequencies are created at the expense of others.

To estimate the spectral broadening, we determine the maximum frequency
excursion, that appears, according to Eq. (3.188), at the steepest points � D
˙�0=2 of the intensity envelope jAj2. The frequency excursion grows linearly
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with propagation distance and amounts to ˙.2=pe/.�=�NL/�
�1
0 . Propagation of an

originally chirp-free pulse over � D �NL approximately doubles the spectral width
of the original pulse, ��10 . Under proper conditions, the emerging spectral width can
span an entire octave, an effect that is called white light generation. Since SPM is a
coherent process, the temporal and spatial phase of the input pulse is transferred to
the output pulse so that, for example, two white light pulses, derived from the same
initial pulse, can interfere with each other.

For propagation distances much smaller than �NL, SPM can be neglected; in this
sense, �NL plays a similar role for nonlinear propagation effects as �0 for the onset
of significant dispersion.

As a numerical example, let us calculate the nonlinear length of pulse propaga-
tion in a silica fiber (n2 D 3:2 � 10�20 m2 W�1) of 100�m2 core area: a pulse with
a wavelength of 1�m and a peak power of 1 W (peak intensity I0 D 1010 W m�2)
results in a nonlinear length of 330 m. To ensure that nonlinear effects are negligible
over a fiber distance of several 10 km, the peak power must be kept below some
10 mW.

3.2.2.2 Combined Dispersive and Nonlinear Effects, Solitons
The frequency chirp resulting from SPM is usually positive; in a normally dispersive
medium, the dispersion induced chirp is also positive, leading to pulse broadening
and a reduction of peak intensity. Accordingly, SPM becomes less and less
important during the propagation in such a medium. Nonetheless, the spectrum is
broadened, providing spectral width for a pulse that is potentially shorter than the
original pulse. If the accumulated chirp is compensated after the passage through
the nonlinear medium (ideally to the Fourier limit), a pulse that is up to 100 times
shorter than the input pulse can be obtained; this is a very powerful technique to
produce, for example, femtosecond pulses from picosecond lasers.

If the nonlinearity is combined with negative dispersion, the two chirp contri-
butions can cancel each other so that not only the power spectrum, but also the
envelope remains unchanged during propagation. Such pulses are eigenfunctions
of the nonlinear propagation equation and are called solitons.4 With D! < 0,
Eq. (3.184) in the form

�
j
@

@�
C D!

2

@2

@�2
� �kjAj2

�
A.�; �/ D 0 (3.191)

4For a more precise definition see, e.g., Hasegawa (2003) and Agrawal (2012).
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Fig. 3.24 Soliton propagation in a nonlinear, dispersive medium: the intensity profile and the
power spectrum remain unchanged (compare Fig. 3.19)

has the same structure as the Schrödinger equation Eq. (6.1)

�
�j
@

@t
C „2
2m

@2

@x2
� V.x/

�
˚.x; t/ D 0; (3.192)

that we will encounter in Sect. 6.1 as the wave equation of an electron in a potential
V . In Eq. (3.191), the Kerr term / ��kjAj2 plays the role of an attractive potential
that prevents the wave function from dispersing; since the potential in turn depends
on the wave function, Eq. (3.184) is called nonlinear Schrödinger equation. The
simplest solution of Eq. (3.184) has a hyperbolic secans envelope

A.�; �/ D A0sech

"p
2�

�0

#
ej�=2�0 ; (3.193)

where sech.x/ WD 2=.ex C e�x/ and the pulse duration5 �0 is related to the
dispersion length �0 by Eq. (3.172). Cancellation of dispersive and nonlinear effects
requires a subtle balance between spectral width and peak amplitude; substitution

5The FWHM duration of a sech2
�p

2�=�0



pulse is given by

p
2 ln

�
1Cp2



�0 = 1:247�0 for

comparison, the FWHM duration of a Gaussian pulse is 1:177�0 .
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of Eq. (3.193) in Eq. (3.184) yields the soliton condition

A0 D 1

�0

s
2jD!j
�k

: (3.194)

With these pulse parameters, dispersion length and nonlinear length match exactly,
�0=�NL D 1. Figure 3.24 shows the propagation of such a soliton. The pulse
energy is proportional to jA0j2�0 and, because of Eq. (3.194) proportional to 1=�0.
Shorter solitons therefore require higher pulse energy; even more interestingly, if a
soliton looses energy during propagation, it adjusts itself by loosing bandwidth (by
broadening) to conserve its soliton status. On the other hand, if a pulse with the right
shape but too much energy is launched, it gets rid of the excess energy by splitting
into an “ordinary,” dispersive pulse (which fades away by broadening) and a soliton.

Silica glass fibers offer a spectral range with negative dispersion and very low
transmission losses: at a wavelength of 1.5�m, the dispersion coefficient is D! �
�20 ps2 km�1 so that a 10 ps pulse has a dispersion length of about 5 km. Assuming
a core cross section of 100�m2, a peak power of just � 100mW is necessary to
meet the soliton condition.

3.3 Summary

Coherent light sources allow for the controlled generation of light pulses and
beams, i.e., the concentration of electromagnetic energy in space and time. The
electrodynamic wave equation requires the envelope of the pulse or the transverse
profile of the beam, respectively, to change during propagation. While temporal
broadening of pulses is due to the dispersion of the propagation medium, the
divergence of optical beams is a geometric effect possible only in space.

A deeper understanding of pulse and beam evolution is provided by (Fourier)
transformation of the wave function into the (temporal or spatial) frequency domain
where propagation can be described by a multiplicative transfer function. Neglecting
dissipation, the transfer function acts exclusively on the phases of the Fourier
components; in real space and time this is equivalent to a change, usually a
broadening, of the pulse or beam envelope during propagation. The power spectrum
is conserved during propagation; for a given power spectrum, it is possible to find,
in a unique way, the pulse shape that reaches the highest possible peak power and
thus represents the shortest possible pulse; such a pulse is called Fourier limited.

Laser beams are technologically very important and their transformation during
propagation in free space, by lenses or curved mirrors is a frequently encountered
task. The replacement of the propagation coordinate by a complex q-parameter,
and a bilinear transformation acting on this parameter (ABCD formalism) greatly
facilitates the treatment of such problems; any sequence of lenses or curved mirrors
and sections of free space is represented by a specific ABCD matrix; the question,
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for example, whether a Gaussian mode exists that “fits” between the two curved
mirrors of a laser resonator, is reduced to the condition that the absolute value of
trace of the ABCD matrix is less than 2, as we shall show in Sect. 4.3.1. Initially
introduced for Gaussian beams, the ABCD formalism can also be applied to the
family of Hermite–Gaussian beams and others.

The high intensities provided by laser sources introduce nonlinear propagation
effects in addition to dispersion; while the entire Chap. 8 is dedicated to nonlinear
optics, nonlinear propagation effects relying on the intensity dependence of the
propagation index are described in the present Chapter; spectral broadening of
pulses, soliton propagation, and self-focusing are important manifestations of this
class of effects.

3.4 Problems

1. Prove Eq. (3.68) by induction.
2. Assume a Gaussian laser beam (	 D 1064nm) having an FWHM-diameter

(intensity) of 5 mm. By transmission through a thin nonlinear crystal, a new
wave is generated that is proportional to the square of the incoming field (and
therefore radiates at twice the frequency, or 532 nm wavelength). This second
harmonic (SH) beam co-propagates with the fundamental laser beam. What is
the FWHM-diameter of the SH beam? What are the confocal parameter and the
divergence of the two beams? What is the respective FWHM-diameter after a
distance of 1 km?

3. Using the ABCD formalism and appropriate graphical software (gnuplot),
reproduce Fig. 3.11 and vary the location of the input beam waist and the
diameter of the input beam at the lens.

4. With the “beam tracing” software developed in Problem 3, reproduce Fig. 3.13
and vary the distance between the lenses, the location of the input beam waist,
and other parameters and observe what happens.

5. What is the duration of a Fourier limited Gaussian pulse with FWHM dura-
tion 10 ns (10 fs) and 	0 D 800 nm after propagation through 1 km of air
(D! = 40 fs2 m�1)?

6. Calculate the electric field amplitude of a focused, Fourier limited ultrashort
light pulse (spatial and temporal Gaussian) with pulse energy of 10 nJ, center
wavelength 800 nm, spectral width (FWHM) 150 nm, focal length of focusing
lens 50 mm, beam diameter at the lens entrance 20 mm; neglect the dispersion of
the lens material.

7. Assume that the lens in Problem 6 is made of BK7 glass with a refractive index
of 1.5 and a dispersion coefficient of �130 ps/nm km at 800 nm wavelength; the
lens diameter is 25 mm. Calculate the minimum thickness of the lens and the
pulse duration behind the lens; compare the electric field amplitude in the focus
with the result of problem 6.
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8. A Fourier limited Gaussian pulse of 1 ps duration is propagated through 50 m
of dispersion free fiber and experiences spectral broadening by self-phase
modulation. Assuming perfect chirp compensation of the resulting output pulse,
calculate the shape and duration of the output pulse after compression. The
pulse energy is 1 nJ, the effective area of the core is 50�m2, neff D 1:5,
n2 D 3 � 10�20 m2 W�1, 	 D 1:3 �m.

9. 1 ps pulses (	 D 1:3 �m) are transmitted through a dispersion free fiber with
20�m2 effective core area; what is the maximum number of photons/pulse, so
that the nonlinear length is more than 100 km?
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4Optical Interference

As a consequence of the linearity of Maxwell’s equations, the total electromagnetic
field that results from a superposition of fields is the vector sum of the fields;
practically all optical detectors, however, respond to the light intensity, i.e., to the
absolute square of the field. The linear superposition principle generally applies only
to the fields, but not to the intensity of a superposition of fields. Deviations from the
linear superposition of intensities are called interference; in the following we will
discuss important manifestations thereof.

4.1 Two Field Interference

For convenience, we introduce a complex vector amplitude QU normalized such that
the intensity is

I.x/ D QU.x/ � QU�.x/: (4.1)

A superposition of two fields QU1, QU2 results in the intensity

I.x/ D . QU1 C QU2/. QU1 C QU2/
�

D I1 C I2 C 2Re
h QU1.x/ � QU�2 .x/

i
: (4.2)

The first two terms are the intensities of the isolated individual fields, while the
third one is the so-called interference term, which can be positive (constructive
interference) or negative (destructive), depending on the phase difference between
the two fields.

A given detector can follow temporal changes only up to a certain frequency—
above this frequency it measures only the time average of the signal. If the phase
between the two fields—and thus the sign of the interference term—changes too
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quickly, the average over the third term may vanish and the total intensity tends
towards the sum of the individual intensities; if the two fields are completely
uncorrelated, the interference term vanishes and the linear superposition principle
applies to the intensity.

The interference term also vanishes if the two amplitude vectors are orthogonal,
i.e., if the two fields represent orthogonal polarization states (Sect. 1.5.1.1). It is
very important to note, however, that what matters for interference phenomena is
the polarization at the detector: a polarization filter in front of the detector (that
projects the two fields onto a common polarization state) can render interferences
visible that are not detected in the absence of the filter.

In the following, we restrict ourselves to monochromatic, coherent fields of equal
polarization, so that we can use a scalar description QU1;2

QU1;2 D A1;2e
j�1;2 ; (4.3)

where A1;2 is real and positive. The intensity of the superposition is then

I.x/ D I1.x/C I2.x/C 2
p

I1.x/I2.x/ cos.�2 � �1/: (4.4)

If we further assume fields of equal intensity, I1;2 WD I0, we obtain

I.x/ D 2I0.x/ Œ1C cos.��/� D 4I0 cos2.��=2/; (4.5)

where �� D �2 � �1; the total intensity then can assume any value between 0 and
4I0. The maximum intensity Imax D 4I0 is obtained if �� D 2m� , where m is an
integer. For the sake of simplicity, we use in the following plane waves Eq. (1.26)
with the wave function e�j.k�x�!t/. Any difference in the path length, wave vector,
frequency, or propagation time between the two partial waves results in a phase
difference

�� D ��.k � x � !t/ (4.6)

and may give rise to interference.
Phase correlated fields can be generated by splitting a (coherent) field with the

help of a semi-transparent mirror (beam splitter). The two emerging fields can
then propagate different paths before they are recombined on a detector. Important
implementations of this scheme are the Michelson, Mach–Zehnder, and Sagnac
interferometers (Fig. 4.1).

4.1.1 Michelson Interferometer

The beam splitter used to produce two phase correlated fields is usually a 50 %
splitter (also called 3 dB splitter) that converts the incoming field of intensity I0
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Fig. 4.1 Optical path in a (a) Michelson interferometer, (b) Mach–Zehnder interferometer, and
(c) Sagnac interferometer

into two partial fields of intensity I0=2 (note that the amplitude of the partial fields
is not U0=2, but U0

p
2=2). In the Michelson scheme (Fig. 4.1a), the two waves

travel different paths, are retroreflected by mirrors, and reach the beam splitter again,
where they are partially transmitted and reflected; with proper geometric alignment,
the fields can be overlapped to produce two output fields; the beam splitter thus also
serves to recombine the partial waves. Neglecting, for the moment, possible phase
shifts by the beam splitter, the phase difference between the superimposed fields is
due to different path lengths

�� D 2k�s; (4.7)

where�s is the geometric length difference of the two interferometer branches. The
output intensity is given by

I D I0 cos2
2��s

	0
D I0
2

�
1C cos

4��s

	0

�
; (4.8)

where k D 2�=	0 was used (Fig. 4.2). A variation of the length difference by only
	0=4 is required to change the output intensity from a maximum to a minimum.
Michelson interferometers are therefore employed for position measurements with
nm-resolution. Usually, one arm is used as reference branch with constant length,
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Output 1Output 2

Fig. 4.2 Output power at the two output ports of a Michelson interferometer as a function of the
length difference of the two branches

Incident wave 1

Incident wave 2

Fig. 4.3 Interference of two non-collinear plane waves

while the mirror in the second arm is attached to the object whose position is to be
measured.

4.1.1.1 TiltedWavefronts
If the wave vectors of the two waves incident on the detector are not parallel, there
is a second source for a phase difference; let us assume a symmetric situation where
the two wave vectors include an angle of ˙
 with the surface normal of the detector
(Fig. 4.3). The two wave vectors can then be written as k1;2 D .˙k sin 
; 0; k cos 
/
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and the phase difference��.x/ D 2kx sin 
 is a function of the lateral coordinate of
the detector plane. The resulting intensity pattern is

I.x/ D 4I0 cos2.kx sin 
/; (4.9)

a periodic pattern of bright and dark stripes with the period 	0=2 sin 
 , which can
be recorded by a spatially resolving detector such as a film or a camera chip.

4.1.1.2 Doppler Effect
Equation (4.7) represents the phase difference between two stationary positions of
the interferometer mirrors. In practice, however, the sensing mirror moves between
two positions at some finite velocity v, giving rise to a Doppler shift of the reflected
light frequency. To calculate this effect, we assume a coordinate axis z along
the sensing arm of the interferometer. Let the mirror, moving towards the beam
splitter, be at position z1 when a selected phase front strikes it and is reflected;
the consecutive phase front, initially a distance of 	0 behind the first one, strikes
the mirror after a delay time � , during which the mirror has moved to the position
z2 D z1�v� ; � follows from the equation c0� D 	0�v� to be � D 	0=.c0Cv/. Since
the previous phase front has propagated to position z3 D z1 � c0� in the meantime,
the distance between the two reflected phase fronts (which is, by definition, the
wavelength of the reflected light) is 	00 D z2�z3 D c0��v� D 	0.c0�v/=.c0Cv/,
and the Doppler shifted frequency of the reflected light is, accordingly,

!0 D !
1C v=c0
1� v=c0

: (4.10)

An identical result is obtained using the relativistic factor Eq. (2.197), which has
to be applied twice since the moving mirror acts both as receiver and transmitter;
note, however, that a relativistic treatment is not necessary in this case, since the
final “observer” and the light source do not move relative to each other.

On the detector, the Doppler shifted wave from the sensing mirror and the wave
from the reference arm (with frequency !) are superimposed, resulting in a signal
/ je j!t C e j!0tj2 that varies with the beat frequency �! D j!0 � !j. Moving the
mirror over the distance�s at velocity v takes the time t D �s=v, during which the
phase difference between reference and Doppler shifted light adds up to

�� D �!t D !

�
1C v=c0
1 � v=c0

� 1

�
�s

v
� 2

!

c0
�s; (4.11)

where the approximation is valid for v 	 c0 and agrees with Eq. (4.7). Since the
beat frequency is a direct measure of the velocity of the mirror, the Michelson
interferometer can also be used as a velocimeter.
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4.1.2 Mach–Zehnder and Sagnac Interferometers

In a Mach–Zehnder interferometer, a separate beam splitter is used to recombine the
partial waves (Fig. 4.1b). The geometric path length is equal in both branches and
a possible phase difference can only result from a different optical path length, i.e.,
from different propagation indices in the two branches. This structure is frequently
used for sensor application, where the propagation index in the reference branch is
kept constant, while the sensing branch is exposed to some external influence that
changes the propagation index.

Still another interferometric structure is the Sagnac interferometer (Fig. 4.1c),
where both partial fields travel the same path (a loop), but in different directions.
Only effects that depend on the propagation direction can give rise to a phase
difference. In a more general way one can say that the Sagnac interferometer is
sensitive to effects that are not invariant under time reversal, such as a rotation of
the interferometer or the magnetooptic Faraday effect (Section 2.4.2).

Interferometric sensors are frequently implemented in integrated optics, i.e., as
waveguide structures. We return to this important issue in Sect. 5.3.4.

4.1.3 S-Matrix

Equation (4.8) regarding the output intensity of the Michelson interferometer was
obtained neglecting possible phase shifts by the beam splitter. All the interferome-
ters discussed here have two output ports (corresponding to the two “ports” of the
recombination beam splitter); if both ports would deliver an output according to
Eq. (4.8), the total power would not be conserved. We have therefore to conclude
that the beam splitter necessarily introduces a phase shift between the two emerging
partial waves, so that the two output powers of the interferometer add up to the input
power.

To understand the properties of a beam splitter, we describe it as a linear system
with two complex input amplitudes a1;2 and two output amplitudes b1;2 (Fig. 4.4);
in the case of a partially transmitting mirror, the outputs are the reflected and

Fig. 4.4 Complex in- and
output signals at a beam
splitter, measured in reference
planes 1,2

a1

b1

a2

b2

1 2

Reference planes
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transmitted wave, respectively, and the inputs are waves incident on the mirror either
from the front or the rear side. The in- and outputs are electromagnetic fields and
we assume the relations between them to be linear

b1 D S11a1 C S12a2

b2 D S21a1 C S22a2: (4.12)

Since the signals are waves in space, we have to define two reference planes (front
and rear), where the signals (in particular their phase) are measured; these planes
can be the physical surface of the mirror or any other plane parallel to the mirror
surface. In matrix notation, Eq. (4.12) has the form

b D Sa; (4.13)

where

a WD
�

a1
a2

�
; b WD

�
b1
b2

�
; (4.14)

and

S WD
�

S11 S12
S21 S22

�
(4.15)

is the so-called scattering matrix.
Let the signals be normalized such that their absolute square is equal to the energy

flux density. For a lossless system, energy conservation implies a�1a1 C a�2a2 D
b�1b1 C b�2b2, or

�
a�
�T

a D �
b�
�T

b; (4.16)

where Œ �T indicates the transposed matrix, i.e.,

Œa�T D Œa1; a2� ; ŒS�T WD
�

S11 S21
S12 S22

�
: (4.17)

Since ŒAB�T D ŒB�T ŒA�T, we can conclude from Eqs. (4.16) and (4.13) that

�
a�
�T

a D �
a�
�T �

S�
�T

Sa: (4.18)
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For Eq. (4.18) to be valid for arbitrary inputs, S must be unitary, ŒS��T S D 1, or

�
S�
�T D S�1: (4.19)

We thus obtain the following equations relating the matrix components

S�11S11 C S�21S21 D 1 (4.20)

S�12S12 C S�22S22 D 1 (4.21)

S�11S12 C S�21S22 D 0 (4.22)

S�12S11 C S�22S21 D 0: (4.23)

Returning to the example of a semi-transparent mirror, the diagonal elements S11,
S22 of S represent the front and rear reflection coefficients, respectively, while
the off-diagonal elements S12, S21 are the transmission coefficients. The first two
equations then simply state that the reflectance r�r and transmittance t�t must add
up to 1.

A hypothetical 3 dB beam splitter with Sii D Sij D p
2=2 obviously satisfies

Eqs. (4.20) and (4.21), but violates Eq. (4.22). Such a beam splitter would produce
the output Eq. (4.8) at both output ports of a Michelson interferometer, implying the
annihilation or creation of energy, as we have remarked above. A possible choice
satisfying the complete set Eqs. (4.20)–(4.23) is Sii D 1=

p
2, Sij D j=

p
2, implying

a �=2 phase shift between reflected and transmitted wave.
Another possible property of a beam splitter (or, more generally, of a system)

is invariance under time reversal; in our context, time reversal swaps input and
output and, as we shall see in Sect. 8.3.7, the complex amplitude of a signal into
its conjugate. If the system is invariant under time reversal, it is described by the
same matrix S

a� D Sb�: (4.24)

On the other hand, conjugation of Eq. (4.13) yields

b� D S�a�: (4.25)

Substituting Eq. (4.25) in Eq. (4.24) gives a� D SS�a�, which is equivalent to

S� D S�1: (4.26)
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In combination with Eq. (4.19), we find that the scattering matrix of lossless, time
reversal invariant system is symmetric

ŒS�T D SI (4.27)

the transmission coefficient of such a beam splitter is independent of the propagation
direction (reciprocity). A prominent example for a system that is not time reversal
invariant is the Faraday rotator (Sect. 2.4.2); it allows building devices that are trans-
parent in one direction and opaque in the opposite (Faraday isolator, Sect. 2.4.2.1).
The reason for this is that a magnetic field changes its sign upon time reversal
(being generated by a circulating current), so that effects that depend linearly on the
magnetic field (for example, the Faraday rotation) also change sign. Another effect
of this kind is the Sagnac effect that produces a phase shift in rotating systems and
is the basis for the optical gyroscope (Sect. 5.3.4).

The scattering matrix formalism can be extended beyond single elements and
allows us, for example, to describe an entire interferometer in a very concise way.

4.1.4 Young’s Double Slit

An alternative way to produce phase correlated fields is to transmit a wave through
two or more narrow slits in an opaque screen (wave front division, Fig. 4.5). The
fields emanating from the slits propagate as cylindrical waves and can interfere
where they overlap. This setup was used by Th. Young in 1801 to demonstrate that
light is a wave phenomenon; the detector is a simple screen at a distance d from the
aperture. If a is the distance between the slits, and x is the lateral coordinate on the
screen, the respective propagation distances r1;2 between slit 1,2 and the screen at

Incident wave

Fig. 4.5 Interference of light passing through a double slit (d	 a)
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coordinate x are

r1;2 D
p

d2 C .a=2˙ x/2 � d
�
1C .a=2˙ x/2=2d2

�
; (4.28)

where the approximation is valid for x=d 	 1. The path difference�r D r2 � r1 �
ax=d results in a phase difference

�� D 2�
ax

	0d
; (4.29)

and the intensity distribution on the screen is therefore

I.x/ � 2I0

�
1C cos 2�

ax

d	0

�
D 4I0 cos2 �

ax

d	0
: (4.30)

4.1.4.1 Wave or Particle?
Young’s double slit experiment is of great historical importance since it proves the
wave character of light and apparently rules out the existence of light-particles, i.e.,
of photons. To shed some light on the nature of these well-established particles, we
can perform the experiment at very low light levels, so that during the transit time �
through the apparatus there is statistically not more than one photon underway, by
keeping the optical power flow well below „!=� . The light impinging on the screen
is detected with an array of sufficiently small photo detectors that ideally produce
one photoelectron per incident photon. The measured histogram of photoelectron
counts as a function of detector position x turns out to reproduce Eq. (4.30),
provided that the integration time is long enough; in particular, at the points of
zero intensity according to Eq. (4.30), no photoelectron is ever recorded. Just like
other microscopic particles (electrons, neutrons, atoms, . . . ), a photon behaves like
a wave during propagation and becomes localized when detected; the detection
process converts the delocalized, wave-like photon into a localized one that excites
a photoelectron. The electrodynamic intensity UU� provides the spatial probability
distribution for this process.

In this context, it is also worthwhile to note that a photon generally does not
have a well defined frequency or energy. As we have seen in Sect. 3.2.1.2, a light
signal of finite duration (i.e., a light pulse) cannot be monochromatic, but displays
a frequency bandwidth that scales inversely with the pulse duration. If we again
attenuate a light pulse to such a degree that there is not more than one photon at a
time in our experimental apparatus, this photon has the same temporal and spectral
properties as the original light pulse. Only if a measurement of the frequency
is performed, the outcome has a certain value, and if many measurements with
consecutive photons are made, we obtain a histogram of frequencies that reproduces
the spectral distribution of the pulse. Stating that a photon constituting a short
light pulse has a certain frequency (or energy) before a measurement is taken is
as misleading as stating that a photon is transmitted through one or the other slit
of Young’s double slit setup. If we talk about “microscopic particles,” we refer to
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entities that behave in this non-classical fashion as a matter of fact; there is no reason
to introduce concepts such as wave–particle dualism or invoke a violation of energy
conservation during temporally short interactions.

4.2 Multiple Wave Interference

A number of photonic components rely on the interference of a large (or infinite)
number of partial fields QUn. Let us first study the special case of equal absolute value
of the individual amplitudes and constant phase difference between the fields,

QUn D QU0e j.n�1/��; n D 1; 2; 3; : : : ;N (4.31)

In the complex plane, these amplitudes form a (generally open) polygon chain, with
the resulting total field amplitude pointing from the origin to the final point of the
chain (Fig. 4.6). The maximum possible intensity is realized if the partial amplitudes
are all in phase,�� D 2m� . The maximum intensity is given by jN QU0j2 D N2j QU0j2,
which is an N-fold enhancement over the sum of individual intensities, Nj QU0j2. The
total field (and intensity) is zero whenever the polygon chain is closed; this happens
if N�� is an integer multiple of 2� , or �� D 2m�=N.

To evaluate the total field, we use
PN

nD1 qn�1 D .1 � qN/=.1 � q/ to obtain

QUtotal D
X QUn D QU0

NX
nD1

e j.n�1/�� D QU0

1 � e jN��

1 � e j��
: (4.32)

With

1 � e jN�� D e jN��=2


e�jN��=2 � e jN��=2

�
(4.33)

Fig. 4.6 Multiple beam interference, represented in the complex plane: the total field is the
complex sum of the partial fields (a); if the polygon formed by the complex amplitudes is closed
(N�� D 2m�), the total field amounts to zero (b)
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Fig. 4.7 Output intensity resulting from N-beam interference as a function of the phase difference
�� for two different values of N

and
ˇ̌
e jN��=2

ˇ̌ D 1 follows

I D ˇ̌ QU0

ˇ̌2 ˇ̌ˇ̌e�jN��=2 � e jN��=2

e�j��=2 � e j��=2

ˇ̌
ˇ̌
2

D I0
sin2.N��=2/

sin2.��=2/
(4.34)

for the resulting intensity, as shown in Fig. 4.7. Compared to the result for two beam
interference (Fig. 4.2), the maximum features are more pronounced and there appear
N � 2 small intermediated peaks between the major peaks.

4.2.1 Optical Gratings

A possible realization of the multiple wave interference described above relies on
an extension of the double slit experiment to an aperture with N equidistant slits, a
component known as optical grating. Instead of slits, reflecting stripes on an opaque
background can also be used (reflection grating). We have discussed such periodic
structures in Sect. 2.1.1 and have calculated the angles under which an incident plane
wave is scattered [Eq. (2.12)]. Here we want to calculate the angular dependence of
the intensity of the diffracted wave, assuming an incident plane wave and a grating
of finite size. The angle of incidence is 
in and the slits or stripes are oriented normal
to the plane of incidence (Fig. 4.8). We assume that each slit is the origin of a
cylindrical wave; far away from the grating, the phase difference between waves
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Fig. 4.8 Geometry of a
transmission grating; angles
are measured between the
surface normal and the wave
vector, in counterclockwise
sense of rotation

θoutθin

Λ

Λ sin θoutΛ sin θin

Input wave
Diffracted wave

from adjacent slits is

�� D 2��

	0
.sin 
in � sin 
out/ ; (4.35)

where � is the spatial period of the grating and 
out is the angle of observation
(positive or negative).

The angular intensity distribution is then essentially given by Eq. (4.34), where
N is the number of slits. The condition for maximum intensity is, in agreement with
Eq. (2.12),�� D 2m� , or

�.sin 
out � sin 
in/ D m	0; (4.36)

where m is an integer denoting the order of interference. The wavelength depen-
dence of this condition is the basis of grating spectrometers (Sect. 3.1.6.8) and
monochromators that can filter a narrow frequency band out of a polychromatic
input signal.

For this application, the resolving power is an important parameter. For a given
set of in- and output angle 
in, 
out, we can, from Eq. (4.34), find the wavelength
variation �	0 that reduces the scattered amplitude from its maximum value to the
first adjacent zero; according to Eq. (4.34), this requires a change of N��=2 by � ,
i.e., �.��/ D 2�=N. From Eq. (4.35) follows j d	0=	0j D j d.��/=��j; so that

ˇ̌
ˇ̌�	0
	0

ˇ̌
ˇ̌ � 1

mN
I (4.37)
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the resolving power is defined as the reciprocal value and is given by

ˇ̌
ˇ̌ 	0
�	0

ˇ̌
ˇ̌ D mNI (4.38)

thus, the resolving power is proportional to the number of lines, and to the diffraction
order m. Commercial gratings usually work in reflection and have about 300–1200
lines/mm; the total number of lines is typically 104–105, and the grating is operated
up to the fourth order. The reflecting lines are usually grooves with triangular profile
so as to maximize the reflection efficiency in a particular direction (“blazing”).

4.2.2 Dielectric Multilayer Systems

Another important component relying on multiple beam interference is the dielectric
multilayer mirror (see, e.g., MacLeod 2001). It consists of up to thirty dielectric
layers of different propagation index and is usually designed such that the reflections
from the interfaces between the layers add up constructively so as to achieve
maximum reflectance in a certain wavelength range. In other applications, the
opposite goal is intended, namely the reduction of the reflectance, ideally to zero
(antireflection or AR coating).

According to Sect. 2.1.1, the reflection coefficient of a dielectric interface at
normal incidence is given by

r D n1 � n2
n1 C n2

D � 1 � n1=n2
1C n1=n2

; (4.39)

where n1;2 are the propagation indices of the two media; since the propagation
index of typical dielectrics in the visible is between 1 and 2.5, the corresponding
reflectance jrj2 is rather moderate. A stack of alternating layers of high and
low index nh;l, respectively, produces an enhanced reflected field, provided that
the individual contributions add up constructively. The phase difference results
from the propagation delay of the forward and backward propagating waves, and
the phase jump at each interface, which is 0 or � depending on the sequence
of propagation indices [Eq. (4.39)]. Considering both of these contributions, we
expect maximum reflectance for a layer thickness of 	=4; the integrated reflection
coefficient, however, is not a simple sum over the individual reflections, since each
interface scatters the locally incident field into a reflected and transmitted wave, so
that the number of partial waves is actually infinite.

This highly complex problem can be solved in an elegant way by resorting
to boundary conditions at the individual interfaces. We assume a sequence of N
dielectric layers with propagation index ni and thickness di, supported by a substrate
of index ns (Fig. 4.9); light is incident onto the stack from the left, denoting the
forward direction in the following. To establish boundary conditions at the two
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Substrate

Fig. 4.9 Electric fields at the interfaces of a dielectric multilayer system

interfaces of layer i, we consider four electromagnetic fields Ej!i ;Ej i ;E!ji ;E ji ,
forward and backward propagating, respectively, with the bar indicating the position
of interface.

As in Sect. 2.1.1, we employ the continuity of the tangential component of the
electric and magnetic field as boundary condition. To simplify matters, we assume
normal incidence, so that the fields are equal to their tangential components. At the
interface .i � 1; i/ the electric and magnetic field, respectively, must satisfy

E.i�1;i/ D E!ji�1 C E ji�1 D Ej!i C Ej i

H.i�1;i/ D H!ji�1 C H ji�1 D Hj!i C Hj i :

(4.40)

(4.41)

According to Eqs. (1.66) and (1.68), the relation between H and E is given by

H D ˙ n

Z0
E; (4.42)

where the positive (negative) sign applies to forward (backward) propagating waves,
and Z0 is the vacuum impedance Eq. (1.69). Equation (4.41) can thus be cast in the
form

H.i�1;i/ D ni�1
Z0

�
E!ji�1 � E ji�1



D ni

Z0

�
Ej!i � Ej i



: (4.43)

Analog equations hold at interface .i; i C 1/

E.i;iC1/ D E!ji C E ji

H.i;iC1/ D ni

Z0

�
E!ji � E ji



: (4.44)

The electric fields at the two interfaces differ by a phase factor

E!ji D Ej!i e�jk0nidi

E ji D Ej i e jk0nidi I (4.45)
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substitution in Eq. (4.44) yields

Ej!i D 1
2

�
E.i;iC1/ C Z0

ni
H.i;iC1/

�
e jk0nidi

Ej i D 1
2

�
E.i;iC1/ � Z0

ni
H.i;iC1/

�
e�jk0nidi (4.46)

so that Eqs. (4.40) and (4.43) can be cast in the form

E.i�1;i/ D E.i;iC1/ cos k0nidi C j
Z0
ni

H.i;iC1/ sin k0nidi

H.i�1;i/ D j
ni

Z0
E.i;iC1/ sin k0nidi C H.i;iC1/ cos k0nidi: (4.47)

Thus, the fields at the two interfaces of layer .i/ are related by

�
E.i�1;i/
H.i�1;i/

�
D Mi

�
E.i;iC1/
H.i;iC1/

�
(4.48)

where

Mi D
"

cos k0nidi j Z0
ni

sin k0nidi

j ni
Z0

sin k0nidi cos k0nidi

#
(4.49)

is the characteristic matrix of the layer, that accounts for all multiple reflections and
transmissions within the multilayer system.

Starting from the substrate, we now can calculate the fields step by step, simply
multiplying the characteristic matrices from the left:

�
E.0;1/
H.0;1/

�
D M1M2 : : :MN�1MN

�
E.N;s/
H.N;s/

�
D Mtot

�
E.N;s/
H.N;s/

�
: (4.50)

4.2.2.1 Reflection and Transmission Coefficient
The integrated reflection and transmission coefficients, respectively, are given by

r D E j0

E!j0

; t D Ej!s
E!j0

: (4.51)

According to Eqs. (4.40) and (4.43), boundary conditions at the front surface require
E.0;1/ D .1Cr/E!j0 and H.0;1/ D .1�r/.n0=Z0/E

!j
0 . At the substrate interface, there
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is no backward wave so that Ej!s D E.N;s/ D tE!j0 and Hj!s D .ns=Z0/E.N;s/ D
t.ns=Z0/E

!j
0 . Equation (4.50) can therefore be written as

�
1C r

.1 � r/n0=Z0

�
E!j0 D Mtot

�
t

tns=Z0

�
E!j0 : (4.52)

Solving for r and t yields

r D n0Z0M11 C n0nsM12 � Z20M21 � nsZ0M22

n0Z0M11 C n0nsM12 C Z20M21 C nsZ0M22

t D 2n0Z0
n0Z0M11 C n0nsM12 C Z20M21 C nsZ0M22

:

(4.53)

(4.54)

Simple phase considerations at the beginning of this section led us to assumption
that maximum reflectance is obtained by stacking quarter wavelength thick layers
of alternating high and low index nh;l on top of each other. Since k0nidi D
.!0=c0/nidi D �=2 in this case, the diagonal elements of Mi vanish and the
characteristic matrix of an nh-nl double layer is given by

Mjljhj D
"
0 j Z0

nl

j nl
Z0

0

#"
0 j Z0

nh

j nh
Z0

0

#
D
"

� nh
nl

0

0 � nl
nh

#
: (4.55)

A system of m such pairs has the non-vanishing components M11 D .�nh=nl/
m

and M22 D .�nl=nh/
m, so that the integrated reflection coefficient according to

Eq. (4.53) is given, at the design frequency !0, by

r D M11 � M22

M11 C M22

D 1 � .nl=nh/
2m

1C .nl=nh/2m
; (4.56)

where we have assumed, for simplicity, n0 D ns D 1.
With 10 (m D 5) alternating layers of ZnS (nh D 2:3) and MgF (nl D 1:38),

a reflectance R D jrj2 of 0.976 is obtained; 20 layers yield 0.99993, which can
be hardly reached in practice because of absorption and scattering losses. By
comparison, the reflectance of high quality metal mirrors is limited to values below
0.098.

4.2.2.2 Bandwidth
Figure 4.10 shows the calculated reflectance of a high reflectance (HR) multilayer
mirror, designed for maximum reflectance at 800 nm (optical layer thickness of
200 nm). Surprisingly, the range of high reflectance extends far beyond this central
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Fig. 4.10 Reflectance and phase shift of a high reflectance (HR) dielectric multilayer mirror as a
function of wavelength

wavelength. For a larger number of layers, the reflection spectrum gets more and
more rectangular, while the width of the reflection band turns out to depend on (and
to grow with) the ratio nh=nl only.

To obtain an estimate of the width of the reflection band, we consider an
infinite series of identical dielectric double layers and exploit the invariance of
the stack under translation by one such pair. Let the center frequency be !0,
so that .!0=c0/nidi D �=2 and the phase term in Eq. (4.49) can be written as
k0nidi D .�=2/.!=!0/. The fields at the interfaces of a double layer are then related
by the matrix

Mjljhj D
2
4 cos

�
�
2
!
!0



j Z0

nl
sin
�
�
2
!
!0




j nl
Z0

sin
�
�
2
!
!0



cos

�
�
2
!
!0



3
5
2
4 cos

�
�
2
!
!0



j Z0

nh
sin
�
�
2
!
!0




j nh
Z0

sin
�
�
2
!
!0



cos

�
�
2
!
!0



3
5

D
2
4 cos2

�
�
2
!
!0



� nh

nl
sin2

�
�
2
!
!0



: : :

: : : cos2
�
�
2
!
!0



� nl

nh
sin2

�
�
2
!
!0



3
5 :

(4.57)
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Because of the translational invariance, the two fields must be related by the same
factor ˇjljhj, no matter which double layer i is selected, so that

Mjljhj
�

E.i;iC1/
H.i;iC1/

�
D ˇjljhj

�
E.i;iC1/
H.i;iC1/

�
I (4.58)

to allow for non-trivial solutions, ˇjljhj must be the root of the characteristic equation
det.Mjljhj � ˇjljhj1/ D 0, or

ˇ2jljhj � ˇjljhj.M11 C M22/C 1 D 0; (4.59)

where M11 and M22 are the diagonal components of Mjljhj and det Mi D 1 was used.
The solutions

ˇjljhj D M11 C M22

2
˙
s�

M11 C M22

2

�2
� 1 (4.60)

can be either complex of the form e˙ j� , resulting in an interfacial amplitude that
oscillates along the propagation direction. For the structure to be a perfect mirror,
however, the amplitude must decay exponentially in the forward direction, which
requires ˇjljhj to be real, implying

.M11 C M22/
2 


�
2 cos2

�
�

2

!

!0

�
�
�

nh

nl
C nl

nh

�
sin2

�
�

2

!

!0

��2
> 4: (4.61)

This condition defines the reflection band

cos2
�
�

2

!

!0

�
<

�
nh � nl

nh C nl

�2
; (4.62)

the borders !0 ˙�!=2 of which are obtained from the equation

cos2
�
�

2

�
1˙ �!

2!0

��

 sin2

�
�

2

�!

2!0

�
D
�

nh � nl

nh C nl

�2
; (4.63)

yielding the normalized bandwidth

�!

!0
D 4

�
arcsin

nh � nl

nh C nl
: (4.64)

As can be seen, the width of the reflection band (also called stop band) increases
with the propagation index contrast .nh � nl/=.nh C nl/; the additional peaks in the
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reflection spectrum Fig. 4.10 originate from the oscillatory solutions outside the stop
band.

4.2.2.3 Antireflection Coatings
Dielectric layer structures can also be designed to minimize reflection by exploiting
destructive interference. A particularly simple AR coating is a single dielectric
layer applied to an optical surface. The propagation index n1 of the layer is chosen
to be intermediate between the indices n0 and ns of the adjacent media (air and
glass) so that the reflection coefficient is negative at both interfaces, and the layer
thickness must be 	=4 to provide destructive interference. According to Eq. (4.53),
the resulting reflection coefficient is

r D n0ns � n21
n0ns C n21

(4.65)

and zero, if the index of the layer is the geometric mean value

n1 D p
n0ns (4.66)

of the adjacent media. As shown in Fig. 4.11, the reflectance vanishes at the design
wavelength 	0 D 4n1d and lies significantly below the reflectance of the uncoated
surface (� 4 %) over a wide wavelength range. Multilayer AR coatings provide
better performance and allow for more flexibility in the choice of the layer materials.

Wavelength [nm]

Fig. 4.11 Reflectance of a single layer antireflection coating with n1 Dpn0ns
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Fig. 4.12 Partial waves in a
Fabry–Perot interferometer;
for the meaning of r, t, and t0,
see text U0tt

U0tt |r|2ejΔφ

U0tt (|r|2ejΔφ)2

U0tt (|r|2ejΔφ)3

U0

Mirror 1 Mirror 2
θ

Δφ=2Δφs 2k0n cos θd

4.2.3 Fabry–Perot Interferometer

A Fabry–Perot interferometer Fig. 4.12 is a structure consisting of two parallel,
partially transmitting mirrors spaced by a distance d; the enclosed space (also called
cavity) can be empty or filled with a dielectric. Light incident on the input mirror is
partially transmitted into the cavity and then partially reflected between the mirrors,
forming an infinite series of partial waves in the forward and backward direction,
respectively. The following analysis assumes a monochromatic, plane input wave
and identical mirrors with the (complex) reflection coefficient r D jrje j��s and
the transmission coefficient t. Any two consecutive partial waves impinging on the
output mirror differ by the complex factor r2 and the phase delay due to propagation
over twice the distance d; the phase difference�� is therefore

�� D 2��s � 2k0ndcos 
 D 2��s � 2 !
c0

ndcos 
; (4.67)

where 
 is the angle of incidence and k0n cos 
 is the axial component of the wave
vector. The total transmitted field amplitude is then

QUt D QU0tt
0.1C jrj2e j�� C jrj4e j2�� C : : : /; (4.68)

where t0 WD te�jk0ndcos 
 includes the phase shift due to the first transition through
the cavity. This infinite geometric series is evaluated using

P1
nD1 qn�1 D 1=.1� q/

with q D jrj2e j�� :

QUt D QU0tt
0 1

1 � jrj2e j��
; (4.69)

which allows us to express the transmitted intensity by

It

I0
D j QUtj2

j QU0j2
D T2

j1 � Re j�� j2 D T2

1� 2R cos�� C R2
; (4.70)
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where R D jrj2 and T D jtj2 D jt0j2. Using cos x D 1�2 sin2.x=2/, the denominator
of this expression can be cast in the form

1 � 2R cos�� C R2 D .1 � R/2
"
1C 4R sin2.��=2/

.1 � R/2

#
; (4.71)

so that we obtain

It

I0
D T2

.1 � R/2

"
1C 4R sin2.��=2/

.1 � R/2

#�1
: (4.72)

This periodic transmission function is shown in Fig. 4.13; in contrast to Fig. 4.7,
there are no side maxima, which is due to the summation over an infinite number
of decreasing partial fields. A maximum transmittance of T2=.1 � R/2, which is
equal to one if the mirrors are lossless, is obtained if the partial waves are in phase,
�� D �2m� , a situation that is called resonance.

For a given cavity length d, the resonance condition yields a series of resonance
frequencies

!m D c0
nd cos 


.��s C m�/ DW �!s C m�!r; (4.73)

Fig. 4.13 Transmittance of a Fabry–Perot interferometer
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spaced by a frequency interval�!r

�!r D c0�

nd cos 

; (4.74)

called free spectral range, that is approximately constant if the dispersion of the
cavity medium can be neglected. It follows from Eq. (4.74) that the “comb” of
resonance frequencies can be stretched or compressed by changing d, n, or 
 .
Note that the effect of the mirror induced phase shift is a frequency-offset of the
entire comb by �!s D c0��s=nd cos 
 . At optical frequencies and macroscopic
cavities (d 
 	0), the resonator mode index is a very large number, m 
 1, so that
��s can often be neglected.

Another characteristic parameter of a Fabry–Perot interferometer is the so-called
finesse, defined as

F WD �

p
R

1� R
I (4.75)

with this parameter, Eq. (4.72) can be written as

It

I0
D 1

1C .2F=�/2 sin2.��=2/
: (4.76)

Neglecting the phase shift introduced by the mirror, we can set �� D 2�!=�!r,
and

It

I0
D 1

1C .2F=�/2 sin2.�!=�!r/
: (4.77)

The frequency deviation �! from a resonance that reduces the transmittance to
50 % is a measure of the line width of the comb filter and is given by

sin2
�
�
�!

�!r

�
D
� �
2F


2
: (4.78)

Provided that R � 1, �=2F is small and we can approximate sin2 x � x2 so that

�!

�!r
D 1

2F
: (4.79)



180 4 Optical Interference

The FWHM-width�!res of the transmission peak is then

�!res � �!r

F
I (4.80)

thus, the finesse Eq. (4.75) is the ratio of free spectral range to bandwidth.
Fabry–Perot interferometers are used as high resolution filters; frequency tuning

is provided by adjusting d, 
 , or n; filters with constant d and n are called etalon-filter
and can be tuned by tilting. The most important aspect of the structure, however, is
its application as laser resonator.

4.3 Resonators

The rather counterintuitive fact that a sequence of two mirrors transmits, at
resonance, 100 % of the incident light, while each of the mirrors transmits only a
fraction T D 1 � R, finds its explanation in the enhancement of the field inside the
cavity. As can be seen in Fig. 4.12, the total field incident on the output mirror is 1=t
times larger than the transmitted field, implying that the corresponding intensity
is 1=T D 1=.1 � R/ times larger (Fig. 4.14). Under resonance conditions, the
transmitted intensity is equal to I0, so that we have to conclude that the intensity
incident on the output mirror is I0=.1 � R/; if, for example, the reflectance of the
mirror is 80 %, the intensity of the right-propagating intracavity field is five times
enhanced over the input intensity.

Energy conservation requires the reflectance of the Fabry–Perot interferometer
at resonance to be zero, which implies the cancellation of the reflected field rU0

by the transmitted fraction t of the left-propagating intracavity field; for complete

Fig. 4.14 Normalized
transmitted (It), reflected (Ir),
and right-propagating internal
intensity (Iint) of a
Fabry–Perot interferometer
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cancellation, the magnitude of this field must be �.r=t/U0, corresponding to a left-
propagating intensity of I0.R=T/. The net power flow (the difference between right-
and left-propagating power flow) through the cavity is therefore I0Œ1=.1�R/�R=.1�
R/� D I0, while the remaining power flow I0.R=T/ is just circulating between the
mirrors.

The resonant enhancement is due to constructive interference of the fields propa-
gating inside the cavity. The resonance condition of the Fabry–Perot interferometer
implies that the wave circulating between the mirrors exactly reproduces itself in
terms of the phase; such waves are called eigenmodes or simply modes of the
resonator, and the corresponding frequencies (!m) are its eigenfrequencies. These
modes play a central role in the theory of laser oscillators (see Chap. 7). Neglecting
��s, the eigenfrequencies of the resonator are given by Eq. (4.73) with 
 D 0

!m D m
c0�

nd
; (4.81)

where d is the resonator length, which, depending on the type of laser, lies between
some 100�m (semiconductor lasers) and 1–2 m (gas lasers). Consequently, the
mode index m ranges between 102 and several 106 in the VIS and NIR. The mode
spacing,

�!r D c0�

nd
; (4.82)

lies between 1000 GHz (semiconductor laser) and 100 MHz (gas laser).
Laser resonators are lossy, not only because of the finite reflectance of the mirrors

(which serves to couple the laser light out of the cavity), but also because of various
internal losses. The power loss per round trip can be described by a loss factor
e�˛res2d [Eq. (7.5)], while the round trip loss of an ideal, symmetric Fabry–Perot
resonator is represented by R2. To describe a lossy resonator, we can replace, in the
expression (4.75) for the finesse, the term R by e�˛resd

F D �
e�˛resd=2

1 � e�˛resd
� �

˛resd
; (4.83)

where we have used the approximation ex � 1C x. In Chap. 7 we will introduce the
concept of a resonator life time �res as the time it takes a given photon number in the
cavity to decay to a fraction 1=e. As we will see [Eq. (7.7)], this life time is related
to the loss coefficient ˛res by ˛res D 1=c�res, so that the bandwidth Eq. (4.80) of a
resonator in the absence of gain can be expressed, with the help of Eqs. (4.82) and
(4.83), by

�!res � 1

�res
: (4.84)
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In a laser under stationary operating conditions, the gain (represented by the gain
coefficient � ) provided by stimulated emission exactly compensates the losses so
that the effective loss coefficient ˛res C � D 0 [Eq. (7.9)]; consequently, the finesse
tends towards infinity and the spectral width of the laser mode approaches zero (see
Sect. 7.2.3).

4.3.1 Spherical Mirror Resonators

In practice, mirrors are of finite size and the quasi-plane waves circulating in a
realistic plane mirror Fabry–Perot resonator experience losses at the mirrors because
the wave diverges during propagation. By contrast, a Gaussian wave function with
its rapidly decaying radial amplitude can be reflected by finite size mirrors very
efficiently. As we have seen in Sect. 3.1.2, Gaussian beams have spherical phase
fronts; if such a beam is reflected at a mirror of matching curvature, it is reflected
exactly into itself; two spherical mirrors, spaced by a certain distance, allow a
Gaussian beam with appropriate parameters to circulate between them without
changing its shape (Fig. 4.15). The problem of finding the required beam parameters
was treated in Sect. 3.1.2, where the confocal parameter Eq. (3.27) and the position
of the waist Eq. (3.26) were calculated for a given set of phase front curvatures; note
that these two parameters do not depend on the frequency of the wave, so that one
degree of freedom for the specification of the mode is left.

4.3.1.1 Eigenfrequencies
Just like the eigenmodes of a plane mirror Fabry–Perot resonator, the modes of
a spherical mirror resonator must reproduce themselves after a round trip; the
longitudinal phase of a Gaussian wave function is, according to Eq. (3.17), kz��.z/
so that the resonance condition for a resonator with spherical mirrors at z1 and z2 is

2k.z2 � z1/� 2Œ�.z2/� �.z1/� D 2m�; (4.85)

Fig. 4.15 Spherical mirror
resonator with Gaussian
mode, shown with contours
of constant energy density
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where m is the longitudinal mode index and z1;2 is measured in respect to the waist;
an additional phase introduced by the mirror has been neglected for the sake of
simplicity. With k D !=c and z2 � z1 D d, we obtain

!m D m
c�

d
C cŒ�.z2/ � �.z1/�

d
: (4.86)

The Gouy term cŒ�.z2/ � �.z1/�=d depends only on the position and curvature of
the mirrors and shifts the comb of eigenfrequencies by a constant offset; the mode
spacing is not affected and equal to that of a plane mirror Fabry–Perot resonator
[Eq. (4.82)] of the same length

�!r D c�

d
: (4.87)

4.3.1.2 Stability Condition
Not every configuration of two mirrors supports a Gaussian mode; a pair of convex
mirrors, for example, obviously cannot be matched by the phase fronts of any
Gaussian beam. The condition that the set Rs1, Rs2, d has to meet for a mode to
exist is called resonator stability condition and can be derived from Eq. (3.27) by
restricting z20 to positive values. Resonator configurations that do not satisfy this
condition are called instable and are highly lossy.

The sign of the curvature 1=Rs of a spherical mirror is defined in respect to
the reflecting surface: by convention, it is negative (positive) for concave (convex)
mirrors. The sign of the phase front curvature 1=R in Eq. (3.13), however, is given
in respect to the orientation of the z-axis; to account for this conflicting definitions,
we formulate the curvature matching condition as R1 D Rs1 for the left mirror and
R2 D �Rs2 for the right mirror in Fig. 4.15. Equation (3.27) then assumes the form

z20 D d.d C Rs2/.d C Rs1/.�Rs2 � Rs1 � d/

.Rs2 C Rs1 C 2d/2
> 0: (4.88)

With the substitutions

g1 WD 1C d=Rs1; g2 WD 1C d=Rs2; (4.89)

the inequality can be cast in the form

d2
g1g2.1 � g1g2/

.g1 C g2 � 2g1g2/2
> 0: (4.90)
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Fig. 4.16 Stability diagram of spherical mirror resonators in terms of the parameters g1 WD
1C d=Rs1 and g2 WD 1C d=Rs2: the shaded area indicates the range of stable resonators; the lines
g1;2 D 1 mark the border between concave and convex mirrors

Since the denominator of this expression is positive, the terms g1g2 and 1 � g1g2
must have the same sign, yielding the stability condition

0 < g1g2 < 1; (4.91)

which is graphically represented by the map Fig. 4.16.
For a symmetric resonator Rs1 D Rs2 D Rs, Eq. (4.91) is reduced to

0 � � d

Rs
� 2; (4.92)

while a plano-concave resonator (d=Rs1 D 0 and Rs2 D Rs) has to satisfy

0 � � d

Rs
� 1: (4.93)
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4.3.1.3 Mode Parameters
The position of the waist, in reference to the left mirror, is given by Eq. (3.26);
for symmetric resonators, the waist is naturally in the center of the resonator. The
confocal parameter follows from Eq. (3.13) with z D d=2,

z0 D 1
2

p
2jRsjd � d2I (4.94)

the waist radius of the mode is given by Eq. (3.12)

w0 D
r
	z0
�
: (4.95)

Equation (3.11) yields the mode radius at the mirrors (Fig. 4.17); the mirror must be
several times larger than the mode radius to keep losses low.

The focal length of a spherical mirror is equal to �Rs=2; for a symmetric confocal
resonator (Fig. 4.18), Rs D �d, so that z0 D jRsj=2 and w0 D p

	d=2�. This type of

Concentric Planar

Confocal

Fig. 4.17 Beam waist w0, and mode radius w at the mirrors for a symmetric spherical mirror
resonator as a function of g D 1C d=Rs

Fig. 4.18 Geometry of a confocal resonator
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resonator has, at a given length, the smallest possible mode radius w.d=2/ D p
2w0

at the mirrors (Fig. 4.17).
All members of the Hermite–Gaussian family of wave functions Eq. (3.95)

exhibit the same spherical phase front curvature and thus are equally well suited as
eigenmodes of spherical mirror resonators; it is common to refer to these modes as
transverse modes. The eigenfrequencies Eq. (4.86) of the TEMij-modes are slightly
up-shifted in comparison to the Gaussian TEM00-mode because of the increased
Gouy phase term .i C j C 1/�.z/ [Eq. (3.97)]. The intensity profile of the modes is
shown in Fig. 3.14.

The superposition of left- and right-propagating waves inside the cavity results
in an axial amplitude modulation / e� jkz C e jkz D 2 cos kz; the energy density is
therefore axially modulated / cos2 kz (Fig. 4.15), giving rise to a total of 2d=	 axial
nodes.

4.3.1.4 ABCD Formalism for Spherical Mirror Resonators
The ABCD formalism, discussed in Sect. 3.1.4 provides a very powerful tool to
analyze spherical mirror resonators. As an example, we present a generalized
formulation of the stability condition: let the ABCD matrix of a resonator round trip
be Mres; for a Gaussian wave to be an eigenmode of the resonator, it must reproduce
itself after one round trip, i.e., its q-parameter must remain unchanged

q D Aq C B

Cq C D
; (4.96)

where A;B;C;D are the coefficients of Mres. The solutions

q1;2 D A � D

2C
˙ 1

2C

p
.A � D/2 C 4BC (4.97)

must have a non-vanishing imaginary part to be a meaningful q-parameter. Using
det Mres D AD � BC D 1, we can express this condition in the form

.A C D/2 � 4
C2

< 0 (4.98)

or

�2 < A C D < 2I (4.99)
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the absolute value of the trace of the ABCD matrix must be less than 2. This is an
elegant formulation of the resonator stability condition, that also applies to complex
cavities containing lenses etc. The negative real part of q,

D � A

2C
(4.100)

is equal to the distance of the mode waist from the reference plane of the ABCD
matrix. The mode parameters are given by

z0 D 1

2jCj
p
4 � .A C D/2;

w20 D 	

�

1

2jCj
p
4 � .A C D/2:

(4.101)

(4.102)

For the spherical mirror resonator discussed above, we obtain, with the reference
plane at mirror 2

M D
�
1 d
0 1

� �
1 0

2=Rs1 1

� �
1 d
0 1

� �
1 0

2=Rs2 1

�
(4.103)

D
�
.1C 2d=Rs1/.1C 2d=Rs2/C 2d=Rs2 d.2C 2d=Rs1/

2.1C 2d=Rs2/=Rs1 C 2=Rs2 2d=Rs1 C 1

�
I

substituting this matrix in Eq. (4.99) immediately reproduces Eq. (4.91).

4.3.2 3D Resonators

A question of great theoretical importance is the spectral mode density of the
electromagnetic field, that is the number of electromagnetic modes per unit volume
in the frequency interval !;! C d!. For an estimate, we choose a rectangular, box
shaped cavity of dimension dx;y;z, with perfectly conducting (and reflecting) walls,
imposing the boundary condition that the tangential component of the electric field
at the walls must vanish. The (standing) waves

Ex.x/ D E0;x cos kxx sin kyy sin kzz

Ey.x/ D E0;y sin kxx cos kyy sin kzz

Ez.x/ D E0;z sin kxx sin kyy cos kzz (4.104)
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are, as can be easily shown, solutions of the Helmholtz equation Eq. (1.22). The
boundary conditions are satisfied if the components ki of the wave vector assume
the values

kidi D �mi; mi D 1; 2; 3; : : : I (4.105)

for each wave vector, there exist two linearly independent modes with orthogonal
polarization. In three-dimensional k-space, these modes are represented by equidis-
tant points .kx; ky; kz/ in the positive octant. Because of the constant mode spacing,
each of the modes occupies the volume �3=dxdydz.

Before we determine the number of modes at a certain frequency, we estimate the
number of modes in the interval Œk; k C dk�, where k D jkj is the wave number. In
k-space, this interval is represented by a spherical shell octant of radius k, thickness
dk, and volume 4�k2 dk=8. Assuming that the dimensions of the box are very large
in comparison to the wavelength of interest, the volume �3=dxdydz is very small and
we can approximate the number of modes by dividing the volume of the shell by the
volume per mode. If we finally divide the resulting number by the volume dxdydz of
the box and multiply with 2 to account for the two polarization states, we obtain the
number N.k/ dk of modes per volume in the interval Œk; k C dk�1

N.k/ dk D k2

�2
dk: (4.106)

The dispersion relation Eq. (1.28) ! D kc0=n allows us to evaluate the spectral
density N.!/ of modes as a function of frequency: with N.!/ d! D N.k/ dk we
obtain

N.!/ D !2n3

�2c30
: (4.107)

For large resonators, the mode density is independent of the shape and size of the
resonator, and proportional to the square of the frequency.

1In the same way and with the same result, one can calculate the density of states �B.k/ of electron
Bloch waves in a semiconductor [see Eq. (6.107)].
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4.4 Coherence�

4.4.1 Temporal Coherence

Up to this point, we have treated interference effects of purely monochromatic
waves that are completely coherent. We now extend the discussion to light fields of
constant intensity (stationary fields) that have statistical fluctuations of the phase and
a spectral density that extends over a finite, narrow bandwidth. Such light is emitted,
for example, by luminescence diodes or by thermal light sources with a narrow-band
transmission filter. Since the visibility of interference phenomena depends on the
stability of phase relations, the coherence properties of such light can be analyzed
with interferometers (see, e.g., Goodman 2015).

4.4.1.1 Complex Analytic Signal
We assume that the light field is given by the scalar function u.t/ with the Fourier
transform pair

U! D
Z 1
�1

u.t/e�j!t dt; (4.108)

u.t/ D 1

2�

Z 1
�1

U!e j!t d!: (4.109)

Since u.t/ is real, U�! D U�! , and Eq. (4.109) can be cast in the form

u.t/ D 1

2

�
1

�

Z 1
0

U!e j!t d!
„ ƒ‚ …

OU.t/

C 1

�

Z 1
0

U�!e�j!t d!
„ ƒ‚ …

OU�.t/

�
; (4.110)

defining the so-called analytical OU.t/

OU.t/ D 1

�

Z 1
0

U!e j!t d! (4.111)

with the property

u.t/ D Re
h OU.t/

i
I (4.112)

if u.t/ is normalized so that I D 2 hu.t/u.t/i, then

I D
D OU.t/ OU�.t/

E
(4.113)
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[compare Eq. (1.59)]. A superposition of two fields u1;2.t/, with the corresponding
analytic signals OU1;2.t/, produces the intensity

I D
Dh OU1.t/C OU2.t/

i h OU1.t/C OU2.t/
i�E

D I1 C I2 C 2Re
hD OU1.t/ OU�2 .t/

Ei
: (4.114)

Thus, we can treat partially coherent signals in the same way as coherent signals by
using the analytic signal instead of the complex amplitude.

4.4.1.2 Correlation Functions
If we launch a polychromatic field u.t/ of constant intensity I0 into a Michelson
interferometer, we obtain, at output port 1 (Fig. 4.1(a)), the superposition rtŒu.t/ C
u.t C �/�, where r; t are the reflection and transmission coefficients of the beam
splitter (rr� D tt� D 1=2), and � D 2�s=c is the delay introduced between the two
partial fields by the length difference�s of the interferometer legs. The intensity at
the detector is then, according to Eq. (4.114),

I.�/ D 1

2

�
I0 C Re

hD OU.t/ OU�.t C �/
Ei


; (4.115)

which is the sum of a constant background and the real part of the functionD OU.t/ OU�.t C �/
E
. Obviously, if OU.t/ describes a coherent wave with time depen-

dence e j!t, the real part of this function lies between ˙I0, and the output of the
Michelson interferometer varies between 0 and I0; on the other hand, if OU.t/ and
OU.t C �/ are completely uncorrelated, this function is zero; interferometers are

therefore well suited to analyze the statistical properties of light.
The correlation of two complex analytic signals OUi.t/ and OUj.t/ can be charac-

terized by the time averaged correlation function

�ij.�/ WD
D OUi.t/ OU�j .t C �/

E
I (4.116)

for i 6D j this is the averaged cross correlation which in optics usually refers to the
field at two different points x1;2

�ij.�/ D � .x1; x2;�/ D
D OU.x1; t/ OU�.x2; t C �/

E
I (4.117)
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if i D j, the function is the averaged autocorrelation. Since �ii.0/ D Ii, the local
intensity can be used to introduce the normalized correlation function

�ij.�/ WD � .x1; x2; �/p
I.x1/I.x2/

; 0 � j�ii.�/j � 1; (4.118)

which is called the mutual coherence function, while �ii.�/ is called complex degree
of temporal coherence.

The output intensity Eq. (4.115) of our Michelson interferometer can therefore
be written as

I.�/ D 1
2
.1C Re Œ�ii.�/�/ I0; (4.119)

which varies between the values I0 .1˙ j�11j/ =2. The visibility of the interference
is defined as the contrast ratio .Imax � Imin/=.Imax C Imin/ and is equal to the absolute
value of the degree of coherence,

Imax � Imin

Imax C Imin
D j�11.�/j: (4.120)

For light with statistically distributed phase, the visibility usually decreases with
growing delay � (Fig. 4.19). The delay for which the visibility drops to 1=e is
called coherence time �coh; it corresponds to the longitudinal coherence length
lcoh;long WD c0�coh, that is a measure for the distance in propagation direction
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Fig. 4.19 Michelson interferometer output of a narrow-band polychromatic signal; �s is the
displacement of the scanning mirror, 	0 is the central wavelength of the signal the dashed lines
mark the 1=e-points of the visibility



192 4 Optical Interference

over which a significant phase correlation is maintained. The complex degree of
coherence of monochromatic light OU / e j!t is given by �11.�/ D e�j!� , with
j�11.�/j D 1 for arbitrary times, implying an infinite coherence time and length.

4.4.1.3 Coherence and Spectral Width
To spectrally characterize a polychromatic signal of constant intensity, we start from
the Fourier transform V! of the analytic signal

V! D
Z 1
�1

OU.t/e�j!t dtI (4.121)

jV!j2 can be interpreted as the energy content of the field in the frequency interval
Œ!; !C d!�. For a stationary signal, however, the energy content is infinity, and we
use instead the truncated Fourier transform VT.!/

VT.!/ WD
Z T=2

�T=2

OU.t/e�j!t dt; (4.122)

and define the power spectral density S.!/ of OU.t/ as

S.!/ WD lim
T!1

˝jVT.!/j2
˛

T
: (4.123)

According to the Wiener–Khinchin theorem, S.!/ is the Fourier transform of the
autocorrelation function � D �ii [Eq. (4.116)],

S.!/ D
Z 1
�1

� .�/e�j!� d�; (4.124)

and

� .�/ D 1

2�

Z 1
�1

S.!/e j!� d!: (4.125)

This is the basis of Fourier transform spectroscopy that determines the power
spectrum by numerical Fourier transformation of the autocorrelation function,
measured with a Michelson interferometer. The spectrum is thus obtained without
any dispersive element (grating) and relies only on a power detector.

Quite generally, the widths of a Fourier transform pair such a � and S are
reciprocal to each other. We therefore can conclude that the width of the power
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spectrum and the coherence time are related by

�coh�! D 2�C; (4.126)

where C is a constant (of order 1) that depends on the shape of the spectrum and the
definition of the spectral width. With ! D 2�c0=	0, and �!=�	0 � �2�c0=	20,
we can extract a useful relation between coherence length and spectral width �	0
from Eq. (4.126)

lcoh;long D c0�coh � 	20
j�	0j : (4.127)

A typical thermal white light source has a power spectrum centered around 500 nm
with a bandwidth of several hundred nm; accordingly, the coherence length is a
few �m, which is still sufficient to observe interference patterns from a thin oil
film on water, for example. A Helium–Neon laser (	0 D 632 nm) emits light
with a bandwidth of about 1 MHz, corresponding to a coherence time of 1 �s and
a coherence length of 300 m. With appropriate filters, light of 1 MHz bandwidth
can also be obtained from a thermal white light source. The power of such a
signal is a very small fraction �106 Hz=1015 Hz D 10�9 of the power of thermal
source. Assuming a lamp emitting 1 W of visible light, only 1 nW would be in a
1 MHz spectral window, which has to be compared to the typical 10 mW output
power of a HeNe laser. The temporal coherence properties, however, would be
the same. Thermal light, however, is also characterized by low spatial coherence
(see following section) and differs also in terms of noise statistics from laser light
(Sect. 9.3).

4.4.2 Spatial Coherence

Temporal coherence refers to the phase correlation of a light wave at a selected
point in space at different times. Phase correlations can also be measured at different
points in space. For this purpose, the mutual complex degree of coherence

�.x1; x2; �/ D � .x2; x2; �/p
I.x1/I.x2/

(4.128)

is used; it can be measured by a scheme similar to Young’s double slit interferom-
eter, using two pinholes of variable distance. If the optical field is a beam, the two
points can be chosen in a common plane normal to the propagation direction. The
distance jx2 � x1j at which the visibility of the resulting interference pattern on a
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screen drops below a certain value defines the transverse coherence length lcoh;trans.
Spatial coherence is relevant for the degree to which a light field can be focused or
collimated. A Gaussian beam with a perfectly coherent phase front has a divergence
angle of 2
 D 2	=�w0 [Eq. (3.19)]; the transverse coherence length is given by
the beam diameter 2w0 in this case. We therefore can estimate the divergence of an
arbitrary light beam with the transverse coherence length lcoh;trans to be

2
 � 4	

�lcoh;trans
; (4.129)

since in terms of coherence, the beam can be treated as being composed of
independent coherent beams of diameter lcoh;trans.

4.5 Summary

Interference is a universal phenomenon in optics: any wave function can be under-
stood as the result of an interference of elementary waves radiated by the electrons
of the emitter. In a more applied sense, interference refers to an optical design
where light waves are superimposed to reach a certain goal: high reflectance of
dielectric multilayer mirrors, controlled spatial intensity patterns, field enhancement
in resonators, spectral analysis by gratings, sensing capability of interferometers,
etc.

The partial fields in these devices are usually generated using beam splitters,
or by selecting different parts of an original phase front. The properties of beam
splitters are very interesting mathematically; the amplitude of the fields reflected by
and transmitted through a 50 % beam splitter, for example, has an absolute value
of about 70 % of the original field. A scheme that would allow adding these fields
would produce a field amplitude with an absolute value of 140 %—in violation of
energy conservation. The restrictions imposed by energy conservation, reciprocity
or time reversal invariance reduce the number and values of independent (complex)
parameters of a beam splitter accordingly. The representation of beam splitters by a
scattering matrix provides an elegant and stringent formalism that can be extended
to interferometers and more complex systems.

The central parameter determining interference is the phase of the participating
fields, and a convenient way to analyze related effects is to represent the fields in the
complex amplitude plane. The reader is advised to visualize, as a valuable exercise,
effects such as multiple beam interference with adequate software in this manner.

The crucial role of phase in interference renders interferometers also ideal
tools to analyze the (statistical) coherence properties of light. Since a Michelson
interferometer provides the autocorrelation function of the input signal, it can be
used to determine the coherence length of partially coherent light. A Michelson
interferometer can also be used to measure the power spectrum of a signal, which is
the Fourier transform of the autocorrelation function; this technique, which requires



4.6 Problems 195

a computer to perform the Fourier transform, is an important tool used in infrared
spectroscopy.

4.6 Problems

1. Design a high reflecting multilayer mirror with 10 pairs of layers, nl D 1:3,
nh D 1:8 on glass (nglass D 1:5) with a central wavelength of 660 nm. Calculate
numerically the complex reflection coefficient and the reflectance of the mirror
as a function of the frequency, and display them in a suitable plot. Calculate
the electric field (normalized to the input field) at each interface and plot it as a
function of the layer index, (a) for a wavelength within the “stop band,” (b) for a
wavelength outside the stop band.

2. Same as problem 1 but with a “defect layer” (=missing single layer in the middle
of the stack) that produces a narrow high transmission line in the center of the
“stop band.”

3. Same as problem 1 but with gradually increasing layer thickness (“chirped
mirror”); the center layer pair is designed for 660 nm, the first and last layer
pair is designed for 660 ˙20%, respectively. For simplicity, omit the substrate.
What happens if the propagation direction is reversed? Assume a Fourier
limited Gaussian pulse with a bandwidth equal to that of the mirror; calculate
numerically the pulse shape after (multiple) reflection.

4. Calculate the reflectance R of a silver mirror (n D 0:050 � 3:13 j) at normal
incidence. Can one increase R by coating the silver layer with a single dielectric
layer of appropriate n and thickness? For the analysis, apply either the theory of
the Fabry–Perot interferometer or the multilayer formalism.

5. A hypothetical 1:1 beam splitter (angle of incidence 45ı) has reflection and
transmission coefficients, respectively, of r D t D 1=

p
2, so that R D T D 1=2

and R C T D 1. With two of these beam splitters, build a Mach–Zehnder
interferometer and calculate the output power at the two outputs as a function
of the phase difference in the two interferometer branches. What follows from
the result? Propose a (more) realistic beam splitter.

6. Calculate the reflection and transmission coefficient of a symmetric Fabry–Perot
interferometer and construct its S-matrix. Confirm that it fulfills condition
Eq. (4.27). Repeat for an asymmetric Fabry–Perot interferometer, where the
reflectance of the two mirrors is not identical.

7. Assume an optical attenuation filter with a given complex refractive index and
thickness. Is it possible to apply a single layer antireflection coating at the front
face of the filter so that the reflectance of the filter at a certain wavelength is
zero? Take both surfaces of the filter into account. Formulate the S-matrix of the
filter and compare with Eq. (4.27). What happens if the propagation direction is
reversed?

8. A Michelson interferometer, in its basic form, is not well suited for the measure
of distances because of the cosinusoidal output characteristic [Eq. (4.8)]. To
overcome this problem, assume that the input beam of the interferometer is
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circularly polarized. Insert a 	=8 wave plate in the reference arm with one of its
axes parallel to the plane formed by the interferometer legs. Calculate the output
power as a function of the length difference�s. Next, insert a polarization beam
splitter into the output beam producing � and � polarized outputs. Show that
one of the output powers has a cos 2k0�s dependence, the other a � sin 2k0�s
dependence. Denoting with P� and P� the respective output powers normalized
such that they vary between 0 and 1, show that

R t2
t1
Œ.P��0:5/ PP�� PP�.P��0:5/� dt

is proportional to the distance travelled by the object mirror between t1 and t2.
9. Assume a semiconductor laser emitting two equally strong modes at a wave-

length of � 1�m with a linewidth of 10 MHz each, separated by 1 THz.
Determine the autocorrelation function and discuss visibility and coherence
length.

References and Suggested Reading

Goodman, J. W. (2015). Statistical optics. New York: John Wiley.
Haus, H. A. (1984). Waves and fields in optoelectronics. Englewood Cliffs, NJ: Prentice Hall.
Hecht, E., & Zajac, A. (1987). Optics. San Francisco, CA: Addison-Wesley.
Klein, M. V., & Furtak, T. E. (1986). Optics. New York: John Wiley.
Lipson, S. G., & Lipson, H. (1969). Optical physics. London: Cambridge University Press.
MacLeod, H. A. (2001). Thin-film optical filters. Abingdon: Taylor & Francis.
Sakoda, K. (2005). Optical properties of photonic crystals. New York: Springer.
Saleh, B. E., & Teich, M. C. (2007). Fundamentals of photonics. New York: Wiley.
Sibilia, C., & Benson, T. (2008). Photonic crystals. New York: Springer.



5Dielectric Waveguides

Dielectric waveguides are key components of photonics; the success of optical
communications relies to a great degree on the availability of glass fibers with
extremely low losses. In contrast to (metallic) radio frequency waveguides that are
bulky and lossy, photonic waveguides rely on total internal reflection in dielectrics,
are very small in diameter and can transport optical fields over tens of kilometers
before signal regeneration is necessary.

Electromagnetic fields in waveguides are called modes; of particular importance
are guided modes, having a field distribution that is essentially confined to the core
of the waveguide over the entire propagation distance. Guided modes that do not
change their tranverse amplitude profile during propagation are called eigenmodes,
sometimes also simply waveguide modes. The number of (guided) eigenmodes is
finite, growing with the radius of the waveguide core in relation to the wavelength.
Different eigenmodes usually have different propagation constants (eigenvalues)
and thus different propagation velocity, which renders multimode-waveguides not
very well suited for optical long distance communications or interferometric sensor
applications. As we shall see, however, it is possible to design waveguides such that
they support not more than one mode at a given wavelength.

Apart from cylindrical waveguides (fibers) there are also planar waveguide struc-
tures (integrated optics). Beyond the waveguide as a means for light transportation,
there is a host of waveguide components such as couplers, mirrors, filters, sensors,
modulators, amplifiers, and oscillators. The integration of these components allows,
for example, the setup of all optical data networks.

5.1 PlanarWaveguides

Planar waveguides are layered dielectric structures, with a guiding layer of elevated
propagation index ng (the core) confined between layers of lower propagation index
ns and nc, usually called substrate and cladding, respectively (Fig. 5.1). Such
structures can be produced, for example, by applying a polymer layer on top of
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Fig. 5.1 Geometry of a planar waveguide

a substrate, or by ion diffusion of different dopants (such as HC) into the surface
region of a glass or crystal substrate. In lithium niobate, which is a popular substrate
for electro-optic waveguide structures, the waveguide is produced by diffusion of
Ti-ions into the surface region.

Total internal reflection as the basic guiding mechanism requires the tangential
component of the wave vector (denoted as ˇ) to be larger than the wave number in
the adjacent media (Sect. 2.1.3),

ˇ WD kk D ngk0 sin 
 > ns;ck0; (5.1)

which is possible only if ng>ns;c. Assuming ns �nc, we find the condition

sin 
 > sin 
crit WD ns

ng
: (5.2)

Light is usually launched into the waveguide from the front face of the structure
(Fig. 5.1). Taking refraction at the air/guide interface into account, condition (5.2)
requires that the angle of incidence 
in must fulfill sin 
in<ng cos 
crit; with sin 
in �

in, this can be expressed as


in < ng

q
1 � sin2 
crit D

q
n2g � n2s DW NA: (5.3)

The so-called numerical aperture NA is equal to the angle of acceptance of the
waveguide and scales with the propagation index difference between guiding layer
and substrate.
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λ

β

λ

k0ng cos θ

−k0ng cos θ

Fig. 5.2 Waveguide mode as superposition of two plane waves

5.1.1 Eigenmodes

We consider an infinite planar layered structure with a propagation index profile as
shown in Fig. 5.1. For geometric reasons, plane waves are natural candidates for the
construction of the eigenmodes of such a structure. Let Œk?; 0; kk� be the wave vector
of such a wave, where

k? D ngk0 cos 
; kk D ngk0 sin 
 D ˇI (5.4)

by reflection at the upper interfaces (ng/nc) this wave is converted into another plane
wave with the wave vector Œ�k?; 0; kk�, which is the second wave component of the
eigenmode (Fig. 5.2). For reasons of self-consistency, this wave, after reflection at
the second interface (ng/ns), must be indistinguishable from the original plane wave
(Fig. 5.3).

During its “round trip” between the interfaces, the wave acquires a phase of
�4ak?, where 2a is the distance between the interfaces. According to Sect. 2.1.3,
the reflection coefficient has the form ej�s;c

, implying that the wave experiences
an additional phase shift of �s C �c due to reflection at the two interfaces. Self-
consistency requires that the total phase is an integer multiple of 2�

�4ak? C �s
�;� C �c

�;� D �2m�; m D 0; 1; 2; : : : (5.5)

For �-polarized light, the phase shift according to Eq. (2.46) is

tan
�s;c
� .
/

2
D
q

n2g sin2 
 � n2s;c

ng cos 

: (5.6)

For a given set a, k0, and ng;s;c, Eq. (5.5) has a finite number of solutions 
.m/,
corresponding to modes with the propagation constants

ˇ.m/ D ngk0 sin 
.m/; (5.7)
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Fig. 5.3 Self-consistency
condition in a planar
waveguide: (a) partial wave
with k D Œk

?

; 0; k
k

�; (b)
reflected partial wave
(Œ�k

?

; 0; k
k

�), shown in the
inverted coordinate system;
(c) doubly reflected partial
wave with an accumulated
phase shift of
�4ak

?
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4a

ng/nc

ng/ns

ng/nc

ng/ns

(b)

(a)

(c)

x

x

x

z

z

z

φs

φc

− 2π

and the phase velocity

v
.m/
ph D !

ˇ.m/
DW c0

n.m/eff

; (5.8)

where n.m/eff is the effective propagation index

n.m/eff D ng sin 
.m/ ns;c < n.m/eff < ng: (5.9)

In the following, we restrict the discussion to symmetric waveguides nc D ns, which
simplifies the treatment. The mode condition Eq. (5.5) scales with ak0 D 2�a=	0,
the ratio of waveguide width to wavelength. It is therefore common to introduce a
normalized parameter V

V WD 2�a

	0

q
n2g � n2s D ak0NA D a

!

c0
NA (5.10)

that is also called normalized frequency because it is proportional to the frequency
of the mode; V comprises all relevant properties of the light field and the waveguide.
In addition, the normalized parameters

u WDak? D ak0
q

n2g � n2eff D ak0ng cos 
 D a
q

k20n
2
g � ˇ2

w WDak0
q

n2eff � n2s D a
q
ˇ2 � k20n

2
s

(5.11)

(5.12)
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are introduced that are related to V by

u2 C w2 D V2: (5.13)

Obviously, �2u is the transverse phase difference of the mode between the two
interfaces, while 1=w is the normalized penetration depth of the evanescent field
into the substrate or cladding, as we shall see shortly; note that u and w are both
functions of 
 . Since u.
crit/ D V , total reflection requires u < V .

With these parameters, Eq. (5.6) can be expressed as tan.�=2/ D w=u and the
mode condition Eq. (5.5) assumes the form

tan
�

u � m
�

2



D w

u
(5.14)

or, using Eq. (5.13),

tan
�

u � m
�

2



D

p
V2 � u2

u
: (5.15)

Figure 5.4 shows the graphical representation of the two sides of this transcendental
equation as a function of u D ak?. The left-hand side is a series of tangens
branches (for m D 0; 2; 4; : : : ), interleaved with negative co-tangens branches (for
m D 1; 3; 5; : : : ). The points of intersection with the right-hand side yield solutions
u.m/, and, with Eq. (5.11), 
.m/ and ˇ.m/.

As already mentioned, u cannot exceed V; consequently, the right-hand side of
Eq. (5.15) is defined only for 0<u�V (Fig. 5.4). Since the branches of the left-hand
side are separated by �=2, the number of solutions is

M D
�

V

�=2

�
C 1 (5.16)

(the square brackets denote the maximum integer contained in the argument). The
condition u < V (that is equivalent to 
 < 
crit) is called cutoff condition. In many
applications, the existence of more than one mode is not desired and one designs the
waveguide such that

V < Vc D �=2: (5.17)
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Fig. 5.4 Plot of the left-hand (LS) and right-hand side (RH) of Eq. (5.15) for V D 10

With Eq. (5.10), this monomode or single mode condition can be expressed in terms
of the vacuum wavelength 	0

	0 > 	0;c D 4aNAI (5.18)

	0;c is called the monomode cutoff wavelength of the waveguide. For practical
reasons, NA is usually on the order of 0.1, which implies that the thickness 2a of
the guiding layer of a typical single mode waveguide is a few times the wavelength.

The above discussion refers to �-polarized light; the electric field in this case
has no longitudinal component and the modes are consequently called transverse
electric (TE). To adapt the results for �-polarized light, we only have to replace
the phase shift at reflection according to (2.48) by multiplying the right-hand side
of Eq. (5.15) with .ng=ns/

2 > 1. This results in somewhat larger values of u.m/

and smaller values of ˇ.m/; under weakly guiding conditions .ng � ns/=ng 	 1,
this difference is very small, however. While the electric field of these modes has
a longitudinal component, the magnetic field is purely transverse, and this set of
modes is called transverse magnetic (TM).

The cutoff condition and thus the number of modes is the same for both
polarizations. A so-called monomode waveguide therefore supports actually two
modes of different polarization.
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5.1.2 Transverse Mode Profile

With 
.m/ and the related parametersˇ.m/; u.m/;w.m/ given, we can now construct the
wave function of the modes by combining two plane waves with the wave vectors
k D .˙u=a; 0; ˇ/. We set the origin of the transverse coordinate in the central plane
of the guiding layer so that the interfaces are at x D ˙a, respectively. In the central
plane x D 0, the two plane waves constituting the mode have a phase difference of
m� , so that the field in the guiding layer is

Eg / �
ej.u=a/x C e�j.u=a/xe�jm� � e�jˇz: (5.19)

Introducing the normalized transverse coordinate x0 WD x=a, and neglecting a
prefactor j as irrelevant, we obtain, for jx0j�1

Eg D Eg
0 cos.ux0/e�jˇz for m D 0; 2; 4 : : : ;

D Eg
0 sin.ux0/e�jˇz for m D 1; 3; 5 : : : : (5.20)

Modes of even (odd) order are (anti)symmetric with respect to the central plane
(Fig. 5.5). The mode order m is equal to the number of nodal planes, where the
electric field is zero.

In the adjacent media jx0j > 1, the tangential component of the wave vector

is again ˇ, while the normal component is imaginary, k? D ˙j
q
ˇ2 � n2s k20 D

Fig. 5.5 Transverse mode profile for 5 TE modes of a symmetric waveguide (ns D nc)
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˙j.w=a/; the wave vector is therefore complex, k D Œ˙j.w=a/; 0; ˇ�, and the field
for jx0j>1 is given by

Es D Es
0e
�wjx0je�jˇzI (5.21)

as stated above, w is the spatial decay constant of the field in normalized coordinates.
From the continuity of the (transverse) electric field at jx0j D 1 follows Es

0 D
Eg
0 cos u (even mode order) and Es

0 D ˙Eg
0 sin u (odd mode order).

The set of eigenmodes constitutes a complete base of orthogonal wavefunctions;
any TE field guided by the waveguide can be written as a linear combination of
these modes.

5.1.3 Waveguide Dispersion

An inspection of Fig. 5.4 shows that not only the number of modes, but also the
propagation constant of a mode of given order depends on the frequency. This is
a consequence of the fact that the mode condition Eq. (5.15) depends on the ratio
a=	0 of the waveguide; one and the same waveguide appears to be wider for light
of shorter wavelength. This purely geometric contribution to the dispersion ˇ.m/.!/
is called waveguide dispersion and has to be taken into account in addition to the
material dispersion ng;s;c.!/ of the waveguide materials. The waveguide dispersion
can be obtained from Eq. (5.15) assuming constant ng;s;c.!/ and is shown in Fig. 5.6
for a typical waveguide. The dispersion functions ˇ.m/.!/ are confined between
the dispersion lines ˇ D k D .ng=c0/! and ˇ D k D .ns=c0/! for free wave

Propagation constant

y
c

n
e

u
q

e r
F

Fig. 5.6 Dispersion diagram of a planar waveguide
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Fig. 5.7 Transverse intensity profile of the TE1-mode at (a) V�Vc, (b) V	Vc

propagation in the respective medium (guide or substrate/cladding). With decreasing
frequency, each dispersion curve approaches the dispersion line of the substrate until
it terminates on this line (cutoff). This is to be expected from Eqs. (5.10) and (5.11),
according to which neff ! ns near the cutoff. Far above the cutoff frequency, the
effective propagation index approaches the free propagation index of the guiding
layer. The physical reason for this becomes obvious from an inspection of Fig. 5.7:
close to the cutoff frequency, the penetration depth 1=w of the evanescent field
increases [Eq. (5.12)], so that a large fraction of the mode profile lies in the low
index substrate/cladding. Far above the cutoff, the penetration depth is small and
the mode profile is concentrated in the guiding layer.

The combined waveguide and material dispersion is called chromatic dispersion;
the chromatic dispersion coefficient Eq. (3.159) of a waveguide can, in very good
approximation, be calculated as the sum of the waveguide and material dispersion
coefficients, provided that the latter is the same for guiding layer and substrate.

The existence of more than one mode at a given frequency is often referred to as
mode dispersion, and the dependence of the propagation index on the polarization
as polarization dispersion.

5.2 Fiber Waveguides

So far we have discussed the confinement of a light field in one dimension. In
most applications, confinement in both lateral dimensions is required. This can be
obtained by designing the guiding medium in the shape of a rectangular channel that
is either embedded in a medium of lower propagation index (channel waveguide) or
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r0

n(r)

r0 r0 r0

n(r)

(a) (b)

Fig. 5.8 Refractive index profile of (a) a step index fiber, (b) a gradient index fiber

is placed on top of a planar substrate layer (ridge waveguide). The mathematical
treatment is similar to that of a planar waveguide, with the main difference that for
each of the two transverse dimensions, a separate mode condition is established.
Such waveguides are of great importance for integrated optical devices such as
modulators, sensors, couplers, and multiplexers that will be discussed later.

For the transportation of light signals over large distances, cylindrical waveguides
(fibers) are employed. They can be produced in virtually arbitrary length and support
data rates above 100 Gbit/s; under optimized conditions, the signal loss is as low as
0.16 dB/km.

The operating principle of such waveguides is the same as that of planar dielectric
waveguides. A guiding core of elevated propagation index nc is surrounded by
an optically thinner cladding. For protection purposes, this fiber, which is usually
made out of silica glass, is coated by plastic layer that has no optical function.
The transition between core and cladding can be step-like (step index fibers) or
continuous (gradient index fibers), as shown schematically in Fig. 5.8. Gradient
fibers will be discussed later; the following treatment of step index fibers is very
similar to that of symmetric planar waveguides.

5.2.1 Step Index Fibers

Mathematically, discontinuous structures such as propagation index steps can be
treated by imposing boundary conditions on the wave equations. The description of
planar waveguides was particularly simple because the boundary condition problem
at a planar interface has already been solved in Sect. 2.1.3, yielding the Fresnel
coefficients. For a cylindrical geometry, we have to start from the Helmholtz
equation Eq. (1.22) in cylindrical coordinates z; r; '

@2U

@r2
C 1

r

@U

@r
C 1

r2
@2U

@'2
C @2U

@z2
C n2k20U D 0; (5.22)
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where U is a cartesian component of the E or H-field. With the separation-ansatz

U.r; '; z/ D R.r/˚.'/e�jˇz; (5.23)

Eq. (5.22) yields the azimuthal differential equation

d2˚

d'2
C l2˚ D 0 (5.24)

with the two independent solutions

˚ D e˙jl'; (5.25)

which can be combined to cos l' or sin l', respectively, where l D 0; 1; 2; : : : to
meet the self-consistency condition U.'/ D U.' C 2�/.

For a given value of l, the radial differential equation is then

d2R

dr2
C 1

r

dR

dr
C
�

n2.r/k20 � ˇ2 � l2

r2

�
R D 0: (5.26)

We introduce the normalized radius � WDr=r0, where r0 is the core radius, so that

n.�/ D ng for � � 1

n.�/ D nc for � > 1: (5.27)

With this propagation index profile, Eq. (5.26) becomes

d2R

d�2
C 1

�

dR

d�
C
�

u2 � l2

�2

�
R D 0 for � � 1 (5.28)

d2R

d�2
C 1

�

dR

d�
�
�

w2 C l2

�2

�
R D 0 for � > 1; (5.29)

where, in analogy to Eqs. (5.10)–(5.12), the normalized frequency V and the
parameters u and w, defined as

V D r0k0
q

n2g � n2c DW r0k0NA

u WD r0
q

n2gk20 � ˇ2

w WD r0
q
ˇ2 � n2ck20

(5.30)

(5.31)

(5.32)
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Fig. 5.9 Bessel functions of first kind

have been used; the numerical aperture is defined in the same way as in Eq. (5.3).
Again, u2 C w2 D V2, and u cannot exceed V .

The solutions of Eqs. (5.28) and (5.29) are Bessel functions

R.�/ D AgJl.u�/ for � � 1

R.�/ D AcKl.w�/ for � > 1; (5.33)

where the Bessel functions Jl of first kind and l-th order resemble sine- and cosine
functions with radially decaying amplitude (Fig. 5.9), and the modified Bessel
functions Kl of second kind and l-th order resemble decaying exponential functions
(Fig. 5.10); the amplitudes Ag;c are determined by the boundary conditions.

Assuming weak guiding .ng � nc/=ng 	 1, total internal reflection requires
grazing incidence of the field at the core/cladding interface, so that the field
has only very small longitudinal components; accordingly it can be treated as
approximately transverse electromagnetic (TEM) and the boundary conditions
require the continuity of R.�/ and its derivative dR.�/=d� at � D 1

AgJl.u/� AcKl.w/ D 0

AguJ0l.u/� AcwK0l .w/ D 0; (5.34)

where the prime denotes the derivative in respect to �. For this system of equations
to have non-trivial (i.e., non-zero) solutions, the system determinant must vanish

Jl.u/wK0l .w/ � Kl.w/uJ0l.u/ D 0: (5.35)
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Fig. 5.10 Modified Bessel functions of second kind

Employing the identities

J0l.x/ D �.l=x/Jl.x/C Jl�1.x/

K0l .x/ D �.l=x/Kl.x/ � Kl�1.x/ (5.36)

(see, e.g., Abramowitz and Stegun 2014), we can express Eq. (5.35) by

�Jl�1.u/Kl.w/

Jl.u/Kl�1.w/
D w

u
I (5.37)

this is the mode condition for cylindrical step index waveguides under the weakly
guided mode approximation.

Figure 5.11 shows both sides of Eq. (5.37) for l D 0; 1 as a function of u
(note the similarity with Fig. 5.4), where the identities J�1.u/ D �J1.u/ and
K�1.u/ D K1.u/ have been used. For a given value of l, Eq. (5.37) can have
one or more solutions u.lm/, denoted by the radial mode index m D 1; 2; : : :

(Fig. 5.12), with corresponding propagation constants ˇ.lm/ given by Eq. (5.31), and
wave functions according to Eq. (5.23). A mode is therefore characterized by the two
indices l and m; according to Eq. (5.25), for l �1 each set .l;m/ can be represented
by two azimuthal field distributions that are offset by 90ı and are, for symmetry
reasons, degenerate (i.e., they have identical propagation constants). Moreover, each
set .l;m/ allows for two orthogonal polarization states that are also degenerate. It
is therefore common to classify these degenerate modes as one, linearly polarized
mode LPlm; while l denotes the number of azimuthal nodes, m gives the number of
radial intensity peaks (Fig. 5.13). The mode profile of LP01 is similar to a Gaussian
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Fig. 5.11 Plot of the left-hand (LS) and right-hand (RS) sides of the mode equation (5.37) of a
step index fiber for l D 0 and l D 1, V D 10

Fig. 5.12 Solutions of Eq. (5.37) as a function of the normalized frequency V

profile, so that a Gaussian beam of appropriate waist diameter is well suited to excite
this mode in a fiber.

We have mentioned before that u < V , and this condition also shows up in
Fig. 5.11, where the right-hand side vanishes at u D V . For a given waveguide, V can
be varied by changing the frequency of the light field; with decreasing (normalized)
frequency, there are less and less intersections and thus solution of Eq. (5.37). If V
falls below the value 2.405 (the first root of the Bessel function J0, see Fig. 5.9),
there is only one solution left, LP01. The upper frequency limit for single mode
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(a) (b)

Fig. 5.13 Intensity profiles of two modes in a fiber: (a) LP01 (b) LP23

operation of a cylindrical waveguide is therefore given by

V < Vc D 2:405I (5.38)

in terms of wavelength, the single mode limit is

	0 > 	0c D r0NA
2�

2:405
: (5.39)

As an example, the maximum core radius of a single mode fiber with NA D 0:1 and
	0c D 1�m is 3.8�m.

Figure 5.14 shows the effective propagation index neff of the various modes; it
increases with frequency and approaches ng far above the cutoff frequency of the
respective mode. Close to the cutoff, neff tends toward the cladding index nc, just as
in the case of planar waveguides, and for the same reason: as illustrated in Fig. 5.15,
the fraction of the mode that is transported in the core decreases with decreasing
frequency and approaches zero at cutoff. To prevent excessive losses, the cladding
has to be thick enough to accommodate the evanescent field; typical values are
around 50�m, so that the total diameter of a single mode fiber for 1�m-wavelength
light is about 100�m.

The dispersion of neff also results in a group velocity dispersion (Fig. 5.16) due
to the waveguide structure: different modes have different group velocities, and the
group velocity of a given mode depends on the frequency.
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Fig. 5.14 Effective propagation index neff of the modes in a step index fiber; the phase velocity is
vph D c0=neff

Fig. 5.15 Fraction of the energy flux transported inside the core

5.2.2 Fiber Losses and Dispersion

High quality fiber waveguides are usually made of quartz glass (SiO2) whose
propagation index is modified by controlled doping with GeO2 and other dopants
that increase (Ge, P) or decrease (B) the refractive index. To avoid contamination
with absorbing impurities, SiO2 is grown by modified chemical vapor deposition
(MCVD) from a gas phase reaction of SiCl4 and O2

SiCl4 C O2 ! SiO2 C 2Cl2:
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Fig. 5.16 Group velocity of modes in a step index fiber as a function of the normalized frequency
V

Dopants are added by admitting fractions of GeCl4, POCl3, or BCl3 to the reaction
(10–20 mol% are required to change the index by 1 %). The reactor is a rotating
quartz glass tube of some 10 mm diameter. The silicon oxide including the dopant
oxide is deposited on the inner wall of the tube and fused to glass at about 1000 ıC.
The resulting tube is collapsed under vacuum into a so-called preform that shows
the refractive index profile of choice. The preform is then heated to 2000 ıC and the
glass fiber is drawn from it in a vertical tower; immediately after cooling it is coated
by a polymer film to protect it from diffusive impurities such as hydrogen.

Transmission distance and channel data transmission capacity is limited by
losses and group velocity dispersion. Losses are specified by a loss coefficient
Œ10 lg P.0/=P.l/�=l in decibel per kilometer (dB/km), where P.0/ is the optical
power fed into the fiber and P.l/ is the output power after the distance l. Silica
glass fibers can have loss coefficients as low as 0.16 dB/km, which corresponds to
a transmission of 10 % for a fiber length of 62.5 km or an attenuation by a factor
of 40 for a 100 km long fiber. Figure 5.17 shows the various loss contributions and
their wavelength dependence. The global loss minimum is found at a wavelength
of 1.55�m; in the visible, the losses are much higher, resulting from the wings
of electronic resonances in the UV and from Rayleigh scattering that scales with
1=	40 /!4 and originates from density fluctuations in the glass that depend on the
melting point of the glass.1 In the near infrared, there are two vibrational absorption

1The !4-dependence can be understood from an inspection of Eq. (2.1): the field scattered from an
inhomogeneity scales with the second time derivative @2P=@t2/!2; the radiated power is therefore
proportional to !4.
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Fig. 5.17 Fiber losses and loss mechanisms of a quartz glass fiber as a function of wavelength
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Fig. 5.18 Schematic illustration of dispersive effects on pulse propagation in fibers (a) waveguide
and material dispersion, (b) mode dispersion

lines at 0.95 and 1.39�m that are overtones of the hydroxyl vibration at 2.8�m;
a OH�-concentration of 10�6 results in a loss of 30 dB/km at 1.39�m. For this
reason, the in-diffusion of hydrogen into the silica matrix must be kept as low as
possible (<10�8). The absorption “valleys” at 1.3 and 1.55�m define the operating
wavelengths of optical communications.

Group velocity dispersion (GVD) is the other limiting factor for the transmission
capacity of fibers. Optical data are transmitted in the form of pulses, and the pulse
transmission rate determines the data rate. Mode dispersion results in the splitting
of a single input pulse into multiple pulses because of the different group velocities
of the modes (Fig. 5.18). This problem (the group delay differences can be as large
as 10 ns/km) is avoided in single mode fibers.
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The combined waveguide and material dispersion results, as discussed in
Sect. 3.2, in pulse broadening during propagation. If the broadening exceeds the
temporal separation of the pulses, they start to overlap, rendering their identification
at the detector impossible. The relevant measure of group velocity dispersion is the
dispersion coefficient D! or D	 that denotes the differential change of the group
delay as a function of frequency. The treatment in Sect. 3.2 is independent on the
underlying dispersion mechanism and its results can be directly applied to the
chromatic dispersion of a waveguide. The only formal difference is the replacement
of the wave number k by ˇ, or n by neff. Thus, Eq. (3.162) assumes the form

D	 D �	0
c0

d2neff

d	20
I (5.40)

the pulse broadening Eq. (3.175) over a distance l is qualitatively given by

�� � ljD! j�! D ljD	j�	0; (5.41)

where �! and �	0, respectively, are the spectral bandwidth of the pulse. Typical
values of jD	j are between 0 and 100 ps/nm km, so that dispersive pulse broadening
plays a significant role only for sub-ns pulses.

As an inspection of Fig. 5.19 shows, the waveguide dispersion coefficient
is strongly frequency dependent and may actually change its sign at a certain

Monomode-  
   range

Fig. 5.19 Waveguide dispersion coefficient of a step index fiber as a function of normalized
frequency; for V < 2:405, the coefficient D! is positive and can be compensated only by negative
(anomalous) material dispersion
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Total dispersion

Wavelength [mm]

Fig. 5.20 Dispersion flattened fiber waveguide: the refractive index profile is designed such that
the group delay dispersion is close to zero over a broad spectral range

frequency. Within the single mode range, however, the waveguide dispersion of an
ordinary step index fiber is positive and requires negative material dispersion to
be compensated. As can be seen from Fig. 3.17, the material dispersion coefficient
of silica glass goes to zero (and changes sign) at about 1.27�m. By sophisticated
choice of the index profile (exploiting the frequency dependence of the mode
diameter), the waveguide dispersion can be modified such that the combined
chromatic dispersion is zero at a wavelength of choice (dispersion shifted), or close
to zero over a selected wavelength range, such as the attenuation valley at 1.55�m
(dispersion flattened, Fig. 5.20). Dispersion flattened fibers are used for wavelength-
multiplexed optical communications, where several closely spaced carrier waves act
as independent data channels (wavelength division multiplexing, WDM).

For certain applications such as interferometric fiber sensors, the existence of
two degenerate polarization modes is undesired. To lift the degeneracy, the fiber can
be produced with a non-cylindric cross section; such polarization maintaining fibers
are birefringent and suppress the coupling between the two polarization states.

5.2.3 Gradient Index Fibers

As an instructive example for a waveguide with a continuous propagation index
profile, we assume a fiber with a parabolic profile

n.r/ D n0


1 � 1

2
˛2gr2

�
: (5.42)
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We have encountered such a structure already in the context of Gaussian beams
in Sect. 3.1.3, where a slice of glass with such an index profile was employed as
(GRIN)-lens. In a sense, a gradient index fiber (also known as graded index fiber) is
just a very long GRIN-lens.

As we have seen in Sect. 3.1.4, the q-parameter of a Gaussian beam propagating
along the axis of such a structure develops from q at input to q0 at output according
to the ABCD-transformation Eq. (3.65)

q0 D Aq C B

Cq C D
(5.43)

with the ABCD matrix Eq. (3.94)

MGRIN D
�

cos˛gd .1=n0˛g/ sin˛gd
�n0˛g sin ˛gd cos˛gd

�
: (5.44)

We now search for a Gaussian field distribution that conserves its q-parameter
throughout the propagation, and is therefore an eigenmode of the fiber, by solving
the equation q0 D q for arbitrary d. The solutions

q1;2 D A � D

2C
˙ 1

2C

p
.A � D/2 C 4BC (5.45)

with the ABCD matrix Eq. (5.44) are purely imaginary

q1;2 D ˙j
1

n0˛g
I (5.46)

from the relations given in Table 3.1 we obtain

z0 D Im Œq� D 1

n0˛g
D n0�w20

	0
(5.47)

and

w20 D 	0

�n20˛g
: (5.48)

The radial field distribution E.r/ / e�r2=w20 represents an eigenmode of the
parabolic gradient index fiber because the distributed GRIN-lens compensates the
tendency of the field to diverge. Since the ABCD formalism is also applicable
to Hermite–Gaussian beams (Sect. 3.1.5), Hermite–Gaussian field profiles with a
w0-parameter given by Eq. (5.48) also represent eigenmodes of such a fiber. The
intensity profile of these modes is given by Eq. (3.98) and shown in Fig. 3.14.
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The axial dependence of the wave function follows from Eqs. (3.95) and (3.97)
to be e�jŒkz�.1ClCm/�.z/�!t�, where l and m denote the order of the Hermite–Gaussian
mode. The propagation constant ˇ.lm/ is obtained by taking the z-derivative of the
phase Œkz � .1C l C m/�.z/� !t� at z D 0. With Eq. (3.16) we find

ˇ.lm/ D k � .1C l C m/=z0 D n0Œ!=c0 � .1C l C m/˛g�: (5.49)

Modes with the same value l C m are degenerate in the sense that they have the
same propagation constant. Note that any linear combination of mutually degenerate
eigenmodes is again an eigenmode. The group velocity of the mode .lm/ follows
from 1=vg D dˇ= d! to be vg D c0=n0, independent of the mode order. Different
from step index fibers (Fig. 5.16), the mode dispersion of parabolic gradient index
fibers vanishes.

In practice, the index profile is parabolic only up to a certain radius r0 and
remains constant in the cladding region r > r0 (Fig. 5.8b). Guiding requires
that the effective mode propagation index ˇ=k0 is larger than the cladding index,
ˇ=k0 > n0



1 � 1

2
˛2gr20

�
. With Eq. (5.49) we obtain

n0

�
1 � .1C l C m/˛g

k0

�
> n0

�
1 � 1

2
˛2gr20



(5.50)

or

1C l C m < r20k0˛g=2: (5.51)

Thus, the core radius r0 (and the coefficient ˛g) determines the number of guided
modes in a graded index fiber.

The treatment given here is a very coarse one, since the many approximations
used are valid only for weak confinement (w0 
 	0). Nonetheless, the main features
of gradient index fibers become clear. A more rigorous analysis shows that the mode
dispersion of the group velocity is not exactly zero but still much smaller than that
of a step index fiber with the same number of modes. For this reason, gradient index
fibers are the preferred choice if multimode fibers are to be used. The attractivity
of multimode fibers lies in the fact that their core diameter is much larger than that
of single mode fibers, so that light insertion and fiber–fiber connection is much less
demanding.

5.3 Integrated Optics

Integrated optics comprises optical devices that work without free space propagation
and rely on waveguides. The waveguides used can be planar or fibers. Passive
components such as splitters, couplers, mirrors and interferometers as well as laser
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amplifiers and lasers can be realized in an integrated fashion. Optically integrated
structures can also be built on a semiconductor substrate, allowing for the integration
of light sources and detectors (optoelectronic integrated circuits, OEICs).

5.3.1 Waveguide Couplers

One of the most important components of integrated optics is the waveguide
coupler (Fig. 5.21) that allows the controlled exchange of optical energy between
waveguides. The operating principle is to use the evanescent field of one waveguide
to produce a polarization current in the other. The coupling coefficient that describes
the transfer is, as we will see, determined by the overlap integral of the transverse
mode profiles of the two modes involved (Fig. 5.26).

The exact solution of the coupling problem requires solving the wave equation
under the given geometric conditions. For weak coupling, an elegant approximative
solution is provided by the coupled modes formalism (Haus 1984; Yariv 1973) that
starts from the modes of the isolated waveguides and treats the interaction between
them as small perturbation.

The complex wave function in waveguide .i/ is assumed to be

Ei D ai.z/ui.x; y/; i D 1; 2; (5.52)

where ui.x; y/ is the transverse mode profile and the amplitude ai.z/ is normalized
such that

ai.z/a
�
i .z/ (5.53)

is the power in waveguide .i/ at z. In the framework of perturbation theory, we
assume that the presence of a second waveguide in the vicinity of the first one

Fig. 5.21 Geometry of a waveguide coupler
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leaves the profiles u1;2.x; y/ unaltered, influencing only the propagation constants
and amplitudes of the modes.

Let the undisturbed modes have the propagation constants ˇ1;2 so that ai.z/ D
ai.0/e�jˇiz, and the differential change of ai is given by

dai

dz
D �jˇiai: (5.54)

The perturbation of one mode by the other is taken into account by a cross term �ijaj

da1
dz

D �jˇ1a1 C �12a2

da2
dz

D �jˇ2a2 C �21a1; (5.55)

where �ij is the respective coupling coefficient. While the coupling modifies the
mode amplitudes, the total power transported in the waveguide system is conserved.
With Eqs. (5.53) and (5.55) we can express the differential power change in
waveguide .i/ as

d.aia�i /
dz

D ai
da�i
dz

C a�i
dai

dz
D a�i �ijaj C ai�

�
ij a�j I (5.56)

energy conservation requires

d.a1a�1 C a2a�2 /
dz

D a�1a2.�12 C ��21/C a1a
�
2 .�
�
12 C �21/ D 0: (5.57)

This must be valid for arbitrary a1;2 (for example, a1 D a2 D 1, or a1 D 1, a2 D j),
so that energy conservation imposes the condition

�12 D ���21: (5.58)

We therefore can set �12DW�, �21 D ���; in Sect. 5.3.3 we will derive an equivalent
relation for counterpropagating modes.

5.3.1.1 Eigenstates of aWaveguide Coupler
At a given point z, the coupled waveguide system can be represented by a vector

 .z/ D
�

a1.z/
a2.z/

�
; (5.59)
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where a1;2.z/ are the field amplitudes in the respective waveguide. By definition,
eigenmodes are states that conserve the ratio a1=a2 during propagation, satisfying
the eigenvalue equation  .z/ D 	 .0/, where j	j D 1 in a lossless system. We
set 	 D e�jˇz (ˇ is the propagation constant of the eigenstate) so that d .z/= dz D
�jˇ .z/. Substitution in Eq. (5.55) yields

�
j.ˇ � ˇ1/ �

��� j.ˇ � ˇ2/

� �
a1
a2

�
D 0: (5.60)

Existence of non-trivial solutions ai;j ¤ 0 requires the determinant of the matrix to
vanish

.ˇ � ˇ1/.ˇ � ˇ2/ � ��� D 0; (5.61)

yielding two propagation constants

ˇ˙ D Ň ˙ K; (5.62)

with

K D
p
.�ˇ/2 C j�j2; (5.63)

where

Ň D ˇ1 C ˇ2

2
; �ˇ D ˇ1 � ˇ2

2
: (5.64)

The corresponding eigenvectors follow after substitution of ˇ˙ in Eq. (5.60)

 ˙ D
� ˙j�

K ��ˇ

�
e�jˇ˙z: (5.65)

Any arbitrary state of the coupled system can be synthesized as a linear combination
of these eigenstates

 .z/ D AC C C A� �I (5.66)

the coefficients A˙ follow from the boundary conditions .0/. The existence of two
different propagation constants results in a spatial beating of the amplitudes along
the waveguides (Fig. 5.22), very similar to the beating of a superposition of two
monochromatic signals in time.
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Fig. 5.22 Power transfer
between two coupled
waveguides for different
values of the phase mismatch
�ˇ; only for �ˇ D 0,
complete transfer is possible

5.3.2 Splitters and Switches

As a simple example, we assume that at z D 0, light is launched into waveguide (1)
only, so that a1.0/ D a0, a2.0/ D 0. The corresponding linear combination turns
out to be

a1.z/ D a0

�
cos Kz � j

�ˇ

K
sin Kz

�
e�j Ňz

a2.z/ D �a0
��

K
.sin Kz/ e�j Ňz: (5.67)

In the synchronous case ˇ1 D ˇ2 D Ň (coupling of two identical monomode
waveguides, for example) this simplifies to

a1.z/ D a0 cos j�jze�j Ňz

a2.z/ D �a0
��

j�j sin j�jze�j Ňz; (5.68)
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Fig. 5.23 Spatial
development of the power
carried in the two branches of
a 3 dB-coupler

Input

Output

with the guided powers Pi.z/ D aia�i

P1.z/ D P1.0/ cos2 j�jz
P2.z/ D P1.0/ sin2 j�jz: (5.69)

The light field, initially confined to waveguide (1), is completely transferred to
waveguide (2) within a distance of l0 D �=2j�j and keeps swinging between the
two waveguides over the entire interaction length (Fig. 5.22); diffusive interaction,
by contrast, would lead to an equilibrium distribution between the two channels
after a sufficiently long interaction distance.

At z D l0=2, 50 % of the power is transferred; a coupler of this length is called a
3 dB-coupler (because 10 lg 0:5 D �3 dB) and is a waveguide-implementation of a
1:1 beam splitter (Fig. 5.23).

It is important to note that � (and in general also �ˇ) is frequency dependent
because the mode overlap that determines the coupling depends on the wavelength;
for a given interaction length, the splitting ratio therefore may be different for
different frequencies, so that waveguide couplers also have filtering characteristics.
With proper layout, light containing two different frequencies can be split by a
“dichroic” coupler so that the two output branches of the coupler contain only one
of the frequencies each (wavelength selective coupler, WSC).

In the asynchronous case, ˇ1 ¤ˇ2, the power transfer is incomplete (Fig. 5.22),
because the phase difference between the fields in the two waveguides changes
during propagation. From Eqs. (5.63) and (5.67) follows

P2.z/

P1.0/
D j�j2

K2
sin2 Kz D

sin2
hp
1C .�ˇ=j�j/2j�jz

i

1C .�ˇ=j�j/2 � 1I (5.70)
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Fig. 5.24 Power transfer ratio of a coupler as a function of the normalized phase mismatch�ˇ=l0;
l0 D �=2j�j

Fig. 5.25 Electro-optically controlled waveguide coupler

this transmission function is shown in Fig. 5.24. Obviously, efficient power transfer
is possible only if .�ˇ=j�j/2 	 1. On the other hand, if one manages to influence
�ˇ externally, Eq. (5.70) allows controlling the transmission ratio between 0 and 1.
Varying ˇ1;2 is possible via the electro-optic effect (which requires the coupler to
be made out of an appropriate medium such as lithium niobate). Such a device is
shown in Fig. 5.25; the interaction length is chosen to be l0 D �=2j�j, so that for
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�ˇ D 0, the transfer is complete. From Eq. (5.70) we obtain the transfer ratio as a
function of �ˇ

P2.l0/

P1.0/
D
��
2


2 sin2 X

X2
(5.71)

where X WDp
.�ˇl0/2 C .�=2/2; for �ˇl0 D p

3�=2, the transfer is equal to zero
(Fig. 5.24). With appropriate waveguide design, the voltage needed to achieve the
required detuning�ˇ is as low as several Volt; the switching speed is about 10 GHz
and the extinction ratio (on/off) is typically 20 dB (10�2).

5.3.2.1 Coupling Coefficient
Physically, the two waveguides are defined by the elevated local susceptibility
Œ��.x; y/�1;2 D Œ�".x; y/�1;2 (Fig. 5.26). The evanescent field of waveguide (1) pro-
duces a polarization current density within waveguide (2), of which the component
j!"0Œ�".x; y/�2E1.x; y/ acts as a source of the field in this waveguide; the remaining
component, proportional to the substrate susceptibility, belongs to waveguide (1).
According to Eq. (1.54), the product of this current density with the field E2 in
waveguide (2) is equal to the temporal change of the local energy density. Using
Eq. (1.59), we can calculate the averaged differential power transfer to waveguide
(2)

d.a2a�2 /
dz

D � 1
2
Re

�Z
E�2 j!"0Œ�".x; y/�2E1 dA

�

D � 1
4

�Z
E�2 j!"0Œ�".x; y/�2E1 dA C c:c:

�

D � 1
4

�
j!a�2a1"0

Z
Œ�".x; y/�2u

�
2 .x; y/u1.x; y/ dA C c:c:

�
; (5.72)

Fig. 5.26 Overlap of the transverse profiles of two coupled waveguides; the dashed lines show
the integration limits for the calculation of the coupling coefficient �12
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where
R

dA denotes the integral over the cross section of waveguide (2). Comparing
this result with Eq. (5.56), we obtain

�21 D � 1
4
j!"0

Z
Œ�".x; y/�2u

�
2 .x; y/u1.x; y/ dA: (5.73)

Since Œ�".x; y/�2 D 0 outside the waveguide, the coupling coefficient is determined
by the overlap integral of the two transverse mode profiles within the waveguide
cross sectional area (Fig. 5.26). The exponential decay of the evanescent field
of mode (1) is responsible for the roughly exponential decrease of the coupling
coefficient as a function of distance between the waveguides.

5.3.2.2 S-Matrix of a Coupler
For a symmetric waveguide coupler, ˇ1 D ˇ2 D Ň and �12 D �21 D �, which
because of Eq. (5.58) implies a purely imaginary value of �. For the mode profiles
shown in Fig. 5.26, Eq. (5.73) yields � D �jj�j. The propagation constants are
ˇ˙ D Ň ˙ j�j, corresponding to the eigenmodes

 C.z/D
�
1

1

�
e�j. ŇCj�j/z;  �.z/ D

�
1

�1
�

e�j. Ň�j�j/z; (5.74)

as illustrated in Fig. 5.26.
An arbitrary state with the inputs a1.0/, a2.0/ can be written as linear combina-

tion Eq. (5.66) with the coefficients A˙ D Œa1.0/˙ a2.0/�=2; propagation over the
distance z results in

�
a1.z/
a2.z/

�
D
�

a1.0/ cos j�jz � ja2.0/ sin j�jz
�ja1.0/ sin j�jz C a2.0/ cos j�jz

�
e�j Ňz: (5.75)

This can be cast in the form

�
a1.z/
a2.z/

�
D S

�
a1.0/
a2.0/

�
e�j Ňz; (5.76)

where

S D
�

cos j�jz �j sin j�jz
�j sin j�jz cos j�jz

�
(5.77)

is the scattering matrix (compare Sect. 4.1.3) of the coupler.
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5.3.2.3 Coupler as Phase Detector
Of particular interest is the 3 dB-coupler (j�jz D �=4) already mentioned above,
with the scattering matrix

S3 dB D
p
2
2

�
1 �j

�j 1

�
D
p
2
2

�
1 e�j�=2

e�j�=2 1

�
I (5.78)

apart from its power splitting capacity, such a coupler serves as phase detector: if
signals of equal magnitude but different phase (a1;2.0/ D a0e˙j��) are launched
into its input ports, the output amplitudes according to Eq. (5.76) are

�
a1;out

a2;out

�
D p

2a0e�j�=4

�
cos.�� � �=4/

� sin.�� � �=4/

�
; (5.79)

and the respective output powers, with cos2 x D .1C cos 2x/=2, are given by

P1;out D 2ja0j2 cos2 .�� � �=4/ D ja0j2 Œ1C cos.2�� � �=2/�
P2;out D 2ja0j2 sin2 .�� � �=4/ D ja0j2 Œ1 � cos.2�� � �=2/� ; (5.80)

so that

�� D arctan

s
P2;out

P1;out
C �

4
: (5.81)

We will return to this result in Sect. 5.3.4 in the context of waveguide interferometers
and sensors.

Waveguide couplers can be realized in integrated planar optics, but also in
fibers: for this purpose, two fibers are twisted and stretched close to the melting
temperature. Stretching reduces the core diameter and increases the extension of the
evanescent field so that it can overlap with the core of the second fiber.

5.3.3 Waveguide Gratings

Another important waveguide component is the waveguide grating, that is a periodic
waveguide structure that can act as a filter and/or reflector. These components
are conceptually similar to dielectric multilayer systems as treated in Sect. 4.2.2.
Waveguide gratings are realized by a periodic longitudinal modulation of waveguide
parameters such as the core refractive index or the transverse waveguide profile
(Fig. 5.27). A waveguide mode travelling in the forward direction is scattered at
these inhomogeneities and can, under proper conditions, couple into a backward
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z
z=0z=−l

χ(z)

Af (−l) Af (0)

Ab(−l) Ab(0)

Fig. 5.27 Axial variation of the susceptibility in a waveguide grating

propagating mode. The performance of such structures can be described in the
framework of the coupled modes formalism. A treatment analog to that of dielectric
multilayer structures is not feasible in general, because the periodic modulation is
usually continuous and not step-like.

Consider a waveguide whose core is “perturbed” by a (small) periodic modu-
lation of the propagation index, nc.z/ D nc;0 C �nc cos.2�z=�g/, where �g is
the spatial period of the modulation.2 Since n D p

�C 1, this corresponds to a
modulation of the susceptibility, �.z/ D �C��.z/ cos.Kgz/, where�� D 2nc;0�nc

and Kg WD 2�z=�g. The electric field of a mode propagating in the forward direction
with the propagation constant ˇf produces a polarization density that contains an
alternating component proportional to

cos.Kgz/e�jˇfz / e�j.ˇfCKg/z C e�j.ˇf�Kg/z: (5.82)

These “sidebands” of the unperturbed mode can exchange energy with other modes
of the waveguide, provided that their propagation constant is close to ˇf ˙ Kg.
Here, we are interested in the coupling to the backward propagating mode with the
propagation constant ˇb D �ˇf, which is possible if the so-called Bragg condition

ˇf � Kg D ˇb (5.83)

or, equivalently,

Kg D 2ˇf (5.84)

is met; the frequency (wavelength) that corresponds to this condition is called
Bragg frequency !B (wavelength 	0B). If neff is the effective propagation index of

2If the periodic longitudinal modulation is not cosinusoidal, it can be decomposed in a Fourier
series, and the following analysis applies to a selected component of this expansion.
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the unperturbed mode, so that ˇ D neff!=c0 D 2�neff=	0, these parameters are
given by

	0B D 4�neff

Kg
D 2neff�g

!B D c0
neff

Kg

2
D c0

neff

�

�g
:

(5.85)

(5.86)

In analogy to Eq. (5.55), we can describe the interaction of the two modes by

daf

dz
D �jˇaf C �fbabe�jKgz

dab

dz
D jˇab C �bfafejKgz: (5.87)

The first of the two equations describes the coupling of the reflected mode to the
forward propagation mode, the second one relates to the reverse process. Energy
conservation for counterpropagating waves demands d.afa�f /= dz D d.aba�b /= dz,
or

d.afa�f � aba�b /
dz

D a�1a2.�fb � ��bf/C a1a
�
2 .�
�
fb � �bf/ D 0: (5.88)

With the same arguments that led to Eq. (5.58), we now obtain the relation

�fb D ��bf DW �: (5.89)

As can be seen from Eq. (5.87), a shift of the axial coordinate z ! z C �z is
equivalent to a change of � by a factor of e�jKg�z; we therefore can always choose
the coordinate system such that � is real and �fb D �bf D �. A shift by half a period,
�g=2, changes � by a factor of e�j� D �1.

Near the Bragg wavelength, the propagation constant of the two modes is
approximately equal to ˙Kg=2; therefore, the modes can be expressed as a product
of a slowly varying amplitude Af;b.z/ and e�j.Kg=2/z:

af D Afe
�j.Kg=2/z

ab D Abej.Kg=2/z: (5.90)
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Substitution in Eq. (5.87) yields the amplitude equations

dAf

dz
D �jıAf C �Ab

dAb

dz
D jıAb C �Af; (5.91)

where

ı WD ˇ � Kg=2 (5.92)

is the deviation from the Bragg condition Eq. (5.84); in terms of frequency, ı is
equivalent to a deviation�! from the Bragg frequency with

ı � dˇ

d!
�! D �!

vg
; (5.93)

where vg is the group velocity of the unperturbed mode at !B.
Except for a different sign in the second equation, this system is similar to

Eq. (5.55) and we can treat it as an eigenvalue problem with eigenstates

 .z/ D
�

Af

Ab

�
e�jBzI (5.94)

note that B is not a propagation constant, but a parameter determining the axial
development of the modes. Substitution in Eq. (5.91) yields

��j.ı � B/ �

� j.ı C B/

� �
Af

Ab

�
D 0I (5.95)

existence of non-zero solutions requires

B2 D ı2 � �2: (5.96)

Within the interval jıj < j�j, B is imaginary

B˙ D ˙jb; b D
p

j�j2 � ı2 (5.97)
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with corresponding eigenstates

 ˙.z/D
� ˙�

b ˙ jı

�
e˙bz: (5.98)

The coefficients A˙ of the general solution

 .z/ D AC C C A� � (5.99)

follow from boundary conditions. In particular, if the amplitudes Af;b.0/ at z D 0

are given, we obtain

Af.z/ D Af.0/

�
cosh bz � jı

b
sinh bz

�
C Ab.0/

�

b
sinh bz

Ab.z/ D Af.0/
�

b
sinh bz C Ab.0/

�
cosh bz C jı

b
sinh bz

�
I (5.100)

because of the quasi-exponential decay of the forward propagating mode, the
interval jıj < j�j is called stop band.

5.3.3.1 Reflectance
Relation (5.100) can be cast in matrix form; for a waveguide grating extending
between �l � z�0, as shown in Fig. 5.27, we have

�
Af.�l/
Ab.�l/

�
D F

�
Af.0/

Ab.0/

�
(5.101)

with the coefficients

F11 D F�22 D cosh bl C jı

b
sinh bl (5.102)

F12 D F21 D ��
b

sinh blI (5.103)

note that as a consequence of energy conservation, det F must be equal to 1,

F11F
�
11 � F212 D 1: (5.104)
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If the grating is used as a mirror, we can assume that Af.�l/ is known and
Ab.0/ D 0, so that Af.�l/ D F11Af.0/, Ab.�l/ D F21Af.0/. Thus, the reflection
and transmission coefficients r; t are given by

r D Ab.�l/

Af.�l/
D F21

F11
D �� sinh bl

b cosh bl C jı sinh bl
;

t D Af.0/

Af.�l/
D 1

F11
D b

b cosh bl C jı sinh bl
:

(5.105)

(5.106)

If the Bragg condition is exactly met (in the center of the stop band), ı D 0 and
b D j�j, so that the reflectance rr� is given by

R D jrj2 D tanh2 j�jl: (5.107)

For a typical coupling coefficient of j�j D 3 cm�1 and a grating length of 1 cm, the
reflectance amounts to � 99 %.

Outside the stop band, B is real valued and the hyperbolic functions in Eq. (5.100)
are replaced by their trigonometric counterparts, resulting in oscillatory solutions
(Fig. 5.28). The reflection coefficient is then given by

r D �j� sin Bl

jB cos Bl � ı sin Bl
(5.108)

and vanishes whenever Bl D m� . According to Eq. (5.96) this is the case if

ı D ˙�
r
1C

�m�

�l


2
: (5.109)

As Fig. 5.28 shows, the axial power at frequencies outside the stop band can
exceed the input power, particularly pronounced at the root m D 1 of Eq. (5.109).
This resonant enhancement resembles the response of the Fabry–Perot interfer-
ometer (Sect. 4.2.3) and is important for the operation of semiconductor lasers
(Fig. 7.44).

5.3.3.2 Bandwidth
The range between the two reflectance-minima next to the stop band [m D ˙1 in
Eq. (5.109)],

jıj D
ˇ̌
ˇ̌�!
vg

ˇ̌
ˇ̌ < j�j

p
1C .�=�l/2; (5.110)



5.3 Integrated Optics 233

R
e

fl
e

c
ta

n
c

e
 R

Fig. 5.28 Spectral reflectance of a waveguide grating for different values of j�jl; also shown is
the the axial intensity of the forward and backward propagation mode, respectively, for selected
frequencies (A: center of stop band, B and C: first and second zero of R); note the hyperbolic
development inside the stop band and the resonant enhancement at the two zeros of R

Fig. 5.29 Spectral reflectance as a function of j�jl; the stop band is marked by the lines at
�!=vgj�j D 1

is a measure for the bandwidth of the waveguide-mirror; for short gratings (l <
1=j�j), this interval is significantly broader than the stop band, which is deter-
mined exclusively by the coupling coefficient (Fig. 5.29). With increasing lj�j, the
reflectance approaches 1 and the bandwidth reduces to the width of the stop band.
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In terms of wavelength, the bandwidth �	0 can be expressed using dˇ= d	0 D
�2�neff=	

2
0

�	0 D 	20B

�neffl

p
�2 C .�l/2: (5.111)

For typical parameters j�j D 3 cm�1, l D 1 cm, and 	0B D 1�m, we obtain
�	0 �0.1 nm, which is much smaller than the bandwidth of typical dielectric
multilayer mirrors (Fig. 4.10); the reason is, of course, the much smaller refractive
index variation within a typical waveguide grating as compared to a multilayer
mirror.

In planar waveguides, the grating structure can be produced by periodic mod-
ulation of the core index with ion implantation or by a periodic variation of the
core thickness. In (germanium-doped) glass fibers, a refractive index change can
be induced by illumination with UV light. A periodic core index modulation can
be realized by exposing a fiber to a periodic interference pattern of two UV beams
(compare Fig. 4.3) or by employing UV irradiation through periodic transmission
masks.

5.3.3.3 Waveguide Gratings with Phase Defect
Waveguide gratings can be combined to produce a variety of devices such as
Fabry–Perot resonators; a particularly interesting example is the immediate serial
combination of two identical gratings with a phase slip, i.e., with an axial shift of one
of the gratings in respect to the other; here, we consider a shift of�g=2 D 	0B=4neff

(Fig. 5.30) and assume that the two gratings extend over the ranges Œ�l=2; 0� and
Œ0; l=2�, respectively. For the first grating, Eqs. (5.101)–(5.103) yield

�
Af.�l=2/
Ab.�l=2/

�
D
�

F1 F2
F2 F�1

� �
Af.0/

Ab.0/

�
(5.112)

z
z=l/2z=0z=−l/2

χ(z)

Af (−l/2)

Af (0) Af (0)

Af (l/2)

Ab(−l/2) Ab(0) Ab(0) Ab(l/2)

Fig. 5.30 Axial variation of the susceptibility in a waveguide grating with 	=4-phase defect
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with

F1 D cosh bl=2C jı

b
sinh bl=2 (5.113)

F2 D ��
b

sinh bl=2: (5.114)

The second grating is displaced by �g=2, which is equivalent to the transformation
of the coupling coefficient to ��, as mentioned above. We therefore find

�
Af.l=2/
Ab.l=2/

�
D
�

F01 F02
F02 F01

�
� �

Af.0/

Ab.0/

�
(5.115)

with

F01 D cosh bl=2� jı

b
sinh bl=2 D F�1 (5.116)

F02 D ��
b

sinh bl=2 D F2: (5.117)

We invert Eq. (5.115)

�
Af.0/

Ab.0/

�
D
�

F�1 F2
F2 F1

��1 �
Af.l=2/
Ab.l=2/

�
D
�

F1 �F2
�F2 F�1

� �
Af.l=2/
Ab.l=2/

�
; (5.118)

using Eq. (5.104), and substitute the result in Eq. (5.112), yielding

�
Af.�l=2/
Ab.�l=2/

�
D Fs

�
Af.l=2/
Ab.l=2/

�
(5.119)

with

Fs D
�

F21 � F22 �F1F2 C F�1F2
F1F2 � F�1F2 F�1

2 � F22

�
: (5.120)

The reflection and transmission coefficients of the structure follow from Eqs. (5.105)
and (5.106)

r D Fs21

Fs11
D F2.F1 � F�1 /

F21 � F22
(5.121)

t D 1

Fs11
D 1

F21 � F22
: (5.122)
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Fig. 5.31 Same as Fig. 5.28 for a waveguide grating with 	=4-phase defect

Using the identities 2 sinh x cosh x D sinh 2x, 2 sinh2 x D �1Ccosh 2x, 2 cosh2 x D
1C cosh 2x and the relation b2 D �2 � ı2 [Eq. (5.97)], we finally obtain

r D �2jı� sinh2.bl=2/

�2 � ı2 cosh bl C jıb sinh bl

t D b2

�2 � ı2 cosh bl C jıb sinh bl
:

(5.123)

(5.124)

As shown in Fig. 5.31, the reflectance of this structure has a very narrow dip (R D 0)
at the center of the stop band that results from a pronounced resonance enhancement
within the grating structure. Such gratings can be used as transmission filters or as
resonators for semiconductor lasers (Sect. 7.5).

The fact that periodic structures exhibit frequency ranges where waves cannot
propagate but decay quasi-exponentially is well known from solid state physics,
where a periodic atomic crystal lattice exhibits stop bands (called band gaps) for
electronic wave functions. A phase defect as described above also finds its solid
state physics analog, since a lattice defect can result in electronic states within the
band gap. The analogy between the electronics of periodic lattices and photonics
becomes almost complete if the periodic modulation of the optical medium is
extended to three dimensions; such structures are called photonic band gap materials
(Joannopoulos et al. 2008; Sakoda 2005; Sibilia and Benson 2008).
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5.3.4 Waveguide-Interferometers andModulators

Waveguide integrated interferometers rely on the same operating principles as their
conventional counterparts; the advantages of integration are, among others, reduced
size, enhanced rigidity, and lower costs.

5.3.4.1 Mach–Zehnder Interferometer
The Mach–Zehnder interferometer has already been discussed briefly in Sect. 4.1;
the integrated version is used for sensors, modulators, and switches. It is very
convenient to describe the operation of such an interferometer with the S-matrix
formalism introduced in Sect. 4.1.3, that relates an input state Œa1; a2� to the
corresponding output state Œb1; b2�

�
b1
b2

�
D SMZ

�
a1
a2

�
: (5.125)

As an example, we calculate the S-matrix of the electro-optic modulator shown in
Fig. 5.32. The two couplers/splitters are represented by the matrix S3 dB [Eq. (5.78)],
while the electro-optic phase shifts of ˙��=2 in the two interferometer branches
can be accounted for by a diagonal matrix with the components M11 D ej��=2,
M22 D e�j��=2; the total scattering matrix of the interferometer is thus

SMZ D 1
2

�
1 �j

�j 1

� �
ej��=2 0

0 e�j��=2

� �
1 �j

�j 1

�

D j

�
sin��=2 � cos��=2

� cos��=2 � sin��=2

�
: (5.126)

3 dB - Coupler

3 dB - Coupler

Fig. 5.32 Integrated Mach–Zehnder interferometer with electro-optic phase control
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Usually, light is launched into one of the inputs only, so that a1 WDa0, a2D0 and

�
b1
b2

�
D ja0

�
sin��=2

� cos��=2

�
I (5.127)

the output power at the two ports is given by

P1;out D P1;in.1� cos��/=2

P2;out D P1;in.1C cos��/=2; (5.128)

where the identity sin2 x D .1 � cos 2x/=2 has been used; electrically controlling
�� allows modulating the output power or switching between the two output ports.

Optical sensors are often realized as fiber integrated interferometers. One of
the two interferometer branches is used as reference and isolated from external
influences, while the other one is the sensing fiber; in many applications, the
phase change in the sensor fiber is brought about by stretching the fiber. Thus,
the parameter to be measured has first to be converted into a length change. In
this fashion, temperature, pressure, magnetic, or electric fields can be monitored.
To linearize the sensor and to stay in the operating point of maximum sensitivity
[Eq. (5.80)], the reference fiber can be stretched with a piezoelectric transducer so
as to keep the phase difference constant and equal to �=2. The primary measurement
parameter is then the compensation voltage.

5.3.4.2 Fiber Gyroscope
One of the most important waveguide sensors is the fiber gyroscope that is based
on the Sagnac interferometer. It allows measuring rotation rates in inertial systems
with very high precision. Figure 5.33 shows the basic setup: a 3dB-coupler splits
the light coming from a laser and feeds it into the two opposite ports of a fiber loop.
The two modes propagating in the loop [clockwise (cw), or counterclockwise (ccw)]
are recombined by the same 3-dB coupler, which acts as phase sensitive output
coupler according to Eq. (5.81). Since the two modes propagate physically identical
paths, the phase difference is expected to be zero for reasons of reciprocity (to

Modulator

Fiber loop A, N

P1

P3
P2

Laser
3 dB Coupler 3 dB Coupler

Fig. 5.33 Fiber gyroscope: the output is measured at the reciprocal port P3, the modulator
introduces a dynamic phase shift that allows operation in a linear range (see main text)
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rule out phase differences due to polarization dispersion, polarization maintaining
fibers and polarized light is used). A second coupler in the input branch of the
interferometer allows accession of the output that is reciprocal in the sense that
the modes have also taken the same path through the 3-dB coupler (one “reflection”
and one “transmission” each).

Because of the reciprocal geometry, a phase difference can only occur if an
external parameter affects the two modes in different ways, such as a rotation of the
fiber loop. The exact description of this so-called Sagnac effect requires solving the
Maxwell equations in an accelerated coordinate system. The resulting phase shift,
however, can also be rationalized by a simple comparison of the phase delay times.
In a rotating loop, the mode that co-propagates with the rotational movement of the
fiber experiences a longer time before it reaches the output coupler, since the fiber
(and the coupler) move along during the propagation time, while the reverse applies
to the counterpropagating mode. In addition to this geometric effect, the change of
the phase velocity in a moving medium (Sect. 2.4.3) has to be taken into account.

We consider a circular fiber coil with radius R and N loops, rotating ccw with
angular velocity ˝; then the phase delay time �ccw and �cw of the respective modes
follow from the equations cccw�ccw D l C R˝�ccw and ccw�cw D l � R˝�cw to be

�ccw D l

cccw � R˝

�cw D l

ccw C R˝
; (5.129)

where the phase velocities ccw;ccw are given by Eq. (2.200) with v D R˝:

cccw D c0
n

C R˝ � R˝

n2

ccw D c0
n

� R˝ C R˝

n2
: (5.130)

Thus, the phase delay time difference�� is

�� D �ccw � �cw � l
.ccw � cccw/C 2R˝

cccwccw
� 2lR˝

c20
; (5.131)

and the Sagnac phase difference is given, with ! D 2�c0=	0 and l D 2�NR, by

��s D !�� D 4�lR˝

c0	0
D 8�AN

c0	0
˝I (5.132)

it is proportional to the loop area A, the number N of loops, and the angular velocity
(more precisely, the component of the angular velocity parallel to the loop axis)
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˝; note that the Sagnac phase shift is independent of the propagation index of the
medium.

The output power at the “reciprocal” output port is given by

P3;out D P1;out=2 D ja0j2 .1C cos��s/ =4; (5.133)

where ja0j2 is the input power at port 1.
For small values of �s, the sensor characteristic is / 1 C .��s/

2 implying that
the sensitivity is close to zero

dP3;out

d˝
j˝!0 D 0 (5.134)

and the sign of the rotation cannot be resolved. The introduction of a phase bias of
˙�=2 would linearize the response

P03;out D ja0j2 .1C sin��s/ =4 � ja0j2 .1C��s/ =4 (5.135)

but cannot be implemented into the interferometer as easily as in the Mach–Zehnder
interferometer, since the two modes travel the same path.

A (dynamic) nonreciprocal phase delay, however, can be realized with a time
dependent phase modulator that is positioned asymmetrically within the fiber loop;
in Fig. 5.33, the modulator is a piezoelectric fiber stretcher located immediately
behind the coupler. Let us assume that the modulator changes the length of the
fiber (and thus the phase delay) linearly with time, �m.t/ D Rmt, the resulting phase
difference between the cw and ccw mode, respectively, is ��m D Rm� , where �
is the difference of the arrival time of the respective mode at the modulator. With
proper choice of the stretching rate Rm, the desired phase difference of �=2 can be
achieved; in practice, the length modulation of the fiber is not a linear ramp, but
an oscillating function giving rise to a phase shift oscillating between ˙�=2; the
operating principle remains the same, however.

With typical design parameters l D 1 km, r D 5 cm, 	0 D 600 nm, the rotational
velocity of the earth (˝E D 7:3 � 10�5 s�1) produces a phase shift of ��s D 2:6 �
10�4 rad. The sensitivity of commercial fiber gyroscopes can be <10�3˝E.

5.3.5 Active Waveguide Components

In Sect. 6.2, we will study the amplification of light by stimulated emission of
photons from excited atoms or ions. Such laser-active ions can be implemented
in a glass-host and excited by light of a wavelength shorter than the emitted, or
amplified light. If the preform of a fiber waveguide is doped with such atoms, a fiber
can be employed as amplifier. Popular dopants are rare earth atoms such as erbium,
neodymium, or ytterbium, typical doping concentrations are 10�4. Combined with
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EDFA AFDEAFDE
70 km Fiber 70 km Fiber 70 km Fiber

LD Coupler

Er3+-doped Fiber

(a)

(b)

70 km Fiber

Pump laser

Fig. 5.34 Erbium doped fiber amplifier (EDFA) (a); optical long distance link with EDFA-
repeaters (b)

two waveguide reflectors, an optical fiber amplifier can also be converted into an
integrated fiber oscillator (Fig. 7.27).

One of the most important applications of such fiber amplifiers is the signal
regeneration in optical communication networks. Even in the transmission optimum
of quartz glass, at 1.55�m, fiber networks require signal amplification in intervals of
70–100 km. Erbium doped fiber amplifiers (EDFAs) provide a broad gain spectrum
that allows amplification of many parallel data channels in WDM and are therefore
ideally suited for this purpose. Figure 5.34 shows schematically a chain of such
repeaters; the radiation required for the excitation (pumping) of the erbium atoms
is provided by semiconductor lasers at 1.48�m and launched into the amplifier
fiber with the help of dichroic couplers, that transfer the pump light from the
semiconductor laser “pigtail” into the amplifier. The amplifying fiber (with a length
of about 10 m) is fusion-spliced into the data-fiber. With a pump power of several
mW, a signal gain of 30–40 dB is achieved (Fig. 5.35).

Apart from its simplicity, reliability, and low electric power consumption, the
advantage of an EDFA over conventional (electronic) repeaters is that it can handle
virtually any signal encoding protocol with a bandwidth of several THz, while
electronic repeaters are optimized for a particular format and data rate.

5.3.6 Photonic Band Gap Fibers

Alternative wave guide structures provide guiding not by total reflection but
by interference effects: in Sect. 5.3.3, we have encountered high reflecting one-
dimensional photonic band gaps resulting from the periodic modulation of the
refractive index along the waveguide axis. In photonic band gap fibers, the refractive
index is radially modulated instead: a core is surrounded by a periodic structure of
high and low refractive index materials, usually glass and air. The (hollow) core
constitutes a “defect” in the crystal structure and allows for a propagating mode
within the band gap, comparable to the narrow band transmission feature of a
waveguide grating with phase defect in Fig. 5.31.
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l = 14 m

l = 8 m

l = 2 m

Fig. 5.35 Typical power amplification of an EDFA as a function of pump power

(c)(b)(a)

Fig. 5.36 Photonic crystal fibers (PCFs): (a) hollow core photonic band gap fiber, (b) index-
guided solid core PCF, (c) hollow core Bragg fiber; the small circles indicate hollow channels in
the glass matrix of the fiber; see, e.g., Bjarklev et al. (2003) and Russell (2006)

Photonic band gap fibers belong to the wider class of photonic crystal fibers
(PCFs, Fig. 5.36); they can also be realized with a solid core surrounded by air
holes. These fibers, however, rely on conventional guiding by total reflection, and the
holes only serve to reduce the refractive index of the medium surrounding the core.
Because of the large refractive index contrast, light can be confined to a very small
mode area, which makes such fibers very suitable for nonlinear optical applications.

5.4 Summary

Many of the characteristic properties of dielectric waveguides become clear in the
analysis of simple (symmmetric) planar waveguides. First of all, guiding requires
that the propagation constant of the guided wave is larger than that in the medium
surrounding the guiding core. An additional self-consistency condition reduces the
number of possible guided waves to a finite number of modes. This number depends
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on the normalized frequency, a dimensionless parameter that includes information
on the frequency of the mode, the thickness of the core and the refractive index
step between the core and the surrounding medium. Symmetric waveguides always
support at least one guided mode, which can be polarized in two orthogonal states.

The propagation constant of a given mode depends on its frequency, since the
width of the core, measured in units of the wavelength, changes with frequency. Just
like any other dispersion mechanism, this geometric waveguide dispersion leads to
the broadening of transmitted light pulses, but can be compensated by the material
dispersion of the waveguide medium.

Cylindrical waveguides (fibers) share these fundamental properties with planar
waveguides and are of utmost importance for optical communications. For this
purpose, silica single mode step index fibers are used at the wavelength of 1.55�m,
where absorption is minimal.

Graded index fibers are frequently used for low cost local area network applica-
tions. For the lack of boundary conditions, they require a mathematical treatment
different from step index waveguides: our approach is to treat the fiber as extended
graded index lens and to use the ABCD formalism introduced in Chap. 3 to find
self-consistent solutions.

Part of this Chapter is devoted to waveguide couplers, gratings, filters, and
interferometers. The physics underlying fiber gratings is similar to that of the
dielectric multilayer structures treated in Sect. 4.2, but the mathematical treatment is
quite different: for lack of boundary conditions, we analyze these devices in terms
of mode coupling mediated by a cross talk between the coupled modes. Efficient
energy transfer requires phase matching between the modes; waveguide dispersion,
i.e., the frequency dependence of the propagation constant, can thus be used to
realize dichroic filters and couplers. We also employ the S-matrix formalism of
Chap. 4 to describe waveguide interferometers and modulators in a concise manner.

5.5 Problems

1. Assume a step index fiber with a core refractive index of 1.5 and a 1 % smaller
cladding index. What is the NA of this fiber? What is the maximum core diameter
for the waveguide to be a single mode fiber at 632 nm?

2. Derive the self-consistency condition for an asymmetric planar waveguide and
find numerically the propagation constants of the eigenmodes for ng D 1:5,
ns D 1:4, nc D 1 and various ratios a=	0. Show that there is an absolute cutoff
wavelength, above which no guided modes exist.

3. Plot the transverse mode profiles of the lowest mode of the asymmetric planar
waveguide of problem 2 and observe what happens near the cutoff wavelength.

4. A semiconductor laser is used for an optical monomode fiber link with 10 Gbit/s
transmission rate. The laser operates at 890 nm and oscillates at two adjacent
longitudinal modes; the cavity length is 100�m, the cavity refractive index is 3.5.
Calculate the maximum permissible length of the link if the dispersion coefficient
is 20 ps nm�1 km�1 [use Eq. (4.82) to calculate the mode spacing]. Neglecting
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losses, what is the maximum length of the link if operated with a single mode
laser? What is the maximum link length if a single mode laser is used with a step
index fiber supporting two waveguide modes (assume V D 3:5, NA D 0:1 and
neglect material dispersion).

5. Reproduce Fig. 5.28, including the insets.
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6Light–Matter Interaction

The classical linear oscillator model of Sect. 2.2.1 provides useful qualitative
insights into the interaction of light with matter. In particular, it yields essentially
correct results about the complex character of the electric susceptibility and its
resonant behavior, and the frequency dependence (dispersion) of the refractive index
is explained in a simple and intuitive way. For a more quantitative and detailed
treatment of light-matter interaction, however, a quantum mechanical treatment is
required. Since the optical response of matter is dominated by the electrons, the
following discussion refers to the interaction of light with electrons, bound in atoms,
molecules, or semicondutors.

6.1 Optical Interactions with Two Level Systems

The fundamental quantum mechanical equation is the Schrödinger equation

�
� „2
2m

r2 C V.x/
�
�.x; t/ D �j„@�.x; t/

@t
; (6.1)

where „ D h=2� and h D 6:63 � 10�34 J s is Planck’s constant, V.x/ is the
potential of the electron, and the term Œ�.„2=2m/r2 C V.x/� is the Hamilton or
energy operator H0; the wave function �.x; t/ comprises the complete information
on the particle.

A formal solution of Eq. (6.1) is

�.x; t/ D  .x/e j.E=„/t; (6.2)
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provided that  fulfills the time independent Schrödinger equation

H0 .x/ D E .x/: (6.3)

The set of solutions  of this equation depends on the potential V and constitutes
the “spectrum” (discrete or continuous) of eigenstates of the Hamilton operator with
corresponding eigenvalues E that denote the energy of the state. Due to the linearity
of the Schrödinger equation, any linear combination of solutions is also a solution.
Moreover, the set of eigenfunctions is complete in the sense that any possible
solution of Eq. (6.1) can be “synthesized” as a linear combination of eigenfunctions,

� D
X

n

cn nej.En=„/t: (6.4)

In the absence of a potential (V D 0), the solutions of Eq. (6.1) are plane waves
�.x; t/ D e�jk�xej.E=„/t (DeBroglie waves); the relation between the k-vector and E
is the E–k-dispersion relation for free electrons,

E D „2jkj2
2m

: (6.5)

For attractive potentials such as the Coulomb potential of the atomic core, the
spectrum consists of a set of discrete eigenfunctions  n with eigenvalues En

(representing the bound states), and a continuum of plane waves.
Similar to electrodynamics, where the absolute square of the complex wave

function is a measure of the local energy density of the light wave, the absolute
square j�.x; t/j2 D �.x; t/��.x; t/ is a measure of the probability density of the
particle, that is the probability to find it at the point x. Accordingly, the wave
function must be normalized such that the volume integral of �.x; t/��.x; t/ is
equal to 1:

Z
 �m m dV D 1: (6.6)

Furthermore, eigenfunctions are mutually orthogonal in the sense that

Z
 �m n dV D

�
1 for m D n
0 for m 6D n:

(6.7)
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Note that if the particle is in an eigenstate of the Hamilton operator (i.e., its wave
function is an eigenfunction), the probability density j�.x; t/j2 is time independent,
i.e., the probability density of an eigenstate is stationary

j�.x; t/j2 D
h
 n.x/ej.En=„/t

i h
 �n .x/e�j.En=„/t

i
D j n.x/j2I (6.8)

in other words, the electron density of an eigenstate is stationary and the electron
consequently does not emit any electromagnetic radiation.

In contrast, the probability density of a superposition of eigenstates oscillates
at frequencies that are determined by the energy differences of the involved
eigenstates; the superposition of two states

j�.x; t/j2 D
ˇ̌
ˇc1 1ej.Ei=„/t C c2 2e

j.E2=„/t
ˇ̌
ˇ
2

D jc1 1j2 C jc2 2j2 C 2Re
h
c1c
�
2 1 

�
2 ejŒ.E1�E2/=„�t

i
; (6.9)

for example, oscillates at the frequency jE1 � E2j=„ (Fig. 6.1).

6.1.1 Perturbations

Let us now study the effect of a time varying “perturbation,” such as an elec-
tromagnetic field, on a quantum mechanical system. Any such perturbation can
be expressed as a time dependent contribution to the potential V; denoting the
stationary “back ground” potential as V0 and the external perturbation as V 0.t/, the
Hamilton operator is

H D H0 C H0.t/ (6.10)

with H0 D V 0. While it is possible, in principle, to solve the Schrödinger equation
with a time dependent Hamilton operator, an approximative solution can be
obtained in form of a (time dependent) linear combination of the unperturbed
solutions  n, provided that the perturbation is small in comparison to H0:

� D
X

n

cn.t/ nej.En=„/tI (6.11)

cn.t/ are the time dependent “mixing” coefficients. The absolute square jcn.t/j2
of these coefficients can be interpreted as probability to find the system in state
 n, if a measurement of the energy of the system is taken at time t (in quantum
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mechanics, measuring a certain observable always returns an eigenvalue of the
respective operator); since the set of eigenfunctions is complete,

P
n jcn.t/j2 D 1

to warrant
R j j2 dV D 1.

To determine the mixing coefficients cn.t/, we substitute Eq. (6.11) into the time
dependent Schrödinger equation Eq. (6.1)

X
n

.H0 C H0/cn nej.En=„/t D �j„
X

n

�
cn n

jEn

„ C Pcn n

�
ej.En=„/t: (6.12)

According to Eq. (6.3),
P

n cnH0 n D P
n cnEn n, so that

� j„
X

n

Pcn nej.En=„/t D
X

n

H0cn nej.En=„/t: (6.13)

Multiplication of both sides with  �m and applying the orthonormality relations
Eq. (6.7), we obtain

� j„Pcmej.Em=„/t D
X

n

cn

Z
 �mH0 nej.En=„/t dV: (6.14)

The integral

H0mn WD
Z
 �mH0 n dV (6.15)

represents the impact of the perturbation H0 on the set  m,  n of states and is called
the .m; n/-th element of the perturbation matrix. With this definition, Eq. (6.14) can
be written as

Pcm.t/ D j

„
X

n

cn.t/H
0
mnejŒ.En�Em/=„�t; (6.16)

which is a set of coupled differential equations for the mixing coefficients.
We now restrict the discussion to a system of two eigenstates n D i; f ; this allows

us to derive simple, yet very important results and also describes many situations in
optics quite well, as we shall see. Equation (6.16) then simplifies to

Pci.t/ D j

„
�
ci.t/H

0
ii C cf .t/H

0
if ej!0t

�

Pcf .t/ D j

„
�
ci.t/H

0
fie�j!0 t C cf .t/H

0
ff

�
; (6.17)
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where jEf � Eij=„ DW !0. We further assume that the perturbations starts at t D 0,
with the system being in the initial (eigen)state  i,1 ci.0/ D 1, cf .0/ D 0.

Perturbation theory is an iterative, approximative technique to solve equations
such as Eq. (6.17): in lowest (zero) order, one simply neglects the perturbation, so
that, ci.t/ D 1, cf .t/ D 0. Substituting this “solution” into Eq. (6.17) yields the first
order approximation

Pci.t/ D j

„H0ii (6.18)

Pcf .t/ D j

„H0fie�j!0t: (6.19)

We further assume a periodic, harmonic time dependence of the perturbation (which
is equivalent to picking a certain Fourier component of it),

H0mn.t/ D H
00
mn cos!t D 1

2
H

00
mn

�
ej!t C e�j!t

�
; (6.20)

so that integration of Eq. (6.19) from 0 to t yields

cf .t/ D H
00
fi

2„
�

ej.!�!0/t � 1
! � !0

� e�j.!C!0/t � 1
! C !0

�
: (6.21)

If the frequency of the perturbation is comparable to !0, the second term in
parenthesis can be neglected because of the much larger denominator. Introducing
the “detuning”�! WD! � !0, we obtain

jcf .t/j2 D jH00
fi j2

„2
�

sin�!t=2

�!

�2
; (6.22)

where the identity 1 � cos x D 2 sin2.x=2/ was used.

6.1.1.1 Fermi’s Golden Rule
Of particular interest is the rate of change of the probability jcf .t/j2 to find the

system in the “final” state, the so-called transition rate Wif D jcf .t/j2
t . Using the

approximation (valid for t ! 1)

�
sin�!t=2

�!

�2
! �

2
ı.�!/t; (6.23)

1The subscripts i and f refer to initial and final; note that the energy Ei of the initial state is not
necessarily lower than Ef .
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where ı is the Dirac distribution with the properties ı.x¤0/ D 0 and
R
ı.x/ dx D 1,

we obtain the approximative result

Wif D jcf .t/j2
t

D �jH00
fi j2

2„2 ı.�!/; (6.24)

known as Fermi’s golden rule; it essentially states that

– a transition �i ! �f requires the frequency ! of the perturbation to coincide
with !0 D .Ef � Ei/=„;

– the transition rate Wif is proportional to the square of the perturbation matrix
element jH00

fi j2;
– since H0 is a Hermitian operator with the property H0if D H0�fi , the transition rate

for �f ! �i is equal to that of the reverse process �i ! �f .

In practice, the perturbative interaction does not last for an infinite time. For this
and other reasons, the frequency dependence of the transition rate (the so-called line
shape) is not an infinitely narrow Dirac delta function, but a line function g.�!/
peaking at ! D !0 with

R
g.�!/ d! D 1; Eq. (6.24) then assumes the form

Wif D �jH00
fi j2

2„2 g.�!/I (6.25)

some of the reasons for line broadening will be discussed in Sect. 6.1.4.

6.1.1.2 Dipole Interaction
The most important optical interaction is the dipole interaction, that is the interaction
between the electric field and the electric dipole constituted by the electron and
atomic core. The corresponding potential is

H0 D �eE � x; (6.26)

where E.t/ D E0 cos!t is the electric field, �e the electron charge, and x the
displacement of the electron in respect to the core. The perturbation matrix element
hence is

H0mn D �e
Z
 �mE � x n dV: (6.27)
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At optical wavelengths, the electric field is practically constant over the extension
of an atom, so that with Eq. (6.20)

H
00
mn D �eE0 �

Z
 �mx n dV D E0 � �: (6.28)

The so-called dipole matrix element

� WD �mn D �nm D �e
Z
 �mx n dV (6.29)

is a measure for the dipole moment that is associated with the superposition of the
states  m and  n.

The vectors � and E are not necessarily parallel; therefore

jH00
fi j2 D jE0 � �j2 D E20j�j2 cos2 
; (6.30)

where 
 is the angle between the two vectors. If the orientation of � is equally
distributed over the spatial angle ˝ , the average value of the factor cos2 
 is given
by

hcos2 
i D
R

cos2 
 d˝R
d˝

D 1

4�

Z 2�

0

Z �

0

cos2 
 sin 
 d
 d' D 1

3
; (6.31)

and

hjH00
fi j2i D hcos2 
iE20j�j2 D 1

3
E20j�j2: (6.32)

For dipole interaction, Eq. (6.25) thus can be expressed as

W D Wif D Wfi D �

6„2E20j�j2g.�!/: (6.33)

6.1.1.3 Interaction Cross Section
We can express the electric field in Eq. (6.33) in terms of its intensity I Dp
""0=�0E20=2 [Eq. (1.71)] to obtain

W D �

3n"0c0„2 j�j2g.�!/I; (6.34)
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where n D p
" and c0 D 1=

p
"0�0. As we have seen, the energy exchange between

an atom (electron) and the field (or any other perturbation) is quantized in the sense
that the energy difference of the atom before and after a transition from  i to  f

is equal to „!0; the atom cannot exchange fractions of that energy with the field.
Conversely, the electromagnetic field can exchange energy only in integer multiples
of this energy because of the atomic structure of matter. The concept of photons
comprises much more than this “granular” currency of energy exchange, but it is
very convenient even at this level to express the electromagnetic energy flow density
I as a flow density F of energy quanta, or photons

F D I

„! ; (6.35)

where ! is the frequency of the field.2 With this relation, Eq. (6.34) can be written
as

W D �!

3n"0c0„j�j2g.�!/F DW �F D �
I

„! ; (6.36)

where the interaction or transition cross section �

�.�!/ D �!

3n"0c0„j�j2g.�!/ (6.37)

has been introduced. The interaction cross section has the dimension of an area
(usually given in cm2) and has a very intuitive meaning: just as a target disk of area
� in a stream of point-like bullets is hit at a rate that is equal to the flux density
of the bullets times the target area, an atom in a stream of photons undergoes
transitions with the rate �F. To induce one transition in the time interval � , an
intensity of „!=�� is required. With an exemplary peak value for � D 10�19 cm2

and a transition energy of 1 eV = 1:6�10�19 J, it takes an intensity of �1.6 W/cm2 to
statistically hit every atom of an ensemble once per second. Note that off resonance,
the cross section vanishes and the atom becomes “invisible.”

Finally, a relation between the electromagnetic energy density �em and the
transition rate is useful if the interaction happens in a resonator cavity; we assume
that the cavity of volume V contains q photons; then the photon density �ph D q=V
is related to the energy density by �em D „!q=V; �ph is related to F by F D c�ph,

2See Table 1.1 for different units of „!.



6.1 Optical Interactions with Two Level Systems 253

since the photons travel at the speed c D c0=n. Thus we can express Eq. (6.36) in
the form

W D �c�ph D �c�em

„! : (6.38)

6.1.1.4 Selection Rules
For a transition to happen, three conditions must be fulfilled according to Fermi’s
rule: the frequency of the light field must meet the resonance condition jEf �Eij=„ D
!, the intensity must be non-vanishing, and the matrix element �if [Eq. (6.29)]
must be non-zero. The latter condition is a so-called selection rule, which limits the
possible choice of states participating in transitions. A hydrogen atom, for example,
with its spherically symmetric potential, has eigenstates that are either symmetric
 .�x/ D  .x/ or anti-symmetric .�x/ D � .x/—they are of even or odd parity,
respectively. It is evident that the dipole matrix element Eq. (6.29) vanishes

�if D �e
Z
 �f x i dV D 0; (6.39)

if  i;f are of same parity, and a dipole-transition between such states is therefore
“forbidden”3; the dipole selection rule requires states of different parity.

It is quite instructive to visualize these important implications graphically: in
Fig. 6.1, the probability density of a superposition of two pairs of eigenstates of a
hydrogen atom is shown as a function of time; panel (a) shows the superposition of
the 1s and the 2s states, both of even parity; (b) shows the mixing of an 1s (even)
with a 2p-state (odd parity). While both superpositions oscillate, only (b) develops a
dipole moment; in (a), the center of gravity of the oscillating electron wave remains
in the positive core of the atom (breathing sphere).

6.1.2 Absorption and Stimulated Emission

The introduction of the photon as a “currency” for energy exchange Eq. (6.36)
allows us to set up balance equations for the number of atoms in a particular
eigenstate on the one hand, and the number of photons on the other: the transition of
an atom from a lower to a higher state consumes one photon (so-called absorption),
while the reverse process is equivalent to the generation (emission) of one photon;
it is important to note that this additional photon is indistinguishable from the

3A transition might still be possible because of higher order interactions such as quadrupole
interactions, but the cross section is smaller by several orders of magnitude in this case.



254 6 Light–Matter Interaction

Fig. 6.1 Probability density of an electron in a hydrogen atom: (a) superposition of 1s and 2s
states, (b) superposition of 1s and 2p-states; the dark dot in the center represents the positive core

E2, N2

E1, N1

σF N1 σF N2 N2/τspF=I/ ω

Fig. 6.2 Transition rates in a two-level system

field that has perturbed the atom, it has the same phase, frequency, polarization,
and wave vector—in short, it belongs to the same electromagnetic mode that has
stimulated the transition. This coherent emission process is called “stimulated.”
The probability for the respective process is given by Wif , as defined in Eq. (6.24).
In the following, we discuss the resulting balances for an ensemble of two-level
atoms (Fig. 6.2) that can be either in a “ground state” 1 or in an “excited state”
2. We assume the density of atoms (number of atoms per unit volume) to be N;
the density of atoms in states 1 and 2 are denoted as N1 and N2, respectively;
N1;2 is also called population density of the respective state. Since there are no
other states, the population densities are related by N1 C N2 D N. According to
Eq. (6.24) (which refers to one atom), the interaction with the light field changes
the population densities with the rates dN2= dtjabs D � dN1= dtjabs D N1W12

(absorption), and dN1= dtjse D � dN2= dtjse D N2W21 (stimulated emission). In
addition to the stimulated emission, there is also a certain probability that an excited
atom returns to the ground state without stimulation, i.e., in the absence of a light
field. This “spontaneous” emission, which is not predicted by Fermi’s rule, happens
at a rate that is proportional to the cross section for stimulated emission and to the
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number of possible modes of the electromagnetic field at the transition frequency.
The spontaneously emitted photon is stochastic in terms of phase, polarization, and
wave vector; the frequency is distributed within the bandwidth of the cross section.
The transition rate due to this process can be expressed by the average life time �sp

of the excited state (see Sect. 6.1.3).
Taking these three processes into account, we obtain, for the population density

N2, the rate equation

dN2
dt

D N1W12 � N2W21 � N2
�sp
: (6.40)

Because of the one-to-one correspondence of atomic transitions and photon annihi-
lation or creation, respectively, we obtain

d�ph

dt
D �N1W12 C N2W21 D W.N2 � N1/; (6.41)

where �ph refers exclusively to the photons of the interacting light mode, while
spontaneous photon emission is not taken into account.

Let us now look at a light field with photon flux density F D c�ph, propagating in
z-direction through a volume filled with (excited) atoms of density N1 and N2. In a
slice of thickness dz within the medium, the total temporal derivative of the photon
density is

d�ph

dt
D @�ph

@t
C @�ph

@z

dz

dt
I (6.42)

the first term on the right side describes an explicit temporal change of the local
photon density, the second one represents the difference between the photons flow-
ing in and out of the volume element. In combination with Eqs. (6.41) and (6.38),
and using dz= dt D c, we obtain

@�ph

@t
C c

@�ph

@z
D c��ph.N2 � N1/: (6.43)

If we assume N1;2 and F D c�ph to be stationary, then @�ph=@t D 0 and

dF

F
D dI

I
D .N2 � N1/� dz: (6.44)
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If we further assume that N1;2 is constant over the interaction length l, then
integration yields

F.z/

F.0/
D I.z/

I.0/
D e.N2�N1/�z: (6.45)

Comparison with the classical result Eq. (2.70)

I.z/

I.0/
D e�2�k0z D e�˛z (6.46)

allows us to identify

˛ D �.N2 � N1/� D .N1 � N2/�: (6.47)

With Eqs. (2.71) and (2.76) we obtain the following relations between the cross
section � and the imaginary parts of the refractive index and the susceptibility,
respectively:

� D .N1 � N2/�=2k0

�00dot D 2.N2 � N1/�nw=k0:

(6.48)

(6.49)

Of particular interest is the fact that Eq. (6.45) implies an (exponential) growth of the
intensity if N2 >N1, an effect known as Light Amplification by Stimulated Emission
of Radiation. This process is of utmost importance for the field of photonics and will
be discussed in detail in Sect. 6.2.

6.1.3 Spontaneous Emission

The semiclassical treatment of light–matter interaction as outlined above treats the
electromagnetic field classically, with the result that in the absence of perturbations
such as electromagnetic radiation, eigenstates of the energy operator are stable;
spontaneous emission is not possible in this framework. By the same token, the
stationary populations of a two-level system in the presence of thermal (or any other)
radiation are predicted by Eq. (6.40) to be N2 D N1 D N=2, in contradiction to the
thermodynamic population ratio N2=N1 D e�„!=kBT , where kB D 1:38�10�23 J K�1
is Boltzmann’s constant.

Spontaneous emission can only be explained satisfactorily in the framework
of a quantum theory of electromagnetism. In this theory, an electromagnetic
mode behaves like a quantum mechanical oscillator whose energy is represented
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by the photons in the mode. Just as its quantum mechanical counterpart, the
oscillator in its ground state (corresponding to zero photons) is not at rest but
fluctuates. These so-called vacuum fluctuations of the electromagnetic field stim-
ulate the “spontaneous” emission and are responsible for the instability of excited
states.

Planck postulated the quantization of the electromagnetic field energy to explain
the spectral features of thermal radiation, at a time when quantum mechanics was
not yet known. He assumed that the energy of an electromagnetic mode at frequency
! is not continuous but an integer multiple of „!; these energy “quanta” were
later denoted as photons. The electromagnetic energy spectrum in thermodynamic
equilibrium is then the product of the density of modes Eq. (4.107)

N.!/ D !2n3

�2c30
; (6.50)

the average number of photons per mode, and the photon energy „!. The average
number of photons per mode will be derived below [Eq. (9.20)] and is equal to

Nnph D 1

e„!=kBT � 1
: (6.51)

Thus, one obtains the spectral energy density

�em.!/ D „!N.!/Nnph D „!3n3
�2c30

1

e„!=kBT � 1
: (6.52)

Einstein derived a structurally equivalent expression by postulating three fundamen-
tal processes constituting the interaction of atoms with electromagnetic radiation:
absorption, stimulated emission, and spontaneous emission; an ensemble of N D
N1CN2 two-level atoms, exposed to thermal radiation undergoes transitions between
the two levels with the rates A.!/N2 (spontaneous emission), B21.!/�em.!/N2
(stimulated emission), and B12.!/�em.!/N1 (absorption). In equilibrium,

B21.!/�em.!/N2 C A.!/N2 D B12.!/�em.!/N1: (6.53)

Substituting the above mentioned Boltzmann distribution N2=N1 into Eq. (6.53), we
obtain

�em.!/ D A.!/

B12.!/

1

e„!=kBT � B21.!/=B12.!/
: (6.54)

A comparison with Eq. (6.52) shows, in agreement with Eq. (6.33), that
B21.!/=B12.!/ D 1; moreover,
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A.!/ D „!3n3
�2c30

B21.!/: (6.55)

Since !2n3=�2c30 is the density of modes at !, the factor „!3n3=�2c30 corresponds
to one photon per mode. Spontaneous emission is therefore equivalent to an
emission stimulated by one photon per mode; in regard to emission, a mode
containing a number m of photons (m D 0; 1; 2; : : : ) acts as if there were
m C 1 photons. Because of the quadratic frequency dependence of the density
of modes, spontaneous emission becomes more and more prevalent with growing
frequency.

The coefficient B21.!/ can be calculated from Eqs. (6.37) and (6.38)

B21.!/ D �

3n2"0„2 j�j2g.�!/; (6.56)

so that Eq. (6.55) assumes the form

A.!/ D !3n

3�"0„c30
j�j2g.�!/: (6.57)

For narrow lines, the spectral distribution of spontaneous emission is therefore
essentially given by the line function of the transition cross section �.!/. Note that
the spontaneous emission rate grows with the third power of !.

To obtain the spontaneous life time [Eq. (6.40)], we have to integrate A.!/ over
all frequencies

1

�sp
D
Z

A.!/ d!I (6.58)

assuming a narrow line function, the variable ! in the integrand Eq. (6.57) can be
replaced by the resonance frequency !0, so that we obtain, using

R
g.�!/ d! D 1,

1

�sp
D !30nj�j2
3�"0„c30

: (6.59)
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6.1.3.1 The Füchtbauer–Ladenburg Equation
Equation (6.59) allows casting the interaction cross section Eq. (6.37) in the form

�.�!/ D 1

�sp

�2c20
n2!20

g.�!/: (6.60)

The spectral distribution of the spontaneously emitted light can be determined
experimentally, usually as a function I.	0/ of the wavelength. For narrow line
widths, one can therefore assume the (normalized) line function g.	0/ to be

g.	0/ D I.	0/R
I.	0/ d	0

: (6.61)

From
R

g.�!/ d! D R
g.	0/ d	0 follows g.�!/ D g.	0/

	20
2�c0

, so that Eq. (6.60)
can be expressed as a function of 	0,

�.	0/ D 1

�sp

	40
8�c0n2

I.	0/R
I.	0/ d	0

: (6.62)

This important relation is known as Füchtbauer–Ladenburg equation (see Fowler
and Dexter 1962).

6.1.4 Line Broadening

6.1.4.1 Homogeneous Line Broadening
In Eq. (6.25) we have replaced the ı-line function by a broadened line function
g.�!/. A fundamental broadening mechanism, also called natural broadening, is
due to the finite, spontaneous life time of an excited state. As an ensemble of excited
atoms decays exponentially in time, one can, in a semiclassical picture, view the
spontaneous emission of a single atom as an exponentially decaying field at the
carrier frequency !0 D .E2 � E1/=„ (Fig. 6.3). Assuming the power to decay as
e�t=�sp , the field decays as e�t=2�sp . The normalized power spectrum (absolute square
of the Fourier transform) of e�t=2�sp ej!0t is the line function

g.�!/ D 1

�

2�sp

1C .2�sp�!/2
: (6.63)
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Fig. 6.3 Natural line broadening by spontaneous emission

This function drops to half of the peak value at �! D 1=2�sp so that we obtain the
FWHM line width

�!FWHM D 1

�sp
: (6.64)

The line function Eq. (6.63) is of the same Lorentzian shape 1=.1C .�x/2/ already
encountered as the frequency dependence of absorption by a linear oscillator
[Eq. (2.61)].

A similar impact on the line shape results from dephasing (Fig. 6.4), for example,
by statistical collisions of atoms with others. The time between collisions in a gas is
distributed exponentially with the decay time T2 (dephasing time). In the frequency
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Collisions

Fig. 6.4 Dephasing and line broadening induced by collisions

domain, this results again in a Lorentz line shape4

g.�!/ D 1

�

T2
1C .�!T2/2

: (6.65)

These broadening mechanisms affect each individual atom, and thus an ensemble
of atoms in the same way; they represent what is known as homogeneous line
broadening. By contrast, statistically distributed shifts of the resonance frequency
of individual atoms result in the broadening of the line function of an ensemble,
without affecting the individual line width. If the range of frequency shifts exceeds

4For a derivation see, e.g., Svelto (2010).
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Inhomogeneous line

Homogeneous line

Fig. 6.5 Inhomogeneous line broadening due to statistical distribution of line shifts; the resulting
line shape is a convolution of the distribution function and the individual line width

the line width of the individual atoms, monochromatic light can interact only with a
certain sub-ensemble (Fig. 6.5), and the broadening is called inhomogeneous.

6.1.4.2 Inhomogeneous Line Broadening
An instructive example for inhomogeneous broadening is Doppler broadening in
gases. The thermal velocity of the atoms in a gas gives rise to a Doppler shift of the
apparent transition frequency, whenever the atom emits or absorbs light. According
to Eq. (2.197), the resonance frequency !0 of an atom moving at velocity v along a
certain direction is shifted to

!00 D !0

s
1C v=c0
1 � v=c0

� !0.1C v=c0/; (6.66)

when observed along this direction in a coordinate system at rest. For small
velocities jvj=c0	1, the Doppler shift is therefore

!00 � !0 � !0
v

c
: (6.67)

The velocities (and their component along a given direction) of the atoms in thermal
equilibrium are distributed according to Boltzmann’s distribution / e�E=kBT , where
E is the kinetic energy of the atoms and T is the temperature of the gas

pv dv D
�

M

2�kBT

�1=2
e�Mv2=2kBT dv; (6.68)
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where M is the mass of the atom. The prefactor is chosen so that
R

pv dv D 1.
Because of the linear relation Eq. (6.67) between Doppler shift and velocity, the
distribution of frequency shifts is given by the velocity distribution

p.!00 � !0/ d!00 D pv dvI (6.69)

from Eq. (6.67) follows d!00 D .!0=c/ dv, so that

p.!00 � !0/ D c

!0

�
M

2�kBT

�1=2
e
� Mc2
2kBT

.!0

0�!0/
2

!20 : (6.70)

p.!00 � !0/ d!00 is the probability to find the apparent transition frequency of the
moving atom in the interval Œ!00; !00 C d!00�. The FWHM-width of this Gaussian
distribution is

�!FWHM D 2!0
p
2 ln 2

p
kBT=Mc2: (6.71)

The line function gih.�!/ of the ensemble of gas atoms is the convolution of this
distribution function with the individual (homogeneous) line function of the atom

gih.! � !0/ D
Z 1
0

p.!00 � !0/gh..! � !0/� .!00 � !0// d!00

D
Z 1
0

p.!00 � !0/gh.! � !00/ d!00: (6.72)

If the homogeneous line width is negligible in comparison to the width of the
inhomogeneous distribution, it can be replaced by ı.! � !00/ and gih.! � !0/ D
p.! � !0/.

Another inhomogeneous broadening mechanism that can be very significant is
crystal field broadening: it affects atoms and ions in a (transparent) solid state host
material. The transition frequency of atoms is determined not only by the atomic
field but also by the electric field in its microscopic environment. If this environment
varies for different atoms, the optical response of the ensemble is inhomogeneously
broadened. This effect is particularly pronounced in amorphous host materials such
as glasses.

Very broad line functions can be observed in large (organic) molecules and
certain crystal hosts (e.g., sapphire) doped with transition metals (e.g., titanium). In
these materials, the electronic states of the electrons are split up in a wide manifold
of closely spaced vibrational and rotational levels that overlap at room temperature
and form broad absorption and emission bands. Semiconductors, on the other hand,
display quasi-continuous bands of electronic states, also resulting in very broad
emission and absorption lines (Sect. 6.3).
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6.1.5 Saturation of Absorption

In thermodynamic equilibrium, the levels E1 and E2 of an atom are populated
according to Boltzmann’s distribution, N2=N1 D e�.E2�E1/=kBT . For optical transition
energies and at room temperature, E2 � E1 
 kBT, so that N2 D 0 and N1 D N;
practically all atoms are in the ground state and available for absorption. According
to Eq. (6.47), the absorption coefficient then is

˛0 WD N�: (6.73)

We now want to discuss the absorption process Eqs. (6.40)–(6.47) in more detail
by taking the population changes due to the irradiation into account. We write
Eq. (6.40) in the form

dN2
dt

D �W.N2 � N1/� N2
�sp

(6.74)

and introduce the so-called inversion density�N

�N WD N2 � N1; (6.75)

so that Eq. (6.47) becomes

˛ D ���N: (6.76)

The total density of atoms is N D N1 C N2, so that

N1 D N ��N

2
; N2 D N C�N

2
: (6.77)

Eq. (6.74) can now be written as

d�N

dt
D ��N

�
2W C 1

�sp

�
� N

�sp
: (6.78)

Under stationary conditions d= dt D 0, we obtain

� �N

N
D 1

1C 2W�sp
: (6.79)
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Fig. 6.6 Population densities in a two-level system as function of the normalized signal intensity

With W D �F D �I=„! [Eq. (6.36)], we can cast Eq. (6.79) in the form

��N

N
D 1

1C I.2��sp=„!/ WD 1

1C I=I.2/s

; (6.80)

where

I.2/s WD „!
2��sp

(6.81)

is the so-called saturation intensity of a two-level system. In Fig. 6.6, the populations
N1;2 and �N=N are shown as functions of the normalized intensity I=I.2/s . With
Eqs. (6.73) and (6.80), we obtain the intensity dependence of the absorption
coefficient

˛.I/ D ˛0
1

1C I=I.2/s

I (6.82)

the reduction of the absorption coefficient by the incident light is called saturation
of absorption (Fig. 6.7).
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Fig. 6.7 Saturation of absorption (bleaching) at high signal intensity; note the logarithmic scale—
the inset shows a linear scale)

As long as the signal intensity is very small compared to the saturation intensity,
the absorption coefficient is ˛0; at higher intensity it is reduced (because there are
less atoms available for absorption, and stimulated emission from excited atoms
partially compensates the photon losses); at I.2/s the absorption coefficient is only
half of the “small signal” value ˛0 (this situation corresponds to a ground state
population of 75 % and an excited state population of 25 %). At very high intensity,
the absorber becomes transparent (it is bleached), since the two populations
approach 50 % each.

6.1.5.1 Saturation and Line Function
The absorption coefficient reflects the frequency dependence of the transition cross
section, ˛0.!/ D N�.!/. When irradiated by a strong monochromatic light field
(Fig. 6.8), a homogeneously broadened medium reacts according to Eq. (6.82); note
that I.2/s .!/ is a function of frequency having a minimum value at the peak of �.!/.

In an inhomogeneously broadened absorber, however, the light interacts with (and
saturates) only the sub-ensemble of atoms that is in resonance with the light field.
This selective saturation can be experimentally observed by measuring, with a weak,
tunable “probe” beam, the complete absorption spectrum of the absorber bleached
by a strong, monochromatic light (Fig. 6.9). The (transient) creation of a dip in the
absorption spectrum is known as spectral hole burning. The width of the “hole” in
the absorption spectrum equals the homogeneous bandwidth of the individual atoms
in the sub-ensemble.
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Fig. 6.8 Saturation of an homogeneously broadened absorber

Fig. 6.9 Saturation of an inhomogeneously broadened absorber

6.2 Light Amplification by Stimulated Emission

As remarked in the discussion of Eq. (6.45), N2 � N1 > 0 results in optical
amplification. The situation �N D N2 � N1 > 0 is called population inversion
because it is opposite to the thermodynamic equilibrium situation N2 < N1. It is
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convenient to cast Eq. (6.44) in the form

dI

dz
D I��N (6.83)

and to define, in analogy to the absorption coefficient Eq. (6.47), a gain coefficient
� D �˛

� D ��N: (6.84)

There are different strategies to obtain inversion: the necessary excitation of the
E2 level can be obtained by optical means, i.e. with light, but other mechanisms
such as collisions with energetic free electrons in gases or electron injection
in semiconductors are also possible and technologically important. According to
Eq. (6.82), a two-level system cannot be inverted by optical radiation, no matter
how intense. The light that is used to induce inversion (usually called the pump
light) must differ in frequency from the light that is to be amplified (the signal),
which can be achieved by using an auxiliary energy level E3 > E2 to absorb the
pump light (Fig. 6.10). Under appropriate conditions, the atoms excited to E3 can
relax to state E2 (by releasing the excess energy to the host material in the form of
heat, for example) and accumulate there to form a population N2. The pump process
requires a photon energy „!p D E3�E0, where E0 is the energy of the ground state.
Ideally, the transition from E3 to E2 is very fast, so that N3 � 0 and stimulated or
spontaneous emission from the pump level is negligible. In principle, the resulting
population N2 can be close to the total number of atoms, provided that the pump light
is sufficiently intense. The signal light with photon energy „!s can now interact with
these atoms. For this interaction, there are two prototypical schemes, as depicted in
Fig. 6.10. The lower state E1 participating in the interaction can either be the ground

E3, N3≈0

E2, N2

E1=E0, Ng=N1

WpN1 W12N1
=σF N1

W21N2
=σF N2

N2/τ2

E3, N3≈0

E2, N2

E0, Ng=N0≈N

WpN0 W21N2
=σF N2

N2/τ2

E2, N2

E1, N1≈0

(a) (b)

fast

fast

fast

Fig. 6.10 Energy levels and transitions (a) in a three-level system, (b) in a four-level system
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state, E1 D E0 (three-level system), or another auxiliary state (four-level system). It
is immediately clear that in a three-level system, at least 50 % of the atoms need to
be excited from the ground state to make inversion possible. In an ideal four-level
system, the population of the E1 is negligible (N1 � 0) and the inversion

�N D N2 (6.85)

can be obtained with very weak pump.
A requirement for the operation of the four-level scheme is that E1 � E0 
 kBT

(kBT is about 26 meV at room temperature), so that the thermal population of level
E1 according to Boltzmann’s distribution is negligible. Moreover, the life time of the
atoms in state E1 should be very short to prevent a congestion by transitions from
E2 to E1. Again, the transition from E1 to the ground state is usually mediated by
thermal (nonradiative) interaction with the environment.

Obviously, an ideal atomic amplifier system has to meet a manifold of spectro-
scopic requirements, and in fact the number of atomic elements (or their ions) that
have proven useful as optical amplifiers is rather limited: neodymium, titanium,
helium, argon, chromium, copper, ytterbium, and several others. Some of them
are four-level systems, others are three-level systems, such as erbium; at the
technologically very important wavelength of 1.5�m, the erbium amplifier is by
far the most attractive despite its three-level structure.

6.2.1 Four-Level Amplifier

To describe the operation of an atomic four-level amplifier system, we adapt
Eq. (6.40) by adding a pump rate that transports atoms from the ground state via
E3 to level E2. We denote with Wp the pump transition probability of an atom, and
the density of atoms in the ground state with Ng; we further assume N1 and N3 to be
negligible, so that Ng D N � N2. Then we obtain for N2 the rate equation

dN2
dt

D WpNg � W21N2 � N2
�2
: (6.86)

To take possible nonradiative de-excitation processes from E2 into account, we add
to the spontaneous emission rate 1=�sp a nonradiative rate 1=�nr so that the total
decay rate 1=�2 is

1

�2
D 1

�sp
C 1

�nr
I (6.87)
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for the sake of simplicity we will refer to this combined decay rate as spontaneous,
however.

If the signal is very small or zero, W21�0 and the stationary inversion is

N2;0.Wp/ D WpNg�2 D WpN�2
1C Wp�2

� WpN�2I (6.88)

the linear approximation is valid as long as N2 	 N, so that the depletion of
the ground state by the pump process can be neglected. Eq. (6.88) describes the
equilibrium between the pump and the spontaneous relaxation. The small signal
gain coefficient is then

�0 D N2;0�: (6.89)

Similar to what we have seen in Sect. 6.1.5 regarding absorption, a sufficiently
strong signal modifies the population densities and thus the gain coefficient. The
signal stimulates additional decay with a rate / W21 D �I=„! and reduces the
upper state population to

N2.Wp; I/ D WpN�2

1C Wp�2 C I=I.4/s

� N2;0
1

1C I=I.4/s

; (6.90)

where the saturation intensity is now defined as

I.4/s WD „!
��2

: (6.91)

Note that I.4/s D 2I.2/s ; while each transition in the four-level system changes the
inversion by 1, in a two- (or three-) level system, �N changes by 2 per transition.

The signal dependent gain coefficient is then

�.I/ D �0
1

1C I=I.4/s

: (6.92)

Equation (6.92) describes the gain saturation by the signal: compared to the small
signal gain coefficient �0, the gain coefficient drops to one half when the emission
rate stimulated by the signal equals the decay rate 1=�2. The signal intensity required
for this is one photon per cross section within the time interval �2 [Eq. (6.91)].
Except for the different value of the saturation intensity, saturation of gain and
absorption show very similar saturation effects; in particular, Figs. 6.7 and 6.8 apply
to both processes.
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Since the signal modifies the local gain coefficient, Eq. (6.83) is a nonlinear
differential equation, which in general can only be integrated numerically. Two
limiting cases, however, yield quite simple solutions. If the input signal is so small
that even the output signal is well below the saturation intensity, then saturation is
negligible and

I.l/

I.0/
D e�0lI (6.93)

e�0l is the small signal gain factor. If, on the other hand, I.0/=I.4/s 
1, then

dI

dz
D �0

I.z/

I.z/=I.4/s

D �0I
.4/
s (6.94)

and accordingly

I.l/� I.0/ D �0I
.4/
s l D WpNgl„!: (6.95)

The increase of the signal photon flux density is thus equal to WpNglA D WpNgV ,
where A and V are the cross section and volume of the amplifier, respectively: in the
case of very high saturation, every pump photon is converted into a signal photon
and added to the signal flux density; note that the temporal and spatial shape of a
signal is generally not conserved in that way.

6.2.2 Three-Level Amplifier

While a four-level system Fig. 6.10 without pump is transparent at the signal
frequency and can be inverted by an arbitrarily weak pump, three-level systems
require a minimum pump rate to become transparent or inverted. The rate equation
for this system is

dN2
dt

D WpNg C �FN1 � �FN2 � N2
�2
: (6.96)

Ideally, N3 D 0 (the transition E3–E2 is very fast), so that Ng D N1 D .N ��N/=2
and N2 D .N C �N/=2; the stationary small signal gain coefficient (at F � 0) is
then

�0 D ��N0 D �N
Wp�2 � 1
Wp�2 C 1

; (6.97)
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Fig. 6.11 Populations and
inversion of a three-level
system as a function of the
normalized pump rate; for
comparison, the inversion of a
four-level system is also
shown
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and the pump rate required for transparency (� D 0) is given by Wp�2 D 1.
Figure 6.11 shows the populations N1;2 as well as the inversion as a function of
the normalized pump rate.

6.2.3 Pulse Amplification and Absorption

The discussion above applies to signals that are not explicitly time dependent;
if light pulses are amplified, saturation also modifies the shape of the pulse
envelope: while the leading edge of the light pulse experiences the undepleted
small signal gain, the later sections of the pulse encounter only the inversion that
is left over by the preceding part of the pulse. While this nonlinearity of the
amplification process may be undesirable (it is actually often desirable, as we shall
see), amplification under saturation conditions provides high energy extraction from
the gain medium. In the linear, small signal regime, most of the inversion is not
utilized for amplification and ultimately decays by spontaneous emission, whereas
in the highly saturated regime the energy increase of the signal may be close to the
energy stored in the medium.

With F D c�ph, the photon transport equation Eq. (6.43) for a four-level system
can be written as

@F.z; t/

c@t
C @F.z; t/

@z
D �F.z; t/N2.z; t/I (6.98)

if the pulse duration �p is so short that pump and spontaneous emission can be
neglected during the pulse, the inversion density N2.z; t/ develops according to

dN2
N2

D ��F.z; t/ dt: (6.99)
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In the context of pulse amplification, it is convenient to introduce the energy fluence
of the pulse,

˚ WD
Z

„!F.t/ dt (6.100)

in units of [J m�2]. Integration of Eq. (6.99) over the pulse duration yields

N2.z/ D N2.z; 0/ exp

�˚.z/=˚.4/

s

�
(6.101)

for the inversion left over after the pulse has passed. The material specific fluence

˚.4/
s WD „!=� (6.102)

is called saturation fluence; it is the fluence that reduces the initial inversion to a
fraction 1=e. For a typical interaction cross section � of 10�19 cm2 and a photon
energy of 1 eV, ˚.4/

s is about 1.6 J cm�2.
The system Eqs. (6.98)–(6.99) of coupled, nonlinear differential equations can

be solved numerically; for selected pulse profiles, analytical solutions have been
derived, known as Frantz–Nodvik equations (Frantz and Nodvik 1963). A particu-
larly instructive (if also unrealistic) case is that of a rectangular input pulse with an
input flux density F0 for 0 < t < �p and zero otherwise. The amplifier is assumed
to have a length of l and an initial inversion density of N2;i; the output flux density
then turns out to be

F.l; t0/ D F0
1 � Œ1 � exp.��N2;il/� exp.��F0t0/

; for 0 < t0 < �p; (6.103)

and zero otherwise, where t0 D t � l=c is a time coordinate retarded by the
transit time l=c of the pulse; the second exponential function in the denominator
represents the gain depletion [see Eq. (6.101)]. We can express the above result in
terms of the input fluence ˚0 D „!F0�p, the saturation fluence Eq. (6.102), and the
energy stored in the amplifier per unit cross sectional area, ˚sto D „!N2;il; note
that exp.˚sto=˚

.4/
s / D exp.�N2;il/ is the small signal gain. With these definitions,

Eq. (6.103) is

F.l; t0/ D F0

1 � Œ1 � exp.�˚sto=˚
.4/
s /� expŒ�.˚0=˚.4/

s /t0=�p�
: (6.104)

Figure 6.12 shows the temporal pulse profile at the output of the amplifier for
different values of input fluence. In all cases, the pulse front is amplified by the
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Fig. 6.12 Effect of gain
saturation on a rectangular
input pulse of duration �p for
different ratios of the input
signal fluence ˚0 to the
saturation fluence ˚s.
Comparison of the area under
the pulse with a rectangle that
contains the entire energy
stored in the gain medium
(solid line) allows us to
estimate the energy extraction
efficiency; the output flux
density is normalized to
˚
.4/
s =�p
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Fig. 6.13 Effect of
absorption saturation on a
rectangular input pulse; the
small signal absorption is
chosen to be equal to e�2
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undepleted gain exp.�N2;il/; depending on the magnitude of the input fluence, the
pulse envelope then drops more or less precipitously and the later sections of the
pulse gain little, if any energy; the pulse duration is considerably shortened by the
process. Note that even input pulses of relatively low fluence show saturation effects,
because their fluence increases during propagation.

Equation (6.103) also describes the saturation of a (two-level) absorber, if the
depletion factor in the denominator is replaced by exp.�2�F0t0/ to account for the
fact that one transition changes the population difference by two (accordingly, the
saturation fluence for a two-level system is defined as ˚.2/

s WD „!=2�). Figure 6.13
shows output pulses for different values of input fluence. In contrast to the case of
gain saturation, the input fluence needs to be comparable to the saturation fluence
or higher to induce significant saturation effects, since the fluence gets lower during
propagation. Also in contrast to gain saturation, the leading section of the pulse
is now distorted. Once the leading part of the pulse has saturated the absorber, the
absorber becomes transparent and transmits the rest of the pulse almost without loss.
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Saturable absorbers can therefore be employed for optical switching (Sect. 7.3.1) or
formation of ultrashort pulses (Sect. 7.3.2). Note that gain saturation shortens the
tail of a pulse, while absorption saturation chops off its head.

6.3 Optical Interactions with Semiconductors

6.3.1 Electronic States in Semiconductors

Semiconductors do not behave like an ensemble of independent atoms, but rather
like a huge, covalently bound molecule. The overlap of sp3-hybrid orbitals of adjoin-
ing atoms constitutes a set of bonding and (energetically higher lying) anti-bonding
molecular orbitals (Fig. 6.14). The electrons in these orbitals are delocalized over
the entire crystal and shared by all atoms. Because of the directionality of the sp3-
orbitals, the resulting molecule displays crystalline order, usually of diamond or zinc
blende structure. In an ideal semiconductor, the number of bonding states is exactly
equal to the total number of sp3-electrons. Since every state can be occupied by not
more than one electron (Pauli exclusion principle), all bonding states are occupied
if the semiconductor is in its ground state.

s-Orbital

p-Orbital

3sp -Orbital

anti-bonding

bonding

Conduction band

Valence band

Fig. 6.14 Formation of energy bands in a semiconductor (silicon): (a) s- and p-orbitals of the
individual atom form sp3-hybrid orbitals (b); the overlap with an adjoining sp3-orbital results in
the splitting of the orbitals into a low lying bonding orbital and a higher lying anti-bonding orbital
(c); addition of more and more atoms results in the splitting of these states into a manifold of closely
lying states, so-called energy bands (d); the bonding and the anti-bonding bands are separated by
a gap where no states exist
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6.3.1.1 Electronic States, Density of States
According to Bloch’s theorem (see, e.g., Burns 1985), the energy eigenstates of the
electrons in a semiconductor crystal can be written as a product

 .x/ D uB;k.x/e�jk�x (6.105)

of a function uB;k.x/ that exhibits the periodicity of the crystal lattice, and a plane
carrier wave with the wave vector k; the subscript B refers to the band (V indicating
the valence and C the conduction band, respectively). For a semiconductor crystal of
macroscopic dimensions dx;y;z, it is convenient to apply so-called periodic boundary
conditions to find (approximative) values of the electronic wave vector, by assuming
that the wave function “repeats” itself after the distance dx;y;z; consequently, the
components of the wave vector assume the discrete values

ki D mi
2�

di
; mi D : : : ;�2;�1; 0; 1; 2; : : : (6.106)

While mi has no upper limit in principle, the periodicity of the crystal lattice implies
that the wave vectors within the first Brillouin zone are sufficient to identify all
distinct wave functions in a unique way; all wave functions with a wave vector
outside this zone are equivalent to a wave function within the first zone. If we
assume, without going into details, that the borders of the first Brillouin zone
are given by ˙�=a, where a is the lattice constant of the semiconductor, then
��=a < ki < �=a, and the index mi of unique wave vectors is limited by
jmij < dx;y;z=2a. In a macroscopic crystal, dx;y;z=a is a very large number, so
that the wave vectors are very closely spaced within the Brillouin zone. The
density �B.k/ of states, i.e., the number of states per unit volume in the interval
Œk; k C dk� can then be calculated in a way analogous to Eq. (4.106) and is given
by

�B.k/ D k2

�2
I (6.107)

the two possible polarization states per wave vector of an electromagnetic mode
correspond to two different spin states of the electrons. Note that because of
different boundary conditions, Eq. (6.106) includes positive as well as negative
values of ki; the restriction to positive ki-values in Eq. (4.105) is compensated
by the smaller mode spacing; the main motivation for applying the more general
boundary conditions Eq. (6.106) is that wave vectors of opposite sign are needed to
describe electron transport, while the electromagnetic modes in a cavity are standing
waves.
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Fig. 6.15 Schematic band
structure of a semiconductor
in the vicinity of the valence
band maximum
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k

The momentum of an electron is given by „k, and its kinetic energy is
accordingly equal to „2k2=2m; the energy of a quasi-free electron in the conduction
band is therefore

E.k/ D Ec C „2k2
2mc

; (6.108)

where Ec is the conduction band minimum or edge (Fig. 6.15). In comparison to
expression Eq. (6.5) for a free electron, the mass is replaced by an effective mass
mc to account for the interaction of the electron with the crystal lattice. A similar
relation holds for the valence band, with the mass �mv and the band edge Ev

E.k/ D Ev � „2k2
2mv

I (6.109)

the effective masses of gallium arsenide (GaAs) are mc �0.068 me and mv �0.5 me.
Equation (6.108) allows us to express the density of states as a function of energy:

with �.E/ dE D �.k/ dk and dk D .mc=„2k/ dE, we obtain for the conduction band

�c.E � Ec/ D �c.k/
dk

dE
D 1

2�2



2mc=„2

�3=2p
E � EcI (6.110)
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Fig. 6.16 Conduction band
density of states �c.E � Ec/

for GaAs; the valence band
density of states �v.Ev � E/
is larger by a factor of
.mv=mc/
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for the valence band we use dk D �.mv=„2k/ dE and ��.�E/ dE D �.k/ dk to
obtain

�v.Ev � E/ D 1

2�2



2mv=„2

�3=2p
Ev � E: (6.111)

Within the band gap Ev < E< Ec, the density of states is zero, above and below it
increases with the square root of the energy (Fig. 6.16).

6.3.1.2 (Quasi)-Fermi Distribution
Within a band, electrons can rapidly alter their state by exchanging energy and
momentum with the crystal lattice vibrations (phonons); such transitions are called
intraband transitions in contrast to interband transition between two different bands
(Fig. 6.17). In thermodynamic equilibrium with the lattice, the states are statistically
occupied. Other than the atoms in a classical gas, however, the electrons in a
semiconductor are (a) indistinguishable and (b) subject to the Pauli exclusion
principle that implies that an individual state cannot be occupied by more than
one electron (because of its half-integer spin). For these reasons, the occupation
probability does not follow Boltzmann’s distribution, but an equilibrium distribution
known as Fermi–Dirac distribution (Fig. 6.18)

f .E � EF/ D 1

e.E�EF/=kBT C 1
: (6.112)

In an intrinsic (i.e., undoped) semiconductor, the total number of states available
in the valence band equals exactly the total number of valence electrons. Each
electron in the conduction band must therefore correspond to a vacancy (hole) in
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Valence band

Conduction band

Egω

Fig. 6.17 An optical interband transition followed by intraband transitions (thermalization)

Fig. 6.18 Fermi–Dirac distribution at different temperatures; the energy range of partial occupa-
tion is centered around the Fermi energy EF and has a width of several kBT

the valence band so that the respective densities are equal, ne D nh. In thermal
equilibrium, ne is given by the integral over the conduction band density of states
times the respective occupation probability

ne D
Z 1

Ec

�c.E/f .E � EF/ dE: (6.113)

The density of holes in the valence band, on the other hand, is given by

nh D
Z Ev

�1
�v.E/Œ1 � f .E � EF/� dE; (6.114)
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since 1�f .E/ is the probability that a state is empty. The Fermi energy EF establishes
itself such that

Z 1
Ec

�c.E/f .E � EF/ dE D
Z Ev

�1
�v.E/Œ1 � f .E � EF/� dE: (6.115)

Because the conduction band density of states differs from that of the valence band
by a factor of .mc=mv/

3=2, the Fermi energy is not precisely in the center of the band
gap, but shifted slightly towards the band with smaller effective mass (usually the
conduction band). Once the value of EF is established, the equilibrium ne follows
from Eq. (6.113).

6.3.1.3 Doping of Semiconductors
If a regular lattice atom is replaced by an impurity atom with a different number
of valence electrons, the balance between the number of valence band states and
electrons is altered; if the impurity has more valence electrons than the regular atom,
it serves as electron donor, while an atom with reduced number of electrons is an
electron acceptor. The density of impurity atoms can be controlled technologically
by doping the semiconductors, either with donors (n-doping) or acceptors (p-
doping). In III–V semiconductors such as GaAs, Zn (group II) is frequently used
as p-dopant and Se (group VI) as n-dopant.

In an n-doped semiconductor, the number of electrons exceeds the number
of valence band states so that there are more electrons in the conduction band
than holes in the valence band. Accordingly, ne > nh and the Fermi energy is
shifted towards the conduction band to satisfy Eq. (6.113); in a p-doped material the
opposite applies. If the dopant concentration is so high that the Fermi energy lies

EF

EF

EE

k k

(a) (b)

Fig. 6.19 Position of the Fermi level in a highly doped (degenerate) semiconductor: (a) n-doped,
(b) p-doped semiconductor
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within one of the bands, the semiconductor is called degenerate and actually behaves
like a metal (Fig. 6.19). While doping is of central importance in electronics, it plays
a rather minor role in photonics. Throughout the following, undoped (“intrinsic”)
semiconductors are assumed unless explicitly stated otherwise.

6.3.1.4 Excitation of Semiconductors
Excitation of electrons from the valence into the conduction band increases ne and
nh, but the balance ne D nh is, of course, conserved. Excited electrons stay in the
conduction band until they recombine with the holes by radiative or nonradiative
transitions at a rate ne=�rec, where �rec is the so-called recombination time, typically
of the order of nanoseconds. During this time, the electrons undergo transitions
between the closely lying states of the band (intraband transitions) on a time scale
of picoseconds. Energy and momentum is conserved by exchange with lattice
vibrations (phonons). Because of the much higher rate of intraband transitions,
a thermal quasi-equilibrium distribution of the electrons is established within the
conduction band, that is again a Fermi distribution

fc.E/ D 1

e.E�EF;c/=kBT C 1
(6.116)

but with a quasi-Fermi energy EF;c that is such that

ne D
Z 1

Ec

�c.E/f .E � EF;c/ dE: (6.117)

In the same fashion, holes occupy the valence band states according to the
distribution

fv.E/ D 1

e.E�EF;v/=kBT C 1
(6.118)

characterized by a quasi-Fermi energy EF;v that satisfies

nh D
Z Ev

�1
�v.E/Œ1 � f .E � EF;v/� dEI (6.119)

Fig. 6.20 shows the position of the two quasi-Fermi levels of a highly excited
semiconductor.

The difference EF;c � EF;v, which is zero in thermal equilibrium, grows with
increasing excitation; Fig. 6.21 shows the dependence of EF;c and EF;v on ne for
two different temperatures. For EF;c � EF;v < Eg, the Fermi levels vary, in good
approximation, logarithmically with the carrier density; near the band edge, the
dependence becomes more pronounced. At a certain carrier density, the difference
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Fig. 6.20 Quasi-Fermi levels of an excited semiconductor at two different degrees of excitation:
(a) below inversion, (b) inverted; see also Fig. 6.21
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Fig. 6.21 Position of the quasi-Fermi levels in GaAs (Table 6.1) as a function of the carrier density
for two different temperatures. The transparency carrier density, defined by EF;c � EF;v D Eg, is
lower by approximately one order of magnitude at 77 K as compared to room temperature (vertical
arrows)

between the quasi-Fermi levels is equal to the gap energy; for reasons that will
become clear in the following, this carrier density is called transparency carrier
density. For temperatures approaching 0 K, the integral Eq. (6.117) can be easily
evaluated because the Fermi distribution converges into simple step function, and
we obtain

EF;c D Ec C „2
2mc



3�2ne

�2=3
(6.120)
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and

EF;v D Ev � „2
2mv



3�2nh

�2=3
: (6.121)

6.3.2 Optical Transitions in Semiconductors

As in atoms, transitions between the states in the valence and conduction bands
can be driven by electromagnetic radiation and are accompanied by the creation or
annihilation of photons. Since the states are distributed over practically continuous
bands, the resonance condition required by Fermi’s golden rule Eq. (6.24) can be
met by photons of a wide frequency range, provided that „! � Eg. The most
important selection rule for an optical interband transition in a semiconductor
follows from momentum conservation, „kf �„ki D ˙„kph, where ki;f are the initial
and final electron wave vectors and kph is the optical wave vector; since the wave
vector of an 1 eV-photon (� 105 cm�1) can be neglected in comparison with typical
electronic wave vectors (107 cm�1), the selection rule simplifies to kf � ki D 0. In
the E–k band diagram, optical transitions must therefore be “vertical” (Fig. 6.22).
Transitions between states of different wave vector (called indirect transitions)
are possible in principle, but require the simultaneous interaction with a phonon
(lattice vibration) to conserve momentum; accordingly, the probability of indirect
transitions is very small in comparison with direct transitions.

The actual band structure of semiconductors is usually quite complicated. From
the viewpoint of light–matter interaction, one of the most important features of
the band diagram is the position of the conduction band minimum in respect to
the maximum of the valence band. If the two points have the same k-vector, the
band gap is denoted as direct. Since electrons accumulate in the conduction band
minimum, and holes in the valence band maximum, such semiconductors, when

(b)

Absorption Emission

Phonon

Absorption Emission

(a)

Fig. 6.22 Energy bands and optical transitions: (a) direct semiconductor, (b) indirect semicon-
ductor



284 6 Light–Matter Interaction

excited, can recombine radiatively. Indirect semiconductors (such as Si) cannot
efficiently emit light because the electrons in the conduction band cannot reach
empty states in the valence band via direct transitions (Fig. 6.22). In regard to
absorption, the difference between direct and indirect band gap semiconductors is
irrelevant, and both types are suitable as photodetectors.

6.3.2.1 Joint Density of States
To analyze the interaction of light with semiconductors, we first have to find, for a
given of photon energy „!, the states Ea; Eb in the valence and conduction band,
respectively, that fulfill the requirements Eb � Ea D „! and ka D kb (Fig. 6.23a).
With Eqs. (6.108) and (6.109), these conditions can be combined in the equation

„! D „2k2
2mr

C Eg; (6.122)

Fig. 6.23 Band structure (a), quasi-Fermi distributions (b), Fermi factor (c), joint density of states
(d), and gain coefficient �.!/ D ˛0.!/Œfc.Eb/� fv.Ea/� (e), for EF;c � EF;v>Eg
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where k2 D k2a D k2b, Ec � Ev D Eg and the reduced electron mass mr is defined by

1

mr
WD 1

mc
C 1

mv
: (6.123)

The solution of Eq. (6.122),

k2.!/ D 2mr

„2 .„! � Eg/ (6.124)

provides the wave number of the states that are coupled by direct optical transitions
at !. The corresponding energy levels in the two bands follow from Eqs. (6.108)
and (6.109)

Ea.!/ D Ev � mr

mv
.„! � Eg/;

Eb.!/ D Ec C mr

mc
.„! � Eg/: (6.125)

With Eqs. (6.107) and (6.124), we can calculate the so-called joint density �j.k/ of
such pairs of states in the interval Œk; k C dk�

�j.k/ D k2.!/

�2
D 2mr

�2„2 .„! � Eg/I (6.126)

the (more relevant) joint density of states (Fig. 6.23d) in the interval Œ!; !C d!� can
be obtained from Eq. (6.126) using the identity �j.!/ d! D �.k/ dk; with dk= d! D
mr=„k following from Eq. (6.124), we obtain

�j.!/ D 1

2�2
.2mr/

3=2

„2 .„! � Eg/
1=2: (6.127)

6.3.2.2 Fermi Factor
If a (two-level) atom is in one of the states participating in an optical transition,
then the other state is unoccupied and one does not have to care about the blocking
of a transition by the Pauli exclusion principle. In semiconductors, states are
statistically occupied according to the Fermi distribution Eq. (6.112), and the final
state of a transition may be occupied, i.e., the transition is blocked with a certain
probability. The (absorptive) transition between a state Ea in the valence band
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and the corresponding conduction band state Eb requires, for example, that Ea is
occupied and Eb is unoccupied, which happens with the probability

fabs D fv.Ea/Œ1 � fc.Eb/�I (6.128)

note that the Fermi levels in the two bands are generally different, as indicated by
the subscripts v and c in the distribution function. Analog considerations for the
emissive transition from Eb to Ea yield

fem D fc.Eb/Œ1 � fv.Ea/�I (6.129)

the net-transition rate is thus proportional to the so-called Fermi factor (Fig. 6.23c)

fem � fabs D fc.Eb/ � fv.Ea/
n
<D
>

o
0 if Eb � Ea

n
>D
<

o
EF;c � EF;vI (6.130)

the inequalities follow after substitution of the distribution functions Eqs. (6.116)
and (6.118). With Eb � Ea D „!, we find that the Fermi factor is zero if „! D
EF;c � EF;v, and positive (negative) for lower (higher) values of „!; note that a
zero Fermi factor implies that the semiconductor is transparent at the respective
frequency, independent of the joint density of states.

While the quasi-Fermi levels EF;c.ne/ and EF;v.nh/ are determined by the carrier
density ne D nh (Fig. 6.21), the energies Ea and Eb are functions of ! [Eq. (6.125)].
Thus, the Fermi factor is completely determined by ne and !

fc.Eb/ � fv.Ea/ D fc

�
Ec C mr

mc
.„! � Eg/

�
� fv

�
Ev � mr

mv
.„! � Eg/

�
:

(6.131)

6.3.2.3 Absorption Coefficient
For the calculation of the absorption coefficient, we can follow the derivation of
Eq. (6.47), replacing the population difference N2 � N1 by the product �j.!/. fem �
fabs/. The transition probability for a given pair of states Ea, Eb is determined by
Fermi’s golden rule Eq. (6.24) and is characterized by an interaction cross section
that is non-zero only within a small bandwidth centered at .Eb � Ea/=„. According
to Eq. (6.60), this cross section can be expressed as � D .�2c2=!2�r/g.�!/, where
�r is the radiative recombination time.
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Table 6.1 Selected material
properties of intrinsic GaAs

Eg [eV] n .mc=me/ .mv=me/ .mr=me/ �r [ns]

1.42 3.55 0.068 0.5 0.06 2

Under assumption of a narrow line g.�!/� ı.�!/ of the individual transition,
the absorption coefficient thus is given by

˛.!/ D ��
2c2

!2�r
�j.!/Œ fc.Eb/� fv.Ea/�: (6.132)

At sufficiently low temperatures (kBT 	 Eg) and in the absence of any other
excitation, fv.Ea/ D 1 and fc.Eb/ D 0 so that the Fermi factor is equal to -1 and
we obtain, with Eq. (6.127)

˛0.!/ D c2

.„!/2
.2mr/

3=2

2�r
.„! � Eg/

1=2: (6.133)

For GaAs (Table 6.1) and near the band gap, the prefactor in Eq. (6.133) amounts
to c2.2mr/

3=2=2.„!/2�r �5�103 cm�1 eV�1=2; only slightly above the band gap, at
„! � Eg=0.01 eV, the absorption coefficient is already as large as 5�102 cm�1.

6.3.3 Optical Gain Condition

In an excited semiconductor, the absorption coefficient Eq. (6.132) turns negative
provided that „! > Eg and the Fermi factor assumes a positive value, which requires
„! < EF;c �EF;v (Fig. 6.23e). The semiconductor then acts as optical amplifier with
the gain coefficient � D �˛ following from Eq. (6.132)

�.!/ D �˛.!/ D ˛0.!/Œfc.Eb/� fv.Ea/�; (6.134)

with ˛0 given by Eq. (6.133). Gain is provided within the interval

Eg < „! < EF;c � EF;v: (6.135)

The gain condition, equivalent to the inversion condition, therefore requires that
the difference between the quasi-Fermi levels is larger than the band gap. As
already mentioned, the carrier density needed to reach EF;c � EF;v D Eg is called
the transparency carrier density ntr: with this carrier density, the semiconductor is
transparent for a photon energy just equal to the band gap.
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Wavelength [nm]

Fig. 6.24 Spectral dependence of the gain coefficient � of GaAs (calculated) at room temperature
for different values of ne (cm�3); the inset shows the peak gain coefficient as a function of ne

Figure 6.24 shows the gain coefficient as a function of ne. Because of the increas-
ing density of states, the peak of the gain spectrum moves to higher frequencies with
increasing carrier density; the peak gain coefficient is approximately given by the
semi-empirical formula

�.ne/ ' ˛0

�
ne

ntr
� 1

�
: (6.136)

6.3.4 Low Dimensional Semiconductors

The position of the quasi-Fermi level depends on the carrier density, the temperature
and the density of states: a smaller density of states, for example, implies that states
of higher energy must be filled to accommodate a given number of electrons in
the conduction band. As we will see in the following, the density of states can be
modified (lowered) by spatial confinement of the carriers in one or more dimension.
By the same token, the carrier density necessary to reach a certain difference of the
quasi-Fermi level is reduced in such structures.

6.3.4.1 QuantumWells
In a macroscopic crystal, the points in k-space representing the electronic
wave functions are so closely packed that they form practically continuous
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bands (Sect. 6.3.1.1); accordingly, the density of states [Eq. (6.108)], given in
[cm�3 eV�1], is independent of the size and shape of the crystal. If, however, the
dimension of the crystal in one or more directions approaches the lattice constant
of the crystal, the spacing between the points in k-space becomes significant
and the density of states is not a continuous function of the wave number or
the energy, respectively, but starts to display discontinuities. Let us consider a
semiconductor slab with very small thickness dz (but macroscopic extensions dx;y);
if we model the confinement of the carriers in the z-direction by a one-dimensional
rectangular potential well with infinite barriers, the electron wave function must
vanish at the walls, forming a standing wave in the confinement direction, just as
the electromagnetic modes in a perfectly conducting cavity. We therefore can use
the result Eq. (4.105) to find

kz D nz
�

dz
; nz D 1; 2; 3 : : : ; (6.137)

while kx;y is given by Eq. (6.106). Because dz is assumed to be very small, this means
that the tips of the wave vectors are arranged in distinct planes normal to the kz

direction and separated by �=dz; to each value of nz corresponds a manifold of
densely packed states kx;y representing a two-dimensional sub-k-space (Fig. 6.25).

To estimate the number of states in such a sub-space in the interval Œk; k C dk�

(where k D
q

k2x C k2y), we divide the volume 2�2k2=dz dk of a cylindrical ring of

radius k, radial thickness dk, and height �=dz by the volume 4�3=dxdydz that a state
consumes and multiply by 2 to account for the two possible spins; the density of
states is obtained after dividing the result by the volume dxdydz of the crystal

�nz;c.k/ D k

�dz
; (6.138)

in contrast to the bulk-expression �c.k/ D k2=�2 [Eq. (6.107)].

Fig. 6.25 Location of
electronic states of a
two-dimensional
semiconductor in k-space,
forming closely packed
planar sub-spaces; also shown
is the volume element that a
state occupies
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quantum well
3D-semiconductor

QW- subbands

3D-semiconductor

QW- subbands

kx,y

Fig. 6.26 Band structure and density of states of a quantum well-structure; Eg1;2 are the bulk band
gaps of the two materials forming the structure

The energy of the conduction band states is [see Eq. (6.108)]

E.k/ D Ec C Eq
nz;c C „2k2

2mc
(6.139)

with

Eq
nz;c WD „2.nz�=dz/

2

2mc
I (6.140)

for every value of nz, there exists a separate parabolic sub-band (Fig. 6.26).
To find the density of conduction band states as a function of energy, we express

k by E,

k D
q
.2mc=„2/.E � Ec � Eq

nz;c/: (6.141)

From �nz ;c.k/ dk D �nz ;c.E/ dE and

dk D
p
2mc=„2

2

q
E � Ec � Eq

nz;c

dE (6.142)

we find for E �Ec C Eq
nz;c

�nz;c.E/ D mc

�„2dz
; (6.143)
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which is obviously constant. The total density of states of the manifold of sub-bands
is obtained by summation over nz; it is a step function enclosed by the bulk density
of states (Fig. 6.26).

The valence band density of states is obtained by replacing the effective mass of
the conduction band by that of the valence band:

�nz;v.E/ D mv

�„2dz
: (6.144)

Replacing the effective mass by the reduced mass and applying the selection rules
�k D 0, �nz D 0, we obtain for nz D 1 the optical joint density of states at
! D E=„

�1;j.!/ D mr

�„2dz
; for ! > Eg C Eq

1;c C Eq
1;v: (6.145)

Technologically, quantum wells are produced by growing few atomic layers of a
semiconductor material such as GaAs, sandwiched between two layers of a wide
band gap material such as AlAs.

The modified density of states of quantum well-structures has important conse-
quences:

– the transparency carrier density is significantly reduced
– the constant joint density of states provides almost constant gain within one sub-

band
– increasing the carrier density increases the gain bandwidth without affecting the

peak gain.

For these reasons, quantum well semiconductor amplifiers and -lasers are widely
applied in photonics.

6.3.4.2 QuantumWires and QuantumDots
Carrier confinement can be extended to two or three dimensions; a needle shaped
semiconductor crystal of microscopic measures in two directions (say y and z) is
called a quantum wire, while microscopic semiconductor grains are referred to as
quantum dots. In a quantum wire, two components of the k-vector become discrete

ky;z D ny;z
�

dy;z
; ny;z D 1; 2; 3 : : : (6.146)
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Fig. 6.27 Location of electronic states of a quantum wire in k-space, forming closely packed
linear sub-spaces

while kx D k is quasi-continuous and given by Eq. (6.106). The resulting sub-spaces
are parallel lines of densely packed states kx in k-space (Fig. 6.27). The conduction
band energy of sub-band ny; nz is given by

E.k/ D Ec C Eq
ny;c C Eq

nz;c C „2k2
2mc

(6.147)

with

Eq
ny;z;c WD „2.ny;z�=dy;z/

2

2mc
: (6.148)

The density of states as a function of k is constant and equal to 1=.�dydz/; expressed
as a function of energy, the density of states of a given sub-band is

�ny;nz;c.E/ D 1

�dydz

p
mc=„q

2.E � Ec � Eq
ny;c � Eq

nz;c/
(6.149)

for E > Ec C Eq
ny;c C Eq

nz;c.
Quantum confinement in three dimensions results in quantum dots. Since all

components of the k-vector are discrete, no bands are formed. The energy levels
are discrete

E D Ec C
X

iDx;y;z

„2.ni�=di/
2

2mc
; (6.150)
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similar to that of an atom. Consequently, the term density of states is not appropriate
any more and is replaced by the density of quantum dots, if there is more than
one. Since it is technologically difficult to produce many quantum dots of exactly
the same dimensions, an ensemble of quantum dots is usually inhomogeneously
broadened. An important application of quantum dots is the conversion of UV light
from luminescence diodes (UV-LED) into visible light, exploiting the manifold of
radiative transitions within a quantum dot.

6.3.4.3 Inter-Sub-Band Transitions
Optical transitions are also possible between different sub-bands of a quantum well,
wire, or dot. The energy spacing is generally much smaller than the band gap and
can be designed by appropriate choice of the geometric dimensions and the material
constituents. Such inter-sub-band transitions are the base for IR emitting so-called
quantum cascade lasers (see, e.g., Faist 2011).

6.3.5 Carrier Induced Refractive Index Change

An important side effect of increased carrier density is the change of the refractive
index of the semiconductor upon excitation. The electrons in the conduction band
(and holes in the valence band) act as a free electron gas (Sect. 2.2.3), which, for
frequencies above the plasma-frequency Eq. (2.87) provides a negative contribution
to the total permittivity. For typical carrier densities in semiconductor amplifiers,
the plasma frequency is well below the band gap. To estimate the change of the
permittivity, we treat the carriers as having the reduced electron mass mr and obtain,
according to Eq. (2.88), the estimate

�" D � nee2

"0mr!2
: (6.151)

In GaAs, at a carrier density of ne D 2 � 1018 cm�3 we get �" � �0:016 at a
wavelength of 	0 D 830 nm (1.5 eV). With n D "1=2, this corresponds to a refractive
index change of �n��"=2n��0:005.

A second contribution to the refractive index of an excited semiconductor follows
from the Kramers–Kronig relations Eq. (2.103) that relate the real and imaginary
parts, n and �, of the refractive index. With Eq. (2.71) and k0 D !=c0, the absorption
coefficient ˛ of the semiconductor in the absence of excitation is related to � by
�.!/ D ˛.!/c0=2!, while in the inverted, amplifying medium we have �.!/ D
��.!/c0=2!. Equation (2.103) then yields

�n.!/ D 2

�

Z 1
0

!0��.!0/
!02 � !2 d!0 D �c0

�

Z 1
0

��.!0/
!02 � !2

d!0; (6.152)
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where ��.!0/ D �.!0/ C ˛.!0/. This contribution to the refractive index is
also negative at the peak of the gain spectrum and usually exceeds the plasma-
contribution. The dependence of the refractive index on the carrier density has
important implications for the operation of semiconductor lasers (Sect. 7.5.3). It
also can be used to realize semiconductor based interferometric modulators, since
the refractive index change extends to light frequencies within the band gap, where
the semiconductor is transparent.

6.4 Summary

Schrödinger’s equation is introduced as the wave equation of electrons. For a given
atomic potential, the solutions of this equation are the electronic energy eigenstates
of the atom with corresponding eigenvalues. In the absence of a perturbation by,
for example, an electromagnetic field, an atom in any of these eigenstates is stable.
The effect of a (periodic) perturbation is that the exposed atom assumes a state
that is a superposition of its eigenstates; such a superposition is not stationary
anymore but oscillates at a frequency equal to the difference of the respective
energy eingenvalues, divided by Planck’s constant. The perturbation is therefore
only efficient if its frequency is equal or close to the oscillation frequency of the
atom.

After the perturbation, the atom is found, with a certain probability, in a different
state—it has undergone a transition. The energy difference between the initial and
the final is balanced by the electromagnetic field in the process of absorption or
stimulated emission. The probability of such a transition can be expressed as a
product of an interaction cross section and the fluence of light quanta the atom is
exposed to. We derive Fermi’s golden rule which provides, in good approximation,
the transition probability and the interaction cross section. We discuss various
mechanisms that lead to line broadening, i.e., to the broadening of the frequency
range where transitions are possible.

Stimulated emission is the base of light amplification in a laser. We introduce
the concept of rate equations to describe the interaction of a laser mode with the
laser medium. A gain condition is formulated and techniques to reach the necessary
population inversion are described. Amplification relies on the transition of atoms
from a higher energy state to a lower, and the amplification of intense signals reduces
the number of excited atoms and thus the gain. This saturation process is discussed
for continuous waves as well as light pulses.

We extend the discussion of light–matter interaction to semiconductors, where
the electrons are not allocated to an individual atom, but are delocalized over the
entire crystal. The gain condition therefore includes statistical components, taking
the Fermi distribution of electrons within the energy bands of the semiconductor
into account. The number of pairs of semiconductor states that are eligible for a
transition at a given frequency is expressed in the optical joint density of states. This
important quantity also depends on the geometric dimensions of the semiconductor:
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quantum wells, wires, and dots have a reduced density of states which generally is
advantageous for laser applications.

6.5 Problems

1. The power spectrum of a black body at temperature T is given by Eq. (6.52):
(a) calculate the frequency !max of spectral maximum; (b) use the identity
�.!/ d! D �.	/ d	 to express the power spectrum as a function of the vacuum
wavelength; calculate the wavelength 	0;max of spectral maximum. Explain why
!max	0;max ¤ 2�c0, although !	0 D 2�c0. What does a grating spectrometer
measure, �.!/ or �.	/?

2. Assume a 1 mmol/l solution of Rhodamine 6G in ethanol (the molecular weight
and absorption spectrum of Rhodamine 6G can be found in many data bases);
calculate �max of the dye-molecule and the loss of monochromatic light at 530 nm
upon transmission through a 1 (5) cm thick layer of this solution. Further assume
“white light” with a constant spectral power I.!/ D dP= d! D const. between
300 and 700 nm (and zero outside this range) transmitted through this solution.
What is the approximate loss (in percent) (approximate the absorption band by
a rectangle); note that I.	0/ of the input light is not a constant. The spontaneous
life time of the molecule is 10 ns; calculate the fluence of an ultrashort 530 nm
pulse that reduces the absorption of a thin layer of this solution to 50 %. How
long does it take the dye solution to recover after the light is switched off?

3. Atomic sodium vapor in a gas discharge lamp emits a strong line at 589 nm;
assuming that the vapor has a temperature of 2000ı, what is the range of Doppler
frequency shifts due to thermal motion, if we assume that the atoms have a kinetic
energy of kBT?

4. Assume a four-level amplifier with spatially homogeneous inversion density and
length l. A very short (but energetic) pulse with an energy fluence ˚0 D „!F0�p

is transmitted through the medium. Calculate the inversion distribution imme-
diately after the transmission for different values of ˚0. Neglect spontaneous
emission and pump processes.

5. Same as before, but with a pulse of finite duration and initially rectangular
pulse shape: calculate the pulse shape at the end of the amplifier by numerical
integration for different values of ˚0; for this purpose, slice the pulse into a train
of very short pulses of appropriate fluence. Compare the results with that of the
Frantz–Nodvik equations.

6. Calculate numerically the quasi-Fermi levels in intrinsic GaAs as a function
of the carrier density ne at room temperature. Evaluate the transparency carrier
concentration as a function of T. See Table 6.1 for the properties of GaAs.

7. Consider a GaAs quantum well with a da of 10 nm. Calculate numerically the
quasi Fermi levels as a function of the carrier density and the temperature T.
Evaluate the transparency carrier density as a function of T. Compare these
results with the bulk results.
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Positive feedback converts an amplifier into an oscillator. In optics, feedback can be
provided by mirrors at the two ports of an amplifier (Fig. 7.1). While the acronym
“laser” stands for light amplification by stimulated emission of radiation, it usually
refers to an optical oscillator that relies on amplification by stimulated emission; we
shall see in Sect. 7.6 and Chap. 8 that there are alternative amplification mechanisms
that can be used to build optical oscillators.

The optical properties of a Fabry–Perot resonator, in particular its modes, have
been described in Sect. 4.3. Because of the coherent nature of the amplification
process, a laser oscillator can produce light consisting of a huge number of
photons that belong to one single resonator mode; such a light field is practically
monochromatic and exhibits the spatial properties of a coherent light beam such as
a Gaussian beam (Sect. 3.1.2). By contrast, thermal light inside a cavity kept at a
temperature of, say, 3000 K (kBT D 0:26 eV) contains an average of about 0.0004
photons per mode in the visible (�2 eV), as we will see in Sect. 9.3, Eq. (9.20). Light
from a thermal source is therefore an incoherent superposition of a huge number of
hardly occupied different spatial and temporal modes.

There exists a wide variety of laser materials, from atomic gases to molecules in
liquid solution, from ions in dielectric host materials to semiconductors. Accord-
ingly, the technical implementation, and the pump process in particular, varies
greatly. The following discussion of some important aspects of laser oscillators refer
to optically pumped atomic lasers; the fundamental results derived in this section
apply to all lasers, however.

7.1 Stationary Performance

7.1.1 Rate Equations, Four-Level System

We assume an ideal four-level atomic system (Sect. 6.2), where transitions E3 ! E2
and E1 ! E0 are so fast that one can set N1;3 D 0 (Fig. 7.2); thus, the population
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Pump source

Gain medium

γ=σN2

T2T1

d

Mirror 1 Mirror 2

Fig. 7.1 Schematic of a laser oscillator: a Fabry–Perot resonator formed by two mirrors with
transmittance T1;2 contains a gain medium serving as amplifier

E3,N3≈0

E2, N2

E0, N0=Ng≈N

WpN0 W21N2

=σc(q/V )N2

N2/τ2

E2, N2

E1, N1≈0

fast

fast

Fig. 7.2 Four-level laser

inversion is given by �N D N2. Assuming N2 	 N, we can neglect the depletion
of the ground state by the pump process and replace Ng by the total density of atoms
N. The light field within the resonator is characterized by the number q of photons,
related to the photon density �ph by �ph D q=V with V WD Ad. Since the resonator
modes are not spatially homogeneous (having a Gaussian transverse profile and
axial nodes), V is an effective mode volume that can be expressed as a product of
an effective cross sectional area A and the length of d the resonator. The stimulated
transition probability is then, according to Eq. (6.38), given by W D �cq=V .

The rate equation for N2 follows from Eq. (6.86)

dN2
dt

D WpN � �cN2
q

V
� N2
�2
: (7.1)

The corresponding equation for the photon number q contains the stimulated
emission term of Eq. (7.1), multiplied with the mode volume (we assume that the
inversion density is constant over the mode volume), and a linear loss term q=�res,
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T2T1

d

(1−ai)

(1−ai)

(1−T1) (1−T2)

Mirror 2Mirror 1

Fig. 7.3 Resonator losses; ai is the fractional internal loss

where �res is the resonator life time, i.e., the average time that a photon spends within
the resonator:

dq

dt
D q

�
�cN2 � 1

�res

�
: (7.2)

The resonator losses comprise the (intended) transmission losses of photons through
the output coupler(s) and various internal losses (Fig. 7.3). The loss factor per round
trip can be expressed as the product .1�T1/.1�T2/.1�ai/

2, where .1�ai/ represents
the internal losses. It is convenient to introduce “distributed” loss coefficients

˛1;2 W D � ln.1 � T1;2/

2d

˛i W D � ln.1 � ai/

d

˛res W D ˛1 C ˛2 C ˛i;

(7.3)

(7.4)

(7.5)

so that the loss per round trip can be expressed by e�˛res2d and dF= dz D �F˛res,
where F is the photon flux circulating between the resonator mirrors. Since dF=F D
dq=q and dz D c dt,

dq

q dt

ˇ̌
ˇ̌
loss

D c
dF

F dz

ˇ̌
ˇ̌
loss

D �c˛res: (7.6)

Comparison with Eq. (7.2) allows us to relate the photon life time and the loss
coefficient

˛res D 1

c�res
I (7.7)
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most lasers have only one output coupler (e.g., mirror 2), so that T1 D 0, and ˛2 D
˛res � ˛i represents the output coupling coefficient

˛2 D � 1

c

dq

q dt

ˇ̌
ˇ̌
loss;out

: (7.8)

With the gain coefficient � D �N2 [Eq. (6.84)], the round trip gain equals e�N22d

(provided that the length of the resonator is equal to the length of the amplifying
medium). To exactly compensate the round trip losses, the gain and loss coefficients
must be equal,

�c D ˛resI (7.9)

�c D �N2;c is called the critical gain coefficient and

N2;c D ˛res

�
D 1

c��res
(7.10)

is the critical inversion density.

7.1.2 Laser Output Characteristic

We now want to study the stationary behavior of the laser as a function of the
pump rate WpN (Fig. 7.4). With increasing pump rate, the inversion increases, but as
long as N2 < N2;c, the resonator losses exceed the gain and the stationary solution
of Eq. (7.2) is q D 0. In this operating regime, the balance between pump and

Fig. 7.4 Inversion N2 and
photon number q0 / Pout of a
four-level laser as a function
of the pump rate

Wp

N2 Pout∝q0

Wp,c

N2,c
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spontaneous emission provides the stationary inversion population N2 D WpN�2;
this applies to pump rates Wp < Wp;c, where

Wp;c WD N2;c
N�2

D 1

�cN�res�2
(7.11)

is the critical pump rate, required to reach N2;c. Above the critical pump rate, the
small signal gain initially exceeds the resonator losses and the photon number,
starting from few spontaneously emitted photons, starts to grow exponentially. The
details of the transient behavior will be discussed in Sect. 7.2.2 and Sect. 7.2.4, but
it is clear that the stationary situation, which requires the balance of loss and gain
and consequently N2 D N2;c, can only be reached if the stimulated emission reduces
(saturates) the small signal inversion to the critical value N2;c. The photon number
required for this saturation follows from Eq. (7.1) after the substitution of N2 by N2;c
and represents the stationary photon number q0

q0.Wp/ D .Wp � Wp;c/NV�res D
�

Wp

Wp;c
� 1

�
NVWp;c�res: (7.12)

This result can also be understood in the sense that every atom excited into the upper
laser level by the excess pump rate Wp � Wp;c is de-excited by stimulated emission.

Introducing the normalized pump rate

p WD Wp

Wp;c
; (7.13)

we can cast Eq. (7.12) in the form

q0 D . p � 1/
V

�c�2
: (7.14)

According to Eq. (7.8) the fraction q0c˛2 is transmitted through the output mirror,
and the output power Pout is thus

Pout D . p � 1/
˛2„!V

��2
: (7.15)
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With V D Ad, ˛2 D � ln.1� T2/=2d, and ln.1� x/��x this can also be written as

Pout D . p � 1/ ˛2IsV

� . p � 1/
T2AIs

2
; (7.16)

where Is D „!=��2 is the saturation intensity [Eq. (6.91)]. The appearance of the
saturation intensity in this important result can be understood in a very intuitive
way: at p D 2, the inversion in the absence of stimulated emission would be
twice the equilibrium inversion. The saturation intensity Is is, by definition, the
signal intensity that reduces the inversion by a factor of 2—i.e., in our case, to the
stationary inversion. Since the atoms are exposed to two counterpropagating photon
streams of approximately equal magnitude, the intensity impinging on the output
mirror is Is=2, and the output power is T2AIs=2, in agreement with Eq. (7.15).

7.1.2.1 Slope Efficiency
The stationary performance of the laser, as shown in Fig. 7.4, is characterized by
the laser threshold at Wp;c and a strictly linear increase of the output power with the
pump rate above the threshold. Assuming that the pump rate is proportional to the
power Pp consumed by the pump source, we can set p � Pp=Pp;c, where Pp;c is the
pump power required to reach the threshold, and obtain from Eq. (7.15)

� l WD dPout

dPp
� ˛2„!V

��2Pp;c
: (7.17)

Defining the pump efficiency

�p WD WpNVp„!p

Pp
: (7.18)

as the ratio between the optical power WpNVp„!p transferred to the pump volume Vp

by absorbing pump photons of energy „!p, and the primary pump power Pp, we can
use Eqs. (7.11) and (7.7) to obtain the critical pump power Pp;c D Vp„!p˛res=�p��2
and to express the slope efficiency by

� l D !

!p

˛2

˛i C ˛2

V

Vp
�p: (7.19)

The first factor is the so-called quantum efficiency, equal to the fraction of the pump
photon energy that is converted to signal photon energy. The second term represents
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Laser threshold

Fig. 7.5 Output power as a function of pump power for different values of ˛2; both, threshold
and slope efficiency increase with the output coupling coefficient. The optimum output coupling
depends on the operating pump power employed

the ratio between useful and total losses, and the third term is the ratio between the
inverted volume of the gain medium and the mode volume.

While it is obvious that optimum laser design requires to maximize !=!p and
V=Vp, and to minimize the internal losses ˛i, maximizing the total efficiency
requires to optimize the output coupling coefficient ˛2 (i.e., T2): larger values of ˛2
increase the slope efficiency, but also push the threshold to higher values (Fig. 7.5),
so that, at a given pump power, the output power may decrease or even vanish with
increasing T2. To find the output coupling coefficient that maximizes the output
power at a given pump power, we express Pout as a function of ˛2, using p D �0=�c

and �c D ˛res D ˛i C ˛2

Pout D
�

�0

˛i C ˛2
� 1

�
˛2IsVI (7.20)

dPout= d˛2 D 0 then yields the optimum output coupling coefficient

˛2opt D p
�0˛i � ˛i; (7.21)

which increases with the operating pump power (Fig. 7.6).
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Fig. 7.6 Output power as a function of the output coupling coefficient ˛2, for different values of
�0/Pp

E3,N3≈0

E2, N2

E1=E0, Ng=N1
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=σc q

V
N1

W21N2
=σc q

V
N2

N2/τ2

fast

Fig. 7.7 Atomic three-level laser

7.1.3 Three-Level Laser

In a three-level laser, the lower level of the laser transition is also the ground state
(Fig. 7.7). It therefore takes a very significant pump rate to establish inversion (to
exceed absorption by the laser medium), and additional pump power to reach laser
threshold (to compensate resonator losses). The relevant rate equations are

dN2
dt

D WpN1 � �c.N2 � N1/
q

V
� N2
�2

dq

dt
D q

�
�c.N2 � N1/� 1

�res

�
:

(7.22)

(7.23)
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With �N D N2 � N1 and N D N1 C N2 we can write

d�N

dt
D Wp.N ��N/� 2�c�N

q

V
� N C�N

�2

dq

dt
D q

�
�c�N � 1

�res

�
: (7.24)

The factor 2 in the stimulated emission term in the first equation takes into regard
that every transition affects both, the stimulated emission as well as the absorption.
The photon rate equation, expressed in terms of the inversion remains unaltered in
comparison to the four-level system Eq. (7.10); the critical pump rate, however, is
now given by

Wp;c D 1

�2

N C�Nc

N ��Nc
: (7.25)

The increased laser threshold is the most important difference between the two laser
schemes; the ratio of the respective threshold pump rates is

W.4/
p;c

W.3/
p;c

� �Nc

N
	 1: (7.26)

7.2 Frequency and Time Behavior of Lasers

7.2.1 Multi-Line vs. Single Line Operation

Many laser media have more than just one pair of levels that allow amplification
by stimulated emission. Ionized Argon (ArC), e.g., provides a manifold of laser
transitions between sub-levels of the 4p- and 4s-states (Fig. 7.8). These transitions
allow not only laser operation at different wavelengths but also multi-line operation
under proper conditions. Multi-line operation can be avoided by introducing a
frequency dependent loss mechanism, for example, a dielectric output mirror with
high transmittance at the wavelengths that are to be suppressed. Such mirrors
increase the laser threshold for the respective wavelengths so that the oscillator does
not produce this radiation. Alternative wavelength selecting devices are dispersive
glass prisms (Fig. 7.9) in the cavity, or diffraction gratings under oblique angle of
incidence acting as reflectors (Fig. 7.10). According to Eq. (4.38), a plane wave of
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Fig. 7.8 Energy levels of ArC; the transition wavelengths are given in nm

Laser medium

HR-mirror

Prism
Output mirror

file: prismlas.pic

Fig. 7.9 Line selection using an intracavity prism

Output mirror
Laser medium

θin

Diffraction grating

Fig. 7.10 Optical diffraction grating serving as frequency selective retroreflector in the resonator

wavelength 	0 incident on a line grating is retroreflected (
in D �
out), if

2� sin 
in D m	0; (7.27)
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where � is the grating period and m is an integer. With such a setup, the laser can
be tuned to a desired transition wavelength by adjusting 
in.

7.2.2 Mode Selection

As we have seen in Sect. 4.3, a Fabry Perot resonator supports modes with discrete
frequencies spaced by�!r D c�=d [Eq. (4.82)]. On the other hand, a laser medium
can provide gain over a certain bandwidth determined by the line shape of the
stimulated emission cross section �.!/ (see Sect. 6.1.4). In principle, any mode that
experiences sufficient gain to compensate its specific losses can oscillate in such a
resonator. There is, however, the very interesting mechanism of mode competition
that may reduce the number of oscillating modes in a self-organized way. Right
after the start of the pump process, for example, several modes may experience net
gain and start to oscillate with increasing photon numbers (Fig. 7.11). As described
above, the photon number increases at the expense of the inversion density (gain
saturation). In the case of a homogeneously broadened gain medium, the saturation
affects the entire gain profile to the same extent. Due to saturation, modes that are
situated off the peak of the gain profile still experience gain, but not sufficient to
compensate their losses—and perish. The modes that lie close to the gain peak keep
growing—at the expense of other modes, until the saturated gain exactly balances
the losses of a single, optimally situated mode that survives, and the laser oscillates
practically monochromatically.

Saturated
gain profile

Resonator loss

Gain profile

Net  gain

Net loss

Laser spectrum Laser spectrum

Resonator modes

Fig. 7.11 Mode competition in a homogeneously broadened gain medium: (a) transient behavior
after turn-on, (b) stationary situation
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Saturated 
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Fig. 7.12 Mode competition in an inhomogeneously broadened laser

The situation is quite different for inhomogeneously broadened gain media:
different modes interact—and saturate—only the sub-ensemble of the gain medium
that coincides with the mode frequency (Fig. 6.9). Each mode “burns” a spectral
hole into the gain profile by saturation, and adjacent modes do not compete for the
same gain, provided the homogeneous line width of the sub-ensemble is smaller
than the mode spacing (Fig. 7.12).

The statement about the self-organized single mode operation of homogeneously
broadened lasers requires some qualification: as we have seen in Sect. 4.3, a
given resonator mode forms a standing wave (Fig. 4.15) with a photon density
/ cos2Œz.!m=c/�. In the nodes of this distribution, little or no inversion is consumed,
and saturation occurs only in the volume between the nodes (spatial hole burning).
Since each mode m has a different axial pattern, it can exploit the gain left
over by other modes, making multimode operation possible despite spectral mode
competition. Spatial hole burning can be avoided by using ring-shaped (triangular)
resonators that include a Faraday isolator (Sect. 2.4.2.1), so that only one mode can
propagate and the counterpropagating mode is suppressed.

Independent of the nature of gain broadening, single frequency operation can be
obtained by introducing a Fabry–Perot interferometer (etalon, Sect. 4.2.3) into the
resonator that transmits the mode frequency of interest and has a free spectral range
that is larger than the gain bandwidth (Fig. 7.13).

Spherical mirror resonators support not only different axial, but also transverse
modes (Sect. 4.3.1). Many applications require transverse single mode operation,
i.e., a Gaussian (TEM00) mode. Since the transverse mode diameter grows with the
mode order, higher order modes can be suppressed by inserting circular apertures
into the resonator, with a diameter that matches the TEM00 mode (spatial filtering).
Like all other mode selection processes mentioned, the principle of operation is not



7.2 Frequency and Time Behavior of Lasers 309

HR-mirror Output mirror

Etalon

Laser medium

Fig. 7.13 Single mode operation by implementation of an etalon into the resonator; the oscillating
mode can be selected by tilting the etalon [see Eq. (4.73)]

to attenuate an oscillating mode, but to prevent it from oscillation by increasing the
specific loss above the available gain.

7.2.3 Laser LineWidth

Because of the coherent nature of the stimulated emission process, one might
assume laser radiation to be completely monochromatic under stationary (single
mode) conditions [see the discussion following Eq. (4.80)]; perfect coherence,
however, is disturbed by photons emitted spontaneously into the laser mode. The
resulting photon number deviation is quickly attenuated by a process described in
Sect. 7.2.4, broadening the laser line only very slightly. By contrast, there is no
mechanism pinning the phase of the laser field to certain value, so that the stochastic
phase of the spontaneous photons results in a random walk of the phase of the laser
field, reducing the coherence time and imposing a fundamental lower limit on the
bandwidth of the laser spectrum. This so-called Schawlow–Townes limit (see, e.g.,
Yariv and Yeh 2006)

�!min D „!.�!res/
2

Pout
(7.28)

depends on the bandwidth of the resonator modes�!res, [Eq. (4.84)] and is inversely
proportional to the output power. The inverse dependence of the Schawlow–Townes
limit on the laser power reflects the fact that the spontaneous emission rate of a
given laser is constant (because N2 is constant), while the total number of photons
is proportional to the output power. For a typical Helium–Neon Laser, Pout D 1mW
and�!r D 108 s�1, the Schawlow–Townes limit amounts to about 1 Hz. The actual
bandwidth of lasers is usually larger by several orders of magnitude and results from
technical noise contributions.

7.2.4 Relaxation Oscillations and GainModulation

We now want to study the transient behavior of a laser in some detail, i.e., the
temporal variation of the photon number following a deviation from the stationary
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Fig. 7.14 Laser relaxation
oscillations following startup

Net loss

Net gain

equilibrium. Using Eq. (7.10), (7.2) can be cast in the form

dq

dt
D q

�res

�
N2

N2;c
� 1

�
: (7.29)

A positive excursion of the inversion from the equilibrium value N2;c, for example,
entails a growth dq= dt > 0 of the photon number, which in turn reduces the
inversion by increased stimulated emission, so that dN2= dt < 0. The inversion
actually drops below the critical value N2;c, which implies dq= dt < 0 and
consequently dN2= dt>0. This regulatory cycle is repeated, resulting in (damped)
relaxation oscillations until the equilibrium is established (Figs. 7.14 and 7.15).
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Fig. 7.15 Relaxation
oscillations following startup,
shown in the q� N2 phase
space; arrows indicate the
temporal evolution towards
the stationary state

Net loss Net gain

For a simplified analysis, we start with rate equations (7.1) and (7.2), neglecting
pump depletion (Ng D N) and assuming a constant pump rate Wp;0; N0.t/ and q0.t/
are the deviations (assumed to be small) from the equilibrium values

N2.t/ D N2;c C N0.t/

q.t/ D q0 C q0.t/:

(7.30)

(7.31)

Later, we will also assume a time dependent pump rate

Wp D Wp;0 C W 0p.t/: (7.32)

Substitution of Eq. (7.31) into Eqs. (7.1) and (7.2) yields

dN0

dt
D W 0pN � �c

V



q0N2;c C N0q0

� � N0

�2

dq0

dt
D �cq0N

0; (7.33)

where quadratic terms such as N0q0 have been neglected. From the second equation
follows

N0 D dq0

dt

1

�cq0
; (7.34)
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which allows us, using Eqs. (7.10) and (7.14), to write the first equation as

d2q0

dt2
C p

�2

dq0

dt
C p � 1

�res�2
q0 D W 0p.t/NV

p � 1

�2
: (7.35)

For W 0p D 0, this is the equation of a damped linear oscillator, which can be solved
using the ansatz q0 / est, where s is a complex number; substitution in Eq. (7.35)
yields s D �.1=�rel/ ˙ j!rel with the relaxation frequency !rel and the decay time
�rel

!rel D
s

p � 1

�res�2
�
�

p

2�2

�2
DW
s
!20 �

�
1

�rel

�2

!20 D p � 1
�res�2

;

�rel D 2�2

p
:

(7.36)

(7.37)

(7.38)

Both, the relaxation oscillations and the damping get faster with increasing pump
rate p. Of the two characteristic time constants �2 and �res of the system, the upper
state life time �2 determines the decay time, while the geometric mean value

p
�2�res

determines the relaxation oscillation period.

7.2.4.1 Gain Modulation
An important way to modulate the output power of a laser is to control the
gain via the pump rate. To get some insight into this process, we assume a
harmonic modulation W 0p.t/ D W 0p cos!t of the pump, superimposed on a constant
background Wp;0. The photon number will then also oscillate around the stationary
value q0 with the modulation frequency ! and the amplitude q0.!/. We can solve
Eq. (7.35) in the same way as Eq. (2.51) and obtain

ˇ̌
ˇ̌ q0

q00

ˇ̌
ˇ̌ D !20ˇ̌

!20 � !2 C 2j!=�rel

ˇ̌ D !20
j.!rel � ! C j=�rel/ .!rel C ! � j=�rel/j ;

(7.39)

where

q00 D N�resVW 0p (7.40)
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Fig. 7.16 Simulated
modulation response of a gain
modulated laser for different
pump values p; the
parameters used are typical
for semiconductor lasers
(�res D 1 ps, �2 D 1 ns)

is the modulation amplitude at very low modulation frequency, which follows
from Eq. (7.35) for d= dt ! 0. Figure 7.16 shows the frequency response jq0=q00j:
there is a significant resonance enhancement at !rel; above the resonance, the
response rolls off quickly (40 dB/decade). Well below the resonance, the response is
independent on the modulation frequency. For a given laser, the resonance frequency
increases with the pump ratio p, but more importantly it is determined by

p
�2�res.

Semiconductor lasers, with their very short resonator length and high coupling
losses [see Eq. (7.7)] have resonator life times of picoseconds and allows for gain
modulation up to several 10 GHz.

7.3 Pulsed Lasers

Lasers can also be operated in a pulsed mode; the pulse duration is limited by
the gain bandwidth of the laser medium and can be as short as one oscillation
cycle of the radiation in principle. At a given average optical power Pavg, a laser
emitting pulses of duration �p at a repetition rate of Rrep produces a peak power of
Pavg=.Rrep�p/; the optical peak power of a table-top laser with a few Watt average
power, a pulse duration of some 10 fs and a repetition rate of 100 s�1, for example,
is in the 1012-W range. The high peak output power is one of the reasons for the
development of pulsed lasers, another being the very high temporal resolution, if
the laser light is used to take snapshots of processes.

A direct way to produce pulses is gain switching, i.e., the rapid switching of the
pump source. Semiconductor lasers are well suited for this, since they are pumped
directly by electric current. Figure 7.17 shows the output of such a laser.

The full potential of lasers to produce pulses, however, is exploited by two
techniques: Q-switching and mode locking. Q-switching takes advantage of the
energy storage capability of a laser medium and is used to generate nanosecond
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Fig. 7.17 Temporal
evolution of inversion and
photon number of a gain
switched semiconductor laser.
The pump rate is proportional
to the operating current J; ne

and ne;c are the (critical)
carrier densities

pulses at low repetition rate but with high energy, while mode locking refers to the
production of trains of pulses that are potentially as short as allowed by the gain
bandwidth, separated by the resonator round trip time; this requires control over the
phase of the frequency components that build up the pulse. In the following, we will
briefly discuss both techniques.

7.3.1 Q-Switching

The idea of Q-switching is to pump a laser, usually with a pulsed pump source
of moderate power, to a level N2;i of inversion that is several times higher than
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Fig. 7.18 Q-switching:
evolution of resonator losses,
inversion, and photon number

Inversion

Q-switch ON

Laser pulse

the critical inversion N2;c; during the pump process, laser emission is inhibited by
introducing an additional internal loss into the cavity. Once the target inversion
is reached, the additional resonator loss is removed, leaving the resonator with
a gain that exceeds the losses by far. Because of the excess gain, the photon
number increases avalanche-like within a few resonator round trips and most of
the energy stored in the gain medium is converted into laser light (Fig. 7.18). When
the inversion is consumed to below N2;c, the photon number drops to zero within
few round trips. The left over, residual inversion is not exploited and decays by
spontaneous emission.

The process of loss- or Q-switching can be induced by external control (active
Q-switching), usually with an electro-optic switch (Pockels cell, Sect. 2.3.4), or
by introducing a saturable absorber (Sect. 6.1.5) into the cavity; in this passive
Q-switching scheme, the laser starts to oscillate when the gain is high enough
to compensate the total losses, and bleaches the saturable absorber by absorption
saturation (Degnan 1995). Passive Q-switching is less efficient than active Q-
switching, but its implementation is extremely simple and reliable.

In a Q-switched laser, energy is accumulated in the gain medium over a relatively
long time and released in form of a pulse that is many orders of magnitude shorter
than the pumping time. Consequently, only gain materials with long upper state
life time are suitable as Q-switched lasers. Assuming a step like onset of the pump
process, the inversion, according to Eq. (7.1), is building up as

N2.Wp; t/ D NWp�2.1� e�t=�2 /; (7.41)
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as long as q D 0. While the maximum inversion obtainable at a given pump rate
is NWp�2, the pumping gets less and less efficient with time: in practice, the pump
duration is limited to �2�2, when �86 % of the maximum inversion is reached.
With its relatively long �2 of 230�s, neodymium doped yttrium-aluminum-garnet
(Nd:YAG) is a popular gain medium for such lasers. In a typical pump volume Vg

of a few cm3 and a Nd-concentration of some 10�4 (i.e., 1 out of 104 yttrium ions is
replaced by a neodymium ion, equivalent to a Nd ion density of 1:38� 1018 cm�3),
an energy storage of VgN2;i„! of 1 J can be realized; assuming a pulse duration of
some ns (several round trips), this corresponds to an optical peak power of several
100 mW.

For an analysis of (active) Q-switching (Wagner and Lengyel 1963), we assume
a four-level system that has been pumped to the initial value N2;i; the duration of
the emitted pulse is assumed to be so short that pumping as well as spontaneous
emission during the pulse can be neglected; we also assume a perfect overlap
between gain and mode volume. Using Eq. (7.10), rate equations (7.1) and (7.2)
can be written as

dq

dt
Dq�cN2;c .N2=N2;c � 1/

dN2
dt

D��cN2
q

Vg
:

(7.42)

(7.43)

We eliminate t by dividing the first equation by the second,

dq D �Vg .1 � N2;c=N2/ dN2 (7.44)

and integrate from the initial inversion N2;i to some arbitrary value N2

q.N2/ D Vg ŒN2;i � N2 � N2;c ln.N2;i=N2/� : (7.45)

The residual inversion N2;f is defined by q.N2;f/ D 0 and given by the (transcendent)
equation

N2;i � N2;f D N2;c ln.N2;i=N2;f/: (7.46)

The optical extraction efficiency is the ratio of the exploited to initial inversion,

�q D N2;i � N2;f
N2;i

D ln.N2;i=N2;f/

.N2;i=N2;c/
I (7.47)

Figure 7.19 shows this parameter as a function of N2;i=N2;c; for N2;i=N2;c > 3, the
efficiency exceeds 90 %.
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Fig. 7.19 Extraction
efficiency �q and pulse
duration �p of a Q-switched
laser as a function of the
excess inversion N2;i=N2;c
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Since q is growing as long as N2 > N2;c, Eq. (7.45) also allows us to estimate the
peak photon number qmax

qmax D q.N2;c/ D VgN2;c

��
N2;i
N2;c

�
� 1 � ln

�
N2;i
N2;c

��
: (7.48)

For N2;i=N2;c 
 1 we obtain

qmax D VgN2;iI (7.49)

in this regime, practically the entire inversion is converted to photons, and the
process happens so quickly that most of the photons have not yet left the resonator
when the inversion is consumed (Fig. 7.19).

In a typical Q-switched laser, the coupling losses dominate the total losses, so
that

Pout;max �„!qmax=�res: (7.50)

The energy balance �pPout;max � Vg.N2;i � N2;f/„! allows an estimate of the pulse
duration �p

�p D
�q

�
N2;i
N2;c



h�

N2;i
N2;c



� 1 � ln

�
N2;i
N2;c


i �res: (7.51)

The dependence of �p on the excess inversion N2;i=N2;c is also shown in Fig. 7.19:
for large values of N2;iN2;c, the residual inversion is very small and the pulse decays
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after reaching its peak with the decay time �res; the leading slope of the pulse grows
with a rate that is .N2;i=N2;c � 1/ times faster [see Eq. (7.42)]. For small excess
inversion, N2;i=N2;c < 2, the growth is slower, and the decay also takes longer
because of the relatively large residual gain.

Q-switching allows producing “giant” pulses of nanosecond duration. The
repetition rate of these pulses is limited by the long-lasting pumping process to
typically less than several thousand pulse per second. Thermal limitations may
further reduce the repetition rate drastically. The pulse duration is dominated by the
resonator life time and usually much longer than the gain bandwidth would allow.

7.3.2 Mode Locking

According to Eq. (3.148), the relative gain bandwidth�!=!0 required to support a
pulse duration of �p is essentially given by the ratio T=�p, where T is the oscillation
period of the laser radiation. To obtain the shortest possible pulses from a given
gain medium, as many resonator modes as possible must oscillate. According
to Eq. (4.82), the frequency spacing between adjacent modes is �!r D �c=d;
assuming that the gain medium supports a total number of 2N C 1 modes (implying
a gain bandwidth of �!g D .2N C 1/�!r), the electric field of the superimposed
modes is

E.t/ D
NX

nD�N

E0;nejŒ.!0Cn�!r/tC�n�; (7.52)

where E0;nej�n is the complex amplitude of the nth mode and !0 denotes the
frequency of the central mode (the phase �n is somewhat arbitrary because it
depends on the choice of the time zero point—the transformation t0 WD t�� changes
the phase to �0n D �n C .!0 C n�!r/�).

As the phase difference between the modes varies with time, the fields of the
individual modes interfere with each other in a time varying fashion and E.t/
fluctuates in a quasi-random, yet periodic pattern (note that E.t C trep/ D E.t/,
where trep D 2�=�!r D 2d=c). Figure 7.20a shows the output power of such
a superposition of modes. If (and only if) there exists a point in time where all
modes are in phase (which is unlikely if the modes oscillate independently), the total
field reaches the maximum possible value of

PN
nD�N E0;n (Fig. 7.20b); any process

that establishes such a phase correlation is called “mode locking.” In the following
discussion, we choose the time axis such that the peak appears at t D 0 (and at any
integer multiple of trep).
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Fig. 7.20 Amplitude and phase distribution as well as output power of a typical multimode laser:
(a) uncorrelated mode phases, (b) mode locked operation; note the different power scales

If we assume, for the sake of simplicity, equal amplitudes E0;n D E0, the peak
field is E.0/ D .2N C 1/E0. Under mode locked conditions, the phases of all modes
at t D 0 are equal, �n D �0. The total field then is

E.t/ D E0ej.!0tC�0/
NX

nD�N

ejn�!rt: (7.53)

The first exponential factor is the carrier oscillation, the second factor constitutes
the periodic envelope

NX
nD�N

ejn�!rt D 1 � ej.2NC1/�!rt

1 � ej�!rt
e�jN�!rt D sinŒ.2N C 1/�!rt=2�

sin.�!rt=2/
I (7.54)

the resulting intensity is shown in Fig. 7.21.
Note that the field energy contained in one fluctuation period is—independent of

the phase distribution—given by the sum of the individual mode energies / .2N C
1/E20trep. Consequently, a mode locked pulse with the peak power / Œ.2N C 1/E0�2

can only last for a duration of trep=.2N C1/ D 2�=�!g, so that we can estimate the
pulse duration as

�p � trep

2N C 1
I (7.55)
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Fig. 7.21 Superposition of 2N C 1 phase locked modes of equal amplitude; I0 is the intensity of
one of the modes, .2N C 1/I0 is the averaged total intensity of all modes

for the remainder of the fluctuation cycle, the field must more or less vanish for
reasons of energy conservation. This estimate is confirmed by Eq. (7.54), as the
time between the two minima next to the peak is equal to 2trep=.2N C 1/.

7.3.2.1 Active Mode Locking
Mode locking can be achieved extrinsically (active mode locking) or intrinsically
by self-organization (passive mode locking). Active mode locking relies on the
modulation of resonator gain or loss with a frequency ˝m equal to the mode
spacing. As a result of the net gain modulation, the amplitudes of the modes are
also modulated; for the field of the nth mode we can write

.E0 C�E0 cos˝mt /e
j!nt D E0e

j!nt C�E0e
j.!nC˝m/t C�E0e

j.!n�˝m/t (7.56)

where E0 is the mode amplitude without modulation and �E0 is a measure of
the modulation depth; as one can see, amplitude modulation is equivalent to the
formation of phase locked side bands at !n ˙ ˝m. If the modulation frequency is
tuned to the mode spacing ˝m D �!r, each mode produces a “cross talk” into the
two adjacent resonator modes. Starting from the central mode, the side bands “seed”
the oscillation of the adjacent modes and finally all 2N C 1 oscillate such that they
are all in phase at t D 0 and any further multiple of trep.

Technically, loss modulation can be implemented using an acousto-optic modula-
tor (Sect. 8.5) consisting of a transparent medium and an ultrasonic transducer that
produces a standing acoustic wave between two parallel surfaces of the medium.
The acoustic wave produces a spatial modulation of the refractive index, forming
a diffraction grating. When positioned inside the laser resonator, the laser modes
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experience losses due to diffraction. As the standing wave actually vanishes twice
per acoustic cycle [Eq. (8.237)], the diffraction losses are modulated at twice the
acoustic frequency.

Semiconductor lasers can be directly gain modulated through the supply current.
To increase the number of modes within the gain bandwidth (which, due to the
short cavity length is very small), external resonators with appropriate length are
often used.

7.3.2.2 Passive Mode Locking
Most mode locked lasers are modulated intrinsically, exploiting saturation or other
intensity dependent effects (Haus et al. 2000; Ippen et al. 1972; Spence et al. 1991).
As we have seen above [Eq. (7.53)], multimode operation inevitably produces
periodic fluctuations of the laser power. In the time domain, mode locking is
established if the fluctuation consists of essentially one dominating peak per round
trip, with small or ideally no fluctuations in between. This state can be reached
in a self-organized way if the round trip net gain is intensity dependent in such a
way that it increases with intensity and is less than 1 for low intensities. Starting
from random, periodic fluctuations, the fluctuation peak is amplified preferentially,
and after a number of round trips develops into an isolated pulse that contains
most of the available energy, while the small fluctuations are attenuated and finally
extinguished. The “surviving” pulse tends to be further shortened by the same
process, since the low intensity wings of the pulse are also suppressed.

Such an intensity dependent net gain can be realized by inserting a saturable
absorber into the resonator. According to Eq. (6.82), low intensities experience
higher losses, while intensity peaks bleach the absorber and reduce the loss.
Consequently, peak fluctuations experience higher net gain at the expense of low
intensity fluctuations.

Saturable absorbers need a certain time to recover from saturation, because the
excited atoms need time (upper level life time �2) to return to the ground state. If
this time is longer than the pulse duration (slow saturable absorber), only the leading
edge of the pulse is shaped by the absorber (Fig. 6.13). The trailing edge of a pulse
can be shaped by the saturation of the gain, however (Fig. 6.12): a peak fluctuation
consumes a large fraction of the inversion, leaving only little gain for the trailing part
of the pulse. The interplay of (slow) saturable absorber and (slow) saturable gain is
capable of generating bandwidth limited laser pulses, provided that the recovery
time is shorter than the pulse repetition time �rep (Fig. 7.22).

In Sect. 6.2.3, we have discussed saturation effects of short pulses. The critical
parameter of an absorber or amplifier is the saturation energy fluence Eq. (6.102).
For a mode locked laser to work properly, the pulse energy fluence must approxi-
mately match the saturation fluence, which can be achieved by designing the waist
diameter of the laser mode by proper choice of the curvature of the resonator
mirrors.

A very efficient, and virtually instantaneous intensity dependent loss mechanism
relies on the nonlinear optical Kerr lens whose refractive power is proportional to
the momentary incident power [Eq. (3.53)]. The combination of such a lens with
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Fig. 7.22 Passive mode locking by saturation of gain and loss
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Fig. 7.23 Kerr lens mode locking: (a) at low power, self-focusing is negligible, resulting in high
losses at the aperture; (b) Kerr lensing induced by high power reduces the losses at the aperture

a circular aperture (Fig. 7.23) introduces low losses at high power, because the
focussed mode is transmitted through the aperture, while at low power, most of the
(unfocussed) mode is clipped. This process shapes both, the leading and the trailing
edge of the pulse. Pulses as short as few femtoseconds can be produced in this way.

7.3.3 Carrier Envelope Phase, CEP

To achieve the shortest and highest pulse possible, all modes must have the same
phase at a certain instance of time; since the intensity is proportional to EE�, the
actual value of this common phase has no influence on the pulse shape, as an
inspection of Eq. (7.53) shows. As can be seen from this equation, however, the
common phase �0 is equivalent to a time shift between the pulse envelope and the
carrier oscillation and is therefore called carrier envelope phase (CPE). If �0 D 0,
for example, the peak of the envelope coincides with a crest of the carrier oscillation
(the physical field is the real part of its complex representation); �0 D �=2 implies
that the field actually vanishes at the peak of the envelope. Figure 7.24 shows two
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Fig. 7.24 Two ultrashort pulses with different carrier envelope phase: cosine-pulse (left), sine-
pulse (right)

pulses with identical Gaussian envelope, but different CEP. For obvious reasons,
pulses with �0 D 0 or �=2 are called cosine- or sine-pulses, respectively. During
propagation in a dispersive medium, the CEP changes continuously because the
velocity of the envelope (the group velocity) usually differs from the phase velocity
of the carrier.

The carrier envelope phase plays an important role in the nonlinear optics of few-
cycle pulses, such as tunnel ionization or harmonic generation, because these effects
depend on the electric field, in contrast to saturation effects or the Kerr effect that
depend on the intensity (envelope).

Because of their insensitivity to the CEP, the mode locking mechanisms
described above cannot control or stabilize the carrier envelope phase. Pulses
from such mode locked lasers therefore have an unknown, and usually time varying
CEP. CEP-stabilization is possible employing field dependent nonlinear optical
processes, however.

7.4 Atomic andMolecular Lasers

Because of the many requirements on a practical gain medium, the variety of
commercially important laser materials is rather limited (see Table 7.1). Table 7.2
summarizes performance data of some of the most popular lasers; the output
parameters (average power, peak power, pulsed operation, etc.) are essentially
determined by the gain medium. In particular, the resonant nature of the stimulated
emission process implies that lasers are usually not tunable over a wide range of
frequencies. Among the exceptions are the Ti:sapphire laser (tunable between 700
and 1100 nm), organic molecular lasers (so-called dye lasers), and, to a certain
degree, semiconductor lasers.
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Table 7.1 Properties of popular laser materials: �!g and �	g denote the gain bandwidth; values
of �0 refer to typical operating conditions; Rh6G is the organic dye rhodamine 6G in a methanol
solution; data adapted from Bass (2010)

	 � �2 �!g �	g �0

Medium [nm] [cm2] [s] [s�1] [nm] [cm�1]

Ruby (Cr:sapphire) 694 2�10�20 3�10�3 4�1011 0.1 0.1

Nd:YAG 1064 7�10�19 2�10�4 7�1011 0.4 0.1

Nd:glass 1050–1080 5�10�20 3�10�4 2�1013 12 0.03

Er:glass 1550 6�10�21 1�10�2 3�1013 30 0.03

Ti:sapphire 700–1100 4�10�19 3�10�6 9�1014 400 0.2

HeNe 632.8 3�10�13 3�10�7 1�1010 2�10�3 0.002

ArC 488 5�10�12 1�10�8 1�1010 1�10�3 0.005

HeCd 441.6 8�10�14 7�10�7 1�1010 1�10�3 0.003

Cu-vapor 510.5 8�10�14 5�10�7 1�1010 1�10�3 0.05

CO2 10 600 2�10�16 4�108 0.008

Excimer (ArF) 193 3�10�16 9�10�9 6�1013 1.5 0.03

Rh6G 550–610 1�10�16 5�10�9 3�1014 50 2.8

AlGaAs 720–850 1�10�15 1�10�9 6�1013 20 103

InGaAsP 1000–1650 1�10�15 1�10�9 20 103

InGaN 380–515 1�10�15 1�10�9 10 103

Table 7.2 Important types of lasers: cw/continuous wave, p/pulsed, Pavg average power, Pp peak
power, �p pulse duration, � l overall efficiency, FL/flashlamp, GD/gas discharge, LINAC/linear
accelerator; the free electron laser (FEL), is included in the Table for comparison, although it is
not a laser in the proper sense

	 Pavg Pp �p � l

Laser [nm] [W] [W] [ns] (%) Pump

Ruby 694 p 1 107 10 FL

Nd:YAG 1064 cw 10–200 0.5 FL

Nd:YAG p 10 107 10–1000 1–3 FL

Ti:sapphire 700–1100 cw 1–10 Laser

HeNe 632.8 cw 10�3 0.05 GD

ArC 488 cw 10–100 0.05 GD

HeCd 441.6 cw 10�1 0.1 GD

Cu-vapor 510.5 p 40 105 20 1–2 GD

CO2 10 600 cw 104 10–20 GD

Excimer 198 p 500 107 10 1 GD

Rh6G 550–610 cw 10 0.05 Laser

Rh6G p 1 106 10–1000 Laser

AlGaAs 720–850 cw/p 0.001–1 40 DC

InGaAsP 1000–1650 cw/p 0.001–0.1 40 DC

InGaN 350, 405, 470, 515 cw/p 0.001–1 40 DC

FEL 1–106 p 109 103–10�3 LINAC
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Fig. 7.25 Emission spectra
of Nd:YAG and Nd:Glass
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7.4.1 Atomic Solid State Lasers

Isolated atoms and ions constitute an important class of laser materials. Atomic
gases (e.g., noble gases or metal vapors) are pumped electrically by gas discharge;
alternatively, atoms are built into transparent solid host materials such as glass or
various crystals, and pumped optically. These laser are called solid state lasers, in
distinction from semiconductor lasers.

The historically important ruby laser, for example, is a solid state laser that relies
on Cr3C-ions in a sapphire (Al2O3) host. One of the most popular solid state laser
materials is neodymium doped yttrium-aluminum-garnet (Y3Al5O12), abbreviated
as Nd:YAG; YAG is also an excellent host for other rare earth ions (ytterbium,
erbium, and holmium) because of its outstanding thermal and mechanical properties.
As already mentioned, Nd:YAG is an important gain medium for Q-switched lasers
due to its long upper state life time. The gain bandwidth of Nd:YAG is relatively
small (Fig. 7.25) and does not support mode locked generation of pulses shorter
than 100 ps. Nd:glass, however, with its significant inhomogeneous line broadening,
allows the generation of pulse durations below 400 fs. Nd:glass can be produced in
large slabs and is therefore used for very high energy lasers, such as used in nuclear
fusion experiments. The glass matrix also allows the production of high quality
optical fibers, providing the gain medium for fiber lasers.

Another rare earth-based gain material of outstanding importance is erbium
doped glass which exhibits broadband gain at around 1.55�m wavelength, where
silica fibers exhibit minimum losses. The relevant laser transition occurs between
the 4I13=2 and the 4I15=2 state of the Er3C ion (Fig. 7.26). Erbium doped fiber
amplifiers (EDFAs, Sect. 5.3.5) constitute the backbone of long distance fiber optical
networks (Desurvire 2001). Pumping is achieved with semiconductor lasers at 980
and 1480 nm. Due to the interaction of the ions with the local field of the glass host,
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Fig. 7.26 Laser transitions of Er:glass at 1550 nm between sub-levels of the excited 4I13=2 and
the 4I15=2 ground state; the occupation of the levels follows Boltzmann statistics (shown for two
different temperatures)
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WSC EDFFBG FBG

Output

Fig. 7.27 Fully integrated fiber laser. The gain medium is a rare earth doped glass fiber (EDF), the
mirrors are fiber Bragg gratings (FBGs) as described in Sect. 5.3.3; the pump light is supplied by a
laser diode (LD) with a fiber-output (“pig tail”), coupled to the resonator by a dichroic waveguide
coupler (WSC)

the gain bandwidth is substantial (>50 nm). At room temperature, all sub-levels of
the 4I15=2 ground state are populated so that the EDFA is effectively a three-level
system requiring a significant pump power to exhibit gain (Fig. 5.35).

Rare earth doped fiber amplifiers are also used to build fiber lasers (Fig. 7.27).
Fiber lasers are very compact and stable, have a very high efficiency and can deliver
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Fig. 7.28 Energy levels of a
vibronic solid state laser
medium (titanium:sapphire);
absorption and emission
bands consist of a large
number of vibrational
sub-levels; compare Fig. 7.29
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TEM00 output beams. Because of their large gain bandwidth, they allow mode
locked operation and can serve as tunable sources. Equipped with narrow band fiber
gratings as mirrors, they can operate in single longitudinal mode, with a linewidth of
1 kHz or less. In comparison to bulk lasers, fiber lasers can be cooled very efficiently
and do not suffer from various thermo-optical problems so that they are also well
suited for high power continuous wave (cw) operation, delivering output powers of
several 100 W. One of the limitations of fiber lasers results from the small mode
cross section leading to very high intensities that can damage the output facet of the
fiber. Q-switched operation of fiber lasers is possible, but self-focusing and optical
damage limit the pulse energy to mJ.

Transition metal ions such as Cr3C and Ti3C in crystalline hosts (Al2O3) show
broad bands of levels resulting from vibrations of the ions in the host material
(Fig. 7.28). Ti-sapphire with an emission band between 680 and 1070 nm is a
prominent gain material for tunable as well as ultrashort pulse lasers. Ti-sapphire
can be pumped by frequency doubled Nd:YAG lasers.

Organic molecules, usually in a liquid host material, also show broad bands of
vibrational and rotational levels; their transition wavelength can be customized over
a broad range by chemical synthesis (Fig. 7.29).

Pumping of solid state and liquid lasers is provided by flashlamps (Fig. 7.30),
especially if operated in the Q-switched mode (Sect. 7.3.1), or by other lasers. For
cw-operation of solid state lasers, semiconductor laser pumping is advantageous
over flashlamp pumping: not only is the efficiency of semiconductor lasers among
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Fig. 7.29 Energy levels of an organic dye-molecule in a liquid solvent; for each electronic
state, there is a range of vibrational and rotational sub-levels that form quasi-continuous bands.
Absorption happens between the lowest levels of the S0 state to upper levels of the S1 state;
emission takes place between the lowest levels of the S1 state to upper levels of the S0 state and is
therefore red-shifted in comparison to absorption. Dye molecules thus act as four-level gain media

Laser rod
Flash lamps

Reflecting pump cavity

Fig. 7.30 Flash lamp pumped laser amplifier; the flashlamp is positioned parallel to the rod-like
laser medium, and surrounded by a cylindrical reflecting cavity that optimizes the energy transfer
and the homogeneity of the inversion density. Cooling is provided by water flowing through the
cavity

the highest of all electric light sources, the wavelength of the pump source can
also be precisely matched to the absorption band of the respective laser medium
(Fig. 7.31).

7.4.2 Gas Lasers

Gaseous gain media can be pumped by electric discharge (Fig. 7.32). Important
examples are Argon, Helium–Neon, CO2, and mixtures of noble gases with
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Fig. 7.31 Emission spectrum of a flash lamp, and absorption spectrum of Nd:glass; the poor
spectral overlap is responsible for low pump efficiency

Gas discharge tubeHR-mirror Output mirror

Electrodes

Fig. 7.32 Schematic of a gas laser: the windows of the discharge tube are mounted under
Brewster’s angle to avoid reflections; HR is a high reflection mirror, the second mirror serves
as coupling mirror

halogens (excimers). Helium–Neon lasers emit at various wavelengths in the
IR (1.15 and 3.39�m) and in the visible at 632.8 and 543 nm (Fig. 7.33). The
amplifying atom is Neon, Helium serves as intermediate medium that is excited
into a long living 2S state by electron impact and transfers the energy resonantly to
the Ne atoms. The return of the Ne atoms from the lower laser level to the ground
state requires collisions with the walls of the discharge tube, limiting the diameter
of the tube and consequently the output power. Argon-ion lasers can deliver several
10 W of cw radiation with excellent beam quality; argon atoms are ionized in a
first step and then excited by a second electron impact. Because of this two step
excitation, high current densities (kAcm�2) are required. Argon-ion lasers emit in
the visible, at 488 nm and 514 nm. The high temperature of the Argon-ion plasma
(3000 K) is responsible for a considerable Doppler broadening that allows mode
locked operation with a pulse duration of �150 ps. With the exception of the CO2

laser (which emits at 10.6�m and can deliver 100 kW of optical radiation), gas
lasers suffer from very low overall efficiency and are replaced by solid state or
semiconductor lasers wherever possible.

Excimer lasers (see, e.g., Basting and Marowsky 2005) rely on electronic
transitions in two-atomic molecules (dimers) formed by an excited noble gas atom
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Fig. 7.33 Energy levels and transitions of a HeNe laser
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Fig. 7.34 Energy levels of an excimer; since the ground state is repulsive, there is practically no
absorption at the emission wavelength

(argon, krypton, or xenon) and a halogen atom (fluorine or chlorine); the excitation
of the noble gas is reached by electron impact in a discharge tube. After radiative
transition to the ground state, the two constituents are driven apart by the repulsive
potential of the noble gas atom (Fig. 7.34), so that the “ground state” is always
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unoccupied. Excimer lasers are important because of their emission wavelength in
the UV (XeF 351 nm, XeCl 309 nm, KrF 248 nm, ArF 193 nm).

7.5 Semiconductor Lasers

Semiconductor laser amplifiers exhibit very large gain coefficients because of the
high density of contributing electrons; they can be pumped directly by electron
injection at the junction between differently doped semiconductors (pn-junction,
Fig. 7.35). When such a laser diode is biased in the forward direction, electrons
from the n-doped region are injected into the interfacial zone where they co-exist
with holes injected from the p-region until they recombine via spontaneous or
stimulated transitions. To reach amplification, the forward voltage must exceed the
band gap, because the bias voltage determines the offset between the Fermi levels
in the two sections of the diode. The resulting gain coefficient � is large enough for
an amplifier of about 100�m length to support laser operation. The laser resonator
is usually constituted by the two end facets of the semiconductor crystal (Fig. 7.36);
due to the large refractive index (GaAs: �3.5) the reflectance is relatively large
R D Œ.n � 1/=.n C 1/�2 � 0:31, and low power semiconductor lasers are often
operated without additional reflective coating.

Eg

p-GaAs

n-GaAs

EF

Eg

p-GaAs

n-GaAs

EF,c

da

EF,v

(a) (b)
Uf

Fig. 7.35 Junction between degenerate p- and n-semiconductors: (a) without bias, (b) with
forward bias voltage Uf

100μm
d

Active zone

p-Zone

n-Zone

Cleaved surface

Uf

0

Fig. 7.36 Schematic of a semiconductor laser diode; the end facets serve as mirrors
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The region of the diode that provides optical gain is called active zone; its volume
is given by the product of the pn-interfacial area A and the thickness da of the active
zone, which in the case of a simple pn-junction is equal to the diffusion length of
the carriers (several �m). To establish a relation between the forward current of the
diode and the carrier density ne in the active zone, we assume an injection current
density of j; the number of carriers transported per unit time into the zone then is
equal to �ijA=e where the internal quantum efficiency �i is defined as the fraction
of injected electrons that actually reach the active zone (the others being lost by
recombination). The recombination rate inside the active zone is neAda=�rec, so that
in equilibrium

j D e
neda

�i�rec
I (7.57)

note that the current density required to obtain a certain carrier density is propor-
tional to da. To reach a typical transparency carrier density of 1:5� 1018 cm�3,
for example, a current density of 48 kAcm�2 is needed if one assumes �i D 0:5,
a recombination time of 2 ns and a thickness da D 2�m. Further assuming an
interface area A of 200�10�m2, this corresponds to a relatively high forward current
of 1 A.

According to Eqs. (6.136) and (7.57), the gain of a semiconductor amplifier of
length d is e˛0.j=jtr�1/d, where jtr D entrda=�i�rec is the current density corresponding
to the transparency carrier density ntr. If we assume mirror reflectivities R1 and R2
and express internal losses (due to free carrier absorption, absorption in regions
adjacent to the active zone, and scattering at inhomogeneities) by the internal loss
coefficient ˛i, the threshold condition is

R1R2e
Œ˛0.jc=jtr�1/�˛i�2d D 1; (7.58)

or

˛0

�
jc
jtr

� 1

�
D � ln R1

2d
� ln R2

2d
C ˛i; (7.59)

where the threshold current density jc (also called critical current density) is

jc D jtr
2d˛0 C 2d˛i � ln R1 � ln R2

2d˛0
; (7.60)

and the threshold current is

Jc D jcA: (7.61)
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Fig. 7.37 Output power of a
heterostructure-laser; the
emission below threshold is
due to luminescence (i.e.,
spontaneous emission)

J [mA]
10 20 30 40 50 60 70

10

20

Jc

Pout

[mW]

Since the critical carrier density is also the stationary operating carrier density, a
current J exceeding the threshold current injects �i.J � Jc/=e carriers into the active
zone that are deexcited by stimulated emission so as to conserve the stationary
carrier density. The optical power internally generated is thus

Pi D �i
J � Jc

e
„!; (7.62)

of which, according to Eq. (7.59), the fraction

�m D � ln R1
2d˛i � ln.R1R2/

(7.63)

is coupled out of the laser. The optical output power is therefore a linear function of
the driving current

Pout D �m�i
.J � Jc/

e
„!; (7.64)

as shown in Fig. 7.37.
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The electric input power of the diode is Pp D JUf, where Uf is the forward
voltage. The differential efficiency � l D dPout= dPp is therefore

� l D �m�i
„!
eUf

� �m�i: (7.65)

The approximation is reasonable since eUf is equal to the difference of the quasi-
Fermi levels and usually not much bigger than „!. The product �m�i is the external
quantum efficiency; typical values for commercial semiconductor lasers are 50 %;
far above the threshold, the total efficiency approaches the differential efficiency.

7.5.1 Heterostructure Lasers

Since the fraction UfJc of the input power does not contribute to the output power,
it is important to keep the threshold current low. One way to achieve this goal is to
reduce the thickness da of the active zone by embedding the active zone between
layers of higher band gap that provide barriers against carrier diffusion (Fig. 7.38).
Because of the existence of two interfaces between different materials, such a struc-
ture is called double heterostructure; it is produced by epitaxial growth (molecular

EF,c

EF,v

Eg

n

p-Al0.3Ga0.7As n-GaAs n-Al0.3Ga0.7As

da

(b)

(a)

Fig. 7.38 Band diagram (a) and refractive index (b) of a double heterostructure laser diode
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Fig. 7.39 Band gap and lattice constants of important III-V-compound semiconductors; com-
pounds on horizontal lines are lattice matched; dashed lines indicate indirect band gaps, not
suitable for laser operation

beam epitaxy) and requires matching lattice constants of the materials. Popular
materials are various compositions of III-V-compounds such as In1�xGaxAs1�yPy

and AlxGa1�xAs, or In1�xGaxN and Al1�xGaxN. The stoichiometric parameters x; y
determine the electronic and optical properties of the compound, in particular the
band gap (Fig. 7.39) and the refractive index. AlxGa1�xAs is a direct semiconductor
in the range 0 � x < 0:38, with the band gap and refractive index approximately
given by Eg[eV]�1:42C 1:30 x and n�3:5 � 0:71 x.

Double heterostructure lasers exhibit several advantages over homostructure
laser diodes:

– reduction of the thickness of the active zone from about 2�m to 100–200 nm
results in a reduction of the threshold current by approximately the same factor;

– since the semiconductor material adjacent to the active zone has a lower
refractive index, the sandwich structure acts as a waveguide for the laser light;

– because of its higher band gap, the semiconductor material adjacent to the active
zone does not absorb the laser radiation so that internal losses are reduced.

The thickness of the active zone of double heterostructure lasers is typically 100 nm,
typical threshold currents are 10–15 mA. Further thinning of the active zone below
100 nm reduces the overlap between the laser mode and the gain medium and results
in an increasing threshold current.
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7.5.2 QuantumWell Lasers

If da is reduced below 20 nm, effects of quantum confinement come into play, as
outlined in Sect. 6.3.4. In particular, quantum wells have a reduced density of states,
which makes it easier to drive them into inversion and reach threshold for laser
operation. Because of the low thickness of the active zone, epitaxial growth is
possible even if the materials are not exactly lattice matched; a mismatch of up
to several percent is tolerable. InGaAs-quantum wells, for example, can be grown
between AlGaAs-layers. The strain that is induced by the mismatch also can modify
the band structure significantly, an effect that is exploited in the technology of
strained lattice quantum well lasers.

To improve the overlap of the gain region with the laser mode, several quantum
wells can be stacked upon each other (multi-quantum wells, MQWs). MQW-lasers
have threshold currents as low as 0.5 mA. They also show narrow bandwidth
(10 MHz) and a reduced sensitivity to temperature.

7.5.3 Performance and Technology

Important semiconductor laser materials are AlGaAs (0.75–0.87�m) and InGaAsP
(1.1–1.6�m). Gallium nitride based semiconductor lasers have become very popu-
lar since they operate in the visible up to the near UV (Fig. 7.39) and can be used
for display applications and for high capacity optical storage.

Figure 7.40 shows the cross section of a typical heterostructure laser. The
sandwich structure provides optical guiding in the direction of the current flow. In
the lateral direction, the active zone is limited by the width of the injection electrode,
providing gain-guiding of the laser mode; there is, however, no wave guiding in this
direction because the refractive index of the active zone is lowered by the increased
carrier density (see Sect. 6.3.5).

Gain guided semiconductor lasers usually show multiple transverse modes.
Transverse single mode operation can be achieved by embedding the active zone
laterally in a low index material (index guiding, Fig. 7.41).

Fig. 7.40 Cross section of
an oxide insulated stripe
laser; the active region is
defined by the electric current
flow, i.e., by the insulation
layer. Typical dimensions of
the active zone are
0:2�5�100 �m3

Metal contact

Insulation (SiO2)
p-GaAs-layer

p-AlGaAs

n-GaAs-substrate

n-AlGaAs
GaAs (active zone)
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Metal contact

Insulation (SiO2)

p-AlGaAs

GaAs (active zone)

n-GaAs-substrate

n-AlGaAs

Fig. 7.41 Cross section of a buried heterostructure laser; the active zone is surrounded by
semiconductor material of higher band gap and lower refractive index, forming a nonabsorbing
waveguide

Fig. 7.42 Performance of a semiconductor laser at different operating temperatures

The performance parameters of semiconductor lasers, in particular the threshold
current and emission wavelength, are highly temperature sensitive (Fig. 7.42). This
is mostly due to the temperature dependence of the Fermi factor Eq. (6.134); in
addition, the efficiency of the potential barriers of the heterostructure is reduced at
elevated temperatures. Finally, the probability of Auger recombinations in which
the energy of excited carriers is transferred to other carriers instead of photons, and
eventually lost to lattice vibrations increases rapidly with temperature. The threshold
current follows the empirical equation

Jc.T/ / eT=T0 ; (7.66)
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Fig. 7.43 Normalized output spectra of an AlGaAs-semiconductor laser at different driving
currents

where T0 is a characteristic parameter of a given laser. Since dJc.T/
dT /1=T0, a higher

value of T0 implies reduced temperature sensitivity; typical T0 values are 70 ıC for
conventional heterostructure lasers, and 250 ıC for quantum well lasers.

The temperature drift of the emission wavelength of heterostructure lasers is
typically 0.3 nm K�1. This allows tuning laser diodes by heating or cooling; stable
operation requires temperature stabilization.

Because of the short resonator length, the mode spacing �!r D c�=d
[Eq. (4.82)] is very substantial (expressed in terms of wavelength, 0.1–0.5 nm). The
large gain bandwidth (Fig. 6.24) nevertheless provides gain for many axial modes.
Near the threshold, these modes can be observed in the output spectrum (Fig. 7.43).
Due to the fast intraband transitions, semiconductors behave like homogeneously
broadened gain media, so that well above threshold the number of modes is reduced
by mode competition; single mode operation is frustrated by spatial hole burning in
standard heterostructure lasers, however.

Longitudinal single mode operation, which is required by many applications,
can be obtained by different means. One is to employ an external resonator with a
frequency selective element, such as a grating; the semiconductor amplifier itself
is antireflection (AR) coated to avoid any additional resonances. Alternatively,
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Fig. 7.44 Diagram of a
distributed-Bragg
reflector-laser (DBR) (a),
distributed feedback-laser
(DFB) (b), and DFB-laser
with a phase jump (c)

Λg Waveguide grating

Active zone

Waveguide grating

Active zone

AR coating

Phase jump

Λg Waveguide grating

Active zone

(a)

(b)

(c)

single mode selection is provided by a frequency selective laser structure (see, e.g.,
Kogelnik and Shank 1972); Fig. 7.44 shows three possible configurations.

In a so-called distributed-Bragg reflector-laser (DBR), the output facets are AR
coated and the laser resonator is formed by two integrated waveguide gratings that
serve as narrow band mirrors supporting only one mode (compare Sect. 5.3.3). In a
distributed feedback-laser (DFB), the active zone itself is corrugated longitudinally
to provide a feedback between the forward and backward travelling laser mode.
Such a laser can also be viewed as a waveguide grating with integrated gain.
Somewhat counterintuitively, such lasers do not oscillate at the Bragg wavelength of
the grating, but rather at two frequencies at the edges of the stop band. This can be
understood by an inspection of Fig. 5.28: the intracavity power distribution, which is
responsible for stimulated emission, is resonantly enhanced at the edges of the stop
band, while there is no such enhancement at the Bragg wavelength. Single frequency
operation can be achieved by introducing a 	=4 D �g=2 spatial phase jump in the
waveguide grating as shown in Fig. 5.31, giving rise to resonant enhancement and
single longitudinal mode operation at the Bragg wavelength with narrow (MHz)
bandwidth.

In addition to these edge emitting lasers, there are also laser structures that emit
in the growth direction of the chip, so-called vertical cavity surface emitting lasers
(VCSEL, Fig. 7.45). The mirrors are multilayer reflectors integrated by growing
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Fig. 7.45 Vertical cavity
surface emitting laser
(VCSEL); layers of high and
low refractive index serve as
resonator mirrors; laser
emission is orthogonal to the
substrate plane

Substrate

Active zone

Output mirror

HR Multilayer mirror

alternating layers of high and low refractive index. The active zone is very short
and requires high reflectance mirrors to keep the threshold low; the short resonator
results in very large mode spacing and thus to single mode operation.

Edge emitting lasers usually exhibit a strongly divergent and astigmatic output
beam, since the lateral dimensions of the active zone are very small and different
from each other [see Eq. (3.19)]. Typical values are 20–30ı in the direction of
current transport and several degrees in the plane normal to it. By the use of
astigmatic collimating optics, the output beam can be rendered cylindrical. The
small dimensions of the laser mode also result in very high intensities at the output
facets; the onset of optical damage of the facets (damage threshold 109 Wm�2)
limits the output power of a single stripe laser diode to about 150 mW. Optical
damage is also responsible for the immediate destruction of laser diodes by supply
current spikes or by external reflections of the output light which are amplified in
the resonator; the latter problem can be avoided by a Faraday isolator (Sect. 2.4.2.1).

Heterostructure lasers can be produced by liquid phase epitaxy (LPE) allowing
for high growth rates (10 nm/s) and cost-effective large scale production. For the
production of quantum wells lasers, molecular beam epitaxy (MBE) is used, which
makes controlled layer by layer growth with very low defect densities possible.
Other commercial growth technologies are chemical vapor deposition (CVD) and
metal-organic chemical vapor deposition (MOCVD).

7.6 Free Electron Lasers�

Free electron lasers (FELs) are tunable sources of coherent radiation based upon
an oscillatory motion of high energy electrons in a spatially periodic, stationary
magnetic field. FELs do not rely on stimulated emission in the sense of Sect. 6.2, but
resemble travelling wave vacuum tubes or amplification schemes such as Brillouin
amplification (Sect. 8.3.6). Because of the high electron energy needed, they require
electron accelerators to operate and are large scale facilities. FELs can be described
in a purely electrodynamic framework including a relativistic equation of motion of
the electrons. Nonetheless, terms such as spontaneous or stimulated emission are
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Fig. 7.46 Helical undulator:
relativistic electrons (energy
me�c20) are deflected by a
helical series of magnets
(north- and south-poles
marked by N an S,
respectively), resulting in a
helical trajectory (dotted line)
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common in this context, because early theoretical treatments have been based on
relativistic quantum electrodynamics.

The magnetic field for the electron deflection is provided by a periodic array of
magnets (so-called undulator, Fig. 7.46). The velocity of the electrons and the spatial
period �u of the undulator determine the oscillation frequency. In the following
discussion (that relies on Saldin 2000), we assume, for convenience, a helical
undulator where the absolute value of the magnetic field is constant. In practice,
most undulators are planar, however. The Lorentz force acting on the electrons
induces a transverse acceleration and results in a helical electron trajectory.

We use a complex notation for periodically varying transverse quantities such as
the magnetic field

Bu D Re
h QBu;?

i
; (7.67)

QBu;? D Bu

�
1

j

�
e�jKuz (7.68)

Ku WD 2�=�u: (7.69)

The Lorentz force acting on an electron propagating along the z-axis with velocity
v (and axial component vz) is given by

QFL D �ev � QB? D jevz
QB?: (7.70)
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The relativistic equation of motion (see, e.g., Jackson 1999) in lab-coordinates then
is

me�
dQv?
dt

D QFL; (7.71)

where

�D1=
p
1 � ˇ2; ˇDv=c0: (7.72)

After substituting dz D vz dt and integration we obtain the transverse velocity

Qv? D �c0
K

�

�
1

j

�
e�jKuz (7.73)

with the dimensionless undulator-parameter

K WD �ueBu

2�mec0
� 0:93BuŒT��uŒcm� (7.74)

that represents the ratio of the undulator vector potential eBuc0�u to the electron rest
energy mec20 and is typically on the order of 1. The transverse velocity amplitude can
then be expressed as

v? D c0
K

�
DW c0
s; (7.75)

where 
s D v?=c0 D K=� 	 1 is approximately equal to the angle between the
electron trajectory and the z-axis. With ˇz WDvz=c0, �z WD1=p1 � ˇ2z and v2z Cv2? D
v2 we obtain the useful relation

�2 D �2z .1C K2/: (7.76)

7.6.1 “Spontaneous” Emission

In lab-coordinates, the electron oscillates at

!u D 2�
vz

�u
� 2�

c0
�u

I (7.77)
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in the reference frame moving with the electron, the frequency, due to Lorentz time
contraction (Sect. 2.4.3) is equal to !u�z. An observer looking towards the electron
along the z-axis detects an electromagnetic field oscillating at the Doppler shifted
frequency [Eq. (2.197)]

!0 D !u�z

s
1C ˇz

1� ˇz
� 2�2z !u; (7.78)

corresponding to a wavelength of

	0 D �u

2�2z
: (7.79)

The light emitted by an individual electron consists of Nu D lu=�u cycles, where
lu is the length of the undulator; the duration of the emitted pulse is therefore �p D
2�Nu=!0. The shape of the power spectrum is given by the absolute square of the
Fourier transform of the rectangular envelope rect.t=�p/e�j!0t, and is proportional
to

S.�!=!0/ / sin2 .Nu��!=!0/

.Nu��!=!0/2
(7.80)

with �! D ! � !0 (Fig. 7.47); the FWHM bandwidth (normalized to !0) is
0:8895=Nu.

Another electron (of same kinetic energy) passing the undulator produces the
same pulse, but with a relative phase shift that depends on the difference of entrance

Fig. 7.47 Normalized
emission spectrum of a single
electron (or a bunch of
uncorrelated electrons of
identical energy) passing an
undulator with Nu periods
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time. An ensemble of uncorrelated electrons produces incoherent radiation with the
power spectrum given above. This radiation is usually called spontaneous emission;
the center frequency of the spectrum can be tuned by adjusting the electron velocity
according to Eq. (7.78).

7.6.2 Light-Electron Coupling and Amplification

Let us now consider a (circularly polarized) light wave

QE?.z; t/ D E0

�
1

�j

�
e�j.kLz�!t/; (7.81)

co-propagating with the electron; note that the helicity is opposite to the electron
trajectory and E0 is the absolute value of the electric field at any time, E0 Dˇ̌
ˇRe

h QE?.0; t/
iˇ̌
ˇ; the corresponding intensity is E20=Z0. Due to the interaction of the

moving electron (which constitutes a current) and the electric field, the electron
energy E changes at the rate

dE
dt

D �ev? � E?I (7.82)

with dz D vz dt and a � b D 1
4
.Qa C Qa�/ � . Qb C Qb�/ D .1=2/Re

h
Qa � Qb C Qa � Qb�

i
we

obtain

dE
dz

D �eE0
s cos ; (7.83)

where

 D Kuz C kLz � !t C  0

D Kuz C kLz � !

vz
z C  0

(7.84)

(7.85)

is the phase difference between v?.z; t/ and E?.z; t/;  0 is the phase at entry and
assumed to be statistically distributed. The differential energy exchange is thus
proportional to the normalized transverse velocity 
s, the electric field amplitude
E0 and the cosine of  that determines sign and amount of the transfer. If  varies
strongly over the interaction length, the sign of the energy transfer changes several
times and the integrated energy exchange is small or zero. A necessary condition
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for a significant integrated exchange (be it positive or negative) is that  varies only
very little

d 

dz
D
�

Ku C !

c0
� !

vz

�
� 0I (7.86)

with Ku D 2�=�u, and ! D 2�c0=	L we obtain the synchronism condition

�u

vz
� 	L

c0 � vz
I (7.87)

during the time�u=vz that it takes the electron to pass one undulator period, the light
wave, travelling faster by the amount c0 � vz, acquires a lead of one wavelength in
respect to the electron. Expressed in terms of the wavelength and assuming ˇz �1,
we obtain

	L D �u
1 � ˇz

ˇz
D �u

1 � ˇ2z
ˇz.1C ˇz/

� �u

2�2z
(7.88)

which is equal to the wavelength of the “spontaneous” radiation Eq. (7.79). With
Eq. (7.76) and vz � c0 we can formulate the synchronism condition as

	L � �u
1C K2

2�2
: (7.89)

When the synchronism condition is met,  .z/ in Eq. (7.83) remains equal to
the initial value  0, and cos 0 determines whether the electron gains or loses
energy (by acceleration or deceleration) during the interaction. For an ensemble of
uncorrelated electrons, the time of entry (measured in reference to the light wave),
and therefore  0, is statistically distributed and one has to evaluate the angular
average over all input phases, defined as

h:i D 1

2�

Z 2�

0

.:/ d 0I (7.90)

since hcos 0i D 0, an ensemble of uncorrelated electrons experiences, for
statistical reasons, no net energy exchange; for the average energy transfer to
be non-vanishing, the synchronism condition must be slightly violated. We write
Eq. (7.86) as

d 

dz
D Ku C !

c0
� !

vz.E/ � Ku C !

c0
� !

vz.E0/„ ƒ‚ …
D

C !

v2z .E0/
dvz

dE �E ; (7.91)
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where E0 is the electron energy at entry, �E D E � E0 is the energy exchange and
D is the deviation from synchronism at entry. With Eq. (7.76), we can express the
electron energy E D mec20� as mec20�z

p
K2 C 1 to obtain dE= dvz � �2z E0=c0 since

vz � c0. In combination with Eq. (7.83), we find the set of coupled differential
equations

d 

dz
D D C !

c0�2z E0
�E

d�E
dz

D �eE0
s cos 

(7.92)

(7.93)

that describes the interplay between light field and electrons.
We eliminate�E and introduce the normalized coordinate � WDz=lu and field u WD

.e!
sE0l2u/=.c0�
2
z E0/ and obtain

d2 

d�2
C u cos D 0; (7.94)

which is formally equivalent to the equation of a pendulum, indicating that the phase
swings around the values ˙�=2: the reason for this oscillation is that the energy
transfer changes the electron velocity and thus the phase  .z/; in phase space, the
electrons are attracted to D ˙�=2where the energy exchange is zero, in the same
way a pendulum is attracted to the vertical by gravitation.

With the initial conditions  .0/ D  0 and d 
dz jzD0 D D, equivalent to d 

d� j�D0 D
Dlu DWD0, integration of Eq. (7.94) yields the phase as a function of �

 .�/ D  0 C D0� C� .�;  0/; (7.95)

where

� .�;  0/ D �
Z �

0

d� 0
Z �0

0

u0 cos. 0 C D0� 00/ d� 00 (7.96)

D u0
D02

�
cos. 0 C D0�/� cos 0

�C u0�

D0
sin 0 (7.97)

is the pendulum component,  0 the initial phase and D0� the accumulated phase
slip. We now can integrate Eq. (7.83) over the undulator length to evaluate the total
energy exchange of one electron

�E D �eE0
slu

Z 1

0

cosŒ 0 C D0� C� .�;  0/� d�: (7.98)
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We restrict ourselves to small phase excursions � .�;  0/ 	 1 (implying
sin� .�;  0/ � � .�;  0/, cos� .�;  0/ � 1) and use the identity cos.aCb/ D
cos a cos b � sin a sin b to obtain

�E � �eE0
slu

Z 1

0

cos. 0 C D0�/�� .�;  0/ sin. 0 C D0�/ d�I (7.99)

after integration over � and averaging over the initial phase (assumed to be uniformly
distributed between  0 D 0 : : : 2�), we arrive at the average exchange per electron
of

h�Ei D eE0
sluu0f .D
0/ D 
2s !l3ue2E20

c30�
2
z �me

f .D0/ (7.100)

with

f .D0/ D 2

D03
�
1 � cos D0 � .D0=2/ sin D0

�

D � d

2 dD0

 
sin2.D0=2/
.D0=2/2

!
:

(7.101)

(7.102)

If we denote the electron flux density entering the undulator with j0, the increase of
the light intensity is given by .j0=e/ h�Ei. The small signal gain, defined here as the
ratio of intensity increment to input intensity E20=Z0, can be expressed as

.j0=e/ h�Ei
E20=Z0

D f .D0/64
p
2�2

j0
IA

K2
p
�u	

3=2

.1C K2/3=2
N3

u ; (7.103)

where IA D 4�c30"0me=e �17 kA is the so-called Alfven-current. Using Eq. (7.86)
in the form .1=c0 � 1=vz/ D �Ku=!0, D0 can be expressed in terms of ! � !0,

D0 D lu

�
Ku C !

c0
� !

vz

�
D �! � !0

!0
luKu D �2�Nu

! � !0

!0
; (7.104)

so that the gain profile f .D0/ Eq. (7.102) turns out to be proportional to the derivative
of Eq. (7.80),

f .D0/ / d

d�!

 
sin2.Nu��!=!0/

.Nu��!=!0/2

!
: (7.105)
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Fig. 7.48 FEL-gain as a function of frequency; Nu is the number of undulator periods

Figure 7.48 shows the dependence of the gain on the detuning ! � !0. As outlined
above, the gain vanishes at D0 D 0, and, for equivalent reasons, at D0 D 2m� . The
most efficient energy transfer happens at approximately D0 D ˙� .

A requirement for the efficient operation of an FEL amplifier is that the electron
energy distribution is narrow, since the velocity determines the degree of detuning.
Moreover, the electron velocity decreases due to the gain process, so that the gain
also decreases along the undulator length. This can be compensated by reducing the
undulator period along the undulator axis (tapered undulator). An FEL-amplifier
can be converted into an oscillator by embedding it into an optical resonator.
Alternatively, an FEL can be seeded by an external coherent light source.

7.7 Summary

Lasers are not the only, but certainly the most important sources of coherent optical
radiation. The fundamentals of laser operation have been laid in Sect. 4.3 and
Chap. 6; here we describe various types of lasers and their mode of operation. We
analyze the stationary operation of laser oscillators, exemplified by four and three-
level atomic lasers as well as semiconductor lasers. We discuss mode competition
and selection, and the impact of inhomogeneous and homogeneous line broadening,
respectively, on laser performance. We also discuss the fact that the theoretical
spectral width of the laser modes is not zero but given by the Schawlow–Townes
limit that takes spontaneous emission of the laser medium into the laser mode into
account.

Non-stationary laser operation is theoretically interesting and practically impor-
tant. We describe the trajectory in phase space that a laser has to pass before reaching



7.8 Problems 349

stationary equilibrium; the relaxation oscillations that precede the stationary state
are analyzed and the frequency response of pump modulated lasers is derived. Gain
modulation, mode locking, and Q-switching are modeled.

The operation and technology of semiconductor lasers is described in detail;
important atomic lasers are presented with their main operating features. Finally,
the free electron laser is presented, which, however, resembles a vacuum electronic
tube rather than a conventional that relies on stimulated emission; the synchronicity
condition, which is basically a phase matching condition between the undulating
electrons and the electromagnetic field, is derived and the gain as a function of
signal frequency is estimated.

7.8 Problems

1. A four-level system (Nd:YAG) has a stimulated emission cross section of
7�10�19 cm2 and a spontaneous life time of �2 D 230�s at 1064 nm wavelength.
The length of the laser rod (and the resonator) is 4 cm, its diameter 4 mm.
Assume two laser mirrors with transmissions T1 D 0, T2 D 0:4; internal losses
amount to 2 % per round trip. Calculate the threshold inversion. Assuming ideal
conditions (complete absorption of the pump power etc.), calculate the threshold
pump power (pump wavelength 800 nm). Finally, calculate the output power as
a function of pump power assuming a pump efficiency (compared to the ideal
case) of 10 % .

2. Using the results of Problem 6, Sect. 6.5, calculate numerically the gain
coefficient of a GaAs laser diode at room temperature as a function of the
injection current, assuming that the active zone has the dimensions (thickness
� width � length) 1�5�100�m3. Assuming a quantum efficiency of 1, what is
the threshold current for this laser (the cleaved surfaces of the GaAs crystal serve
as mirrors, neglect internal losses)? Calculate the output power as a function of
the current. For the properties of GaAs, refer to Table 6.1.

3. Derive the formula for the optimal output coupler and present the results
graphically. Discuss the case ˛i D 0.

4. Integrate numerically the rate equations (7.42) and (7.43) of a Q-switched laser
using appropriate discrete �t-intervals and a finite number of initial photons.
Assume a Nd-YAG rod of 6 mm diameter and 70 mm length and an output mirror
with a transmission of 80 %; set the mode volume equal to the rod volume and
neglect internal losses. Assume different ratios Ni=N2;c of the initial inversion
to the critical inversion and determine the laser pulse duration and extraction
efficiency. Compare these results with the approximative solutions shown in
Fig. 7.19. See Table 7.1 for the properties of Nd:YAG.
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8Nonlinear Optics and Acousto-Optics

Nonlinear optics deals with optical phenomena that result from the dependence
of the optical susceptibility on the electromagnetic field. Exemplary effects are
the intensity-dependent propagation index, the electro-optic effects, and parametric
effects such as frequency mixing, harmonic generation, or parametric amplification.
In a more general sense, gain and absorption saturation are also nonlinear optical
effects, but they are usually not treated in terms of susceptibilities. Acousto-optic
effects are related to nonlinear optical effects in the sense that the susceptibility is
influenced by acoustic fields; since the mathematical treatment is very similar, they
are included in this chapter.

8.1 Nonlinear Susceptibility

The polarization response of a material on the electric field E is not a strictly linear
function; to account for that, we can write it as Taylor expansion

P D
X

i

P.i/ D "0�
.1/E C "0�

.2/EE C "0�
.3/EEE C : : : ; (8.1)

where �.1/ is the “linear” susceptibility, while the nonlinear contributions are
represented by the “nonlinear susceptibilities” �.i/ (i � 2) of order i. The total
polarization is the sum of the “linear” polarization P.1/ D "0�

.1/E and “nonlinear
polarizations” P.i/ D "0�

.i/Ei of order i. Second (third) order effects are also called
quadratic (cubic).

For a rough estimate of the magnitude of these nonlinearities, we can assume that
at fields comparable to the inner atomic electric field Eat, polarizations of different
order are of about the same magnitude, so that "0�.i/Ei

at � "0�
.1/Eat. Since �.1/ is of

the order of unity, this estimate yields �.i/ � 1=Ei�1
at . Taking as a reference the field
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of a hydrogen nucleus at a distance equal to Bohr’s radius (a0 D 5:3�10�11 m),
Eat �e=4�"0a20�5�1011 Vm�1, we obtain reasonable agreement with experimental
values, with �.2/ ranging between 10�13 and 10�10 V�1m, and �.3/ ranging between
10�23 and 10�18 V�2m2.

To get a feeling for the optical intensities required to generate significant
nonlinear polarizations, we assume a field of 108 Vm�1, which is less than 10�3Eat,
and use Eq. (1.71) to obtain a value of 1013 Wm�2; with a very tightly focused cw
10 W laser, such intensities can be reached. Usually, pulsed lasers with much higher
peak powers are used to produce nonlinear optical effects.

The (non)linear susceptibility is a tensor, usually given in cartesian represen-
tation, as known from the treatment of wave propagation in anisotropic media
(Sect. 2.3). Using Einstein’s convention, (8.1) can be expressed as

Pi D "0�
.1/

ij Ej C "0�
.2/

ijkEjEk C "0�
.3/

ijklEjEkEl C : : : (8.2)

Symmetry has a strong impact on tensors; certain symmetries actually rule out
particular effects because all elements of the relevant tensor vanish. For example,
the nonlinear optical susceptibility of second (even) order is zero in centrosymmetric
materials. This becomes obvious if we look at the quadratic polarization induced by
an electric field in a centrosymmetric medium which is invariant under the operation
of inversion; inversion changes the sign of polar vectors: E ! �E and P.2/ ! �P.2/.
On the other hand, P.2/.�E/ D "0�

.2/EE D P.2/.E/. Centrosymmetry forces the
quadratic polarization and thus the second order nonlinear susceptibility to vanish,
�.2/ D 0.

In a more general way, invariance under a certain symmetry operation implies
that the transformed tensor is equal to the original; in the formulation of Eq. (2.116),
m0ijk D mijk. These relations give rise to a number of equations between the tensor
elements (note that m0ijk is a linear combination of all mijk). Inversion, for example,

is represented by the transformation matrix Eq. (2.3.1.1) Aij D �ıij, so that �.2/ijk
0 D

.�1/3�.2/ijk; for centrosymmetric media we obtain

��.2/ijk D �
.2/

ijk D 0: (8.3)

Other symmetries (such as mirror planes or two-, three-, four-, or sixfold
rotations), also reduce the number of non-vanishing elements or establish linear
relations between them. Table 8.1 shows the structure of the �.2/-tensor for some
important point groups.

If the field driving the nonlinear polarization is monochromatic, the sequence of
fields in Eq. (8.2) is irrelevant and we have the additional symmetry �.2/ijk D �

.2/

ikj.
The pair of interchangeable indices is sometimes contracted into a single index
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Table 8.1 Non-zero
elements of �.2/ for selected
point groups

Point group �
.2/

ijk �
.2/

i�

N42m �
.2/

123 D �
.2/

213.D/�.2/132 D �
.2/

231 D�.2/14
�
.2/

312 D �
.2/

321 D�.2/36N43m �
.2/

123 D �
.2/

213.D/�.2/132 D �
.2/

231 D�.2/14
mm2 �

.2/

311 D�.2/31
�
.2/

322 D�.2/32
�
.2/

333 D�.2/33
�
.2/

131.D/�.2/113 D�.2/15
�
.2/

223.D/�.2/232 D�.2/24
4mm �

.2/

131 D �
.2/

232 D �
.2/

113 D �
.2/

223 D�.2/15
�
.2/

311 D �
.2/

322 D�.2/31
�
.2/

333 D�.2/33
3m �

.2/

131 D �
.2/

232.D/�.2/113 D �
.2/

223 D�.2/15
�
.2/

222 D ��.2/211 D ��.2/112 D ��.2/121 D�.2/22
�
.2/

311 D �
.2/

322 D�.2/31
�
.2/

333 D�.2/33
32 �

.2/

111 D ��.2/122 D ��.2/221 D ��.2/212 D�.2/11
�
.2/

123 D ��.2/213.D/�.2/132 D ��.2/231 D�.2/14

Table 8.2 Piezoelectric
index contraction

jk ! �

11 ! 1

22 ! 2

33 ! 3

23, 32 ! 4

13, 31 ! 5

12, 21 ! 6

according to the piezoelectric contraction, Table 8.2, �.2/ijk D �
.2/

i� ; examples are �.2/21
instead of �.2/211 and �.2/14 instead of �.2/123 D �

.2/

132.

8.1.1 Frequency Mixing

An important consequence of the nonlinear response is the generation of sum and
difference frequencies, also termed frequency mixing (Fig. 8.1). Let us assume an
input field containing two distinct frequencies

E.x; t/ D 1

2

h QE.x; !1/ej!1t C QE.x; !2/ej!2t C c:c:
i

I (8.4)
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Optical rectification

Nonlinear refractive index

Second harmonic generation

Third harmonic generation

Fig. 8.1 Response of a dielectric medium to a monochromatic electromagnetic wave

the quadratic nonlinear polarization then assumes the form

P.2/.x; t/ D"0�.2/E.x; t/E.x; t/

D"0 1
4

�.2/

h QE.x; !1/ QE.x; !1/ej2!1t

C QE.x; !2/ QE.x; !2/ej2!2 t

C 2 QE.x; !1/ QE.x; !2/ej.!1C!2/t

C 2 QE.x; !1/ QE�.x; !2/ej.!1�!2/t

C QE.x; !1/ QE�.x; !1/
C QE.x; !2/ QE�.x; !2/C c:c:

i
: (8.5)
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This can be written as

P.2/.x; t/ D1

2

h QP.x; 2!1/ej2!1t C c:c:
i

C 1

2

h QP.x; 2!2/ej2!2t C c:c:
i

C 1

2

h QP.x; !1 C !2/e
j.!1C!2/t C c:c:

i

C 1

2

h QP.x; !1 � !2/ej.!1�!2/t C c:c:
i

C 1

2

h QP.x; 0/C c:c:
i

(8.6)

and contains frequency components at 2!i (second harmonic)

QP.x; 2!i/ D 1

2
"0�

.2/ QE.x; !i/ QE.x; !i/; (8.7)

at the sum frequency !1 C !2

QP.x; !1C!2/ D "0�
.2/ QE.x; !1/ QE.x; !2/; (8.8)

at the difference frequency !1 � !2

QP.x; !1�!2/ D "0�
.2/ QE.x; !1/ QE�.x; !2/ (8.9)

and finally a dc-component at ! D 0

QP.x; 0/ D 1

2
"0�

.2/

h QE.x; !1/ QE�.x; !1/C QE.x; !2/ QE�.x; !2/
i
: (8.10)

This last term is proportional to the intensity of the respective field and is equivalent
to optical rectification (Fig. 8.2). Note that the factor 1

2
in Eq. (8.7) accompanies the

second harmonic components, but is missing in the sum and difference components;
the reason is that mixed terms show up twice in the calculation.

Let us further assume plane waves QE.x; !i/ D QE.!i/e�jki�x so that the driving
field is

E.x; t/ D 1

2

h QE.!1/e�j.k1�x�!1 t/ C QE.!2/e�j.k2�x�!2 t/ C c:c:
i
: (8.11)
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Fig. 8.2 Optical rectification in a quadratic nonlinear medium
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Fig. 8.3 Phase matching diagram for (a) sum frequency and (b) difference frequency generation

The sum frequency component of the nonlinear polarization then is

P.2/

!1C!2.x; t/ D 1

2

h
"0�

.2/ QE.!1/ QE.!2/e�jŒ.k1Ck2/�x�.!1C!2/t� C c:c:
i
: (8.12)

This is a planar polarization wave with the wave vector k1 C k2, that can serve as a
source term for an electromagnetic wave

E!3.x; t/ D 1

2

h QE.!3/e�j.k3�x�!3t/ C c:c:
i

(8.13)

with the frequency !3

!3 D !1 C !2: (8.14)

For the coupling between the source Eq. (8.12) and the field Eq. (8.13) to be efficient,
the two waves must have a constant phase relation in space, implying the equality
of the wave vectors (Fig. 8.3a)

k3 D k1 C k2I (8.15)

this equation is known as phase matching condition.
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An analogue condition applies to difference frequency generation

!3 D !1 � !2 (8.16)

with the polarization density

P.2/

!1�!2.x; t/ D 1

2

h
"0�

.2/ QE.!1/ QE�.!2/e�jŒ.k1�k2/�x�.!1�!2/t� C c:c:
i

(8.17)

(Fig. 8.3b) in the form

k3 D k1 � k2: (8.18)

Nonlinear optical processes can also be understood in a photon picture: in this
framework, sum frequency generation (SFG) is merging of two photons of energy
„!1 and „!2, respectively, to a new one of energy „!3 (Fig. 8.4a). The phase match-
ing condition can be interpreted as momentum conservation, since the momentum
of a photon is equal to „k.

While the total energy and momentum of the participating photons is conserved,
the total number of photons is not. Assuming a common direction of propagation of
all fields, the photon flux in SFG must obey the equations dF!3= dz D � dF!1= dz D
� dF!2= dz since one photon at!1 and !2, respectively, is annihilated to produce one
!3-photon. In terms of intensity I!i D „!iF!i , this implies

dI!3
!3 dz

D � dI!1
!1 dz

D � dI!2
!2 dz

: (8.19)

These relations are called Manley–Rowe relations and will be derived from purely
electrodynamic arguments later [Eq. (8.80)].

Difference frequency generation can be understood as “splitting” of a photon
of energy „!3 into two with energies „!1 and „!2 (Fig. 8.4b). The Manley–Rowe
relations are, of course, also valid in this case.

ω2

ω1

ω3=ω1+ω2ω1

ω2

ω3

ω1

ω2

ω3

ω2

ω1=ω3−ω2

ω2

ω3

ω2

ω1

ω3

(b)(a)

Fig. 8.4 Photon diagram of (a) sum and (b) difference frequency generation
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In the mixing processes described, two input fields produce a new field, so that
actually three fields are present, giving rise to a three wave mixing process where
each field interacts with one of the others to produce a polarization at the frequency
of the third one. Depending on the relative intensity of the fields, it is common
to distinguish different processes, albeit physically they are all the same; in the
following listing of quadratic effects, it is understood that !3 � !1 � !2 D 0:

– In SFG, I!1 and I!2 are large and the goal is to produce efficiently a field at !3.
– Second harmonic generation (SHG) is a degenerate case of SFG with !1 D !2DW
! called the fundamental and !3 D 2! the second harmonic.

– In parametric amplification, a weak input signal at !1 interacts with a strong
pump wave at !3, splitting pump photons into pairs of photons; one of this pair
is a replica of the signal photon and enhances the signal; the second photon, at
the difference frequency!2 contributes to a new wave (called “idler”) not present
at the entrance. The idler wave, however, also interacts with the pump to enhance
itself and the signal wave. Because of this mutual enhancement, both waves
are amplified in a quasi-exponential fashion. In contrast to the amplification by
stimulated emission, this gain process in principle works at any signal frequency
below the pump frequency.

– In the process of parametric frequency conversion, a weak signal field at !1
interacts with a strong pump wave at !2 to shift the signal frequency (usually in
the mid-IR) to !3, where it can be conveniently detected by quantum detectors.
According to the Manley–Rowe relations, the number of output photons cannot
exceed the number of signal photons; ideally, the conversion is one-to-one.

8.1.2 Anharmonic Oscillator

Modeling the linear susceptibility as a response of harmonically oscillating electrons
[Eq. (2.51)] provided important insights in the nature of light–matter interaction. We
now extend this simple model to the (quadratic) nonlinear susceptibility by adding
a quadratic term to the restoring force term1

me Rx C bPx C ax C Dx2 D �eE.t/: (8.20)

To solve this nonlinear differential equation, we treat the quadratic term as a small
perturbation, jDx2j 	 jaxj which is neglected in a first step of iteration. The driving
field is assumed to have two frequencies, E.t/ D E!1.t/C E!2.t/, with

E!1;2.t/ D 1

2

� QE.!1;2/ej!1;2t C c:c:
�
: (8.21)

1Introducing higher order nonlinear restoring force terms allows, in a similar fashion, estimating
nonlinear susceptibilities of corresponding order.
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According to Eqs. (2.52) and (2.56), the electron displacement can be expressed as

Qx.!1;2/ D ��.1/.!1;2/ "0
nee

QE.!1;2/: (8.22)

In a second step, we use this displacement to calculate the nonlinear restoring force
component

Dx2.t/ D 1

4
D
�Qx.!1/ej!1t C Qx.!2/ej!2t C c:c:

�2
(8.23)

which contains, among other frequency components, a sum frequency term

1

2

�
DQx.!1/Qx.!2/ej!3t C c:c:

�
(8.24)

that has no counterpart in the remaining Eq. (8.20). Next, we adjust the
motion of the electrons by adding a small sum frequency component x!3.t/ D
1
2

�Qx.!3/ej!3t C c:c:
�

such that the linear force component meRx!3 C bPx!3 C ax!3
compensates the nonlinear force term at !3

Qx.!3/ D �DQx.!1/Qx.!2/
meŒ.!

2
0 � !23/C j!3� �

D �D"30
n3ee4

�.1/.!1/�
.1/.!2/�

.1/.!3/ QE.!1/ QE.!2/; (8.25)

where Eqs. (8.22) and (2.56) have been used.
The complex amplitude of the nonlinear polarization density is then

QP.!3/ D �neeQx.!3/ (8.26)

and comparison with Eq. (8.8) in the form

QP.!3/ D "0�
.2/ QE.!1/ QE.!2/; (8.27)

allows us to express the nonlinear susceptibility as

�.2/.!3I!1; !2/ D D"20
n2ee3

�.1/.!1/�
.1/.!2/�

.1/.!3/: (8.28)

This is Miller’s rule, which states that the nonlinear susceptibility is proportional
to the product of the three linear susceptibilities at the frequencies involved. In
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Table 8.3 Nonlinear susceptibility �.2/i� [10�12 mV�1] of selected materials; symmetry allowed but
very small components are not included

Transparency

Material Symmetry �
.2/

i� range [�m] no,ne, nz

KDP KH2PO4
N42m �

.2/

14 D 0:8 0.22–1.50 1.494, 1.495

�
.2/

36 D 0:9

KTP KTiOPO4 mm2 j�.2/31j D 13 0.35–4.50 1.737, 1.745, 1.829

j�.2/32j D 10

j�.2/33j D 27

j�.2/15j D 12

j�.2/24j D 15

BBO BaB2O4 3m j�.2/22j D 3:2 0.19–3.00 1.655, 1.542

j�.2/31j D 0:2

Lithium niobate LiNbO3 3m �
.2/

22 D 5:2 0.40–5.00 2.232, 2.150

�
.2/

31 D �9:7
�
.2/

33 D �88
Gallium arsenide GaAs N43m �

.2/

14 D 270 >0.9 3.491

˛-Quartz SiO2 32 j�.2/11j D 0:7 >0.18 1.544, 1.553

j�.2/14j D 0:006

particular, it states that �.2/ shows resonant enhancement if �.1/ is resonant at any
of the three frequencies.

It turns out, moreover, that the prefactor D"20=n2ee3 in Eq. (8.28) has about
the same value (��0:3 � 10�12 mV�1) for a wide variety of dielectrics and
semiconductors (see Problem 1). Since �.1/ D n2 � 1, this implies that media
with large refractive index also exhibit a large nonlinear susceptibility (compare
Table 8.3). The large �.2/-values of lithium niobate (n D 2:2, �.1/ D 3:8) and
gallium arsenide (n D 3:3, �.1/ D 9:8), compared to KDP (n D 1:5, �.1/ D 1:25) are
consistent with this rule, for example.

8.2 Second Order Processes

8.2.1 Second Harmonic Generation

In Sect. 8.1.1, we have calculated the nonlinear polarization induced by plane fun-
damental waves. The various frequency components of this nonlinear polarization
wave are also plane waves with a wave vector that is either the sum or the difference
of the fundamental wave vectors. We now want to evaluate the electromagnetic field
that is radiated by this polarization wave, for the important example of SHG. We
start with the wave equation (1.17)

� r2E C �0
@2."0E C P/

@t2
D 0; (8.29)



8.2 Second Order Processes 361

where according to Eq. (1.8), D D "0E C P. With P D P.1/ C P.2/ and "0E C P.1/ D
"0"E we obtain

r2E � "

c20

@2E
@t2

D �0
@2P.2/

@t2
: (8.30)

The term on the right-hand side is the time derivative of the nonlinear polarization
current density, which is the source term for the second harmonic electromagnetic
field.

Assuming the fields to propagate along the z-direction with the transverse field
components

E!;i.x; t/ D 1

2

� QEi.!/e
�j.k!z�!t/ C c:c:

�
; i D 1; 2 (8.31)

and

E2!;i.x; t/ D 1

2

� QEi.2!/e
�j.k2!z�2!t/ C c:c:

�
; i D 1; 2; (8.32)

the operator r2 in Eq. (8.30) reduces to @2=@z2 and

@2

@z2
QEi.2!/e�j.k2!z�2!t/

D
�
@2

@z2
QEi.2!/� 2jk2!

@

@z
QEi.2!/� k22! QEi.2!/

�
e�j.k2!z�2!t/

�
�
�2jk2!

@

@z
QEi.2!/� k22! QEi.2!/

�
e�j.k2! z�2!t/; (8.33)

where we have neglected the second order spatial derivative assuming that
QEi.2!/ changes slowly on the length scale of the wavelength, j@2 QEi.2!/=@z2j 	
jk2!@ QEi.2!/=@zj [slowly varying envelope approximation, compare Eq. (3.3)].

For the second order time derivatives we obtain, using Eq. (1.27)

�"2!@
2

c20@t2
QEi.2!/e

�j.k2!z�2!t/ D "2!
4!2

c20
QEi.2!/e

�j.k2!z�2!t/ D

D k22! QEi.2!/e�j.k2!z�2!t/ (8.34)

and

�0
@2

@t2
QPi.2!/e

�j.2k!z�2!t/ D �4�0!2 QPi.2!/e
�j.2k!z�2!t/I (8.35)
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substitution of Eqs. (8.33)–(8.35) in Eq. (8.30) yields

� 2jk2!
@

@z
QEi.2!/e

�jk2!z D �4�0!2 QPi.2!/e
�j2k!z: (8.36)

With the source term Eq. (8.7)

QPi.2!/ D 1

2
"0�

.2/

ijk
QEj.!/ QEk.!/; (8.37)

Equation (8.36) assumes the form

@

@z
QEi.2!/ D � j!

2c0n2!
�
.2/

ijk
QEj.!/ QEk.!/ej�kz; (8.38)

where k2! D 2!n2!=c0, �0"0 D 1=c20, and

�k WD k2! � 2k! (8.39)

is the deviation from the phase matching condition. Integration of Eq. (8.38) with
the boundary condition QE.2!/jzD0 D 0 yields

QEi.2!/
ˇ̌
zDl

D � j!

2c0n2!
�
.2/

ijk
QEj.!/ QEk.!/

ej�kl � 1
j�k

; i D 1; 2; (8.40)

where it was tacitly assumed that the conversion efficiency from the fundamental to
the SH-field is so small that the fundamental amplitude remains practically constant.

We now write the fundamental field QEi.!/ D QE.!/ei as a product of the scalar
amplitude QE.!/ and a unit vector ei; then, �.2/ijk

QEj.!/ QEk.!/ D �
.2/

ijkejek QE QE. Equation

(1.71) relates the complex amplitude QE to the intensity I

I D n QE QE�
2Z0

QE QE� D 2Z0I

n
; (8.41)

so that we can express the fundamental field in terms of its intensity; with the
identity jejx � 1j2 D 2.1� cos x/ D 4 sin2.x=2/ we obtain for the SH-intensity

I2! D I2!
!2Z0l2

2c20n2!n2!

X
iD1;2

ˇ̌
ˇ�.2/ijkejek

ˇ̌
ˇ
2
�

sin.�kl=2/

�kl=2

�2
: (8.42)
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Fig. 8.5 Second harmonic
(SH) power as a function of
interaction length for
different degrees of phase
mismatch j�kj; a is an
arbitrary scaling factor

For a given phase mismatch �k, the SH-intensity is a periodic function of z

I2!.l/ / sin2.�kl=2/

.�k/2
; (8.43)

with maxima at l D 2�.m C 1
2
/=j�kj (Fig. 8.5); the spatial period

lc D 2�

j�kj D 2�

jk2! � 2k!j D 	0

2jn2! � n!j (8.44)

is called, somewhat misleadingly, coherence length, not to be confused with the
same expression from Sect. 4.4.1. The first intensity maximum is reached at l D
lc=2, which is, for obvious reasons, also the maximum useful crystal length. Note
that the maximum intensity is proportional to l2c , or 1=jn2! � n!j2.

Alternatively, if the phase mismatch is varied for a given crystal length, we obtain

I2!.l/ /
�

sin.�kl=2/

�kl=2

�2
: (8.45)

This function has a central maximum at�k D 0 and maxima of higher order whose
height decays with the square of the order (Fig. 8.6). The phase matched intensity
follows from Eq. (8.42)

I2! D I2!
!2Z0l2

2c20n2!n2!

X
iD1;2

ˇ̌
ˇ�.2/ijkejek

ˇ̌
ˇ
2

: (8.46)
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Fig. 8.6 Second harmonic
power as a function of phase
mismatch j�kj for a given
interaction length l

8.2.1.1 SHG of Gaussian Beams
According to Eq. (8.42), the SH conversion efficiency I2!=I! for plane waves is
proportional to the fundamental intensity and to the square of the interaction length
under phase matched conditions. In practice, nonlinear processes are driven by laser
beams of a certain power and it seems natural to increase the conversion efficiency
by focusing the fundamental beam as tightly as possible. Apart from limits due to
optical damage, however, there is a tradeoff between the intensity in the beam waist
and the useful interaction length within the nonlinear medium, because the beam
diverges with an angle that is inversely proportional to the beam waist diameter.

To get a more quantitative picture, we consider a Gaussian beam, with an
intensity profile Eq. (3.23)

I!.r/ D 2P!
�w20;!

e�2r2=w20;! ; (8.47)

where P! is the beam power and w0;! the beam waist. If the interaction length l
is so short that the beam profile does not widen significantly, the phase matched
SH-intensity according to Eq. (8.42) is

I2! D !2Z0l2

2c20n2!n2!

4P2!
�2w40;!

X
iD1;2

ˇ̌
ˇ�.2/ijkejek

ˇ̌
ˇ
2

e�2r2=w20;2! ; (8.48)

which is also Gaussian but with a reduced waist w0;2! D w0;!=
p
2. A measure for

the useful interaction length is the confocal distance 2z0 D w20;!k! D w20;!n!!=c0
[Eq. (3.12)]. If we shape our beam such that the confocal range matches the length
of the nonlinear crystal, l D 2z0 or w20;! D lc0=n!!, the resulting SH power
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Fig. 8.7 Intracavity SHG:
mirror M1 is high reflecting at
! and 2!, the coupling
mirror M2 is high reflecting at
! and transparent at 2!

Gain medium

SH crystal
M1 M2

ω ω

2ω2ω

P2! D I2!.0/�w20;2!=2 is approximately

P2! D P2!
!3Z0l

2�c30n2!n!

X
iD1;2

ˇ̌
ˇ�.2/ijkejek

ˇ̌
ˇ
2

D P2!
4�2Z0l

	30n2!n!

X
iD1;2

ˇ̌
ˇ�.2/ijkejek

ˇ̌
ˇ
2 I (8.49)

SH generation optimized in this way thus increases only linearly with the crystal
length.

The SH conversion efficiency P2!=P! is proportional to the fundamental beam
power; with a typical value of �.2/ D 10�12 mV�1 and a crystal length of l D 1 cm,
Eq. (8.49) yields a conversion efficiency of 10�4P! at a fundamental wavelength of
	0 D 1:064�m (Nd:YAG laser). The overall efficiency can be greatly improved
by placing the doubling crystal inside the cavity of the laser that provides the
fundamental beam (Fig. 8.7).

8.2.2 PhaseMatching

8.2.2.1 Birefringent PhaseMatching
The frequency dependence (dispersion) of the propagation index of the nonlinear
crystal is responsible for the phase mismatch Eq. (8.44) and the finite coherence
length lc D 	0=2jn2! � n! j. Because of the large frequency difference between
fundamental and SH, jn2!�n! j is usually substantial (several %), and the coherence
length amounts to not more than some ten wavelengths.

One possible way to achieve phase matching is to exploit the natural birefrin-
gence present in many nonlinear materials (Fig. 8.8). According to Eq. (2.145), the
propagation index of the extraordinary wave depends on the angle 
 between the
wave vector and the optical axis

1

n2.
/
D cos2 


n2o
C sin2 


n2e
: (8.50)

To obtain phase matching, the propagation direction and the polarization of the
fundamental and the SH wave, respectively, is chosen such that the propagation
index of the ordinary wave at ! matches that of the extraordinary wave at 2! (or
vice versa) (Fig. 8.8). In this configuration, phase matching requires n2!.
/ D n!;o,
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Fig. 8.8 Phase matching in a
uniaxial crystal

Optical axis

or

1

n2!;o
D cos2 


n22!;o
C sin2 


n22!;e
I (8.51)

this defines the phase matching angle 
m

cos2 
m D n�2!;o � n�22!;e
n�22!;o � n�22!;e

: (8.52)

The compensation of dispersion by birefringence is possible only if the bire-
fringence is larger than the dispersion, since there is no intersection between
the k-surfaces at ! and 2! otherwise. One problem with this scheme is that in
birefringent materials, the Poynting vector (the direction of energy transport) also
depends on the polarization state, so that the fundamental and the SH beam tend
to separate spatially [Fig. 2.33]. Only if 
m D 90ı, this effect can completely
be avoided (90ı-phase matching). Since the propagation index is temperature
dependent, 90ı-phase matching can be realized in some cases by heating the crystal.

8.2.2.2 Quasi-PhaseMatching
A very powerful alternative is to modify the nonlinear susceptibility periodically
(Fig. 8.9) with a spatial period equal to lc; �.2/ can then be written as a Fourier series
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Quasi-phase-matched

Phase-matched
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Non-phase-matched

Quasi-phase-matched
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Fig. 8.9 Nonlinear susceptibility, SH-field, and SH-intensity of a quasi-phase matched (periodi-
cally poled) frequency doubler
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�.2/.z/ D �
.2/

0

1X
mD�1

Fme�j2m�=lcz

D �
.2/

0

1X
mD�1

Fme�jm�kz; (8.53)

where �.2/0 represents the nonlinear susceptibility for the given fundamental field
configuration. Substituted into Eq. (8.38), we obtain

@

@z
QEi.2!/ D � j!

2c0n2!
�
.2/

0

1X
mD�1

Fm QEj.!/ QEk.!/ej.1�m/�kzI (8.54)

Figure 8.10 shows the corresponding development of QEi.2!/ in the complex plane.
For m D 1, the phase matching condition is met and the Fourier component

�
.2/

0 F1 is the source of a linearly increasing SH-field

@

@z
QEi.2!/ D � j!

2c0n2!
�
.2/

0 F1 QEj.!/ QEk.!/I (8.55)

the other Fourier components are responsible for a superimposed spatial oscillation.
The output intensity increases quadratically with the interaction length

I2! D F21I
2
! l2

!2Z0
2c20n2!n2!

X
iD1;2

ˇ̌
ˇ�.2/ijkejek

ˇ̌
ˇ
2

; (8.56)

as in the perfectly phase matched case Eq. (8.46), reduced, however, by the factor
F21 . This technique is known as quasi-phase matching (QPM).

Periodic structures of alternating nonlinear coefficients can be produced by
“poling” of ferroelectric media such as lithium niobate or KDP. These materials
exist in two metastable configurations that can be converted into each other by
a strong (20 kV/mm) dc-electric field pulse. In lithium niobate, for example, the
metal ions change sites under the influence of an external electric field in the z-
direction (Fig. 8.11), converting the initial configuration into its mirror image that
has nonlinear coefficients �.2/311 and �.2/333 of same magnitude but opposite sign. An
initially homogeneous crystal is transformed into a periodic structure of ferroelectric
domains by applying lithographically a periodic electrode structure to the surface
of the crystal which is removed after the poling process. Since the first Fourier
component of the resulting rectangular �.2/-modulation is F1 D 2=� , the resulting
the SH-intensity is smaller by a factor of .2=�/2 D 0:4 than a perfectly phase
matched output. This disadvantage is compensated by the possibility to pick a
fundamental field configuration (propagation direction and polarization state) that
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Fig. 8.10 Locus of the SH
amplitude in the complex
plane: phase mismatch results
in a closed circular loop
(dashed line) with a curvature
proportional to the phase
mismatch; quasi-phase
matching periodically alters
the sign of the source term,
providing monotonic
amplitude growth (solid line).
The two amplitudes shown
refer to the same propagation
distance in the crystal, the
dashed arrow representing
the phase mismatched signal,
the solid one the quasi-phase
matched result
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optimizes the effective �.2/0 and avoids the walk-off of the fundamental and SH
Poynting vectors.

8.2.3 Optical Parametric Amplification

Another important quadratic effect is parametric amplification of a signal at
frequency !s in the presence of a strong pump wave at !p (!p > !s). It is a
special case of difference frequency generation and produces an additional wave
at !i D !p �!s (the so-called idler wave). The process is called parametric because
it can be understood as a modulation of the system parameter � at the frequency
!p; the generation of the idler results from a beating of the signal with the pump
frequency and vice versa. Under phase matched conditions, the beat wave adds
coherently to the signal or idler wave, respectively, resulting in amplification (optical
parametric amplification, OPA).
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Fig. 8.11 Two stable lattice configurations of LiNbO3 with opposite values of �.2/33 and �.2/31; they
can be converted into each other by applying a dc-electric field pulse along the z-axis

For a simplified treatment, we assume in the following that all wave vectors are
collinear and treat the fields as scalars; we use the complex amplitudes

QP.!s/ D "0�
.2/ QE.!p/ QE�.!i/

QP.!i/ D "0�
.2/ QE.!p/ QE�.!s/

QP.!p/ D "0�
.2/ QE.!s/ QE.!i/: (8.57)

The interaction of the three waves is described by a set of three coupled differential
equations which can be easily derived along the lines of Eq. (8.38) (slowly varying
envelope approximation):

d QE.!s/

dz
D � j!s

2c0n!s

�.2/ QE.!p/ QE�.!i/e�j.kp�ki�ks/z

d QE.!i/

dz
D � j!i

2c0n!i

�.2/ QE.!p/ QE�.!s/e�j.kp�ks�ki/z

d QE.!p/

dz
D � j!p

2c0n!p

�.2/ QE.!s/ QE.!i/e�j.ksCki�kp/z: (8.58)



8.2 Second Order Processes 371

For convenience, we introduce a normalized field amplitude QAi such that QAi QA�i equals
the photon flux F!i

QAi QA�i D F!i D n!i
QE.!i/ QE�.!i/

2Z0„!i
; (8.59)

or

QAi WD
QE.!i/p

2Z0„!i=n!i

: (8.60)

Equations (8.58) then assume the form

d QAs

dz
D �j� QA�i QApe�j�kz

d QAi

dz
D �j� QA�s QApe�j�kz

d QAp

dz
D �j� QAs QAiej�kz;

(8.61)

(8.62)

(8.63)

where�k D kp � ki � ks and the coupling factor � is given by

� D �.2/

s
!s!i!p

n!s n!in!p

p
2„Z0
2c0

: (8.64)

For the further treatment, we neglect pump depletion . d QAp= dz � 0/ and assume
QAp to be positive and real, QAp D j QApj (which can always be arranged by proper choice
of time zero). Under phase matched conditions (�k D 0) Eqs. (8.61) and (8.62) have
the form

d QAs

dz
D �j�0 QA�i

d QAi

dz
D �j�0 QA�s

(8.65)

(8.66)

where �0 is the normalized coupling coefficient

�0 D � QAp D �
q

I!p=„!p D �.2/

s
!s!i

n!sn!i n!p

Z0I!p

2c20
: (8.67)
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Taking the derivative of Eq. (8.65) and substituting d QA�i = dz from Eq. (8.66) we
obtain

d2 QAs

dz2
� �02 QAs D 0 (8.68)

and in analogous way

d2 QAi

dz2
� �02 QAi D 0: (8.69)

The solutions of these equations are linear combinations of e�
0z and e��0z,

QAs;i.z/ D
�

aC

s;ie
�0z C a�

s;ie
��0z



: (8.70)

To determine the coefficients a˙

s , we use the boundary conditions QAs.0/ D aC

s C a�

s
and QAi.0/ D 0 from which follows, using Eq. (8.65), aC

s � a�

s D 0 so that

QAs.l/ D QAs.0/ cosh �0lI (8.71)

QAi follows from Eq. (8.65)

QAi.l/ D �j QA�s .0/ sinh �0l: (8.72)

The corresponding photon flux densities are

F!s.l/ D F!s.0/ cosh2 �0l

F!i.l/ D F!s.0/ sinh2 �0l:

(8.73)

(8.74)

The quasi-exponential growth pertains as long as pump depletion is negligible
(Fig. 8.12). With a pump intensity of 107 Wcm�2, !s;i � 1015 s�1, n D 2, and
�.2/ D 10�11 mV�1, the gain coefficient is �0 � 0:5 cm�1 and the (power) gain
after 2 cm is equal to cosh2.2/ D 2:25.

Inclusion of the phase mismatch term modifies Eqs. (8.68) and (8.69) to

d2 QAs

dz2
C j�k

d QAs

dz
� �02 QAs D 0 (8.75)

d2 QAi

dz2
C j�k

d QAi

dz
� �02 QAi D 0; (8.76)
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Fig. 8.12 Signal, idler, and
pump photon flux density in a
phase matched optical
parametric amplifier as a
function of the interaction
length; after complete
consumption of the pump,
signal and idler interact to
regenerate the pump wave by
sum frequency generation.
Dotted lines show the result
Eq. (8.71), valid for negligible
pump depletion
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Fig. 8.13 Normalized gain
coefficient �00=�0 as a
function of the phase
mismatch �k=�0 for an OPA
based on second or third order
nonlinearity, respectively
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e�j.�k=2/z; (8.77)

where the modified gain coefficient �00 is given by

�00 WD
p
�02 � .�k=2/2I (8.78)

note that only real values of �00 provide exponential growth. In contrast to SHG,
where any phase mismatch results in an oscillatory dependence of the output power
on the interaction length, parametric amplification allows for a certain mismatch
j�kj < 2j�0j (Fig. 8.13). Outside this interval, the output signals oscillate along
the propagation distance. An inspection of Fig. 8.14 explains the transition from
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Fig. 8.14 Locus of the
signal and idler amplitudes of
an OPA in the complex plane.
In the upper panel, the
straight arrows along the real
and imaginary axis,
respectively, refer to the
phase matched situation,
while the spirals describe
quasi-exponential growth for
small phase mismatch
j�kj < 2j�0j. Lower panel:
excessive phase mismatch
j�kj > 2j�0j results in a
closed loop locus and
oscillatory output power; the
numbers indicate equally
spaced points along the
propagation direction
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the amplifying to the oscillating regime. Phase mismatch results in a curved locus
of QAs;i.z/ in the complex plane; different from SHG, where the modulus of the
differential field increment j dAj is constant and the locus, if mismatched, is a circle
(Fig. 8.10), j d QAs;ij is initially growing and the trajectory is a spiral within the gain
interval. Outside the gain regime, the curvature is so strong that the idler returns
periodically to zero and the signal to its initial value.
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χ(2)-CrystalM1 M2

ωs

Pump wave
Signal wave

ωi
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ωp

Fig. 8.15 Optical parametric oscillator (OPO); mirror M1 is transparent at !p and high reflecting
at !s;i , while M2 is high reflecting at !p and partially transmitting at !s
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Fig. 8.16 Tuning of an OPO (pump wavelength 355 or 266 nm, respectively) by tilting the
nonlinear crystal: at a given phase matching angle, a distinct pair of signal and idler frequencies
starts to oscillate

In the absence of an input signal, the parametric process can also start from
so-called parametric fluorescence, the equivalent of spontaneous emission; the
emitted photon pairs are “entangled” and can be used for quantum cryptography.
In combination with a resonator, a parametric amplifier can operate as oscillator
(optical parametric oscillator, OPO). To realize an OPO, the nonlinear medium
is placed in a resonator with mirrors that have high reflectance at !i (Fig. 8.15);
the pump radiation is usually pulsed. Like a laser, an OPO starts to emit coherent
radiation only above a certain threshold, where the parametric gain compensates
the resonator losses. The oscillator can be frequency tuned by changing the phase
matching angle (Fig. 8.16).

8.2.3.1 Manley–Rowe Relations
Equations (8.61)–(8.63) also allow deriving the Manley–Rowe relations Eq. (8.19)
from purely electromagnetic arguments: multiplication of Eq. (8.61) with QA�s ,
Eq. (8.62) with QA�i , and the conjugate of Eq. (8.63) with QAp yields

d QAs

dz
QA�s D d QAi

dz
QA�i D � d QA�p

dz
QApI (8.79)
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since QAi QA�i is the photon flux density at !i,

dF!i

dz
D dI!i

„!i dz
D d. QAi QA�i /

dz
D d QAi

dz
QA�i C d QA�i

dz
QAi: (8.80)

Substitution of Eq. (8.79) and its conjugate, respectively, yields

dF!1
dz

D dF!2
dz

D � dF!3
dz

; (8.81)

which is equivalent to Eq. (8.19).

8.2.4 Parametric Frequency Conversion�

In the process of parametric frequency conversion (or frequency up-conversion),
a signal at frequency !ir in the IR is converted to a frequency !vis D !ir C !p,
typically in the visible, by mixing it with an intense pump field at frequency !p.
Neglecting pump depletion ( dAp= dz�0) and assuming phase matching, the process
is described by

d QAir

dz
D �j� QAvis QA�p D �j�0 QAvis

d QAvis

dz
D �j� QAir QAp D �j�0 QAir; (8.82)

where QAp is assumed to be real and positive and

�0 D � QAp D � QA�p D �
q

I!p=„!p: (8.83)

The two equations Eq. (8.82) can be decoupled

d2 QAir

dz2
C �02 QAir D 0

d2 QAvis

dz2
C �02 QAvis D 0 (8.84)

and, with the boundary condition QAvis.0/ D 0, have the solution

QAir.l/ D QAir.0/ cos �0l

QAvis.l/ D �j QAir.0/ sin �0l; (8.85)
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Fig. 8.17 Photon flux
density of the IR-signal (a)
and upconverted wave (b) in a
parametric upconverter

Signal

Upconverted Signal

corresponding to the photon flux densities

F!ir.l/ D F!ir.0/ cos2 �0l

F!vis.l/ D F!vis.0/ sin2 �0l:

(8.86)

(8.87)

After the interaction distance l D �=2�0, all signal photons are converted (Fig. 8.17).
This technique is frequently used in IR-spectroscopy, where fast and highly sensitive
quantum detectors are unavailable, for the detection of very small IR-signals.

8.2.5 Second Order Autocorrelation

The multiplicative capabilities of second order polarization can be used to obtain
the intensity autocorrelation of optical light pulses. For this purpose, a quadratic
nonlinear crystal is inserted in the output of a Michelson interferometer (output 1 in
Fig. 4.1). A light pulse launched into the interferometer is split into two replicas
that travel along the two legs; recombination at the beam splitter produces the
superposition / E.t/ C E.t � �/ of the two replicas, delayed in respect to each
other by the time � D 2�s=c0, where�s is the (adjustable) length difference of the
legs. The nonlinear crystal produces a second harmonic field proportional to ŒE.t/C
E.t � �/�2; after removal of the fundamental radiation by a filter, a (slow) detector
operating as integrator measures the SH pulse energy

R ˇ̌
ŒE.t/C E.t � �/�2 ˇ̌2 dt.

For an analysis of the output, we adopt a complex notation E / ŒA.t/ej!t C
A�.t/e�j!t�where the pulse envelope A.t/ is normalized such that I.t/ D A.t/A�.t/ is
the momentary intensity; note that A.t/ is complex and can include a time dependent
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phase. The output fluence then is

˚.�/ D
Z

I.t/2 C I.t � �/2 dt

C4
Z
ŒI.t/I.t � �/� dt

C4
Z
ŒI.t/C I.t � �/�Re

h
A.t/A

�

.t � �/ej!�
i

dt

C2
Z

Re
�
A2.t/.A2.t � �//�ej2!�

�
dtI (8.88)

the integral has to be taken over several pulse durations. After multiplication with
the beam cross section, this is the SH energy resulting from a single input pulse for
a given delay time � . To measure the entire correlation function, a train of identical
pulses is launched into the interferometer and the output is recorded as a function of
� ; the result for a Gaussian pulse is shown in Fig. 8.18.

The first term in Eq. (8.88) is a constant offset ˚0 and can be used to normalize
the output; ˚.�/=˚0 oscillates between �0 and 8. The second term represents
the intensity autocorrelation. The third term in Eq. (8.88) is the amplitude auto-
correlation multiplied by a �-dependent factor, and the fourth term is the SH
amplitude autocorrelation. Equation 8.88 is called interferometric autocorrelation;
it is sensitive to a time varying phase of the amplitude, i.e., to a frequency chirp
within the pulse (see Sect. 3.2.1.6).
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Fig. 8.18 A Fourier limited Gaussian pulse and its interferometric autocorrelation: (a) electric
field (solid line) and intensity envelope (dashed line) of the pulse, (b) output of second order
autocorrelator (solid line); note that the envelope of the interferometric autocorrelation deviates
from the intensity autocorrelation (dashed line); interpretation of this deviation allows for an
analysis of the possible chirp of the pulse. Averaging over the interference fringes provides the
exact intensity autocorrelation, offset by 1 (dotted line)
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If the delay � is scanned so rapidly that the detector cannot resolve the oscillating
terms three and four, taking the time average instead, the normalized output signal
reduces to

˚.�/=˚0 D 1C 2

Z
ŒI.t/I.t � �/� d�; (8.89)

which is the exact intensity autocorrelation, offset by 1.
It is not possible to completely reconstruct the pulse envelope A.t/ from the

intensity or interferometric autocorrelation, because there is an infinite manifold
of wave functions yielding the same autocorrelation; with numerical means and
physical intuition, however, pulses can be constructed that reproduce the measured
interferometric autocorrelation function.

An extension of this technique is frequency resolved optical gating, where in
addition to the SH pulse energy its spectrum is recorded as a function of the delay
time (Trebino 2000). This allows for a complete temporal reconstruction of the
electric field of a light pulse, with exception of the carrier envelope phase.

8.3 Third Order Processes

8.3.1 Third Harmonic Generation

The third order nonlinear susceptibility is a fourth rank tensor; the symmetry
properties of the medium determine which of the coefficients are equal to zero
or linear combinations of other components. In contrast to the second order
susceptibility, all symmetry classes allow for non-zero elements; isotropic and
centrosymmetric media such as glasses, gases, and liquids exhibit the non-vanishing
components �.3/iiii, �

.3/

iijj, �
.3/

jiij, and �.3/ijij, i D 1; 2; 3, i ¤ j. The following discussion is
limited to such materials.

We first discuss the case of a monochromatic input field, linearly polarized along
the x-axis. The nonlinear polarization is then parallel to the input field

P.3/

1 .t/ D "0�
.3/

1111E
3
1.t/; P.3/

2;3 D 0; (8.90)

and we can adopt a scalar formulation �.3/1111DW�.3/

P.3/.t/ D "0�
.3/E3.t/: (8.91)

With

E.t/ D 1

2

� QE.!/ej!t C c:c:
�

(8.92)
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we obtain

P.3/.t/ D 1

2

� QP.3/.!/ej!t C c:c:
�C 1

2

� QP.3/.3!/ej3!t C c:c:
�
; (8.93)

where

QP.3/.!/ D 3

4
"0�

.3/ QE.!/ QE.!/ QE�.!/

QP.3/.3!/ D 1

4
"0�

.3/ QE.!/ QE.!/ QE.!/:

(8.94)

(8.95)

The polarization at 3! (Fig. 8.19a) serves as a source term for third harmonic
generation (THG) in a similar way as we have seen in SHG. THG is a possible
process to produce coherent radiation in the UV, where lasers are difficult to operate.
If the phase matching condition k3! D 3k! is met, the TH field grows linearly
(and the TH-power quadratically) with the propagation distance; the conversion
efficiency scales quadratically with the input power.

One term that has no counterpart in quadratic nonlinearities is the nonlinear
polarization at the fundamental frequency (Fig. 8.19b). This term gives rise to the
intensity dependence of the propagation index, the so-called Kerr effect.

8.3.2 Optical Kerr Effect

8.3.2.1 Self Phase Modulation
Driven by a monochromatic field, the combined linear and cubic polarization at the
fundamental frequency ! is

QP.!/ D "0�
.1/ QE.!/C 3

4
"0�

.3/ QE.!/ � QE.!/ QE�.!/�

D "0

�
�.1/ C 3�.3/Z0

2n
I!

�
QE; (8.96)
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Fig. 8.19 Photon diagram of third harmonic generation (a), optical Kerr effect (b), and two-
photon absorption (c)
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where the electric field amplitude is expressed by I D n QE QE�=2Z0. This is equivalent
to an effective susceptibility

�.I/ D �0 C�� D �0 C �.3/
3Z0
2n

I (8.97)

where �0 D �.1/ is the susceptibility at very low intensities. The small nonlinear con-
tribution to the susceptibility gives rise to a modified propagation index [Eq. (2.74)]

n.I/ � n0 C 1

2n0
��.I/ D n0 C 1

2n0

3�.3/Z0
2n0

I; (8.98)

with n0 D p
�0 C 1. This can be written as

n D n0 C n2I (8.99)

where

n2 WD 3Z0
4n20

�.3/ (8.100)

is called nonlinear propagation index. Typical values for n2 in glasses are between
10�20 and 10�18 m2W�1; silica (SiO2), for example, has an n2-value of 3:2 �
10�20 m2W�1. According to Miller’s rule Eq. (8.28), �.3/ scales with .n2 � 1/4, and
optically dense media consequently have relatively large n2-values: lead glasses with
a propagation index in the range of 2.4 exhibit n2-values above 10�18 m2W�1.

The change of the propagation index results in a phase change

�� D n2k0Id (8.101)

of the wave, where d is the propagation distance. This effect is called self-phase
modulation (SPM) and is proportional to the intensity of the field. Impor-
tant manifestations of SPM are the Kerr lens (Sect. 3.1.3.4), spectral broadening
(Sect. 3.2.2.1), and soliton propagation (Sect. 3.2.2.2).

8.3.2.2 Cross PhaseModulation
We now extend the discussion to polychromatic (yet linearly polarized) fields with
discrete frequencies !i

E.t/ D 1

2

"
mX

iD1
QE.!i/ej!it C c:c:

#
I (8.102)
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the resulting nonlinear polarization comprises a total of .2m/3 terms of the form
"0�

.3/ QE.�/.!l/ QE.�/.!j/ QE.�/.!k/ej.˙!l˙!j˙!k/t, of which we only consider the terms
oscillating at !1

QP.3/.!1/ D 3

4
"0�

.3/

"
QE.!1/ QE�.!1/C 2

mX
iD2

QE.!i/ QE�.!i/

#
QE.!1/

DW "0�� QE.!1/: (8.103)

The resulting propagation index is

n D n0 C n2I!1 C 2n2

mX
iD2

I!i : (8.104)

In addition to the self-term Eq. (8.96), the susceptibility (and the propagation index)
is also modified by a term proportional to twice the sum of all other field intensities;
this effect is called cross phase modulation (XPM).

XPM can be used to influence light waves by light (all-optical devices). It
also is responsible for cross talk in wavelength division multiplexing in optical
communication fibers.

8.3.2.3 Nonlinear Polarization Rotation
Elliptically polarized light exhibits, in any cartesian coordinate system, two orthog-
onal field vector components, so that not only �.3/1111 but (in isotropic media) also �.3/iijj,

�
.3/

ijji, and �.3/ijij, i¤ j, come into play; for symmetry reasons, �.3/iijj C �
.3/

ijij C �
.3/

ijji D �
.3/

iiii

and �.3/iijj.! D ! C ! � !/ D �
.3/

ijij. Assuming propagation along z, E3 D 0, and the
polarization at the fundamental frequency is

� QPi.!/ D 6

4
"0�

.3/

1122
QEi.!/

3X
jD1

QEj.!/ QE�j .!/C 3

4
"0�

.3/

1221
QE�i .!/

3X
jD1

QEj.!/ QEj.!/;

(8.105)
which is equivalent to

� QP D 6

4
"0�

.3/

1122.
QE � QE�/ QE C 3

4
"0�

.3/

1221.
QE � QE/ QE�: (8.106)

In general, this contribution to the polarization is not parallel to the driving
field; this means that the nonlinear interaction modifies the polarization state
during propagation. An exception is circularly polarized light that turns out to be
an eigenstate of the isotropic Kerr medium. We thus use a circularly polarized
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base [Eq. (1.78)]

QE D EC�C C E���; (8.107)

� QP D �PC�C C�P��� (8.108)

where

�˙ D 1p
2

�
1

˙j

�
(8.109)

with the properties .�˙/� D ��, �C��C D ����� D 0, and �C��� D ����C D 1.
In this base, the nonlinear polarization components are

�PC D 6

4
"0
�
�
.3/

1122.jECj2 C jE�j2/EC C �
.3/

1221.E
CE�/E��

�

D 6

4
"0
�
�
.3/

1122.jECj2 C jE�j2/C �
.3/

1221jE�j2�ECDW"0��CEC;

�P� D 6

4
"0
�
�
.3/

1122.jECj2 C jE�j2/C �
.3/

1221jECj2�E�DW"0���E�: (8.110)

These relations are scalar, implying that the circularly polarized states �˙ are propa-
gation eigenstates (compare optically active media Sect. 2.4.1) with the propagation
indices

n˙ � n0 C 3Z0
2n20

�
�
.3/

1122.I
C C I�/C �

.3/

1221I
�� ; (8.111)

where I˙ D nE˙E˙�=2Z0. While the values of E˙ and thus the ellipticity
Eq. (1.131) is not altered by the Kerr effect, the difference

nC � n� D 3Z0
2n20

�
.3/

1221.I
� � IC/ (8.112)

results, according to Eqs. (1.90) and (1.124), respectively, in a rotation of the
polarization ellipse by the angle �' D .nC � n�/k0d=2, where k0 is the wave
number; the effect is known as nonlinear polarization rotation. In combination with
a polarizer, the (intensity-dependent) polarization rotation can be used as intensity
discriminator, similar to the setup shown in Fig. 7.23, and is employed for mode
locked operation of fiber lasers [see, e.g., Fermann and Hartl (2009)].

For linearly polarized light (I� D IC DW I0=2), the eigenstates are degenerate,
and Eq. (8.111) reduces to Eq. (8.98) because of �.3/iijj C �

.3/

ijij C �
.3/

ijji D �
.3/

iiii. Linearly
and circularly polarized light, respectively, experiences SPM without change of the
polarization state.
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8.3.3 Third Order Parametric Amplification

OPA is also possible in the absence of a quadratic nonlinearity �.2/, i.e., in
(centrosymmetric) media such as glass. This is of particular interest in glass fibers
that can provide high pump intensities over a long interaction length.

Similarly to OPA in quadratic media, a strong pump wave (wave vector kp,
frequency !p) interacts with a signal wave (ks, !s) and an idler wave (ki, !i). In
the following we assume codirectional propagation of all waves (as it is the case
in fibers) and linearly polarized waves (allowing a scalar treatment). For the three
waves we set

Ep;s;i.z; t/ D 1

2

� QAp;s;i.z/e�j.kp;s;iz�!p;s;it/ C c:c:
�
: (8.113)

The nonlinear polarization has components at !p;s;i with the complex amplitudes

QP.3/

s .z; !s/ D 3

4
"0�

.3/
�
2j QApj2 QAse�jksz C QAp QAp QA�i e�j.2kp�ki/z

�

QP.3/

i .z; !i/ D 3

4
"0�

.3/
�
2j QApj2 QAie�jkiz C QAp QAp QA�s e�j.2kp�ks/z

�

QP.3/

p .z; !p/ D 3

4
"0�

.3/j QApj2 QApe�jkpz; (8.114)

where we have tacitly assumed that

!s C !i D 2!p (8.115)

and terms proportional to QAs QA�i have been neglected as of second order (no pump
depletion). Thus, signal and idler appear as symmetric side bands of the pump
frequency,

!s;i D !p ˙ .!s � !i/=2I (8.116)

at the entrance of the medium, the idler wave amplitude is usually zero and is built
up only during propagation.

Within the slowly varying envelope approximation [compare Eq. (8.38)], we
obtain coupled differential equations for the development of the complex amplitudes

@

@z
QAs D �j

3!s

8c0n!s

�.3/
�
2j QApj2 QAs C QAp QAp QA�i e�j�kz

�

@

@z
QAi D �j

3!i

8c0n!i

�.3/
�
2j QApj2 QAi C QAp QAp QA�s e�j�kz

�

@

@z
QAp D �j

3!p

8c0n!p

�.3/j QApj2 QAp (8.117)
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with

�k WD2kp � ks � ki: (8.118)

To simplify matters, we choose the time zero point such that QAp is real and positive
so that j QApj2 D QA2p, and assume the frequencies !s;i;p to differ only slightly, which
allows us to introduce a common coupling coefficient �0

�0 WD 3!p

8c0n!p

�.3/j QApj2I (8.119)

this can be expressed, with the help of Eq. (8.100) and Ip D nj QApj2=2Z0, as

�0 D n2Ipk0: (8.120)

Our system of equations then is

@

@z
QAs D �j2�0 QAs � j�0 QA�i e�j�kz

@

@z
QAi D �j2�0 QAi � j�0 QA�s e�j�kz (8.121)

@

@z
QAp D �j�0 QAp: (8.122)

With the substitution

QAs;i DW QA0s;ie�j2�0z; QAp DW QA0pe�j�0z; (8.123)

the system can be cast in the form

@

@z
QA0s D �j�0 QA0�i e�j�0kz (8.124)

@

@z
QA0i D �j�0 QA0�s e�j�0kz (8.125)

@

@z
QA0p D 0; (8.126)

where

�0k D �k � 2�0: (8.127)
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The transformation Eq. (8.123) incorporates pump-induced SPM and XPM
[Eq. (8.104)] in the modified wave vectors

k0s;i D ks;i C 2�0; k0p D kp C �0: (8.128)

Accordingly, the phase matching condition is changed to

�0k D 2k0p � k0s � k0i D 0: (8.129)

Elimination of one of the two fields Eqs. (8.124) and (8.125) yields

@2

@z2
QA0s;i C j�0k

@

@z
QA0s;i � �02 QA0s;i D 0 (8.130)

with the solutions

QA0s;i.z/ D
�

aC

s;ie
�00z C a�

s;ie
��00z



e�j.�0k=2/z; (8.131)

where

�00 WD
p
�02 � .�0k=2/2: (8.132)

The coefficients a˙

s;i are determined in the same way that led to Eq. (8.71) and result
in

QA0s.z/ D QA0s.0/
�

cosh �00z C j
�0k
2�00

sinh �00z
�

e�j.�0k=2/z: (8.133)

The signal power is proportional to

j QA0sj2.z/ D j QA0s.0/j2
"
1C

 
1 � �0k2

4�002

!
sinh2 �00z

#
: (8.134)

According to the Manley–Rowe relations Eq. (8.19) (and using !s � !i), the
measure for the idler power is offset by �j QA0s.0/j2:

j QA0ij2.z/ D j QA0s.0/j2
 
1 � �0k2

4�002

!
sinh2 �00z: (8.135)
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The above solutions are valid if �00 is real, which implies [Eq. (8.132)]

�02 � .�k=2� �0/2 > 0 (8.136)

or

0 < �k < 4�0 D 4n2k0Ip: (8.137)

Outside this range, one obtains oscillatory solutions. Figure 8.13 shows the normal-
ized gain coefficient �00=�0 as a function of �k=�0; the maximum gain coefficient
appears at �k D 2�0

�00max D �0 D n2k0Ip: (8.138)

With n2 D 3:2�10�20 m2W�1, we obtain �00max � Ip�2�10�13 W�1m at a wavelength
of 1�m for silica.

8.3.4 Two-Photon Absorption

The cubic susceptibility �.3/, and thus the effective linear susceptibility Eq. (8.97),
can assume complex values. According to Eq. (1.65), the imaginary part of the
effective susceptibility is responsible for transfer of energy from the light field to
the material (absorption); this happens whenever one of the involved frequencies
coincides (within the relevant line width ) with a resonance frequency of the material
(Fig. 8.19c). If the SH (or SF) of the incoming waves is resonant with a transition,
the process is called two-photon absorption (TPA); note that in the absence of linear
absorption at !, the medium is transparent at low intensities.

According to Eq. (2.75), the imaginary part of the susceptibility results in an
imaginary component of the propagation index

� � �3Z0
4n20

Im
�
�.3/
�

I; (8.139)

which allows us to define a TPA coefficient [compare Eq. (2.71)]

˛TPA D 2�k0 D �k0
3Z0
2n30

Im
�
�.3/
�

I DWˇTPAI: (8.140)

The total, effective absorption coefficient is

˛eff D ˛ C ˇTPAI; (8.141)
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where ˇTPA is usually given in [cm/GW]. Silicon, for example, exhibits a
ˇTPA=1.5 cm/GW at a wavelength of 1.064�m. It is common to introduce a TPA
cross section �TPA which is related to ˇTPA by the volume density N of absorbing
molecules:

ˇTPA D N�TPA=„!I (8.142)

�TPA is frequently given in units of 1 GM = 10�50 cm4s (1 Goeppert-Mayer).
For TPA, the absorption “law” Eq. (2.70) does not apply; from

dI

dz
D �ˇTPAI2 (8.143)

we find

I.z/ D I.0/

1C I.0/ˇTPAz
I (8.144)

if linear and TPA has to be taken into account, the attenuation is given by

I.z/ D I.0/

e˛z C I.0/.ˇTPA=˛/.e˛z � 1/
; (8.145)

as can be verified by differentiation.
TPA has a number of important applications that usually rely on the fact that in

the focus of a laser beam the probability for TPA is strongly enhanced. Following
the simultaneous absorption of two photons, the excited molecule can decay under
spontaneous emission of a photon (two-photon fluorescence), a process that is used
for scanning microscopy, where the focus of a pulsed laser is scanned in a three-
dimensional fashion through the sample (for example, a biological tissue). Since the
emitted fluorescence light originates only from the small focal volume of the tightly
focused beam, three-dimensional pictures with a resolution below the fundamental
wavelength can be obtained. In a somewhat similar technique, two-photon excited
molecules can polymerize; within an originally liquid phase, solid features can be
generated by scanning a laser focus through the medium (rapid prototyping). In
semiconductors, TPA can be used to realize intensity correlators and power limiters,
respectively, provided that „! < Eg < 2„!.

8.3.5 Raman Amplification

The polarizability of molecules generally depends on the molecular bond lengths.
Provided that this dependence is linear, the susceptibility of an ensemble of
molecules vibrating at ˝v consequently exhibits a component oscillating at this
frequency, and the polarization induced by a light field of frequency !p shows
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side bands at !p � ˝v (“Stokes line”) and !p C ˝v (“anti-Stokes line”). The
emission of frequency shifted light by the polarization side bands is called Raman
scattering and provides a valuable spectroscopic tool because it allows determining
the characteristic vibrational resonances of the molecule.

The vibrational resonance frequencies ˝v of a molecule are much lower than
typical electronic resonance frequencies since the vibrating atoms are much heavier
than the electrons. Raman scattering is usually rather weak, because the thermal
excitation of molecular vibrations is low at room temperature. However, the
molecular vibrations can also be optically driven and become substantial. For this
purpose, the molecular sample is exposed to a superposition of a pump wave at
!p and a “signal” wave at !s such that the beat frequency !p � !s is close to the
vibrational resonance frequency ˝v. The resulting molecular vibrations generate a
Stokes side band !p � .!p � !s/ of the pump wave that coincides with the signal
frequency and is capable of amplifying the signal wave. This so-called stimulated
Raman scattering is the basis of Raman amplification.

To understand the driving process, we start from the force acting on the molecules
in the presence of an electromagnetic field. The dielectric energy density of a
medium with susceptibility � is W D "0"E2=2 D "0Œ� C 1�.E2=2/, where
�.q/ is assumed to depend on a representative intramolecular coordinate q. A
displacement�q results in a change of the energy density of�W D. dW= dq/�qD
"0.E2=2/. d�= dq/�q. Thus, the force F D �W=�q of the electromagnetic field on
a molecule is

F D "0hE2=2i. d�= dq/; (8.146)

where � D �=N is the polarizability and N is the volume density of molecules; the
temporal average is taken over a cycle of the light field, which is short in comparison
to the molecular vibrational period. Note that no static dipole moment is required
for this interaction, so that symmetric molecules such as H2 or O2 can be Raman
active.

The superposition

E.t/ D 1

2

� QE.!p/ej!p t C QE.!s/ej!st C c:c:
�

(8.147)

produces an oscillating force

F.t/ D 1

4
"0. d�= dq/

� QE.!p/ QE�.!s/ej.!p�!s/t C c:c:
�

(8.148)

on the molecules. Describing the molecule as a linear oscillator driven by this force,
we obtain the equation of motion

Rq C �v Pq C˝2
v q D F.t/=m (8.149)
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where m is the effective mass. With the ansatz q.t/ WD 1
2

�Qqej.!p�!s/t C c:c:
�
, we get

the complex displacement amplitudes

Qq D "0 QE.!p/ QE�.!s/. d�= dq/

2m
�
˝2

v � .!p � !s/2 C j�v.!p � !s/
� : (8.150)

The displacement q.t/, multiplied with N. d�= dq/ yields the alternating component
�.t/ of the susceptibility,

�.t/ D 1

2

�Qqej.!p�!s/t C c:c:
�

N
d�

dq
: (8.151)

The incoming pump field generates the cubic nonlinear polarization "0�.t/E.t/ that
has a frequency component at !s

QP.3/.!s/ D "20N. d�= dq/2

4m

QE.!p/ QE�.!p/ QE.!s/�
˝2

v � .!p � !s/2 � j�v.!p � !s/
�

DW "0�� QE.!s/: (8.152)

Depending on the relative phase, this polarization wave can amplify or attenuate
the signal wave at !s. Note that phase matching is automatically provided in this
process since kp � kp C ks D ks.

Comparison with Eq. (8.103) allows us to describe the stimulated Raman effect
by a third order susceptibility

�
.3/

Rn WD 2��

3 QE.!p/ QE�.!p/
(8.153)

with the complex value

�
.3/

Rn D "0N. d�= dq/2

6m
�
˝2

v � .!p � !s/2 � j�v.!p � !s/
� D Re

�
�
.3/

Rn

�C j Im
�
�
.3/

Rn

�
;

(8.154)

so that the effective susceptibility at !s is

� D �0 C �
.3/

Rn

3Z0
n

Ip: (8.155)

The real part of this susceptibility represents a XPM of the signal by the pump
(Kerr effect Sect. 8.3.2), i.e., a change of the real part of the propagation index. The
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imaginary part plays a role similar to the imaginary part of the propagation index
[see Eq. (2.75)]

� � �3Z0
2n20

Im
�
�
.3/

Rn

�
Ip: (8.156)

Since, however,

Im
�
�
.3/

Rn

� D "0N. d�= dq/2�v.!p � !s/

6m
�
.˝2

v � .!p � !s/2/2 C � 2
v .!p � !s/2

� (8.157)

is positive in the Stokes regime!s<!p, � and accordingly the absorption coefficient
Eq. (2.71) turn negative, which is equivalent to amplification of the signal wave with
the Raman gain coefficient

�Rn WD�2�k0 D ks
3Z0
n30

Im
�
�
.3/

Rn

�
Ip: (8.158)

The maximum gain is provided at !s � !p � ˝v and the gain bandwidth is
given by �v (Fig. 8.20). The Raman gain coefficient for SiO2 is 10�13 W�1mIp,
somewhat smaller than the OPA-value (Sect. 8.3.3); CS2 shows a particularly large
value (about 30 times larger than SiO2). The Stokes shift „˝v is 57 meV in SiO2,
the bandwidth is about 2 meV. Raman fiber amplifiers are attractive alternatives to
EDFAs (Sect. 5.3.5), since they can amplify arbitrary wavelengths, and in particular
the 1.55�m telecommunication band (see, e.g., Islam 2004). They do not require

-1

-0.5

0

0.5

1

-3 -2 -1 0 1 2 3

γ
R
n
/
γ
R
n

,m
ax

(ωs − ωp)/Ωv

Fig. 8.20 Frequency dependence of the Raman gain; peak amplification is provided at !s �
!p �˝v
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any modification (doping) of the transmission fiber; due to the small mode diameter,
sufficient pump intensity can be obtained at a moderate pump power.

8.3.6 Brillouin Amplification

In contrast to the Raman effect, which is the interaction of light with the vibrations
of isolated molecules, Brillouin scattering is the interaction with acoustic (compres-
sion) waves propagating in a medium. A compression wave is equivalent to a density
wave, and eventually to a propagation index wave, because the propagation index
depends on the density of the medium. Such a wave acts like a dielectric multilayer
system that travels through the medium at the speed of sound. Light that is scattered
by such a wave is frequency shifted because of this motion.

The frequency˝ and wave number K of an acoustic density wave

� D �0 C 1

2

� Q�e�j.Kz�˝t/ C c:c:
�

(8.159)

obey the dispersion relation

˝

K
D vak; (8.160)

where vak is the acoustic phase velocity with typical values of 103 : : : 104 m/s in
solids and liquids. Since the acoustic phase velocity is many orders of magnitude
smaller than the velocity of light, an acoustic wave with a wave number comparable
to that of a light wave has a frequency that is many orders of magnitude smaller than
the optical frequency.

Acoustic waves are always present in a medium in the form of thermally excited
phonons. Scattering of light from these waves is known as spontaneous Brillouin
scattering. Similar to molecular vibrations in Raman scattering, acoustic waves can
also be driven by electromagnetic waves through the process of electrostriction.

To calculate the electrostrictive pressure pe, we start from the electric contribu-
tion "0�E2=2 of the energy density [Eq. (1.52)]. Changing the density � (and thus
the susceptibility �) of the medium results in a change of the energy density by the
amount

"0E2

2

@�

@�
��; (8.161)

which is equal to the corresponding mechanical work per unit volume p�V
V D

�p��
�

. The electrostrictive pressure is therefore proportional to the square of
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the electric field

pe D �"0E
2

2

�@�

@�
DW��e

"0E2

2
; (8.162)

where

�e D �@�

@�
� � (8.163)

is the electrostriction coefficient; the approximation is valid if we assume the sus-
ceptibility to be proportional to the density, so that @�=� D @�=�. A superposition
of electromagnetic waves

E.z; t/ D 1

2

� QE.!p/e�j.kp�x�!pt/ C QE.!s/e�j.ks�x�!st/ C c:c:
�

(8.164)

gives rise to a pressure field Eq. (8.162) that contains a component at the difference
frequency !p�!s

1

2

h QE.!p/ QE�.!s/e�jŒ.kp�ks/�x�.!p�!s/t� C c:c:
i

(8.165)

which can couple to acoustic phonons of frequency˝ , provided that the correspond-
ing wave vector kp � ks matches the acoustic wave vector K. For co-propagating
electromagnetic fields, this condition cannot be met, since kp � ks � .!p�!s/=c 	
K D ˝=vak. We therefore assume counterpropagating signal and pump waves with
wave vectors kp D Œ0; 0; kp� and ks D Œ0; 0;�ks� (Fig. 8.21), so that the phase
matching condition is K D kp Cks; since the acoustic and optical wave numbers
K and kp;s are now of the same order of magnitude, the acoustic frequency˝ must
be smaller than the optical frequencies by a factor on the order of vak=c0, implying
!p � !s and kp � ks. At a given pump frequency !p, the matching acoustic wave
number can therefore be approximated by

KBn D kpCks � 2
!p

c0
n; (8.166)

ks kp

K

Fig. 8.21 Wave vectors of a pump wave with frequency !p, a counterpropagating signal wave
(also called Stokes wave) with frequency !s < !p, and an acoustic wave of frequency ˝ and wave
vector K in a Brillouin amplifier
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where n is the propagation index at !p. The corresponding acoustic frequency

˝Bn D 2!p
vak

c0
n (8.167)

is called Brillouin frequency; in contrast to the frequency ˝v characterizing the
Raman effect,˝Bn is not a resonance frequency, but the acoustic frequency at which
phase matching between the electrostrictive pressure wave and phonons is possible.

The wave equation of an externally driven acoustic compression wave can be cast
in the form (see Starunov and Fabelinskii 1970)

@2�

@t2
� � r2 @�

@t
� v2akr2� D r2pe; (8.168)

where �.z; t/ is the local mass density and � denotes the acoustic damping
coefficient; we simplify the equation by assuming that the complex amplitude is
stationary, @ Q�=@t D 0 and homogeneous, @ Q�=@z D 0, which is reasonable since the
strong attenuation of acoustic waves in the relevant frequency regime prevents the
acoustic amplitude from building up during propagation. According to Eq. (8.162),
the driving term in Eq. (8.168) is given by

Qpe.˝/ D ��e"0 QE.!p/ QE�.!s/=2: (8.169)

Substituting Eq. (8.159) with K �KBn and using v2akK2�˝2
Bn, we obtain


�˝2 C jK2
Bn� ˝ C˝2

Bn

� Q� D �e"0

2
K2

Bn
QE.!p/ QE�.!s/ (8.170)

or

Q� D �e"0

2
K2

Bn

QE.!p/ QE�.!s/

˝2
Bn �˝2 C j˝�Bn

; (8.171)

where �Bn D K2
Bn� . With Eq. (8.163), this corresponds to a “susceptibility-wave”

��e D 1

2

� Q�e�j.Kz�˝t/ C c:c:
� �e

�0
: (8.172)

The interaction of the pump wave E.!p/ with this susceptibility generates a cubic
nonlinear polarization at !s

QP.3/.!s/ D �2e "
2
0K

2
Bn

2�0

QE.!p/ QE�.!p/ QE.!s/

˝2
Bn �˝2 � j˝�Bn

; (8.173)
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which is formally equivalent to the stimulated Raman polarization Eq. (8.152). We
therefore can introduce the complex nonlinear susceptibility

�
.3/

Bn WD "0�
2
e K2

Bn

3�0
�
˝2

Bn � .!p � !s/2 � j�Bn.!p � !s/
� (8.174)

with the imaginary part

Im
�
�
.3/

Bn

� D "0�
2
e K2

Bn�Bn.!p � !s/

3�0
�
.˝2

Bn � .!p � !s/2/2 C � 2
Bn.!p � !s/2

� (8.175)

and define, analog to Eq. (8.158), the Brillouin gain coefficient

�Bn D ks
3Z0
n30

Im
�
�
.3/

Bn

�
IpI (8.176)

the frequency dependence of the Brillouin gain coefficient follows Fig. 8.20, with
˝v replaced by ˝Bn and �v by �Bn.

The treatment of Raman and Brillouin amplification given above is valid only in
the small signal approximation; in general, the back-action of the signal wave on the
pump has to be included.

8.3.7 Phase Conjugation�

Consider the monochromatic signal wave

Es.x; t/ WDRe
h QEs.x/ej!t

i
D 1

2

h QEs.x/ej!t C c:c:
i
; (8.177)

where QEs.x/ is a solution of the Helmholtz equation (1.22). Then the so-called phase
conjugate wave

Ec.x; t/ D Re
h QE�s .x/ej!t

i
D 1

2

h QE�s .x; !/ej!t C c:c:
i

D 1

2

h QEs.x; !/e�j!t C c:c:
i

(8.178)

is, of course, also a solution. As the above equation shows, the phase conjugate
wave is formally identical to the time reversed signal wave; a phase conjugate
wave can therefore be visualized by running a movie of the signal wave backwards.



396 8 Nonlinear Optics and Acousto-Optics

A device that can produce such a wave acts like a mirror that reflects the signal
wave back into itself (while a conventional mirror just reverses the direction of
propagation, Fig. 8.22) and is called phase conjugate mirror (PCM). A diverging
wave, for example, after reflection at a PCM is converging again; while circularly
polarized light changes its sense upon reflection at a conventional mirror, the phase
conjugate wave maintains the sense of rotation. The most important application
of such mirrors is the compensation of phase front aberrations of waves passing
through an inhomogeneous medium, such as a thermally stressed laser crystal: if
a wave is reflected at a conventional mirror and passes the same medium again,
the phase distortion is doubled, while after the reflection at a PCM, the distortion is
reversed by the reflection and compensated during the second pass (Fig. 8.23). Laser
resonators that consist of a PCM and a conventional mirror are therefore insensitive
to phase distortions in the gain medium.

The generation of a phase conjugate wave relies on a phase conjugate polar-
ization in a (nonlinear) medium. A possible realization, based upon the cubic
susceptibility �.3/, is described in the following; for simplicity, all waves are
assumed to be linearly polarized in the x direction. In addition to the signal Es.!/,
the medium is irradiated by two intense, counterpropagating pump waves

Ep˙ D 1

2

h QAp˙e�j.kp˙

x�!t/ C c:c:
i

(8.179)

with wave vectors kpC

D �kp�

and the same frequency ! as the signal. The signal
wave is described as a plane carrier wave with wave vector ks

Es D 1

2

� QAs.x/e�j.ksx�!t/ C c:c:
�

(8.180)

Fig. 8.22 Comparison of a
conventional mirror (a), and a
phase conjugate mirror (b),
shown for the reflection of a
spherical wave

(a) (b)
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(a) (b)

Fig. 8.23 Compensation of phase front distortions after a double pass through an inhomogeneous
medium and reflection at a phase conjugate mirror (a); the same setup with reflection at a
conventional mirror gives rise to doubled distortions (b)

and a spatially varying complex amplitude QAs.x/. The cubic polarization QP.3/.!/

includes a term proportional to

QApC

QAp�

QA�s e�jŒ.k0

pC

Ck0

p�

�ks/x�!t�
; (8.181)

where k0pC

and k0p�

are the pump wave vectors modified by SPM and XPM. This
polarization acts as a source for the phase conjugate wave, provided that k0pC

C
k0p�

D 0, which requires that j QApC

j D j QAp�

j.
Once the process gets started, the newly produced phase conjugate field

QEc.x/ D QAc.x/eCjksx (8.182)

also participates in the interaction and contributes to the signal wave, since the
conjugate of the conjugate is the signal. The total field

QE WD QEpC

C QEp�

C QEs C QEc (8.183)

generates, according to Eq. (8.91), a number of different terms, of which we collect
only those with an e˙jksx-carrier that can act as source terms for the signal and phase
conjugate waves, respectively:

QP.3/

s .!/ D 3

2
"0�

.3/
�j QApC

j2 QAs C j QAp�

j2 QAs C QApC

QAp�

QA�c
�

e�jksz

QP.3/

c .!/ D 3

2
"0�

.3/
�j QApC

j2 QAc C j QAp�

j2 QAc C QApC

QAp�

QA�s
�

e�jkczI (8.184)

in the summation, terms that contain the factors QAs;c or QA�s;c more than once have
been neglected, since these amplitudes are assumed to be much smaller than the
pump amplitudes.
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Similar to Eq. (8.38), we obtain differential equations for the development of the
fields QAs;c

@

@z
QAs D � 3j!

4c0n!
�.3/

�
.j QApC

j2 C j QAp�

j2/ QAs C QApC

QAp�

QA�c
�

@

@z
QAc D 3j!

4c0n!
�.3/

�
.j QApC

j2 C j QAp�

j2/ QAc C QApC

QAp�

QA�s
�
; (8.185)

where ks D �kc D !n!=c0 was used. Introducing the coupling factors

�xpm WD 3!

4c0n!
�.3/


j QApC

j2 C j QAp�

j2�

�pcm WD 3!

4c0n!
�.3/ QApC

QAp�

; (8.186)

these equations assume the form

@

@z
QAs D �j�xpm QAs � j�pcm QA�c

@

@z
QAc D j�xpm QAc C j�pcm QA�s : (8.187)

The XPM of the signal and phase conjugate, respectively, by the pump is represented
by �xpm and can be included into the complex amplitudes by the transformations

QAs DW QA0se�j�xpmz; QAc DW QA0cej�xpmz (8.188)

which is simply a modification of the wave vectors according to Eq. (8.104). In this
way, (8.187) assumes the form

@

@z
QA0s D �j�pcm QA0�c

@

@z
QA0c D j�pcm QA0�s : (8.189)

Differentiation of the first equation and using @
@z

QA0�c D �j��pcm
QA0s, we obtain

@2

@z2
QA0s C j�pcmj2 QA0s D 0 (8.190)
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Fig. 8.24 Degenerate four
wave mixing as a source for a
phase conjugate wave

z=0z=−l

As

Ac

Ap+

Ap−

with the solution

QA0s.z/ D C1 sin �z C C2 cos �z

QA0c.z/ D � j

�

@

@z
QA0�s D �jC1 cos �z C jC2 sin �z; (8.191)

where � D j�pcmj. In the configuration Fig. 8.24, the boundary conditions are
QAs.�l/ D QAs;in and QAc.0/ D 0, so that C1 D 0 and C2 D QA0s;in= cos�l. The output
amplitudes are then

QAs;out D QAs.0/ D QA0s;in 1

cos �l

QAc;out D QAc.�l/ D QA0s;in tan �lI (8.192)

the process not only produces a phase conjugate signal but can also amplify the
incoming signal.

8.4 Electro-Optic Effects

In the framework of nonlinear optics, electro-optic effects (Sect. 2.3.4) can be
understood as a mixing of electrostatic and optical fields. The Pockels effect,
for example, is a manifestation of the quadratic susceptibility �.2/; similarly, the
quadratic electro-optic effect relies on the cubic susceptibility �.3/. Other nonlinear
optical effects that involve static fields are optical rectification (where a dc-field is
generated by a nonlinear optical process) and electric field induced SHG, where a
static electric field breaks the symmetry of a centrosymmetric medium (Sect. 8.4.3)
and allows for quadratic nonlinear effects that are symmetry forbidden in the
absence of the dc-field.
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8.4.1 Linear Electro-Optic Effect

Consider a monochromatic optical wave in a quadratic nonlinear medium that is
subject to an electrostatic field Edc; the total electric field is then

E.t/ D Edc C 1

2

h QE.!/e�j.k!z�!t/ C c:c:
i

(8.193)

and contains frequency components at !1 D 0 and !2 D !. According to Eq. (8.6),
the resulting polarization P.1/ C P.2/ comprises frequency components at 0, !, and
2!. The SH-component was dealt with in Sect. 8.2.1; here, we concentrate on the
polarization contributions at !, with the complex amplitude

QP.!/ D "0�
.1/ QE.!/C "0�

.2/Edc QE.!/ D "0
�
�.1/ C �.2/Edc� QE.!/: (8.194)

This is equivalent to a field dependent linear susceptibility �.Edc/ D �.1/ C �.2/Edc

with the tensor components

�ij.E
dc/ D �

.1/

ij C �
.2/

ijkEdc
k : (8.195)

The permittivity " D 1C � therefore changes by

�" D �.2/Edc: (8.196)

Thus, the static field induces or changes the crystal anisotropy, depending on the
direction and magnitude of the electrostatic field; in particular, an optically isotropic
(but non-centrosymmetric) medium such as GaAs can become birefringent.

For historical reasons it is common to describe the electro-optic effect as a Taylor
expansion of the impermeability tensor � D "�1 [Eq. (2.124)]

�ij.Edc/ D �0ij C rijkEdc
k C : : : I (8.197)

or

�� D rEdc: (8.198)

As a third rank tensor, rijk vanishes in centrosymmetric media [Eq. (8.3)].
Table 8.4 shows electro-optic coefficients of important materials. Because of �ij D
�ji, we can set rijk D rjik, and the first two indices of rijk are usually contracted
according to Table 8.2.

To relate r and �.2/, we use the approximation

�.Edc/ D �0 C�� D Œ"0 C�"��1
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Table 8.4 Electro-optic coefficients of selected materials; also listed are the propagation index
and the dc-permittivity

Material Symmetry r�k [10�12 mV�1] n "dc

KDP KH2PO4
N42m r41 D 8:6 1.5 "11;22 D 42

r63 D 10:6 "33 D 21

Lithium niobate LiNbO3 3m r13 D 9:6 2.2 "11;22 D 78

r22 D 6:8 "33 D 2132

r33 D 31

r51 D 33

Gallium arsenide GaAs N43m r41 D 1:1 3.3 "D 13

� Œ"0��1 � Œ"0��1�" Œ"0��1

D �0 � �0�" �0; (8.199)

so that

�� D ��0�" �0 (8.200)

Assuming that �0 is diagonal [Eq. (2.124)] with components �ii D 1=n2.i/, we obtain,
in linear approximation,

rijk D ��jj�
.2/

ijk�kk D � �
.2/

ijk

n2. j/n
2
.k/

: (8.201)

Note that the relevant values for �.2/ are not the same as for optical SFG, since �.2/

strongly depends on the frequency of the fields involved (Sect. 8.1.2).
An important electro-optic material is KDP (KH2PO4), belonging to the symme-

try class N42m with the non-vanishing third rank tensor components r231 D r321 D
r41, r132 D r312 D r52, and r123 D r213 D r63, with r52 D r41; in contracted form

r�k D

2
66666664

0 0 0

0 0 0

0 0 0

r41 0 0

0 r52 0

0 0 r63

3
77777775
; (8.202)

so that Eq. (8.197) has the form

� D
2
4

�11 r123Edc
3 r132Edc

2

r213Edc
3 �22 r231Edc

1

r312Edc
2 r321Edc

1 �33

3
5 D

2
4

�1 r63Edc
3 r41Edc

2

r63Edc
3 �2 r41Edc

1

r41Edc
2 r41Edc

1 �3

3
5 : (8.203)
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In the absence of an external field, KDP is uniaxial with �11 D �22 D �o and
�33 D �e.

In the following, we assume a dc-field Edc D .0; 0;Edc
3 /, parallel to the z-axis

(Fig. 2.35), so that

� D
2
4

�o r63Edc
3 0

r63Edc
3 �o 0

0 0 �e

3
5 : (8.204)

This tensor can be diagonalized by a 45ı-rotation of the reference system around
the z-axis [Eq. (2.3.1.1)]

�0 D
2
4
�o C r63Edc

3 0 0

0 �o � r63Edc
3 0

0 0 �e

3
5 I (8.205)

in the presence of the dc-field, the originally uniaxial crystal becomes biaxial.
The diagonal form of �0 allows for an immediate calculation of the field

dependent propagation index, since �0ii D n�2.i/ . With the approximation d�0= dn D
�2=n3, we obtain�n��.n3=2/��0 and finally

n.x0;y0/ D no � n3o
2

r63E
dc
3 ; n.z/ D ne: (8.206)

Applications of the electro-optic effect are discussed in Sects. 2.3.4 and 5.3.

8.4.2 Quadratic Electro-Optic Effect

While the linear electro-optic (Pockels) effect is restricted to crystals lacking a
center of inversion, the quadratic electro-optic effect (also called electro-optic Kerr
effect) relies on the cubic susceptibility and thus can be observed in all materials;
the term “quadratic” refers to the fact that the propagation index changes with the
square of the applied electrostatic field (Sect. 2.3.4).

For a brief discussion of this effect, we assume an isotropic medium exposed to a
superposition of a linearly polarized optical wave and a dc-field, both fields oriented
along the x-axis; the total field can then be expressed in a scalar form

E.t/ D Edc C 1

2

� QE.!/e�j.k! z�!t/ C c:c:
�
: (8.207)

The resulting cubic nonlinear polarization contains a component at the frequency of
the optical field

QP.3/.!/ D 3"0�
.3/

1111



Edc
�2 QE.!/ (8.208)
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which can be treated as a change of the effective linear susceptibility by

��.1/ D 3�
.3/

1111



Edc
�2
: (8.209)

Similar to Eq. (8.98), this allows us to introduce a field dependent propagation index

n.Edc/ D n0 C 3�
.3/

1111

2n0



Edc
�2
: (8.210)

While this effect is symmetry allowed in all materials, it is generally much smaller
than the Pockels effect for fields below the dielectric breakdown limit.

8.4.3 Field Induced Second Harmonic Generation�

The cubic polarization resulting from the composite field Eq. (8.207) also contains
a component at the second harmonic 2! of the fundamental optical frequency

QP.3/.2!/ D 3

2
"0�

.3/

1111E
dc QE.!/ QE.!/: (8.211)

A comparison with Eq. (8.7) shows that this is equivalent to a field induced quadratic
susceptibility

�
.2/

111.E
dc/ D 3�

.3/

1111E
dcI (8.212)

(the effect, shown here for parallel optical and dc-fields is, of course, not restricted
to this simple configuration). A centrosymmetric medium such as glass, placed in an
electrostatic field, can thus produce second harmonic or sum/difference frequency
waves of incoming optical fields; a periodic alternation of the static field orientation
can be used for QPM.

This effect is not in contradiction to the statement, made earlier, that centrosym-
metry rules out effects such as SHG, because the electrostatic field breaks the
centrosymmetry of the total system.

8.5 Acousto-Optics

8.5.1 Light Scattering at SoundWaves

As we have seen in Sect. 8.3.6, electromagnetic waves can also interact with acoustic
waves. While Brillouin scattering deals with acoustic waves present as phonons in
any medium, acousto-optics refers to the interaction of light with sound waves
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Table 8.5 Acoustic and acousto-optic properties of selected materials (for longitudinal acoustic
waves); acoustic phase velocity vak, mass density �, elasto-optic coefficient p, and acousto-optic
figure of merit M D p2n60=�v

3
ak

Medium vak [103 m s�1] � [103 kg m�3] n0 p M [10�15 m2W�1]

Water 1.5 1.0 1.3 0.31 137

Polystyrene 2.4 1.1 1.6 0.31 106

Silica 6.0 2.2 1.5 0.20 1.19

Flint glass 3.1 6.3 1.9 0.25 16

LiNbO3 7.4 4.7 2.2 0.15 1.75

Gallium arsenide 5.2 5.3 3.5 0.41 104

externally excited by (piezoelectric) transducers. Acousto-optic effects rely on the
dependence of the susceptibility on the acoustic strain. The strain S is defined as the
relative deformation of a medium induced by a mechanical stress (force per area).
Stress and strain can be longitudinal or transverse, i.e., the force (deformation) can
be orthogonal or parallel to a given surface element; stress and strain are therefore
tensors of second rank. Consequently, acoustic waves can be longitudinal as well as
transverse.

The material property traditionally used to describe the acousto-optic interaction
is the so-called elasto-optic coefficient p that relates the impermeability � to the
stress

�� D pSI (8.213)

connecting two second rank tensors, the elasto-optic coefficient is a fourth rank
tensor that has non-vanishing components in all symmetry classes (exactly like �.3/).
In anisotropic media, the description of the acousto-optic interaction can become
very involved, because two electromagnetic modes and three acoustic modes have
to be considered. Here, we restrict ourselves to a scalar description that is valid, for
example, for the interaction of a longitudinal acoustic mode with light in an isotropic
medium.

We start from � D 1=" D 1=.1C �/ to obtain

�� D �.1C �/2�� D �n40p�S (8.214)

where n0 is the propagation index of the unperturbed medium and p D p1111 is the
relevant elasto-optic coefficient. Table 8.5 shows this coefficient and other relevant
properties of selected materials.

We assume an acoustic strain wave

S.x; t/ D 1

2

�QSe�j.K�x�˝t/ C c:c:
� I (8.215)
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the angular frequency˝ and the wave vector K are related by the dispersion relation

jKj D ˝

vak
(8.216)

where vak is the acoustic phase velocity. The acoustic power density Iak is related to
the complex acoustic amplitude QS by

Iak D jQSj2
2
�v3ak (8.217)

where � [kg m�3] is the density of the medium.
According to Eq. (8.214), the strain wave corresponds to a susceptibility wave

��.x; t/ D �pn40
2

�QSe�j.K�x�˝t/ C c:c:
�
: (8.218)

The incoming light wave

Ei.x; t/ D 1

2

� QEie�j.ki�x�!it/ C c:c:
�

(8.219)

produces a polarization density wave with the stress induced component �P D
"0��Ei

�P.x; t/ D 1

2

�
� QP.x; t/C c:c:

�

D �"0pn40
4

�QSe�j.K�x�˝t/ C c:c:
� � QEie�j.ki�x�!it/ C c:c:

�

D �"0pn40
4

�QS QEie�jŒ.kiCK/�x�.!iC˝/t�

C QS� QEie�jŒ.ki�K/�x�.!i�˝/t� C c:c:
�
: (8.220)

The two side bands at !i ˙˝ can serve as sources for two waves

Ed.x; t/ D 1

2

� QEde�j.kd�x�!dt/ C c:c:
�

(8.221)

with frequency

!d D !i ˙˝; (8.222)
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Fig. 8.25 Optical and acoustic wave vectors in an acousto-optic cell: (a) kd D ki CK, (b) kd D
ki �K

provided that the phase matching condition

kd D ki ˙ K (8.223)

is met. This scattering mechanism is called Bragg scattering, because it is essentially
a diffraction of an electromagnetic wave at a moving Bragg grating.

Since the acoustic phase velocity is smaller than the optical by about five orders
of magnitude, acoustic waves must have frequencies much smaller than that of
optical waves to have wave numbers comparable to optical waves; therefore,!d �!i

and jkdj� jkij; in other words, the three involved wave vectors Eq. (8.223) form an
isosceles triangle (Fig. 8.25). In terms of the angle 
B between the two optical wave
vectors, the phase matching (or Bragg) condition can be written as

sin 
B D jKj
2jkij D 	

2�
D 	0

2n0�
; (8.224)

where

� D 2�

jKj D 2�vak

˝
(8.225)

is the acoustic wavelength and 	0 the vacuum wavelength of the optical waves.
In a quantum picture, Eqs. (8.222) and (8.223) can be interpreted as energy and
momentum conservation in an interaction between two photons and a phonon.

Once the scattered wave Ed with the wave vector ki C K is built up, it also
interacts with the acoustic wave to produce a negative side band with the wave vector
ki C K � K D ki. In this way, Ei is coupled to Ed and vice versa. To calculate the
amplitudes of the two waves, we assume in the following that the Bragg condition
Eq. (8.224) is met. We follow Eqs. (8.30) to (8.38) in the form (8.58), and replace
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Fig. 8.26 Coordinate system
for Eq. (8.227): the z-axis is
the bisector of the isosceles
triangle defined by the optical
wave vectors θ

θ
z

ζi

ζd

dζi

dz

dζd

the source term Eq. (8.37) by

� QPd;i D �"0pn40
2

QS QEi;d (8.226)

[Eq. (8.220)], assuming, without loss of generality, QS to be real. Since the optical
waves are not collinear in this case, we introduce separate propagation coordinates
�i, �d (Fig. 8.26) and obtain the coupled amplitude equations

d QEi.!i/

d�i
D j!ipn30

4c0
QS QEd

d QEd.!d/

d�d
D j!dpn30

4c0
QS QEi: (8.227)

Introducing a joint propagation coordinate z along the angular bisector, we set d�i D
d�d D cos 
 dz and write Eq. (8.227) in the form

d QEi.!i/

dz
D j�id QEd

d QEd.!d/

dz
D j�di QEi; (8.228)

where we have introduced the coupling coefficients

�id D !ipn30
4c0 cos 


QS

�di D !dpn30
4c0 cos 


QSI

(8.229)

(8.230)
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because of !i �!d we can set

� WD�id � �di: (8.231)

With the boundary condition QEd.0/ D 0, the solution of Eq. (8.228) is

QEi.z/ D QEi.0/ cos�z

QEd.z/ D � QEi.0/ sin �z: (8.232)

The acousto-optic coupling efficiency is then

Id.z/

Ii.0/
D sin2 �z: (8.233)

After the distance z D �=2�, the energy transfer to the diffracted wave is complete.
With Eq. (8.217) and using the material specific figure of merit

M WD p2n60
�v3ak

(8.234)

(see Table 8.5), Eq. (8.233) has the form

Id.z/

Ii.0/
D sin2

�
�

	0

p
MIakz

�
; (8.235)

where 
	1 was assumed. For z	�=2�, the diffraction efficiency

Id.z/

Ii.0/
� �2

	20
MIakz2 (8.236)

is proportional to the acoustic power and M.
The above treatment relies on plane waves; in practice, the incoming light wave

and the acoustic field are beam shaped and may actually be strongly focused (to
obtain a sufficiently high acoustic intensity). As we have seen in Sect. 3.1.6, beams
can be treated as a superposition of plane waves with different wave vectors. In
the acousto-optic interaction of beam shaped acoustic and optical waves, the Bragg
condition can be met by individual spatial Fourier components of the fields, even
if the central wave vectors along the beam axes do not meet the phase matching
condition. In particular, acousto-optic beam deflection can also work in a geometry
where the optical beam crosses the acoustic beam orthogonally (Fig. 8.27). This is
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Fig. 8.27 Acousto-optic
interaction of an optical beam
with a focused acoustic beam
(Raman–Nath scattering)

K
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ωi−Ω
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Acoustic wave
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Fig. 8.28 Acousto-optic
Bragg cell

Piezoelectric transducer
Ei

Ed

Ei

Acoustic wave

Incident beam

called Raman–Nath scattering and produces two diffracted beams at the frequency
side bands !i C˝ and !i �˝ .

8.5.2 Acousto-OpticModulators

The acousto-optic effect is usually implemented in the form of a so-called Bragg
cell, that is a piece of a suitable material to which a piezoelectric transducer is
attached that is driven by an RF-source (Fig. 8.28). To get a feeling for typical
operating parameters, we consider a Bragg cell made of flint glass, an acoustic
transducer at 500 MHz delivering 1 W of acoustic power into a 1� 1mm2 cross
section beam; the optical wavelength is 	0 D 632 nm (HeNe laser). Using the values
in Table 8.5, we obtain an acoustic wavelength of � D 6:2 �m and a Bragg angle
of 
B D 26mrad (1.5ı). Within an interaction length of 1 mm, Eq. (8.235) yields a
diffraction efficiency of 34 %.

According to Eq. (8.236), the acoustic intensity can be varied to modulate the
intensity of the diffracted beam. Varying the acoustic frequency allows selection of
a certain optical wavelength from a broadband optical input. Bragg cell are also used
to produce frequency shifted signals from a monochromatic laser for spectroscopic
and interferometric applications.

For certain applications (such as actively mode locked lasers, Sect. 7.3.2), the
cell is operated as an acoustic resonator, where the acoustic wave is reflected at the
end facet of the cell to produce a standing acoustic wave of high intensity, similar to
an optical Fabry–Perot resonator (Sect. 4.2.3). The two counterpropagating waves
form the superposition

S.x; t/ D 1

2

�QSe�j.K�x�˝t/ C QSe�j.�K�x�˝t/ C c:c:
�

D 2jQSj cos K � x cos˝t (8.237)
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(where QS is assumed to be real). As can be seen from this expression, the spatial
modulation vanishes twice per acoustic period 2�=˝ giving rise to a modulation of
the transmitted optical power at twice the acoustic frequency.

8.6 Summary

Our treatment of nonlinear optics stays within the perturbative limit, valid for
electric fields that are small in comparison to atomic fields. The source of any
nonlinear optical effect is the nonlinear polarization induced by the participating
electric fields. The material property relating the electric field to the nonlinear
polarization density is the nonlinear susceptibility; it is derived from a series
expansion of the polarization density and is a tensor of third or higher order. The
linear oscillator model, supplemented by a nonlinear term in the restoring force,
provides a valuable estimate of the relative magnitude of the nonlinear susceptibility
of different materials; Miller’s rule summarizes these results.

The nonlinear polarization density induced by monochromatic plane waves
comprises components at the second, third, and higher harmonics, at the sum and
difference frequencies, as well as rectified dc-components of the input fields. The
symmetry properties of the nonlinear medium determine which nonlinear effects are
possible: SHG and other second order nonlinear effects are symmetry forbidden in
centrosymmetric media, for example, while third order effects are generally possible
in all symmetry classes.

The nonlinear polarization density is the source term for new waves; applying
the slowly varying amplitude approximation to the wave equation, we derive a
first order differential equation for the amplitudes of these waves. This equation
includes a term that takes the phase mismatch between the nonlinear polarization
and the electric field into account; the amplitude of the wave radiated by the
nonlinear polarization can only grow as long as the phase difference between the
electromagnetic wave and the polarization is less than � . Means to achieve phase
matching are crucial for the application of nonlinear optical effects. In addition to
the exploitation of birefringence for this purpose, we analyze quasi phase matching
that relies on the spatially periodic modification of the nonlinear medium.

Besides harmonic generation, optical parametric amplification (OPA) is of
particular practical and theoretical interest. In the presence of an intense pump wave,
a signal wave can be amplified, consuming energy from the pump; in addition to
the amplified signal, a so-called idler wave is generated at the difference frequency
between pump and signal frequency. Other nonlinear optical amplification schemes
include Raman and Brillouin amplification, where the energy transfer from the
pump to the signal wave is mediated by acoustic vibrations or waves, respectively,
that are driven by the optical fields in the gain medium. Related acousto-optic
effects are based on the interaction of the light field with acoustic waves that are
launched in the medium by external acoustic transducers. The effect is used, for
example, to modulate laser beams or to select a particular frequency component out
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of a polychromatic beam. Similar to sum and difference frequency generation, the
scattered light is up or down shifted by the acoustic frequency.

A variety of interesting nonlinear optical effects results from the intensity
dependence of the refractive index, a third order nonlinear effect that occurs in
media of arbitrary symmetry. In combination with spatially or temporally varying
fields, phenomena such as self-focusing, self phase modulation, and white light
generation can be observed and exploited. The generation of phase conjugate waves
is another manifestation of this third order nonlinearity.

The class of electro-optic effects, discovered long before the invention of the
laser and treated in Chap. 2, are shown to be special cases of nonlinear optics, with
one of the electric fields being a static electric field modifying the susceptibility. We
link the conventional electro-optic tensor to the nonlinear susceptibility and show
the qualitative validity of Miller’s rule for this effect by comparing different electro-
optic media.

8.7 Problems

1. Assuming that the linear and quadratic restoring force terms in Eq. (8.20) are of
comparable magnitude if the displacement x is equal to the interatomic distance,
and using Eq. (2.53) to estimate the linear “spring constant” a, calculate the
nonlinear force coefficient D. Use this estimate to calculate �.2/ from Miller’s
rule Eq. (8.28) (N � 1022 cm�3 � 1=d3).

2. Use the nonlinear oscillator model Eq. (8.20) with a cubic restoring force term
/ x3 to derive Miller’s rule for the third order susceptibility �.3/.3!/; restrict the
calculation to a monochromatic input field. Use the arguments of problem 1 to
estimate the value of �.3/.3!/.

3. BaTiO3 is an important quadratic nonlinear medium, belonging to point group
4mm; this means that it is invariant under rotations of 90ı around the z-axis and
reflection across the xz and yz plane, respectively. Find the non-zero elements of
�.2/ and compare with Table 8.1.

4. Consider an elliptically polarized 1 nJ, 100 fs pulse in a silica fiber with 20�m2

effective core area; which fiber length is required to rotate the polarization state
by 90ı (assume �.3/1122 D �

.3/

1111=3 and n2 D 3:2 � 10�20 m2W�1). What is
the extinction ratio between the original pulse and the rotated pulse if a linear
polarizer is inserted after the fiber? What is the ellipticity that maximizes the
extinction ratio?

5. Reproduce Fig. 8.10 and use the result to reproduce Fig. 8.9, lower panel.
6. Reproduce Fig. 8.14.
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9Photodetection

Regarding detection, the optical frequency regime is quite distinct from the radio
frequency (RF) range; while RF signals can be picked up by antennas, and the
resulting current—which is essentially a replica of the electric field of the wave—
can be amplified and processed electronically, detection of optical electric fields is
extremely difficult; thus, practically all optical detectors rely on the excitation of
electrons by absorption of photons, a process that scales with the signal intensity
(Sect. 6.1) instead of its electric field.

The fact that the photoexcitation rate is proportional to QE QE� has important
consequences: first of all, the output of a photodetector is a nonlinear (quadratic)
function of the optical field amplitude; secondly, it does not contain information on
the phase of the field. This does not imply, however, that the phase of the optical
field is inaccessible to measurement with quantum detectors. Superposition of the
signal field with a known reference field (e.g., from a local oscillator) produces,
by interference, a photocurrent that contains information about the relative phase
of the field and the local oscillator wave, allowing, for example, phase shift key
modulation in optical communications.

The photosensitive component of optical detectors is usually a semiconductor
or a metal layer. Electrons are photoexcited either from the valence band into the
conduction band (semiconductors) or from the Fermi edge of a metal into a vacuum
state. In both cases, a minimum quantum energy, i.e., a minimum frequency of the
light, is required to induce a transition. This inherent high pass characteristics of
the photoelectric effect is one of the outstanding advantages of quantum detectors:
thermal background radiation and electric interference are practically irrelevant for
the detection process.

An alternative detection scheme, used predominantly in the far infrared, relies on
the conversion of electromagnetic radiation into thermal energy and measurement
of the resulting temperature change. Such detectors can detect radiation of virtually
any wavelength (which makes them, however, susceptible to thermal noise) and are
very slow in comparison to quantum detectors.

© Springer International Publishing Switzerland 2016
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Of limited, but fundamental interest are so-called quantum-non-demolition
detections schemes, where photons are detected without being absorbed; a possible
implementation relies on the intensity dependence of the refractive index due to the
Kerr effect (Sect. 8.3.2).

9.1 Photoelectric Detectors

The photoelectric effect relies on the transition of an electron from a bound state
into a “mobile” state. Like any other transition, its probability is given by the Fermi
rule Eq. (6.24). The external photoelectric effect, where the excited state is a freely
propagating electron wave in vacuum, is schematically shown in Fig. 9.1. In metals,
the energy threshold for this process is the work function˚m, i.e., the energy barrier
between the Fermi level and the vacuum level. In semiconductors, the barrier is
given by the sum of the band gap Eg and the so-called electron affinity EA.

9.1.1 Photoelectron Multiplier Tubes

Although photoelectron multiplier tubes (PMTs) do not play a major role in
photonics, they are of some practical interest because of their sensitivity, speed,
and large photosensitive area. A PMT consists of a photocathode, usually made of
a semiconductor layer, and a series of secondary electron multiplications stages,
placed in a vacuum tube. A photon impinging on the photocathode produces,
with a certain quantum efficiency, a photoelectron. This primary electron enters a
cascade of so-called dynodes, i.e., electrodes that are optimized to emit secondary
electrons when hit by an energetic electron. Starting with the photocathode, the
dynodes are biased at increasingly positive potentials, so that the electrons are
accelerated towards the following dynode; typical potential differences between
successive electrodes are about 100 V (Fig. 9.2), giving rise to an impact energy of

Semiconductor Vacuum
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Conduction band

Eg

Vacuum level

EA

Metal Vacuum

Fermi level

Vacuum level

Φm

(a) (b)E E

Fig. 9.1 External photoelectric effect: the barrier between the highest occupied electronic state
and the vacuum must be overcome by the energy of absorbed photons; in metals (a) the barrier
is the work function ˚m (energy difference between Fermi and vacuum level); in intrinsic
semiconductors (b) it is the sum of band gap energy Eg and electron affinity EA
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Fig. 9.2 Photoelectron multiplier tube (PMT)

the electrons of about 100 eV. Since this energy is several times the work function
of the dynodes, every incoming electron produces several secondary electrons,
resulting in an exponential growth of the electron package that has been initiated
by a single photon. The final electrode (anode) is usually at ground potential and
collects the electron package; the resulting current pulse produces a voltage spike at
the output resistor which constitutes the output signal of the PMT.

The active material of the photocathode and dynodes is a thin layer either of
an alkali-metal (Na, K, Cs) or a semiconductor (GaAs). The quantum efficiency
depends on the absorption efficiency of the cathode and on the fraction of pho-
toexcited electrons that escape into the vacuum. Semiconductor photocathodes are
superior to metals in both respects, since their reflectance is lower than that of metals
and the escape depth is much larger. In metals, only photoelectrons generated in
the topmost atomic layer contribute to the photoemission, while in a semiconductor,
electrons that are not immediately released into the vacuum populate the conduction
band where they can propagate towards the vacuum interface during their relatively
long recombination life time. To facilitate their escape into vacuum, the semicon-
ductor is heavily p-doped and the surface is coated with highly electropositive
atoms (Cs) that donate their valence electron to the semiconductor. The positively
charged metal ions at the surface deform the semiconductor bands such that the bulk
conduction band edge actually is above the vacuum level (Fig. 9.3)—a situation that
is called negative electron affinity (NEA). Such photocathodes allow pushing the
spectral sensitivity into the near infrared (�1.7�m). The UV response is limited by
the transparency of the glass tube; dedicated UV-PMTs have a cutoff at �180 nm.

Due to the large electron escape depth, semiconductors are also the preferred
dynode material. The secondary electron yield depends on the impact energy; at
100 eV, the gain per dynode is 3–5 so that a gain of 510 � 107 can be achieved
with ten multiplication stages. Statistical variations of the electron trajectories result
in a temporal spread of the electron package arriving at the anode. Optimized
PMTs produce sub-ns current pulses, typical values of commercial PMTs are 1–
2 ns (corresponding to a peak current of about 1 mA).
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Fig. 9.3 Energy bands at the
surface of a semiconductor
with “negative” electron
affinity: the band bending
results from ionized Cs-atoms
at the surface
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PMTs can be operated in a photon counting mode; dark counts resulting from
natural radioactivity of the tube materials can be suppressed efficiently, because
most of these pulses do not experience the full gain and can be deselected by a pulse
height discriminator; the residual dark count rate is on the order of 30 counts/s.
Alternatively the average anode current is used as a measure of the incident optical
power, a scheme that is linear over more than 6 orders of magnitude.

A related multiplier scheme is the so-called micro-channel plate (MCP, Fig. 9.4),
a ceramic disc of about 2 mm thickness that is penetrated by millions of channels
of typically 10�m diameter. The inner wall of the channels is coated with a
semiconductor or metal layer, and a voltage of �1 kV is applied to both ends.
Photoelectrons that enter such a channel are accelerated in the strong axial electric
field and produce a secondary electron avalanche by collisions with the walls,
similar to the process in a PMT. The obvious advantage of this device is its spatial
resolution: in combination with a fluorescent screen or a detector array (CCD) in
the output plane, MCPs serve as image intensifiers with a gain of up to 106.

9.1.2 Semiconductor Photodetectors

9.1.2.1 pn-Photodiodes
By far the most important detectors in photonics are semiconductor photodiodes,
i.e., pn-junctions that absorb photons in or close to the depletion zone (Fig. 9.5)
and produce a photocurrent or a photovoltage, respectively, as output signal. A pn-
junction consists of two sections of semiconductor material, one doped with electron
donors (n-zone), the other with electron acceptors (p-zone). Driven by thermal
motion, electrons from the n-zone diffuse into the p-zone and holes from the p-
zone into the n-zone, leaving a space charge region of positively charged donor and
negatively charged acceptor atoms behind. In equilibrium, the drift current induced
by the electric field in this depletion zone balances the diffusive migration of charge
carriers, and the bands in the two semiconductor zones are bent in such a way that
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Fig. 9.5 Photon absorption in a pn-junction (photodiode)

there is a single Fermi level within the entire device. When a photon is absorbed
in the drift zone, the resulting electron–hole pair is separated by the drift field: the
electron is transported into the n-zone and the hole into the p-zone. This results



418 9 Photodetection

in a potential difference between the two zones, the so-called photovoltage; the
equilibrium situation can be re-established by recombination or an external current
flow, the so-called photocurrent. It should be noted that despite the fact that two
carriers are involved in the process, the photocurrent is constituted of a single
electron charge, because at each point in the circuit, only one carrier contributes
to the current. The process is completed once the hole recombines with an electron
at the contact of the p-zone with the conductor.

In an ideal photodiode, every incident photon produces one electron/hole pair, so
that the photocurrent is equal to the photon flux times the electron charge

Jph D �q
e

„!Pph; (9.1)

where the detector quantum efficiency is ideally �q D 1. In practice, �q < 1 for
reasons that will be discussed below, but almost constant at a given wavelength so
that the photocurrent is an extremely linear function of the incident optical power.

The photocurrent, at a given optical power, decreases with increasing optical
frequency, since a photon of higher frequency, despite its higher energy, contributes
only one carrier to the photocurrent (the excess energy is converted, via phonons,
to heat). Expressed in terms of wavelength, Eq. (9.1) assumes the convenient
form

Jph D �q
	

1:240
Pph; (9.2)

where the current is given in [A], the optical power in [W], and the wavelength 	 in
[�m] (compare Table 1.1).

If the electrical circuit is open, every carrier pair, after being separated in the drift
zone, reduces the space charge, resulting in a forward voltage across the two diode
terminals. As a result, carrier diffusion is not fully compensated by the drift field
and the excess carriers recombine within the diffusion time. If the incident light
is not a single photon but a steady stream of photons, the photovoltaic forward
voltage assumes a stationary value such that diffusion compensates the internal
photocurrent. To calculate this voltage, we use Shockley’s diode equation which
relates the diode current Jd to the applied voltage Ud and supplement it with the
photocurrent Jph

Jd D Js


eeUd=kBT � 1� � Jph; (9.3)
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Fig. 9.6 Current–voltage
diagram of a photodiode at
different optical signal
powers; the dots on the
current axis show the short
circuit photocurrent, those on
the voltage axis indicate the
open circuit photovoltage
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where Js is the so-called saturation current of the diode, typically on the order of
1 nA (Fig. 9.6). Setting Jd D 0 and using Eq. (9.1), we obtain

Uph D Ud;0 D kBT

e
ln

�
�q

ePph

„!Js
C 1

�
: (9.4)

For Jph 
 Js (Pph 
 1 nW), the photovoltage is a logarithmic measure of
the incident optical power, and a photodiode in this mode of operation can be
conveniently used in sensor applications with very large dynamic range.

Figure 9.7 shows the design of a typical photodiode; the optical signal is
impinging on the pn-junction which is formed by a thin p-doped layer, contacted
by a transparent electrode, on top of an n-doped substrate. To improve the yield, the
detector face is usually antireflection coated. The photosensitive area of commercial
diodes ranges from some 100�m2 to several 100 mm2.

The responsivity R of a photodiode, that is the ratio of photocurrent to incident
optical power, follows from Eq. (9.1) to be

R D �q
e

„! D �q
	Œ�m�

1:240
ŒA=W�; (9.5)

where the quantum efficiency �q is the fraction of incident photons that contribute to
the photocurrent. If R is the reflectance of the detector, the fraction 1� R of photons
is absorbed, essentially within the absorption length 1=˛ [Eq. (2.71)]; only those
electron/hole pairs that are generated within the drift zone and the adjacent diffusion



420 9 Photodetection

Fig. 9.7 Cross section of a
commercial photodiode
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zones can participate in the photocurrent; if the total thickness of this range is given
by d,

�q D .1 � R/


1 � e�˛d

�
�i; (9.6)

where the internal quantum efficiency �i is the fraction of carriers not lost by
recombination or traps. Figure 9.8 shows the responsivity of a typical commercial
Si-photodiode; the IR-sensitivity may extend slightly beyond the band gap of silicon
(1.12 eV) because of absorption by exciton states below the conduction band edge.
The cutoff in the UV will be discussed below.
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The two contacts of a photodiode form a capacitor that limits the high frequency
performance of the detector; fast photodiodes usually have a very small sensitive
area to minimize the capacity. The capacity can be further reduced by operating the
diode under a reverse bias voltage, increasing the thickness of the depletion zone
that acts as a dielectric in the capacitor.

9.1.2.2 PIN-Photodiodes
The photodiode response can also be improved by placing an intrinsic (undoped)
layer between the p- and n-zone (pin-structure). Apart from reducing the capacity,
the intrinsic layer is part of the drift zone, improving the detector responsivity. The
thickness of the intrinsic zone has to be carefully optimized, because the time the
carriers need to get to the terminals is also increased, which is detrimental for the
speed of the detector.

9.1.2.3 Avalanche Photodiodes
Unlike PMTs or a MCPs, the photodiodes discussed so far do not provide any
gain. However, carrier multiplication by impact ionization is also possible within
a semiconductor. To this purpose, a reverse voltage exceeding the band gap by a
large factor is applied to the diode. Electrons in the conduction band and holes
in the valence band can gain so much energy in the drift zone that they create
new electron–hole pairs by collision (Fig. 9.9). In this way, a carrier avalanche
can build up, similar to the electron avalanche in an electron multiplier tube; such
diodes are known as avalanche photodiodes (APDs). An important difference to
the multiplication process in PMTs is the fact that there may be actually two
counterpropagating avalanches of electrons and holes, respectively, each of them
producing new holes and electrons, so that the process is not self-terminating and
can lead to catastrophic breakdown. Such APDs can be used as single photon

Fig. 9.9 Operation of an
avalanche photodiode (APD):
photogenerated electron/hole
pairs are accelerated in the
electric bias field and produce
additional carriers by impact
excitation, resulting in a
carrier avalanche

p-Silicon

n-Silicon

Hole impact

ω

Electron impact

Drift zone

Electric field
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detectors (see, e.g., Eisaman et al. 2011); catastrophic breakdown can be prevented,
e.g., by a serial resistor in the bias supply that terminates the breakdown when the
current exceeds a certain limit. APDs exhibit a dead time after each break down, so
that the count rate is limited to about 107 counts per second.

For a single carrier species, the avalanche current density develops according to

dje;h
dz

D ˛e;hje; (9.7)

where the ionization coefficients ˛e;h depend on the semiconductor material and
the electric field, and usually differ significantly from each other. In silicon, for
example, ˛h 	 ˛e, so that the hole-avalanche is negligible and the process comes
to a halt when the electrons reach the end of the drift zone. In this operating regime,
a Si-APD is stable and the gain factor along a drift zone of length l is given by

je.l/

je.0/
D e˛el: (9.8)

In APDs, the light absorbing zone is usually spatially separated from the drift zone,
so that all photoelectrons experience about the same gain and amplifier noise is kept
low. APDs are also very fast; optimized APDs have cutoff frequencies of several
10 GHz.

9.1.2.4 Spectral Response
Depending on the signal wavelength, different materials are used for photodiodes
(see Fig. 7.39). In the visible and near IR (400–1100 nm), Si-photodiodes are
preferentially used, with a quantum efficiency of up to 0.9 (Fig. 9.8). In optical
communications with frequency bands at 1.3 and 1.5�m, Ge- and InGaAsP-pin-
photodiodes are used as well as heterostructure APDs with an InGaAs photoex-
citation zone and a (transparent) InP-avalanche zone. The ternary In1�xGaxAs
system provides a wide range of band gaps, from InAs (0.35 eV/3.5�m) to GaAs
(1.43 eV/0.87�m). For longer wavelengths, Hg1�xCdxTe is a widely used variable
gap semiconductor, reaching up to 0.1 eV (12�m). GaAs/AlGaAs multiple quantum
well detectors reach 15�m.

The low responsivity of Si (and other) photodiodes in the UV is due to the
extremely short absorption length (about 10 nm for Si at a wavelength of 350 nm),
so that the photocarriers are not generated in the depletion zone but have to diffuse
to the pn-junction; close to the surface, however, the probability of defect-mediated
recombination is very high, rendering the internal quantum efficiency low. For UV-
applications, large gap photodiodes based on silicon carbide (4H-SiC, Eg D 3:3 eV)
are used, with a spectral sensitivity ranging from 375 to 210 nm.
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Fig. 9.10 Band diagram of a
Schottky photodiode (without
bias voltage); photoexcitation
can occur (a) within the
semiconductor for „! > Eg,
or (b) from the Fermi level of
the metal across the Schottky
barrier for „! > ˚m � EA
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9.1.2.5 Schottky Photodiodes
The UV response can be improved by replacing the pn-junction with a metal-
semiconductor junction (Schottky photodiode, Fig. 9.10). Since the work function
of the (very thin and therefore transparent) metal is larger than the electron affinity
of the (n-doped) semiconductor, electrons diffuse into the metal, leaving positively
charged donor atoms behind. The depletion zone thus reaches up to the metal
interface, so that practically all photons are absorbed within the drift zone; the
metal layer also reduces the density of defects. Schottky photodiodes have the
additional advantage of being extremely fast, with response times of several ps and
a bandwidth above 100 GHz.

Schottky diodes can also be operated at photon energies that are below the
band gap of the semiconductor; photons are absorbed by the metal electrode
and the resulting photoelectron can migrate across the Schottky barrier into the
semiconductor; the cutoff is then given by the height of the barrier, which can be
adjusted by proper choice of the metal semiconductor system. While conventional
photodiodes are illuminated from the front, these IR-photodiodes can be backside
illuminated, since the semiconductor is transparent in the IR. Important examples
of this group of detectors are PtSi Schottky barrier diodes that can also be readily
integrated in Si CCD-arrays.

9.1.3 Detector Arrays

For imaging and related applications, photodetectors can be arranged in one- or
two-dimensional arrays. Silicon-based photodiodes are particularly well suited for
integration into arrays because of the high technological maturity of the supporting
MOS electronics. For image acquisition, the individual photodiodes, called pixels,
with a typical size of 10 � 10�m2 or less, transfer the photoelectrons into an
underlying capacitor; the readout is accomplished either by a charge coupled device
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Fig. 9.11 Operation of a
CCD as an analog shift
register: the (photogenerated)
carriers are shifted from one
MOS-capacitor to the
adjacent by cycles of positive
bias of the transfer gates. In
the scheme shown here, a
complete transfer cycle
consists of three steps t
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(CCD) or by individually addressable CMOS-amplifiers. The operation of a CCD is
shown in Fig. 9.11: it consists of an array of microscopic metallic gate electrodes,
contacted in three groups that form capacitors with an intermediate silicon oxide
layer as dielectric. Electrons in the substrate are collected under the positively
biased electrode and can be transferred to the adjacent capacitor by switching the
corresponding gates to a positive bias. In this fashion, the charge can be shifted
through the entire array in the way of a bucket chain. At the (serial) output, a
transimpedance amplifier converts the charge-signal into a proportional voltage. The
performance of such a shift register depends on the charge transfer efficiency (CTE),
defined as the fraction of electrons that “survive” the transfer from one cell to the
next; a CTE value exceeding 0.999999 is necessary to operate large CCDs without
significant data deterioration. Alternatively, every pixel is supplied with an amplifier
and can be read out individually (active pixel sensor).

Two-dimensional detector arrays are also known as focal plane arrays (FPAs).
For IR-applications, PtSi/Si Schottky diodes can be integrated directly into the
MOS-structure, hybrid structures of InSb-photodetectors and CMOS-readout elec-
tronics are also used.

9.1.4 Photoresistors

The internal photoeffect in semiconductors also changes the conductivity of a
(homogeneous) semiconductor. Photodetectors that rely on this effect are known as
photoresistors or photocells. They consist of a thin semiconductor film with metallic
contact structures on top and can be realized with virtually any semiconductor,
including those that are not suitable for the production of high quality diode
junctions. The principle of operation is illustrated in Fig. 9.12: absorption of photons
creates electron–hole pairs that migrate in the electric field E D U=l produced by
the applied external voltage U. To calculate the photocurrent, we assume that the
electron mobility �e exceeds the hole mobility �h by far so that the hole usually
recombines before it reaches the negative contact. Assuming the electron velocity
to be ve D �eE, the average time that it takes an electron to arrive at the positive
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Fig. 9.12 Functional diagram of a photoconductor

contact is te � l=2�eE. If the hole is still present in the layer, another electron from
the negative contact is injected to conserve charge neutrality. This cycle is repeated
until the hole recombines with an electron, which statistically takes the time �rec

to happen. One absorbed photon therefore results in a transported charge of �rec=te
electrons. A photoresistor thus produces a photocurrent

JphŒA� D �q
�rec

te

Pph

„! e D �qG
	Œ�m�

1:240
PphŒW�; (9.9)

where G D �rec=te is the gain of the detector. A disadvantage of this device is its
slow response time, limited by the lifetime �rec of the holes. Photoresistors are used
primarily in the IR and produced from InAs, InSb, and Hg1�xCdxTe, where the band
gap can be chosen anywhere below 1.6 eV by adjusting the stoichiometric parameter
x. Extrinsic (doped) semiconductors are also used, where the photoexcitation
happens from the dopant level to the conduction level. In this case, the hole is
actually an immobile dopant atom and the cutoff wavelength is given by the energy
difference between dopant level and band edge. If this spacing is comparable to the
thermal energy kBT, thermal excitation of dopant states contributes significantly to
the dark current, increasing the noise. For operation at wavelength beyond 3�m,
cooling of the detector by liquid nitrogen or helium is required.

9.2 Characteristic Parameters of Detectors

Apart from their spectral and time response, detectors are characterized by various
performance parameters. The responsivity has already been introduced [Eq. (9.5)]
and is generally proportional to the wavelength for quantum detectors; PMTs,
MCPs, APDs, and photoresistors have a responsivity that is enhanced by a gain
factor that can be as large as 107 in comparison to a pn-photodiode.
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For most applications, the signal-to-noise ratio is more relevant; its definition
relies on the variance �2 of the photocurrent

(S/N) D J2ph

�2.Jph/
I (9.10)

in addition to various electronic sources of noise, optical detectors show a funda-
mental noise contribution resulting from the quantum nature of photons and cannot
be reduced by cooling or electronic means; we will discuss some aspects of photon
statistics in Sect. 9.3.

Another important parameter is the “speed” of the detector, usually described by
the dependence of the responsivity on the modulation frequency fm of the optical
signal. Most detectors show a simple low pass behavior

R.fm/ D R0
1p

1C 2�fm�d
I (9.11)

the bandwidth of the detector is usually specified by the modulation frequency
at which the detector power, which is proportional to J2ph, is reduced to one half
(�3 dB) of the low-frequency responsivity

fm;3 dB D 1

2��d
I (9.12)

�d is the characteristic time constant of the detector, determined by its capacitance
and internal characteristic times such as the transit time or carrier life time. Well
above this frequency, in particular for light pulses much shorter than �d, the detector
operates as integrator, delivering an electrical pulse whose peak is proportional to
the optical pulse energy and whose shape is the pulse response function of the
detector, independent of the optical pulse shape.

9.3 Photon Statistics

The photodetection process usually relies on the excitation of electrons, and the
discrete nature of the electric charge gives rise to a fundamental shot noise.
Assuming that the number of photoelectrons is proportional to the number of
photons impinging on the detector, the photoelectron statistics is a replica of the
photon statistics.

Shot noise can often be described by a Poisson distribution valid for discrete,
independent processes. A (stationary) optical signal with power Pph can produce, in
an ideal photodetector without gain, Pph=„! electrons per second. If we count the
number n of photoelectrons in many consecutive time intervals of duration tM, the
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Fig. 9.13 Poisson distribution pp and Bose–Einstein distribution pb for the same average value
Nn=120

mean count number is Nn D .Pph=„!/tM. According to the Poisson distribution, the
probability p.n/ to find n electrons in a randomly selected time interval is

pp.n/ D 1

nŠ
.Nn/ne�Nn: (9.13)

This distribution (shown in Fig. 9.13) exhibits a peak approximately at Nn; the
variance is equal to the mean value

�2p D
X

n

pp.n/.n � Nn/2 D Nn: (9.14)

According to Eq. (9.10), the signal-to-noise ratio due to Poisson distributed shot
noise is therefore

(S/N)p D .Nn/2
�2p

D Nn: (9.15)

Poisson statistics describes the fluctuations of light from a single mode laser far
above threshold. Thermal light, however, follows a different statistics. We assume a
setup that allows us to measure the number of photons in a selected electromagnetic
mode of a cavity at temperature T. According to Planck’s theory of black body
radiation, the energy of such a mode is an integer multiple of „!; the probability
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that a given mode contains n photons, i.e., the energy n„!, is given by Boltzmann’s
distribution

p.n/ D p0e�n„!=kBT D p0u
n; (9.16)

where u WD e�„!=kBT is introduced for convenience; p0 follows from the conditionP
p.n/ 
 p0=.1� u/ D 1 to be p0 D 1 � u, so that Eq. (9.16) can be written as

p.n/ D .1 � u/un: (9.17)

The mean value Nn

Nn D
X

n

n p.n/ D
X

n

n.1 � u/un (9.18)

is calculated by taking the derivative of the relation
P

un D 1=.1 � u/ in respect
to u

X
n

nun�1 D 1

.1 � u/2
(9.19)

and multiplying the result with u.1� u/ :

Nn D 1

u�1 � 1 D 1

e„!=kBT � 1 : (9.20)

We can now express Eq. (9.17) in terms of Nn by setting, according to Eq. (9.20),
u D Nn=.NnC1/:

pb.n/ D .Nn/n
.Nn C 1/nC1

: (9.21)

This is known as Bose–Einstein distribution; it denotes the probability to find n
energy quanta in a mode under thermal equilibrium with matter, if the mean value
is Nn. As shown in Fig. 9.13, this distribution displays a maximum at n D 0 and then
falls off continuously; also, the width of the distribution is much larger than that of a
Poisson distribution with identical mean value Nn. The most likely number of detector
counts is zero for any value of Nn: many intervals with no or very view counts are
followed by intervals with counts well above the average (Fig. 9.14). This behavior
is known as photon bunching and is typical for thermal light.

To calculate the variance of this distribution, we use the identity �2 D .n � Nn/2 D
n2 � .Nn/2 and take the second derivative of

P
un D 1=.1� u/ to obtain

n2 D
X

n

n2pb.n/ D Nn C 2.Nn/2; (9.22)
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Fig. 9.14 Count statistics of
photons: (a) Poisson
distribution, (b)
Bose–Einstein distribution
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and finally

�2b D Nn C .Nn/2: (9.23)

Compared to Eq. (9.14), there is an additional term .Nn/2 which can be attributed
to interference effects between spontaneously emitted photons. The first term in
Eq. (9.23) can be understood as representing the “particle” nature of photons while
the second one is due to their wave character. The signal-to-noise ratio Eq. (9.10) of
single mode thermal light is given by

(S/N)b D Nn
Nn C 1

; (9.24)

and cannot exceed unity. If many thermal modes contribute to the signal, the
counting statistics tends towards a Poisson distribution, however.

As can be shown, Poisson and Bose distributions are conserved if the events that
are counted are selected randomly from the initial set of events; in photodetection, a
beam splitter or a detection process with quantum efficiency<1 gives rise to such a
selection. For a Poisson distributed photon stream, this means that the photoelectron
statistics from a detector with quantum efficiency �q provides a signal-to-noise ratio
of

(S/N)e D �q(S/N)ph D �q Nn; (9.25)

which is the S/N of an ideal detector, reduced by �q.
In digital optical communications, the bit error rate (BER) is of particular

importance, that is the probability to mistake an “1” for a “0” and vice versa.
Assuming a simple encoding where “1” is represented by a package of n ¤ 0

photons and “0” by n D 0, we find the probability to mistake a “1” for “0”
to be pp.0/ D e��q Nn; the reverse case is impossible in this case. Assuming an
approximately equal number of “1” and “0” bits, a maximum permissible BER of
10�9 requires Nn � 40 per “1” bit, if a quantum efficiency of 0.5 is assumed. At a
photon energy of 0.8 eV (1.55�m) and data rate of 10 Gbit/s, this corresponds to
an optical average power at the detector of 26 nW. Further assuming a length of the
fiber link of 100 km and losses of 0.2 dB/km, a power of 1�W must be launched
into the fiber. This estimate takes only quantum noise into account and disregards
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all other sources of noise; in practice, the launched power is about 1 mW, limited by
nonlinear optical processes in the fiber.

9.4 Photometry and Colorimetry

9.4.1 Photometry

Photometry deals with the measurement of light levels as perceived by the human
eye. It uses its own set of units (Table 9.1) that are related to the radiometric
(photonic) units by the so-called luminosity function. For physiological reasons,
the luminosity itself depends on the light level; photopic vision requires “bright”
illumination and allows color vision; the relevant luminosity function V.	/ is shown
in Fig. 9.15, selected values are given in Table 9.2. Physiologically, cone cells in
the retina are responsible for this type of vision. Low level light vision is called
scotopic vision and is mediated by rod cells; it is characterized by the luminosity
function V 0.	/. At intermediate light levels occurs mesopic vision with ill-defined
color perception and luminosity.

For the conversion of radiometric data into photometric (photopic), the power
spectrum is multiplied with the luminosity function V , integrated over the wave-

Table 9.1 Correspondence between photometric and radiometric quantities; important photomet-
ric units are Lux [lx], Lumen [lm], and Candela [cd]

Photonic quantity Units Photometric quantity Units

Radiant flux/power [W] Luminous flux [lm]

Radiant energy [Ws = J] Luminous energy [lm s]

Irradiance/intensity/flux density [W m �2] Illuminance [lm m�2 = lx]

Radiant exposure/fluence [J m �2] Luminous exposure [lx s]

Radiant intensity [W sr �1] Luminous intensity [lm sr�1 = cd]

Radiance/brightness [W sr�1 m�2] Luminance [lm sr�1m�2]

Fig. 9.15 Luminosity
functions V.	/ (for bright
light) and V0.	/ (for very low
light levels) according to
ISO/CIE 10527 (1991)
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Table 9.2 Luminosity function for photopic [V.	/] and scotopic [V0.	/] vision according to
ISO/CIE 10527 (1991) standard; V.	/ is identical with the colorimetric Ny.	/-function (Fig. 9.16)

	 [nm] V.	/ V0.	/ 	 [nm] V.	/ V0.	/ 	 [nm] V.	/ V0.	/

380 0.0000 0.0006 510 0.5030 0.9970 610 0.5030 0.0159

400 0.0004 0.0093 520 0.7100 0.9350 620 0.3810 0.0074

420 0.0040 0.0966 540 0.9540 0.6500 640 0.1750 0.0015

440 0.0230 0.3281 550 0.9950 0.4810 660 0.0610 0.0003

460 0.0600 0.5670 560 0.9950 0.3288 680 0.0170 0.0001

480 0.1390 0.7930 580 0.8700 0.1212 700 0.0041 0.0000

500 0.3230 0.9820 600 0.6310 0.0332 720 0.0011 0.0000

length and multiplied with the conversion factor 683 [lm/W]. For scotopic vision,
the weight function is V 0.	/ � 1700 [lm/W]. If the light is practically monochro-
matic, the respective radiometric value is simply multiplied with V.	/�683 [lm/W]
at the respective wavelength. Photometric measurements do not require spectral
resolution, however, if the spectral detector sensitivity matches the luminosity
function (eye response photodiodes).

A 1 mW-HeNe laser at 	 D 632 nm [V.632/ D 0:247], for example, has a
luminous flux of 683�0:247�10�3 lm = 0.17 lm; assuming a beam cross section
of 1 mm2, the illuminance is 170,000 lx. The sun, for comparison, provides an
illuminance of about 70,000 lx, the full moon 0.2 lx. At the sensitivity peak of the
human eye, at 555 nm, 1 lx OD0.1464 �W/cm2 and 1 lm OD1.464 mW.

The luminous intensity of a light source, given in candela [cd], is the luminous
flux per solid angle [sr] and takes the degree of collimation of the emitted light into
account; an isotropic emitter with a luminous flux of 1 lm has a luminous intensity of
1=4� cd, while the aforementioned HeNe laser, with a divergence angle Eq. (3.19)
of, say, 1 mrad [corresponding to .�=4/�10�6 sr] produces a luminous intensity of
214,000 cd.

9.4.2 Colorimetry

Color vision relies on the existence of three kinds of cone cells with differing
spectral sensitivity. Based upon the empirical Grassmann’s laws, color perception
can be described in a three dimension linear vector space, called color space. The
direction of a (position) vector in this space determines the chromaticity, while its
length is proportional to its luminance. Accordingly, three so called color matching
functions are required and sufficient to determine the chromaticity.

9.4.2.1 Color Matching Functions
Because of the linearity of the color space, the choice of color matching functions
is not unique, and color coordinates referring to one set of functions can be
transformed into any other base by a linear transformation. Among the many
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Fig. 9.16 Color matching
functions Nx.	/; Ny.	/; Nz.	/ of
the CIE (1931) XYZ color
space (for numerical values,
see CIE 1931)
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different sets of color matching functions, the CIE (1931) XYZ-metric is the most
popular; the three weight functions Nx.	/; Ny.	/; Nz.	/ are shown in Fig. 9.16. The
location of a signal with the power spectrum S.	/ in the XYZ color space is given
by the coordinates

X D
Z

S.	/Nx.	/ d	

Y D
Z

S.	/Ny.	/ d	

Z D
Z

S.	/Nz.	/ d	;

(9.26)

(9.27)

(9.28)

also called tristimulus values.
Mathematically, Eqs. (9.26)–(9.28) are inner products in Hilbert space and

projection of the infinite-dimensional spectrum on the base vectors Nx.	/; Ny.	/; Nz.	/.
Note that such a projection is not isomorphic: while every possible spectrum is
mapped onto exactly one point in color space, a given color point corresponds to an
infinite number of different, so-called metameric spectral distributions; exceptions
are only the color points that correspond to monochromatic signals.

Unlike most other sets of color matching functions, the NxNyNz- functions are non-
negative, implying that the tristimulus values of any signal are also positive. A
convenient consequence is that the XYZ-coordinates can be directly measured,
without the requirement of spectral analysis, by three photodetectors with spectral
sensitivity Nx.	/; Ny.	/, and Nz.	/. Another convenient feature of this color space is
that the Y component is identical to the illuminance, because Ny.	/ D V.	/. On the
other hand, the three base vectors do not correspond to any existing color, because
there exists no possible spectral distributions for which only one of the coordinates
is non-zero.
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Fig. 9.17 In three-dimensional XYZ-space, every given power spectrum corresponds to a vector;
its chromaticity can be identified by the intersection of the vector with the XCYCZ D 1 plane
(xy-coordinates). Additive mixing of two colors produces a new color that is represented by the
vector sum of the two input colors, with a chromaticity that lies on a straight line between the input
chromaticity points

Since chromaticity is independent of luminance, it can be characterized by
normalized coordinates

x; y; z WDX;Y;Z=.X C Y C Z/ (9.29)

that can be localized in a two-dimensional map, because xCyCz D 1; it is common
to use an orthogonal xy-system. In the three-dimensional XYZ-space, the resulting
map (called chromaticity diagram) lies in the plane defined by XCYCZ D 1; the xy
coordinates denote the point where the XYZ-vector (or its extension) intersects this
plane (Fig. 9.17).

9.4.2.2 Additive Color Mixing
As a consequence of the linearity of the color space, the superposition of two or
more color signals (called primary colors) produces a signal that is represented by
the vector sum of the input signals. If the luminance of the primaries is varied,
the resulting chromaticity lies within the polygon formed by the chromaticity
coordinates of the primaries, since the luminance cannot assume negative values;
this polygon is called gamut. Obviously, the gamut is a sub-space of the color space.
No finite set of primaries allows producing all colors, i.e., the entire gamut of human
vision. In particular, the choice of three primary colors produces a triangular gamut
that is significantly smaller than the complete color space.
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Fig. 9.18 Chromaticity
diagram according to CIE
(1931): the set of visible
colors lies within the locus of
spectrally pure colors and the
line of purples; W denotes the
white point x D y D z D 1=3
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The locus of spectrally pure colors, (i.e., the chromaticity of monochromatic
light) forms a concave, horseshoe-shaped curve in the chromaticity diagram,
stretching from 780 nm (deep red) to 400 nm (extreme blue); the two end points are
connected by the so called line of purples. Since any spectrum can be understood as
linear combination of spectrally pure colors, all possible colors lie within this curve
(see Fig. 9.18). In the center of the chromaticity diagram there is the achromatic
white point W, defined by x D y D z D 1=3. It can be realized by an infinite variety
of spectra, for example, two (so-called complementary) monochromatic colors lying
on a line through W, or by the very broad and smooth spectrum of a filament
of appropriate temperature. Since the chromaticity of the light scattered by an
object depends on the spectral properties of the object itself (reflectance, scattering)
and the power spectrum of the illuminant, it will usually display very different
chromaticities when illuminated by different illuminants (day light, incandescent
bulbs, white LEDs), even if the chromaticity of the illuminants is identical.

9.5 Summary

Practically all photonic detectors are quantum detectors: a photon is absorbed
and the excited electron contributes to an electrical current or serves to build up
a voltage. We describe the underlying photoelectric effect and possible internal
gain mechanisms. PMT and MCP rely on the external photoelectric effect, require
vacuum environment and a high voltage supply and provide very high gain and
speed; both detectors are capable of single photon detection. The photodiode,
a semiconductor pn-junction constructed in such way that light is absorbed in
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the drift zone of the junction, delivers a closed loop current that is proportional
to the absorbed optical power, equivalent to ideally one electron per absorbed
photon. The responsivity (the ratio of photo current to detected optical power) of
quantum detectors decreases, for fundamental reasons, with the light frequency,
because a high frequency photon carries more energy, but still produces only one
photoelectron.

Photodiodes can also provide gain by internal excited carrier multiplication; such
avalanche diodes are also capable of single photon detection and can outperform
PMTs in terms of speed.

For many applications, the signal-to-noise ratio is the most important feature
of a detector; we discuss Poisson distributed photon streams provided by lasers
and compare them to Bose–Einstein distributed photon streams from thermal light
sources. A comparison of the respective BER shows the statistical advantage of laser
sources for optical communications.

Display applications of photonic light sources require the understanding of
human color vision. Color measurement is based on Grassmann’s laws and can be
understood as a projection of the spectral space on a three-dimensional vector space.
The inverse process, additive color mixing, is discussed and its limits in terms of
color reproduction is analyzed.

9.6 Problems

1. What is the photon flow (photons/s) of a 1 mW HeNe-laser beam (	D632 nm)?
What is the photon current induced by this laser beam in an ideal photo diode?
What is the photocurrent induced by a blue (	D 310 nm) 1 mW beam? What is
the maximum photovoltaic power in either case [use Shockley’s diode equation
(9.3) to maximize the product of photovoltage and corresponding photocurrent]?

2. How many photons impinge on a CCD-camera pixel (area 10�m � 10�m)
at 300 lux (office illumination level) during a 1/100 s exposure time (assume
monochromatic light of wavelength 550 nm)? What is the statistical pixel to pixel
variation of the number of photons, assuming Poisson statistics? Compare this to
sunlight (70,000 lux) and moonlight (0.2 lux).

3. Show that the mean value
P

n n pP.n/ of the Poisson distribution Eq. (9.13) is
indeed Nn; prove that the variance of the Poisson distribution is equal to the mean
value Eq. (9.14).

4. We want to communicate with our friends on the moon and use a 1 W Gaussian
laser beam, wavelength 1�m, with a telescope expanding the beam to 1 m
diameter. The detector area on the moon is 1 cm2, the quantum efficiency is 1.
What is the maximum bit rate (on/off keying), if the BER is supposed to be less
than 10�6 (neglect light scattered from the earth or coming from stars)? How do
things change if our friends also use a telescope of 1 m input aperture?

5. Calculate the color coordinates of “white” light (a) with S.	0/ D const., (b) with
S.!/ D const., and compare it to the white point W.
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ABCD-transformation, 117, 217
Absorption, 60, 253

coefficient, 60
length, 60
saturation, 264, 272
two-photon, 387

Acousto-optic modulator, 320, 406
Active zone. See Laser diode
Additive color mixing, 433
Amplification

Brillouin, 392
free electron laser, 348
parametric

second order, 369
third order, 384

Raman, 388
stimulated emission, 256

Amplitude, complex, 6
Anisotropic media, 69

energy transport, 83
Poynting vector, 83
wave equation, 75

Anti-reflection coating, 176
Anti-Stokes line, 389
APD. See Avalanche photodiode
Aperture, numerical, 198
AR coating. See Anti-reflection coating
Autocorrelation, 191

intensity, 377
interferometric, 377
second order, 377

Avalanche photodiode (APD), 422
Average power, 14
Axis, optical, 78

Babinet-Soleil compensator, 35
Band edge. See Semiconductor
Band gap. See Semiconductor
Base, 20

circular, 29
linear, 21

Base transformation, 29
Beam propagation, 101
Beam splitter, 158

scattering matrix, 163
waveguides, 223

Beam velocity, 12
Bessel functions, 208
Biaxial media. See Anisotropic media
Birefringence, 82
Bit error rate, 429
Blazing. See Optical grating
Bloch wave, 276
Boltzmann distribution, 262
Boltzmann’s constant, 2
Bose-Einstein distribution, 428
Boundary conditions, 40, 45, 208

conducting resonator, 187
fiber waveguide, 206
multilayer, 170
periodic, 276

Bragg
cell, 409
condition, 228
grating, 228
reflection, 228
reflector, 339
scattering, 406

Brewster angle, 50
Brillouin

amplification, 392
zone, 276

c0. See Vacuum speed of light
Causality, 67
CCD. See Charge coupled device
Charge coupled device (CCD), 424
�.2/-. See Susceptibility, second order

© Springer International Publishing Switzerland 2016
G.A. Reider, Photonics, DOI 10.1007/978-3-319-26076-1

437



438 Index

�.3/-. See Susceptibility, third order
Chirp, 146
Chromaticity, 433
Circularly polarized base, 29
Coherence

complex degree, 191
length, 191
length, nonlinear optical, 363
spatial, 193
stimulated emission, 254
temporal, 189
time, 191

Collisions, 63
Color matching functions, 432
Color space, 431
Colorimetry, 431
Complex analytic signal, 189
Confocal parameter. See Gaussian beam
Coulomb potential, 246
Coupled modes formalism, 219
Coupling, 219, 300, 371, 398, 408

optimum, 303
Critical angle. See Total reflection
Cross correlation, 191
Cross phase modulation (XPM), 382
Cutoff frequency. See Waveguide

dB. See Decibel
DeBroglie wave, 44, 246
Decibel (dB), 213
Density of modes

3D resonator, 187
electromagnetic field, 187

Density of states
joint, 284, 285
quantum dot, 292
quantum well, 291

Dephasing time, 260
Difference frequency generation, 353
Diffraction, 43, 168
Dipole interaction, 250
Dipole matrix element, 251
Dipole moment, 57
Dirac distribution, 250
Dispersion

group velocity
anomalous, 141
normal, 141

phase velocity
anomalous, 11
normal, 11

pulse broadening, 137
waveguide, 204

Dispersion coefficient, 141
Dispersion flattened, 216
Dispersion length, 145
Dispersion relation

free electron, 246
light, 7

Dispersion shifted, 216
Dispersive media, 56
Doping, 280
Doppler effect, 97, 161
Drag coefficient, 98
Drude-Lorentz model, 56
Dynode, 415

EDFA. See Erbium doped fiber amplifier
Efficiency

differential, 302
quantum, 415

Eigenbase, 30
Eigenfrequencies. See Resonators
Eigenmode. See Mode
Einstein’s convention, 69
Electro-optic effect, 86

linear, 86, 400
quadratic, 402

Electron affinity, 415
negative, 415

Electron momentum, 283
Electronvolt, 9
Emission

spontaneous, 256
stimulated, 253

Energy flux, 13
density, 13

Energy transport, 12
Envelope, 142
Epitaxial growth, 335
"0. See Vacuum permittivity
Erbium, 241
Erbium doped fiber amplifier (EDFA), 241
Escape depth, 415
Etalon, 179
eV. See Electronvolt
Evanescent wave. See Total reflection
Excimer, 329

laser, 329

Fabry-Perot interferometer. See Interferometer
Faraday

effect, 92
isolator, 93
rotation, 93
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FEL. See Free electron laser
Fermi-Dirac distribution, 278
Fermi factor, 286
Fermi level, 278

quasi-, 278
Fermi’s golden rule, 250
Fiber gyroscope, 238
Fiber laser, 240
Fiber waveguide, 205
Finesse. See Interferometer
Focal plane array (FPA), 424
Four-level system, 269, 297
Four-vector, 95
Four wave mixing, 399
Fourier limit, 139
Fourier transformation

2-f system, 134
far field, 133

FPA. See Focal plane array
Free electron gas model, 62
Free electron laser (FEL), 340
Free spectral range. See Interferometer
Frequency mixing, 353
Frequency, normalized, 200
Fresnel coefficients, 47
Fresnel rhomb, 54
Füchtbauer-Ladenburg equation, 259
Full width at half maximum (FWHM)

beam diameter, 107
line width, 260

FWHM. See Full width at half maximum

Gain
avalanche photodiode, 421
Brillouin, 395
coefficient, 268
condition, 268, 287
free electron laser, 347
modulation, 309
parametric

second order, 372
third order, 386

photoelectron multiplier tube, 415
photoresistor, 422
Raman, 391

Gamut, 433
Gaussian beam, 102

ABCD-transformation, 117
beam divergence, 106
beam radius, 106
confocal parameter, 106
focusing, 122
phase front curvature, 107

q-parameter, 109
SHG, 363

Gaussian modes, 182
Glass fibers. See Waveguide
Gouy phase, 105
Gradient index fiber, 206
Gradient index lens (GRIN-lens), 113
Grating. See Optical grating
Grassmann’s laws, 433
GRIN-lens. See Gradient index lens
Group delay, 141
Group velocity, 9
Group velocity dispersion (GVD), 141
GVD. See Group velocity dispersion

„. See Planck’s constant
Hamilton operator, 245
Helmholtz equation, 6

paraxial, 102
scalar, 6

Hermite-Gaussian beams, 126
Hilbert space, 36, 432
Hilbert transformation, 98
Hole burning

spatial, 308
spectral, 266

Idler wave. See Optical parametric amplifier
Impermeability, 74, 400, 404
Index ellipsoid, 81
Index profile, parabolic, 216
Indicatrix, 81
Integrated optics, 218, 237, 326
Intensity, 17
Interaction cross section, 251
Interband transitions, 278
Interference, 157

multiple beam, 167
two field-, 157
visibility, 191

Interferometer
Fabry-Perot, 177

finesse, 179
etalon, 179
free spectral range, 179

Mach-Zehnder, 162
Michelson, 158
Sagnac, 162, 165
waveguide, 237

Intraband transitions, 278
Inversion, 264, 267
Irradiance. See Intensity
Isotropic media, 5
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Joint density of states, 284
Jones matrix, 21

eigenvectors, 25
Pockels cell, 87
reflection, 52
transformation, 27
transmission, 52

Jones vector, 19

kB. See Boltzmann’s constant
KDP, 86, 360, 401, 402
Kerr effect, 380

electrooptic, 86
Kerr lens, 114
Kramers-Kronig relations, 66, 293
k-surface, 76

Laplace operator, 5
Laser

diode, 331
active zone, 335
heterostructure, 334
quantum well, 336

efficiency, 302
fiber-, 240
free electron-, 340
gain modulation, 312
gas-, 328
Helium-Neon-, 329
linewidth, 309
mode locking, 318
mode selection, 307
optimum coupling, 303
q-switched, 314
relaxation oscilllations, 309
semiconductor-, 331
solid state-, 325
threshold, 302
Ti:sapphire, 323
velocimeter, 161

Laser materials, 324
LCD. See Liquid crystals
Lens, 112

GRIN-lens, 113
Kerr, 114

Light amplification. See Amplification
Line broadening

collisions, 260
crystal field, 263
Doppler, 262

homogeneous, 262
inhomogeneous, 262
natural, 259

Line shape
Lorentzian, 58, 260
saturated, 266

Liquid crystals (LCD), 90
Lithium niobate, 88, 224, 360, 368, 401
Lorentz force, 56, 341
Lorentz transformation, 96
Luminescence, 333
Luminosity, 430

�0. See vacuum permeability
Mach-Zehnder interferometer. See

Interferometer
Magnetic constant. See Vacuum permeability
Magneto-optic effect, 92
Manley-Rowe relations, 357, 375
Mass

effective, 277
reduced, 285

Matrix
ABCD-, 118
dipole, 250
Jones, 21
perturbation, 248
S- (see scattering matrix)

Maxwell’s equations, 2
MCP. See Micro-channel-plate
Metals, optical properties, 62
Michelson interferometer. See Interferometer
Micro-channel-plate (MCP), 416
Miller’s rule, 359
Mirror

concave, 183
convex, 183
dielectric, 170

bandwidth, 174
reflection coefficient, 173
transmission coefficient, 173

metal, 173
spherical, 115

Mode
index, 181
longitudinal, 183
resonator, 181
transverse, 186
waveguide, 197

Mode condition. See Waveguide
Mode locking, 318
Momentary frequency. See Pulse propagation
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Momentum
electron, 283
photon, 283

Monomode condition. See Waveguide
M2-parameter, 107
Multilayer system, dielectric, 170

NA. See Numerical aperture
Nonlinear length, 151
Nonlinear polarization rotation (NPE), 382
Nonlocal effects, 4
NPE. See Nonlinear polarization rotation
Numerical aperture (NA), 198

OPA. See Optical parametric amplifier
Optical activity, 90
Optical grating, 168

blazing, 170
Optical parametric amplifier (OPA), 358, 369,

384
idler wave, 369

Optical tunneling effect, 56
Oscillator

harmonic, 56
linear, 56
parametric, 375

Parametric fluorescence, 375
Parametric frequency conversion, 376
Parametric process, 351
Parity, 253
Parseval’s theorem, 138
Permittivity

complex, 59
relative, 4
tensor, 69
vacuum-, 3

Perturbation theory, 249
Phase, 6
Phase conjugation, 395
Phase matching, 82, 356, 365

90ı , 366
birefringence, 365
boundary, 40
parametric amplification

second order, 373
third order, 386

quasi-, 368
second harmonic generation, 362

Phase velocity, 9
in dispersive media, 60

Phonon, 278, 392
Photocathode, 414
Photodetector, 413

array, 423
bandwidth, 426
integrator, 426
responsivity, 425

Photodiode, 416
avalanche, 421
photocurrent, 418
photovoltage, 418
Schottky, 423

Photoelectric effect, 414
Photoelectron multiplier tube (PMT), 415
Photometry, 430

units, 430
Photon, 252

counting, 416
energy, 252
momentum, 283, 357
statistics, 426

Photonic band gap, 236
Photonic crystals, 241
Photopic vision, 430
Photoresistor, 425
� polarization. See Polarization state
Planck’s constant, 2, 245
Plasma frequency, 64
PMT. See Photoelectron multiplier tube
pn-Junction, 419
Pockels effect. See Electro-optic effect, linear
Poincaré sphere, 32
Point groups, 352
Point spread function, 131
Poisson distribution, 427
Polarizability, 57
Polarization. See Polarization state
Polarization density, 3

nonlinear, 351
Polarization maintaining fiber, 216
Polarization rotator, 22
Polarization state, 18, 75

circular, 18
eigenstate, 25
elliptic, 18
ellipticity, 31
linear, 18
orthogonal, 20
�-, 45
� -, 45
�˙-, 20, 45

Polarizer, 22
Power density, 192

spectral, 192
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Poynting
theorem, 13
vector, 13

anisotropic media, 83
inhomogeneous fields, 35

Principal value, 73
Propagation constant, 6

waveguide, 199
Propagation index, 11

complex, 59
effective, 200

Pulse
chirp, 146
compression, 146
dispersion length, 145
envelope, 137
Gaussian, 138, 144
group velocity, 141
intensity autocorrelation, 377
momentary frequency, 146
nonlinear length, 151
propagation, 141
solitons, 152

Pumping, 268, 301, 358, 369

q-Parameter, 109, 217
Q-switching, 314
QPM. See Quasi-phase matching
Quantum cascade laser, 293
Quantum dots, 292
Quantum efficiency, 415
Quantum well, 291

laser, 336
Quasi phase matching (QPM), 366

Raman amplification, 388
Raman effect, 388
Raman-Nath scattering, 409
Rate equations, 255

four-level system, 297
relaxation oscillations, 311
three-level system, 304
two-level system, 255

Rayleigh range. See Gaussian beam, confocal
parameter

Recombination, 415
Rectification, optical, 355
Reflectance, 49

absorbing media, 62
dielectric multilayer, 173

Reflection, 40
Brewster angle, 50
coefficient, 47

Refraction
anisotropic media, 82
isotropic media, 41

Refractive index, 7
extraordinary, 73
frequency dependence, 61
ordinary, 73
principal values, 73

Relaxation oscillations, 309
Resonators, 180, 297

confocal, 185
eigenfrequencies, 182
Hermite-Gaussian modes, 186
mode sparation, 181
modes, 181
stability condition, 184, 187

Responsivity, 425
Retarder, 21

achromatic, 54
circular, 24, 90
general, 33
linear, 21, 75
variable, 35

Sagnac interferometer. See Interferometer
Saturation, 264

absorption, 264
amplification, 269
fluence, 273
intensity, 265, 270

Scattering matrix, 26, 165
beam splitter, 163
interferometer, 237
waveguide coupler, 226

Schawlow-Townes limit, 309
Schrödinger equation, 245

eigenfunctions, 246
eigenvalues, 246
nonlinear, 153
time independent, 246

Scotopic vision, 430
Second harmonic generation (SHG), 358

Gaussian beam, 364
field induced, 403

Selection rules, 253, 283
Self-consistency, 182, 199

condition, 207
Self-focusing, 115
Self-phase modulation (SPM), 149, 381

spectral broadening, 152
white light generation, 152

Semiconductor, 275, 415
band edge, 277
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band gap, 275
bands, 275
density of states, 276
doping, 280
gain bandwidth, 288
gain condition, 287
intrinsic, 278
laser, 331
optical transitions, 283
transparency carrier density, 332

Sensitivity
human eye, 431
photodiode, 420
PMT, 415

SFG. See Sum frequency generation
SHG. See Second harmonic generation
Shockley’s diode equation, 418
Shot noise, 426
� polarization. See Polarization state
Signal-to-noise ratio, 426

Bose-Einstein statistics, 429
Poisson statistics, 427

Silica glass fibers, 213
Single photon detector, 416, 422
Slowly varying envelope approximation, 102,

361, 370
S-matrix. See Scattering matrix
Snell’s law. See Refraction
Solitons, 4, 152
Space charge region, 416
Spectrometer, 135
Spectrum, 192
SPM. See Self-phase modulation
Spontaneous emission, 256
Stability condition. See Resonators
Step index fiber, 206
Stimulated emission, 253
Stimulated Raman scattering, 389
Stokes line, 389
Stokes’s theorem, 4
Stop band, 175, 231
Sub-k space, 289
Sub-band, 290

density of states, 292
Sum frequency generation (SFG), 353
Susceptibility, 3

complex, 57
linear oscillator model, 56
nonlinear

second order, 351
third order, 351
anharmonic oscillator, 358

scalar, 5
tensor, 69
as transfer function, 67

Tensor, 70
diagonal, 74
symmetry, 71, 352
transformation, 70

THG. See third harmonic generation
Third harmonic generation (THG), 379
3 dB-coupler. See Waveguide
Three-level system, 271
Three wave mixing, 358, 370
Total reflection, 41, 48, 197

amplitude, 55
critical angle, 42
evanescent wave, 53
optical tunneling effect, 56

Transfer function, 67
spatial, 128

Transition
direct, 283
forbidden, 253
indirect, 283
probability, 250

Transmission coefficient, 47
Transmittance, 49

dielectric multilayer, 173
Transparency carrier density, 332
Two-level systems, 245
Two-photon absorption, 387

Ultraviolet (UV), 66
Undulator, 341
Uniaxial media. See Anisotropic media
UV. See Ultraviolet

Vacuum
energy density, 13
fluctuations, 257, 375
impedance, 16
permeability, 3
permittivity, 3
speed of light, 1, 5

VCSEL. See Vertical cavity surface emitting
laser

Verdet constant, 92
Vertical cavity surface emitting laser (VCSEL),

339
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Wave
Bloch, 276
DeBroglie, 44, 246
diffracted, 43
evanescent, 53
plane, 8

Wave equation, 5
anisotropic media, 75
dispersive media, 59
nonlinear media, 360
optically active media, 91
paraxial, 101

Wave number, 6
Wave plate, 22, 54
Wave vector, 6
Waveguide, 197

active, 240
amplifier, 240
coupler, 220

3 dB, 223
eigenmodes, 226
S-matrix, 226

cutoff frequency, 202, 210
dispersion, 204
eigenmodes, 199
electro-optic, 198
filter, 223
gradient index, 206
grating, 228
gyroscope, 238

implementation, 198
interferometer, 237
laser, 240
loss, 213
mode condition, 200
monomode condition, 202
normalized frequency, 200
planar, 197
self-consistency condition, 207
step index, 206
TE mode, 202
TEM mode, 208
weak guiding, 202, 208, 209

Wavelength, 8
Wavelength division multiplexing (WDM),

216, 382
WDM. See Wavelength division multiplexing
White light generation. See Self-phase

modulation
Wiener-Khinchin theorem, 192

XPM. See Cross phase modulation

Young’s double slit, 165

Z0. See Vacuum impedance
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