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Photonics deals with the generation, propagation, manipulation, and detection of
(usually coherent) light waves. This book provides a comprehensive introduction
into this important field, from the electrodynamic and quantum mechanic funda-
mentals to the level of photonic components and building blocks such as lasers,
amplifiers, modulators, waveguides, and detectors.

The book is intended for senior level and graduate students of applied physics
and electrical engineering as well as engineers in fields such as laser technology,
optical communications, laser materials processing, and medical laser applications
who wish to gain an in-depth understanding of photonics.
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This book is supposed to be self-contained; practically all results are derived from
basic principles such as the equations of Maxwell and Schrddinger, respectively,
and fundamental mathematical concepts such as Fourier transformation and linear
systems. The mathematics used is senior undergraduate level throughout; the steps
of derivation and the approximations used are carefully commented. Sections
marked with an asterisk (x) are intended for a more specialized readership and can
be omitted without loss of understanding of the remaining text.

The book does not contain explicit “exercises”’; instead, the reader is encouraged
to follow the derivations in writing. Important equations are set in shaded boxes
and, unless they are actually definitions, should be derived by heart after reading.
The book includes many representative examples; most figures, in particular, have
been produced using the theory and formalisms presented in the text, and the
interested reader is encouraged to reproduce them and vary the input parameters; the
general availability of computers and (public domain) mathematical and graphical
software (such as Gnuplot and Matlab) renders such simulations a relatively easy
yet extremely instructive exercise.

At the end of each chapter, a summary points out the central issues tackled; its
purpose is to put the contents of the chapter into a broader context. It is followed by
a set of problems that are intended to deepen the understanding of the material.
Some of them are quite easy, others more demanding. Many make reference to
previous sections of the book, with the goal to provide a “global” understanding
of the subject.

A bibliography containing references and suggestions for further reading con-
cludes each chapter; the selected references are not only sources but (with the
exception of data bases, of course) highly recommended reading.
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Electrodynamics describes light as electromagnetic radiation in the frequency range
of approximately 10> Hz; in this theory, matter is treated as continuous, with the
primary material response being the electric polarization. As in any other frequency
range, the electromagnetic field and its interaction with matter is described by
Maxwell’s equations.

These equations do not imply any natural time- or length scale; they do, however,
imply a relation between the two scales in the form of a dispersion relation that
relies on ¢y, the vacuum speed of light. Electrodynamic phenomena therefore can be
scaled arbitrarily if the ratio between time and length scale is conserved. The electric
and magnetic properties of matter, however, depend very strongly on the frequency.
Magnetization, for example, is practically negligible at optical frequencies and is
usually not taken into account in optics.

Many important optical phenomena can be understood only within a quantum
mechanical treatment of matter, because they reflect its atomic structure. The
concept of electrons, for example, is not implied in electrodynamics (where charge
is continuous); emission and detection of light are among the most obvious quantum
mechanical effects. A small set of physical constants, most notably the charge
and the mass of the electron and Planck’s constant, are responsible for the optical
properties of matter and, in particular, their spectral dependence. A remarkable
consequence of the value of these constants is the existence of a spectral window
where a wide range of (condensed) materials is highly transparent and, at the same
time, has a very noticeable impact on the phase propagation of electromagnetic
waves. This window is what we call the visible spectral range, complemented by
adjacent spectral bands in the so-called near infrared and near ultraviolet. Outside
this window, condensed matter is either strongly absorbing or does not interact with
electromagnetic radiation at all. This is the reason why photonics—the technology
of electromagnetic radiation in condensed matter—is staged in the visible and the
near infrared.

© Springer International Publishing Switzerland 2016 1
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2 1 Electrodynamic Theory of Light

Because of the central role the electron and its atomic environment is playing
in photonics, it is very convenient to adopt the atomic energy scale of electronvolts
(1eV =1.602 x 1071?J). As we shall see, the energy exchange between light and
matter is essentially an energy exchange between individual electrons or atoms and
the electromagnetic field and involves a discrete energy quantum of E = hw, where
o is the angular frequency of the field and # = h/2m, h = 6.626 x 1073*Js
is Planck’s constant; such a quantum of electromagnetic energy is often called a
photon, which does not, however, imply that a photon is a “particle”; at this level,
it is just a consequence of the atomic (discrete) structure of matter. Expressed in
units of eV, the frequency range of main stream photonics lies between several
100 meV and several eV, corresponding to a wavelength range between several um
and 100 nm. Advanced fields of photonics also operate in the Terahertz and XUV
range.

Another frequency range of interest is that of thermal radiation, which can be a
major source of noise; expressed in units of eV, it ranges up to several kg7, where
kg = 1.381 x 1072* JK™! is Boltzmann’s constant and T is the absolute temperature
in units of Kelvin. At room temperature, kg7 ~ 26 meV, which is significantly less
than typical photonic energies. Thermal noise is therefore usually not a critical issue
in photonics, another reason for the enormous success of this technology.

A deeper analysis of electromagnetic radiation shows that it requires a treatment
similar to the quantum mechanics of matter. In the framework of quantum electro-
dynamics, electromagnetic radiation is shown to behave in many respects similar to
quantum mechanical oscillators and the term “photon” assumes a meaning that is far
beyond the aforementioned “token” of energy exchange. One of the most obvious
consequences of the quantized nature of electromagnetic radiation is spontaneous
emission of light by atoms, a phenomenon that cannot be explained by a semiclassi-
cal theory that treats matter quantum mechanically and light electrodynamically.
Another fascinating consequence of the quantization of light is the existence of
“entangled” photons, the basis of quantum cryptography. Much of the theoretical
background of photonics, however, can be treated within a semiclassical treatment,
which is also employed throughout this book.

1.1 The Electromagnetic Field

Maxwell’s equations, relating the electric field E [Vm™!] and the magnetic field H
[Am™'] in a medium with polarization density P [Asm™2], magnetization density
M [Am™!], density of free charges p [Asm™3], and current density j [Am~2], have
the form

oH oM
VXE = —pom— — po—r 1.1
x o= — Mo~ (1.1)
JE JP
VxH=¢— + — +j (1.2)

ot ot J
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V.(gE)=-V-P+p (1.3)
V- (noH) = =V - (uoM), (1.4)
where &g = 8.854 x 1072AsV™'m™!' is the vacuum permittivity and

o =4m1077 VsA~ m~! the magnetic constant (also called vacuum permeability).
In cartesian coordinates, the differential operator V is given by

a/dx
V=1 9d/dy (1.5)
a/0z
or
V =[d/dx,d/dy, d/d7], (1.6)

depending on the vector operation. P is the response of the medium to the electric
field and, for moderate optical fields, a linear function of E,

P = gy xE; (1.7)

x is the (dimensionless) electric susceptibility and represents the dielectric proper-
ties of the medium. It is common to introduce the electric displacement density D
[Asm~2]

D:=¢gE+P (1.8)

that combines the “vacuum displacement density” o E with the material polarization
density. With Eq. (1.7), we obtain

D = &ey(1 + x)E := g¢eE, (1.9)

where

e=1+y (1.10)
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is known as relative electric permittivity.' In similar fashion, poH and poM are
combined to B [Vsm™2]

B =puH+M). (1.11)
At optical frequencies, the magnetization M is usually negligible, so that
B = uoH. (1.12)

In the absence of free charges and currents (p = 0, j = 0), the fields are therefore
described by

oH

VXE = —uy— 1.13
X Mo (1.13)
aD
VxH=—; 1.14
X % (1.14)

Egs. (1.3) and (1.4) are implied in Eqgs. (1.13) and (1.14) since the divergence of the
rotation of a vector field is zero, V-(V xa) = 0. From Egs. (1.13) and (1.14) follows,
using Stokes’s theorem, the continuity of the tangential component of E and H at
an interface between different media. The continuity of the normal component of D
and H is implied for solutions of Eqs. (1.13) and (1.14).

In the optical spectral range, the susceptibility y represents the fundamental
response of matter to electromagnetic radiation; it is, however, not a “material
constant” but rather a (tensorial) response function giving rise to a wide range of
photonic phenomena:

— A medium does not respond instantaneously to the electric field, which implies
that x is frequency dependent; consequences are phase- and group velocity
dispersion as well as light absorption by a medium (Sect. 2.2);

— In anisotropic media, the polarization vector is generally not parallel to electric
field vector, resulting in effects such as birefringence (Sect. 2.3);

— At sufficiently high electric fields, the relation between electric field and
polarization is not linear any more, giving rise to a variety of nonlinear optical
effects such as the electro-optic effect (Sect.2.3.4), self-focusing of optical
beams (Sect.3.1.3), soliton propagation (Sect.3.2.2.2), and frequency mixing
and multiplication (Chap. 8).

— The polarization may be nonlocal in the sense that the polarization at a certain
point in space is determined not only by the electric field in this point, but
also by the field in the vicinity of the point; a manifestation is optical activity
(Sect.2.4.1).

'In the following, we will refer to & simply as “permittivity.”
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1.2  Wave Equation

We can eliminate the magnetic field from Eqgs. (1.13) and (1.14) to obtain a single
wave equation for the electric field: taking the rotation of Eq. (1.13) and substituting
the time derivative of Eq. (1.14), we obtain

’D

V x(VxE — =
x (V x )+M08t2

0. (1.15)

In isotropic media, the relation between P and E is expressed by a scalar suscepti-
bility y, and ¢ = 1 4+ y. From Eq. (1.3) in the form V- D = V - g¢goE = 0 follows,
for homogeneous media, V - E = 0. With the identity

V x (V xa) = V(V-a)— Va, (1.16)
we can formulate Eq. (1.15) as

9D
~VE+ oy = 0. (1.17)

where the Laplace operator V2, in cartesian coordinates, is given by

02 02 02
Vi — 4 — 4 —. 1.18
ax2 + dy? + 972 (1.18)

With
1
co = , (1.19)
VEolo
Eq. (1.17) assumes the form
e ’E(x,1)
VE®X 1) — 5 ——5— = 0; 1.20
0= 5= (1.20)

for reasons that will become obvious, ¢p = 2.998 x 108 ms™! is called vacuum speed
of light. Equation (1.20) is the wave equation for the electric field in isotropic, linear,
and local media.
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1.2.1 Complex Wave Functions and Amplitudes

The structure of Eq. (1.20) allows us to factorize its solutions E(x, ) into a spatial
and a temporal part. For the temporal part, we choose harmonically oscillating
functions: not only do they describe the output of a single mode laser very well,

they also represent the base for the Fourier decomposition of more general time
varying signals. The ansatz

E(x,f) = Re [E(x,w)ei“”] =1 [E(x, w)e®" + c.c.] , (1.21)

where w is the angular frequency and c.c. stands for “complex conjugate,” is a
solution of Eq. (1.20), if E(x, @) is a solution of the Helmholtz equation

e w?e ~
VE(x,0) + 5 EX 0) =0. (1.22)
€o

In cartesian coordinates, each component of E,- must be a solution of the scalar
Helmbholtz equation

+ -5 +:5+— |Exo) =0 (1.23)

02 02 02 w’e] ~
oz dyr 022 ¢

A particularly simple solution is the harmonically oscillating function
E(x, 0) = E(k, w)e 7** (1.24)

where k is known as wave vector and its absolute value k as angular wave number>
or propagation constant. The complete electric wave function is then

E(x,7) = Re [E(x, t)] , (1.25)

where

E(x, 1) = E(k, w)e ikx—e) (1.26)

is the so-called complex wave function and E(k, ) the complex amplitude; the
imaginary part of the argument of the exponential function is called phase. Inserting
Eq. (1.26) into the Helmholtz equation Eq. (1.22) establishes a fundamental relation

2In spectroscopy, the term “wave number” usually refers to k/27.
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between the angular frequency @ and the wave number k

K= —e (1.27)
€o

this dispersion relation is usually written in the form

k=2n, (1.28)
Co
where
n= & (1.29)

is the so-called propagation- or refractive index; in vacuum, the dispersion relation
is

k=ky:= — (1.30)
0

As observable quantity, the electromagnetic field is always real valued; its repre-
sentation as real part of a complex function offers a number of formal advantages,
however. In particular, a phase offset of a component can be incorporated in the
complex amplitude: the amplitude

Eo,xejd’“’
Ek, 0) = Ey = | Eyei?o |, (1.31)
EO,zej¢(Z)

for example, represents the wave
Ex(x,1) = Eoxcoswr — (kex + kyy + k:2) + o]
Ey(x,1) = Eycos[owt — (kex + kyy + k;2) + @)

E.(x,1) = Ep cos[wt — (kyx + kyy + k:2) + ¢zl (1.32)

Another advantage of the complex representation is that the action of differential
operators on Eq. (1.26) can be replaced by simple (vector) operations

&-)JC()

V - —ik. (1.33)
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Fig. 1.1 Surfaces of
constant phase of a plane
wave

e\ >

In the following, we will deal with complex wave functions instead of their real part
and take the real part only if necessary; care has to be taken if nonlinear operations
come into play, such as multiplication of fields in nonlinear optics (Chap. 8), or if
the power of the electric field is evaluated; such calculations are based on the real
part of the field.

1.2.2 Plane Waves

Surfaces of constant phase of Eq. (1.26), k-x—w? = const., are planes normal to the
wave vector k (Fig. 1.1); these waves therefore are called plane waves; the distance
between planes of equal phase are separated by integer multiples of the so-called
wavelength

A= —. 1.34
K| ( )

The number k/ 27 is equal to the number of spatial periods per unit length, measured
in the direction of k; k is therefore also called spatial (angular) frequency. In vacuum,

2
Y 92 (1.35)

Ao = =
0 k() w

the vacuum wavelength in the optical region of the electromagnetic spectrum is
of the order of 1 wm. The corresponding temporal oscillation period, 27 /w, is
about 3 x 1013 s, or 3 femtoseconds (fs).

Similar to harmonically oscillating temporal functions that allow “synthesizing”
arbitrary temporal functions, plane waves can be used to synthesize arbitrary spatial
wave functions via a Fourier integral over all possible wave vectors (Sect. 3.1.6).

In practice, there are different conventions to specify the frequency of a wave:
the temporal frequency v = w/2m, the quantum energy Aw, the spatial vacuum
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Table 1.1 Relations between different parameters characterizing the frequency of an optical
wave: frequency v [THz], wave number (k/27) [cm™!], quantum energy % [meV], and vacuum
wave length A [jLm], expressed in the appropriate units

v [THz] (k/27) [em™!] fw [meV] Ao [um]
v [THz] 0.0300(k/27) 0.242ha 300/ %0
(k/27) [em™ ] 33.4v 8.07hw 104/
hw [meV] 4.14v 0.124(k/27) 1240/ 20
Ao [wm] 300/v 10*/(k/2m) 1240/hw

frequency (spectroscopic wave number) k/27 = 1/A, or the vacuum wave length
Ao. Table 1.1 summarizes the relations between the different parameters.

1.3  Propagation Velocities

1.3.1 Phase Velocity

To determine the phase velocity of the wave function Eq. (1.26), we choose a certain
value of the phase

k-x — wt = const., (1.36)

and calculate the speed at which it propagates through space by taking the spatial
derivative

k-— —w =0. 1.37
i (1.37)

The phase velocity in the direction of the wave vector is then, using Eq. (1.28),

dx
Uph = E

w
=-=- (1.38)

In vacuum, n = /e = 1 and the phase velocity is equal to the vacuum velocity of
light, co. In the visible, this is also a good approximation for the phase velocity in
gasses at moderate pressure; the propagation index of transparent condensed media
ranges between 1 and about 3, the corresponding phase velocity between ¢y and
co/3. The phase velocity is the relevant velocity for the description of interference
effects (Chap.4). The propagation of optical pulses is governed by the so-called
group velocity, which we discuss in the following.
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1.3.2 Group Velocity

According to the Fourier theorem, wave packets can be understood as superpositions
of monochromatic waves. Since the permittivity € and thus the phase velocity of the
individual Fourier components is frequency dependent, the propagation velocity of
the wave packet may be difficult to define and evaluate. We will treat this problem
in some detail in Sect.3.2. As a first approach, we superimpose two waves with
slightly different frequencies and determine the propagation velocity of the resulting
“beating” envelope. The two frequencies wy + Aw correspond to two wave numbers
k® £ Ak; assuming equal amplitudes of the two waves, the total field is given by

E(z, 1) = Re [Eo K0+ A= (o+A0)] | o e—j[(kO—Ak)z—(wo—Aw)t]:I
= 2E, cos(zAk — tAw) cos(wot — k°z), (1.39)
which is an amplitude modulated wave with the carrier frequency wp and the

envelope cos(zAk — tAw) (Fig.1.2). The envelope propagates at the velocity
dz/ dt = Aw/ Ak, while the phase fronts move at the phase velocity of the carrier,

Envelope’ﬂ N
/

/
!

‘ \\\ . ///
\ E-field y

[

/

Fig. 1.2 Superposition of two monochromatic waves of slightly different frequencies, resulting in
a beat signal
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Uph = Wy / k°. For Aw — 0, the Taylor expansion

dw
Aw = —Ak+ ..., 1.40
w= - + (1.40)

allows us to identify Aw/ Ak with dw/ dk, so that the group velocity can be defined
as

dow
Vg 1= E (1.41)

The group delay time 1/v, (the time that the envelope needs to propagate over the
unit length) is related to the propagation index n(w) by

1 dk d [(now 1 n dn (1.42)
—=—=——)=—|n+0—). )
Vg dw dw \ ¢ co dw
Therefore,
Co Co
U T ¥ w(dn/dw)  n—Ag(dn/ dhg) (1.43)
the second relation follows from dw/w = —dAg/A¢ [see Eq.(1.35)]; since the

propagation index is usually tabulated as a function of A, this relation is of
particular practical importance.

Depending on the frequency, the derivative dn/ dAy may be positive or negative
for a given material, so that the group velocity can be larger or smaller than the
phase velocity. Within the transparency range of a medium, the derivative is usually
negative dn/dAo < 0, so that vy < wvpn. These spectral ranges of “normal”
dispersion alternate with frequency bands of “anomalous” dispersion (dn/dAy >
0).> The mechanism behind the dispersion of a medium will be discussed in
Sect. 2.2; its impact on pulse propagation and broadening will be treated in Sect. 3.2.

1.3.3 Beam Velocity*

As already mentioned, wave packets can be tailored in time and space to form an
optical (pulsed) beam (Sect.3.1.6). The wave vectors of the Fourier components of
such a beam are grouped around a central wave vector k that defines the direction

3In spectral ranges of very high anomalous dispersion, the group velocity can exceed cy; this
does not contradict special relativity, however, which refers to the signal velocity; for details,
see Brillouin (1960) and Jackson (1999).
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of the beam: k = k4 AKk; each wave vector is related to a frequency @ = wy + Aw
according to the dispersion relation w(k) that can be expanded as

w(K) =w0+z—‘;Ak+... (1.44)

The wave packet can be written as three-dimensional integral over Ak,
E(X, 1) = /E(Ak)e—j[(k"+Ak)~x—w(k)r] B3 Ak
= ¢TIk x—on) / E(Ak)e 14K @0/001 g3 Ak (1.45)

where E(AK) is the amplitude corresponding to the wave vector k® + Ak. The
result is a plane carrier wave exp[—j(k® - X — wo?)] with a spatial-temporal envelope
represented by the integral; the vectorial group velocity v,y is obtained by choosing
a certain value of the envelope phase Ak - [x — (dw/0k)f] = const. and extracting X
from the temporal derivative

dw / ok,
Vay = X = | dw/0k, | = Vko(Kk). (1.46)
dw/ dk,

In isotropic media, the dispersion relation Eq.(1.28) does not depend on the

direction of the wave vector,
o
W= —,/k§+k§+k§ (1.47)
n ,

and the group velocity is parallel to k°

kO
Vray = Ugm. (148)

In anisotropic media, however, the direction of the beam velocity generally differs
from Kk°, as we shall see in Sect. 2.3.

14 Energy Transport

The energy transport of electromagnetic waves is described by Poynting’s theorem;
to derive it, we multiply Eq. (1.13) with H, and (1.14) with E

E-(VxH):E-a%(sOEJrP) (1.49)
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H.(VxE) :—H-(MO%—I;I); (1.50)

after subtraction and using 2a - (0a/dr) = d(a - a)/d¢t, we obtain the equation

E-(VxH)-H-(VxE)zg(eoE'E HH) op

E-— 1.51
> + Mo 5 + o (L5D)

which, using the identity b- (V x a) —a- (V xb) = V. (a x b), we convert into
Poynting’s theorem in its differential form

3 ( E-E H-H P
~V-(ExH) = E(sOTﬂLOT) +E o (1.52)

For the interpretation of the individual terms, we employ the divergence-theorem

/(V-u)dV:/u-ndA, (1.53)
Vv A

where A is the surface of the volume V, n is the outward pointing unit normal vector
of a surface element, and dV, dA are differential volume and surface elements,
respectively, to transform Eq. (1.52) into

/[(ExH)-n]dA:—/[2 (soE'EJrMoH'H)JrE-a—P} av.  (1.54)
A |4

ot 2 2 ot

The terms goE-E/2 and poH-H/2 represent the electric and magnetic contributions
to the vacuum-energy density of the field, while E - (0P/d¢) is the power density
that is exchanged between the field and the medium. Thus, the right-hand side of
Eq. (1.54) is equal to the temporal change of the energy stored in volume V. The
left-hand side can therefore be interpreted as energy flux through the surface A, and
the Poynting vector

S=ExH (1.55)

as energy flux density [W m~2] of the electromagnetic field.

1.4.1 Average Energy Flux Density

Due to the high frequency (10'* to 10'° Hz) of optical fields, most detectors can
only measure the time average of the energy flux density and related quantities. We
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denote the average of a real valued function a(¢) by brackets (a(¢)) and define it as

T/2
(a(H) = lim % / a(r) dr. (1.56)

B T—o00 —T/2

In the complex notation that we have introduced, the average can be expressed very
conveniently: assuming two real vectors a(z), b(#) with the complex representation

a() = 5 [a(@)e + a* (w)e ']

b(r) = 4 [f)(a))ei“” n B*(w)e—iw’] : (1.57)
we obtain

(a(t) x b(1)) = 1Re [ﬁ(w) x B*(w)] (1.58)
and

(a(5) - b(9) = iRe [ﬁ(w) -B*(w)], (1.59)
because (e*2?') = 0. The average energy flux density can therefore be expressed
as

(S) = IRe [E(a)) x H* (a))] : (1.60)

1.4.2 Energy Exchange Field/Matter

The average electric vacuum field energy density of a stationary field is constant,
since

d gE-E oE . _
<E£O ) > = <80E- E> = %Re [—ja)soE(a)) . E*(a))] =0; (1.61)

the same applies to the magnetic vacuum field energy, so that, according to
Eq. (1.54) (and not surprisingly), the average energy flux through a closed surface
vanishes in vacuum. In the presence of a polarizable medium, this is generally
not the case because of the last term in Eq.(1.54), which is the product of the
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polarization current density dP/d7 and the electric field. In complex notation,
P(7) = Re[P(¢)] with

P(r) = P(w)e"; (1.62)
according to Eq. (1.7),
P(w) = g jE(w), (1.63)

where we assume the susceptibility to be scalar but complex, ¥ = y'+jx” (implying
a phase shift between the electric field and the polarization); the polarization current
density is therefore

—~ = jweo JE(7) (1.64)

aP(r)
ot

and

” a)eoﬁ(a)) : ]::* (w)
_X _—

<E- 8—P> = %Re [E(a)) . [ja)sof(l:?(a))] *] = > 5

ot
(1.65)

this is the power density that is transferred from the field to the medium; it is
proportional to the imaginary part of the susceptibility and vanishes only if the
polarization is exactly in phase with the electric field (compare Sect.2.2). The
complex polarization current density dP/dr = jwP is then 7/2 out of phase with
the electric field and the power exchange is purely reactive, which means that the
energy deposited in the medium in one half cycle is returned to the field in the
consecutive one. Thus, only the quadrature component of the polarization gives rise
to a net energy exchange (Fig. 1.3).

1.4.3 Energy Transport: Plane Waves
The results obtained so far are applicable to spatially arbitrary, harmonically

oscillating waves; for plane waves Eq. (1.26), Maxwell’s equations Eqgs. (1.13) and
(1.14) simplify to

k xE = powH (1.66)
k x H= —wD. (1.67)



16 1 Electrodynamic Theory of Light

Fig. 1.3 Relative phases of Im[]
E, IN), and Bf’/at in a medium

with complex susceptibility,

shown in the complex plane

oP /ot

B soxX'E

Rel]

11

eox'E

Fig. 1.4 Geometric relation
of the vectors E, D, H, k, and
S of a plane wave in an
isotropic medium

D|E

k(s

The vectors D, H, and k are mutually orthogonal (Fig. 1.4); in isotropic media, the
additional relation E||D applies. Since |k| = nw/cy = nw . /eoito, the absolute
values of H and E are then related by

I n
M) = /- |E =: [El, (1.68)

where

Zo= /" ~3770 (1.69)
&0

is called vacuum impedance.
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The Poynting vector S = E x H is orthogonal to E and H; in isotropic media it
is also parallel to k,

1 E-E
S=ExH=—Ex (kxE)=
How How

Kk (1.70)

(the second equality follows froma x (b x ¢) = b(a-c) — c(a-b) and is generally
valid only in isotropic media where E - k = 0). Using Eq. (1.59), its time average
can be expressed as

_ nE(a)) -E*(0) _ nE_g

I=|(S
I(S) 7 7

(1.71)

and is called irradiance or intensity /.* From this equation follows the useful relation

Eo| = | == (1.72)

that allows us to calculate the electric field amplitude from a given energy flow
density. The electric field of a 1 mW laser with a beam cross section of 1 mm?, for
example, is about 10> V/m.

If the area illuminated by the wave is not normal to the wave vector, the intensity
is given by the normal projection

EZ
n-(S) = Z—Zg cos 6, (1.73)

where 6 is the angle of incidence, measured in reference to the surface normal
(Fig. 1.5).

Fig. 1.5 Electromagnetic
energy flux density at oblique
incidence on a surface

|S| cos 6

“In photonics, the term intensity is generally used instead of irradiance.
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1.5 Polarization States

An important property of an optical wave is its polarization state, i.e., the orientation
of the electric field vector in space; it influences, among other things, the reflection
and transmission behavior at interfaces between different media. According to
Eq. (1.67), the electric field vector lies in a plane normal to k and has two degrees
of freedom.” In general, the electric field vector of a harmonically oscillating wave
describes an ellipse in this plane, rotating with a period of 277 /w; depending on the
sense of rotation, this state is called left or right elliptically polarized. If the ellipse
degenerates to a line, the state is linearly polarized; another special case is circularly
polarized light.

It is convenient to describe these states in a cartesian coordinate system whose
z-axis is chosen to be parallel to k. The electric field can then be represented by a
two-dimensional vector; the general case Eq. (1.32) is given by

E.(z,t) = Ey cos(wt — kz)
Ey(z,1) = Eyycos(wt — kz + Ag); (1.74)

for convenience, the origin of the time coordinate is chosen such that ¢,y = 0 and
by = Ad.

If the two field components are in phase (A¢ = 0), E oscillates along a line
oriented under the angle ¢ = arctan(Ey,/Ey ) in respect to the x-axis; such a field
is called linearly polarized.

If the phase difference is Ap = +n/2 and Ey, = Ey, = Ey, then the field
vector in a given plane z = 0 describes a circle

E.(t) = Eycos wt

E, () = FEpsinwt (1.75)
and the wave is called circularly polarized. For an observer facing the light wave,
the temporal rotation is clockwise (cw) for A¢p = 7/2 and counterclockwise (ccw)
for Ap = —m/2, respectively; the two states are called right (cw) or left (ccw)
circularly polarized and denoted by the symbols 6, 0~. A snapshot (t = 0) of

the spatial trace of the field vector of right (left) polarized light shows a right (left)-
handed helix

E\(z) = Eycoskz
Ey(z) = +Eysinkz (1.76)

with a pitch length of A = 2x/k (Fig. 1.6).

This statement is generally valid only in isotropic media; in anisotropic media, the electric field
can have a longitudinal component and this and the following statements refer to the transverse
component of E.
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Fig. 1.6 Snapshot of left circularly polarized light and its decomposition into two linearly
polarized waves

The general case, with arbitrary ratio Eq ,/Ey « and arbitrary phase difference A¢
will be discussed in detail in Sect. 1.5.4.
1.5.1 Jones Formalism
Since the absolute value of the amplitude is irrelevant for the polarization state,

states can be represented by unit vectors, called Jones vectors J (Table 1.2).
Linearly polarized light is represented by

[COW] (1.77)

sin ¢

circularly polarized fields by

+_ 1 Ll a1



20 1 Electrodynamic Theory of Light

Table 1.2 Jones vectors of Polarization state Jones vector
selected polarization states; ¢ : =
Linear
denotes the angle between cos ¢
polarization and x-axis
sing
Right circular o+ i 1 ]
1
i
LJ
Left circular 0™ B 1
1
Vil
L)
General (elliptical
(ellip ) cos o
sin o el4?

For the interpretation of o and A¢, see
Sect. 1.5.4

The general, elliptically polarized state Eq. (1.74) corresponds to the Jones vector

1 Eo . i| [ coso :|
e — ) =1 . . (1.79)
(E(%’X + E&y |:E0’yeJA¢ sin OleJAd’
and will be discussed in Sect. 1.5.4.

1.5.1.1 Orthogonal Polarization States
Two Jones vectors are called orthogonal if their scalar product is zero,

g .y — . (1.80)

Examples are two linearly polarized states oriented along ¢ and ¢ + 7/2, respec-
tively, or left/right circularly polarized states o, o~. A state orthogonal to
Eq. (1.79) is obviously

— cos qeld?

[ sina } (1.81)

A pair of orthogonal states (Jones vectors) establishes a base that allows
constructing any other state by appropriate linear combination. In particular, any
other orthogonal base can be constructed; for example, the sum and difference,
respectively, of o and o~ produce a linearly polarized orthogonal base

%(o*’ +07)= [(1)}
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0
A (gt —o7) =
B o) L] (1.82)
and a circularly polarized base can be obtained from a linearly polarized base by a
complex-valued combination

ot = 1. m 4 L m (183)

These relations are not only mathematical transformations, but also represent
physical reality, since linearly polarized light, for example, can be synthesized by
two superimposed circularly polarized waves and vice versa.

The polarization state can change during propagation; as we will see, however,
for a given propagation system there are always so-called eigenstates that are
conserved during propagation (Sect. 1.5.2.5). In lossless media, these states can
be shown to be orthogonal to each other and represent a “natural base” for the
description of wave propagation in the respective system.

1.5.2 Polarization Optics

1.5.2.1 Wave Plates

In Sect.2.3, we will encounter various optical components that can alter the
polarization state; their operation can be represented by a specific Jones matrix T,
that relates an arbitrary input state Ji, to the corresponding output state Jou

Jout = Tin; (184)

Table 1.3 summarizes Jones matrices of important components. Many of these
elements rely on the dependence of the phase velocity on the polarization state.
In birefringent materials (Sect. 2.3), for example, there are two orthogonal, linearly
polarized eigenstates Jrs with different phase velocities, denoted as “fast” and
“slow”; the corresponding propagation indices are nf and ns. An incoming field of
arbitrary polarization is decomposed in two waves o Jg e 1skox=00 that develop,
during propagation, a phase difference of

Apy = (ns — ny)kod, (1.85)

where d is the thickness of the medium; such plates are called retarders or wave
plates (Fig.1.7). In a coordinate system with the x-axis parallel to J, the Jones
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Table 1.3 Jones matrices of important polarization optical elements

Optical element Orientation Jones matrix
Linear polarizer [|x-axis B 10
100
Li lari to x-axi i .
inear polarizer @ to x-axis cos?g  singcosg
| singcos sin? @
Polarization rotator i .
cosg —sing
| sing cosg
A/2-Wave plate f||x-axis i 1o
|01
A/4-Wave plate f||x-axis i 1 o
L0
A/4-W lat f £45° to x-axi .
/4-Wave plate 0 x-axis 1 | Fj
2
Fi 1
A¢y-Wave plate f||x-axis i _
0 e_jA¢V
Right circular polarizer i 1 =i ]
i1
Left circular polarizer i 1 ]
L1
Mirror, normal incidence B 1 o
| 0—1

matrix has the form

=
Il

1 0

(1.86)
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Fig. 1.7 Evolution of linearly polarized light (¢ = 45°) in a A /2-wave plate: in the middle of the
plate, the light is circularly polarized, the state at the output is the mirror image of the input state

A so-called half-wave plate produces a phase shift of = (corresponding to A/2), and
is represented by

1 0
T= [0_1:|, (1.87)
which is equivalent to a mirror operation about the x-axis. Linearly polarized light
emerges linearly polarized from such a component, but its polarization direction is
flipped from ¢ to —¢; for ¢ = 45°, the output is actually orthogonal to the input
state (note that this change of the polarization direction is not due to a rotation; a
rotator would rotate all states by the same angle). Circularly polarized light changes
its sense of rotation. A mirror has the same effect, resulting, however, from the
inversion of the propagation direction.
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A quarter wave plate (A¢y = 7/2) with the Jones matrix

10
T = [O—j:|’ (1.88)

converts circularly polarized into linearly polarized light and vice versa.

1.5.2.2 Polarization Rotators

Optically active and magneto-optic materials (Sects. 2.4.1 and 2.4.2) have circularly
polarized eigenstates with the propagation indices n; they act as circular retarders,
inducing a phase shift of

Apy = (n~ —n)kod (1.89)

between the two circularly polarized states. In a circularly polarized base
[Eq. (1.78)], the Jones matrix has the form

1 0
Tc = I:Oe_jA¢vi|Cs (190)

which, as we shall see from an inspection of Eq.(1.124), corresponds to a
polarization rotator that rotates an incoming state by an angle of

0 =—A¢y/2 =t —n")kod/2. (1.91)

1.5.2.3 Polarizers

Polarizers (also called polarization filters) are components that transmit one partic-
ular polarization state only; an incoming state is decomposed into the transmitted
eigenstate and its orthogonal complement, which is absorbed or directed into a
different direction; in other words, a polarizer projects the input state onto the
transmitted eigenstate. The matrix of a polarizer for x-polarized light is therefore

10
T = [oo] (1.92)

1.5.2.4 Composite Systems
A series of polarization optical elements with Jones matrices T; can be represented
by a single system Jones matrix that is the product of the individual matrices in the
exact sequence of transmission
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Fig. 1.8 Effect of a series of (@) To Io 0
polarizers: (a) two crossed /
polarizers block the T T T T T T T T T T T T
transmission completely; (b) -
addition of a third polarizer, l l l l l l l l l l l l

|

rotated by 45°, results in a
transmission of up to 25 %
(depending on the input state)

(b) fo Io Io/2 Io/4
nging

Tlotal = ...T3T2T1. (1.93)

A pair of two mutually orthogonal linear polarizers (first y, then x polarized,
Fig. 1.8a), for example, has the system matrix

_[rol[oo] [oo
r= [0 0} [01} B [0 0}’ (1.94)

and transmits no light at all. Adding a third polarizer, oriented under 45°, between
the two polarizers (Fig. 1.8b), results in the matrix

_a[10][11][oo] _;fo1
T_Z[OOHHHOJ_Z[OO] (1.95)

which is equivalent to an x-polarizer with 50 % attenuation. The same 45° polarizer
inserted before or after the original pair of crossed polarizers would, of course, not
alter the zero transmission; this is an instructive example demonstrating the non-
commutativity of polarization optics.

1.5.2.5 Polarization Eigenstates

An eigenvector or eigenstate (or eigenmode) of a matrix T is a vector that,
if multiplied with 7, remains unchanged apart from a (complex) factor, called
eigenvalue. The eigenvectors of a Jones matrix are the polarization eigenstates of
the corresponding optical element; to determine these states, we have to solve the
equation

T = A7) (1.96)
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or
(T—Ar1)J =0, (1.97)

where 1 is the unit matrix

10
1:= ; 1.98
[0 1] (1.98)
explicitly,
[T“ —Ar T ] [Jl] =0. (1.99)
Ty Ton—Ar]l/)z

For this system to have non-trivial (i.e., non-zero) solutions, the determinant det(7—
Arl) must be zero. Thus, the characteristic equation

(T —Ar) (T2 — A7) =151 T12 =0 (1.100)

has to be solved, yielding two eigenvalues /\(Tl) and /\(TZ) . Corresponding eigenvectors
JU-2) are found by inserting the values A7 into one of the equation of Eq. (1.99); the
length of the eigenvectors is not defined, since any multiple aJ of an eigenvector J
is also an eigenvector. It is, however, convenient to normalize the eigenvectors to
unit length.

Once the set of eigenvectors is given, any arbitrary state can be written as a linear
combination of these eigenvectors,

J=aJ® + a,J?; (1.101)

the output state of the optical element represented by T is then
TJ = aidJO + a0 P32, (1.102)

1.5.2.6 Lossless Systems
Since Jones vectors represent electric fields, Eq. (1.71) implies

JoutJ*oul = JinJ*inv (1103)

provided the system is lossless and the input and output propagation indices are
equal. Following the arguments regarding the scattering matrix of lossless systems
[Eq. (4.19)], we find that the Jones matrix of a lossless elements is unitary

[T*]"=1"". (1.104)
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Such matrices can be shown to have orthogonal, generally elliptic eigenvectors J; »
with eigenvalues of unit modulus, i.e., )L(Tl 2 — e7i%12_ In the eigenvector base “b”
formed by J », the Jones matrix is diagonal and can be written as

1 0
T = . , 1.105
|:0 e_JA¢Vi|b ( )

where A¢y = ¢ — ¢1, and an irrelevant common factor has been dropped. In
the eigenbase, the action of the optical element is to introduce a phase shift of
Ag¢y between the eigenstates. Thus, any lossless polarization optical system can
be understood as retarder acting on its eigenstates.

1.5.3 Transformation of Jones Vectors and Matrices

Jones vectors and matrices are usually represented in a certain cartesian coordinate
system. The corresponding base vectors are linearly polarized states along the
coordinate axes. It is often useful to express them in a different, for example,
circularly polarized base or in a linearly polarized base that is rotated in respect
to the original; this can be achieved by simple linear transformations.

1.5.3.1 Rotated Cartesian Base
We assume a Jones vector that is represented, in the original cartesian system, by
J = |:Jl’l:| and try to find the components Jy = [Jl/’l
Jip )
a system rotated by ¢gr. In the original system, the components can be expressed
by Ji1 = rcose, Ji» = rsing (Fig. 1.9). Rotating the coordinate system by ¢r
changes ¢ to ¢ — @r. Using cos(¢ — ¢r) = cos ¢ cos gr + sin ¢ sin gr and sin(¢ —
@r) = —COs ¢ sin gr + sin ¢ cos gr we obtain

i| of the same vector in

Jva = rcos(p — gr) = Ji1 cosgr + Ji2 singr
Jro = rsin(p — QDR) =—-Ji1 sin @R + J12 COS ¢R. (1.106)

Fig. 1.9 Coordinates of a , v
vector in two different
cartesian reference frames, \
rotated by ¢g in respect to
each other
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This can be expressed by

Jvr = A, (1.107)

where Ay is the rotation matrix

COS @R Sin PR
A=A, = . 1.108
=1 R [ — sin @R oS @R i| ( )

The inverse transformation is obtained by multiplication of Jy with the inverse
matrix

Ji=AroaJy =A v, (1.109)
where
ALl =A_,. (1.110)

To transform a Jones matrix into the rotated system, we multiply Eq. (1.84) by
Ay and obtain, with Egs. (1.107) and (1.109),

I o = AisrJiow = Ay TIin = Ay TAZ Iy in, (1.111)
so that
Jl’,oul = Tl’Jl’,in (1.112)

with the transformed Jones matrix

Ty = Ay TA L. (1.113)

Equations (1.107) and (1.113) are not restricted to rotations, but constitute the
general coordinate transformation rules for Jones vectors and matrices.

1.5.3.2 Physical Rotation of Polarization States and Optical
Components

In practice, one frequently knows the matrix T of a polarization optical component

in a certain orientation and needs to know the matrix T% of the component in

a different orientation. Rotating the element by ¢ is mathematically (but not

physically) equivalent to a rotation of the reference frame by —¢. The matrix of
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the rotated element is therefore
T =A_,TA,. (1.114)

The Jones matrix, for example, of a linear polarizer rotated by ¢ in respect to the
X-axis is

2 .
T=A, 10 A, = cos (p cos.qozslnqo ' (1.115)
00 cosgsing sin” @

By the same argument, the components of a Jones vector that has been physically
rotated (by a polarization rotator) by an angle ¢ are equal to that of the original
vector in a reference frame rotated by —¢. The Jones matrix of a polarization rotator
is therefore

cos ¢ —sing
T=A_, = . 1.116
o [singo cos<p:| ( )

1.5.3.3 Transformation to a Circularly Polarized Base
Next, we analyze the transformation between a linearly and a circularly polarized

base; we indicate the reference base by a subscript 1 and c, respectively. In a
circularly polarized base, the states o™, 0~ [Eq. (1.78)] are represented by

+ |1 - 10
o —[Ol, o —|:1]c. (1.117)

The transformation matrix A._,; must be such that

1 1} |:A11A121| [1}

—-= | .| = 1.118
ﬁli] o LAnAn]  L0], ( :
1 1} [A11A12i| |:0:|
S B . 1.119
ﬁ|i_] o LAnAn] L] ( :

Obviously, the columns of A._,; are given by the representation of o* in the linear
base

Ay = % [1 1.], (1.120)
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and the inverse matrix is

_ 1
Ame =474 = 5 [1 jl]. (1.121)

The transformation of Jones matrices follows Eq. (1.113)

T =AcTAZ; (1.122)

c—>1

the matrix Eq. (1.90) of a circular retarder,

1 0
T. = [Oe‘jA¢Vi| (1.123)
in particular, is transformed to
cos(Apy/2) —sin(Agy/ 2)] 1124
|:sin(A¢>V/2) cos(Apv/2) |, (1.124)

in the linear base. Comparison with Eq. (1.116) shows that a circular retarder with
retardation A¢y acts as polarization rotator that rotates an arbitrary input state by

o =—Apy/2.

1.5.3.4 Eigenbase
Of particular interest is a base consisting of the (normalized) eigenvectors of a
polarization optical device. In its eigenbase, the Jones matrix of the device has the

form
1) 10
Ar (()2) 04 0 A2 , (1.125)
0 Ay X )
" Jdb

as follows from Eq. (1.102); for lossless systems with )L(Tl 2 = e %12 this is the
matrix of a retarder [Eq. (1.105)]; as stated above, any lossless polarization optical
element simply acts as a retarder on its eigenvectors.

1.5.4 Elliptically Polarized States

In a circular base, a general state

Etot 4+ E-e4%q™ (1.126)
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is represented by

E+
|:E_ejA¢C:| (1.127)

where ET are assumed to be non-negative and real. For the special case A¢, = 0,
the representation in the linear base is

R E*] _ EtT+E
72[] _Ji| |:E_:|C_ 75|:J(E+_E—)i|l’ (1.128)

this corresponds, at z = 0, to the wave Eq. (1.74)

- Et 4+ E7)coswt
E() = Re[ el | = 15 ( : ; 1.129
® © V2 [ (E™ + E7)sin(wr) || ( )
the locus of the electric field vector is obtained by elimination of ¢
E? Ej
Z Y =1, (1.130)

(E+ as E—)Z + (E+ — E—)z

which is an ellipse with major axis (E™ + E~) and minor axis |[E™ — E~|; the sign
of ET — E~ determines the handedness of the corresponding elliptically polarized
wave. According to Eq.(1.124), the phase shift A¢. is equivalent to a rotation
by A¢./2, so that the general state Eq.(1.127) is elliptically polarized, with an
ellipticity of

Et —E~
t = —) 1.131
ane = g ( )
rotated by the angle
¢ = Ade/2 (1.132)

in respect to the x-axis.

Because of these simple relations, the easiest way to determine the ellipticity and
orientation of an arbitrary state, given in an arbitrary base, is to transform it into the
circular base where it can be expressed in the form

EO[ cos e } (1.133)

sin el |
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Since the scalar (complex) multiplier Ey does not influence the polarization state,
the polarization ellipse can then be determined using Eqs. (1.131) and (1.132). For
the general state in a linear base,

[ cosa } (1.134)
1

sin ojef4®

in particular, we obtain after a somewhat lengthy, but simple calculation (see, e.g.,
Kliger et al. 1990)

sin 2e = sin 2¢; sin A¢, (1.135)
tan 2¢ = tan 2¢; cos Agy. (1.136)

In an analogue fashion, the inverse relations

c0s 20 = cos 2€ cos 2¢ (1.137)
cot A¢ = cot2e sin 2¢ (1.138)

are obtained. An arbitrary state (Fig. 1.10) can thus be characterized alternatively by
the parameter pair (€, @) or (o), A¢h), that refer to the circularly or linearly polarized
base, respectively.

1.5.5 Poincaré Sphere*

The identification of a polarization state by two angular parameters allows associat-
ing it with a point on a sphere. If, in particular, 2¢ is associated with the “geographic
latitude,” and 2¢ with the “geographic longitude,” one obtains a spherical map of
all possible polarization states, known as Poincaré sphere (Fig. 1.11). North- and
south-pole, respectively, correspond to right and left circularly polarized states. The
equator, with € = 0, comprises all linearly polarized states, and its intersection with

Fig. 1.10 The locus of the Ey e

electric field vector of B \ (Eo,xz,Fo,y)
elliptically polarized light is 4

an ellipse with ellipticity '

tan €, oriented at the .

azimuthal angle ¢ e
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Fig. 1.11  On the Poincaré
sphere, every polarization
state is represented by a point
P with the latitude 2¢ and the
longitude 2¢. Relations
(1.35) to (1.138) follow from
spherical geometry by
identifying HP = 2« and
<XHP = A¢y:ina
right-angled spherical
triangle, the hypothenuse ¢
and the two legs a, b are
related by cos ¢ = cosacos b,
and the angel A opposite a is
given by cotA = cotasinb,
for example (see Fig. 1.10 for
the meaning of €, ¢, and o)

the O-meridian (¢ = 0) denotes horizontal polarization. Mutually orthogonal states
occupy antipodal positions: using Eq. (1.81), we obtain for the state orthogonal to
(2€, 2¢) the coordinates 2¢’ = —2¢, 29’ = 2¢ + 7.

The parameter set (2¢, 2¢) relates to the circular base. As we have seen above,
a circular retarder Eq. (1.123) with phase shift A¢y rotates any state by the angle
¢ = —Agpy/2. On the Poincaré sphere, this means that a state is moved zonally
(with constant 2¢) by the angle —Ag¢y. The poles, as eigenstates of the circular
rotator, are not affected, and define the rotation axis.

Mathematically, the circular base is just one out of an infinite set of possible
orthogonal bases. Its practical significance results from the fact that the parameter
set (2¢,2¢) allows for an intuitive geometric interpretation. As we have seen,
however, any lossless polarization optical device generates an eigenbase, that
corresponds to two antipodal points on the Poincaré sphere; the action of such
a device is that of a retarder that changes the phase shift A¢y, of the input state
(represented in the eigenbase)

Ep 1 i|
1ol (1.139)
[Eb,zeJ »

to A¢g, — A¢y while keeping the ratio Ey»/En; unchanged. An input state is
therefore rotated on a circle around the axis constituted by the two eigenstates by an
angle of —A¢y (Fig. 1.12). Varying A¢y, any state on the circle can be reached. If
the circle intersects the equator or a pole, for example, the retarder can convert the
input state into linearly or circularly polarized light, respectively.

Rotating the retarder itself (around an axis parallel to the propagation direction)
by an angle gr moves its eigenstates by an angle of 2¢r on a zonal circle of the
Poincaré sphere. Rotation of a linear retarder (with eigenstates on the equator)
allows positioning its antipodal eigenstates anywhere on the equator. A linear
retarder (and only a linear retarder) of variable phase shift and orientation can
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Fig. 1.12 Wave plates can be represented on the Poincaré sphere by an axis through their
eigenstates R, R’. The transformation of a state P by the wave plate is equivalent to the rotation
of P around the axis by an angle equal to the phase shift of the wave plate

Fig. 1.13 One and the same polarization state occupies different “boxes” in differently oriented
cartesian coordinate systems. A birefringent wave plate with axes parallel to the coordinate axes
can transform a state into any other state within the box by appropriate choice of its phase shift

convert any given input state into any desired output state: for this purpose, one
has to construct the symmetry plane between the input state and the target state and
position the linear retarder at the intersection between this plane and the equator.
Note that a circular retarder, by comparison, can only convert states of identical
ellipticity into each other.

The practical importance of birefringent wave plates (i.e., of linear retarders)
merits a few further remarks on its action. The two linearly polarized eigenstates of

such a wave plate generate a cartesian coordinate system in which a given state has
the coordinates (Fig. 1.13)

1 Eo, cos o
JEZ, + E3, [Eo,ye““i" } [Sin el (1140

the retarder changes the value of A¢), but does not affect the aspect ratio tano; =
Eoy/Eo. If the phase shift of the retarder is adjustable, any state within a box
defined by the corner points (Ey ., =E,) can be accessed. Rotating the wave plate
generates a new cartesian coordinate system in which the same input state occupies
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a different box; again, any state within this box can be reached by appropriate choice
of the phase shift. To transform a given input state to a selected output state, one has
to find the box that contains both states; the orientation of this box indicates the
required orientation of the wave plate.

A linear retarder of variable phase shift can be realized by stacking two wedges
of a birefringent material, one of them movable in respect to the other, on top of each
other to form a parallel plate of variable thickness and corresponding phase shift. If
the setup is mounted on a rotation stage, one obtains full control over orientation
and phase shift of the retarder. Such a Babinet—Soleil compensator can, as already
stated, transform any polarization state into any other. An alternative scheme is to
use a rotatable electro-optic Pockels cell (Sect.2.3.4) whose birefringence can be
controlled by an external electric field.

1.6 Inhomogeneous Waves

Plane waves as defined in Eq. (1.26) are spatially homogeneous in the sense that
the (complex) amplitude E(k, ») does not depend on x. Many relations derived in
this chapter refer to such waves. We now want to discuss a superposition of two
such waves; we will encounter superpositions of plane waves in the discussion
of interference, in the theory of planar optical waveguides, in the Fourier optical
treatment of optical beams and other phenomena.

We choose two waves with orthogonal waves vectors, parallel to the x, z plane

2
ki, = ko%— 1.0, £1]. (1.141)

Particularly instructing is the situation where both waves are linearly polarized and
coplanar to the wave vectors

F1
- ~ A2 .
El,z(x,t)on“/T_ 0 |edkiax—en (1.142)
1

Figure 1.14 shows the resulting total field; the surfaces of constant phase are planes
normal to k; + k,, moving at the phase velocity v/2¢o > c¢o. There are planes
of purely longitudinal electric field, normal and parallel, respectively, to the phase
fronts, and other planes, with purely transverse electric field. Between these planes,
the electric field has transverse as well as longitudinal components and the electric
field vector actually rotates parallel to the plane spanned by the wave vectors. The
Poynting vector vanishes in the planes of purely longitudinal electric field, because,
as can be easily shown, the magnetic field vanishes in these planes; it reaches its
maximum value in the planes of purely transverse electric field, where it is directed
normal to the phase fronts. Between these planes, it exhibits transverse components
that cancel when averaged over an oscillation period. This example shows that
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Fig. 1.14 Superposition of two plane waves with orthogonal wave vectors K 5, linearly polarized
coplanar with the wave vectors: (a) snapshot of the electric field, (b) snapshot of the Poynting
vector

superpositions of plane waves have properties that are quite different from that of
homogeneous waves and have to be carefully considered, especially if the angle
between the wave vectors is large. This is the case, for example, in tightly focused
laser beams or in waveguides with strong guiding.

1.7  Summary

Photonics is predominantly concerned with electromagnetic fields that have a well-
defined phase, frequency, and propagation direction. Plane monochromatic waves
are therefore very useful and popular elements to describe photonic processes. In
this Chapter, the properties of such fields are discussed in detail. An important
parameter of light waves is the propagation velocity; in addition to the phase
velocity, which is defined for a monochromatic plane wave, the concept of group-
and ray velocity is introduced which applies to “packages” of plane waves, i.e., to
light pulses and beams, and is discussed in more detail in the respective sections of
Chap. 3.

Particular emphasis is laid in this Chapter on the polarization state of light
waves, a property that is exploited in many photonic devices. The analysis of
polarization optical devices in terms of eigenstates, eigenvalues, and eigenbases
in the framework of the Jones vector formalism has, in addition to its practical
importance, a didactic purpose as it familiarizes the reader with the mathematical
concept of the Hilbert space, where wave functions are treated as vectors. This
concept is fundamental not only for the understanding of quantum mechanics
(Chap. 6) but also for the coupling of modes in waveguides and other processes; even
though it is not explicitly elaborated on in this book, it pervades large parts of it.
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1.8 Problems

1. A laser beam is focussed onto an area of 5 wm?; what beam power is needed to
reach an electric field strength equal to that experienced by an electron in an H-
atom (£, = e/47r60a(2), ap = 5.3 x 107" m)? With a pulsed laser (5 fs pulses),
what pulse energy is needed for that?

2. Reproduce Fig. 1.2, assuming v, = 0.9 vy, with two frequencies that differ by
10 % and plot the wave as function of time and of distance, respectively; vary z
in steps of A and observe what happens.

3. Plot a snapshot of the vector field of the Poynting vector of a plane wave at t = 0
in a fashion similar to Fig. 1.14; compare linearly and circularly polarized light.

4. Reproduce Fig. 1.14 (a) for E, coplanar with k, 5, (b) for E;» L ki, (c) E,
coplanar with k;, and Ez 1 Kki5; step up the time in increments of 7/8 and
observe what happens.

5. Visualize the general polarization state Eq. (1.79) in a plot similar to Fig. 1.10;
vary A¢ and o and observe what happens.

6. Assume a stack of two A/4 wave plates, rotated by 45° in respect to each
other. What are the polarization eigenstates of this system? Express linearly and
circularly polarized light, respectively, in this eigenbase.

7. Derive the transmittance of an electro-optic modulator that consists of two
polarizers oriented along the x-axis and an electrically controlled variable
retarder that is rotated by 45° in respect to the x-axis as a function of the phase
delay Agy.
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While the focus of Chap. 1 was on the properties of electromagnetic waves, we now
turn to the optical properties of matter and their impact on wave propagation. To
emphasize this perspective, we use Eq. (1.8) to write Eq. (1.17) in the form

02E 9?P
V’E — —— = o—. 2.1
oo 7 = Hog 2.1

The right-hand side of this differential equation can be understood as a source term
driving a new field that is superimposed on the original field.

Consider a very thin sheet of an isotropic, lossless material with susceptibility
X, suspended in vacuum and irradiated by a plane wave under normal incidence.
The polarization induced in the sheet gives rise to a new wave which, for symmetry
reasons, consists of a forward and a backward propagating plane wave of equal
amplitude. The forward propagating component is added to the driving field; since
it is out of phase by /2 [compare Eq.(8.40)], however, the resulting forward
wave is slightly retarded in comparison to the original field. If we introduce a
second sheet at a distance of a quarter wavelength after the first one, essentially the
same happens: the total forward propagating field is further retarded, and a second
backward propagating wave is generated. In reference to the first one, however, this
wave is delayed by half a wave length (or &) and will cancel the contribution from
the first sheet.

If we fill up the entire space with such sheets, the forward propagating wave is
continuously retarded and propagates at a phase velocity smaller than cy; the degree
of retardation increases with the susceptibility of the medium, since the amplitude
of the partial waves is proportional to y. There will, however, be no backward
propagating field because for any chosen sheet there is another one that produces
a cancelling wave. The situation changes if the medium is inhomogeneous, or if, for
example, only a half space is filled with the medium: the backward contributions
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from a quarter wavelength thick front layer of the medium are not compensated and
add up to a reflected wave.

The mathematical treatment of his process is rather complicated and is the
subject of the Ewald—Oseen extinction theorem'; the amplitudes of the reflected
and transmitted waves can be calculated quite easily using boundary conditions,
however, as we will show in the following.

2.1 Transition Between Different Media
2.1.1 Phase Matching at a Boundary

2.1.1.1 Reflection and Refraction

Before we evaluate the amplitudes of the reflected and transmitted waves, respec-
tively, we first want to find their propagation directions, i.e., their respective wave
vectors. Assume a plane wave

E' = Ele 1) 2.2)

incident on a plane interface between two dielectric media (i) and (t) with the
propagation indices n; and ny, respectively. Both media are supposed to be lossless
and isotropic; depending on the relative magnitude of »; and n;, a medium is called
optically denser or thinner than the other.

The reflected and transmitted waves are also expected to be plane waves

E" = Efle ik xmen, (2.3)

each wave vector can be decomposed into a component kif’l normal to the interface,
and a tangential component k’”‘r’[. Right at the interface, there is no contribution of

k'™ to the wave functions
. . it
El,r,l F= E:)’r’le_J(kH .x—a)t). (24)

Because of the translational invariance of the planar interface, the ratios
K x— K x— . .
e Ik XD 7= X0 st be independent of x and the tangential components of

the participating wave vectors must consequently be equal

k, = k| =K. (2.5)

ISee, e.g., Born and Wolf (1999).
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Fig. 2.1 Wave vectors of Kt
incident, transmitted and "
reflected waves at a planar

shift invariant interface: the k!
tangential components must

satisfy the phase matching ni
condition kh =k = k|, the — s
length of the respective
vectors is given by the ot
dispersion relation
[K"™| = 7 ko

From this phase matching condition follows immediately that the three wave vectors
are parallel to the plane of incidence, defined by the incident wave vector and
the surface normal. The normal components of the wave vectors follows from the
dispersion relation (1.28) |k = k' = n;; ko to be

(K:™? = (niriko)? — K™ (2.6)

where n; = nj, so that the wave vectors are fully determined (Fig. 2.1). Introducing
the angles 6! between the surface normal and the respective wave vectors, we
obtain the relations

sin @ = sin 6 2.7)
for the reflected wave, and Snell’s law

n, sin 0' = n; sin 6! 2.8)

for the transmitted wave; the change of the propagation direction of the transmitted
wave is known as refraction.

2.1.1.2 Total Reflection

Inspection of Fig.2.2 shows that if medium (i) is optically denser than medium (t)
(n; > ny), then for sufficiently large angles of incidence, the tangential component
of the wave vector in medium (t) is larger than its length. In this case, there exists
no refracted wave and the energy contained in the incident wave is completely
transferred to the reflected wave, a process called total internal reflection. The
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Fig. 2.2 Same as Fig.2.1, k!
showing the situation

K| > k'], resulting in total
reflection

condition for total reflection is

k|| = nikosin 6" > nko, (2.9)
and can be expressed as
g .
0" > 0.4 = arcsin —, (2.10)
ni

where 6 is called critical angle of total reflection.

2.1.1.3 Diffraction

If the boundary between the two media is not invariant under translation, the above
argument Eq. (2.5) does not hold and the fields radiated in the forward or backward
direction are, in general, diffusely scattered waves. An important exception is that
of a spatially periodic boundary; such structures are called line gratings and play an
important role in photonics. The ratio between incident and transmitted or reflected
wave, evaluated at the surface, can then be written as a Fourier series

. oo
e—j(k‘l'l-l.x—a)t)/e—j(k‘H-x—a)t) x Z Fme_jng.x’ 2.11)

m=—00

where Ky is a vector parallel to the interface and normal to the lines of the
grating, with an absolute value of 27t/ A, A is the spatial period, and F,, are the
Fourier components. Consequently, the wave vectors of the emitted waves have the
tangential components (Fig. 2.3)

k' = k| + mK, (2.12)
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(2) A
(b) LIHN
ki

;i " 2m/A

m=—3 m=-—2 m:‘—l mr=0 m=1

Fig. 2.3 Geometric relations of the diffracted wave vectors: (a) surface profile, (b) diffracted wave
vectors

Fig. 2.4 Diffraction at a periodically modulated interface (line grating) with lines oriented normal
to the plane of incidence; the integers denote the order of diffraction

with integer m. Provided that |k}I + mKy| < njko, so-called diffracted waves of
order m are radiated in addition to the “ordinary” reflected and transmitted waves
(m = 0).

If Kg||ki|| (i.e., if the lines of the grating are normal to the plane of incidence,
Fig.2.4), the wave vectors of the diffracted waves lie in the plane of incidence; the
diffraction angles 6" are obtained from Eq. (2.6)

Neysin 05 = nysin 0' 4+ mAo/ A, (2.13)
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Fig. 2.5 Same as Fig.2.4,
but for a grating with lines
oriented parallel to the plane
of incidence

as illustrated in Fig. 2.3; obviously, m is restricted to values |n; sin 01 + mAo/A| <
n;1.> The number of diffracted waves increases with the ratio A/do; if A < Ao/2n;y,
there exist no propagating diffracted waves and the boundary, in regard to the
scattering of light waves, behaves like a translationally invariant interface.

The applicability of Eq. (2.11) is not limited to line gratings oriented normal to
the plane of incidence. A grating with lines parallel to the plane of incidence, for
example, produces diffracted waves whose wave vectors are constructed according
to Fig.2.5 and lie on a cone with a half top angle equal to 90° — 6'; a similar
construction allows us to calculate the diffracted wave vectors for gratings of
arbitrary orientation.

Under conditions of total internal reflection (§* > arcsin =), a periodically
modulated boundary can mediate the radiation of transmitted wavés, as illustrated in
Fig.2.6; coupling of waves with the aid of gratings is a frequently employed scheme
in photonics.

The diffraction angles Eq. (2.12) depend on the wavelength of the incident light;
line gratings are therefore important components for spectral filtering and analysis;
in Sects. 3.1.6 and 4.2.1, we will discuss these applications in more detail. Another
important application is the temporal compression of light pulses (Sect. 3.2.1.7).

Note that all findings of Sect.2.1.1 are independent of the nature of the waves;
they apply to plane electromagnetic, acoustic, as well as quantum mechanical
DeBroglie waves. The amplitudes of the respective waves can be calculated from
specific boundary conditions, as we shall see in the following section for the
reflected and transmitted electromagnetic waves. For the amplitudes of diffracted
electromagnetic waves see, e.g., Petit (1980).

Higher diffraction orders exist as so-called evanescent waves, compare Sect. 2.1.3.
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2.1.2 Reflection and Transmission Coefficients

From Maxwell’s equations follows the continuity of the tangential components of
E and H at a boundary. The amplitudes of the transmitted and reflected waves
must be such that the sum of the incident and reflected fields on the one hand,
and the transmitted on the other have equal tangential components. To simplify
the treatment of this problem, we decompose the incident field into two linearly
polarized components, one of which is polarized normal to the plane of incidence
(o-polarized—not to be confused with o* polarized light), the other one parallel
to the plane of incidence (rr-polarized).® It follows immediately from the boundary
conditions that the polarization state of these two components is conserved during
reflection and transmission, so that we are dealing with polarization eigenstates of
reflection and transmission at a plane surface.

In our coordinate system Fig. 2.7 (with the xz-plane as plane of incidence), the
wave vectors are

K= [k, 0,k (2.14)
The boundary conditions for o-polarized light are
i ot
E,+E, =E, (2.15)

H +H =H. (2.16)

3The terms - and 7r-polarized are derived from the German terms senkrecht and parallel.
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Fig. 2.7 Coordinate convention for incident, reflected, and transmitted o-polarized waves; the
actual magnitudes and signs of the fields are obtained after multiplying the base vectors with the

reflection and transmission coefficients r, and ¢,, respectively.

Note that the orientation of the

coordinate systems is a matter of convention—each of them could also be rotated by 180° around

the wave vector, resulting in different signs for the coefficients

With Eq. (1.66), Eq. (2.16) can be expressed as
(k' x BN, + (K" x E), = (k' x
so that
K.E, + K.E} = K.E,.

Using Eq. (2.15), k. = —kiZ and Eiy-fr’t = E'rt we obtain

pro LR roE'
1+ kLKL

R -
1+ K/

EY),. (2.17)

(2.18)

the relations

(2.19)

(2.20)

Substituting kiz’t = nj ko cos 0, these equations can be cast in the form

n; cos 0! — n; cos 6!

To — :
n; cos ' + n, cos Ot

2n; cos O1

ni cos 01 + n; cos O’

(2.21)

(2.22)
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Fig. 2.8 Same as Fig.2.7 for w-polarized light

where cos ' follows from Eq. (2.8)

cosf' = \/1 — (ni/ny)* sin’ 6.

47

(2.23)

Equations (2.21) and (2.22) are known as Fresnel coefficients for the reflected and

transmitted electric field (see the summary Table 2.1 and Figs. 2.9 and 2.10).

For m-polarized light we choose the coordinate system Fig.2.8 and follow the
above calculations with the roles of E and H interchanged: the boundary conditions

are
i —_ t
H;, + H; =H,
E, +E, = E,.
With Eq. (1.67) we convert Eq. (2.25) to

| B 1
L (e k) = e

from Eq. (2.24) and H;’r" = H'" follows
H &kl —egik!
H' gkl + gkl

H! ekl
H ekl + gkt

(2.24)

(2.25)

(2.26)

(2.27)
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according to Eq. (1.68), E™'/E' = \/&i/e;(H"'/H"), so that we finally obtain the
Fresnel coefficients for w-polarized fields

1 — gkl /eki
r, = L= Eike/oks (2.28)
1 + sik;/gtk;
24/8
T (2.29)
1 + gik;/gtk;
or, with k;‘ = nj ko cos O and ny, = /&1,
ny cos 0 — n; cos Ot
T = : 2.30
! 1 cos ' + n; cos Ot ( )
2n; cos 6
t, = 1ico8 : 2.31)

n; cos 01 + n; cos Ot

The total field on the input side is the vectorial sum of incident and reflected
field; for o-polarized light, the two contributing electric fields have only components
normal to the plane of incidence, so that the total electric field is also normal to the
wave vector. For this reason, o-polarized light is called TE-(transverse electric). The
superposition of incident and reflected electric field for m-polarized light displays a
rather complex structure with a spatially varying longitudinal component (compare
Sect. 1.6); the magnetic field, however, has only a component normal to the plane
of incidence and m polarized light is consequently denoted as TM-(transverse
magnetic).

Figure 2.9 shows exemplary (n,/n; = 1.5) Fresnel coefficients for either
polarization as a function of the angle of incidence. At normal incidence (§' = 0)
the signs of r, and r,; are opposite; the reason for this seemingly contradictory result
is the sign convention in Figs.2.8 and 2.7. The phase change of the reflected light
at normal incidence depends on the sign of n; — n; and is & for n; < n; and 0
for n; > n.. Figure 2.10 shows the Fresnel coefficients at the interface between a
dense and a thin medium (n;/n; = 1.5); above the critical angle of total reflection
Eq. (2.10), the absolute value of the reflection coefficient is equal to 1, a situation
that will be discussed in more detail in Sect. 2.1.3.

Table 2.1 Fresnel coefficients r and ¢, reflectance R and transmittance 7, and phase shift ¢ for
total reflection, at a boundary between media with refractive indices n;, n; 6' and 6" are related by

cos 0t = /1 — (n?/n?) sin® O

r t R T tan (%)
o ni c0s §'—ny cos 6 2n; cos 6! |r |2 ng cos @' |l‘ |2 fn‘Z sin? §i—n?
ni cos 01 +n, cos Bt nj cos O14n; cos Ot o nj cos @ 1°0 oo Bt
i COS
T ny cos 01 —n; cos ' Zni_c(JSQ‘ |V |2 ny cos6' |[ |2 ”iz /,,‘2 sin? Oi—n,
ng cos 01+ n;j cos Ot ny cos 01 =4nj cos Ot T [ T

nj cos 6! = T
i n? nj cos O
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Fig. 2.9 Reflection and transmission coefficients r,, and 7, at a planar interface between two
dielectrics as a function of the angle of incidence, shown for n/n; = 1.5
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Fig. 2.10 Same as Fig.2.9 at the boundary between an optically dense and an optically thin
medium (n;/n = 1.5); for ' > .4, 7. is complex with an absolute value |7, | = 1

2.1.2.1 Reflectance and Transmittance

The Fresnel coefficients refer to the (complex) amplitudes of the reflected and
transmitted electric fields. In practice, the incident field is often a collimated light
“beam” that can be approximated by a plane wave with finite lateral extension,
carrying a certain input power. The fraction of the reflected and transmitted beam
power relative to the input power is given by the reflectance R and transmittance
T, respectively. To obtain R and T, we choose an area element on the interface and
calculate the energy flows on both sides of the interface by projecting the respective
Poynting-vectors onto the surface normal [Eq. (1.73)]. Energy conservation requires

; Ei 2 . ; E" 2 Et 2
milE'| cosf' = I cos 0" + mIET cos " (2.32)
220 220 2ZO
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Fig. 2.11 The lateral extension of a transmitted light beam, measured in the plane of incidence,
differs from that of the incident and reflected beam by the ratio cos 6'/ cos '

With E" = r, ,E' and E' = t,,E' we obtain

n; cos 6'

2 t

lzlrd,ﬂl +_ i
n; cos 0

lto. ). (2.33)

The two terms on the right-hand side can be identified with the reflectance and
transmittance, respectively,

Ra,n = |r0,7'[|2 (2.34)
n; cos 0"

Tom = ———tox| (2.35)
n; cos 6

The ratio cos ' /cos &' takes into account that the lateral extension of the transmitted
beam, measured in the plane of incidence, differs from that of the incident beam by
this factor; an input beam with circular cross section is refracted into a beam with
elliptical cross section (Fig.2.11).

Inspection of Fig.2.12 shows that R, increases with 6' and approaches 1 at
grazing incidence; R, follows the same trend for grazing incidence, but vanishes
at the so-called Brewster angle 6", which, according to Eq. (2.30), must satisfy

necos 0' = n; cos O (2.36)
To solve this equation, we combine it with Snell’s law Eq. (2.8) in the form
n;cos(90° — 8') = n; cos(90° — @) (2.37)

to find that the two angles must be complementary, 90° — 6' = 0, ie., sin@' =
cos 0. The electric field and thus the polarization density P in the second medium
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Fig. 2.12 Reflectance R and transmittance T for o- and m-polarized light as a function of the
angle of incidence (n,/n; = 1.5)

then oscillate exactly parallel to the reflected wave vector; since, as we have argued
earlier, the source of the reflected wave is the polarization density (more precisely,
the displacement density) in the second medium, and the reflected field must be
transverse, the amplitude of the reflected wave is zero. With Snell’s law Eq. (2.8),
the Brewster-condition sin #' = cos §' can be expressed in the form

6" = arctan E. (2.38)
ni

The existence of the Brewster angle is frequently exploited in photonic setups to

avoid undesired reflections by appropriate arrangement of optical elements in the
light path.

At normal incidence, Egs. (2.21) and (2.30) yield

no—n '\ ny/ni —1\*
r=(222) - ( )- (239)
ne + ni ny/ni + 1

Figure 2.13 shows the reflectance at a boundary between air and different media;
R increases with the optical density of the medium. Glasses with typical refractive
indices between 1.3 and 1.8 reflect several % of the input power at normal incidence;

semiconductors may exhibit much higher refractive indices and reflectance values
above 30 %.

2.1.2.2 Reflection and Transmission for Arbitrary Polarization
We now employ the Jones formalism (Sect.1.5.1) to analyze the reflection and
transmission of light with arbitrary polarization. As we have seen, the polarization
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n

Fig. 2.13 Reflectance at an interface between air (n; = 1) and a medium of refractive index
n, = n at normal incidence

eigenstates of a reflecting interface are - and o-polarized waves, respectively. In
this eigenbase, the Jones matrices describing reflection and transmission are

re 0
T = |: 0 r6:|, (2.40)
¢ |t O
T = |:0 t(ri|' (2.41)

Provided that r, ¢ are real numbers, linearly polarized light remains linearly polar-
ized, but in general changes the plane of polarization. At Brewster’s angle,

. [oo
T _[on,] (2.42)

so that a dielectric surface acts as (lossy) linear reflective polarizer. Since |r, | < |rs|,
“natural” light is predominantly o-polarized after reflection at a dielectric surface.

This effect is used in photography to reduce specular reflections by employing
polarization filters of appropriate orientation.

2.1.3 Total Reflection

Under conditions of total reflection [Figs.2.2 and 2.10, Eq.(2.10)], the normal
component of the wave vector turns imaginary

kL = koy/n? — n?sin® 61 =: —jy", (2.43)
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In medium (t), for which we assume z > 0, the field is then given by
E' = Eye kx—0 = ple=v'zeika—on, (2.44)

The amplitude of this inhomogeneous, so-called evanescent wave decays expo-
nentially with increasing distance from the interface so that the wave is essentially
confined to a layer of thickness 1/y"'. This penetration depth is on the order of a
wavelength unless the angle of incidence is very close to the critical angle, where it
grows quickly and approaches infinity at ' = ., [Eq. (2.43)].

According to Eq. (2.19), the reflection coefficient for o-polarized light under total
reflection conditions is

Ty
ry = I _ g, (2.45)
1—j(y'/K)

while the reflectance is R = r* = 1; the reflectance of a metallic mirror, for
comparison, is usually less than 0.9. According to Eq.(2.45), r, is complex and
introduces a phase shift of the reflected wave that amounts to

t 26in2 6 — n2)"/?
¢ — arctan & = arctan et nl) (2.46)
2 1 n; cos 61
(Fig.2.14). For m-polarized light, Eq. (2.28) yields
1 : ; 2(q,t ki .
e = LI/ VT _ (2.47)
1 —j(ni/n)*(y'/ k)
with
- 2yt 2 (n?sin2 0 —n2)'"”
22 = arctan n—‘zy— = arctan n—lz (v : ) (2.48)
2 n; ki ng n; cos 6!

The phase shifts for - and o-polarized differ by an amount that depends on #' and
the ratio n;/n; (Fig. 2.14). The Jones matrix for total reflection is

. e 0] _ .1 o0
T _[ 0 ej¢ai| _e] [O ej(¢a_¢n)i| ’ (249)
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Fig. 2.14 Phase shift of the electric field induced by (total) reflection at an optically thinner

R
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Fig. 2.15 Broadband A/2-retarder, based upon the phase difference ¢, — ¢, at total reflection

]

inside Fresnel rhombs

equivalent to that of a retarder (see Table 1.3). For a sufficiently large ratio n;/n;, a
phase shift difference of ¢, —¢p, = 7/4 can be obtained. Multiple internal reflection
inside a so-called Fresnel rhomb (Fig. 2.15) allows implementing the equivalent of
A/4 or A/2 wave plates. Since ¢, — ¢, depends only slightly on the wavelength,
such retarders work over a broad spectral range.
Next we want to evaluate the total field in the input half space z < 0, which is
the superposition of the incident and reflected wave; for o-polarized light, the latter
differs from the incident wave only by the sign of the normal component of its wave

—k;, and the phase shift Eq. (2.46)

vector, k, =

Etot — Ei + Er
— Ejeikh—on [e—jk;z 4 lto ejk;z]
= Eleik—0=40/2) [e—j(k§z+¢g/2) + ei(k§z+¢n/2)]

= EY cos(kiz + ¢, /2)e TE—en, (2.50)
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Fig. 2.16 Intensity distribution resulting from total reflection of a o-polarized wave; the energy
flow is parallel to the interface

where Ef' = 2E{e/%°/2. The phase fronts of this inhomogeneous wave are planes
normal to the interface and the plane of incidence, and travel at a phase velocity of
w/ki = co/(nisin0") < co/n. The amplitude is a spatially oscillating function of
the distance from the interface with a period of 27 /kl = Ao/(n; sin ') exhibiting
nodal planes of zero electric field, as illustrated in Fig.2.16. The cosine function
describing the spatial modulation of the amplitude is shifted by ¢, /2 away from the
interface. This is a consequence of the boundary conditions that require the field at
the interface to be continuously differentiable.

Total internal reflection is of fundamental importance for the operation of
dielectric waveguides; we will return to this matter in Chap. 5.
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2.1.3.1 Optical Tunneling Effect

If the optically thinner medium (refraction index np) is sandwiched between two
optically dense media (ny 1, ng2), a light wave can be transmitted through the
optically thin medium even under total reflection conditions |k;| > np ko, provided
that the refractive index of the output medium is large enough to support a
propagating wave, nyoko > |K;|; the transmission coefficient decreases roughly
exponentially with distance o ¢~7'? and the direction of the wave vector of the
transmitted wave is given by Snell’s law, ny, sin ' = n;sin 9. This so-called
optical tunnel effect is used in various photonic components (for example, high
power beam splitters) and is the basis of scanning—tunneling optical microscopy
that allows “tapping” the evanescent light scattered from sub-wavelength features
of a specimen.

2.2  Optical Properties of Isotropic Media

We have introduced the propagation or refractive index n = /e = /T + yasa
function of the susceptibility of the medium, which relates the polarization density
to the electric field; the susceptibility itself was treated as a phenomenological
property of the medium that was considered as a continuum. We now want to present
a simple mechanistic model of the susceptibility that qualitatively explains, among
other things, the frequency dependence of the refractive index and the absorption
coefficient of a medium. The approach of this Drude-Lorentz model is to treat the
medium as containing discrete charges (electrons or ions) of a certain mass, held
in place by a force that resembles a spring. In this picture, the polarization density
of a medium is the vectorial sum over all microscopic dipole moments per unit
volume. As we will see, the mass of the oscillating charged particles limits the
frequency up to which they can contribute to the polarization; in the visible and
near infrared region of the electromagnetic frequency spectrum, only electrons and
protons (hydrogen ions) are light enough to contribute.

2.2.1 Linear Oscillator Model

The model assumes charged particles of mass m. that are elastically tied to
their respective equilibrium position by a restoring force ax proportional to the
displacement x; any movement of the particles is damped by a term bX that scales
linearly with the velocity. The light field acts on the charged particles via the
Coulomb force —e¢E; the Lorentz force —ex x B by the magnetic component of
the light field can usually be neglected in comparison to the Coulomb force. The
equation of motion for such a particle is

meX + bx + ax = —eKE(1), (2.51)
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where E is the local electric field, which we assume to oscillate at a frequency
w, E(f) = E(w)coswt. We use complex notation [Eq.(1.21)] for all oscillating
quantities, a(f) = Re [ﬁ(w)ej"”], and assume stationary conditions. The complex
displacement amplitude is then

. —e/me ~
X(w) = E(w), 2.52
©) = 7 T B @ (2:52)
where
w} = a/me (2.53)
is the resonance frequency of the linear oscillator and I" = b/m, is the damping
coefficient. The corresponding dipole moment p = —e X is given by
&*/me -
plw) = E(w), 2.54
BO) = (o o ) (2.54)
and gives rise to a polarization density of
2
P) = ne—1"™  fw). (2.55)

where 7. is the particle density. The ratio between induced dipole moment and local
field is called polarizability. The local field is usually different from the external field
because it is influenced by the dipoles in the immediate environment of the particle;
for a coarse description of the relevant processes, we will neglect this difference,
however.

Comparison of Eq. (2.55) with Eq. (1.7) yields the (complex) susceptibility

H@) = 1+ = 1< : (2.56)
w) = = .
* xr gome (w3 — w?) + joI
that we can decompose into its real and imaginary part
1— 2
X =10 /L — 2.57)
[1 = (@/w0)’]” + (oI'/wy)
7 =—xo (@f/; (2.58)

[1 — (@/w0)?] + (@I /w})?

where yo := n.e?/ eomea)g is the (real valued) low-frequency susceptibility.
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Fig. 2.17 Frequency dependence of y” and |y”| according to the linear oscillator model

The resulting frequency dependence (dispersion) of y’ and y” is shown in
Fig.2.17: outside a narrow range in the vicinity of the resonance frequency wy,
x' is a monotonically increasing function of @ (so-called normal dispersion,
see Sect.1.3.2). Within the resonance range, y’ decreases with @ (anomalous
dispersion). The imaginary part y” shows a bell-shaped frequency dependence,
centered roughly at wg, with a width of ~ I".

In the vicinity of the resonance, ® &~ wy, we can apply the approximations
(W — 0?) = (v + 0)( @) — ©) ~ 2wy(wy — w) and I =~ wyl'; Eq.(2.56)
then simplifies to

(@)~ po————775 (2.59)

so that

[l — (@/w)]/2

[1— (@/@0)]? + (I'Jy)?/4
"oy (F/wO)/4

XN TN " (@jwn)P + (T w0 /4

X~ xo (2.60)

(2.61)

The resulting functional shape of |y”(w)| is known as Lorentz line shape, with a
peak value of |yl .| = xowo/I" at w = wy that scales inversely with the damping
coefficient I". In this approximation, I" is equal to the FWHM (full width at half
maximum)-line width of | y”| and also equal to the width of the range of anomalous

dispersion.
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2.2.2 Absorption and Reflection
Plane monochromatic waves
E(x, 1) = Ege 1kx—1) (2.62)

are solutions of the wave equation Eq. (1.20), even if the permittivity ¢ = ¥ + 1 is
complex. The dispersion relation Eq. (1.27) requires

2
K =3 (2) = ik, (2.63)
Co

implying a complex propagation index

n=+¢&+je’" =:n—jk; (2.64)
n and k are obtained from & by setting
n—kt=¢, 2k =—¢" (2.65)
Elimination of « yields
dn* —dnt — =0 (2.66)

so that

\/(a'2 +&"2)/2 4 g
n=

: 2.67)
N2
) = \/(8 +82) £ (2.68)

Figure 2.18 shows the frequency dependence of these two parameters for the £(w)
shown in Fig. 2.17. Equation (2.62) then assumes the form

E(x, 1) = Ege ki Ikox—on, (2.69)
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Fig. 2.18 Real and imaginary part of the complex refractive index n + jk of a single resonance
dielectric medium as a function of frequency

obviously, the imaginary part « of the complex propagation index 7 is responsible
for an exponential spatial decay of the field amplitude. According to Eq. (1.71), the
intensity is proportional to the absolute square of the amplitude, so that

1(z) — o~ 2ckoz

70) =g ~ (2.70)
with
o = 2kko; 2.71)
« is known as absorption coefficient and the distance 1/a = 1/2kko is called

absorption length, that is the distance after which the intensity is reduced to a
fraction of 1/e. The phase term e 7% determines the phase velocity cpn = co/n.

2.2.2.1 Multiple Resonances

The Drude-Lorentz model can be extended to systems with several different reso-
nance frequencies wy ; by adding up the individual contributions of the susceptibility,
weighted by their respective density n. ;, so that Eq. (2.56) is modified to

2
@y,

i) = Z B0 =) T T (2.72)
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Fig. 2.19 Refractive index n and absorption coefficient & of a medium with two resonances; while

significant absorption is confined to narrow bands near the resonance frequencies, the refractive
index is influenced by the resonances over the entire spectral range

with o, := neqe’/eomew];. As can be seen in Fig.2.19, showing the calculated
refractive index and absorption coefficient of a medium with two resonances, there
is a spectral range between the resonances where absorption is very low while the
impact of the resonances on the dispersion is quite significant. The reason for this
is that the imaginary part of the susceptibility, which is, according to Eq. (1.65),
responsible for the energy transfer from the field to the medium, decreases with
1/(w — wp)?, while the real part follows a broader 1/(w — wy)—dependence.
The resonance frequency scales with 1/, /m.; assuming that the “spring constant”
a is similar for different microscopic systems, the resonance frequencies of an
electron and a hydrogen ion (with a mass of 1836 m,), respectively, differ be a factor
of +/1836 & 40; since typical electronic resonance frequencies lie in the near UV
spectral range, vibrational resonances of ions and atoms are located in the IR. The
large spectral separation between electronic and vibronic resonances is responsible

for the unique “spectral window” between IR and UV, i.e., for the transparency of
most dielectrics in the visible.

2.2.2.2 Diluted Materials

Many photonic materials consist of a transparent host material with refractive index
ny that is doped with (or contaminated by) absorbing atoms, ions, or molecules in
low concentrations. The susceptibility of the composite material is then a sum of the
dominating, real valued host susceptibility y, = n2 — 1 and the complex dopant
contribution Y4, that is relatively small due to the low concentration; the resulting
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complex refractive index is given by

X/ X// 1/2
n—ijk = \/(1 + w) + X T = nw (1 + # +j%) . (2.73)
w w

Assuming | f4ot|/n2, < 1, we can use the approximation /1 +x ~ 1 + x/2 to
obtain

n=ny+ (2.74)
2Ny

Xdot
= —— 2.75
K 2, (2.75)

and, with Eq. (2.71)

"
o = — Kot (2.76)

Ny

In “diluted” media, the spectral shape of k therefore follows the Lorentz lineshape
of xi.(w) [Eq. (2.61)]; this also holds for the absorption coefficient &, provided that
the bandwidth of the resonance is small.

2.2.2.3 Reflectance of Strongly Absorbing Media

The Fresnel coefficients (Table 2.1) and related equations are also valid for complex-
valued refractive index. At normal incidence, in particular, the reflectance at the
interface between air (n; = 1) and an absorber 7, = n — jk is given by

-1 2 2
_e=ae @77
(n+1)* +«2

The complex refractive index as displayed in Fig. 2.18 yields a reflectance as shown

in Fig.2.20. It is interesting to note that strong resonant absorption results in a
spectral band of high reflectance.

2.2.3 Free Electron Gas Model of Metals

The resonant behavior discussed above is due to the restoring force ax in the
equation of motion Eq. (2.51) and is characteristic for bound electrons. Many optical
and electronic properties of metals, on the other hand, can be described in good
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Fig. 2.20 Reflectance R and 0.9
absorption coefficient « of an
absorbing dielectric medium
according to the 0.7
Drude-Lorentz model

0.8

0.6
0.5

['n-e]o

0.4
0.3
0.2
0.1

0

0.6 0.8 1 1.2 1.4 1.6

(w—wp)/wo

approximation by modeling the conduction electrons as a free electron gas, i.e., by
setting the restoring force in the equation of motion equal to zero

X4+ M'x=—2E@); (2.78)
Me

the complex susceptibility y(w) according to Eq. (2.56) is then

2
J(w) = — (nee ) 1 (2.79)

gome ) w? —jol”

The physical source of the damping term in metals are electron collisions that
occur within an average collision time t.; to establish a relation between I" and
7., we expose the electrons to a constant electric field; the stationary velocity of the
electrons according to Eq. (2.78) is

e
mel”

x=—-—FE. (2.80)

Assuming that the electron velocity is completely randomized by a collision and
the average velocity immediately after a collision is consequently equal to zero, the
average velocity of the electrons in the static field is also equal to the acceleration of
the electrons, —(e/m¢)E(t), multiplied with the average time 7. between consecutive
collisions

e

x=——r1E, (2.81)
nme
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so that we can set

r=—. (2.82)

Te

In order to relate 7. to a macroscopic observable (namely the conductivity), we
multiply x with the density of free electrons n, and the electron charge —e to obtain
the current density

e Te€?

j= —neex = E = o.E, (2.83)

Me

where o, is the conductivity of the metal, so that we finally obtain

1 nee?
I'=—= . (2.84)
Te  Ocle
Equation (2.79) can now be cast in the form
2.2
y = ——pfe (2.85)
1 + w212
2
” @pTe
= 2.86
X o(l + w?t?) (2.86)
where
2
W2 = 2 (2.87)
EoMe
is the so-called plasma frequency.
Aluminum, for example, has a conductivity of 0. = 36 x 10° 27 'm™! and
an electron density of ne = 0.18 x 10°m™3, so that 7. &~ 7 x 107'%s. The
plasma frequency of aluminum, according to Eq.(2.87), is w, = 24 X 105571,

corresponding to a photon energy of 15.8 eV or a wavelength of 78 nm (UV).

At frequencies below w,, k is very large (Fig.2.21), resulting in the high
reflectance and short penetration depth that is characteristic for metals (Fig.2.22).
For w > w,, the assumption wt. >> 1 is usually justified, so that one can use the
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Fig. 2.21 Real and imaginary part of the complex refractive index of aluminum: measured values
(dots) and theoretical values according to the Drude model; data from Palik (1997)
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Fig. 2.22 Spectral reflectance R and absorption length 1/« of aluminum: measured values (dots)
and theoretical values according to the Drude model; data from Palik (1997)

approximations
2
o,
X/ I~ ——z, X” ~ 0 (288)
w
and therefore
+1 a)g - 1 a)g (2.89)
n= = - — ~1l——. .
4 w? 2w?
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In the vicinity of the plasma frequency, the refractive index is much smaller than 1,
implying a very large value of the phase velocity and of the ratio A/Ao; this means
that the electron plasma oscillates in phase over a large distance. Above wp, the
refractive index remains n < 1 and k¥ & 0; metals therefore become transparent
in the far UV and provide, at large angles of incidence, total external reflection for
light incident from the vacuum. The latter effect is exploited for the design of UV-
and X-ray reflective optics (refractive optics cannot be realized in this spectral range
because of n ~ 1).

The detailed optical properties of metals are, of course, more complicated—the
excellent agreement of the experimental data for aluminum with the Drude model is
rather exceptional. Nonetheless, important features of the optics of metals in general
are predicted correctly by the model. The electrons of doped semiconductors can
also be modeled as a free electron gas; since the electron density n. can be controlled
by the doping level, the plasma frequency can be tuned over a wide range, allowing
one to produce, for example, IR-mirrors with a sharp cutoff at w,.

2.2.4 Kramers-Kronig Relations

The polarization P(f) (represented here as a scalar) at a given instant of time is the
integrated response of the medium to the electric field up to that instant. Provided
that the interaction is linear, we can write

P(t) = / = h(t —t)eoE() dr, (2.90)

—0o0

where A(f) represents the “memory function” of the medium. To understand the
meaning of /(7), we assume that the incident field is proportional to a Dirac delta-
impulse E(7) « §(¢) arriving at ¢/ = 0. The resulting time dependent polarization is
then proportional to 4(t), which is consequently called impulse response function.

If we apply, instead, an oscillating field E(f) = Re[E(w)e™'], then P() =
Re [P(w)ei'] will oscillate at w and we obtain, with ¢/ :=t — ¢’

P(w)e”! = / h(t — {)soE(w)e®” df
o0

= soE(w)e / h(f"e " ar’ (2.91)

—00

Therefore,

P(w) = gE(0)H(w), (2.92)
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where

H(w) = / ” h(f)e 3 dr (2.93)

is the Fourier transform of the impulse response. A comparison with Eq. (1.7) shows
that this so-called transfer function is identical to the susceptibility

Y1) =1 (@) +jx"(w) = H). (2.94)

As a response function relating two real valued observables, 4(f) must also be real
valued. Moreover, h(f) must vanish for negative times, i2(f < 0) = O since in a
causal system, the response cannot precede the stimulus. We therefore can write,
with Eq. (2.93),

¥ (@) = /Oooh(t) cos wt dt

o0

1 (w) = —/ h(?) sin wt dt (2.95)
0
which are the Fourier (Co)Sinus-transforms of A(¢); obviously, y'(—w) = x'(w) and
x"(—w) = —y"(w), and therefore j(—w) = j*(w). The inverse transformation
1 o :

h(t) = —/ 7 () dw (2.96)

21 J oo

can be written as
_ 1 *® ’ " .
h(t) = — [)( (w) coswt — y"(w) sin a)t] dow. (2.97)
T Jo

Fort > 0, h(—t) = 0 and h(¢) = h(t) & h(—t) and we obtain

2 o0

h(t) = —/ ¥ (w) coswtdw =
T Jo

2 o
= / X' () sinwt dw. (2.98)
0

As a consequence of causality, there is a one-to-one relation between the real
and imaginary parts of the transfer function. To obtain a more explicit result, we
substitute Eq. (2.98) in Eq. (2.95)

2 o0 o
Y (w) = ——/ cos wt/ ¥ (@) sinw'tdw’ dt
T Jo 0
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2 o0 o
¥ (w) = ——/ sin a)t/ ¥ (@) cosw'tdw’ dt (2.99)
T Jo 0
and obtain
2 o0 o0
¥ (@) = ——/ X”(w’)/ cos wt sinw’t dt dw’
T Jo 0
2 o0 o
¥ (w) = ——/ )(’(a)’)/ sinwt cos w'tdt dw’. (2.100)
T Jo 0
Applying
o0
/ coswtsinw’tdt =
0

w/z _ wz

@

——— (2.101)

o0
/ sinwtcos 't dt =
0

we finally obtain the so-called Kramers—Kronig relations

@ =P / oL@y,

w/Z _ wz

1 (@) = P / ox(@) 4 (2.102)

02— wfz

where P denotes the Cauchy principal value. These relations show that any
absorption mechanism inevitably produces dispersion. Moreover, it allows us to
calculate, for example, the dispersion from experimentally obtained absorption data.

The Kramers—Kronig relations also apply to other complex material properties
(Hodgson 1970; Lucarini et al. 2005; Toll 1956) such as n = n — jk. To warrant the
convergence of the integrals, one uses (n — 1) as real part and obtains

n@)—1= 79 / “’lz'cfww)z do’ (2.103)
k(@) = P / ngg‘o_/)w_ U o, (2.104)

Similar relations hold for the complex reflection coefficientr = (n—1)/(n+ 1) =
|r|e’? at the surface of an absorptive medium with complex refractive index 7; for
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Inr = In|r| + j¢ one obtains

a)ln|r(w’)|

$(w) = — 7> / do’, (2.105)

which is an important relation because |r| can be measured relatively easily,
allowing one to determine 7.

2.3  Wave Propagation in Anisotropic Media

We now extend our treatment of wave propagation to optically anisotropic media
(usually crystals), where the relation between P and E (and therefore D and E)
depends on the direction of E within the medium. In the framework of the linear
oscillator model, the reason for this is the anisotropy of the restoring force.

One consequence of optical anisotropy is the dependence of the propagation
index on the direction of the wave vector and the polarization state of the wave.
As we shall see, for a given direction of the wave vector there exist two linear
polarization states with well defined, generally different propagation indices. At a
border between an anisotropic medium and another one, the two states are refracted
in different directions—this is the reason why anisotropic media are also called
birefringent.

In an anisotropic, linear medium, the vectors P and E are generally not collinear,
but related by the more general linear equation

Py =eoxuEr + sox12E2 + o 13E3
Py = eox21E1 + g0 2k + g0 x3E3
P3 = gox31E1 + €0 x32E2 + g0 x33E3, (2.106)

or
Pi=go ) yiEj: (2.107)

in the following we will adopt Einstein’s convention, according to which the double
occurrence of an index in one term implies summation over the values of this index,
so that Eq. (2.107) can be written as

P; = eoyiE: (2.108)
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In vector notation,
P = gy xE, (2.109)

where y is the susceptibility tensor* with the components Xij-

2.3.1 Symmetry Properties of Crystals

2.3.1.1 Transformation of Tensors

Tensors are usually represented in a cartesian coordinate system and are written in
matrix form; the number of indices of the tensor components indicates the rank
of the tensor—P and E are tensors of first rank and y is a second rank tensor,
for example. The matrix representation of one and the same tensor is, of course,
different in different reference systems—we have discussed this fact already in
the context of the Jones formalism. The results Egs. (1.107) and (1.113) for the
transformation of two-dimensional Jones vectors and matrices can be immediately
extended to three-dimensional vectors and tensors: if the transformation between
the two (cartesian) coordinate systems is given by the matrix A;, i,j = 1...3, then
a vector a with the original coordinates a; is transformed to

al’. = Ajaj; (2.110)
the inverse transformation is
a = Ay'a). (2.111)

A tensor m with components mj; is transformed to
mly = AympAy". (2.112)

The transformations relevant in the present context are rotations, mirror operations
including inversion, and combinations thereof; Table 2.2 summarizes the corre-
sponding transformation matrices.

A common property of these transformation matrices is that the inverse matrix is
obtained by transposition, A;l = Ay,; the transformation (2.112) can therefore be
written as

mjy = AgAgmjy. (2.113)

4 An excellent introduction into tensors can be found in Nye (1985).
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Table 2.2 Selected

symmetry operations and Operation Transformation matrix
corresponding transformation Rotati i T
matrices otation around z-axis cosgr singg 0

—singg cosgg 0

Reflection at xy-plane 10 0

01 0

001
Inversion __ 1 0 0
0o -1 0
0 0 —1

As in the case of Jones matrices, a transformation of the reference system is
closely related to a physical transformation of the system under study: the tensor
components of a crystal that is rotated by an angle —¢g are equal to the components
of the crystal in a reference system rotated by ¢r. By the same token, physical
reflection and inversion of the crystal (even if it is not physically possible) is
equivalent to reflection and inversion of the reference frame.

Crystalline materials are characterized by their symmetry, i.e., by the invariance
of their properties under certain transformations; threefold rotational symmetry,
for example, means that the material is indistinguishable from the same material,
rotated by 120° around a certain axis. The tensor components of such a medium
must therefore be solutions of the equationm’ = m

AijAkajk = mj, (2114)

where Aj; is any of the symmetry operations of the material. If the system is
invariant under several different transformations, one obtains a set of such equations,
forcing certain components to be zero and others to be linearly dependent of each
other. Isotropic media, for example, are invariant under arbitrary rotations, and
centrosymmetric media are invariant under inversion. As a result, the susceptibility
tensor of isotropic, centrosymmetric media has the form y; = &;x, where x
is a scalar; all off-diagonal components are zero and the diagonal elements are
identical.’

3An isotropic medium is not necessarily centrosymmetric; a chiral liquid is an example of an
isotropic, yet non-centrosymmetric medium, see Sect. 2.4.1.
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In Chap.8, we will encounter tensors of higher rank such as the quadratic
nonlinear susceptibility y® that links the square of the electric field to the nonlinear
polarization,

PP = SOXE;ZEiEk' (2.115)

As can be easily shown, the transformation of such a third rank tensor follows the
pattern of Eq. (2.113)

My = AiAmjAncmiy; (2.116)
for a fourth rank tensor,

m’ = AriAsjAukAvlmijkl- (21 17)

rsuv

2.3.1.2 Principal Axes
The vectors D and E are related by Eq. (1.8)

D= 80E+P:€0€E:80E(1+X) (2118)

where & is the permittivity tensor and

p—
I
S O =
S = O

0
0 (2.119)
1

is the second rank unit tensor. In tensor notation,
e=1+y. (2.120)

In nonmagnetic, lossless media, the tensors € and y are symmetric (see, e.g., Haus
1984)

Ejj = &ji (2.121)

so that they can be diagonalized, i.e., a coordinate system can be found where e has
the form

€11 0 0 Ex) 0 0
e=| 0en 0 |=| 0ey 0 |. (2.122)
0 0 €33 0 0 €(2)
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Fig. 2.23 If the E vector of a R
wave is parallel to a principal
axis (i) of a birefringent
medium, the wave is a
polarization eigenstate with
the propagation index

1/2 .
ng = &g the corresponding
k vector is normal to (i) and
has the length kon;

(k)

The axes of this reference frame are called principal axes of the medium, and &
are called principal values of .

If E is parallel to a principal axis (i), then D = geE = goe)E. If & is not
yet diagonal, the principal axes can therefore be found by solving the equation
eE = ¢,)E, i.e., by finding the eigenvectors of the matrix €; the eigenvectors define
the direction of the principal axes and the corresponding eigenvalues are equal to
the principal values. Since symmetric matrices have orthogonal eigenvectors, the
reference frame generated by the principal axes is orthogonal.

The scalar relation D = gog,)E that is valid for eigenstates of & is formally
identical to the relation between D and E in an isotropic medium. A light wave with
an electric field parallel to a principal axis (i) therefore propagates, according to
the dispersion relation Eq. (1.28) for isotropic media, with the phase velocity co/n;

where ng) = 8(152. The corresponding wave vector is normal to (i) and has the length
k()n(,') (Flg 223)

The square roots of the principal values, ng = 6‘(152, are denoted as refractive
indices of the medium (Table 2.3). If all principal values are different, the medium
is called, for reasons that will become clear below, biaxial; if two out of the
three principal values are equal, and different from the third, the medium is called
uniaxial; in this case, the axis corresponding to the deviating principal value is
identified with the z-axis and n, is called extraordinary refractive index n., while
Ny = N(y) = R, is called ordinary refractive index.

2.3.1.3 Impermeability
In electro-optics and magneto-optics, the relation inverse to Eq. (1.8),

E=¢;'yD (2.123)
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Table 2.3 Refractive indices Material

Ny ny ne
(principal values) of selected & & ©

isotropic, uni- and biaxial Water 1333 |nw | ne

materials BK1 (Bor crown glass) | 1.510 | ny) | n
F3 (Flint glass) 1.613 | ngy n(x)
NaCl 1.544 N(x) N(x)
Quartz 1.544 | ngy 1.553
Rutile 2.616 | n(y 2.903
Calcite 1.658 | n(y 1.486
Sapphire 1.768 | ngy 1.660
Tourmaline 1.642 | ngy 1.622
Mica 1.560 | 1.594 | 1.599
Kalium nitrate 1.335 | 1.505 | 1.506

Fig. 2.24 If k is parallel to a (k)

principal axis (i) of an

anisoProp}c mgdium, the two i

polarization eigenstates are

parallel to the (j, k)-axes,

respectively, and propagate B

with the phase velocities

co/n(jk

T

is used, where 7 = &~! is known as the impermeability tensor; if & is given in
diagonal form, 7 is also diagonal and n; = 1/¢;

i 0 0 s(;i 0 0 n(jj 0 0
=] 0mnp 0 [=] 0 8&; 0 |=] 0 n&% 0 |. (2.124)
0 0 n33 0O O 8(_2)1 0 O n(_z)z

2.3.2 Propagation Along the Principal Axes

If the wave vector is parallel to a principal axis, then there are actually two
polarization states that oscillate parallel to one of the remaining axes and represent
polarization eigenstates (Fig. 2.24). If, for example, k is parallel to the y-axis, then
the two eigenstates are polarized along the x and z-axis, respectively, having the
wave numbers kon(y) and kon(;). A plate of thickness d, cut parallel to the x, z-plane,
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therefore serves as a linear retarder with
Apy = [n) — nelkod (2.125)

as described in Sect. 1.5.2; to be consistent with Table 1.3, we identify the x-axis
with the “fast” axis, i.e., the one with the smaller refractive index.

2.3.3 Propagation in Arbitrary Directions*
Consider a plane wave
E = Epe i) (2.126)
with a wave vector
k = nkoe, (2.127)
where the unit vector e defines the direction of the wave vector. To find the

corresponding propagation index n, we substitute this ansatz into the wave equa-
tion (1.15)

Vx(VXE)+ D =0 (2.128)
80C%al2 N '
and use Eq. (1.33) to obtain
w2
kx (kxE) = -—D; (2.129)
Soco

with Eq. (2.127) and ko = w/cy, this can be written as

2.2 2
" ex(exE) = ~_D. (2.130)

2 2
(o €0C)

Using the identity a x (b x ¢) = b(a - ¢) — c(a - b) and the relation D = g;¢E, we
obtain

eon’[E —e(e - E)] — g0¢E = 0; (2.131)

note that E — e(e - E) = —e x (e x E) is simply the transverse component of E.
Equation (2.131) can be cast in matrix form

ME =0 (2.132)
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with
n*(1 — e)zc) — & —nzexey —n’ece,
M = —nzexey n*(1 — ei) — &) —nzeyeZ , (2.133)
—n’ee, —n’eye; n*(1 — eg) — £

where we have assumed that e is diagonal. A condition for a non-trivial solution
n#0is

detM = 0; (2.134)

since the cubic terms cancel, this is a quadratic equation in the variable n. For
a given direction e, Eq.(2.134) provides two solutions [2(?]?, corresponding to
two wave vectors k = n('"?kpe; the directions of the corresponding E-vectors
(which are the polarization eigenstates for propagation in the direction e) result
from Eq. (2.132) after substitution of n'!:?). As we shall show, the two eigenstates
are mutually orthogonal because of the symmetry of e.

An alternative way of finding n? is to write Eq. (2.131) in the form

(n’1 —&)E = n’e(e-E) (2.135)

to obtain three equations

nze,-

0

Multiplying both sides with e; and taking the sum of the resulting equations, we
obtain

eE=) ——¢-E (2.137)
and finally the convenient (quadratic) equation

2.2 2.2 2.2
en en en

n—ex n—gy nt—egg

i (2.138)

2.3.3.1 k-Surfaces

For a given frequency w, we can represent all possible k-vectors in a cartesian
coordinate system with coordinates k., k,, k; (the k-space): we select a direc-
tion e, calculate the corresponding propagation indices n'?) and plot points at
n2(w/co)e, respectively; varying e, we obtain two surfaces that are called k-
surfaces (Fig.2.25) and are actually surfaces of constant w in k-space. It is
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(b)
Ny=Ng,) =N, =N Ny =N =N, <N,=N,

spherical/ellipsoidal k-surfaces

spherical k-surface

k/k, I k,/k,

rotational symmetric

N>,y >N,

4th order k-surfaces

2 optical axes

Fig. 2.25 Normalized k-surfaces for (a) isotropic, (b) uniaxial, and (c¢) biaxial media

instructive to calculate the intersection of these surfaces with one of the coordinate
planes, say the k,/k.-plane (defined by e, = 0). Equation (2.134) yields

detM = My (MxM33 — My3M3;) = 0, (2.139)

where M; are the components of M. With e2 + e§ +e?=1landg; = n%i) we obtain
two equations

n*e? + n*e? — n%x) =0

y z
(nze§ - n(zz)) (nzef - n(zy)) — n4e§e§ =0 (2.140)
which, because of k; = nkge;, are equivalent to
2 2 2 12

ky + kZ = n(x)ko (2.141)

2

ky K

+ 1, (2.142)

2 12 2 .2
”(z)ko n(y)ko

that is a circle with radius kon(,) and an ellipse with axes kon(y, and kon(;).
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Fig. 2.26 Cross section through the (normalized) k-surfaces of a uniaxial medium; solid circles
refer to ordinary waves, dashed curves are ellipses and refer to extraordinary waves

For a uniaxial medium (n) = ng) = n, and ny = ne), the k-surface is
rotationally symmetric around the k,-axis, forming a sphere and an ellipsoid

k; + &y + k2 = (noko)’ (2.143)

2
ko kb K
(ncko)* ~ (ncko)* — (noko)?

=1, (2.144)

respectively, that touch each other at the poles of the rotation axis (Fig.2.25b).
Light travelling along this axis has the propagation index n, (the ordinary refractive
index), independent of its polarization; such an axis is called optical axis (o.a.).

In any other propagation direction, there are two distinct polarization eigenstates
with different propagation indices. Because of the rotational symmetry, the direction
of the wave vector is fully characterized by the angle 6 between k and the optical
axis (Fig.2.26a). According to Eq.(2.143), one propagation index is equal to the
ordinary index n,; evidently, the corresponding eigenvector is normal to the plane
formed by k and the optical axis. The second value follows, with k, = n(6)ko sin 8
and k, = n(6)ko cos 0, from Eq. (2.144) to be

1 cos’f sin® 6
n2(0)  n? n2 -’

(2.145)

Because of the orthogonality of the eigenstates (which will be proven below), the
corresponding eigenvector is coplanar with k and the optical axis.

In the fully anisotropic case (nn) # ng) # n()), the cross section of the
normalized k-surface (Fig.2.25c¢) with a plane normal to the principal axis (k)
consists of a circle with radius ng) and an ellipse with axes ng;, and n;, where
i, ], k are different from each other (Fig. 2.27). Obviously, circle and ellipse intersect
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kz/ko ky/k()

Y
(2) x \ ka/ko

n(x) n(x) ()

Fig. 2.27 Cross sections of the (normalized) k-surface of a biaxial medium with n¢) < ngy) < ng,)
along planes containing two of the principal axes

each other only if n(, is intermediate between n(;, and n(;. The four points of
intersection define two directions for which the propagation index is independent
of the polarization and are, by definition, optical axes. These axes lie in the plane
normal to principal axis (k) and enclose the angle 6,

Ny
0, = + arctan a0}
1

(2.146)

with the axis (i); as the refractive indices depend on the wavelength of the light, so
does the direction of the optical axes in biaxial media.

2.3.3.2 Polarization Eigenstates
For uniaxial media, the orientation of the eigenstates can be summarized as follows:

1. if k| o.a., (Fig.2.26a), any polarization is an eigenstate (the eigenstates are
degenerate) with propagation index #,

2. ifk 1 o.a., (Fig. 2.26b), one eigenstate with propagationindex n. = n(;is || o.a.,
the second, with index n, = n(,),is L o.a.and 1 k

3. for any other direction of k (Fig.2.26a), one eigenstate with the index n, (the
“ordinary” wave) is polarized perpendicular to the plane formed by o.a. and k,
the second one (the “extraordinary” wave) is polarized parallel to this plane, and
its propagation index is given by Eq. (2.145).

In biaxial media, the polarization eigenstates in general must be found by sub-
stituting the eigenvalues n? into Eq.(2.132) and solving for the ratios E;/E; that
determine the direction of the respective eigenvector. If the wave vector happens to
be perpendicular to a principal axis (i), the situation is simplified (Fig.2.27):

1. if k||(j), one eigenstate, with propagation index ng;), is ||(), while the second,
with index n, is || (k)
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Table 2.4 Geometric

. ) D=-lkxH—->DLlH
relations between various ©

field vectors; each of the —-DLlk
triplesH,D,kandH,E,S, H=;kXE—>kJ_H
respectively, constitutes an How
orthogonal tripod (Fig. 2.28). —ELH
D™ and D® represent pairs S=ExH —>S.H
of polarization eigenstates

—-ELS

8,‘j = Sj,' g D(l) 1 D(Z)

2. if k || 0.a., any polarization is an eigenstate (the eigenstates are degenerate) with
propagation index ny;

3. for any other k L (i), one eigenstate with the index n; is || (i), while the second
one (the “extraordinary” wave) lies in the plane L (i) and its propagation index
is given by

1 20 sin’@
= = (2.147)
n*(0) () )

where 0 is the angle between k and (k).

2.3.3.3 Orthogonality of the Eigenstates

We now want to prove that the polarization eigenstates (1) and (2) of an anisotropic
medium are mutually orthogonal. From Maxwell’s equation follows that E, D, and
k = ke lie in a common plane normal to H (Table 2.4); this plane is also the plane of
polarization (Fig. 2.28). Since D is normal to k, we have to show that D) 1. D@,
The term e(e - E) in Eq.(2.131) is the longitudinal component E, of E, so that
E; = [E — e(e - E)] is the transverse component, and Eq. (2.131) can be written as

DU — ¢ [n(l,z)]inle), (2.148)

From g; = ¢j; follows the reciprocity relation Efl)s,jE;z) = E;z)ejiEfl) (in Einstein
notation), i.e.,

ED.D? = E®.DpW; (2.149)
substituting Eq. (2.148) in Eq. (2.149) results in

[@TEV.EP = [V E? - ED. (2.150)
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Fig. 2.28 Vectors k, E, D,
H, and S in an anisotropic
medium (compare Table 2.4):
D and H are parallel to the
phase front, which is normal
to the wave vector k; E, D, S,
and k are coplanar

Since E(V -Ef) = (E(Ll) + Eil) ) -Ef) = Egl) -Ef) , we obtain
[[nu)]z _ [n<2>]2] gV .E? = 0. (2.151)

For non-degenerate eigenstates n") # n® follows Eg) 4 E?’ and with Eq. (2.148)
finally D 1 D@,

2.3.3.4 Index Ellipsoid

The k-surface is just one out of a manifold of graphical descriptions of wave
propagation in anisotropic materials. Another one is the so-called indicatrix or index
ellipsoid (Fig.2.29), a surface given by the equation

2 2 2
NI AR S (2.152)

2 2 2
o "y o

As can be shown (see, e.g., Nye 1985 or Born and Wolf 1999), this scheme allows us
to determine, for a given direction e of the wave vector, the polarization eigenstates
and their respective propagation index: the intersection of the ellipsoid with a plane
L e through the origin is an ellipse with half-axes that are parallel to the eigenstates
and have a length equal to the corresponding n.

For uniaxial media, the indicatrix is rotationally symmetric, and the intersection
with a plane normal to the k-vector is an ellipse with half-axes of length n, and
(cos? §/n? + sin? 6/n?)~1/2, where 6 is the angle between e and the optical axis;
this result is in agreement with Eq. (2.145).
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Fig. 2.29 Indicatrix (index z
ellipsoid) of a biaxial
material; also shown is the Nz)

graphical construction of the
eigenstates and corresponding
propagation indices for a
given direction e of the wave
vector

Index ellipsoid

Index ellipse

2.3.3.5 Anisotropic Media: Reflection and Refraction
The phase matching condition Eq. (2.5), kh = k| = k|, at interfaces between
different media applies also to anisotropic media. The fact, however, that the
absolute value of the transmitted wave vector depends on the polarization, results
in the existence of two refracted waves (a phenomenon called birefringence).
Figure 2.30 demonstrates this effect for the simple example of an interface between
an isotropic medium and a uniaxial medium with the optical axis parallel to the
plane of incidence. The o-component of the incident wave propagates as ordinary

transmitted wave and is refracted according to

singt° = M gin g1, (2.153)
no
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Fig. 2.30 Refraction and
reflection at an interface
between an isotropic and a
uniaxial medium: the
refracted wave vectors
terminate at the k-surfaces at
ki = Ky

while the w-polarized component propagates as extraordinary wave with a wave
vector direction given by

n(6%°) sin 6% = n; sin 6'. (2.154)

If the optical axis is normal to the interface plane,
Nellg

222 4 1202 — n2) sin? O
\/”o”e+”1(”e n2) sin” 0

sin 9% =

sin @' (2.155)

As we shall see, the direction of the refracted extraordinary beam deviates from
this direction; for extraordinary waves, Snell’s law applies only to the phase front
normal, not to the energy flow.

2.3.3.6 Anisotropic Media: Energy Transport

The energy transport of the electromagnetic field is given by the Poynting vector
S = E x H [Eq.(1.55)]. If E is not normal to Kk, the direction of the energy

flow deviates from that of the wave vector (Fig.2.28). Since D 1 kand E 1 S

(Table 2.4), the angle ¢ between S and k is equal to that between E = & ~'D and D

De~'D

_ 2.156
DJe-'D] (2.156)

¢ = arccos

Although the ray or beam velocity Eq. (1.46) vy, = Viw(k), is defined without
regard to the Poynting vector S, the two must have the same direction because the
energy flow is spatially confined to the beam. Since the k-surface is the surface of
constant @ in k-space, the direction of the ray velocity is given by the k-surface
normal (Fig.2.31). The extraordinary k-surface Eq.(2.144) of a uniaxial material,
for example, has a normal vector [ex /&ec, ey/€c. 2/ 80], where e is the unit vector in
the direction of k. Assuming e to lie in the x, z-plane, enclosing an angle of 6 with
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(a) (b)
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Fig. 2.31 Phase front normal (||k) and ray velocity (||S) in a uniaxial medium: (a) ordinary wave,
(b) extraordinary wave
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Fig. 2.32 Angle ¢ between k and S for various uniaxial materials; 6 is the angle between the
k-vector and the optical axis

the z-axis, we obtain

sin® 0/ + cos® /&,
[(sin 6/£c)? + (cos 0/£,)7]*

¢ = arccos (2.157)

in agreement with Eq.(2.156); Fig.2.32 shows the deviation for three different
uniaxial materials as a function of 6.

The deviation between the direction of k and S is particularly striking if a beam
is transmitted through an anisotropic medium under normal incidence: according
to Snell’s law, the wave vector of the transmitted light is not refracted, while the
transmitted beam is split into an ordinary beam, normal to the boundary, and an
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Fig. 2.33 Beam refraction in mixed pol in
a uniaxial material under
normal incidence
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Fig. 2.34 A Glan—

Thompson prism consisting

of two trigonal prisms of

calcite (n, > ne), connected

by a thin layer of cement with Optical axis—
a refractive index matching
ne; while the w-polarized
component of the incoming
wave is totally reflected, the - —$¢
o-polarized component is Ordinary wave
almost completely e
transmitted Extraordinary wave

Cement

extraordinary that propagates under the angle ¢ given by Eq.(2.157) in respect to
the interface normal (Fig. 2.33).

In Sect. 2.3.2, we have already described the realization of linear retarders using
thin plates of anisotropic media, usually cut normal to one of the principal axes
to avoid any beam walk-off between the two polarization eigenstates as described
above.

The beam offset shown in Fig.2.33 can be exploited to build a polarizer that
separates the two polarization components of an incident beam into two parallel
output beams, provided that the crystal is long enough. Another scheme to realize a
polarization beam splitter is based on the polarization dependence of the critical
angle of total reflection at an interface between a birefringent material and a
medium of lower optical density. A high quality polarization beam splitter, the
Glan-Thompson prism, relies on this effect; its design principle is shown in
Fig.2.34.
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2.3.4 Electro-Optic Devices

The susceptibility and thus the permittivity tensor of a material can be altered by an
external electrostatic field. This effect is called Pockels- or electro-optic Kerr effect,
respectively, depending on whether the change is a linear or a quadratic function
of he applied field. We will discuss these effects in more detail in Sect. 8.4.1; as
an important application of the Pockels effect, we describe here an electrically
controlled linear retarder, known as Pockels cell. Such a cell is typically a slab of
KDP (KH,PQy), cut normal to its z-axis. In the absence of an electrostatic field,
KDP is a uniaxial crystal; if an electric field E% is applied in z-direction it becomes
biaxial with new principal axes x' and y’ (Fig.2.35) and corresponding principal

Transparent
electrodes

Fig. 2.35 Electro-optic wave plate (Pockels cell); the phase delay between the two polarization
eigenstates is controlled by the applied voltage
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values of the propagation index [Eq. (8.206)]

3

T e I (2.158)
«.y') = No ) 63L3 . .

For light propagating along the z-axis, the slab of thickness d acts as linear retarder
inducing a phase difference of A¢p = nlre3ESkod = n(U/U,), where U is the
applied voltage so that Egc =U/d,and U, = 2;3‘;63 is the voltage required to reach
a phase difference of 7. In the x’-y’-coordinate f;ame, the Jones matrix of the plate
is then given by

10
T = [0 e—jn(U/U,,)i| ; (2.159)

note that the thickness of the slab does not influence the induced phase difference.
With the values given in Table 8.4, we obtain U, = 14.6kV at a wavelength of
Ao = 1.064um. At U = Uy, the cell acts as a half-wave plate (Table 1.3) that
converts an input polarization state into its mirror image.

Such a retarder, placed between two polarizers, can act as an electronically
controlled optical shutter or modulator (Fig.2.36). If the polarizers are oriented
under 45° in respect to the x'-y’-system (see Table 1.3), the Jones matrix of this
sequence in the x'/y’ reference frame is

_a oo 11
T_Z[ll 0e i@ || 11| (2.160)

With the input state Ji, = |: i }, the output state is

Jout = Jincos? (Jr v ) (2.161)

2U,

The Pockels cell can be operated as a switch (with an extinction ratio of up to 10™*)
or a modulator; for the latter purpose the phase difference at U = 0 is shifted to
/2 by inserting a quarter wave plate so as to operate in the linear range of the
transmission function.

There are other possible geometries to realize such a retarder in KDP, but the
advantage of this longitudinal geometry (E||k) is that the aperture of the cell can
be very large and does not influence the required voltage. The electrodes for the
application of the electric field need, of course, to be transparent and are usually
made out of transparent conductive oxides (TCOs).
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Fig. 2.36 Pockels cell as Output
electro-optic switch or

modulator, respectively

Output polarizer
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A transverse geometry can be realized by using the same orientation of the elec-
tric field but choosing the wave propagation along the y’-axis. The phase difference
between the polarization components parallel to z and x"-axes, respectively, is then
27 [(no — ne) — n3re3ES°/2] 1/ Ao. In waveguides, with transverse dimensions in the
pm-range, one can, with an applied voltage of a few Volt, obtain a phase modulation
of 7 within an interaction length of a few mm. Electro-optic waveguide structures
(Sect. 5.3) are usually based on lithium niobate, but the principle of operation is the
same.

2.3.5 Liquid Crystal Devices

Liquid crystals (LC) are liquid phases of molecules that arrange themselves
spontaneously in long-range order. In the nematic phase, for example, rod-like
molecules align themselves along a common direction, which can be prescribed,
e.g., by a glass substrate that is treated with some sort of brushing in the desired
direction.
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Fig. 2.37 Alignment of an A A A A
LC-molecule in an electric T‘G\

field

\9.<

The principle of operation of LC-devices relies on the anisotropic molecular
polarizability that gives rise to an anisotropic permeability of the nematic phase;
a liquid crystal film can thus be understood as a thin uniaxial slab with the optical
axis parallel to the long axis of the molecules. Light propagating normal to the film
plane has two polarization eigenstates, one parallel to the optical axis, with refractive
index n,, the other one normal to it with refractive index n.. An LC film of thickness
d thus acts as a linear retarder with a phase difference of 27 (n, — ne)d/Ao.

A (quasi-static) electric field E normal to the glass substrate exerts a torque on
the molecules that tends to align them parallel to the field (Fig.2.37), even if the
molecules do not have an intrinsic dipole moment: molecules that are (because of
their thermal motion) oriented slightly out of plane experience a field component
along their axis, which induces a dipole moment proportional to the field; as the
torque is proportional to the field and to the dipole moment, it scales with the square
of the field. Depending on the resulting average angle 6(E) of the molecular axis in
respect to the surface normal, the propagation index of light polarized along the
initial direction of the molecules is then given by Eq. (2.147)

2 ‘2
21 _ cos 0(U)  sin H(U). 2.162)
The resulting refractive index anisotropy can therefore adjusted between the values
no, — ne and 0 (Fig.2.38).

Arranged between two polarizers, or a polarizer and a mirror, such LC films
can operate as optical shutters or modulators, similar to a Pockels cell; since the
response is independent of the sign of the electric field, however, it rather resembles
the (quadratic) electro-optic Kerr effect. As the variation of the refractive properties
of LC films requires the rotation of molecules in a viscous environment, it is much
slower than the Kerr effect, which is of purely electronic nature.

The most important application of such electro-optic LC-devices is in the field
of display technology, where an array of small pixels of LCs is controlled by
localized electrodes (see, e.g., Lueder 2010). In combination with polarizers, they
act as spatially resolved transmittance modulators; in certain photonic applications,
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(a) Incident light (b) Incident light
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Fig. 2.38 Liquid crystal (LC) film between transparent electrodes: (a) without applied voltage,
(b) with applied (AC) voltage

S S S S S S S SSSSSS l

they are also employed as phase modulators that can modify the phase front of
transmitted light.

2.4  Other Propagation Effects
2.4.1 Optical Activity

Optical activity is a manifestation of circular birefringence: for a given wave vector,
there are two circularly polarized eigenstates o= with different propagation indices
n*. An optically active medium of thickness d is therefore a circular retarder
inducing a phase difference of

Apy = 2n(n~ — n+)ki (2.163)
0

between the two eigenstates. According to Eq. (1.124), such a retarder rotates any
input state by

o =nmt — n_)/xi. (2.164)
0

We restrict our discussion of optical activity to isotropic media; additional linear
birefringence is possible in anisotropic media, and can be observed, for example, in
crystalline quartz. The symmetry requirement for optical activity is, as we shall see,
the lack of centrosymmetry; an example for an isotropic, optically active medium
is a liquid solution of chiral molecules such as dextrose. The microscopic origin of
optical activity is the rotating current induced in a molecule by the oscillating B-field
of the light. In chiral molecules (that structurally resemble a helix), this (helical)
current produces an electric dipole moment proportional to dB/dr = —V x E; the
total electric displacement density then has the form

D = gpeE + 0§V x E. (2.165)
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The appearance of the V-operator in this equation implies that the response of the
medium in a point x does not depend only on the electric field in this point but also
on the field in the neighborhood—just as the response at time ¢ generally depends
on the field in the past—in other words, the response of the medium is nonlocal.
The general expression for the electric displacement density including nonlocal
contributions is, in Einstein notation,

D; = SosijEj + 8OSijijEk (2.166)

where £ is a material property that relates three vectors—V, E, and D, and is
therefore a third rank tensor. In isotropic, centrosymmetric media, all components of
& must satisfy & = (—1)3&; and are consequently zero; in non-centrosymmetric
isotropic media, symmetry requires & = €&, where € is the permutation
symbol. Thus, £123 = €31 = &2 = =& = —&uz = =& = &, while all
remaining components are zero. For a plane wave with wave vector k, Eq. (1.33)
allows us to replace V with —jk; in isotropic media, we can, without loss of
generality, choose the z- axis as propagation direction, so that k = [0,0,k].
Equation (2.166) then assumes the form

e —jék 0
D=¢y| jék ¢ 0 |E. (2.167)
0 0 ¢

Substituting this result in wave equation Eq.(2.130), we obtain the eigenvalue
equation ME = 0 with

n*—¢e —jkk 0
M=| itk n*—¢ 0 |. (2.168)
0 0 £

From det M = 0 we obtain the eigenvalues

k
nt=eték~n £ 2‘5— (2.169)
1o

with ny = /&, corresponding to circularly polarized eigenstates 0=, The resulting
rotation angle is given by Eq. (2.164).

Analog to the case of anisotropic media, the two eigenstates are usually refracted
in different directions at an interface of an optically active medium; circular
polarizers can be realized by exploiting the different critical angles of total reflection
at an interface.
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2.4.2 Magneto-Optic Faraday Effect

Optical activity can be understood as resulting from the magnetic component of the
electromagnetic light wave; we now want to consider the effect of a static, external
magnetic field with flux density B on wave propagation; similar to the treatment
of the electro-optic effect (Sect. 8.4.1) we start by expanding the permittivity as a
function of B*':

i (B™) = &) + B + ..., (2.170)

where ;i are the components of the magneto-optic tensor. Unlike the electro-
optic tensor or the nonlocal permittivity tensor &, the magneto-optic tensor does
not vanish in centrosymmetric media, because B, in contrast to D and E, is a
pseudo-vector that does not change sign under inversion (this can by understood by
considering the fact that a circular loop current which produces a magnetic field is
also invariant under inversion). Isotropy requires y;x = —je;ixy, where € is the
permutation symbol; in lossless media, € must be Hermitian (g;; = ejf';) for reasons
of energy conservation, so that y;; must be imaginary.

Assuming B to be parallel to the z-axis, the resulting electric displacement
density is

e _ijexl 0
D=¢g|jyB* ¢ 0 |E. (2.171)
0 0 =

For propagation in the z-direction, this relation resembles Eq. (2.167)—with similar
consequences for the wave propagation: the eigenstates are circularly polarized o,
with the propagation indices [compare Eq. (2.169)]

Bext
nt = Je£yBR ang+ Lo 2.172)

2}10

According to Eq.(2.164), the Faraday effect results in a rotation of the input
polarization state by the angle

o = 2V pextg —. ypexg, (2.173)
noAg

where V is the material specific and frequency dependent Verdet constant. Typ-
ical values for glasses are on the order of 1radT™'m™! at 1um wavelength;
selected (paramagnetic) rare earth doped materials show values of more than
—100rad T"'m™" at 1 um wavelength.
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2.4.2.1 Faraday Isolator

While the polarization rotation (which is defined in respect to the propagation direc-
tion) in isotropic optically active materials is independent of the direction of k, the
Faraday rotation depends on the orientation of k in respect to B®*': if the propagation
direction is reversed, the rotation also changes sign. The difference between the
two effects becomes particularly obvious if we consider the combination of an
optically active or magneto-optic medium, respectively, and a mirror, and look at
the polarization state of the light reflected by this setup. The corresponding Jones
matrix in the case of an optically active medium is

|:cos<p —simpi| [l 0:| |:cos<p —singoi| _ |:l 0i|’ (2174)
sing  cosg 0 —1 sing  cosg 0 —1

which is equivalent to simple reflection; the rotation due to optical activity is
compensated. Using a magneto-optic medium instead, the matrix is

|:cos(—<p) —sin(—<p)1| |: 1 0:| I:cos<p —sin¢i| _ |: 1 0] |:c052<p sin2<p:| ’ (2175)
sin(—¢)  cos(—¢) 0 -1 sing cosg 0 -1 sin2¢ cos2¢
that is a rotation by 2¢, followed by a reflection. In combination with a linear input

polarizer, a Faraday rotator with a rotation of ¢ = 45° per pass blocks reflections
completely, acting as so-called Faraday isolator (Fig.2.39).

2.4.2.2 Drude-Lorentz Model of the Faraday Effect

We now want to understand the Faraday effect within the Drude—Lorentz model; for
this purpose we supplement the force term in the equation of motion Eq. (2.51) with
the Lorentz force —e(v x B®") that acts on an electron moving at velocity v in a
magnetic field B

meX + bx + ax = —e [E(f) + % x B™]; (2.176)

as above, we assume that B and k are parallel to e = [0, 0, 1]. We use complex
amplitudes in the following and choose a circularly polarized base

£t = o 2.177)

xt =xto?, (2.178)

where the base vectors & = [, %j, O]\/LE have the property 6% x e = +jot.
Equation (2.52) then becomes

—e/me -+

ot ext
, B = E ., 2.179
Pl ) (W — @?) + joI” F w(e/m)B ( )
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\ Polarizer 2

Fig. 2.39 Nonreciprocal transmittance of a Faraday isolator: (a) forward propagation, (b) back-
ward propagation

and the susceptibility for circularly polarized light is given by the correspondingly
modified Eq. (2.56)

nee? 1

~+ /pext
B = .
X (BT gome (w3 — ®2) + joI'] F w(e/me)B™

(2.180)

_a_

This expression has the form ;- which can be approximated by & 37 forx < b.
Since the Lorentz term is much smaller than the other terms in the denominator, we
can write

FE(B™) &~ 7(0) £ FB™ = 7(0) + A7 (B™), (2.181)
where
e 1 - we
F=o———————7(0) ~ ——7(0); (2.182)

me [wf — 02 + jor ] wime
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the approximation is valid well below the resonance, v < wy. With Ay = Ag, the
permittivity tensor in the circular base is

&+ F(w)B™ 0 0
e = 0 e—F()B™0 | ; (2.183)
0 0 £

C

transformation into the linear base is obtained by Eq. (1.122), resulting in

€ —jF(w)B*™ 0
& = | jF(w)B™ £ 0] ; (2.184)
0 0 e

1
comparison with Eq. (2.171) allows us to identify
y = F(w) (2.185)
and to calculate the Verdet constant according to Eq. (2.173), using Eq. (2.182) and

Ao = 27TC()/C()

V=

D) =
nF(w) =] (2) L& (2.186)
HOAO wo

meco 2ng

The susceptibility of glass at a wavelength of 1 um is about § = n>—1 = 1.25;if we
assume the resonance to be in the UV (w/wy ~ 1071), Eq. (2.186) yields a Verdet
constant of about 1rad T~! m™, in surprisingly good agreement with experimental
values.

2.4.3 Wave Propagation in Moving Media*

A number of optical phenomena rely on effects that derive from the relative motion
of source, medium, and/or detector. The treatment of these effects is provided by
the theory of relativity and relies on the postulate that the vacuum velocity of light
is identical in two reference systems that move relative to each other at a constant
velocity. It is convenient to use a four-dimensional space time reference frame to
describe relativistic phenomena, where a point is given by the four-vector

x=| 7 |. (2.187)
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Z1p
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Fig. 2.40 A light wave propagating in a medium with optical density ny, that moves at a velocity
v relative to the observer; in the moving frame, the wave has the frequency wy,, and the wave
vector Ky,y; the observer in the lab reference frame measures wy, and Kip,

Let us assume a medium that is, measured in our lab reference frame, moving along
the z-axis at velocity v. A point with coordinates X, in the moving reference system
has the coordinates X, in the lab system, with X,y and X, related by the Lorentz
transformation (see, e.g., Jackson 1999)

Xmy = LXpp (2.188)
where
10 0 0
01 0 0
L=|oo 1 . (/o) . (2.189)
V1=W/c)? T/ 1=(v/co)?
(v/co) 1

A Gy Jisar

Consider a plane wave Eq. (1.26) that propagates with the phase velocity co/npy in
the moving medium (Fig. 2.40); in four-vector notation, the wave function has the
form

E(Xpy) = Ee HmXmv (2.190)

where

wmv . .
Kmy = C_ [nmv sin Omy, 0, iy cOs eva]:I (2.191)
0

is the wave four-vector and 6,y is the angle between wave vector and z-axis.
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For an observer in the lab reference frame, the wave has the frequency oy, and
the wave vector Ky,

w
Kip = —> [ 7w sin By, 0, n, €0 O, j | - (2.192)
Co

Since X,y and Xjp describe identical points, the respective phase of the wave must
be the same, KpyXmv = KipXi, = KmyLXp, so that the wave four-vector in the lab
system is

Kib = KmyL. (2.193)

Comparison of the components of the vectors on both sides of this equation allows
us to extract the wave parameters in the lab system; for the frequency in the lab
frame, we obtain

1 mv va
o = oy Ty (V/€0) €05 Oy (2.194)

1= (v/co)?

the phase velocity is c¢y/nyp with

_ (12, — D[1 — (v/co)?]
" \/1 " [1 + nmy(v/co) €O Oy ]2’ (2.195)

and the direction of the wave vector in respect to the z-axis is

— 2 Qi
Nmy v/ 1 — (v/co)? sin Oy ' (2.196)

Ay €08 Oy + (V/¢o)

tan Oy, =

The dependence of the frequency on the relative velocity is known as Doppler
effect; an important case is 6,, = 0 (longitudinal Doppler effect); if ny,, = 1, we

obtain
1
@iy = Omy 4 | Lirvjicy ~ Omy(1 +v/co), (2.197)
1— U/C()

where the approximation is valid for |v/co| < 1. A frequency shift is also observed
if the propagation direction in the moving frame is orthogonal to the motion of the
system (6,y = 90°): this transverse Doppler-shift is given by

1

V1= /co)?

Wy = Wmy (2.198)
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The propagation index of a medium moving parallel to the wave vector, measured
in the lab frame, finally is

Nmy + v/CO
np= ——— 2.199
b= Jeo+ 1 ( )
and the phase velocity in the lab frame amounts to
mv + v
v = co/np = co/n— ~ co/Nmy + V(1 — 1/er2nV ; (2.200)
1 4+ v/nmyco

the term 1 — 1/n2, is known as Fresnel’s drag coefficient.

25 Summary

The electric field of a light wave induces oscillations of the electrons in matter, and
the oscillating electrons generate an electromagnetic wave: this is the core of the
classical theory of light-matter interaction. Reflection and refraction at boundaries,
absorption, dispersion, birefringence, optical activity, or the magneto-optic effect
are examples for the enormous variety of optical phenomena that result from this
interplay. The fundamental response of matter to a light wave is described by the
polarization density; the relation between electric field and polarization density is
provided by the susceptibility.

The optical polarization density is a wave, and coupling of incident and outgoing
waves, for example, at an interface, requires phase matching between polarization
wave and electromagnetic wave. The laws of reflection and refraction at a smooth
interface, and that of diffraction at a periodic grating follow immediately from this
condition.

Mathematically, the representation of harmonically oscillating real quantities
by complex amplitudes turns out to be extremely advantageous; provided that
the response of a medium to the electric field is linear, the theory of linear
systems can be utilized to describe light-matter interactions. The susceptibility,
for example, can be understood as a complex transfer function, with the imaginary
part being responsible for the energy transfer between light field and matter, and
the real part essentially determining the propagation velocity of the light wave.
The Kramers—Kronig relations are a special case of the Hilbert transformation that
relates the real and imaginary part of the transfer function of a causal system and
constitute an important tool for the analysis of photonic elements.

The response of the electrons can be modeled, with astonishing success, by
a simple harmonic oscillator (Drude-Lorentz model). The restoring force and
the damping constant determine the magnitude, resonance frequency, and phase
behavior of the susceptibility. A possible anisotropy of the restoring force results in
optical birefringence. In centrosymmetric lossless media, the susceptibility tensor
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can always be represented by a diagonal matrix and the eigenstates of propagation
are linearly polarized; in non-centrosymmetric media, additional nonlocal terms can
lead to imaginary off-diagonal elements, giving rise to optical activity. The presence
of a static magnetic field has a similar effect, exhibited by the Faraday rotation of
the transmitted polarization state.

The basic optical response of metals can also be understood in the framework
of the Drude-Lorentz model as that of media without restoring force; in particular,
the very high reflectivity of metals up to the plasma frequency, and a phase velocity
exceeding ¢ are correctly predicted by the model.

Finally, some consequences of special relativity on the optical properties of
moving media, as observed from a system at rest, are derived. The results are of
particular interest for sensing applications, but also for Doppler effects in laser
media.

2.6 Problems

1. Assume a plane wave incident on a surface at an oblique angle of incidence;
what is the velocity of the phase fronts, measured in the surface plane?

2. Assume a stack of plane parallel plates of index n, to n;_; between two media
with n1 and n;. Calculate the angle of transmission into medium j as a function
of the angle of incidence in medium 1.

3. Calculate Brewster’s angle for n; > n by finding the angle of incidence where
rp = 0. If it exists, compare it to Brewster’s angle for reverse propagation and
check whether the two angles are related by Snell’s law.

4. A line grating can be used to “retroreflect” light incident under an oblique
angle into itself (in a laser resonator, for example). For a given wavelength
and grating period, calculate the angular condition for retroreflection. Also
calculate the derivative of the retroreflected wavelength with respect to the angle
of incidence; derive the spectral resolution of the “grating mirror” in terms of
the spread of the angle of incidence. In Chap. 3, we will see that the angular
spread of a collimated light field is related to its transverse dimensions; use
Eq. (3.19) to express the spectral resolution as a function of the incident beam
diameter.

5. For o-polarized light, the total electric field E(z) and its derivative dE/dz
must be continuous at the interface between two media (z is normal to the
interface): (a) derive this statement from Maxwell’s equations; (b) based upon
these boundary conditions, calculate the phase shift (the complex reflection
coefficient) of totally reflected o-polarized light; plot the field amplitude in a
manner similar to Fig. 2.16.

6. Assume a material having a volumetric heat capacity of 2 x 10°Jm—3 K~!;
further assume a 1 ns long laser pulse of 100 mJ energy, focussed to a circular
area of 1 mm diameter, being completely absorbed by the medium within an
absorption length of 20 um. Neglecting heat diffusion, what is the temperature
increase of the irradiated volume of the medium? The radiation pressure
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associated with the electromagnetic field is 1/co; calculate the peak pressure
on the irradiated medium.

7. Looking into a fish tank with vertical windows, what is the maximum angle
in respect to the window surface normal under which you can observe total
reflection at the horizontal water surface? Take the influence of the window
glass (refractive index 1.6) into account. If you lie on your back on the floor
of a pool, with your diving goggle glasses horizontal, can you observe total
reflection at the water surface? Can you see people sitting at the pool side?

8. The complex refractive index of silicon (silver) at a wavelength of 500 nm is
4.298—0.073j (0.050—3.13j). Calculate the reflectance at 45° angle of incidence
for w and o polarized light. Calculate the absorption length under this angle of
incidence (vertical penetration depth) using the imaginary part of the normal
component of the transmitted wave vector.

9. Design a Glan-Thompson prism from calcite (orientation and cutting angles).

10. Design a Fresnel rhomb from a glass with refractive index of 1.6.
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The treatment of optical wave propagation given so far was restricted to monochro-
matic plane waves. These simple solutions allow us to study effects such as
reflection and refraction or propagation in birefringent media. Plane waves are, how-
ever, somewhat unrealistic because they extend over the entire space, with a constant
amplitude, and carry infinite total energy; monochromatic waves, moreover, extend
over infinite times.

Optical beams and pulses are electromagnetic waves concentrated in space and/or
time; they have finite energy content and can be produced by optical sources such
as lasers. The following discussion relates to the propagation of coherent beams and
pulses, that are characterized by completely controlled spatial and temporal phase.

3.1 Beam Propagation
3.1.1 Paraxial Wave Equation

As we have seen earlier, the time- and space dependence of an optical wave function
can be treated separately. In the following description of optical beams, we will
assume a harmonic (monochromatic) time dependence. One way to construct a
beam-like wave function is to multiply a plane carrier wave with a transverse profile
function A(x) that is concentrated along an axis (parallel to the wave vector of
the carrier wave) and falls off rapidly with increasing distance from the beam axis
(which we identify with the z-axis)

E(x, 1) = A(x)ne ke, (3.1)
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n is a unit vector defining the polarization state of the wave.! Substituting this ansatz
into the scalar Helmholtz equation Eq. (1.23), we obtain the differential equation

0A

V2A —2jk— =0 (3.2)
0z

for A(x). We assume that A(x, y, z) changes only slowly along z on the scale of a

wavelength, so that [(0A/0z)| < 27|A|/A and

3(%‘) 2
aaz <5

0A
0z

. (3.3)

Under this so-called slowly varying envelope approximation, we can neglect
(0%A/dz%) in comparison to k(dA/dz) = (2w/A)(0A/dz) and obtain the paraxial
Helmbholtz equation

0A
V2A — 2jk— =0 (3.4)
0z
where V2 := 09%/dx?> + 9%/3y*. This equation shows immediately that in a

homogeneous medium, where k is constant, the transverse variation of the amplitude
entails an axial variation and vice versa. In general, the transverse profile changes its
shape during propagation, and the profiles at two distant points of propagation may
show hardly any similarity. Some selected profiles, however, are conserved during
propagation and only change their spatial extension. One of these profiles is the
Gaussian profile |A| oc exp[(x? + y?)/w?(z)]. As we shall see in Sect. 3.1.6, propa-
gation over a large distance converts an initial profile into its Fourier transform; the
Gaussian profile is one out of the set of functions that are similar to their Fourier
transform.

3.1.2 Gaussian Beams

The wave function of a Gaussian beam—i.e., a beam with a Gaussian profile—can
be obtained from a paraxial approximation of a spherical wave (Ao/|x|) e Xl eivr,
combined with a complex coordinate transformation of the z-component (an
alternative derivation of the wave function will be given in Sect. 3.1.6). The phase

'In general, n must also be a function of x for Eq. (3.1) to be a solution of the Helmholtz equation;
here, we neglect this fact and assume that n L k, so that Eq. (3.1) describes actually the transverse
component of the field (which we assume to dominate). If one interprets Eq.(3.1) as vector
potential, one obtains exact solutions for the fields (Haus 1984).
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Fig. 3.1 Spherical wave: 1z
surfaces of constant phase

N
/ .
fronts (k|x| = const.) of a spherical wave are concentric spheres (Fig.3.1) that

expand (or collapse) with the phase velocity vpn = w/k. The prefactor 1/|x| reduces
the amplitude so that the total power flowing through a given sphere is conserved.
Looking for a beam-like solution, we approximate the term |x| = /32 + 2 + z2in
the vicinity of the z-axis (x> + y* < z?) using v/T +u ~ 1 + u/2

r2 P2
x| =z 1+Z—2%z+2—z, 3.5)

where r := /x% + y? is the distance from the z-axis. The spatial part of the wave
function is then

Ao kil A0 —jpr? 22k, (3.6)
x| z

where the second order expansion was used only in the highly sensitive phase term.
This coincides with the carrier wave ansatz Eq. (3.1) with the amplitude function

A .
A(x) = eIk, (3.7)
Z

it is easy to verify that this amplitude function satisfies the paraxial Helmholtz
equation Eq. (3.4).
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The singularity at z = 0 can be removed by the complex transformation
(Kogelnik and Li 1966)

Z— q:=2z+]jz; (3.3)

the meaning of zp will become obvious immediately. To analyze the resulting
amplitude function

A(x) = @e—jkrzﬂq
q

0 ¢ [ K } (3.9)
= xXp | —j——— | ; .
z+j20 P 2(z + jzo)
we split 1/qg into its real and imaginary part
1 1 z—jzo 1 2

(3.10)

g i+ijnw 2+2 R @)

where w(z) and R(z) are given by

2
WA(2) = W [1 + (Zi) ] 3.11)
0

with
Wl = 2z0/k, (3.12)

and

2
R@) =z [1 + (%0) } : (3.13)

Thus, the exponential term

) 2 2
e_Jkr /2q — exp |:_W;_(Z)i|exp |:—Jk2]:(z):| (3.14)
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in Eq. (3.9) is the product of a Gaussian amplitude profile of width w and a parabolic
phase term that represents an approximately spherical with curvature 1/R. The
prefactor Ay/q in Eq. (3.9) can be written as

A .
where Aj := Ay/jzo and
£(z) = arctan Zi (3.16)
0

is a slowly varying phase term called Gouy phase that is, as we shall see, responsible
for a z-dependent phase velocity in the focal region. The entire wave function
(including the carrier) is then

2
wWo r . ilher—
— A - —ik ilke—£@)] 3.17
a(x) "yw(z) . |: w2 (z)] . |: ! 2R(Z):| ew—’_ (3.17)
S carrier

amplitude profile phase curvature

3.1.2.1 Axial and Radial Field Distribution

The first factor in Eq. (3.17) denotes the amplitude on the axis (r = 0); it peaks at
z = 0 and falls off with 1/z for |z| > zo. Radially, the amplitude follows a Gauss
function (second factor); the third and fourth factors are transverse and axial phase
terms, respectively. The intensity distribution I(x) o< aa™ is given by

W% —Zrz/wz( )
I(x) =1 e 4. (3.18)
w2(2)
where Iy := I(0) is the intensity maximum; Fig.3.2 shows axial and transverse

beam cross sections.

Because of the quadratic intensity—amplitude relation, the width of the transverse
intensity profile is smaller than the amplitude profile by a factor of /2. The radial
distance w(z) denotes the 1/e (1/e?) point of the amplitude (intensity) profile and is
called beam radius; it is a hyperbolic function of z, with the minimum beam radius
wy at z = 0 defining the so-called beam waist.
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Phase fronts

Fig. 3.2 Transverse and axial intensity profiles of a Gaussian beam; the transverse profiles are
taken at z = 0 and z & 2z, respectively. The 1/e*-radius w(z) of the profile follows a hyperbola
with the axes zp and wy

The axial range |z| < zo is called confocal range, and z is called confocal
parameter (frequently in the literature, zy is called Rayleigh range and the confocal
parameter is defined as 2z); compared to the peak intensity in the waist, the axial
intensity drops to one half at z = +z,. Note that zo and wy are not independent,
but related by Eq. (3.12), so that only one of the two parameters can be chosen at a
given wavelength. In the far-field |z| >> zo, the beam radius grows approximately
linearly, w(z) & z6,, where

21 )
20y = 2arctan 2 ~ 220 = 24 o [ A (3.19)
20 20 TTWo TZ0

is the angle of divergence in [rad]; the axial intensity decreases with 1/z? like that of
any other light source in the far field. At a given wavelength, wo8y =const, implying
a trade-off between the waist diameter and the beam divergence: well collimated
beams necessarily have a waist much bigger than the wavelength, while a small
beam waist implies a large divergence.

Strictly speaking, the field amplitude of a Gaussian beam does not vanish at any
distance from the axis. The definition of the beam radius and diameter (and thus the
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beam divergence) is therefore somewhat arbitrary and a matter of convention; an
important practical measure is the full width of the intensity profile at half maximum
(FWHM), that can be readily related to w(z)

dFWHM = W(Z)V 21n2. (320)

There is a variety of other measures for the beam width, for example the diameter of
the circle that contains a certain percentage of the total beam power. For a Gaussian
beam, all these measures are related to the beam radius w(z) by some characteristic
number (+/21n2 in the case of FWHM). As there are different definitions of
the beam diameter, there are also different definitions of the beam divergence,
which generally is the ratio of beam diameter to confocal parameter. The confocal
parameter, however, is uniquely defined as the distance of the point of maximum
phase front curvature (see below) from the beam waist.

Beams emerging from real light sources can be compared to the “ideal” beam by
comparing the product of beam radius and beam divergence with that of a Gaussian
beam; this ratio is called M?-parameter and is a spatial quality measure of the light
source (ISO-Standard 2005).

In a lossless medium, the power transported by the beam is independent of z and
is obtained by integration over the cross section

o0
P= / 1(r,0) 2rm dr = lomwg; (3.21)
0
this allows us to relate the peak intensity to beam power

2P

Lh=—;. (3.22)
W

Equation (3.18) can therefore be written as

2P
I(x) = ——e /"0, (3.23)
Tw?(z)

3.1.2.2 Phase Front Curvature

The phase distribution of an optical wave function does not show up in the local
intensity; nonetheless, it is a very important property that has a critical influence on
the spatial evolution. The phase fronts of a Gaussian beam are determined by the
factor e 3*/2R() jp Eq. (3.17) and are paraboloid, or approximately spherical with
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Fig. 3.3 Phase front radius of curvature of a Gaussian beam as a function of propagation distance

the curvature 1/R(z), where the radius R(z) is given by Eq. (3.13): |R] is infinite in
the beam waist, drops to its minimum value at z = z; , and approaches R ~ z for
7> 7o (Fig.3.3).

If the phase front radii R; and R, are given at two different axial positions,
separated by a distance d, Eq. (3.13) yields the equations

2 2
R = ﬂ (3.24)
Z
d 2 2
R, = W (3.25)
Z

where z is the (unknown) distance of the first mirror from the beam waist; after
subtraction of the two equations, we obtain

d(d—R»)

__da—fr) 3.26
‘TR _R —2d (3.26)
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Table 3.1 Gaussian beam parameters; for expressions in terms of ¢, see Table 3.2

w2(z) = wd [1 4 (3)2] RG) =z [1 4 (_0>2} I(x) = 22/
wg = 2z0/k 20 = kw}/2 6o = ﬁm = ”L:U
q=2z+jz Re[l/q] = 1/R(2) Im[1/q] = =2/kw*(2)

and, with Eq. (3.24), the confocal parameter

»_dd—Ry)(d+R)(R— R —d)
o= (R — Ry — 2d)?

(3.27)

This result allows us, for example, to calculate the mode parameters of a laser
resonator, where the curvature of the phase front of a mode must match that of
the (spherical) mirrors.

3.1.2.3 Characteristic Parameters

Table 3.1 lists various parameters characterizing a Gaussian beam. Once the
wavelength and the location of the beam waist (defining z = 0) are given, there
is only one free parameter left; this can be wy, z9, or one of the parameters R, w at a
particular distance z from the beam waist. The g-parameter Eq. (3.8), as a complex
number, actually contains two parameters: if ¢ = z + jzo is given at some point on
the axis, the distance from the beam waist is given by the real part of ¢, while the
confocal parameter is equal to the imaginary part

z = Re|q]
z0 = Im[q]. (3.28)

The local values of R and w then follow from Eq. (3.10)

1

TRl

w? = 2z (3.29)
k|Tm [g=']]" ‘

If, on the other hand, R and w are given at a point on the axis, Eq. (3.10) yields

1 A1

-1
q= |:§ - ;wz_(z):| =z + J20: (3.30)
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comparing the respective real and imaginary parts, we find

R
S — 3.31
‘T + (AR/mw?)? (3-31)

AR? ) ww?
= 3.32
O T R/ aw2)? (3-32)
and, with Eq. (3.12)

v (3.33)

YT 0 e AR

As we will see in Sect. 3.1.4, g is a particularly valuable beam parameter that helps
to simplify the treatment of beam propagation problems to a great extent.

3.1.3 Optical Components and Gaussian Beams

A Gaussian beam can be modified by optical elements and transformed into another
one, with different waist location and waist radius; in this way, the output beam of
a given laser can be matched to the requirements of a particular application.

3.1.3.1 Amplitude Modification
If a Gaussian beam Eq.(3.17) is transmitted through a “soft” aperture with the
transmission coefficient

1(r) = e/, (3.34)

the beam profile changes from e~/ in front of the aperture to e /"? immedi-
ately behind it, where

-+ (3.35)

while the phase curvature remains unchanged, R* = R. With Egs. (3.31) and (3.33),
the new waist location and radius can be readily calculated.

3.1.3.2 Phase Front Modification

Beam transformation by shaping the amplitude profile implies beam power losses. It
is therefore more efficient to locally change the phase front curvature while leaving
the local beam profile unchanged. To see how this works, we start with a (thin)
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plane parallel, dielectric plate of thickness d and propagation index n. A paraxial
plane wave e ¥ incident on such a plate experiences a phase retardation that can
be expressed by a transmission factor

1 a e Iod, (3.36)

An optical lens (Fig. 3.4) is a dielectric plate with varying thickness d(r), where r
is the distance from the axis. Usually, the propagation index n within the plate is
constant and the surfaces are spherical (or planar). We consider a plano-convex lens
(Fig.3.5) with an axial thickness dy and a front surface radius of curvature R;: in
addition to the phase shift —kod, that an empty slice of thickness dp imposes on a
transmitted wave, the dielectric medium contributes the phase shift —ko(n — 1)d(r).
As can be seen from Fig. 3.5, the local thickness d(r) is given by

d(r) = /R* =12 — (R —do) ~ doy — —, (3.37)

i N

Fig. 3.4 The phase retardation by a dielectric lens induces a spherical deformation of the incident
phase front
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Fig. 3.5 Thin spherical
plano convex lens

Ry

Ry

so that the phase change is approximately

r? (n—1)r?
- [kodo =+ (n — l)ko (do - Z_Rl)i| = — |:d0nk0 — k02—R1i| (3.38)

and can be expressed by the transmission factor

ej(”_l)k()rz/ZRl — ejkorz/Zf’ (3.39)

where

fi= (3.40)

is called focal length and its reciprocal value

1 n—1
= 3.41
7 R (3.41)

is known as focusing power (measured in diopters). The constant phase factor
eIk has been dropped in Eq. (3.39) as it has no impact on the shape of the phase
front.

The assumption of a thin lens implies that the incident beam profile (with radius
w) will emanate from the lens unchanged,

W (z) = w(z). (3.42)

. H 2
The phase front, however, is transformed from e kor’/2R 1o

e~k /2Reikor? /2 o=ikor? /2R (3.43)
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constituting a new beam with the local phase front curvature

R (3.44)
R R [ :
the new beam waist follows from Eq. (3.33) to be
w
wy = (3.45)
C L+ (w2 /AR
and the distance of the new waist from the lens is, according to Eq. (3.31),
R/
7= (3.46)

1+ (AR /7w?)?

(note that z is measured from the waist, which accounts for the negative sign in this
expression).

3.1.3.3 Gradient Index Lens

The radial phase change introduced by a thin phase object is given, in the paraxial
approximation, by the radial variation of ko(n — 1)d; in a conventional lens, n is
constant and d is a function of r. The same effect on the phase front can be achieved
by a phase object with constant d but varying propagation index,

n(r) = no (1 _ %aérz) (3.47)

(Fig.3.6). If the thickness of such a so-called gradient index lens (GRIN-lens) is
so small that the beam radius does not significantly change during the propagation,
the action of a GRIN-lens on a paraxial wave function can be expressed by the
transmission factor eikomoosr’d/2 (where a constant phase factor has been dropped);
comparison with Eq. (3.39) shows that the GRIN-lens has the effect of a conven-
tional lens with the focusing power

1

= noogd. (3.48)

grin
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—_— /// Transmitted wave
Incident wave //
/ / { T n(y)

Fig. 3.6 Effect of a thin gradient index lens on an incident plane wave

3.1.3.4 Thin Kerr Lens

An interesting variant of a GRIN-lens is the so-called Kerr lens, where the radial
index variation is not built in, but dynamically induced by the transmitted beam. As
we shall see in Sect. 8.3.2, the propagation index depends slightly on the intensity,

n(l) = ng + nyl, (3.49)

where the coefficient n, is positive in most materials and on the order of several
1072°m? W~ in glasses; obviously, it takes high values of intensity to get notice-
able index changes, but such intensities are available, for example, inside laser
resonators or from pulsed lasers.

Using exp(—x?) ~ 1 — x?, the radial intensity distribution Eq.(3.23) of a
Gaussian beam can be approximated by

2P 272
100 ~ —— (1 — LZ) : (3.50)
TW w

the propagation index in the range r < w is therefore

2n,P 2r? AP
n(r) ~ ng + P (1 - F) ~ N (1 — 30, T ) , (3.51)

where the (small) term 2n,P/ww? has been dropped as it does not depend on r. For
a given beam power and radius, this corresponds to a GRIN-lens [Eq. (3.47)] with

2 anp
w2\ mng

Dgperr = (3.52)
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and a focusing power of

1 8mPd

Sierr whr

(3.53)

At sufficiently high power, this effect is strong enough to focus the beam by
(over)compensating its natural divergence, a phenomenon called self-focusing
(Sect. 8.3.2). Inside the medium, the beam then induces a channel of increased
propagation index that acts as a gradient index waveguide (Sect.5.2.3). For an
estimate of the required power, we treat the beam as a superposition of plane waves
(see Sect. 3.1.6) whose wave vectors enclose an angle 6 with the axis, ranging from 0
to aby = ar/mwy, where 6 is the beam divergence (Fig. 3.2) and a is a beam profile
dependent factor of order 1; to ensure guiding, the index increase in the channel must
be large enough to provide total internal reflection for all wave vectors; according to
Eq. (2.10), this is the case if the axial component cos Oko[ny + 2n,P/ nwg] is larger
than the wave number kong in the surrounding medium. Using cos x ~ 1 —x?/2, we
obtain the inequality (1 — a?63/2)ko[no + 2n2P/7wj] > kono, from which follows
the so-called critical power for the onset of self-focusing,

2
2 A0

. 3.54
47'rn2n0 ( )

Py = a

Typical values for P, are several MW in glass materials at Ay = 1 m; in air, with
an n, of 4 x 1072 m?> W~!, the critical power is in the GW-range. Note that the
self-focusing condition is independent of the beam diameter and refers to the power
and not to the beam intensity, as Eq. (3.49) might suggest.

3.1.3.5 Spherical Mirror

Another optical component that modifies the phase front is a curved mirror; Fig. 3.7
shows a plane wave impinging on a spherical concave mirror. The incident phase
fronts are first reflected by the rim of the mirror; the axial sections of the wavefront
have to travel a further distance of d(r) before they arrive at the mirror apex,
while the outer sections have already travelled the same distance in backward
direction, so that the total phase difference amounts to 2kod(r). In the approximation
V1 —x2a~ 1—x2/2,wecansetd(r) = Ry— /R2 — r2 ~ —r? /2R, where R is the
radius of curvature of the mirror (the curvature of a concave surface is negative by
convention). Thus, the action of a spherical mirror on a phase front is represented
by the phase factor ek’ /Rs _This is equivalent to the action of a lens with focusing
power

- (3.55)
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<« ~2d(r)
i« d(r)~—12 /2R

M

Incident phase front

Mirror

Refl. phase front

Fig. 3.7 Phase front modification by a spherical mirror

and the formulas obtained for a thin lens apply accordingly.

3.1.3.6 Dielectric Half Space

If a Gaussian beam propagates from a dielectric half space of index n into a half
space of index n’, separated by a plane boundary normal to the beam axis, the radial
wave function [Eq. (3.17)] at the interface does not change, so that

2702 i/ ,2 / 2702 1,2
e re/w e jk"r* /2R —e re/w e jkr /ZR' (356)

Nonetheless, the beam is modified, as a comparison of real and imaginary parts of
the exponents shows:
K n
wo=w, R = —R= —R. (3.57)
k n

Equation (3.31) yields the distance of the new waist from the interface

R n
1+ (MR [ tw?)? —a? (3-58)

Z/

where A’/A = n/n’ was used and z is the position of the interface relative to the
original beam waist; note that the original and the new beam waists are always on
the same side of the interface; only one of them is real, the other one is “virtual”
(Fig. 3.8). From Eq. (3.33) follows that the waist radius remains unaltered

W p—
[1+ (w2 /AR

wh = (3.59)
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Fig. 3.8 Beam transition between different media: the beam is stretched axially by the factor
n’ /n, while the waist radius remains unchanged

since A’R’ = AR, while the new confocal parameter is

Zy = (n'/n)zo. (3.60)

In other words, the effect of the transition is an axial stretching of the beam by the
factor n’/n (Fig. 3.8).

3.1.4 ABCD-Transformation of Gaussian Beams

The effect of the optical components discussed above can also be expressed in terms
of a transformation ¢ — ¢’ of the g-parameter measured in the in- and output plane
of the component, respectively (Fig.3.9). As we shall see, this so-called ABCD-
transformation greatly simplifies the calculation of beam propagation in optical
systems.

From the definition of ¢ = z4jzo follows immediately that free propagation over
the distance d is, independent of the refractive index of the medium, equivalent to

g =q+d. (3.61)

and the transition between two dielectric media [Eq. (3.57)] can be described, using
Eq. (3.10) by

n
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Fig. 3.9 A paraxial optical system consisting of lenses, spherical mirrors, and free space,
arranged between an input and an output plane, can be represented by a single ABCD matrix
that relates the g-parameter of the incident beam, measured in the input plane, to the ¢’-parameter
of the transmitted beam, measured in the output plane

if the input- and output planes are located immediately at the interface. With the
same choice of reference planes, Egs. (3.10), (3.42), and (3.44) allow us to describe
the action of a thin lens (or a spherical mirror) by

1 1 (3.63)
g q f '
while a “soft” aperture [Eq. (3.35)] results in the transformation
1 1 2 1 2
— === —j—. 3.64
¢ R 0?0 ¢ '@ G:69
These transformations can be cast in the generalized form
A B
§=20%2 (3.65)
Cq+D

where the four coefficients constitute the so-called ABCD matrix

M= [A B} (3.66)
CD
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Table 3.2 ABCD-matrices of selected optical elements, and relations between ¢ and

characteristic beam parameters; the spherical mirror resonator is treated in Sect. 4.3.1

Element

Free propagation

Transition n — n’

Dielectric plate

Gaussian aperture

Thin lens

Spherical mirror

GRIN-lens

Single lens system

Sph. mirror resonator

/ _ AqT+B

~— Cq+D
/—1 _ C+Dg”!
4 = AFBT

ABCD matrix

(14

_0 1

1 0
0n/n

1 (n/n’)d:|

0 1

1 o
—j2/kw? 1

10
—1/f1
10
2/R 1
cosagd  (1/mpary) sinogd
—nootg sinotgd cos atyd

[\ —d')fd+d —dd /f
| -1f 1—djf

2(1 + 2d/R52)/Rsl + 2/R52 2d/Rsl +1
z=Re [q] R = ﬁ
70 = Im [CI] w2 = k“m[zq—l“

=1¥]

[S)N]

119

other

[ (14 2d/Ry)(1 + 2d/Ry) + 2d/Ry d (2 + 2d/Rsl)i|

2

kImlg]
2Imlg]

k

given in Table 3.2; to show the validity for transformations that modify the phase
curvature (lens and spherical mirror), it is convenient to write Eq. (3.65) in the form

1 C+D/q

q B A+B/q

(3.67)

The power of this formalism lies in the fact that a sequence of optical elements
can be represented by the product of the elementary matrices: if a beam is

propagated through a series of optical elements with matrices M, M>, .

..,M, (in
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this sequence), then the system matrix is given by

At Bt
M, = =M,. MM 3.68
¢ [Ct Dt] M (3.68)

and the relation between input and output parameter is

,_A[q+Bt.

e 3.69
q Coq + D, (3.69)

the proof of this statement is left to the reader as an exercise.

3.1.4.1 Transformed Parameters

We now want to derive a few useful formulas for the transformation of Gaussian
beams by systems that consist of lenses (or spherical mirrors) and sections of free
propagation. Since we are free in the choice of the input plane, we put it in the waist
of the incident beam, so that the input g-parameter is g = jzo; the output parameter
is then

, _j2A+ B (BD+ ACZ) + jz0(AD — BC)

= = 3.70
7= C+D D? + 2C 670

The distance d’ of the new beam waist, measured from the output plane, is the
negative value of the real part of ¢/,

d = —Re[q]. 3.71)

The imaginary part of ¢’ is the output confocal parameter z;,

’ 0

= — = M2 . 372
T Py 7C? “ (3-72)

where we have used the fact that det M = AD — BC = 1 (provided that the input
and output medium have the same propagation index). The factor

Mi= —— (3.73)
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has the meaning of a magnification

! A
0,
M = Z_Ozﬂz_? (3.74)
20 wWo 9()

as follows from Eq. (3.12) in the form wj/wo = /z;/zo.

As an example, we consider a single lens of focusing power 1/f, positioned at a
distance d from the input beam waist. The matrix of the system, stretching from the
input beam waist to the backside of the lens, is

1 0][14d L d
Mdf:[—l/fl}[m}Z[_l/fl_d/f] (3.75)

from which we obtain the magnification

f?

The distance of the new beam waist from the lens, d’ = —Re [¢'] is related to d by
the equation

d—f
d—f

If d = 0 (Fig. 3.10), the input wave at the lens has a planar phase front, and the new
beam waist with the radius [Eq. (3.74)]

M>., (3.77)

wo wo

L+ o/ [1+ n/an?]”

wh = (3.78)

is formed at the distance

PR

= (3.79)

which is, somewhat surprisingly, shorter than the focal length f of the lens unless
20> f.

As an inspection of Eq. (3.78) shows, the strategy to minimize wj, is to use an
input beam with large waist radius wo and a lens with large focusing power 1/f; wj,
is then approximately Af /wwy. Since the input beam radius wy is limited by the lens
radius D/ 2,
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Lens BW FP

'y
4

Fig. 3.10 Beam transformation by a single lens; note that the location of the beam waist (BW)
does not coincide with the focal plane (FP) but is shifted towards the lens; this effect is negligible
only if f K zg

Lens BW | FP

Fig. 3.11 Beam focusing with a lens: the beam waist is minimized if the input beam fills the
entire lens aperture D

2f
A S— 3.80
Wy > D (3.80)

this limit is proportional to the f-number (f/D) of the lens, which should be as
small as possible for that purpose (Fig. 3.11). The FWHM [Eq. (3.20)] of the focus
is given by

drwnm > 2y2in2 (%) A~ 0.75 (%) 2. (3.81)

g
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3.1.4.2 Thick Dielectric Plate

We now turn to the derivation of the ABCD matrix of several important optical
elements. First we consider a dielectric plate of thickness d and propagation index
n’. The propagation through such a plate can be split into three steps: transition
n — n’, free propagation over d, and finally transition n’ — n; the system matrix is

10[1a][107]_[1d%
w=lozllot]loz]-[F]  om

which is equivalent to a free space propagation in the original medium over a
distance d(n/n’).

3.1.4.3 Thick Lens

A thick lens can be understood as a set of two thin lenses separated by a thick
dielectric plate of refractive index n’, and its matrix is obtained by multiplication
of the respective matrices shown in Table 3.2. Since the expression Eq. (3.41) for
the focusing power of a thin lens implies empty space in front and behind the lens,
we have to introduce an infinitely thin layer of empty space between the lenses and
the plate, and set n = 1 in matrix Eq. (3.82). The system matrix is therefore, with

Cio=—7=
/
M, = 10]||{1d/n 10 _ A¢ B , (3.83)
Gillo 1 ||lat C D,

fin?
where A, D, = 1 + %Cl,g, B = %, and
C=Ci+C+ 401G (3.84)

The input and output planes of this “system” are the front and rear faces of the

thick lens. We can normalize this matrix by choosing alternate reference planes

H, », where the distance of H to the front face is #; and the distance from the rear

face to H, is h,. The new system matrix is then

A* B* A +h2C hlA +B +h1h2C +h2D

M* — — t t t t t t . 385
[C* D*i| |: G hCi + Dy (3-85)
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Fig. 3.12 Any system with FP, H, Hs FPy

a non-vanishing C; coefficient

can be represented by a set of

two principal planes H| ; in 1

respect to which the system ] \
f

performs like a thin lens

A
Y
A
Y

-

We choose £ 7 so that A* = D* = 1; then it turns out that B* = 0, because the
determinant of M, (and all other involved matrices) is equal to 1. With

1 - D*
h =
C*
1-—A*
hy, = = (3.86)
the ABCD matrix of the thick lens,
10
M* = |: 1 1], (3.87)
Tk

is equal to that of a thin lens with focal length f; = —1/C, with the only difference
that the reference planes are the so-called principal planes H, , (Fig. 3.12). Note that
this normalization can be performed for any system with a non-vanishing C*, i.e.,
any such system is equivalent to a thin lens.

3.1.4.4 Beam Expander

Setting n’ = 1 in Eq.(3.83), we obtain the matrix of a system of two lenses,
separated by a distance d. The case d = f; + f» is of particular interest, because
the resulting C; = 0; such a system is a telescope with the matrix

L g4
M, = [ f _ﬁ} (3.88)
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Fig. 3.13 A confocal Lens 1 Lens 2
two-lens system acting as i i
beam expander with

|

i

magnification M = % |
i

and cannot be replaced by a thin lens. If we position the input beam waist (radius wy)
at the location of the first lens (Fig. 3.13), the magnification according to Eq. (3.73)
is M = % and the output beam waist follows from (3.74) to be

wy = Mwy = wy. (3.89)

Such systems, with |f>| > |fi|, are frequently used to expand a beam waist and
reduce the divergence

S

0 = 60/ M =6, (3.90)
f

3.1.4.5 Thick GRIN-Lens

Another interesting system is the GRIN-lens of arbitrary thickness d, where the
change of the beam radius due to the propagation cannot be neglected. We slice the
GRIN-lens into m thin sections of thickness §z = d/m. Focusing and propagation
effects of a single slice are treated separately by embedding a thin lens with focusing
power noozéSz [Eq. (3.48)] between two homogeneous slices of thickness §z/2 and
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index ng; the matrix of such a slice is then

M. — 1 8z/2ny 1 0| 16z/2n0
PTlo 1 —noasz 1 [0 1

1 —68722a2/2  8z/ng
~ £ . 91
|: —noa8z 1 —8z2%a;/2 (3-91)

The GRIN-lens is composed of m such slices and is accordingly represented by
M, = M. (3.92)

For the evaluation of this expression, we use the relation
[ cosf (1/K) sm9i| _ [ cosmf (1/K) smm9i| 7 (3.93)

—Ksinf  cosf " | =Ksinm@  cosmb

whose validity can be shown by induction, and substitute 6 = o, 6z and K = agny.
Since §z is assumed to be small, sind ~ 6 and cosf ~ 1 — §2/2, so that the
resulting matrix is approximately equal to MY'. With m §z = d we obtain

(3.94)

Moz = |: cosagd  (1/no) sin agd] ‘

—noQlg Sin ogd cos agd

3.1.5 Hermite-Gaussian Beams

The Gaussian beam belongs to an infinite set of solutions of the paraxial wave
equation with spherical phase fronts. Related solutions can be generated, for
example, by multiplying the Gaussian wave function Eq.(3.17) with transverse
functions X () and Y (v)

a(x) = A\ X ()Y (0)6?@ 22 exp [— & :|exp [—jki}e_jk”jf(“ (3.95)
0 w(z) w2(2) 2R(2) ' ‘

where u = +/2x/w(z) and v = +/2y/w(z) are transverse coordinates normalized
by the local radius w(z) of the Gaussian profile. Substituting this ansatz in
Eq. (3.4) yields differential equations for X and Y whose solutions are the Hermite
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polynomials of order /

Ho(u) =1

Hy(u) =2u

Hy(u) = 4> —2

Hit1(u) = 2uH (1) — 21H— (u); (3.96)

[ is also the number of real valued roots of the polynomial. For a given set of
polynomials X = H; and Y = H,,, the additional phase term Z is given by

Z(z) = (I + m)é(z), (3.97)

where & = arctan(z/zo) [Eq. (3.16)].
The intensity distribution of a Hermite—Gaussian beam of order (I, m) is

2
— & 2 QX 2 @ —2p2+y2] /W2 (2)
f=h |:W(Z):| Hi (w(z)) H’"(W(Z)) ¢ g (3.98)

and is characterized by / and m nodal lines parallel to the y- and x-axis, respectively,
as shown in Fig.3.14. Since the polynomials diverge for large values of x,y, the

Fig. 3.14 Transverse intensity profiles of Hermite—Gaussian beams of order (0,0) to (2,2); the
order is equal to the number of nodes
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beam power is redistributed to larger radial distances in comparison to a Gaussian
beam.

The phase front curvature of a Hermite—Gaussian beam is determined by the
confocal parameter zo of the underlying Gaussian beam. Hermite—Gaussian beams
are therefore fully characterized by the order /,m of the polynomials and the
g-parameter of the Gaussian “carrier.” Because of their small longitudinal electric
field components, these waves are also called TEM;,,-modes. Since any linear com-
bination of Hermite—Gaussian beams is also a solution of the paraxial Helmholtz
equation, any superposition of Hermite—Gaussian wave functions with identical
g-parameter forms a beam with spherical phase fronts of curvature Re [1/4]. Note,
however, that the radial profile of such a superposition is generally not conserved
during propagation, because Hermite—Gaussians of different order have different
axial phases Eq.(3.97). Since laser resonators (Sect.4.3) control primarily the
phase front curvature of the generated laser beam, lasers tend to produce such
superpositions.

3.1.6 Fourier Optical Treatment of Beam Propagation

Because of the linearity of Maxwell’s equations, any propagating electromagnetic
field, and beams in particular, can be synthesized by a superposition of plane waves.
Neglecting polarization, each of these waves is characterized by its wave vector
k and a complex amplitude A(k). At a given frequency w, the wave vector is

constrained by the dispersion relation [k| = |/kZ +k? + k2 = k = w/c, so that
only two of its three components, say k. and k, are free variables.

3.1.6.1 Spatial Fourier Transform

Consider a monochromatic beam with the (scalar) wave function a(x, y; z) propa-
gating in the z-direction. The semicolon separating the z-variable indicates that we
study the transverse field distribution in the plane z = const. In such a plane, the
function can be written as two-dimensional Fourier integral

o0
1 . .
a(x,y;z) = F! {Ak,nky (Z)} = W // Akx,ky (Z)e_kaxe_Jkyy dk, dk,,
—00

(3.99)
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Fig. 3.15 Two-dimensional Fourier components: left panel [k, k)] = [6m,2m], right panel

[ky, ky] = [=97, 67] and larger amplitude

where k, and k, have the meaning of spatial frequency components (Fig. 3.15) and

o0
Apiy () = Fla(x,yi2)} = / / o, y: Y drdy

—00

is the two-dimensional Fourier transform of a(x, y; z).

(3.100)

Equation (3.99) (and its integrand) has to satisfy the Helmholtz equation

Eq. (1.22) in the form

02 02 d? )
—+ =+ —=+k =0. 3.101
[ wta ot ]a(x) (3.101)
Since Ay, 4, (z) depends only on z, this can be simplified to
32
[kz -k -k + —} Api () =0 (3.102)
* 0z2]
with the solution
Akt (2) = Ag gy () IV, (3.103)
The integrand in Eq. (3.99) can thus be written as
Ak, (0)e T Rertha i) (3.104)
with k; = | /k? — kZ — k7. This is exactly the plane wave mentioned above, with

the wave vector [ky, ky, k;] and the complex amplitude Ay, ,(0), and (3.99) is the
aforementioned superposition of plane waves. Note that a (monochromatic) beam
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is therefore completely determined if its complex amplitude in an arbitrary plane is
known.

3.1.6.2 Transfer Function

In the following we assume that A _ (0) is negligible outside the paraxial range
kf + kf & k%; this restriction to low transverse spatial frequencies implies that
a(x,y;0) varies only slowly on the scale of 1/k = A/2m and that, in particular,
the beam radius is significantly larger than the wavelength. The angle 6 between
the corresponding wave vectors and the beam axis is then also small and can be

approximated by
NICE =
_— (3.105)

0 ~sinf = ;
k

the axial component of the wave vector is approximately

kK + ke
k.= ,/kz—kf—kf,mk—%. (3.106)

With these approximations, Eq. (3.103) can be written as

g
Ak, (2) = Api, (0)el 2 %, (3.107)
The factor
Bd
H(ky, ky;7) = &7 ek (3.108)

relating the output-Fourier transform to the input is called the transfer function of a
system, in our case of the free space propagation over the distance z.
We can now cast (3.99) in the form

1

a(x,y;z) = W

- g ‘ .
/f Apiy (006 7 2 1k th) g ke ke (3.109)
—o0
or

a(x,y;z) = F " {H (ke ky; 2)Ak 4, (0)} - (3.110)

Knowing the complex amplitude profile in an arbitrary plane (and the propagation
direction), Eq. (3.110) allows calculating the complete wave function.
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3.1.6.3 Example: Gaussian Beam
Let the spatial amplitude profile at z = 0 be a two-dimensional Gaussian function

a(x,y;0) = ape™ T/, (3.111)
the Fourier transform
At i, (0) = wdApe= BiFkve/+ (3.112)

is a Gaussian in the k,, k, spatial frequency plane, with a 1/e half width of 4/w3.
According to Eq. (3.105), the angle between the corresponding wave vectors and the
beam axis is distributed between 0 and

2 A
Op = — = —; (3.113)
wok Wy

note that this angle coincides exactly with the beam divergence Eq. (3.19).
With this spectrum, Eq. (3.110) yields

. =34k (wg /4=iz/ 2K) =i (kexthy
a(x,y:z) = (2 )2 /f 0/4=12/ 20 g ik th) g dk,
A(/)W% —(24y2)/C?
=5 e , (3.114)
where C? = w% — 2jz/k. To perform the integration, the integrand was multi-

plied with @’ H)/C?e=(*+3")/C* 4 obtain a quadratic exponent and the identity

o0

i e~/ dx = ./am was used. As can be easily shown, Re [1/C?] = 1/w? as
—0o0

given by Eq.(3.11) and Im[1/C*] = —k/2R [Eq.(3.13)]; moreover, w3/C* =
wo/w(z)e @ with £(z) given by Eq. (3.16). With these substitutions, Eq. (3.114)
agrees completely with the wave function Eq. (3.17).
The power of Eq.(3.110) lies in the fact that it allows calculating the beam

resulting from any paraxial amplitude distribution.

3.1.6.4 Point Spread Function

An optical propagation system such as free space or a lens system transforms an
input amplitude distribution aj,(x, y; zin) into an output distribution aoy (X, ¥; Zout),
where zin, Zour are the positions of input and output planes, respectively. This can be
formally written as

dout = S {ain} ) (3115)
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where the operator S represents the system. If S is linear, one can apply concepts
of the theory of linear systems to relate this real-space description to the frequency-
space description above.”

Exploiting the properties of the Dirac §-distribution, we can write aj,(x, y) in the
form

o0
ain(x,y) = /f an(x',y)8(x — ',y —y)dx' dy, (3.116)

which is a superposition of weighted §-distributions located at all possible points
X',y of the input plane. Assuming that the system is linear and the response [that is
the output function at (x, y)] to a §-distribution in (x',y’) is

h(x.y.x'.y) = S{8(x—x".y—))}. (3.117)

the output is
o0
o (5.y) = // (¥ (. ¥ y') ¥ s (3.118)
—00

h(x,y,x',y’) is called point spread function of the system.

If we further assume that the system is invariant under a transverse shift, the
point spread function is not an explicit function of the coordinates, but only of their
respective differences, h(x,y,x',y’) = h(x — x',y — '), and we obtain

e // L R (3.119)

Thus, the output amplitude of a linear, shift invariant optical system is the
convolution of the input function with the point spread function 4.

Since the Fourier transform of a convolution of two functions is equal to the
product of their respective Fourier transforms, we can write

Flaowy = F{h} F {ain} - (3.120)

Comparison with Eq. (3.110) shows that F {h} = H, and the point spread function
is consequently the inverse Fourier transform 2 = F~! {H} of the transfer function.

2See, e.g., Goodman (1996).
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For free space propagation within the paraxial approximation, we obtain, using
Eq.(3.108), h(x — 0.y — 0) = F ! {exp(jkz) exp [jrAz(kZ + k2)]}, so that

2
h(x—0,y—0) = hoexp [—jkx ;y } (3.121)
Z

where hy = (j/Az) exp(—jkz). Thus, the point spread function of free space is a
spherical wave Eq. (3.6), centered at the point (x’, y’). The response of free space to
an arbitrary input distribution is therefore the convolution

N2 2
Aout (X, y;2) = ho //am(x y)exP[ (X )+ 0=Y) } dx’ dy’.

2z
(3.122)
3.1.6.5 Fourier Transformation by Far-Field Propagation
Equation (3.122) can be cast in the form
o0
22 242 R
ou(x,y12) = e 2 / / e KT g (X, )T dY dy, (3.123)
—0o0

where the constant factor 4 has been dropped as irrelevant. In the far field, i.e., for
propagation distances d satisfying e +} <1,

x2 xx’
o (5, v d) ~ exp [—j - ] // (. y') exp [ﬂn%} ax dy.

(3.124)
Associating the output coordinates x, y with the spatial frequencies

kx<—>27ti k <—>2ny

ok e (3.125)
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aoy can be interpreted as the Fourier transform of the input function, multiplied with
a parabolic phase factor,

dou(x,y) ~ e HEHD2y, (3.126)

the output intensity distribution does not include the phase factor and represents
the undistorted two-dimensional power spectrum of the input function. It should
be noted that the far-field condition * ;:1

diameter of 1 mm, d >>1 m for visible light.

« 1 is quite restrictive: for an input-

3.1.6.6 Fourier Transformation by a Lens
As we have seen in Sect. 3.1.3.2, a thin lens adds a phase term Eq. (3.39) to an input
function aj, so that the output function a{ immediately behind the lens is

d(.y) = a1 (3.127)

The further propagation behind the lens can be described by the convolution
Eq. (3.122). In the focal plane z = f, in particular,

o (x. yi ) = e HEHA // a(¥. y)exp[ﬂn ;yy }dx’dy’, (3.128)

since the quadratic terms under the integral cancel. If we again associate the
coordinates x, y of the focal plane with the spatial frequencies

oo e (3.129)
< — = k- < — = k= .
A,f f’ y £

we obtain a result similar to Eq. (3.126): the amplitude in the focal plane is equal
to the Fourier transform of the wave function at the entrance of the lens, multiplied
with a parabolic phase factor

aou (3, y:f) = e FERVI F Lo ()Y (3.130)
The phase distortion can be omitted if we move the input plane to the front focal

plane of the lens (creating a so-called 2f-system): let a;, be the input amplitude
distribution in the front focal plane; then we know from Eq. (3.108) that the Fourier
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transform of the field at the entrance of the lens is
Fla}p = HF {ain} (3.131)
where H is
H = 0/ (3.132)

Substituting Eq. (3.131) in Eq. (3.130), we obtain

Aout = ]:{ain} . (3133)

Thus, a 2f-system produces an undistorted Fourier transform of the front focal plane
in the rear focal plane.

3.1.6.7 4f-System

Since the inverse Fourier transform differs from the direct transform only by the sign
of the coordinates, a second 2f-system can be used for the inverse transformation.
Such a 4f-system images the front focal plane of the first lens onto the rear focal
plane of the second plane with a magnification of —1. In the joint central focal
plane, the Fourier transform is accessible and can be manipulated with phase-
and amplitude objects, in particular with electronically controlled spatial light
modulators (SLMs) made of liquid crystal panels (Sect. 2.3.5). In this way, an SLM
can realize an arbitrary transfer function with an appropriate transmission function

H(ky, ky) = 1(x, y) expjé (x. y).

3.1.6.8 Grating Spectrometer

The spatial Fourier transform capabilities of a lens (or a concave mirror) can
also be employed to perform spectrum analysis of light. The concept of the
spectrum of polychromatic light will be discussed in detail in Sect.4.4.1. Roughly
speaking, a polychromatic light field can be decomposed into monochromatic
waves with complex amplitudes a,,. The function |a,|? (or |a;,|> = |aw|2§—ﬁ)) is
called the power spectrum of the signal and is measured with a spectrometer. A
grating spectrometer consists of a grating that disperses the individual frequency
components of the incoming light into plane waves with wave vectors pointing in
different directions (Fig. 3.16). If a collimated optical signal is incident orthogonally
(klﬁ = 0) on a grating with period A, the diffracted wave vectors (with length
|k| = w/co = 2m/Xo) have a common transverse component of k3 = m(27/ A),
where the integer m is the order of diffraction (Fig.2.5). According to Eq.(3.129), a
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Line grating, A

Lens Focal plane

Kowi i
1 k- i
2 k3 k:;

Fig. 3.16 A spectrometer consists of a dispersive element (grating) and a lens acting as Fourier
transformer. The polychromatic signal is incident from the left, the arrows indicate wave vectors
with length 277/ 44

lens images these waves onto the position
K4 Ao
= X p=2 3.134
x= X =m7f (3.134)

in its rear focal plane. Because of the linear relation between x and Ay, dAg o dx,
and the power density |a|?(x) in the focal plane (measured with a linear detector
array) can be identified with |a,|?.

3.2  Pulse Propagation

Similar to a beam that is a concentration of electromagnetic radiation in space, a
light pulse is a concentration of radiation in time. The mathematical treatment of
both phenomena is similar; in particular, both can be understood as superpositions
of monochromatic waves that propagate through a medium. Since the phase velocity
in dielectrics is frequency dependent, the relative phase of the Fourier components
changes along the propagation, and the pulse shape (and duration) generally
changes during propagation; the underlying mechanism is the frequency dependent
susceptibility of dielectrics (dispersion). In contrast, the transverse profile of a beam
changes because its spatial Fourier components have different axial phase velocities
for geometric reasons.

Pulse broadening due to dispersion is of particular relevance for the propagation
of pulses in (very long) glass fibers in optical communications since the resulting
temporal overlap of consecutive pulses limits the data rate. For extremely short
pulses, even the transmission through a glass plate or lens can significantly increase
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the pulse duration and thus reduce the peak power, which can deteriorate, for
example, ultrafast laser ablation of materials.

3.2.1 Dispersive Propagation Effects

Consider an electromagnetic wave E(z, f) = Re [a(z, 1)], where a(z, ¢) is the product

of a carrier wave e 3’70 and a slowly varying (complex) envelope A(z, f)

a(z. 1) = Az, e 1K=, (3.135)

wo and k¥ are the frequency and wave number of the carrier, respectively. The pulse
intensity according to Eq. (1.71) is I = n|A|?/2Zy, where n is the propagation index
and |A(z, t)|? is the z-dependent pulse shape.

3.2.1.1 Temporal Fourier Transform
The Fourier transform of the envelope function A(z, £),

o
Axn(2) = / A(z, 1)e 34" dr, (3.136)
o0

is concentrated around Aw = 0 within a bandwidth that we assume to be much
smaller than wg. The inverse transform is

18 :
A(z,t)=E / Apo(2)e4 dAw. (3.137)

We can also express the complete wave function Eq. (3.135) as a Fourier integral

1 [ ,
a(z, 1) = E/ a,(2)e* dw, (3.138)
—00
where
a,(z) = / A(z, f)e Ik zmmngmior 4y (3.139)
—00
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With the substitution @ = wy + Aw, this can be written as
20 o0 s
Ao+ 20 (2) = e Ikz / A(z, t)e_JA“” dz, (3.140)
—00

so that

0(2) = Anw(2)e % (3.141)

apart from a common phase factor, the Fourier component of the complex wave
function at wy + Aw is equal to the Fourier component of the envelope at Aw.

3.2.1.2 Spectral Characterization
According to Parseval’s theorem, the pair of functions A(f), A 4, is related by

o0 o0
/ [A(D)|>dr = / |Apo)? dAw. (3.142)
—00 —00

Since the left-hand side of this equation is the pulse energy, the integrand on the
right-hand side, |A4,|?>dw, can be interpreted as the differential energy in the
frequency interval [o, w + dw], and

S(Aw) := |A 0| (3.143)

represents the spectral energy distribution, or energy spectrum of the pulse.
As an example, we choose a (real) Gaussian envelope

A0, 1) = Age /%, (3.144)

where 27, denotes the time between the 1/e (1/e?) points of the amplitude
(intensity) envelope. In practice, the pulse duration is frequently given as the
FWHM-width of the intensity I(f) = |A(0, t)|* e=2%/%

TrwaM = V2In27ty = 1.1774 7. (3.145)

The Fourier transform of the envelope is also Gaussian

Ape = TTAge A /4, (3.146)
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and the energy spectrum

A po|? o Toe™ (AT (3.147)
has an FWHM-width of
1
AwFWHM = 2+4/21In =y (3148)
T

which scales with 1/1.

It is important to note that a given power spectrum |A 4,,|> allows for an infinite
number of amplitude spectra A 4, differing by the relative phases of the individual
frequency components. Since the Fourier integral (3.137) is very phase sensitive,
the corresponding temporal pulse profiles |A(7)|> may vary greatly in shape and
duration. It is quite obvious, however, that if all Fourier components happen to have
the same phase (0, for example), the pulse shape |A(f)|? reaches the highest possible
peak value. Since the pulse energy (given by the area under |A(¢)|?) is independent
of the phase, this pulse is also the shortest possible, and is called Fourier limited for
that reason. The product of the pulse duration and the width of the power spectrum
has therefore a lower limit; for a Gaussian spectrum, it can be expressed as

TFwHMA®WEwWEM > 41n2 ~ 0.44 x 27. (3.149)

3.2.1.3 Propagation Effects in the Frequency Domain
The Fourier component a,, of a propagating pulse corresponds to the plane wave
a,(0)e k=N — [aw (O)e_jkz] e’ so that

ay(z) = a,(0)e . (3.150)

Substituting Eq. (3.141) and introducing Ak := k—k°, we obtain the analog relation
for the envelope

Ao (2) = Ap(0)e 125, (3.151)

This equation has the structure

Apo(z) = Anw(0)H(Aw), (3.152)
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where H(Aw) = e4% is the transfer function of the propagation process. To
account for the dispersion k = k(w), we use the expansion

dk d’k

Ak=—A — (Aw)* + ... 3.153
dw @+ 2da)2( @)+ ( )
1 D,

= —Aw + =2 (Aw)? + ... (3.154)
Vg 2
to obtain
H(Aw) = e71(A0/vtDo@0r/24 )z, (3.155)

The first term of the exponent is responsible for a propagation delay of the
pulse envelope by the time z/v, and can be taken into account by a coordinate
transformation to a system co-propagating with the pulse at v, [see Eq. (3.165)].
The second term is equivalent to the spatial transfer function Eq. (3.108) for beam
propagation and has the effect of changing the envelope during propagation. The
envelope A(z,7) at an arbitrary distance is the inverse Fourier transformation of
Eq. (3.152),

1 [ .
A1) =5~ / Aso(2)e4 dAw. (3.156)
(oe]

Note that the power spectrum
1A 402> = |42, (0)? (3.157)

is conserved during propagation, provided that the expansion Eq.(3.154) is real
valued.
The term
1 dk
— = — (3.158)
v, dw

is the inverse of the group velocity vg as introduced in Eq. (1.41) and denotes the
group delay //v, per unit length. The so-called dispersion coefficient

D, = & -4 (! (3.159)
7 de? T do \ v, i
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represents the frequency dependence of the group delay and is a measure of the
group velocity dispersion (GVD); D,, is given in [(ps)>km™!] (1 ps = 107!25). An
alternative definition is Dy := (d/dA¢)(1/v,) which represents the wavelength
dependence of the group delay. Since Dy dA¢y = D, dw and w = 2mcy/ Ay, the two
quantities are related by

€o

D) = 2w /\%

D,. (3.160)

If the propagation index is given as a function of Ao, it follows from Eq. (1.43) that

t_1 P (3.161)
— = —\n- .
Ug Co 0 dlo

and

d(1/vg) Ao d2n
D)L = = ___25
dlo Co dlo

(3.162)

given in units of [psnm~! km™']. Depending on the sign of the dispersion coef-
ficient D,,, one distinguishes normal (or positive) GVD (D,, > 0) and anomalous
(negative) GVD (D,, < 0); note that D,, and D, have opposite sign.

The dispersion coefficient is frequency dependent; according to Eq. (3.162), D;, is
a measure of the curvature of the function n(Ay), which can change from positive to
negative (Fig. 3.17). At the inflection points, the GVD is zero, which has important
consequences for pulse propagation.

3.2.1.4 Propagation Effects in the Time Domain
Differentiation of Eq. (3.152) yields

3 1 D
—Ape = —j [—Aa) + —w(Aw)2:| Ao, (3.163)
0z Vg 2

where cubic and higher terms in the transfer function Eq.(3.155) have been
neglected. According to Eq. (3.156), the differentiation 9" /97" of the envelope A(z, )
is equivalent to a multiplication of its Fourier components with (jAw)" and vice
versa. We therefore can convert Eq. (3.163) into a differential equation for A(z, f)
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using the substitution jAw — /0t and (Aw)?> — —0d%/3¢

0 19 jD,
— 4+ —— -2 |A@ ) =0. 164
[az + Vg Ot 2 aﬂ} @n =0 (3.164)

With the aforementioned transformation to a moving frame

e (3.165)
Vg
and using a% = %g—i + %B—Z = a% — i%, % = %, Eq. (3.164) assumes the form
0 Do & A1) =0 (3.166)
a2 dr? T ’

In the absence of GVD, Eq. (3.166) reduces to dA(¢, t)/d¢ = 0 and the envelope
propagates without change® at the velocity v, (Fig. 3.18),

3This statement is, of course, only valid if the higher terms in Eq. (3.154) are negligible.
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Power spectrum

Fig. 3.18 Development of a light pulse during propagation over a distance d: (a) if n is constant
over the entire pulse spectrum, the pulse remains completely unchanged and is delayed by d/vph;
(b) in the absence of GVD (D, = 0), the temporal pulse profile is conserved, but experiences a
propagation delay d/v,, different from the phase delay d/v,;, of the carrier; (¢) in the general case
(Dy, # 0), the pulse profile changes and the momentary frequency becomes time dependent

AL, T) = A(0, 7). (3.167)

3.2.1.5 Gaussian Pulses
For D, # 0, Eq. (3.166) can be written in the form

P10 _
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With the substitutions x — t, z — ¢, k - —1/D,,, this corresponds to the paraxial
Helmbholtz equation Eq. (3.4), reduced, however, to two dimensions

8—2—2'k3 A(z.x) =0 (3.169)
TR ] M '

A solution of the three-dimensional Helmholtz equation was discussed as Gaussian
beam Eq. (3.9) in Sect. 3.1.2. As can be easily shown, Eq. (3.168) has a very similar
solution

B it
AL, 1) —Aom P opa(c + j%o)

_ j%o & RS
=Vt i e"p[zuw z +z§} P [Jﬂmzé] G470

Apart from the square root in the leading factor, there is a one-to-one corre-
spondence with Eq.(3.9). In particular, the real valued exponential factor can be
interpreted as Gaussian envelope exp(—12/ ‘L'g) with the 1/e half width 7, given by

2
Q) =1 [1 + ;‘g} , (3.171)

where 79 = 1,(0) is related to {o by
lo 1= ———; (3.172)

note that while {, can be positive or negative, depending on the sign of D, {y/D,,
in Eq. (3.170) is always negative.
Before discussing the phase terms, we calculate the pulse intensity n|A|?/2Z,

p

2 2
16,7) = I exp [—iz} : (3.173)
T T

where Iy = I(0,0) [note the different prefactor in Eq.(3.18)]; this is a Gaussian
pulse with an FWHM-width of 7,+/2In2. At a distance |{y| from the point of

minimum pulse width, the pulse duration has increased by a factor +/2 (Fig. 3.19).
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Peak intensity
I/L
Pulse duration
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Fig. 3.19 Pulse duration and peak intensity of a Gaussian pulse as a function of propagation
distance in a dispersive medium

This characteristic distance

2
%o

= —, 3.174
1ol 21D, ( )

plays the same role as the confocal parameter z, for beam propagation and is called
dispersion length. For |C| > |{o|, the pulse duration grows almost linearly

18] _|2Dw .| _ Awrwam i
() ~ 5‘ == ¢l = oy |D,|¢: (3.175)

the increase is proportional to D, and 1/ty, which is essentially the spectral width
of the pulse [Eq. (3.148)].

The dispersion length depends on the propagation medium, the wavelength, and
the (Fourier limited) pulse duration; in silica at a wavelength of 1 wm, for example,
the dispersion coefficient is D, ~ 20ps>*km™! (Fig.3.17); the dispersion length
for a 1ns pulse is 5 x 10* km, and pulse broadening is negligible in practice. For a
1 ps pulse, it amounts to 50 m, implying that long distance optical communications
in silica fibers is not feasible in this operating regime, since at 1km the pulse
broadening is already 20-fold. For ultrashort (10fs) pulses, the dispersion length
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is reduced to a few mm, so that even the transmission through a lens results in
significant pulse broadening.

3.2.1.6 Frequency Chirp
With Egs. (3.171) and (3.172), Eq. (3.170) assumes the form

_ 1% v T @/k)
ACD =4 p[ p]e"p[_ f§(§/§0)2+1] 3170

To understand the implications of the phase term, it is useful to introduce the concept
of momentary frequency,

w(t) = d¢/at; (3.177)

for a monochromatic plane wave with the phase —kz+wyt, the momentary frequency
is, of course, constant w(7) = wy. For a pulse Eq. (3.135) with a Gaussian envelope
Eq. (3.176), we find

27
2 /6 + 1 =0 G5

o(t) =wy + — Ter o1 2

3[ o (§/%) ]—wo (/%)

during the pulse duration t,, the momentary frequency varies between the values
w(—2) and w(L); for ﬁ > 1, the sweep covers the range

1 1
Bolmt _ o1 (3.179)

wo +
¢ w01 T

which according to (3.148) is approximately equal to the entire pulse spectrum.
Long distance pulse propagation thus provides spectral pulse analysis, just as far-
field propagation of beams provides spatial Fourier transformation.

Depending on the sign of the slope, one refers to the sweep as positive or
negative chirp; for normal GVD and { > 0, the chirp is positive (from low to
high frequencies), as shown in Fig.3.20. This is what one might expect, because
for normal GVD, higher frequencies travel slower than lower ones; note, however,
that it is the dispersion of the group velocity, not of the phase velocity that matters.

3.2.1.7 Chirp Compensation and Pulse Compression

As can be seen from Eq. (3.171) and Fig.3.19, a pulse can actually also get shorter
during propagation. In a medium with normal dispersion, for example, a pulse that
starts with a negative chirp contracts for some distance until it reaches its minimum
duration and begins to broaden, acquiring a positive chirp. If such a positively
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Fig. 3.20 Gaussian pulse propagating in a positive dispersive medium: (a) pulse duration, (b)
normalized wave function at three selected points; for { < 0 (¢ > 0), the pulse exhibits a negative
(positive) “chirp”; at { = 0, the pulse is chirp-free and the pulse duration is minimal (Fourier limit)

chirped pulse is launched into a medium of anomalous dispersion, the broadening
is reversed and the pulse, after a certain distance, reaches its minimum duration
again. Thus, the chirp (and the broadening) introduced by one medium can, in
principle, always be compensated by another medium. In practice, however, media
with sufficient anomalous dispersion are not always available.
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Fig. 3.21 Compression of a positively chirped pulse with the aid of a pair of gratings; the inset
shows the group delay as a function of wavelength, and the (normalized) power spectrum of two
short pulses

For that reason, compensation schemes have been developed that employ
different mechanisms, but are mathematically equivalent. One such scheme relies on
diffraction of the pulse from a grating that splits the incoming signal into its Fourier
components [see Sect.3.1.6.8]. As shown in Fig.3.21, a second diffraction grating
collimates the diverging light; after reflection at a mirror, the signal path is reversed.
Since, however, the distance travelled by the long-wavelength components is longer
than that of the short-wavelength components, a positive chirp can be compensated
by proper adjustment of the distance between the gratings. As frequency chirp
and envelope broadening are just different aspects of the same phenomenon, the
incoming pulse is also compressed by this scheme, ideally to its Fourier limited
duration. Schemes like that are indispensable for the generation and application of
ultrashort pulses.

Pulse compression is only possible if the phases of the spectral components of a
pulse are not randomly distributed; incoherent pulses therefore exhibit a much larger
time—bandwidth product than coherent, Fourier limited pulses [Eq. (3.149)].

3.2.2 Nonlinear Propagation Effects
The optical Kerr effect Eq. (3.49),

n(l) = ny + nol, (3.180)
that we have encountered in the context of beam propagation is also responsible for
interesting pulse propagation effects. The intensity envelope of the pulse produces a

time dependent variation én of the refractive index and thus of the wave number; this
effect is called self-phase modulation (SPM) and will be discussed in more detail
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in Sect. 8.3.2. We can include it in the propagation equation by appending the term
S k() = kobn = %Sn in the expansion Eq. (3.154). With I = n|A|?/2Z, we obtain

w n
8k =m———|A(. D> = kAE. )%, (3.181)
Co ZZ()
where
w n
=np——. 3.182
Kk HZCO 7 ( )

Equation (3.154) then assumes the form
1 D, ) )
Vg

If we incorporate the Kerr term in Eq. (3.166), we obtain the nonlinear propagation
equation

) Dy P
a2 o

+ jKi|A(L, z)|2} A, 1) =0. (3.184)

3.2.2.1 Spectral Broadening
Let us first discuss the case of vanishing GVD: Eq. (3.184) then is reduced to

d
a—éA(z, ) = —jkk|AG DA, 7); (3.185)

with the trial assumption that the intensity profile is not affected by the nonlinear
propagation, we can integrate the equation to obtain

AL T) = A0, T)e IHAODFE (3.186)
consistent with our assumption of {-independent pulse shape,
AL, D> = A0, 7). (3.187)

The pulse amplitude, however, acquires a time and space dependent phase
(Fig. 3.22) that results in the production of new frequency components.
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Fig. 3.22 Self-phase modulation of a short intense light pulse, shown in the complex amplitude
plane as a function of time: (a) carrier; (b)—~(d) envelope at{ = 0, { = 5{x, ¢ = 20{nL. During
propagation, the intensity dependent phase —i|A(0, 7)|*¢ is added to the complex amplitude,
“wrapping” it up and resulting in a rotating amplitude phasor (note the rotation reversal at 7 = 0);
the time dependent phase is added to the carrier, shifting the momentary frequency up (z > 0) or
down (tr < 0)

For a Gaussian pulse A(0, t) = Age™ /%, Eq. (3.177) yields

ad 4
0T = 00 + o (—KAPE) = 0y + e, (3.188)
at 75 ONL

where

1 _ Co Ao

(3.189)

o = ki|Aol?  mownly  2mnanly
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Fig. 3.23 Propagation of a Gaussian pulse in a nonlinear, dispersion free medium: (a) temporal
intensity profile, (b) initial power spectrum, (c) instantaneous frequency due to the Kerr effect,
(d) power spectrum after propagation over 15{5. (note that spectra (b) and (d) are scaled
differently)

is called nonlinear length and Iy = n|Aq|?/2Z is the peak intensity of the pulse
(Fig.3.23). Since n, is usually positive, the momentary frequency in the rising
(falling) section of the pulse is red (blue)-shifted (Fig.3.23c). Approximating the
central section of the pulse by exp(—x?) ~ 1 — x?, we obtain a linear, positive chirp

4
o(t) ~ wy + — (3.190)

Pl
TgégNL.

The manifestations of dispersion and SPM are somewhat complementary: dis-
persion conserves the power spectrum but modifies the pulse shape, while SPM
conserves the pulse shape and modifies the power spectrum. The resulting spectrum
is not only broader than the original, but may also show oscillatory features
(Fig.3.23d) that result from spectral interference, since the same frequency may
be generated at different times. As the total pulse energy is conserved, the new
frequencies are created at the expense of others.

To estimate the spectral broadening, we determine the maximum frequency
excursion, that appears, according to Eq.(3.188), at the steepest points T =
+19/2 of the intensity envelope |A|?>. The frequency excursion grows linearly
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with propagation distance and amounts to (2//€)({/{x1)7; ' Propagation of an
originally chirp-free pulse over { = ¢N. approximately doubles the spectral width
of the original pulse, 7, !, Under proper conditions, the emerging spectral width can
span an entire octave, an effect that is called white light generation. Since SPM is a
coherent process, the temporal and spatial phase of the input pulse is transferred to
the output pulse so that, for example, two white light pulses, derived from the same
initial pulse, can interfere with each other.

For propagation distances much smaller than i, SPM can be neglected; in this
sense, {np plays a similar role for nonlinear propagation effects as ¢, for the onset
of significant dispersion.

As a numerical example, let us calculate the nonlinear length of pulse propaga-
tion in a silica fiber (n; = 3.2 x 1072 m?> W) of 100 um? core area: a pulse with
a wavelength of 1 um and a peak power of 1 W (peak intensity Iy = 10! W m™2)
results in a nonlinear length of 330 m. To ensure that nonlinear effects are negligible
over a fiber distance of several 10km, the peak power must be kept below some
10mW.

3.2.2.2 Combined Dispersive and Nonlinear Effects, Solitons

The frequency chirp resulting from SPM is usually positive; in a normally dispersive
medium, the dispersion induced chirp is also positive, leading to pulse broadening
and a reduction of peak intensity. Accordingly, SPM becomes less and less
important during the propagation in such a medium. Nonetheless, the spectrum is
broadened, providing spectral width for a pulse that is potentially shorter than the
original pulse. If the accumulated chirp is compensated after the passage through
the nonlinear medium (ideally to the Fourier limit), a pulse that is up to 100 times
shorter than the input pulse can be obtained; this is a very powerful technique to
produce, for example, femtosecond pulses from picosecond lasers.

If the nonlinearity is combined with negative dispersion, the two chirp contri-
butions can cancel each other so that not only the power spectrum, but also the
envelope remains unchanged during propagation. Such pulses are eigenfunctions
of the nonlinear propagation equation and are called solitons.* With D,, < 0,
Eq. (3.184) in the form

.0 D, 9 2
i + 2 3 — AR a0 =0 (3.191)

“For a more precise definition see, e.g., Hasegawa (2003) and Agrawal (2012).
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Fig. 3.24 Soliton propagation in a nonlinear, dispersive medium: the intensity profile and the
power spectrum remain unchanged (compare Fig. 3.19)

has the same structure as the Schrodinger equation Eq. (6.1)

9 h? 2
[_Ja_t + e V(x):| P(x,1) =0, (3.192)
that we will encounter in Sect. 6.1 as the wave equation of an electron in a potential
V. In Eq.(3.191), the Kerr term oc —ky|A|? plays the role of an attractive potential
that prevents the wave function from dispersing; since the potential in turn depends
on the wave function, Eq. (3.184) is called nonlinear Schrodinger equation. The
simplest solution of Eq. (3.184) has a hyperbolic secans envelope

2 .
A(C,7) = Apsech [ﬁ:| el@/zfo, (3.193)
T
where sech(x) := 2/(e* + e ™) and the pulse duration’ 7y is related to the

dispersion length {y by Eq. (3.172). Cancellation of dispersive and nonlinear effects
requires a subtle balance between spectral width and peak amplitude; substitution

5The FWHM duration of a sech’ («/zr / to) pulse is given by V21n (1 + «/f) 79 = 1.2477) for
comparison, the FWHM duration of a Gaussian pulse is 1.1771.
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of Eq. (3.193) in Eq. (3.184) yields the soliton condition

1 [2|D,
Ag = —,/ | |. (3.194)
T0 Kk

With these pulse parameters, dispersion length and nonlinear length match exactly,
Co/¢ny = 1. Figure 3.24 shows the propagation of such a soliton. The pulse
energy is proportional to |A|>7o and, because of Eq. (3.194) proportional to 1/7.
Shorter solitons therefore require higher pulse energy; even more interestingly, if a
soliton looses energy during propagation, it adjusts itself by loosing bandwidth (by
broadening) to conserve its soliton status. On the other hand, if a pulse with the right
shape but too much energy is launched, it gets rid of the excess energy by splitting
into an “ordinary,” dispersive pulse (which fades away by broadening) and a soliton.

Silica glass fibers offer a spectral range with negative dispersion and very low
transmission losses: at a wavelength of 1.5 wm, the dispersion coefficient is D,, ~
—20ps?km™! so that a 10 ps pulse has a dispersion length of about 5 km. Assuming
a core cross section of 100 um?, a peak power of just ~ 100mW is necessary to
meet the soliton condition.

3.3  Summary

Coherent light sources allow for the controlled generation of light pulses and
beams, i.e., the concentration of electromagnetic energy in space and time. The
electrodynamic wave equation requires the envelope of the pulse or the transverse
profile of the beam, respectively, to change during propagation. While temporal
broadening of pulses is due to the dispersion of the propagation medium, the
divergence of optical beams is a geometric effect possible only in space.

A deeper understanding of pulse and beam evolution is provided by (Fourier)
transformation of the wave function into the (temporal or spatial) frequency domain
where propagation can be described by a multiplicative transfer function. Neglecting
dissipation, the transfer function acts exclusively on the phases of the Fourier
components; in real space and time this is equivalent to a change, usually a
broadening, of the pulse or beam envelope during propagation. The power spectrum
is conserved during propagation; for a given power spectrum, it is possible to find,
in a unique way, the pulse shape that reaches the highest possible peak power and
thus represents the shortest possible pulse; such a pulse is called Fourier limited.

Laser beams are technologically very important and their transformation during
propagation in free space, by lenses or curved mirrors is a frequently encountered
task. The replacement of the propagation coordinate by a complex g-parameter,
and a bilinear transformation acting on this parameter (ABCD formalism) greatly
facilitates the treatment of such problems; any sequence of lenses or curved mirrors
and sections of free space is represented by a specific ABCD matrix; the question,



3.4 Problems 155

for example, whether a Gaussian mode exists that “fits” between the two curved
mirrors of a laser resonator, is reduced to the condition that the absolute value of
trace of the ABCD matrix is less than 2, as we shall show in Sect.4.3.1. Initially
introduced for Gaussian beams, the ABCD formalism can also be applied to the
family of Hermite—Gaussian beams and others.

The high intensities provided by laser sources introduce nonlinear propagation
effects in addition to dispersion; while the entire Chap. 8 is dedicated to nonlinear
optics, nonlinear propagation effects relying on the intensity dependence of the
propagation index are described in the present Chapter; spectral broadening of
pulses, soliton propagation, and self-focusing are important manifestations of this
class of effects.

34 Problems

1. Prove Eq. (3.68) by induction.

2. Assume a Gaussian laser beam (A = 1064nm) having an FWHM-diameter
(intensity) of 5mm. By transmission through a thin nonlinear crystal, a new
wave is generated that is proportional to the square of the incoming field (and
therefore radiates at twice the frequency, or 532nm wavelength). This second
harmonic (SH) beam co-propagates with the fundamental laser beam. What is
the FWHM-diameter of the SH beam? What are the confocal parameter and the
divergence of the two beams? What is the respective FWHM-diameter after a
distance of 1 km?

3. Using the ABCD formalism and appropriate graphical software (gnuplot),
reproduce Fig.3.11 and vary the location of the input beam waist and the
diameter of the input beam at the lens.

4. With the “beam tracing” software developed in Problem 3, reproduce Fig.3.13
and vary the distance between the lenses, the location of the input beam waist,
and other parameters and observe what happens.

5. What is the duration of a Fourier limited Gaussian pulse with FWHM dura-
tion 10ns (10fs) and Ay = 800nm after propagation through 1km of air
(D, =40fs>m™1)?

6. Calculate the electric field amplitude of a focused, Fourier limited ultrashort
light pulse (spatial and temporal Gaussian) with pulse energy of 10nJ, center
wavelength 800 nm, spectral width (FWHM) 150 nm, focal length of focusing
lens 50 mm, beam diameter at the lens entrance 20 mm; neglect the dispersion of
the lens material.

7. Assume that the lens in Problem 6 is made of BK7 glass with a refractive index
of 1.5 and a dispersion coefficient of —130 ps/nm km at 800 nm wavelength; the
lens diameter is 25 mm. Calculate the minimum thickness of the lens and the
pulse duration behind the lens; compare the electric field amplitude in the focus
with the result of problem 6.
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8. A Fourier limited Gaussian pulse of 1 ps duration is propagated through 50 m
of dispersion free fiber and experiences spectral broadening by self-phase
modulation. Assuming perfect chirp compensation of the resulting output pulse,
calculate the shape and duration of the output pulse after compression. The
pulse energy is 1nJ, the effective area of the core is 50 umz, nesg = 1.5,
n=3x107m>W=, A =13 um.

9. 1ps pulses (A = 1.3 uwm) are transmitted through a dispersion free fiber with
20 umz effective core area; what is the maximum number of photons/pulse, so
that the nonlinear length is more than 100 km?
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As a consequence of the linearity of Maxwell’s equations, the total electromagnetic
field that results from a superposition of fields is the vector sum of the fields;
practically all optical detectors, however, respond to the light intensity, i.e., to the
absolute square of the field. The linear superposition principle generally applies only
to the fields, but not to the intensity of a superposition of fields. Deviations from the
linear superposition of intensities are called interference; in the following we will
discuss important manifestations thereof.

4.1 Two Field Interference

For convenience, we introduce a complex vector amplitude U normalized such that
the intensity is

1x) = U(x)- U (x). “.1

A superposition of two fields U, U, results in the intensity

1(x) = (0; + Uy)(T; + Uy)*

— I, + I+ 2Re [ﬁl(x) U, (x)] : 42)

The first two terms are the intensities of the isolated individual fields, while the
third one is the so-called interference term, which can be positive (constructive
interference) or negative (destructive), depending on the phase difference between
the two fields.

A given detector can follow temporal changes only up to a certain frequency—
above this frequency it measures only the time average of the signal. If the phase
between the two fields—and thus the sign of the interference term—changes too
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quickly, the average over the third term may vanish and the total intensity tends
towards the sum of the individual intensities; if the two fields are completely
uncorrelated, the interference term vanishes and the linear superposition principle
applies to the intensity.

The interference term also vanishes if the two amplitude vectors are orthogonal,
i.e., if the two fields represent orthogonal polarization states (Sect. 1.5.1.1). It is
very important to note, however, that what matters for interference phenomena is
the polarization at the defector: a polarization filter in front of the detector (that
projects the two fields onto a common polarization state) can render interferences
visible that are not detected in the absence of the filter.

In the following, we restrict ourselves to monochromatic, coherent fields of equal
polarization, so that we can use a scalar description U ,

Uiy = Ayse2, 4.3)

where A , is real and positive. The intensity of the superposition is then

1(x) = 11(x) + L(x) + 21 (X)[2(X) cos(¢2 — ¢1). (4.4)

If we further assume fields of equal intensity, I} , := Iy, we obtain

I(x) = 2Io(x) [1 + cos(A¢)] = 4l cos>(Ap/2), (4.5)

where A¢p = ¢, — ¢y; the total intensity then can assume any value between 0 and
41y. The maximum intensity In,x = 4l is obtained if A¢p = 2ms, where m is an
integer. For the sake of simplicity, we use in the following plane waves Eq. (1.26)
with the wave function e 7&*=" - Any difference in the path length, wave vector,
frequency, or propagation time between the two partial waves results in a phase
difference

Ap = —Ak-x — wr) 4.6)

and may give rise to interference.

Phase correlated fields can be generated by splitting a (coherent) field with the
help of a semi-transparent mirror (beam splitter). The two emerging fields can
then propagate different paths before they are recombined on a detector. Important
implementations of this scheme are the Michelson, Mach—Zehnder, and Sagnac
interferometers (Fig. 4.1).

4.1.1 Michelson Interferometer

The beam splitter used to produce two phase correlated fields is usually a 50 %
splitter (also called 3dB splitter) that converts the incoming field of intensity Iy
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Fig. 4.1 Optical path in a (a) Michelson interferometer, (b) Mach-Zehnder interferometer, and
(c) Sagnac interferometer

into two partial fields of intensity /y/2 (note that the amplitude of the partial fields
is not Uy/2, but Uoﬁ/Z). In the Michelson scheme (Fig. 4.1a), the two waves
travel different paths, are retroreflected by mirrors, and reach the beam splitter again,
where they are partially transmitted and reflected; with proper geometric alignment,
the fields can be overlapped to produce two output fields; the beam splitter thus also
serves to recombine the partial waves. Neglecting, for the moment, possible phase
shifts by the beam splitter, the phase difference between the superimposed fields is
due to different path lengths

A¢ = 2kAs, %))

where As is the geometric length difference of the two interferometer branches. The
output intensity is given by

2 A I 4 A
[ = Iy cos’ ZOS=EO(1+COS jo s), (4.8)

where k = 27 /Ao was used (Fig.4.2). A variation of the length difference by only
Ao/4 is required to change the output intensity from a maximum to a minimum.
Michelson interferometers are therefore employed for position measurements with
nm-resolution. Usually, one arm is used as reference branch with constant length,



160 4 Optical Interference

Output 2 Output 1

1.00 — ~ < T
AR N AN h
AR i \ (Y i 1
PR s [ R
HER R I g
[} [} 1 . ! \ 1 ,
' \ | 2 ! \ ) g
1 ] H ' ] 1 b \I
! \ I \ ! \ | N
! 0 I \ H \ ' \
0.75 [H——1 = Y =
! d ] \ \ 1
\ ] \
! ] 1 h ' ] \
! U \ \ | \
1 II " 1 g \ ! |
! \ 1 \
| 1 ] ! \
g i \ 1 i ! R | b
'
=
% 0.50
[
N \ ' \ ! \ H
~ 1 1 \ ! ' h
\ ] \ ! \ hH
1 | \ [} 1 h
\ ] \ ! | '
' h \ | \ H
1 ] \ " l‘ |
\ |
0.25 —— o Vo
\ ] 1 ! \ H
1 1 \ ! 1 f
\ i \ ] \ |
\ ] \ ! \ h
\ 1 \ ! 1 h
1 ] vt vy
Vi vt vy
A \ 1’ \ /
0.00 e . :
_3X A A 0 A A 3A
i 2 4 4 2 §

Fig. 4.2 Output power at the two output ports of a Michelson interferometer as a function of the

length difference of the two branches

Incident wave 1

Fig. 4.3 Interference of two non-collinear plane waves

while the mirror in the second arm is attached to the object whose position is to be

measured.

4.1.1.1 Tilted Wavefronts
If the wave vectors of the two waves incident on the detector are not parallel, there

is a second source for a phase difference; let us assume a symmetric situation where
the two wave vectors include an angle of £6 with the surface normal of the detector
(Fig.4.3). The two wave vectors can then be written as k; , = (£ksin 8,0, kcos 8)
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and the phase difference A¢ (x) = 2kxsin 6 is a function of the lateral coordinate of
the detector plane. The resulting intensity pattern is

I(x) = 4l cos’ (kx sin §), (4.9)

a periodic pattern of bright and dark stripes with the period A¢/2 sin 8, which can
be recorded by a spatially resolving detector such as a film or a camera chip.

4.1.1.2 Doppler Effect

Equation (4.7) represents the phase difference between two stationary positions of
the interferometer mirrors. In practice, however, the sensing mirror moves between
two positions at some finite velocity v, giving rise to a Doppler shift of the reflected
light frequency. To calculate this effect, we assume a coordinate axis z along
the sensing arm of the interferometer. Let the mirror, moving towards the beam
splitter, be at position z; when a selected phase front strikes it and is reflected;
the consecutive phase front, initially a distance of Ay behind the first one, strikes
the mirror after a delay time 7, during which the mirror has moved to the position
7o = 71—vT; t follows from the equation cot = Agp—vttobe v = A¢/(co+v). Since
the previous phase front has propagated to position z3 = z; — ¢o7 in the meantime,
the distance between the two reflected phase fronts (which is, by definition, the
wavelength of the reflected light) is Aj) = 20 —z3 = ¢ot—v7 = Ag(co—v)/(co+ V),
and the Doppler shifted frequency of the reflected light is, accordingly,

o = a)l—i——v/co' (4.10)

1—v / Co
An identical result is obtained using the relativistic factor Eq. (2.197), which has
to be applied twice since the moving mirror acts both as receiver and transmitter;
note, however, that a relativistic treatment is not necessary in this case, since the
final “observer” and the light source do not move relative to each other.

On the detector, the Doppler shifted wave from the sensing mirror and the wave
from the reference arm (with frequency w) are superimposed, resulting in a signal
o |ed®’ 4 d@t|2 that varies with the beat frequency Aw = |’ — w|. Moving the
mirror over the distance As at velocity v takes the time r = As/v, during which the
phase difference between reference and Doppler shifted light adds up to

@.11)

1 A
A¢>:Awt=w[+—v/co—li| sm22As,

1—v / Co T Co
where the approximation is valid for v < ¢o and agrees with Eq. (4.7). Since the
beat frequency is a direct measure of the velocity of the mirror, the Michelson
interferometer can also be used as a velocimeter.
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4.1.2 Mach-Zehnder and Sagnac Interferometers

In a Mach—Zehnder interferometer, a separate beam splitter is used to recombine the
partial waves (Fig. 4.1b). The geometric path length is equal in both branches and
a possible phase difference can only result from a different optical path length, i.e.,
from different propagation indices in the two branches. This structure is frequently
used for sensor application, where the propagation index in the reference branch is
kept constant, while the sensing branch is exposed to some external influence that
changes the propagation index.

Still another interferometric structure is the Sagnac interferometer (Fig. 4.1c),
where both partial fields travel the same path (a loop), but in different directions.
Only effects that depend on the propagation direction can give rise to a phase
difference. In a more general way one can say that the Sagnac interferometer is
sensitive to effects that are not invariant under time reversal, such as a rotation of
the interferometer or the magnetooptic Faraday effect (Section 2.4.2).

Interferometric sensors are frequently implemented in integrated optics, i.e., as
waveguide structures. We return to this important issue in Sect. 5.3.4.

4.1.3 S-Matrix

Equation (4.8) regarding the output intensity of the Michelson interferometer was
obtained neglecting possible phase shifts by the beam splitter. All the interferome-
ters discussed here have two output ports (corresponding to the two “ports” of the
recombination beam splitter); if both ports would deliver an output according to
Eq. (4.8), the total power would not be conserved. We have therefore to conclude
that the beam splitter necessarily introduces a phase shift between the two emerging
partial waves, so that the two output powers of the interferometer add up to the input
power.

To understand the properties of a beam splitter, we describe it as a linear system
with two complex input amplitudes a;, and two output amplitudes b, , (Fig.4.4);
in the case of a partially transmitting mirror, the outputs are the reflected and

Fig. 4.4 Complex in- and Reference planes

output signals at a beam

V)

splitter, measured in reference
planes 1,2

ay ag

b1 b




4.1 Two Field Interference 163

transmitted wave, respectively, and the inputs are waves incident on the mirror either
from the front or the rear side. The in- and outputs are electromagnetic fields and
we assume the relations between them to be linear

by = Snai + Snpaz

by = So1a1 + Sxnas. (4.12)
Since the signals are waves in space, we have to define two reference planes (front
and rear), where the signals (in particular their phase) are measured; these planes

can be the physical surface of the mirror or any other plane parallel to the mirror
surface. In matrix notation, Eq. (4.12) has the form

b = Sa, (4.13)

where

= [“1] bo— [bl] (4.14)
ay bz

and

St 512]
S = 4.15
|:521 82 (4.15)

is the so-called scattering matrix.

Let the signals be normalized such that their absolute square is equal to the energy
flux density. For a lossless system, energy conservation implies afa; + aSa, =
bikbl + b;bz, or

[a*] a = [b*]"b. (4.16)

where [ |" indicates the transposed matrix, i.e.,

@l = [ar.al. (S = [ii; iﬂ . @.17)

Since [AB]" = [B]"[A]", we can conclude from Eqgs. (4.16) and (4.13) that
q

[a*] a = [a*]"[S*]' Sa. (4.18)
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For Eq. (4.18) to be valid for arbitrary inputs, § must be unitary, [S*]"S = 1, or

[s*]" =s7". (4.19)

We thus obtain the following equations relating the matrix components

SESH + S5Sn =1 (4.20)
S804 858, = 1 4.21)
S S12 4 858 =0 (4.22)
S5 + 85801 = 0. (4.23)

Returning to the example of a semi-transparent mirror, the diagonal elements S,
Sy, of S represent the front and rear reflection coefficients, respectively, while
the off-diagonal elements Si,, S»; are the transmission coefficients. The first two
equations then simply state that the reflectance #*r and transmittance *¢ must add
upto 1.

A hypothetical 3dB beam splitter with S; = §; = V/2/2 obviously satisfies
Egs. (4.20) and (4.21), but violates Eq. (4.22). Such a beam splitter would produce
the output Eq. (4.8) at both output ports of a Michelson interferometer, implying the
annihilation or creation of energy, as we have remarked above. A possible choice
satisfying the complete set Eqs. (4.20)—(4.23)is S; = 1/+/2, Si =i/ V2, implying
a /2 phase shift between reflected and transmitted wave.

Another possible property of a beam splitter (or, more generally, of a system)
is invariance under time reversal; in our context, time reversal swaps input and
output and, as we shall see in Sect. 8.3.7, the complex amplitude of a signal into
its conjugate. If the system is invariant under time reversal, it is described by the
same matrix S

a* = Sb*. (4.24)
On the other hand, conjugation of Eq. (4.13) yields

b* = S*a". (4.25)
Substituting Eq. (4.25) in Eq. (4.24) gives a* = SS*a*, which is equivalent to

S* =81 (4.26)
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In combination with Eq. (4.19), we find that the scattering matrix of lossless, time
reversal invariant system is symmetric

[S]" = S; 4.27)

the transmission coefficient of such a beam splitter is independent of the propagation
direction (reciprocity). A prominent example for a system that is not time reversal
invariant is the Faraday rotator (Sect. 2.4.2); it allows building devices that are trans-
parent in one direction and opaque in the opposite (Faraday isolator, Sect. 2.4.2.1).
The reason for this is that a magnetic field changes its sign upon time reversal
(being generated by a circulating current), so that effects that depend linearly on the
magnetic field (for example, the Faraday rotation) also change sign. Another effect
of this kind is the Sagnac effect that produces a phase shift in rotating systems and
is the basis for the optical gyroscope (Sect. 5.3.4).

The scattering matrix formalism can be extended beyond single elements and
allows us, for example, to describe an entire interferometer in a very concise way.

4.1.4 Young’s Double Slit

An alternative way to produce phase correlated fields is to transmit a wave through
two or more narrow slits in an opaque screen (wave front division, Fig.4.5). The
fields emanating from the slits propagate as cylindrical waves and can interfere
where they overlap. This setup was used by Th. Young in 1801 to demonstrate that
light is a wave phenomenon; the detector is a simple screen at a distance d from the
aperture. If a is the distance between the slits, and x is the lateral coordinate on the
screen, the respective propagation distances r| » between slit 1,2 and the screen at

Incident wave

Fig. 4.5 Interference of light passing through a double slit (d > a)
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coordinate x are

ro = vVd2+(a/2 £ x)? ~d[1 + (a/2 £ x)*/2d°], (4.28)

where the approximation is valid for x/d < 1. The path difference Ar = r, —r; ~
ax/d results in a phase difference

Ap =20 2 (4.29)
= hd’ ‘

and the intensity distribution on the screen is therefore

I(x) =~ 21, 1+ cos 27— | = dlycos® 7o (4.30)
T dho] " dhy’ ‘

4.1.4.1 Wave or Particle?

Young’s double slit experiment is of great historical importance since it proves the
wave character of light and apparently rules out the existence of light-particles, i.e.,
of photons. To shed some light on the nature of these well-established particles, we
can perform the experiment at very low light levels, so that during the transit time t
through the apparatus there is statistically not more than one photon underway, by
keeping the optical power flow well below A /. The light impinging on the screen
is detected with an array of sufficiently small photo detectors that ideally produce
one photoelectron per incident photon. The measured histogram of photoelectron
counts as a function of detector position x turns out to reproduce Eq.(4.30),
provided that the integration time is long enough; in particular, at the points of
zero intensity according to Eq. (4.30), no photoelectron is ever recorded. Just like
other microscopic particles (electrons, neutrons, atoms, ... ), a photon behaves like
a wave during propagation and becomes localized when detected; the detection
process converts the delocalized, wave-like photon into a localized one that excites
a photoelectron. The electrodynamic intensity UU* provides the spatial probability
distribution for this process.

In this context, it is also worthwhile to note that a photon generally does not
have a well defined frequency or energy. As we have seen in Sect. 3.2.1.2, a light
signal of finite duration (i.e., a light pulse) cannot be monochromatic, but displays
a frequency bandwidth that scales inversely with the pulse duration. If we again
attenuate a light pulse to such a degree that there is not more than one photon at a
time in our experimental apparatus, this photon has the same temporal and spectral
properties as the original light pulse. Only if a measurement of the frequency
is performed, the outcome has a certain value, and if many measurements with
consecutive photons are made, we obtain a histogram of frequencies that reproduces
the spectral distribution of the pulse. Stating that a photon constituting a short
light pulse has a certain frequency (or energy) before a measurement is taken is
as misleading as stating that a photon is transmitted through one or the other slit
of Young’s double slit setup. If we talk about “microscopic particles,” we refer to
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entities that behave in this non-classical fashion as a matter of fact; there is no reason
to introduce concepts such as wave—particle dualism or invoke a violation of energy
conservation during temporally short interactions.

4.2  Multiple Wave Interference

A number of photonic components rely on the interference of a large (or infinite)
number of partial fields U,,. Let us first study the special case of equal absolute value
of the individual amplitudes and constant phase difference between the fields,

U, = Uyel"=D2% n=12,3,....N 4.31)

In the complex plane, these amplitudes form a (generally open) polygon chain, with
the resulting total field amplitude pointing from the origin to the final point of the
chain (Fig. 4.6). The maximum possible intensity is realized if the partial amplitudes
are all in phase, A¢ = 2mz. The maximum intensity is given by |[NUo|*> = N2|Uo|%,
which is an N-fold enhancement over the sum of individual intensities, N| Uo 2. The
total field (and intensity) is zero whenever the polygon chain is closed; this happens
if NA¢ is an integer multiple of 27, or A¢p = 2mm/N.
To evaluate the total field, we use Zﬁl\;l ¢ "' = (1 —¢")/(1 —q) to obtain

N iNAp
T w n-nap _ 1= ¢
Utoml = Z Un = U() Z_:le‘] = Uom (432)
With
| — VAP — gINAD/2 (miNAD/2 _ oiNAD/2) (4.33)
(a) (b)
Im Im
U. U.
Uiotar A \ \ A¢
U Re [A Re

Fig. 4.6 Multiple beam interference, represented in the complex plane: the total field is the
complex sum of the partial fields (a); if the polygon formed by the complex amplitudes is closed
(NA¢ = 2mir), the total field amounts to zero (b)
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Fig. 4.7 Output intensity resulting from N-beam interference as a function of the phase difference
Ag¢ for two different values of N

and |eiN49/2| = 1 follows

e VAV _ oNAB2IP G2V Ag/2)
42 _gidg/2 | 0 sin?(A¢/2)

1=|0| (4.34)

for the resulting intensity, as shown in Fig. 4.7. Compared to the result for two beam
interference (Fig. 4.2), the maximum features are more pronounced and there appear
N — 2 small intermediated peaks between the major peaks.

4.2.1 Optical Gratings

A possible realization of the multiple wave interference described above relies on
an extension of the double slit experiment to an aperture with N equidistant slits, a
component known as optical grating. Instead of slits, reflecting stripes on an opaque
background can also be used (reflection grating). We have discussed such periodic
structures in Sect. 2.1.1 and have calculated the angles under which an incident plane
wave is scattered [Eq. (2.12)]. Here we want to calculate the angular dependence of
the intensity of the diffracted wave, assuming an incident plane wave and a grating
of finite size. The angle of incidence is 6;, and the slits or stripes are oriented normal
to the plane of incidence (Fig.4.8). We assume that each slit is the origin of a
cylindrical wave; far away from the grating, the phase difference between waves
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Fig. 4.8 Geometry of a
transmission grating; angles
are measured between the
surface normal and the wave Asin Oy /l sin Oout

vector, in counterclockwise \
/
/

sense of rotation
/

/

N (Pt | B L
Diffracted wave

Input wave A

N\ LD

from adjacent slits is

2 A
Ap = Z— (sin Gin — sin fout) , (4.35)
0

where A is the spatial period of the grating and 8, is the angle of observation
(positive or negative).

The angular intensity distribution is then essentially given by Eq. (4.34), where
N is the number of slits. The condition for maximum intensity is, in agreement with
Eq.(2.12), A¢p = 2mm, or

A (sin Oy — sin 0;) = mAy, (4.36)

where m is an integer denoting the order of interference. The wavelength depen-
dence of this condition is the basis of grating spectrometers (Sect.3.1.6.8) and
monochromators that can filter a narrow frequency band out of a polychromatic
input signal.

For this application, the resolving power is an important parameter. For a given
set of in- and output angle 6y, 0oy, we can, from Eq. (4.34), find the wavelength
variation A, that reduces the scattered amplitude from its maximum value to the
first adjacent zero; according to Eq. (4.34), this requires a change of NA¢ /2 by =,
i.e., A(A¢) = 27 /N. From Eq. (4.35) follows | dAo/Ao| = | d(A¢p)/Ag|, so that

Al
Ao

1
~ —; 4.37
N (4.37)
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the resolving power is defined as the reciprocal value and is given by

Ao

—— | = mN; 4.38
v ke (4.38)

thus, the resolving power is proportional to the number of lines, and to the diffraction
order m. Commercial gratings usually work in reflection and have about 300-1200
lines/mm; the total number of lines is typically 10*~10°, and the grating is operated
up to the fourth order. The reflecting lines are usually grooves with triangular profile
so as to maximize the reflection efficiency in a particular direction (“blazing”).

4.2.2 Dielectric Multilayer Systems

Another important component relying on multiple beam interference is the dielectric
multilayer mirror (see, e.g., MacLeod 2001). It consists of up to thirty dielectric
layers of different propagation index and is usually designed such that the reflections
from the interfaces between the layers add up constructively so as to achieve
maximum reflectance in a certain wavelength range. In other applications, the
opposite goal is intended, namely the reduction of the reflectance, ideally to zero
(antireflection or AR coating).

According to Sect.2.1.1, the reflection coefficient of a dielectric interface at
normal incidence is given by

n—ny 1—ny/ny
n1+n2_ 1+n1/n2’

(4.39)

r =

where n;, are the propagation indices of the two media; since the propagation
index of typical dielectrics in the visible is between 1 and 2.5, the corresponding
reflectance |r|?> is rather moderate. A stack of alternating layers of high and
low index ny), respectively, produces an enhanced reflected field, provided that
the individual contributions add up constructively. The phase difference results
from the propagation delay of the forward and backward propagating waves, and
the phase jump at each interface, which is 0 or 7 depending on the sequence
of propagation indices [Eq. (4.39)]. Considering both of these contributions, we
expect maximum reflectance for a layer thickness of A/4; the integrated reflection
coefficient, however, is not a simple sum over the individual reflections, since each
interface scatters the locally incident field into a reflected and transmitted wave, so
that the number of partial waves is actually infinite.

This highly complex problem can be solved in an elegant way by resorting
to boundary conditions at the individual interfaces. We assume a sequence of N
dielectric layers with propagation index n; and thickness d;, supported by a substrate
of index ng (Fig.4.9); light is incident onto the stack from the left, denoting the
forward direction in the following. To establish boundary conditions at the two
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Fig. 4.9 Electric fields at the interfaces of a dielectric multilayer system

interfaces of layer i, we consider four electromagnetic fields Ell._), Ell.(_, Efl, Ei(_l,
forward and backward propagating, respectively, with the bar indicating the position
of interface.

As in Sect. 2.1.1, we employ the continuity of the tangential component of the
electric and magnetic field as boundary condition. To simplify matters, we assume
normal incidence, so that the fields are equal to their tangential components. At the
interface (i — 1, i) the electric and magnetic field, respectively, must satisfy

Eiy=E | +E-l=E~ +E© (4.40)

Hi-1p =H2) +H-) =H™ + H*. (4.41)
According to Egs. (1.66) and (1.68), the relation between H and E is given by

H=+—E, (4.42)
Zy

where the positive (negative) sign applies to forward (backward) propagating waves,
and Z; is the vacuum impedance Eq. (1.69). Equation (4.41) can thus be cast in the
form

_ ni—1 —| <\ _ n; |— |«
Hig = 7 (2l -E2l) = 7 (B -£). (4.43)

Analog equations hold at interface (i, i + 1)
Eivyy = E '+ E
Hiin = o~ (BT = E7). (4.44)
Zy
The electric fields at the two interfaces differ by a phase factor
Ei—>| _ El!—> o —konid;

ES = El<eltomd; (4.45)

l
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substitution in Eq. (4.44) yields
Z omsd:
B =} (E(i,i+1) + ;Hu,m)) elfondi
1
< _ 1 Z —jkond;
E =5 Eqi+n) — ;H(i,i—i-l) e (4.46)
1
so that Eqs. (4.40) and (4.43) can be cast in the form
2y .
Ei-1.) = Egi+1) coskond; + ];H(i,i+l) sin kon;d;
1

Hi1; = j%E(i,i+l y sin kond; + H; i1y cos konid,. (4.47)
0

Thus, the fields at the two interfaces of layer (i) are related by

|:E(i—1,i) } _ M, [E(;,;+1) } (4.48)
Hi—1, Hijit1y

where

M — COS k()n,'d,' ]i—? sin k()l’l,'d,'
T _];—’ sin konidi COS konidi

0

(4.49)

is the characteristic matrix of the layer, that accounts for all multiple reflections and
transmissions within the multilayer system.

Starting from the substrate, we now can calculate the fields step by step, simply
multiplying the characteristic matrices from the left:

[Ew’l)] =MM,...My_ My [E(N’”} = My [EW*S) ] ; (4.50)
H, Hy s Hy )

4.2.2.1 Reflection and Transmission Coefficient
The integrated reflection and transmission coefficients, respectively, are given by

E;Y BT

r=—t =g
EO EO

4.51)

According to Egs. (4.40) and (4.43), boundary conditions at the front surface require
Eqn = (1+r)Ey " and He.1y = (1—r)(n0/Z0)E,”'. At the substrate interface, there
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is no backward wave so that El_) = Ewg = tEO_) I'and Hl_) = (ns/Zo)Ews) =
t(ns/ ZO)EO_> | Equation (4.50) can therefore be written as

[(1 - r)no/ZJ Eo” =M |:tns/ZOi| Eo (*+32)

Solving for r and ¢ yields

. noZoMyy + nonsMyy — ZgMyy — nyZoMp, (4.53)
noZoMi\ + nonsMys + ZaMay + nZoMa, ‘

2}1020
- ~ . (4.54)
noZoMy + nonsMy + ZgMyy + nyZoM>)

Simple phase considerations at the beginning of this section led us to assumption
that maximum reflectance is obtained by stacking quarter wavelength thick layers
of alternating high and low index np; on top of each other. Since konid; =
(wo/co)nid; = /2 in this case, the diagonal elements of M, vanish and the
characteristic matrix of an ny-n; double layer is given by

My = | O || O dm o O (4.55)
o gm0 || 0 —a ‘

A system of m such pairs has the non-vanishing components My; = (—ny/m)™
and My, = (—n/ny)™, so that the integrated reflection coefficient according to
Eq. (4.53) is given, at the design frequency wy, by

L b b L (m/nn)*"
My + My 1+ (m/ny)>

(4.56)

where we have assumed, for simplicity, np = ng = 1.

With 10 (m = 5) alternating layers of ZnS (n, = 2.3) and MgF (n; = 1.38),
a reflectance R = |r|> of 0.976 is obtained; 20 layers yield 0.99993, which can
be hardly reached in practice because of absorption and scattering losses. By
comparison, the reflectance of high quality metal mirrors is limited to values below
0.098.

4.2.2.2 Bandwidth

Figure 4.10 shows the calculated reflectance of a high reflectance (HR) multilayer
mirror, designed for maximum reflectance at 800 nm (optical layer thickness of
200 nm). Surprisingly, the range of high reflectance extends far beyond this central
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Fig. 4.10 Reflectance and phase shift of a high reflectance (HR) dielectric multilayer mirror as a
function of wavelength

wavelength. For a larger number of layers, the reflection spectrum gets more and
more rectangular, while the width of the reflection band turns out to depend on (and
to grow with) the ratio ny/n; only.

To obtain an estimate of the width of the reflection band, we consider an
infinite series of identical dielectric double layers and exploit the invariance of
the stack under translation by one such pair. Let the center frequency be wy,
so that (wo/co)nid; = m/2 and the phase term in Eq.(4.49) can be written as
konid; = (7/2)(w/wp). The fields at the interfaces of a double layer are then related

by the matrix

M

120 gin (= @ T iZo0
i Sln<2w0> cos(ZwO) Jasi
T i gin (2@
cos(Zw0 iz sm(2w0 cos

:’l—‘l‘sm2 (%wﬂo)
cos? (%ﬂ) — M gip? (1
wo np 2

(4.57)
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Because of the translational invariance, the two fields must be related by the same
factor By, no matter which double layer i is selected, so that

Eii Eg;
My [ H((f :)) } = B [ H((,' :’) } ; (4.58)

to allow for non-trivial solutions, B, must be the root of the characteristic equation
det(MMh‘ — ,B\llhll) = 0, or

By — Bun (M1 + M) +1 =0, (4.59)

where M1, and My, are the diagonal components of M ;| and detM; = 1 was used.
The solutions

My +M My + My )\?
Bup = 11-; 22:b\/( 11-; 22) 1 (4.60)

can be either complex of the form e*?, resulting in an interfacial amplitude that
oscillates along the propagation direction. For the structure to be a perfect mirror,
however, the amplitude must decay exponentially in the forward direction, which
requires By to be real, implying

2
M+ Mn)? = [2c02 (Z2) (2 2 M) sin2 (Z2)| >4 @61
2 wo nmo n 2 wy

This condition defines the reflection band

2
or (32) < (22) (4.62)
2 wy ny +m
the borders wy = Aw/2 of which are obtained from the equation
A A —m\’?
co? | Z(1+22) | =sin2 (Z222) = (oM , (4.63)
2 2wy 2 2wy ny +m

yielding the normalized bandwidth

nh — Ny

Aw 4 .
—— = — arcsin

. (4.64)
wo T np +m

As can be seen, the width of the reflection band (also called stop band) increases
with the propagation index contrast (n, — )/ (ny + ny); the additional peaks in the
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reflection spectrum Fig. 4.10 originate from the oscillatory solutions outside the stop
band.

4.2.2.3 Antireflection Coatings

Dielectric layer structures can also be designed to minimize reflection by exploiting
destructive interference. A particularly simple AR coating is a single dielectric
layer applied to an optical surface. The propagation index n; of the layer is chosen
to be intermediate between the indices ny and ng of the adjacent media (air and
glass) so that the reflection coefficient is negative at both interfaces, and the layer
thickness must be A /4 to provide destructive interference. According to Eq. (4.53),
the resulting reflection coefficient is

2
p= WM (4.65)
nons + Ny

and zero, if the index of the layer is the geometric mean value

ny = /nons (4.66)

of the adjacent media. As shown in Fig.4.11, the reflectance vanishes at the design
wavelength Ao = 4n,d and lies significantly below the reflectance of the uncoated
surface (=~ 4 %) over a wide wavelength range. Multilayer AR coatings provide
better performance and allow for more flexibility in the choice of the layer materials.

15

\ /
/

0.0 \
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Fig. 4.11 Reflectance of a single layer antireflection coating with ny = ,/ngn;
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4.2.3 Fabry-Perot Interferometer

A Fabry—Perot interferometer Fig.4.12 is a structure consisting of two parallel,
partially transmitting mirrors spaced by a distance d; the enclosed space (also called
cavity) can be empty or filled with a dielectric. Light incident on the input mirror is
partially transmitted into the cavity and then partially reflected between the mirrors,
forming an infinite series of partial waves in the forward and backward direction,
respectively. The following analysis assumes a monochromatic, plane input wave
and identical mirrors with the (complex) reflection coefficient r = |r|e}4? and
the transmission coefficient z. Any two consecutive partial waves impinging on the
output mirror differ by the complex factor 72 and the phase delay due to propagation
over twice the distance d; the phase difference A¢ is therefore

A = 2Ad, — 2kondcos § = 2Ad, — 22 ndcos 6, (4.67)
€o
where 6 is the angle of incidence and kyn cos 6 is the axial component of the wave
vector. The total transmitted field amplitude is then
U' = Uptf (1 + |12 + |r*ei?2? + ), (4.68)
where ¢ := te #0749 includes the phase shift due to the first transition through

the cavity. This infinite geometric series is evaluated using Y o | g '=1/(1-q)
with ¢ = |r|?ei4?:

- - 1
t /

which allows us to express the transmitted intensity by

It B |UI|2 B T2 B T2
|1 — Reids|? "~ 1—2Rcos A¢p + R?’

(4.70)

Iy |Uo
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where R = |r|>and T = |¢|*> = |¢'|>. Using cos x = 1—2sin?(x/2), the denominator
of this expression can be cast in the form

B 2 o2 4R sin*(A¢/2)
1 —2Rcos Ap + R* = (1 — R) [1 + AR } : (4.71)
so that we obtain

I 4Rsin*(Ap/2) |

I~ (I-Rp [1 TTaore | &7

This periodic transmission function is shown in Fig.4.13; in contrast to Fig. 4.7,
there are no side maxima, which is due to the summation over an infinite number
of decreasing partial fields. A maximum transmittance of 72/(1 — R)?, which is
equal to one if the mirrors are lossless, is obtained if the partial waves are in phase,
A¢ = —2mu, a situation that is called resonance.

For a given cavity length d, the resonance condition yields a series of resonance
frequencies

€o

Wy = (A¢ps + mn) =: Aws + mAwy, 4.73)
nd cos 6
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Fig. 4.13 Transmittance of a Fabry—Perot interferometer
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spaced by a frequency interval Aw;,

CoTT
Aw; =

= —, 4.74
nd cos 0 ( )

called free spectral range, that is approximately constant if the dispersion of the
cavity medium can be neglected. It follows from Eq.(4.74) that the “comb” of
resonance frequencies can be stretched or compressed by changing d, n, or 6.
Note that the effect of the mirror induced phase shift is a frequency-offset of the
entire comb by Aws = coA¢ps/ndcos 6. At optical frequencies and macroscopic
cavities (d > Ag), the resonator mode index is a very large number, m > 1, so that
Adg; can often be neglected.

Another characteristic parameter of a Fabry—Perot interferometer is the so-called
finesse, defined as

VR
F=n——; 4.75
TR (4.75)
with this parameter, Eq. (4.72) can be written as
It 1
= (4.76)

Ih 1+ QF/n)?sin?(Ad)2)

Neglecting the phase shift introduced by the mirror, we can set A¢p = 2nw/Aw;,
and

I 1
Iy 1+ QF/n)?sin*(rw/Aw;)

4.77)

The frequency deviation Aw from a resonance that reduces the transmittance to
50 % is a measure of the line width of the comb filter and is given by

.3 Aw (T 2
sin (n Awr) = (2F) . (4.78)

Provided that R ~ 1, r/2F is small and we can approximate sin® x ~ x? so that

Aw 1
= —. 4.79
Aw, 2F ( )
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The FWHM-width Awe of the transmission peak is then

Aw,

AWyes ~ F ; (4.80)

thus, the finesse Eq. (4.75) is the ratio of free spectral range to bandwidth.

Fabry—Perot interferometers are used as high resolution filters; frequency tuning
is provided by adjusting d, 8, or n; filters with constant d and n are called etalon-filter
and can be tuned by tilting. The most important aspect of the structure, however, is
its application as laser resonator.

4.3 Resonators

The rather counterintuitive fact that a sequence of two mirrors transmits, at
resonance, 100 % of the incident light, while each of the mirrors transmits only a
fraction T = 1 — R, finds its explanation in the enhancement of the field inside the
cavity. As can be seen in Fig. 4.12, the total field incident on the output mirror is 1/¢
times larger than the transmitted field, implying that the corresponding intensity
is 1/T = 1/(1 — R) times larger (Fig.4.14). Under resonance conditions, the
transmitted intensity is equal to Iy, so that we have to conclude that the intensity
incident on the output mirror is Ip/(1 — R); if, for example, the reflectance of the
mirror is 80 %, the intensity of the right-propagating intracavity field is five times
enhanced over the input intensity.

Energy conservation requires the reflectance of the Fabry—Perot interferometer
at resonance to be zero, which implies the cancellation of the reflected field rU,
by the transmitted fraction ¢ of the left-propagating intracavity field; for complete

Fig. 4.14 Normalized 5 T T
transmitted (I'), reflected (I"), R=08
and right-propagating internal
intensity (™) of a 4 —
Fabry—Perot interferometer
3 H -
g
~ o I
2 H -
/L I' L,
1
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cancellation, the magnitude of this field must be —(r/#) Uy, corresponding to a left-
propagating intensity of Io(R/T). The net power flow (the difference between right-
and left-propagating power flow) through the cavity is therefore Iy[1/(1—R)—R/(1—
R)] = Iy, while the remaining power flow Io(R/T) is just circulating between the
mirrors.

The resonant enhancement is due to constructive interference of the fields propa-
gating inside the cavity. The resonance condition of the Fabry—Perot interferometer
implies that the wave circulating between the mirrors exactly reproduces itself in
terms of the phase; such waves are called eigenmodes or simply modes of the
resonator, and the corresponding frequencies (w,,) are its eigenfrequencies. These
modes play a central role in the theory of laser oscillators (see Chap. 7). Neglecting
Ads, the eigenfrequencies of the resonator are given by Eq. (4.73) with 8 = 0

Wy = Mm—, 4.81

m—— (4.81)
where d is the resonator length, which, depending on the type of laser, lies between
some 100 pum (semiconductor lasers) and 1-2m (gas lasers). Consequently, the
mode index m ranges between 107 and several 10° in the VIS and NIR. The mode
spacing,

CoTT

A = —>
@ nd

(4.82)

lies between 1000 GHz (semiconductor laser) and 100 MHz (gas laser).

Laser resonators are lossy, not only because of the finite reflectance of the mirrors
(which serves to couple the laser light out of the cavity), but also because of various
internal losses. The power loss per round trip can be described by a loss factor
e~%=2d [Eq.(7.5)], while the round trip loss of an ideal, symmetric Fabry—Perot
resonator is represented by R2. To describe a lossy resonator, we can replace, in the
expression (4.75) for the finesse, the term R by e™%es¢

e_aresd/z T
F=umx ~ , 4.83
1 —eesd — god (4.83)

where we have used the approximation e &~ 1 4 x. In Chap. 7 we will introduce the
concept of a resonator life time . as the time it takes a given photon number in the
cavity to decay to a fraction 1/e. As we will see [Eq. (7.7)], this life time is related
to the loss coefficient ties by ttres = 1/¢Tres, SO that the bandwidth Eq. (4.80) of a
resonator in the absence of gain can be expressed, with the help of Eqs. (4.82) and
(4.83), by

AWres ~ —. (4.84)
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In a laser under stationary operating conditions, the gain (represented by the gain
coefficient y) provided by stimulated emission exactly compensates the losses so
that the effective loss coefficient a;es + y = 0 [Eq. (7.9)]; consequently, the finesse
tends towards infinity and the spectral width of the laser mode approaches zero (see
Sect.7.2.3).

4.3.1 Spherical Mirror Resonators

In practice, mirrors are of finite size and the quasi-plane waves circulating in a
realistic plane mirror Fabry—Perot resonator experience losses at the mirrors because
the wave diverges during propagation. By contrast, a Gaussian wave function with
its rapidly decaying radial amplitude can be reflected by finite size mirrors very
efficiently. As we have seen in Sect.3.1.2, Gaussian beams have spherical phase
fronts; if such a beam is reflected at a mirror of matching curvature, it is reflected
exactly into itself; two spherical mirrors, spaced by a certain distance, allow a
Gaussian beam with appropriate parameters to circulate between them without
changing its shape (Fig. 4.15). The problem of finding the required beam parameters
was treated in Sect. 3.1.2, where the confocal parameter Eq. (3.27) and the position
of the waist Eq. (3.26) were calculated for a given set of phase front curvatures; note
that these two parameters do not depend on the frequency of the wave, so that one
degree of freedom for the specification of the mode is left.

4.3.1.1 Eigenfrequencies

Just like the eigenmodes of a plane mirror Fabry—Perot resonator, the modes of
a spherical mirror resonator must reproduce themselves after a round trip; the
longitudinal phase of a Gaussian wave function is, according to Eq. (3.17), kz—£(z)
so that the resonance condition for a resonator with spherical mirrors at z; and z; is

2k(zz — z1) — 2[E(z2) — §(z1)] = 2mm, (4.85)

Fig. 4.15 Spherical mirror
resonator with Gaussian
mode, shown with contours
of constant energy density
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where m is the longitudinal mode index and z; » is measured in respect to the waist;
an additional phase introduced by the mirror has been neglected for the sake of
simplicity. With k = w/c and 2o — z1 = d, we obtain

e el —EG]

= 4.86
w, 7 7 (4.36)

The Gouy term c[£(z2) — £(z1)]/d depends only on the position and curvature of
the mirrors and shifts the comb of eigenfrequencies by a constant offset; the mode
spacing is not affected and equal to that of a plane mirror Fabry—Perot resonator
[Eq. (4.82)] of the same length

Aw, = —. (4.87)

4.3.1.2 Stability Condition

Not every configuration of two mirrors supports a Gaussian mode; a pair of convex
mirrors, for example, obviously cannot be matched by the phase fronts of any
Gaussian beam. The condition that the set Ry, R, d has to meet for a mode to
exist is called resonator stability condition and can be derived from Eq. (3.27) by
restricting z(z) to positive values. Resonator configurations that do not satisfy this
condition are called instable and are highly lossy.

The sign of the curvature 1/R; of a spherical mirror is defined in respect to
the reflecting surface: by convention, it is negative (positive) for concave (convex)
mirrors. The sign of the phase front curvature 1/R in Eq. (3.13), however, is given
in respect to the orientation of the z-axis; to account for this conflicting definitions,
we formulate the curvature matching condition as R; = Ry for the left mirror and
R, = —Rq; for the right mirror in Fig. 4.15. Equation (3.27) then assumes the form

Zz — d(d + RSZ)(d + Rsl)(_RSZ - Rsl - d) >
0 (RSZ + Rsl + 2d)2

0. (4.88)

With the substitutions
g1 :=1+4+d/Ry, g :=1+d/Ry, (4.89)
the inequality can be cast in the form

2 g182(1 — g182)
(81 + 82— 28182)?

> 0. (4.90)
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Since the denominator of this expression is positive, the terms g;g, and 1 — g1 8>
must have the same sign, yielding the stability condition

0<gi1g < 1, “4.91)

which is graphically represented by the map Fig. 4.16.
For a symmetric resonator R;; = Ry, = Rs, Eq. (4.91) is reduced to

<2, (4.92)

=~

while a plano-concave resonator (d/Rs; = 0 and Ry, = R;) has to satisfy

IA
—_

(4.93)

Y
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4.3.1.3 Mode Parameters

The position of the waist, in reference to the left mirror, is given by Eq. (3.26);
for symmetric resonators, the waist is naturally in the center of the resonator. The
confocal parameter follows from Eq. (3.13) with z = d/2,

20 = 3v/2IR|d — d?; (4.94)

the waist radius of the mode is given by Eq. (3.12)

wo = 4/ @. (4.95)
/4

Equation (3.11) yields the mode radius at the mirrors (Fig. 4.17); the mirror must be
several times larger than the mode radius to keep losses low.

The focal length of a spherical mirror is equal to —R;/2; for a symmetric confocal
resonator (Fig. 4.18), Ry = —d, so thatzp = |Rs|/2 and wy = /Ad/2mx. This type of
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Fig. 4.17 Beam waist wy, and mode radius w at the mirrors for a symmetric spherical mirror
resonator as a function of g = 1 4 d/R;

/2

d=2%=|Ra|=|Ry|

Fig. 4.18 Geometry of a confocal resonator
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resonator has, at a given length, the smallest possible mode radius w(d/2) = v/2wj
at the mirrors (Fig. 4.17).

All members of the Hermite—Gaussian family of wave functions Eq.(3.95)
exhibit the same spherical phase front curvature and thus are equally well suited as
eigenmodes of spherical mirror resonators; it is common to refer to these modes as
transverse modes. The eigenfrequencies Eq. (4.86) of the TEM;;-modes are slightly
up-shifted in comparison to the Gaussian TEMgy-mode because of the increased
Gouy phase term (i + j + 1)£(z) [Eq. (3.97)]. The intensity profile of the modes is
shown in Fig. 3.14.

The superposition of left- and right-propagating waves inside the cavity results
in an axial amplitude modulation o« e 4 e#* = 2 cos kz; the energy density is
therefore axially modulated o cos? kz (Fig. 4.15), giving rise to a total of 2d /A axial
nodes.

4.3.1.4 ABCD Formalism for Spherical Mirror Resonators

The ABCD formalism, discussed in Sect.3.1.4 provides a very powerful tool to
analyze spherical mirror resonators. As an example, we present a generalized
formulation of the stability condition: let the ABCD matrix of a resonator round trip
be M,.; for a Gaussian wave to be an eigenmode of the resonator, it must reproduce
itself after one round trip, i.e., its g-parameter must remain unchanged

_Agq+B
1= Cq+D’

(4.96)

where A, B, C, D are the coefficients of M .. The solutions

A-D 1
Qo= —— V(A —D)? + 4BC (4.97)

4+
2C 2C

must have a non-vanishing imaginary part to be a meaningful g-parameter. Using
detM,., = AD — BC = 1, we can express this condition in the form

(A+D)?—4

= <0 (4.98)

or

—-2<A+D<2; (4.99)
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the absolute value of the trace of the ABCD matrix must be less than 2. This is an
elegant formulation of the resonator stability condition, that also applies to complex
cavities containing lenses etc. The negative real part of g,

D—-A
— (4.100)
2C

is equal to the distance of the mode waist from the reference plane of the ABCD
matrix. The mode parameters are given by

1
= ——/4— (A + D)?, 4.101
20 210 (A+D) ( )
Al
i="__\/4—(A+ D) 4.102
wo 7 2[C] (A+D) ( )

For the spherical mirror resonator discussed above, we obtain, with the reference
plane at mirror 2

ld 1 0][1d 1 0
M:[Ol][z/&l 1”01”2/&21} (4.103)
_ [(1 +2d/Ry)(1 + 2d/Ry) + 2d/Rgy d(2 + Zd/Rsl)i| :

substituting this matrix in Eq. (4.99) immediately reproduces Eq. (4.91).

4.3.2 3D Resonators

A question of great theoretical importance is the spectral mode density of the
electromagnetic field, that is the number of electromagnetic modes per unit volume
in the frequency interval w, ® + dw. For an estimate, we choose a rectangular, box
shaped cavity of dimension d, , ., with perfectly conducting (and reflecting) walls,
imposing the boundary condition that the tangential component of the electric field
at the walls must vanish. The (standing) waves

E(x) = Epxcoskyxsinky,ysink,z
Ey(x) = Ep, sinkyxcos kyysink,z

E.(X) = Ey sink.xsin kyy cosk;z (4.104)
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are, as can be easily shown, solutions of the Helmholtz equation Eq. (1.22). The
boundary conditions are satisfied if the components k; of the wave vector assume
the values

kid; = wm;, m;=1,2,3,...; (4.105)

for each wave vector, there exist two linearly independent modes with orthogonal
polarization. In three-dimensional k-space, these modes are represented by equidis-
tant points (k,, ky, k;) in the positive octant. Because of the constant mode spacing,
each of the modes occupies the volume 3/ didyd,.

Before we determine the number of modes at a certain frequency, we estimate the
number of modes in the interval [k, k + dk], where k = |Kk| is the wave number. In
k-space, this interval is represented by a spherical shell octant of radius &, thickness
dk, and volume 47k? dk/8. Assuming that the dimensions of the box are very large
in comparison to the wavelength of interest, the volume 3/ d.d,d, is very small and
we can approximate the number of modes by dividing the volume of the shell by the
volume per mode. If we finally divide the resulting number by the volume d.d,d, of
the box and multiply with 2 to account for the two polarization states, we obtain the
number N (k) dk of modes per volume in the interval [k, k + dk]'

k2
N(k) dk = —; dk. (4.106)
/4
The dispersion relation Eq.(1.28) w = kco/n allows us to evaluate the spectral

density N(w) of modes as a function of frequency: with N(w)dw = N(k)dk we
obtain

w*n?

N(w) = e (4.107)

For large resonators, the mode density is independent of the shape and size of the
resonator, and proportional to the square of the frequency.

'In the same way and with the same result, one can calculate the density of states pg (k) of electron
Bloch waves in a semiconductor [see Eq. (6.107)].
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44  Coherence*
4.4.1 Temporal Coherence

Up to this point, we have treated interference effects of purely monochromatic
waves that are completely coherent. We now extend the discussion to light fields of
constant intensity (stationary fields) that have statistical fluctuations of the phase and
a spectral density that extends over a finite, narrow bandwidth. Such light is emitted,
for example, by luminescence diodes or by thermal light sources with a narrow-band
transmission filter. Since the visibility of interference phenomena depends on the
stability of phase relations, the coherence properties of such light can be analyzed
with interferometers (see, e.g., Goodman 2015).

4.4.1.1 Complex Analytic Signal
We assume that the light field is given by the scalar function u(¢) with the Fourier
transform pair

o0
U, = / u(f)e " dt, (4.108)
—00
1 o0 .
u(t) = — / U, el do. (4.109)
21 J_ o

Since u(t) is real, U—,, = U}, and Eq. (4.109) can be cast in the form

Iy e 1o
ut) = | = U,e do + — Ure ™ dow |, (4.110)
2 7 0 T Jo

0) U*(0)

defining the so-called analytical U
A 1 [ .
Ut) = —/ U,e!” dw (4.111)
T Jo

with the property
u() = Re [U(t)] : (4.112)

if u(z) is normalized so that I = 2 (u(f)u(t)), then

I= <0(t)0* (t)> (4.113)
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[compare Eq.(1.59)]. A superposition of two fields u; »(¢), with the corresponding
analytic signals U »(), produces the intensity

1=([010 + 00 [0:0 + 50])
— I+ 1+ 2Re [(Ijl(t)l}: (t)>] . (4.114)

Thus, we can treat partially coherent signals in the same way as coherent signals by
using the analytic signal instead of the complex amplitude.

4.4.1.2 Correlation Functions

If we launch a polychromatic field u(7) of constant intensity /y into a Michelson
interferometer, we obtain, at output port 1 (Fig.4.1(a)), the superposition rf[u(t) +
u(t + t)], where r,t are the reflection and transmission coefficients of the beam
splitter (rr* = #t* = 1/2),and T = 2As/c is the delay introduced between the two
partial fields by the length difference As of the interferometer legs. The intensity at
the detector is then, according to Eq. (4.114),

I(t) = % (10 +Re [(0(;)(7*@ + z)>]) , (4.115)

which is the sum of a constant background and the real part of the function
<Ij 014 i (t+ r)>. Obviously, if U (#) describes a coherent wave with time depen-
dence eI, the real part of this function lies between +1j, and the output of the
Michelson interferometer varies between O and Iy; on the other hand, if U(¢) and
U(t + 7) are completely uncorrelated, this function is zero; interferometers are
therefore well suited to analyze the statistical properties of light.

The correlation of two complex analytic signals U;(¢) and U;(f) can be charac-
terized by the time averaged correlation function

() := (Ui(t)Uf(t n r)>; (4.116)

for i # j this is the averaged cross correlation which in optics usually refers to the
field at two different points x; »

I(0) = IM'(x1.%0.7) = <0(x1, 00" (%, 1 + z)); 4.117)
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if i = j, the function is the averaged autocorrelation. Since [};(0) = I;, the local
intensity can be used to introduce the normalized correlation function

I'(x1,x%2, 7)

MO Ty

0<|ra(»)] <1, (4.118)

which is called the mutual coherence function, while y;;(7) is called complex degree
of temporal coherence.

The output intensity Eq. (4.115) of our Michelson interferometer can therefore
be written as

I(t) = 1 (1 4+ Re[yi(0)]) Lo, (4.119)

which varies between the values Iy (1 & |y11]) /2. The visibility of the interference
is defined as the contrast ratio (Imax — Imin) / (Imax + Imin) and is equal to the absolute
value of the degree of coherence,

Imax Imin
_— = 7)|. 4.120
T + Ton [y ()| ( )

For light with statistically distributed phase, the visibility usually decreases with
growing delay t (Fig.4.19). The delay for which the visibility drops to 1/e is
called coherence time t.o,; it corresponds to the longitudinal coherence length

leohJong := CoTcoh, that is a measure for the distance in propagation direction
T L T T T
1k ... leoh - i
0.8 F 4
<
~ 0.6
«
N
It

o
~

<
[N}

As [a.u]

Fig. 4.19 Michelson interferometer output of a narrow-band polychromatic signal; As is the
displacement of the scanning mirror, A¢ is the central wavelength of the signal the dashed lines
mark the 1/e-points of the visibility
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over which a significant phase correlation is maintained. The complex degree of
coherence of monochromatic light U o e/’ is given by yi1(r) = €77, with
|¥11(z)| = 1 for arbitrary times, implying an infinite coherence time and length.

4.4.1.3 Coherence and Spectral Width
To spectrally characterize a polychromatic signal of constant intensity, we start from
the Fourier transform V,, of the analytic signal

0 A .
V, = / U()e " dr; (4.121)

(o]

|V,,|? can be interpreted as the energy content of the field in the frequency interval
[@,w + dw]. For a stationary signal, however, the energy content is infinity, and we
use instead the truncated Fourier transform Vy(w)

T/2 R )
Vi(w) := / , U(r)e " dt, (4.122)
-T

and define the power spectral density S(w) of U (1) as

2
(WLT‘U)”. (4.123)

Stw) i= i

According to the Wiener—Khinchin theorem, S(w) is the Fourier transform of the
autocorrelation function I = I}; [Eq. (4.116)],

S(w) = / I'(t)e 7 dr, (4.124)
and
I'(x) = 1 / - S(w)et do. (4.125)
27 ) oo

This is the basis of Fourier transform spectroscopy that determines the power
spectrum by numerical Fourier transformation of the autocorrelation function,
measured with a Michelson interferometer. The spectrum is thus obtained without
any dispersive element (grating) and relies only on a power detector.

Quite generally, the widths of a Fourier transform pair such a I" and S are
reciprocal to each other. We therefore can conclude that the width of the power
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spectrum and the coherence time are related by

TeonAw = 27C, (4.126)

where C is a constant (of order 1) that depends on the shape of the spectrum and the
definition of the spectral width. With w = 2mco/Ag, and Aw/ ALy = —cho/kg,
we can extract a useful relation between coherence length and spectral width Adg
from Eq. (4.126)

AZ
lcoh,long = C0Tcoh ~ |A—AOO| 4.127)

A typical thermal white light source has a power spectrum centered around 500 nm
with a bandwidth of several hundred nm; accordingly, the coherence length is a
few um, which is still sufficient to observe interference patterns from a thin oil
film on water, for example. A Helium—Neon laser (1p = 632nm) emits light
with a bandwidth of about 1 MHz, corresponding to a coherence time of 1 s and
a coherence length of 300 m. With appropriate filters, light of 1 MHz bandwidth
can also be obtained from a thermal white light source. The power of such a
signal is a very small fraction ~10°Hz/10'>Hz = 10~ of the power of thermal
source. Assuming a lamp emitting 1 W of visible light, only 1 nW would be in a
1 MHz spectral window, which has to be compared to the typical 10 mW output
power of a HeNe laser. The temporal coherence properties, however, would be
the same. Thermal light, however, is also characterized by low spatial coherence
(see following section) and differs also in terms of noise statistics from laser light
(Sect.9.3).

4.4.2 Spatial Coherence

Temporal coherence refers to the phase correlation of a light wave at a selected
point in space at different times. Phase correlations can also be measured at different
points in space. For this purpose, the mutual complex degree of coherence

I'(X2,X%, T)

y(1,%2,7) = VIGNI(x)

(4.128)

is used; it can be measured by a scheme similar to Young’s double slit interferom-
eter, using two pinholes of variable distance. If the optical field is a beam, the two
points can be chosen in a common plane normal to the propagation direction. The
distance |x, — x| at which the visibility of the resulting interference pattern on a
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screen drops below a certain value defines the transverse coherence length Icoh trans-
Spatial coherence is relevant for the degree to which a light field can be focused or
collimated. A Gaussian beam with a perfectly coherent phase front has a divergence
angle of 260 = 2A/mwy [Eq.(3.19)]; the transverse coherence length is given by
the beam diameter 2wy in this case. We therefore can estimate the divergence of an
arbitrary light beam with the transverse coherence length .op trans to be

4)
20 x —— (4.129)

b
T lcoh,trans

since in terms of coherence, the beam can be treated as being composed of
independent coherent beams of diameter lyop trans-

4.5 Summary

Interference is a universal phenomenon in optics: any wave function can be under-
stood as the result of an interference of elementary waves radiated by the electrons
of the emitter. In a more applied sense, interference refers to an optical design
where light waves are superimposed to reach a certain goal: high reflectance of
dielectric multilayer mirrors, controlled spatial intensity patterns, field enhancement
in resonators, spectral analysis by gratings, sensing capability of interferometers,
etc.

The partial fields in these devices are usually generated using beam splitters,
or by selecting different parts of an original phase front. The properties of beam
splitters are very interesting mathematically; the amplitude of the fields reflected by
and transmitted through a 50 % beam splitter, for example, has an absolute value
of about 70 % of the original field. A scheme that would allow adding these fields
would produce a field amplitude with an absolute value of 140 %—in violation of
energy conservation. The restrictions imposed by energy conservation, reciprocity
or time reversal invariance reduce the number and values of independent (complex)
parameters of a beam splitter accordingly. The representation of beam splitters by a
scattering matrix provides an elegant and stringent formalism that can be extended
to interferometers and more complex systems.

The central parameter determining interference is the phase of the participating
fields, and a convenient way to analyze related effects is to represent the fields in the
complex amplitude plane. The reader is advised to visualize, as a valuable exercise,
effects such as multiple beam interference with adequate software in this manner.

The crucial role of phase in interference renders interferometers also ideal
tools to analyze the (statistical) coherence properties of light. Since a Michelson
interferometer provides the autocorrelation function of the input signal, it can be
used to determine the coherence length of partially coherent light. A Michelson
interferometer can also be used to measure the power spectrum of a signal, which is
the Fourier transform of the autocorrelation function; this technique, which requires
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a computer to perform the Fourier transform, is an important tool used in infrared
spectroscopy.

4.6 Problems

1. Design a high reflecting multilayer mirror with 10 pairs of layers, n; = 1.3,
ny = 1.8 on glass (ng.ss = 1.5) with a central wavelength of 660 nm. Calculate
numerically the complex reflection coefficient and the reflectance of the mirror
as a function of the frequency, and display them in a suitable plot. Calculate
the electric field (normalized to the input field) at each interface and plot it as a
function of the layer index, (a) for a wavelength within the “stop band,” (b) for a
wavelength outside the stop band.

2. Same as problem 1 but with a “defect layer” (=missing single layer in the middle
of the stack) that produces a narrow high transmission line in the center of the
“stop band.”

3. Same as problem 1 but with gradually increasing layer thickness (“chirped
mirror”); the center layer pair is designed for 660 nm, the first and last layer
pair is designed for 660 £20 %, respectively. For simplicity, omit the substrate.
What happens if the propagation direction is reversed? Assume a Fourier
limited Gaussian pulse with a bandwidth equal to that of the mirror; calculate
numerically the pulse shape after (multiple) reflection.

4. Calculate the reflectance R of a silver mirror (n = 0.050 — 3.13j) at normal
incidence. Can one increase R by coating the silver layer with a single dielectric
layer of appropriate n and thickness? For the analysis, apply either the theory of
the Fabry—Perot interferometer or the multilayer formalism.

5. A hypothetical 1:1 beam splitter (angle of incidence 45°) has reflection and
transmission coefficients, respectively, of r =t = 1/ ﬁ, sothat R =T =1/2
and R + T = 1. With two of these beam splitters, build a Mach—Zehnder
interferometer and calculate the output power at the two outputs as a function
of the phase difference in the two interferometer branches. What follows from
the result? Propose a (more) realistic beam splitter.

6. Calculate the reflection and transmission coefficient of a symmetric Fabry—Perot
interferometer and construct its S-matrix. Confirm that it fulfills condition
Eq.(4.27). Repeat for an asymmetric Fabry—Perot interferometer, where the
reflectance of the two mirrors is not identical.

7. Assume an optical attenuation filter with a given complex refractive index and
thickness. Is it possible to apply a single layer antireflection coating at the front
face of the filter so that the reflectance of the filter at a certain wavelength is
zero? Take both surfaces of the filter into account. Formulate the S-matrix of the
filter and compare with Eq. (4.27). What happens if the propagation direction is
reversed?

8. A Michelson interferometer, in its basic form, is not well suited for the measure
of distances because of the cosinusoidal output characteristic [Eq. (4.8)]. To
overcome this problem, assume that the input beam of the interferometer is
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circularly polarized. Insert a A /8 wave plate in the reference arm with one of its
axes parallel to the plane formed by the interferometer legs. Calculate the output
power as a function of the length difference As. Next, insert a polarization beam
splitter into the output beam producing ¢ and 7 polarized outputs. Show that
one of the output powers has a cos 2kyAs dependence, the other a — sin 2kyAs
dependence. Denoting with P, and P, the respective output powers normalized
such that they vary between 0 and 1, show that fttlz [(Pz—0.5)P, —P, (P, —0.5)] dt
is proportional to the distance travelled by the object mirror between #; and .

. Assume a semiconductor laser emitting two equally strong modes at a wave-
length of ~ 1lum with a linewidth of 10 MHz each, separated by 1 THz.
Determine the autocorrelation function and discuss visibility and coherence

length.
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Dielectric waveguides are key components of photonics; the success of optical
communications relies to a great degree on the availability of glass fibers with
extremely low losses. In contrast to (metallic) radio frequency waveguides that are
bulky and lossy, photonic waveguides rely on total internal reflection in dielectrics,
are very small in diameter and can transport optical fields over tens of kilometers
before signal regeneration is necessary.

Electromagnetic fields in waveguides are called modes; of particular importance
are guided modes, having a field distribution that is essentially confined to the core
of the waveguide over the entire propagation distance. Guided modes that do not
change their tranverse amplitude profile during propagation are called eigenmodes,
sometimes also simply waveguide modes. The number of (guided) eigenmodes is
finite, growing with the radius of the waveguide core in relation to the wavelength.
Different eigenmodes usually have different propagation constants (eigenvalues)
and thus different propagation velocity, which renders multimode-waveguides not
very well suited for optical long distance communications or interferometric sensor
applications. As we shall see, however, it is possible to design waveguides such that
they support not more than one mode at a given wavelength.

Apart from cylindrical waveguides (fibers) there are also planar waveguide struc-
tures (integrated optics). Beyond the waveguide as a means for light transportation,
there is a host of waveguide components such as couplers, mirrors, filters, sensors,
modulators, amplifiers, and oscillators. The integration of these components allows,
for example, the setup of all optical data networks.

5.1 Planar Waveguides

Planar waveguides are layered dielectric structures, with a guiding layer of elevated
propagation index n, (the core) confined between layers of lower propagation index
ng and n¢, usually called substrate and cladding, respectively (Fig.5.1). Such
structures can be produced, for example, by applying a polymer layer on top of
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Fig. 5.1 Geometry of a planar waveguide

a substrate, or by ion diffusion of different dopants (such as H™) into the surface
region of a glass or crystal substrate. In lithium niobate, which is a popular substrate
for electro-optic waveguide structures, the waveguide is produced by diffusion of
Ti-ions into the surface region.

Total internal reflection as the basic guiding mechanism requires the tangential
component of the wave vector (denoted as ) to be larger than the wave number in
the adjacent media (Sect. 2.1.3),

B = k| = ngkosin 0 > ng ko, 5.1)

which is possible only if ng > ng .. Assuming ng > n., we find the condition

sinf > sin Oy 1= -2 (5.2)

ng

Light is usually launched into the waveguide from the front face of the structure
(Fig.5.1). Taking refraction at the air/guide interface into account, condition (5.2)
requires that the angle of incidence i, must fulfill sin 6}, <ng cos Ori; With sin G, &~
i, this can be expressed as

O < ngy/1 = sin? O = /n2 — n? =: NA. (5.3)

The so-called numerical aperture NA is equal to the angle of acceptance of the
waveguide and scales with the propagation index difference between guiding layer
and substrate.
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Fig. 5.2 Waveguide mode as superposition of two plane waves

5.1.1 Eigenmodes

We consider an infinite planar layered structure with a propagation index profile as
shown in Fig. 5.1. For geometric reasons, plane waves are natural candidates for the
construction of the eigenmodes of such a structure. Let [k , 0, k] be the wave vector
of such a wave, where

ki = ngkocos0, kj = ngkosin = B; 5.9

by reflection at the upper interfaces (n,/n.) this wave is converted into another plane
wave with the wave vector [—k_ , 0, k)], which is the second wave component of the
eigenmode (Fig. 5.2). For reasons of self-consistency, this wave, after reflection at
the second interface (ny/n;), must be indistinguishable from the original plane wave
(Fig.5.3).

During its “round trip” between the interfaces, the wave acquires a phase of
—4ak, , where 2a is the distance between the interfaces. According to Sect.?2.1.3,
the reflection coefficient has the form e, implying that the wave experiences
an additional phase shift of ¢° + ¢° due to reflection at the two interfaces. Self-
consistency requires that the total phase is an integer multiple of 2

—daky + ¢y, + by, = —2mm, m=0,12,... (5.5)

For o-polarized light, the phase shift according to Eq. (2.46) is

s,c ,/nz Sil’l2 60— I’lzc
an $o°(0) _ V7 . (5.6)

2 ng cos 6

t

For a given set a, ko, and ng ¢, Eq. (5.5) has a finite number of solutions flm
corresponding to modes with the propagation constants

B = ngkosin 0™, (5.7
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Fig. 5.3 Self-consistency ng/nec
condition in a planar s Y
waveguide: (a) partial wave

withk = [k, 0, k]; (b) (c) z
reflected partial wave
([=k1.0, ky]), shown in the / #°
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inverted coordinate system;
(c) doubly reflected partial
wave with an accumulated
phase shift of
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and the phase velocity

w Co

(m) .
vy = o = — (5.8)
ph (m) (m)’
p Rty
where ng}) is the effective propagation index
n = ngsin0™  ng. <n < ny. (5.9)

In the following, we restrict the discussion to symmetric waveguides n, = ng, which
simplifies the treatment. The mode condition Eq. (5.5) scales with aky = 2mwa/ Ao,
the ratio of waveguide width to wavelength. It is therefore common to introduce a
normalized parameter V

2
= T2 [n2 —n? = ak)NA = a=NA (5.10)
Ao Co

that is also called normalized frequency because it is proportional to the frequency
of the mode; V comprises all relevant properties of the light field and the waveguide.
In addition, the normalized parameters

u =aky = ako\/n2 — nZ; = akong cos O = a,/kjn2 — p? (5.11)

w :=ako\/n§ff —n?= a\/ﬂz — kn2 (5.12)
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are introduced that are related to V by

W’ +w? = V2. (5.13)

Obviously, —2u is the transverse phase difference of the mode between the two
interfaces, while 1/w is the normalized penetration depth of the evanescent field
into the substrate or cladding, as we shall see shortly; note that # and w are both
functions of 0. Since u(0;) = V, total reflection requires u < V.

With these parameters, Eq. (5.6) can be expressed as tan(¢/2) = w/u and the
mode condition Eq. (5.5) assumes the form

tan (u — m%) - % (5.14)

or, using Eq. (5.13),

tan (u _ m%) - # (5.15)

Figure 5.4 shows the graphical representation of the two sides of this transcendental
equation as a function of u = ak;. The left-hand side is a series of tangens
branches (form = 0,2,4,...), interleaved with negative co-tangens branches (for
m = 1,3,5,...). The points of intersection with the right-hand side yield solutions
u"™, and, with Eq. (5.11), 6 and g™,

As already mentioned, u cannot exceed V; consequently, the right-hand side of
Eq. (5.15) is defined only for 0 <u <V (Fig. 5.4). Since the branches of the left-hand
side are separated by /2, the number of solutions is

Vv
M = [n—/z} +1 (5.16)

(the square brackets denote the maximum integer contained in the argument). The
condition u < V (that is equivalent to 6 < 6.) is called cutoff condition. In many
applications, the existence of more than one mode is not desired and one designs the
waveguide such that

V<V.=n/2. (5.17)
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Fig. 5.4 Plot of the left-hand (LS) and right-hand side (RH) of Eq. (5.15) for V = 10

With Eq. (5.10), this monomode or single mode condition can be expressed in terms
of the vacuum wavelength A,

Ao > /\O,c = 4aNA; (518)

Ao is called the monomode cutoff wavelength of the waveguide. For practical
reasons, NA is usually on the order of 0.1, which implies that the thickness 2a of
the guiding layer of a typical single mode waveguide is a few times the wavelength.

The above discussion refers to o-polarized light; the electric field in this case
has no longitudinal component and the modes are consequently called transverse
electric (TE). To adapt the results for m-polarized light, we only have to replace
the phase shift at reflection according to (2.48) by multiplying the right-hand side
of Eq.(5.15) with (n, /ng)*> > 1. This results in somewhat larger values of u"
and smaller values of 8; under weakly guiding conditions (ng — ng)/ny K 1,
this difference is very small, however. While the electric field of these modes has
a longitudinal component, the magnetic field is purely transverse, and this set of
modes is called transverse magnetic (TM).

The cutoff condition and thus the number of modes is the same for both
polarizations. A so-called monomode waveguide therefore supports actually two
modes of different polarization.
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5.1.2 Transverse Mode Profile

With 6 and the related parameters 8, u™ w™ given, we can now construct the
wave function of the modes by combining two plane waves with the wave vectors
k = (£u/a,0, B). We set the origin of the transverse coordinate in the central plane
of the guiding layer so that the interfaces are at x = %a, respectively. In the central
plane x = 0, the two plane waves constituting the mode have a phase difference of
mur, so that the field in the guiding layer is

E® o [/ 4 gmil/@xgmimn] gmibe, (5.19)

Introducing the normalized transverse coordinate X' := x/a, and neglecting a
prefactor j as irrelevant, we obtain, for |x'| <1

E® = Ejcos(ux)e % for m=0,2,4...,

= E5sin(ux)e ¥ for m=1,3,5.... (5.20)

Modes of even (odd) order are (anti)symmetric with respect to the central plane
(Fig.5.5). The mode order m is equal to the number of nodal planes, where the
electric field is zero.

In the adjacent media |x'| > 1, the tangential component of the wave vector

is again 8, while the normal component is imaginary, k; = =j,/8% — nfk% =

TE, TE, TE, TE, TE,

Ns

2a

Fig. 5.5 Transverse mode profile for 5 TE modes of a symmetric waveguide (n, = n)
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+j(w/a); the wave vector is therefore complex, k = [£j(w/a), 0, 8], and the field
for |x'| > 1 is given by

E* = Eje "Wl i, (5.21)

as stated above, w is the spatial decay constant of the field in normalized coordinates.
From the continuity of the (transverse) electric field at [x'| = 1 follows Ej =
E§ cos u (even mode order) and E, = %E} sin u (odd mode order).

The set of eigenmodes constitutes a complete base of orthogonal wavefunctions;
any TE field guided by the waveguide can be written as a linear combination of
these modes.

5.1.3 Waveguide Dispersion

An inspection of Fig. 5.4 shows that not only the number of modes, but also the
propagation constant of a mode of given order depends on the frequency. This is
a consequence of the fact that the mode condition Eq. (5.15) depends on the ratio
a/ A of the waveguide; one and the same waveguide appears to be wider for light
of shorter wavelength. This purely geometric contribution to the dispersion 8 (w)
is called waveguide dispersion and has to be taken into account in addition to the
material dispersion ng s . (@) of the waveguide materials. The waveguide dispersion
can be obtained from Eq. (5.15) assuming constant ng s . (w) and is shown in Fig. 5.6
for a typical waveguide. The dispersion functions 8" (w) are confined between
the dispersion lines 8 = k = (ng/co)w and B = k = (ng/co)w for free wave

TEg ol ////

7

i

Je

®
J
&

3 TE

oy ’ 7

% D% ;A/ w= 72 f

: - 7
@//

Propagation constant (3

Fig. 5.6 Dispersion diagram of a planar waveguide



5.2 Fiber Waveguides 205

C) (b)

Ng Ng

0.4

-20 -1.0 0.0 1.0 2.0 -1.0 0.0 1.0 2.0
z/a z/a

Fig. 5.7 Transverse intensity profile of the TE;-mode at (a) VX V., (b) V>V,

propagation in the respective medium (guide or substrate/cladding). With decreasing
frequency, each dispersion curve approaches the dispersion line of the substrate until
it terminates on this line (cutoff). This is to be expected from Eqgs. (5.10) and (5.11),
according to which nes — ng near the cutoff. Far above the cutoff frequency, the
effective propagation index approaches the free propagation index of the guiding
layer. The physical reason for this becomes obvious from an inspection of Fig.5.7:
close to the cutoff frequency, the penetration depth 1/w of the evanescent field
increases [Eq. (5.12)], so that a large fraction of the mode profile lies in the low
index substrate/cladding. Far above the cutoff, the penetration depth is small and
the mode profile is concentrated in the guiding layer.

The combined waveguide and material dispersion is called chromatic dispersion;
the chromatic dispersion coefficient Eq. (3.159) of a waveguide can, in very good
approximation, be calculated as the sum of the waveguide and material dispersion
coefficients, provided that the latter is the same for guiding layer and substrate.

The existence of more than one mode at a given frequency is often referred to as
mode dispersion, and the dependence of the propagation index on the polarization
as polarization dispersion.

5.2  Fiber Waveguides

So far we have discussed the confinement of a light field in one dimension. In
most applications, confinement in both lateral dimensions is required. This can be
obtained by designing the guiding medium in the shape of a rectangular channel that
is either embedded in a medium of lower propagation index (channel waveguide) or
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Fig. 5.8 Refractive index profile of (a) a step index fiber, (b) a gradient index fiber

is placed on top of a planar substrate layer (ridge waveguide). The mathematical
treatment is similar to that of a planar waveguide, with the main difference that for
each of the two transverse dimensions, a separate mode condition is established.
Such waveguides are of great importance for integrated optical devices such as
modulators, sensors, couplers, and multiplexers that will be discussed later.

For the transportation of light signals over large distances, cylindrical waveguides
(fibers) are employed. They can be produced in virtually arbitrary length and support
data rates above 100 Gbit/s; under optimized conditions, the signal loss is as low as
0.16 dB/km.

The operating principle of such waveguides is the same as that of planar dielectric
waveguides. A guiding core of elevated propagation index n. is surrounded by
an optically thinner cladding. For protection purposes, this fiber, which is usually
made out of silica glass, is coated by plastic layer that has no optical function.
The transition between core and cladding can be step-like (step index fibers) or
continuous (gradient index fibers), as shown schematically in Fig.5.8. Gradient
fibers will be discussed later; the following treatment of step index fibers is very
similar to that of symmetric planar waveguides.

5.2.1 StepIndexFibers

Mathematically, discontinuous structures such as propagation index steps can be
treated by imposing boundary conditions on the wave equations. The description of
planar waveguides was particularly simple because the boundary condition problem
at a planar interface has already been solved in Sect.2.1.3, yielding the Fresnel
coefficients. For a cylindrical geometry, we have to start from the Helmholtz
equation Eq. (1.22) in cylindrical coordinates z, r, ¢

U 19U 10U U |,
ST T KU =0, 5.22
arr  ror  r?dg? + 0z? T 622
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where U is a cartesian component of the E or H-field. With the separation-ansatz

U(r, ¢,2) = R(r®(p)e 7, (5.23)

Eq. (5.22) yields the azimuthal differential equation

&o + 7o =0 (5.24)
de? N '
with the two independent solutions
@ = ety (5.25)
which can be combined to coslg or sinlp, respectively, where [ = 0,1,2,... to

meet the self-consistency condition U(¢) = U(p + 2x).
For a given value of /, the radial differential equation is then

@R 1dR [, ., ., P

We introduce the normalized radius p:=r/ry, where ry is the core radius, so that

n(p) =n, for p=<1
n(p) =n. for p>1. (5.27)

With this propagation index profile, Eq. (5.26) becomes

AR 1dR , P
Wt (7 p)Rm0 oz o
d®R  1dR , P
d_pz+;d_p_(w +F)R:0 for p>1, (5.29)

where, in analogy to Egs.(5.10)—(5.12), the normalized frequency V and the
parameters u and w, defined as

V= r()k(),/né — ng =: r()k()NA (530)
U= ro,/nékg — B2 (5.31)
w = ro4/ B2 — n2k] (5.32)
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Fig. 5.9 Bessel functions of first kind

have been used; the numerical aperture is defined in the same way as in Eq. (5.3).
Again, u?> + w? = V2, and u cannot exceed V.
The solutions of Egs. (5.28) and (5.29) are Bessel functions

R(p) = AgJi(up) for p=<1
R(p) = AcKi(wp) for p>1, (5.33)

where the Bessel functions J; of first kind and /-th order resemble sine- and cosine
functions with radially decaying amplitude (Fig.5.9), and the modified Bessel
functions K; of second kind and /-th order resemble decaying exponential functions
(Fig.5.10); the amplitudes A, . are determined by the boundary conditions.

Assuming weak guiding (ny — nc)/ng < 1, total internal reflection requires
grazing incidence of the field at the core/cladding interface, so that the field
has only very small longitudinal components; accordingly it can be treated as
approximately transverse electromagnetic (TEM) and the boundary conditions
require the continuity of R(p) and its derivative dR(p)/dpatp =1

Agli(u) — AcKy(w) = 0
Agulj(u) — AcwK[(w) = 0, (5.34)

where the prime denotes the derivative in respect to p. For this system of equations
to have non-trivial (i.e., non-zero) solutions, the system determinant must vanish

Jiw)ywK;(w) — Ki(w)uJ;(u) = 0. (5.35)
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Fig. 5.10 Modified Bessel functions of second kind

Employing the identities

Ji(x) = —(U/x)Ji(x) + =1 (x)
K|(x) = —(/0Ki(x) — K1 () (5.36)

(see, e.g., Abramowitz and Stegun 2014), we can express Eq. (5.35) by

i) _
JWK— (w) — u’ (5.37)

this is the mode condition for cylindrical step index waveguides under the weakly
guided mode approximation.
Figure 5.11 shows both sides of Eq.(5.37) for I = 0,1 as a function of u

(note the similarity with Fig.5.4), where the identities J_;(u) = —J;(u) and
K_1(u) = K;(u) have been used. For a given value of /, Eq.(5.37) can have
one or more solutions u, denoted by the radial mode index m = 1,2,...

(Fig. 5.12), with corresponding propagation constants 8" given by Eq. (5.31), and
wave functions according to Eq. (5.23). A mode is therefore characterized by the two
indices / and m; according to Eq. (5.25), for /> 1 each set (I, m) can be represented
by two azimuthal field distributions that are offset by 90° and are, for symmetry
reasons, degenerate (i.e., they have identical propagation constants). Moreover, each
set ({/,m) allows for two orthogonal polarization states that are also degenerate. It
is therefore common to classify these degenerate modes as one, linearly polarized
mode LPy,,; while / denotes the number of azimuthal nodes, m gives the number of
radial intensity peaks (Fig. 5.13). The mode profile of LPy; is similar to a Gaussian
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Fig. 5.12 Solutions of Eq. (5.37) as a function of the normalized frequency V

profile, so that a Gaussian beam of appropriate waist diameter is well suited to excite
this mode in a fiber.

We have mentioned before that © < V, and this condition also shows up in
Fig.5.11, where the right-hand side vanishes at u = V. For a given waveguide, V can
be varied by changing the frequency of the light field; with decreasing (normalized)
frequency, there are less and less intersections and thus solution of Eq. (5.37). If V
falls below the value 2.405 (the first root of the Bessel function Jy, see Fig.5.9),
there is only one solution left, LPy;. The upper frequency limit for single mode
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Fig. 5.13 Intensity profiles of two modes in a fiber: (a) LPy; (b) LP»3

operation of a cylindrical waveguide is therefore given by

V < V. = 2.405; (5.38)

in terms of wavelength, the single mode limit is

Ao > Ao = roNA_® (5.39)
0= A0C = ORAS 105 ‘

As an example, the maximum core radius of a single mode fiber with NA = 0.1 and
Aoe = 1 pmis 3.8 pm.

Figure 5.14 shows the effective propagation index neg of the various modes; it
increases with frequency and approaches n, far above the cutoff frequency of the
respective mode. Close to the cutoff, nes tends toward the cladding index n., just as
in the case of planar waveguides, and for the same reason: as illustrated in Fig. 5.15,
the fraction of the mode that is transported in the core decreases with decreasing
frequency and approaches zero at cutoff. To prevent excessive losses, the cladding
has to be thick enough to accommodate the evanescent field; typical values are
around 50 pwm, so that the total diameter of a single mode fiber for 1 pm-wavelength
light is about 100 pm.

The dispersion of neg also results in a group velocity dispersion (Fig. 5.16) due
to the waveguide structure: different modes have different group velocities, and the
group velocity of a given mode depends on the frequency.
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Fig. 5.15 Fraction of the energy flux transported inside the core

5.2.2 Fiber Losses and Dispersion

High quality fiber waveguides are usually made of quartz glass (SiO;) whose
propagation index is modified by controlled doping with GeO, and other dopants
that increase (Ge, P) or decrease (B) the refractive index. To avoid contamination
with absorbing impurities, SiO, is grown by modified chemical vapor deposition
(MCVD) from a gas phase reaction of SiCly and O,

SiCly + Oy — SiO; + 2Cl,.
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Dopants are added by admitting fractions of GeCly, POCl3, or BCl; to the reaction
(10-20mol% are required to change the index by 1 %). The reactor is a rotating
quartz glass tube of some 10 mm diameter. The silicon oxide including the dopant
oxide is deposited on the inner wall of the tube and fused to glass at about 1000 °C.
The resulting tube is collapsed under vacuum into a so-called preform that shows
the refractive index profile of choice. The preform is then heated to 2000 °C and the
glass fiber is drawn from it in a vertical tower; immediately after cooling it is coated
by a polymer film to protect it from diffusive impurities such as hydrogen.
Transmission distance and channel data transmission capacity is limited by
losses and group velocity dispersion. Losses are specified by a loss coefficient
[101g P(0)/P(D)]/! in decibel per kilometer (dB/km), where P(0) is the optical
power fed into the fiber and P(/) is the output power after the distance /. Silica
glass fibers can have loss coefficients as low as 0.16 dB/km, which corresponds to
a transmission of 10 % for a fiber length of 62.5km or an attenuation by a factor
of 40 for a 100 km long fiber. Figure 5.17 shows the various loss contributions and
their wavelength dependence. The global loss minimum is found at a wavelength
of 1.55um; in the visible, the losses are much higher, resulting from the wings
of electronic resonances in the UV and from Rayleigh scattering that scales with
1/ /\g o« w* and originates from density fluctuations in the glass that depend on the
melting point of the glass.' In the near infrared, there are two vibrational absorption

! The w*-dependence can be understood from an inspection of Eq. (2.1): the field scattered from an
inhomogeneity scales with the second time derivative 9>P/d¢*> & w?; the radiated power is therefore
proportional to w*.
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Fig. 5.17 Fiber losses and loss mechanisms of a quartz glass fiber as a function of wavelength
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Fig. 5.18 Schematic illustration of dispersive effects on pulse propagation in fibers (a) waveguide
and material dispersion, (b) mode dispersion

lines at 0.95 and 1.39 um that are overtones of the hydroxyl vibration at 2.8 ym;
a OH™-concentration of 107 results in a loss of 30 dB/km at 1.39 wm. For this
reason, the in-diffusion of hydrogen into the silica matrix must be kept as low as
possible (<107®). The absorption “valleys” at 1.3 and 1.55 jum define the operating
wavelengths of optical communications.

Group velocity dispersion (GVD) is the other limiting factor for the transmission
capacity of fibers. Optical data are transmitted in the form of pulses, and the pulse
transmission rate determines the data rate. Mode dispersion results in the splitting
of a single input pulse into multiple pulses because of the different group velocities
of the modes (Fig. 5.18). This problem (the group delay differences can be as large
as 10 ns/km) is avoided in single mode fibers.
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The combined waveguide and material dispersion results, as discussed in
Sect. 3.2, in pulse broadening during propagation. If the broadening exceeds the
temporal separation of the pulses, they start to overlap, rendering their identification
at the detector impossible. The relevant measure of group velocity dispersion is the
dispersion coefficient D,, or D, that denotes the differential change of the group
delay as a function of frequency. The treatment in Sect. 3.2 is independent on the
underlying dispersion mechanism and its results can be directly applied to the
chromatic dispersion of a waveguide. The only formal difference is the replacement
of the wave number k by B, or n by neg. Thus, Eq. (3.162) assumes the form

AO dzneff
D)y =———; 5.40
7 co dR2 (5.40)

the pulse broadening Eq. (3.175) over a distance / is qualitatively given by
At ~ l|Dy,|Aw = l|Dy| Ao, (5.41)

where Aw and AA, respectively, are the spectral bandwidth of the pulse. Typical
values of |D, | are between 0 and 100 ps/nm km, so that dispersive pulse broadening
plays a significant role only for sub-ns pulses.

As an inspection of Fig.5.19 shows, the waveguide dispersion coefficient
is strongly frequency dependent and may actually change its sign at a certain
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Fig. 5.19 Waveguide dispersion coefficient of a step index fiber as a function of normalized
frequency; for V < 2.405, the coefficient D,, is positive and can be compensated only by negative
(anomalous) material dispersion
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Fig. 5.20 Dispersion flattened fiber waveguide: the refractive index profile is designed such that
the group delay dispersion is close to zero over a broad spectral range

frequency. Within the single mode range, however, the waveguide dispersion of an
ordinary step index fiber is positive and requires negative material dispersion to
be compensated. As can be seen from Fig. 3.17, the material dispersion coefficient
of silica glass goes to zero (and changes sign) at about 1.27 wm. By sophisticated
choice of the index profile (exploiting the frequency dependence of the mode
diameter), the waveguide dispersion can be modified such that the combined
chromatic dispersion is zero at a wavelength of choice (dispersion shifted), or close
to zero over a selected wavelength range, such as the attenuation valley at 1.55 pm
(dispersion flattened, Fig. 5.20). Dispersion flattened fibers are used for wavelength-
multiplexed optical communications, where several closely spaced carrier waves act
as independent data channels (wavelength division multiplexing, WDM).

For certain applications such as interferometric fiber sensors, the existence of
two degenerate polarization modes is undesired. To lift the degeneracy, the fiber can
be produced with a non-cylindric cross section; such polarization maintaining fibers
are birefringent and suppress the coupling between the two polarization states.

5.2.3 Gradient Index Fibers

As an instructive example for a waveguide with a continuous propagation index
profile, we assume a fiber with a parabolic profile

n(r) = no(l — %aérz). (5.42)
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We have encountered such a structure already in the context of Gaussian beams
in Sect. 3.1.3, where a slice of glass with such an index profile was employed as
(GRIN)-lens. In a sense, a gradient index fiber (also known as graded index fiber) is
just a very long GRIN-lens.

As we have seen in Sect. 3.1.4, the g-parameter of a Gaussian beam propagating
along the axis of such a structure develops from ¢ at input to ¢’ at output according
to the ABCD-transformation Eq. (3.65)

Ag+ B
g =247 (5.43)
Cq+D
with the ABCD matrix Eq. (3.94)
Moz = |: cos oz.gd (1/no0g) sin ozgdi| ' (5.44)
—no0lg Sin ogd cos agd

We now search for a Gaussian field distribution that conserves its g-parameter
throughout the propagation, and is therefore an eigenmode of the fiber, by solving
the equation ¢’ = ¢ for arbitrary d. The solutions

A—-D 1
q12 = —(~~— vV (A — D)2 + 4BC (545)

4+
2C 2C

with the ABCD matrix Eq. (5.44) are purely imaginary

1
q12 = £j—; (5.46)
nollg

from the relations given in Table 3.1 we obtain

1 noT W2
0 =Imlg] = — = 210 (5.47)
n()O{g Ao
and
A
Wh = —o—. (5.48)
TNGole

The radial field distribution E(r) o e /v represents an eigenmode of the
parabolic gradient index fiber because the distributed GRIN-lens compensates the
tendency of the field to diverge. Since the ABCD formalism is also applicable
to Hermite—Gaussian beams (Sect. 3.1.5), Hermite—Gaussian field profiles with a
wo-parameter given by Eq. (5.48) also represent eigenmodes of such a fiber. The
intensity profile of these modes is given by Eq. (3.98) and shown in Fig. 3.14.
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The axial dependence of the wave function follows from Eqgs. (3.95) and (3.97)
to be e Ilke—(1+I+mE@ = \where [ and m denote the order of the Hermite—Gaussian
mode. The propagation constant 8¢ is obtained by taking the z-derivative of the
phase [kz — (1 + 1 + m)&(z) — wf] at z = 0. With Eq. (3.16) we find

B =k — (1 41+ m)/z0 = nolw/co — (1 + 1 + m)ay]. (5.49)

Modes with the same value ! + m are degenerate in the sense that they have the
same propagation constant. Note that any linear combination of mutually degenerate
eigenmodes is again an eigenmode. The group velocity of the mode (Im) follows
from 1/v, = dB/dw to be v, = co/no, independent of the mode order. Different
from step index fibers (Fig. 5.16), the mode dispersion of parabolic gradient index
fibers vanishes.

In practice, the index profile is parabolic only up to a certain radius ry and
remains constant in the cladding region r > ry (Fig.5.8b). Guiding requires
that the effective mode propagation index B/kq is larger than the cladding index,
B/ko > no(l — %aér%). With Eq. (5.49) we obtain

(I + 14+ m)ag )5
no |:1 — k—o > ngy (1 — %agro) (5.50)
or
L+ 1+m < rakoag/2. (5.51)

Thus, the core radius ry (and the coefficient cy) determines the number of guided
modes in a graded index fiber.

The treatment given here is a very coarse one, since the many approximations
used are valid only for weak confinement (wy >> Ag). Nonetheless, the main features
of gradient index fibers become clear. A more rigorous analysis shows that the mode
dispersion of the group velocity is not exactly zero but still much smaller than that
of a step index fiber with the same number of modes. For this reason, gradient index
fibers are the preferred choice if multimode fibers are to be used. The attractivity
of multimode fibers lies in the fact that their core diameter is much larger than that
of single mode fibers, so that light insertion and fiber—fiber connection is much less
demanding.

5.3 Integrated Optics

Integrated optics comprises optical devices that work without free space propagation
and rely on waveguides. The waveguides used can be planar or fibers. Passive
components such as splitters, couplers, mirrors and interferometers as well as laser
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amplifiers and lasers can be realized in an integrated fashion. Optically integrated
structures can also be built on a semiconductor substrate, allowing for the integration
of light sources and detectors (optoelectronic integrated circuits, OEICs).

5.3.1 Waveguide Couplers

One of the most important components of integrated optics is the waveguide
coupler (Fig.5.21) that allows the controlled exchange of optical energy between
waveguides. The operating principle is to use the evanescent field of one waveguide
to produce a polarization current in the other. The coupling coefficient that describes
the transfer is, as we will see, determined by the overlap integral of the transverse
mode profiles of the two modes involved (Fig. 5.26).

The exact solution of the coupling problem requires solving the wave equation
under the given geometric conditions. For weak coupling, an elegant approximative
solution is provided by the coupled modes formalism (Haus 1984; Yariv 1973) that
starts from the modes of the isolated waveguides and treats the interaction between
them as small perturbation.

The complex wave function in waveguide (i) is assumed to be

E = ai(Qui(x,y), i=1,2, (5.52)

where u;(x, y) is the transverse mode profile and the amplitude a;(z) is normalized
such that

ai(z)a; (z) (5.53)

is the power in waveguide (i) at z. In the framework of perturbation theory, we
assume that the presence of a second waveguide in the vicinity of the first one

L
\J . \ ~
0(2) uy(,y)
(%) uy(,y)

Fig. 5.21 Geometry of a waveguide coupler
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leaves the profiles u; »(x, y) unaltered, influencing only the propagation constants
and amplitudes of the modes.

Let the undisturbed modes have the propagation constants §;, so that a;(z) =
a;(0)e™##iz_ and the differential change of «; is given by

da; )
—_ = —Jﬂia,-. (554)
dz

The perturbation of one mode by the other is taken into account by a cross term k;ja;

da .
== —jBirai + ki2az
dz
da .
TZ = —jBrar + knai, (5.55)

where «;; is the respective coupling coefficient. While the coupling modifies the
mode amplitudes, the total power transported in the waveguide system is conserved.
With Egs. (5.53) and (5.55) we can express the differential power change in
waveguide (i) as

d(a;al) da? da;
Tz = a; dz CZTTZ = Cl;kKlelj + CliK;q;'k; (556)

energy conservation requires

d(a1af + axay)

& = ajax (k12 + &37) + a1a; (k75 + k21) = 0. (5.57)

This must be valid for arbitrary a; » (for example,a; = a, = 1,0ra; =1, a, =),
so that energy conservation imposes the condition

PR— (5.58)

We therefore can set k1, =:k, ko1 = —k*; in Sect. 5.3.3 we will derive an equivalent
relation for counterpropagating modes.

5.3.1.1 Eigenstates of a Waveguide Coupler
At a given point z, the coupled waveguide system can be represented by a vector

W@=[M@], (5.59)

ax(z)
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where a;»(z) are the field amplitudes in the respective waveguide. By definition,
eigenmodes are states that conserve the ratio a;/a, during propagation, satisfying
the eigenvalue equation ¥ (z) = Ay (0), where |A| = 1 in a lossless system. We
set A = e 752 (B is the propagation constant of the eigenstate) so that dy(z)/ dz =
—jB¥(z). Substitution in Eq. (5.55) yields

iB-p) « la]_
[ it j(ﬂ—ﬁz)HaJ‘"‘ -0

Existence of non-trivial solutions a;; # 0 requires the determinant of the matrix to
vanish

(B—B1)(B—P2) —kk™ =0, (5.61)

yielding two propagation constants

gt =B +K, (5.62)
with
K = (AB? + kP (5.63)
where
f=br erﬁz, AB = @ (5.64)

The corresponding eigenvectors follow after substitution of 8% in Eq. (5.60)

Any arbitrary state of the coupled system can be synthesized as a linear combination
of these eigenstates

V() =AtyT + ATy (5.66)

the coefficients A* follow from the boundary conditions ¥ (0). The existence of two
different propagation constants results in a spatial beating of the amplitudes along
the waveguides (Fig.5.22), very similar to the beating of a superposition of two
monochromatic signals in time.
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Fig. 5.22 Power transfer
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5.3.2 Splitters and Switches

As a simple example, we assume that at z = 0, light is launched into waveguide (1)
only, so that a;(0) = ao, a»(0) = 0. The corresponding linear combination turns
out to be

A .
ai(z) = aop (cos Kz —j?ﬂ sin Kz) LE

*

ax(z) = —ao% (sin Kz) e 3. (5.67)

In the synchronous case 8; = B, = B (coupling of two identical monomode
waveguides, for example) this simplifies to

a1(z) = apcos |ic|ze_j’§Z
K* .z
a(z) = i sin |ic|ze 7%, (5.68)
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Fig. 5.23 Spatial Output
development of the power
carried in the two branches of
a 3 dB-coupler

Input
with the guided powers P;(z) = a;a}

Pi(z) = P1(0) cos’ ||z

P»(z) = P1(0) sin? | |z. (5.69)

The light field, initially confined to waveguide (1), is completely transferred to
waveguide (2) within a distance of [y = 7/2|«| and keeps swinging between the
two waveguides over the entire interaction length (Fig. 5.22); diffusive interaction,
by contrast, would lead to an equilibrium distribution between the two channels
after a sufficiently long interaction distance.

Atz = ly/2, 50 % of the power is transferred; a coupler of this length is called a
3 dB-coupler (because 101g0.5 = —3 dB) and is a waveguide-implementation of a
1:1 beam splitter (Fig.5.23).

It is important to note that « (and in general also AB) is frequency dependent
because the mode overlap that determines the coupling depends on the wavelength;
for a given interaction length, the splitting ratio therefore may be different for
different frequencies, so that waveguide couplers also have filtering characteristics.
With proper layout, light containing two different frequencies can be split by a
“dichroic” coupler so that the two output branches of the coupler contain only one
of the frequencies each (wavelength selective coupler, WSC).

In the asynchronous case, 81 # B2, the power transfer is incomplete (Fig. 5.22),
because the phase difference between the fields in the two waveguides changes
during propagation. From Egs. (5.63) and (5.67) follows

sin® [ 1+ (A,B/|K|)2|K|Z]
— sin’Kz =

Py(2) _ li|* . il
Pi(0)  K? 1+ (AB/|k])? -

(5.70)
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Fig. 5.24 Power transfer ratio of a coupler as a function of the normalized phase mismatch AB/l;

l() =7'[/2|K|

Fig. 5.25 Electro-optically controlled waveguide coupler

this transmission function is shown in Fig. 5.24. Obviously, efficient power transfer
is possible only if (AB/|«|)?> < 1. On the other hand, if one manages to influence
AP externally, Eq. (5.70) allows controlling the transmission ratio between 0 and 1.
Varying B, is possible via the electro-optic effect (which requires the coupler to
be made out of an appropriate medium such as lithium niobate). Such a device is
shown in Fig. 5.25; the interaction length is chosen to be Iy = 7/2]|k]|, so that for
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AB = 0, the transfer is complete. From Eq. (5.70) we obtain the transfer ratio as a
function of AS

Py(lo) (n)Z sin? X 571

P(0) \2/) x2

where X := \/(Aﬂlo)2 + (/2)%; for ABly = +/37/2, the transfer is equal to zero
(Fig.5.24). With appropriate waveguide design, the voltage needed to achieve the
required detuning AS is as low as several Volt; the switching speed is about 10 GHz
and the extinction ratio (on/off) is typically 20dB (1072).

5.3.2.1 Coupling Coefficient

Physically, the two waveguides are defined by the elevated local susceptibility
[Ax(x, )12 = [Ae(x,¥)]12 (Fig.5.26). The evanescent field of waveguide (1) pro-
duces a polarization current density within waveguide (2), of which the component
jweo[Ae(x, y)]2E1 (x, y) acts as a source of the field in this waveguide; the remaining
component, proportional to the substrate susceptibility, belongs to waveguide (1).
According to Eq.(1.54), the product of this current density with the field E, in
waveguide (2) is equal to the temporal change of the local energy density. Using
Eq. (1.59), we can calculate the averaged differential power transfer to waveguide

(@)

d(azaz)

- =1 [/ ESjweo[Ae(x, y)|E1 dA}

Re
= —i |: ESjweo[Ae(x,y)]E1 dA + c.c.i|

_4 jwadsaigy [As(x, Wlaus (x, y)ui (x,y) dA + c.c.] , (5.72)

u,(z,0) uy(z,0)

eyl [Aelyl

Fig. 5.26 Overlap of the transverse profiles of two coupled waveguides; the dashed lines show
the integration limits for the calculation of the coupling coefficient
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where [dA denotes the integral over the cross section of waveguide (2). Comparing
this result with Eq. (5.56), we obtain

= ~4joso [ [Aete )t (e ) () a4 (5.73)

Since [Ae(x, y)]» = 0 outside the waveguide, the coupling coefficient is determined
by the overlap integral of the two transverse mode profiles within the waveguide
cross sectional area (Fig.5.26). The exponential decay of the evanescent field
of mode (1) is responsible for the roughly exponential decrease of the coupling
coefficient as a function of distance between the waveguides.

5.3.2.2 S-Matrix of a Coupler

For a symmetric waveguide coupler, 8; = B, = B and k12 = k31 = k, which
because of Eq. (5.58) implies a purely imaginary value of «. For the mode profiles
shown in Fig.5.26, Eq.(5.73) yields k = —j|k|. The propagation constants are
B* = B + |«|, corresponding to the eigenmodes

vtz = |: i :| e—j(/§+lk\)z’ v (2) = I:_i :| e—j(ﬁ—lk\)z’ (5.74)

as illustrated in Fig. 5.26.

An arbitrary state with the inputs a;(0), a,(0) can be written as linear combina-
tion Eq. (5.66) with the coefficients AT = [a;(0) £ a,(0)]/2; propagation over the
distance z results in

|:a1(z):| _ |: a1 (0) cos IKIZ _jaZ(O) sin IKIZ:| e_jlgz' (5.75)

ax(@) ] [ —ja1(0) sin |x|z + a2(0) cos |ic|z

This can be cast in the form

al(Z) al(o) —‘EZ
—g iz, 5.76
[02(1)} [“2(0)} ) o
where
_ cos |k|z —jsin |k|z (5.77)
~ | —jsinlk|z  cos|k|z .

is the scattering matrix (compare Sect. 4.1.3) of the coupler.
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5.3.2.3 Coupler as Phase Detector
Of particular interest is the 3 dB-coupler (|k|z = 7/4) already mentioned above,
with the scattering matrix

1 —j 1 /2
S3dB=JT§|: . J:|=JT§|:e—jn/ze 1 ]§ (5.78)

apart from its power splitting capacity, such a coupler serves as phase detector: if
signals of equal magnitude but different phase (a;2(0) = ape®4?) are launched
into its input ports, the output amplitudes according to Eq. (5.76) are

aiyout _ —in/4 COS(A¢ _ JT/4)
|:612,0uli| N \/ane J [— 51n(A¢ _ 7{/4):| ’ (579)

and the respective output powers, with cos” x = (1 + cos 2x)/2, are given by

Piow = 2|ag|* cos® (Ap — 7/4) = |ao|* [1 + cos2Ad — 7/2)]

Py o = 2aol” sin® (Ap — 7/4) = |ao|* [I — cos(2A$ — 7/2)] . (5.80)
so that
P
A¢ = arctan 2.out AF z. (5.81)
1,out 4

We will return to this result in Sect. 5.3.4 in the context of waveguide interferometers
and sensors.

Waveguide couplers can be realized in integrated planar optics, but also in
fibers: for this purpose, two fibers are twisted and stretched close to the melting
temperature. Stretching reduces the core diameter and increases the extension of the
evanescent field so that it can overlap with the core of the second fiber.

5.3.3 Waveguide Gratings

Another important waveguide component is the waveguide grating, that is a periodic
waveguide structure that can act as a filter and/or reflector. These components
are conceptually similar to dielectric multilayer systems as treated in Sect.4.2.2.
Waveguide gratings are realized by a periodic longitudinal modulation of waveguide
parameters such as the core refractive index or the transverse waveguide profile
(Fig.5.27). A waveguide mode travelling in the forward direction is scattered at
these inhomogeneities and can, under proper conditions, couple into a backward
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Fig. 5.27 Axial variation of the susceptibility in a waveguide grating

propagating mode. The performance of such structures can be described in the
framework of the coupled modes formalism. A treatment analog to that of dielectric
multilayer structures is not feasible in general, because the periodic modulation is
usually continuous and not step-like.

Consider a waveguide whose core is “perturbed” by a (small) periodic modu-
lation of the propagation index, nc(z) = nco + Anccos(2wz/A,), where A, is
the spatial period of the modulation.” Since n = +/y + I, this corresponds to a
modulation of the susceptibility, y(z) = y + Ax(z) cos(K,z), where Ay = 2ncpanc
and K, := 2mz/ A,. The electric field of a mode propagating in the forward direction
with the propagation constant B¢ produces a polarization density that contains an
alternating component proportional to

Cos(ng)e_jﬂfz oc e 1Btz 4 o=i(Br—Ky)z (5.82)

These “sidebands” of the unperturbed mode can exchange energy with other modes
of the waveguide, provided that their propagation constant is close to B &+ K,.
Here, we are interested in the coupling to the backward propagating mode with the
propagation constant 8, = —f¢, which is possible if the so-called Bragg condition

Bt — Ky = P (5.83)

or, equivalently,

K, = 2B; (5.84)

is met; the frequency (wavelength) that corresponds to this condition is called
Bragg frequency wp (wavelength Agp). If neg is the effective propagation index of

2If the periodic longitudinal modulation is not cosinusoidal, it can be decomposed in a Fourier
series, and the following analysis applies to a selected component of this expansion.
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the unperturbed mode, so that 8 = negw/co = 2mneg/ Ao, these parameters are
given by

4 Neff

Ao = = 2N g (5.85)

g

Co Kg Cco TT

wB = (5.86)

Meit 2 Meff Ag

In analogy to Eq. (5.55), we can describe the interaction of the two modes by

= —jBas + kpane

daf
dz
day, . Koz

— = jBap + Kkprae"E. (5.87)
dz

The first of the two equations describes the coupling of the reflected mode to the

forward propagation mode, the second one relates to the reverse process. Energy

conservation for counterpropagating waves demands d(araf)/ dz = d(avay)/ dz,
or

d(asaf — avay)

& = aTaz(be — K;f) + ala;(lcf"; — kpt) = 0. (5.88)

With the same arguments that led to Eq. (5.58), we now obtain the relation

K = Kpp =: K. (5.89)

As can be seen from Eq.(5.87), a shift of the axial coordinate z — z + Az is
equivalent to a change of « by a factor of e 7Xe4%; we therefore can always choose
the coordinate system such that « is real and kg, = kpf = k. A shift by half a period,
Ag/2, changes k by a factor of €7 = —1.

Near the Bragg wavelength, the propagation constant of the two modes is
approximately equal to £K,/2; therefore, the modes can be expressed as a product
of a slowly varying amplitude A¢,(z) and e Ti(Ke/2)2:

ar = ApeiKe/ 2

ap = Apel®e/27, (5.90)
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Substitution in Eq. (5.87) yields the amplitude equations

dA¢ )
— = —jéAs + KAy
dz
dA
ke J8Ap + KAf, (5.91)
dz
where
0:=p—Ky/2 (5.92)

is the deviation from the Bragg condition Eq. (5.84); in terms of frequency, § is
equivalent to a deviation Aw from the Bragg frequency with

b~ —Aw = —, (5.93)
dow Vg

where v, is the group velocity of the unperturbed mode at wg.
Except for a different sign in the second equation, this system is similar to
Eq. (5.55) and we can treat it as an eigenvalue problem with eigenstates

Y(z) = [ij eI (5.94)

note that B is not a propagation constant, but a parameter determining the axial
development of the modes. Substitution in Eq. (5.91) yields

—_](8—3) K Af .
[ B i + B)] |:Ab:| =0; (5.95)

existence of non-zero solutions requires
B? = 8% — k2. (5.96)

Within the interval || < ||, B is imaginary

BY =4jb, b= |k|?-82 (5.97)
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with corresponding eigenstates

T ==
1 (Z)_[bijs]e . (5.98)

The coefficients AT of the general solution
V() =ATyT + Ay~ (5.99)

follow from boundary conditions. In particular, if the amplitudes A¢(0) at z = 0
are given, we obtain

8
Ai(z) = Af(0) (cosh bz — JZ sinh bz) 4 Ab(O)% sinh bz

i6
Ap(z) = Af(O)g sinh bz + Ap(0) (cosh bz + JZ sinh bz) ; (5.100)

because of the quasi-exponential decay of the forward propagating mode, the
interval |§| < |«| is called stop band.

5.3.3.1 Reflectance
Relation (5.100) can be cast in matrix form; for a waveguide grating extending
between —/ < z<0, as shown in Fig. 5.27, we have

A¢(=) } |:Af(0) }
—F (5.101)
[Ab(—l) Ap(0)
with the coefficients
. i .
Fy1 = F;, = coshbl + n sinh bl (5.102)
Fip = Fy = —% sinh bl: (5.103)

note that as a consequence of energy conservation, det F must be equal to 1,

FiyFf —F, = 1. (5.104)
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If the grating is used as a mirror, we can assume that A¢(—/) is known and
Ap(0) = 0, so that A¢(—I]) = F1A¢(0), Ap(—]) = F2,A¢(0). Thus, the reflection
and transmission coefficients r, t are given by

An(=l) F —k sinh bl
po D P KSRol (5.105)
A¢(—1) i b cosh bl + jé sinh bl
A0 1 b
(0 _ (5.106)

T A=) _ Fi, _ bcoshbl + j§sinhbl’

If the Bragg condition is exactly met (in the center of the stop band), § = 0 and
b = |k, so that the reflectance rr* is given by

R = |r)? = tanh? |«|L. (5.107)

For a typical coupling coefficient of |x| = 3cm™! and a grating length of 1 cm, the
reflectance amounts to ~ 99 %.

Outside the stop band, B is real valued and the hyperbolic functions in Eq. (5.100)
are replaced by their trigonometric counterparts, resulting in oscillatory solutions
(Fig.5.28). The reflection coefficient is then given by

—jk sin Bl

= 5.108
" jBcos Bl — § sin Bl ( )

and vanishes whenever Bl = m. According to Eq. (5.96) this is the case if

§ = iy + (%)2 (5.109)

As Fig.5.28 shows, the axial power at frequencies outside the stop band can
exceed the input power, particularly pronounced at the root m = 1 of Eq. (5.109).
This resonant enhancement resembles the response of the Fabry—Perot interfer-
ometer (Sect.4.2.3) and is important for the operation of semiconductor lasers
(Fig.7.44).

5.3.3.2 Bandwidth
The range between the two reflectance-minima next to the stop band [m = *£1 in
Eq. (5.109)],

< k|1 + (w/Kl)?, (5.110)

Aw
18| = '_
Vg
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Fig. 5.28 Spectral reflectance of a waveguide grating for different values of |«|l; also shown is
the the axial intensity of the forward and backward propagation mode, respectively, for selected
frequencies (A: center of stop band, B and C: first and second zero of R); note the hyperbolic
development inside the stop band and the resonant enhancement at the two zeros of R

Fig. 5.29 Spectral reflectance as a function of |«|/; the stop band is marked by the lines at
Aw/vglk| =1

is a measure for the bandwidth of the waveguide-mirror; for short gratings (I <
1/]«]), this interval is significantly broader than the stop band, which is deter-
mined exclusively by the coupling coefficient (Fig.5.29). With increasing /|«|, the
reflectance approaches 1 and the bandwidth reduces to the width of the stop band.
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In terms of wavelength, the bandwidth A4 can be expressed using df/dAy =
—27 Nefr/ A2

/\2
Adg = =B /72 + («I)2. (5.111)
T Nefrl
For typical parameters || = 3cm™, / = lcm, and Agg = 1um, we obtain

AMdp ~0.1nm, which is much smaller than the bandwidth of typical dielectric
multilayer mirrors (Fig. 4.10); the reason is, of course, the much smaller refractive
index variation within a typical waveguide grating as compared to a multilayer
mirror.

In planar waveguides, the grating structure can be produced by periodic mod-
ulation of the core index with ion implantation or by a periodic variation of the
core thickness. In (germanium-doped) glass fibers, a refractive index change can
be induced by illumination with UV light. A periodic core index modulation can
be realized by exposing a fiber to a periodic interference pattern of two UV beams
(compare Fig. 4.3) or by employing UV irradiation through periodic transmission
masks.

5.3.3.3 Waveguide Gratings with Phase Defect

Waveguide gratings can be combined to produce a variety of devices such as
Fabry—Perot resonators; a particularly interesting example is the immediate serial
combination of two identical gratings with a phase slip, i.e., with an axial shift of one
of the gratings in respect to the other; here, we consider a shift of Ay/2 = Aog/4ncsr
(Fig.5.30) and assume that the two gratings extend over the ranges [—//2, 0] and
[0, /2], respectively. For the first grating, Egs. (5.101)—(5.103) yield

A(=1/2)] _ [ Fi F2 | [ Ax(0)
|:Ab(_l/2):| B [F2 FT] |:Ab(0):| (5.112)

x(2)

Az (0) | At (0)
— —_—

>
SR VA VANV U VNV e W stk

- - e -
Ap(=1/2) A (0) [ Ap(0) Ay (1/2)
2=—1/2 2=0 2=1/2

Fig. 5.30 Axial variation of the susceptibility in a waveguide grating with A /4-phase defect
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with
js .
Fi1 = coshbl/2 + Zsmhbl/Z (5.113)

K.
Fy = — sinhbl/2. (5.114)

The second grating is displaced by A4/2, which is equivalent to the transformation
of the coupling coefficient to —«, as mentioned above. We therefore find

-
i) =R e ][] 6119

with
Fi :coshbl/2—j§sinhb1/2:FT (5.116)
F, = —% sinhbl/2 = F». (5.117)

We invert Eq. (5.115)

[Af(O)} _ [Fr Fzr [Afa/z)} _ [ Fi —F2i| [Afa/z)} 5.118)
Ap(0) Fy Fi | [Av(/2) —F, Fy | [A(/2) ] '

using Eq. (5.104), and substitute the result in Eq. (5.112), yielding

Af(=1/2) T _ . [Ael/2)
|:Ab(_l/2):| =Fs |:Ab(l/2):| (5.119)

with
F?—F? _F\F,+ F*F,
F, = [F Fl - FiF P le . (5.120)
172 1472 1 2

The reflection and transmission coefficients of the structure follow from Egs. (5.105)
and (5.106)

Foi  Fo(Fi - FF
=B B F) (5.121)
Fqi F?—F3

1 1
t= — = ——. 5.122
Fa1  F—F; ¢ )
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Fig. 5.31 Same as Fig.5.28 for a waveguide grating with A /4-phase defect

Using the identities 2 sinh x cosh x = sinh 2x, 2 sinh® x = —1 + cosh 2x, 2 cosh® x =
1 + cosh 2x and the relation b> = k? — §2 [Eq. (5.97)], we finally obtain

—2j8k sinh®(b1/2)
= 5.123
" 2 Z 82 coshbl + jéb sinh bl ( )
bZ
= (5.124)

k2 — 82 coshbl + j8bsinh bl

As shown in Fig. 5.31, the reflectance of this structure has a very narrow dip (R = 0)
at the center of the stop band that results from a pronounced resonance enhancement
within the grating structure. Such gratings can be used as transmission filters or as
resonators for semiconductor lasers (Sect. 7.5).

The fact that periodic structures exhibit frequency ranges where waves cannot
propagate but decay quasi-exponentially is well known from solid state physics,
where a periodic atomic crystal lattice exhibits stop bands (called band gaps) for
electronic wave functions. A phase defect as described above also finds its solid
state physics analog, since a lattice defect can result in electronic states within the
band gap. The analogy between the electronics of periodic lattices and photonics
becomes almost complete if the periodic modulation of the optical medium is
extended to three dimensions; such structures are called photonic band gap materials
(Joannopoulos et al. 2008; Sakoda 2005; Sibilia and Benson 2008).
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5.3.4 Waveguide-Interferometers and Modulators

Waveguide integrated interferometers rely on the same operating principles as their
conventional counterparts; the advantages of integration are, among others, reduced
size, enhanced rigidity, and lower costs.

5.3.4.1 Mach-Zehnder Interferometer

The Mach—Zehnder interferometer has already been discussed briefly in Sect. 4.1;
the integrated version is used for sensors, modulators, and switches. It is very
convenient to describe the operation of such an interferometer with the S-matrix
formalism introduced in Sect.4.1.3, that relates an input state [a;,a;] to the
corresponding output state [by, b;]

[b1}==SMZ[a1]. (5.125)
bz as

As an example, we calculate the S-matrix of the electro-optic modulator shown in
Fig.5.32. The two couplers/splitters are represented by the matrix S34g [Eq. (5.78)],
while the electro-optic phase shifts of +A¢/2 in the two interferometer branches
can be accounted for by a diagonal matrix with the components M, = ei49/2,
My, = e349/2: the total scattering matrix of the interferometer is thus

G, = 1| 1 el49/2 0 1 —j
M2 o 0 ed4¢2 || 1

=.[ sin A¢gp/2 —cosA¢/2:|

—cosA¢/2 —sinA¢/2 (5.126)

Fig. 5.32 Integrated Mach—Zehnder interferometer with electro-optic phase control
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Usually, light is launched into one of the inputs only, so that a; :=ag, a, =0 and

by | . sinA¢/2 | .
|:b2:| _Jao[—cosA¢/2:|’ (5-127)

the output power at the two ports is given by

Pl,out = Pl,in(l — Cos A¢)/2
Py out = Pl,in(l + cos A¢)/27 (5.128)

where the identity sin? x = (1 — cos2x)/2 has been used; electrically controlling
Ag allows modulating the output power or switching between the two output ports.

Optical sensors are often realized as fiber integrated interferometers. One of
the two interferometer branches is used as reference and isolated from external
influences, while the other one is the sensing fiber; in many applications, the
phase change in the sensor fiber is brought about by stretching the fiber. Thus,
the parameter to be measured has first to be converted into a length change. In
this fashion, temperature, pressure, magnetic, or electric fields can be monitored.
To linearize the sensor and to stay in the operating point of maximum sensitivity
[Eq. (5.80)], the reference fiber can be stretched with a piezoelectric transducer so
as to keep the phase difference constant and equal to 7z /2. The primary measurement
parameter is then the compensation voltage.

5.3.4.2 Fiber Gyroscope

One of the most important waveguide sensors is the fiber gyroscope that is based
on the Sagnac interferometer. It allows measuring rotation rates in inertial systems
with very high precision. Figure 5.33 shows the basic setup: a 3dB-coupler splits
the light coming from a laser and feeds it into the two opposite ports of a fiber loop.
The two modes propagating in the loop [clockwise (cw), or counterclockwise (ccw)]
are recombined by the same 3-dB coupler, which acts as phase sensitive output
coupler according to Eq. (5.81). Since the two modes propagate physically identical
paths, the phase difference is expected to be zero for reasons of reciprocity (to

Modulator

Laser

2
3 dB Coupler ! 3 dB Coupler

Fig. 5.33 Fiber gyroscope: the output is measured at the reciprocal port Pz, the modulator
introduces a dynamic phase shift that allows operation in a linear range (see main text)
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rule out phase differences due to polarization dispersion, polarization maintaining
fibers and polarized light is used). A second coupler in the input branch of the
interferometer allows accession of the output that is reciprocal in the sense that
the modes have also taken the same path through the 3-dB coupler (one “reflection”
and one “transmission” each).

Because of the reciprocal geometry, a phase difference can only occur if an
external parameter affects the two modes in different ways, such as a rotation of the
fiber loop. The exact description of this so-called Sagnac effect requires solving the
Maxwell equations in an accelerated coordinate system. The resulting phase shift,
however, can also be rationalized by a simple comparison of the phase delay times.
In a rotating loop, the mode that co-propagates with the rotational movement of the
fiber experiences a longer time before it reaches the output coupler, since the fiber
(and the coupler) move along during the propagation time, while the reverse applies
to the counterpropagating mode. In addition to this geometric effect, the change of
the phase velocity in a moving medium (Sect. 2.4.3) has to be taken into account.

We consider a circular fiber coil with radius R and N loops, rotating ccw with
angular velocity §2; then the phase delay time ..y and t.y, of the respective modes
follow from the equations ceewTeew = ! + R§2Teew and cow Tew = [ — RS2 1.y, to be

[
Ceew — RS2
[

[ A —— 5.129
¢ Cew + RS2 ( )

Teew =

where the phase velocities ccw ccw are given by Eq. (2.200) with v = R$2:

c RS2
Ceew = =2 + RS2 — —
n n
RS2
Cow = 2 —RQ2 + — (5.130)
n n
Thus, the phase delay time difference Az is
- 2RS2  2IR$2
AT = Teew — Tow & l(CCW Coew) + ~ 2 (5.131)

I~
CeewCew Co

and the Sagnac phase difference is given, with w = 2mco/Ao and [ = 27 NR, by

4nIRQ  8TAN
Ay = wAr = 2220 AR g, (5.132)
C()/\() Colo

it is proportional to the loop area A, the number N of loops, and the angular velocity
(more precisely, the component of the angular velocity parallel to the loop axis)
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£2; note that the Sagnac phase shift is independent of the propagation index of the
medium.
The output power at the “reciprocal” output port is given by

P3ou = Piow/2 = |ao* (1 + cos Agy) /4, (5.133)

where |ag|? is the input power at port 1.
For small values of ¢, the sensor characteristic is & 1 + (A¢)? implying that
the sensitivity is close to zero

dP3,0ut
ds2

le—0=10 (5.134)

and the sign of the rotation cannot be resolved. The introduction of a phase bias of
+/2 would linearize the response

Py o = laol* (1 + sin Agy) /4 ~ |ag|* (1 + Agy) /4 (5.135)

but cannot be implemented into the interferometer as easily as in the Mach—Zehnder
interferometer, since the two modes travel the same path.

A (dynamic) nonreciprocal phase delay, however, can be realized with a time
dependent phase modulator that is positioned asymmetrically within the fiber loop;
in Fig.5.33, the modulator is a piezoelectric fiber stretcher located immediately
behind the coupler. Let us assume that the modulator changes the length of the
fiber (and thus the phase delay) linearly with time, ¢y, (f) = Rpt, the resulting phase
difference between the cw and ccw mode, respectively, is A¢y,, = Ry 7, where
is the difference of the arrival time of the respective mode at the modulator. With
proper choice of the stretching rate Ry, the desired phase difference of /2 can be
achieved; in practice, the length modulation of the fiber is not a linear ramp, but
an oscillating function giving rise to a phase shift oscillating between 4 /2; the
operating principle remains the same, however.

With typical design parameters / = 1 km, r = 5cm, Ao = 600 nm, the rotational
velocity of the earth (2g = 7.3 x 107> s™!) produces a phase shift of Ag¢s = 2.6 x
10~*rad. The sensitivity of commercial fiber gyroscopes can be <10732.

5.3.5 Active Waveguide Components

In Sect.6.2, we will study the amplification of light by stimulated emission of
photons from excited atoms or ions. Such laser-active ions can be implemented
in a glass-host and excited by light of a wavelength shorter than the emitted, or
amplified light. If the preform of a fiber waveguide is doped with such atoms, a fiber
can be employed as amplifier. Popular dopants are rare earth atoms such as erbium,
neodymium, or ytterbium, typical doping concentrations are 10~*. Combined with
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Coupler
Pump laser
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Fig. 5.34 Erbium doped fiber amplifier (EDFA) (a); optical long distance link with EDFA-
repeaters (b)

two waveguide reflectors, an optical fiber amplifier can also be converted into an
integrated fiber oscillator (Fig.7.27).

One of the most important applications of such fiber amplifiers is the signal
regeneration in optical communication networks. Even in the transmission optimum
of quartz glass, at 1.55 pm, fiber networks require signal amplification in intervals of
70-100km. Erbium doped fiber amplifiers (EDFAs) provide a broad gain spectrum
that allows amplification of many parallel data channels in WDM and are therefore
ideally suited for this purpose. Figure 5.34 shows schematically a chain of such
repeaters; the radiation required for the excitation (pumping) of the erbium atoms
is provided by semiconductor lasers at 1.48 um and launched into the amplifier
fiber with the help of dichroic couplers, that transfer the pump light from the
semiconductor laser “pigtail” into the amplifier. The amplifying fiber (with a length
of about 10 m) is fusion-spliced into the data-fiber. With a pump power of several
mW, a signal gain of 30-40dB is achieved (Fig. 5.35).

Apart from its simplicity, reliability, and low electric power consumption, the
advantage of an EDFA over conventional (electronic) repeaters is that it can handle
virtually any signal encoding protocol with a bandwidth of several THz, while
electronic repeaters are optimized for a particular format and data rate.

5.3.6 Photonic Band Gap Fibers

Alternative wave guide structures provide guiding not by total reflection but
by interference effects: in Sect.5.3.3, we have encountered high reflecting one-
dimensional photonic band gaps resulting from the periodic modulation of the
refractive index along the waveguide axis. In photonic band gap fibers, the refractive
index is radially modulated instead: a core is surrounded by a periodic structure of
high and low refractive index materials, usually glass and air. The (hollow) core
constitutes a “defect” in the crystal structure and allows for a propagating mode
within the band gap, comparable to the narrow band transmission feature of a
waveguide grating with phase defect in Fig. 5.31.



242 5 Dielectric Waveguides
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Fig. 5.35 Typical power amplification of an EDFA as a function of pump power

Fig. 5.36 Photonic crystal fibers (PCFs): (a) hollow core photonic band gap fiber, (b) index-
guided solid core PCF, (¢) hollow core Bragg fiber; the small circles indicate hollow channels in
the glass matrix of the fiber; see, e.g., Bjarklev et al. (2003) and Russell (2006)

Photonic band gap fibers belong to the wider class of photonic crystal fibers
(PCFs, Fig.5.36); they can also be realized with a solid core surrounded by air
holes. These fibers, however, rely on conventional guiding by total reflection, and the
holes only serve to reduce the refractive index of the medium surrounding the core.
Because of the large refractive index contrast, light can be confined to a very small
mode area, which makes such fibers very suitable for nonlinear optical applications.

54 Summary

Many of the characteristic properties of dielectric waveguides become clear in the
analysis of simple (symmmetric) planar waveguides. First of all, guiding requires
that the propagation constant of the guided wave is larger than that in the medium
surrounding the guiding core. An additional self-consistency condition reduces the
number of possible guided waves to a finite number of modes. This number depends
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on the normalized frequency, a dimensionless parameter that includes information
on the frequency of the mode, the thickness of the core and the refractive index
step between the core and the surrounding medium. Symmetric waveguides always
support at least one guided mode, which can be polarized in two orthogonal states.

The propagation constant of a given mode depends on its frequency, since the
width of the core, measured in units of the wavelength, changes with frequency. Just
like any other dispersion mechanism, this geometric waveguide dispersion leads to
the broadening of transmitted light pulses, but can be compensated by the material
dispersion of the waveguide medium.

Cylindrical waveguides (fibers) share these fundamental properties with planar
waveguides and are of utmost importance for optical communications. For this
purpose, silica single mode step index fibers are used at the wavelength of 1.55 pum,
where absorption is minimal.

Graded index fibers are frequently used for low cost local area network applica-
tions. For the lack of boundary conditions, they require a mathematical treatment
different from step index waveguides: our approach is to treat the fiber as extended
graded index lens and to use the ABCD formalism introduced in Chap. 3 to find
self-consistent solutions.

Part of this Chapter is devoted to waveguide couplers, gratings, filters, and
interferometers. The physics underlying fiber gratings is similar to that of the
dielectric multilayer structures treated in Sect. 4.2, but the mathematical treatment is
quite different: for lack of boundary conditions, we analyze these devices in terms
of mode coupling mediated by a cross talk between the coupled modes. Efficient
energy transfer requires phase matching between the modes; waveguide dispersion,
i.e., the frequency dependence of the propagation constant, can thus be used to
realize dichroic filters and couplers. We also employ the S-matrix formalism of
Chap. 4 to describe waveguide interferometers and modulators in a concise manner.

5.5 Problems

1. Assume a step index fiber with a core refractive index of 1.5 and a 1 % smaller
cladding index. What is the NA of this fiber? What is the maximum core diameter
for the waveguide to be a single mode fiber at 632 nm?

2. Derive the self-consistency condition for an asymmetric planar waveguide and
find numerically the propagation constants of the eigenmodes for n, = 1.5,
ng = 1.4, n. = 1 and various ratios a/A¢. Show that there is an absolute cutoff
wavelength, above which no guided modes exist.

3. Plot the transverse mode profiles of the lowest mode of the asymmetric planar
waveguide of problem 2 and observe what happens near the cutoff wavelength.

4. A semiconductor laser is used for an optical monomode fiber link with 10 Gbit/s
transmission rate. The laser operates at 890nm and oscillates at two adjacent
longitudinal modes; the cavity length is 100 wm, the cavity refractive index is 3.5.
Calculate the maximum permissible length of the link if the dispersion coefficient
is 20psnm™!'km™! [use Eq.(4.82) to calculate the mode spacing]. Neglecting
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losses, what is the maximum length of the link if operated with a single mode
laser? What is the maximum link length if a single mode laser is used with a step
index fiber supporting two waveguide modes (assume V = 3.5, NA = 0.1 and
neglect material dispersion).

5. Reproduce Fig. 5.28, including the insets.
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The classical linear oscillator model of Sect.2.2.1 provides useful qualitative
insights into the interaction of light with matter. In particular, it yields essentially
correct results about the complex character of the electric susceptibility and its
resonant behavior, and the frequency dependence (dispersion) of the refractive index
is explained in a simple and intuitive way. For a more quantitative and detailed
treatment of light-matter interaction, however, a quantum mechanical treatment is
required. Since the optical response of matter is dominated by the electrons, the
following discussion refers to the interaction of light with electrons, bound in atoms,
molecules, or semicondutors.

6.1 Optical Interactions with Two Level Systems

The fundamental quantum mechanical equation is the Schrédinger equation

W (x.1)

5 (6.1)

hz
[——vz + V(x)] w(x,1) = —jh
2m

where & = h/2m and h = 6.63 x 1073*Js is Planck’s constant, V(x) is the
potential of the electron, and the term [—(%2/2m)V? + V(x)] is the Hamilton or
energy operator Ho; the wave function ¥ (X, ) comprises the complete information
on the particle.

A formal solution of Eq. (6.1) is

W(x, 1) = P(x)elEMr 6.2)
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provided that v fulfills the time independent Schrodinger equation

Hov (x) = EY(x). 6.3)

The set of solutions y of this equation depends on the potential V and constitutes
the “spectrum” (discrete or continuous) of eigenstates of the Hamilton operator with
corresponding eigenvalues E that denote the energy of the state. Due to the linearity
of the Schrodinger equation, any linear combination of solutions is also a solution.
Moreover, the set of eigenfunctions is complete in the sense that any possible
solution of Eq. (6.1) can be “synthesized” as a linear combination of eigenfunctions,

=3 e (6.4)

In the absence of a potential (V = 0), the solutions of Eq. (6.1) are plane waves
W(x,1) = e KXeiE/M (DeBroglie waves); the relation between the k-vector and E
is the E—k-dispersion relation for free electrons,

_ h2|k|2

E .
2m

(6.5)

For attractive potentials such as the Coulomb potential of the atomic core, the
spectrum consists of a set of discrete eigenfunctions ¥, with eigenvalues E,
(representing the bound states), and a continuum of plane waves.

Similar to electrodynamics, where the absolute square of the complex wave
function is a measure of the local energy density of the light wave, the absolute
square |¥(x,1)|? = ¥(x,t)¥*(x,1) is a measure of the probability density of the
particle, that is the probability to find it at the point X. Accordingly, the wave
function must be normalized such that the volume integral of ¥ (x, )¥W*(x,1) is
equal to 1:

/ YU dV = 1. (6.6)

Furthermore, eigenfunctions are mutually orthogonal in the sense that

* |1 for m=n
/wml//"dv_{O for m # n. 7
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Note that if the particle is in an eigenstate of the Hamilton operator (i.e., its wave
function is an eigenfunction), the probability density |¥(x, #)|? is time independent,
i.e., the probability density of an eigenstate is stationary

@0 = [va@e @ [yr e E ] = (o (6.8)

in other words, the electron density of an eigenstate is stationary and the electron
consequently does not emit any electromagnetic radiation.

In contrast, the probability density of a superposition of eigenstates oscillates
at frequencies that are determined by the energy differences of the involved
eigenstates; the superposition of two states

3 . 2
[P (x, t)|2 = 011//1e](Ei/h)’ + Czlﬂze](EZ/h)t

:mwm+wﬁﬂﬁﬁmﬁq@mwﬁwfmmﬂ, (6.9)

for example, oscillates at the frequency |E; — E;| /% (Fig.6.1).

6.1.1 Perturbations

Let us now study the effect of a time varying “perturbation,” such as an elec-
tromagnetic field, on a quantum mechanical system. Any such perturbation can
be expressed as a time dependent contribution to the potential V; denoting the
stationary “back ground” potential as Vj and the external perturbation as V' (¢), the
Hamilton operator is

H=Ho+ H () (6.10)

with H’ = V’. While it is possible, in principle, to solve the Schrédinger equation
with a time dependent Hamilton operator, an approximative solution can be
obtained in form of a (time dependent) linear combination of the unperturbed
solutions v, provided that the perturbation is small in comparison to Hy:

v = ey ©.11)

ca(t) are the time dependent “mixing” coefficients. The absolute square |c,(f)|?
of these coefficients can be interpreted as probability to find the system in state
¥, if a measurement of the energy of the system is taken at time ¢ (in quantum
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mechanics, measuring a certain observable always returns an eigenvalue of the
respective operator); since the set of eigenfunctions is complete, Y, |c,(f)]* = 1
to warrant [ |y|>dV = 1.

To determine the mixing coefficients ¢, (¢), we substitute Eq. (6.11) into the time
dependent Schrodinger equation Eq. (6.1)

> (Ho + H)ewpued ™ = —jn > [cnw,ﬂ% + &,,wn} el /M)t (6.12)

According to Eq. (6.3), Y, cxHo¥w = D, cuEny, so that

—jh Y et el B (6.13)

Multiplication of both sides with v, and applying the orthonormality relations
Eq. (6.7), we obtain

— jhiye En/Pr = ch / UEH el E gy, (6.14)

The integral

mW:/mwmw 6.15)

represents the impact of the perturbation H’ on the set v,,, ¥, of states and is called
the (m, n)-th element of the perturbation matrix. With this definition, Eq. (6.14) can
be written as

em(®) = % 3 cult)H,,, & EEm (6.16)

which is a set of coupled differential equations for the mixing coefficients.

We now restrict the discussion to a system of two eigenstates n = i, f; this allows
us to derive simple, yet very important results and also describes many situations in
optics quite well, as we shall see. Equation (6.16) then simplifies to

ci(r) = % [ci(t)Hlfi + Cf(l‘)Hi’fej’”"’]

() = 3 [elOHe™™ + ¢ (0], (6.17)
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where |Ey — E;|/h =: wy. We further assume that the perturbations starts at t = 0,
with the system being in the initial (eigen)state ¥;,' ¢;(0) = 1, ¢(0) = 0.

Perturbation theory is an iterative, approximative technique to solve equations
such as Eq. (6.17): in lowest (zero) order, one simply neglects the perturbation, so
that, c;(t) = 1, ¢s(f) = 0. Substituting this “solution” into Eq. (6.17) yields the first
order approximation

j

() = H; (6.18)
er(r) = %nge—iwo’. (6.19)

We further assume a periodic, harmonic time dependence of the perturbation (which
is equivalent to picking a certain Fourier component of it),

, 1 . .
H () =H? coswt = EH”?" [e" + e, (6.20)

so that integration of Eq. (6.19) from 0 to ¢ yields

Hj/ﬁo ej(a)—a)o)t -1 e—j(w-l—a)o)t -1
|: :| . (6.21)

cr(t) = %

w — Wy w + wo

If the frequency of the perturbation is comparable to wy, the second term in
parenthesis can be neglected because of the much larger denominator. Introducing
the “detuning” Aw :=w — wy, we obtain

ler (0 =

HP|* ['sin Awt/27?
|Hy | [sm wt/ :| ’ (6.22)

h? Aw
where the identity 1 — cosx = 2 sin?(x/2) was used.

6.1.1.1 Fermi’s Golden Rule
Of particular interest is the rate of change of the probability |c/(#)|* to find the

system in the “final” state, the so-called transition rate Wy = M Using the
approximation (valid for t — 0c0)
sin Awt/27?
SinAwl/21° T Awy, (6.23)
Aw 2

'The subscripts i and f refer to initial and final; note that the energy E; of the initial state is not
necessarily lower than Ej.
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where § is the Dirac distribution with the properties §(x#0) = 0 and [§(x) dx = 1,
we obtain the approximative result

012
_ lg@P _ mlH |

Wy = —5hb(dw). (6.24)

known as Fermi’s golden rule; it essentially states that

— a transition ¥; — ¥ requires the frequency w of the perturbation to coincide
with wy = (Ef —E)/h;

— the transition rate Wj is proportional to the square of the perturbation matrix
element |H;€0|2;

— since H' is a Hermitian operator with the property Hj; = H{", the transition rate

1
for ¥y — ¥; is equal to that of the reverse process ¥; — ¥s.

In practice, the perturbative interaction does not last for an infinite time. For this
and other reasons, the frequency dependence of the transition rate (the so-called line
shape) is not an infinitely narrow Dirac delta function, but a line function g(Aw)
peaking at @ = wy with [ g(Aw) dw = 1; Eq.(6.24) then assumes the form

g(Aw); (6.25)

some of the reasons for line broadening will be discussed in Sect. 6.1.4.

6.1.1.2 Dipole Interaction

The most important optical interaction is the dipole interaction, that is the interaction
between the electric field and the electric dipole constituted by the electron and
atomic core. The corresponding potential is

H = —¢E -x, (6.26)

where E(f) = Egcoswt is the electric field, —e the electron charge, and x the
displacement of the electron in respect to the core. The perturbation matrix element
hence is

H, =—e / Y*E - xy, dV. (6.27)
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At optical wavelengths, the electric field is practically constant over the extension
of an atom, so that with Eq. (6.20)

H;;?n = —eE - / VXY, dV =Eq - . (6.28)

The so-called dipole matrix element

W= R, = My, = —e/ vrxy, dV (6.29)

is a measure for the dipole moment that is associated with the superposition of the
states 1, and ¥,.
The vectors u and E are not necessarily parallel; therefore

HY? = [Eo - u? = E|uf> cos® 6, (6.30)

where 6 is the angle between the two vectors. If the orientation of u is equally
distributed over the spatial angle §2, the average value of the factor cos? @ is given
by

2 2 pw
5 Jcos? 6.d$2 1 / - 1
0) = ——0o5 =12 Osinfdfdp = —, 6.31
(cos” ) Tde el A cos” 0 sin 0 =3 (6.31)
and
! 1
(H) = (cos® O)Eg | = 3 Eflul” (6.32)

For dipole interaction, Eq. (6.25) thus can be expressed as

/g

W=W,~f=Wﬁ=6h2

Ejlnl’g(Aw). (6.33)

6.1.1.3 Interaction Cross Section
We can express the electric field in Eq.(6.33) in terms of its intensity I =

veeo/ woE3 /2 [Eq. (1.71)] to obtain

2
- wle(Aw)l, 6.34
3 0 thl | g( (1)) ( )
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where n = /e and ¢o = 1/ ,/€ojto. As we have seen, the energy exchange between
an atom (electron) and the field (or any other perturbation) is quantized in the sense
that the energy difference of the atom before and after a transition from ; to ¥y
is equal to hwy; the atom cannot exchange fractions of that energy with the field.
Conversely, the electromagnetic field can exchange energy only in integer multiples
of this energy because of the atomic structure of matter. The concept of photons
comprises much more than this “granular” currency of energy exchange, but it is
very convenient even at this level to express the electromagnetic energy flow density
I as a flow density F of energy quanta, or photons

F=_—. 6.35
” (6.35)

where w is the frequency of the field.> With this relation, Eq. (6.34) can be written
as

w 1
W= |uPg(Aw)F = oF =0, (6.36)
3n806‘0h hw
where the interaction or transition cross section o
Tw
0(Aw) = ———|p[’g(4w) (6.37)
3n80C0h

has been introduced. The interaction cross section has the dimension of an area
(usually given in cm?) and has a very intuitive meaning: just as a target disk of area
o in a stream of point-like bullets is hit at a rate that is equal to the flux density
of the bullets times the target area, an atom in a stream of photons undergoes
transitions with the rate oF. To induce one transition in the time interval 7, an
intensity of #w /ot is required. With an exemplary peak value for o = 107! cm?
and a transition energy of 1eV = 1.6x 107! J, it takes an intensity of ~1.6 W/cm? to
statistically hit every atom of an ensemble once per second. Note that off resonance,
the cross section vanishes and the atom becomes “invisible.”

Finally, a relation between the electromagnetic energy density p., and the
transition rate is useful if the interaction happens in a resonator cavity; we assume
that the cavity of volume V contains g photons; then the photon density ppn = g/V
is related to the energy density by pem = Aiwg/V; ppn is related to F by F = cppp,

2See Table 1.1 for different units of Aw.
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since the photons travel at the speed ¢ = c¢o/n. Thus we can express Eq. (6.36) in
the form

0 CPem

hw

W = ocppn = . (6.38)

6.1.1.4 Selection Rules

For a transition to happen, three conditions must be fulfilled according to Fermi’s
rule: the frequency of the light field must meet the resonance condition |E;—E;| /A =
o, the intensity must be non-vanishing, and the matrix element p; [Eq.(6.29)]
must be non-zero. The latter condition is a so-called selection rule, which limits the
possible choice of states participating in transitions. A hydrogen atom, for example,
with its spherically symmetric potential, has eigenstates that are either symmetric
Y (—x) = ¥(x) or anti-symmetric i (—x) = —y/(x)—they are of even or odd parity,
respectively. It is evident that the dipole matrix element Eq. (6.29) vanishes

py=—e / Y xyidV =0, (6.39)

if v, are of same parity, and a dipole-transition between such states is therefore
“forbidden”?; the dipole selection rule requires states of different parity.

It is quite instructive to visualize these important implications graphically: in
Fig. 6.1, the probability density of a superposition of two pairs of eigenstates of a
hydrogen atom is shown as a function of time; panel (a) shows the superposition of
the 1s and the 2s states, both of even parity; (b) shows the mixing of an 1s (even)
with a 2p-state (odd parity). While both superpositions oscillate, only (b) develops a
dipole moment; in (a), the center of gravity of the oscillating electron wave remains
in the positive core of the atom (breathing sphere).

6.1.2 Absorption and Stimulated Emission

The introduction of the photon as a “currency” for energy exchange Eq.(6.36)
allows us to set up balance equations for the number of atoms in a particular
eigenstate on the one hand, and the number of photons on the other: the transition of
an atom from a lower to a higher state consumes one photon (so-called absorption),
while the reverse process is equivalent to the generation (emission) of one photon;
it is important to note that this additional photon is indistinguishable from the

3A transition might still be possible because of higher order interactions such as quadrupole
interactions, but the cross section is smaller by several orders of magnitude in this case.
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Fig. 6.1 Probability density of an electron in a hydrogen atom: (a) superposition of 1s and 2s
states, (b) superposition of 1s and 2p-states; the dark dot in the center represents the positive core
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Fig. 6.2 Transition rates in a two-level system

field that has perturbed the atom, it has the same phase, frequency, polarization,
and wave vector—in short, it belongs to the same electromagnetic mode that has
stimulated the transition. This coherent emission process is called “stimulated.”
The probability for the respective process is given by Wi, as defined in Eq. (6.24).
In the following, we discuss the resulting balances for an ensemble of two-level
atoms (Fig. 6.2) that can be either in a “ground state” 1 or in an “excited state”
2. We assume the density of atoms (number of atoms per unit volume) to be N;
the density of atoms in states 1 and 2 are denoted as N; and N, respectively;
N, is also called population density of the respective state. Since there are no
other states, the population densities are related by Ny + N, = N. According to
Eq. (6.24) (which refers to one atom), the interaction with the light field changes
the population densities with the rates dN,/ df|ss = —dNi/ dt|es = N1Wi2
(absorption), and dN;/dt|e = —dN,/ dt|lse = NoWa; (stimulated emission). In
addition to the stimulated emission, there is also a certain probability that an excited
atom returns to the ground state without stimulation, i.e., in the absence of a light
field. This “spontaneous” emission, which is not predicted by Fermi’s rule, happens
at a rate that is proportional to the cross section for stimulated emission and to the
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number of possible modes of the electromagnetic field at the transition frequency.
The spontaneously emitted photon is stochastic in terms of phase, polarization, and
wave vector; the frequency is distributed within the bandwidth of the cross section.
The transition rate due to this process can be expressed by the average life time 7
of the excited state (see Sect. 6.1.3).

Taking these three processes into account, we obtain, for the population density
N,, the rate equation

dN- N-
2 = NyWiy — Ny Wy — —. (6.40)
dr Tsp

Because of the one-to-one correspondence of atomic transitions and photon annihi-
lation or creation, respectively, we obtain

% = —NiWiy + N2Wa = W(N, — Ny), (6.41)
where pp refers exclusively to the photons of the interacting light mode, while
spontaneous photon emission is not taken into account.

Let us now look at a light field with photon flux density F' = cp,p, propagating in
z-direction through a volume filled with (excited) atoms of density Ny and N>. In a
slice of thickness dz within the medium, the total temporal derivative of the photon
density is

i _ G, O O

= ; 6.42
dr ot dz dt ( )

the first term on the right side describes an explicit temporal change of the local
photon density, the second one represents the difference between the photons flow-
ing in and out of the volume element. In combination with Egs. (6.41) and (6.38),
and using dz/ dt = ¢, we obtain

0 9
% + cg;zph = coppn(N2 — N1). (6.43)

If we assume N, and F' = cppy to be stationary, then dppn /0 = 0 and

aF _ dl—(N Ni)o d (6.44)
F_I_ 2 1)0 A4zZ. .
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If we further assume that N;, is constant over the interaction length [, then
integration yields

_F(Z) — @ — eM2—Ni)oz

6.45
FO) ~ 1(0) 04
Comparison with the classical result Eq. (2.70)
1D _ goetoz e (6.46)
1(0)
allows us to identify
o = —(Nz —N1)0 = (N1 —Nz)O. (6.47)

With Egs.(2.71) and (2.76) we obtain the following relations between the cross
section o and the imaginary parts of the refractive index and the susceptibility,
respectively:

K = (N1 — Nz)U/Zk() (648)
Yot = 2(N2 — Ny)ony /ko. (6.49)

Of particular interest is the fact that Eq. (6.45) implies an (exponential) growth of the
intensity if N, > Ny, an effect known as Light Amplification by Stimulated Emission
of Radiation. This process is of utmost importance for the field of photonics and will
be discussed in detail in Sect. 6.2.

6.1.3 Spontaneous Emission

The semiclassical treatment of light—matter interaction as outlined above treats the
electromagnetic field classically, with the result that in the absence of perturbations
such as electromagnetic radiation, eigenstates of the energy operator are stable;
spontaneous emission is not possible in this framework. By the same token, the
stationary populations of a two-level system in the presence of thermal (or any other)
radiation are predicted by Eq. (6.40) to be N, = N; = N/2, in contradiction to the
thermodynamic population ratio No/N; = e "@/*T where kg = 1.38x10"2 JK™!
is Boltzmann’s constant.

Spontaneous emission can only be explained satisfactorily in the framework
of a quantum theory of electromagnetism. In this theory, an electromagnetic
mode behaves like a quantum mechanical oscillator whose energy is represented
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by the photons in the mode. Just as its quantum mechanical counterpart, the
oscillator in its ground state (corresponding to zero photons) is not at rest but
fluctuates. These so-called vacuum fluctuations of the electromagnetic field stim-
ulate the “spontaneous” emission and are responsible for the instability of excited
states.

Planck postulated the quantization of the electromagnetic field energy to explain
the spectral features of thermal radiation, at a time when quantum mechanics was
not yet known. He assumed that the energy of an electromagnetic mode at frequency
 is not continuous but an integer multiple of %Aw; these energy “quanta” were
later denoted as photons. The electromagnetic energy spectrum in thermodynamic
equilibrium is then the product of the density of modes Eq. (4.107)

w?*n?

N(w) = ]TZ—CS, (6.50)

the average number of photons per mode, and the photon energy %w. The average
number of photons per mode will be derived below [Eq. (9.20)] and is equal to

_ 1
Thus, one obtains the spectral energy density
ho’n® 1
pem(®) = HON(@)iiph = —os (6.52)

n2cd eho/lsT 1

Einstein derived a structurally equivalent expression by postulating three fundamen-
tal processes constituting the interaction of atoms with electromagnetic radiation:
absorption, stimulated emission, and spontaneous emission; an ensemble of N =
N1 +N, two-level atoms, exposed to thermal radiation undergoes transitions between
the two levels with the rates A(w)N, (spontaneous emission), Byj(w)pem(@w)N2
(stimulated emission), and B2(®@) pem (w)N; (absorption). In equilibrium,

B1(®) pem (w)N> + A(w)N2 = B12(®) pem(@)N1. (6.53)

Substituting the above mentioned Boltzmann distribution N, /N into Eq. (6.53), we
obtain

A(w) 1

. 6.54
Biz(w) eh@/ksT — By (w)/B1a(w) 059

Pem (w) =

A comparison with Eq.(6.52) shows, in agreement with Eq.(6.33), that
By (w)/B12(w) = 1; moreover,
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h 3.3
A©) = 22 By (). (6.55)
3¢}

Since w?n®/72c} is the density of modes at w, the factor hw*n3/m%c} corresponds
to one photon per mode. Spontaneous emission is therefore equivalent to an
emission stimulated by one photon per mode; in regard to emission, a mode
containing a number m of photons (m = 0,1,2,...) acts as if there were
m + 1 photons. Because of the quadratic frequency dependence of the density
of modes, spontaneous emission becomes more and more prevalent with growing
frequency.
The coefficient B, (w) can be calculated from Egs. (6.37) and (6.38)

/g

B = 2g(Aw), 6.56
21(w) 3n280h2|ﬂl g(Aw) (6.56)
so that Eq. (6.55) assumes the form
w3n )
A) = ——— | g(A0). (6.57)
3meohcy

For narrow lines, the spectral distribution of spontaneous emission is therefore
essentially given by the line function of the transition cross section o (w). Note that
the spontaneous emission rate grows with the third power of .

To obtain the spontaneous life time [Eq. (6.40)], we have to integrate A(w) over
all frequencies

L = /A(a)) dw; (6.58)

Tsp

assuming a narrow line function, the variable w in the integrand Eq. (6.57) can be
replaced by the resonance frequency wy, so that we obtain, using [ g(Aw)dw = 1,

1 3 2
1 oinlel 5
Tp  3meohcy
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6.1.3.1 The Fiichtbauer-Ladenburg Equation
Equation (6.59) allows casting the interaction cross section Eq. (6.37) in the form

1 72
o(Aw) = r_nza)g g(Aw). (6.60)
Sp 0

The spectral distribution of the spontaneously emitted light can be determined
experimentally, usually as a function I(4¢) of the wavelength. For narrow line
widths, one can therefore assume the (normalized) line function g(4¢) to be

1(Ao)

g(ho) = T100) o’

(6.61)

From [ g(Aw)dw = [ g(Ag) dA, follows g(Aw) = g(Ao)

2
120’ so that Eq. (6.60)
can be expressed as a function of Ay,

2

23 I
Ag) = ——29 . .62
o (Ao) Tsp 8mcon® [ 1(Ao) dAo (6.62)

This important relation is known as Fiichtbauer-Ladenburg equation (see Fowler
and Dexter 1962).

6.1.4 Line Broadening

6.1.4.1 Homogeneous Line Broadening

In Eq. (6.25) we have replaced the §-line function by a broadened line function
g(Aw). A fundamental broadening mechanism, also called natural broadening, is
due to the finite, spontaneous life time of an excited state. As an ensemble of excited
atoms decays exponentially in time, one can, in a semiclassical picture, view the
spontaneous emission of a single atom as an exponentially decaying field at the
carrier frequency wy = (E; — E1)/h (Fig.6.3). Assuming the power to decay as
e /%, the field decays as e /> The normalized power spectrum (absolute square
of the Fourier transform) of e ™"/2% e}’ s the line function

1 27

Aw) = —————.
§(Aw) 71+ QrpAw)?

(6.63)
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Fig. 6.3 Natural line broadening by spontaneous emission

This function drops to half of the peak value at Aw = 1/27, so that we obtain the
FWHM line width

1
Tsp

The line function Eq. (6.63) is of the same Lorentzian shape 1/(1 + (Ax)?) already
encountered as the frequency dependence of absorption by a linear oscillator
[Eq.(2.61)].

A similar impact on the line shape results from dephasing (Fig. 6.4), for example,
by statistical collisions of atoms with others. The time between collisions in a gas is
distributed exponentially with the decay time 75 (dephasing time). In the frequency
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Collisions
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Fig. 6.4 Dephasing and line broadening induced by collisions

domain, this results again in a Lorentz line shape®

1,

1
Aw) = —————.
§(Aw) 7 1+ (AwT>)?

(6.65)

These broadening mechanisms affect each individual atom, and thus an ensemble
of atoms in the same way; they represent what is known as homogeneous line
broadening. By contrast, statistically distributed shifts of the resonance frequency
of individual atoms result in the broadening of the line function of an ensemble,
without affecting the individual line width. If the range of frequency shifts exceeds

“For a derivation see, e.g., Svelto (2010).
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Fig. 6.5 Inhomogeneous line broadening due to statistical distribution of line shifts; the resulting
line shape is a convolution of the distribution function and the individual line width

the line width of the individual atoms, monochromatic light can interact only with a
certain sub-ensemble (Fig. 6.5), and the broadening is called inhomogeneous.

6.1.4.2 Inhomogeneous Line Broadening

An instructive example for inhomogeneous broadening is Doppler broadening in
gases. The thermal velocity of the atoms in a gas gives rise to a Doppler shift of the
apparent transition frequency, whenever the atom emits or absorbs light. According
to Eq. (2.197), the resonance frequency wy of an atom moving at velocity v along a
certain direction is shifted to

1+U/C()

~ wo(l + v/cyp), (6.66)
11— U/C()

w) = wy

when observed along this direction in a coordinate system at rest. For small
velocities |v|/co < 1, the Doppler shift is therefore

Wy — wy A wog. (6.67)

The velocities (and their component along a given direction) of the atoms in thermal
equilibrium are distributed according to Boltzmann’s distribution oce™#/%7 where
E is the kinetic energy of the atoms and 7 is the temperature of the gas

M 1/2
pydv = (anBT) e~MV/2keT ) (6.68)
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where M is the mass of the atom. The prefactor is chosen so that [ pydv = 1.
Because of the linear relation Eq.(6.67) between Doppler shift and velocity, the
distribution of frequency shifts is given by the velocity distribution

Py — wo) dog = py dv; (6.69)

from Eq. (6.67) follows dw| = (wo/c) dv, so that

12 p2 (@)=’
p c M TUT T
— = — . 6.70
ol 70

p(w) — wo) dw], is the probability to find the apparent transition frequency of the
moving atom in the interval [w(, ) + dw(]. The FWHM-width of this Gaussian
distribution is

Aa)FWHM = 26()0\/ 21112\/ kBT/MCZ. (671)

The line function gjn(Aw) of the ensemble of gas atoms is the convolution of this
distribution function with the individual (homogeneous) line function of the atom

gin(w — wp) = /0 p(wy — wo)gn((w — wy) — (w5 — wo)) dwy

= f p(w) — w0)gn(w — w)) dw;. (6.72)
0

If the homogeneous line width is negligible in comparison to the width of the
inhomogeneous distribution, it can be replaced by §(w — w() and gin(w — wy) =
p(o — ).

Another inhomogeneous broadening mechanism that can be very significant is
crystal field broadening: it affects atoms and ions in a (transparent) solid state host
material. The transition frequency of atoms is determined not only by the atomic
field but also by the electric field in its microscopic environment. If this environment
varies for different atoms, the optical response of the ensemble is inhomogeneously
broadened. This effect is particularly pronounced in amorphous host materials such
as glasses.

Very broad line functions can be observed in large (organic) molecules and
certain crystal hosts (e.g., sapphire) doped with transition metals (e.g., titanium). In
these materials, the electronic states of the electrons are split up in a wide manifold
of closely spaced vibrational and rotational levels that overlap at room temperature
and form broad absorption and emission bands. Semiconductors, on the other hand,
display quasi-continuous bands of electronic states, also resulting in very broad
emission and absorption lines (Sect. 6.3).
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6.1.5 Saturation of Absorption

In thermodynamic equilibrium, the levels E; and E; of an atom are populated
according to Boltzmann’s distribution, N, /N, = e~®>=F/ksT For optical transition
energies and at room temperature, Ey — E; 3> kg7, so that N, = 0 and N; = N;

practically all atoms are in the ground state and available for absorption. According
to Eq. (6.47), the absorption coefficient then is

oy ;= No. (6.73)

We now want to discuss the absorption process Egs. (6.40)—(6.47) in more detail
by taking the population changes due to the irradiation into account. We write
Eq. (6.40) in the form

dn. N
—2 = —WN, —N)) — = (6.74)
dr Top

and introduce the so-called inversion density AN
AN = N, — Ny, (6.75)

so that Eq. (6.47) becomes
a = —0AN. (6.76)

The total density of atoms is N = N; + N,, so that

N — AN N + AN
NN=———, Ny=——. (6.77)
2 2
Eq. (6.74) can now be written as
dAN 1 N
—— = —AN (ZW + —) - —. (6.78)
dt Tsp Tsp
Under stationary conditions d/ dt = 0, we obtain
AN 1
— (6.79)

N T T+2wr,
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Fig. 6.6 Population densities in a two-level system as function of the normalized signal intensity

With W = oF = ol/hw [Eq.(6.36)], we can cast Eq. (6.79) in the form

AN 1 1 650,
N 1+1Qoty/how) | + 1719 ’
where
h
@:= "2 (6.81)
20T,

is the so-called saturation intensity of a two-level system. In Fig. 6.6, the populations
Ny, and AN/N are shown as functions of the normalized intensity / /152). With
Egs. (6.73) and (6.80), we obtain the intensity dependence of the absorption
coefficient

1

a(l) = ag——7:
1+ 1/1?

(6.82)

the reduction of the absorption coefficient by the incident light is called saturation
of absorption (Fig. 6.7).
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Fig. 6.7 Saturation of absorption (bleaching) at high signal intensity; note the logarithmic scale—
the inset shows a linear scale)

As long as the signal intensity is very small compared to the saturation intensity,
the absorption coefficient is «; at higher intensity it is reduced (because there are
less atoms available for absorption, and stimulated emission from excited atoms
partially compensates the photon losses); at 152) the absorption coefficient is only
half of the “small signal” value ¢ (this situation corresponds to a ground state
population of 75 % and an excited state population of 25 %). At very high intensity,
the absorber becomes transparent (it is bleached), since the two populations
approach 50 % each.

6.1.5.1 Saturation and Line Function
The absorption coefficient reflects the frequency dependence of the transition cross
section, ap(®w) = No(w). When irradiated by a strong monochromatic light field
(Fig. 6.8), a homogeneously broadened medium reacts according to Eq. (6.82); note
that 152) (w) is a function of frequency having a minimum value at the peak of o (w).
In an inhomogeneously broadened absorber, however, the light interacts with (and
saturates) only the sub-ensemble of atoms that is in resonance with the light field.
This selective saturation can be experimentally observed by measuring, with a weak,
tunable “probe” beam, the complete absorption spectrum of the absorber bleached
by a strong, monochromatic light (Fig. 6.9). The (transient) creation of a dip in the
absorption spectrum is known as spectral hole burning. The width of the “hole” in
the absorption spectrum equals the homogeneous bandwidth of the individual atoms
in the sub-ensemble.
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Fig. 6.9 Saturation of an inhomogeneously broadened absorber

6.2 Light Amplification by Stimulated Emission

As remarked in the discussion of Eq.(6.45), N, — N; > O results in optical
amplification. The situation AN = N, — N; > 0 is called population inversion
because it is opposite to the thermodynamic equilibrium situation N, < Nj. It is
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convenient to cast Eq. (6.44) in the form

dr/
— = IoAN (6.83)
dz

and to define, in analogy to the absorption coefficient Eq. (6.47), a gain coefficient
y=-«a

y = 0AN. (6.84)

There are different strategies to obtain inversion: the necessary excitation of the
E; level can be obtained by optical means, i.e. with light, but other mechanisms
such as collisions with energetic free electrons in gases or electron injection
in semiconductors are also possible and technologically important. According to
Eq. (6.82), a two-level system cannot be inverted by optical radiation, no matter
how intense. The light that is used to induce inversion (usually called the pump
light) must differ in frequency from the light that is to be amplified (the signal),
which can be achieved by using an auxiliary energy level E3 > E, to absorb the
pump light (Fig. 6.10). Under appropriate conditions, the atoms excited to E3 can
relax to state E, (by releasing the excess energy to the host material in the form of
heat, for example) and accumulate there to form a population N,. The pump process
requires a photon energy hw, = E3 — Ey, where Ey is the energy of the ground state.
Ideally, the transition from Ej to E; is very fast, so that N3 ~ 0 and stimulated or
spontaneous emission from the pump level is negligible. In principle, the resulting
population N, can be close to the total number of atoms, provided that the pump light
is sufficiently intense. The signal light with photon energy % can now interact with
these atoms. For this interaction, there are two prototypical schemes, as depicted in
Fig. 6.10. The lower state E| participating in the interaction can either be the ground

a b E3, N3~0
(@) (b) Y“
\ By, N30 E2, N3
fast
Eg, No

A

Wy No W21 N [Na /T2
=0 F Ny
WpNy  |WiaNy |Wa1Na|Na /72
=0 F Ny |=0cF Ny

E1, Ny ~0

'A)st
E1=Eg, Ng=N¢ Eg, Ng=No~N

Fig. 6.10 Energy levels and transitions (a) in a three-level system, (b) in a four-level system
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state, E; = Ej (three-level system), or another auxiliary state (four-level system). It
is immediately clear that in a three-level system, at least 50 % of the atoms need to
be excited from the ground state to make inversion possible. In an ideal four-level
system, the population of the E; is negligible (N; & 0) and the inversion

AN =N, (6.85)

can be obtained with very weak pump.

A requirement for the operation of the four-level scheme is that E; — Eo > kgT
(kgT is about 26 meV at room temperature), so that the thermal population of level
E; according to Boltzmann’s distribution is negligible. Moreover, the life time of the
atoms in state E; should be very short to prevent a congestion by transitions from
E, to E;. Again, the transition from E; to the ground state is usually mediated by
thermal (nonradiative) interaction with the environment.

Obviously, an ideal atomic amplifier system has to meet a manifold of spectro-
scopic requirements, and in fact the number of atomic elements (or their ions) that
have proven useful as optical amplifiers is rather limited: neodymium, titanium,
helium, argon, chromium, copper, ytterbium, and several others. Some of them
are four-level systems, others are three-level systems, such as erbium; at the
technologically very important wavelength of 1.5 um, the erbium amplifier is by
far the most attractive despite its three-level structure.

6.2.1 Four-Level Amplifier

To describe the operation of an atomic four-level amplifier system, we adapt
Eq. (6.40) by adding a pump rate that transports atoms from the ground state via
E; to level E,. We denote with W, the pump transition probability of an atom, and
the density of atoms in the ground state with Ny; we further assume N; and N3 to be
negligible, so that Ny = N — N,. Then we obtain for N, the rate equation

sz NZ
—= = W,Ng — Wa Ny — —. (6.86)
dr 1%}

To take possible nonradiative de-excitation processes from E, into account, we add
to the spontaneous emission rate 1/, a nonradiative rate 1/7, so that the total
decay rate 1/1; is

— = (6.87)
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for the sake of simplicity we will refer to this combined decay rate as spontaneous,
however.
If the signal is very small or zero, W, ~ 0 and the stationary inversion is

WPN T

Noo(Wp) = WyNgTp = ———
2ot = hee = T

~ WyN15; (6.88)

the linear approximation is valid as long as N» < N, so that the depletion of
the ground state by the pump process can be neglected. Eq. (6.88) describes the
equilibrium between the pump and the spontaneous relaxation. The small signal
gain coefficient is then

Yo = N2 0. (6.89)

Similar to what we have seen in Sect.6.1.5 regarding absorption, a sufficiently
strong signal modifies the population densities and thus the gain coefficient. The
signal stimulates additional decay with a rate o« Wy = ol/Aw and reduces the
upper state population to

W,Nt 1
Ny (Wp. 1) = P2~ Nag o (6.90)
1+ W +1/1 1+1/I
where the saturation intensity is now defined as
h
®.=22 (6.91)
(0N %)

Note that I§4) = 2152) ; while each transition in the four-level system changes the
inversion by 1, in a two- (or three-) level system, AN changes by 2 per transition.
The signal dependent gain coefficient is then

y() = vo (6.92)

1+ /1%

Equation (6.92) describes the gain saturation by the signal: compared to the small
signal gain coefficient yy, the gain coefficient drops to one half when the emission
rate stimulated by the signal equals the decay rate 1/7,. The signal intensity required
for this is one photon per cross section within the time interval 1, [Eq.(6.91)].
Except for the different value of the saturation intensity, saturation of gain and
absorption show very similar saturation effects; in particular, Figs. 6.7 and 6.8 apply
to both processes.
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Since the signal modifies the local gain coefficient, Eq.(6.83) is a nonlinear
differential equation, which in general can only be integrated numerically. Two
limiting cases, however, yield quite simple solutions. If the input signal is so small
that even the output signal is well below the saturation intensity, then saturation is
negligible and

I(l
10 _ e?o; (6.93)
1(0)
e’ is the small signal gain factor. If, on the other hand, 7(0)/ 154) > 1, then
dI 1(z)
Pl e i yol" (6.94)
Z I(Z)/Is
and accordingly
1(l) — 1(0) = yoIW1 = W,N,lho. (6.95)

The increase of the signal photon flux density is thus equal to W,N,IA = W,N,V,
where A and V are the cross section and volume of the amplifier, respectively: in the
case of very high saturation, every pump photon is converted into a signal photon
and added to the signal flux density; note that the temporal and spatial shape of a
signal is generally not conserved in that way.

6.2.2 Three-Level Amplifier

While a four-level system Fig.6.10 without pump is transparent at the signal
frequency and can be inverted by an arbitrarily weak pump, three-level systems
require a minimum pump rate to become transparent or inverted. The rate equation
for this system is

dN: N.
th = W,N, + 0FN; — 0FN, — —. (6.96)
o

Ideally, N3 = O (the transition E3—E, is very fast), so that N, = N; = (N — AN)/2
and N, = (N + AN)/2; the stationary small signal gain coefficient (at F' =~ 0) is
then

WpTZ —1

=0ANy = ON———,
Yo 0 Wots + 1

(6.97)
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and the pump rate required for transparency (y = 0) is given by Wy, = 1.

Figure 6.11 shows the populations N;, as well as the inversion as a function of
the normalized pump rate.

6.2.3 Pulse Amplification and Absorption

The discussion above applies to signals that are not explicitly time dependent;
if light pulses are amplified, saturation also modifies the shape of the pulse
envelope: while the leading edge of the light pulse experiences the undepleted
small signal gain, the later sections of the pulse encounter only the inversion that
is left over by the preceding part of the pulse. While this nonlinearity of the
amplification process may be undesirable (it is actually often desirable, as we shall
see), amplification under saturation conditions provides high energy extraction from
the gain medium. In the linear, small signal regime, most of the inversion is not
utilized for amplification and ultimately decays by spontaneous emission, whereas
in the highly saturated regime the energy increase of the signal may be close to the
energy stored in the medium.

With F = cppn, the photon transport equation Eq. (6.43) for a four-level system
can be written as

0F(z, 1) . 0F(z,1)
cot 0z

= 0F(z,H)N,2(z, 1); (6.98)

if the pulse duration 7, is so short that pump and spontaneous emission can be
neglected during the pulse, the inversion density N,(z, t) develops according to

dN:
—2 = _GF(z,1)dt. (6.99)
N
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In the context of pulse amplification, it is convenient to introduce the energy fluence
of the pulse,

@ = / hoF (1) dt (6.100)

in units of [Jm~2]. Integration of Eq. (6.99) over the pulse duration yields

N2(2) = Na(z,0) exp (—P(2)/ 2?) (6.101)

for the inversion left over after the pulse has passed. The material specific fluence
oW = hw/o (6.102)

is called saturation fluence; it is the fluence that reduces the initial inversion to a
fraction 1/e. For a typical interaction cross section o of 107! cm? and a photon
energy of 1eV, " is about 1.6 Jem™2.

The system Eqgs. (6.98)—-(6.99) of coupled, nonlinear differential equations can
be solved numerically; for selected pulse profiles, analytical solutions have been
derived, known as Frantz—Nodvik equations (Frantz and Nodvik 1963). A particu-
larly instructive (if also unrealistic) case is that of a rectangular input pulse with an
input flux density Fy for 0 < ¢ < 7, and zero otherwise. The amplifier is assumed
to have a length of / and an initial inversion density of N, ;; the output flux density
then turns out to be

Fy
F(,1) = , for 0</? <1, 6.103
.7 1 —[1 —exp(—oNail)] exp(—o Fot') or o ( )
and zero otherwise, where ¥ = t — I/c is a time coordinate retarded by the

transit time //c of the pulse; the second exponential function in the denominator
represents the gain depletion [see Eq. (6.101)]. We can express the above result in
terms of the input fluence @y = #wF 1y, the saturation fluence Eq. (6.102), and the
energy stored in the amplifier per unit cross sectional area, @y, = hwN,;/; note
that exp(@syo/ oY ) = exp(oN,;l) is the small signal gain. With these definitions,
Eq.(6.103)is

Fy
1= [1 — exp(—Puo/ D) exp[—(@o/ )1 /7]

F(1) = (6.104)

Figure 6.12 shows the temporal pulse profile at the output of the amplifier for
different values of input fluence. In all cases, the pulse front is amplified by the
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Fig. 6.12 Effect of gain
saturation on a rectangular
input pulse of duration t, for
different ratios of the input
signal fluence @ to the
saturation fluence @;.
Comparison of the area under
the pulse with a rectangle that
contains the entire energy
stored in the gain medium
(solid line) allows us to
estimate the energy extraction
efficiency; the output flux
density is normalized to
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Fig. 6.13 Effect of
absorption saturation on a
rectangular input pulse; the
small signal absorption is
chosen to be equal to e 2
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undepleted gain exp(ocN,il); depending on the magnitude of the input fluence, the
pulse envelope then drops more or less precipitously and the later sections of the
pulse gain little, if any energy; the pulse duration is considerably shortened by the
process. Note that even input pulses of relatively low fluence show saturation effects,
because their fluence increases during propagation.

Equation (6.103) also describes the saturation of a (two-level) absorber, if the
depletion factor in the denominator is replaced by exp(—20 Fot’) to account for the
fact that one transition changes the population difference by two (accordingly, the
saturation fluence for a two-level system is defined as @:2) = hw/20). Figure 6.13
shows output pulses for different values of input fluence. In contrast to the case of
gain saturation, the input fluence needs to be comparable to the saturation fluence
or higher to induce significant saturation effects, since the fluence gets lower during
propagation. Also in contrast to gain saturation, the leading section of the pulse
is now distorted. Once the leading part of the pulse has saturated the absorber, the
absorber becomes transparent and transmits the rest of the pulse almost without loss.
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Saturable absorbers can therefore be employed for optical switching (Sect. 7.3.1) or
formation of ultrashort pulses (Sect.7.3.2). Note that gain saturation shortens the
tail of a pulse, while absorption saturation chops off its head.

6.3  Optical Interactions with Semiconductors
6.3.1 Electronic States in Semiconductors

Semiconductors do not behave like an ensemble of independent atoms, but rather
like a huge, covalently bound molecule. The overlap of sp3-hybrid orbitals of adjoin-
ing atoms constitutes a set of bonding and (energetically higher lying) anti-bonding
molecular orbitals (Fig. 6.14). The electrons in these orbitals are delocalized over
the entire crystal and shared by all atoms. Because of the directionality of the sp*-
orbitals, the resulting molecule displays crystalline order, usually of diamond or zinc
blende structure. In an ideal semiconductor, the number of bonding states is exactly
equal to the total number of sp*-electrons. Since every state can be occupied by not
more than one electron (Pauli exclusion principle), all bonding states are occupied
if the semiconductor is in its ground state.

(@ (b) (9 (C)

Conduction band

anti-bonding _.-~ g

p-Orbital / .
—

s-Orbital |
——
\ Valence band

.
\ ’

\ . /’

\ bonding -

~

Fig. 6.14 Formation of energy bands in a semiconductor (silicon): (a) s- and p-orbitals of the
individual atom form sp3-hybrid orbitals (b); the overlap with an adjoining sp-orbital results in
the splitting of the orbitals into a low lying bonding orbital and a higher lying anti-bonding orbital
(c); addition of more and more atoms results in the splitting of these states into a manifold of closely
lying states, so-called energy bands (d); the bonding and the anti-bonding bands are separated by
a gap where no states exist
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6.3.1.1 Electronic States, Density of States
According to Bloch’s theorem (see, e.g., Burns 1985), the energy eigenstates of the
electrons in a semiconductor crystal can be written as a product

¥ (x) = upk(x)e (6.105)

of a function up x(x) that exhibits the periodicity of the crystal lattice, and a plane
carrier wave with the wave vector k; the subscript B refers to the band (v indicating
the valence and c the conduction band, respectively). For a semiconductor crystal of
macroscopic dimensions d, , -, it is convenient to apply so-called periodic boundary
conditions to find (approximative) values of the electronic wave vector, by assuming
that the wave function “repeats” itself after the distance d,, ;; consequently, the
components of the wave vector assume the discrete values

21
ki=mi7, mi=...,—2,—1,0,1,2,... (6.106)

While m; has no upper limit in principle, the periodicity of the crystal lattice implies
that the wave vectors within the first Brillouin zone are sufficient to identify all
distinct wave functions in a unique way; all wave functions with a wave vector
outside this zone are equivalent to a wave function within the first zone. If we
assume, without going into details, that the borders of the first Brillouin zone
are given by 4 /a, where a is the lattice constant of the semiconductor, then
—n/a < ki < m/a, and the index m; of unique wave vectors is limited by
|mi| < dyy./2a. In a macroscopic crystal, dy,./a is a very large number, so
that the wave vectors are very closely spaced within the Brillouin zone. The
density pg(k) of states, i.e., the number of states per unit volume in the interval
[k, k + dk] can then be calculated in a way analogous to Eq.(4.106) and is given
by

k2
pe(k) = et (6.107)

the two possible polarization states per wave vector of an electromagnetic mode
correspond to two different spin states of the electrons. Note that because of
different boundary conditions, Eq.(6.106) includes positive as well as negative
values of k;; the restriction to positive k;-values in Eq.(4.105) is compensated
by the smaller mode spacing; the main motivation for applying the more general
boundary conditions Eq. (6.106) is that wave vectors of opposite sign are needed to
describe electron transport, while the electromagnetic modes in a cavity are standing
waves.
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Fig. 6.15 Schematic band Conduction band E
structure of a semiconductor
in the vicinity of the valence
band maximum

The momentum of an electron is given by #k, and its kinetic energy is
accordingly equal to #%k? /2m; the energy of a quasi-free electron in the conduction
band is therefore

2k
E(k) = Ee + 7

(6.108)

C

where E. is the conduction band minimum or edge (Fig.6.15). In comparison to
expression Eq. (6.5) for a free electron, the mass is replaced by an effective mass
me to account for the interaction of the electron with the crystal lattice. A similar
relation holds for the valence band, with the mass —m, and the band edge E,

h2k?
; (6.109)
2my,

E(k) = E, —

the effective masses of gallium arsenide (GaAs) are m. ~0.068 m. and m, ~0.5 m..
Equation (6.108) allows us to express the density of states as a function of energy:
with p(E) dE = p(k) dk and dk = (m./h*k) dE, we obtain for the conduction band

dk 1 3/2
pelE = Eo) = poll) gz = 5= (2me/W?)"” VE— Ec: (6.110)
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Fig. 6.16 Conduction band 14
density of states p.(E — E.)
for GaAs; the valence band 12

density of states py(Ey — E)
is larger by a factor of
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for the valence band we use dk = —(m,/h%)dE and —p(—E)dE = p(k) dk to
obtain

1 on3/2
pv(Ey —E) = > (2my/1%) E, —E. (6.111)

Within the band gap Ey < E < E,, the density of states is zero, above and below it
increases with the square root of the energy (Fig. 6.16).

6.3.1.2 (Quasi)-Fermi Distribution

Within a band, electrons can rapidly alter their state by exchanging energy and
momentum with the crystal lattice vibrations (phonons); such transitions are called
intraband transitions in contrast to interband transition between two different bands
(Fig. 6.17). In thermodynamic equilibrium with the lattice, the states are statistically
occupied. Other than the atoms in a classical gas, however, the electrons in a
semiconductor are (a) indistinguishable and (b) subject to the Pauli exclusion
principle that implies that an individual state cannot be occupied by more than
one electron (because of its half-integer spin). For these reasons, the occupation
probability does not follow Boltzmann’s distribution, but an equilibrium distribution
known as Fermi—Dirac distribution (Fig. 6.18)

1

f(E—Ep) = CE—En/kT 1 1° (6.112)

In an intrinsic (i.e., undoped) semiconductor, the total number of states available
in the valence band equals exactly the total number of valence electrons. Each
electron in the conduction band must therefore correspond to a vacancy (hole) in



6.3 Optical Interactions with Semiconductors 279
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Fig. 6.17 An optical interband transition followed by intraband transitions (thermalization)
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Fig. 6.18 Fermi—Dirac distribution at different temperatures; the energy range of partial occupa-
tion is centered around the Fermi energy Er and has a width of several kg T

the valence band so that the respective densities are equal, ne = ny. In thermal

equilibrium, n. is given by the integral over the conduction band density of states
times the respective occupation probability

ne =/ pe(E)f(E — Ef) dE. (6.113)
15

@

The density of holes in the valence band, on the other hand, is given by

Ey
o / (B[ —f(E — Er)] dE. (6.114)
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since 1 —f(E) is the probability that a state is empty. The Fermi energy Er establishes
itself such that

o0 Ev
/ po(E)(E — Ex) dE = / (BN - f(E — Ep)) dE. 6.115)

E. —00

Because the conduction band density of states differs from that of the valence band
by a factor of (m./m,)*?, the Fermi energy is not precisely in the center of the band
gap, but shifted slightly towards the band with smaller effective mass (usually the
conduction band). Once the value of Ef is established, the equilibrium n. follows
from Eq. (6.113).

6.3.1.3 Doping of Semiconductors

If a regular lattice atom is replaced by an impurity atom with a different number
of valence electrons, the balance between the number of valence band states and
electrons is altered; if the impurity has more valence electrons than the regular atom,
it serves as electron donor, while an atom with reduced number of electrons is an
electron acceptor. The density of impurity atoms can be controlled technologically
by doping the semiconductors, either with donors (n-doping) or acceptors (p-
doping). In III-V semiconductors such as GaAs, Zn (group II) is frequently used
as p-dopant and Se (group VI) as n-dopant.

In an n-doped semiconductor, the number of electrons exceeds the number
of valence band states so that there are more electrons in the conduction band
than holes in the valence band. Accordingly, n. > ny and the Fermi energy is
shifted towards the conduction band to satisfy Eq. (6.113); in a p-doped material the
opposite applies. If the dopant concentration is so high that the Fermi energy lies

(2) (b)
AE
k‘ k‘
/
/ N\

Fig. 6.19 Position of the Fermi level in a highly doped (degenerate) semiconductor: (a) n-doped,
(b) p-doped semiconductor
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within one of the bands, the semiconductor is called degenerate and actually behaves
like a metal (Fig. 6.19). While doping is of central importance in electronics, it plays
a rather minor role in photonics. Throughout the following, undoped (“intrinsic’)
semiconductors are assumed unless explicitly stated otherwise.

6.3.1.4 Excitation of Semiconductors

Excitation of electrons from the valence into the conduction band increases n. and
ny, but the balance ne = ny, is, of course, conserved. Excited electrons stay in the
conduction band until they recombine with the holes by radiative or nonradiative
transitions at a rate 1/ Trec, Where Ty is the so-called recombination time, typically
of the order of nanoseconds. During this time, the electrons undergo transitions
between the closely lying states of the band (intraband transitions) on a time scale
of picoseconds. Energy and momentum is conserved by exchange with lattice
vibrations (phonons). Because of the much higher rate of intraband transitions,
a thermal quasi-equilibrium distribution of the electrons is established within the
conduction band, that is again a Fermi distribution

FB) = Fmomr 11 (6.116)
but with a quasi-Fermi energy Er . that is such that
o0
e = / pe(E)f(E — Er) dE, (6.117)
E

c]

In the same fashion, holes occupy the valence band states according to the
distribution

ME) = FromT 11 (6.118)
characterized by a quasi-Fermi energy Ef,, that satisfies
Ev
m= [ b ~fE- Ee)]dE: (6.119)
—00

Fig.6.20 shows the position of the two quasi-Fermi levels of a highly excited
semiconductor.

The difference Er. — Epy, which is zero in thermal equilibrium, grows with
increasing excitation; Fig. 6.21 shows the dependence of Er. and Ef, on n. for
two different temperatures. For Eg. — Egy < E,, the Fermi levels vary, in good
approximation, logarithmically with the carrier density; near the band edge, the
dependence becomes more pronounced. At a certain carrier density, the difference
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Fig. 6.20 Quasi-Fermi levels of an excited semiconductor at two different degrees of excitation:

6 Light-Matter Interaction

(a) below inversion, (b) inverted; see also Fig. 6.21

E—Ef [eV]

Fig. 6.21 Position of the quasi-Fermi levels in GaAs (Table 6.1) as a function of the carrier density
for two different temperatures. The transparency carrier density, defined by Eg. — Egy = E,, is
lower by approximately one order of magnitude at 77 K as compared to room temperature (vertical

arrows)

between the quasi-Fermi levels is equal to the gap energy; for reasons that will
become clear in the following, this carrier density is called transparency carrier
density. For temperatures approaching 0K, the integral Eq.(6.117) can be easily
evaluated because the Fermi distribution converges into simple step function, and

we obtain
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and

2

Epy =By — — (37°m) " (6.121)

ny

6.3.2 Optical Transitions in Semiconductors

As in atoms, transitions between the states in the valence and conduction bands
can be driven by electromagnetic radiation and are accompanied by the creation or
annihilation of photons. Since the states are distributed over practically continuous
bands, the resonance condition required by Fermi’s golden rule Eq.(6.24) can be
met by photons of a wide frequency range, provided that Aw > E,. The most
important selection rule for an optical interband transition in a semiconductor
follows from momentum conservation, 7k —hk; = 7k, where k; ¢ are the initial
and final electron wave vectors and Ky, is the optical wave vector; since the wave
vector of an 1 eV-photon (~ 10° cm™!) can be neglected in comparison with typical
electronic wave vectors (107 cm™!), the selection rule simplifies to kf — k; = 0. In
the E—k band diagram, optical transitions must therefore be “vertical” (Fig. 6.22).
Transitions between states of different wave vector (called indirect transitions)
are possible in principle, but require the simultaneous interaction with a phonon
(lattice vibration) to conserve momentum; accordingly, the probability of indirect
transitions is very small in comparison with direct transitions.

The actual band structure of semiconductors is usually quite complicated. From
the viewpoint of light-matter interaction, one of the most important features of
the band diagram is the position of the conduction band minimum in respect to
the maximum of the valence band. If the two points have the same k-vector, the
band gap is denoted as direct. Since electrons accumulate in the conduction band
minimum, and holes in the valence band maximum, such semiconductors, when

: ) \/
A
\
Absorption Emission Absorption Emission
Phonon

Fig. 6.22 Energy bands and optical transitions: (a) direct semiconductor, (b) indirect semicon-
ductor
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excited, can recombine radiatively. Indirect semiconductors (such as Si) cannot
efficiently emit light because the electrons in the conduction band cannot reach
empty states in the valence band via direct transitions (Fig.6.22). In regard to
absorption, the difference between direct and indirect band gap semiconductors is
irrelevant, and both types are suitable as photodetectors.

6.3.2.1 Joint Density of States

To analyze the interaction of light with semiconductors, we first have to find, for a
given of photon energy #Aw, the states E,, E}, in the valence and conduction band,
respectively, that fulfill the requirements E, — E, = hw and k, = k; (Fig. 6.23a).
With Egs. (6.108) and (6.109), these conditions can be combined in the equation

R

hw
2m;

+E,, (6.122)

¥(w)

Gair‘l bandwidth oo

(e)
k
Valence band  Conduction band  p;(w)
I Eg |
(a) E (d)
1
&
(b) \l"E N
E B (e
pnc
E—E,
1

Fig. 6.23 Band structure (a), quasi-Fermi distributions (b), Fermi factor (c¢), joint density of states
(d), and gain coefficient y(w) = ao(w)[fe(Ep) — f1(E,)] (e), for Epc — Epy > E,
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where k2 = k¢2¢ = k,%, E. — E, = E, and the reduced electron mass m;, is defined by

1 1 1
— B = qr = (6.123)
My me My
The solution of Eq. (6.122),
2 _ 2m; "
kK (w) = ?( w — Eg) (6.124)

provides the wave number of the states that are coupled by direct optical transitions
at w. The corresponding energy levels in the two bands follow from Egs. (6.108)
and (6.109)

Eu(0) = B, — = (ho — E),
my
my
Ep(w) = E. + — (hw — Ey). (6.125)
me
With Egs. (6.107) and (6.124), we can calculate the so-called joint density p;(k) of

such pairs of states in the interval [k, k + dk]

() 2m;
A0 =" = e

(hw — Ey); (6.126)

the (more relevant) joint density of states (Fig. 6.23d) in the interval [@, @ + dw] can
be obtained from Eq. (6.126) using the identity pj(w) dow = p(k) dk; with dk/ dw =
my/hk following from Eq. (6.124), we obtain

1 (2my)3?

) = 55— —(ho — Ep)'/2. (6.127)

6.3.2.2 Fermi Factor

If a (two-level) atom is in one of the states participating in an optical transition,
then the other state is unoccupied and one does not have to care about the blocking
of a transition by the Pauli exclusion principle. In semiconductors, states are
statistically occupied according to the Fermi distribution Eq. (6.112), and the final
state of a transition may be occupied, i.e., the transition is blocked with a certain
probability. The (absorptive) transition between a state E, in the valence band
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and the corresponding conduction band state Ej, requires, for example, that E, is
occupied and E}, is unoccupied, which happens with the probability

favs = F(EQ)[1 — fe(Ep)]: (6.128)

note that the Fermi levels in the two bands are generally different, as indicated by
the subscripts v and c in the distribution function. Analog considerations for the
emissive transition from E}, to E, yield

Jem = fe(Ep)[1 — f(ED)]: (6.129)

the net-transition rate is thus proportional to the so-called Fermi factor (Fig. 6.23c)

Fom — fabs = fo(Ep) — fu(Ea) {5}0 if E, — E, {%}EF —Ery (6.130)

the inequalities follow after substitution of the distribution functions Eqgs. (6.116)
and (6.118). With E, — E, = hw, we find that the Fermi factor is zero if iw =
Er. — Ery, and positive (negative) for lower (higher) values of Aw; note that a
zero Fermi factor implies that the semiconductor is transparent at the respective
frequency, independent of the joint density of states.

While the quasi-Fermi levels Eg(n.) and Egy(ny) are determined by the carrier
density n. = ny (Fig. 6.21), the energies E, and E;, are functions of w [Eq. (6.125)].
Thus, the Fermi factor is completely determined by n. and @

78 =8 = £ (B + o= B) ) =1 (B~ 2 ho - £y)).

6.131)

6.3.2.3 Absorption Coefficient

For the calculation of the absorption coefficient, we can follow the derivation of
Eq. (6.47), replacing the population difference N, — N; by the product pj(@)(fem —
fabs)- The transition probability for a given pair of states E,, E, is determined by
Fermi’s golden rule Eq. (6.24) and is characterized by an interaction cross section
that is non-zero only within a small bandwidth centered at (E;, — E,)/#%. According
to Eq. (6.60), this cross section can be expressed as 0 = (72c?/w’1;)g(Aw), where
T, 1 the radiative recombination time.
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Table 6.1 Selected material E, [eV]]n

properties of intrinsic GaAs (e me) | (et /me) | G/ me) | [nS]

1.42 3.55/0.068 0.5 0.06 2

Under assumption of a narrow line g(Aw) ~ §(Aw) of the individual transition,
the absorption coefficient thus is given by

w2c?

a(w) = —

pi(@) [ fe(Eb) — fu(Ed)]- (6.132)

w?t,

At sufficiently low temperatures (kg7 < Eg) and in the absence of any other
excitation, f,(E,) = 1 and f.(E;) = 0 so that the Fermi factor is equal to -1 and
we obtain, with Eq. (6.127)

c? (2mr)3/2

= GaF (ho — Eg)"/>. (6.133)

For GaAs (Table 6.1) and near the band gap, the prefactor in Eq. (6.133) amounts
to c2(2m;)*? ) 2(hw)?t, ~ 5% 103 cm™! eV~'/2; only slightly above the band gap, at

hw — E,=0.01 ¢V, the absorption coefficient is already as large as 5x 10?cm™".

6.3.3 Optical Gain Condition

In an excited semiconductor, the absorption coefficient Eq. (6.132) turns negative
provided that aw > E, and the Fermi factor assumes a positive value, which requires
hw < Ep.— Epy (Fig.6.23e). The semiconductor then acts as optical amplifier with
the gain coefficient y = —« following from Eq. (6.132)

Y(@) = —a(w) = a(@)[fe(Ep) — /i (Ed)], (6.134)

with ag given by Eq. (6.133). Gain is provided within the interval

Eg < hw < E]:,c = EF,V- (6135)

The gain condition, equivalent to the inversion condition, therefore requires that
the difference between the quasi-Fermi levels is larger than the band gap. As
already mentioned, the carrier density needed to reach Ex. — Epy = E; is called
the transparency carrier density ny: with this carrier density, the semiconductor is
transparent for a photon energy just equal to the band gap.
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Fig. 6.24 Spectral dependence of the gain coefficient y of GaAs (calculated) at room temperature
for different values of n, (cm™3); the inset shows the peak gain coefficient as a function of 7,

Figure 6.24 shows the gain coefficient as a function of n.. Because of the increas-
ing density of states, the peak of the gain spectrum moves to higher frequencies with
increasing carrier density; the peak gain coefficient is approximately given by the
semi-empirical formula

y(ne) ~ ao (@ _ 1) : (6.136)

Nir

6.3.4 Low Dimensional Semiconductors

The position of the quasi-Fermi level depends on the carrier density, the temperature
and the density of states: a smaller density of states, for example, implies that states
of higher energy must be filled to accommodate a given number of electrons in
the conduction band. As we will see in the following, the density of states can be
modified (lowered) by spatial confinement of the carriers in one or more dimension.
By the same token, the carrier density necessary to reach a certain difference of the
quasi-Fermi level is reduced in such structures.

6.3.4.1 Quantum Wells
In a macroscopic crystal, the points in k-space representing the electronic
wave functions are so closely packed that they form practically continuous
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bands (Sect.6.3.1.1); accordingly, the density of states [Eq.(6.108)], given in
[cm3 eV, is independent of the size and shape of the crystal. If, however, the
dimension of the crystal in one or more directions approaches the lattice constant
of the crystal, the spacing between the points in k-space becomes significant
and the density of states is not a continuous function of the wave number or
the energy, respectively, but starts to display discontinuities. Let us consider a
semiconductor slab with very small thickness d, (but macroscopic extensions d );
if we model the confinement of the carriers in the z-direction by a one-dimensional
rectangular potential well with infinite barriers, the electron wave function must
vanish at the walls, forming a standing wave in the confinement direction, just as
the electromagnetic modes in a perfectly conducting cavity. We therefore can use
the result Eq. (4.105) to find

kz=nzd£, n,=1,2,3..., (6.137)

while k, , is given by Eq. (6.106). Because d; is assumed to be very small, this means
that the tips of the wave vectors are arranged in distinct planes normal to the k.
direction and separated by 7/d;; to each value of n, corresponds a manifold of
densely packed states k., representing a two-dimensional sub-k-space (Fig. 6.25).
To estimate the number of states in such a sub-space in the interval [k, k + dk]

(where k = /K2 + kf), we divide the volume 27%k?/d, dk of a cylindrical ring of
radius k, radial thickness dk, and height r/d, by the volume 47°/d,d,d, that a state

consumes and multiply by 2 to account for the two possible spins; the density of
states is obtained after dividing the result by the volume d,d,d; of the crystal

Pn..c(k) = (6.138)

Z
in contrast to the bulk-expression p.(k) = k?/m* [Eq. (6.107)].
Fig. 6.25 Location of

electronic states of a
two-dimensional

semiconductor in k-space,
forming closely packed
planar sub-spaces; also shown
is the volume element that a
state occupies
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Fig. 6.26 Band structure and density of states of a quantum well-structure; Ey; , are the bulk band
gaps of the two materials forming the structure

The energy of the conduction band states is [see Eq. (6.108)]

B4
E(k) = Ec + E9 _ + (6.139)
& 2me
with
W2 (nyr /d.)?
E] = e /d) (6.140)

2m

for every value of n,, there exists a separate parabolic sub-band (Fig. 6.26).
To find the density of conduction band states as a function of energy, we express
kby E,

k= @me/W)(E — Ec— EL.o). 6.141)

From p,_.(k) dk = p,_(E)dE and

v 2m./h?
dk=—~>——-— __ _(dE (6.142)
2JE—E.—E,\

we find for E>E, + Ej.. .

m

C
—— 6.143
whid, ( )

Pn,.c (E) =
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which is obviously constant. The total density of states of the manifold of sub-bands
is obtained by summation over n_; it is a step function enclosed by the bulk density
of states (Fig. 6.26).

The valence band density of states is obtained by replacing the effective mass of
the conduction band by that of the valence band:

ny

Pn..v(E) hd (6.144)

Replacing the effective mass by the reduced mass and applying the selection rules
Ak = 0, An, = 0, we obtain for n, = 1 the optical joint density of states at
w=E/h

m
prj(w) = %, for o >E,+E] +E,. (6.145)
%

Technologically, quantum wells are produced by growing few atomic layers of a
semiconductor material such as GaAs, sandwiched between two layers of a wide
band gap material such as AlAs.

The modified density of states of quantum well-structures has important conse-
quences:

— the transparency carrier density is significantly reduced

— the constant joint density of states provides almost constant gain within one sub-
band

— increasing the carrier density increases the gain bandwidth without affecting the
peak gain.

For these reasons, quantum well semiconductor amplifiers and -lasers are widely
applied in photonics.

6.3.4.2 Quantum Wires and Quantum Dots

Carrier confinement can be extended to two or three dimensions; a needle shaped
semiconductor crystal of microscopic measures in two directions (say y and z) is
called a quantum wire, while microscopic semiconductor grains are referred to as
quantum dots. In a quantum wire, two components of the k-vector become discrete

k. = ny,zdi, ny.=123... (6.146)
y,Z
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Fig. 6.27 Location of electronic states of a quantum wire in k-space, forming closely packed
linear sub-spaces

while k, = k is quasi-continuous and given by Eq. (6.106). The resulting sub-spaces
are parallel lines of densely packed states k, in k-space (Fig. 6.27). The conduction
band energy of sub-band n,, n, is given by

e
E(k) = Ec+ES  +E)  + (6.147)
¥ & 2me
with
2 2
a BT/ (6.148)
e 2me

The density of states as a function of k is constant and equal to 1/(d,d;); expressed
as a function of energy, the density of states of a given sub-band is

! Vme/h (6.149)

pn,,nz,C(E) =
y wdyd, \/2(E —E.—En.—Eny)

forE > Ec + Ej ¢ + Ej .

Quantum confinement in three dimensions results in quantum dots. Since all
components of the k-vector are discrete, no bands are formed. The energy levels
are discrete

h* (i /d;)?
E=E.+ Z - (6.150)
i=x,y.2 2mc
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similar to that of an atom. Consequently, the term density of states is not appropriate
any more and is replaced by the density of quantum dots, if there is more than
one. Since it is technologically difficult to produce many quantum dots of exactly
the same dimensions, an ensemble of quantum dots is usually inhomogeneously
broadened. An important application of quantum dots is the conversion of UV light
from luminescence diodes (UV-LED) into visible light, exploiting the manifold of
radiative transitions within a quantum dot.

6.3.4.3 Inter-Sub-Band Transitions

Optical transitions are also possible between different sub-bands of a quantum well,
wire, or dot. The energy spacing is generally much smaller than the band gap and
can be designed by appropriate choice of the geometric dimensions and the material
constituents. Such inter-sub-band transitions are the base for IR emitting so-called
quantum cascade lasers (see, e.g., Faist 2011).

6.3.5 Carrier Induced Refractive Index Change

An important side effect of increased carrier density is the change of the refractive
index of the semiconductor upon excitation. The electrons in the conduction band
(and holes in the valence band) act as a free electron gas (Sect.2.2.3), which, for
frequencies above the plasma-frequency Eq. (2.87) provides a negative contribution
to the total permittivity. For typical carrier densities in semiconductor amplifiers,
the plasma frequency is well below the band gap. To estimate the change of the
permittivity, we treat the carriers as having the reduced electron mass m, and obtain,
according to Eq. (2.88), the estimate

nee?

As = (6.151)

o w?

In GaAs, at a carrier density of ne = 2 x 108 cm™ we get Ae ~ —0.016 at a

wavelength of 1o = 830nm (1.5eV). With n = ¢!/2, this corresponds to a refractive
index change of An=a Ae/2n=—0.005.

A second contribution to the refractive index of an excited semiconductor follows
from the Kramers—Kronig relations Eq. (2.103) that relate the real and imaginary
parts, n and «, of the refractive index. With Eq. (2.71) and ky = w/ ¢y, the absorption
coefficient « of the semiconductor in the absence of excitation is related to x by
k(w) = a(w)cy/2w, while in the inverted, amplifying medium we have k(@) =
—y(w)co/2w. Equation (2.103) then yields

G2 — (P =

2 o0 /A ! o0 A /
Al = ;/ W A(@) 4 = —C—O/ dz”—(“’w)zdw’, (6.152)
0 0 —
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where Ay(w’) = y(@') + a(w’). This contribution to the refractive index is
also negative at the peak of the gain spectrum and usually exceeds the plasma-
contribution. The dependence of the refractive index on the carrier density has
important implications for the operation of semiconductor lasers (Sect. 7.5.3). It
also can be used to realize semiconductor based interferometric modulators, since
the refractive index change extends to light frequencies within the band gap, where
the semiconductor is transparent.

6.4 Summary

Schrodinger’s equation is introduced as the wave equation of electrons. For a given
atomic potential, the solutions of this equation are the electronic energy eigenstates
of the atom with corresponding eigenvalues. In the absence of a perturbation by,
for example, an electromagnetic field, an atom in any of these eigenstates is stable.
The effect of a (periodic) perturbation is that the exposed atom assumes a state
that is a superposition of its eigenstates; such a superposition is not stationary
anymore but oscillates at a frequency equal to the difference of the respective
energy eingenvalues, divided by Planck’s constant. The perturbation is therefore
only efficient if its frequency is equal or close to the oscillation frequency of the
atom.

After the perturbation, the atom is found, with a certain probability, in a different
state—it has undergone a transition. The energy difference between the initial and
the final is balanced by the electromagnetic field in the process of absorption or
stimulated emission. The probability of such a transition can be expressed as a
product of an interaction cross section and the fluence of light quanta the atom is
exposed to. We derive Fermi’s golden rule which provides, in good approximation,
the transition probability and the interaction cross section. We discuss various
mechanisms that lead to line broadening, i.e., to the broadening of the frequency
range where transitions are possible.

Stimulated emission is the base of light amplification in a laser. We introduce
the concept of rate equations to describe the interaction of a laser mode with the
laser medium. A gain condition is formulated and techniques to reach the necessary
population inversion are described. Amplification relies on the transition of atoms
from a higher energy state to a lower, and the amplification of intense signals reduces
the number of excited atoms and thus the gain. This saturation process is discussed
for continuous waves as well as light pulses.

We extend the discussion of light-matter interaction to semiconductors, where
the electrons are not allocated to an individual atom, but are delocalized over the
entire crystal. The gain condition therefore includes statistical components, taking
the Fermi distribution of electrons within the energy bands of the semiconductor
into account. The number of pairs of semiconductor states that are eligible for a
transition at a given frequency is expressed in the optical joint density of states. This
important quantity also depends on the geometric dimensions of the semiconductor:
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quantum wells, wires, and dots have a reduced density of states which generally is
advantageous for laser applications.

6.5 Problems

1. The power spectrum of a black body at temperature T is given by Eq. (6.52):
(a) calculate the frequency wpmax of spectral maximum; (b) use the identity
p(w)dw = p(A)dA to express the power spectrum as a function of the vacuum
wavelength; calculate the wavelength Ag m,x of spectral maximum. Explain why
OmaxAomax 7 27Co, although wdy = 2mwcy. What does a grating spectrometer
measure, p(w) or p(1)?

2. Assume a 1 mmol/l solution of Rhodamine 6G in ethanol (the molecular weight
and absorption spectrum of Rhodamine 6G can be found in many data bases);
calculate oy, of the dye-molecule and the loss of monochromatic light at 530 nm
upon transmission through a 1 (5) cm thick layer of this solution. Further assume
“white light” with a constant spectral power I(w) = dP/dw = const. between
300 and 700 nm (and zero outside this range) transmitted through this solution.
What is the approximate loss (in percent) (approximate the absorption band by
a rectangle); note that /(o) of the input light is not a constant. The spontaneous
life time of the molecule is 10 ns; calculate the fluence of an ultrashort 530 nm
pulse that reduces the absorption of a thin layer of this solution to 50 %. How
long does it take the dye solution to recover after the light is switched off?

3. Atomic sodium vapor in a gas discharge lamp emits a strong line at 589 nm;
assuming that the vapor has a temperature of 2000°, what is the range of Doppler
frequency shifts due to thermal motion, if we assume that the atoms have a kinetic
energy of kgT?

4. Assume a four-level amplifier with spatially homogeneous inversion density and
length I. A very short (but energetic) pulse with an energy fluence @y = hwFyt,
is transmitted through the medium. Calculate the inversion distribution imme-
diately after the transmission for different values of @,. Neglect spontaneous
emission and pump processes.

5. Same as before, but with a pulse of finite duration and initially rectangular
pulse shape: calculate the pulse shape at the end of the amplifier by numerical
integration for different values of @y; for this purpose, slice the pulse into a train
of very short pulses of appropriate fluence. Compare the results with that of the
Frantz—Nodvik equations.

6. Calculate numerically the quasi-Fermi levels in intrinsic GaAs as a function
of the carrier density n. at room temperature. Evaluate the transparency carrier
concentration as a function of 7. See Table 6.1 for the properties of GaAs.

7. Consider a GaAs quantum well with a d, of 10nm. Calculate numerically the
quasi Fermi levels as a function of the carrier density and the temperature 7.
Evaluate the transparency carrier density as a function of 7. Compare these
results with the bulk results.
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Positive feedback converts an amplifier into an oscillator. In optics, feedback can be
provided by mirrors at the two ports of an amplifier (Fig. 7.1). While the acronym
“laser” stands for light amplification by stimulated emission of radiation, it usually
refers to an optical oscillator that relies on amplification by stimulated emission; we
shall see in Sect. 7.6 and Chap. 8 that there are alternative amplification mechanisms
that can be used to build optical oscillators.

The optical properties of a Fabry—Perot resonator, in particular its modes, have
been described in Sect.4.3. Because of the coherent nature of the amplification
process, a laser oscillator can produce light consisting of a huge number of
photons that belong to one single resonator mode; such a light field is practically
monochromatic and exhibits the spatial properties of a coherent light beam such as
a Gaussian beam (Sect. 3.1.2). By contrast, thermal light inside a cavity kept at a
temperature of, say, 3000K (kg7 = 0.26 eV) contains an average of about 0.0004
photons per mode in the visible (=2 eV), as we will see in Sect. 9.3, Eq. (9.20). Light
from a thermal source is therefore an incoherent superposition of a huge number of
hardly occupied different spatial and temporal modes.

There exists a wide variety of laser materials, from atomic gases to molecules in
liquid solution, from ions in dielectric host materials to semiconductors. Accord-
ingly, the technical implementation, and the pump process in particular, varies
greatly. The following discussion of some important aspects of laser oscillators refer
to optically pumped atomic lasers; the fundamental results derived in this section
apply to all lasers, however.

7.1 Stationary Performance
7.1.1 Rate Equations, Four-Level System

We assume an ideal four-level atomic system (Sect. 6.2), where transitions E3 — E»
and E; — E)j are so fast that one can set N; 3 = 0 (Fig.7.2); thus, the population

© Springer International Publishing Switzerland 2016 297
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Mirror 1 Mirror 2

Pump source

Fig. 7.1 Schematic of a laser oscillator: a Fabry—Perot resonator formed by two mirrors with
transmittance 7, contains a gain medium serving as amplifier

E3,N3~0

wjt
E3, N2

Wp No Wa1 N2 N2 /T2
=oc(q/V)N2

Y Ei, N0

‘/ast
Eg, No=Ng~N

Fig. 7.2 Four-level laser

inversion is given by AN = N,. Assuming N, < N, we can neglect the depletion
of the ground state by the pump process and replace N, by the total density of atoms
N. The light field within the resonator is characterized by the number g of photons,
related to the photon density ppn by ppn = ¢/V with V := Ad. Since the resonator
modes are not spatially homogeneous (having a Gaussian transverse profile and
axial nodes), V is an effective mode volume that can be expressed as a product of
an effective cross sectional area A and the length of d the resonator. The stimulated
transition probability is then, according to Eq. (6.38), given by W = ocq/V.
The rate equation for N, follows from Eq. (6.86)

N N —oen,d M2 7.1
dr ¥ 2V ‘L'zh ’

The corresponding equation for the photon number g contains the stimulated
emission term of Eq. (7.1), multiplied with the mode volume (we assume that the
inversion density is constant over the mode volume), and a linear loss term g/ 7y,
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Mirror 1 I,."f \\Mirror 2
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Fig. 7.3 Resonator losses; ¢; is the fractional internal loss

where 7. is the resonator life time, i.e., the average time that a photon spends within
the resonator:

dg 1
— = N, — — ). 7.2
ar CI(UC 2 ) (7.2)

Tres

The resonator losses comprise the (intended) transmission losses of photons through
the output coupler(s) and various internal losses (Fig. 7.3). The loss factor per round
trip can be expressed as the product (1—71)(1—T3)(1—a;)?, where (1—a;) represents
the internal losses. It is convenient to introduce “distributed” loss coefficients

In(1 —T15)
= 7.3
) 7d (7.3)
In(1 — &)
= ) (7.4)
Ores © = Q1 + 02 + 4, (7.5)
so that the loss per round trip can be expressed by e™*<>? and dF/dz = —Fots,

where F is the photon flux circulating between the resonator mirrors. Since dF/F =
dg/q and dz = cds,

dF

dg
=4 "
Fdz

qgdt

= —COlres. (7.6)

loss loss

Comparison with Eq.(7.2) allows us to relate the photon life time and the loss
coefficient

Olres = ) (7.7)

CTres
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most lasers have only one output coupler (e.g., mirror 2), so that 7} = 0, and iy =
ores — o represents the output coupling coefficient

1 d
0 =— -2 . (7.8)
¢ th loss,out

With the gain coefficient y = 0N, [Eq. (6.84)], the round trip gain equals e®"2%¢
(provided that the length of the resonator is equal to the length of the amplifying
medium). To exactly compensate the round trip losses, the gain and loss coefficients

must be equal,

Ve = Ores; (7.9)
Ye = 0N, is called the critical gain coefficient and

1
Npo = 28 (7.10)

is the critical inversion density.

7.1.2 Laser Output Characteristic

We now want to study the stationary behavior of the laser as a function of the
pump rate WyN (Fig. 7.4). With increasing pump rate, the inversion increases, but as
long as N, < N, ., the resonator losses exceed the gain and the stationary solution
of Eq.(7.2) is ¢ = 0. In this operating regime, the balance between pump and

Fig. 7.4 Inversion N, and 3 , A
photon number gy X P, of a No . Poutxqo
four-level laser as a function ,
of the pump rate
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spontaneous emission provides the stationary inversion population N, = W,N1;
this applies to pump rates W, < W,, ., where

N 1

= —— (7.11)
N1, OCNTes T

Woe :

is the critical pump rate, required to reach N, .. Above the critical pump rate, the
small signal gain initially exceeds the resonator losses and the photon number,
starting from few spontaneously emitted photons, starts to grow exponentially. The
details of the transient behavior will be discussed in Sect. 7.2.2 and Sect. 7.2.4, but
it is clear that the stationary situation, which requires the balance of loss and gain
and consequently N, = N, ¢, can only be reached if the stimulated emission reduces
(saturates) the small signal inversion to the critical value N, .. The photon number
required for this saturation follows from Eq. (7.1) after the substitution of N, by N, ¢
and represents the stationary photon number gg

W,
qo(Wp) = (Wy — Wp )NV Tpeg = (WP - 1) NVW, cTres. (7.12)
p.c

This result can also be understood in the sense that every atom excited into the upper
laser level by the excess pump rate W, — W, . is de-excited by stimulated emission.
Introducing the normalized pump rate

) (7.13)

we can cast Eq. (7.12) in the form

\%
octy

g =(p-1 (7.14)

According to Eq. (7.8) the fraction goco; is transmitted through the output mirror,
and the output power Py is thus

arhoV
Pou = (p— 1) ——. (7.15)
(O %)
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With V = Ad, a; = —In(1 — T5)/2d, and In(1 — x) & —x this can also be written as

Poy = (p - I)QZISV

THAI
2 9

~(p—1) (7.16)

where Iy = hw/o 1, is the saturation intensity [Eq. (6.91)]. The appearance of the
saturation intensity in this important result can be understood in a very intuitive
way: at p = 2, the inversion in the absence of stimulated emission would be
twice the equilibrium inversion. The saturation intensity I is, by definition, the
signal intensity that reduces the inversion by a factor of 2—i.e., in our case, to the
stationary inversion. Since the atoms are exposed to two counterpropagating photon
streams of approximately equal magnitude, the intensity impinging on the output
mirror is I5/2, and the output power is T,Al/2, in agreement with Eq. (7.15).

7.1.2.1 Slope Efficiency

The stationary performance of the laser, as shown in Fig. 7.4, is characterized by
the laser threshold at W, . and a strictly linear increase of the output power with the
pump rate above the threshold. Assuming that the pump rate is proportional to the
power P, consumed by the pump source, we can set p = P, /Py, where P, is the
pump power required to reach the threshold, and obtain from Eq. (7.15)

dPoy oAV

= ~ . 7.17
n dP, omnPp. ( )
Defining the pump efficiency
WoNV,ho,
Mp = %. (7.18)
P

as the ratio between the optical power W NV, Aiw, transferred to the pump volume V,,
by absorbing pump photons of energy #w),, and the primary pump power P,, we can
use Eqs. (7.11) and (7.7) to obtain the critical pump power Pp, . = Vphwpoes /1,0 T2
and to express the slope efficiency by

w aq V

"= w_pai + o vpr’p'

(7.19)

The first factor is the so-called quantum efficiency, equal to the fraction of the pump
photon energy that is converted to signal photon energy. The second term represents
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Laser threshold
i+ (12)

@/ oy

Fig. 7.5 Output power as a function of pump power for different values of c,; both, threshold
and slope efficiency increase with the output coupling coefficient. The optimum output coupling
depends on the operating pump power employed

the ratio between useful and total losses, and the third term is the ratio between the
inverted volume of the gain medium and the mode volume.

While it is obvious that optimum laser design requires to maximize @/w, and
V/V,, and to minimize the internal losses «;, maximizing the total efficiency
requires to optimize the output coupling coefficient a; (i.e., T»): larger values of o,
increase the slope efficiency, but also push the threshold to higher values (Fig.7.5),
so that, at a given pump power, the output power may decrease or even vanish with
increasing 7>. To find the output coupling coefficient that maximizes the output
power at a given pump power, we express Poy as a function of ay, using p = yo/ e
and Y. = Qres = @ + 02

Py = (L - 1) wLV: (7.20)

o + o

dPou/ day = 0 then yields the optimum output coupling coefficient

Ooopt = /Y0 — i, (7.21)

which increases with the operating pump power (Fig. 7.6).
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Fig. 7.6 Output power as a function of the output coupling coefficient «,, for different values of
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Fig. 7.7 Atomic three-level laser

7.1.3 Three-Level Laser

In a three-level laser, the lower level of the laser transition is also the ground state
(Fig.7.7). It therefore takes a very significant pump rate to establish inversion (to
exceed absorption by the laser medium), and additional pump power to reach laser
threshold (to compensate resonator losses). The relevant rate equations are

dN, q N>

— = Wp,N; —oc(N2 —Ny) = — — 7.22
ar pN1 —oc(N, I)V - (7.22)
d 1

M _y [oc(zvz N — —] : (1.23)
dt Tres
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With AN = N, — Ny and N = N; + N, we can write

dAN N + AN
SN WV = AN) = 20cand AN
dt \%4 (%)
d 1
99 _ q |:(7cAN — :| . (7.24)
dr Tres

The factor 2 in the stimulated emission term in the first equation takes into regard
that every transition affects both, the stimulated emission as well as the absorption.
The photon rate equation, expressed in terms of the inversion remains unaltered in
comparison to the four-level system Eq. (7.10); the critical pump rate, however, is
now given by

I N+ AN,

Wye = ———<.
Pe ™ 1, N— AN,

(7.25)

The increased laser threshold is the most important difference between the two laser
schemes; the ratio of the respective threshold pump rates is

Wi AN,
w N

< 1. (7.26)

7.2  Frequency and Time Behavior of Lasers
7.2.1 Multi-Line vs. Single Line Operation

Many laser media have more than just one pair of levels that allow amplification
by stimulated emission. Ionized Argon (Art), e.g., provides a manifold of laser
transitions between sub-levels of the 4p- and 4s-states (Fig. 7.8). These transitions
allow not only laser operation at different wavelengths but also multi-line operation
under proper conditions. Multi-line operation can be avoided by introducing a
frequency dependent loss mechanism, for example, a dielectric output mirror with
high transmittance at the wavelengths that are to be suppressed. Such mirrors
increase the laser threshold for the respective wavelengths so that the oscillator does
not produce this radiation. Alternative wavelength selecting devices are dispersive
glass prisms (Fig.7.9) in the cavity, or diffraction gratings under oblique angle of
incidence acting as reflectors (Fig. 7.10). According to Eq. (4.38), a plane wave of
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Fig. 7.9 Line selection using an intracavity prism
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Fig. 7.10 Optical diffraction grating serving as frequency selective retroreflector in the resonator

wavelength A incident on a line grating is retroreflected (6, =

2 A sin 6y, = mAo,

_eoul), if

(7.27)
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where A is the grating period and m is an integer. With such a setup, the laser can
be tuned to a desired transition wavelength by adjusting 6;,.

7.2.2 Mode Selection

As we have seen in Sect. 4.3, a Fabry Perot resonator supports modes with discrete
frequencies spaced by Aw, = c¢r/d [Eq. (4.82)]. On the other hand, a laser medium
can provide gain over a certain bandwidth determined by the line shape of the
stimulated emission cross section o (w) (see Sect. 6.1.4). In principle, any mode that
experiences sufficient gain to compensate its specific losses can oscillate in such a
resonator. There is, however, the very interesting mechanism of mode competition
that may reduce the number of oscillating modes in a self-organized way. Right
after the start of the pump process, for example, several modes may experience net
gain and start to oscillate with increasing photon numbers (Fig.7.11). As described
above, the photon number increases at the expense of the inversion density (gain
saturation). In the case of a homogeneously broadened gain medium, the saturation
affects the entire gain profile to the same extent. Due to saturation, modes that are
situated off the peak of the gain profile still experience gain, but not sufficient to
compensate their losses—and perish. The modes that lie close to the gain peak keep
growing—at the expense of other modes, until the saturated gain exactly balances
the losses of a single, optimally situated mode that survives, and the laser oscillates
practically monochromatically.

(C) B (b)

Gain profile N

Net gain -

Saturated
/‘/ galn profile

L EEELLE, HHHHHHHHHH
Awy

Resonator modes

Laser spectrum Laser spectrum

| . o

Fig. 7.11 Mode competition in a homogeneously broadened gain medium: (a) transient behavior
after turn-on, (b) stationary situation
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Fig. 7.12 Mode competition in an inhomogeneously broadened laser
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The situation is quite different for inhomogeneously broadened gain media:
different modes interact—and saturate—only the sub-ensemble of the gain medium
that coincides with the mode frequency (Fig. 6.9). Each mode “burns” a spectral
hole into the gain profile by saturation, and adjacent modes do not compete for the
same gain, provided the homogeneous line width of the sub-ensemble is smaller
than the mode spacing (Fig. 7.12).

The statement about the self-organized single mode operation of homogeneously
broadened lasers requires some qualification: as we have seen in Sect.4.3, a
given resonator mode forms a standing wave (Fig.4.15) with a photon density
o cos?[z(w/c)]. In the nodes of this distribution, little or no inversion is consumed,
and saturation occurs only in the volume between the nodes (spatial hole burning).
Since each mode m has a different axial pattern, it can exploit the gain left
over by other modes, making multimode operation possible despite spectral mode
competition. Spatial hole burning can be avoided by using ring-shaped (triangular)
resonators that include a Faraday isolator (Sect. 2.4.2.1), so that only one mode can
propagate and the counterpropagating mode is suppressed.

Independent of the nature of gain broadening, single frequency operation can be
obtained by introducing a Fabry—Perot interferometer (etalon, Sect.4.2.3) into the
resonator that transmits the mode frequency of interest and has a free spectral range
that is larger than the gain bandwidth (Fig. 7.13).

Spherical mirror resonators support not only different axial, but also transverse
modes (Sect.4.3.1). Many applications require transverse single mode operation,
i.e., a Gaussian (TEMgy) mode. Since the transverse mode diameter grows with the
mode order, higher order modes can be suppressed by inserting circular apertures
into the resonator, with a diameter that matches the TEMy mode (spatial filtering).
Like all other mode selection processes mentioned, the principle of operation is not
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HR-mirror < . Output mirror
A Laser medium g

Etalon

Fig. 7.13 Single mode operation by implementation of an etalon into the resonator; the oscillating
mode can be selected by tilting the etalon [see Eq. (4.73)]

to attenuate an oscillating mode, but to prevent it from oscillation by increasing the
specific loss above the available gain.

7.2.3 LaserLine Width

Because of the coherent nature of the stimulated emission process, one might
assume laser radiation to be completely monochromatic under stationary (single
mode) conditions [see the discussion following Eq.(4.80)]; perfect coherence,
however, is disturbed by photons emitted spontaneously into the laser mode. The
resulting photon number deviation is quickly attenuated by a process described in
Sect.7.2.4, broadening the laser line only very slightly. By contrast, there is no
mechanism pinning the phase of the laser field to certain value, so that the stochastic
phase of the spontaneous photons results in a random walk of the phase of the laser
field, reducing the coherence time and imposing a fundamental lower limit on the
bandwidth of the laser spectrum. This so-called Schawlow—Townes limit (see, e.g.,
Yariv and Yeh 2006)

ho(Aws)?
Ao, = @A) (7.28)
P()u[

depends on the bandwidth of the resonator modes Aw;es, [Eq. (4.84)] and is inversely
proportional to the output power. The inverse dependence of the Schawlow—Townes
limit on the laser power reflects the fact that the spontaneous emission rate of a
given laser is constant (because N, is constant), while the total number of photons
is proportional to the output power. For a typical Helium—Neon Laser, Py, = 1 mW
and Aw, = 108 57!, the Schawlow—Townes limit amounts to about 1 Hz. The actual
bandwidth of lasers is usually larger by several orders of magnitude and results from
technical noise contributions.

7.2.4 Relaxation Oscillations and Gain Modulation

We now want to study the transient behavior of a laser in some detail, i.e., the
temporal variation of the photon number following a deviation from the stationary
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equilibrium. Using Eq. (7.10), (7.2) can be cast in the form

ﬂ_i(NZ _1), (7.29)

dr - Tres

A positive excursion of the inversion from the equilibrium value N, ., for example,
entails a growth dg/dr > 0 of the photon number, which in turn reduces the
inversion by increased stimulated emission, so that dNV,/dt < 0. The inversion
actually drops below the critical value N,., which implies dg/dr < 0 and
consequently dN,/ dr> 0. This regulatory cycle is repeated, resulting in (damped)
relaxation oscillations until the equilibrium is established (Figs. 7.14 and 7.15).
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For a simplified analysis, we start with rate equations (7.1) and (7.2), neglecting
pump depletion (N, = N) and assuming a constant pump rate W, o; N'(r) and ¢’ (1)
are the deviations (assumed to be small) from the equilibrium values

No(t) = Nae + N'(1) (7.30)
q(1) = qo + 4 (1). (7.31)

Later, we will also assume a time dependent pump rate
W, = Wyo + W];(t). (7.32)

Substitution of Eq. (7.31) into Egs. (7.1) and (7.2) yields

dN/=W,N_E(q/N2 +N/q0)_ﬁ/
dt P 1% “ (%)
q _ /
E = O'Cg()N s (733)

where quadratic terms such as N'g’ have been neglected. From the second equation
follows

dq 1
N="4_ " (7.34)
dr ocqo
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which allows us, using Eqs. (7.10) and (7.14), to write the first equation as

¢ p dq’+p—1
dr? 7, dt Tres T2

—1
g = W HNVE—. (7.35)
T2

For Wl’) = 0, this is the equation of a damped linear oscillator, which can be solved
using the ansatz ¢’ o e*, where s is a complex number; substitution in Eq.(7.35)

yields s = —(1/11) £ jww With the relaxation frequency we and the decay time
Trel
2 2
[p—1 )4 | 1
Wre] = - (_) = a)g — (—) (7.36)
Tres T2 21 Trel
5 —1
wy = , (7.37)
TresT2
2
Tt = 2. (7.38)
p

Both, the relaxation oscillations and the damping get faster with increasing pump
rate p. Of the two characteristic time constants 7, and 7.5 of the system, the upper
state life time 7, determines the decay time, while the geometric mean value /T Tres
determines the relaxation oscillation period.

7.2.4.1 Gain Modulation

An important way to modulate the output power of a laser is to control the
gain via the pump rate. To get some insight into this process, we assume a
harmonic modulation Wl/) = Wl/) cos wt of the pump, superimposed on a constant
background W}, o. The photon number will then also oscillate around the stationary
value gy with the modulation frequency w and the amplitude ¢’(w). We can solve
Eq. (7.35) in the same way as Eq. (2.51) and obtain

4| _ @ _ %
Q(/) |w§ —w? + 2ja)/'frel| |(wrel —w + j/frel) (wrel +w _j/frel)l ’
(7.39)
where
q6 = NTpes VWI/’ (7.40)
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is the modulation amplitude at very low modulation frequency, which follows
from Eq. (7.35) for d/dr — 0. Figure 7.16 shows the frequency response |q’/qp|:
there is a significant resonance enhancement at w; above the resonance, the
response rolls off quickly (40 dB/decade). Well below the resonance, the response is
independent on the modulation frequency. For a given laser, the resonance frequency
increases with the pump ratio p, but more importantly it is determined by /75 Tres.
Semiconductor lasers, with their very short resonator length and high coupling
losses [see Eq. (7.7)] have resonator life times of picoseconds and allows for gain
modulation up to several 10 GHz.

7.3 Pulsed Lasers

Lasers can also be operated in a pulsed mode; the pulse duration is limited by
the gain bandwidth of the laser medium and can be as short as one oscillation
cycle of the radiation in principle. At a given average optical power Py, a laser
emitting pulses of duration 7, at a repetition rate of R, produces a peak power of
Pave/ (ReepTp); the optical peak power of a table-top laser with a few Watt average
power, a pulse duration of some 10 fs and a repetition rate of 100s™!, for example,
is in the 10'2-W range. The high peak output power is one of the reasons for the
development of pulsed lasers, another being the very high temporal resolution, if
the laser light is used to take snapshots of processes.

A direct way to produce pulses is gain switching, i.e., the rapid switching of the
pump source. Semiconductor lasers are well suited for this, since they are pumped
directly by electric current. Figure 7.17 shows the output of such a laser.

The full potential of lasers to produce pulses, however, is exploited by two
techniques: Q-switching and mode locking. Q-switching takes advantage of the
energy storage capability of a laser medium and is used to generate nanosecond
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pulses at low repetition rate but with high energy, while mode locking refers to the
production of trains of pulses that are potentially as short as allowed by the gain
bandwidth, separated by the resonator round trip time; this requires control over the
phase of the frequency components that build up the pulse. In the following, we will
briefly discuss both techniques.

7.3.1 Q-Switching

The idea of Q-switching is to pump a laser, usually with a pulsed pump source
of moderate power, to a level N,; of inversion that is several times higher than
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the critical inversion N, .; during the pump process, laser emission is inhibited by
introducing an additional internal loss into the cavity. Once the target inversion
is reached, the additional resonator loss is removed, leaving the resonator with
a gain that exceeds the losses by far. Because of the excess gain, the photon
number increases avalanche-like within a few resonator round trips and most of
the energy stored in the gain medium is converted into laser light (Fig.7.18). When
the inversion is consumed to below N, ., the photon number drops to zero within
few round trips. The left over, residual inversion is not exploited and decays by
spontaneous emission.

The process of loss- or Q-switching can be induced by external control (active
Q-switching), usually with an electro-optic switch (Pockels cell, Sect.2.3.4), or
by introducing a saturable absorber (Sect.6.1.5) into the cavity; in this passive
Q-switching scheme, the laser starts to oscillate when the gain is high enough
to compensate the total losses, and bleaches the saturable absorber by absorption
saturation (Degnan 1995). Passive Q-switching is less efficient than active Q-
switching, but its implementation is extremely simple and reliable.

In a Q-switched laser, energy is accumulated in the gain medium over a relatively
long time and released in form of a pulse that is many orders of magnitude shorter
than the pumping time. Consequently, only gain materials with long upper state
life time are suitable as Q-switched lasers. Assuming a step like onset of the pump
process, the inversion, according to Eq. (7.1), is building up as

No(Wy, 1) = NW,ra(1 —e™"/™2), (7.41)
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as long as ¢ = 0. While the maximum inversion obtainable at a given pump rate
is NW, 12, the pumping gets less and less efficient with time: in practice, the pump
duration is limited to ~2t,, when x~86 % of the maximum inversion is reached.
With its relatively long 7, of 230 s, neodymium doped yttrium-aluminum-garnet
(Nd:YAG) is a popular gain medium for such lasers. In a typical pump volume V,
of a few cm® and a Nd-concentration of some 107 (i.e., 1 out of 10* yttrium ions is
replaced by a neodymium ion, equivalent to a Nd ion density of 1.38 x 10'8 cm™),
an energy storage of VoN,ihw of 1] can be realized; assuming a pulse duration of
some ns (several round trips), this corresponds to an optical peak power of several
100 mW.

For an analysis of (active) Q-switching (Wagner and Lengyel 1963), we assume
a four-level system that has been pumped to the initial value N, ;; the duration of
the emitted pulse is assumed to be so short that pumping as well as spontaneous
emission during the pulse can be neglected; we also assume a perfect overlap
between gain and mode volume. Using Eq. (7.10), rate equations (7.1) and (7.2)
can be written as

d
?f =qocNs e (Na/Nae — 1) (7.42)
sz q
ZZ—_oeN, L. 7.43
dr ey Ve ( )

We eliminate ¢ by dividing the first equation by the second,
dg = Vs (1 = N2 /N>) dN, (7.44)
and integrate from the initial inversion N, ; to some arbitrary value N,
q(N2) = Vg [N2j — No — No o In(N2/N>)] . (7.45)

The residual inversion N ¢ is defined by ¢(N, r) = 0 and given by the (transcendent)
equation

Noi —Nog = Noo In(N2i/Nog). (7.46)

The optical extraction efficiency is the ratio of the exploited to initial inversion,

e = Noi = Nog _ InWN2i/Nay) |
K Naj (N2i/Nae)

(7.47)

Figure 7.19 shows this parameter as a function of N, ;/N;; for N, /N> > 3, the
efficiency exceeds 90 %.
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Since g is growing as long as N, > N, ¢, Eq. (7.45) also allows us to estimate the
peak photon number gpax

Ny Ny
gmax = Q(NZ,C) = VgNZ,c I:(]v2 ) —1—1In (qu ):| o (7.48)

For N, i/N, . > 1 we obtain
Gmax = VgNZ,i; (749)

in this regime, practically the entire inversion is converted to photons, and the
process happens so quickly that most of the photons have not yet left the resonator
when the inversion is consumed (Fig. 7.19).

In a typical Q-switched laser, the coupling losses dominate the total losses, so
that

Poul,max ~ thmax/Tres‘ (750)

The energy balance tpPoumax & Vo(N2i — N2 p)hw allows an estimate of the pulse
duration 7,

n (32)
[(%) —1—1In (11\%)] Tres-

The dependence of 7, on the excess inversion N, ;/N, ¢ is also shown in Fig. 7.19:
for large values of N, jN; ¢, the residual inversion is very small and the pulse decays

T, = (7.51)



318 7 Optical Oscillators

after reaching its peak with the decay time t,.; the leading slope of the pulse grows
with a rate that is (N,;/Noc — 1) times faster [see Eq.(7.42)]. For small excess
inversion, N,;/N,. < 2, the growth is slower, and the decay also takes longer
because of the relatively large residual gain.

Q-switching allows producing “giant” pulses of nanosecond duration. The
repetition rate of these pulses is limited by the long-lasting pumping process to
typically less than several thousand pulse per second. Thermal limitations may
further reduce the repetition rate drastically. The pulse duration is dominated by the
resonator life time and usually much longer than the gain bandwidth would allow.

7.3.2 Mode Locking

According to Eq. (3.148), the relative gain bandwidth Aw/wy required to support a
pulse duration of t, is essentially given by the ratio 7/ z,, where T is the oscillation
period of the laser radiation. To obtain the shortest possible pulses from a given
gain medium, as many resonator modes as possible must oscillate. According
to Eq.(4.82), the frequency spacing between adjacent modes is Aw, = nc/d;
assuming that the gain medium supports a total number of 2N + 1 modes (implying
a gain bandwidth of Aw, = (2N + 1) Awy), the electric field of the superimposed
modes is

N
E@) = ) Egnelleotraeditél (1.52)
n=—N

where Ej,e/% is the complex amplitude of the nth mode and w, denotes the
frequency of the central mode (the phase ¢, is somewhat arbitrary because it
depends on the choice of the time zero point—the transformation 7 := t—t changes
the phase to ¢, = ¢, + (wo + nAw,)7).

As the phase difference between the modes varies with time, the fields of the
individual modes interfere with each other in a time varying fashion and E(f)
fluctuates in a quasi-random, yet periodic pattern (note that E(t + tp) = E(1),
where tep = 2m/Aw; = 2d/c). Figure 7.20a shows the output power of such
a superposition of modes. If (and only if) there exists a point in time where all
modes are in phase (which is unlikely if the modes oscillate independently), the total
field reaches the maximum possible value of ZL_N Ey, (Fig.7.20b); any process
that establishes such a phase correlation is called “mode locking.” In the following
discussion, we choose the time axis such that the peak appears at + = 0 (and at any
integer multiple of fp).
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Fig. 7.20 Amplitude and phase distribution as well as output power of a typical multimode laser:
(a) uncorrelated mode phases, (b) mode locked operation; note the different power scales

If we assume, for the sake of simplicity, equal amplitudes Ey,, = Ey, the peak
field is E(0) = (2N + 1)E,. Under mode locked conditions, the phases of all modes
att = 0 are equal, ¢, = ¢o. The total field then is

N
E(f) = Eyel@+90) Z ghndert, (7.53)
n=—N

The first exponential factor is the carrier oscillation, the second factor constitutes
the periodic envelope

1 — lCN+D Ao sin[(2N + 1) Aw,t/2]

N
ejnAw,r e —jNAw,t — : 754
n;N | —odor © sin(Aant/2) (7.54)

the resulting intensity is shown in Fig. 7.21.

Note that the field energy contained in one fluctuation period is—independent of
the phase distribution—given by the sum of the individual mode energies o< (2N +
1)E2tep. Consequently, a mode locked pulse with the peak power o [(2N + 1)Eo)?
can only last for a duration of fe, /(2N + 1) = 27/ Aw,, so that we can estimate the
pulse duration as

~ tep
Tp

N —; 7.55
2N +1 ( )
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Fig. 7.21 Superposition of 2N + 1 phase locked modes of equal amplitude; J; is the intensity of
one of the modes, (2N + 1)l is the averaged total intensity of all modes

for the remainder of the fluctuation cycle, the field must more or less vanish for
reasons of energy conservation. This estimate is confirmed by Eq.(7.54), as the
time between the two minima next to the peak is equal to 2,/ (2N + 1).

7.3.2.1 Active Mode Locking

Mode locking can be achieved extrinsically (active mode locking) or intrinsically
by self-organization (passive mode locking). Active mode locking relies on the
modulation of resonator gain or loss with a frequency £2,, equal to the mode
spacing. As a result of the net gain modulation, the amplitudes of the modes are
also modulated; for the field of the nth mode we can write

(Eo + AEjcos 21! = Egel®’ + AE @ Tl AR el (7 56)

where Ej is the mode amplitude without modulation and AE; is a measure of
the modulation depth; as one can see, amplitude modulation is equivalent to the
formation of phase locked side bands at w, &+ £2,,,. If the modulation frequency is
tuned to the mode spacing 2, = Aw;, each mode produces a “cross talk” into the
two adjacent resonator modes. Starting from the central mode, the side bands “seed”
the oscillation of the adjacent modes and finally all 2N + 1 oscillate such that they
are all in phase at r = 0 and any further multiple of #.p.

Technically, loss modulation can be implemented using an acousto-optic modula-
tor (Sect. 8.5) consisting of a transparent medium and an ultrasonic transducer that
produces a standing acoustic wave between two parallel surfaces of the medium.
The acoustic wave produces a spatial modulation of the refractive index, forming
a diffraction grating. When positioned inside the laser resonator, the laser modes
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experience losses due to diffraction. As the standing wave actually vanishes twice
per acoustic cycle [Eq.(8.237)], the diffraction losses are modulated at twice the
acoustic frequency.

Semiconductor lasers can be directly gain modulated through the supply current.
To increase the number of modes within the gain bandwidth (which, due to the
short cavity length is very small), external resonators with appropriate length are
often used.

7.3.2.2 Passive Mode Locking

Most mode locked lasers are modulated intrinsically, exploiting saturation or other
intensity dependent effects (Haus et al. 2000; Ippen et al. 1972; Spence et al. 1991).
As we have seen above [Eq.(7.53)], multimode operation inevitably produces
periodic fluctuations of the laser power. In the time domain, mode locking is
established if the fluctuation consists of essentially one dominating peak per round
trip, with small or ideally no fluctuations in between. This state can be reached
in a self-organized way if the round trip net gain is intensity dependent in such a
way that it increases with intensity and is less than 1 for low intensities. Starting
from random, periodic fluctuations, the fluctuation peak is amplified preferentially,
and after a number of round trips develops into an isolated pulse that contains
most of the available energy, while the small fluctuations are attenuated and finally
extinguished. The “surviving” pulse tends to be further shortened by the same
process, since the low intensity wings of the pulse are also suppressed.

Such an intensity dependent net gain can be realized by inserting a saturable
absorber into the resonator. According to Eq.(6.82), low intensities experience
higher losses, while intensity peaks bleach the absorber and reduce the loss.
Consequently, peak fluctuations experience higher net gain at the expense of low
intensity fluctuations.

Saturable absorbers need a certain time to recover from saturation, because the
excited atoms need time (upper level life time 17) to return to the ground state. If
this time is longer than the pulse duration (slow saturable absorber), only the leading
edge of the pulse is shaped by the absorber (Fig. 6.13). The trailing edge of a pulse
can be shaped by the saturation of the gain, however (Fig. 6.12): a peak fluctuation
consumes a large fraction of the inversion, leaving only little gain for the trailing part
of the pulse. The interplay of (slow) saturable absorber and (slow) saturable gain is
capable of generating bandwidth limited laser pulses, provided that the recovery
time is shorter than the pulse repetition time 7., (Fig.7.22).

In Sect. 6.2.3, we have discussed saturation effects of short pulses. The critical
parameter of an absorber or amplifier is the saturation energy fluence Eq. (6.102).
For a mode locked laser to work properly, the pulse energy fluence must approxi-
mately match the saturation fluence, which can be achieved by designing the waist
diameter of the laser mode by proper choice of the curvature of the resonator
mirrors.

A very efficient, and virtually instantaneous intensity dependent loss mechanism
relies on the nonlinear optical Kerr lens whose refractive power is proportional to
the momentary incident power [Eq. (3.53)]. The combination of such a lens with
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Fig. 7.23 Kerr lens mode locking: (a) at low power, self-focusing is negligible, resulting in high
losses at the aperture; (b) Kerr lensing induced by high power reduces the losses at the aperture

a circular aperture (Fig.7.23) introduces low losses at high power, because the
focussed mode is transmitted through the aperture, while at low power, most of the
(unfocussed) mode is clipped. This process shapes both, the leading and the trailing
edge of the pulse. Pulses as short as few femtoseconds can be produced in this way.

7.3.3 Carrier Envelope Phase, CEP

To achieve the shortest and highest pulse possible, all modes must have the same
phase at a certain instance of time; since the intensity is proportional to EE*, the
actual value of this common phase has no influence on the pulse shape, as an
inspection of Eq.(7.53) shows. As can be seen from this equation, however, the
common phase ¢y is equivalent to a time shift between the pulse envelope and the
carrier oscillation and is therefore called carrier envelope phase (CPE). If ¢y = O,
for example, the peak of the envelope coincides with a crest of the carrier oscillation
(the physical field is the real part of its complex representation); ¢o = /2 implies
that the field actually vanishes at the peak of the envelope. Figure 7.24 shows two
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Fig. 7.24 Two ultrashort pulses with different carrier envelope phase: cosine-pulse (left), sine-
pulse (right)

pulses with identical Gaussian envelope, but different CEP. For obvious reasons,
pulses with ¢y = 0 or /2 are called cosine- or sine-pulses, respectively. During
propagation in a dispersive medium, the CEP changes continuously because the
velocity of the envelope (the group velocity) usually differs from the phase velocity
of the carrier.

The carrier envelope phase plays an important role in the nonlinear optics of few-
cycle pulses, such as tunnel ionization or harmonic generation, because these effects
depend on the electric field, in contrast to saturation effects or the Kerr effect that
depend on the intensity (envelope).

Because of their insensitivity to the CEP, the mode locking mechanisms
described above cannot control or stabilize the carrier envelope phase. Pulses
from such mode locked lasers therefore have an unknown, and usually time varying
CEP. CEP-stabilization is possible employing field dependent nonlinear optical
processes, however.

7.4 Atomic and Molecular Lasers

Because of the many requirements on a practical gain medium, the variety of
commercially important laser materials is rather limited (see Table 7.1). Table 7.2
summarizes performance data of some of the most popular lasers; the output
parameters (average power, peak power, pulsed operation, etc.) are essentially
determined by the gain medium. In particular, the resonant nature of the stimulated
emission process implies that lasers are usually not tunable over a wide range of
frequencies. Among the exceptions are the Ti:sapphire laser (tunable between 700
and 1100nm), organic molecular lasers (so-called dye lasers), and, to a certain
degree, semiconductor lasers.
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Table 7.1 Properties of popular laser materials: Aw, and AA, denote the gain bandwidth; values
of yp refer to typical operating conditions; Rh6G is the organic dye rhodamine 6G in a methanol
solution; data adapted from Bass (2010)

A o T Aw, Adg Yo
Medium [nm] [cm?] [s] [s71] [nm] [cm™!]
Ruby (Cr:sapphire) | 694 2x1072°  |3x1073  |4x10'" 0.1 0.1
Nd:YAG 1064 7x1071  |2x107* | 7x10'' |04 0.1
Nd:glass 1050-1080 |5x10720 [3x10™* |2x10" |12 0.03
Er:glass 1550 6x10721  |1x1072 |3x10 |30 0.03
Ti:sapphire 700-1100 4x1071  |3x107% | 9x10™ 400 0.2
HeNe 632.8 31071 [3x1077 |1x10'0 |2x1073 | 0.002
Art 488 510712 [1x107% | 1x10' |1x107% |0.005
HeCd 441.6 8x10714  |7x1077 | 1x10° |1x10~% |0.003
Cu-vapor 510.5 8x1071%  |5x1077 |1x10' [1x10™3* |0.05
CO, 10600 2x 10716 4x108 0.008
Excimer (ArF) 193 3x1071%  9x10™° | 6x108 |15 0.03
Rh6G 550-610 I1x10716  |5x10™° |3x10" |50 2.8
AlGaAs 720-850 I1x1075  |1x107° |6x10'3 |20 10°
InGaAsP 1000-1650 | 1x10™" |[1x107° 20 10°
InGaN 380-515 1x107%  |1x107° 10 10°

Table 7.2 Important types of lasers: cw/continuous wave, p/pulsed, P, average power, P, peak
power, 7, pulse duration, 7, overall efficiency, FL/flashlamp, GD/gas discharge, LINAC/linear
accelerator; the free electron laser (FEL), is included in the Table for comparison, although it is
not a laser in the proper sense

A P, avg P, p Tp m
Laser [nm] [W] [W] |I[ns] (%) Pump
Ruby 694 P 1 107 |10 FL
Nd:YAG 1064 cwW 10-200 0.5 FL
Nd:YAG p 10 107 | 10-1000 1-3 FL
Ti:sapphire | 700-1100 cw 1-10 Laser
HeNe 632.8 cw 1073 0.05 GD
Art 488 cW 10-100 0.05 GD
HeCd 441.6 cW 107! 0.1 GD
Cu-vapor 510.5 P 40 10° |20 1-2 GD
CO, 10 600 cwW 104 1020 |GD
Excimer 198 p 500 107 |10 1 GD
Rh6G 550-610 cW 10 0.05 Laser
Rh6G P 1 10° | 10-1000 Laser
AlGaAs 720-850 cw/p | 0.001-1 40 DC
InGaAsP 1000-1650 cw/p | 0.001-0.1 40 DC
InGaN 350, 405, 470, 515 |cw/p |0.001-1 40 DC
FEL 1-10° P 10° | 103-1073 LINAC
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Fig. 7.25 Emission spectra
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7.4.1 Atomic Solid State Lasers

Isolated atoms and ions constitute an important class of laser materials. Atomic
gases (e.g., noble gases or metal vapors) are pumped electrically by gas discharge;
alternatively, atoms are built into transparent solid host materials such as glass or
various crystals, and pumped optically. These laser are called solid state lasers, in
distinction from semiconductor lasers.

The historically important ruby laser, for example, is a solid state laser that relies
on Cr’**-ions in a sapphire (Al,03) host. One of the most popular solid state laser
materials is neodymium doped yttrium-aluminum-garnet (Y3Al;0;,), abbreviated
as Nd:YAG; YAG is also an excellent host for other rare earth ions (ytterbium,
erbium, and holmium) because of its outstanding thermal and mechanical properties.
As already mentioned, Nd: YAG is an important gain medium for Q-switched lasers
due to its long upper state life time. The gain bandwidth of Nd:YAG is relatively
small (Fig.7.25) and does not support mode locked generation of pulses shorter
than 100 ps. Nd:glass, however, with its significant inhomogeneous line broadening,
allows the generation of pulse durations below 400 fs. Nd:glass can be produced in
large slabs and is therefore used for very high energy lasers, such as used in nuclear
fusion experiments. The glass matrix also allows the production of high quality
optical fibers, providing the gain medium for fiber lasers.

Another rare earth-based gain material of outstanding importance is erbium
doped glass which exhibits broadband gain at around 1.55 pm wavelength, where
silica fibers exhibit minimum losses. The relevant laser transition occurs between
the 4113/2 and the 4115/2 state of the Er*T ion (Fig.7.26). Erbium doped fiber
amplifiers (EDFAs, Sect. 5.3.5) constitute the backbone of long distance fiber optical
networks (Desurvire 2001). Pumping is achieved with semiconductor lasers at 980
and 1480 nm. Due to the interaction of the ions with the local field of the glass host,
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Fig. 7.26 Laser transitions of Er:glass at 1550 nm between sub-levels of the excited i3 /2 and
the *I;5 /2 ground state; the occupation of the levels follows Boltzmann statistics (shown for two
different temperatures)
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Fig. 7.27 Fully integrated fiber laser. The gain medium is a rare earth doped glass fiber (EDF), the
mirrors are fiber Bragg gratings (FBGs) as described in Sect. 5.3.3; the pump light is supplied by a
laser diode (LD) with a fiber-output (“pig tail”), coupled to the resonator by a dichroic waveguide
coupler (WSC)

the gain bandwidth is substantial (>50nm). At room temperature, all sub-levels of
the *I;5 /2 ground state are populated so that the EDFA is effectively a three-level
system requiring a significant pump power to exhibit gain (Fig. 5.35).

Rare earth doped fiber amplifiers are also used to build fiber lasers (Fig.7.27).
Fiber lasers are very compact and stable, have a very high efficiency and can deliver
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TEMg output beams. Because of their large gain bandwidth, they allow mode
locked operation and can serve as tunable sources. Equipped with narrow band fiber
gratings as mirrors, they can operate in single longitudinal mode, with a linewidth of
1kHz or less. In comparison to bulk lasers, fiber lasers can be cooled very efficiently
and do not suffer from various thermo-optical problems so that they are also well
suited for high power continuous wave (cw) operation, delivering output powers of
several 100 W. One of the limitations of fiber lasers results from the small mode
cross section leading to very high intensities that can damage the output facet of the
fiber. Q-switched operation of fiber lasers is possible, but self-focusing and optical
damage limit the pulse energy to mJ.

Transition metal ions such as Cr>* and Ti** in crystalline hosts (Al,O3) show
broad bands of levels resulting from vibrations of the ions in the host material
(Fig.7.28). Ti-sapphire with an emission band between 680 and 1070nm is a
prominent gain material for tunable as well as ultrashort pulse lasers. Ti-sapphire
can be pumped by frequency doubled Nd: YAG lasers.

Organic molecules, usually in a liquid host material, also show broad bands of
vibrational and rotational levels; their transition wavelength can be customized over
a broad range by chemical synthesis (Fig.7.29).

Pumping of solid state and liquid lasers is provided by flashlamps (Fig. 7.30),
especially if operated in the Q-switched mode (Sect.7.3.1), or by other lasers. For
cw-operation of solid state lasers, semiconductor laser pumping is advantageous
over flashlamp pumping: not only is the efficiency of semiconductor lasers among
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Fig. 7.29 Energy levels of an organic dye-molecule in a liquid solvent; for each electronic
state, there is a range of vibrational and rotational sub-levels that form quasi-continuous bands.
Absorption happens between the lowest levels of the Sy state to upper levels of the S; state;
emission takes place between the lowest levels of the S; state to upper levels of the Sy state and is
therefore red-shifted in comparison to absorption. Dye molecules thus act as four-level gain media

Reflecting pump cavity

Flash lamps

Laser rod

Fig. 7.30 Flash lamp pumped laser amplifier; the flashlamp is positioned parallel to the rod-like
laser medium, and surrounded by a cylindrical reflecting cavity that optimizes the energy transfer
and the homogeneity of the inversion density. Cooling is provided by water flowing through the
cavity

the highest of all electric light sources, the wavelength of the pump source can
also be precisely matched to the absorption band of the respective laser medium
(Fig.7.31).

7.4.2 GaslLasers

Gaseous gain media can be pumped by electric discharge (Fig.7.32). Important
examples are Argon, Helium—Neon, CO,, and mixtures of noble gases with
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Fig. 7.31 Emission spectrum of a flash lamp, and absorption spectrum of Nd:glass; the poor
spectral overlap is responsible for low pump efficiency
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Fig. 7.32 Schematic of a gas laser: the windows of the discharge tube are mounted under
Brewster’s angle to avoid reflections; HR is a high reflection mirror, the second mirror serves
as coupling mirror

halogens (excimers). Helium—Neon lasers emit at various wavelengths in the
IR (1.15 and 3.39 um) and in the visible at 632.8 and 543 nm (Fig.7.33). The
amplifying atom is Neon, Helium serves as intermediate medium that is excited
into a long living 2S state by electron impact and transfers the energy resonantly to
the Ne atoms. The return of the Ne atoms from the lower laser level to the ground
state requires collisions with the walls of the discharge tube, limiting the diameter
of the tube and consequently the output power. Argon-ion lasers can deliver several
10W of cw radiation with excellent beam quality; argon atoms are ionized in a
first step and then excited by a second electron impact. Because of this two step
excitation, high current densities (kAcm™2) are required. Argon-ion lasers emit in
the visible, at 488 nm and 514 nm. The high temperature of the Argon-ion plasma
(3000K) is responsible for a considerable Doppler broadening that allows mode
locked operation with a pulse duration of ~150 ps. With the exception of the CO,
laser (which emits at 10.6 jum and can deliver 100kW of optical radiation), gas
lasers suffer from very low overall efficiency and are replaced by solid state or
semiconductor lasers wherever possible.

Excimer lasers (see, e.g., Basting and Marowsky 2005) rely on electronic
transitions in two-atomic molecules (dimers) formed by an excited noble gas atom
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Fig. 7.34 Energy levels of an excimer; since the ground state is repulsive, there is practically no

absorption at the emission wavelength

(argon, krypton, or xenon) and a halogen atom (fluorine or chlorine); the excitation
of the noble gas is reached by electron impact in a discharge tube. After radiative
transition to the ground state, the two constituents are driven apart by the repulsive
potential of the noble gas atom (Fig.7.34), so that the “ground state” is always
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unoccupied. Excimer lasers are important because of their emission wavelength in
the UV (XeF 351 nm, XeCl 309 nm, KrF 248 nm, ArF 193 nm).

7.5 Semiconductor Lasers

Semiconductor laser amplifiers exhibit very large gain coefficients because of the
high density of contributing electrons; they can be pumped directly by electron
injection at the junction between differently doped semiconductors (pn-junction,
Fig.7.35). When such a laser diode is biased in the forward direction, electrons
from the n-doped region are injected into the interfacial zone where they co-exist
with holes injected from the p-region until they recombine via spontaneous or
stimulated transitions. To reach amplification, the forward voltage must exceed the
band gap, because the bias voltage determines the offset between the Fermi levels
in the two sections of the diode. The resulting gain coefficient y is large enough for
an amplifier of about 100 wm length to support laser operation. The laser resonator
is usually constituted by the two end facets of the semiconductor crystal (Fig. 7.36);
due to the large refractive index (GaAs: ~3.5) the reflectance is relatively large
R = [(n — 1)/(n + 1)]> ~ 0.31, and low power semiconductor lasers are often
operated without additional reflective coating.
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Fig. 7.35 Junction between degenerate p- and n-semiconductors: (a) without bias, (b) with
forward bias voltage Uy
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Fig. 7.36 Schematic of a semiconductor laser diode; the end facets serve as mirrors



332 7 Optical Oscillators

The region of the diode that provides optical gain is called active zone; its volume
is given by the product of the pn-interfacial area A and the thickness d, of the active
zone, which in the case of a simple pn-junction is equal to the diffusion length of
the carriers (several um). To establish a relation between the forward current of the
diode and the carrier density #n. in the active zone, we assume an injection current
density of j; the number of carriers transported per unit time into the zone then is
equal to n;jA/e where the internal quantum efficiency 7; is defined as the fraction
of injected electrons that actually reach the active zone (the others being lost by
recombination). The recombination rate inside the active zone is n.Ad,/ Trec, SO that
in equilibrium

d
j= et (1.57)
NiTrec

note that the current density required to obtain a certain carrier density is propor-
tional to d,. To reach a typical transparency carrier density of 1.5 x 108 cm™3,
for example, a current density of 48 kAcm™2 is needed if one assumes n = 0.5,
a recombination time of 2ns and a thickness d, = 2um. Further assuming an
interface area A of 200x10 wm?, this corresponds to a relatively high forward current
of 1 A.

According to Egs. (6.136) and (7.57), the gain of a semiconductor amplifier of
length d is e*00/is=D4 where ji, = enyd,/1iTrec is the current density corresponding
to the transparency carrier density ny. If we assume mirror reflectivities Ry and R,
and express internal losses (due to free carrier absorption, absorption in regions
adjacent to the active zone, and scattering at inhomogeneities) by the internal loss
coefficient ¢;, the threshold condition is

Rlee[ao(/c/jlr_l)_U‘i]zd =1, (7.58)
or
Je InR; InR,
L )= _ "= | 7.59
% ( i ) 2d 2 TO 7%

where the threshold current density j. (also called critical current density) is

) . 2doy + 2do; —InRy — InR;
Je = Ju
2d0£0

) (7.60)

and the threshold current is

Je = joA. (7.61)
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Since the critical carrier density is also the stationary operating carrier density, a
current J exceeding the threshold current injects 7;(J — J..) /e carriers into the active
zone that are deexcited by stimulated emission so as to conserve the stationary
carrier density. The optical power internally generated is thus

J—J:
Py = n;

ho, (7.62)
e

of which, according to Eq. (7.59), the fraction

—lan

= 7.63
ZdO{i - ln(Rle) ( )

m

is coupled out of the laser. The optical output power is therefore a linear function of
the driving current

J—J
Poy = nmniuhw, (7.64)
e

as shown in Fig. 7.37.
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The electric input power of the diode is P, = JUy, where Uy is the forward
voltage. The differential efficiency n, = dPou/ dPp is therefore

hw
N1 = MmN A NmTi- (7.65)

eUs

The approximation is reasonable since eUys is equal to the difference of the quasi-
Fermi levels and usually not much bigger than Aw. The product 1, 7; is the external
quantum efficiency; typical values for commercial semiconductor lasers are 50 %;
far above the threshold, the total efficiency approaches the differential efficiency.

7.5.1 Heterostructure Lasers

Since the fraction UsJ, of the input power does not contribute to the output power,
it is important to keep the threshold current low. One way to achieve this goal is to
reduce the thickness d, of the active zone by embedding the active zone between
layers of higher band gap that provide barriers against carrier diffusion (Fig. 7.38).
Because of the existence of two interfaces between different materials, such a struc-
ture is called double heterostructure; it is produced by epitaxial growth (molecular

(a)

(b)

p_AIO.3GaO.7AS n—A|0,3Ga0_7As

Fig. 7.38 Band diagram (a) and refractive index (b) of a double heterostructure laser diode
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Fig. 7.39 Band gap and lattice constants of important III-V-compound semiconductors; com-
pounds on horizontal lines are lattice matched; dashed lines indicate indirect band gaps, not
suitable for laser operation

beam epitaxy) and requires matching lattice constants of the materials. Popular
materials are various compositions of III-V-compounds such as In;_,Ga,As;_,P,
and Al,Ga;_,As, or In;_,Ga,N and Al;_,Ga,N. The stoichiometric parameters x, y
determine the electronic and optical properties of the compound, in particular the
band gap (Fig. 7.39) and the refractive index. Al,Ga;_,As is a direct semiconductor
in the range 0 < x < 0.38, with the band gap and refractive index approximately
given by E,[eV]~1.42 + 1.30xand n~3.5—0.71 x.

Double heterostructure lasers exhibit several advantages over homostructure
laser diodes:

— reduction of the thickness of the active zone from about 2 pm to 100-200nm
results in a reduction of the threshold current by approximately the same factor;

— since the semiconductor material adjacent to the active zone has a lower
refractive index, the sandwich structure acts as a waveguide for the laser light;

— because of its higher band gap, the semiconductor material adjacent to the active
zone does not absorb the laser radiation so that internal losses are reduced.

The thickness of the active zone of double heterostructure lasers is typically 100 nm,
typical threshold currents are 10—15 mA. Further thinning of the active zone below
100 nm reduces the overlap between the laser mode and the gain medium and results
in an increasing threshold current.
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7.5.2 Quantum Well Lasers

If d, is reduced below 20 nm, effects of quantum confinement come into play, as
outlined in Sect. 6.3.4. In particular, quantum wells have a reduced density of states,
which makes it easier to drive them into inversion and reach threshold for laser
operation. Because of the low thickness of the active zone, epitaxial growth is
possible even if the materials are not exactly lattice matched; a mismatch of up
to several percent is tolerable. InGaAs-quantum wells, for example, can be grown
between AlGaAs-layers. The strain that is induced by the mismatch also can modify
the band structure significantly, an effect that is exploited in the technology of
strained lattice quantum well lasers.

To improve the overlap of the gain region with the laser mode, several quantum
wells can be stacked upon each other (multi-quantum wells, MQWs). MQW-lasers
have threshold currents as low as 0.5mA. They also show narrow bandwidth
(10 MHz) and a reduced sensitivity to temperature.

7.5.3 Performance and Technology

Important semiconductor laser materials are AlGaAs (0.75-0.87 pm) and InGaAsP
(1.1-1.6 wm). Gallium nitride based semiconductor lasers have become very popu-
lar since they operate in the visible up to the near UV (Fig.7.39) and can be used
for display applications and for high capacity optical storage.

Figure 7.40 shows the cross section of a typical heterostructure laser. The
sandwich structure provides optical guiding in the direction of the current flow. In
the lateral direction, the active zone is limited by the width of the injection electrode,
providing gain-guiding of the laser mode; there is, however, no wave guiding in this
direction because the refractive index of the active zone is lowered by the increased
carrier density (see Sect. 6.3.5).

Gain guided semiconductor lasers usually show multiple transverse modes.
Transverse single mode operation can be achieved by embedding the active zone
laterally in a low index material (index guiding, Fig. 7.41).

Fig. 7.40 Cross section of Metal contact

an oxide insulated stripe / ( )
laser; the active region is Q Insulation (SiO5
defined by the electric current \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ / p-GaAs-layer

flow, i.e., by the insulation “

layer. Typical dimensions of «— p-AlGaAs

the active zone are : : <+— GaAs (active zone)
0.2X5x 100 wm? <+— n-AlGaAs

<+— n-GaAs-substrate
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Metal contact

L Insulation (SiO5)
L p-AlGaAs

i ——— GaAs (active zone)

p—

n-AlGaAs

<+— n-GaAs-substrate

Fig. 7.41 Cross section of a buried heterostructure laser; the active zone is surrounded by
semiconductor material of higher band gap and lower refractive index, forming a nonabsorbing
waveguide
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Fig. 7.42 Performance of a semiconductor laser at different operating temperatures

The performance parameters of semiconductor lasers, in particular the threshold
current and emission wavelength, are highly temperature sensitive (Fig. 7.42). This
is mostly due to the temperature dependence of the Fermi factor Eq. (6.134); in
addition, the efficiency of the potential barriers of the heterostructure is reduced at
elevated temperatures. Finally, the probability of Auger recombinations in which
the energy of excited carriers is transferred to other carriers instead of photons, and
eventually lost to lattice vibrations increases rapidly with temperature. The threshold
current follows the empirical equation

Jo(T) o eT/To, (7.66)
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Fig. 7.43 Normalized output spectra of an AlGaAs-semiconductor laser at different driving
currents

where T is a characteristic parameter of a given laser. Since %(TT) oc1/Ty, a higher
value of Ty implies reduced temperature sensitivity; typical T values are 70 °C for
conventional heterostructure lasers, and 250 °C for quantum well lasers.

The temperature drift of the emission wavelength of heterostructure lasers is
typically 0.3nm K~!. This allows tuning laser diodes by heating or cooling; stable
operation requires temperature stabilization.

Because of the short resonator length, the mode spacing Aw, = cm/d
[Eq. (4.82)] is very substantial (expressed in terms of wavelength, 0.1-0.5nm). The
large gain bandwidth (Fig. 6.24) nevertheless provides gain for many axial modes.
Near the threshold, these modes can be observed in the output spectrum (Fig. 7.43).
Due to the fast intraband transitions, semiconductors behave like homogeneously
broadened gain media, so that well above threshold the number of modes is reduced
by mode competition; single mode operation is frustrated by spatial hole burning in
standard heterostructure lasers, however.

Longitudinal single mode operation, which is required by many applications,
can be obtained by different means. One is to employ an external resonator with a
frequency selective element, such as a grating; the semiconductor amplifier itself
is antireflection (AR) coated to avoid any additional resonances. Alternatively,
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Fig. 7.44 Diagram of a Ag Waveguide grating
distributed-Bragg (a ) =
reflector-laser (DBR) (a), Vo V/ \

distributed feedback-laser
(DFB) (b), and DFB-laser
with a phase jump (c)

T~

AR coating

single mode selection is provided by a frequency selective laser structure (see, e.g.,
Kogelnik and Shank 1972); Fig. 7.44 shows three possible configurations.

In a so-called distributed-Bragg reflector-laser (DBR), the output facets are AR
coated and the laser resonator is formed by two integrated waveguide gratings that
serve as narrow band mirrors supporting only one mode (compare Sect.5.3.3). In a
distributed feedback-laser (DFB), the active zone itself is corrugated longitudinally
to provide a feedback between the forward and backward travelling laser mode.
Such a laser can also be viewed as a waveguide grating with integrated gain.
Somewhat counterintuitively, such lasers do not oscillate at the Bragg wavelength of
the grating, but rather at two frequencies at the edges of the stop band. This can be
understood by an inspection of Fig. 5.28: the intracavity power distribution, which is
responsible for stimulated emission, is resonantly enhanced at the edges of the stop
band, while there is no such enhancement at the Bragg wavelength. Single frequency
operation can be achieved by introducing a /4 = Ag/2 spatial phase jump in the
waveguide grating as shown in Fig.5.31, giving rise to resonant enhancement and
single longitudinal mode operation at the Bragg wavelength with narrow (MHz)
bandwidth.

In addition to these edge emitting lasers, there are also laser structures that emit
in the growth direction of the chip, so-called vertical cavity surface emitting lasers
(VCSEL, Fig.7.45). The mirrors are multilayer reflectors integrated by growing
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Fig. 7.45 Vertical cavity
surface emitting laser
(VCSEL); layers of high and
low refractive index serve as
resonator mirrors; laser % e
emission is orthogonal to the
substrate plane

Output mirror

{{<— Active zone

<—— HR Multilayer mirror

<«—— Substrate

alternating layers of high and low refractive index. The active zone is very short
and requires high reflectance mirrors to keep the threshold low; the short resonator
results in very large mode spacing and thus to single mode operation.

Edge emitting lasers usually exhibit a strongly divergent and astigmatic output
beam, since the lateral dimensions of the active zone are very small and different
from each other [see Eq.(3.19)]. Typical values are 20-30° in the direction of
current transport and several degrees in the plane normal to it. By the use of
astigmatic collimating optics, the output beam can be rendered cylindrical. The
small dimensions of the laser mode also result in very high intensities at the output
facets; the onset of optical damage of the facets (damage threshold 10° Wm™2)
limits the output power of a single stripe laser diode to about 150mW. Optical
damage is also responsible for the immediate destruction of laser diodes by supply
current spikes or by external reflections of the output light which are amplified in
the resonator; the latter problem can be avoided by a Faraday isolator (Sect. 2.4.2.1).

Heterostructure lasers can be produced by liquid phase epitaxy (LPE) allowing
for high growth rates (10 nm/s) and cost-effective large scale production. For the
production of quantum wells lasers, molecular beam epitaxy (MBE) is used, which
makes controlled layer by layer growth with very low defect densities possible.
Other commercial growth technologies are chemical vapor deposition (CVD) and
metal-organic chemical vapor deposition (MOCVD).

7.6 Free Electron Lasers*

Free electron lasers (FELs) are tunable sources of coherent radiation based upon
an oscillatory motion of high energy electrons in a spatially periodic, stationary
magnetic field. FELs do not rely on stimulated emission in the sense of Sect. 6.2, but
resemble travelling wave vacuum tubes or amplification schemes such as Brillouin
amplification (Sect. 8.3.6). Because of the high electron energy needed, they require
electron accelerators to operate and are large scale facilities. FELs can be described
in a purely electrodynamic framework including a relativistic equation of motion of
the electrons. Nonetheless, terms such as spontaneous or stimulated emission are
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Fig. 7.46 Helical undulator:
relativistic electrons (energy
meycl) are deflected by a
helical series of magnets
(north- and south-poles
marked by N an S,
respectively), resulting in a
helical trajectory (dotted line)

common in this context, because early theoretical treatments have been based on
relativistic quantum electrodynamics.

The magnetic field for the electron deflection is provided by a periodic array of
magnets (so-called undulator, Fig. 7.46). The velocity of the electrons and the spatial
period A, of the undulator determine the oscillation frequency. In the following
discussion (that relies on Saldin 2000), we assume, for convenience, a helical
undulator where the absolute value of the magnetic field is constant. In practice,
most undulators are planar, however. The Lorentz force acting on the electrons
induces a transverse acceleration and results in a helical electron trajectory.

We use a complex notation for periodically varying transverse quantities such as
the magnetic field

B. = Re [ﬁu, l] : (1.67)
B.i =B, [Jl } g ik (7.68)
Ko = 27/ Au. (7.69)

The Lorentz force acting on an electron propagating along the z-axis with velocity
v (and axial component v,) is given by

FL = —evxB, =jev.B,. (7.70)
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The relativistic equation of motion (see, e.g., Jackson 1999) in lab-coordinates then
is

dv, -

ey —— = F 5 7.71
meY 4 L (7.71)
where

y=1/v1-8% B=v/c. (7.72)

After substituting dz = v, d and integration we obtain the transverse velocity
- K1 _
V1 =—co— [ _ } e IKuz (7.73)
v L)
with the dimensionless undulator-parameter

_ AyeBy

T 2mmecy

~ 0.93B,[T] Ay[cm] (7.74)

that represents the ratio of the undulator vector potential eB,co A, to the electron rest
energy mec(z) and is typically on the order of 1. The transverse velocity amplitude can
then be expressed as

K
V] =cCcy— =. C()@S, (775)
v

where 6, = v) /co = K/y < 1is approximately equal to the angle between the

electron trajectory and the z-axis. With f.:=v./co, y.:=1/,/1 — B and vz2 + vi =

v? we obtain the useful relation

Y2 =y2(1+ K. (7.76)

7.6.1 “Spontaneous” Emission

In lab-coordinates, the electron oscillates at

U, Co
w, = 27rA— ~ 27rA—; (7.77)
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in the reference frame moving with the electron, the frequency, due to Lorentz time
contraction (Sect.2.4.3) is equal to w,y.. An observer looking towards the electron
along the z-axis detects an electromagnetic field oscillating at the Doppler shifted

frequency [Eq. (2.197)]
1+
Wy = WyY; —ﬁz Ay 2yzza)u, (7.78)
1— :Bz

corresponding to a wavelength of

Ay
Ao = = (7.79)
2y

The light emitted by an individual electron consists of N, = [,/ A, cycles, where
Ly is the length of the undulator; the duration of the emitted pulse is therefore 7, =
27Ny /wp. The shape of the power spectrum is given by the absolute square of the
Fourier transform of the rectangular envelope rect(z/ rp)e_j“"” , and is proportional
to

sin? (N, Aw/ wo)

Mo Ao o)? D)

S(Aw/wy)

with Aw = o — wy (Fig.7.47); the FWHM bandwidth (normalized to wy) is
0.8895/N,.

Another electron (of same kinetic energy) passing the undulator produces the
same pulse, but with a relative phase shift that depends on the difference of entrance

emission spectrum of a single
electron (or a bunch of
0.8
uncorrelated electrons of
identical energy) passing an
undulator with N, periods 0.6
0.4 / \
0.2 / \

Nu(w=wp)/wo

Fig. 7.47 Normalized 1 /

S(Aw/wo)
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time. An ensemble of uncorrelated electrons produces incoherent radiation with the
power spectrum given above. This radiation is usually called spontaneous emission;
the center frequency of the spectrum can be tuned by adjusting the electron velocity
according to Eq. (7.78).

7.6.2 Light-Electron Coupling and Amplification

Let us now consider a (circularly polarized) light wave
E.(z.1) = E [ 1} gkLz=on (7.81)
—J

co-propagating with the electron; note that the helicity is opposite to the electron
trajectory and Ej is the absolute value of the electric field at any time, Ey =

’Re [E 1(0, t)] ‘; the corresponding intensity is E(z) /Zy. Due to the interaction of the

moving electron (which constitutes a current) and the electric field, the electron
energy &£ changes at the rate

de

= —evi By (7.82)
with dz = v.dranda-b = L@+4a*) - (b+b") = (1/2)Re[a-f>+ﬁ-6*] we
obtain

d
2 = —eEyb, cos ¥, (7.83)
dz
where
Y = Kuz + kpz — ot + ¥y (7.84)
= Kuz + kz— vﬁz + Yo (7.85)
z

is the phase difference between v (z, f) and E (z,1); ¥ is the phase at entry and
assumed to be statistically distributed. The differential energy exchange is thus
proportional to the normalized transverse velocity 6;, the electric field amplitude
Ey and the cosine of i that determines sign and amount of the transfer. If ¥ varies
strongly over the interaction length, the sign of the energy transfer changes several
times and the integrated energy exchange is small or zero. A necessary condition
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for a significant integrated exchange (be it positive or negative) is that ¥ varies only
very little

=7 ([{u 4+ = — —) ~ 0; (7.86)

(7.87)

— )

v,  Co—UV;

during the time A, /v, that it takes the electron to pass one undulator period, the light
wave, travelling faster by the amount ¢y — v, acquires a lead of one wavelength in
respect to the electron. Expressed in terms of the wavelength and assuming 8, ~ 1,
we obtain

1 - 8. 1-pB2 A,
AL = Ay = A, P (7.88)
- B. B.(1+B) 22

which is equal to the wavelength of the “spontaneous” radiation Eq. (7.79). With
Eq.(7.76) and v, ~ ¢y we can formulate the synchronism condition as

1+ K?

2—)/2 (7.89)

/'\'L% u

When the synchronism condition is met, ¥(z) in Eq.(7.83) remains equal to
the initial value ¥, and cos ¥y determines whether the electron gains or loses
energy (by acceleration or deceleration) during the interaction. For an ensemble of
uncorrelated electrons, the time of entry (measured in reference to the light wave),
and therefore vy, is statistically distributed and one has to evaluate the angular
average over all input phases, defined as

1 2

()==— (.) dyro; (7.90)

:2.7t0

since (cosvy) = 0, an ensemble of uncorrelated electrons experiences, for
statistical reasons, no net energy exchange; for the average energy transfer to
be non-vanishing, the synchronism condition must be slightly violated. We write
Eq.(7.86) as

dy K. + 1) 1) n 1) 1) n o dv,
dz Y e w(®) Y a0 v(&)  vE(&) dE
—_—

D

~Ki+——

AE, (7.91)
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where & is the electron energy at entry, AE = £ — & is the energy exchange and
D is the deviation from synchronism at entry. With Eq. (7.76), we can express the
electron energy £ = mecly as mecjy.~/K? + 1 to obtain d€/ dv, ~ y2&y/cy since
v, & co. In combination with Eq.(7.83), we find the set of coupled differential
equations

dy
— =D+ AE 7.92
dz coy?&o 7:52)
dA
TS = —eEyH; cos ¥ (7.93)
Z

that describes the interplay between light field and electrons.
We eliminate AE and introduce the normalized coordinate { :=z/I, and field u:=
(ewB,Eol2)/(coy?&p) and obtain

2

((11—;/2/ +ucosy =0, (7.94)

which is formally equivalent to the equation of a pendulum, indicating that the phase
swings around the values +7/2: the reason for this oscillation is that the energy
transfer changes the electron velocity and thus the phase ¥ (z); in phase space, the
electrons are attracted to ¥ = +7/2 where the energy exchange is zero, in the same
way a pendulum is attracted to the vertical by gravitation.

With the initial conditions ¥ (0) = v and dT]flz=0 = D, equivalent to Ccll—'é’|§=0 =
Dl,=:D’, integration of Eq. (7.94) yields the phase as a function of ¢

V() = Yo+ D¢+ AY (L. Vo), (7.95)
where
¢ ¢
AV () = — / at’ / uocos(yo + D'¢") d¢” (7.96)
0 0
= % [cos(¥o + D'¢) — cos o | + ”g—é sin ¥ (7.97)

is the pendulum component, V¥ the initial phase and D¢ the accumulated phase
slip. We now can integrate Eq. (7.83) over the undulator length to evaluate the total
energy exchange of one electron

1
AE = —eEybyly / cos[o + D'C + Ay (L. )] dL. (7.98)
0
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We restrict ourselves to small phase excursions AV (¢, ¥p) < 1 (implying

sin Ay (&, Yo) ~ AY (L, ¥o), cos Ay (L, W) ~ 1) and use the identity cos(a +b) =
cosacosb — sina sin b to obtain

1
AE ~ —eEoé’slu/ cos(vo + D't) — Ay (&, o) sin(yo + D'L) di: (7.99)
0

after integration over ¢ and averaging over the initial phase (assumed to be uniformly
distributed between ¥y = 0...2m), we arrive at the average exchange per electron
of

(AE) = eEobluuef (D) = 92‘;)/13 CEy (D) (7.100)
Az
with
f(D) = 1% [1 —cosD' —(D'/2)sinD'] (7.101)
()

If we denote the electron flux density entering the undulator with jo, the increase of
the light intensity is given by (jo/e) (AE). The small signal gain, defined here as the
ratio of intensity increment to input intensity E2/Zy, can be expressed as

(iO/e) (Ag) / 2j0 Kz\/ Au/\3/2 3
——— =f(D)64V 21— ———+N; 7.103
2z @ Vot TRy (7.103)
where I = 47rc3€0me /e ~17KA is the so-called Alfven-current. Using Eq. (7.86)
in the form (1/co — 1/v;) = —K,/wo, D’ can be expressed in terms of @ — wo,
=1, (K + 2 3) = 27 K= 22N 2T (7.104)
co U wo (2]

so that the gain profile f(D") Eq. (7.102) turns out to be proportional to the derivative
of Eq. (7.80),

(7.105)

, d sin(Ny 7t Aw [ wp)
fD) dAw ( (Nut Aw [ wp)? )
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Fig. 7.48 FEL-gain as a function of frequency; N, is the number of undulator periods

Figure 7.48 shows the dependence of the gain on the detuning @ — wy. As outlined
above, the gain vanishes at D’ = 0, and, for equivalent reasons, at D’ = 2m. The
most efficient energy transfer happens at approximately D’ = +.

A requirement for the efficient operation of an FEL amplifier is that the electron
energy distribution is narrow, since the velocity determines the degree of detuning.
Moreover, the electron velocity decreases due to the gain process, so that the gain
also decreases along the undulator length. This can be compensated by reducing the
undulator period along the undulator axis (tapered undulator). An FEL-amplifier
can be converted into an oscillator by embedding it into an optical resonator.
Alternatively, an FEL can be seeded by an external coherent light source.

7.7  Summary

Lasers are not the only, but certainly the most important sources of coherent optical
radiation. The fundamentals of laser operation have been laid in Sect.4.3 and
Chap. 6; here we describe various types of lasers and their mode of operation. We
analyze the stationary operation of laser oscillators, exemplified by four and three-
level atomic lasers as well as semiconductor lasers. We discuss mode competition
and selection, and the impact of inhomogeneous and homogeneous line broadening,
respectively, on laser performance. We also discuss the fact that the theoretical
spectral width of the laser modes is not zero but given by the Schawlow—Townes
limit that takes spontaneous emission of the laser medium into the laser mode into
account.

Non-stationary laser operation is theoretically interesting and practically impor-
tant. We describe the trajectory in phase space that a laser has to pass before reaching
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stationary equilibrium; the relaxation oscillations that precede the stationary state
are analyzed and the frequency response of pump modulated lasers is derived. Gain
modulation, mode locking, and Q-switching are modeled.

The operation and technology of semiconductor lasers is described in detail;
important atomic lasers are presented with their main operating features. Finally,
the free electron laser is presented, which, however, resembles a vacuum electronic
tube rather than a conventional that relies on stimulated emission; the synchronicity
condition, which is basically a phase matching condition between the undulating
electrons and the electromagnetic field, is derived and the gain as a function of
signal frequency is estimated.

7.8 Problems

1. A four-level system (Nd:YAG) has a stimulated emission cross section of
7x107! cm? and a spontaneous life time of 7o = 230 s at 1064 nm wavelength.
The length of the laser rod (and the resonator) is 4 cm, its diameter 4 mm.
Assume two laser mirrors with transmissions 77 = 0, 7, = 0.4; internal losses
amount to 2 % per round trip. Calculate the threshold inversion. Assuming ideal
conditions (complete absorption of the pump power etc.), calculate the threshold
pump power (pump wavelength 800 nm). Finally, calculate the output power as
a function of pump power assuming a pump efficiency (compared to the ideal
case) of 10% .

2. Using the results of Problem 6, Sect. 6.5, calculate numerically the gain
coefficient of a GaAs laser diode at room temperature as a function of the
injection current, assuming that the active zone has the dimensions (thickness
x width x length) 1x5x100 wm?. Assuming a quantum efficiency of 1, what is
the threshold current for this laser (the cleaved surfaces of the GaAs crystal serve
as mirrors, neglect internal losses)? Calculate the output power as a function of
the current. For the properties of GaAs, refer to Table 6.1.

3. Derive the formula for the optimal output coupler and present the results
graphically. Discuss the case ; = 0.

4. Integrate numerically the rate equations (7.42) and (7.43) of a Q-switched laser
using appropriate discrete Ar-intervals and a finite number of initial photons.
Assume a Nd-YAG rod of 6 mm diameter and 70 mm length and an output mirror
with a transmission of 80 %; set the mode volume equal to the rod volume and
neglect internal losses. Assume different ratios N;/N, . of the initial inversion
to the critical inversion and determine the laser pulse duration and extraction
efficiency. Compare these results with the approximative solutions shown in
Fig.7.19. See Table 7.1 for the properties of Nd:YAG.
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Nonlinear optics deals with optical phenomena that result from the dependence
of the optical susceptibility on the electromagnetic field. Exemplary effects are
the intensity-dependent propagation index, the electro-optic effects, and parametric
effects such as frequency mixing, harmonic generation, or parametric amplification.
In a more general sense, gain and absorption saturation are also nonlinear optical
effects, but they are usually not treated in terms of susceptibilities. Acousto-optic
effects are related to nonlinear optical effects in the sense that the susceptibility is
influenced by acoustic fields; since the mathematical treatment is very similar, they
are included in this chapter.

8.1 Nonlinear Susceptibility

The polarization response of a material on the electric field E is not a strictly linear
function; to account for that, we can write it as Taylor expansion

P= ZP(” = gox"E + g0 x?EE + g0 x“EEE + .. ., (8.1)

where x® is the “linear” susceptibility, while the nonlinear contributions are
represented by the “nonlinear susceptibilities” y® (i > 2) of order i. The total
polarization is the sum of the “linear” polarization P = gy x’E and “nonlinear
polarizations” P” = gy x "E’ of order i. Second (third) order effects are also called
quadratic (cubic).

For a rough estimate of the magnitude of these nonlinearities, we can assume that
at fields comparable to the inner atomic electric field Ey, polarizations of different
order are of about the same magnitude, so that gg Y E', &~ &9y " Ey. Since " is of
the order of unity, this estimate yields y” ~ 1/Ei!. Taking as a reference the field
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of a hydrogen nucleus at a distance equal to Bohr’s radius (ap = 5.3x107''m),
Ey~e/ 471£0a(2) ~5x10'! Vm™!, we obtain reasonable agreement with experimental
values, with y® ranging between 10~'3 and 107! V='m, and y® ranging between
10723 and 1078 V2m?.

To get a feeling for the optical intensities required to generate significant
nonlinear polarizations, we assume a field of 108 V™!, which is less than 1073 E,;,
and use Eq. (1.71) to obtain a value of 10'* Wm™2; with a very tightly focused cw
10 W laser, such intensities can be reached. Usually, pulsed lasers with much higher
peak powers are used to produce nonlinear optical effects.

The (non)linear susceptibility is a tensor, usually given in cartesian represen-
tation, as known from the treatment of wave propagation in anisotropic media
(Sect.2.3). Using Einstein’s convention, (8.1) can be expressed as

P; = SOX;;)EJ' + eo)(;,iEjEk + SOXE;ZIE/'E/(EI +... (8.2)

Symmetry has a strong impact on tensors; certain symmetries actually rule out
particular effects because all elements of the relevant tensor vanish. For example,
the nonlinear optical susceptibility of second (even) order is zero in centrosymmetric
materials. This becomes obvious if we look at the quadratic polarization induced by
an electric field in a centrosymmetric medium which is invariant under the operation
of inversion; inversion changes the sign of polar vectors: E — —E and P® — —P®,
On the other hand, P?(—E) = gox®EE = P®(E). Centrosymmetry forces the
quadratic polarization and thus the second order nonlinear susceptibility to vanish,
x® =0.

In a more general way, invariance under a certain symmetry operation implies
that the transformed tensor is equal to the original; in the formulation of Eq. (2.116),
mgjk = myj. These relations give rise to a number of equations between the tensor

elements (note that mgjk is a linear combination of all m). Inversion, for example,
@ _

is represented by the transformation matrix Eq. (2.3.1.1) A; = —§;;, so that Xiik

(-=1)3 )(E;,i; for centrosymmetric media we obtain

_Xgl)c = Xijzl)( =0. (8.3)

Other symmetries (such as mirror planes or two-, three-, four-, or sixfold
rotations), also reduce the number of non-vanishing elements or establish linear
relations between them. Table 8.1 shows the structure of the y®-tensor for some
important point groups.

If the field driving the nonlinear polarization is monochromatic, the sequence of
fields in Eq.(8.2) is irrelevant and we have the additional symmetry i3 = xg.
The pair of interchangeable indices is sometimes contracted into a single index
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Table 8.1 Non-zero
elements of x@ for selected
point groups

Table 8.2 Piezoelectric
index contraction

353
- P @
Point group | yi; Xie

2 O _ 0 _\,0 _ 0 E)
42m X123 = X213(5) X132 = X231 =X
®© _ O E)

X312 = X321 = X36

7 ® _ 0\, 0 _ 0 _ 0
43m X123 = X213(5) X132 = X231 =X
B @ )
mm X311 = X31
@ )

X322 = X3

0] E)

X333 = X33

@ O EE)

Xi31(5)xis =Xi5

@ _\,0 — .0

X223(=) 1032 = X2

0 _ .0 _ 0 _ 0 )

4mm X131 = X232 = X113 = X223 =Xis
® _ O E)

X311 = X3 = X31

@ )

X333 = X33

QO _ 0 _\,0 _ 0 _ .0

3m X131 = X232 (5) X113 = X223 =Xis
O __.0 __.0 __.0 | _.0

X220 = —Xo11 = — X112 = X121 | T X22

® _ O E)

X311 = X322 = X31

B EE)

X333 = X33

O _ _ .0 __.0 __ .0 | _._0

32 X111 = X122 = X1 = “ X212 | = X11
O _ .0 N, _ O — .0

X123 = —X23(F)Xi32 = —X231 | = Xua

)]

according to the piezoelectric contraction, Table 8.2, y.; =

ijk —
@

instead of x5/, and xV) instead of x\); = x13,.

8.1.1 Frequency Mixing

Jk - |§
1 |- |1
2 |- |2
33 |- |3
23,32 > |4
13,31 | > |5
12,21 |- |6

@. examples are y
i p X21

An important consequence of the nonlinear response is the generation of sum and
difference frequencies, also termed frequency mixing (Fig.8.1). Let us assume an
input field containing two distinct frequencies

E(x,f) = [E(x, 01)e! + E(x, wp)el? + c.c.] ;

1
2

(8.4)
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the quadratic nonlinear polarization then assumes the form

P (x,1) =go x VE(x, HE(x, 1)

1 ~ ~ .
=801X(2) [E(x, w1 E(x, w)e?!!

+ E(x, 09)E(x, )™

+ 2E(x, w))E(x, w,)el@1 T2
+ 2E(x, 01)E" (x, wp)el @~
+ Ex 0)E (x,01)

+ E(x, a)z)fﬂ* (x, w2) + c.c.] .

(8.5)
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This can be written as

PP (x,1) = [f’(x 2m;)e? + c.c.]

N =

—+

_f’(x, 2wy)el?2 4 c.c.]

—+

_f’(x, w1 + wy)e@rTed 4 c.c.]

+

_f’(x, w1 — wy)e @D c.c.]

D= N= N = N

—+

[B(x,0) + c.c.] (8.6)

and contains frequency components at 2w; (second harmonic)
P(x,2w;) = %sox(z)ﬁ(x, w)EX, o), 8.7
at the sum frequency w; + @,
P(x. 0 +w2) = eox PE(x. 01)E(x, 1), (8.8)
at the difference frequency w; — w;
P(x, 01 —m) = g0 PE(x, ))E " (x,02) (8.9)

and finally a dc-component at v = 0
~ 1 - - - -
P(x.0) = Se0x® [E(x, o)E" (x, 01) + E(x, 02)E" (x, (1)2)] . (8.10)

This last term is proportional to the intensity of the respective field and is equivalent
to optical rectification (Fig. 8.2). Note that the factor % in Eq. (8.7) accompanies the
second harmonic components, but is missing in the sum and difference components;
the reason is that mixed terms show up twice in the calculation.

Let us further assume plane waves E(x, w;) = E(w,-)e_jki"‘ so that the driving
field is

E(x,1) = [E(wl)e—ﬂkl'x—w”) + E(w,)eikex—e20 4 C.c.]. (8.11)

N =
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Fig. 8.2 Optical rectification in a quadratic nonlinear medium
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Fig. 8.3 Phase matching diagram for (a) sum frequency and (b) difference frequency generation

The sum frequency component of the nonlinear polarization then is

[80X<z>1:3(w1)E(wz)e—j[(k1+kz)-x—(w1+w2)z]+ C'C.]' 8.12)

N =

(2) —
Pw1+wz (X’ t) —

This is a planar polarization wave with the wave vector k; + k;, that can serve as a
source term for an electromagnetic wave

E, (x.1) = [E(w3)e_j(k3'x_“’3’) n c.c.] (8.13)

N =

with the frequency w3

w3 = W] + w). (8.14)

For the coupling between the source Eq. (8.12) and the field Eq. (8.13) to be efficient,
the two waves must have a constant phase relation in space, implying the equality
of the wave vectors (Fig. 8.3a)

k3 = ki + ky; (8.15)

this equation is known as phase matching condition.
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An analogue condition applies to difference frequency generation

w3 = W] — W (8.16)
with the polarization density
PO, (x,0) = % [SOX(Z)E(wl)E*(a)z)e_j[(k‘_kZ)"‘_(“"_“’Z)'] + c.c.] (8.17)
(Fig. 8.3b) in the form
k; = k; —ko. (8.18)

Nonlinear optical processes can also be understood in a photon picture: in this
framework, sum frequency generation (SFG) is merging of two photons of energy
hw; and haw,, respectively, to a new one of energy #ws (Fig. 8.4a). The phase match-
ing condition can be interpreted as momentum conservation, since the momentum
of a photon is equal to k.

While the total energy and momentum of the participating photons is conserved,
the total number of photons is not. Assuming a common direction of propagation of
all fields, the photon flux in SFG must obey the equations dF,,/dz = —dF,,/dz =
—dF,,/ dz since one photon at @; and w,, respectively, is annihilated to produce one
ws-photon. In terms of intensity 7, = hw;F,,, this implies

dl,,  dl, _ dl,
(1)3dz_ wldz_ a)de‘

(8.19)

These relations are called Manley—Rowe relations and will be derived from purely
electrodynamic arguments later [Eq. (8.80)].

Difference frequency generation can be understood as “splitting” of a photon
of energy hws into two with energies Aw; and Aw, (Fig. 8.4b). The Manley—Rowe
relations are, of course, also valid in this case.

w1 hwo > wo
_— > w —_ >
2
wo hws —_— w3

Fig. 8.4 Photon diagram of (a) sum and (b) difference frequency generation
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In the mixing processes described, two input fields produce a new field, so that
actually three fields are present, giving rise to a three wave mixing process where
each field interacts with one of the others to produce a polarization at the frequency
of the third one. Depending on the relative intensity of the fields, it is common
to distinguish different processes, albeit physically they are all the same; in the
following listing of quadratic effects, it is understood that w3 — w; — w, = 0:

— In SFG, I,, and I, are large and the goal is to produce efficiently a field at w;.

— Second harmonic generation (SHG) is a degenerate case of SFG with w; = w, =:
w called the fundamental and w3 = 2w the second harmonic.

— In parametric amplification, a weak input signal at @, interacts with a strong
pump wave at ws, splitting pump photons into pairs of photons; one of this pair
is a replica of the signal photon and enhances the signal; the second photon, at
the difference frequency w, contributes to a new wave (called “idler”’) not present
at the entrance. The idler wave, however, also interacts with the pump to enhance
itself and the signal wave. Because of this mutual enhancement, both waves
are amplified in a quasi-exponential fashion. In contrast to the amplification by
stimulated emission, this gain process in principle works at any signal frequency
below the pump frequency.

— In the process of parametric frequency conversion, a weak signal field at w,;
interacts with a strong pump wave at w; to shift the signal frequency (usually in
the mid-IR) to w3, where it can be conveniently detected by quantum detectors.
According to the Manley—Rowe relations, the number of output photons cannot
exceed the number of signal photons; ideally, the conversion is one-to-one.

8.1.2 Anharmonic Oscillator

Modeling the linear susceptibility as a response of harmonically oscillating electrons
[Eq. (2.51)] provided important insights in the nature of light—matter interaction. We
now extend this simple model to the (quadratic) nonlinear susceptibility by adding
a quadratic term to the restoring force term!

mex + bx + ax + Dx* = —eE(r). (8.20)

To solve this nonlinear differential equation, we treat the quadratic term as a small
perturbation, |Dx?| < |ax| which is neglected in a first step of iteration. The driving
field is assumed to have two frequencies, E(¢) = E,,, (¢) + E,, (¢), with

Ey (1) = % [E(@i2)d + c.c.]. (8.21)

'Introducing higher order nonlinear restoring force terms allows, in a similar fashion, estimating
nonlinear susceptibilities of corresponding order.
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According to Egs. (2.52) and (2.56), the electron displacement can be expressed as
~ _ m €0 =
Xwi2) = —x (wl,z)ﬁE(wl,z)- (8.22)

In a second step, we use this displacement to calculate the nonlinear restoring force
component

1 . )
D) = 1D [0 + Hwn)e + ce]’ (8.23)
which contains, among other frequency components, a sum frequency term
1 ~ ~ jwst
3 [Dx(w)X(w2)e + c.c.] (8.24)

that has no counterpart in the remaining Eq.(8.20). Next, we adjust the
motion of the electrons by adding a small sum frequency component x,,(f) =
1 [F(@3)e*" + c.c.] such that the linear force component meku, + biw, + Xy
compensates the nonlinear force term at w;

—DXx(w1)X(w2)
me[(0f — w3) + jwsI)

—D¢g? . .
n3—840)(“’(wl))(“)(a)z))(“’(w3)E(w1)E(w2), (8.25)

X(w3) =

where Eqs. (8.22) and (2.56) have been used.
The complex amplitude of the nonlinear polarization density is then

P(w3) = —neex(ws) (8.26)
and comparison with Eq. (8.8) in the form
P(w3) = eox?E(w))E(w), (8.27)

allows us to express the nonlinear susceptibility as

2

De
2" (@) X" (@2) X" (@3). (8.28)
nze

1% (w3 01, 02) =

This is Miller’s rule, which states that the nonlinear susceptibility is proportional
to the product of the three linear susceptibilities at the frequencies involved. In
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Table 8.3 Nonlinear susceptibility Xi‘? [10712 mV~!] of selected materials; symmetry allowed but
very small components are not included

Transparency
Material Symmetry )(i.? range [pum] g, Ne, Nz
KDP KH,PO, |42m =08 0.22-1.50 1.494, 1.495
X35 = 0.9
KTP KTiOPO, | mm2 x5 =13 0.35-4.50 1737, 1.745, 1.829
x5l =10
xnl =27
sl =12
|xoal = 15
BBO BaB,0O; |3m sl =32 ]0.19-3.00 1.655, 1.542
sl =02
Lithium niobate | LiNbO; 3m )((222) =52 0.40-5.00 2.232,2.150
15 =-97
X33 = —88
Gallium arsenide | GaAs 43m x5 =270 >0.9 3.491
a-Quartz SiO, 32 [x0] = 0.7 >0.18 1.544, 1.553
|5l = 0.006

particular, it states that y® shows resonant enhancement if y" is resonant at any
of the three frequencies.

It turns out, moreover, that the prefactor Dej/n2e® in Eq.(8.28) has about
the same value (~—0.3 x 1072mV~") for a wide variety of dielectrics and
semiconductors (see Problem 1). Since y = n? — 1, this implies that media
with large refractive index also exhibit a large nonlinear susceptibility (compare
Table 8.3). The large y®-values of lithium niobate (n = 2.2, " = 3.8) and
gallium arsenide (n = 3.3, y = 9.8), compared to KDP (n = 1.5, yV = 1.25) are
consistent with this rule, for example.

8.2 Second Order Processes
8.2.1 Second Harmonic Generation

In Sect. 8.1.1, we have calculated the nonlinear polarization induced by plane fun-
damental waves. The various frequency components of this nonlinear polarization
wave are also plane waves with a wave vector that is either the sum or the difference
of the fundamental wave vectors. We now want to evaluate the electromagnetic field
that is radiated by this polarization wave, for the important example of SHG. We
start with the wave equation (1.17)

0%(soE + P)
Ho———— =20

—V’E ,
+ or?

(8.29)
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where according to Eq. (1.8), D = gE + P. With P = P 4 P® and 0E + P =
gocE we obtain

e PE_ §°P?

VZE——— -
8t2 Ho or?

(8.30)

The term on the right-hand side is the time derivative of the nonlinear polarization
current density, which is the source term for the second harmonic electromagnetic
field.

Assuming the fields to propagate along the z-direction with the transverse field
components

1.~ .
E,i(x,1) = 3 [Ei(w)e o) 4 ccl], i=1,2 (8.31)
and
1
Enei(X, 1) = [E Qu)e 10200 e, i=1,2, (8.32)

the operator V2 in Eq. (8.30) reduces to 9>/dz> and

2

0
e 2E (Zw)e_J(kW 2w1)

2
= a—Ei(Za)) —2jk2w3[z(2w) — 13, EQw) | e7ikawi200
072 0z
d - - .
A [—ijzwa—ZEi(Za)) - k%wEi(Zw):| e Ikwoz=200) (8.33)

where we have neglected the second order spatial derivative assuming that
E;(2w) changes slowly on the length scale of the wavelength, |02E;(2w)/d2%| <
k2 OE;(2w) /07| [slowly varying envelope approximation, compare Eq. (3.3)].

For the second order time derivatives we obtain, using Eq. (1.27)

Ezwaz k 2 dow : k: 2
— > = _E; (zw)e—J( 202201) _ = &9y —E (Zw)e—J( 2wz—208)
cor? ct
= k%wEi(Za))e_j(kz‘”Z_zwt) (8.34)
and
02
075 PiQw)e P20 = —4p100° P;(2w)e PR 20, (8.35)

K%



362 8 Nonlinear Optics and Acousto-Optics

substitution of Egs. (8.33)—(8.35) in Eq. (8.30) yields

0 ~ . - .
— 2jk2wa—E,-(2w)e_Jk2wz = —4uow’Pi(Qw)e 1%k, (8.36)
Z

With the source term Eq. (8.7)

~ 1 ~ ~
P,(2a)) = Eso)(izliEj(a))Ek(w), (837)

i

Equation (8.36) assumes the form

d ~ jo - - :
—EQw) = ——— v E(w)E (w)el?*2, 8.38
% (Qw) Seann, ik i(0)E(w) (8.38)

where ky,, = 2wny,/co, o0 = 1/6(2), and

Ak = ko — 2k, (8.39)

is the deviation from the phase matching condition. Integration of Eq.(8.38) with
the boundary condition EQw)|,—¢ = 0 yields

) PR Akl _
EQo)|_, = _—XijkEi(w)Ek(a))jT

, =12, 8.40
ZC()I/Zzw k ! ( )

where it was tacitly assumed that the conversion efficiency from the fundamental to
the SH-field is so small that the fundamental amplitude remains practically constant.

We now write the fundamental field E;(w) = E(w)e; as a product of the scalar
amplitude E(w) and a unit vector e;; then, )(;.f,iEj(a))Ek(w) = )(;.?,iejekEE. Equation
(1.71) relates the complex amplitude E to the intensity /

nEE* oo, 221
ZZ() - n

I =

, (8.41)

so that we can express the fundamental field in terms of its intensity; with the
identity |e* — 1|2 = 2(1 — cosx) = 4 sin?(x/2) we obtain for the SH-intensity

_ A 6()2Z0l2

IZa) =

o ‘2 I:sin(Akl/2):|2 ‘ 6

k| | T Akiy2

[0 2 2
2c5nann;, by
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Fig. 8.5 Second harmonic 20
(SH) power as a function of

interaction length for

different degrees of phase 16
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arbitrary scaling factor " / \ / \
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For a given phase mismatch Ak, the SH-intensity is a periodic function of z

sin?(Akl/2)
Ly () X —————=, 8.43
20 (1) X (AK)? (8.43)
with maxima at [ = 27 (m + %)/|Ak| (Fig. 8.5); the spatial period
2 2 A
= 2% = T 0 (8.44)

|Ak|  |kow — 2ke|  2|n20 — 10|

is called, somewhat misleadingly, coherence length, not to be confused with the
same expression from Sect.4.4.1. The first intensity maximum is reached at [ =
l./2, which is, for obvious reasons, also the maximum useful crystal length. Note
that the maximum intensity is proportional to 2, or 1/|n, — n,|%.

Alternatively, if the phase mismatch is varied for a given crystal length, we obtain

. 2
sm(Akl/Z)] ' (8.45)

Dy ()
This function has a central maximum at Ak = 0 and maxima of higher order whose
height decays with the square of the order (Fig. 8.6). The phase matched intensity
follows from Eq. (8.42)

2
_p @ Zl Z @
I Iwzconzwnz )X;}kejek’ ° (846)
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Fig. 8.6 Second harmonic 1.0
power as a function of phase
mismatch |Ak| for a given
interaction length / 0.8
o, 06
3
~
3
[
& 04
0.2
0.0

Ak [27/1]

8.2.1.1 SHG of Gaussian Beams
According to Eq.(8.42), the SH conversion efficiency I, /1, for plane waves is
proportional to the fundamental intensity and to the square of the interaction length
under phase matched conditions. In practice, nonlinear processes are driven by laser
beams of a certain power and it seems natural to increase the conversion efficiency
by focusing the fundamental beam as tightly as possible. Apart from limits due to
optical damage, however, there is a tradeoff between the intensity in the beam waist
and the useful interaction length within the nonlinear medium, because the beam
diverges with an angle that is inversely proportional to the beam waist diameter.

To get a more quantitative picture, we consider a Gaussian beam, with an
intensity profile Eq. (3.23)

2P
I(r) = —2- e Mo, (8.47)
s 0,0

where P, is the beam power and wy, the beam waist. If the interaction length [
is so short that the beam profile does not widen significantly, the phase matched
SH-intensity according to Eq. (8.42) is

w?Zyl? 4P2 S
ho= gt i 3 e ¢ (8.48)
2¢2 0wl T wOw Pyt

which is also Gaussian but with a reduced waist wp2, = Wo,/ V2. A measure for
the useful interaction length is the confocal distance 2zp = w%,wkw = Wawnwa) /co
[Eq. (3.12)]. If we shape our beam such that the confocal range matches the length
of the nonlinear crystal, [ = 2z or w%,w = lco/nyw, the resulting SH power
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Fig. 8.7 Intracavity SHG: M, M,
mirror M is high reflecting at SH crystal
w and 2w, the coupling — — 2w
mirror M is high reflecting at e ety el i Bl ity R
o and transparent at 2 Fare— ]

alin medium

Py = L (0)TW] 5,,/2 is approximately

Py, =P — 2 % >

2)

e;e
27rc0n2wnwi ™ Xijk] k’
47‘[2201 2
=P, |xheed (8.49)

Ao, =12
SH generation optimized in this way thus increases only linearly with the crystal
length.

The SH conversion efficiency Py, /P, is proportional to the fundamental beam
power; with a typical value of y® = 107'>mV~" and a crystal length of / = 1cm,
Eq. (8.49) yields a conversion efficiency of 107*P,, at a fundamental wavelength of
Ao = 1.064 pum (Nd:YAG laser). The overall efficiency can be greatly improved
by placing the doubling crystal inside the cavity of the laser that provides the
fundamental beam (Fig. 8.7).

8.2.2 Phase Matching

8.2.2.1 Birefringent Phase Matching

The frequency dependence (dispersion) of the propagation index of the nonlinear
crystal is responsible for the phase mismatch Eq.(8.44) and the finite coherence
length I, = A¢/2|n2, — ne|- Because of the large frequency difference between
fundamental and SH, |n,, —n, | is usually substantial (several %), and the coherence
length amounts to not more than some ten wavelengths.

One possible way to achieve phase matching is to exploit the natural birefrin-
gence present in many nonlinear materials (Fig. 8.8). According to Eq. (2.145), the
propagation index of the extraordinary wave depends on the angle 8 between the
wave vector and the optical axis

1 cos? 0 N sin® 6 (8.50)
n2(0)  n? n2 -’ '

To obtain phase matching, the propagation direction and the polarization of the
fundamental and the SH wave, respectively, is chosen such that the propagation
index of the ordinary wave at @ matches that of the extraordinary wave at 2w (or
vice versa) (Fig. 8.8). In this configuration, phase matching requires n,,(0) = ny o,
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Fig. 8.8 Phase matching in a Optical axis
uniaxial crystal

nz(9)

2" nze() = ne

-

or
1 cos’d  sin’f 8.51)
n%),o n%a},o n%a},e ’ '
this defines the phase matching angle 6,
—2 —
n,o—n
cos? O, = —2022¢ (8.52)

Nwo ~ Mpe

The compensation of dispersion by birefringence is possible only if the bire-
fringence is larger than the dispersion, since there is no intersection between
the k-surfaces at @ and 2w otherwise. One problem with this scheme is that in
birefringent materials, the Poynting vector (the direction of energy transport) also
depends on the polarization state, so that the fundamental and the SH beam tend
to separate spatially [Fig. 2.33]. Only if 6, = 90°, this effect can completely
be avoided (90°-phase matching). Since the propagation index is temperature
dependent, 90°-phase matching can be realized in some cases by heating the crystal.

8.2.2.2 Quasi-Phase Matching
A very powerful alternative is to modify the nonlinear susceptibility periodically
(Fig. 8.9) with a spatial period equal to [.; x® can then be written as a Fourier series
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Fig. 8.9 Nonlinear susceptibility, SH-field, and SH-intensity of a quasi-phase matched (periodi-
cally poled) frequency doubler
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o0
X(z)(z) — XE)Z) Z Fme—jZmn/lcz
m=—00

o0
=9 D Fpetimti, (8.53)
m=—00

where )((02) represents the nonlinear susceptibility for the given fundamental field

configuration. Substituted into Eq. (8.38), we obtain

J - jo > - N .
LEQw) = - N FuE)E(w)d T (8.54)
aZ 26‘0112(0 = —00
Figure 8.10 shows the corresponding development of Ei(Zw) in the complex plane.

For m = 1, the phase matching condition is met and the Fourier component
XE)Z’F 1 is the source of a linearly increasing SH-field

d -~ jw

—EQCw) = ———
0z (20) 2

x5 F1Ej(0)Er(0); (8.55)
CoN2w

the other Fourier components are responsible for a superimposed spatial oscillation.
The output intensity increases quadratically with the interaction length

a)ZZ()

2¢3no,n2

)

2
L, = Fi212 Xineiex| » (8.56)

i=12

as in the perfectly phase matched case Eq. (8.46), reduced, however, by the factor
F f This technique is known as quasi-phase matching (QPM).

Periodic structures of alternating nonlinear coefficients can be produced by
“poling” of ferroelectric media such as lithium niobate or KDP. These materials
exist in two metastable configurations that can be converted into each other by
a strong (20kV/mm) dc-electric field pulse. In lithium niobate, for example, the
metal ions change sites under the influence of an external electric field in the z-
direction (Fig.8.11), converting the initial configuration into its mirror image that
has nonlinear coefficients 5], and x5, of same magnitude but opposite sign. An
initially homogeneous crystal is transformed into a periodic structure of ferroelectric
domains by applying lithographically a periodic electrode structure to the surface
of the crystal which is removed after the poling process. Since the first Fourier
component of the resulting rectangular y®-modulation is F; = 2/7, the resulting
the SH-intensity is smaller by a factor of (2/7)> = 0.4 than a perfectly phase
matched output. This disadvantage is compensated by the possibility to pick a
fundamental field configuration (propagation direction and polarization state) that
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Fig. 8.10 Locus of the SH
amplitude in the complex
plane: phase mismatch results
in a closed circular loop
(dashed line) with a curvature
proportional to the phase
mismatch; quasi-phase
matching periodically alters
the sign of the source term,
providing monotonic
amplitude growth (solid line).
The two amplitudes shown
refer to the same propagation
distance in the crystal, the
dashed arrow representing
the phase mismatched signal,
the solid one the quasi-phase
matched result
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optimizes the effective )(g) and avoids the walk-off of the fundamental and SH

Poynting vectors.

8.2.3 Optical Parametric Amplification

Another important quadratic effect is parametric amplification of a signal at
frequency w; in the presence of a strong pump wave at w, (w, > ;). It is a
special case of difference frequency generation and produces an additional wave
at w; = w, — w; (the so-called idler wave). The process is called parametric because
it can be understood as a modulation of the system parameter x at the frequency
wp; the generation of the idler results from a beating of the signal with the pump
frequency and vice versa. Under phase matched conditions, the beat wave adds
coherently to the signal or idler wave, respectively, resulting in amplification (optical

parametric amplification, OPA).
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Fig. 8.11 Two stable lattice configurations of LiNbO; with opposite values of )((323) and )((;f; they

can be converted into each other by applying a dc-electric field pulse along the z-axis

For a simplified treatment, we assume in the following that all wave vectors are
collinear and treat the fields as scalars; we use the complex amplitudes

i’(ws) = SOX(Z)E(%)E* (i)

p (wi) = SOX(Z)E(CUP)E*(Q)S)

P(ay) = g0y PE(@)E(w). (8.57)
The interaction of the three waves is described by a set of three coupled differential

equations which can be easily derived along the lines of Eq. (8.38) (slowly varying
envelope approximation):

(U)A ) - _ Ja: X(Z)E(wp)E* (C()i)e_'](kp_k'_kS)z
dz 2cong,
dE(w; jw; . .
(a)l) - _ Jwi X(Z)E((UP)E* ((l)s)e_J(kp_kb_ki)Z
dz 2con,
dE i S .
(wp) _ JWp X(Z)E(CUS)E((Ui)e_J(kS+ki_kp)z- (8.58)

dz ZCOI’lwp
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For convenience, we introduce a normalized field amplitude A; such that A,-Ai* equals
the photon flux F,,

it w-E i E* i
AAr =F, =" 20 0 2(6200;@(@), (8.59)
or
I (8.60)
V2Zohwi /N,
Equations (8.58) then assume the form
dA, o
dz —jkAFApeiak: (8.61)
dA; S
Tzl —jicA* A eIk (8.62)
dA, _
—P — _ikAA; 4R, (8.63)
dz !

where Ak = k, — ki — ks and the coupling factor « is given by

= 0 [0 V2Zo (8.64)
Moo Ny Mgy 2¢p

For the further treatment, we neglect pump depletion (dAp / dz &~ 0) and assume

p to be positive and real, A = |A | (which can always be arranged by proper choice
of time zero). Under phase matched conditions (Ak = 0) Egs. (8.61) and (8.62) have
the form

m%l

= —jK'A* (8.65)

N

= —jK’A* (8.66)

o
I

where «’ is the normalized coupling coefficient

~ wsw;  Zol,
k' =KkA, =k [1, [ho, = x? [ ——— Z, 8.67
P (] / P X N, e, nwp 26% ( )
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Taking the derivative of Eq.(8.65) and substituting dAl* / dz from Eq. (8.66) we
obtain

A, -
and in analogous way
A -
G KA =0, (8.69)

The solutions of these equations are linear combinations of ¢“'“and e,
~ ’ ’
Ai() = (afe + age™"). (8.70)

To determine the coefficients aF, we use the boundary conditions A(0) = a + a7
and A;(0) = 0 from which follows, using Eq. (8.65), a} — a; = 0 so that

As(l) = A4(0) cosh'l; (8.71)
A; follows from Eq. (8.65)
Ai(l) = —jA*(0) sinh kL. (8.72)

The corresponding photon flux densities are

F, () = F,, (0) cosh’ k'l (8.73)
F,,(I) = F, (0) sinh® L. (8.74)

The quasi-exponential growth pertains as long as pump depletion is negligible
(Fig.8.12). With a pump intensity of 10’ Wem™2, wg; ~ 10°s7!, n = 2, and
1® = 107" mV~!, the gain coefficient is ¥’ ~ 0.5cm™! and the (power) gain
after 2 cm is equal to cosh?(2) = 2.25.

Inclusion of the phase mismatch term modifies Egs. (8.68) and (8.69) to

d2A,
dz? dz
dzAi dAi 2%

o sk A =0, (8.76)

A, =0 (8.75)
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Fig. 8.12 Signal, idler, and
pump photon flux density in a
phase matched optical
parametric amplifier as a
function of the interaction
length; after complete
consumption of the pump,
signal and idler interact to
regenerate the pump wave by
sum frequency generation.
Dotted lines show the result
Eq. (8.71), valid for negligible

Photon flux F

pump depletion
0 Interaction length I [a.u.]
Fig. 8.13 Normalized gain 1.2
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Ak/K
with the solutions
Ayi(2) = (afie"s + agyem"?) eTiAH22, (8.77)

where the modified gain coefficient «” is given by

k" = Kk — (Ak/2)%; (8.78)

note that only real values of k” provide exponential growth. In contrast to SHG,
where any phase mismatch results in an oscillatory dependence of the output power
on the interaction length, parametric amplification allows for a certain mismatch
|Ak| < 2|«’| (Fig.8.13). Outside this interval, the output signals oscillate along
the propagation distance. An inspection of Fig. 8.14 explains the transition from
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Fig. 8.14 Locus of the
signal and idler amplitudes of
an OPA in the complex plane.
In the upper panel, the
straight arrows along the real
and imaginary axis,
respectively, refer to the
phase matched situation,
while the spirals describe
quasi-exponential growth for
small phase mismatch

|Ak| < 2|«’|. Lower panel:
excessive phase mismatch

| Ak| > 2|«’| results in a
closed loop locus and
oscillatory output power; the
numbers indicate equally
spaced points along the
propagation direction
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[As,i(2)[?

Re[As,i]

the amplifying to the oscillating regime. Phase mismatch results in a curved locus
of ;\s,i(z) in the complex plane; different from SHG, where the modulus of the
differential field increment | dA| is constant and the locus, if mismatched, is a circle
(Fig. 8.10), | dAs,i| is initially growing and the trajectory is a spiral within the gain
interval. Outside the gain regime, the curvature is so strong that the idler returns
periodically to zero and the signal to its initial value.
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Fig. 8.15 Optical parametric oscillator (OPO); mirror M is transparent at w, and high reflecting
at wy j, while Mj is high reflecting at w,, and partially transmitting at w;

Energy [eV]
[wr] yibuajanepy

20 25 30 35 40 45 50 .
Phase matching angle [°]

Fig. 8.16 Tuning of an OPO (pump wavelength 355 or 266 nm, respectively) by tilting the
nonlinear crystal: at a given phase matching angle, a distinct pair of signal and idler frequencies
starts to oscillate

In the absence of an input signal, the parametric process can also start from
so-called parametric fluorescence, the equivalent of spontaneous emission; the
emitted photon pairs are “entangled” and can be used for quantum cryptography.
In combination with a resonator, a parametric amplifier can operate as oscillator
(optical parametric oscillator, OPO). To realize an OPO, the nonlinear medium
is placed in a resonator with mirrors that have high reflectance at w; (Fig.8.15);
the pump radiation is usually pulsed. Like a laser, an OPO starts to emit coherent
radiation only above a certain threshold, where the parametric gain compensates
the resonator losses. The oscillator can be frequency tuned by changing the phase
matching angle (Fig. 8.16).

8.2.3.1 Manley-Rowe Relations

Equations (8.61)—(8.63) also allow deriving the Manley—Rowe relations Eq. (8.19)
from purely electromagnetic arguments: multiplication of Eq.(8.61) with ;\f ,
Eq. (8.62) with A¥, and the conjugate of Eq. (8.63) with A, yields

dAS T % dAi s dA; 1
G =g A = (8.79)
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since A,-A;“ is the photon flux density at w;,

dF,, dl,, d(A;A* dA; ~ dA* .
w;j — wj — ( z) — A,* + LAi- (880)
dz hw;dz dz dz

Substitution of Eq. (8.79) and its conjugate, respectively, yields

dF, _ dF,, __dF,, 3

dz = dz dz ’

which is equivalent to Eq. (8.19).

8.2.4 Parametric Frequency Conversion*

In the process of parametric frequency conversion (or frequency up-conversion),
a signal at frequency w; in the IR is converted to a frequency wyis = i + wp,
typically in the visible, by mixing it with an intense pump field at frequency wy,.
Neglecting pump depletion ( dAp/ dz~ 0) and assuming phase matching, the process
is described by

dAjr s e
- —jicAvisAy = —jic'Ayis
dA,; . .
d;ls =] _jKAirAp = —jIC/Air, (882)

where A, is assumed to be real and positive and

K = KA, = KA; = i/ L,/ rp. (8.83)

The two equations Eq. (8.82) can be decoupled

d?A;, 25
a2 + kA, =0
d?Ai 2%
o T A =0 (8.84)

and, with the boundary condition Avis (0) = 0, have the solution
Ai(l) = Air(0) cos k'l
Avis()) = —jAir(0) sink’l, (8.85)
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Fig. 8.17 Photon flux T U L @)
density of the IR-signal (a) 18 D Signal ~~ """ T =
and upconverted wave (b) in a
parametric upconverter

Kz
corresponding to the photon flux densities
Fu (D) = Fu, (0) cos’ &'l (8.86)
vais (l) = Fa)vis (0) Sin2 K/l' (8.87)

After the interaction distance [ = 7r/2«’, all signal photons are converted (Fig. 8.17).
This technique is frequently used in IR-spectroscopy, where fast and highly sensitive
quantum detectors are unavailable, for the detection of very small IR-signals.

8.2.5 Second Order Autocorrelation

The multiplicative capabilities of second order polarization can be used to obtain
the intensity autocorrelation of optical light pulses. For this purpose, a quadratic
nonlinear crystal is inserted in the output of a Michelson interferometer (output 1 in
Fig.4.1). A light pulse launched into the interferometer is split into two replicas
that travel along the two legs; recombination at the beam splitter produces the
superposition o« E(f) + E(t — 1) of the two replicas, delayed in respect to each
other by the time = 2As/cy, where As is the (adjustable) length difference of the
legs. The nonlinear crystal produces a second harmonic field proportional to [E(7) +
E(t— r)]z; after removal of the fundamental radiation by a filter, a (slow) detector
operating as integrator measures the SH pulse energy [ \[E O+ E@t—1) |2 dr.
For an analysis of the output, we adopt a complex notation E o [A(¢)e" +
A*(t)e™1°"] where the pulse envelope A(f) is normalized such that I(f) = A(f)A*(¢) is
the momentary intensity; note that A(f) is complex and can include a time dependent
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phase. The output fluence then is
D(7) = / 1) + I(t — 7)*dt
+4/[I(t)[(t— 7)]dr
+4 / [1(t) + I(t — T)]Re [A(t)A*(t _ t)ej"”] dr
+2 / Re [A*(1)(A*(t — 1))*e?7] df; (8.88)

the integral has to be taken over several pulse durations. After multiplication with
the beam cross section, this is the SH energy resulting from a single input pulse for
a given delay time 7. To measure the entire correlation function, a train of identical
pulses is launched into the interferometer and the output is recorded as a function of
; the result for a Gaussian pulse is shown in Fig. 8.18.

The first term in Eq. (8.88) is a constant offset @y and can be used to normalize
the output; @(7)/®Py oscillates between ~0 and 8. The second term represents
the intensity autocorrelation. The third term in Eq.(8.88) is the amplitude auto-
correlation multiplied by a t-dependent factor, and the fourth term is the SH
amplitude autocorrelation. Equation 8.88 is called interferometric autocorrelation;
it is sensitive to a time varying phase of the amplitude, i.e., to a frequency chirp
within the pulse (see Sect. 3.2.1.6).

(@) 1 T T oo T T (b)g T T S T T
0.8 I 1 7L A0 i
0.6 il . i
| 6 | \ _
0.4 v - / \
0.2 \ . °r i
0 1T TE— 4t \ .
-0.2 1 3k } \ _
-0.4 — ' )
2F / \ B
-0.6 1
-08f . ! o ’
I I I I I 1 I I

-1 L 0 1
-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15

Fig. 8.18 A Fourier limited Gaussian pulse and its interferometric autocorrelation: (a) electric
field (solid line) and intensity envelope (dashed line) of the pulse, (b) output of second order
autocorrelator (solid line); note that the envelope of the interferometric autocorrelation deviates
from the intensity autocorrelation (dashed line); interpretation of this deviation allows for an
analysis of the possible chirp of the pulse. Averaging over the interference fringes provides the
exact intensity autocorrelation, offset by 1 (dotted line)
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If the delay t is scanned so rapidly that the detector cannot resolve the oscillating
terms three and four, taking the time average instead, the normalized output signal
reduces to

®(1)/Po=1+2 / (Ot — 7)] dr, (8.89)

which is the exact intensity autocorrelation, offset by 1.

It is not possible to completely reconstruct the pulse envelope A(f) from the
intensity or interferometric autocorrelation, because there is an infinite manifold
of wave functions yielding the same autocorrelation; with numerical means and
physical intuition, however, pulses can be constructed that reproduce the measured
interferometric autocorrelation function.

An extension of this technique is frequency resolved optical gating, where in
addition to the SH pulse energy its spectrum is recorded as a function of the delay
time (Trebino 2000). This allows for a complete temporal reconstruction of the
electric field of a light pulse, with exception of the carrier envelope phase.

8.3 Third Order Processes
8.3.1 Third Harmonic Generation

The third order nonlinear susceptibility is a fourth rank tensor; the symmetry
properties of the medium determine which of the coefficients are equal to zero
or linear combinations of other components. In contrast to the second order
susceptibility, all symmetry classes allow for non-zero elements; isotropic and
centrosymmetric media such as glasses, gases, and liquids exhibit the non-vanishing
components x\, XS,),’ Xﬁ;’ and Xj‘;‘)j’ i = 1,2,3,i#j. The following discussion is
limited to such materials.

We first discuss the case of a monochromatic input field, linearly polarized along

the x-axis. The nonlinear polarization is then parallel to the input field
P(ls)(f) = SOX(131)11E?U)’ P(zs,)s =Y (8.90)
and we can adopt a scalar formulation x§},, =: x®
PO(t) = eo P E*(r). (8.91)
With

E(t) = !

3 [E(a))e”‘” + C.C.] (8.92)
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we obtain

(3) 1 D) jot 1 D) 3wt

P (t):E[P (w)e! + c.c.]+§[P (Bw)e’™ + c.c.]. (8.93)

where

PO(w) = %80)((3)E(0))E(a))E* (w) (8.94)

PY(Gw) = %80 1 PE(w)E(w)E(w). (8.95)

The polarization at 3w (Fig.8.19a) serves as a source term for third harmonic
generation (THG) in a similar way as we have seen in SHG. THG is a possible
process to produce coherent radiation in the UV, where lasers are difficult to operate.
If the phase matching condition k3, = 3k, is met, the TH field grows linearly
(and the TH-power quadratically) with the propagation distance; the conversion
efficiency scales quadratically with the input power.

One term that has no counterpart in quadratic nonlinearities is the nonlinear
polarization at the fundamental frequency (Fig. 8.19b). This term gives rise to the
intensity dependence of the propagation index, the so-called Kerr effect.

8.3.2 Optical Kerr Effect
8.3.2.1 Self Phase Modulation

Driven by a monochromatic field, the combined linear and cubic polarization at the
fundamental frequency w is

P) = cor"E(@) + JeorE@) [E@)E* )]

3 Bz ~
— & [x(” + in 01(1,} E, (8.96)

3w w I S
3hw| — —_— hw hw — hw hw | —»

hw hw

Fig. 8.19 Photon diagram of third harmonic generation (a), optical Kerr effect (b), and two-
photon absorption (c)
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where the electric field amplitude is expressed by I = nEE*/2Z,. This is equivalent
to an effective susceptibility

3Z,
1D = g0+ Ax =0+ 2001 (8.97)
where yo = y" is the susceptibility at very low intensities. The small nonlinear con-
tribution to the susceptibility gives rise to a modified propagation index [Eq. (2.74)]

1 1 3y9Z
n(l) ~ no + — Ax(l) = no + — X201 (8.98)
2ng 2ng  2ng
with ng = 4/ xo + 1. This can be written as

where

_% (3)

= 8.100
4n5 ( )

np:

is called nonlinear propagation index. Typical values for n; in glasses are between
1072° and 107 m>W™!; silica (SiO,), for example, has an ny-value of 3.2 x
1072 m>W~!. According to Miller’s rule Eq. (8.28), y scales with (n*> — 1)*, and
optically dense media consequently have relatively large n,-values: lead glasses with
a propagation index in the range of 2.4 exhibit n-values above 1078 m>W~1.

The change of the propagation index results in a phase change

Ad = nokold (8.101)

of the wave, where d is the propagation distance. This effect is called self-phase
modulation (SPM) and is proportional to the intensity of the field. Impor-
tant manifestations of SPM are the Kerr lens (Sect.3.1.3.4), spectral broadening
(Sect. 3.2.2.1), and soliton propagation (Sect. 3.2.2.2).

8.3.2.2 Cross Phase Modulation

We now extend the discussion to polychromatic (yet linearly polarized) fields with
discrete frequencies w;

E() = % [Z E(w)e™" + c.c} ; (8.102)
i=1
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the resulting nonlinear polarization comprises a total of (2m)? terms of the form
g0V E® () E™ (w)) E® (wy)elE@1EeiEe0  of which we only consider the terms
oscillating at w;

PY(w)) = %80 x® |:E(a)1)E* (@) +2) E(a)i)E*(a);):| E(o1)

i=2

=: g0 AyE(w)). (8.103)

The resulting propagation index is

n=ng + noly, + 2n; le,.. (8.104)
=2

In addition to the self-term Eq. (8.96), the susceptibility (and the propagation index)
is also modified by a term proportional to twice the sum of all other field intensities;
this effect is called cross phase modulation (XPM).

XPM can be used to influence light waves by light (all-optical devices). It
also is responsible for cross talk in wavelength division multiplexing in optical
communication fibers.

8.3.2.3 Nonlinear Polarization Rotation
Elliptically polarized light exhibits, in any cartesian coordinate system, two orthog-

onal field vector components, so that not only X(131)11 but (in isotropic media) also XSJL,

X and i, i #j, come into play; for symmetry reasons, xu + Xy + X = Xin
and XSJL(a) =w+ow—-—w)= )(f;; Assuming propagation along z, E3 = 0, and the

polarization at the fundamental frequency is

3 3
- 6 - - - 3 - - -
APi(0) = 2e0XinEi@) Y E(@)E (@) + Je0x B (@) ) Ej@)Ej(w).
J=1 j=1
(8.105)
which is equivalent to

5 6 - -k = 3 ..
AP = Zeoxiin(E-EDE + Zeoxiy (E-E)E”. (8.106)

In general, this contribution to the polarization is not parallel to the driving
field; this means that the nonlinear interaction modifies the polarization state
during propagation. An exception is circularly polarized light that turns out to be
an eigenstate of the isotropic Kerr medium. We thus use a circularly polarized
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base [Eq. (1.78)]

E=ETet +E 0, (8.107)
AP = APYot + AP 0™ (8.108)

where

1 1
+
ot = —| 1 (8.109)
V2 [iJ}

with the properties (60%)* = 0F,0t 0t =070~ =0,andot 0" =0"0" = 1.

In this base, the nonlinear polarization components are

6 _ -
APT = oo [ (BT + 1ETET 4y (ETEE™"]
= 280 L (ETP + [E71) + 2 [ET P ET =:e0 AT ET,
_ 6 _ _ S
AP” = e o [XVnUET P+ |ETP) + a0 |[ETP]E-=te0Ax"E~.  (8.110)

These relations are scalar, implying that the circularly polarized states o are propa-

gation eigenstates (compare optically active media Sect. 2.4.1) with the propagation
indices

N 37,

nt a~ng+ — o > 0T+ 1) + x50 7], (8.111)
0

where It = nETE**/27,. While the values of E* and thus the ellipticity
Eq. (1.131) is not altered by the Kerr effect, the difference

37
nt—n = 2 A0 (I~ = 1) (8.112)

results, according to Egs.(1.90) and (1.124), respectively, in a rotation of the
polarization ellipse by the angle Ap = (n™ — n™)kod/2, where ko is the wave
number; the effect is known as nonlinear polarization rotation. In combination with
a polarizer, the (intensity-dependent) polarization rotation can be used as intensity
discriminator, similar to the setup shown in Fig.7.23, and is employed for mode
locked operation of fiber lasers [see, e.g., Fermann and Hartl (2009)].

For linearly polarized light (I~ = I'" =: I/2), the eigenstates are degenerate
and Eq. (8.111) reduces to Eq. (8.98) because of )(S;I + )(i;,)] + )(i-;,- =y} Linearly
and circularly polarized light, respectively, experiences SPM without change of the
polarization state.
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8.3.3 Third Order Parametric Amplification

OPA is also possible in the absence of a quadratic nonlinearity y@, i.e., in
(centrosymmetric) media such as glass. This is of particular interest in glass fibers
that can provide high pump intensities over a long interaction length.

Similarly to OPA in quadratic media, a strong pump wave (wave vector Kk,
frequency wp) interacts with a signal wave (k,, w;) and an idler wave (k;, w;). In
the following we assume codirectional propagation of all waves (as it is the case
in fibers) and linearly polarized waves (allowing a scalar treatment). For the three
waves we set

1~ it s 12— o
Epsi(z,1) = 5 [Apsi(@)e itosizmensil) e e ] (8.113)

The nonlinear polarization has components at w5 ; with the complex amplitudes

- 3 ~ o~ . -~ o~ ~ .

Pf’(z, wy) = Z80)((3) [2|Ap|2Ase_Jksz + ApApAi*e—J(ka—ki)z]

- 3 - o~ o~ o~ .

PGz w) = Zeox” [21A,PAie 7 + ApApATe 7]

p® 3 ONA 124 a—ikpz

P (z,0p) = 280X |Ap|"Ape %, (8.114)
where we have tacitly assumed that

ws + w; = 2w, (8.115)

and terms proportional to ASAi* have been neglected as of second order (no pump
depletion). Thus, signal and idler appear as symmetric side bands of the pump
frequency,

wsi = wp £ (w5 — wi)/2; (8.116)

at the entrance of the medium, the idler wave amplitude is usually zero and is built
up only during propagation.

Within the slowly varying envelope approximation [compare Eq.(8.38)], we
obtain coupled differential equations for the development of the complex amplitudes

0 ~ 3w - o~ el

—A, = —i—— ¥ [2|A,|?A, + A, A A*eTAK

% e [214, A, + A A, AT e 4]

O A = SO0 [21 2 + Apd A ]

0z 8Coru, B

d ~ . 3w - o

7270 = Tiegn, 1 Vel 6.117)
Wp
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with

Ak:=2ky — ks — ki. (8.118)
To simplify matters, we choose the time zero point such that ;\p is real and positive

so that |Ap|2 = Ag, and assume the frequencies w;;, to differ only slightly, which
allows us to introduce a common coupling coefficient «’

3w ~
o 2 1A% (8.119)
Conwp

this can be expressed, with the help of Eq. (8.100) and I, = n|Ap|2/ZZO, as

IC/ = nzlpko. (8120)
Our system of equations then is

9 - N L
—A = —j2u’ A — ji'AFe 4k
dz

a%ixi = —j2u’A; — ji’ Are Ik (8.121)
d - .
B_ZAP = —jk’'Ap. (8.122)
With the substitution
A =Alge ™ Ay =Ae T, (8.123)

the system can be cast in the form

d - o
A = —jK A} eIk (8.124)
Z
9 - ik
a—ZAi = —jk'Alje (8.125)
J ~
A =0, (8.126)
Z

where

Ak = Ak — 2« (8.127)
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The transformation Eq.(8.123) incorporates pump-induced SPM and XPM
[Eq. (8.104)] in the modified wave vectors

K= ko426, Ky=hkp+ K. (8.128)

Accordingly, the phase matching condition is changed to
Ak = 2k;, —ki—k =0. (8.129)

Elimination of one of the two fields Egs. (8.124) and (8.125) yields

0% - d - ~
a_zzA/“ + jA/ka—ZA/S,i — kA =0 (8.130)
with the solutions
Ai(z) = (a;fie’(”Z + a;ie_’(”z) eIk (8.131)

where

k"= k2 — (A'k/2)2. (8.132)

The coefficients aifi are determined in the same way that led to Eq. (8.71) and result
in

- - Ak A
Aly(z) = A5(0) (cosh/c"z iz sinhlc”z) e IAk/2)z, (8.133)
K
The signal power is proportional to
» - Ak
IA%2(2) = JA ) [ 1+ [ 1= W sinh?«"z | . (8.134)
K

According to the Manley—Rowe relations Eq.(8.19) (and using ws ~ wj), the
measure for the idler power is offset by —|A’s(0)|%:

1712 A7 2 A/kz : 2 I
|A%]7(z) = |A%(0)]° | 1 — o sinh” k"'z. (8.135)
K
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The above solutions are valid if «” is real, which implies [Eq. (8.132)]
K"* = (Ak/2— k)2 >0 (8.136)

or

0 < Ak < 4K’ = dnykol,. (8.137)

Outside this range, one obtains oscillatory solutions. Figure 8.13 shows the normal-
ized gain coefficient k”/«" as a function of Ak/k’; the maximum gain coefficient
appears at Ak = 2k’

k! =K' = nokoly. (8.138)

max

With ny = 3.2x1072° m*W—!, we obtain «”

! 21, x2x10713 W™ m at a wavelength
of 1 pm for silica.

8.3.4 Two-Photon Absorption

The cubic susceptibility ¥, and thus the effective linear susceptibility Eq. (8.97),
can assume complex values. According to Eq.(1.65), the imaginary part of the
effective susceptibility is responsible for transfer of energy from the light field to
the material (absorption); this happens whenever one of the involved frequencies
coincides (within the relevant line width ) with a resonance frequency of the material
(Fig. 8.19c). If the SH (or SF) of the incoming waves is resonant with a transition,
the process is called two-photon absorption (TPA); note that in the absence of linear
absorption at @, the medium is transparent at low intensities.

According to Eq.(2.75), the imaginary part of the susceptibility results in an
imaginary component of the propagation index

RVA
—ZIm|y®]1I, 8.139
po [x] (8.139)

&

which allows us to define a TPA coefficient [compare Eq. (2.71)]
3Z,
OTPA = 2Kk0 = —koz—glm [)((3)] I=: ,BTPAI- (8140)
"o

The total, effective absorption coefficient is

Ot = & + Prpal, (8.141)
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where Brpa is usually given in [cm/GW]. Silicon, for example, exhibits a
Brra=1.5cm/GW at a wavelength of 1.064 pm. It is common to introduce a TPA
cross section orpy which is related to Srpa by the volume density N of absorbing
molecules:

Brpa = Norpa/hw; (8.142)

o1pa is frequently given in units of 1 GM = 107" cm*s (1 Goeppert-Mayer).
For TPA, the absorption “law” Eq. (2.70) does not apply; from

dI
o = —Pml’ (8.143)

we find

1(0)

10 = T 70

(8.144)
if linear and TPA has to be taken into account, the attenuation is given by

1(0)
e + 1(0)(Brpa/) (e — 1)’

I(z) = (8.145)

as can be verified by differentiation.

TPA has a number of important applications that usually rely on the fact that in
the focus of a laser beam the probability for TPA is strongly enhanced. Following
the simultaneous absorption of two photons, the excited molecule can decay under
spontaneous emission of a photon (two-photon fluorescence), a process that is used
for scanning microscopy, where the focus of a pulsed laser is scanned in a three-
dimensional fashion through the sample (for example, a biological tissue). Since the
emitted fluorescence light originates only from the small focal volume of the tightly
focused beam, three-dimensional pictures with a resolution below the fundamental
wavelength can be obtained. In a somewhat similar technique, two-photon excited
molecules can polymerize; within an originally liquid phase, solid features can be
generated by scanning a laser focus through the medium (rapid prototyping). In
semiconductors, TPA can be used to realize intensity correlators and power limiters,
respectively, provided that iw < E; < 2hw.

8.3.5 Raman Amplification

The polarizability of molecules generally depends on the molecular bond lengths.
Provided that this dependence is linear, the susceptibility of an ensemble of
molecules vibrating at §2, consequently exhibits a component oscillating at this
frequency, and the polarization induced by a light field of frequency w, shows
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side bands at w, — £2, (“Stokes line”) and w, + £2, (“anti-Stokes line”). The
emission of frequency shifted light by the polarization side bands is called Raman
scattering and provides a valuable spectroscopic tool because it allows determining
the characteristic vibrational resonances of the molecule.

The vibrational resonance frequencies §2, of a molecule are much lower than
typical electronic resonance frequencies since the vibrating atoms are much heavier
than the electrons. Raman scattering is usually rather weak, because the thermal
excitation of molecular vibrations is low at room temperature. However, the
molecular vibrations can also be optically driven and become substantial. For this
purpose, the molecular sample is exposed to a superposition of a pump wave at
wp and a “signal” wave at w;, such that the beat frequency w, — w is close to the
vibrational resonance frequency £2,. The resulting molecular vibrations generate a
Stokes side band w, — (w, — w;) of the pump wave that coincides with the signal
frequency and is capable of amplifying the signal wave. This so-called stimulated
Raman scattering is the basis of Raman amplification.

To understand the driving process, we start from the force acting on the molecules
in the presence of an electromagnetic field. The dielectric energy density of a
medium with susceptibility y is W = g0eE?/2 = eo[y + 1](E?/2), where
x(q) is assumed to depend on a representative intramolecular coordinate g. A
displacement Ag results in a change of the energy density of AW =(dW/dq)Ag=
e0(E*/2)(dy/ dq) Aq. Thus, the force F = AW/ Agq of the electromagnetic field on
a molecule is

F = go(E?/2)(dE/ dg), (8.146)

where £ = y/N is the polarizability and N is the volume density of molecules; the
temporal average is taken over a cycle of the light field, which is short in comparison
to the molecular vibrational period. Note that no static dipole moment is required
for this interaction, so that symmetric molecules such as H, or O, can be Raman
active.

The superposition

1.~ . - .
E(t) = 3 [E(wp)e!™" + E(w)e™ + c.c.] (8.147)
produces an oscillating force

F(t) = %eo(dé/ dq) [E(wp) E* (05)el ™) + c.c.] (8.148)

on the molecules. Describing the molecule as a linear oscillator driven by this force,
we obtain the equation of motion

G+ g+ Qg = F(t)/m (8.149)
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where m is the effective mass. With the ansatz g(t) := % [éej(wp_“’s)’ + c.c.], we get
the complex displacement amplitudes

£0E(wp) E* (w,) (dE/ dg)

. 8.150
m[22 — (wp — w5)? + jT(wp — wy) ] ( )

Y
Il

The displacement ¢(7), multiplied with N(d&/ dg) yields the alternating component
x(2) of the susceptibility,

1. d
10 =3 [Gel ™) + c.c.]Nd—g. (8.151)

q

The incoming pump field generates the cubic nonlinear polarization &y y (¢) E(t) that
has a frequency component at w;

£3N(dE/ dg)? E(0p)E* (0p) E(wy)

D3) —
PO (wy) = am [22 — (0p — 0)? — T (wp — wy)]

s g0 AxE(ws). (8.152)

Depending on the relative phase, this polarization wave can amplify or attenuate
the signal wave at ws. Note that phase matching is automatically provided in this
process since k, — k;, + k, = k.

Comparison with Eq. (8.103) allows us to describe the stimulated Raman effect
by a third order susceptibility

2Ax
3E(wp) E* (wp)

3. __

A= (8.153)

with the complex value

3) SON( dég'/ dCI)z

ARn = - = Re XGL + jIm XGL s
B m [ 22 — (wp — ) = [V (@p — )] [13a] [ ko]
(8.154)
so that the effective susceptibility at wy is
3Z
X= 20+ ey (8.155)

The real part of this susceptibility represents a XPM of the signal by the pump
(Kerr effect Sect. 8.3.2), i.e., a change of the real part of the propagation index. The
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imaginary part plays a role similar to the imaginary part of the propagation index
[see Eq. (2.75)]

37
2né

r —

Im [ xxn] Ip- (8.156)

Since, however,

Im [ (3)] _ goN(d&/ dCI)ZFV(wp — )
TRl = G (22— (@, — 002 + 2wy — )]

(8.157)

is positive in the Stokes regime ws < w,, k and accordingly the absorption coefficient
Eq. (2.71) turn negative, which is equivalent to amplification of the signal wave with
the Raman gain coefficient

37
Yin:=—2kcko = ksn—;)lm X211 (8.158)
0

The maximum gain is provided at w; ~ w, — §2, and the gain bandwidth is
given by I (Fig.8.20). The Raman gain coefficient for SiO, is 1071* W~'m/,,
somewhat smaller than the OPA-value (Sect. 8.3.3); CS, shows a particularly large
value (about 30 times larger than SiO;). The Stokes shift 782y is 57 meV in SiO;,
the bandwidth is about 2 meV. Raman fiber amplifiers are attractive alternatives to
EDFAs (Sect. 5.3.5), since they can amplify arbitrary wavelengths, and in particular
the 1.55 wm telecommunication band (see, e.g., Islam 2004). They do not require

0.5
g
£ 0
~
£ \
&
0.5
1
3 ) 1 0 1 2 3
(ws —wp)/ 82

Fig. 8.20 Frequency dependence of the Raman gain; peak amplification is provided at w; ~
wp — 82y
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any modification (doping) of the transmission fiber; due to the small mode diameter,
sufficient pump intensity can be obtained at a moderate pump power.

8.3.6 Brillouin Amplification

In contrast to the Raman effect, which is the interaction of light with the vibrations
of isolated molecules, Brillouin scattering is the interaction with acoustic (compres-
sion) waves propagating in a medium. A compression wave is equivalent to a density
wave, and eventually to a propagation index wave, because the propagation index
depends on the density of the medium. Such a wave acts like a dielectric multilayer
system that travels through the medium at the speed of sound. Light that is scattered
by such a wave is frequency shifted because of this motion.
The frequency £2 and wave number K of an acoustic density wave

1 .
p=po+3 [pe 1K 2D 4 c.c] (8.159)

obey the dispersion relation

$2 (8.160)
— = Vak, .
K k

where vy is the acoustic phase velocity with typical values of 10°...10*m/s in
solids and liquids. Since the acoustic phase velocity is many orders of magnitude
smaller than the velocity of light, an acoustic wave with a wave number comparable
to that of a light wave has a frequency that is many orders of magnitude smaller than
the optical frequency.

Acoustic waves are always present in a medium in the form of thermally excited
phonons. Scattering of light from these waves is known as spontaneous Brillouin
scattering. Similar to molecular vibrations in Raman scattering, acoustic waves can
also be driven by electromagnetic waves through the process of electrostriction.

To calculate the electrostrictive pressure p., we start from the electric contribu-
tion &g yE?/2 of the energy density [Eq. (1.52)]. Changing the density p (and thus
the susceptibility y) of the medium results in a change of the energy density by the
amount

goE? 0y
— = Ap, 8.161
2 9 p ( )

which is equal to the corresponding mechanical work per unit volume p% =

—p%. The electrostrictive pressure is therefore proportional to the square of
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the electric field

goE? pdy goE?
U ol Gl 8.162
Pe 2 o Ve ) ( )
where
d
ve =% oy (8.163)
dp

is the electrostriction coefficient; the approximation is valid if we assume the sus-
ceptibility to be proportional to the density, so that dy/x = dp/p. A superposition
of electromagnetic waves

1 .~ . - .
E(z.1) = 3 [E(wp)e 1 ®x7) 4 E(wg)e ™00 4 ¢ ¢ ] (8.164)

gives rise to a pressure field Eq. (8.162) that contains a component at the difference
frequency wp,—w

% [E(wp)E* (a)s)e_j[(kp_k“)'x_(’”l’_w“r] + c.c.] (8.165)
which can couple to acoustic phonons of frequency §2, provided that the correspond-
ing wave vector kK, — k, matches the acoustic wave vector K. For co-propagating
electromagnetic fields, this condition cannot be met, since k, — ks ~ (wp—ws)/c K
K = £2/va. We therefore assume counterpropagating signal and pump waves with
wave vectors k, = [0,0,k,] and k, = [0,0, —k] (Fig.8.21), so that the phase
matching condition is K = k, + k; since the acoustic and optical wave numbers
K and k, s are now of the same order of magnitude, the acoustic frequency £2 must
be smaller than the optical frequencies by a factor on the order of v, /co, implying
wp &~ ws and k, ~ k;. At a given pump frequency wy, the matching acoustic wave
number can therefore be approximated by

Dp
Kpn = ky+ks ~ 220, (8.166)
Co
ks kp
K

Fig. 8.21 Wave vectors of a pump wave with frequency w,, a counterpropagating signal wave
(also called Stokes wave) with frequency ws < wp, and an acoustic wave of frequency £2 and wave
vector K in a Brillouin amplifier
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where 7 is the propagation index at wp. The corresponding acoustic frequency

b0 = 20,51 (8.167)
co

is called Brillouin frequency; in contrast to the frequency 2, characterizing the
Raman effect, §2p, is not a resonance frequency, but the acoustic frequency at which
phase matching between the electrostrictive pressure wave and phonons is possible.

The wave equation of an externally driven acoustic compression wave can be cast
in the form (see Starunov and Fabelinskii 1970)

9 0
S5 IV =0V = Vip. (8.168)

where p(z,f) is the local mass density and I" denotes the acoustic damping
coefficient; we simplify the equation by assuming that the complex amplitude is
stationary, dp/dt = 0 and homogeneous, dp/dz = 0, which is reasonable since the
strong attenuation of acoustic waves in the relevant frequency regime prevents the
acoustic amplitude from building up during propagation. According to Eq. (8.162),
the driving term in Eq. (8.168) is given by

Pe(2) = —YesoE(0p) E* (5)/2. (8.169)
Substituting Eq. (8.159) with K ~ Kg, and using v K>~ 2} , we obtain

L YeE . s
(-2 + KA T2 + Q%) 5= VZOKﬁnE(wp)E* (@s) (8.170)

or

yeto ., E(wp)E* (@)
2 P2 22420,

5= (8.171)

where g, = Kﬁn[' . With Eq. (8.163), this corresponds to a “susceptibility-wave”

Ye
Po

1 .
Aye = 3 [pe 1520 ¢ c.c] (8.172)

The interaction of the pump wave E(w,) with this susceptibility generates a cubic
nonlinear polarization at w;

y2e2K2, E(wp)E*(wp)E(w;)
2p0 Qén_gz_j‘QFBn’

p@)(ws) — (8.173)
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which is formally equivalent to the stimulated Raman polarization Eq. (8.152). We
therefore can introduce the complex nonlinear susceptibility

y = £0¥e Ky
B 300 [Qén — (wp — ws)? — jTBn(wp — ws)]

(8.174)

with the imaginary part

22
5 £0Ye Ko I Ba(wp — ws)
Im 5, ] = o e (8.175)
3'00 [(‘QBH (wP wS) ) + FBn(wp (1)5) ]

and define, analog to Eq. (8.158), the Brillouin gain coefficient

37
Vn = ksn—;)lm X ] 1; (8.176)
0

the frequency dependence of the Brillouin gain coefficient follows Fig. 8.20, with
£2, replaced by £2p, and I, by I,

The treatment of Raman and Brillouin amplification given above is valid only in
the small signal approximation; in general, the back-action of the signal wave on the
pump has to be included.

8.3.7 Phase Conjugation*

Consider the monochromatic signal wave
~ . 1r-~ .
Ei(x,7):=Re [Es(x)e]“”] =3 [Es(x)e]“” n C.c.] : (8.177)

where E,(x) is a solution of the Helmholtz equation (1.22). Then the so-called phase
conjugate wave

E.(x,7) = Re [E: (x)ej“”] = % [E: (x, w)e" + c.c.]

1r-~ .
— _ —jot
. [Es(x, w)e T C.c.] (8.178)

is, of course, also a solution. As the above equation shows, the phase conjugate
wave is formally identical to the time reversed signal wave; a phase conjugate
wave can therefore be visualized by running a movie of the signal wave backwards.
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A device that can produce such a wave acts like a mirror that reflects the signal
wave back into itself (while a conventional mirror just reverses the direction of
propagation, Fig. 8.22) and is called phase conjugate mirror (PCM). A diverging
wave, for example, after reflection at a PCM is converging again; while circularly
polarized light changes its sense upon reflection at a conventional mirror, the phase
conjugate wave maintains the sense of rotation. The most important application
of such mirrors is the compensation of phase front aberrations of waves passing
through an inhomogeneous medium, such as a thermally stressed laser crystal: if
a wave is reflected at a conventional mirror and passes the same medium again,
the phase distortion is doubled, while after the reflection at a PCM, the distortion is
reversed by the reflection and compensated during the second pass (Fig. 8.23). Laser
resonators that consist of a PCM and a conventional mirror are therefore insensitive
to phase distortions in the gain medium.

The generation of a phase conjugate wave relies on a phase conjugate polar-
ization in a (nonlinear) medium. A possible realization, based upon the cubic
susceptibility y, is described in the following; for simplicity, all waves are
assumed to be linearly polarized in the x direction. In addition to the signal Eg(w),
the medium is irradiated by two intense, counterpropagating pump waves

1r~ .
Epi = [Apaeitosron 4 e ] (8.179)

with wave vectors kp; = —k,_ and the same frequency w as the signal. The signal
wave is described as a plane carrier wave with wave vector kg

1.~ )
B = LA 4 ] (8150

Fig. 8.22 Comparison of a
conventional mirror (a), and a (a) (b)
phase conjugate mirror (b),
shown for the reflection of a
spherical wave
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(@) ™ (b)

Fig. 8.23 Compensation of phase front distortions after a double pass through an inhomogeneous
medium and reflection at a phase conjugate mirror (a); the same setup with reflection at a
conventional mirror gives rise to doubled distortions (b)

and a spatially varying complex amplitude A (x). The cubic polarization P®(w)
includes a term proportional to

Ap Ay Are M Ho——kox—or] (8.181)

where k; . and k;7 are the pump wave vectors modified by SPM and XPM. This
polarization acts as a source for the phase conjugate wave, provided that k; L+

k,_ = 0, which requires that |Apy| = |Ap_|.
Once the process gets started, the newly produced phase conjugate field

E.(x) = A (x)e T (8.182)

also participates in the interaction and contributes to the signal wave, since the
conjugate of the conjugate is the signal. The total field

E:=E,y +E,_ + E;+E. (8.183)
generates, according to Eq. (8.91), a number of different terms, of which we collect

only those with an e™**_carrier that can act as source terms for the signal and phase
conjugate waves, respectively:

-~ 3 _ » 5 5 _ ~ _ '
PO (w) = 580)(“) [V 124, + Ay %A + Ay Ap A2]e b

- 3 _ _ _ _ L '

PO(w) = anxu) [ApsPAc + |Ap_[PAc + Apy Ap AX] e (8.184)

in the summation, terms that contain the factors AS,C or ;\fc more than once have
been neglected, since these amplitudes are assumed to be much smaller than the
pump amplitudes.
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Similar to Eq. (8.38), we obtain differential equations for the development of the
fields As ¢

d ~ Jjw ~ ~ . e e s
3_ZAS = —m)((g) [(|Ap+|2 + |Ap—|2)As + AerAp*A::I
0 ~ Jjw N T T
a—ZAC = Jeon. XO [UAps P + |Ap-|)Ac + ApAp-AT ], (8.185)
where ks = —k. = wn,,/co was used. Introducing the coupling factors
3w & N3 12 72
Kxpm 46'071 X (|AP+| + |AP*| )
3w 55 5
Kpem 1= X AprAp—, (8.186)
CoNny

these equations assume the form

d ~ . -~ -

8_ZAS = _]prmAs _]KpcmA;k

o

3_ZAC = JKxpmAc + JKpemAs - (8.187)

The XPM of the signal and phase conjugate, respectively, by the pump is represented
by Kxpm and can be included into the complex amplitudes by the transformations

Ag=:A/ e Toomz A =: A/ elwm? (8.188)
which is simply a modification of the wave vectors according to Eq. (8.104). In this
way, (8.187) assumes the form

0 ~ ~
—As = _ijcmA/:

0z
o . o
8_zA c = ]KpcmA s * (8.189)
Differentiation of the first equation and using 8%/{’ : = —j/c:m/{’ s» We obtain
9% - 5~
—As + |Kpcm| Ay =0 (8.190)

972
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Fig. 8.24 Degenerate four Apy
wave mixing as a source for a
phase conjugate wave
Asg ——>—>
Ac <
Ap_
z=—1 z2=0
with the solution
A~’S(z) = C;sinkz + C,coskz
: jo . L
A (z) = ——a—A’S = —jCicoskz + jCysinkz, (8.191)
K 0z
where Kk = |kpem|. In the configuration Fig.8.24, the boundary conditions are

As(—l) = As,in and ;\C(O) =0,sothat C; = 0and C;, = A~’S,m/ coskl. The output
amplitudes are then

= = = 1
As,out = AS(O) = A/s,in_
coskl
Ac,out = Ac(—l) = A/s,in tan k/; (8.192)

the process not only produces a phase conjugate signal but can also amplify the
incoming signal.

8.4  Electro-Optic Effects

In the framework of nonlinear optics, electro-optic effects (Sect.2.3.4) can be
understood as a mixing of electrostatic and optical fields. The Pockels effect,
for example, is a manifestation of the quadratic susceptibility y@; similarly, the
quadratic electro-optic effect relies on the cubic susceptibility x®. Other nonlinear
optical effects that involve static fields are optical rectification (where a dc-field is
generated by a nonlinear optical process) and electric field induced SHG, where a
static electric field breaks the symmetry of a centrosymmetric medium (Sect. 8.4.3)
and allows for quadratic nonlinear effects that are symmetry forbidden in the
absence of the dc-field.
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8.4.1 Linear Electro-Optic Effect

Consider a monochromatic optical wave in a quadratic nonlinear medium that is
subject to an electrostatic field E®°; the total electric field is then

1r-~ .
E() = E*+ 3 [Bl@e o 4 cc] (8.193)

and contains frequency components at w; = 0 and w, = w. According to Eq. (8.6),
the resulting polarization P + P® comprises frequency components at 0, w, and
2w. The SH-component was dealt with in Sect. 8.2.1; here, we concentrate on the
polarization contributions at @, with the complex amplitude

P(w) = cox"E(®) + 0 x*E*E(w) = & [x" + X(Z’Edc] E(w). (8.194)

This is equivalent to a field dependent linear susceptibility y (E%*) = x© 4+ y@E%
with the tensor components

X E) = 2 G (8.195)

y

The permittivity € = 1 4 y therefore changes by
Ae = yYE%, (8.196)

Thus, the static field induces or changes the crystal anisotropy, depending on the
direction and magnitude of the electrostatic field; in particular, an optically isotropic
(but non-centrosymmetric) medium such as GaAs can become birefringent.

For historical reasons it is common to describe the electro-optic effect as a Taylor
expansion of the impermeability tensor n = ™! [Eq. (2.124)]

ni(B%) = nff + rc B + ... (8.197)
or
Ay = rE®. (8.198)

As a third rank tensor, rj; vanishes in centrosymmetric media [Eq.(8.3)].
Table 8.4 shows electro-optic coefficients of important materials. Because of ; =
nji, We can set ryx = rjy, and the first two indices of rj; are usually contracted
according to Table 8.2.

To relate r and y®, we use the approximation

N(EC) = 9’ + An = [¢* + Ae]™!
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Table 8.4 Electro-optic coefficients of selected materials; also listed are the propagation index
and the dc-permittivity

Material Symmetry Ttk (1072 mV—!] n gde

KDP KH,PO, 42m ra1 = 8.6 1.5 £1100 = 42
res = 10.6 £33 = 21

Lithium niobate LiNbO;3 3m rz = 9.6 2.2 g1102 = 78
Iy = 6.8 £33 = 2132
r3z = 31
rs1 = 33

Gallium arsenide GaAs 43m rg = 1.1 33 e=13

~ [80]_1 _ [6‘0]_1A€ [80]_1

=1"—9"Aen’, (8.199)
so that
Anp = —p’Aey’ (8.200)

Assuming that 7° is diagonal [Eq. (2.124)] with components n; = 1/ n(zl.), we obtain,
in linear approximation,

Tk = —M XMk = ——5——5— (8.201)

Note that the relevant values for x@ are not the same as for optical SFG, since y?
strongly depends on the frequency of the fields involved (Sect. 8.1.2).

An important electro-optic material is KDP (KH,POj), belonging to the symme-
try class 42m with the non-vanishing third rank tensor components ry3; = r3; =
r41, 132 = 1312 = rsp, and rj23 = 113 = rg3, with rsp = r41; in contracted form

[0 0 0]

0 0 O

0 0 O
= , 8.202
rék ra1 0 0 ( )

0 rsp 0

L 0 0 }’63_

so that Eq. (8.197) has the form
i rsEY rinES M reaEY raEY

n=|rnES nm rmuEF | =|raEF n rEF |. (8.203)

d d d d
r312ESC 3B 133 ra ESS ra EY° m3
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In the absence of an external field, KDP is uniaxial with n;; = 71» = 1, and

N33 = 1e-
In the following, we assume a dc-field Ed = (0,0, Egc), parallel to the z-axis
(Fig.2.35), so that

Mo Te3ES 0
n=|raE¥ n 0 |. (8.204)
0 0 ne

This tensor can be diagonalized by a 45°-rotation of the reference system around
the z-axis [Eq. (2.3.1.1)]

Mo + re3ES 0 0
y = 0 Mo — re3ESC 0 | (8.205)
0 0 Ne

in the presence of the dc-field, the originally uniaxial crystal becomes biaxial.

The diagonal form of ' allows for an immediate calculation of the field
dependent propagation index, since 7, = ”(_,)2 With the approximation dn’/dn =
—2/n?, we obtain Ana —(n>/2)An’ and finally

3
n
Ny = Ho F Eorﬁ:;Egc, nE) = Ne. (8.206)

Applications of the electro-optic effect are discussed in Sects. 2.3.4 and 5.3.

8.4.2 Quadratic Electro-Optic Effect

While the linear electro-optic (Pockels) effect is restricted to crystals lacking a
center of inversion, the quadratic electro-optic effect (also called electro-optic Kerr
effect) relies on the cubic susceptibility and thus can be observed in all materials;
the term “quadratic” refers to the fact that the propagation index changes with the
square of the applied electrostatic field (Sect.2.3.4).

For a brief discussion of this effect, we assume an isotropic medium exposed to a
superposition of a linearly polarized optical wave and a dc-field, both fields oriented
along the x-axis; the total field can then be expressed in a scalar form

1 -~ .
E(f) = E* + 3 [E(w)e %D 4 cc]. (8.207)

The resulting cubic nonlinear polarization contains a component at the frequency of
the optical field

~ 2 ~
PO(w) = 3e0x}1; (E*) E(w) (8.208)
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which can be treated as a change of the effective linear susceptibility by
Ax® =3y (E) (8.209)
Similar to Eq. (8.98), this allows us to introduce a field dependent propagation index

(3)

3
n(E®) = no + ~21LL (goe)? (8.210)
2}10

While this effect is symmetry allowed in all materials, it is generally much smaller
than the Pockels effect for fields below the dielectric breakdown limit.

8.4.3 Field Induced Second Harmonic Generation*

The cubic polarization resulting from the composite field Eq. (8.207) also contains
a component at the second harmonic 2w of the fundamental optical frequency

3 3 L
PYQw) = Esoxfanch(w)E(w). (8211

A comparison with Eq. (8.7) shows that this is equivalent to a field induced quadratic
susceptibility

Sl = Sy (8.212)

(the effect, shown here for parallel optical and dc-fields is, of course, not restricted
to this simple configuration). A centrosymmetric medium such as glass, placed in an
electrostatic field, can thus produce second harmonic or sum/difference frequency
waves of incoming optical fields; a periodic alternation of the static field orientation
can be used for QPM.

This effect is not in contradiction to the statement, made earlier, that centrosym-
metry rules out effects such as SHG, because the electrostatic field breaks the
centrosymmetry of the total system.

8.5 Acousto-Optics
8.5.1 Light Scattering at Sound Waves
As we have seen in Sect. 8.3.6, electromagnetic waves can also interact with acoustic

waves. While Brillouin scattering deals with acoustic waves present as phonons in
any medium, acousto-optics refers to the interaction of light with sound waves
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Table 8.5 Acoustic and acousto-optic properties of selected materials (for longitudinal acoustic
waves); acoustic phase velocity v,, mass density p, elasto-optic coefficient p, and acousto-optic
figure of merit M = p*n/pv3,

Medium va [103ms™'] | p[10°kgm™3] | ng p M 107 m2wW—1)
Water 1.5 1.0 1.3 031 137

Polystyrene 2.4 1.1 1.6 0.31 106

Silica 6.0 2.2 1.5 1020 1.19

Flint glass 3.1 6.3 1.9 1025 16

LiNbO; 7.4 4.7 22 015 1.75

Gallium arsenide 5.2 53 35 0.41 104

externally excited by (piezoelectric) transducers. Acousto-optic effects rely on the
dependence of the susceptibility on the acoustic strain. The strain S is defined as the
relative deformation of a medium induced by a mechanical stress (force per area).
Stress and strain can be longitudinal or transverse, i.e., the force (deformation) can
be orthogonal or parallel to a given surface element; stress and strain are therefore
tensors of second rank. Consequently, acoustic waves can be longitudinal as well as
transverse.

The material property traditionally used to describe the acousto-optic interaction
is the so-called elasto-optic coefficient p that relates the impermeability 7 to the
stress

An = pS; (8.213)

connecting two second rank tensors, the elasto-optic coefficient is a fourth rank
tensor that has non-vanishing components in all symmetry classes (exactly like ).
In anisotropic media, the description of the acousto-optic interaction can become
very involved, because two electromagnetic modes and three acoustic modes have
to be considered. Here, we restrict ourselves to a scalar description that is valid, for
example, for the interaction of a longitudinal acoustic mode with light in an isotropic
medium.
We start fromn = 1/& = 1/(1 + x) to obtain

Ay = —(1+ x)?An = —njpAS (8.214)

where ny is the propagation index of the unperturbed medium and p = pjq1; is the
relevant elasto-optic coefficient. Table 8.5 shows this coefficient and other relevant
properties of selected materials.

We assume an acoustic strain wave

1 .~ .
S(x,1) = 3 [Se7I®x=20 4 cc]; (8.215)



8.5 Acousto-Optics 405

the angular frequency 2 and the wave vector K are related by the dispersion relation

9]
K| =— (8.216)
Vak

where vy is the acoustic phase velocity. The acoustic power density I, is related to
the complex acoustic amplitude S by

L = — pvl (8.217)

where p [kgm™3] is the density of the medium.
According to Eq. (8.214), the strain wave corresponds to a susceptibility wave

Py e |
Ax(x,1) = —70 [Se I®x=20 4 cc]. (8.218)
The incoming light wave
1.~ .
Ei(x,1) = 3 [Eiei®x—eid 4 cc] (8.219)

produces a polarization density wave with the stress induced component AP =
SOA)(Ei

AP(x,7) = = [AP(x,1) + c.c.]

N =

_8017"3 [Se—j(K-x—Qt) + c.c.] [Eie—j(ki-x—wit) + c.c.]

__ 80%”3 [SEe il Ky x—(t 2]

+ §*Ee iR @m i e o], (8.220)
The two side bands at w; &= £2 can serve as sources for two waves
Eq(x, 1) = % [Eqei®ax—ead 4 cc ] (8.221)

with frequency

wWq = Wi + .Q, (8222)
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Acoustic wave — ,=—— k

/\

a

Fig. 8.25 Optical and acoustic wave vectors in an acousto-optic cell: (a) kg = k; + K, (b) kg =
ki —K

provided that the phase matching condition
ki =ki £ K (8.223)

is met. This scattering mechanism is called Bragg scattering, because it is essentially
a diffraction of an electromagnetic wave at a moving Bragg grating.

Since the acoustic phase velocity is smaller than the optical by about five orders
of magnitude, acoustic waves must have frequencies much smaller than that of
optical waves to have wave numbers comparable to optical waves; therefore, wg ~ w;
and |kq| ~ |K;|; in other words, the three involved wave vectors Eq. (8.223) form an
isosceles triangle (Fig. 8.25). In terms of the angle 8 between the two optical wave
vectors, the phase matching (or Bragg) condition can be written as

sin 6 :—lKl =i: Ao
PTOki] T 24 T 2moA’

(8.224)

where

_ 2 _ 2TV
K R

(8.225)

is the acoustic wavelength and A the vacuum wavelength of the optical waves.
In a quantum picture, Egs. (8.222) and (8.223) can be interpreted as energy and
momentum conservation in an interaction between two photons and a phonon.
Once the scattered wave Eyq with the wave vector k; + K is built up, it also
interacts with the acoustic wave to produce a negative side band with the wave vector
ki + K — K = k;. In this way, E; is coupled to E4 and vice versa. To calculate the
amplitudes of the two waves, we assume in the following that the Bragg condition
Eq. (8.224) is met. We follow Egs. (8.30) to (8.38) in the form (8.58), and replace
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Fig. 8.26 Coordinate system
for Eq. (8.227): the z-axis is
the bisector of the isosceles
triangle defined by the optical
wave vectors

the source term Eq. (8.37) by

4
80pn0 ~ o~

APg; = — SEiq (8.226)

[Eq. (8.220)], assuming, without loss of generality, S to be real. Since the optical
waves are not collinear in this case, we introduce separate propagation coordinates
&i, ¢4 (Fig. 8.26) and obtain the coupled amplitude equations

dEi(w) _ joipny

SE,
dé'i 4C() d

dE, (wq) _ jwdpng

SE;. 8.227
dfd 4C() ( )

Introducing a joint propagation coordinate z along the angular bisector, we set d¢; =
d¢q = cos 0 dz and write Eq. (8.227) in the form

dE;(w; .
1(w1) = jkiEy
dz
dE, -
% = jka, (8.228)
Z

where we have introduced the coupling coefficients

3
wipny  ~
g = —2_089 8.229
St 4¢ocos 0 ( )
3
kg = —PM0_g. (8.230)

4cocos O
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because of w; ~ wyq we can set
K:=Kjq ~ Kgj. (8.231)
With the boundary condition E4(0) = 0, the solution of Eq. (8.228) is
Ei(z) = Ei (0) coskz
Eq(z) = —E;(0) sinkz. (8.232)
The acousto-optic coupling efficiency is then

76

= sin®kz. (8.233)
1;(0)

After the distance z = 7/ 2«, the energy transfer to the diffracted wave is complete.
With Eq. (8.217) and using the material specific figure of merit

2 6
_prny

M:
PV

(8.234)

(see Table 8.5), Eq. (8.233) has the form

ey —sin (- Tz (8.235)
0

L)
where 6 < 1 was assumed. For z < 7/ 2k, the diffraction efficiency

Id(Z) ~ 7[2

~ — Ml 7 8.236
ho) 2 akZ ( )

is proportional to the acoustic power and M.

The above treatment relies on plane waves; in practice, the incoming light wave
and the acoustic field are beam shaped and may actually be strongly focused (to
obtain a sufficiently high acoustic intensity). As we have seen in Sect. 3.1.6, beams
can be treated as a superposition of plane waves with different wave vectors. In
the acousto-optic interaction of beam shaped acoustic and optical waves, the Bragg
condition can be met by individual spatial Fourier components of the fields, even
if the central wave vectors along the beam axes do not meet the phase matching
condition. In particular, acousto-optic beam deflection can also work in a geometry
where the optical beam crosses the acoustic beam orthogonally (Fig. 8.27). This is
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Fig. 8.27 Acousto-optic wi— {2
interaction of an optical beam Acoustic wave ~~a—
with a focused acoustic beam wi
(Raman-Nath scattering) — < wi
- 2
Incident beam K\
5 \ o

Fig. 8.28 Acousto-optic
Bragg cell

Acoustic wave +———=

Ei/‘

Incident beam

called Raman—Nath scattering and produces two diffracted beams at the frequency
side bands w; + £2 and w; — £2.

8.5.2 Acousto-Optic Modulators

The acousto-optic effect is usually implemented in the form of a so-called Bragg
cell, that is a piece of a suitable material to which a piezoelectric transducer is
attached that is driven by an RF-source (Fig.8.28). To get a feeling for typical
operating parameters, we consider a Bragg cell made of flint glass, an acoustic
transducer at 500 MHz delivering 1 W of acoustic power into a 1 x 1 mm? cross
section beam; the optical wavelength is g = 632 nm (HeNe laser). Using the values
in Table 8.5, we obtain an acoustic wavelength of A = 6.2 um and a Bragg angle
of 6y = 26 mrad (1.5°). Within an interaction length of 1 mm, Eq. (8.235) yields a
diffraction efficiency of 34 %.

According to Eq. (8.236), the acoustic intensity can be varied to modulate the
intensity of the diffracted beam. Varying the acoustic frequency allows selection of
a certain optical wavelength from a broadband optical input. Bragg cell are also used
to produce frequency shifted signals from a monochromatic laser for spectroscopic
and interferometric applications.

For certain applications (such as actively mode locked lasers, Sect.7.3.2), the
cell is operated as an acoustic resonator, where the acoustic wave is reflected at the
end facet of the cell to produce a standing acoustic wave of high intensity, similar to
an optical Fabry—Perot resonator (Sect.4.2.3). The two counterpropagating waves
form the superposition

1~ . ~ .
S(x,1) = 3 [Se IKx=20 | §emi"Kx=20) 4 ¢ ¢ ]

=2|S|cosK - xcos 21 (8.237)
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(where S is assumed to be real). As can be seen from this expression, the spatial
modulation vanishes twice per acoustic period 277/§2 giving rise to a modulation of
the transmitted optical power at twice the acoustic frequency.

8.6 Summary

Our treatment of nonlinear optics stays within the perturbative limit, valid for
electric fields that are small in comparison to atomic fields. The source of any
nonlinear optical effect is the nonlinear polarization induced by the participating
electric fields. The material property relating the electric field to the nonlinear
polarization density is the nonlinear susceptibility; it is derived from a series
expansion of the polarization density and is a tensor of third or higher order. The
linear oscillator model, supplemented by a nonlinear term in the restoring force,
provides a valuable estimate of the relative magnitude of the nonlinear susceptibility
of different materials; Miller’s rule summarizes these results.

The nonlinear polarization density induced by monochromatic plane waves
comprises components at the second, third, and higher harmonics, at the sum and
difference frequencies, as well as rectified dc-components of the input fields. The
symmetry properties of the nonlinear medium determine which nonlinear effects are
possible: SHG and other second order nonlinear effects are symmetry forbidden in
centrosymmetric media, for example, while third order effects are generally possible
in all symmetry classes.

The nonlinear polarization density is the source term for new waves; applying
the slowly varying amplitude approximation to the wave equation, we derive a
first order differential equation for the amplitudes of these waves. This equation
includes a term that takes the phase mismatch between the nonlinear polarization
and the electric field into account; the amplitude of the wave radiated by the
nonlinear polarization can only grow as long as the phase difference between the
electromagnetic wave and the polarization is less than . Means to achieve phase
matching are crucial for the application of nonlinear optical effects. In addition to
the exploitation of birefringence for this purpose, we analyze quasi phase matching
that relies on the spatially periodic modification of the nonlinear medium.

Besides harmonic generation, optical parametric amplification (OPA) is of
particular practical and theoretical interest. In the presence of an intense pump wave,
a signal wave can be amplified, consuming energy from the pump; in addition to
the amplified signal, a so-called idler wave is generated at the difference frequency
between pump and signal frequency. Other nonlinear optical amplification schemes
include Raman and Brillouin amplification, where the energy transfer from the
pump to the signal wave is mediated by acoustic vibrations or waves, respectively,
that are driven by the optical fields in the gain medium. Related acousto-optic
effects are based on the interaction of the light field with acoustic waves that are
launched in the medium by external acoustic transducers. The effect is used, for
example, to modulate laser beams or to select a particular frequency component out
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of a polychromatic beam. Similar to sum and difference frequency generation, the
scattered light is up or down shifted by the acoustic frequency.

A variety of interesting nonlinear optical effects results from the intensity
dependence of the refractive index, a third order nonlinear effect that occurs in
media of arbitrary symmetry. In combination with spatially or temporally varying
fields, phenomena such as self-focusing, self phase modulation, and white light
generation can be observed and exploited. The generation of phase conjugate waves
is another manifestation of this third order nonlinearity.

The class of electro-optic effects, discovered long before the invention of the
laser and treated in Chap. 2, are shown to be special cases of nonlinear optics, with
one of the electric fields being a static electric field modifying the susceptibility. We
link the conventional electro-optic tensor to the nonlinear susceptibility and show
the qualitative validity of Miller’s rule for this effect by comparing different electro-
optic media.

8.7 Problems

1. Assuming that the linear and quadratic restoring force terms in Eq. (8.20) are of
comparable magnitude if the displacement x is equal to the interatomic distance,
and using Eq.(2.53) to estimate the linear “spring constant” a, calculate the
nonlinear force coefficient D. Use this estimate to calculate ¥ from Miller’s
rule Eq. (8.28) (N ~ 102 cm ™ ~ 1/d%).

2. Use the nonlinear oscillator model Eq. (8.20) with a cubic restoring force term
o x> to derive Miller’s rule for the third order susceptibility y®(3w); restrict the
calculation to a monochromatic input field. Use the arguments of problem 1 to
estimate the value of y®(3w).

3. BaTiOs; is an important quadratic nonlinear medium, belonging to point group
4mm; this means that it is invariant under rotations of 90° around the z-axis and
reflection across the xz and yz plane, respectively. Find the non-zero elements of
x? and compare with Table 8.1.

4. Consider an elliptically polarized 1 nJ, 100 fs pulse in a silica fiber with 20 jLm?
effective core area; which fiber length is required to rotate the polarization state
by 90° (assume x\1, = x\1;;/3 and ny = 3.2x107°m?>W~!). What is
the extinction ratio between the original pulse and the rotated pulse if a linear
polarizer is inserted after the fiber? What is the ellipticity that maximizes the
extinction ratio?

. Reproduce Fig. 8.10 and use the result to reproduce Fig. 8.9, lower panel.

6. Reproduce Fig. 8.14.

W



412 8 Nonlinear Optics and Acousto-Optics

References and Suggested Reading

Agrawal, G. P. (2012). Nonlinear fiber optics. New York: Academic.

Bloembergen, N. (1982). Nonlinear optics. New York: Benjamin.

Boyd, R. W. (2008). Nonlinear optics. New York: Academic.

Butcher, P. N., & Cotter, D. (1991). The elements of nonlinear optics. New York: Cambridge
University Press.

Cerullo, G., & De Silvestri, S. (2003). Ultrafast optical parametric amplifiers. Review of Scientific
Instruments, 74(1), 1-18.

Gibbs, H. M., Khitrova, G., & Peyghambarian, N. (1990). Nonlinear photonics. New York:
Springer.

Haussuehl, S. (2008). Physical properties of crystals. New York: Wiley.

Islam, M. N. (2004). Raman amplifiers for telecommunications. London: Springer.

Menzel, R. (2007). Photonics. Berlin: Springer.

New, G. (2011). Introduction to nonlinear optics. New York: Cambridge University Press.

Nye, J. E. (1985). Physical properties of crystals. New York: Oxford University Press.

Rottwitt, K., & Tidemand-Lichtenberg, P. (2015). Nonlinear optics. Boca Raton: CRC Press.

Shen, Y. R. (2002). The principles of nonlinear optics. New York: Wiley.

Stegeman, G. L., & Stegeman, R. A. (2012). Nonlinear optics. Hoboken, NJ: Wiley.

Starunov, V. S., & Fabelinskii, I. L. (1970). Stimulated mandel’shtam-brillouin scattering and
stimulated entropy (temperature) scattering of light. Soviet Physics Uspekhi 12, 463. http://
stacks.iop.org/0038-5670/12/i=4/a=R02

Suhara, T., & Fujimura, M. (2003). Waveguide nonlinear-optic devices. New York: Springer.

Trebino, R. (2000). Frequency-resolved optical gating: The measurement of ultrashort laser pulses.
New York: Springer.

Tsai, C. S. (1990). Guided-wave acoustooptics. New York: Springer.

Xu, J., & Stroud, R. (1992). Acousto-optic devices. New York: Wiley.


http://stacks.iop.org/0038-5670/12/i=4/a=R02
http://stacks.iop.org/0038-5670/12/i=4/a=R02

Regarding detection, the optical frequency regime is quite distinct from the radio
frequency (RF) range; while RF signals can be picked up by antennas, and the
resulting current—which is essentially a replica of the electric field of the wave—
can be amplified and processed electronically, detection of optical electric fields is
extremely difficult; thus, practically all optical detectors rely on the excitation of
electrons by absorption of photons, a process that scales with the signal intensity
(Sect. 6.1) instead of its electric field.

The fact that the photoexcitation rate is proportional to EE* has important
consequences: first of all, the output of a photodetector is a nonlinear (quadratic)
function of the optical field amplitude; secondly, it does not contain information on
the phase of the field. This does not imply, however, that the phase of the optical
field is inaccessible to measurement with quantum detectors. Superposition of the
signal field with a known reference field (e.g., from a local oscillator) produces,
by interference, a photocurrent that contains information about the relative phase
of the field and the local oscillator wave, allowing, for example, phase shift key
modulation in optical communications.

The photosensitive component of optical detectors is usually a semiconductor
or a metal layer. Electrons are photoexcited either from the valence band into the
conduction band (semiconductors) or from the Fermi edge of a metal into a vacuum
state. In both cases, a minimum quantum energy, i.e., a minimum frequency of the
light, is required to induce a transition. This inherent high pass characteristics of
the photoelectric effect is one of the outstanding advantages of quantum detectors:
thermal background radiation and electric interference are practically irrelevant for
the detection process.

An alternative detection scheme, used predominantly in the far infrared, relies on
the conversion of electromagnetic radiation into thermal energy and measurement
of the resulting temperature change. Such detectors can detect radiation of virtually
any wavelength (which makes them, however, susceptible to thermal noise) and are
very slow in comparison to quantum detectors.

© Springer International Publishing Switzerland 2016 413
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Of limited, but fundamental interest are so-called quantum-non-demolition
detections schemes, where photons are detected without being absorbed; a possible
implementation relies on the intensity dependence of the refractive index due to the
Kerr effect (Sect. 8.3.2).

9.1 Photoelectric Detectors

The photoelectric effect relies on the transition of an electron from a bound state
into a “mobile” state. Like any other transition, its probability is given by the Fermi
rule Eq. (6.24). The external photoelectric effect, where the excited state is a freely
propagating electron wave in vacuum, is schematically shown in Fig. 9.1. In metals,
the energy threshold for this process is the work function @y, i.e., the energy barrier
between the Fermi level and the vacuum level. In semiconductors, the barrier is
given by the sum of the band gap E, and the so-called electron affinity Ej4.

9.1.1 Photoelectron Multiplier Tubes

Although photoelectron multiplier tubes (PMTs) do not play a major role in
photonics, they are of some practical interest because of their sensitivity, speed,
and large photosensitive area. A PMT consists of a photocathode, usually made of
a semiconductor layer, and a series of secondary electron multiplications stages,
placed in a vacuum tube. A photon impinging on the photocathode produces,
with a certain quantum efficiency, a photoelectron. This primary electron enters a
cascade of so-called dynodes, i.e., electrodes that are optimized to emit secondary
electrons when hit by an energetic electron. Starting with the photocathode, the
dynodes are biased at increasingly positive potentials, so that the electrons are
accelerated towards the following dynode; typical potential differences between
successive electrodes are about 100V (Fig.9.2), giving rise to an impact energy of

(a) E (b) E
Vacuum level 1* | Vacuum level
Ea
Pm .
Conduction band *
Fermi level l

Eg

Valence band x
o T4

Metal Vacuum Semiconductor Vacuum

Fig. 9.1 External photoelectric effect: the barrier between the highest occupied electronic state
and the vacuum must be overcome by the energy of absorbed photons; in metals (a) the barrier
is the work function @, (energy difference between Fermi and vacuum level); in intrinsic
semiconductors (b) it is the sum of band gap energy E, and electron affinity E
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Fig. 9.2 Photoelectron multiplier tube (PMT)

the electrons of about 100 eV. Since this energy is several times the work function
of the dynodes, every incoming electron produces several secondary electrons,
resulting in an exponential growth of the electron package that has been initiated
by a single photon. The final electrode (anode) is usually at ground potential and
collects the electron package; the resulting current pulse produces a voltage spike at
the output resistor which constitutes the output signal of the PMT.

The active material of the photocathode and dynodes is a thin layer either of
an alkali-metal (Na, K, Cs) or a semiconductor (GaAs). The quantum efficiency
depends on the absorption efficiency of the cathode and on the fraction of pho-
toexcited electrons that escape into the vacuum. Semiconductor photocathodes are
superior to metals in both respects, since their reflectance is lower than that of metals
and the escape depth is much larger. In metals, only photoelectrons generated in
the topmost atomic layer contribute to the photoemission, while in a semiconductor,
electrons that are not immediately released into the vacuum populate the conduction
band where they can propagate towards the vacuum interface during their relatively
long recombination life time. To facilitate their escape into vacuum, the semicon-
ductor is heavily p-doped and the surface is coated with highly electropositive
atoms (Cs) that donate their valence electron to the semiconductor. The positively
charged metal ions at the surface deform the semiconductor bands such that the bulk
conduction band edge actually is above the vacuum level (Fig. 9.3)—a situation that
is called negative electron affinity (NEA). Such photocathodes allow pushing the
spectral sensitivity into the near infrared (/1.7 wm). The UV response is limited by
the transparency of the glass tube; dedicated UV-PMTs have a cutoff at ~180 nm.

Due to the large electron escape depth, semiconductors are also the preferred
dynode material. The secondary electron yield depends on the impact energy; at
100eV, the gain per dynode is 3-5 so that a gain of 5'° ~ 107 can be achieved
with ten multiplication stages. Statistical variations of the electron trajectories result
in a temporal spread of the electron package arriving at the anode. Optimized
PMTs produce sub-ns current pulses, typical values of commercial PMTs are 1—
2 ns (corresponding to a peak current of about 1 mA).
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Fig. 9.3 Energy bands at the —Ea
surface of a semiconductor Conduction band v
with “negative” electron ~_ ] Vacuum level

affinity: the band bending )
results from ionized Cs-atoms
at the surface Fermi level
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PMTs can be operated in a photon counting mode; dark counts resulting from
natural radioactivity of the tube materials can be suppressed efficiently, because
most of these pulses do not experience the full gain and can be deselected by a pulse
height discriminator; the residual dark count rate is on the order of 30 counts/s.
Alternatively the average anode current is used as a measure of the incident optical
power, a scheme that is linear over more than 6 orders of magnitude.

A related multiplier scheme is the so-called micro-channel plate (MCP, Fig. 9.4),
a ceramic disc of about 2 mm thickness that is penetrated by millions of channels
of typically 10 um diameter. The inner wall of the channels is coated with a
semiconductor or metal layer, and a voltage of ~1kV is applied to both ends.
Photoelectrons that enter such a channel are accelerated in the strong axial electric
field and produce a secondary electron avalanche by collisions with the walls,
similar to the process in a PMT. The obvious advantage of this device is its spatial
resolution: in combination with a fluorescent screen or a detector array (CCD) in
the output plane, MCPs serve as image intensifiers with a gain of up to 10°.

9.1.2 Semiconductor Photodetectors

9.1.2.1 pn-Photodiodes

By far the most important detectors in photonics are semiconductor photodiodes,
i.e., pn-junctions that absorb photons in or close to the depletion zone (Fig.9.5)
and produce a photocurrent or a photovoltage, respectively, as output signal. A pn-
junction consists of two sections of semiconductor material, one doped with electron
donors (n-zone), the other with electron acceptors (p-zone). Driven by thermal
motion, electrons from the n-zone diffuse into the p-zone and holes from the p-
zone into the n-zone, leaving a space charge region of positively charged donor and
negatively charged acceptor atoms behind. In equilibrium, the drift current induced
by the electric field in this depletion zone balances the diffusive migration of charge
carriers, and the bands in the two semiconductor zones are bent in such a way that
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Fig. 9.5 Photon absorption in a pn-junction (photodiode)

there is a single Fermi level within the entire device. When a photon is absorbed
in the drift zone, the resulting electron—hole pair is separated by the drift field: the
electron is transported into the n-zone and the hole into the p-zone. This results
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in a potential difference between the two zones, the so-called photovoltage; the
equilibrium situation can be re-established by recombination or an external current
flow, the so-called photocurrent. It should be noted that despite the fact that two
carriers are involved in the process, the photocurrent is constituted of a single
electron charge, because at each point in the circuit, only one carrier contributes
to the current. The process is completed once the hole recombines with an electron
at the contact of the p-zone with the conductor.

In an ideal photodiode, every incident photon produces one electron/hole pair, so
that the photocurrent is equal to the photon flux times the electron charge

e
Jph = nq%Pphs 9.1)

where the detector quantum efficiency is ideally ny = 1. In practice, nq < 1 for
reasons that will be discussed below, but almost constant at a given wavelength so
that the photocurrent is an extremely linear function of the incident optical power.

The photocurrent, at a given optical power, decreases with increasing optical
frequency, since a photon of higher frequency, despite its higher energy, contributes
only one carrier to the photocurrent (the excess energy is converted, via phonons,
to heat). Expressed in terms of wavelength, Eq.(9.1) assumes the convenient
form

A
Joh = nqu’ph, 9.2)

where the current is given in [A], the optical power in [W], and the wavelength A in
[wm] (compare Table 1.1).

If the electrical circuit is open, every carrier pair, after being separated in the drift
zone, reduces the space charge, resulting in a forward voltage across the two diode
terminals. As a result, carrier diffusion is not fully compensated by the drift field
and the excess carriers recombine within the diffusion time. If the incident light
is not a single photon but a steady stream of photons, the photovoltaic forward
voltage assumes a stationary value such that diffusion compensates the internal
photocurrent. To calculate this voltage, we use Shockley’s diode equation which
relates the diode current J4 to the applied voltage Uy and supplement it with the
photocurrent Jyy,

Ja = Jg (e?Va/MT — 1) — Jpp, (9.3)
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where J; is the so-called saturation current of the diode, typically on the order of
1 nA (Fig.9.6). Setting Jg = 0 and using Eq. (9.1), we obtain

kBT ePph
Uyp = Ujo = —1 1]. 94
oh 4.0 o (Uq haod. -+ ) 9.4)

For Jon > Js (Ppn > 1nW), the photovoltage is a logarithmic measure of
the incident optical power, and a photodiode in this mode of operation can be
conveniently used in sensor applications with very large dynamic range.

Figure 9.7 shows the design of a typical photodiode; the optical signal is
impinging on the pn-junction which is formed by a thin p-doped layer, contacted
by a transparent electrode, on top of an n-doped substrate. To improve the yield, the
detector face is usually antireflection coated. The photosensitive area of commercial
diodes ranges from some 100 jum? to several 100 mm?.

The responsivity R of a photodiode, that is the ratio of photocurrent to incident
optical power, follows from Eq. (9.1) to be

e Alum]

R=n,—=n—-[A .
nqhw Nq 1'240[ /W1, 9.5)

where the quantum efficiency 7, is the fraction of incident photons that contribute to
the photocurrent. If R is the reflectance of the detector, the fraction 1 — R of photons
is absorbed, essentially within the absorption length 1/« [Eq.(2.71)]; only those
electron/hole pairs that are generated within the drift zone and the adjacent diffusion
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zones can participate in the photocurrent; if the total thickness of this range is given
by d,

ng=1—-R (1—-e)mn. (9.6)

where the internal quantum efficiency 7; is the fraction of carriers not lost by
recombination or traps. Figure 9.8 shows the responsivity of a typical commercial
Si-photodiode; the IR-sensitivity may extend slightly beyond the band gap of silicon
(1.12eV) because of absorption by exciton states below the conduction band edge.
The cutoff in the UV will be discussed below.
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The two contacts of a photodiode form a capacitor that limits the high frequency
performance of the detector; fast photodiodes usually have a very small sensitive
area to minimize the capacity. The capacity can be further reduced by operating the
diode under a reverse bias voltage, increasing the thickness of the depletion zone
that acts as a dielectric in the capacitor.

9.1.2.2 PIN-Photodiodes

The photodiode response can also be improved by placing an intrinsic (undoped)
layer between the p- and n-zone (pin-structure). Apart from reducing the capacity,
the intrinsic layer is part of the drift zone, improving the detector responsivity. The
thickness of the intrinsic zone has to be carefully optimized, because the time the
carriers need to get to the terminals is also increased, which is detrimental for the
speed of the detector.

9.1.2.3 Avalanche Photodiodes

Unlike PMTs or a MCPs, the photodiodes discussed so far do not provide any
gain. However, carrier multiplication by impact ionization is also possible within
a semiconductor. To this purpose, a reverse voltage exceeding the band gap by a
large factor is applied to the diode. Electrons in the conduction band and holes
in the valence band can gain so much energy in the drift zone that they create
new electron—hole pairs by collision (Fig.9.9). In this way, a carrier avalanche
can build up, similar to the electron avalanche in an electron multiplier tube; such
diodes are known as avalanche photodiodes (APDs). An important difference to
the multiplication process in PMTs is the fact that there may be actually two
counterpropagating avalanches of electrons and holes, respectively, each of them
producing new holes and electrons, so that the process is not self-terminating and
can lead to catastrophic breakdown. Such APDs can be used as single photon

Fig. 9.9 Operation of an |
avalanche photodiode (APD):
photogenerated electron/hole
pairs are accelerated in the
electric bias field and produce
additional carriers by impact
excitation, resulting in a
carrier avalanche

p-Silicon Electric field

pact

o Electron impact

n-Silicon

— Drift zone —
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detectors (see, e.g., Eisaman et al. 2011); catastrophic breakdown can be prevented,
e.g., by a serial resistor in the bias supply that terminates the breakdown when the
current exceeds a certain limit. APDs exhibit a dead time after each break down, so
that the count rate is limited to about 107 counts per second.

For a single carrier species, the avalanche current density develops according to

dje,h
dz

= Qe e, 9.7

where the ionization coefficients o, depend on the semiconductor material and
the electric field, and usually differ significantly from each other. In silicon, for
example, o, < e, so that the hole-avalanche is negligible and the process comes
to a halt when the electrons reach the end of the drift zone. In this operating regime,
a Si-APD is stable and the gain factor along a drift zone of length / is given by

jel) _
ONA

9.8)

In APDs, the light absorbing zone is usually spatially separated from the drift zone,
so that all photoelectrons experience about the same gain and amplifier noise is kept
low. APDs are also very fast; optimized APDs have cutoff frequencies of several
10 GHz.

9.1.2.4 Spectral Response

Depending on the signal wavelength, different materials are used for photodiodes
(see Fig.7.39). In the visible and near IR (400-1100nm), Si-photodiodes are
preferentially used, with a quantum efficiency of up to 0.9 (Fig.9.8). In optical
communications with frequency bands at 1.3 and 1.5 um, Ge- and InGaAsP-pin-
photodiodes are used as well as heterostructure APDs with an InGaAs photoex-
citation zone and a (transparent) InP-avalanche zone. The ternary In;_,Ga,As
system provides a wide range of band gaps, from InAs (0.35eV/3.5 um) to GaAs
(1.43eV/0.87 wm). For longer wavelengths, Hg,_,Cd, Te is a widely used variable
gap semiconductor, reaching up to 0.1 eV (12 wm). GaAs/AlGaAs multiple quantum
well detectors reach 15 pum.

The low responsivity of Si (and other) photodiodes in the UV is due to the
extremely short absorption length (about 10nm for Si at a wavelength of 350 nm),
so that the photocarriers are not generated in the depletion zone but have to diffuse
to the pn-junction; close to the surface, however, the probability of defect-mediated
recombination is very high, rendering the internal quantum efficiency low. For UV-
applications, large gap photodiodes based on silicon carbide (4H-SiC, E, = 3.3eV)
are used, with a spectral sensitivity ranging from 375 to 210 nm.
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9.1.2.5 Schottky Photodiodes

The UV response can be improved by replacing the pn-junction with a metal-
semiconductor junction (Schottky photodiode, Fig. 9.10). Since the work function
of the (very thin and therefore transparent) metal is larger than the electron affinity
of the (n-doped) semiconductor, electrons diffuse into the metal, leaving positively
charged donor atoms behind. The depletion zone thus reaches up to the metal
interface, so that practically all photons are absorbed within the drift zone; the
metal layer also reduces the density of defects. Schottky photodiodes have the
additional advantage of being extremely fast, with response times of several ps and
a bandwidth above 100 GHz.

Schottky diodes can also be operated at photon energies that are below the
band gap of the semiconductor; photons are absorbed by the metal electrode
and the resulting photoelectron can migrate across the Schottky barrier into the
semiconductor; the cutoff is then given by the height of the barrier, which can be
adjusted by proper choice of the metal semiconductor system. While conventional
photodiodes are illuminated from the front, these IR-photodiodes can be backside
illuminated, since the semiconductor is transparent in the IR. Important examples
of this group of detectors are PtSi Schottky barrier diodes that can also be readily
integrated in Si CCD-arrays.

9.1.3 Detector Arrays

For imaging and related applications, photodetectors can be arranged in one- or
two-dimensional arrays. Silicon-based photodiodes are particularly well suited for
integration into arrays because of the high technological maturity of the supporting
MOS electronics. For image acquisition, the individual photodiodes, called pixels,
with a typical size of 10 x 10 um? or less, transfer the photoelectrons into an
underlying capacitor; the readout is accomplished either by a charge coupled device
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(CCD) or by individually addressable CMOS-amplifiers. The operation of a CCD is
shown in Fig.9.11: it consists of an array of microscopic metallic gate electrodes,
contacted in three groups that form capacitors with an intermediate silicon oxide
layer as dielectric. Electrons in the substrate are collected under the positively
biased electrode and can be transferred to the adjacent capacitor by switching the
corresponding gates to a positive bias. In this fashion, the charge can be shifted
through the entire array in the way of a bucket chain. At the (serial) output, a
transimpedance amplifier converts the charge-signal into a proportional voltage. The
performance of such a shift register depends on the charge transfer efficiency (CTE),
defined as the fraction of electrons that “survive” the transfer from one cell to the
next; a CTE value exceeding 0.999999 is necessary to operate large CCDs without
significant data deterioration. Alternatively, every pixel is supplied with an amplifier
and can be read out individually (active pixel sensor).

Two-dimensional detector arrays are also known as focal plane arrays (FPAs).
For IR-applications, PtSi/Si Schottky diodes can be integrated directly into the
MOS-structure, hybrid structures of InSb-photodetectors and CMOS-readout elec-
tronics are also used.

9.1.4 Photoresistors

The internal photoeffect in semiconductors also changes the conductivity of a
(homogeneous) semiconductor. Photodetectors that rely on this effect are known as
photoresistors or photocells. They consist of a thin semiconductor film with metallic
contact structures on top and can be realized with virtually any semiconductor,
including those that are not suitable for the production of high quality diode
junctions. The principle of operation is illustrated in Fig. 9.12: absorption of photons
creates electron—hole pairs that migrate in the electric field E = U/I produced by
the applied external voltage U. To calculate the photocurrent, we assume that the
electron mobility p. exceeds the hole mobility uy, by far so that the hole usually
recombines before it reaches the negative contact. Assuming the electron velocity
to be v. = . E, the average time that it takes an electron to arrive at the positive
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contact is f. &~ I/2u.E. If the hole is still present in the layer, another electron from
the negative contact is injected to conserve charge neutrality. This cycle is repeated
until the hole recombines with an electron, which statistically takes the time Ty
to happen. One absorbed photon therefore results in a transported charge of Tye. /%
electrons. A photoresistor thus produces a photocurrent

Trec Pph A[Mnl]
ooh, o 2
o ho’ MY 240

JonlAl = g Pon[W]. 9.9)

where G = T/t is the gain of the detector. A disadvantage of this device is its
slow response time, limited by the lifetime . of the holes. Photoresistors are used
primarily in the IR and produced from InAs, InSb, and Hg;_,Cd, Te, where the band
gap can be chosen anywhere below 1.6 eV by adjusting the stoichiometric parameter
x. Extrinsic (doped) semiconductors are also used, where the photoexcitation
happens from the dopant level to the conduction level. In this case, the hole is
actually an immobile dopant atom and the cutoff wavelength is given by the energy
difference between dopant level and band edge. If this spacing is comparable to the
thermal energy kg7, thermal excitation of dopant states contributes significantly to
the dark current, increasing the noise. For operation at wavelength beyond 3 pum,
cooling of the detector by liquid nitrogen or helium is required.

9.2 Characteristic Parameters of Detectors

Apart from their spectral and time response, detectors are characterized by various
performance parameters. The responsivity has already been introduced [Eq. (9.5)]
and is generally proportional to the wavelength for quantum detectors; PMTs,
MCPs, APDs, and photoresistors have a responsivity that is enhanced by a gain
factor that can be as large as 107 in comparison to a pn-photodiode.
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For most applications, the signal-to-noise ratio is more relevant; its definition
relies on the variance 0% of the photocurrent

2
Joh

SIN) = ———;
B

(9.10)

in addition to various electronic sources of noise, optical detectors show a funda-
mental noise contribution resulting from the quantum nature of photons and cannot
be reduced by cooling or electronic means; we will discuss some aspects of photon
statistics in Sect. 9.3.

Another important parameter is the “speed” of the detector, usually described by
the dependence of the responsivity on the modulation frequency f, of the optical
signal. Most detectors show a simple low pass behavior

1

R(fn) = Rp———;
(m) O«/l + 27 fimTq

9.11)

the bandwidth of the detector is usually specified by the modulation frequency
at which the detector power, which is proportional to J;h, is reduced to one half
(—3 dB) of the low-frequency responsivity

Jm3dp = (9.12)

2nty’

174 is the characteristic time constant of the detector, determined by its capacitance
and internal characteristic times such as the transit time or carrier life time. Well
above this frequency, in particular for light pulses much shorter than 4, the detector
operates as integrator, delivering an electrical pulse whose peak is proportional to
the optical pulse energy and whose shape is the pulse response function of the
detector, independent of the optical pulse shape.

9.3 Photon Statistics

The photodetection process usually relies on the excitation of electrons, and the
discrete nature of the electric charge gives rise to a fundamental shot noise.
Assuming that the number of photoelectrons is proportional to the number of
photons impinging on the detector, the photoelectron statistics is a replica of the
photon statistics.

Shot noise can often be described by a Poisson distribution valid for discrete,
independent processes. A (stationary) optical signal with power Py, can produce, in
an ideal photodetector without gain, Py, /he electrons per second. If we count the
number n of photoelectrons in many consecutive time intervals of duration #y, the
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mean count number is 1 = (Ppn/hw)ty. According to the Poisson distribution, the
probability p(n) to find n electrons in a randomly selected time interval is

1 _
pp(n) = a(ﬁ)”e‘”. (9.13)

This distribution (shown in Fig.9.13) exhibits a peak approximately at n; the
variance is equal to the mean value

op =Y pp(m)(n—i)* = . 9.14)

According to Eq. (9.10), the signal-to-noise ratio due to Poisson distributed shot
noise is therefore

m)? _
P

Poisson statistics describes the fluctuations of light from a single mode laser far
above threshold. Thermal light, however, follows a different statistics. We assume a
setup that allows us to measure the number of photons in a selected electromagnetic
mode of a cavity at temperature 7. According to Planck’s theory of black body
radiation, the energy of such a mode is an integer multiple of Zw; the probability
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that a given mode contains n photons, i.e., the energy nhw, is given by Boltzmann’s
distribution

p(n) = poe_"h’”/kBT = pou”, (9.16)

where u := e /T ig introduced for convenience; po follows from the condition

> p(m) =po/(1 —u) = 1 tobe pg = 1 — u, so that Eq. (9.16) can be written as
p(n) = (1 —wu". (9.17)

The mean value n

i=Y npmn) =y nl—uu" (9.18)

is calculated by taking the derivative of the relation Y u" = 1/(1 — u) in respect
tou

n—1 1

and multiplying the result with u(1 — u) :

1 1

n= = .
ul—1 eho/ksT _ |

(9.20)

We can now express Eq. (9.17) in terms of n by setting, according to Eq. (9.20),
u=n/(n+1):

9.21)

This is known as Bose—FEinstein distribution; it denotes the probability to find n
energy quanta in a mode under thermal equilibrium with matter, if the mean value
is n. As shown in Fig. 9.13, this distribution displays a maximum at n = 0 and then
falls off continuously; also, the width of the distribution is much larger than that of a
Poisson distribution with identical mean value n. The most likely number of detector
counts is zero for any value of n: many intervals with no or very view counts are
followed by intervals with counts well above the average (Fig. 9.14). This behavior
is known as photon bunching and is typical for thermal light.

To calculate the variance of this distribution, we use the identity 6> = (n — 11)> =
n? — (77)* and take the second derivative of Y u" = 1/(1 — u) to obtain

n? =Y "n’pu(n) =i+ 2(1), (9.22)

n
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Compared to Eq.(9.14), there is an additional term (i7)> which can be attributed
to interference effects between spontaneously emitted photons. The first term in
Eq. (9.23) can be understood as representing the “particle” nature of photons while
the second one is due to their wave character. The signal-to-noise ratio Eq. (9.10) of
single mode thermal light is given by

S

(S/N)p, =

) 9.24
n+1 ©-24)

and cannot exceed unity. If many thermal modes contribute to the signal, the
counting statistics tends towards a Poisson distribution, however.

As can be shown, Poisson and Bose distributions are conserved if the events that
are counted are selected randomly from the initial set of events; in photodetection, a
beam splitter or a detection process with quantum efficiency < 1 gives rise to such a
selection. For a Poisson distributed photon stream, this means that the photoelectron
statistics from a detector with quantum efficiency 14 provides a signal-to-noise ratio
of

(S/N)e = nq(S/N)pp = ngqit, (9.25)

which is the S/N of an ideal detector, reduced by 7q.

In digital optical communications, the bit error rate (BER) is of particular
importance, that is the probability to mistake an “1” for a “0” and vice versa.
Assuming a simple encoding where “1” is represented by a package of n # 0
photons and “0” by n = 0, we find the probability to mistake a “1” for “0”
to be pp(0) = e "a"; the reverse case is impossible in this case. Assuming an
approximately equal number of “1” and “0” bits, a maximum permissible BER of
10~ requires 72 &~ 40 per “1” bit, if a quantum efficiency of 0.5 is assumed. At a
photon energy of 0.8eV (1.55 um) and data rate of 10 Gbit/s, this corresponds to
an optical average power at the detector of 26 nW. Further assuming a length of the
fiber link of 100 km and losses of 0.2 dB/km, a power of 1 wW must be launched
into the fiber. This estimate takes only quantum noise into account and disregards
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all other sources of noise; in practice, the launched power is about 1 mW, limited by
nonlinear optical processes in the fiber.

9.4  Photometry and Colorimetry
9.4.1 Photometry

Photometry deals with the measurement of light levels as perceived by the human
eye. It uses its own set of units (Table 9.1) that are related to the radiometric
(photonic) units by the so-called luminosity function. For physiological reasons,
the luminosity itself depends on the light level; photopic vision requires “bright”
illumination and allows color vision; the relevant luminosity function V(A1) is shown
in Fig.9.15, selected values are given in Table 9.2. Physiologically, cone cells in
the retina are responsible for this type of vision. Low level light vision is called
scotopic vision and is mediated by rod cells; it is characterized by the luminosity
function V’(1). At intermediate light levels occurs mesopic vision with ill-defined
color perception and luminosity.

For the conversion of radiometric data into photometric (photopic), the power
spectrum is multiplied with the luminosity function V, integrated over the wave-

Table 9.1 Correspondence between photometric and radiometric quantities; important photomet-
ric units are Lux [Ix], Lumen [Im], and Candela [cd]

Photonic quantity Units Photometric quantity Units
Radiant flux/power [W] Luminous flux [Im]

Radiant energy [Ws=17]] Luminous energy [lms]
Irradiance/intensity/flux density [Wm 2] Illuminance [Imm—2=1x]
Radiant exposure/fluence [Im—2] Luminous exposure [Ix s]

Radiant intensity [Wsr™1] Luminous intensity [lmsr—! =cd]
Radiance/brightness [Wsr—!m—2] Luminance [lmsr—'m—?]

Fig. 9.15 Luminosity
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Table 9.2 Luminosity function for photopic [V(A)] and scotopic [V/(A)] vision according to
ISO/CIE 10527 (1991) standard; V(A) is identical with the colorimetric y(A)-function (Fig.9.16)

Anm] | V(}) V'(A) A[nm] | V() V'(A) A[nm] | V() V'(A)

380 0.0000 | 0.0006 | 510 0.5030 |0.9970 | 610 0.5030 | 0.0159
400 0.0004 | 0.0093 | 520 0.7100 |0.9350 | 620 0.3810 | 0.0074
420 0.0040 | 0.0966 | 540 0.9540 | 0.6500 | 640 0.1750 | 0.0015
440 0.0230 | 0.3281 | 550 0.9950 |0.4810 | 660 0.0610 | 0.0003
460 0.0600 | 0.5670 | 560 0.9950 |0.3288 | 680 0.0170 | 0.0001
480 0.1390 | 0.7930 | 580 0.8700 |0.1212 | 700 0.0041 | 0.0000
500 0.3230 | 0.9820 | 600 0.6310 |0.0332 | 720 0.0011 | 0.0000

length and multiplied with the conversion factor 683 [Im/W]. For scotopic vision,
the weight function is V'(1) x 1700 [Ilm/W]. If the light is practically monochro-
matic, the respective radiometric value is simply multiplied with V(1) x 683 [Im/W]
at the respective wavelength. Photometric measurements do not require spectral
resolution, however, if the spectral detector sensitivity matches the luminosity
function (eye response photodiodes).

A 1mW-HeNe laser at A = 632nm [V(632) = 0.247], for example, has a
luminous flux of 683 x 0.247 x 1072 1m=0.17 Im; assuming a beam cross section
of 1 mm?, the illuminance is 170,0001x. The sun, for comparison, provides an
illuminance of about 70,0001x, the full moon 0.21x. At the sensitivity peak of the
human eye, at 555nm, 11xZ0.1464 uW/cm? and 11m = 1.464 mW.

The luminous intensity of a light source, given in candela [cd], is the luminous
flux per solid angle [sr] and takes the degree of collimation of the emitted light into
account; an isotropic emitter with a luminous flux of 1 Im has a luminous intensity of
1/47m cd, while the aforementioned HeNe laser, with a divergence angle Eq. (3.19)
of, say, 1 mrad [corresponding to (17/4) x 10~ sr] produces a luminous intensity of
214,000cd.

9.4.2 Colorimetry

Color vision relies on the existence of three kinds of cone cells with differing
spectral sensitivity. Based upon the empirical Grassmann’s laws, color perception
can be described in a three dimension linear vector space, called color space. The
direction of a (position) vector in this space determines the chromaticity, while its
length is proportional to its luminance. Accordingly, three so called color matching
functions are required and sufficient to determine the chromaticity.

9.4.2.1 Color Matching Functions

Because of the linearity of the color space, the choice of color matching functions
is not unique, and color coordinates referring to one set of functions can be
transformed into any other base by a linear transformation. Among the many
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Fig. 9.16 Color matching 2
functions x(1), y(1), z(1) of
the CIE (1931) XYZ color
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different sets of color matching functions, the CIE (1931) XYZ-metric is the most
popular; the three weight functions x(1),y(4),z(4) are shown in Fig.9.16. The
location of a signal with the power spectrum S(1) in the XYZ color space is given
by the coordinates

X = / S(M)FA) dA (9.26)
Y = / S(A)F(A) dA (9.27)
Z= / S()Z(A) dA, (9.28)

also called tristimulus values.

Mathematically, Egs. (9.26)—(9.28) are inner products in Hilbert space and
projection of the infinite-dimensional spectrum on the base vectors x(1), (1), Z(1).
Note that such a projection is not isomorphic: while every possible spectrum is
mapped onto exactly one point in color space, a given color point corresponds to an
infinite number of different, so-called metameric spectral distributions; exceptions
are only the color points that correspond to monochromatic signals.

Unlike most other sets of color matching functions, the xyz- functions are non-
negative, implying that the tristimulus values of any signal are also positive. A
convenient consequence is that the XYZ-coordinates can be directly measured,
without the requirement of spectral analysis, by three photodetectors with spectral
sensitivity x(4),y(1), and Z(1). Another convenient feature of this color space is
that the Y component is identical to the illuminance, because y(A) = V(A). On the
other hand, the three base vectors do not correspond to any existing color, because
there exists no possible spectral distributions for which only one of the coordinates
is non-zero.
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(X1,Y1,27)

(X2,Y2,22)

X

Fig. 9.17 In three-dimensional XYZ-space, every given power spectrum corresponds to a vector;
its chromaticity can be identified by the intersection of the vector with the X +Y+Z = 1 plane
(xy-coordinates). Additive mixing of two colors produces a new color that is represented by the
vector sum of the two input colors, with a chromaticity that lies on a straight line between the input
chromaticity points

Since chromaticity is independent of luminance, it can be characterized by
normalized coordinates

xy.2=X.Y.Z/(X + Y + Z) (9.29)

that can be localized in a two-dimensional map, because x+y+z = 1; itis common
to use an orthogonal xy-system. In the three-dimensional XYZ-space, the resulting
map (called chromaticity diagram) lies in the plane defined by X+Y+Z = 1; the xy
coordinates denote the point where the XYZ-vector (or its extension) intersects this
plane (Fig.9.17).

9.4.2.2 Additive Color Mixing

As a consequence of the linearity of the color space, the superposition of two or
more color signals (called primary colors) produces a signal that is represented by
the vector sum of the input signals. If the luminance of the primaries is varied,
the resulting chromaticity lies within the polygon formed by the chromaticity
coordinates of the primaries, since the luminance cannot assume negative values;
this polygon is called gamut. Obviously, the gamut is a sub-space of the color space.
No finite set of primaries allows producing all colors, i.e., the entire gamut of human
vision. In particular, the choice of three primary colors produces a triangular gamut
that is significantly smaller than the complete color space.
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Fig. 9.18 Chromaticity 1
diagram according to CIE

(1931): the set of visible z=0
colors lies within the locus of
spectrally pure colors and the
line of purples; W denotes the
white pointx =y =z=1/3

The locus of spectrally pure colors, (i.e., the chromaticity of monochromatic
light) forms a concave, horseshoe-shaped curve in the chromaticity diagram,
stretching from 780 nm (deep red) to 400 nm (extreme blue); the two end points are
connected by the so called line of purples. Since any spectrum can be understood as
linear combination of spectrally pure colors, all possible colors lie within this curve
(see Fig.9.18). In the center of the chromaticity diagram there is the achromatic
white point W, defined by x = y = z = 1/3. It can be realized by an infinite variety
of spectra, for example, two (so-called complementary) monochromatic colors lying
on a line through W, or by the very broad and smooth spectrum of a filament
of appropriate temperature. Since the chromaticity of the light scattered by an
object depends on the spectral properties of the object itself (reflectance, scattering)
and the power spectrum of the illuminant, it will usually display very different
chromaticities when illuminated by different illuminants (day light, incandescent
bulbs, white LEDs), even if the chromaticity of the illuminants is identical.

9.5 Summary

Practically all photonic detectors are quantum detectors: a photon is absorbed
and the excited electron contributes to an electrical current or serves to build up
a voltage. We describe the underlying photoelectric effect and possible internal
gain mechanisms. PMT and MCP rely on the external photoelectric effect, require
vacuum environment and a high voltage supply and provide very high gain and
speed; both detectors are capable of single photon detection. The photodiode,
a semiconductor pn-junction constructed in such way that light is absorbed in
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the drift zone of the junction, delivers a closed loop current that is proportional
to the absorbed optical power, equivalent to ideally one electron per absorbed
photon. The responsivity (the ratio of photo current to detected optical power) of
quantum detectors decreases, for fundamental reasons, with the light frequency,
because a high frequency photon carries more energy, but still produces only one
photoelectron.

Photodiodes can also provide gain by internal excited carrier multiplication; such
avalanche diodes are also capable of single photon detection and can outperform
PMTs in terms of speed.

For many applications, the signal-to-noise ratio is the most important feature
of a detector; we discuss Poisson distributed photon streams provided by lasers
and compare them to Bose—FEinstein distributed photon streams from thermal light
sources. A comparison of the respective BER shows the statistical advantage of laser
sources for optical communications.

Display applications of photonic light sources require the understanding of
human color vision. Color measurement is based on Grassmann’s laws and can be
understood as a projection of the spectral space on a three-dimensional vector space.
The inverse process, additive color mixing, is discussed and its limits in terms of
color reproduction is analyzed.

9.6 Problems

1. What is the photon flow (photons/s) of a 1 mW HeNe-laser beam (A = 632nm)?
What is the photon current induced by this laser beam in an ideal photo diode?
What is the photocurrent induced by a blue (A =310nm) 1 mW beam? What is
the maximum photovoltaic power in either case [use Shockley’s diode equation
(9.3) to maximize the product of photovoltage and corresponding photocurrent]?

2. How many photons impinge on a CCD-camera pixel (area 10 pum x 10 wm)
at 3001ux (office illumination level) during a 1/100s exposure time (assume
monochromatic light of wavelength 550 nm)? What is the statistical pixel to pixel
variation of the number of photons, assuming Poisson statistics? Compare this to
sunlight (70,000 lux) and moonlight (0.2 lux).

3. Show that the mean value ), npy(n) of the Poisson distribution Eq. (9.13) is
indeed n; prove that the variance of the Poisson distribution is equal to the mean
value Eq. (9.14).

4. We want to communicate with our friends on the moon and use a 1 W Gaussian
laser beam, wavelength 1 um, with a telescope expanding the beam to 1 m
diameter. The detector area on the moon is 1cm?, the quantum efficiency is 1.
What is the maximum bit rate (on/off keying), if the BER is supposed to be less
than 107° (neglect light scattered from the earth or coming from stars)? How do
things change if our friends also use a telescope of 1 m input aperture?

5. Calculate the color coordinates of “white” light (a) with S(1¢g) = const., (b) with
S(w) = const., and compare it to the white point W.
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ABCD-transformation, 117, 217
Absorption, 60, 253

coefficient, 60

length, 60

saturation, 264, 272

two-photon, 387
Acousto-optic modulator, 320, 406
Active zone. See Laser diode
Additive color mixing, 433
Amplification

Brillouin, 392

free electron laser, 348

parametric

second order, 369
third order, 384

Raman, 388

stimulated emission, 256
Amplitude, complex, 6
Anisotropic media, 69

energy transport, 83

Poynting vector, 83

wave equation, 75
Anti-reflection coating, 176
Anti-Stokes line, 389
APD. See Avalanche photodiode
Aperture, numerical, 198
AR coating. See Anti-reflection coating
Autocorrelation, 191

intensity, 377

interferometric, 377

second order, 377
Avalanche photodiode (APD), 422
Average power, 14
Axis, optical, 78

Babinet-Soleil compensator, 35
Band edge. See Semiconductor
Band gap. See Semiconductor
Base, 20

circular, 29
linear, 21
Base transformation, 29
Beam propagation, 101
Beam splitter, 158
scattering matrix, 163
waveguides, 223
Beam velocity, 12
Bessel functions, 208
Biaxial media. See Anisotropic media
Birefringence, 82
Bit error rate, 429
Blazing. See Optical grating
Bloch wave, 276
Boltzmann distribution, 262
Boltzmann’s constant, 2
Bose-Einstein distribution, 428
Boundary conditions, 40, 45, 208
conducting resonator, 187
fiber waveguide, 206
multilayer, 170
periodic, 276
Bragg
cell, 409
condition, 228
grating, 228
reflection, 228
reflector, 339
scattering, 406
Brewster angle, 50
Brillouin
amplification, 392
zone, 276

¢p. See Vacuum speed of light
Causality, 67

CCD. See Charge coupled device
Charge coupled device (CCD), 424
x@-. See Susceptibility, second order
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x@-. See Susceptibility, third order
Chirp, 146
Chromaticity, 433
Circularly polarized base, 29
Coherence
complex degree, 191
length, 191
length, nonlinear optical, 363
spatial, 193
stimulated emission, 254
temporal, 189
time, 191
Collisions, 63
Color matching functions, 432
Color space, 431
Colorimetry, 431
Complex analytic signal, 189
Confocal parameter. See Gaussian beam
Coulomb potential, 246
Coupled modes formalism, 219
Coupling, 219, 300, 371, 398, 408
optimum, 303
Critical angle. See Total reflection
Cross correlation, 191
Cross phase modulation (XPM), 382
Cutoff frequency. See Waveguide

dB. See Decibel
DeBroglie wave, 44, 246
Decibel (dB), 213
Density of modes
3D resonator, 187
electromagnetic field, 187
Density of states
joint, 284, 285
quantum dot, 292
quantum well, 291
Dephasing time, 260
Difference frequency generation, 353
Diffraction, 43, 168
Dipole interaction, 250
Dipole matrix element, 251
Dipole moment, 57
Dirac distribution, 250
Dispersion
group velocity
anomalous, 141
normal, 141
phase velocity
anomalous, 11
normal, 11
pulse broadening, 137
waveguide, 204

Index

Dispersion coefficient, 141
Dispersion flattened, 216
Dispersion length, 145
Dispersion relation
free electron, 246
light, 7
Dispersion shifted, 216
Dispersive media, 56
Doping, 280
Doppler effect, 97, 161
Drag coefficient, 98
Drude-Lorentz model, 56
Dynode, 415

EDFA. See Erbium doped fiber amplifier
Efficiency

differential, 302

quantum, 415
Eigenbase, 30
Eigenfrequencies. See Resonators
Eigenmode. See Mode
Einstein’s convention, 69
Electro-optic effect, 86

linear, 86, 400

quadratic, 402
Electron affinity, 415

negative, 415
Electron momentum, 283
Electronvolt, 9
Emission

spontaneous, 256

stimulated, 253
Energy flux, 13

density, 13
Energy transport, 12
Envelope, 142
Epitaxial growth, 335
&o. See Vacuum permittivity
Erbium, 241
Erbium doped fiber amplifier (EDFA), 241
Escape depth, 415
Etalon, 179
eV. See Electronvolt
Evanescent wave. See Total reflection
Excimer, 329

laser, 329

Fabry-Perot interferometer. See Interferometer
Faraday

effect, 92

isolator, 93

rotation, 93
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FEL. See Free electron laser
Fermi-Dirac distribution, 278
Fermi factor, 286
Fermi level, 278

quasi-, 278
Fermi’s golden rule, 250
Fiber gyroscope, 238
Fiber laser, 240
Fiber waveguide, 205
Finesse. See Interferometer
Focal plane array (FPA), 424
Four-level system, 269, 297
Four-vector, 95
Four wave mixing, 399
Fourier limit, 139
Fourier transformation

2-f system, 134

far field, 133
FPA. See Focal plane array
Free electron gas model, 62
Free electron laser (FEL), 340

Free spectral range. See Interferometer

Frequency mixing, 353
Frequency, normalized, 200
Fresnel coefficients, 47
Fresnel rhomb, 54

Fiichtbauer-Ladenburg equation, 259
Full width at half maximum (FWHM)

beam diameter, 107
line width, 260

FWHM. See Full width at half maximum

Gain
avalanche photodiode, 421
Brillouin, 395
coefficient, 268
condition, 268, 287
free electron laser, 347
modulation, 309
parametric
second order, 372
third order, 386

photoelectron multiplier tube, 415

photoresistor, 422
Raman, 391

Gamut, 433

Gaussian beam, 102
ABCD-transformation, 117
beam divergence, 106
beam radius, 106
confocal parameter, 106
focusing, 122
phase front curvature, 107
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g-parameter, 109

SHG, 363
Gaussian modes, 182
Glass fibers. See Waveguide
Gouy phase, 105
Gradient index fiber, 206
Gradient index lens (GRIN-lens), 113
Grating. See Optical grating
Grassmann’s laws, 433
GRIN-lens. See Gradient index lens
Group delay, 141
Group velocity, 9
Group velocity dispersion (GVD), 141
GVD. See Group velocity dispersion

. See Planck’s constant
Hamilton operator, 245
Helmholtz equation, 6

paraxial, 102

scalar, 6
Hermite-Gaussian beams, 126
Hilbert space, 36, 432
Hilbert transformation, 98
Hole burning

spatial, 308

spectral, 266

Idler wave. See Optical parametric amplifier
Impermeability, 74, 400, 404
Index ellipsoid, 81
Index profile, parabolic, 216
Indicatrix, 81
Integrated optics, 218, 237, 326
Intensity, 17
Interaction cross section, 251
Interband transitions, 278
Interference, 157
multiple beam, 167
two field-, 157
visibility, 191
Interferometer
Fabry-Perot, 177
finesse, 179
etalon, 179
free spectral range, 179
Mach-Zehnder, 162
Michelson, 158
Sagnac, 162, 165
waveguide, 237
Intraband transitions, 278
Inversion, 264, 267
Irradiance. See Intensity
Isotropic media, 5
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Joint density of states, 284

Jones matrix, 21
eigenvectors, 25
Pockels cell, 87
reflection, 52
transformation, 27
transmission, 52

Jones vector, 19

kg. See Boltzmann’s constant
KDP, 86, 360, 401, 402
Kerr effect, 380

electrooptic, 86
Kerr lens, 114
Kramers-Kronig relations, 66, 293
k-surface, 76

Laplace operator, 5
Laser
diode, 331
active zone, 335
heterostructure, 334
quantum well, 336
efficiency, 302
fiber-, 240
free electron-, 340
gain modulation, 312
gas-, 328
Helium-Neon-, 329
linewidth, 309
mode locking, 318
mode selection, 307
optimum coupling, 303
g-switched, 314
relaxation oscilllations, 309
semiconductor-, 331
solid state-, 325
threshold, 302
Ti:sapphire, 323
velocimeter, 161
Laser materials, 324
LCD. See Liquid crystals
Lens, 112
GRIN-lens, 113
Kerr, 114
Light amplification. See Amplification
Line broadening
collisions, 260
crystal field, 263
Doppler, 262

Index

homogeneous, 262
inhomogeneous, 262
natural, 259
Line shape
Lorentzian, 58, 260
saturated, 266
Liquid crystals (LCD), 90
Lithium niobate, 88, 224, 360, 368, 401
Lorentz force, 56, 341
Lorentz transformation, 96
Luminescence, 333
Luminosity, 430

[Lo- See vacuum permeability
Mach-Zehnder interferometer. See
Interferometer
Magnetic constant. See Vacuum permeability

Magneto-optic effect, 92
Manley-Rowe relations, 357, 375
Mass

effective, 277

reduced, 285
Matrix

ABCD-, 118

dipole, 250

Jones, 21

perturbation, 248

S- (see scattering matrix)
Maxwell’s equations, 2
MCP. See Micro-channel-plate
Metals, optical properties, 62
Michelson interferometer. See Interferometer
Micro-channel-plate (MCP), 416
Miller’s rule, 359

Mirror
concave, 183
convex, 183

dielectric, 170
bandwidth, 174
reflection coefficient, 173
transmission coefficient, 173
metal, 173
spherical, 115
Mode
index, 181
longitudinal, 183
resonator, 181
transverse, 186
waveguide, 197
Mode condition. See Waveguide
Mode locking, 318
Momentary frequency. See Pulse propagation
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Momentum
electron, 283
photon, 283
Monomode condition. See Waveguide
M?-parameter, 107
Multilayer system, dielectric, 170

NA. See Numerical aperture

Nonlinear length, 151

Nonlinear polarization rotation (NPE), 382
Nonlocal effects, 4

NPE. See Nonlinear polarization rotation
Numerical aperture (NA), 198

OPA. See Optical parametric amplifier
Optical activity, 90
Optical grating, 168
blazing, 170
Optical parametric amplifier (OPA), 358, 369,
384
idler wave, 369
Optical tunneling effect, 56
Oscillator
harmonic, 56
linear, 56
parametric, 375

Parametric fluorescence, 375
Parametric frequency conversion, 376
Parametric process, 351
Parity, 253
Parseval’s theorem, 138
Permittivity

complex, 59

relative, 4

tensor, 69

vacuum-, 3
Perturbation theory, 249
Phase, 6
Phase conjugation, 395
Phase matching, 82, 356, 365

90°, 366

birefringence, 365

boundary, 40

parametric amplification

second order, 373
third order, 386

quasi-, 368

second harmonic generation, 362
Phase velocity, 9

in dispersive media, 60
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Phonon, 278, 392
Photocathode, 414
Photodetector, 413
array, 423
bandwidth, 426
integrator, 426
responsivity, 425
Photodiode, 416
avalanche, 421
photocurrent, 418
photovoltage, 418
Schottky, 423
Photoelectric effect, 414
Photoelectron multiplier tube (PMT), 415
Photometry, 430
units, 430
Photon, 252
counting, 416
energy, 252
momentum, 283, 357
statistics, 426
Photonic band gap, 236
Photonic crystals, 241
Photopic vision, 430
Photoresistor, 425
7 polarization. See Polarization state
Planck’s constant, 2, 245
Plasma frequency, 64
PMT. See Photoelectron multiplier tube
pn-Junction, 419
Pockels effect. See Electro-optic effect, linear
Poincaré sphere, 32
Point groups, 352
Point spread function, 131
Poisson distribution, 427
Polarizability, 57
Polarization. See Polarization state
Polarization density, 3
nonlinear, 351
Polarization maintaining fiber, 216
Polarization rotator, 22
Polarization state, 18, 75
circular, 18
eigenstate, 25
elliptic, 18
ellipticity, 31
linear, 18
orthogonal, 20
-, 45
o-,45
o*-,20,45
Polarizer, 22
Power density, 192
spectral, 192
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Poynting
theorem, 13
vector, 13
anisotropic media, 83
inhomogeneous fields, 35
Principal value, 73
Propagation constant, 6
waveguide, 199
Propagation index, 11
complex, 59
effective, 200
Pulse
chirp, 146
compression, 146
dispersion length, 145
envelope, 137
Gaussian, 138, 144
group velocity, 141
intensity autocorrelation, 377
momentary frequency, 146
nonlinear length, 151
propagation, 141
solitons, 152
Pumping, 268, 301, 358, 369

g-Parameter, 109, 217
Q-switching, 314
QPM. See Quasi-phase matching
Quantum cascade laser, 293
Quantum dots, 292
Quantum efficiency, 415
Quantum well, 291

laser, 336
Quasi phase matching (QPM), 366

Raman amplification, 388
Raman effect, 388
Raman-Nath scattering, 409
Rate equations, 255

four-level system, 297

relaxation oscillations, 311

three-level system, 304

two-level system, 255
Rayleigh range. See Gaussian beam, confocal

parameter

Recombination, 415
Rectification, optical, 355
Reflectance, 49

absorbing media, 62

dielectric multilayer, 173
Reflection, 40

Brewster angle, 50

coefficient, 47

Index

Refraction
anisotropic media, 82
isotropic media, 41
Refractive index, 7
extraordinary, 73
frequency dependence, 61
ordinary, 73
principal values, 73
Relaxation oscillations, 309
Resonators, 180, 297
confocal, 185
eigenfrequencies, 182
Hermite-Gaussian modes, 186
mode sparation, 181
modes, 181
stability condition, 184, 187
Responsivity, 425
Retarder, 21
achromatic, 54
circular, 24, 90
general, 33
linear, 21, 75
variable, 35

Sagnac interferometer. See Interferometer
Saturation, 264
absorption, 264
amplification, 269
fluence, 273
intensity, 265, 270
Scattering matrix, 26, 165
beam splitter, 163
interferometer, 237
waveguide coupler, 226
Schawlow-Townes limit, 309
Schrodinger equation, 245
eigenfunctions, 246
eigenvalues, 246
nonlinear, 153
time independent, 246
Scotopic vision, 430
Second harmonic generation (SHG), 358
Gaussian beam, 364
field induced, 403
Selection rules, 253, 283
Self-consistency, 182, 199
condition, 207
Self-focusing, 115
Self-phase modulation (SPM), 149, 381
spectral broadening, 152
white light generation, 152
Semiconductor, 275, 415
band edge, 277
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band gap, 275

bands, 275

density of states, 276

doping, 280

gain bandwidth, 288

gain condition, 287

intrinsic, 278

laser, 331

optical transitions, 283

transparency carrier density, 332
Sensitivity

human eye, 431

photodiode, 420

PMT, 415
SFG. See Sum frequency generation
SHG. See Second harmonic generation
Shockley’s diode equation, 418
Shot noise, 426
o polarization. See Polarization state
Signal-to-noise ratio, 426

Bose-Einstein statistics, 429

Poisson statistics, 427
Silica glass fibers, 213
Single photon detector, 416, 422

Slowly varying envelope approximation, 102,

361, 370
S-matrix. See Scattering matrix
Snell’s law. See Refraction
Solitons, 4, 152
Space charge region, 416
Spectrometer, 135
Spectrum, 192
SPM. See Self-phase modulation
Spontaneous emission, 256
Stability condition. See Resonators
Step index fiber, 206
Stimulated emission, 253
Stimulated Raman scattering, 389
Stokes line, 389
Stokes’s theorem, 4
Stop band, 175, 231
Sub-k space, 289
Sub-band, 290
density of states, 292
Sum frequency generation (SFG), 353
Susceptibility, 3
complex, 57
linear oscillator model, 56
nonlinear
second order, 351
third order, 351
anharmonic oscillator, 358

scalar, 5
tensor, 69
as transfer function, 67

Tensor, 70

diagonal, 74

symmetry, 71, 352

transformation, 70
THG. See third harmonic generation
Third harmonic generation (THG), 379
3 dB-coupler. See Waveguide
Three-level system, 271
Three wave mixing, 358, 370
Total reflection, 41, 48, 197

amplitude, 55

critical angle, 42

evanescent wave, 53

optical tunneling effect, 56
Transfer function, 67

spatial, 128
Transition

direct, 283

forbidden, 253

indirect, 283

probability, 250
Transmission coefficient, 47
Transmittance, 49

dielectric multilayer, 173
Transparency carrier density, 332
Two-level systems, 245
Two-photon absorption, 387

Ultraviolet (UV), 66

Undulator, 341

Uniaxial media. See Anisotropic media
UV. See Ultraviolet

Vacuum
energy density, 13
fluctuations, 257, 375
impedance, 16
permeability, 3
permittivity, 3
speed of light, 1, 5
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VCSEL. See Vertical cavity surface emitting

laser
Verdet constant, 92

Vertical cavity surface emitting laser (VCSEL),

339
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Wave
Bloch, 276
DeBroglie, 44, 246
diffracted, 43
evanescent, 53
plane, 8
Wave equation, 5
anisotropic media, 75
dispersive media, 59
nonlinear media, 360
optically active media, 91
paraxial, 101
‘Wave number, 6
Wave plate, 22, 54
‘Wave vector, 6
Waveguide, 197
active, 240
amplifier, 240
coupler, 220
3 dB, 223
eigenmodes, 226
S-matrix, 226
cutoff frequency, 202, 210
dispersion, 204
eigenmodes, 199
electro-optic, 198
filter, 223
gradient index, 206
grating, 228
gyroscope, 238

Index

implementation, 198

interferometer, 237

laser, 240

loss, 213

mode condition, 200

monomode condition, 202

normalized frequency, 200

planar, 197

self-consistency condition, 207

step index, 206

TE mode, 202

TEM mode, 208

weak guiding, 202, 208, 209
Wavelength, 8
Wavelength division multiplexing (WDM),

216, 382
WDM. See Wavelength division multiplexing
White light generation. See Self-phase
modulation

Wiener-Khinchin theorem, 192

XPM. See Cross phase modulation

Young’s double slit, 165

Zy. See Vacuum impedance
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