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Preface

The subject of this book, soft impact, concerns impact on soft materials such as
gases, liquids, granular matter, and their mixtures. In particular, impacts on granular
matter are the main focus of this book. The wide range of granular matter relates
to earth and planetary problems as well as phenomena in our everyday lives.
The motivation for writing this book originated from this common term between
soft matter physics and earth and planetary science. Because the study of soft
impact remains in its infancy, it is difficult to provide a systematic introduction
to soft impact on the basis of a rigorous theoretical framework. Therefore, in this
book, various experimental results are introduced instead of a well-defined theory,
which is why this work was recklessly written by an inexperienced experimentalist.
Any mistake or bias in the content is because of a deficiency in my ability.
A catalog of various experimental results and their implications is provided in
this book. While many experimental studies on soft impact have been published
recently, the consistency among these studies has not been discussed in depth.
The simple purpose of this book is to sort through these experimental results and
clarify our current understanding of soft impact phenomena. The fundamentals of
continuum mechanics and dimensional analysis are necessary bases for a proper
understanding of the physics of soft impact; thus, these fundamentals are described
first. Then, physics of soft impact and cratering are discussed on the basis of
these fundamentals. The content in each chapter is deeply related to that in other
chapters. Many equations and concepts are cross-referenced among them. The
purpose of this book is to provide a connecting point between granular physics
and planetary phenomena; however, both fields are too profound to be covered
completely. Comprehensive reviews of both fields are undoubtedly beyond my
ability. Therefore, the specific topic, soft impact, is the particular focus of this book.

Throughout this book, intuitive explanation has priority over rigorous theoretical
explanation because physical intuition is the most important aspect of dimensional
analysis and scaling. For the derivations of equations, I have attempted to provide
sufficient details to avoid losing the essence of computational procedures. However,
in some places, only the guidelines of the computations have been provided in the
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vi Preface

footnotes because their details are beyond the scope of this book. Readers can skip
these details without losing the main story. Although it was difficult to implement
a self-contained style, I have taken care to ensure that highly expert knowledge
is not required to read this book, the content of which is based on materials used
in a graduate course. The intended readers of this book are, therefore, graduate
students who are interested in soft matter physics or earth and planetary science.
Knowledge of elementary mechanics is required and fundamental knowledge of
continuum mechanics and contact mechanics is helpful to read the content. The
first three chapters provide basic concepts and methodologies. To use this book in
a graduate course, these chapters should be reviewed in the first half of a semester.
Then, in the next half, some topics picked up from the following chapters should be
covered depending on the interest. Chapter 4 discusses the drag force of soft impact.
Chapters 5 and 6 deal with the impact cratering. Chapter 7 introduces various topics
relating to soft impact and planetary problems. For those who want to study a topic
further or obtain a more theoretical background, pointers for further reading are
provided in the summary sections. Additionally, the list of references is useful to
locate the original source for each result. Particularly for experimental studies, the
obtained results might depend on the details of the experimental conditions. Thus,
specific parameters and experimental conditions are provided in the text as much as
possible. However, reading the original papers might be necessary in some cases.

I would like to acknowledge many people who supported the writing of this book.
I began the study of granular impact with Doug Durian at the University of Pennsyl-
vania about 10 years ago. I have learned many things from him concerning granular
physics and experimental techniques. This collaboration resulted in the origin of this
book. Fruitful discussions with colleagues in the earth and planetary physics group
at Nagoya University (Sei-ichiro Watanabe, Sin-iti Sirono, Tomokatsu Morota,
Muneyoshi Furumoto, and Hiroyuki Kumagai) are another origin. These discussions
were very helpful in the development of the idea of relations among soft impacts
and planetary phenomena. Furthermore, I am grateful to the many friends who
have kindly permitted my reuse of their original figures. Thanks to their brilliant
works, the physics of soft impact has progressed. I am also indebted to many friends
and colleagues who have discussed various things about soft impact phenomena.
Additionally, I would like to thank the graduate students who have collaborated
with me. Although it is difficult to list all the names of collaborators and friends
here, I truly appreciate all their courtesies and kindness. Finally, I must express my
gratitude to my family, Natsu, Asuka, and Yamato. Their cheerfulness has always
been a source of energy in the course of writing, which took over 2 years. Actually,
this work was beyond my ability alone and would not have been possible without
their support.

The study of soft impact remains a growing field. I hope that great breakthroughs
in both soft matter physics and planetary science will be made hereafter through
further investigations of soft impact.

Nagoya, Japan Hiroaki Katsuragi
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Chapter 1
Introduction

Ever since Galileo Galilei observed that the lunar surface is rough, continuous
efforts have been devoted to understanding the reason for this roughness. Today, we
have access to the detailed structure of the surface terrain of the moon, as shown
in Fig. 1.1. A lot of circular structures called craters appear almost all over the
surface: these pits are evidence of ancient impacts. Numerous astronomical objects
have impacted the moon and have left craters. Astronomical impacts have been
one of the most important and ubiquitous processes since the formation of the
solar system. Thus, an in-depth understanding of impact cratering is a necessary
key to shedding light on the history of the solar system. However, a fundamental
understanding of this concept remains in development mainly because the physical
basis for impact phenomena remains in its infancy. Moreover, the actual planetary-
related phenomena are very complex processes. Therefore, various approaches in
addition to the physics of impact would also be necessary to fully explain the entire
phenomenology of planetary impacts. The physics of impact is only a part of these
various approaches. Nevertheless, many unsolved problems remain even in the very
fundamental physics of impact.

Impact mechanics itself is an exciting problem for soft matter physics and may
relate to biological and industrial phenomena as well. Human skin is a typical soft
matter, suggesting that we experience soft impact when we grab something by
hand. Everyone knows that running over beach sand is much more difficult than
walking on a paved road. In many industrial fields, soft matter is handled in various
production processes. The aim of this book is to connect and unify the understanding
of various impact phenomena from the planetary scale to the everyday-life scale
using the scaling method.

Among the many intriguing issues concerning impact phenomena, we focus
specifically on the nature of soft impact in this book. “Soft impact” means the
impact of soft materials such as granular matter and liquid droplets. Because such
soft materials can be easily deformed, low-velocity impact is sufficient to reveal the
dynamics. Soft impact is relevant to both soft matter mechanics and planetary-scale
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Fig. 1.1 Lunar surface elevation map based on SELENE (Kaguya) data. Numerous craters appear
as circular pits, which are considered to be remnants of the impacts

phenomena. You may feel that the scale of our everyday-life and planetary-scale
phenomena are quite different. However, some relations among soft and planetary
impacts have been noted by recent investigations. Of course, we must be very
careful when comparing small-scale and large-scale phenomena. The fundamental
methodology and its application to various-scale impact phenomena are discussed
in this book.

As already mentioned, the impact has to be understood as an important ele-
mentary factor to solve the history of the solar system. Thus, planetary scientists
have long studied impact cratering and associated geomorphology [1, 2]. However,
most of their attention has been focused on the high-velocity impact on a rock or
other hard materials. Although the possible effect of viscoplasticity has been briefly
discussed in Ref. [1], explaining the detailed relation between planetary cratering
dynamics and soft impact is difficult. Since the beginning of the twenty-first century,
fundamental studies of soft impacts have been extensively conducted in the field of
soft matter physics. Although the physics of high-velocity and low-velocity impacts
differ, these impacts may share a certain aspect of cratering dynamics. In fact,
various planetary crater shapes can be mimicked by low-velocity granular impact
experiments.

Granular impact has been studied thoroughly in recent years. These experiments
have revealed what happens in a collision between a solid projectile and a granular
bed. For example, a phenomenological form of the granular drag force has been
developed on the basis of experimental results. Granular drag force is one of the
main topics discussed in this book. Crater morphology due to granular impact is
also intensively discussed in this book.
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Fig. 1.2 Close-up view of
the surface of the asteroid
Itokawa (vicinity of Komaba
crater) (The image was taken
by the Hayabusa. (C)JAXA)

Granular matter is a very important constituent of the Earth, planets, and
asteroids. In Fig. 1.2, a close-up view of the asteroid Itokawa taken by the explorer
Hayabusa is presented. The surface of Itokawa appears to be covered with many
boulders and small grains called regolith. Usual terrestrial planets are known to be
covered with regolith. Regolith possesses a rough irregular shape and polydispersity
similar to sand grains on the Earth but is quite different in terms of composition
and formation process. Itokawa’s surface is covered with an enormous amount
of centimeter- or sub-centimeter-sized regolith as well as meter-sized boulders
(Fig. 1.2). The grain size of regolith on Itokawa is close to that on Earth. In contrast,
the gravitational force on Itokawa is very weak, approximately 10�5 of that on the
Earth. Thus, the granular dynamics under the microgravity condition is a key to
reveal the surface processes occurring on Itokawa or other small planetary surfaces
that consist of regolith. Even though it is not very easy to attain the microgravity
condition, the sub-centimeter-sized grains are ubiquitous on the Earth. Therefore,
we should first evaluate granular physics with sub-centimeter-sized grains under
Earth’s gravity, namely under the gravitational acceleration of 9:8m/s2. Then, the
effect of microgravity can be properly evaluated.1 To date, we are still in the process
of developing granular physics on Earth. In the meantime, various interesting
findings, which might also be relevant to planetary science, have been reported in
the recent granular physics literature.

Granular matter The physics of granular matter is one of the most important
topics throughout this book. As mentioned above, granular matter can be a key factor

1The strength of bulk granular matter is considerably weaker than that of usual rocks. Thus,
granular impact usually models the gravity-dominant regime rather than the strength-dominant
regime. Gravity is most likely essential even in the microgravity condition. Under a microgravity
environment, the cohesive force among grains could be crucial.
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in various planetary-related phenomena. Soft impact is a specific topic in which the
physics of granular matter plays an essential role in describing the intrinsic feature
of the phenomena.

What is granular matter? How can we define it? Granular matter is usually
defined by a collection of macroscopic rigid and dissipative grains. Dissipation
includes inelastic collision and friction. These dissipative effects are relevant only
when grains are in contact with each other. In addition, the grain size should be suf-
ficiently large to consider the gravity-dominant regime rather than thermodynamic
regime. This definition of granular matter is the simplest and minimal definition.
Most granular characteristics can be reproduced, at least qualitatively, by this simply
defined minimal granular-matter model. Spherical glass beads are often used as
a typical granular matter in various experiments. Because almost all numerical
simulations also use spherical particles, glass beads are advantageous to compare
the experimental results with numerical results. Note that, however, actual regolith
and natural sand have irregular shapes. The size distribution of grains must also
be considered to model the natural granular behavior. Additionally, the effects of
interstitial fluid and cohesion are not negligible in some experimental conditions.
Moreover, elastic (or plastic) deformations of grains must be considered to explain
realistic granular behavior. One of the major difficulties involved in the modeling
of granular behavior is that these complex factors sometimes play crucial roles
and significantly affect granular behaviors. Whilst a simpler model is better for a
physical explanation, we must keep these issues in mind to discuss the application
of granular physics to natural regolith behaviors. All we can do is use a step-by-
step approach. At first, the principal effects of gravity and dissipation should be
revealed using the behaviors of macro-grains.2 Then, various complex effects can
be contemplated as additional factors using careful experiments, simulations, and
theoretical modeling. In fact, recent studies on granular matter consider complex
effects such as deformation, size dispersion, and friction. However, its application
to planetary-scale phenomena remains deficient.

The next problem is how to characterize the granular matter using physics.
We usually discriminate three states of matter: gas, liquid, and solid. Although
each grain composing granular matter is solid, bulk granular matter can behave
like gas, liquid, and solid. Fluid mechanics (hydrodynamics) was established to
characterize the behaviors of gases and liquids, whereas elastic mechanics allows us
to evaluate the deformability, strength, and other properties of a solid. Connecting
these two characteristics (fluid viscosity and solid elasticity), we can even define
the viscoelastic property. All the aforementioned frameworks are applicable only
to continua, i.e., these frameworks represent continuum mechanics. There might be
an effective continuum mechanics for granular matter when the number of grains is
sufficiently large. Therefore, the assumption of continuum (bulk) granular matter
is one possible strategy to approach granular physics. This strategy is more or

2The grain diameter should be greater than the sub-millimeter scale to neglect surface effect under
the Earth gravity.
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less phenomenological. However, the granular matter can be characterized only
by several governing equations and relevant arguments if this strategy succeeds.
Moreover, this approach is useful to analyze experimental results in which the
measurable quantities are limited in many cases. Of course, granular matter is
inherently discrete; it must not be a perfect continuum. From a theoretical viewpoint,
macroscopic phenomenological mechanics should be linked to the microscopic
grains dynamics.3 Unfortunately, we are still developing phenomenological granular
mechanics. The microscopic theories are also still inadequate.4 Nevertheless,
considerable key developments in granular physics have been achieved in recent
decades [3–7].

In this book, impact and planetary-related experimental results are particularly
emphasized. The scales of these topics are sufficiently large to assume continuum-
like granular matter. Thus, the phenomenological approach is often utilized to
understand the intrinsic physical process.

Fluid and granular instability Granular matter is notorious in industrial fields
for its counterintuitive behavior. These counterintuitive behaviors result in various
difficulties in production processes, including clogging, segregation, and shear
banding. In addition to these phenomena, beautiful pattern formations have been
observed in various granular experiments. For instance, a rotating drum filled with
two different types of grains exhibits banding segregation [7–9] and flower-like
patterns [4, 10]. A stratification structure has also been observed in granular heaping
and avalanching [11–13]. These peculiar phenomena are fascinating enough to
attract physicists. The unified explanation of this variety of intriguing phenomena
by a simple framework is the ultimate goal of granular physics. One possible step
toward this goal is the comparison of granular phenomenology with viscous, elastic,
or viscoplastic mechanics.

Because flowing granular matter is capable of inducing various pattern for-
mations similar to fluids, granular flow dynamics could be compared with fluid
mechanics. Fluid motion is frequently characterized by its instabilities [14]. Thus, a
comparison based on instability might be helpful in highlighting the similarities
and differences between fluids and granular matter. Some representative fluid
instabilities are briefly listed below.

• Rayleigh-Taylor instability: When a large-density fluid layer is placed onto a
small-density fluid layer, the state is unstable because of gravity. The overturn
of this unstable structure is initiated by a fingering structure whose characteristic
length scale is determined by fluid properties. This type of instability is called
Rayleigh-Taylor instability and relates even to the remnant structure of a
supernova [15]. An intuitive explanation of the Rayleigh-Taylor instability is
given in Sect. 6.6.2.

3For equilibrium thermodynamics, statistical mechanics successfully plays this role.
4Kinetic theory has contributed to describe dilute granular gas dynamics.
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• Rayleigh-Plateau instability: A free-falling fluid stream is unstable because of
surface tension. The stream finally splits into droplets to minimize the surface
area. This instability is called Rayleigh-Plateau instability.

• Viscous fingering instability: When a less viscous fluid is injected into a more
viscous fluid layer confined in a quasi-two-dimensional cell (Hele-Shaw cell),
viscous fingering instability occurs. This instability results in a fractal pattern
formation in an isotropic situation because of the Laplace growth.

• Kelvin-Helmholtz instability: An interface of two fluids of different densities
and velocities undergoes instability called Kelvin-Helmholtz instability, which is
a parallel shear flow instability that produces a vortex sheet structure. The vortex
structure can sometimes be observed even in cloud shapes.

• Taylor vortex instability: A rotating flow also exhibits a peculiar instability.
Fluids sheared by concentric rotating cylinders form a vortex structure called a
Taylor vortex, which is a type of three-dimensional instability.

• Faraday wave instability: A vibrated fluid layer produces surface wave patterns
on its surface. This pattern formation is called Faraday wave instability.

All these instabilities had been considered to be characteristic features of a
fluid. However, recent granular experiments overrode the idiosyncrasy of the fluid
instabilities. Surprisingly, all the abovementioned instabilities can be mimicked
by granular matter. Experiments have demonstrated the granular analogues of the
Rayleigh-Taylor [16], Rayleigh-Plateau [17, 18], viscous fingering [19], Kelvin-
Helmholtz [20], Taylor vortex [21], and Faraday wave [22, 23] instabilities. In fact,
these instabilities are not exactly the same as fluid instabilities, and the similarity
is rather limited in its appearance. The specific origin of each granular instability
is different from the corresponding fluid instability. Merely because the granular
matter can produce various behaviors, some of these behaviors might only look
similar to fluid instabilities.

Although each investigation on granular instability is quite interesting, the
instability-based classification of fluid and granular matter is not so easy. Phe-
nomenologically, granular matter can induce various instabilities that are very
similar to fluid instabilities. However, the mechanisms of these instabilities are not
identical to those of fluids; this leads to a slightly confusing situation and represents
a difficulty in the study of granular matter. Can we say that granular matter really
behaves like a fluid? The answer is partially “yes” and partially “no.” The created
patterns or instabilities by various granular experiments might not be sufficient to
classify granular matter and fluid. Because the instability-based pattern formations
are extremely beautiful and fascinating, they have attracted the attention of many
physicists. These detailed studies certainly reveal very crucial properties of granular
matter. However, an instability-based study is not a unique way to understand
granular properties. We apply another simple strategy to study granular matter.

Impact drag force The simplest way to examine an unknown object is probably by
mechanical probing. Consider a situation in which you are in front of an unknown
object. What is the first thing you should do? The simplest thing to do first is
“careful observations from various angles.” Then, as a next step, one might push the
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Fig. 1.3 Granular impact
example. The motion of a
solid sphere impacting a
glass-bead bed is captured by
a high-speed camera.
Granular splashing is
observed in addition to the
deceleration of the sphere

material and observe the response. This mechanical probing method corresponds to
one of the most primitive methods in physical research. Mechanical probing can be
regarded as a sort of drag force measurement that will determine the mechanical
characteristics of an unknown object. Quantitatively, the force resisting penetration
should be measured; then, the measured data should be analyzed with penetrating
velocity and depth to obtain the typical drag force characterization. For instance, a
series of high-speed video images of a stone striking onto a sand bed allows us to
quantify the impact drag force using Newton’s second law of motion. In Fig. 1.3,
an example of the motion of a solid sphere impacting a glass-bead bed is shown.
Assuming continuum-like mechanics, the corresponding granular drag force may
be written by a concise equation. In addition, standard drag force theory has been
established in fluid mechanics. Thus, a comparison of the drag force equations is
presumably helpful to classify fluid and granular matter. Moreover, the drag force
can characterize not only granular matter and fluid but also other soft matter such as
viscoelastic materials. Therefore, drag force characterization can be employed as a
fundamental tool to classify a wide range of soft matter. Drag force characterization
is one of the main topics in this book with a particular focus on low-velocity impact
phenomena. While the basic drag force equation will be simple, the various factors
such as the cohesive force may affect this equation. We consider, however, that these
factors would be minor compared with dominant effects such as momentum transfer.
Although we have not yet completely understood these additional (minor) effects,
the state-of-the-art granular impact drag force will be reviewed in this book. The
impacts of other soft matter and some related topics are also discussed to provide an
overview of the generality of the soft matter drag force law.

Impact cratering In an appropriate impact energy regime, the impact inevitably
leaves a crater on the target surface. The morphology of impact cratering on a
soft matter target is another main topic of this book. The cratering morphology
provides useful information for understanding planetary phenomena as well as basic
granular physics. As observed in Fig. 1.1, the surface of the moon is covered with
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vast amounts of craters. Their size-frequency distribution, spatial distribution, and
morphology are meaningful keys to studying the history of the solar system [1].
From the viewpoint of soft impact mechanics, various experiments that can make a
collection of crater shapes will be discussed in this book. For example, the liquid-
droplet-impact phenomenon is a gold mine of interesting crater shapes. In addition
to the final crater shape, transient splashing and jetting caused by the impact are
also informative to discuss the granular physics and planetary surface processes. A
typical ejecta splashing structure formed by a granular impact can be observed in
Fig. 1.3.

Similarity law, dimensional analysis It should be noted that laboratory experi-
ments of soft impact cannot be directly applied to the space environment. In the
space environment, the situation is very different from the laboratory in terms of
atmospheric pressure, temperature, and gravity. A high-velocity impact experiment
in a low-temperature vacuum chamber under microgravity condition must be
performed to directly reproduce the impact occurring in space. Furthermore, a
geological-scale (huge) impactor and target are necessary for a complete reproduc-
tion, which is certainly impossible. To overcome this difficulty, the similarity law is
usually considered.5

The similarity law enables us to scale down massive phenomena to a laboratory
scale on the basis of the concept of dimensional analysis. Dimensional analysis is
particularly powerful and has been used in fluid mechanics. Using an appropriate
normalization, one can obtain a dimensionless form of the equation of motion
of a fluid. Then, the relevant dimensionless numbers are naturally derived. These
dimensionless numbers are important parameters to characterize the considered
fluid phenomena. More systematically, the number of independent dimensionless
numbers can be calculated for a specific system considered using dimensional
analysis. Dimensional analysis is applicable to not only fluids but also general
physical systems. Recently, the method of dimensional analysis has been widely
applied to the evaluation of geological-scale impacts. Using the similarity law,
the size of geological-scale phenomena can be reduced to a laboratory scale. The
similarity law guarantees that the system behaves similarly as long as the relevant
dimensionless number is identical. In other words, dimensional analysis is very
useful to obtain the scaling law. Once the scaling law is obtained by the laboratory
experiments, the law can be extrapolated to larger or smaller scales as long as
the governing physics is unchanged. Thus, we can estimate the order of various
physical quantities using the scaling. This approach is most likely the only way
to speculate what happens in geological-scale phenomena by utilizing laboratory-
scale experiments, particularly because the available information on geological

5Another possible way to study such large-scale and extreme-environment phenomena is the
theoretical or numerical approach. Because the focus of this book is primarily experimental studies,
the similarity law is mainly considered.
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or astronomical phenomena is usually very limited. Order estimates based on
dimensional analysis are convenient to discuss the phenomena with very limited
information.

Using dimensional analysis and the corresponding scaling relation, essential
physics governing a phenomenon can be deduced in most cases. The scaling method
is also utilized to obtain physical intuition about the phenomenon. The concept
of the similarity law is very useful in various fields of science and engineering.
However, note that dimensional analysis is not almighty; in particular, empirically
obtained scaling laws have to be carefully applied. Thus, this book will first
introduce the basics of scaling and dimensional analysis. These methods will be
used everywhere in the remainder of this book. In particular, the characterization
of planetary craters by dimensional analysis is intensively reviewed in this book.
This framework is very insightful for discussing planetary-scale impact cratering.
Dimensional analysis and scaling are also helpful for laboratory-scale impact
phenomena.

Constitutive laws Because the macroscopic continuum-like behaviors of granular
matter are mainly considered in this book, some constitutive laws are important
elements in the physical considerations. Constitutive laws describe the macroscopic
relations among properties such as stress, deformation, flow, friction, rebound,
and attenuation. Because these properties must originate from the integration of
microscopic dynamics, such details are omitted in this book. Namely, only some
important constitutive laws are selected and introduced. Additionally, advective
and diffusive transports and some specific constitutive laws for granular matter are
introduced. These constitutive laws correspond to the background knowledge for
analyses and interpretations of the following various soft impact phenomena.

Related topics There are some other impact-related interesting phenomena. Here
we briefly introduce the topics that we will discuss in this book. Planetary-scale
impact causes seismic shaking as well as cratering and works to erase the crater
shape. Thus, impact cratering is not a simple process. The model for this type of
seismic shaking is also discussed in this book. Impacts of fluffy dust aggregates,
which are constructed by sub-micron monomers, are very important processes to
form planetesimals. Numerical simulations are very powerful to analyze such a
small-scale phenomenon. Thus, both the numerical and experimental results are
discussed for this topic. Regolith migration induced by impact or wind transport
is another interesting impact-related phenomenon. We must determine the origin
of regolith formation and how the regolith grains are moved by the impact-
induced seismic shaking and surface wind, to interpret various planetary surface
morphologies. Moreover, the convection of regolith may be triggered by impact.
These special topics relate to both soft impact physics and planetary science.

Summary In summary, soft impact dynamics will be discussed to reveal funda-
mental physics and relate this information to geological or planetary phenomena.
Granular matter is specifically focused on as an important constituent of geological
or planetary phenomena. The specific topics discussed in this book are (i) impact
drag force and (ii) impact cratering. Granular matter is regarded as a type of continua
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to develop phenomenological models. Dimensional analysis and scaling will be used
to determine the essential physics of these phenomena. This book will review and
discuss the recent experimental results of various impact-related phenomena. From
the theoretical viewpoint, we will not address microscopic details in more depth than
constitutive laws. To investigate the theoretical points of granular matter in detail,
there are some appropriate textbooks available [24–28]. However, the readers of
this book do not have to be familiar with these theories of granular matter. Basic
knowledge of continuum mechanics will be useful to understand the content.

Organization of the book This book is organized as follows. In the next chapter
(Chap. 2), the minimal fundamentals necessary to understand soft impact are
introduced. The basics of dimensional analysis are mainly covered in this chapter.
Furthermore, the basic framework of the drag force model is discussed in this chap-
ter, which will be instructive for understanding the essence of the scaling theory.
Next, in Chap. 3, useful constitutive laws are briefly explained. The constitutive
laws introduced in this chapter provide a firm basis for understanding physics of
soft impact and cratering. The similarity and difference between granular matter
and fluids are also highlighted in this chapter. Additionally, the representative
features of granular matter are introduced. Those who are already familiar with
fluid and granular mechanics can skip these two chapters. In Chap. 4, impact drag
force is intensively discussed; recent experimental results are reviewed, and a
unified understanding is introduced. Various effects such as container wall, packing
fraction, and interstitial fluid are also discussed in terms of the impact drag force.
Some other related phenomena, e.g., slow penetration and viscoelastic impact,
are also reviewed in this chapter. Then, planetary impact cratering is described
in Chap. 5. In this chapter, crater morphology, mechanics, and their dimensional
analysis method are reviewed. In Chap. 6, after reviewing the basic scaling theory of
the impact cavity formation in fluid, some recent experimental results on soft impact
cratering are presented. Transient phenomena such as jetting and splashing are
discussed in addition to the final crater shape. In Chap. 7, the impact of fluffy dust
aggregate and transport of regolith grains will be discussed. Finally, perspectives on
the relation between soft impact and planetary or geological science are presented
in Chap. 8.

The primary points discussed in this book are summarized in the list below.

• Scaling and dimensional analysis (Chap. 2): The basic methodology used in
this book is introduced.

• Fundamentals of constitutive laws (Chap. 3): Phenomenological description
and characteristic (counterintuitive) laws relevant to continuum and granular
matters are reviewed.

• Impact drag force (Chap. 4): The focus of this chapter is granular impact drag
force. Some related phenomena are also reviewed briefly.

• Impact cratering morphology (Chap. 5): The morphological classification and
the scaling of planetary impact cratering are discussed. Seismic shaking, shock
propagation, and ˘ -groups scaling for planetary impact cratering are also
reviewed.
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• Soft impact cratering (Chap. 6): Various crater shapes formed by soft impacts
are discussed. Jetting, ejecta splashing, and more complex structures are intro-
duced on the basis of experimental results.

• Relation between soft matter and earth and planetary science (Chap. 7): The
possible applications of soft matter physics to planetary or geological phenomena
are discussed. In particular, the collisional growth of dust aggregates and regolith
migration dynamics are the main focus.

Primarily, experimental results and related intuitive explanation through dimen-
sional thoughts are discussed throughout this book.
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Chapter 2
Scaling and Dimensional Analysis

The fundamental concepts necessary to understand soft impact will be presented
in this and the next chapter. First, definitions of unit, dimension, stress, and strain
are introduced. Then, the basic ideas of scaling and dimensional analysis are
briefly explained on the basis of fundamental continuum mechanics. After reviewing
the elementary theory of the fluid drag force, a list of meaningful dimensionless
numbers is provided. Finally, the concept of the similarity law, which is important in
the design and analysis of the experimental system, is described. In the next chapter,
constitutive laws of soft matter particularly for granular matter are intensively
discussed. Because this and the next chapters concern fundamentals, those who
already have a good understanding of continuum mechanics and granular matter
do not need to read these chapters. Note that, however, many equations derived in
these chapters will be used in the subsequent chapters.

2.1 Units and Dimensions

We must first define the unit and dimension. In any physical experiment, some
physical quantities must be measured and related quantitatively to find the governing
physical law. For the quantification, the measured quantities must be compared with
the standard units, e.g., 1 kg for mass, 1 m for length, and 1 s for time. These three
units (kg, m, s) are independent of each other and indispensable to the mechanical
characterization of motion and dynamics of objects. Such a set of fundamental units
is called a system of units. Namely, the units kg, m, and s are the fundamental
units comprising a system of units for the mechanical characterization. Other units
defined by combinations of fundamental units are called derived units. For instance,
the unit of velocity is a derived unit because it can be composed of the units of
length and time as m/s. The specific value of a measured physical quantity depends
on the set of units used in the quantification, e.g., 1m=s D 3:6 km=h. The necessary
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number of fundamental units constructing the system of units depends on the
physical system under consideration. The system of units must involve a sufficient
number of units to derive all the other units necessary for the physical characteriza-
tion of the system. In the above example, three units are selected, assuming a purely
mechanical system. When a thermal effect is indispensable, temperature should be
involved in the system of units. For electromagnetic phenomena, electric charge
should also be considered. Because most of the discussions in this book concern
purely mechanical cases, three mechanical units (e.g., (kg, m, s)) are generally used
to compose the system of units.

The dimension does not depend on the system of units. Whatever the system
of units used, the unit of velocity is defined by the unit of length divided by time.
To clearly focus on this dimensional relation, we can use fundamental dimensions
instead of corresponding fundamental units. The following conventional notations
of dimensions are generally used in dimensional analysis [1]. The dimensions of
mass, length, and time are denoted by M, L, and T, respectively, i.e., the system of
units (kg, m, s) corresponds to the set of fundamental dimensions (M, L, T). The
dimension of an arbitrary quantity is written as Œ � �, for instance, Œvelocity� D
Œlength�=Œtime� D L=T. Fundamental dimensions are certainly independent of each
other because the corresponding fundamental units are independent.

As mentioned before, any physical quantity is measured by comparison with the
corresponding standard. This rule is a simple proportional quantification rule. For
example, 20m corresponds to 20 times longer than a specific standard unit of 1 m.
Because of this simple linearity and the arbitrariness of the selection of the system
of units, the dimension of any physical quantity can be expressed by the product of
power-law monomials of fundamental dimensions [2]. Nonlinear expressions such
as cosine and exponential do not appear in the dimensions of any physical quantity.
Thus, the dimensional analysis can be discussed using linear equations of powers of
the fundamental dimensions, as explained later in Sect. 2.5.

In general, it makes no sense to add different dimensional quantities, e.g., the
length of an object plus its mass is quite a meaningless computation. We can add,
subtract, compare or equate quantities of the same dimension; this requirement is
called dimensional homogeneity.

2.2 Force, Stress, and Strain

For the study of soft matter mechanics, definitions of force, stress, strain, and
strain rate are first necessary. Force can be defined by the motion of a mass point or
a rigid body as

F D ma; (2.1)

where F, m, and a are the force, mass and acceleration, respectively. This equation,
Newton’s equation of motion, is probably the most famous physical equation.
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The bold symbols indicate vector quantities. While the mass is inherently a
scalar quantity, the force and acceleration are vector quantities. If the motion is
purely one-dimensional, the scalar version of Eq. (2.1) is sufficient to describe the
relation among the force, mass, and acceleration. However, real space is not one-
dimensional; it is three-dimensional. Thus, a vector notation is required to express
the direction of the force and acceleration. In three-dimensional space, a vector
comprising three independent components is necessary to describe a directional

quantity such as force: F D .Fi;Fj;Fk/ and jFj D
q

F2i C F2j C F2k , where i, j, k are

three independent directions of the space. By considering a symmetric, isotropic, or
low-dimensional motion, it is sometimes possible to simplify the physical relation
such that the relation consists only of the scalar quantities. While we will provide
an overview of the general vector and tensor notations in this chapter, we will
mainly focus on such simpler cases from the next chapter. Such a simplification
is advantageous for an intuitive understanding of the dimensional analysis. From
Eq. (2.1), the dimension of force is computed as Œforce� D Œmass� � Œacceleration� D
ML=T2.

It should be noted that the force can cause deformation or flow as well as the
motion described by Eq. (2.1). Therefore, the forces should be classified in terms of
their roles. There are certain types of forces. The first one is called body force and
acts on the mass through Newton’s equation (Eq. (2.1)) as (body force) D (mass)
� (acceleration). The second one is the surface force acting on the surface, (surface
force) D (stress) � (surface area). That is, stress is defined by (force)/(surface area)
at the limit of the infinitesimal surface area. Body force determines the motion of the
centroid, and surface force can also induce deformation and flow. Because the stress
is defined by force divided by area, its dimension is Œstress� D Œforce�=Œarea� D
M=LT2.

The difference among the scalar, vector, and tensor should be recognized with
regard to force, stress, and strain. Body force can be written in a vector expression.
In fact, the directions of force and acceleration completely agree in Eq. (2.1). In
contrast, the surface force acts on a surface. Their directions are independent which
implies that there are two independent directions: normal to the surface and the
direction of the applied force. Consequently, stress and deformation must be second
rank tensors for their full descriptions. Furthermore, the direction of the resultant
deformation or flow does not necessarily coincide with the stress direction. Thus,
higher rank tensors are actually required for the complete calculation of continuum
mechanics. However, here we introduce only some elementary expressions of stress
and strain tensors.

An example of the stress tensor notation in a small volume unit cell, dxidxjdxk,
is schematically shown in Fig. 2.1. On each surface of the unit cell, the directions
of stress tensors in equilibrium are indicated by arrows. The stress tensor �ij has
9 D 3 � 3 components in three-dimensional space (xi, xj, xk). Because the stress
field is nonuniform in general, �ij is a function of position. When the size of the unit
cell is sufficiently small, we can assume a linear approximation,
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Fig. 2.1 Stress tensor in Cartesian coordinate system .xi; xj; xk/. A stress component �ij represents
the stress value acting on the surface whose normal direction is xi and its loading direction is xj.
The coordinate system on each surface denotes the direction of stress components in equilibrium
with a linear approximation of Eq. (2.2)

�ij.xi C dxi/ D �ij.xi/C @�ij

@xi
dxi: (2.2)

Next, we consider the equilibrium condition in this unit cell. Equilibrium demands
that the total forces vanish in the unit cell. Let us consider the force balance in the
xi direction. Then, the total force balance in the xi direction including both the body
and surface forces is written as
�
�ii C @�ii

@xi
dxi

�
dxjdxk � �iidxjdxk C

�
�ji C @�ji

@xj
dxj

�
dxkdxi � �jidxkdxi

C
�
�ki C @�ki

@xk
dxk

�
dxidxj � �kidxidxj C �aidxidxjdxk D 0:

(2.3)

Here, � and ai are the density and acceleration due to the body force in the xi

direction, respectively. Dividing Eq. (2.3) by dxidxjdxk, we obtain

X
j

@�ji

@xj
C �ai D 0: (2.4)

This is a general equilibrium condition of the unit cell in the xi direction.
A similar calculation of the torque balance leads to a simple relation,

�ij D �ji: (2.5)
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Fig. 2.2 Schematic image of
deformation ır D r0 � r. Two
points x and x0 are supposed
to be in a continuum. These
points are moved to x C r and
x0 C r0 because of the
deformation ır and bulk
motion r

x

x’

r’

δx

x’+r’
δr

r

x+r
r

x’+r

This relation indicates that �ij is a symmetric tensor. Therefore, the number of
truly independent components in the torque-balanced stress tensor is actually
six because of this symmetry. Symmetric tensors can be diagonalized by the
appropriate rotation of the coordinate system. The eigenvectors and eigenvalues of
the stress tensor correspond to the principal axes and extreme values of the stresses,
respectively.

The strain (and strain rate) must be defined by a tensor to describe deformation
(and flow) in three-dimensional space. To quantify the deformation, let us consider
two points in a continuum, x and x0. These two points are supposed to be close and
related by a small distance vector, ıx D x0 � x. When the point x moves to x C r for
some reason, the point x0 should also be moved. If the continuum is a rotationless
rigid body, x0 has to be moved to the position x0 C r. Otherwise, a finite deformation
vector ır must be added to x0 C r because of the deformation. A schematic image of
this deformation is presented in Fig. 2.2. Assuming ıx and ır are sufficiently small,
these parameters are related by neglecting the higher order terms as

ıri D
X

j

@ri

@xj
ıxj: (2.6)

Defining the deformation gradient (strain) tensor D by ır D Dıx, the tensor
component Dij can be written as Dij D @ri=@xj. The on-diagonal components Dii,
Djj, and Dkk relate to the elongation or contraction in each direction. Furthermore,
the off-diagonal component Dij can be decomposed into a symmetric part �ij and an
antisymmetric part hij as

Dij D �ij C hij; (2.7)

�ij D 1

2

�
Dij C Dji

� D 1

2

�
@ri

@xj
C @rj

@xi

�
; (2.8)

hij D 1

2

�
Dij � Dji

� D 1

2

�
@ri

@xj
� @rj

@xi

�
: (2.9)
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a b c

x2

x1

r1=D12 x2
x2

x1

x2

x1

h12 x2

h21 x1 γ21 x1

γ12 x2

Fig. 2.3 Decomposition of a simple shear into antisymmetric and symmetric deformations in two-
dimensional case. (a) Simple shear deformation r1 D D12x2 is written by r1 D .h12 C �12/x2
with h12 D �h21 D �12 D �21 D D12=2, i.e., D21 D 0 in this simple shear. Considering
an incompressible case D11 C D22 D const., (b) a square box is rotated by the antisymmetric
component, and (c) the box is sheared by the symmetric component. Finally, a parallelogram whose
area is the same as the initial square is formed as a result of the simple shear

This decomposition has a physical meaning. These components satisfy the
relations, �ij D �ji and hij D �hji. Actually, the antisymmetric part hij relates to
rotational motion, and the symmetric part �ij relates to shear deformation; thus, �ij is
defined as shear strain. A schematic illustration of the relation among simple shear,
antisymmetric deformation, and symmetric deformation in the two-dimensional
case is shown in Fig. 2.3. Because hij is antisymmetric (hij D �hji), it corresponds
to the rotational motion without any net deformation, as observed in Fig. 2.3b. The
initial square is rotated by hij. In contrast, the symmetric component �ij D �ji

represents the shearing deformation, as shown in Fig. 2.3c. Namely, we can trace
a deformation from a square to a parallelogram by the sum of a rotation due to
the antisymmetric deformation (Fig. 2.3b) and a shearing due to the symmetric
deformation (Fig. 2.3c). The simple shear (Fig. 2.3a) can be decomposed into these
two components under the constant volume (

P
i Dii D const.) constraint. To discuss

the general deformation, the shear strain �ij is usually more important than the
rotational strain hij because the shear deformation relates to a net deformation. From
Eq. (2.8), strain is evidently dimensionless; Œstrain� D Œlength�=Œlength� D 1.

For the strain rate, a similar calculation can be applied to the velocity u instead
of the deformation r. Then, the shear strain rate tensor P�ij is written as

P�ij D 1

2

�
@ui

@xj
C @uj

@xi

�
: (2.10)

Therefore, the dimension of the shear strain rate is the inverse of time, Œstrain rate� D
Œvelocity�=Œlength� D T�1.

Strain and strain rate are related to stress by constitutive laws. For instance, a
general form of linear constitutive relation between stress and strain is written as
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�ij D
X

k

X
l

cijkl�kl; (2.11)

where cijkl is a fourth rank elastic constant tensor with 81 D 34 components in
principle. However, the number of independent components in an isotropically
elastic material in equilibrium can be reduced because of symmetry and isotropy.
Concretely, there are two truly independent directions even in an isotropic medium:
normal and tangential. Thus, the elastic constant tensor for an isotropic medium can
be written as

cijkl D �Lıijıkl C �L
�
ıikıjl C ıilıjk

�
; (2.12)

where �L and �L are Lame’s elastic constants. ıij is Kronecker’s delta; ıij is 1 if
i D j, otherwise 0. Substituting Eq. (2.12) into Eq. (2.11), a constitutive relation,

�ij D �L

X
k

�kkıij C 2�L�ij; (2.13)

is obtained. This relation is a general description of the linear elastic constitutive
law for isotropic media in equilibrium. This constitutive relation is called Hooke’s
law.

A similar constitutive law enables us to model the viscosity. For viscous fluid
flow, the stress and strain rate tensors should be related as

�ij D �pıij C
X

k

X
l

gijkl P�kl; (2.14)

where the pressure p is necessary to represent the hydrostatic stress balance. For
isotropic viscous fluids, gijkl can be written by two constants � and 	,

gijkl D �ıijıkl C 	
�
ıikıjl C ıilıjk

�
: (2.15)

Then, Eq. (2.14) can be rewritten as

�ij D
 

�p C �
X

k

P�kk

!
ıij C 2	 P�ij: (2.16)

The trace of the tensor �ij becomes
P

i �ii D 3.�pC
Pk P�kk/, where 
 D �C2	=3.
Usually, � D �2	=3 is assumed. Namely, � is defined such that all the normal stress
components are effectively involved in p. Equation (2.16) is a general form of the
isotropic viscous constitutive law in equilibrium.

In this section, we have overviewed the basics of stress, strain, strain rate, and
their tensor notations. The aim of this book is not a mathematically complete
description of continuum mechanics. The definitions of stress, strain, and strain rate
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explained thus far are sufficient (maybe too much) to read the following content.
Thus, we will not discuss further details of tensor algebra. See, e.g., Refs. [3–5]
for more details. In the next section, we will simplify the notations and use scalar
forms by considering isotropic cases and simple setups. Such simplified situations
are helpful in understanding dimensional analysis and scaling. Specifically, we use
a simple scalar strain defined by the deformation length scale ır normalized to
the original representative length scale l, � D ır=l. Additionally, the strain rate is
simply defined as P� D d�=dt D .dır=dt/=l, where t denotes time. In the remainder
of this book, dimensional analysis or order estimate will be mainly discussed on
the basis of various experimental observations of soft matter impacts. Therefore,
simple constitutive laws expressed by scalar quantities are usually discussed which
indicates that we mainly focus on isotropic materials and simple geometry with the
appropriate coordinate system. Most of the soft matter that we consider in this book
is isotropic. The isotropic approximation is applicable to random structures such as
grain networks in granular matter. Therefore, bulk granular matter can be regarded
as a type of isotropic media. For anisotropic media such as crystalline solid and
liquid crystals, the tensor expression is intrinsically important.

2.3 Simple Definitions of Viscosity and Elasticity

As introduced in the previous section, the most fundamental constitutive laws for
the flow and deformation of isotropic continuous media are linear viscosity and
elasticity. Here we simplify these laws using an intuitive approach to consider the
scalar-based constitutive laws. In this section, the viscous law is first redefined.
Then, some of the simplified elastic constitutive laws are introduced. The intuitive
approach is helpful to understand the physical essence and define the measurable
quantities.

Viscosity Shear viscosity1 	 is defined by the relation between shear stress and
shear strain rate. Let us consider a simple shear (Figs. 2.3 and 2.4a) to simplify the
relation such that it is written by scalar quantities. As shown in Fig. 2.4a, shear stress
�s is defined by a stress applied to a plane: the shear force F along the x1 direction
divided by a planar area A. Because of this shear stress, flow with a velocity profile
u1.x2/ is induced, where the direction of the x2 axis is perpendicular to the shear
direction x1. By defining the shear strain rate by P� D du1=dx2, the simplified viscous
constitutive law is written as

�s D 	 P�: (2.17)

1The word viscosity indicates dynamic viscosity. Kinematic viscosity is defined by 	=�. 	 defined
in Eq. (2.17) is essentially the same as that introduced in Eq. (2.16).
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Fig. 2.4 Schematic
illustration of shear, tensile,
and isotropic constitutive
laws. Plane (simple) shear,
longitudinal tensile, and
isotropic geometries are
shown in (a), (b), and (c),
respectively. Newtonian fluids
hold �s D 	.du1=dx2/ D
	u1=l D 	 P� . Elastic solids
satisfy a simple linear
relation, �e D E�l=l. The
volume strain (�V=V) and
isotropic normal stress
(pressure) are related by the
bulk modulus as
�n D K.�V=V/ D ��p

x2 σs=F/A
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Here we neglect the normal stress to focus on the shear effect. The stress tensor
notation including on-diagonal components (pressure) corresponds to Eq. (2.16) and
will be rewritten in Eq. (2.29). Note that the definition of the simple shear strain rate
P� is slightly different from the shear strain rate tensor P�ij (simple shear vs. pure
shear). By the definition of P�ij D .1=2/.@u1=@x2 C @u2=@x1/, the corresponding
constitutive law can be written as �ij D 2	 P�ij. In either case, both definitions result in
an identical 	 value. It is often assumed that 	 is independent of the flow state. This
assumption is reasonable for most gases and liquids in the low Reynolds number
regime (see Sect. 2.5.1 for the definition of the Reynolds number). Such constant-	
fluids are called Newtonian fluids. In Newtonian fluids, the velocity profiles u1.x2/
must be linear as shown in Fig. 2.4a, and its slope corresponds to the viscosity.
This linear shear viscosity is one of the simplest constitutive laws in continuum
mechanics. In the sense of linear relation, both gas and liquid can be Newtonian
fluids; however, the temperature dependence of 	 is quite different between a gas
and a liquid. This discrepancy originates from the different microscopic origins
of viscosity. Then, one might think that the viscosities of gas and liquid have
to be discussed separately. However, microscopic details should be neglected in
the spirit of a constitutive law. Regardless of its origin, a viscous fluid satisfying
Eq. (2.17) is called a Newtonian fluid. In general, constitutive laws are macroscopic
and empirical relations.

The inviscid and incompressible fluid is called a perfect fluid. In the perfect fluid,
shear stress does not exist even in the flowing state.
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Elasticity For elastic solids, stress balances with the strain rather than the strain
rate because elastic solids cannot flow. That is, the stress is supported by the elastic
deformation, i.e., strain. The corresponding constitutive law is written as

�s D G�; (2.18)

where G is the elastic shear modulus (or stiffness). For the complete description
of the general relation between stress and strain, the relation must be expressed in
tensors as mentioned in the previous section. However, here, we consider its scalar
version for brevity’s sake. In the definition of shear viscosity, we have considered
a simple shear as shown in Fig. 2.4a. By considering the relation between the
shear stress �s and the shear strain � instead of the shear strain rate P� , Eq. (2.18)
is simply obtained. The shear modulus G is identical to Lame’s elastic constant
�L (Eq. (2.13)).

There are some other elastic moduli. The value of the elastic modulus depends on
the loading and deformation conditions. When the longitudinal stress �e is applied
to the specimen, the Young’s modulus E characterizes the elasticity as

�e D E
�l

l
; (2.19)

where the longitudinal strain �l=l is the ratio between the longitudinal deformation
length �l and the original length l (Fig. 2.4b). This linear relation of longitudinal
stress and strain (Eq. (2.19)) originates from Hooke’s law.

As observed in Fig. 2.4b, contraction (or elongation) to the orthogonal direction
�D=D should be considered in addition to longitudinal strain for an accurate
estimate. Here D and �D are the original transverse length scale and its small
deformation associated with the longitudinal deformation�l. In this case, Poisson’s
ratio �p is defined as

�p D ��D=D

�l=l
: (2.20)

Note that �l and �D usually take an opposite sign to make �p positive, which
implies that the elongation in the longitudinal direction usually results in contraction
in the orthogonal direction and vice versa. If the volume is conserved, D2l D
.D��D/2.lC�l/ is held. Then, neglecting higher order terms of small deformation,
�p D 1=2 is obtained. For most solid materials, �p ' 0:3. For isotropic materials,
E and �p can be written by �L and �L. Using tensor notation, Eqs. (2.19) and (2.20)
can be written as �e D p D E�11 and �p D ��22=�11. Using the constitutive law
(Eq. (2.13)), the loading condition is expressed by p D �L.�11C�22C�33/C2�L�11
and 0 D �L.�11 C �22 C �33/C 2�L�22 D �L.�11 C �22 C �33/C 2�L�33. Then, we
obtain the relations E D �L.3�L C 2�L/=.�L C �L/ and �p D �L=2.�L C �L/.

When the stress �n is applied normally to all the surfaces of an isotropic medium,
a volume change is induced. The bulk modulus K is the ratio between the normal
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stress and the volume strain, which is defined by the volume change�V divided by
the initial volume V (Fig. 2.4c):

�n D K
�V

V
D ��p: (2.21)

In isotropic materials, the bulk modulus K can be related to �L and �L again. Using
the relations�V=V D �11C�22C�33 and ��p D �L.�V=V/C2�L�ii (i D 1; 2; 3),
K can be rewritten as K D .3�L C 2�L/=3.

It is well known that a rubber band behaves like a spring; it exhibits stiffness and
a restoring force. Rubber band elasticity can be described by Hooke’s law, at least in
the small strain regime. However, the specific origins of Hooke’s law are completely
different among elastic solids and rubber bands. In the former, the enthalpy-based
force of a crystalline solid results in the restoring force, while the entropy-based
force is the main origin of the restoring force in the latter. This difference can be
confirmed by the temperature dependence of the elastic modulus. This different
temperature dependence is similar to the different temperature dependence of 	
between a gas and a liquid. Hooke’s law is valid for both an elastic solid and a
rubber band as a useful mechanical constitutive law. If we are also interested in
thermodynamic properties, they have to be distinguished.

Note that Eqs. (2.17), (2.18), (2.19), and (2.21) are linear. These equations are
valid only in a small P� or � regime. In a large P� or � regime, the constitutive laws
become nonlinear. Some of the nonlinear constitutive laws will be introduced in
Chap. 3. Currently, the linear constitutive laws are sufficient to discuss the scaling
and dimensional analysis in the following sections of this chapter.

2.4 Conservation Laws

Conservation laws are important relations in conservative systems. Usual continua
such as elastic solids or viscous fluids obey each corresponding governing equation
that satisfies the conservation laws. Here three conservation laws of fluids—mass
conservation, linear momentum conservation, and energy conservation—are intro-
duced. The famous Navier-Stokes equation is derived using the linear momentum
conservation law. In the next section, the Navier-Stokes equation will be used to
learn dimensional analysis. From the energy conservation, Bernoulli’s principle,
which relates the drag force to the lift force acting onto an object moving in a fluid,
is obtained.

2.4.1 Mass Conservation

The first conservation law explained is mass conservation. Let us consider a
macroscopic fluid unit called a fluid particle that has density � and moving velocity
u. Then, the mass conservation law is written as
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d

dt

Z

V
�dV C

Z

S
�u � ndS D 0; (2.22)

where
R

V dV and
R

S dS, denote volume and surface integrations, respectively, and the
surface S encloses a volume V . n is the unit normal vector of the surface S. The first
term represents the density variation with time t, and the second term corresponds to
the net inflow (or outflow) to the volume V through its surface S. The surface integral
can be transformed to the volume integral by Gauss’ theorem,

R
V r �  dV D R

S  �
ndS, where  can be a tensor, vector, or scalar of any dimension. Additionally, the
currently considered volume V is arbitrary as long as it is macroscopic. Therefore,R

V f .u/dV D 0 is equivalent to f .u/ D 0. Then, the derivative notation of the mass
conservation is written as

@�

@t
C r � .�u/ D 0; (2.23)

or equivalently,

D�

Dt
C �r � u D 0; (2.24)

where the operator D=Dt is

D

Dt
D @

@t
C u � r: (2.25)

The operator r is a vector differentiation defined by r D P3
iD1 ei.@=@xi/ for a

three-dimensional Cartesian coordinate system .x1; x2; x3/, where ei is a unit vector
of each orthogonal direction. Equation (2.23) is called the equation of continuity,
and its physical meaning will be discussed again in Sect. 3.5 in terms of transport
phenomena.

The expression using the operator D=Dt is called the Lagrange derivative or
convective derivative. The first term on the right-hand side of Eq. (2.25), @=@t,
corresponds to the fixed point observation that is called the Eulerian derivative. The
second term represents the advective contribution by the flow of velocity u.

For an incompressible fluid (� D const. i.e., D�=Dt D 0), the mass conservation
is simply written as

r � u D 0: (2.26)

2.4.2 Linear Momentum Conservation and Navier-Stokes
Equation

The Navier-Stokes equation, which is the most basic fluid governing equation, can
be derived using linear momentum conservation and the constitutive law. The linear
momentum conservation for a viscous fluid is
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d

dt

Z

V
�udV D

Z

S
�ndS C

Z

V
�adV; (2.27)

where � and a are respectively the stress tensor applied to the surface S and the
acceleration due to the body force exerted on a fluid particle of volume V that is
bounded by the surface S. The left-hand side of Eq. (2.27) represents the temporal
variation in the linear momentum. The first term on the right-hand side is the
momentum change by the surface force (stress) and the second term originates from
the body force contribution. If any stress is not applied to the surface, Eq. (2.27) is
equivalent to Eq. (2.1), in which only the body force is considered. Using Gauss’
theorem again, Eq. (2.27) is rewritten as

�
Du
Dt

D r� C �a: (2.28)

This is a simple form of linear momentum conservation in a viscous fluid particle.
For an incompressible (� D const.) Newtonian fluid (	 D const.), the stress tensor
�ij is written as

�ij D �pıij C 	

�
@ui

@xj
C @uj

@xi

�
: (2.29)

This is the Cartesian notation of the constitutive law of an incompressible New-
tonian fluid (simplified from Eq. (2.16)). Substituting Eq. (2.29) into Eq. (2.28)
and using a little tensor algebra, the Navier-Stokes equation for incompressible
Newtonian fluid is determined to be

�
Du
Dt

D �rp C 	r2u C �a: (2.30)

Here Eq. (2.26) is used to simplify the viscosity-dependent term. For more details
concerning the derivation of Eq. (2.30), see, e.g., Refs. [3–5]. For inviscid fluid flow,
the second term on the right-hand side can be dropped. The equation without the
viscous term is called the Euler equation.

2.4.3 Energy Conservation

By similar consideration, energy conservation can be discussed in incompressible
viscous fluids. Let eint be the internal energy of the fluid per unit mass that is
dimensionally equivalent to stress. Then, the energy conservation law can be written
by the first principle of thermodynamics as

�
D

Dt

�
1

2
juj2 C eint

�
D r � .�u/C �a � u � r � q; (2.31)
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where j � j denotes the norm of the vector and r � q represents the thermal energy
transfer rate per unit volume (local heat flux). The left-hand side represents the
Lagrange derivative of total (kinetic + internal) energy. On the right-hand side, the
first term corresponds to the work performed by the surface force per unit volume,
the second term denotes the work performed by the body force per unit volume, and
the last term comes from the thermal energy flux.

Note that the fluid viscosity induces dissipation. Forming a scalar product from
the linear momentum conservation by multiplying u to Eq. (2.28), one can obtain a
relation,

�
D

Dt

�
1

2
juj2

�
D �

Du
Dt

� u D .r�/ � u C �a � u: (2.32)

Substituting Eq. (2.32) into Eq. (2.31), the relation

�
Deint

Dt
D r � .�u/� .r�/ � u � r � q (2.33)

is obtained. The tensor component from the first and second terms on the right-hand
side is computed as [6]

@

@xi

�
�ijuj

� � @�ij

@xi
uj D �ij

@uj

@xi
: (2.34)

Thus, these terms relate to the shear stress and strain rate, i.e., viscosity. From
Eqs. (2.33) and (2.34), one can recognize that the shear viscosity is coupled with
internal energy and local heat flux. The stress applied to the viscous fluid cannot
be completely transformed into the linear momentum of the fluid. Therefore, the
viscosity induces the dissipation. Note that, however, the elasticity conserves the
energy. Thus, the constitutive laws of viscosity and elasticity are qualitatively
different.

Considering the simple situation of inviscid flows, Bernoulli’s principle is
derived from the conservation laws. Viscosity, associated heat flux, and internal
energy are negligible in an inviscid flow; therefore, we should consider Eq. (2.32).
Because we neglect the viscosity that relates to the shear stress, the remaining
relevant stress is only the pressure. Then, the first term on the right-hand side of
Eq. (2.32) can be simplified as the time derivative of pressure; �Dp=Dt. Here, note
that the dimension of .r�/ � u is equivalent to the temporal derivation of stress.
For the second (body force) term, the simplest form of energy per unit volume is
hydrostatic pressure � ��gz, where z is the height difference along the direction of
gravity. Thus, the body force term can be written as �D.�gz/=Dt.D ��g.Dz=Dt//.
According to the conservation law, the sum of kinetic energy per unit volume,
pressure, and hydrostatic pressure is independent of time, .D=Dt/.�u2=2 C p C
�gz/ D 0. Finally, a simple expression of the conservation law along the stream line
(by Lagrangian viewpoint) is obtained as
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1

2
�u2 C p C �gz D const. (2.35)

This relation is called Bernoulli’s principle. When the dynamic pressure (also known
as ram pressure) �u2=2 increases, the static pressure p decreases. Then, the lift force
can be induced using Eq. (2.35) if u is not uniform (i.e., asymmetric) around an
object.

There are some other conservation laws, including that for angular momentum.
These laws are also essential ingredients in continuum mechanics. However, we are
not going to describe further details of the conservation laws. Instead, we proceed
to the next topic: dimensional analysis, which is the central concept throughout this
book.

2.5 Dimensional Analysis

In this section, the dimensional analysis method is introduced in detail. Dimen-
sional analysis is the central methodology in this book. There are two systematic
approaches to obtain the relevant dimensionless numbers. One approach is based
on the nondimensionalization of the governing equation, and the other approach
is the ˘ -groups method. The former is better if we know the specific form of the
governing equation, whereas the latter is more general and systematic. However,
some arbitrariness remains in the analysis. The advantage of the latter method is
generality; this approach is applicable even if the governing equation of the system
is completely unknown. An intuitive way to discuss the scaling relation is also
introduced in this section as a possible third approach in dimensional analysis. This
method is powerful if the appropriate balance law is considered to derive meaningful
scaling, and its essence is similar to that of dimensional analysis.

2.5.1 Nondimensionalization of the Governing Equation

If we know the governing equation of the system, we can directly perform the
dimensional analysis. Let us begin with the Navier-Stokes equation derived in the
previous section. Here we consider an incompressible fluid without body forces
(�a D 0). Then, from Eqs. (2.30) and (2.25), the governing equation is written as

�

�
@u
@t

C .u � r/u
�

D �rp C 	r2u: (2.36)

All the quantities and operators in Eq. (2.36) have their own units. For instance,
velocity has a unit of (length)/(time), namely, m/s in the SI unit system. A unit such
as m/s is an artificial rule to measure a physical quantity. As discussed in Sect. 2.1,
the governing physical law must be free from such an artificial rule. Of course,
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Eq. (2.36) must also be dimensionally homogeneous. Therefore, Eq. (2.36) can be
nondimensionalized using dimensionless quantities

x�
i D xi

l
; t� D t

to
; u� D u

U
; and p� D p

�U2
; (2.37)

where l, to, and U are representative values of length, time, and norm of velocity
(speed), respectively. Using these dimensionless quantities, Eq. (2.36) is rewritten
as

�

�
@Uu�

@tot�
C
�

Uu� � r�

l

�
Uu�

�
D �r�

l
�U2p� C 	

r�2

l2
Uu�; (2.38)

where r� D lr is a dimensionless operator corresponding to r. Multiplying a
factor l=�U2 by Eq. (2.38), the dimensionless form of Eq. (2.36) can be obtained as

�
l

Uto

�
@u�

@t�
C .u� � r�/u� D �r�p� C

�
	

�Ul

�
r�2u�: (2.39)

In Eq. (2.39), we can find two important parameters

St D l

Uto
; (2.40)

Re D �Ul

	
: (2.41)

St and Re are called the Strouhal number and the Reynolds number, respectively.
Clearly, these quantities are dimensionless because of the dimensional homogeneity:
ŒSt� D ŒRe� D 1. Because these values are dimensionless, they are independent
of unit systems such as SI and cgs. This indicates that inherent parameters for the
behavior of incompressible viscous fluid are St and Re. In other words, the dynamical
behaviors of two systems obeying Eq. (2.39) with the same St and Re are completely
similar, even if the representative length or time scales are quite different between
these two systems. This similarity law enables us to perform contracted model
experiments. The concept of this similarity law will be discussed later in Sect. 2.8.

As long as the equation is sound—a physically meaningful equation must
be dimensionally homogeneous as discussed in Sect. 2.1—it can be nondimen-
sionalized using an appropriate normalization. As demonstrated above for the
Navier-Stokes equation example, one can obtain the dimensionless form of the gov-
erning equation by the proper normalization. Only identification of representative
quantities is required for the normalizations. Using the dimensionless equation,
the relevant dimensionless numbers are directly deducible. However, for most
soft matter, governing equations have not yet been established. For such complex
physical systems, how can we approach the essential physics? Dimensional analysis
using the ˘ -groups method provides a systematic way to approach the physical
system without a well-defined governing equation.
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2.5.2 ˘ -Groups

In this subsection, we consider a situation in which the governing equation is
unknown. Even in such a circumstance, there is a systematic approach called the˘ -
groups method that allows us to derive relevant dimensionless numbers. To consider
the general case, let us assume the presence of a certain function f of n relevant
quantities Q1;Q2; : : : ;Qn. The function f satisfies

f .Q1;Q2; : : : ;Qn/ D 0: (2.42)

In this stage, these quantities are not necessarily independent of each other, which
suggests that Eq. (2.42) can be simplified. In other words, the number of truly
relevant and independent quantities can be smaller than n. The ˘ -groups method
allows us to determine the number of independent dimensionless numbers. The
function f corresponds to the governing equation of the system under consideration.
Although knowing the specific form of the equation is not necessary, it has to
be dimensionally homogeneous. As demonstrated by the example of the Navier-
Stokes equation, a dimensionally homogeneous equation can be rewritten in a fully
dimensionless form. Because all the dimensions must be expressed by power-law
monomials of fundamental dimensions, a relevant dimensionless number can be
produced using a set of exponents .a1; a2; : : : ; an/ such as

�
Qa1
1 Qa2

2 � � � Qan
n

	 D 1: (2.43)

In general, there are plural sets of the exponents .a1; a2; : : : ; an/ that satisfy
Eq. (2.43). Let m be the number of independent dimensionless numbers, and ˘i

be the i-th dimensionless number. Then,˘i can be written as

˘i D Qa1i
1 Qa2i

2 � � � Qani
n ; (2.44)

where the set of exponents .a1i; a2i; : : : ; ani/ satisfies Eq. (2.43) (1 � i � m). Using
˘i, Eq. (2.42) is simply rewritten by a certain function 
 as


.˘1;˘2; : : : ;˘i; : : : ;˘m/ D 0: (2.45)

Buckingham has demonstrated that the number m is determined by the number
of fundamental dimensions k as m D n � k [7]. This relation is called the
Buckingham˘ theorem. The number of fundamental dimensions k depends on the
considered system. If the system is purely mechanical and free from thermal and
electromagnetic phenomena, k is 3, e.g., mass M, length L, and time T. Although
we can select other three independent dimensions for the set of fundamental
dimensions, the set .M;L;T/ is usually employed for dimensional analysis because
the dimensions M, L, and T are familiar to us and directly measurable in many
experiments. If thermal and electromagnetic effects are involved, temperature and
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electric charge should be added to the set of independent quantities. Then, the
number of fundamental dimensions k also increases. In any case, Eq. (2.45) is
equivalent to the relation

˘i D  .˘1; : : : ;˘i�1;˘iC1; : : : ;˘m/; (2.46)

where  corresponds to the solution form for ˘i of Eq. (2.45). Using this form,
one can construct the scaling relation. Usually,˘i is selected to include the physical
quantity that we would like to know. Since Buckingham proposed the˘ theorem [7,
8], this systematic method of dimensional analysis has been used in various fields
of science and engineering [2, 9, 10].

Here let us reconsider the incompressible viscous fluid dynamics. Suppose that
we only know the relevant quantities of the phenomena without any governing equa-
tion, although we actually know the Navier-Stokes equation. A specific problem
(e.g., turbulent flow in pipes or a period of pendulum motion) is usually considered
as a subject for the dimensional analysis. However, here we think about an abstract
situation. Possibly relevant quantities of incompressible viscous fluid motion are
the density �, representative speed U, length scale l, timescale to, pressure p, and
viscosity 	; n D 6. The fundamental dimensions are mass M, length L, and time
T; k D 3. Thus, there are n � k D 6 � 3 D 3 independent dimensionless numbers
in the system. To obtain relevant dimensionless numbers, we should construct a
dimension table as shown in Table 2.1. Because the density � has a dimension
of Œmass�=Œvolume�, Œ�� is ML�3. All the other quantities can also be written by
the product of some powers of M, L, T: ŒU� D LT�1, Œl� D L, Œto� D T,
Œp� D Œforce�=Œarea� D MLT�2=L2 D ML�1T�2, and Œ	� D Œstress�=Œstrain rate� D
ML�1T�2=T�1 D ML�1T�1. These powers are listed in Table 2.1.

On the other hand, the i-th dimensionless number˘i is generally expressed using
Eq. (2.44) as

˘i D �a1i Ua2i la3i ta4i
o pa5i	a6i : (2.47)

From Eqs. (2.43) and (2.47) and Table 2.1, the powers have to satisfy the following
simultaneous equations,

a1i C a5i C a6i D 0; (2.48)

�3a1i C a2i C a3i � a5i � a6i D 0; (2.49)

�a2i C a4i � 2a5i � a6i D 0: (2.50)

Table 2.1 Dimension table
for the relevant variables for
incompressible viscous fluid
motion

Œ�� ŒU� Œl� Œto� Œp� Œ	�

M 1 0 0 0 1 1

L �3 1 1 0 �1 �1
T 0 �1 0 1 �2 �1
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Equations (2.48), (2.49), and (2.50) originate from the nondimensionalization of
M, L, and T, respectively. Now, we have 6.D n/ variables and 3.D k/ equations.
Thus, we can reduce the number of independent variables to 3.D n � k/. This is
the simple essence of the Buckingham˘ theorem. For instance, these equations are
rewritten as

a1i D �a5i � a6i; (2.51)

a2i D a4i � 2a5i � a6i; (2.52)

a3i D �a4i � a6i: (2.53)

Then, we can compute .a1i; a2i; a3i/ from .a4i; a5i; a6i/. Defining ˘1 by
.a41; a51; a61/ D .1; 0; 0/, we obtain .a11; a21; a31/ D .0; 1;�1/, which results in

˘1 D toU

l
D S�1

t : (2.54)

Similarly, ˘2 and ˘3 are respectively obtained by .a42; a52; a62/ D .0; 1; 0/ and
.a43; a53; a63/ D .0; 0; 1/ as,

˘2 D p

�U2
; (2.55)

and

˘3 D 	

�Ul
D R�1

e : (2.56)

Here we reproduce the dimensionless numbers in Eqs. (2.37) and (2.39) as a ˘ -
group .˘1;˘2;˘3/. If we are interested in the pressure p, we finally obtain a simple
relation using Eq. (2.46):

p

�U2
D  .St;Re/: (2.57)

The specific form of the governing equation is necessary to obtain the actual
functional form of  . It is impossible to derive the complete physical relation
only by the dimensional analysis. In many cases, the power-law form is used to
approximate the relation among dimensionless numbers because the power-law
form is scale-invariant. Of course, if we know the governing equation, the specific
form can be obtained similar to Eq. (2.39).

While ˘ -groups can be obtained using the aforementioned algebraic method,
these groups are also directly calculable using the dimension table (Table 2.1). By
the proper normalization of each quantity, all the components in Table 2.1 can be
replaced by zero. As a first step, �, p, and 	 are divided by �, to eliminate the mass
dimension M. Then, the dimension table becomes Table 2.2. Next, U, l, p=�, and
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Table 2.2 Partially
nondimensionalized
dimension table transformed
from Table 2.1

Œ�=�� ŒU� Œl� Œto� Œp=�� Œ	=��

M 0 0 0 0 0 0

L 0 1 1 0 2 2

T 0 �1 0 1 �2 �1

Table 2.3 Fully
nondimensionalized
dimension table transformed
from Table 2.2

Œ�=�� ŒU=U� Œl=l� ŒtoU=l� Œp=�U2� Œ	=�Ul�

M 0 0 0 0 0 0

L 0 0 0 0 0 0

T 0 0 0 0 0 0

	=� should be normalized to l or l2 to eliminate the length dimension L. Finally, the
temporal dimension T can be eliminated by the normalization using a representative
timescale l=U. Then, we obtain Table 2.3. From Table 2.3, one can readily find
three fundamental quantities �, U, and l, as well as three dimensionless numbers,
˘1 D toU=l, ˘2 D p=�U2, and ˘3 D 	=�Ul. This result suggests that the set of
dimensions (Œ��, ŒU�, Œl�) can be used to construct a set of fundamental dimensions
instead of (M, L, T).

In the ˘ -groups method, arbitrariness persists in the reduction procedure of
dimensional variables. We must select an appropriate set of quantities to form
relevant dimensionless numbers for each problem of interest. For example, a set
of ˘ 0

1 D �l2p=	2, ˘ 0
2 D U	=lp, and ˘ 0

3 D top=	 also composes a complete
set of dimensionless numbers for the incompressible viscous fluid flow. Both sets,
(˘1, ˘2, ˘3) and (˘ 0

1, ˘
0
2, ˘

0
3), are equally valid in terms of dimensional analysis.

We must judge which set is better by considering the underlying physics for each
problem.

In this section, systematic methods of dimensional analysis have been introduced.
Further reduction of relevant dimensionless numbers might be possible if some of
the numbers are invariant and not independent [11]. This generalization works well
when there are many relevant quantities, and some of the quantities are invariant.
A more intuitive approach to dimensional analysis and scaling is exemplified by
contact mechanics in Sect. 2.5.4. Prior to that, a historically famous example of blast
wave analysis is described in the next subsection to demonstrate the efficacy of the
dimensional analysis method.

2.5.3 Dimensional Analysis of Blast Wave Front Propagation

A high-energy explosion is somewhat similar to a high-velocity impact because
both events leave a crater. Such high energy phenomena are often understood using
dimensional analysis. Taylor has estimated the explosive energy essentially using
dimensional analysis [12, 13]. Here let us examine its concept to see the significance
of the dimensional analysis.
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Fig. 2.5 Schematic image of
the blast wave front
propagation

blast wave front

energy release

atmosphere ρ, p, η

Rb
Eb

to

Table 2.4 Dimension table
for the blast wave propagation

ŒEb� ŒRb� Œto� Œ�� Œp� Œ	�

M 1 0 0 1 1 1

L 2 1 0 �3 �1 �1
T �2 0 1 0 �2 �1

In the intermediate stage of explosion, the blast wave front propagates hemispher-
ically to the atmosphere (Fig. 2.5). The relevant physical quantities in this stage are
the released energy Eb, the radius of the blast wave front Rb, atmospheric density �,
its pressure p, its viscosity 	, and timescale to. The dimension table for this problem
is shown in Table 2.4. Using Table 2.4, three possibly relevant dimensionless
numbers can be derived because the number of independent dimensionless numbers
m is computed as m D n�k D 6�3. For instance, the following three dimensionless
numbers might be useful,

˘1 D �R5b
Ebt2o

; (2.58)

˘2 D pR3b
Eb
; (2.59)

˘3 D 	R3b
Ebto

: (2.60)

˘1, ˘2, and ˘3 can be related by the form of Eq. (2.46) as

�R5b
Ebt2o

D  

�
pR3b
Eb
;
	R3b
Ebto

�
: (2.61)

The relation of Eq. (2.61) is obtained routinely using the˘ -groups method. We need
additional deeper physical considerations to extract useful insight from the set of
(˘1,˘2,˘3).˘2 represents the balance between the atmospheric pressure p and the
released energy per unit volume Eb=R3b. The pressure released by the explosion must
be considerably larger than p; therefore,˘2 might be less important.˘3 represents
the ratio between the viscous stress 	=to and the energy density Eb=R3b. However,
atmospheric viscosity is most likely too weak to decelerate the blast wave front,
which suggests that ˘3 might also be less important. For˘1, it denotes the balance
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between the kinetic energy of the blast wave front �R3b.Rb=to/2 and the released
energy Eb (or �.Rb=to/2 vs. Eb=R3b). Because the blast wave front actually expands
against the atmospheric inertia, this balance is likely the principal factor to estimate
the explosion scale. Therefore, one can guess that ˘1 is much more crucial than
˘2 and˘3. Using these considerations, it is plausible to assume that˘2 and˘3 are
irrelevant and negligible. In other words,˘2 and˘3 are extremely small constants in
the current phenomenon. Hence,  .˘2;˘3/ can be roughly assumed to be constant
on the order of magnitude of unity2 in the intermediate stage of the explosion, then
Eq. (2.61) is simplified as

�R5b
Ebt2o

' 1: (2.62)

Finally, the scaling between the blast wave front radius Rb and timescale to is
obtained as

Rb '
�

Eb

�

�1=5
t2=5o : (2.63)

The validity of this scaling relation was actually confirmed by photographs of
real atomic explosion [13]. Moreover, Taylor computed the numerical factor of the
scaling relation utilizing the adiabatic index (the ratio of the specific heats). The
computed numerical prefactor for Eq. (2.63) was somewhat close to unity, which
indicates that the estimate of the released energy by Eq. (2.63) is reasonable. The
estimated energy was indeed very accurate. This blast wave analysis is a famous
successful example of the method of dimensional analysis.

A rough order estimate is useful for evaluating the principal factors in the
physical system. In real explosions observed in Ref. [13], the order of magnitude of
each quantity could be roughly estimated as Eb D 1014 J, Rb D 102 m, to D 10�2 s,
� D 100 kg/m3, p D 105 Pa, and 	 D 10�5 Pa�s. Using these values, the order of
magnitude of each ˘i can be computed as ˘1 D 1, ˘2 D 10�3, and ˘3 D 10�11.
These estimates indicate that the kinetic energy of propagating blast wave front
dominates the dynamics, and the viscosity effect is minor, being eleven orders of
magnitude smaller. The atmospheric pressure effect is considerably stronger than
the viscosity effect, although this effect is much less important than the blast wave
kinetic energy (inertia). By assuming U D Rb=t and l D Rb in Eq. (2.60), ˘3

becomes the same as R�1
e (Eq. (2.41)). Because ˘3 D R�1

e ' 10�11 is very small,
the blast wave motion is in the very high Re(' 1011) regime. We can reconfirm
that ˘1 is more important than ˘2 and ˘3 from this order estimate. Such order
comparisons of dimensionless numbers are sometimes helpful in speculating about

2This assumption is the extremely important to reach the reasonable scaling. If the energy released
by explosion is mainly transmitted to the blast wave kinetic energy, these energies should be of the
same order of magnitude. Therefore, ˘1 should have an order of magnitude of 100.
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the principal physical mechanisms. However, dimensional analysis is not perfect.
This approach does not work well if all the relevant parameters are not involved.
Even when it works well, in general, numerical factors cannot be determined solely
by dimensional analysis.

2.5.4 Scaling of Contact Mechanics

There is another approach to scaling and dimensional analysis. The balance laws of
energy, force, momentum, among others, can be used to obtain physically meaning-
ful scaling laws. Because this method is based on the physically relevant balance
laws, the scaling relation obtained using this method is intuitively comprehensive in
terms of the governing physical mechanism. In this subsection, an example of the
scaling relation that is deduced by a simple energy balance is briefly introduced.

Elastic deformation of a contacting spherical grain is discussed as a typical
example of the useful application of the scaling concept. The physical essence of
this phenomenon can be understood by a simple scaling analysis. For a completely
quantitative analysis, an exact calculation that demands a complicated calculation
is necessary. Here we discuss the scaling relation of contact mechanics to highlight
the efficacy of the intuitive dimensional thought.

Let us consider an elastic sphere contacting a rigid floor with the normal loading
force F. Young’s modulus of the sphere is denoted as E and its initial radius is
written as R. Then, because of the elasticity, small but finite deformation must be
observed as schematically illustrated in Fig. 2.6. The elastic deformation ı and the
radius of the contact circle a are related as a � .Rı/1=2 using Pythagorean theorem
and the assumption of R � ı. This assumption implies that we focus on the linear
elastic regime. Hence, the discussion in this subsection is only valid for the linear
elastic regime. Considering an energy balance, we obtain the relation

E

 a

R

�
a2ı � Fı: (2.64)

F

R

2a

δ

Fig. 2.6 Elastic contact deformation of a sphere due to the normal loading force F. The radius
of the initial elastic sphere is R. The deformation displacement is ı, and the radius of the contact
circle is a. While the deformation is exaggerated in the figure, the considered deformation is very
small, ı � R
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The left-hand side of this equation represents the stored energy of elastic deforma-
tion, (elastic modulus) � (strain) � (area) � (displacement). The right-hand side
corresponds to the work performed by the loading, (force) � (displacement). The
symbol � indicates the scaling (proportional) relation between the same dimen-
sional quantities neglecting a numerical factor.3 Equation (2.64) is simplified as

a �
�

FR

E

�1=3
: (2.65)

Using the relation a � .Rı/1=2, Eq. (2.65) can be rewritten as

F � ER1=2ı3=2: (2.66)

Equation (2.66) expresses a nontrivial relation between force and deformation.
Although one might expect F / ı by the linear elasticity, Eq. (2.66) implies a
nonlinear relation F / ı3=2. Note that only the linear elastic constitutive law is
used to deduce the relation. This nonlinear contact force law is called the Hertz
law. The complete stress calculation including a numerical prefactor can be found
in Ref. [14]. The Hertz law is now very famous and used in many particulate
computations. Of course, Eq. (2.66) is dimensionally sound because the dimension
of force comprises the product of the elastic modulus and square of length (area).
Key points to derive Eq. (2.66) are assumptions of (i) tiny displacement ı � R and
(ii) definition of strain by .a=R/ for the deformation of the sphere. Then, we can
estimate how elasticity, size, and applied force affect the deformation of the sphere
using a simple energy balance, as discussed thus far.

When the sphere is sufficiently small, surface tension �c plays an essential role
in the contact mechanics (see Sect. 2.8.5 for the size dependence of the dominant
force.) The dimension of �c is Œforce�=Œlength� D Œenergy�=Œarea� D MT�2. In
the small grain’s contact mechanics, the deformation is determined by the balance
between elasticity and surface tension effect. Thus, the work by normal load Fı in
Eq. (2.64) is replaced by the surface energy gain due to the contact, � �ca2. Then,
Eq. (2.64) is rewritten as

E

 a

R

�
a2ı � �ca2: (2.67)

Using a relation a � .Rı/1=2, we finally obtain the scaling relations,

a �

�c

E

�1=3
R2=3; ı �


�c

E

�2=3
R1=3: (2.68)

3This notation is used in the remainder of this book. The symbol ' represents an approximate
equality, and the symbol / denotes the proportional relation of different dimensional quantities.
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Using Eq. (2.68), we can evaluate how the deformations a and ı are scaled by the
sphere radius R and mechanical property (length scale) �c=E. This relation between
the surface energy and elastic deformation was first considered by Johnson, Kendall,
and Roberts [15], and the result is called JKR theory. Here we have only derived the
scaling relations of JKR theory. The detailed computations of the contact mechanics
are described in Ref. [14]. The validity of the JKR theory has also been confirmed
by the experiment [16].

All the abovementioned calculations are only based on energy balance scaling.
Scaling analysis based on dimensional thought is often useful to understand the
intrinsic physics of the considered phenomenon. Balances of energy, force, stress,
among others are usually used to discuss the scaling relation. The scaling concept is
particularly practical for soft matter physics such as polymers [17] and capillary-
related phenomena [18]. While the scaling concept is very helpful to find the
essential physical mechanism, the proper vision is necessary to draw appropriate
scaling relations avoiding an incorrect evaluation.

2.6 Fluid Drag Force

Fluid drag force is an illustrative example of the relation of dimensional analysis and
the specific equation of motion. The fluid drag force has long been studied because
this force relates to aeronautical and marine engineering as well as our daily life.
Dimensionless numbers crucial for the drag force can be explained on the basis of
the equation of motion. Furthermore, the impact drag force is discussed in addition
to the steady drag force. The drag force is a key element of this book. The physics
of the fluid drag force will be compared with granular impact drag force later in
Chap. 4. In this section, the basic theory of the fluid drag force is introduced.

2.6.1 Viscous Drag

The starting point to discuss fluid drag is a general relation for a viscous fluid,
Eq. (2.57). Because the pressure and viscosity are possible sources of the drag force,
this equation is worth considering. Equation (2.57) demonstrates that the pressure
of an incompressible viscous fluid is a function of St, Re, and �U2. For the sake
of simplicity, we consider a steady drag state for now, i.e., the state does not vary
with time. Then, a representative timescale is irrelevant. Therefore, the effect of St

becomes negligible. The most important dimensionless number for the steady-state
drag is Re, which is regarded as �U2=.	U=l/. The numerator is the inertial stress that
also appears in the normalization of the pressure as p=�U2, and the denominator
is the viscous stress. Thus, this number represents the ratio between inertial and
viscous effects. In the low Re regime, the flow state is dominated by the viscous
effect. In contrast, the inertial effect governs the flow state in the high Re regime,
leading to turbulent flow. Re is an indicator of the dominating physical effects.
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Fig. 2.7 Drag force FD

exerted on a rigid sphere
(density �i and diameter Di)
moving with velocity v in a
quiescent fluid of density �t

and viscosity 	 v

x

FD
Di

ρi

ρt

η

First, we focus on the drag force in the low Re regime (Re � 1). In this regime,
the drag force exerted on a moving rigid sphere in a quiescent fluid is dominated by
the viscous drag force rather than the inertial drag force. Namely, the dimensionless
number p=�U2 is irrelevant in this regime. Let us consider a sphere moving with
velocity (speed) v in an infinitely spreading viscous fluid of viscosity 	 in the low Re

regime (Fig. 2.7). The corresponding viscous drag force F	 is written using Stokes’
law as4 [4, 19]

F	 D 3�Di	v; (2.69)

where Di is the diameter of the sphere. The point of Eq. (2.69) is a linear relation
between F	 and v. Additionally, F	 is also proportional to Di. The form of Eq. (2.69)
can be dimensionally understood as F	 � Di	v (or F	=D2

i � 	v=Di). According to
Eq. (2.69), the impulse made by Stokes drag (viscous drag) during time dt D Di=v

is written as F	dt D 3�D2
i 	. This relation implies that Stokes drag consumes the

momentum of the dragged sphere to produce a cylindrical shear field with diameter
3Di and length Di. That is, the territorial length scale of the Stokes drag corresponds
to Di.D .3Di � Di/=2/. This result is natural because Di is a unique length scale

4The derivation of this form is not so simple. Some tips for the vector analysis in spherical
coordinate and a fundamental knowledge of fluid mechanics are necessary for the calculation.
While the details of the derivation are skipped here, an outline is briefly provided below. For
the Stokes dynamics, the solution called Stokeslet which satisfies rp D 	r2u and Eq. (2.26) is
useful. In spherical coordinates (r, � , 
), the stream function ' of the Stokeslet obeys the equation,
E2' D 0, where E D .@2=@r2/ C .sin �=r2/.@=@�/Œ.1= sin �/.@=@�/�. Here � corresponds to the
zenith angle from the flow (z) axis. The stream function ' is related to the velocity components
ur and u� as ur D .1=r2 sin �/.@'=@�/ and u� D .�1=r sin �/.@'=@r/. Considering the boundary
conditions '.r D Ri/ D 0, .@'=@r/.r D Ri/ D 0 (no slip on the surface of the spherical object
in radius Ri) and '.r ! 1/ D .1=2/vr2 sin2 � (uniform flow of velocity v along z axis), the
solution for E2' D 0 is obtained by assuming the variable separation form ' D f .r/ sin2 �
as ' D .1=2 � 3Ri=4r C Ri

3=4r3/vr2 sin2 � . Then, the velocity components are written as
ur D .1 � 3Ri=2r C Ri

3=2r3/v cos � and u� D �.1 � 3Ri=4r � Ri
3=4r3/v sin � . The shear-

originated drag force Fs is computed by Fs D R
s 	 P�r� sin �ds, where s is the small surface unit

of the object and P�r� D r.@=@r/.u� =r/ C .1=r/.@ur=@�/ is the shear strain rate. The normal drag
force Fn can be computed by

R
s 2	.@ur=@r/ cos �ds at r D Ri. Finally, F	 can be computed from

F	 D Fs C Fn and Di D 2Ri.
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relevant to this phenomenon. Note that this relation is valid only for a Newtonian
fluid, in which the shear strain rate is proportional to the shear stress. Thus, the shear
strain rate is dimensionally expressed as v=Di, i.e., P��1 D dt D Di=v.

2.6.2 Inertial Drag and Drag Coefficient

Next, the drag force exerted on a moving sphere in the high Re regime (Re � 1)
is considered. In this regime, the momentum transfer between the sphere and
fluid plays an important role. Thus, the sphere density �i and the fluid density
�t are necessary information to calculate the drag force. A small volume of the
sphere that sweeps within the infinitesimal duration dt is written as .�=4/D2

i vdt.
The momentum transferred from the sphere to the fluid during dt is computed as
�t � .�=4/D2

i vdt � v. Meanwhile, the sphere’s momentum loss by the infinitesimal
deceleration dv (absolute value) is calculated as �i�.�=6/D3

i �dv. These two momenta
should be balanced: �t.�=4/D2

i v
2dt D �i.�=6/D3

i dv. Then, the inertial drag force
Fi is finally obtained as

Fi D �i
�

6
D3

i

dv

dt
D �t

�

4
D2

i v
2: (2.70)

The inertial drag force depends on the squared velocity v2 and the intersectional area
of the sphere .�=4/D2

i . This velocity dependence is quite distinct from the viscous
drag form.

Because the inertial drag is based on the momentum transfer, it is applicable to
general drag phenomena including the impact drag of various materials. To evaluate
the strength of the general drag force FD, the drag coefficient CD is defined as

CD D FD=A

�tv2=2
; (2.71)

where A is the area of intersection; thus, A D �D2
i =4 for a sphere. CD is a

dimensionless ratio of the drag stress and inertial stress.5 Equation (2.71) for a
sphere is rewritten as

FD D CD

2

�

4
�tD

2
i v
2 D CD

2
Fi: (2.72)

Using the general drag force FD, the basic equation of motion for the drag force
exerted on a sphere of mass mi D �i.�=6/D3

i is certainly expressed by the equation
of motion (Eq. (2.1)) as

5Using usual notations of representative quantities (v D U, Di D l, and �t D �), Eq. (2.71)
becomes CD � FD=�U2l2 by omitting a numerical factor.



40 2 Scaling and Dimensional Analysis

mi
dv

dt
D �FD: (2.73)

Note that the negative sign in Eq. (2.73) originates from the fact that the drag
force acts against the motion. In other words, a positive FD results in deceleration
(negative dv=dt). Namely, FD denotes the absolute value of the drag force.6 The
situation discussed in this subsection is schematically illustrated in Fig. 2.7.

In principle, the drag coefficient CD can be computed using Eq. (2.71) for any
Re flow, as long as Di, �t, v, and FD are measurable. As mentioned before, viscous
drag dominates the entire drag force in the low Re regime. If CD satisfies CD D
24	=�tvDi, the drag force becomes FD D F	. Assuming Di D l and v D U in
Eq. (2.41), CD in this case is written as

CD D 24

Re
: (2.74)

Note that this relation is held only in the low Re regime (Re � 1). Thus, CD is
considerably greater than unity in this viscous regime. If the momentum transfer is
a principal origin of FD, CD should be almost on the order of magnitude of unity.
The actual relation between CD and Re for the moving sphere is as follows [2, 4, 19].
At Re 	 1, CD keeps decreasing until Re ' 102. Then, CD is roughly constant in
the high Re regime (103 � Re � 105). In this regime, the value of CD is slightly less
than unity. Therefore, the inertial drag is almost dominant in this regime. In the very
high Re regime (Re > 105), CD exhibits a sudden decrease due to the turbulence of
the boundary layer.

The drag coefficient is a useful indicator to characterize the strength of the drag
force. Although only the spherical shape has been considered in this subsection, in
general, CD strongly depends on the shape of the object. For airplane or ship designs,
a lower value of CD is better for efficiency. Therefore, the shape dependence of CD

is one of the main concerns in fluid engineering.

2.6.3 Terminal Velocity and Stokes Number

As a simple practice problem, here we consider the terminal velocity of a sinking
sphere into a viscous fluid under gravitational acceleration g. The one-dimensional
motion along the vertical direction is considered. Then, the equation of motion is
written with instantaneous sphere velocity v as

mi
dv

dt
D �FD C mig � mig

�
�t

�i

�
: (2.75)

6All other drag force forms used in this section (F	 , Fi, and FE) are also written using their absolute
values. Hence the motion’s direction is considered as a positive direction (Fig. 2.7).
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The last term of the right-hand side comes from a buoyancy effect. The vertically
downward direction is set to the positive direction. Because the terminal velocity is
a steady-state velocity, the left-hand side of Eq. (2.75) has to be zero at the terminal
velocity. Substituting the viscous drag force F	 into FD of Eq. (2.75), the viscous
terminal velocity v	 is calculated as

v	 D .�i � �t/

18

gD2
i

	
: (2.76)

The form on Eq. (2.76) can be evaluated dimensionally. The gravitational force Fg

is written as (Fg D mig � �iD3
i g), and the viscous drag force satisfies F	 � 	Div	

(Eq. (2.69)). Therefore, from the dimensional viewpoint, the terminal velocity is
computed from the balance Fg � F	 as v	 � �igD2

i =	 (for �i � �t, i.e., �i � �t '
�i). This form is indeed dimensionally the same as Eq. (2.76). For the general drag
case, Eq. (2.72) should be substituted into Eq. (2.75). Then, the general terminal
velocity vt is calculated as

vt D
s�

�i � �t

�t

�
4gDi

3CD
: (2.77)

Similar to the viscous drag case, Eq. (2.77) can be verified dimensionally. The form
of the gravitational force is the same as before, �iD3

i g, which, in turn, balances
with FD � �tCDD2

i v
2
t . Consequently, the terminal velocity is given as vt �p

�igDi=�tCD. Moreover, because �i=�t and CD are dimensionless, the dimension
of vt is basically determined by

p
gDi. Substituting Eq. (2.74) into Eq. (2.77), the

viscous terminal velocity (Eq. (2.76)) is certainly recovered.
Here a dimensionless number Stk called the Stokes number is introduced using

Eq. (2.76). Consider a situation �i � �t, and replace v	 with StkU (U is a
representative absolute value of velocity). Then, using a representative length scale
l instead of g as7 g D U2=l, Eq. (2.76) can be written as

Stk D �iUD2
i

18	l
: (2.78)

Stk represents the ratio of the sphere’s inertia to the fluid viscosity. Therefore, the
degree of relative motion between the sphere and fluid can be evaluated by Stk. In
the high Stk regime (Stk � 1), the sphere cannot follow the fluid flow because of its
own inertia. The sphere and the fluid move almost independently in this regime. In
contrast, a sphere will follow the streamline of the fluid flow in the low Stk.� 1/

regime. Stk can be used to characterize the fidelity of tracer particles in fluid flow

7This form is understandable by considering a centrifugal acceleration.
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measurements. The low Stk condition is necessary to experimentally measure the
fluid flow by the image analysis of motions of particles dispersed in a fluid flow.

The viscous braking time (stopping time) tb can be computed by the simple
equation of motion, mi.dv=dt/ D �F	. By solving this equation, one can obtain
v D v0 exp.�t=tb/ with

tb D �iD2
i

18	
; (2.79)

where v0 denotes the initial velocity. Therefore, Stk is written as

Stk D tb
l=U

: (2.80)

In general, Stk can be regarded as a ratio between the viscous braking time tb and the
characteristic flow timescale l=U. The braking time can be simply calculated using
tb D mijv=FDj. Equation (2.79) is also readily obtained by this relation. The braking
time represents a characteristic timescale of the drag force.

2.6.4 Virtual Mass

In Eq. (2.73), only the motion of the sphere of mass mi is considered. To accelerate
(or decelerate) a sphere in a fluid pool, the surrounding fluid must also be accelerated
(or decelerated). Thus, the drag force FD affects the change of the net momentum
including the surrounding fluid, .m C mvirt/dv=dt. Then, Eq. (2.73) is rewritten as

.mi C mvirt/
dv

dt
D �FD; (2.81)

where mvirt is called virtual mass (or added mass or apparent mass). The effect of
virtual mass is common in fluid drag force. However, its specific value depends on
various conditions. It is not easy to systematically predict the value of the virtual
mass. The value is often determined by fitting to experimental data.

2.6.5 Fluid Impact Drag Force

The viscous and inertial drag forces discussed thus far are based on steady drag
without any boundary. For the impact on a target surface, the effect of the boundary
surface is not negligible. At the surface, the impactor feels the sudden resistance
force mainly because of the density difference; this density difference causes inertial
drag. Thus, in the classic study of a solid sphere’s impact on water, the inertial drag
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Fig. 2.8 Impact cavity
formation induced by
Di D 57:2mm billiard ball
impact into a water pool with
v0 D 5:95m/s. Both the
surface and deep closures can
be clearly observed
(Reproduced with permission
from Ref. [22])

was the main focus [20]. When a steel sphere strikes the surface of water, cavities
are usually formed (Fig. 2.8). In Fig. 2.8, one can observe two cavity closures: (i)
a closure of splash on the surface (surface closure) and (ii) a closure of the cavity
produced in the fluid target (deep closure). Dimensional analysis by Gilbarg and
Anderson revealed the relation between the surface and deep closure times [21]. In
this cavity formation regime, the drag force is well-described by the inertial drag.
Equation (2.70), which is the equation of motion of inertial drag, can be simplified
as dv=dt D �.3=2/.�t=�i/.v

2=Di/. By integrating this equation, a simple relation
for v.t/ is obtained as

1

v.t/
� 1

v0
D
�
3

2Di

�t

�i

�
t: (2.82)

To test the validity of this form, the impact experiment was performed with steel
spheres (Di D 0:635 � 3:81mm) impacting on a water pool with impact velocity
v0 D 7:62 � 63:4m/s [20]. As a result, Eq. (2.82) was approximately satisfied and
the drag coefficient CD for the impact can be scaled as

CD � �tv0

	

v0p
g=Di

: (2.83)
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This relation has a typical form of the dimensional analysis. All the relevant
parameters are related by the power-law form to form a dimensionless relation.
Although the theoretically confirmed derivation of Eq. (2.83) has not been obtained,
it can be understood by the dimensional concept. Specifically, the right-hand side
of Eq. (2.83) can be regarded as Re. While Di (the impactor’s diameter) is usually
employed for the characteristic length scale of Re, here we use a particular length
scale, l D U=

p
g=Di, to consider the gravitational effect. Substituting this l, � D �t,

and U D v0 into Eq. (2.41), we obtain the right-hand side of Eq. (2.83) as a type
of Re. Note that Eq. (2.83) is an empirical relation and holds only for the impact
drag. For the steady-state drag, CD is inversely proportional to Re (in the low Re;
Eq. (2.74)) or almost independent of Re (at high Re regime).

The dynamics of a disk impacting a water pool was measured by Glasheen and
McMahon [23]. Using much more accurate data than Ref. [20], these researchers
quantified the virtual mass and drag coefficient. To compute the virtual mass, sudden
velocity drop directly after the instant of impact was used. Concretely, the impact
velocity v0 is decelerated down to vdec within a very short timescale ('1 ms [23]).
This sudden velocity drop presumably originates from the momentum transfer from
the impactor to the surrounding water; mvirtvdec ' mi.v0 � vdec/. Thus, the virtual
mass can be estimated as

mvirt D v0 � vdec

vdec
mi: (2.84)

After this initial impact pulse, the drag force is dominated by the cavity created
by the impact. In this regime, the drag force is an increasing function of time. If we
assume the modified drag coefficient C�

D using

FD D C�
DD2

i

�
1

2
�tv

2 C �tgz

�
; (2.85)

C�
D.' 0:7/ becomes constant in their experiment [23], which indicates that the drag

force is affected by the hydrostatic pressure as well as inertia. The closure time of
deep cavity Tclose was also measured and characterized as

Tclose '
s

Di

g
: (2.86)

Equation (2.86) indicates that the deep cavity closure time is independent of the
impact velocity. This result contrasts with the drag force itself, which strongly
depends on the impact velocity.

Using the impact drag force and the cavity closure time, the mechanism of
Basilisk lizards running on water was discussed in Ref. [24]. In principle, people can
run on water by utilizing the same mechanism. That is, we can run on water if the
cadence is faster than the cavity closure timescale. According to Ref. [24], a person
of mi D 80 kg (with effective feet radius Ri D 0:1m, step period Tstep D 0:25 s, and
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a half length of leg lleg D 0:5m) must stroke the water surface downwards at almost
v D 30m/s, to run on water.8 Unfortunately, this velocity is beyond the ability of a
usual human. The cavity formation and its closure are very important processes for
fluid impact. Furthermore, ambient pressure affects fluid impact dynamics [21, 25].
The jet formation induced by the cavity closure, particularly in the granular target
case, will be discussed later (Sect. 6.3).

2.6.6 Epstein Drag

In highly rarefied gas, the mean free path of gas molecules �mfp becomes large.
Then, the simple continuum mechanics discussed thus far cannot be applied to
calculate the drag force. When �mfp is much larger than Di, the integral of individual
impacts among the dragged object and molecules (free molecule flow) determines
the drag force. In such a situation, the mean speed of gas molecules huti is a
key quantity. Assuming ideal gas behavior, huti is computed from the Maxwell-
Boltzmann distribution and is written as9 (see e.g., [26])

huti D
s
8kBT

�mm
; (2.87)

where kB, T, and mm are Boltzmann constant kB ' 1:38�10�23 J/K, the temperature,
and the mass of gas molecules, respectively. The same setup—a rigid sphere of mass
mi and diameter Di moving with velocity v in the quiescent (without any systematic
flow) rarefied gas of density �t—is considered again. Assuming an elastic (energy
conservative) collision between the object and molecules, the momentum transfer
between them can be computed as

midv D 4�

�
Di

2

�2
vdt � huti

3
�t: (2.88)

The first factor on the right-hand side represents the volume swept by the object
during dt, and the second factor comes from the elastic collision of isotropic gas
motion in three-dimensional space. From Eq. (2.88), the drag force exerted on the
object in highly-rarefied gas is computed as [27]

FE D ıE
�

3
D2

i �thutiv; (2.89)

8This velocity can roughly be estimated by the impulse balance, migTstep D 0:5�tv
2�R2i lleg=v.

9This equation dimensionally represents a simple relation, mmhuti2 � kBT. More precisely, this
relation can be computed by huti D .mm=2�kBT/2=3

R
1

0 ut exp.�mmu2t =2kBT/4�u2t dut.
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where ıE is a certain efficiency factor. The Epstein drag FE is proportional to v
and D2

i . Its Di dependence is different from viscous drag. Note that the average gas
speed huti is independent of v and is determined mainly by temperature as written
in Eq. (2.87). Therefore, FE is also different from the inertial drag Fi defined in
Eq. (2.70). The braking time for the Epstein drag tb is computed using the relation
tb D mijv=FEj (see Sect. 2.6.3) and Eq. (2.89) as

tb D 1

2ıE

�i

�t

Di

huti : (2.90)

The Epstein drag is relevant when �mfp=Di � 1 and v � huti. The dimensionless
number

Kn D �mfp

Di
(2.91)

is called the Knudsen number. In general, Kn � 1 must be satisfied to neglect
molecular dynamics in the drag force evaluation. At the other limit Kn � 1,
molecular-level mechanics must be considered as discussed in this subsection.
Because the main interest of this book is focused on continuum-level mechanics,
a small Kn regime is usually assumed. In Sect. 7.1, Epstein drag is used to discuss
the drag force acting on dust aggregates in space.

2.6.7 General Form of the Drag Force

In general, the drag force equation can contain a constant term as well as inertial
and viscous (or Epstein) terms. The general form of the drag force equation can be
written as

mi
dv

dt
D �˛dv

2 � ˇdv � �d; (2.92)

where ˛d, ˇd, and �d are (usually positive) parameters characterizing inertial,
viscous (or Epstein), and constant (static) drag forces, respectively. Note that these
coefficients have different dimensions. Let us consider the impact situation, in which
the impactor has its initial impact velocity v0 and finally comes to rest when the
initial kinetic energy miv

2
0=2 is transferred or dissipated by the drag force. Then, the

total moving distance for the impactor from the impact point to its cessation point,
xtot, can be computed from Eq. (2.92). The form of xtot depends on the type of drag
force model, as described below.

When ˛d D ˇd D 0 and �d ¤ 0, only the constant drag force is relevant.
This drag force model is called the Robins-Euler drag model. In this case, the
total moving distance xtot is calculated as xtot D miv

2
0=2�d by the simple energy

balance between the initial kinetic energy miv
2
0=2 and the work performed against

the constant drag force �dxtot.
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If only the inertial drag is irrelevant (˛d D 0 and ˇd�d ¤ 0), the drag
force comprises the viscous and constant terms. This type of drag force model is
called the Bingham drag model. In the Bingham drag model, the velocity and total
moving distance can be analytically computed by the variable transformation of
Ov1 D .ˇdv C �d/=mi, and thus, d Ov1 D .ˇd=mi/dv. The equation simplified by this
variable transformation is written as d Ov1=dt D �.ˇd=mi/ Ov1. From this equation, the
velocity as a function of time is computed as

v.t/ D
�
v0 C �d

ˇd

�
exp

�
�ˇd

mi
t

�
� �d

ˇd
: (2.93)

The total moving distance xtot can be calculated by integrating Eq. (2.93) until the
velocity vanishes. The stopping time tstop D .mi=ˇd/ lnŒ.ˇdv0 C �d/=�d� is obtained
from the relation v.tstop/ D 0. Then, one obtains a form of xtot with an initial
condition of x.t D 0/ D x0 of

xtot D
Z tstop

0

v.t/dt D
�

x0 � mi

ˇd

�
v0 C �d

ˇd

�
exp

�
�ˇd

mi
t

�
� �d

ˇd
t

�tstop

0

D mi

ˇ2d

�
ˇdv0 � �d ln

�
1C ˇdv0

�d

��
: (2.94)

The Poncelet drag model corresponds to the case of ˇd D 0 (and ˛d�d ¤ 0).
For the Poncelet drag model, the velocity can be computed as a function of the
moving distance, v.x/. Specifically, the equation is linearized by the transformation
of variable, Ov2 D ˛dv

2 C �d and thus, d Ov2 D 2˛dvdv. The linearized equation is
written as d Ov2=dx D �.2˛d=mi/ Ov2. This differential equation can be readily solved
and the velocity v.x/ is finally calculated as

v.x/ D
s�

v20 C �d

˛d

�
exp

�
�2˛d

mi
x

�
� �d

˛d
: (2.95)

Using the criterion of v.xtot/ D 0, xtot is computed as

xtot D mi

2˛d
ln

�
1C ˛dv

2
0

�d

�
: (2.96)

The general case (˛dˇd�d ¤ 0) can be evaluated by completing the square for
Eq. (2.92) as follows:

mi
dv

dt
D �

"
˛d

�
v C ˇd

2˛d

�2
� ˇ2d � 4˛d�d

4˛d

#
: (2.97)
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Then, the general drag force model is reduced to the Poncelet drag model. Specific
forms of the velocity and moving distance for the general model can be found in
Ref. [28].

In Ref. [29], these forms were compared with the dynamics of a high-velocity
(typically v0 � 102 m/s) impact of a solid impactor to a sand bed. They observed
that the inertial drag is dominant in the high-velocity impact. Actually, even in
low-velocity impact, the inertial drag plays an important role in the granular
impact. Thus, the Poncelet drag model will be modified to explain the low-velocity
dynamics of a solid impact on a loose granular bed, as will be discussed later in
Sect. 4.1.3.

2.7 Dimensionless Numbers

Some of the relevant dimensionless numbers for soft impact mechanics will be listed
in this section. General notations (e.g., l, to, and � for the characteristic length, time,
and density) are used in the definitions of dimensionless numbers. Specific values
for these quantities depend on the system. For instance, two kinds of density values,
�i and �t, were introduced to discuss the drag force exerted on a moving sphere
(�i) in a quiescent fluid (�t) in the previous section. For granular matter, the grain
material (true) density �g is used in addition to the bulk granular density which
corresponds to the general density � in the fluid case. Most of the dimensionless
numbers introduced in this section are relevant to fluids and granular matter.

Froude number The role of gravity is not negligible, particularly in geological
systems. The inertial drag force equation (Eq. (2.70)) is scale invariant because
of the absence of the gravity effect. Under a scaling transformation by a constant
factor ˛o (D0

i D ˛oDi, t0 D ˛ot, v0 D v.D d˛ol=d˛ot/, �0
i D �i, and �0

t D �t),
the form of Eq. (2.70) is unchanged. In such a system, when the length scale Di

and l are scaled up by the factor ˛o and the densities are fixed, the timescale t is
elongated by the factor ˛o; this is a type of similarity law. In Eq. (2.75), in contrast,
this scale invariance is violated by gravity. The gravity brings symmetry breaking to
the system. The value of g introduces a characteristic time, length, or velocity to the
system as well as its direction, which may affect the drag behavior in general.

To estimate the effect of gravity compared with the inertial effect, the Froude
number Fr is defined by the ratio between the inertia and gravity10:

Fr D U2

gl
: (2.98)

10Fr is sometimes defined as Fr D U=
p

gl.
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For geological phenomena, the role of gravity is quite crucial. Moreover, g is not a
constant for general planetary phenomena but varies depending on the size of plan-
ets, asteroids or other astronomical objects. Thus, Fr is an important dimensionless
number in geological and planetary impact phenomena. This parameter represents
the ratio of inertial stress �U2 and hydrostatic gravitational pressure �gl.

Weber number For small-scale phenomena, the surface tension (or capillary
force) must be considered [18]. In Sect. 2.5.4, the surface tension was, in fact, very
important to compute the elastic deformation of small grains. The upper limit of
the length scale for capillary-driven phenomena is derived from the ratio between
surface tension and gravity. The capillary length �c, which corresponds to the upper
limit, is defined as11

�c D
r
�c

�g
: (2.99)

Almost all liquids exhibit a surface tension on the order of �c ' 10�2 N/m and
density on the order of � ' 103 kg/m3. Therefore, on the surface of the Earth
(g ' 9:8 ' 101 m/s2), the order of �c for most liquids is O.100/mm. Therefore,
capillary-related phenomena on the Earth are limited to the length of at most a few
millimeters.

The surface tension tends to straighten the curved interface to minimize the
surface energy. Thus, the capillary pressure by the surface tension depends on the
curvature of the curved interface. The pressure due to this effect is called the Laplace
pressure which is written as [18]

�p D �c

�
1

R1
C 1

R2

�
: (2.100)

Here �p, R1, and R2 are the pressure difference across the interface and two
principal radii of curvatures of the interface, respectively. For example, the fluid
bubble pressure can be estimated using Eq. (2.100). The pressure difference for a
spherical bubble of radius Rb is12 �p D 2�c=Rb.

As discussed thus far, dimensionless numbers are useful in characterizing the
force or stress balance. To make a dimensionless number relevant to capillary
pressure, the inertial stress �U2 is divided by the Laplace pressure �p. Then, a
ratio called the Weber number is obtained:

We D �U2l

�c
: (2.101)

11This form comes from the stress balance, �g�c D �c=�c.
12This relation can also be derived by the simple linear approximation of the energy balance per
infinitesimal radius variation of the bubble dRb, �p4�R2bdRb ' 4�Œ.Rb C dRb/

2 � R2b��c.



50 2 Scaling and Dimensional Analysis

Here we assume a representative length scale as l D R1R2=.R1CR2/. In general, the
low We regime is governed by the capillary (Laplace) pressure, while the high We

regime is dominated by the inertia. We plays a crucial role particularly in the case of
droplet impact discussed in Sect. 6.5.

Capillary number To evaluate the competition between viscous and capillary
forces, the capillary number Ca is defined as the ratio We=Re,

Ca D 	U

�c
: (2.102)

In the large Ca regime, viscosity dominates the behavior, and capillary effect is
negligible. If 	U is too large, Ca is no longer the relevant dimensionless number.
In such a situation, the capillary effect becomes completely negligible, and another
dimensionless value, such as Re, becomes essential.

Ohnesorge number The capillary number is not a unique one to compare the
surface tension and viscosity. When the density effect is more important than the
velocity effect, a dimensionless number called the Ohnesorge number Oh defined
by

p
We=Re can be used. The specific form of Oh is written as

Oh D 	p
�l�c

: (2.103)

According to Eq. (2.103), the small Oh regime is primarily governed by the capillary
effect, whereas the large Oh regime is dominated by viscosity. However, note that
the capillary-dominant length scale is limited up to the capillary length �c. If the
characteristic length scale l is considerably greater than �c, the system is governed
by the gravity effect rather than the capillary effect as long as the gravity is relevant.

Bond number To discuss the ratio between the gravity and capillary force, the
Bond number Bo is convenient. Bo can be derived from the definition of the capillary
length �c (Eq. (2.99)). Defining Bo as the ratio between the representative length
scale and capillary length as Bo D l2=�2c , Bo is written as

Bo D �gl2

�c
: (2.104)

In the large Bo regime, gravity dominates the behavior.

Mach number When the motion of the fluid is sufficiently slow, the incompress-
ible assumption holds well. However, the compressibility cannot be negligible in
the high-speed regime. To evaluate the flow state, a ratio between the representative
speed U and the bulk speed of sound Cs is introduced as the Mach number:

Ma D U

Cs
: (2.105)
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For simple gas, Cs is approximately expressed as Cs ' p
p=�. For Ma > 0:3, fluid

compressibility has to be considered because the flow speed becomes comparable
to the wave propagation speed.

Deborah number In general, a motion is induced by a force. However, the force
can be relaxed by relaxation mechanisms such as viscosity. Therefore, the ratio
of relaxation and motion timescales governs the behaviors resulting from their
competition. The Deborah number De is defined by the ratio of these timescales:

De D trelax

l=U
; (2.106)

where trelax is the relaxation timescale. In the large De.� 1/ regime, the relaxation
effect is negligible, i.e., the motion speed is considerably faster than the relaxation
rate. In contrast, the relaxation dominates the behavior in the regime of De � 1

because the relaxation timescale is sufficiently short to relax the system during
its motion. The form of De is identical to the Strouhal number St (Eq. (2.40)).
Furthermore, the Stokes number Stk can be regarded as a type of De. In Stk, the
viscous braking time tb corresponds to the relaxation timescale (see Eqs. (2.79)
and (2.80)).

Péclet number Next, the competition among diffusion and advection is consid-
ered. The dimension of kinematic viscosity is Œ	=�� D L2T�1, which indicates that
the kinematic viscosity is a type of diffusion coefficient, Kd (see Eq. (3.23) for the
definition of Kd). Then, the Péclet number Pe is defined by replacing 	=� with Kd

in R�1
e :

Pe D Ul

Kd
: (2.107)

The Péclet number represents the ratio between the advective transport rate and the
diffusive transport rate, in terms of transport phenomena. Details of diffusion and
advection will be discussed later in Sect. 3.5.

Atwood number Density ratio is sometimes a very useful dimensionless number.
For instance, the density ratio �i=�t is an essential factor in Eq. (2.90). Density
ratio also plays a crucial role in granular impact analyses (see, e.g., Eqs. (4.25) and
(6.58)). Furthermore, a different type of dimensionless density ratio, the Atwood
number, is important to compute the hydrodynamic instability induced by density
difference (e.g., Rayleigh-Taylor instability discussed in Sect. 6.6.2). The Atwood
number At is defined as

At D �h � �l

�h C �l
; (2.108)

where �h and �l indicate the densities of heavier-weight and lighter-weight compo-
nents, respectively.
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Thus far, dimensionless numbers relevant to fluids have been introduced. From
now on, dimensionless numbers relating to granular matter will be introduced.

Packing fraction Packing fraction 
 is an important dimensionless quantity
characterizing the granular packing state and is defined by the ratio of the volume
of packed grains Vg to the total volume of that space Vt:


 D Vg

Vt
: (2.109)

Packing fraction is related to the porosity (or void fraction) � as

� D 1 � 
: (2.110)

The packing fraction is sometimes called the volume fraction, filling factor, packing
factor, or solid fraction. The term solid fraction is often used for a mixture of grains
and liquid.

Bagnold number If grains are dispersed and sheared in a viscous fluid having
viscosity 	, the granular flow is classified by the ratio between granular inertia
and fluid viscosity. To calculate the balance, Bagnold introduced a dimensionless
number called the Bagnold number Ba [30, 31]:

Ba D �gD2
g�B P�
	

; (2.111)

where �g, Dg, and P� are the density of grains, diameter of grains, and shear strain
rate, respectively. The linear concentration �B is defined as

�B D 1

.
0=
/1=3 � 1 ; (2.112)

where 
 and 
0 are the solid fraction and its maximum value, respectively. In the
low Ba regime (Ba < 40), viscosity dominates the flow, while the inertia governs the
flow in the high Ba regime (Ba > 450). In the intermediate regime, there is a mix.
The form of Ba is actually very similar to Stk (Eq. (2.78)) if we assume �g D �i,
Dg D Di D l, and Dg P� D U. While Stk represents the balance between a single
grain’s inertia and the surrounding fluid viscosity, Ba characterizes the balance in a
sheared dense grains system.

Shields number Next, the mixture of grains and fluid under gravity is considered.
When the grain density �g is larger than the fluid density �, grains deposit upon the
bottom because of gravity. If there is a fluid flow of velocity U above the sediment
of grains, grains could be blown. The ratio between the strengths of sedimentation
and blowing is characterized by the Shields number, Sh. Sh is defined by the shear
stress acting on the sediment surface, � D �U2, as a function of the gravitational
stress, .�g � �/gl:
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Sh D �

�g � �
U2

gDg
; (2.113)

where Dg is the characteristic grain size. Using Sh, the competition among fluid flow
and the grains’ gravity can be evaluated.

Inertial number Even for sheared dry granular matter, there is an important
dimensionless number. In the simple shear condition, there are some relevant
physical quantities: the mean shear strain rate P� , grain diameter Dg, confining
pressure p, and material true density �g. Using these quantities, a dimensionless
number called the inertial number I is defined as [32, 33]

I D P�Dgp
p=�g

: (2.114)

This dimensionless number represents the relative importance of shearing inertia
and confining pressure. The inertial number I can be regarded as a ratio of
two characteristic timescales, P��1 and Dg=

p
p=�g. The former corresponds to

a macroscopic shear timescale, and the latter is a microscopic rearrangement
timescale of the grains structure under the confining pressure p. The inertial number
actually corresponds to the square root of the Savage number [34] or Coulomb
number [35].

Summary of dimensionless numbers Various dimensionless numbers have been
introduced in this chapter. These dimensionless numbers are useful for charac-
terizing the state of fluid and granular matter. Important dimensionless numbers
discussed in this chapter are summarized in Table 2.5. Some of these numbers
were obtained by nondimensionalizations of the governing equation or the drag
force equation. Others were derived from the balance laws of energy, force, or
stress. While the dimensionless numbers can be systematically calculated using
nondimensionalization or ˘ -groups method, physical considerations have mainly
been used to define them, particularly in this section.

To characterize soft impact phenomena, the impact velocity v0 and impactor’s
diameter Di are usually used for U and l in these dimensionless numbers. In some
dimensionless numbers, Di or Dg is already used to clearly indicate the size of the
considered solid object: a sphere or constitutive grains.

2.8 Similarity Law and Modeling

As demonstrated above, the method of dimensional analysis is very useful to deduce
the relevant physical mechanisms for the phenomenon of interest. Dimensionless
numbers can be useful indicators for various physical effects. We have already
observed the efficacy of scaling and dimensional analysis. However, this is not
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Table 2.5 Dimensionless numbers relevant to fluid-, drag-, impact-, and granular-related phe-
nomena. To apply impact phenomena, impact velocity v0 is usually used as representative velocity
(speed) U. In some dimensionless numbers, the solid sphere’s diameter Di and its density �i, or
the grain’s diameter Dg and its density �g are employed as representative quantities instead of the
general notations, l and �

Name Form Physical meaning Equation

Strouhal number St D l
Uto

Characteristic length vs. motion length (2.40)

Reynolds number Re D �Ul
	 Inertia vs. viscosity (2.41)

Drag coefficient CD D FD=A
�v2=2

Drag vs. inertia (2.71)

Stokes number Stk D tbU
l Braking time vs. flow timescale (2.80)

Knudsen number Kn D �mfp
l Mean free path vs. representative length (2.91)

Froude number Fr D U2

gl Inertia vs. gravity (2.98)

Weber number We D �U2l
�c

Inertia vs. capillarity (2.101)

Capillary number Ca D 	U
�c

Viscosity vs. capillarity (2.102)

Ohnesorge number Oh D 	p
�l�c

Viscosity vs. capillarity (2.103)

Bond number Bo D �gl2
�c

Capillarity vs. gravity (2.104)

Mach number Ma D U
Cs

Flow velocity vs. speed of sound (2.105)

Deborah number De D trelax
l=U Relaxation time vs. motion time (2.106)

Péclet number Pe D Ul
Kd

Advection vs. diffusion (2.107)

Atwood number At D �h � �l
�h C �l

Density difference vs. total density (2.108)

Packing fraction 
 D Vg
Vt

Grains volume vs. total volume (2.109)

Bagnold number Ba D �gD2
g�B P�
	 Grains inertia vs. viscous drag force (2.111)

Shields number Sh D �
�g � �

U2

gDg
Fluid flow vs. grain gravity (2.113)

Inertial number I D P�Dgq
p=�g

Shearing inertia vs. confining pressure (2.114)
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the end of the story of dimensional analysis. Dimensional analysis provides
fundamentals to the concept of similarity law or similar modeling [36]. In general,
geological and astronomical phenomena occur during extremely long timescales
and on very large length scales. To investigate such phenomena by experimental
studies, we must create a small-scale mimic called a model. In the small-scale
model, we expect that the underlying physics is similar to the original phenomena.
However, this assumption is not sufficient for the reduced modeling. The concept of
similitude or similarity law must be contemplated to properly model the original
phenomena (prototype). In this section, the fundamentals of similarity law and
similar modeling are discussed.

2.8.1 Geometric Similarity

The term similarity usually indicates a geometrical term. Two bodies are geometri-
cally similar when all the corresponding lengths are equally proportional and all the
correspondent angles are identical. This type of simple similarity is called geometric
similarity. Let lm be a length in the model and lp be a corresponding length in the
(original) prototype. Then, the geometric similarity is written as

lm
lp

D const. (2.115)

The constant corresponds to a homothetic ratio and must be identical for all the
corresponding length scales. The constant in Eq. (2.115) is also called a model
ratio of length in terms of physical similarity law. In addition to Eq. (2.115), the
correspondent angles of the model �m and the prototype �p have to be identical
everywhere in the model and prototype:

�m D �p: (2.116)

This equality of angles is an obvious requirement for geometric similarity.

2.8.2 Kinematic Similarity

When two geometrically similar bodies move or deform, kinematic similarity must
also be considered. The time required to move or deform in the model must
be equally proportional to that in the prototype. Thus the kinematic similarity is
expressed as

tm
tp

D const. (2.117)
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Here tm and tp are the times required to move or deform in the model and prototype,
respectively. The constant in Eq. (2.117) is called a model ratio of time. Of course,
geometric similarity (Eqs. (2.115) and (2.116)) is also supposed to be satisfied
during the motion or deformation in the kinematic similarity.

2.8.3 Dynamical Similarity

What is the next similarity? Thus far, the similarities of shape and motion (or
deformation) of two bodies (model and prototype) have been discussed. Specifically,
two types of similarities based on the length and time have been considered:
geometric and kinematic similarities. Then, one might expect the similarity of mass
as a next step because there are three fundamental dimensions in mechanics: L, T,
and M. To consider the similarity of mass, mass distributions between the model
and prototype must be equally proportional everywhere in the model and prototype,
similar to the geometric and kinematic similarities. The similarity is written as

mm

mp
D const.; (2.118)

where mm and mp denote the masses of small corresponding parts in the model and
prototype, respectively. The constant in Eq. (2.118) is called a model ratio of mass.
Because we are interested in distributions of mass of corresponding small parts, the
masses mm and mp can be replaced by corresponding distributions of densities, �m

and �p.
If all these three similarities are fulfilled, are the model and prototype completely

similar? Unfortunately, the answer is “No.” We have to re-examine the force and
constitutive laws. The similarity of force is indispensable to complete dynamical
similarity because the force is the origin of motion and deformation. Dynamical
similarity can be written as

jFmj
jFpj D const.; (2.119)

where Fm and Fp are the corresponding forces in the model and prototype,
respectively. The constant in Eq. (2.119) is called a model ratio of force. In addition
to Eq. (2.119), the direction of the correspondent force vectors must be identical
between the model and prototype, i.e., Eq. (2.116) is required for the force as well
as geometry.

If these similarities are completely preserved, two similar bodies behave similarly
in terms of the mechanics. However, it is difficult to completely satisfy all the
similarities. For example, experiments performed on the surface of the Earth are
strongly constrained by the gravitational acceleration (g D 9:8m/s2), which cannot
be easily varied. This constraint results in the fixed model ratio of force (constant in
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Eq. (2.119)) for the modeling of phenomena occurring on the Earth:

jFmj
jFpj D mmg

mpg
D mmam

mpap
; (2.120)

where am and ap are the absolute values of acceleration in the model and prototype,
respectively.13 From Eq. (2.120), a simple relation am=ap D 1 is obtained. Because
the model ratio of acceleration is written as am=ap � .lm=lp/.tm=tp/�2, Eq. (2.120)
can be simplified to

1 D lm
lp

�
tm
tp

��2
: (2.121)

Equation (2.121) indicates that the model ratios of length and time cannot be
independently varied to satisfy the dynamical similarity law under the constant
gravitational acceleration condition.

To avoid this difficulty, only the principal force balance is usually considered,
instead of the complete similarity. For instance, the gravitational force is negligible
for the fast viscous flow perpendicular to gravity. Under this situation, the equiva-
lence of the model ratio of force is written as

jFmj
jFpj D mmam

mpap
D 	mUmlm

	pUplp
; (2.122)

where 	m, Um, 	p, and Up are the absolute values of the model viscosity,
model velocity, prototype viscosity, and prototype velocity, respectively. The
directional agreement of acceleration and velocity between the model and prototype
(Eq. (2.116)) is certainly assumed here again. Equation (2.122) includes inertial and
viscous forces as principal forces. The viscous force is evaluated by the constitutive
law of Eq. (2.17) as F � �sl2 � 	.U=l/l2 � 	Ul. Using the relations mx � �xl3x and
ax � U2

x=lx, (x D m or p), Eq. (2.122) is transformed into

�mUmlm
	m

D �pUplp
	p

: (2.123)

Each term in Eq. (2.123) has the same form as Re (Eq. (2.41)). This result suggests
that Re must be identical if the model and prototype are dynamically similar
in terms of inertia and viscosity balance. As discussed in the previous section,
some dimensionless numbers can be expressed by the force (or stress) ratios. To
satisfy the dynamical similarity of the considered force balance, the corresponding
dimensionless number must be identical. The appropriate dimensionless number

13The same direction of acceleration vectors in the model and prototype is surely assumed. This
similarity is also assumed later in Eqs. (2.122) and (2.124).
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must be selected as an indicator for the adequate modeling. Conversely, as long as
the selected dimensionless number is the same, two different systems are said to be
dynamically similar in terms of the focused force balance.

The dimensionless numbers listed in Table 2.5 can be classified using the
similarity law. The packing fraction 
 represents a geometric similarity because
this parameter only concerns the volume ratio. Additionally, an identical 
 indi-
cates statistical similarity because the structure of granular matter is basically
random. Exact geometric similarity cannot be held for random structures. All
other dimensionless numbers represent each corresponding dynamical similarity.
Some can also be regarded as kinematic dimensionless numbers because they only
include kinematic variables; maybe it is meaningless to strictly classify kinematic
and dynamic dimensionless numbers. In general, at least one of the dynamical
similarities must be satisfied to construct a physically similar model. Ideally, all
the dynamical similarities should be satisfied for exact similar modeling.

2.8.4 Modeling of Geological Phenomena

Using the similarity law, we can construct a proper model for geologically large-
scale and long-time phenomena. Historically, the experiment for the salt dome
structure is a famous example of similar modeling. A salt dome diapir structure
is created when a lightweight salt layer is covered with a heavy sedimentary rock
layer. Nettletin performed an experiment with viscous fluids to model the salt dome
structure [37]. Specifically, a heavy syrup layer was placed on a lightweight oil layer.
Then, this gravitationally unstable structure induced a diapir structure similar to salt
domes. Because a long time (6�107 year ' 2�1015 s [38]) is required to form a real
salt dome structure, the effect of inertia is negligible. In addition, it is assumed that
the competition between gravitational (buoyant) force and viscous force is essential
to describe the deformation. Then, the relevant force ratio composed by gravitational
force and viscous force is expressed as

jFmj
jFpj D mmg

mpg
D 	ml2mt�1m

	pl2pt�1p

: (2.124)

This equation is rewritten as

	m

	p
D �m

�p

lm
lp

tm
tp
: (2.125)

If we use a usual viscous liquid in the model, its density is on the same order
as that of sedimentary rock, �m=�p ' 1. Both densities are on the order of
103 kg/m3. The size ratio between the model and original salt dome is approximately
lm=lp ' 0:1m/1 kmD 10�4. Using a viscous liquid of viscosity 	m D 10Pa�s, the
time required to make a salt dome structure in the model was measured to be 103 s
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('17 min). Substituting these values into Eq. (2.125), the actual viscosity of the
sedimentary rock (rock salt) can be computed as 	p ' 1017 Pa�s. The viscosity ratio
is 	m=	p ' 10�16 and the value of �mlmtm=�plptp is also ' 10�16. In this case, the
value of the dimensionless number �xtxlx=	x (x D m or p) is 105 both for the model
and prototype.

In many cases, small-scale and short-time model experiments for geological
phenomena must be carried out with extremely soft materials to satisfy the proper
dynamical similarity. In other words, we can mimic the large-scale and long-time
behavior of hard matter using very soft materials. Soft-matter experiments have
great potential applicability to geological-scale phenomena [39–41]. Thus, sandbox
modeling is utilized to simulate natural tectonic phenomena. Loose granular matter
is much weaker than rock, which is actually an advantage for similar modeling.

2.8.5 Dimensional Dependence of Body and Surface Forces

As mentioned in Sect. 2.2, the difference between body and surface forces should
be recognized to discuss the mechanical behavior of soft matter. Moreover, the
surface tension is proportional to length, (surface tension force) = (surface tension)
� (length of curve). Equation (2.119) implies that all the corresponding forces
must be equally proportional between the model and prototype, which is a strong
constraint for the modeling by similarity law. Here we should be careful about the
dimensional dependence of the forces. The forces have different dependences on the
length scale l. Assuming a uniform object, the body force is proportional to l3, and
the surface force is proportional to l2. Thus, their ratio is

(body force)

(surface force)
/ l3

l2
D l: (2.126)

This relation indicates that the body force decays faster than the surface force when
the size of the forced object becomes small. In other words, the body or surface
force is dominant in large or small objects, respectively. Representative body forces
are gravity and inertia, and representative surface forces originate from pressure and
shear stress. In general, the surface force becomes less important for a large object.

Furthermore, surface tension is proportional to l. Thus, this effect dominates
considerably smaller phenomena than body and surface forces. The ratio between
the body force and surface tension force is written as

(body force)

(surface tension force)
/ l3

l
D l2: (2.127)

The surface tension effect is limited to a very small scale, which explains why
the length scale of capillary-related phenomena under gravity is limited to the
capillary length (Eq. (2.99)). These size dependences of the dominant forces could
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be the origin of the complexity of granular behavior. Dominant inter-granular forces
crossover depending on the size and shape of grains.

The energies by these forces can be dimensionally estimated as

Ebody � �al4; (2.128)

Esurf � � l3; (2.129)

Etension � �cl2; (2.130)

where Ebody, Esurf, and Etension are the energies expressed by the body force, surface
force, and surface tension, respectively. From Eq. (2.129), one can realize that stress
� can be regarded as energy density. Additionally, Eq. (2.130) implies that the
surface tension �c corresponds to the surface energy per unit area.

We have assumed that the material properties such as density �, elastic moduli G
and E, viscosity 	, and surface tension �c are constant. This assumption is reasonable
in many cases. If these values vary significantly depending on the length scale l, the
simple dimensional considerations discussed above fail to hold, which is a limitation
of the dimensional consideration. Even in such a situation, if the material properties
are scaled by the size, the dimensional analysis method remains applicable.

2.9 Summary

The basic concept and fundamental tools necessary to read the remainder of this
book were introduced in this chapter. First, stress, strain, strain rate, and their
relations were briefly explained. After discussing the simplest constitutive laws
(linear viscosity and elasticity), the Navier-Stokes equation was derived from the
linear momentum conservation law. Then, the dimensional analysis method was
overviewed on the basis of nondimensionalization of the governing equation. The
˘ -groups method and other physical considerations were also used to demonstrate
the usefulness of the dimensional analysis. To prepare for the discussion of soft
impact drag force (Chap. 4), the conventional theory of the fluid drag force model
was also reviewed. Next, the various dimensionless numbers that are relevant to
the characterization of soft impact mechanics and cratering were summarized as
listed in Table 2.5. Finally, the ideas of similar modeling and similarity law were
discussed. All the topics discussed in this chapter will be foundations for the
understanding of soft impact phenomena. We are now almost ready to proceed.
Those who wish to study further can read some textbooks on continuum mechan-
ics [3–5] and scaling (dimensional analysis) [2, 10]. In the next chapter, some
advanced constitutive relations will be introduced, in addition to some interesting
phenomenologies of complex granular behaviors. These phenomenologies are also
powerful and necessary for a physical understanding of the soft impact phenomena.
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Chapter 3
Constitutive Laws

Constitutive laws describe the relation among macroscopic quantities such as stress,
strain, and strain rate. Although most of the constitutive laws for complex soft matter
are empirically introduced, they are useful to quantitatively evaluate the deformation
and flow states of soft matter. In this chapter, some classic constitutive laws such as
viscoelasticity and viscoplasticity are first explained. Rebound and its restitution
coefficient are explained using a simple viscoelastic oscillation. Then, models of
transport phenomena such as diffusion and advection are briefly reviewed. After
describing frictional constitutive laws, peculiar characteristics of granular matter
are presented in terms of constitutive laws. The indefiniteness of the frictional
property makes understanding static granular behaviors very difficult. Most of these
discussions and characteristics are relevant to the analysis of granular-related soft
impact phenomena.

3.1 Viscoelasticity

Viscoelasticity refers to a combination of viscosity and elasticity. Linear viscosity
and elasticity were already introduced in Sects. 2.2 and 2.3. Many natural materials,
however, cannot be purely described by linear constitutive laws. Natural materials
often exhibit complex nonlinear rheological behaviors. To characterize complex
rheological behaviors, viscosity and elasticity can be coupled. Viscous behavior is
modeled by a dashpot element, which satisfies the viscous constitutive law � D 	 P� ,
where � , 	 and P� are stress, viscosity, and strain rate, respectively (Eq. (2.17)).
Linear elasticity is modeled by a spring element, which satisfies the simplified
version of Eq. (2.18), � D G� . Using these elements, viscosity and elasticity can be
merged as viscoelasticity.

There are two classic models of viscoelasticity: the Maxwell model and the
Kelvin-Voigt model. Schematic illustrations of these models are presented in
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Fig. 3.1 Schematic
illustrations of classic
viscoelastic models. (a) The
Maxwell model consists of a
series connection of a dashpot
and spring. (b) The
Kelvin-Voigt model consists
of parallel connection of
these elements

a

b

Maxwell

Kelvin-Voigt

η

G

η G

dashpot spring

dashpot

spring

Fig. 3.1. The former is defined by a series connection of a dashpot and a spring
(Fig. 3.1a), and the latter corresponds to their parallel connection (Fig. 3.1b). In the
Maxwell model, the stress applied to the dashpot element �	 and that applied to
the spring element �G are identical because of the action-reaction law. In contrast,
the strain of the dashpot element �	 and that of the spring element �G are not
common but are distributed simply because they are connected in series. Namely,
the conditions are written as �M D �	 D �G and �M D �	C�G, where �M and �M are
the exerted stress and associated strain of the entire Maxwell model, respectively.
Using the linear elastic and viscous constitutive laws, the governing equation for the
Maxwell model can be written as

d�M

dt�
D d��

M

dt�
C
�

Gto
	

�
��

M; (3.1)

where t� D t=to and ��
M D �M=G are the nondimensionalized time normalized

to the characteristic timescale to and the stress normalized to the elastic modulus
G, respectively. Internal stress relaxation can be modeled by solving Eq. (3.1) with
boundary conditions �M.t D 0/ D �0 D G�M.t D 0/ and d�M=dt D 0. These
conditions correspond to a suddenly applied constant strain �M , which initially
induces an internal stress G�M . The internal stress is first stored in a spring
element, and then, it is gradually dissipated by a viscous dashpot element. Using
this procedure, the internal stress relaxation is observed as a simple exponential
function:

��
M D �0

G
exp

�
�Gto
	

t�
�
: (3.2)

Similarly, the governing equation for the Kelvin-Voigt model is derived. In the
Kelvin-Voigt model, stress is distributed and strain is common among a dashpot and
a spring. Thus, the entire stress �V and strain �V for the Kelvin-Voigt model satisfy
the relations �V D �	 C �G and �V D �	 D �G. Using a similar computation as
for the Maxwell model case, the governing equation of the Kelvin-Voigt model is
obtained as



3.1 Viscoelasticity 65

d�V

dt�
D ��

V �
�

Gto
	

�
�V : (3.3)

For the Kelvin-Voigt model, the stress is normalized as ��
V D �V=.	=to/. A

creep motion can be designed using this model. Solving Eq. (3.3) with boundary
conditions �V D �0 (a constant independent of time) and �V.t D 0/ D 0, the creep
motion is computed as

�V D �0

G

�
1 � exp

�
�Gto
	

t�
��
: (3.4)

Using this boundary condition, the stress is applied suddenly and maintained
constant. Then, the applied stress induces viscous (creep) motion in the early stage.
After that, the strain gradually increases and is finally saturated at the asymptotic
value �0=G resulting from the elastic support by a spring element.

The ratio of the elastic modulus and viscosity introduces a characteristic
timescale. In the nondimensionalization of the Maxwell model, stress �M is
normalized to G because the initially applied stress is mainly supported by a spring
element at the early stage. In the nondimensionalization of the Kelvin-Voigt model,
the stress �V is normalized to 	=to because the initial stress is principally supported
by a dashpot element. Actually, both normalizations result in the exponential
relaxations for the Maxwell model (Eq. (3.2)) and Kelvin-Voigt model (Eq. (3.4));
the normalization factor is rather arbitrary. From these similar exponential relaxation
forms, a characteristic timescale in the simple viscoelastic systems is deduced as

tM D 	

G
; (3.5)

where tM is called the viscoelastic relaxation time (or Maxwell time). Using this
relaxation timescale, the Deborah number (Eq. (2.106)) for the viscoelastic system
is written as

De D 	

G

U

l
; (3.6)

where U and l are the representative speed and length scale, respectively. In the
Maxwell model, the elasticity dominates the dynamics at the timescale shorter
than tM . The elasticity represents a memory of the initial shape, i.e., the memory
of the initial shape is partly maintained by the elasticity in a short time regime.
This memory effect corresponds to the energy conservation. In contrast, viscosity
dominates the dynamics of the Maxwell model at the longer time regime, t > tM .
The viscous dashpot element dissipates energy in this longer time regime. Thus, the
Maxwell model finally dissipates the energy through the viscosity of the dashpot
element. In this sense, the Maxwell model can be considered a viscoelastic fluid at
the long time limit that can flow slowly and relax the initial stress at the long time
limit. Furthermore, the memory of the initial shape is finally lost. In contrast, the
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Kelvin-Voigt model might be regarded as a sort of viscoelastic solid at the long
time limit. Its dynamics is dominated by viscosity at a short time, t < tM , but
behaves elastically at a long time, t > tM . The applied stress is supported by a
spring element at the long time limit. The applied stress is finally balanced with the
elasticity of the spring element. Note that the viscosity also dissipates the energy in
the Kelvin-Voigt model. In the short time range t < tM , furthermore, the Maxwell
and Kelvin-Voigt models show elastic and viscous responses, respectively. tM is the
switching timescale from elastic to viscous (Maxwell) or from viscous to elastic
(Kelvin-Voigt).

The Maxwell and Kelvin-Voigt models are the most fundamental viscoelastic
models. Using various combinations of elementary units (Hooke’s spring and
viscous dashpot), advanced rheological models have been proposed to explain
complex viscoelastic behaviors. Examples include Burgers model, Jeffrey model,
and generalized Maxwell model. For further study of such various rheological
models, Ref. [1] is a good textbook.

3.2 Plasticity and Nonlinear Flow

Plasticity can also be modeled by a simple constitutive law. The classic viscoelastic
models can explain a certain class of viscoelasticity but are not almighty. The
Maxwell model behaves like a fluid because it finally flows and relaxes the internal
stress approximately at the timescale tM . This behavior indicates that the Maxwell
model exhibits plastic deformation or flow. This model finally obliterates the
memory of the initial shape. There is no any limitation of deformation in the
Maxwell model, which appears natural because usual viscous fluids also have no
limitation of deformation. In contrast, the Kelvin-Voigt model exhibits a solid-like
response to the applied stress at a long time regime, t > tM . All the stress must
be finally supported by the elasticity. Thus, this model recovers the initial shape
when the applied stress is removed. While the model maintains a perfect memory,
the recovery requires a finite time approximately tM . Additionally, the energy is
dissipated by viscosity during the creep motion and its recovery to the initial shape.
In this creep motion, no limitation of the elastic deformation is employed again.
However, this assumption is slightly strange because every solid-like object has its
strength as a limit of elastic deformation. When the applied stress exceeds a certain
limit, the stress cannot be supported by elasticity and the material starts to fracture
and flow. This plastic property can be considered using the yield stress Ys. The
simplest plastic constitutive law is the Bingham model. If the applied stress is less
than Ys, the behavior is similar to an elastic solid. Once the applied stress exceeds Ys,
the object starts to flow. The Bingham model assumes the simple linear viscous law
(Eq. (2.17)) in the flow regime, which is a type of typical viscoplastic1 behavior.

1If the elastic behavior below Ys is focused, the word elastoplasticity is used.



3.3 Complex Moduli 67

Fig. 3.2 Viscoplastic
constitutive laws. The solid
line and dotted curve
correspond to the Bingham
model and Herschel-Bulkley
model, respectively. Both
models consist of the yield
stress and linear or nonlinear
viscosity

st
re

ss

strain rate

In classic viscoelastic models, the timescale tM is a separator between elastic and
viscous regimes. Similarly, the yield stress Ys partitions the elastic and plastic
regimes in a viscoplastic model. Furthermore, if the nonlinear relation between the
stress and strain rate is considered in the flow regime, the constitutive law called the
Herschel-Bulkley model is written as

� D Ys C k P�n; (3.7)

where k and n are parameters characterizing the flow. When n is unity, Eq. (3.7)
corresponds to the Bingham model. Usually, the exponent n is in the range of 0 <
n � 1 [1]. The viscoplastic constitutive laws are schematically illustrated in Fig. 3.2.

3.3 Complex Moduli

Next, we consider dynamic rheology. In the above discussion, idealized very simple
models were considered. Although the constancy of tM is assumed both in the
Maxwell and Kelvin-Voigt models, the relaxation timescale tM is not a constant
in general. To extend the framework of rheological characterizations, the steady-
state dynamic rheological characterization is frequently employed. Let us consider
a simple sinusoidal strain with amplitude �0 and angular frequency!(D 2�f , where
f is the frequency) as

� D �0 exp.i!t/; (3.8)

where i is the imaginary unit. In the dynamic steady-state regime, stress � and strain
� can be related as

�.t/ D G�.!/�.t/; (3.9)

where G� is the complex modulus that is decomposed as

G� D G0 C iG00; (3.10)
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in which G0 and G00 are the storage modulus and loss modulus, respectively. The
former represents the in-phase elastic response, and the latter represents the in-
quadratic-advance viscous response. In this notation, � is written as

� D �0 exp.i!t C ıl/; (3.11)

where �0 is the stress amplitude and ıl is the loss angle. ıl relates to G0 and G00 as

G0 D �0

�0
cos ıl; (3.12)

G00 D �0

�0
sin ıl: (3.13)

When the loss angle ıl is zero, the corresponding rheological behavior is a purely
elastic and conservative. In contrast, when ıl D �=2, purely viscous (dissipative)
response is observed. These two end-member effects are mixed in general viscoelas-
tic materials. In the dynamic steady state, the aforementioned rheometrical method
is very powerful and widely used to characterize various soft matter. Note that the
elementary constitutive laws are assumed to be linear (� D G0� and � D G00 P� )
for each !. The relation among �0, �0, and ıl depends on !. Because 2�!�1
corresponds to a characteristic timescale of the stress-strain relation, the relations
such as Eqs. (3.12) and (3.13) denote the relative importance of viscosity and
elasticity at the timescale 2�!�1. The analysis of the steady response to sinusoidal-
oscillation input is very compatible because the derivative of the sinusoidal function
can be simply expressed by the phase shift, d sin.!t/=dt D ! sin.!t C �=2/. Thus,
this type of dynamical rheometry becomes the standard approach to characterize
the dynamic property at steady states. In contrast, the very transient dynamics of
the impact is the main focus of this book. The impact drag force is also useful to
characterize the behavior of soft matter, as discussed in the following chapters.

3.4 Rebound, Attenuating Oscillation, and Restitution
Coefficient

Rebound, resulting from an impact, is a very fundamental phenomenon particularly
in the case of solid impacts. The restitution coefficient is used to characterize the
state of rebound. The normal restitution coefficient �r is defined as

�r D �v0 � n
v � n

; (3.14)

where v, v0, and n are the velocity before impact, velocity after impact, and normal
vector of the impact, respectively. Usually, the direction of the velocity after the
impact becomes opposite to that before the impact, which indicates that �r is
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usually positive. If �r D 1, the kinetic energy is conserved, and this collision is
called an elastic collision. In general, �r is less than unity because of the energy
dissipation. This dissipative rebound is called an inelastic collision. Thus, �r should
be in the range 0 � �r � 1. Moreover, �r is considered a material-dependent
constant. These assumptions work well as a first-order approximation; however,
the actual �r depends on various factors such as the impact velocity, angle, and
impactor’s size. For example, �r is scaled by the impact velocity v as �r / jvj1=4
by considering plastic deformation [2]. Furthermore, �r can exceed unity by an
oblique impact of a solid ball on an elastic plate [3, 4]. In this case, translational
momentum is transferred to the normal direction by the oblique impact. Thus, the
energy conservation law is not broken by this pseudo kinetic energy gain. Note that
�r in Eq. (3.14) is defined only by the normal component. A collision with �r > 1,
called super rebound, has also been observed in nanocluster collisions [5, 6]. In
nano collisions, thermal energy is sometimes transformed into translational kinetic
energy, although such an abnormal energy transfer rarely occurs. Negative �r can
also be observed in a nanocluster oblique impact [7]. In general, the restitution
coefficient is a very complex function comprising various parameters such as impact
velocity and adhesion force [8, 9]. Nevertheless, �r is usually assumed to be constant
in many cases for the sake of simplicity.

The restitution coefficient of an inelastic collision can be modeled by viscous
damping in a simple viscoelastic impact. Let us consider the one-dimensional
viscoelastic equation of motion for a deformable body of mass mi and length
scale Di:

mi
d2x

dt2
D �kx � 	Di

dx

dt
; (3.15)

where t, x, k, and 	 correspond to the time, deformation, effective spring constant,
and effective viscosity, respectively. This equation of motion is similar to the Kelvin-
Voigt viscoelastic model, and this linear ordinary differential equation (ODE) can
be easily solved as2

x D x0 exp

2
64
�

�	Dit

2mi

�
C i

0
B@

t
q
4mik � 	2D2

i

2mi

1
CA

3
75 ; (3.16)

with an initial condition x.t D 0/ D x0. In this model, a dissipative spring behavior
is assumed to model the viscoelastic rebound. Concretely, we assume that the impact
and rebound occur at t D 0 and at its half cycle of oscillation, respectively. When
4mik < 	2D2

i , the system becomes overdamped, i.e., no rebound occurs. Otherwise,

2The easiest way is to assume the form x D x0 exp.�xt/. By substituting this form into Eq. (3.15)
and selecting a relevant solution, one can obtain Eq. (3.16).
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the rebound occurs at a half cycle of oscillation, t
q
4mik � 	2D2

i =2mi D � .
Because Eq. (3.16) describes simple exponential decay, the corresponding velocity
v D dx=dt also obeys the exponential decay with the same decay rate. Therefore,
by considering Eq. (3.14), �r of this viscoelastic rebound is written as

�r D exp

0
B@� �	Diq

4mik � 	2D2
i

1
CA : (3.17)

When the impact is inviscid (	 D 0), an elastic collision (�r D 1) is recovered. This
simple relation between the restitution coefficient and viscous damping is frequently
used to evaluate or define �r in numerical simulations of granular matter such as
the discrete element method (DEM). DEM is one of the most famous and widely
employed granular computation methods [10]. In actual DEM simulations, some
other effects (e.g., tangential friction) are also considered.

Dissipation by the inelastic collision plays a crucial role, particularly in dilute
granular gas. In dense granular flow or deformation, friction is more important.
Because we will focus on the dense regime in the following chapters, frictional
constitutive laws will be discussed in more detail in Sect. 3.6.

Equation (3.15) presents the general form of attenuating oscillations. We can
define a dimensionless dissipation rate by the nondimensionalization of Eq. (3.15).
By introducing representative and dimensionless values for time and deformation as
t D tot� and x D x0x�, respectively, Eq. (3.15) can be nondimensionalized as

d2x�

dt�2
� �t2o

k

mi
x� � to

	Di

mi

dx�

dt�
: (3.18)

As a characteristic timescale, here we employ a period of harmonic oscillation
to D p

mi=k. Substituting this value into Eq. (3.18), the simplest version of the
dimensionless equation of attenuating oscillation is obtained:

d2x�

dt�2
D �x� � 	Dip

mik

dx�

dt�
: (3.19)

Thus, the most important dimensionless parameter for attenuating oscillation can be
defined as

1

Q
D 	Dip

mik
: (3.20)

Q is called the quality factor. The reciprocal of quality factor Q�1 indicates the
dimensionless attenuation (dissipation) rate per oscillation’s unit time,

p
mi=k (D

Tp=2� , where Tp is the period of harmonic oscillation). Because Q�1 is an indicator
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of the attenuation rate, large Q indicates small attenuation, and vice versa. If 4mik �
	2D2

i , Eq. (3.17) can be approximated by �r ' exp.�=2Q/.

3.5 Transport Phenomena

Transport phenomena are ubiquitous in nature. Although achieving a microscopic
understanding of transport phenomena is not so easy, the phenomenological mod-
eling of transport is relatively comprehensible in terms of constitutive relations. In
this section, we focus on diffusion and advection, and their fundamentals are briefly
introduced.

We have already derived the equation for transport phenomena. We must return
to the Navier-Stokes equation of the incompressible Newtonian fluid. By neglecting
the body force and pressure gradient terms in Eq. (2.30), one can obtain a simple
equation:

@u
@t

D �.u � r/u C 	

�
r2u: (3.21)

This equation is called the advection-diffusion equation. Although this form was
derived on the basis of the conservation law in Sect. 2.4, it can also be understood
by another basis. In this section, each term in Eq. (3.21) is re-examined from the
viewpoint of transport phenomena. The first and second terms on the right-hand
side correspond to advection and diffusion, respectively. This equation actually
models momentum transport in an incompressible fluid both by advection and
lateral diffusion.

Transport phenomena are generally modeled by the following flux equation:

Ji D
X

j

KijLj; (3.22)

where Ji, Kij, and Lj correspond to the flux of the i-th component, transport
coefficients, and j-th driving force of the transport under consideration. In general,
some transport fluxes and driving forces are coupled by Eq. (3.22), and the number
of fluxes i and driving forces j is not necessarily determined a priori. For the sake of
brevity, however, here we consider the case of Kij D ıijKt, where ıij is Kronecker’s
delta. Additionally, we assume that Kt is a constant. Then, Eq. (3.22) is simplified
to a simple linear transport relation among the flux J, driving force L, and transport
coefficient Kt as J D KtL.
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3.5.1 Diffusion

To consider diffusion transport, a gradient-dependent driving force should be
assumed. Let us consider a transport of general physical quantity � and assume
that its driving force L is expressed by its spatial gradient, r� . Then, the flux of �
is written as

J D Kdr�; (3.23)

where Kd is a transport coefficient. This type of gradient-driven transport phenom-
ena is ubiquitous in nature, e.g., � can be the temperature (Fourier’s law), fluid
momentum (Newtonian viscosity), material density (Fick’s law), or electrostatic
potential (Ohm’s law). If the flux J is spatially uniform as Kdr� D const:, a steady
flow of � is achieved, and � becomes independent of time everywhere. However,
when J is spatially inhomogeneous, the spacial distribution of � varies with time
depending on the profile of r� .

To examine the flux balance, the one-dimensional case is first considered. The
temporal variation of � in a small range between x and x C dx, �dx, is induced
because of the difference of the inflow J and outflow J C.@J=@x/dx (Fig. 3.3). Thus,
the temporal variation of �dx is written as

@�

@t
dx C J �

�
J C @J

@x
dx

�
D 0: (3.24)

By expanding this calculation to three-dimensional space, one can obtain a
relation

@�

@t
D r � J: (3.25)

This equation represents the most fundamental law in the modeling of transport
phenomena and is called the equation of continuity. Note that this equation is
held both for diffusion and advection. Gauss’ theorem used in Sect. 2.4 actually
corresponds to the integral form of this equation. Substituting Eq. (3.23) into
Eq. (3.25), the diffusion equation is obtained as

J(x) J(x) +
∂J(x)

∂x
dx

x x + dx

∂ψ

∂t
dx

Fig. 3.3 Schematic image of the transport of quantity �.x; t/ in a one-dimensional space. If J.x; t/
is not spatially uniform, a local increase or decrease of �.x; t/dx is produced by the gradient of the
flux. The balance law is denoted in Eqs. (3.24) and (3.25)
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@�

@t
D Kdr2�: (3.26)

Here we assume that Kd (called the diffusion coefficient (or diffusivity)) is constant.
The dimension of Kd is ŒKd� D L2T�1.

The diffusion equation is readily nondimensionalized. By introducing represen-
tative values for each quantity as � D �o�

�, t D tot�, and r D l�1r�, Eq. (3.26)
is nondimensionalized as

@��

@t�
D Kd

l2=to
r�2��: (3.27)

Thus, the important dimensionless value for the diffusion is Kdto=l2. This dimen-
sionless number represents the rate of diffusive transport, and this value should be
a constant in the uniform diffusional field. Then, a simple form of the spreading
distance l during to is obtained as

l �
p

Kdto; (3.28)

which is a general relation held in diffusion transport. More generally, the relation
l / t˛d

o is frequently observed in various natural transport phenomena. When ˛d >

1=2, the phenomenon is called super-diffusion, and the transport with ˛d < 1=2 is
called sub-diffusion.

Diffusion and random walk Diffusion transport can be regarded as a collection
of independent random walks. Let us consider many random walkers distributed in
a one-dimensional space. The number density of random walkers at position x and
time t is denoted by �.x; t/. All the random walkers are supposed to be independent
and move back and forth with equal probability. We define that the random walkers
move distance j�xj during a short time �t. Then, the expected number density of
random walkers �.x; t/ obeys the following relation:

�.x; t C�t/ � �.x; t/ D 1

2
�.x C�x; t/C 1

2
�.x ��x; t/ � �.x; t/: (3.29)

The left-hand side indicates the increase or decrease in the number density of
random walkers during �t at position x. The first and second terms on the right-
hand side correspond to the inflow of random walkers from the positions x˙�x, and
the last term expresses the outflow by the random walk. Using a Taylor expansion,
Eq. (3.29) can be rewritten as

@�

@t
�t C O..�t/2/ D 1

2

@2�

@x2
.�x/2 C O..�x/4/: (3.30)

Neglecting the higher-order terms O..�t/2/ and O..�x/4/, one can obtain the
one-dimensional diffusion equation with a diffusion coefficient Kd D .�x/2=2�t,
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which is certainly consistent with Eq. (3.28). This result indicates that diffusion can
occur by superimposing a large number of independent random walks. The above
calculation can be easily expanded to two- or three-dimensional space.

Solutions of the diffusion equation We can solve the one-dimensional diffusion
equation with infinite or semi-infinite boundary conditions [11]. To simplify the
diffusion equation on the basis of Eq. (3.28), we employ a dimensionless variable

 D x=2

p
Kdt. Then, @�=@t is written as

@�

@t
D d�

d


@


@t
D d�

d


�
� 


2t

�
: (3.31)

A similar chain rule for differentiation can be applied to the spatial derivative. Thus,
the diffusion term is rewritten as

@2�

@x2
D @

@x

�
d�

d


@


@x

�
D 1

2
p

Kdt

d2�

d
2
@


@x
D 1

4Kdt

d2�

d
2
: (3.32)

By introducing a variable 
 D d�=d
, the diffusion equation is finally cast into a
first-order ODE as

� 

 D 1

2

d


d

: (3.33)

This equation can be immediately integrated as �
2 D ln 
 � ln co, where co is an
integral constant. This relation is transformed into


 D d�

d

D co exp.�
2/: (3.34)

Considering the Gaussian integral formula,
R1
0

exp.�x2/dx D p
�=2, a solution

for the diffusion equation is computed as

� D 2cop
�

Z 


0

exp.�
 02/d
 0 D coerf.
/: (3.35)

The integral function erf.
/ is called the error function of 
. Finally, the diffusion in
one-dimensional semi-infinite space can be described by a simple form:

� D �0erf

�
x

2
p

Kdt

�
: (3.36)

This form corresponds to a solution under the initial condition �.t D 0/ D �0
(independent of x) and the boundary conditions�.x D 0/ D 0 and�.x D 1/ D �0
at t > 0 and x 	 0.
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More generally,�.x; t/ for the space-dependent initial condition can be written as

� D 1

2
p
�Kdt

Z 1

�1
�0.x

0/ exp

�
� .x � x0/2

4Kdt

�
dx0: (3.37)

To obtain a simple solution example, here we introduce the delta function ı.x/which
satisfies

R1
�1 ı.x/dx D 1, ı.x/ D 0 at x ¤ 0, and ı.0/ D 1. By substituting

�0.x0/ D ı.x0/ into Eq. (3.37), a solution of the one-dimensional diffusion equation
can be expressed by the Gaussian distribution form

� D 1

2
p
�Kdt

exp

�
� x2

4Kdt

�
: (3.38)

One can easily verify that Eq. (3.38) satisfies the diffusion equation. This solution
typically exhibits diffusive propagation from a point source to an infinite space. The
profiles of the black-solid and blue-dotted curves in Fig. 3.4 were obtained using
Eq. (3.38). The details of Fig. 3.4 will be discussed later in Sect. 3.5.3.

There are some other solutions of the one-dimensional diffusion equation. For
instance, a spatially attenuating oscillatory and traveling-wave solution of the
diffusion equation is written as

� D �0 exp.�knx/ sin.!nt � knx/; (3.39)

kn D
r
!n

2Kd
; (3.40)

where !n and kn are the angular frequency and wavenumber, respectively. This
attenuating traveling wave can be a solution of the diffusion equation. In this
case, the wave number depends on the frequency and diffusion coefficient. Another
example, a temporally attenuating solution, can be described as

� D �0 exp.�Kdk2nt/ sin.knx/; (3.41)

kn D n�

l
; (3.42)

where n is a natural number. It is easy to verify that these solutions satisfy the one-
dimensional diffusion equation. The complex profile of �.x; t/ can be expressed
by a linear combination of Eqs. (3.39) and (3.41) (of various n) with the help of a
Fourier series expansion (the principle of superposition). To use the trigonometric
solution of Eq. (3.41), the system size l must be finite to define the wavenumber kn,
in contrast to the solution of Eqs. (3.36), (3.37) and (3.38) in which a semi-infinite
boundary condition is assumed.
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3.5.2 Advection

Advection is another representative transport phenomenon that is quite different
from diffusion. In the last subsection, the gradient of the physical quantity was
considered for the driving force of diffusion transport. For advective transport,
however, the driving force must be directly proportional to the amount of the
physical quantity itself. Namely, the flux is written as

J D C��; (3.43)

where C� is a constant. Its dimension is ŒC� � D LT�1. Using a similar calculation
as that used for the diffusion case, we obtain a simple equation:

@�

@t
D C�r�: (3.44)

This equation is the advection equation. The advection equation is nondimensional-
ized as

@��

@t�
D C�

l=to
r���: (3.45)

From this nondimensionalized advection equation, it is apparent that the dimen-
sionless number C� to=l is a unique quantity to characterize advective transport. The
existence of this dimensionless number indicates that l � C� to, i.e., C� corresponds
to the drift velocity of advection.

3.5.3 Comparison of Diffusion and Advection

The difference between diffusion and advection can be demonstrated by considering
the temporal development of a bump structure. Let us consider the one-dimensional
diffusion and advection of an initial bump structure �0 represented by the black
solid curve in Fig. 3.4a. The difference between diffusion and advection is only the
order of spatial differentiation. In Fig. 3.4b, c, the first- and second-order spatial
derivatives of the initial bump structure are shown, respectively. In addition, the
blue dotted curve in Fig. 3.4a represents the diffusion by �0 C Kdto.@2�=@x2/ with
Kdto D 1=4. The flattening tendency of the bump structure due to the diffusional
relaxation is clearly confirmed. In fact, these bumps exhibit the Gaussian form.
Thus, this diffusive variation in the profile can be understood by different-time
snapshots of Eq. (3.38). Steady-state diffusion is achieved by 0 D @2�=@x2. The
solution of this equation is a constant flux state that is attained when the gradient
of � is identical everywhere in x. Thus, the straight line (@�=@x D const:) is
the steady-state solution of the one-dimensional diffusion equation. That is, an
arbitrary profile of � is relaxed to the straight line by diffusion-based relaxation.
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Fig. 3.4 Temporal
development of the initial
bump structure by diffusion
and advection. The black
solid curve in (a) represents
the initial profile �0. The
first-order derivative of �0.x/
is presented in (b), and the
second-order derivative is
presented in (c). The blue
dotted curve in (a) indicates
�0 C Kdto.@

2�=@x2/ which
corresponds to diffusion.
Because the �0 in this figure
is actually the Gaussian form,
these two profiles can be
expressed by Eq. (3.38) at
different times. The red
dashed curve in (a) represents
the advection by
�0 C C� to.@�=@x/.
Kdto D 1=4 and C� to D 1=4

are used (in arbitrary units)
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Moreover, the horizontal flat state (� D const:) is a steady state if no asymmetry is
assumed in the system. In contrast, the advection results in a drift of the bump.
In Fig. 3.4a, the profile of �0 C C� to.@�=@x/ is represented by the red dashed
curve, where C� to D 1=4 is used. The drift motion of the bump structure can be
confirmed between the black solid and red dashed curves in Fig. 3.4a. As mentioned
before, C� corresponds to the traveling rate of advection. Namely, a solution of
the advection equation can be written in the form of �.x; t/ D f .x � C� t/, where
�0 D �.x; 0/ D f .x/ is the initial condition. This traveling wave solution models
the propagation of � in one direction with velocity C� , which is the advection
phenomenon. Note that the term .u � r/u represents the advection in the Navier-
Stokes equation because velocity (momentum per unit mass) transport is considered;
� D C� D u in this case.

In general, diffusion and advection coexist such as in Eq. (3.21). In this situation,
the strength of diffusion and advection can be compared using the Péclet number
(Eq. (2.107))

Pe D C� l

Kd
; (3.46)
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where l is the representative length scale in the system under consideration. When
Pe � 1, advection is dominant. Furthermore, the other limit, Pe � 1, corresponds
to the diffusion-dominant regime.

We have assumed that transport coefficients such as Kd and C� are constant.
These specific values depend on the materials and conditions employed. Moreover,
these values may depend on space and time. In the analyses of geological or
planetary-scale phenomena, it is difficult to fully consider such complexities in
these phenomena because the available information is very limited. Moreover, the
model should be as simple as possible. Thus, constant transport coefficients are
usually used. Transport phenomena are also very important fundamental processes
in the chemical engineering field. Several additional details are required to solve
engineering problems. We neglect these difficult points for simplicity’s sake.
Furthermore, we do not discuss the microscopic mechanics of transport phenomena.
In this sense, the diffusion and advection equations are constitutive relations, which
explains why transport phenomena are introduced here as a type of constitutive law.
This phenomenological approach is a standard methodology in this book.

3.6 Friction

The friction law is also an important constitutive law for general soft matter
and geophysical phenomena. The origins of a certain class of earthquakes are
slips of faults. Thus, the frictional constitutive law is very important for its
dynamics. Although usually expressed by a very simple law, the actual frictional
behaviors are very complex. Friction works only at the interface between dif-
ferent or same materials. This behavior contrasts with elasticity and viscosity,
which instead characterize deformation and flow, respectively, in a continuous
medium.

3.6.1 Coulomb Friction and Angle of Repose

Let us begin with the simplest frictional constitutive law: Coulomb friction. As long
as the static friction coefficient �0 satisfies the condition

�s � �0p; (3.47)

the interface never slips. Here �s is the shear stress and p is the normal stress
at the interface. The slip occurs when �s exceeds �0p. This condition is called
the Coulomb failure criterion. Friction is an essential factor in the static granular
network structure. Microscopically, the granular network structure is supported
by the friction at the grains’ contacts. The macroscopic friction property of bulk
granular matter is not necessarily the same as the microscopic friction property.
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Fig. 3.5 Schematic image of
the angle of repose �repose. A
small mass unit m is stable as
long as the shear force does
not exceed the friction force.
The angle of repose shows
bistability before and after the
angle’s relaxation by an
avalanche

θrepose

mg sin θrepose mg cos θrepose

mg

R

Here we focus on the bulk frictional property. For bulk granular matter, the friction
coefficient �f ' �0 can be estimated by the angle of repose �repose as

�f D tan �repose: (3.48)

This relation is obtained from the stress balance at the surface of the granular slope.
Here we consider a small mass part (particle) m on the surface of a granular pile
of inclination angle � . The shear force acting on this mass unit is mg sin � , and the
normal force is mg cos � . At the critical angle �repose, the relation mg sin �repose D
�f mg cos �repose must be satisfied (Fig. 3.5). Equation (3.48) corresponds to this
critical relation. The angle of repose is analogous to the internal friction angle �i

and is measured by a shear test. In the shear test, the shear stress �s and confining
pressure p at the yielding state are related by [12]

�s D p tan �i C Cc; (3.49)

where Cc is the coefficient of cohesion. The value of the angle of repose is very
similar to the internal friction angle. However, note that the angle of repose depends
on the measuring method and boundary conditions [13].

More generally, �f is not a constant. Once slip occurs at the interface, the shear
and normal stresses are related by another friction coefficient called the dynamic
friction coefficient. This coefficient is usually slightly smaller than the static friction
coefficient. For the dynamic friction coefficient�d, the inequality in (3.47) becomes
the equation

�s D �dp: (3.50)

Accordingly, the angle of repose is bistable. If sand grains are slowly poured above
the sand heap, the sand grains pile up until the heap angle � reaches the critical
angle �m. The critical angle �m is called the maximum stable angle. When the
heap angle exceeds �m, an avalanche occurs on the surface, which relaxes the
heap gradient and finally halts. This angle that finally achieves a stable heap and
is usually defined as �repose is slightly less than the maximum stable angle �m.
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According to Eq. (3.48), tan �m and tan �repose roughly correspond to the static and
dynamic friction coefficients, respectively. Thus, the relations �0 D tan �m and
�d D tan �repose are more appropriate definition. Nonetheless, the definition of the
angle of repose (Eq. (3.48)) is generally used because the measurement of �repose is
easier than �m. When a heap consisting of grains with diameter Dg is formed on
a dish of radius R, the difference between these two angles ı� D �m � �repose is
negligible under the condition

Dg > Rı� : (3.51)

For large grains satisfying condition (3.51), the addition of a grain causes an increase
in angle Dg=R, which is larger than ı� . This effect implies that ı� cannot be
resolved under such a condition; therefore, two angles �m and �repose degenerate.
The condition (3.51) is consistent with experimental results [14]. Typical values are
ı� ' 2ı and R ' 30Dg. In the case of a large granular heap (R > 30Dg), bistability
becomes important. This bistability is a possible source of the history-dependent
complex behaviors of granular matter.

3.6.2 Rate- and State-Dependent Friction

Although the Coulomb friction law is simple and convenient to estimate the
friction effect, the actual friction is considerably more complex. In fact, the friction
coefficient depends on various factors such as the waiting time, slip velocity, and
interface roughness. It is not easy to involve all these factors in the macroscopic
constitutive law. Perhaps the implication of all these factors is too much. We do not
need a complete but complicated constitutive law. What we need here is a useful
and simple constitutive law for the friction even if the law is based on empirical
results. A well-known frictional constitutive law is rate- and state-dependent friction
(RSF) [15]:

�f .u/ D �f .u0/C ˛u log
u

u0
; (3.52)

where u, u0, and ˛u are the slip velocity, reference velocity, and dimensionless
constant, respectively. This constitutive law for the dynamic (steady state) friction
has been confirmed by various experiments and widely used to discuss earthquake
dynamics3 [16].

While Coulomb friction and RSF are commonly used in a wide range of
phenomena, their capabilities are limited. For example, when the slip velocity is

3More precisely, the RSF law is written as �f .u; � 0/ D �f .u0/ C ˛0

u log.u=u0/ � ˇu log.l=� 0u0/,
where � 0 is the time-dependent state variable and l is a characteristic length scale. At steady state,
Eq. (3.52) is obtained (˛u D ˛0

u � ˇu) by assuming � 0 D l=u.
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decreased to a very slow rate, the mode of motion transitions from continuous slip
to unstable stick-slip motion. In the granular stick-slip phenomenon, the friction
coefficient is no longer a unique function of the slip velocity [17, 18]. The relation
between the friction coefficient and instantaneous slip velocity becomes a loop. This
behavior implies that the friction coefficient depends not only on the instantaneous
slip velocity but also on the history of motion and degree of fluidization. The relation
among the loop of friction coefficient, RSF law, and bistability of the angle of repose
has not yet been clarified. The laws are rather independent empirical laws, and their
relation must be an important key to understanding the complex nature of friction
and granular matter.

In general, it has been considered that the friction does not depend on the
apparent contact area and is only a proportional function of the loading pressure
(stress). Because of this property, Coulomb’s criterion can be written in the form
of an inequality of stresses (3.47). This simple proportionality is called Amontons’
law. However, numerical and theoretical investigations revealed that Amontons’ law
can be macroscopically broken in the slip of an elastic body. The friction coefficient
decreases as the loading pressure or system size increases [19]. This breakdown of
Amontons’ law originates from the precursor slips due to the elasticity of a sliding
object. The actual frictional behavior is much more difficult than the frictional
behavior considered.

3.6.3 Inertial Number and Granular Friction

Granular friction behavior in a quasi-static state is much more complicated than that
in a flowing state. Friction is crucial to characterize dense granular flows because the
dissipation in a dense granular matter is dominated by friction. In contrast, for dilute
granular systems, the inelastic collision will be a principal source of dissipation. The
inertial number I (Eq. (2.114)) can be used to characterize the regime of granular
flow. According to Ref. [20], granular flows are classified into three regimes: the
quasi-static regime (I � 10�2), the intermediate dense flow regime (10�2 � I �
0:2), and the collisional regime (0:2 � I). In the collisional regime, the kinetic
theory is primarily applicable, and inelastic collision is essential for dissipation. In
the quasi-static regime, granular flow becomes unstable, and stick-slip motion is
observed. In the intermediate dense flow regime, empirical constitutive laws have
been proposed [21, 22]. This regime is actually the most understandable case with
respect to friction because a simple constitutive law is applicable. Using the inertial
number I, Pouliquen et al. obtained an empirical constitutive law of friction in the
intermediate dense flow regime:

�f .I/ D �0 C �s � �0

I0=I C 1
; (3.53)
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where I0 is a constant, �0 is the minimum value of the friction coefficient at the low
I limit (I ! 0), and �s is an asymptotic friction coefficient for large I (I ! 1).
Although Eq. (3.53) is mainly validated in the dense flow regime, this equation is
empirically applicable to a wider I regime. Once the parameters are calibrated by a
particular geometry (e.g., plane shear), the estimated I0, �0, and �s can be used for
various flow geometries such as chute flow and heap flow. Assuming that Eq. (3.50)
is attained in the flow state,4 rheological relations can be computed using Eq. (3.53).
Representative values for glass beads are obtained as I0 D 0:3, �0 D tan 21ı, and
�s D tan 33ı [22].

They also obtained an empirical relation for the packing fraction in the interme-
diate dense flow regime:


.I/ D 
max � bII; (3.54)

where bI is a parameter determined by bI D 
max �
min. Here 
max and 
min are the
maximum and minimum packing fractions in the intermediate dense flow regime,
respectively. Equations (3.53) and (3.54) were empirically obtained. Nevertheless,
these constitutive laws are able to explain various granular flows including full three-
dimensional flows [21, 22].

In a two-dimensional granular simulation, a linear relation between �f and I
was also observed [20]. The obtained constitutive law was �f D �0 C aII, where
aI is a dimensionless constant. This linear constitutive law has a similar form as
the Bingham model (see Sect. 3.2). In fact, �0 is related to the yield stress through
the confining pressure p as Ys D �0p, and I is proportional to the strain rate P�
(Eq. (2.114)). Furthermore, Herschel-Bulkley-like nonlinear behavior was observed
in a numerical simulation of three-dimensional sheared granular matter [23]. The
generalized relations are

�f .I/ D �0 C aII
n1 ; (3.55)

and


.I/ D 
max � bII
n2 : (3.56)

The exponents obtained by the simulation were n1 D 0:28 ˙ 0:05 and n2 D
0:56˙ 0:02 [23]. The value of �0 depends on the friction of the individual grains.
Because the value of n1 is smaller than unity, Eq. (3.55) may appear similar to
the RSF (Eq. (3.52)). Moreover, Eq. (3.53) is also a convex function of I. These
equations are qualitatively similar. In Fig. 3.6, the curves of Eqs. (3.53) and (3.55)
are presented. To obtain a curve similar to Eq. (3.53), �0 D 0:25 is used for

4This equality assumption is probably the most important assumption in making the friction
problem solvable. The quasi-static regime does not necessarily satisfy this assumption, which
explains why the quasi-static regime is much more difficult than the intermediate flow regime.
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Fig. 3.6 Relations between friction coefficient �f and inertial number I. The solid curve corre-
sponds to Eq. (3.53) with I0 D 0:3, �0 D tan 21ı, and �s D tan 33ı. This curve is based on the
experimental result of glass beads [22]. The dotted curve represents Eq. (3.55) with �0 D 0:25,
aI D 0:5, and n1 D 0:28. This curve is based on numerical results [23]. The inset shows an
intermediate dense flow regime (10�2 � I � 0:2)

Eq. (3.55). Then, these two curves are very similar particularly in the dense flow
regime (the inset of Fig. 3.6). Because Eq. (3.55) was determined on the basis of
a numerical simulation, the considered range of I is wider than the experimentally
obtained Eq. (3.53) [21–23].

Using Eqs. (2.114), (3.55), and (3.50), a general form of the frictional constitutive
law is obtained as

�s D �0p C aI.Dg
p
�g/

n1p1�
n1
2 P�n1 : (3.57)

If the relation is linear (n1 D 1), granular viscosity can be computed as

	 D aI

q
�gpD2

g: (3.58)

Substituting Eq. (3.58), � D �g (grain density), U D u (slip velocity), and l D Dg

(grain diameter) into Eq. (2.41), the effective Reynolds number is defined by

Re D u
r
�g

p
: (3.59)

Here the numerical factor aI is neglected. This dimensionless number was utilized
to characterize the flash weakening of sheared granular matter [24]. The inertial
number is recovered if we consider u D P�Dg in Eq. (3.59). Thus, the inertial number
can be regarded as an analog of the Reynolds number for a sheared dense granular
flow. Note that the applicability of the linear constitutive law is limited in actual
granular behaviors. Furthermore, the microscopic friction coefficient among grains
is not involved in the definition of the inertial number I.
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How does this macroscopic frictional constitutive law relate to the microscopic
dissipations originating from inter-grain friction and inelastic collision? Micro-
scopic friction coefficient indirectly affects macroscopic friction. In the linear
regime, the angular distribution of the normal forces among grains is modified
by microscopic friction [20]. In the general form of Eq. (3.55), it has been shown
that the microscopic friction affects �0 and that the inelastic collision affects the I
dependence [25]. Namely, the former (the relation between the microscopic friction
and �0) corresponds to the tangential component of dissipation, and the latter
(the relation between the inelastic collision and I dependence) originates from the
normal component of dissipation. By combining the RSF form and inertial number
dependence, a unified form, �f D �0 � ˛I log I C aII, was also proposed [26].

The form of Eq. (3.59) is somewhat similar to the Mach number (Eq. (2.105)),
which represents the relative importance of the incompressibility of the fluid: Re �
I � Ma for P� -proportional dense granular flows. In the small Mach number regime,
a fluid can be regarded as incompressible. For sheared granular matter, Eq. (3.59)
may represent the degree of dilatancy rather than incompressibility. The dilatancy
is not negligible in the large I regime. More detailed characterization, particularly
of the nonlinearity, is an important future problem. If a small amount of water is
added to a granular bed, the frictional property is drastically affected. Specifically,
the friction can be reduced by water [27]. Detailed characterization of the frictional
behavior of wet granular matter is also a crucial issue for future work.

3.7 Static Structure of Granular Matter

Granular behavior in the static or quasi-static regime is much more complicated
than that in the flow regime. Therefore, the frictional constitutive laws in the flow
regime were mainly discussed in the previous section. This property contrasts with
that of usual fluids. Static fluid is much easier to analyze than flowing (dynamic)
fluid. In a quiescent fluid, there is no shear stress. All the stress components are
normal stress, i.e., pressure. Because of this simplicity, Pascal’s and Archimedes’
principles hold, which is not true for granular matter (or other complex fluids). The
difficulty presented by the static granular structure will be discussed in this section.
The most famous constitutive law for static granular matter is the Janssen effect.
Pressure saturation in a granular column supported by a side wall can be discussed
using the Janssen effect [28, 29].

3.7.1 Janssen Effect

Let us consider the pressure of a granular column in a cylindrical container, as
illustrated in Fig. 3.7a. The depth z is measured downward from the top surface
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Fig. 3.7 Janssen model of granular pressure measured at the container wall. (a) Schematic image
of a granular column in a cylindrical container. (b) A qualitative form of pv.z/ obtained by the
Janssen constitutive relation, ph D �pv

of the column. In general, the granular internal forces are scattered randomly by
complex force chain structures. Examples of visualized granular force chains are
presented in Figs. 3.10 and 4.10. Due to this force scattering, a part of the vertical
stress originating from self-gravity is supported by the side wall friction as well
as the bottom wall. To consider the force scattering, Janssen employed a simple
constitutive relation between the vertical pressure pv and horizontal pressure ph

ph D �pv; (3.60)

where � is a parameter ranging from 0 � � � 1. The scattered horizontal pressure
ph acts as a normal stress on a side wall and results in the frictional support,
�wph, where �w is a (Coulomb) friction coefficient among grains and a side wall.
Considering a slice between z and z C dz (intersectional area of A and perimeter
length of L), the vertical force balance is written as

Adpv D �gAdz � �wphLdz; (3.61)

where � is the bulk granular density. Substituting Eq. (3.60) to Eq. (3.61), the
equation can be rewritten in differential equation form

dpv
dz

C �w�L

A
pv D �g: (3.62)

This differential equation is transformed by multiplying by a factor exp.�w�Lz=A/
such that it can be solvable as

d

dz

�
pv exp

�
�w�L

A
z

��
D �g exp

�
�w�L

A
z

�
: (3.63)
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By integrating Eq. (3.63) and using the boundary condition pv.z D 0/ D 0, we
finally obtain

pv D �gR

2�w�

�
1 � exp

�
�2�w�

R
z

��
: (3.64)

Here the relation A=L D �R2=2�R D R=2 (R is the radius of the container) is used.
In small z.� R=2�w�/ region, a simple hydrostatic relation, pv D �gz, is obtained
by the Taylor expansion of Eq. (3.64). However, pv is saturated in the deep region
toward an asymptotic value:

psat D �gR

2�w�
: (3.65)

Roughly speaking, pv saturates to psat ' 2�gR at its characteristic depth z ' 2R
because �w and � are usually close to 1=2. The specific functional form of pv.z/ is
shown in Fig. 3.7b.

The Janssen effect can be confirmed by a simple experiment. An example data
set of the measured granular pressure at the container’s bottom is shown in Fig. 3.8.
In the experiment, a cylindrical container of R D 37:5mm was filled with glass
beads of diameter 0:8mm. The glass beads were poured by a granular supplier with
a constant rate of 1:8 g/s. During the sedimentation, the pressure at the bottom was
measured by a pressure sensor. Then, the relation between the pressure at the bottom
and the column height was obtained as indicated in Fig. 3.8. In this experiment, the
known parameters were � D 1:5 � 103 kg/m3 and �w ' 0:4 (D tan 22ı; the wall
friction is approximated by the internal friction). Assuming � D 0:5, we obtain
psat D 1:4 kPa. This value is represented by the horizontal dashed line in Fig. 3.8.
The corresponding characteristic length scale is also shown as the vertical dashed
line in Fig. 3.8. The three solid data curves represent independent experimental runs
under identical experimental condition. All the curves exhibit a similar exponential-
like saturation trend, as predicted by the Janssen model. Moreover, the predicted psat

Fig. 3.8 Experimental data
of granular pressure at the
bottom of a cylindrical
container. The horizontal
dashed line corresponds to
psat D �gR=2�w� with
�w� D 0:2, and the vertical
dashed line denotes the
corresponding characteristic
length scale
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roughly agrees with the experimentally obtained value; however, the reproducibility
is not very good. Poor reproducibility is one of the main difficulties in the study
of granular behavior. In fact, it is notorious, particularly in industrial fields. The
actual value of psat strongly depends on the history of sedimentation. Once a local
structure is fixed by a particular sedimentation history, it is difficult to reorganize the
structure during the sedimentation process. This history-dependent grain network
structure determines how the force is scattered by the force chains. Therefore the
static granular behavior exhibits history dependence and poor reproducibility.

3.7.2 Stress Dip

In a static granular pile, the curious stress dip structure can also be observed. When
the sand pile is made by glass beads dropped from a small outlet of the funnel,
the resultant stress (pressure) distribution at the bottom wall show a certain dip
right beneath the apex of the sand pile. If there is no redirection of the force, the
gravitational force acts only in the vertical direction. Then, the bottom wall pressure
should be written by the hydrostatic pressure. The actual granular heap does not
exhibit this simple behavior. Therefore, the stress dip structure is clear evidence
of the force redirection. The force redirection tendency is qualitatively consistent
with the Janssen effect. In addition, complex history dependence is observed in the
stress dip phenomenon. The appearance of the stress dip actually depends on the
preparation of the deposit. When a sand pile is prepared by uniform sedimentation
through a sieve, the stress dip is not observed [30, 31]. This experimental result
clearly demonstrates the strong history dependence of granular piling and the
resultant stress structure. Moreover, the stress dip structure depends on the shape
of the grains. Zuriguel et al. measured the stress distributions of a two-dimensional
sandpile using photoelastic circular or elliptic cylinders [32]. These researchers
observed that the stress dip was significantly enhanced when elliptic grains were
used. The effect of the preferred alignment in elliptic cylinders is a possible origin
of the enhanced stress dip.

3.7.3 Dynamic Janssen Effect

As discussed thus far, the granular static state is considerably more complex than its
flowing state. This tendency is also true for the Janssen effect. As shown in Fig. 3.8,
the static granular pressure does not exhibit good reproducibility. However, the
pressure recovers reproducibility in a slightly dynamic state. Vanel et al. developed
a reproducible approach to test the Janssen effect [33, 34]. These researchers simply
poured grains into a tube. Prior to pouring the grains, a solid piston was inserted
into the bottom part of the tube such that the piston did not touch the tube wall.
The piston was attached to a spring beneath the piston. Thus, the kinetic energy
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of dropped grains during the filling was partly stored by the spring, and the piston
slowly moved downward because of the mass of the grains. This slow but finite
motion is particularly important to create a sliding limit state, which is the basic
assumption of theoretical models such as the Janssen effect. Then, the apparent mass
Mapp was measured by an electronic scale placed below the piston. Mapp corresponds
to the product of the bottom wall pressure and the area, Mapp D pA. Using this
system, the researchers obtained very reproducible Mapp.

Bertho et al. demonstrated that dynamic reproducibility can be observed more
directly by moving a tube wall [35]. While their experimental setup was similar to
the previous one [33], the tube was positively moved upward after the sedimentation
of grains. The obtained behavior of Mapp as a function of time is shown in Fig. 3.9.
Each curve in Fig. 3.9 represents individual experimental realization. In regime 1
of Fig. 3.9, Mapp exhibits various values similar to those in Fig. 3.8. This regime
corresponds to the period directly after the sedimentation. Thus, such a wide
variation in Mapp is natural for granular piling. Regime 2 of Fig. 3.9 represents
the period during the upward motion of the tube wall. One can observe a sudden
data collapse to the master curve of Mapp in this regime. After the wall stop,
Mapp distributes again as shown in regime 3 of Fig. 3.9. However, its variance
is significantly reduced compared with that of the initial state (regime 1). This
experimental result clearly demonstrates the importance of the dynamic effect in
obtaining reproducible granular behavior.

The granular discharge rate from a wedge orifice at the bottom of a container is
almost independent of the granular amount remaining in it. This behavior contrasts
with that of usual fluids, in which the discharge rate depends on the height of
the fluid layer remaining in the container because of the hydrostatic pressure. The
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Fig. 3.9 Apparent mass Mapp of the granular packing as a function of time. Regimes 1, 2, and 3
correspond to the duration of right after the sedimentation, the tube upward motion (with 4mm/s),
and after the tube cessation, respectively. The data collapse can be observed only in regime 2
(Reprinted with permission from Ref. [35]. Copyright 2003 by American Physical Society)
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discharge rate is proportional to the square root of the layer’s height (Torricelli’s
law). Because of the Janssen effect, the granular pressure in the container is
saturated. It has been considered that pressure saturation causes the constant
discharge rate of the granular flow. This effect is supposed to enable hourglasses
to be good clocks. However, an experimental study demonstrated that the constant
discharge rate is actually independent of the Janssen effect [36]. Moreover, the
side wall geometry can also affect the pressure saturation [37]. The situation is
slightly confusing. The Janssen model is useful to estimate the granular pressure
in a container. Nonetheless, its effect has not yet been fully understood.

3.8 Contact Force Distribution in a Static Granular
Structure

Microscopic contact forces among grains must be measured to understand the
difficulty of static granular constitutive laws. All the inter-grain contact forces
must satisfy the criterion (3.47) to maintain a static grain network structure. Note
that criterion (3.47) is not an equation but an inequality. Moreover, the granular
network structure has numerous contact points, which indicates that the granular
internal stress structure is expressed by simultaneous inequalities. We are unable to
solve such an indefinite problem, which is one of the most difficult points in the
physics of granular matter. Due to the indefiniteness, the internal stress structure
in static granular matter cannot be solved solely by the geometrical information.
Therefore, it is impossible to completely quantify the internal stress state using a
grain network structure itself; this strongly depends on the history of structuring. In
the Janssen model, the stress redirection parameter � is introduced and the friction
balance (equality) is assumed on the side wall. This model works well qualitatively;
however, the reproducibility is insufficient as long as the static state is considered.

To overcome this problem, intergranular contact forces have been quantified by
an experiment with photoelastic disks. An image of stress structure visualized by
photoelastic disks is presented in Fig. 3.10a. In Fig. 3.10a, photoelastic disks are
simply piled up in a two-dimensional vertical Hele-Shaw cell. Thus, only their
own weights are exerted on the disks. One can observe the heterogeneous granular
stress structure characterized by so-called force chains. Using image analysis, stress
applied to each disk can be computed from the fringe patterns. Solving the full
inverse photoelastic problem for each disk, both normal and tangential contact
forces can be computed [38, 39]. Then, using the computed results, the fringe
patterns can be reproduced. A comparison between the experimental and computed
results is presented in Fig. 3.10. The left image (Fig. 3.10a) shows the experimental
result and the right image (Fig. 3.10b) shows the corresponding computed result.

This force chain structure is qualitatively similar to the case of isotropic
compression [38]. Both the surface force and body force result in similar force chain
structures in static granular matter. The only difference is their depth dependences.
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Fig. 3.10 Photoelastic characterization of inter-grain contact forces. Each image corresponds to
(a) the experimental result and (b) the corresponding computed result of the method developed by
Refs. [38, 39]. The photoelastic disks are piled up in a two-dimensional cell. Self-gravity (body
force) mainly forms the force chain network

Because the force chains shown in Fig. 3.10a are produced by their own weights,
the deeper region consists of the highly stressed (brighter) disks because of the
hydrostatic effect.

The frictional state at each contact can be characterized by the photoelastic
image. To characterize the frictional state, the variable Sfric, which indicates the state
of frictional support in the force chain network, is introduced [38]. Sfric is defined
by the normal component Fn and the tangential component Ft of the contact force
at each contact point as

Sfric D Ft

�0Fn
: (3.66)

Thus, Sfric D 1 corresponds to the critical state at which the friction force balances
with the tangential force. In other words, Sfric D 1 is equivalent to the equality case
of the criterion (3.47). The variable Sfric indicates how far a contact force is from
the Coulomb failure criterion. In Fig. 3.11, the normalized probability distribution
P.Sfric/=Pmax.Sfric/ computed from Fig. 3.10b is shown, where Pmax.Sfric/ is the
maximum value of the probability distribution P.Sfric/. The experimental result
suggests that most of the contacts are far below the Coulomb failure criterion. Thus,
we can conclude that the static granular structure is far below the critical state.
Contacts with small Sfric are dominant in the static granular matter. This striking
feature of the granular contact force distribution was first observed in sheared
or isotropically compressed photoelastic disk experiments [38]. Furthermore, a
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Fig. 3.11 Distribution of the
normalized variable Sfric

(defined by Eq. (3.66)) is
shown. The data are
computed from the image
shown in Fig. 3.10
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similar trend was confirmed by numerical simulations [40, 41]. We must link this
microscopic contact force distribution to the macroscopic constitutive laws such as
friction, Janssen, or maybe to more general laws. This is the most important and
difficult point to build granular physics in the static regime.

The size-frequency distribution of the contact force exhibits an exponential form
in sheared or isotropically compressed experiments [38]. Additionally, the same
tendency can be observed in the own-weight loading (body force) case. The contact
force characteristics and its distribution are almost independent of the loading
conditions: surface force or body force. Furthermore, the exponential tail of the
force distribution on the container wall has also been reported in granular packing
experiments [42, 43].

Localization of the force chain restructuring might also be important in char-
acterizing the granular behavior. In a granular avalanche flow, a clear correlation
between the avalanche size and localization of force chain restructuring has been
observed [44]. The spatial distribution and localization of the force chain is crucial
in addition to its size-frequency distribution.

3.9 Fluidized Granular Matter

When granular matter is agitated by air flow or vibration, another class of granular
behavior occurs. Such fluidized granular matter is in a sort of dynamic state.
Therefore, its behavior should be simpler and more comprehensive than that in
the static state. In fluidized granular matter, the friction remains important in
general and, overall, fluid-like behaviors can be observed. Nevertheless, fluidized
granular matter also exhibits some counterintuitive phenomena such as convection,
segregation, and pattern formations. A brief review of these characteristic features
of fluidized granular matter will be presented in this section.

In the fully fluidized granular bed, the steady-state dynamic rheometry discussed
in Sect. 3.3 can be applied [45]. In the study, some empirical relations among com-
plex moduli and angular frequency! were experimentally observed. However, their
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physical meanings have not yet been well understood. Instead, granular convection
and segregation are particularly featured in this section. Granular convection and
segregation are often induced by the mechanical vibration of a granular bed in
a container vessel. The key elementary processes include dynamic friction, free
fall, reorganization of grain network, and impacts among grains and (bottom or
side) wall.

3.9.1 Granular Convection and Undulations

One of the most striking phenomena in fluidized granular matter is convective
motion. If the granular column is vertically vibrated under gravity, convection
occurs. Granular convection was initially recognized and analyzed by a heap
structure induced by convection [46, 47]. The inclined surface structure of a vibrated
granular bed was first observed by Faraday [48]. To quantitatively characterize
vibration strength, a dimensionless acceleration � is usually employed. � is
defined as

� D .2�f /2A0
g

; (3.67)

where A0 is the amplitude of the vibration, f is the frequency, and g is the
gravitational acceleration. The numerator corresponds to the maximum acceleration
of the vibration, a0. If we assume a simple sinusoidal vibration, the acceleration
becomes a D .d=dt2/A0 sin.2�ft/. Because granular convection is induced by the
vibration against gravity, � must be relevant to characterize the convective motion.
When � exceeds unity, the granular matter experiences free-fall duration in each
vibration cycle. In principle, grains can move easily in the free-fall duration. Thus,
global convective motions become possible in the regime of � > 1.

Granular convection is characterized by some distinct features. The onset of
granular convection occurs slightly above � D 1 [46, 47, 49–51]. Moreover,
the structure of convection rolls varies as � increases [52]. According to both
experiments [53, 54] and numerical simulations [49], the convective motion is
limited to shallow regions of the vibrated granular bed. The convective velocity
exhibits exponential decay as a function of depth, resulting in a frozen zone in a
deep region. The existence of this frozen zone in a deep region is a peculiar feature
of granular convection.

To analyze the vibrated granular bed, an inelastic bouncing ball model (IBBM)
has been proposed [55, 56]. Because the vibrated granular behavior is similar to
that of a perfectly inelastic body, its bulk behavior can be modeled by an inelastic
ball on a vibrating base. When the instantaneous downward acceleration of the
base exceeds g, the granular bed begins to levitate. The flight time of the levitation
can be computed by IBBM, which roughly explains the period-doubling nature of
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Fig. 3.12 Undulations in a
vibrated granular bed. (a)–(c)
Schematic diagram of the
arch-like structure formed by
a horizontal dilation is
presented. (d–f)
Experimentally obtained
undulations at different
phases are shown in (d)
t� D 0, (e) t� D 0:48, and (f)
t� D 1:12, where t� D tf and
f is the vibration frequency
(Reprinted with permission
from Ref. [62]. Copyright
2005 by American Physical
Society)

the vibrated granular bed [57]. Free-fall flight time is an increasing function of
� and coincides with the vibration period at5 �pd D p

�2 C 1. At this �pd, the
flight time undergoes saddle-node bifurcation causing period-doubling [58]. Further
explanation of the terminologies of nonlinear dynamics such as period-doubling and
bifurcation, can be found in textbooks such as [59, 60].

Spatial pattern formation is also induced in the vibrated granular bed. The
vibrated granular bed is horizontally dilated by the impact on the bottom wall
during each vibration cycle. Due to this horizontal dilation, undulations are observed
under a certain condition [61–63]. In Fig. 3.12, experimentally observed granular
undulations and a schematic understanding are shown. One can observe the arch-
like structure in the pictures of the experiment (Fig. 3.12d–f). This undulation
structure is explained by the buckling due to the horizontal dilation as observed in
Fig. 3.12a–c.

5When a ball is put on a sinusoidally vibrating base by the acceleration a D �� g sin.!t/, the ball
detaches from the base at time td D .1=!/ arcsin.1=� /. Here ! D 2� f is the angular frequency.
By considering free fall of the ball, a relation for the impact time t0 between the ball and base can
be computed as 1 C !t0

p
� 2 � 1 � .!t0/2=2 D cos.!t0/ C p

� 2 � 1 sin.!t0/. Specifically,
�pd D p

�2 C 1 is obtained by substituting !t0 D 2� into this equation.
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3.9.2 Interstitial Air, Room Temperature, and Gravity

Interstitial air pressure plays a role in granular convection when the constituent grain
diameter is less than 1mm [50]. The effect of air drag becomes crucial when the
grains are small because air drag is a force applied to surface and gravitational
(and inertial) force is a body force (see Sects. 2.2 and 2.8.5). In general, the air
drag effect is almost negligible as long as the grain diameter and density are
sufficiently large. In contrast, the interstitial air effect dominates the behavior in
the small-grain system. Here let us estimate the interstitial air effect using Stokes’
law (Eq. (2.69)). By considering the force balance between the viscous drag force
and the gravitational force applied to a grain with diameter Dg.D Di/ and density
�g, we obtain a dimensionless number

R	g D 3�	vDg

.�=6/�gD3
gg

D 18	v

�ggD2
g

: (3.68)

R	g is actually equivalent to S�1
tk by considering the gravitational force as an origin

of inertia (see Eq. (2.78)). Moreover, the form of Eq. (3.68) can directly be derived
from the form of the viscous terminal velocity, Eq. (2.76). To evaluate the balance,
here we use typical values of air viscosity 	 D 2 � 10�5 Pa�s, grain density
�g ' 2 � 103 kg/m3, gravitational acceleration g ' 9:8m/s2, convective velocity
v ' 5mm/s [51], and grain diameter Dg D 1mm. Then, the ratio becomes
R	g ' 10�4, which indicates that gravity dominates the dynamics. Because R	g

is inversely proportional to D2
g, R	g becomes 10�2 for the Dg D 0:1mm case. This

small R	g implies that the gravitational force still dominates the dynamics. However,
the air drag level becomes several percent of the gravitational force. Moreover, the
buoyancy force reduces the net gravitational force exerted on the grains. Therefore,
grains on the order of Dg D 10�1 mm may be affected by the interstitial air drag
force. For grains with Dg D 10�2 mm, the air drag and gravity are comparable.

In classical Rayleigh-Benard convection, heat is transported by convection (see
e.g., [64]). Thus, the temperature gradient is very important to characterize the
convective motion. For the vibrated granular matter, however, ambient temperature
is usually irrelevant. The effect of temperature can also be estimated by a dimen-
sionless number, which represents the ratio between the thermal energy kBT and
gravitational potential energy �.�=6/D3

ggDg,

RTg D 6kBT

��ggD4
g

; (3.69)

where kB(D 1:38 � 10�23 J/K) and T are Boltzmann constant and the temperature,
respectively. Substituting T D 300K (room temperature), Dg D 1mm, �g D
2�103 kg/m3, and g ' 9:8m/s2 into Eq. (3.69), RTg is estimated to be RTg ' 10�12.
Therefore, we can conclude that room temperature is quite irrelevant for usual
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granular convection.6 Obviously, the temperature gradient is not a driving force
of granular convection. Although the structures of convective rolls are somewhat
similar between granular and Rayleigh-Benard convections [52], their physical
origins are completely different. For a vibrated granular bed, various effects may
affect the onset and structure of the convective motion. For example, the container
wall effect is an important factor [65] in addition to the interstitial air effect.

3.9.3 Granular Temperature

Because both R	g and RTg are very small, the gravitational force dominates
the dynamics of the fluidized granular matter composed of large grains (Dg >

10�1 mm). For such macroscopic granular matter, what is the driving force of
granular convection? Agitation by mechanical vibration is undoubtedly the source
of convective motion. Thus, the dimensionless vibration strength � can naturally be
a relevant dimensionless parameter. Therefore, the structure of granular convection
has been characterized by � . Pak and Behringer proposed another candidate for a
strength parameter for the granular vibration called the shaking strength or shaking
parameter, as described in [66],

S� D .2�fA0/2

gDg
: (3.70)

S� is a product of two dimensionless numbers, � and A0=Dg. In other words, S�
is a modified version of � to involve the grain diameter Dg as a relevant length
scale in the dimensionless number. S� can be regarded as the ratio of kinetic
energy and gravitational potential energy per grain mass. The former is most likely
proportional to the kinetic energy of the sinusoidally (A0 sin.2�ft/) vibrated base
plate, which is expressed as .1=2/v2base � .1=2/.2�fA0/2 cos2.2�ft/, where vbase

is the velocity of the vibrating base. The latter is evaluated by gDg. S� is defined
by the ratio of these two factors, .2�fA0/2 and gDg. Thus, S� represents a type of
energy balance, while � denotes a balance of body forces. In other words,� and S�
are the dimensionless numbers based on acceleration or velocity, respectively. S�
is particularly important for a strongly shaken granular bed [63, 67, 68]. Granular
convection can be observed both in weakly (� ' 3) and strongly (� ' 50) agitated
granular beds. In the strongly agitated case, various characteristic behaviors can be
observed by a systematically controlled experiment [63], e.g., granular bouncing,

6Here we do not use any peculiar property of the vibration in the definition of RTg . Thus, the
ambient temperature is irrelevant for general macroscopic granular behavior. At room temperature
(T D 300K), RTg ' 1 is attained by tiny grains having diameter Dg D 1�m. This diameter scale
corresponds to the range of typical colloid particles.
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granular Leidenfrost,7 undulations, and granular gas states. For the strongly vibrated
granular matter, the onset of granular convection can be understood by an intrinsic
instability characterized by S� rather than boundary effect [68].

For general fluidized granular matter, the averaged fluctuation of the kinetic
energy per grain can be used as the granular temperature:

3

2
Tg D 1

2
hmgıv

2i; (3.71)

where mg is the grain mass, ıv is the velocity fluctuation, and h � i denotes the
average. This temperature form is analogous to the molecular gas temperature.
Sometimes, the square of velocity fluctuation is simply used as a specific granular
temperature:

OTg � hıv2i: (3.72)

The dimension of OTg is the energy per unit mass. If we assume vbase � ıv in the
vibrated granular matter, S� is regarded as the ratio of granular temperature and
gravitational potential. In general, Tg is relevant for dilute isotropic granular gas.
Thus, S� is useful to analyze the abovementioned strongly shaken granular bed
because it is close to a gas state. The granular temperature Tg is also frequently used
in the dense regime because we do not have any other appropriate indicator better
than Tg to characterize the global activity of granular matter. This term actually
works well to characterize the dense granular flow as well [69].

3.9.4 Brazil Nut Effect and Segregation

The granular size segregation induced by a vertical vibration is called the Brazil nut
effect (BNE). When the polydispersity of a vibrated granular bed is not sufficiently
large, convective motion dominates the phenomenon. If large grains are involved in
the system, notable segregation occurs. Larger grains rise up to the surface of the
bed. For the BNE, the grain size difference is usually much more important than
the density difference. This tendency is somewhat unexpected because the density
difference is the most important factor for the fluid segregation induced by gravity.
Additionally, it is easy to produce the BNE by manual shaking of a granular mixture.
Thus, the BNE is a good demonstration to dramatically show the complex nature of
granular matter, particularly to the general public. Larger grains can rise up in a
vibrated granular bed even if the larger grains are denser than the small grains. This
phenomenon is unstable in terms of gravitational potential energy, which suggests
that the state caused by the BNE may correspond to a metastable state. As discussed

7The classical Leidenfrost effect is water droplet levitation on a hot plate due to its own vapor.
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later, Eq. (3.75) denotes the condition to attain the metastable state. This metastable
state will be broken by extremely dense grains. The sinking of larger and much
denser grains is called the reverse Brazil nut effect (RBNE).8

The physical mechanism of the BNE remains unsolved and controversial. One
possible idea is the transport by granular convection induced by the vibration. As
discussed in Sect. 3.9.1, the granular convection is usually observed in the state � >

1. Then, larger grains can be carried by the convective flow. Once large grains are
carried to the surface of the bed, they cannot sink again into the bed. At the side
wall, large grains cannot follow the convective flow due to the friction. This type of
BNE can be easily observed in a granular vibration experiment.

Another idea to explain the BNE is the competition between condensation and
percolation [70, 71]. Hong et al. assumed that the vibrated granular bed is fluidized
at a certain granular temperature, Tgc / mggDg, for monodisperse grains with
diameter Dg and mass mg. Considering a binary mixture of large and small grains,
partially fluidized state can be achieved by tuning the granular temperature. Let ml

and ms be the masses of large and small grains and Dl and Ds be the diameters
of large and small grains, respectively. Then, the fluidization temperature ratio for
large and small grains, Tgc.l/=Tgc.s/, is written as

Tgc.l/

Tgc.s/
D mlgDl

msgDs
: (3.73)

When the granular temperature Tg is tuned in the range of Tgc.s/ < Tg < Tgc.l/,
small grains are fluidized and large grains are still condensed. Because of this
heterogeneous temperature structure, the BNE is observed in this regime due to the
relative motion among large and small grains during a vibration cycle. Specifically,
a void opened by condensed large grains motion will be rapidly filled by the
percolation of small fluidized grains [70, 72]. Because this percolation effect can
be quantified by the grain volume (� D3

g), competition between condensation and
percolation is expressed as

Tgc.l/

Tgc.s/
D mlDl

msDs
�
�

Dl

Ds

�3
: (3.74)

The crossover from the BNE to the RBNE occurs in the balance of Eq. (3.74). Using
densities of large grains �l and small grains �s, we finally obtain the phase boundary
condition as

Ds

Dl
� �l

�s
: (3.75)

8This naming is slightly odd because the RBNE is a rather natural phenomenon compared with the
ordinary BNE, with respect to the gravitational potential.
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Fig. 3.13 Temporal evolution of (a) Brazil nut effect (BNE) and (b) reverse Brazil nut effect
(RBNE). The right panel shows the phase diagram of the BNE and the RBNE for a binary
mixture of 4-mm-diameter glass beads and 10-mm-diameter polyurethane spheres (Reprinted with
permission from Ref. [75]. Copyright 2003 by American Physical Society)

The BNE should be observed in the regime of Ds=Dl > ˛r.�l=�s/, whereas the
RBNE occurs at Ds=Dl < ˛r.�l=�s/, where ˛r is some constant. According to a
numerical simulation, Hong et al. demonstrated the possibility of the crossover from
the BNE to the RBNE under this condition [71]. The aforementioned discussion
has assumed that the granular temperature is homogeneous among large and small
grains. However, the actual vibrated granular bed presumably has a granular temper-
ature gradient. Thus, it is not easy to reproduce the RBNE in experiments [73, 74].

Breu et al. experimentally confirmed the crossover from the BNE to the RBNE
for the first time [75] (Fig. 3.13). Their experimental result is basically consistent
with the condensation vs. percolation scenario. However, they also observed that
the crossover condition depends on the vibration strength (� ) and frequency (f )
(Fig. 3.13). The segregation in the condensation vs. percolation scenario does
not explicitly involve the gravitational effect; it is canceled out, as observed in
Eq. (3.73). To consider the gravity effect explicitly, granular gas theory has also been
used to explain the crossover from the BNE to the RBNE [76]. In that framework,
segregation occurs because of the competition between gravity and entropy rather
than that between condensation and percolation. Although the framework allows
us to understand the crossover in terms of conventional thermodynamics, the
condensation process in a vibrated granular bed is not recognized [77]. Another
model based on the free energy theory is described in Ref. [78]; however, the
vibration strength was not explicitly considered in that theory. All these theories
have succeeded in elaborating each possible mechanism for the BNE and the RBNE.
However, it is unclear whether the effects can be unified.

Systematic numerical simulations with soft particles have revealed the � -
dependent boundary between the BNE and the RBNE [79]. According to the
numerical result, the boundary is written as

Dl

Ds
D 1C ˛r.� /

�
�l

�s
� 1

�
; (3.76)
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where ˛r.� / is a coefficient depending on � . Note that the � dependence is
included in this form. Additionally, the qualitative trend of the relation between
the density and size ratios is different from Eq. (3.75).

Moreover, the BNE might be affected by various other effects: buoyancy [80, 81],
interstitial air [82], and intergranular friction (and their aging) [83]. The segregation
is not limited in the vertical direction, e.g., horizontal segregation was also observed
in a numerical simulation [84]. For wet granular matter, the segregation is affected
by the liquid content and its viscosity. Therefore, the segregation behavior becomes
complex in a vibrated wet granular bed [85]. Using the form of Stk (Eq. (2.78)),
the characteristic length of grain motion in a viscous fluid (Stokes regime) can
be estimated as l ' �gUD2

g=18	, which indicates that the grain’s characteristic
traveling distance depends on the grain size as l � ReDg. The density and size
dependences of the BNE-RBNE crossover are related, as described in Eqs. (3.75)
or (3.76). The size dependence of the crossover condition might be modified by
the viscosity-dependent length l � ReDg. This viscosity-related effect could be a
source of segregation [72]; however, it is difficult to explain the entire wet granular
segregation solely by this effect.

If the granular bed is completely fluidized by the horizontal vibration of side
walls, granular buoyancy is experimentally observed [86]. The granular buoyancy
effect has been proposed by the numerical simulation of the BNE [80, 81]. Huerta
et al. performed a horizontal vibration experiment with a vibrated side wall [86].
Note that only the side wall is vibrated in this experiment; the entire container is
not shaken. In contrast, the entire container is usually shaken in vertical vibration
experiments. This horizontal vibration condition suppresses the convective flow and
aims to eliminate the convective flow effect for the origin of buoyant force. In
this experiment, they observed the buoyant force exerted on an intruding object.
The experimental result indicated that the buoyant force simply obeys Archimedes’
principle, which means that the granular matter behaves like a fluid, in terms of
buoyancy in the fully fluidized state.

Many more intriguing phenomena have been observed in fluidized granular
matter. Sheared granular matter can also cause granular convection and segrega-
tion [72, 87–89]. In densely packed sheared granular matter, confining pressure
plays a role in characterizing the segregation [89]. Granular matter can be fluidized
by air flow through the bed as well [90–93]. In a vertically vibrated granular bed,
soft impact between a container wall and a granular bed must occur and play a
role. Therefore, we focused mainly on the mechanically driven vibrated granular
bed in this section. The similarities and differences between vibrated, sheared, and
aerated granular matter are not yet very clear. Furthermore, the reverse buoyancy
effect, in which heavy but similar sized grains rise and lightweight grains sink in a
vibrated granular bed, has been reported [94]. To understand this reverse buoyancy,
it appears that the inertia of the grains is important. The inertia must be a key to
discuss the fidelity of large grains to the convective flow of fluidized small grains
(see the discussion near Eq. (2.78) for fidelity evaluation).

As discussed thus far, various factors might affect granular convection and
segregation. Perhaps, a unified understanding by simple parameters such as � , the
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density ratio, and the size ratio might be intrinsically impossible. Case analysis may
be necessary for each condition. Possible ideas for the principal reasons of granular
convection and segregation can be listed as follows:

• grain-wall friction
• intergranular friction
• percolation vs. condensation
• interstitial fluid
• buoyancy

The BNE, RBNE, buoyancy, and reverse buoyancy can be produced by tuning
these factors and the boundary conditions. Although all these factors are crucial
when considering the origin of granular convection and segregation, it is difficult
to classify and separate them at this point. This complexity is an origin of various
counterintuitive phenomena observed in granular matter. Some of these factors are
also important for the granular impact study as discussed in Chap. 4. For the granular
impact case, these effects are discussed in some experiments.

3.10 Summary

In this chapter, the fundamental constitutive laws for general continua and ele-
mentary properties of granular matter were briefly introduced. Classic viscoelastic
and viscoplastic models and the dynamic rheological measurement method were
first introduced. Specifically, the explained classic models included the Maxwell,
Kelvin-Voigt, Bingham, and Herschel-Bulkley models. After discussing the rebound
and restitution coefficient, the very basics of transport phenomena models such
as diffusion and advection were introduced. Then, studies of the frictional con-
stitutive laws were reviewed. Rate- and state-dependent friction (RSF) and the
friction laws based on the inertial number were particularly featured. The difficulty
of static granular investigation was highlighted through the Janssen effect and
contact force distributions. The indefiniteness of friction and history dependence
of granular deposits are the principal reasons for poor reproducibility in static
granular phenomena. Fluidized granular matter was also discussed. Convection and
segregation were focused on through characterizations by dimensionless numbers.
Granular segregation is affected by various factors such as grain size, density,
wall friction, and interstitial fluid. Parameter-dependent complex behaviors are
typical characteristics of granular matter. Similar complexity will be reconfirmed
for granular impact mechanics in the next chapter.

Of course, the review of granular physics is not exhausted in this chapter. Topics
not discussed in this chapter include kinetic theory for granular gas, various contact
mechanics such as capillary bridge, and classic stress balance theories in soil
mechanics such as Mohr’s circle. For further reading, there are many textbooks
on the physics of granular matter [12, 95–100]. An in-depth review of macroscopic
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constitutive laws and scaling analysis for dense granular matter was provided in this
chapter. We are ready to continue our investigation of impact dynamics and related
planetary issues. These topics are discussed in subsequent chapters.
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Chapter 4
Soft Drag Force

When a steel ball is dropped into a water pool, it will continue to sink with a terminal
velocity. If the ball is dropped onto a sandbox, it usually stops suddenly in the
vicinity of the surface. How can we classify these two cases in terms of physics? To
answer this question, the impact drag force must be a key factor. The general drag
force models introduced in Sect. 2.6.7 should be improved to explain soft matter
impact dynamics. In this chapter, recent studies of soft matter impact drag force
are reviewed. In particular, the granular impact drag force is intensively discussed
through a comparison with the fluid drag force.

4.1 Granular Impact Drag Force

The impact drag force by a granular target must be different from simple viscous
or inertial drag. This problem is not trivial. In this section, the granular impact
drag force model is discussed on the basis of low-velocity impact experiments
and simulations (impact velocity is less than 10m/s). In low-velocity impact, the
disruption of constitutive grains does not matter. The stress caused by the impact is
considerably smaller than the strength of the grains. Hence, only the motion of the
grains is important. Because of this simplicity, low-velocity impact is moderate to
investigate the physics of granular matter.

The impact drag force by dry noncohesive granular matter is focused on in this
section. In almost all discussions in this section, grains with diameters Dg > 0:1mm
are assumed. As discussed in Sect. 3.9.2, the interstitial air effect is negligible in
this Dg regime. Thus, the target granular bed is regarded as simple noncohesive
dry granular matter. We first discuss the impact drag force using this ideal granular
matter. The impact situation and notations used are illustrated in Fig. 4.1. Initially,
the vertical impact is considered. While we are still on the way to revealing the
vertical drag force model, some studies on the oblique impact will be briefly
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Fig. 4.1 Schematic drawing of the setup of the granular impact. A rigid solid sphere of diameter
Di and density �i is dropped from a free-fall height h. The impact velocity is v0 D p

2gh. The
vertical position z is measured at the bottom of the impactor. The zero penetration depth (z D 0) is
defined by the initial surface level of the target bed. The impactor penetrates into a target granular
bed whose bulk density is �t D 
�g and whose internal friction is �f . For brevity, we use �f D
tan �repose. Here �g, 
, and �repose are the grain density, packing fraction, and angle of repose of
the target granular matter, respectively. The grain diameter is written as Dg. The drag force FD is
a function of the instantaneous impactor’s velocity v and depth z. The final penetration depth is
denoted as d, and the total drop distance is defined as H D h C d

reviewed in the final part of this section (Sect. 4.1.8). We restrict ourselves within
the larger (and rigid) impactor case; Di=Dg � 1. Then, the target granular bed can
be regarded as a continuum, and the drag force equation will be one-dimensional
as long as the vertical impact is considered. Additionally, a spherical impactor is
usually employed in the studies reviewed in this section. Some complex effects such
as the confined wall, packing fraction, and interstitial fluid will be discussed in the
later part (Sect. 4.1.7).

4.1.1 Simple Scaling Approach

A clear crater is left on a granular target surface after the impact of a solid sphere.
The first step to approach the granular impact drag might be an observation of the
crater left on the target surface. In contrast, in a fluid target, a crater or cavity
formed by the impact is immediately relaxed. For the granular target, the yield
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stress and plastic deformation allow the crater to sustain its form. This difference
is one of the most important differences between fluid and granular impacts. For
the granular impact, therefore, the resultant crater shape is the first clue to impact
dynamics. Scaling analysis is useful to discuss primitive data such as the crater depth
or diameter. Scaling laws for crater morphology were first introduced in 1950 by
Lampson using the explosive (high-energy) cratering data [1, 2]. Recent experiments
of low-velocity granular impacts are roughly consistent with the scaling laws [3–7].

The proposed scaling laws are based on a simple energy balance. If the plastic
deformation of the target dominates the cratering process, the impact kinetic energy
Ekei is consumed to form a crater YtVc � YtD3

cra, where Yt, Vc, and Dcra are the bulk
strength1, crater’s volume, and representative dimension of the crater, e.g., depth or
diameter, respectively. Then, the crater dimension is scaled as

Dcra / E1=3kei : (4.1)

However, if the ejection is the most important process, Ekei is translated to the
gravitational potential energy to lift the crater volume Vc � D3

cra to height Dcra,
Ekei / VcDcra. Then, the scaling is written as

Dcra / E1=4kei : (4.2)

Schematic images of these scaling laws are presented in Fig. 4.2. These relations
can also be obtained using the systematic dimensional analysis (see Sects. 5.5.1
and 6.1.1 for details). Large nuclear (explosive) craters exhibit intermediate scaling,
Dcra / E1=3:4kei [1]. These scaling relations are based on the energy balance. If the
effect of momentum is considered, the scaling exponent could be reduced. For
instance, Dcra / .v20/

1=7 is obtained by the momentum-based scaling, Eq. (5.58) with
the exponent � D 1=3 (see Sect. 5.5 for details). Moreover, the crater’s diameter

Fig. 4.2 Outlines of two
scaling laws for crater
dimension. (a) Energy
balance between the impact
kinetic energy and the plastic
deformation is essential
(Eq. (4.1)). (b) The impact
kinetic energy is scaled by the
ejection potential energy
(Eq. (4.2))

Dcra
3

Dcra
3

~Dcra

a

b

1The strength has a stress dimension which corresponds to the energy density to exceed the elastic
limit (Eq. (2.129)).
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Fig. 4.3 Scaling laws for granular impact crater’s diameter and depth. Various spheres of Di D
15:2–38:2mm and glass beads of Dg D 0:2mm were used in the experiment. The different marks
indicate different experimental conditions (Reprinted with permission from Ref. [3]. Copyright
2003 by American Physical Society)

and depth are proportional to each other in planetary craters. Thus, the selection
of a representative length scale (diameter or depth) does not affect the scaling
analysis.

The validity of this scaling has been examined in low-velocity granular impact
experiments [3, 5–7]. In the experiments, a rigid sphere was released from a certain
free-fall height h and the sphere struck a granular target (Fig. 4.1). Then, the crater’s
dimensions were measured. Equation (4.1) was confirmed for the final penetration
depth of the impactor, d / E1=3kei [3, 7]. Note that the penetration depth d is close
to but slightly different from the crater depth. For the crater diameter Dc, the
experimental results indicated that Dc obeys Eq. (4.2), Dc / E1=4kei [3, 6]. These
direction-dependent scaling laws contrast with the actual planetary craters, in which
the diameter and depth are scaled identically. The actual experimental data in
Ref. [3] are presented in Fig. 4.3. In Ref. [3], the total drop height H D h C d
is used instead of the impact velocity v0 D p

2gh, to estimate the released potential
energy. The obtained scaling is written as

d

d0
D
�

H

d0

�1=3
; (4.3)

where d0 is the final penetration depth for h D 0 (v0 D 0), i.e., the bottom of the
sphere just touches the surface of the granular target before its release.

The scaling laws appear to work well for observations and experiments. However,
there has not been any direct evidence for the physical pictures shown in Fig. 4.2.
The drag force law should be revealed to determine the true origin of the scaling law.
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4.1.2 Controversy over Granular Impact Drag Force Models

The final penetration depth d is a key quantity to discuss the impact drag force. The
impactor’s kinetic energy is dissipated during the penetration. To explain the scaling
of Eq. (4.3), a drag force scaling2 FD / z˛sv.4�2˛s/=3, which is consistent with
the form of Eq. (4.3), was experimentally tested [8], where z is the instantaneous
penetration depth of the impactor, and ˛s is an arbitrary number (0�˛s�2).
However, this drag force model could not explain the experimental data [8]. Instead,
the inertial drag was employed in Refs. [8, 9].

Quasi-two-dimensional experiments and numerical simulations have also been
used to investigate granular impact dynamics [10]. Impact dynamics is decomposed
into three stages: impact, penetration, and collapse. The penetration stage dominates
the drag force dynamics in the low-velocity granular impact. During the penetration
stage, both the experimental and numerical results indicated that the stopping time,
tstop, is almost constant regardless of the impact velocity v0, where tstop is defined
as the time duration from the impact moment (t D 0) to the impactor’s cessation
(t D tstop). This constant tstop indicates that the deceleration a D dv=dt is determined
only by v0 because the average behavior of a is simply expressed by a ' �v0=tstop.
Thus, the drag force can be written as FD / v0 in this case. A similar constant tstop

feature has been reported in Refs. [11–13].
Another research group has focused on the Bingham model behavior of granular

matter. The Bingham model is characterized by the existence of yield stress
(Sect. 3.2). When the applied shear stress is less than the yield stress, the Bingham
model behaves like an elastic material. If the applied stress exceeds the yield stress,
the Bingham model starts to flow. The shear strain rate is linearly related to the shear
stress in the flow regime. To evaluate the effective viscosity and yield stress from the
granular impact data, de Bruyn et al. investigated the relation between d and v0 [14].
These researchers confirmed the linear relation d D d0 C ˛1v0 (Fig. 4.4), where d0
and ˛1 are fitting parameters. This result is consistent with the form of a Bingham-
type drag force, FD D F0 C C	v. Here F0 is a constant drag force originating from
the yield stress, and C	 is a parameter related to the viscosity. However, their fitting
result shows negative d0 in dense granular target cases (Fig. 4.4). The negative d0
(final penetration depth for v0 D 0) is evidently unphysical.

Using highly loose granular matter called “quicksand,” zero impact velocity
(v0 D 0) penetration, d0, was studied extensively. Lohse et al. examined the
impactor mass mi dependence of d0 using the quicksand target [15]. These
researchers observed a simple proportional relation, d0 / mi. To explain the
experimental result, they assumed a depth-proportional drag force, FD D kz, where
k is a constant. A somewhat similar depth-proportional drag force model has also
been discussed in Ref. [16]. This drag force model is related to the Coulomb friction.

2This scaling form can be made by combining two extreme cases. One case is computed by energy
balance; FD / z˛s d / H / d3 and z � d, i.e., ˛s D 2. The other case is obtained by another
energy balance FD / vˇs d / d3 and d / H1=3 / v2=3, i.e., ˇs D 4=3.
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Fig. 4.4 Relation between the final penetration depth and impact momentum. Steel spheres with
Di D 12:4 or 25:4mm and glass beads with Dg D 0:045–0:3mm were used. The different marks
indicate different experimental conditions. Even though the linear relation can be confirmed, this
relation results in negative d0 (steeper dashed line) for dense granular targets (Copyright 2004
Canadian Science Publishing. Reproduced with permission [14])

The Coulomb friction force FC is written as FC D �f pA, where �f , p, and A are the
frictional coefficient, pressure at the sphere’s surface and contacting area, respec-
tively. Assuming that �f and A are constant, FC is proportional to p. If the granular
pressure in the container can be written by the hydrostatic3 one, the pressure is
proportional to the depth, p / z. Consequently, FC is simply proportional to z.

All the aforementioned experimental results have their own drag force models.
However, they have looked rather disparate. It has been difficult to find a consensus
concerning the granular impact drag force. This controversy still exists; however, a
possible unification of these results is discussed in the next subsection.

4.1.3 Unified Drag Force Model

To obtain a unified drag force model, a careful and accurate experiment is indis-
pensable. To meet this requirement, an accurate velocimetry method was developed
and applied to the impactor [17]. The method attains a 100 nm spatial resolution and

3In general, the pressure of confined granular column becomes saturated due to the Janssen effect
mentioned in Sect. 3.7.1. However, the pressure can be approximated by the hydrostatic pressure
in the shallow regime. The word hydrostatic is used to indicate the lithostatic (or soil pressure)
situation in granular matter as well. Namely, the words hydrostatic pressure, lithostatic pressure,
and soil pressure are not distinguished in this book.
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Fig. 4.5 Instantaneous
(a) penetration depth,
(b) velocity, and
(c) acceleration of a steel
sphere (Di D 25:4mm and
�i D 8:07� 103 kg/m3)
impacting a glass-bead bed
(Dg D 0:3mm,
�t D 1:52� 103 kg/m3, and
�repose D 24ı) with various
impact velocities (Data from
Ref. [17])
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a 20�s temporal resolution. In the experiment, a steel sphere with Di D 25:4mm
was dropped to make a free-fall impact onto a glass-bead bed with Dg ' 0:3mm.
The impactor’s velocity was measured accurately using the developed velocimetry
method. The density of the steel sphere was �i D 8:07 � 103 kg/m3. The glass-
bead target possessed a bulk density of �t D 1:52 � 103 kg/m3 and an angle of
repose of �repose D 24ı. Under this experimental condition, the glass-bead target
can be regarded as noncohesive granular matter. In Fig. 4.5, the experimentally
obtained data of z, v, and a for various v0 are displayed. The moment of impact
corresponds to t D 0. At t D tstop, the acceleration data have finite values (Fig. 4.5c),
which suggests that the impactor cessation is discontinuous in terms of acceleration.
A similar tendency has been confirmed in other experiments (e.g., Fig. 4.9). This
sudden stop originates from frictional support.

As a unified drag force model, a combination of inertial drag and frictional drag
was employed. That is, the equation of motion of the impacting sphere is written in
accordance with Newton’s second law as follows [17]

mi
d2z

dt2
D mig � mi

d1
v2 � kz; (4.4)
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where d1 is some characteristic length scale. Additionally, d1 is supposed to be
independent of z, and k is assumed to be independent of v D dz=dt. Similar
inertial-dominant drag force models have been proposed in Refs. [8, 9]. More-
over, the inertial drag has been considered for ballistic penetration analyses [18].
Equation (4.4) also corresponds to a modified version of the Poncelet drag model
(Sect. 2.6.7). In Eq. (4.4), the constant drag force term in the Poncelet drag model is
replaced by the depth-dependent term.

Although Eq. (4.4) is very simple, it was not derived from microscopic first
principles. Actually, it was first obtained based on experimental results. Because
this equation of motion is the most important element in this section, we trace
the details of the derivation process of Eq. (4.4) in the following. If Eq. (4.4) is
appropriate to describe the granular impact drag force, the fundamental relation
between acceleration a D dv=dt and velocity v must be quadratic. Equation (4.4)
can be transformed to

a � g D �v
2

d1
� k

mi
z: (4.5)

The parameters z, v, and a were experimentally measured as functions of time t for
various v0 (Fig. 4.5). From these raw time series data, a � g and v at some fixed
depths zi are extracted. The relation between the extracted a � g and v is shown
in Fig. 4.6a. As expected, the quadratic relation can be confirmed, which provides
strong evidence of the inertial drag force of the granular impact. In addition, the
net acceleration minus the inertial contribution, a � g C v2=d1 for all v0 is shown
as a function of z in Fig. 4.6b. This component corresponds to the frictional drag in
Eq. (4.4). In Fig. 4.6b, a linear relation in a�gCv2=d1 vs. z can be clearly confirmed.
These results are fully consistent with Eqs. (4.4) and (4.5).

From these data, two characteristic parameters 1=d1 and k=mi can be estimated
by the relations,

@.a � g/

@.v2/
D � 1

d1
; (4.6)

and

@.a � g/

@z
D � k

mi
: (4.7)

A constant drag force term, which is independent both of v2 and z, is not necessary
in Eq. (4.4). In the inset of Fig. 4.6a, a � g vs. v2 is displayed. The parallel linearity
in this plot suggests that 1=d1 is truly constant and independent of z. The value
obtained by the fitting is d1 D 87 ˙ 7mm. For the frictional drag force, k=mi is
independent of v. Thus, the data in Fig. 4.6b show a good data collapse to the simple
proportional relation. From the slope of the data in Fig. 4.6b, k=mi is estimated to
be 1040˙ 40 s�2. The evaluation and material property dependence of d1 and k=mi

will be discussed later in this section.
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Fig. 4.6 (a) Net acceleration
vs. velocity at some fixed
depths and (b) frictional drag
force as a function of z. The
data used in this figure are the
same as those used in Fig. 4.5.
The inset of (a) shows a � g
vs. v2, and the main plot
shows a � g vs. v. Both
clearly show the existence of
the inertial drag. The linear
depth-dependent frictional
drag can be confirmed in (b)
(Data from Ref. [17])
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The validity of the drag force model of Eq. (4.4) has been demonstrated by the
above analysis. Then, how about the compatibility of the model with the previously
reported empirical laws? In Ref. [17], the experimental results shown in Fig. 4.5
were compared with these empirical laws. In Fig. 4.7, the comparisons of the data
and empirical laws are plotted. The scaling d / H1=3 [3] and d D d0 C ˛1v0 [14]
are shown as solid lines in Fig. 4.7a, b, respectively. It is apparent that the data fit
both the empirical laws. Note that all the data shown in Fig. 4.7 come from the same
experiment. For v0 D 0, the linear Coulomb-friction-like behavior is confirmed
(Fig. 4.7c). This linear trend is consistent with the previously reported empirical
law of Ref. [15]. Moreover, tstop becomes almost constant (' 0:051 s) in the regime
of v0 > 1m/s (Fig. 4.7d). This constant tstop character is consistent with previous
experiments and simulations [10–13]. The value of tstop D 0:051 s can be derived
from the characteristic timescale of the system [17]:

tstop '
s

Di

g
: (4.8)

This tstop can be understood by the inertial drag (D2
i v
2 � D3

i g) and tstop � Di=v.
More precise measurements of the stopping time by various impactors and targets
have revealed a scaling of tstop � .�i=�t/

1=4
p

Di=g [12]. Based on the numerical
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Fig. 4.7 Compatibility of Eq. (4.4) with empirical laws, (a) d / H1=3, (b) d D d0 C ˛1v0,
(c) FD / z for v0 D 0, and (d) constant tstop. In (a), (b), and (d), data points correspond to
experimental results and solid lines represent the corresponding empirical laws. In (c), a � g vs. z
for v0 D 0 is shown as the black curve. The dashed curve in (d) was computed using the time
at which the velocity reached zero in the numerical integration of Eq. (4.4). The gray level in (d)
corresponds to tstop D 0:51 s (Data from Ref. [17])

simulation in Ref. [13], the .�i=�t/
1=2 dependence of tstop was also reported. Because

the factor .�i=�t/
1=4 or .�i=�t/

1=2 is not so large (at least within the same order in the
current experimental condition, �i=�t ' 5:3), these forms are still roughly consistent
with the result of Ref. [17]. The aforementioned results suggest that Eq. (4.4) is
completely consistent with the empirical laws [3, 6, 10, 14, 15]. Recall that these
empirical laws have looked disparate as discussed before. It can be considered that
the empirical laws are approximate scaling or limiting behaviors of Eq. (4.4).

In Eq. (4.4), the inertial and frictional drag terms correspond to fluid-like and
solid-like behaviors of granular matter, respectively. That is, the dual nature of
granular matter is manifested by Eq. (4.4). The unified drag force model is plausible
in terms of this duality as well.

Because Eq. (4.4) has a simple form, it can be analytically solved but only in v-z
space [8, 19]. To solve the equation, we consider an energy form. The kinetic energy
of the impactor, Ekei, is denoted as

Ekei D 1

2
miv

2: (4.9)

Then, the left-hand side of Eq. (4.4) is expressed by Ekei as

dEkei

dz
D miv

dv

dz
D mi

dv

dt
: (4.10)

Here Eq. (4.4) is generalized as

mi
d2z

dt2
D mig � mi

d1
v2 � f .z/; (4.11)
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where the depth-dependent force is rewritten by the general form f .z/. Using
Eq. (4.10), the generalized drag force equation is written as

dEkei

dz
D mig � 2

d1.z/
Ekei � f .z/: (4.12)

In this general notation, d1.z/ can depend on z. This linear ordinary differential
equation is formally solved as [19]

Ekei.z/ D Kp.z/
�
K0 C 
p.z/

�
; (4.13)

where K0 D miv
2
0=2 is the kinetic energy at the moment of impact (initial condition).

Kp.z/ is written as

Kp.z/ D exp

�
�
Z z

0

2

d1.z0/
dz0
�
; (4.14)

and 
p.z/ is


p.z/ D
Z z

0

mig � f .z0/
Kp.z0/

dz0: (4.15)

This formal solution corresponds to a type of energy transfer form. One can easily
verify that Eqs. (4.13), (4.14), and (4.15) satisfy Eq. (4.12). Then, the velocity v.z/
is obtained by Eq. (4.9) as

v.z/ D
�
2

mi
Kp.z/

�
K0 C 
p.z/

��1=2
: (4.16)

Assuming that d1 is constant, Kp.z/ is computed as

Kp.z/ D exp

�
�2z

d1

�
: (4.17)

Furthermore, 
p.z/ can be calculated with the simple assumption f .z/ D kz
(constant k):


p.z/ D
Z z

0

exp

�
2z0

d1

��
mig � kz0� dz0

D
�

exp

�
2z

d1

�
� 1

��
migd1
2

C kd21
4

�
� kzd1

2
exp

�
2z

d1

�
: (4.18)

Substituting Eqs. (4.17) and (4.18) into Eq. (4.16), we finally obtain the specific
form of v.z/ as
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Fig. 4.8 Experimental data and analytic solutions of v.z/. The solid and dotted curves correspond
to experimental data and analytic solutions, respectively. The data used in this plot are same as
those in Figs. 4.5 and 4.6. Although we can confirm the excellent agreement, this analytic solution
cannot perfectly fit the very shallow penetration data (not shown here) by fixed d1 and k [20]

v.z/ D
�
v20e

� 2z
d1 � kd1z

mi
C


1 � e� 2z

d1

��
gd1 C kd21

2mi

��1=2
: (4.19)

A comparison of the analytic solutions and the experimental data is presented
in Fig. 4.8. The solutions and experimental data show an excellent agreement by
constant d1 and k. However, there is a limit of applicability of this drag force law. d1
and k are not constant for a very shallow impact case [20] (not shown in Fig. 4.8).
For such an impact, the impact drag force might be slightly different. The analytic
solution for very shallow impacts tends to overestimate the penetration depth. It
might be a shape effect of the impactor or some other complex rheological effect
of granular matter. Furthermore, it might be caused by the force-chain-structure
difference between prefluidized and fluidized granular target [21].

The physical meanings of the values of d1 and k in Eq. (4.4) can be discussed
by comparing the values with the momentum transfer and Coulomb friction. The
experimentally obtained value of 1=d1 D 11 (m�1) is comparable to �t=�iDi ' 4:9

(m�1), which implies the consistency of the momentum transfer form, .mi=d1/v2 �
�tD2

i v
2. However, the order of magnitude of the frictional drag term is not so

consistent. If we assume Coulomb friction and hydrostatic pressure, k will satisfy
k D Ck�f�tgD2

i : Here Ck is a dimensionless constant. In the experiment, �t, Di,
and �f are 1:52 � 103 kg/m3, 25:4mm, and 0:45, respectively. Substituting these
experimental conditions, Ck D 80 is obtained. This Ck value is much larger than
unity, which indicates that the granular frictional drag is much larger than the values
expected from ordinary Coulomb friction. The main reason for this large frictional
drag is most likely the abnormal pressure in granular penetration, which may be
considerably greater than hydrostatic or Janssen pressure.

From the viewpoint of rheological modeling, Eq. (4.4) qualitatively resembles
the Kelvin-Voigt model. Stresses by inertial and frictional contributions are simply
combined while the penetration depth and velocity are common in the system.
However, Eq. (4.4) is quite different from Eq. (3.3). Granular targets cannot store
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elastic energy in general. The granular drag force consists of a velocity-squared-
proportional momentum transfer term and depth-proportional frictional force. At
the moment of impact, inertial drag dominates the entire drag force. The momentum
is transferred from the impactor to the target granular medium. As the impactor
penetrates into the target, velocity decreases drastically because of the inertial drag,
and the frictional drag becomes crucial in the late and deep stage. Once the inertia of
the impactor is balanced with frictional drag, the impactor is immediately arrested.

The frictional drag force term is formally similar to the elastic force. However,
the frictional drag cannot store the elastic energy; it is rather plastic and dissipative.
Although the granular drag force has fluid-like and solid-like responses, these
responses are different from the conventional viscoelastic one. The kinetic energy of
the impactor is transferred to ejecta and dissipated by internal friction. The energy
dissipation and partition were estimated numerically in Ref. [22]. Equation (4.4)
becomes meaningless once v D 0 is reached. In other words, the rebound after
v D 0 computed by Eq. (4.4) cannot be clearly observed in the experiment. There is
no elastic contribution in the granular impact drag force.

Because the usual frictional drag acts tangentially at the interface, one might
expect a shear component for the frictional term. However, Brzinski et al.
experimentally demonstrated that the frictional drag acts normal to the surface of the
impactor [23]. Moreover, in the experiment, the air flow through the target granular
bed with its speed Uair during the impact was used to reduce the gravitational
loading effect. They observed that the frictional drag force kz vanishes at a certain
air flow speed Uair D Uc. According to the experimental result, the reduced
frictional drag force can be computed by multiplying kz by a reduction factor
1 � Uair=Uc. The origin of the large frictional drag force may be intermittent force
chains emitted at the impact surface, which act in the roughly normal direction of
the surface (e.g., Fig. 4.10).

A drag force model that is essentially similar to Eq. (4.4) has been proposed by
Boguslavskii et al. [24, 25]. These researchers considered the higher order terms and
the cross terms of v2 and z and approximately computed the final penetration depth
and other related quantities. Using the model, the experimental results of relatively
deep granular impact penetrations can be evaluated. For deep penetrations, two
peaks appear in the a.z/ profile. The first peak, called the dynamic peak, originates
from the inertial drag, and the second peak, called the static peak, corresponds to the
frictional drag. Even in shallow penetrations, we can observe the sudden decrease
in acceleration that roughly corresponds to the second peak (Fig. 4.5c). Another
modeling of the drag force equation has been studied based on a general inverse
formulation [26, 27]. However, this modeling is based on some arbitrariness in the
selection of the model.

4.1.4 Material Dependence of the Drag Force Model

Two quantities d1 and k are essential parameters of the granular impact drag force.
Although the value of k=mi is too large compared with the simple assumption,
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Eq. (4.4) appears to be phenomenologically sound. In the above analysis, these two
values were computed by the fitting to the experimental data taken by a steel sphere
impactor and glass-bead target. The natural next question is how do the parameters
d1 and k depend on material properties such as the impactor’s diameter Di, density
�i, and target density �t? To verify the material dependence of the parameters,
systematic experiments were performed for various impactors and targets [20]. For
each experimental condition, d1 and k were computed by data fitting.

From the experimental data, a simple relation for the inertial drag,

d1
Di

D 0:25

�f

�i

�t
; (4.20)

is obtained. This scaling form is basically understandable by the momentum transfer
from the impactor to the target, .�iD3

i =d1/v2 � �tD2
i v
2, (Sect. 2.6.2). While the

�f dependence is unclear a priori, d1 � ��1
f is empirically obtained from the

experimental data. If we consider the virtual mass, d1 depends on �f as d1 /
1=.1 C ˛d1�f /. The advantage of this form is its convergence in the frictionless
limit (�f ! 0). In experiments, it is difficult to vary �f in a wide range. Thus, we
cannot conclude which one is better by using the current experimental result. On
the basis of residual errors, the scaling form (Eq. (4.20)) is slightly better than the
virtual mass form [20].

Next, scaling for the frictional drag is considered. The following relation should
hold if the Coulomb friction and hydrostatic pressure are used for the origin of the
frictional drag (kz=mi � �f�tgzD2

i =�iD3
i ):

kDi

�f mig
� �t

�i
: (4.21)

However, this scaling cannot explain the experimental data. Instead, the empirical
scaling,

kDi

�f mig
D 12

�
�t

�i

�1=2
; (4.22)

fits the data well. The curious scaling exponent 1=2 can be derived on the
assumption of the geometric mean of the density for the frictional drag force,
.�i�t/

1=2d2z=dt2 � �tgz=Di. In Ref. [15], the virtual mass was considered to explain
the frictional drag. This virtual mass effect corresponds to the arithmetic mean
of densities. However, the geometric mean is better than the arithmetic mean in
explaining the general frictional drag force, at least for the experimental data set in
Ref. [20]. Moreover, the value of k is increased by pre-shear straining [28]. There
might be some other parameters relevant to describe the behavior of k.

The inertial drag in the granular impact is very similar to the fluid inertial
drag. Material-dependent scaling is consistent with the conventional momentum
transfer theory. The order of the inertial drag force is also reasonable. However,
the frictional drag force exhibits complex behavior such as nontrivial scaling.
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Moreover, as mentioned in the previous subsection, the order of the frictional drag
is approximately one order of magnitude greater than the simple assumption of the
Coulomb friction and hydrostatic pressure. To uncover the physics of the granular
frictional drag force, more detailed studies are needed. For now, two dimensionless
numbers d1=Di and kDi=mig are the most important quantities to characterize the
granular impact drag force.

The drag force equation can be evaluated by dimensional analysis. Substituting
Eqs. (4.20) and (4.22) into Eq. (4.5), the drag force is nondimensionalized as

a

g
� 1 D �4�f

�t

�i

v2

gDi
� 12�f

�
�t

�i

�1=2 � z

Di

�
: (4.23)

Then, we find three important dimensionless quantities: a=g, .�f�t=�i/.v
2=gDi/,

and �f .�t=�i/
1=2.z=Di/. In terms of ˘ -groups, there are 8 relevant quantities: a, v,

z, g, Di, �i, �t, and�f . Because there are three fundamental dimensions: M, L, and T,
five independent dimensionless numbers can be obtained. In this case, the simplest
set of dimensionless numbers is obtained as

˘1 D a

g
; ˘2 D v2

gDi
; ˘3 D z

Di
; ˘4 D �t

�i
; ˘5 D �f : (4.24)

Here˘2 corresponds to the Froude number. Then, the three important dimensionless
numbers discussed above are expressed as ˘1, ˘2˘4˘5, and ˘3˘

1=2
4 ˘5. Compar-

ing the inertial and frictional dimensionless numbers, one can obtain a characteristic
dimensionless number Dr as

Dr D ˘2˘4˘5

˘3˘
1=2
4 ˘5

D v2

gz

�
�t

�i

�1=2
: (4.25)

When Dr is very large, inertial drag dominates the granular drag force. In contrast,
the frictional drag becomes predominant in the very small Dr regime.

Using the granular target bed fluidized by air flow of speed Uair, the frictional
drag force was measured to be ' 30.1 � Uair=Uc/�f�tgzA, where Uc is the critical
air speed above which the frictional drag vanishes [23]. This form rather indicates
the simple linear relation, Eq. (4.21). Then, Dr becomes equivalent to Fr.D˘2/. The
degree of target fluidization due to both the impact and the aeration cannot be esti-
mated directly. In particular, the impact results in both fluidization and compaction
simultaneously by shearing (tangential) and normal loading, respectively.

4.1.5 Direct Force Measurement

Some intriguing characteristics of the granular impact were observed by a direct
force measurement. Goldman and Umbanhowar directly measured the acceleration
of the impactor using an accelerometer [12]. In Fig. 4.9, examples of a=g vs. t for
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Fig. 4.9 Normalized acceleration a=g for various target grains and the impact velocities. The
impactor is a bronze sphere (Di D 38mm and mi D 0:2 kg). Photos of target grains are shown in
the insets of each panel (Reprinted with permission from Ref. [12]. Copyright 2008 by American
Physical Society)

Fig. 4.10 Propagation of the force chain pulses created by the impact (Reprinted with permission
from Ref. [30]. Copyright 2012 by American Physical Society)

various target grains are displayed. To understand the drag force law of Eq. (4.4),
the target granular matter must be a sort of continua. Thus, Eq. (4.4) can only
describe the average behavior. However, the real acceleration data exhibit complex
behaviors, as observed in Fig. 4.9. The fluctuation of a=g strongly depends on
the shape of the grains. The size ratio between the impactor and grains Di=Dg

also appears to be important for the fluctuation. An extremely large fluctuation
was observed for angulated cut-aluminium-grain target (Fig. 4.9c). This fluctuation
might have originated from the intermittency of force chain networks created by the
impact [29].

Using a photoelastic imaging technique, Clark et al. studied the particle dynamics
of granular impact [30]. They carried out a quasi-two-dimensional impact exper-
iment and used a high-speed camera to capture the force chain dynamics and
clearly observed the force chain propagation immediately after the impact. The
propagations of the force chains occurred very intermittently. Example snapshots
are presented in Fig. 4.10. The authors discussed the relation between the force chain
pulse propagation and the drag force fluctuation. Consequently, it was revealed
that the drag force fluctuation has a nearly exponential probability distribution. In
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addition, the drag force fluctuation exhibited a clear correlation with the force chain
propagation [30], which indicates that the drag force fluctuation is intrinsic for the
granular impact. This fluctuation is caused by the force chain pulse propagation. In
other words, the origins of the fluctuation are the inherent discreteness and random
packing structure of the target granular bed. This force chain pulse propagation is
significant in the case of stiffer target grains. When the target grains are soft, a dense
force structure that propagates with a well-defined front can be observed [31].

Another characteristic feature in Fig. 4.9 is the abrupt cessation observed in the
glass bead and birdseed cases. The acceleration data a=g show a sudden decrease
in the final stage. This finite jump in a=g presumably originates from the frictional
drag. During the final stage of deceleration, frictional drag dominates the entire
deceleration because the velocity v is very small. The large z (for frictional drag)
and the small v (for inertial drag) inevitably result in a sudden stop. A similar jump
(abrupt cessation) can also be confirmed in Fig. 4.5c. Directly before the impactor
ceases, a micro rebound (small pit of a=g) can also be observed in Fig. 4.9. Similar
rebound has been reported in another experiment (Supplementary Information
of [17]) and in two-dimensional numerical simulations [13, 32]. Although the micro
rebound may be a symptom of granular elasticity, further studies are required to
confirm its origin.

In Ref. [12], Goldman and Umbanhowar also observed the viscous drag force
(linear relation between drag force and velocity) for relatively high-velocity
impacts, which is counterintuitive because the viscosity is dominant in the low-
velocity (low Re) regime for ordinary fluids. Viscosity-like behavior was also
observed in another experiment of the granular impact with a relatively high-
velocity impact (v0 ' 70m/s) [33]. The experimental result and corresponding
numerical simulation suggest that there is a velocity-proportional component
of the drag force. Although this problem might only be a square completion
problem (Eq. (2.97)), further investigations are necessary to reveal the origin of this
viscous-like drag force of the granular impact. Possible physical meanings of the
velocity-proportional viscous-like drag will be discussed in the next subsection.

4.1.6 Inertial and Viscous Drag Forces for the Granular
Impact

Inertial drag by Bagnold scaling In Eq. (4.4), a viscous drag term is not present.
However, as mentioned above, Refs. [12, 14, 33] have proposed the viscous drag
force for the relatively high impact velocity regime. In ordinary viscous fluids, the
viscous effect dominates the drag force in the low Re regime. In contrast, Re cannot
be defined for granular matter because its viscosity is not well defined. The reason
for this difficulty in the treatment of viscosity for granular matter is discussed in this
subsection.

From the viewpoint of dimensional analysis, the shear stress �s in sheared dry
granular matter is expressed by



122 4 Soft Drag Force

�s � mg

Dg
P�2; (4.26)

where mg and P� are the granular mass and shear strain rate, respectively. Because
only P��1 involves a relevant timescale in the sheared granular system, Eq. (4.26) is a
unique dimensional solution to form a stress dimension [34–36]. Equation (4.26)
was derived first by Bagnold [34] and is called the Bagnold scaling. Although
Eq. (4.26) is derived for collisional (sparse) granular gas, dense granular flow also
satisfies the equation [37, 38], which is natural as long as Eq. (4.26) is a unique
dimensional solution for the sheared granular matter. Here the granular viscosity 	
is calculated using its definition 	 D �s= P� as

	 D �s

P� � mg

Dg
P�: (4.27)

The relation of Eq. (4.27) indicates that the granular viscosity itself is proportional
to the shear strain rate P� . For the impact phenomena, the main source of the shear
strain rate is the penetrating velocity v. Thus, v and P� are related as v � Di P� . Using
this relation, Eq. (4.27) is written as 	 � .mg=DgDi/v; the viscosity is proportional
to the velocity. That is, the viscous drag force is proportional to v2, similar to the
inertial drag. Therefore, the viscous and inertial drag forces are not distinguishable
for the granular impact. Furthermore, the stress applied to the impactor from each
single grain, �g, is calculated from Eq. (4.26) as

�g � �g

�
Dg

Di

�2
v2: (4.28)

Here the relations mg � �gD3
g and v � Di P� are used. The total inertial drag force

would be the sum of Eq. (4.28) for all related grains. Dimensionally, the stress can be
regarded as a momentum transfer per unit time in a unit area. In fact, Bagnold also
considered the momentum transfer to derive the Bagnold scaling. As long as P��1 is
a unique timescale in the system, the entire drag force must be proportional to P�2 (or
equivalently v2). The linear v dependence of the drag force cannot be observed in
such systems. In fact, the v2-proportional drag force has been observed ubiquitously
in many granular systems [39–42]. Furthermore, a microscopic collision model for
the granular drag force, which is proposed based on momentum transfer among
the impactor and clusters of grains connected by force chains, reproduces the v2-
proportional drag force very well [43]. Thanks to the microscopic model, the shape
dependence and rotational mode of the drag force can also be explained from the
viewpoint of collisions of the impactor and grains.

Granular-temperature-based viscosity Random grain motion might add another
timescale to the granular system. In the above discussion, only the timescale P��1
determined the drag force form, particularly for the velocity dependence. Here we
consider another possible timescale that may be relevant to the granular viscosity.
Using kinetic theory, the granular temperature OTg is related to the shear stress [36,
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44]. OTg is defined by the grain velocity fluctuation, OTg � hıv2j i D h.vj � hvji/2i
(Eq. (3.72)). Here h� � � i represents the average overall grains (j is an integer; grain
index). Because OTg involves a timescale of velocity fluctuation, the relation 	 /
OT1=2g is dimensionally possible. If OTg is independent of P� , 	 can also be independent
of P� . Because the viscosity is regarded as a diffusion of the momentum density,
the viscosity presumably depends on the temperature. In fact, usual fluids exhibit
temperature-dependent viscosity. The viscosity of a gas is an increasing function
of temperature, as 	 / T1=2. This temperature dependence can be understood by
the kinetic theory (e.g., Eq. (4.49)). Contrary to the kinetic theory, liquid viscosity
is a decreasing function of temperature. The mechanism of viscosity is different
between a gas and a liquid. Moreover, the granular viscosity is different from both
of them. In an experiment of granular avalanches, the relations hıvji � hvji and
hıvji � phvji were observed for slow (hvji � 30 mm/s) and fast (hvji > 30

mm/s) regimes, respectively [45]. The former recovers 	 / v, which is consistent
with the impact drag force model and Bagnold scaling. However, the latter yields
another scaling 	 / v1=2; then, the inertial drag force is proportional to v3=2. Indeed,
v3=2-dependent drag was observed in a numerical simulation in a relatively low-
velocity (v < 7 m/s) regime [46]. However, this tendency (v3=2 dependence in the
slow impact velocity regime) is qualitatively opposite to the finding of the avalanche
experiment. Detailed characterization of the granular impact using OTg is a prevailing
crucial future problem. The granular temperature during very slow penetration will
be discussed later (Fig. 4.16).

Gravity-based viscosity If gravity is considered, another timescale is introduced
by the gravitational acceleration g. To estimate the gravity effect, the ratio Fr to Re

is calculated from Eqs. (2.41) and (2.98) as

Fr

Re
D 	U

�gl2
: (4.29)

This is a dimensionless number representing the ratio between the viscous and
gravitational stresses. Using this form, the characteristic viscosity at a certain state
of Fr=Re is written as

	 � �gl2

U
D �gl

P� ; (4.30)

where P� D U=l is assumed. For the granular impact, the target granular density �t

corresponds to �, and the impactor’s diameter Di corresponds to l. Then, Eq. (4.30)
implies that the gravitational pressure �tgDi produces the viscous stress. That
gravitational pressure is perhaps inappropriate for the granular impact phenomena
in the large Fr.� 1/ regime. The instantaneous inertial drag should be governed by
the momentum transfer rather than the gravitational (hydrostatic) pressure.

Even so, it is imaginable to consider the relation between gravity- and velocity-
dependent drag forces, particularly in the small Fr regime. The gravity effect was
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actually considered when discussing granular viscosity in Refs. [12, 14]. If we use
� D �t, l D Di, and U D p

gDi, Eq. (4.30) becomes

	 � �tg
1=2D3=2

i : (4.31)

This viscosity form is similar to Eq. (3.58) if we employ the gravitational (hydro-
static) pressure and impactor’s diameter as the pressure and length scale, respec-
tively. In Ref. [12], however, 	 / �tg1=2D

5=2
i was reported; the Di dependence is

different. Moreover, 	 � .�i�t/
1=2g1=2D3=2

i was derived in Ref. [14]. This form is
also slightly different from Eq. (4.31). In Ref. [14], the elastic energy transfer was
considered and the geometric mean density form was obtained.

As mentioned in the previous subsection, the granular viscous drag is dominant
in the relatively high-velocity impact regime. Perhaps this tendency originates from
fluidization of the granular matter. The high-velocity penetration might fluidize the
surrounding granular layer; then, the granular temperature OTg increases. In such a

high OTg regime, 	 might be determined by OT1=2g rather than v. Note that, however,
the experiment with an aerated granular bed, in which OTg is most likely relevant, is
consistent with a v2-dependent inertial-like drag force [41]. In the aerated granular
bed, the fluidization is homogeneously induced, while the impact results in a very
local fluidization. This localization might affect the scaling. Such a fluidization
effect might be an essential factor to understand the form of granular drag force.
The physical origin of the effective granular viscosity remains under debate.

Granular jet When a granular jet (stream of grains) hits a rod vertically, granular
sheet flow such as a water-bell structure [47] can be developed [48]. The opening
angle of the granular sheet depends on the diameter ratio between the jet and
the target rod. If the jet diameter is sufficiently large, one can observe the cone
structure. In contrast, when the jet diameter is small, the granular jet deflects at a
right angle and a plane sheet normal to the jet is produced. Although the granular
jet behavior is very similar to liquid behavior, the surface tension cannot contribute
to its dynamics in the granular jet. Moreover, the granular jet behavior is close to
perfect fluid behavior, in which there is no viscous effect. To determine the granular
jet rheology, a three-dimensional numerical simulation of the granular jet impact
was performed [49]. According to the numerical result, although both the measured
shear stress and shear strain rate are very small, the usual viscosity is observed
in the granular jet. Only because the shear stress is considerably less than the
normal stress, the granular jet behavior appears similar to that of a perfect fluid.
The dynamics is almost dominated by the normal component even for a water-bell-
like cone structure. Although the relatively high-speed granular jet is not a perfect
fluid, the corresponding shear stress is almost negligible. This result is qualitatively
similar to the vertical granular impact characterization [23], in which the linear shear
viscosity effect is usually negligible.

Inertial drag scaling To demonstrate the importance of the inertial drag in the
granular impact, the relation between j.a0 � g/=gj and v20=gd1 is shown in Fig. 4.11.
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Fig. 4.11 Normalized net drag force at the impact moment, ja0=g � 1j vs. v20=gd1 , for various
impactors and targets

Here a0 corresponds to the acceleration at z D 0. The data shown in this plot are
obtained from the experiment with various impactors and targets [20]. One can
confirm a data collapse to the relation

a0
g

� 1 D � v20
gd1

: (4.32)

Because the frictional drag is absent at z D 0, we can purely evaluate the inertial
drag using Fig. 4.11 and Eq. (4.32).4 To make the plot shown in Fig. 4.11, Eq. (4.20)
is actually used to calculate d1. Considering Eqs. (2.98) and (4.20), Eq. (4.32) can be
rewritten as a0=g � 1 D �.4�f�t=�i/Fr(� ˘2˘4˘5 in Eq. (4.24) at t D 0). Thus,
the dimensionless number .�t=�i/Fr is probably the most important parameter to
characterize the granular inertial drag force.

4.1.7 Various Effects in the Granular Impact Drag Force

In the previous subsections, the target granular bed has primarily been considered
as a type of continua. Furthermore, the phenomenological impact drag force law
has been derived based on the experimental and numerical results. For the sake

4Because z D 0 is defined by the fitting of v.t/ in the analyses of the experimental data (not by the
direct image analysis of the bottom of the impactor sphere) [17], it might be slightly different from
the exact point at which the bottom of the impactor reaches the surface of the target granular bed
(Fig. 4.1). The depth z D 0 (t D 0) corresponds to an effective starting point of the deceleration
by the impact. Of course, the depth must be close to the actual z D 0. The data in Fig. 4.11 slightly
deviates from the scaling of Eq. (4.32) at v20=gd1 < 1. This deviation might concern the accuracy
limit of the z D 0 identification.
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of simplicity, complex effects such as the container’s wall, packing fraction, and
interstitial fluid, have been neglected thus far. Such effects sometimes play crucial
roles in the dynamics of granular matter. In this subsection, some results concerning
how such effects affect the granular impact dynamics will be introduced.

Wall effect The effect of the container’s wall has been studied in Refs. [50–52].
The studies in Refs. [50, 51] demonstrated that the effects of a bottom wall and a
one-sided lateral wall are not very significant. The confining wall (container size)
effect is more complex than the one-sided wall effect [51]. The scaling of d is
affected by the confining wall effect [51]. According to Ref. [52], the confining
wall can either increase or decrease the penetration depth d depending on v0. These
results are briefly reviewed in the following discussion.

To examine the bottom wall effect, a solid sphere was dropped onto granular beds
with various thickness [50, 51]. The thickness dependence of the final penetration
depth d was measured to quantify the wall effect. Both studies reported that d is
rarely affected by the bottom wall until the impactor reaches very close to the bottom
wall (� a few millimeters). In Ref. [50], even the effective attraction force was
observed for low-velocity impact onto a thin granular bed.

To examine the one-sided lateral wall effect, the impactor was dropped to an
off-center-point of a sufficiently large container filled with glass beads (Dcon D
190mm) [50]. Here Dcon is the inner diameter of the tube container. The main
control parameter was the initial gap between the impactor and the wall. The
researchers observed that the impactor experiences repulsion from the wall during
the penetration. The strength of the repulsion depends on the impactor’s size as well
as the gap distance. Because of this repulsion, the impactor penetrates obliquely
(toward the center of the container) into the target bed. Because the impact kinetic
energy is dissipated during the net impactor’s motion, the final vertical penetration
depth d decreases for this oblique penetration.

The interaction of two impactors was also investigated [50]. In the experiment,
two identical spheres were impacted simultaneously onto the target, with an initial
gap width between the impactors, Gd. The horizontal displacement toward the
repulsive direction 
d and the final vertical penetration depth d were measured for
various Gd. The results suggested that d is independent of Gd, whereas 
d increases
with decreasing Gd. The normalized horizontal displacement 
d=d is written as

d=d D 0:12 exp.�Gd=G0/ with a characteristic length scale G0 D 7 mm [50].
Because G0 is considerably smaller than the impactor’s diameter (G0=Di ' 0:03),
the repulsive effect is very limited. G0 roughly corresponds to 20Dg.

The container’s size must be varied to investigate the confining wall effect
directly. In Ref. [51], the diameter of the container Dcon and that of the spherical
impactor Di were varied in the ranges 24 � Dcon � 190mm and 5 � Di � 40mm,
respectively. The sphere was dropped onto the center of the target container (filled
with Dg D 0:3–0:4mm glass beads), and the final penetration depth d was measured
to quantify the confining lateral wall effect. The authors assumed a power law
form of d by extending Eq. (4.3) as d=Di D Ac.�i=�t/

ˇc.H=Di/
˛c , where Ac, ˛c,

and ˇc are fitting parameters. Ac D 0:37 ˙ 0:01, ˛c D 0:40 ˙ 0:04, and ˇc D
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0:61 ˙ 0:02 were obtained for the largest container Dcon D 190mm, in which the
wall effect is negligible. By decreasing Dcon, both Ac and ˛c exponentially decrease.
Specifically, the authors observed that ˛c D 0:4Œ1 � exp.�.Dcon � Di/=0:8Di/� and
Ac D 0:37Œ1 � exp.�Dcon=0:7Di/�. According to their experimental results, when
Dcon is greater than 5Di, ˛c and Ac are almost saturated. For a narrow container with
Dcon < 5Di, d decreases because of the wall-supported drag.

The confining container size effect is actually slightly more complex. The
abovementioned studies were based on the measurement of the final penetration
depth d and the horizontal displacement 
d . In Ref. [52], time-resolved impact
dynamics was acquired and discussed to examine the confining wall effect. In the
experiment, a steel sphere (Di D 16mm) was dropped onto a sand bed (Dg D 0:02–
0:06mm). The result clarified that the narrow container can increase d (deeper
penetration) for the low-velocity impact (v0 � 6

p
gDi). However, the narrow

container results in a decrease in d (shallower penetration) for the high-velocity
impact (v0 � 19

p
gDi), which is a slightly confusing result. What is happening in

the drag force? To resolve this confusion, the drag force parameters mi=d1 and k in
Eq. (4.4) were estimated in the analysis of the experimental result. Then, mi=d1 and
k exhibited opposite dependencies on the container size: mi=d1 increases whereas k
decreases as the container size Dcon decreases. In the low v0 regime, the frictional
drag kz dominates the dynamics such that the narrower container decreases the
drag force. This behavior results in a deeper penetration in the low v0 and small
Dcon regime. In contrast, the inertial drag dominates the drag force in the high v0
regime, which indicates that the narrower container causes a larger drag force that
results in the reduction in d. A narrower container can result in either smaller or
larger d depending on v0. The noticeable difference between Refs. [51] and [52] is
the grain shape and size. While spherical glass beads of Dg D 0:3–0:4mm were
used in Ref. [51], nonspherical slightly polydisperse sand grains of Dg D 0:02–
0:06mm were used in Ref. [52]. This difference might be the reason for the partly
contradicting behaviors in these results.

The infinite penetration of an impactor due to the Janssen effect can also be
observed experimentally [53]. Pacheco-Vázquez et al. performed the penetration
experiment using a long silo (6m in height) filled with very light-weight polystyrene
beads (�t ' 14 kg/m3). If the intruder’s mass was heavier than the critical mass
mc, infinite penetration with a terminal velocity was observed. To explain this
experimental result, the Janssen effect was considered for the depth-dependent
frictional drag. Specifically, they assumed the form of the depth-dependent drag
force f .z/ as

f .z/ D k�J.1 � e�z=�J /; (4.33)

where �J is a characteristic length scale due to the Janssen effect that value is close
to the container’s diameter (Sect. 3.7.1). Then, the frictional drag is saturated near
z D �J , and the terminal velocity is attained by the balance among gravity mig,
inertial drag miv

2=d1, and frictional drag k�J . The terminal velocity vt is calculated
by substituting d2z=dt2 D 0 and f .z/ D k�J into Eq. (4.11):



128 4 Soft Drag Force

vt D
s

d1.mig � k�J/

mi
: (4.34)

Thus, the critical intruder mass is mc D k�J=g. The experimentally obtained
mc ' 86 g was consistent with this estimate. Using very light-weight grains, fluid-
like infinite penetration with a terminal velocity vt can be observed in the granular
penetration.

Using the same light-weight grain pack, a penetration experiment under reduced
gravity was also performed [54]. The granular impact dynamics was measured
in a falling bucket whose falling velocity was reduced by a counter-weight. By
varying the counter-weight mass, the effective gravity geff was controlled. Such
an experimental system is called an Atwood machine.5 The researchers focused
on the zero initial velocity impact, v0 D 0. In this experiment, the penetration
timescale was observed to be scaled by g�1=2

eff , as expected (Eq. (4.8)). In contrast,
the measured penetration depth was independent of geff. This result can be explained
by assuming k / geff based on Eq. (4.22) and neglecting the inertial drag effect.
Then, the equation of motion can be written as mid2z=dt2 D migeff.1 � f 0.z//,
where f 0.z/ D f .z/=migeff is independent of v. Using a relation d2z=dt2 D vdv=dz
(Eq. (4.10)), this equation can be integrated with respect to z as

1

2
v2 D geff

Z z

0

�
1 � f 0.z0/

�
dz0: (4.35)

Here the initial condition v0 D 0 at z D 0 is used. At z D d, the velocity should
vanish. Thus, the right-hand side of Eq. (4.35) must be zero at6 z D d. This criterion
(v D 0) in Eq. (4.35) does not depend on geff because the integral in Eq. (4.35) is
free from geff, i.e., all the terms on the right-hand side are proportional to geff. The
relation tstop / g�1=2

eff can also be obtained from Eq. (4.35) (v2 / geff) and assuming
tstop / v�1.

Packing fraction effect The target granular bed is actually compressed or dilated
by the impact depending on the initial packing fraction 
0 and the impact velocity
v0. A change in the packing fraction can be considered as a change in the target bulk
density �t.D 
�g/. Thus, the effect of 
 may be effectively included in Eqs. (4.20)
and (4.22) through �t dependence. In this case, the drag force form of Eq. (4.4) is
robust and unchanged; however, this is not the case. The granular impact drag force
behaves in a more complicated manner than we expect.

Umbanhowar and Goldman controlled the initial packing fraction of the target
granular bed in the range 0:57 < 
0 < 0:63. Then, a steel sphere (Di D 3:96mm)
was impinged on the target granular bed (Dg D 0:3mm glass beads), and its

5The effective acceleration is reduced by a factor of the Atwood number (Eq. (2.108)) when the
two bodies’ volumes are identical.
6The trivial solution v D 0 at d D 0 is ignored here.
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acceleration was measured [55]. They observed that the drag force was significantly
affected by 
0. If 
0 is tuned to 
c D 0:59 (the critical packing state), the packing
fraction does not change after the impact. When 
0 < 
c, a compaction occurs as
a result of the impact and a dilation occurs when 
0 > 
c. The experimental result
also revealed that d is a decreasing function of the change of the packing fraction,

f � 
0, where 
f indicates the final packing fraction after the impact. Although
this trend is qualitatively consistent with the �t dependence (Eqs. (4.4) and (4.20)),
the experimental data for 
0 ¤ 
c cannot be fitted by the drag force model of
Eq. (4.4). Typically, the inertial drag force coefficient 1=d1 depends on z and even
becomes negative in a deep region; it is evidently unphysical. They reported that the
frictional drag is also affected by 
0. Thus, Eq. (4.4) should not be simply applied
to the case of 
0 ¤ 
c. In the experiments of Refs. [17, 20], 
0 D 0:59 is achieved
by the air fluidization of the target granular bed before each impact.

In an experiment of slow penetration, phase-transition-like behavior of the shear
resistance has been observed [56]. In the experiment, a thin rod (6.3 mm in diameter)
was slowly penetrated into a glass-bead bed (Dg � 0:27mm), and the resistance
force was measured. A clear crossover of the resistance force was observed near

 D 0:6. This 
-sensitive nature of the granular bed might be a reason for the
strong 
 dependence of the impact drag force.

If the drag force is measured in a bulk granular layer, the effect of jamming [57,
58] (random solidification) must be considered [59]. In the free-fall impact of an
impactor on a granular bed, grains on the surface expand significantly, and ejecta
splashing is induced. However, this type of deformation is inhibited when the gran-
ular layer is completely confined in a box. In this confined situation, grains cannot
expand such as by splashing because of the limited free space. In general, the granu-
lar packing fraction cannot exceed a certain value 
J above which the solidification
of the granular packing (called jamming) occurs.7 Takehara and Okumura consid-
ered that the origin of v2-dependent inertial drag is the collision between an intruder
and a cluster of grains in the confined granular system [42, 59]. These researchers
assumed that in the two-dimensional case, the size of the cluster of grains is scaled
as DgDilclu, where Dg, Di, and lclu are the grain diameter, intruder’s diameter, and
characteristic length scale, respectively. By systematically varying the initial pack-
ing fraction 
0, they measured the two-dimensional granular drag force at steady
state, i.e., the drag velocity v is fixed, and the corresponding granular drag force is
measured in a two-dimensional bulk granular layer that is confined by walls. Then,
the measured drag force FD shows a divergence, FD / .
J �
0/�1=2. This divergent
drag force corresponds to the critical growth of the length scale, lclu � .
J �

0/

�1=2Di [59]. In the cluster collision model, the inertial drag term (momentum
transfer per unit time) can be obtained from the product of the collision frequency
Div=D2

g and the momentum of the dragged cluster �tDgDilcluv as .lclu=Dg/�tD2
i v
2.

Therefore, the dimensionless factor lclu=Dg � .
J � 
0/
�1=2Di=Dg determines the

drag force in the vicinity of 
J. Note that the driving and boundary conditions for

7If the constituent grains are soft, 
 > 
J can be attained by the compressive external loading.
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this experiment are different from those in the impact case. Although the physics
of jamming is a very intriguing problem and many papers concerning the jamming
transition have been published, the details are beyond the focus of this book.

Interstitial air effect Granular impact dynamics is affected by interstitial air if the
granular target consists of small grains (Dg < 0:1mm). The interstitial air effect
is not negligible for such small grains [60]. In general, interstitial air causes air
drag against granular motion. Additionally, the air drag is a source of dissipation.
Nonetheless, some experimental results have demonstrated that interstitial air can
increase the final penetration depth d [61–63]. More precisely, d can also be
decreased by the interstitial air effect under some experimental conditions. The
value of d actually depends on both the interstitial air and packing fraction.

Royer et al. performed a granular impact experiment under various ambient
pressure (1–101 kPa) and initial packing fraction (0:51 � 
0 � 0:61) [63]. A steel
sphere with Di D 12mm and boron carbide grains with Dg D 0:05 ˙ 0:01mm
were used in the experiment. The researchers captured the impactor motion using
high-speed X-ray imaging. Using the obtained images, they also quantified the
local compaction or dilation of the target granular bed. Some results are presented
in Fig. 4.12. For an initially loose target with 
0 D 0:51 (Fig. 4.12a–j), local
compaction occurs after the impact. The degree of local compaction is considerably
larger under the vacuum condition (1 kPa) than under the atmospheric condition
(101 kPa). In contrast, the initially dense target (
0 D 0:60) mainly causes local dila-
tion (Fig. 4.12k–t). The dilation occurs more significantly in the vacuum condition
than in the atmospheric condition. Therefore, they concluded that the interstitial air
resists the change in the local packing fraction. For an initially loose (or dense) target
granular bed, compaction (or dilation) is induced by the impact. This compaction
(or dilation) results in an increase (or decrease) in the drag force (see Eqs. (4.4),
(4.20), and (4.22)); compaction (or dilation) means an increase (or decrease) in �t.
Therefore, the interstitial air can increase (or decrease) d for the initially loose (or
dense) target, respectively. The crossover packing fraction between compaction and
dilation was reported as 
c ' 0:58 in this experiment. At this crossover packing
fraction, d is almost independent of the ambient pressure. Note that the interstitial
air is crucial only for fine grains (Dg < 0:1mm). For fine grains, both the interstitial
air and the packing fraction effects are important. The electrostatic effect might
also be important for dry and fine grains. However, no systematic studies have been
performed on the electrostatic effect of granular impact.

The interstitial air also affects the jet formation created by the collapse of the
void opened by the impact [60, 64]. The jet formation is discussed later in Sect. 6.3.

Interstitial liquid effect If the interstitial fluid is liquid (not gas), the impact
behavior becomes completely different. In Ref. [65], a wet granular bed was
employed as a target. The glass beads (Dg D 0:52mm) and water were mixed in
various ratios. The mixtures included pendular, funicular, and capillary states [66].
The saturation parameter Sat, which is the main parameter used to characterize the
liquid content, is defined as
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Fig. 4.12 Composite X-ray
images of the granular
impact. The local packing
fraction variation
�
 D 
 � 
0 is shown in
addition to the impactor
(black circle) motion. One
can confirm the deeper
penetration in the cases of
low initial packing fraction
under atmospheric pressure
(101 kPa) or high initial
packing fraction under
vacuum condition (1 kPa)
(Reprinted with permission
from Ref. [63])
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Sat D Vliq
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; (4.36)

where Vliq and Vair are the liquid and air-void volumes, respectively. A steel
sphere (Di D 20mm) was dropped onto the mixed target bed. According to the
experimental result, d0 (the final penetration depth by v0 D 0) for the wet target
is always less than that of the dry target. In contrast, for large v0 impact, the final
penetration depth d is greater in the wet target than in the dry target. Moreover,
the maximum value of d is attained at Sat ' 5 � 10%. The depth scaling for
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Table 4.1 Various effects on the final penetration depth d in granular impact. dC indicates the
increasing of d and d� indicates the decreasing of d by each effect

Effect dC d� Experimental condition Ref.

Small container size Dcon (low v0) (high v0) Dcon < 5Di [51, 52]

Initial packing fraction 
0 (
0 < 
c) (
0 > 
c) 
c ' 0:58� 0:59 [55, 63]

Interstitial air (
0 < 
c) (
0 > 
c) 1–101 kPa, Dg < 0:1mm [63]

Interstitial liquid (high v0) (low v0) 0 < Sat < 93% [65]

the wet granular target was obtained as d / H0:55 or / H0:45, depending on the
target preparation methods. Note that the power is clearly greater than 1=3 (dry
granular case) (Eq. (4.3)). Wet grains are cohesive because of the capillary bridge
force. The capillary bridge force will resist the dilation of the bed. However, the
lubrication effect is also present because of the liquid content. The competition
between cohesion and lubrication might be a key factor to understand the complex
behavior of wet granular impact. More detailed studies are necessary to discuss
this competition effect. Furthermore, in the liquid saturated case, 1=3 scaling is
recovered [67]. The situation is very complex.

Summary of various effects for the granular impact drag force As discussed in
this subsection, the granular impact drag force is noticeably affected by various
effects. Using these effects, we can either reduce or enhance the drag force.
However, the drag force response to each effect is neither obvious nor trivial and
instead works as if it were magic with sand. Here we summarize the qualitative
results produced by the various effects (also see Table 4.1).

• Proximity of the bottom wall: almost negligible until the impactor is very close
to the bottom (approximately a few mm)

• Proximity of the one-sided lateral wall: oblique penetration by the effective
repulsion

• Proximity of the confining lateral wall: increasing (or decreasing) d at low (or
high) v0

• Interaction of two impactors: repulsion decaying exponentially by initial gap
width (decay length scale is approximately 7mm for d D 0:3mm brass beads)

• Pressure saturation by the Janssen effect: infinite penetration by the heavy
intruder (mi 	 mc)

• Initial packing fraction: decreasing (or increasing) d at high (or low) 
0
• Interstitial air: decreasing (or increasing) d at high (or low) 
0 compared with

vacuum condition
• Interstitial liquid: decreasing (or increasing) d at low (or high) v0 compared with

interstitial gas condition

We have focused mainly on the vertical one-dimensional motion of the impactor.
For a small size ratio of Di=Dg, the lateral motion’s fluctuation is not negligible. In
such a case, the dynamics will be different, and the fluctuation of the drag force plays
an essential role. The detailed study in this regime is open to future investigation.
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The grains’ adhesive effect has also been investigated recently using a numerical
simulation [68]. However, its effect is limited and only slightly affects the impactor’s
motion.

4.1.8 Oblique Impact

Thus far, only the vertical impact has been emphasized. If the impact occurs
obliquely, its dynamics might be affected by the inclination angle. In general,
planetary-scale impact events occur obliquely. While the vertical impact must be
first clarified, the oblique impact should be studied next to discuss practical impacts
in nature. There are a few investigations that concern the oblique impact between
a solid impactor and a granular bed. In this subsection, these studies are briefly
reviewed.

Using a two-dimensional numerical simulation, Wang et al. studied the drag force
model for oblique impact [69]. The notations of the directions and angles in oblique
impacts are shown in Fig. 4.13. Using the numerical simulation, the researchers
observed that Eq. (4.4) is simply applicable in the vertical direction of the oblique
impact. The drag force in the horizontal direction was also modeled by the sum
of the inertial and frictional drag forces. Then, the drag force components in two
directions (z: vertical; x: horizontal) are written as

Fx D � sgn.vx/
�
cxv

2
x C kxz

	
; (4.37)

Fz D mig � czv
2
z � kzz: (4.38)

penetration

reboundv0

z

vR

ω

x

dx

dz

θimp θr

Fig. 4.13 Definitions of directions, angles, and rotation of the impactor in an oblique impact. The
vertical impact corresponds to �imp D 90ı. Because of the experimental limitation, the rebounding
angle �r is usually defined in the measured x-z plane. The projected velocity and corresponding
rebounding angle are used in the three-dimensional case
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The form of Fz is identical to that of Eq. (4.4), and Fx also consists of the same
drag force components: inertial and frictional. Note that Fx acts in the opposite
direction of the horizontal velocity vx (sgn.�/ is the sign function). Here cx, cz, kx,
and kz are parameters depending on the impact angle as well as the impactor’s and
target’s properties. This drag force form is valid in a relatively large impact angle
regime, �imp 	 30ı. When the impact angle �imp is lower than 30ı, the drag force
becomes complicated and a simple description using Eqs. (4.37) and (4.38) becomes
impossible.

The stopping time tstop shows a qualitative difference across the critical impact
angle �imp D 30ı. In the large impact angle regime (�imp 	 30ı), tstop is a
decreasing function of the impact velocity v0 and asymptotically approaches the
characteristic time scale, tstop ' p

Di=g. This tendency is similar to the vertical
impact (Fig. 4.7d). In contrast, tstop becomes an increasing function of v0 in the low
impact angle regime (�imp < 30ı). At the critical angle (�imp D 30ı), tstop is almost
a constant. This result indicates that the role of inertial drag, which causes imme-
diate deceleration, is less important in the low impact angle regime. The typical
timescale

p
Di=g corresponds to the deceleration timescale due to the inertial drag

(Eq. (4.8)).
It is not clear whether this critical angle �imp D 30ı is universal. In Ref. [70], the

ricochet angle for oblique granular impact was experimentally measured. According
to the results of the three-dimensional experiment, the ricochet angle �rc is written as

�rc D 210ı
�
�t

�i

�1=2 �Dg

Di

�2=3
: (4.39)

This angle is almost independent of the impact velocity. When �imp 	 �rc,
penetration occurs. In the low impact angle regime (�imp < �rc), the ricochet
should be observed. Equation (4.39) cannot be applied for �rc > 90ı. To test
the consistency among Refs. [69] and [70], the corresponding �rc for Ref. [69]
can be estimated using Eq. (4.39) obtained in Ref. [70]. The estimated value is
�rc D 42ı. However, the penetration is observed in the numerical simulation of
smaller angle �imp < 42ı [69]. This difference might originate from the different
dimensionality (two- or three-dimensional) of the abovementioned systems or the
large experimental uncertainty [70].

The oblique granular impact plays a key role in the aeolian grain transport
process. It is apparent that oblique impacts dominate almost all the impact processes
in the natural aeolian transport of sand grains. An understanding of aeolian transport
is necessary to discuss sand dune morphology and its formation event. A very basic
framework of aeolian (wind) transport of sand grains will be discussed later in
Sect. 7.2.6. The sand dune structure can be observed on the surface of Mars as
well as on the Earth (see, e.g., Fig. 7.10). Because Mars has an atmosphere, aeolian
transport can induce the sand dune structure. To discuss the grain transport on sand
dunes, the oblique impact among comparative size grains must be investigated.
Simple oblique impact experiments, in which an impactor grain is identical to
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grains of the target bed (i.e., Dg D Di and �i D �t), were performed both in
two dimensions [71–74] and in three dimensions [75]. The recent three-dimensional
experiment [75] reveals that the directional restitution coefficient �R0 D vR=v0 and
its vertical component �z0 D vRz=v0 are independent of v0 and empirically written as

�R0 D AR � BR sin �imp; (4.40)

�z0 D ARz

sin �imp
� BRz; (4.41)

where vR is the rebound speed and vRz is its z component. Experimentally
determined values of these parameters are AR D 0:87, BR D 0:72, ARz D 0:03, and
BRz D 0:15 [75]. Incorporating these relations, the rebound angle �r is computed
from the relation �z0v0 sin �imp D vR sin �r as

sin �r D �z0

�R0
sin �imp D ARz � BRz sin �imp

AR � BR sin �imp
: (4.42)

Using this definition, �z0 can exceed unity (approximately 1:5 [75]). Because
�R0 < 1 is always satisfied, large �z0 does not mean a violation of energy
conservation. Large �z0 indicates that the horizontal momentum of the impactor is
transferred to the vertical direction by the oblique impact, similar to Refs. [76, 77]
(see also Sect. 3.4). Note that the definitions of �R0 and �z0 are different from the
normal restitution coefficient �r, defined in Eq. (3.14). This anisotropic momentum
transfer might be crucial in the aeolian transport of sand grains.

The ejected grain velocity vej was measured in the same grain’s oblique impact
experiment and can be roughly scaled by v0 as

hvejip
gDi

�
�

v0p
gDi

�1=4
: (4.43)

The value is almost independent of �imp. The number of ejected (splashed) grains nej

was also measured in the experiment. The experimentally obtained scaling relation
for nej is [75]

hneji � �
1 � h�2R0i

� � v0p
gDi

�3=2
: (4.44)

These scaling behaviors can be modeled using a single chain model [78, 79]. That
is, the aforementioned properties can be reproduced by the accumulation of binary
collisions in the force chain structure.

The effect of the impactor’s rotation has also been investigated using a two-
dimensional numerical simulation [80]. For the oblique impact, the impactor’s
rotation with angular velocity ! affects the penetration of each direction, dx and
dz. See Fig. 4.13 for the definitions of !, dx, and dz. The maximal value of dz (the
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greatest penetration depth) is actually achieved at ! D 0. Namely, the impactor’s
rotation decreases the vertical penetration depth. The horizontal penetration dx can
either increase or decrease depending on the direction of the rotation, i.e., the sign
of !. When ! is positive and 0ı < �imp < 90ı (back spin), dx will decrease, and
vice versa.

The study of oblique impact has not been sufficient to reveal the entire behavior.
Both the experimental and numerical investigations are still deficient. Because
natural impacts are dominated by oblique impacts, much more detailed studies are
necessary steps for the future.

4.2 Granular Slow Drag Force

As discussed above, the granular impact drag force can be decomposed into two
parts: the inertial drag and the frictional drag. In a viscous fluid, the drag force is
dominated by the viscous drag in the low Re regime and by the inertial drag in the
high Re regime. Although we do not know the form of Re for granular matter, the
slow penetration drag could correspond to drag in the low Re regime.8 Furthermore,
a quasi-static regime can be observed by studying the slow drag force. The slow
penetration drag is experimentally measurable, and it would be helpful to elucidate
the physics of the granular drag force. In this section, we will discuss the studies of
granular slow drag, both in vertical and horizontal directions.

4.2.1 Granular Vertical Slow Drag

First, an overview of the vertical slow penetration drag is provided. A standard
experimental setup to measure the slow granular vertical drag force is shown in
Fig. 4.14. In the system, a solid intruder is slowly plunged into a granular column,
and its penetration resistance force (slow drag force) is measured. Then, the relation
between the drag force FD and the penetration depth z is analyzed. In this system,
the regime of slow-penetration rate is usually emphasized. In this slow regime,
the viscous-like drag force may be detected or only the frictional drag kz may
be observed. As discussed in Sect. 4.1.3, the value of the frictional drag kz is
considerably greater than the expected value estimated by the hydrostatic pressure
and Coulomb friction. The study of the slow penetration drag force might also
provide clues for this puzzle.

One of the simplest and most meaningful experiments on granular vertical slow
penetration was carried out by Stone et al. [81, 82]. These researchers used a pack

8The dimensionless number Dr defined by Eq. (4.25) might correspond to Re for the granular
impact drag phenomenon.
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z

Di

DgFD

pw

v0Hc

Fig. 4.14 Schematic illustration of the slow vertical drag experiment. A penetrator with diameter
Di is slowly (with velocity v0) plunged into a granular column (height Hc) that consists of grains
with diameter Dg. The drag force is denoted as FD. In this figure, the penetrator has a spherical
shape. However, its shape is arbitrary in general experiments. The transmitted bottom wall pressure
pw was also measured in some experiments

of glass beads and a horizontal disk penetrator. The measured slow drag force was
simply proportional to the penetration depth z in a shallow regime, similar to a
frictional component of the impact drag force, kz. The drag force is independent of
the penetration velocity. Thus, the slow drag force can be categorized in a quasi-
static state rather than a viscous state. In a deep-penetration regime, the drag force
tends to be saturated, most likely due to the Janssen effect. The measured drag
force value in this experiment is approximately one order of magnitude greater than
the simple hydrostatic pressure expectation, similar to the impact drag observation.
Although this problem was not discussed in Refs. [81, 82], we can roughly compare
the slow drag force and hydrostatic-based frictional drag force in some plots of
Refs. [81, 82]. While its physical meaning is still not well understood, the slow drag
behavior is roughly consistent with the impact drag with respect to very large depth-
dependent drag. In this sense, it may be inappropriate to conclude that the origin of
the kz drag force is the Coulomb friction and hydrostatic pressure.

The most important finding in Refs. [81, 82] is the exponential growth of the
slow penetration drag force in the vicinity of the container’s bottom. They defined
the drag force increase �FD D FD � Fbulk, where Fbulk represents the bulk linear
drag force component. Then,�FD exponentially grows as

�FD / exp

�
Hc � z

�b

�
; (4.45)

where Hc is the depth of the bottom wall (column height) and �b is a characteristic
length scale. Using systematic experiments, Stone et al. observed the relation
�b / p

Fbulk.Hc/=Di. From the dimensional viewpoint, �b � p
Fbulk.Hc/=�tgDi

was proposed for the characteristic length scale of the slow granular drag near the
bottom.
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The slow penetration drag force is slightly curved in the FD vs. z plot. As a first-
order approximation, the slow penetration drag can be modeled by a linear function
of z. In some experiments, however, the depth-dependent granular slow drag was
analyzed with a power law form,

FD / z˛F : (4.46)

The power law exponent ˛F ranges from 1 to 1:5 depending on the experimental
conditions [83–86]. In particular, the container’s horizontal dimension, intruder’s
size, and its shape affect the value of ˛F . In a wide container,˛F is close to unity [82]
whereas a narrow container results in large ˛F . This finding implies that the lateral
wall affects the slow penetration drag. By means of the Janssen effect, the pressure
would be saturated in a deep region because of the lateral wall support. However, the
side wall enhances the drag force for the slow penetration. The force chain structures
connecting the intruder and side wall might cause the resistance to the shearing by
slow penetration, which might result in the enhancement of the slow drag force in
narrow containers. That is, the force chain structure might be responsible for this
large absolute value of the slow drag. Meanwhile, the frictional drag appears to
act normally to the intruder [23]. The shear contribution in the granular drag force
remains controversial. In these experiments, the absolute value of the drag force
is approximately one order of magnitude greater than the hydrostatically expected
value, again even in this nonlinear regime. In Ref. [83], the slow drag force against a
sphere’s withdrawing was also measured. The order of the withdrawing drag force is
close to the hydrostatic expectation, which is natural because the large force chain
structures toward the lateral wall are rarely established in the withdrawal process
in a relatively shallow regime as long as the top boundary is a free surface (i.e.,
no additional loading to the top surface). Then, only the hydrostatic component
dominates the resistance force.

Using highly confined (�101 MPa) polydisperse and rough shaped grains, the
drag force exerted on a slowly moved cylinder was experimentally measured [87].
The measured granular bulk density linearly depends on the pressure in the range
10–40 MPa. In this regime, the slow drag force is simply proportional to the bulk
density or, equivalently, to the confining pressure. When the confining pressure is
increased, the grain contact forces as well as density can be exaggerated. It is not
clear which parameter (the confining pressure, density, or contact force) is the most
essential for the slow drag. In general, these parameters are related to each other.

The origin of nonlinear slow drag force was examined by the relation between
the slow drag force and the transmitted wall pressure [85, 86]. In the experiment,
the pressure increase at the wall �pw D pw.z/ � pw.0/ was measured and linked
to the drag force FD exerted on the sphere of diameter Di as FD=.�˛D2

i / �
.Di=Dg/

1�˛p.z=Dg/
˛p and �pw=�ˇ � .Hc=Dg/

1�ˇp.FD=.�˛D2
i //

ˇp , where Hc, �˛ ,
�ˇ , ˛p, and ˇp are the column height, unit stress for the drag, unit stress for the wall
pressure, drag force scaling exponent, and pressure transmission scaling exponent,
respectively. In this experiment, the top surface was open to air; namely, a free
top surface boundary condition was employed. As mentioned above, the scaling
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Fig. 4.15 The left panel shows an example image of the instantaneous granular flow field around
a penetrating cylinder disk with diameter Di D 20mm. The penetration velocity is v0 D 50mm/s,
and the glass-bead diameter is Dg D 1mm. The right panel shows the notations used in the
analysis. er and e� are the unit vectors to the radial and angular directions, respectively (Reprinted
with permission from Ref. [89]. Copyright 2013 by American Physical Society)

exponents ˛p and ˇp could depend on the container’s and intruder’s sizes [88].
The experimentally obtained values for ˛p and ˇp are greater than or equal
to unity. Considering the force balance, large exponents indicate that the force
chain network grows nonlinearly. Perhaps, stress localization, such as a stress
dip structure (Sect. 3.7.2), is responsible for this abnormal pressure. Otherwise, it
is difficult to satisfy the force balance condition in this pressure growth model.
The nonlinear pressure growth cannot continue due to the force balance unless
the relating wall area increases. Considering that the withdrawal drag can be
explained by the simple hydrostatic pressure, the side wall effect would be a
crucial parameter to characterize the nonlinear drag force behavior. The important
hallmarks in these nonlinear stress transmission laws are the grain contact number
dependencies: .Di=Dg/

1�˛p and .Hc=Dg/
1�ˇp . These factors represent the number

of grains around the penetrating sphere and those in the column’s vertical direction,
respectively. In general, the grain contacts are responsible for the nonlinearity and
dissipation of the granular matter. Thus, these effectively relevant grain (contact)
numbers can affect the nonlinearity. If the linear relations are assumed to be
˛p D ˇp D 1, these grain number dependencies are eliminated. Although this
measurement phenomenologically links the slow drag force nonlinearity to grain-
contact discreteness, the microscopic foundation of this relation remains unsolved.

The relation between the drag force and flow field around a penetrating
object was also experimentally analyzed [89–91]. Seguin et al. measured the
two-dimensional granular flow field using the particle image velocimetry (PIV)
method [92]. An example of the measured velocity field and the notation of the
cylindrical coordinate used are shown in Fig. 4.15. These researchers plunged
a cylinder disk into a quasi-two-dimensional glass-bead pack with a slow
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Fig. 4.16 Granular temperature for the penetration of a disk intruder (Di D 20mm and v0 D
10mm/s) into a packing of glass beads with diameter Dg D 1mm. In this figure, zb corresponds to
the bottom of the intruder. The gray level indicates the local granular temperature. The bright
region corresponds to high granular temperature (Reprinted with permission from Ref. [89].
Copyright 2013 by American Physical Society)

penetration velocity v0. The drag force and associated granular flow velocity
fields were measured, and their relations were discussed using the granular
temperature [89, 91]. The flow velocity field v.r; �/ can be expressed as

v.r; �/

v0
D Arer cos � C A�e� sin �: (4.47)

Experimentally obtained parameters Ar and A� indicated that the granular flow
associated with the penetration is irrotational and almost incompressible because
their forms satisfy r � v.r; �/ D 0 [89]. Furthermore, they confirmed that the slow
drag force is independent of v0. To explain the constant drag force, they measured
the granular temperature OTg D h.v � hvit/

2it. The measured granular temperature
map is presented in Fig. 4.16. The hot (high OTg) region is localized in the vicinity
of the penetrating sphere. In fact, OTg is almost a constant OTg0 in the vicinity of
r�.Di=2/ � 4Dg. Then, OTg decays exponentially as OTg / exp.�r=r0/with a charac-
teristic length scale r0. In addition, a simple relation OTg0 � v20.Dg=Di/ was obtained
by the systematic experiment. According to the granular kinetic theory [91, 93], the
granular pressure pg and effective granular viscosity 	g are written as

pg � �t OTg; (4.48)

	g � �tDg

q
OTg; (4.49)
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Because the granular temperature OTg is proportional to the squared velocity,
Eq. (4.48) implies that the granular pressure pg originates from the dynamic pressure
of the granular random motions. Combining Eqs. (4.48) and (4.49), we obtain the

granular viscosity per controlled pressure as 	g � pgDg=

q
OTg. Substituting an

experimentally obtained relation OTg0 � v20.Dg=Di/ into 	g, the viscosity around the
penetrator can be written as

	g0 � pg
p

DgDi

v0
: (4.50)

As 	g0 is inversely proportional to v0, the resultant viscous drag force becomes
independent of v0, F	 � 	g0Div0 � pgD2

i

p
Dg=Di. Thus, the granular slow drag

force is determined by pg and appears quasi-static (v0-independent). This result
contrasts with the fact that gas viscosity is independent of its pressure. While
the D2

i dependence of the drag force reminds us of the inertial and Epstein drag
forces (Eqs. (2.70) and (2.89)), the velocity independence is inconsistent. Note
that the momentum-transfer-based granular viscosity is proportional to the velocity
(Sect. 4.1.6). Moreover, Eq. (4.49) is consistent with 	 / T1=2g (Sect. 4.1.6) and,
hence, the v2-dependent inertial drag force. Rather, the constant slow drag could
originate from the structure of the narrow region near the intruder that exhibits
the shear banding. The shearing induces the localized high-temperature region and
results in the normal drag force via the granular pressure defined by Eq. (4.48). This
condition (normally applied drag force) is consistent with the result of Ref. [23].

A key assumption in the derivation of Eq. (4.50) is the selection of the main
control parameter pg and its temperature dependence (Eq. (4.48)). It is difficult to
maintain the relation of Eq. (4.48) into the region far away from the intruder. This
relation is valid only in the vicinity of the penetrator, where OTg D OTg0. Moreover,
it is not apparent why the kinetic granular theory can be applied to the dense slow
granular flow regime. OTg is almost negligible in the immobile grains region because
Eq. (4.48) can be regarded as a type of dynamic pressure: density times squared
velocity (granular temperature). There might be another static source of pg even
in such a quiescent region. In the two-dimensional relatively high-velocity drag
experiment, the mobile region around the penetrator expands to r � Di [42], which
contrasts with the slow drag, where the mobile region (shear banding) is limited
to a few grain diameters. For granular slow drag, the localized high (granular)
temperature zone introduces a rate-independent and quasi-static penetration drag
force. The absolute pressure value and its depth dependence are affected by the side
wall boundary condition.

The cavity formation in two-dimensional granular slow drag was also studied
experimentally [94]. The area of the opened deep cavity strongly depends on the
initial packing fraction. In looser packing, the larger cavity is opened after the
passing of the dragged object. Simultaneously, the fluctuation of the drag force
grows as the packing fraction increases. These signals might be related to the
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jamming transition at a certain packing fraction value. The divergence of the drag
force due to the jamming was already discussed in Sect. 4.1.7.

4.2.2 Granular Horizontal Slow Drag

The horizontal drag force might be simpler than the vertical penetration drag force.
If the object is placed at a fixed depth and slowly dragged in the horizontal direction,
the constant drag force can be observed. Because the penetration depth is fixed, one
can purely focus on the drag force component of the fixed hydrostatic (or Janssen)
pressure. Typical experimental setups of the horizontal drag are shown in Fig. 4.17.
In this subsection, the granular horizontal drag force and related topics are briefly
reviewed.

Albert et al. measured the horizontal slow drag force exerted on a vertical
cylinder [95]. The cylinder was vertically extended to a depth z at an off-centered
position of a bucket of glass beads. Then, the bucket of glass beads was rotated very
slowly, and the drag force was measured (Fig. 4.17a). Whereas the raw drag force
data look unsteady, the averaged drag force shows a simple relation [95]:

FD � �tgDiz
2; (4.51)

where Di corresponds to the diameter of the buried cylinder. The proportional
constant omitted in Eq. (4.51) slightly depends on Di=Dg (size ratio between the
cylinder and grains); however, the value is always on the order of unity (100). The
right-hand side of Eq. (4.51) is rewritten as �tgz � Diz. Then, the drag force can
be interpreted solely by the hydrostatic pressure in contrast to the vertical case, in
which the drag is much greater than the hydrostatic expectation.

The effect of the shape of the dragged object was also examined [99]. Various
shaped objects were attached at the tip of the rod, and the drag force exerted on the

Dg

Dg

DiDi

Li

zz

FD

FD
Hc Hc

a b

Fig. 4.17 Horizontal granular drag force measurement systems. (a) A vertical cylinder is buried
in a rotating bucket [95–98]. In Ref. [99], a discrete object attached at the bottom tip of the vertical
rod was used instead of the bare vertical cylinder. (b) A horizontal cylinder is rotated in a fixed
bucket [41, 100]
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Fig. 4.18 Fluctuations of slow horizontal drag forces. The drag force exerted on the horizontally
moving vertical cylinder inserted in a granular bed was measured (Fig. 4.17a). The transition
among these states depends on the insertion depth and the grain’s and cylinder’s dimensions.
Typically, the transition from the periodic state to the stepped state occurs via the random state
as the insertion depth increases (Reprinted with permission from Ref. [97]. Copyright 2001 by
American Physical Society)

object was measured. In sharp contrast to the fluid drag case, the granular horizontal
slow drag force was almost independent of the shape. Instead, FD exhibited a
nonlinear dependence on z. The simple hydrostatic form predicts the drag force
FD � �tgzA, where A is the intersectional area of the dragged object. As mentioned
above, Eq. (4.51) obeys this form. However, the nonlinear relation of FD / �tgAz˛F

(˛F > 1) was observed when a discrete object was attached. This nonlinearity is
presumably related to the nonlinear depth-dependent vertical drag force, Eq. (4.46).
That is, the side wall effect must be taken into account when a discrete object is
dragged. Equation (4.51) is valid only for the simple vertical cylinder without a
discrete object at its tip.

Even in a simple vertical cylinder’s drag, the fluctuation of FD exhibits nontrivial
behaviors [96, 97]. In Fig. 4.18, three distinct behaviors of the drag force fluctuation
are displayed. If the buried depth z and grain size Dg are sufficiently small (z <
100mm and Dg � 1:1mm), the drag force fluctuation becomes periodic (Fig. 4.18
top). For large grains (Dg > 1:1mm), random fluctuation is observed (Fig. 4.18
middle). Finally, the stepped fluctuation (Fig. 4.18 bottom) can be observed in the
deeply penetrated regime (z > 140mm). The scattered force chains and the finite
size effect (side wall effect) might cause the transitions among those states [96, 97].
The power spectra of the slow drag force fluctuations P.f / (f is frequency) show
the power law tail of P.f / � f �2. This f �2 spectrum indicates simple behavior such
as random walks (Brownian motion). A similar f �2 spectrum was observed in two-
dimensional sheared granular matter [101].
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Using a similar experimental system, the effect of gravity was evaluated [98].
A bucket of glass beads was filled with an aqueous solution of lithium heteropoly-
tungstate (LST) which has a controllable high density. The high-density interstitial
fluid causes a buoyant force and effectively reduces the gravitational effect. By the
systematic experiment, a linear relation between the drag force and the effective
gravitational acceleration was observed, which indicates that Eq. (4.51) is also
robustly held in the reduced gravity environment. Note that, however, the depth
dependence of the drag force applied to the discrete object exhibits a nonlinear depth
dependence, as described before. This tendency cannot be explained by the simple
hydrostatic pressure caused by the gravity g.

The horizontal drag force can also be measured using a horizontally rotated
cylinder in a granular bed. The torque needed to spin the horizontally placed
cylinder was measured and related to the rotational motion (Fig. 4.17b). Then, the
relation between the drag force and deformation or its rate can be characterized.
This spin drag force was measured both in an aerated [41] and a quiescent [100]
granular bed. Although the drag force in an aerated granular bed was consistent
with the impact drag (Eq. (4.4)), the drag force in a quiescent granular bed exhibited
a slightly strange behavior. Guillard et al. measured the drag force exerted on
a rotating cylinder with diameter Di and length Li in a glass-bead bed with
bulk density �t. They observed that the drag force, Fhalf

D linearly depends on the
penetration depth z during the first half rotation. In contrast, after the first half
rotation, this depth dependence is eliminated. The drag force after the first half
rotation approaches an asymptotic constant value F1

D that is independent of z. The
obtained drag force laws are written as

Fhalf
D ' 15DiLi�tgz; (4.52)

F1
D ' DiLi�tgLifF

�
Li

Di

�
; (4.53)

where fF.Li=Di/ is a function whose value is close to 10 for the large aspect ratio
(Li=Di) case. Equation (4.52) is qualitatively understood by the drag force based
on the hydrostatic pressure in terms of the linear z dependence. The numerical
prefactor 15 in Eq. (4.52) is an order of magnitude greater than unity again. Such
a large prefactor has actually been observed both in aerated granular spin drag and
quiescent granular vertical impact drag. Moreover, the asymptotic drag force F1

D
is very peculiar. Equation (4.53) does not depend on the penetration depth or the
container’s size. If the constant drag force originates from the pressure saturation
due to the Janssen effect, the container’s size must determine the asymptotic value.
Nonetheless, F1

D does not depend on the container’s size, which indicates that the
constant F1

D is not a result of Janssen’s pressure screening. Rather, the pressure
is screened by the cylinder itself. Perhaps, this phenomenon is a manifestation of
the history dependence of the granular behavior. By the first half rotation, a path for
the cylinder is opened by optimizing the local granular network structures. Then, the
constant drag force F1

D is achieved. To erase the history dependence, some dynamic
effects, such as aeration or vibration, are needed. Otherwise, history dependence
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results in a constant F1
D that is independent of z and the container’s size. Indeed,

the formation of arches that screen the hydrostatic pressure was confirmed by the
corresponding numerical simulation [102].

To date, the free-surface deformation due to the granular horizontal drag has
been neglected. As long as the vertical impact drag or slow (quasi-static) horizontal
drag is considered, the effect of surface deformation is negligible in terms of the
drag force equation. Of course, ejecta splashing is observed in the granular impact
experiment. The splashing is a result of momentum transfer from the impactor to
the granular target. However, its detail does not affect the form of the drag force
equation. Can we then always ignore the surface deformation? The answer is no.
Gravish et al. experimentally demonstrated the coupling of the surface deformation
and the drag force [103]. They plowed a granular bed by dragging a vertical
plate horizontally. During the plow, the drag force and surface deformation were
measured. In this experiment, the most important parameter was the initial packing
fraction 
0, which ranged from 0579 to 0:619. The bulk drag force was roughly
proportional to 
0, which is natural because 
0 represents the bulk density of
the plowed granular matter. They also observed the 
0-dependent bifurcation of
the drag force. The drag force is approximately constant in the low 
0 regime,

0 < 
c, where 
c D 0:603. However, the drag force becomes periodic in the
high 
0 regime, 
0 	 
c. This bifurcation is related to the surface deformation. In
the low 
0(< 
c) regime, the surface deformation is smooth and continuous and
produces a constant drag force. When 
0 is greater than 
c, the surface deformation
accumulates and results in periodic radial upwellings that cause a periodic drag
force. As already mentioned, in the cylinder drag experiment [97], the drag force
fluctuation shows a bifurcation from the periodic state to the stepped state depending
on the experimental conditions (Fig. 4.18). However, it is not clear whether the
periodicities of the cylinder drag and the plate drag originate from identical origins.

Drag-induced lift was also observed in the granular horizontal drag experi-
ment [104]. For incompressible fluid, the drag can be coupled with the pressure
through Bernoulli’s principle (Eq. (2.35)). Therefore, the drag force can be related
to the lift force in aerodynamics. For incompressible fluid flow, the effect of the
dynamic pressure is not significant in the low Re regime. Thus, the lift force is
also very small in low Re flow. Nonetheless, the granular lift force can be observed
even in the slow drag regime. The lift force applied to the horizontally dragged
object in a granular bed originates from the shape effect of the dragged object. Note
that, however, the lift force is induced even for the symmetric sphere drag. This
result might be simply understood by the depth-dependent hydrostatic pressure. By
integrating the applied stress on the differential surface area on the dragged object,
the net drag and lift forces are calculable using numerical simulations [104]. The
numerical simulations revealed the complicated shape dependence of the granular
lift force exerted on the dragged object [105, 106]. The lift force is coupled with
a detachment of the granular flow, which is related to the shock wave structure. A
Bernoulli-like effect in granular matter can be observed when multiple impactors
penetrate a very light-weight granular bed [107]. Cooperative impactors’ motion
due to such a granular-hydro interaction will be introduced later in Sect. 6.4.3.
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4.2.3 Swimming in Sand

Proper understanding of the drag and lift forces may provide an approach for
efficient swimming in sand. Swimming in sand is evidently much more difficult
than swimming in fluid. Is it possible to swim in sand in principle? Sandfish lizards
are known for their special ability of moving in dry sand. Maladen et al. analyzed
how sandfish lizards swim in sand using X-ray imaging [108]. They observed that
sandfish lizards do not use their limbs for propulsion. Instead, undulating motion
plays an important role. The swimming speed of the center of mass v is related to the
undulation frequency fun and its wavelength �un as v=�un D Hunfun, where Hun is the
dimensionless wave efficiency. For sandfish lizards, Hun ' 0:5 was obtained [108].
Organisms moving in low Re fluid and organisms undulating along the solid surface
exhibit Hun ' 0:25 and 0:8–09, respectively. The wave efficiency of sandfish lizards
is intermediate between those in fluids and solids. On the basis of these fundamental
aspects, a snakelike robot that can swim in a granular bed was developed [109]. The
swimming efficiency depends on the friction between the body surface and grains
whereas the efficiency is almost independent of the grain-grain friction.

Another simple strategy to propel an object in sand was considered by numerical
simulation. An artificial two-dimensional sand swimmer was proposed by Shimada
et al. [110]. Specifically, a push-me-pull-you mechanism, which was originally
proposed for swimming at low Re flow [111], was employed as a candidate for
an efficient sand swimmer. The system comprises two disks that can expand and
contract that are connected by a thin (virtual) wire of length L (Fig. 4.19). The
diameter of the anterior disk DA, that of the posterior disk Dp, and their distance
L are controllable variables. A stroke of the swimmer consists of four cycles. In
the initial state (t D 0), Dp.D DC

p / is greater than DA.D D�
A / and the wire length

is short L.D L�/, as observed in Fig. 4.19. Then, the wire is linearly expanded to
L D LC during the period T. In this cycle, the posterior disk is anchored by friction;
thus, the anterior disk is effectively pushed by the posterior disk. After that, DA is
reduced to D�

A , and Dp is expanded to DC
p , (t D 2T). Then, the posterior disk is

pulled by shortening the wire length to L D L� (t D 3T). Finally, the initial state
(t D 0) is recovered by expanding Dp to DC

p and contracting DA to D�
A in the final

cycle (t D 4T). This swimmer primarily utilizes the friction for propulsion. During
the swimming, energy is consumed by frictional resistance against the expansion-
contraction and push-pull processes. The relations among the propulsion efficiency
and the other parameters (timescale T, length scales L� (D LC � L� > 0), D�

A
(D DC

A � D�
A > 0), and D�

p (D DC
p � D�

p > 0)) are not trivial problems. Shimada
et al. evaluated the efficiency of this swimmer using numerical simulations. They
defined the efficiency of the swimmer as Ef D ıx�Ag=W, where ıx, �, A, and W
are the propulsion distance, density of disks, area of disks, and work performed by
the swimmer, respectively. A snapshot of swimming is shown in the bottom part of
Fig. 4.19. They observed that the efficiency of the swimmer shows a peak at some
frequency when the environmental granular bed is confined by a constant load at
the top surface. Because of the confinement, the top surface of the granular bed is
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Fig. 4.19 Geometric setup and cycles of the sand swimmer. The upper right panels show a series
of deformations at the end of each cycle (Reprinted with permission from Ref. [110]. Copyright
2009 by American Physical Society) Below the cycles diagram, a snapshot image of the granular
swimmer is shown. Dark grains indicate that the grains experience many collisions per unit time
(Courtesy of Takashi Shimada)

not a free surface. The most effective frequency is determined by two timescales.
The first timescale is that of motion which is related to the fluidization of the
granular bed. The second timescale is that of gravitational relaxation. For the anchor
(larger) disk, the consolidated surrounding granular structure is preferred to make an
effective propulsion. However, the fluidized state is better to push or pull the smaller
disk. Therefore, the swimming efficiency is affected by the balance between these
timescales that are compensating with each other. The degree of consolidation or
fluidization is determined by the rate of motions or, equivalently, the frequency of
the system. Therefore, an optimal frequency exists to swim in granular matter.

4.2.4 Drag Force in a Vibrated Granular Bed

The next problem discussed in this subsection is the drag force in a vibrated granular
bed. As discussed in Sect. 3.9, the granular bed can be fluidized by vibration. In the
vibrated granular bed, convection may induce the segregation of grains. While the
segregation mechanism itself is an intriguing problem, here we focus only on the
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drag force in a vibrated granular bed. Therefore, the frictional property of the slow
drag in a vibrated granular bed, in which the convection is carefully inhibited, is
particularly discussed. Using a two-dimensional granular bed vibrated by arrayed
oscillators, the frictional drag force applied to an intruder of diameter Di D 20mm
was experimentally measured [112]. The arrayed oscillators were placed at the
bottom, and they consisted of disks with Dg D 4 or 5mm. In this experiment,
the arrayed oscillators were employed to suppress the convective motion in the
bed. Then, the simple descent dynamics of the large (and dense) intruder can be
observed by placing an intruder on it. Specifically, when the denser intruder with
density �i is placed on this vibrated granular bed of bulk density �t, the intruder
sinks into the bed. This descent phenomenon resembles the reverse Brazil nut effect
(RBNE). Note that any additional loading is not applied to the intruder. Only the
constant gravitational force is applied. Thus, this experiment corresponds to the
stress-controlled measurement of the vertical slow drag. In contrast, all the other
vertical slow drag experiments discussed in Sect. 4.2.1 were rate-controlled; the
penetration rate was fixed. Under the typical vibration condition (f D 20Hz and
the root-mean-squared acceleration is 2g), the descent velocity is less than 1mm/s.
This velocity regime most likely corresponds to the slow (rate-independent) drag
regime. To understand the descent dynamics, the effective friction can be estimated
by the balance between the gravitational force .�i � �t/gD3

i and frictional force
�eff�tgD2

i z as

�eff � �i � �t

�t

Di

z
: (4.54)

The form of Eq. (4.54) can be primarily understood by the combination of the
buoyant force, hydrostatic pressure, and Coulomb friction. As mentioned before,
the drag force in such a slow motion should be independent of velocity. However,
the weak velocity dependence of �eff was reported in this system. �eff was scaled
by the normalized vertical velocity hvzi=p

gz as [112]

�eff D
� hvzip

gz

�0:37
: (4.55)

This velocity dependence is neither inertial (� v2) nor viscous (� v). This form
is somehow similar to the frictional constitutive law for a sheared granular layer
(Eq. (3.55)).

The granular drag force exerted on a moving thin wire in bulk granular matter is
affected by a very weak level vibration [113]. As discussed previously (Sect. 3.9.4),
the granular matter can be fluidized and exhibits Archimedes’ principle of the
buoyant force when vibrated strongly enough without enhancing the granular
convection [114]. Even if the applied vibration is very weak, the granular drag
force is affected by it; this effect is called sonofluidization. Various types of
frictional drag forces were observed in the sonofluidized granular experiment.
First, under the no-vibration condition, the drag force exerted on a wire exhibits



4.3 Drag Forces of Other Soft Materials 149

the rate- and state-dependent frictional (RSF) drag (Eq. (3.52)). Next, the drag
force becomes linear rate-dependent friction in the low-velocity regime with an
appropriate sonofulidization. Finally, the effective friction approaches zero at low
velocity and maximal sonofluidization. Thus, the granular matter can asymptotically
attain the fully fluidized state even with a weak vibration.9

4.3 Drag Forces of Other Soft Materials

The drag force is, in principle, measurable for various soft materials such as
viscoelastic, elastoplastic, viscoplastic, and even more complex media. The drag
force by a viscous fluid or granular matter has been intensively discussed thus far in
this book. In this section, the drag force and related rheology of other soft materials
are briefly introduced.

4.3.1 Viscoelastic Fluid Drag

The impact dynamics of viscoelastic micellar fluid was experimentally investi-
gated [115]. They dropped a solid sphere (9:53 � Di � 25:4mm, 1:35 � 103 �
�i � 7:97 � 103 kg/m3) onto a viscoelastic micellar fluid from free-fall heights in
the range 5 � h � 1270mm. Because of the elasticity of the micellar fluid, the
solid sphere was rebounded. The maximum penetration depth zp and the rebound
height hR were measured and characterized by the relevant parameters. The target
viscoelastic micellar fluid is an aqueous solution of wormlike surfactant micelles
that exhibits shear thinning behavior and its rheological properties (elastic shear
modulus, viscosity, and relaxation time) are G D 22Pa, 	 D 43Pa�s, and trelax D 2 s
at the zero shear limit, respectively [115, 116].

To characterize the maximum penetration depth zp, the Froude number Fr D
v20=gDi and a dimensionless number � D .�i � �t/gDi=G were used in this study.
� represents the ratio between gravity (buoyancy) and elasticity. A simple scaling
for zp was obtained as

zp

Di
� .Fr�/

1=3 �
�
.�i � �t/v

2
0

G

�1=3
: (4.56)

The scaling variable,

Fr� D .�i � �t/ v
2
0

G
; (4.57)

9The maximal sonofluidization remains very weak compared with usual mechanical vibration
discussed in Sect. 3.9.
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is called the elastic Froude number. Although the 1=3 power-law scaling is
somewhat similar to that for the granular impact (Eq. (4.3)) and ejecta potential
scaling (Fig. 4.2a), they are not completely identical. In particular, the role of
elasticity is considerably less important for the granular impact. That is why the
elastic Froude number is used in Eq. (4.56) instead of the bare Froude number.
Furthermore, for a viscoelastic material, viscosity must be considered to describe its
behavior. To consider the viscosity effect, the Deborah number De D trelax.v0=Di/ is
employed. Because the relaxation time in a viscoelastic material corresponds to the
ratio of viscosity and elastic modulus (Eq. (3.5) and trelax D tM), De can represent
the balance between the viscous stress and elastic stress as De D 	v0Di=GD2

i .
Assuming the Maxwell model energy balance, Eq. (4.56) can be modified as [115]

zp

Di
� .Fr�/

1=3

�
1C D2

e

D2
e

�1=3
: (4.58)

This relation corresponds to the energy balance .�i � �t/D3
i v
2
0 � G�2z3p. Here the

squared strain �2 is approximated by .tMv0=Di/
2=Œ1C .tMv0=Di/�

2, where tM is the
Maxwell time (Eq. (3.5)). In the De � 1 limit, Eq. (4.56) is recovered; however,
the rebound height hR does not show any systematic trend. The data of hR is
highly scattered around its mean value (hR ' 25mm) independent of the impact
velocity v0.

These researchers also studied the surface texture on the cavity formed by the
impact [115]. In the low v0 regime, the cavity shape is rather smooth. As v0
increases, the cavity becomes bulbous in shape. When v0 exceeds a critical value,
the cavity surface shape varies to a rough surface texture. From the experimental
observation, this transition occurs near De ' 400–700, depending on � [115].

The concepts of viscous drag and terminal velocity (Sect. 2.6) have been modified
and applied to the viscoelastic case to explain the viscosity of some viscoelastic
fluids [117]. However, it is difficult to fully reproduce the behaviors of highly
viscoelastic drag force using a simple viscous terminal velocity model. Obviously,
the terminal-velocity-based method is limited in the steady-state measurement.
Thus, the dynamics of impact and rebound cannot be described along the line
of simple steady-state viscosity. The main reason for viscoelastic rebound is its
elasticity. Because of the elastic contribution, transient behaviors can also be
observed in a viscoelastic penetration. For instance, transient oscillations were
observed in the sedimentation of a sphere [118]. Moreover, a similar oscillation
was observed in a bubble rising through a viscoelastic fluid [119]. Actually, even
the steady (not transient) oscillation of a sphere falling in a viscoelastic fluid was
observed in the experiments [120, 121]. For the wormlike micellar fluid case,
the oscillatory motion is caused by the formation and breaking of flow-induced
structure [121]. The ideas of flow-induced structure and its breaking qualitatively
resemble those of drag-induced wedge formation and its breaking observed in the
granular plow experiment [103] (Sect. 4.2.2). Both result in periodic motions, which
are the typical behaviors in complex soft matter drag.



4.3 Drag Forces of Other Soft Materials 151

4.3.2 Viscoplastic Fluid Drag

A viscoplastic fluid obeying the Herschel-Bulkley model (Eq. (3.7)) was also used
as a target of the solid sphere’s impact experiment [122]. Because the viscoplastic
fluid has a finite yield stress, it can sustain an impact crater shape when the stress
is relaxed under the level of the yield stress. Therefore, the impact crater can
remain and will not be completely relaxed. The resultant crater morphology will
be discussed later at the end of Sect. 6.1. In Ref. [122], the impact drag force was
not measured. The shape of the remaining crater, cavity pinch-off, and jetting of
the viscoplastic impact were emphasized instead. The drag force by a viscoplastic
target has not yet been understood. The drag force measurement and its relation to
the resultant crater morphology for a viscoplastic target are interesting issues to be
discussed in the future.

4.3.3 Dense Suspension Drag

Dense granular suspensions also exhibit intriguing phenomena due to impact.
Dense suspensions of micrometer-sized grains can be deformed easily by slow
forces. However, these suspensions are drastically hardened by rapid forces. This
particular property of dense suspensions results in dynamic solidification by an
impact. Waitukaitis and Jaeger investigated the dynamic jamming front propagation
occurring in this sudden hardening induced by an impact [123]. To quantify this
phenomenon, they used various methods: high-speed video imaging, embedded
acceleration measurement, and X-ray imaging. In the experiment, a cylindrical rod
with mass mi was dropped vertically into a cornflour suspension, with the impact
velocity in the range 0:2 < v0 < 2m/s. Then, a jamming front seed was nucleated by
grains at the impact point. This jamming front propagates in the suspension almost
one-dimensionally. The jamming front propagation velocity vfront can be roughly
described as

vfront D v0
Dg

ıg
; (4.59)

where Dg and ıg are the grain size and interstitial gap length (average gap length
among grains), respectively. A solid plug is produced by the nearly one-dimensional
propagation of the jamming front. The length of this solid plug grows with time
and causes a large drag force against the impact. The measured drag force can be
explained by the idea of virtual mass. The virtual mass mvirt considered in this study
is proportional to the square of the penetration depth. Utilizing this virtual mass, the
measured kinematic data set of the impactor rod (a, v, z) can be fully reproduced by
the simple model

.mi C mvirt/
dv

dt
D mig � dmvirt

dt
v: (4.60)
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Fig. 4.20 Time sequence of the crack formation due to the free-fall impact of a rod onto a dense
suspension layer. The target is a cornstarch suspension, and the impactor is a tungsten carbide rod.
Its free-fall height is 770mm. The scale bar corresponds to 10mm (Reprinted with permission
from Ref. [124]. Copyright 2013 by American Physical Society)

The propagation of the jamming front is a key to the very strong resistance force
against the rapid forcing.

This simple model is novel one. Usually, the strong resistance to rapid forcing has
been explained by the suspension’s dilatant effect against the shear. The volume of
the wet granular system must expand to attain the shear deformation. This dilation
is not so easy for a dense suspension, in general. Thus, a large resistance force
is produced. The jamming front propagation scenario explained above is slightly
different from this conventional idea. The compression by the impact and associated
jamming wave propagation play essential roles for the thickening of the suspension.
Similar one-dimensional chain-like collisions were used to explain dry granular
oblique impact [75] (Sect. 4.1.8).

There is certainly a limit to the impact-induced thickening of a dense suspension.
When the impact inertia is extremely large, the suspension responds similar to
a brittle solid; that is, fracturing occurs. To demonstrate the brittle fracturing in
a dense suspension, the experiment of the vertical rod impact was performed with a
thin target layer of a dense suspension [124]. Clear crack growth was observed, as
shown in Fig. 4.20. According to Ref. [124], the number and length of cracks mainly
depend on the thickness of the target suspension. If the suspension layer is too thick,
it is difficult to solidify the entire layer because the jamming wave front propagates
with a finite velocity of Eq. (4.59). In a thick layer, the suspension is relaxed by the
viscosity before the entire solidification by the jamming front’s arrival to the bottom.
Crack formation occurs only in a solidified (brittle) state. The target specimen must
be solidified by the impact itself before its fracturing. Therefore, a thinner layer
is better for producing a crack. The number of cracks is inversely proportional to
the thickness of the target suspension layer and diminishes in a sufficiently thick
suspension layer [124].
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Dense suspensions behave like solids or liquids depending on the loading
conditions. For the vertical impact case, a simple one-dimensional model such as
Eq. (4.60) is sufficient to understand the basics of the drag force and the related
solidification. In the viscoelastic target impact, an oscillatory behavior was also
observed, as discussed in Sect. 4.3.1. Oscillatory behaviors can also be observed
in dense suspensions [125]. A phenomenological model to reproduce the oscillatory
behavior of dense suspensions was proposed [126, 127]. The idea of this model
is slightly different from that of the model involving jamming front propagation.
Specifically, the exponential divergence of the shear viscosity depending on a certain
state variable is assumed in the model of Ref. [126, 127] in contrast to the one-
dimensional (normal) jamming wave model described by Eq. (4.60) [123]. In the
former, the lateral momentum transfer due to the viscosity is the main effect.
In the latter, the jamming front propagation dominates the dynamics. In either
case, a representative timescale of the lateral momentum transfer or the jamming
front propagation is comparative with the characteristic (relaxation) timescale of
the dynamics. Thus, their competition causes some unexpected phenomena such
as oscillation and fracturing. In a usual viscoelastic fluid (Maxwell) model, a
crossover between elastic and viscous behaviors occurs at the relaxation timescale,
i.e., Maxwell time (Eq. (3.5)). In contrast, the applied shear stress or normal loading
determines the behavior in dense suspensions. According to another numerical sim-
ulation, the frictional contact among grains in a suspension is essential for the abrupt
hardening (discontinuous shear thickening) in dense suspensions [128, 129]. The
model successfully reproduces general behaviors of the discontinuous shear thick-
ening. There are other models to describe the shear thickening behavior [130–132].
The rheological characterization of dense suspension remains a matter of debate.

4.4 Summary

Various impact (and slow) drag forces produced by soft matter targets were reviewed
throughout this chapter. In particular, the granular drag force by the vertical impact
of a solid sphere was emphasized, and a simple unified drag force model was
derived on the basis of experimental results. Many other experimental results on
granular drag force were overviewed, and their complex behaviors were understood
in terms of scaling and dimensional thought. Because of the rich phenomenology,
a completely unified understanding of granular impact drag force has not yet been
achieved. Systematic and unified understandings of these diverse results are still
insufficient to clarify the entire granular impact dynamics. Alternatively, many
experimental results were merely introduced and summarized in this chapter. Then,
the slow granular drag force was emphasized, and some interesting topics such
as granular swimming were also discussed. After reviewing slow granular drag
mechanics, drag forces in complex fluids such as viscoelastic, viscoplastic and
dense suspensions were also discussed. Up to this point, the fundamental physical
concept of the drag force by soft matter impact has been discussed along the line of
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continuous mechanics formulae. We have focused on fundamental physics rather
than application to actual planetary impact phenomena. Starting from the next
chapter, the physics and morphology of actual impact cratering on a planetary scale
and some related fundamental physical processes will be mainly discussed.
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Chapter 5
Morphodynamics of Planetary Impact Craters

In this chapter, the shape and mechanics of impact craters are discussed. In partic-
ular, planetary-scale craters will be featured. Because crater sizes are distributed
over a very wide range (over several orders of magnitude), scaling method and
dimensional analysis such as ˘ -groups method introduced in Sect. 2.5.2 have
been applied to understand the physical mechanisms of the cratering process. The
crater erasure process by impact-induced seismicity will also be discussed briefly.
Fundamentals of the morphological classification of various craters and the scaling-
based analysis method are introduced in the following text.

5.1 Classification of Craters

As already discussed in Chap. 1, the lunar surface is covered with myriads of impact
craters. Furthermore, we can find many impact craters on the surfaces of other
terrestrial planets, satellites, and asteroids. Most of these craters appear somewhat
circular. However, they actually have a wide variety of shapes. Characteristic fea-
tures of cratering mechanics and resultant crater shapes have been partially clarified
by in-depth investigations based on recent explorations, laboratory experiments, and
theories. The traditional classification of crater’s shape is summarized in this section
based on Ref. [1].

Simple crater The simplest bowl-shaped craters are called simple craters. A
typical example of simple craters is shown in Fig. 5.1. Simple craters are produced
by relatively small-scale impacts, and the intersection of the cavity shape can
be approximated by a parabolic function. The ratio between the crater’s rim-to-
rim diameter Dc and its rim-to-floor depth Dh in fresh craters are approximately
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158 5 Morphodynamics of Planetary Impact Craters

Fig. 5.1 Example of a simple crater on the Moon: Moltke crater photographed by Apollo 10
astronauts in 1969. The diameter is approximately 7 km. The crater cavity intersection has an
approximate parabolic shape (Credit: NASA)

related as1 Dh=Dc ' 1=5 [2]. This indicates that the simple crater’s diameter is
proportional to the depth, Dc � Dh. Thus, the crater volume Vc can be estimated as
Vc � D2

cDh � D3
c . Simple craters are indeed the simplest remnant of small-scale

impacts. Presumably this simple crater shape is most familiar and understandable as
a representative crater shape. However, note that only small craters can be simple.

Complex crater When the crater’s diameter exceeds a certain critical value, the
crater shape exhibits a drastic change from a simple crater to a complex crater.
The critical size of this transition is approximately 20 km on the Moon. One of the
most significant difference between simple and complex craters is the aspect ratio,
Dh=Dc. In complex craters, Dh=Dc is approximately 1=8 [1]. Thus, the cavity of a
complex crater is more flattened than that of a simple crater. Moreover, complex
craters usually have a flat floor and a steeply standing rim by angle of repose.
Note that the ratio Dh=Dc remains constant, namely, Dh � Dc is also satisfied
for complex craters. Another noticeable hallmark of complex craters is a central
peak structure. The central peak is a mound structure observed at the crater’s center
(Fig. 5.2a). A complex crater with a central peak can be observed in intermediate-
size complex craters (e.g., 20 < Dc < 140 km on the Moon). While the central peak
structure reminds us of the jet made by a cavity collapse in liquid or granular impact
phenomena (Sect. 6.3), its origin cannot be simply explained by the cavity collapse
jet. Thus, the central peak formation problem remains unsolved. In Fig. 5.2a, one

1For fresh craters on asteroids, this ratio reduces: 0:15 (Ida) [3], 0:14 (Gaspra) [4], 0:13 (Eros) [5],
and 0:08 (Itokawa) [6].
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Fig. 5.2 Complex crater examples. (a) Tyco crater on the Moon taken by SELENE. The crater
possesses a typical central peak and terrace wall. The diameter of the Tyco crater is approximately
85 km (Copyrighted by JAXA/SELENE). (b) Rachmaninoff peak-ring crater on Mercury. Its
diameter is 290 km (Credit: NASA)

can also observe the wall terraces that are probably formed by landslides of the side
wall. A central pit structure can sometimes be observed instead of the central peak.

Extremely large complex craters (e.g., Dc > 140 km on the Moon) have different
shapes. The central peak almost vanishes in such large complex craters. Instead,
an inner concentric ring with irregularly shaped mountain peaks decorates complex
craters. These craters are called peak-ring craters and are observed on the Moon,
Mars, Mercury, and Earth. An actual example of a peak-ring crater is shown in
Fig. 5.2b. The diameter of the inner ring is approximately half of Dc.

The transition diameter from the simple crater to the complex crater, Dcrit,
depends on gravitational acceleration. That is, Dcrit is different among the Moon,
Mars, Mercury, and Earth. The transition diameter is inversely proportional to
the gravitational acceleration, Dcrit / g�1 [7]. This tendency can be understood
naturally by considering the balance between the hydrostatic pressure �tgDh and the
yield stress of the crater structure Yc. If we assume that the density �t and the yield
stress Yc of the craters are almost uniform, the transition point should be simply
written by a dimensionless factor Yc=�tgDh. The structure is stable as long as its
yield stress is sufficiently large compared with the hydrostatic (gravitational) stress.
The transition diameter is inversely proportional to g if we assume that �t and Yc

are constant. Large craters cannot sustain their own shapes because of the large
hydrostatic stress. Finally, landslide flows are also triggered by similar instabilities.

Multiring basin When the crater’s size becomes even larger, a multiring basin is
formed (Fig. 5.3). Multiple concentric ring structures can be observed in this type of
crater. It is considered that the rings are formed outside the original impact crater. In
contrast, the original crater rim in the peak-ring crater is seemingly the outer ring.
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Fig. 5.3 Picture of a
multiring basin on the Mare
Orientale of the Moon taken
by Lunar Reconnaissance
Orbiter. The diameter is
950 km. An asteroid-scale
impact approximately 3
billion years ago produced
this large impact basin
(Credit: NASA)

Fig. 5.4 Ray crater example:
Kuiper crater on Mercury. Its
diameter is approximately
62 km. Many rays can be
observed in the deposited
ejecta. The ray crater can
mainly be observed on airless
planets (Credit: NASA)

Namely, the additional rings are formed outside the original ring in the multiring
basin, and the additional rings in the peak-ring crater are formed inside the original
ring. The transition diameter from a complex crater to a multiring basin is not scaled
by the gravitational acceleration. Thus, the origin of multiring basins cannot be
simply understood by the gravitational collapse and should be distinguished from
peak-ring complex craters, although these craters (peak-ring and multiring) are
seemingly alike.

Ray crater Looking at the deposited ejecta shape rather than the crater cavity
shape, one can observe some peculiar structures. For example, a ray crater is
a particular type of ejecta deposition. In Fig. 5.4, a typical example of a ray
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Fig. 5.5 Typical example of
rampart crater observed on
Mars. The diameter of the
crater is approximately
27 km. The petal-like
structure of the ejecta blanket
is confirmed. Fluidized
content due to H2O is
supposed to contribute to
making this peculiar ejecta
shape, although there is only
limited experimental evidence
for this idea (Credit: NASA)

crater is shown. Rays spreading radially from the center of the crater are clearly
observed in Fig. 5.4. This structure suggests that the spreading of the ejecta is not
homogeneous; there might be some sort of instability in the spreading ejecta cloud.
The hydrodynamic instability of a spreading liquid such as milk-crown formation,
might be recalled when examining the ray structure. To evaluate the possibility
of such a naive analogy, we must discuss fluid impact splashing in detail. Fluid
splashing instability will be discussed later in Sect. 6.6. The surface tension is
sometimes crucial to induce hydrodynamic instability for the fluid splashing. As
long as we consider the noncohesive grains as constituents of ejecta, the surface
tension effect must be negligible. Additionally, the capillary length (Eq. (2.99))
is much shorter than the planetary crater’s length scale. Moreover, ray crater can
usually be observed on airless planets, whereas the instability of an impacting
liquid drop requires a surrounding atmosphere [8] (see Sect. 6.6.4). On Mars, crater
rays can only be recognized by the thermal infrared images [9]. We have not yet
fully understood the mechanism of the formation of ray craters. According to the
experiment by Kadono et al. [10], the ray structure may originate from the inelastic
collisions between ejecta particles rather than fluid splashing instability.

Rampart crater An even stranger ejecta deposition structure called a rampart
crater can be observed. A rampart crater is defined as a crater with petal-like ejecta
deposition. A typical rampart crater is shown in Fig. 5.5. The diameter of the rampart
crater is usually larger than 15 km. The origin of this strange ejecta deposition has
still not been well understood. However, it is believed that the presence of water
(or other volatiles) could be necessary to produce rampart craters [11]. A mixture
of water and debris behaves like a slurry, which grovels on the surface rather than
flies as an ejecta cloud or sheet. This idea is consistent with the fact that rampart
craters can be observed on Mars, where H2O (ice or water) has certainly existed.
However, the detailed behaviors of the mixture of water and regolith grains have not
yet been revealed. As discussed in Sect. 4.3.3, a dense suspension (mixture of liquid
and grains) exhibits peculiar rheological properties.
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Fig. 5.6 (a) Micro crater approximately 5�m in diameter and surrounded by an approximately
5�m spall zone. This micro crater was observed on an Apollo 11 glass sphere [12] (Credit:
NASA). (b) Micro craters found on the surface of Itokawa’s grain. Ol means olivine substrate.
The typical diameter is approximately 200 nm, and the craters are surrounded by seven or eight
spherical bumps at the rim (After [13])

Micro crater Tiny craters were also observed on planetary samples as a counter-
part to huge craters. All the crater shapes mentioned thus far are large-scale shapes.
Because of the finite resolution limit of the exploration of planetary surfaces, we
usually focus on large impact craters. Of course, large craters are important because
they must be produced by high-energy impacts. Evidently, large-scale impacts affect
the history of planets much more significantly than small-scale impacts. Thus, it is
natural to focus on large impact craters. However, we can also examine microscopic
craters. Micro craters were observed on samples that returned from space. The
returned samples can be examined very carefully using accurate instruments such
as scanning electron microscope (SEM). Then, the measurement resolution limit
can be below the micrometer scale. Through such careful inspections, some micro
craters have been located in the returned samples.

An example of micro craters comes from the Moon. In Fig. 5.6a, an SEM image
of a micro crater (Dc D 5�m) observed on the Apollo 11 glass sphere is shown [12].
One can observe a bowl-shaped central pit surrounded by a larger depression called
a spall zone.

Another example was observed on grains that returned from the small asteroid
Itokawa. The Japanese spacecraft Hayabusa collected tiny grain samples from the
asteroid Itokawa. On the surface of the grains, micro craters were observed [13].
Figure 5.6b shows photos of Itokawa’s micro craters. The typical diameter is
approximately 200 nm, and the structure is quite different from the micro craters
on the Moon. The wavy structure caused by seven or eight spherical bumps can be
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observed on the rim of Itokawa’s micro craters. This wavy structure again recalls
the milk-crown-like hydrodynamic instability similar to the ray crater case. For the
ray crater structure, it was difficult to consider the surface tension effect because the
ray crater is extremely large. The upper limit length scale of surface-tension-related
phenomena can be estimated by the capillary length (Eq. (2.99)), which is usually on
the millimeter scale on the surface of the Earth and is related to gravity as g�1=2. This
length scale is sufficiently large for the micro craters considered here. Therefore,
surface tension could play a role in micro crater formation. In Sect. 6.6, the fingering
instability of impact splashing will be discussed. However, the situation is not so
simple. For the hydrodynamic impact, the crater rim structure will be relaxed in a
short time. It is difficult to freeze the structure of the wavy rim such as in Fig. 5.6b.
Moreover, the target cannot be a simple viscous fluid. Complex rheological behavior
such as the Bingham model may need to be considered. A possible and naive
scenario for the wavy micro crater formation is as follows. The target is molten
by the impact-induced heat, and the impact causes a wavy rim structure because
of hydrodynamic instability. Then, the structure is frozen by the solidification due
to the cooling-down and energy dissipation of the target rim. According to this
naive scenario, various rheological regimes (from hard to soft) of the target material
must contribute to the structure formation, and therefore, all these regimes must
be understood to fully explain this structure. In particular, the soft impact regimes
are crucial. To discuss the origin of the wavy rim structure of the micro craters,
systematic studies of impact cratering with various soft matters are necessary. Some
seemingly relevant soft impact experiments will be introduced in the next chapter.
Much more systematic and exhausted investigations for the soft impact cratering
phenomena are one of the most important future problems for understanding the
micro crater structure.

5.2 Population of Craters

The size of planetary craters ranges at least from 100 nm to 1;000 km. We cannot
actually observe the intermediate scale craters because of the resolution limit
of explorations. The usual lower limit of the length scale of exploration data
is approximately 10m in the current remote-sensing database. Sub-millimeter-
scale micro craters can only be observed in samples that returned from space.
Some centimeter to meter scale craters have also been observed in porous lunar
regolith [1]. However, the observed number of micro- and intermediate-scale craters
is very small. Even then, the scale of craters still ranges over approximately five
orders of magnitude in the larger regime. Natural questions concerning such a
widely ranging distribution can be raised as follows. How can we characterize
the crater size-frequency distribution? Furthermore, is there a characteristic size?
To answer these questions, the crater size-frequency distribution is measured by
direct crater counting of the photos of planetary surfaces. In general, the measured
crater size-frequency distribution is almost self-similar (power law). The cumulative
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number Ncum of craters with diameter equal to or greater than Dc per unit area is
simply approximated by

Ncum D cc.t/D
�bc
c ; (5.1)

where cc.t/ and bc are parameters characterizing the crater size-frequency distribu-
tion. While the distribution can be globally approximated by a simple power-law
form such as Eq. (5.1), it is slightly different from the exact power-law distribution.
Note that Ncum denotes the cumulative number of craters per unit area. Thus, the
dimension of Ncum is ŒNcum� D L�2. In other words, cc.t/ has a dimension of Lbc�2,
i.e., it becomes dimensionless only when bc D 2. To analyze the population of
craters, logarithmic binning is usually adopted because Ncum approximately obeys
the power-law form. The number of craters whose diameters are in the range from
Ds to

p
2Ds is

N.Ds;
p
2Ds/ D Ncum.Ds/� Ncum.

p
2Ds/ D cc.t/

�
1 � 2�bc=2

�
D�bc

s : (5.2)

In this form, bc represents the local power-law exponent in the range of .Ds;
p
2Ds/.

Local properties of the crater population statistics can be quantified by a so-called
R plot, which is defined by

R D hDci3geo

Dl � Ds
N.Ds;Dl/; (5.3)

where hDcigeo is the geometric mean of the crater’s diameter, and Dl indicates the
upper limit (maximum value) of the crater’s diameter. Note that R is a dimensionless
value. By substituting Dl D p

2Ds and hDcigeo D 21=4Ds, R in the range of
.Ds;

p
2Ds/ is written as R.Ds/ D Œ23=4=.

p
2 � 1/�D2

s N.Ds;
p
2Ds/. The value

of R represents the degree of the surface coverage by craters. The fraction of the
surface covered with craters in the diameter range .Ds;

p
2Ds/ can be approximately

computed by fc.Ds/ ' .�=4/
p
2D2

s N.Ds;
p
2Ds/. Because N.Ds;

p
2Ds/ is the

number of craters per unit area, fc.Ds/ is dimensionless and becomes unity when
the surface is completely covered with craters. By comparing the coefficients, R.Ds/

and fc.Ds/ are related as

R.Ds/ ' 3:66fc.Ds/: (5.4)

Using Eq. (5.2), R.Ds/ becomes

R.Ds/ D 23=4
�
1 � 2�bc=2

�
p
2 � 1

cc.t/D
2�bc
s : (5.5)

Therefore, if bc D 2 is always satisfied, R.Ds/ becomes constant irrespective of Ds.
The constant value is determined by the surface age t through cc.t/. The concrete
estimation method of the surface age is briefly discussed later.
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If the planetary surface is exposed to meteor bombardments for a sufficiently long
time, Ncum distribution may reach a geometric saturation. The saturated cumulative
distribution Ncum;sat is written as [11, 14]

Ncum;sat D csatD
�2
c ; (5.6)

with a dimensionless parameter csat D 1:54. Note that Ncum;sat is a function of the
crater diameter Dc. This saturation is geometrically related to the two-dimensional
random close packing (RCP) problem. Because the crater shape is almost circular,
it is difficult to completely fill the surface with craters (circles). According to hard
disc packing, the densest packing fraction achieved in a bidisperse system is 0:84˙
0:01 [15], which suggests that the value of fc at geometric saturation should be 0:84.
The coverage factor fc at geometric saturation is analytically calculated to be2

fc D
Z Ds

p
2Ds

�

4
D2

c

dNcum;sat

dDc
dDc D

h
��
2

csat ln Dc

iDs

p
2Ds

D � ln 2

4
csat: (5.7)

Inputting csat D 1:54 into Eq. (5.7), we obtain the two-dimensional RCP value,
fc D 0:84. The ideal geometric saturation coincides with the RCP of the craters
circles. If we assume that all the craters have the same diameter, the maximum value
of fc is

p
3�=6 ' 0:9069; then, the corresponding csat is 1:67. However, the actual

crater’s cumulative distribution reaches equilibrium at a few % of the ideal csat. That
is, the actual equilibrium is attained much faster than the geometric saturation limit.
At equilibrium, another relation,

Ncum;eq D ceqD�2
c ; (5.8)

is satisfied. According to the detailed numerical simulation, the dimensionless
value of ceq depends on the distribution of the impactor population [16]. After the
equilibration, the cumulative number of craters no longer varies, and reaches a type
of steady state. In this equilibrium state, the rate of newly added craters is in balance
with the rate of erasure of craters. If the cratered area is resurfaced for some reason
such as volcanic lava flow, that area is reset in terms of the cratered age.

The effect of equilibration can be detected from the crater counting data by the
deflection of Ncum.Dc/. The ideal crater production is approximated by Eq. (5.1);
however, the equilibrated distribution obeys Eq. (5.8). By equating these relations,
the equilibrium crater diameter Deq.t/ is calculated to be

Deq.t/ D
�

cc.t/

ceq

� 1
bc�2

: (5.9)

2More precisely, the logarithmic binning with a constant rate B yields d logB Dc D dDc=Dc ln B.
However, this factor is canceled out in Eq. (5.7).
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Fig. 5.7 Cumulative distribution Ncum of craters equal to or larger than Dc. The crater density
equilibrium is attained much below the ideal geometric saturation level. At a certain time t1, the
observed Ncum shows a deflection at Deq.t1/. This deflection point grows as time passes. Its growth
manner follows Eq. (5.9). Because the case of bc > 2 is considered here, the equilibration affects
the number of small craters; and thus, t2 is greater than t1 in this plot

If we assume the constant bombardment rate cc.t/ / t, the equilibrium diameter
grows as Deq.t/ / t1=.bc�2/. The qualitative behavior of Deq.t/ varies depending
on the bc value: bc > 2 or bc < 2. When bc > 2, the equilibration affects the
number of small craters. As observed in Fig. 5.7, the distribution by real production
can be directly observed only in the large crater regime, Dc > Deq.t/. Because
Deq.t/ is an increasing function of time t, the equilibrated regime grows as time
increases. If bc D 2, the entire distribution simultaneously reaches equilibrium.
Thus, no deflection is observed under this particular condition, bc D 2. When bc is
less than 2, the situation is slightly complicated. The qualitative behavior becomes
opposite to the case of bc > 2. Deq.t/ is a decreasing function of time in this regime,
and the larger craters are affected by the equilibrium. However, the large crater
formation events rarely occur. Additionally, a very large crater formation causes
the obliteration of many small craters. Thus, equilibrium evaluation becomes very
difficult because of the large uncertainty in the bc < 2 regime.

An example of the local crater counting on the Moon is shown in Fig. 5.8 [17].
In Fig. 5.8, cumulative size-frequency distributions of four different regions are
indicated by the data points. While all of these data exhibit a similar trend, the crater
density cc.t/ depends on the region of interest. The offset due to the variation of
cc.t/ originates from the difference in the age at each counted region. Evidently, the
younger region should be covered with less craters. Thus, cc.t/ becomes small in the
young region, which implies that the number density cc.t/ can be a chronological
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Fig. 5.8 Cumulative size-frequency distribution of craters counted on the continuous ejecta of
four young craters: Giordano Bruno, Byrgius, Moore, and Necho. The isochrons are calculated
from Neukum’s lunar standard size-frequency distribution and cratering chronology curve [18].
The gray zone indicates an equilibrium level that corresponds to 3–7 % of the geometric saturation
(Reproduced from Ref. [17] by permission of John Wiley & Sons Ltd.)

indicator. Therefore, cc is denoted by a function of time. Note that this “craters
clock” is reset when the region is completely resurfaced by volcanic lava flood, and
so on. We can estimate the relative age of the focused region by this offset, namely,
by the number density of craters in the region. This method can be used as long
as the number density of craters is not equilibrated. To determine the absolute age,
calibrations by the actual samples, for which the absolute age is measurable, are
required.

From systematic crater counting studies, the standard size-frequency distribution
for lunar craters was obtained [18]. To obtain the standard distribution, numerous
local distribution curves should be normalized to the cc.t/ value. If the normalized
curves are collapsed to a unified distribution curve, the distribution will be the
standard distribution. Isochrons in Fig. 5.8 are computed from the form of the
standard distribution and the calibrations with the absolute age. A key assumption
to obtain the standard distribution curve is that the distribution form is independent
of the era. The steady (time-independent) size-frequency distribution form for
the craters production is assumed. The time dependence appears only in cc.t/.
Therefore, the local surface age can be estimated from the crater counting data
simply from the number density of craters cc.t/.

At present, the absolute age calibration has been possible only for the Moon. In
the calibration process, the collision rate as a function of time can be obtained for the
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Moon by comparing the craters number density with the absolute age. For Mars or
other astronomical objects, the crater counting isochrons must be modeled from the
lunar data or other modeling. For instance, Ref. [19] addresses the crater counting
chronology for Mars. The frequency of impact events can be estimated from the
population of asteroids by simply assuming the Poisson process. To estimate the
crater production rate, the conversion from the impactor’s size-frequency distribu-
tion to the resultant crater’s size-frequency distribution is necessary. The scaling and
dimensional analysis provide a powerful tool for this purpose. Therefore, the crater
scaling based on the ˘ -groups method is introduced later in Sect. 5.5.

The crater chronology is now widely used to discuss the phenomena that
occurred on the planetary surfaces. The population of craters and evaluated collision
history are valuable information to uncover the history of the solar system. In
this book, however, we will focus mainly on the impact mechanics and crater
morphology rather than the population and statistics. Thus, only the basic idea of
crater chronology has been briefly reviewed here. See, e.g., Ref. [20] for more details
on crater chronology.

5.3 Mechanics of Planetary Impact Cratering

Next, we continue the discussion of the hypervelocity impact cratering mechanics
which is relevant to the planetary cratering. Planetary (hypervelocity) impact cra-
tering mechanics can be classified into five stages: (i) contact and compression, (ii)
excavation, (iii) modification, (iv) ejecta deposition, and (v) degradation. Because
the hypervelocity impact cratering occurring on a planetary surface is a sequential
event, these stages are not clearly separated and instead overlap and interact with
each other. However, the cratering is too complex to be analyzed by a compact single
process. In general, the event is divided into these stages for brevity. The phenomena
that occur in each stage are briefly introduced in this section. The standard scenario
of hypervelocity impact cratering introduced in this section is mainly based on
Refs. [1, 11].

5.3.1 Contact and Compression

The first stage of impact cratering is contact and compression. When a hypervelocity
impactor strikes a surface of a target planet, shock waves are induced both in
the target and impactor. Using a set of governing equations called Hugoniot
equations and some approximations, one can estimate the pressure and temperature
(internal energy) attained by the impact. The duration of shock loading can also
be estimated; this duration corresponds to a characteristic timescale of the contact
and compression stage. Hugoniot equations correspond to the conservation laws of
mass, momentum, and energy between the shocked and unshocked states.
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Fig. 5.9 Definitions of parameters in the Hugoniot equations. Simple one-dimensional shock wave
propagation and material compression (planar shock approximation) during t2 � t1 are modeled.
By considering the mass, momentum, and energy conservation laws, the Hugoniot equations can
be derived as Eqs. (5.12), (5.13), and (5.20)

Let us derive the Hugoniot equations. The considered setup and notations of
parameters are shown in Fig. 5.9. Let p0, �0, and e0 be the pressure, density, and
internal energy per unit mass in an unshocked state. These values suddenly increase
to p, �, and e because of the shock wave propagation of the velocity Ush. The
actual motion’s velocity of the shocked material (particle velocity in the shocked
state) is defined as up. Here we consider the planar wave approximation, i.e., one-
dimensional propagation of the shock wave through a unit of area A is considered.
At time t D t1, the length of the unshocked and shocked states are denoted as l0 and
l, respectively. Because of the shock wave propagation, these lengths become l00 and
l0 at t D t2. From the geometrical conditions, the lengths should satisfy

l00 � l0 D �Ush.t2 � t1/; (5.10)

l0 � l D .Ush � up/.t2 � t1/: (5.11)

In this setup, the mass conservation law is written as A
�
�.l0 � l/ D ��0.l00 � l0/

	
.

Using Eqs. (5.10) and (5.11), the first Hugoniot equation is obtained from the mass
conservation law as

�.Ush � up/ D �0Ush: (5.12)

The momentum transfer is written as A
�
�up.l0 � l/ D .p � p0/.t2 � t1/

	
. Using

Eq. (5.11), this relation is rewritten as �up.Ush � up/ D p � p0. Then, substituting
Eq. (5.12) to this relation, one can obtain the second Hugoniot equation as follows:
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�0upUsh D p � p0: (5.13)

Equations (5.12) and (5.13) can be transformed into

Ush D 1

�0

s
.p � p0/

�
��0

.� � �0/
�
; (5.14)

up D
s
.p � p0/

�
1

�0
� 1

�

�
: (5.15)

The energy conservation is written as Etot.t2/�Etot.t1/ D pAup.t2�t1/, where Etot

is the total energy (not per unit mass) of the system. The right-hand side corresponds
to the work performed during t2 � t1. The total energy is computed by the sum of
the internal energy and the kinetic energy as

Etot.t1/ D �0l0e0A C �leA C 1

2
�lu2pA; (5.16)

Etot.t2/ D �0l
0
0e0A C �l0eA C 1

2
�l0u2pA: (5.17)

Using Eqs. (5.16), (5.17), (5.10), and (5.11), the energy conservation law is
expressed as

�e.Ush � up/C 1

2
�u2p.Ush � up/� �0e0Ush D pup: (5.18)

Applying Eq. (5.12), we obtain a relation

e � e0 D pup

�0Ush
� 1

2
u2p: (5.19)

Substituting Eqs. (5.14) and (5.15) into Eq. (5.19), we finally obtain the third
Hugoniot equation

e � e0 D 1

2
.p C p0/

�
1

�0
� 1

�

�
: (5.20)

These three equations (Eqs. (5.12), (5.13), and (5.20)) are useful for evaluating the
hypervelocity impact phenomena.

However, these equations are not sufficient to derive all the required quantities.
Generally, some additional equations or approximations are employed to estimate
the quantities. For instance, Ush is frequently approximated by

Ush D Cs C Spup; (5.21)
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where Cs and Sp are the sound speed and a dimensionless coefficient, respectively.
These values are material-dependent and can be determined by calibration exper-
iments. In this sense, the relation (Eq. (5.21)) is an empirical approximation. In
contrast, the Hugoniot equations are based on the conservation laws. Conservation
laws are the very fundamental bases in physics. Note that, however, the Hugoniot
equations do not include the thermodynamic principle.

Using these equations, the contact and compression stage are partially under-
stood [1]. Both the impactor and target have a set of corresponding quantities (p, �,
e, up, Ush). Because the values in the unshocked state are measurable or guessable,
only the shocked state quantities are regarded as unknown variables. Thus, there are
10 unknown variables in the system. However, there are only 4 governing equations
(Eqs. (5.12), (5.13), (5.20), and (5.21)) for both the impactor and the target, i.e.,
there are 8 equations in total. Therefore, we need 2 additional constraints to solve
the problem. Usually, the relations

pp D pt (5.22)

and

v0 D upp C upt (5.23)

are used as additional constraints for the shocked states (impedance matching).
The former equation (Eq. (5.22)) indicates the pressure equivalence between the
impactor (pp) and the target (pt). The latter equation (Eq. (5.23)) indicates that
the impact velocity v0 is partitioned into the particle velocity of the impactor
upp and that of the target upt. We assume that v0 is measurable. Using these
relations, relevant quantities of the shocked state can be computed. In addition, one
can estimate the attained temperature caused by the impact using thermodynamic
relations [1, 11, 21]. The attained pressure and temperature are fundamental and
necessary information to discuss the phenomena that occur because of the impact.

The contact and compression stage generated by the shock wave propagation
in the impactor lasts until the impactor is unloaded. When the impact-induced
compressive shock wave reaches the rear surface of the impactor’s body, it is
reflected back as a rarefaction wave. The impactor is unloaded by the propagation
of the rarefaction wave. Thus, the duration of the contact and compression stage is
estimated as

tcc D Di

Ush
C �0

�

Di

Cr
; (5.24)

where Di and Cr are the impactor’s diameter and the rarefaction wave
velocity, respectively. The rarefaction wave speed Cr is approximated by
Cr D p

ŒK0 C npp�=� [1], where K0 and n are the bulk modulus and material-
dependent constant, respectively. The first term in Eq. (5.24) corresponds to
the contact timescale, and the second term originates from the rarefaction wave
propagation time.
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In the near-surface zone, the reflected rarefaction wave interferes with the direct
compressive shock wave. This effect may produce a spall zone, as observed in the
lunar micro crater (Fig. 5.6a).

5.3.2 Excavation

After the initial contact and compression stage, the shock wave can still propagate
and attenuates in the target. During this stage, the crater cavity is dug and the
ejecta is released. As long as the shock wave is the principal effect for excavation,
the diameter of resultant crater is considerably greater than that of the impactor,
which contrasts with the low-velocity loose granular impact case, where the crater
diameter is comparable to that of the impactor [22, 23] because the ejecta is driven
by momentum transfer rather than the shock wave.

In this excavation stage, the shock pressure plays the most important role in
the hypervelocity planetary impact cratering. The shock pressure attenuation is
empirically written as

p / r
�˛p
p ; (5.25)

where rp and ˛p are the distance from the impact point and the characteristic
exponent (1 � ˛p � 3), respectively. The elastic limit corresponds to3 ˛p D
1 (geometric attenuation), and the high pressure (large released energy) limit
corresponds to4 ˛p D 3.

During the excavation stage, seismicity is also induced. The seismic energy
Eseis caused by the impact of the kinetic energy Ekei is approximately written as
Eseis D 	seisEkei [24], where 	seis is the impact seismic efficiency factor by which
Ekei is ultimately converted into the seismic vibration energy Eseis. The moment
magnitude Mm and Eseis are related as log10 Eseis D 4:8 C 1:5Mm [25]. Combining
these equations and assuming a typical value 	seis ' 10�4, the seismic moment
magnitude induced by the impact can be estimated to be Mm D 0:67 log10 Ekei�5:87.

Excavation flow is caused by the propagation of shock waves in the target and
results in ejecta splashing when the flow reaches the surface of the target and its
energy is sufficiently large for the departure. Note that this ejection mechanism is
different from the spallation discussed previously in this section. As already dis-
cussed, the excavation flow by hypervelocity impact is not driven by the impactor’s
momentum in contrast with the low-velocity loose granular impact. The pressure

3The spherical wave equation is written as @2.rpp/=@t2 D .1=C2
s /.@

2.rpp/=@r2p/. Thus, the traveling
wave solution is obtained as p / .1=rp/Œp.rp � Cst/ C p.rp C Cst/�. More intuitively, the wave
energy on the spherical surface (4�r2p ) is constant, and the wave amplitude is the square root of the
energy. Thus, the distance attenuation of the spherical wave is proportional to 1=rp.
4The released energy is simply distributed to the volume r3p . In this case, the pressure (stress) should
be regarded as the energy per unit volume (Eq. (2.129)).
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gradient drives the excavation flow. Trajectories of the excavation flow have been
studied mainly by kinematic methods. Assuming that the excavation flow speed
ur at rp satisfies ur / r�Z

p , the geometry of the excavation flow can be computed
analytically for an incompressible target [26]. According to this so-called Z-model,
the most realistic 45ı ejection angle [27–29] is explained by Z D 3. The isotropic
radial velocity field can be expressed by Z D 2, which is a type of inverse-square
law. The Z value actually depends on the phase of crater growth [30]. Moreover,
the granular low-velocity impact produces 56ı ejecta splashing (Sect. 6.2.2). The
ejected debris forming a radial sheet-like structure is called the ejecta curtain. In the
excavation stage, the transient crater depth and diameter grow as / t0:4 [31].

5.3.3 Ejecta Deposition

Most of the portion of ejecta created by the released excavation flow finally
sediments around the crater. A part of ejected debris whose velocity exceeds the
escape velocity does not return back onto the surface of the target body but moves
away from the target body. Such debris is a possible source of meteoroids. The ejecta
deposition process leaves a structure called the ejecta blanket. The thickness of the
ejecta blanket is empirically known to be inversely proportional to the cube of the
horizontal distance from the center of the crater r, e.g., the ejecta thickness zeje of
lunar craters can be approximately modeled by the expression [32]

zeje / D0:74
c

�
Dc

r

�3:0
: (5.26)

This r�3 profile can be understood by the volume conservation between the cavity
and ejecta rim (Eq. (6.4) in Sect. 6.1.1).

The ejecta deposition process affects the surface landform around the crater.
Sufficiently large or fast debris makes secondary craters when it impacts back on
the target surface (Fig. 5.10a). No systematic algorithm is available to recognize the
secondary craters while they often appear as clusters, streams, or chains, as observed
in Fig. 5.10a. Their shape becomes peculiar if they are created far from the original
crater. The structure of secondary craters might be related to the inhomogeneity of
the ejecta curtain. If the ejecta include liquid content, a petal-like ejecta blanket
(a rampart crater structure, Fig. 5.5) could be produced, as discussed in Sect. 5.1.
The rampart crater has an irregular but somehow isotropic shape. An anisotropic
ejecta blanket can also be observed as shown in Fig. 5.10b (asymmetric crater). The
asymmetry of the crater and its ejecta flow is related to the angle of the oblique
impact. When �imp is below 30ı, asymmetric ejecta deposition can be observed; a
wedge structure is formed in the up-range direction (Fig. 5.10b). At very low angle
impact (�imp < 10ı), even butterfly-like ejecta with an elliptic crater shape can
be observed. As discussed before, the ray structure can be observed in a certain
class of craters (Fig. 5.4). The ray crater is most likely formed during the ejecta
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Fig. 5.10 (a) Example picture of a chain of secondary craters on the Moon taken by Lunar
Reconnaissance Orbiter. The length of this chain is approximately 4:5 km and the largest crater
is 340m in diameter. The secondary craters can be recognized by this form of clustering of
craters (Credit: NASA). (b) An example of an asymmetric crater on the Moon taken by Lunar
Reconnaissance Orbiter. The diameter of this crater is approximately 140m (Credit: NASA)

deposition stage. All these peculiar ejecta blanket shapes must be related to ejecta
deposition dynamics. However, the understanding of the details of ejecta deposition
dynamics is limited. The instability of and associated pattern formation for ejecta
flow deposition processes are crucial subjects to be investigated to advance the
understanding of various ejecta blanket shapes.

5.3.4 Modification

Indeed, the crater’s cavity formed during the excavation stage is transient. The struc-
ture of the crater is significantly modified after the excavation. This modification is
mainly driven by the gravitational force. For example, landslides could occur at
the side wall of the crater. The crater shape would be modified until it becomes
stable. Because of this shape relaxation, a sedimentary layer called a breccia lens is
formed in the original crater’s cavity (Fig. 5.11). Before the modification, the depth
of the crater is considered to be approximately 1=2:7 of the crater diameter [1].
The ratio varies approaching 1=5 by modification toward the simple crater. For
complex craters, more complex modifications must be considered, e.g., phase
transitions could be a crucial process. The terrace wall structure is also formed by
the gravitational shape relaxation. The transient crater can expand by the terrace
formation. As mentioned before, some complex craters have central peaks, and
others have peak-rings or central pits. The specific origins for these structures have
not yet been well understood. To discuss the viscosity-induced cavity collapse for
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Fig. 5.11 Modification process of a simple crater. First, the transient cavity is formed by the
excavation process. The crater side wall is unstable and impact-induced acoustic fluidization or
another trigger causes its collapse. Finally, the modified crater shape is obtained with a breccia
lens. Complex craters must also be affected by more complex modifications such as the phase
transition and terrace formation

the origin of the central peak structure, the target must be well-fluidized to achieve a
sufficiently low (effective) viscosity.5 Furthermore, a geological study of the impact
crater on the Earth revealed the clear central uplift even in a relatively deep region
beneath the crater [33], which indicates that the central peak originates from uplift
rather than cavity collapse. Perhaps the central peak can be produced by an elastic
rebound [34]. Discussion regarding the origin of the central peak structure is still
controversial.

In large-scale cratering, the fluidization effect must be considered. As a result
of large-scale impact, numerous impact melts and fragments would be produced.
Furthermore, vibration would be induced by the impact. Thus, the crater site will
consist of a mixture of grains and melt under vibration. Then, the crater site must
be fluidized as discussed in Sect. 3.9. This effect is called acoustic fluidization (see
the next section for the detail) [1, 11, 35, 36]. By means of dimensional analysis,
two dimensionless numbers, �tgDh=Yc and �tg1=2D

3=2
i =	, were used to classify the

impact cratering using Bingham model rheology [35]. The former represents the
ratio of the hydrostatic pressure and yield stress. A similar form will be discussed
later in Eq. (5.44). The latter corresponds to the balance between gravity and
viscosity (see Eq. (4.31)). These numbers represent the dimensionless forms of
two effects in the Bingham model: strength and viscosity. However, it is unclear
whether the fluidized regolith behaves like a Bingham model fluid. A detailed
rheological study of acoustically fluidized regolith layer is a necessary step to clarify
the possible effect of the acoustic fluidization. Table-top granular experiments have

5For a viscous target, the central jet formation occurs when its viscosity is less than
�3=2�tg1=2D

3=2
c [1].
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revealed that the granular behavior is considerably affected by the vibration even if
its amplitude is very small (Sect. 4.2.4). However, the similarity between vibrated
granular matter and acoustic fluidization of regolith remains qualitative. Moreover,
the complex rheological behavior of fluidized grains might also be responsible for
the rampart crater formation. The experimental system should be designed with
the concept of similarity modeling (Sect. 2.8) to obtain further relevant quantitative
relations among them, which is a challenging future problem.

As already discussed in Sect. 3.6.3, the frictional rheology of the granular flow is
partly similar to the Bingham model. However, much more detailed and quantitative
assessments of this problem are necessary to draw conclusions concerning the
mechanics in the crater modification stage. In the next chapter, some table-top
experiments of soft impact will be introduced to discuss possible relations to various
craters.

5.3.5 Degradation

Similar to all other constructions, craters cannot maintain their shape forever. After
its creation, a crater must be gradually degraded by some effects, such as neighbor
impacts, volcanism, and erosion. If a very large impact event occurs in the vicinity
of already existing craters, the craters might be completely obliterated. At least, the
crater must be degraded by ejecta, acoustic fluidization, and melt flow caused by
the impact. Cosmic-ray exposure can also degrade the appearance of craters. Sharp
structures such as rays and rims have been degraded step by step since a crater was
formed, which suggests that we might be able to speculate how old the crater is from
the degree of degradation.

It is difficult to find impact craters on the Earth. Evidently, weathering and
erosion by air and water eliminates craters on the Earth much faster than on
other airless (and waterless) planets. The rate of degradation strongly depends
on various conditions and the surrounding environment. Thus, the environmental
conditions might also be estimated from the degradation. However, actual physical
properties such as surface viscosity and strength are required to quantify the degree
of degradation. The obliteration of craters due to the impact-induced acoustic
fluidization and global seismic shaking are examples of quantitatively assessable
degradation. Thus, the effects of the local acoustic fluidization and global seismic
shaking are discussed in the next section.

5.4 Acoustic Fluidization and Seismic Shaking Induced
by Impact

Astronomical-scale impact induces not only cratering but also seismicity. As
discussed in the previous section, some portion of the impact energy 	seisEkei

is transmitted to the seismic energy. Although direct measurements of seismic
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activities are limited only to the Earth or the Moon,6 we can imagine that seismicity
plays an important role particularly when the target object is small. For a very small
asteroid, the gravitational acceleration can be extremely small. For instance, the
surface gravitational acceleration on the asteroid Itokawa is as low as gI ' 10�4
m/s2 [37, 38]. In such a microgravity environment, global seismic shaking as well
as local acoustic fluidization might be induced by the impact. In fact, the effect
of global seismic shaking was estimated for Eros [39, 40] and Itokawa [41] by
compiling the results of numerical simulations, observations, and experiments into
a unified model. According to the model, impact craters are erased through regolith
migrations induced by impacts. Itokawa’s impact craters are very indistinct most
likely because of this seismic erasure effect [6].

5.4.1 Acoustic Fluidization

The first topic discussed in this subsection is the local acoustic fluidization due
to the rarefaction by the acoustic wave. Dry rock debris might be fluidized by
strong acoustic waves. In general, debris can be agitated by acoustic waves if the
rarefaction effect is sufficiently large to disable the friction support. This effect
is called acoustic fluidization [1, 42]. Let � and �f be the density and static
friction coefficient of a homogeneous rock debris (granular) layer. At depth h, the
hydrostatic pressure p D �gh works as an overburden. According to the Coulomb
failure criterion (Eq. (3.47)), the static granular layer is stable as long as the shear
stress �s satisfies the criterion

�s � .p � Sr/�f ; (5.27)

where Sr is the rarefaction peak by the acoustic wave.7 When Sr is greater than the
critical value, Sc D p � �s=�f , a slip (flow) can be induced.

First, the strain � caused by the mean shear stress Q�s that acts on the bulk layer is
estimated. The elastic constitutive law (Eq. (2.18)) is adopted to compute the strain.
In addition, a simple isothermal relation between the elastic modulus G and the
bulk sound speed Cs is assumed Cs D p

G=�. Then, the strain is computed as � D
Q�s=�C2

s . In general, the acoustic field does not result in a steady rarefaction stress
but one that fluctuates in time. The fluidization is induced only when Sr exceeds Sc.
Therefore, by denoting the probability of Sr 	 Sc as P.Sr 	 Sc/, the net strain �net

is written as

6Although the seismometer mounted on the Viking landers tried to detect the seismic events on
Mars, the data were too noisy.
7This criterion is similar to that in the liquefaction case. In the liquefaction case, Sr corresponds to
the interstitial fluid pressure.
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�net D Q�s

�C2
s

P.Sr 	 Sc/: (5.28)

The value of Q�s is somewhat larger than the applied stress �s because the effective
volume to support the energy density by the applied stress8 is reduced by the
rarefaction. On average, the fraction of available volume is estimated to be .1 �
P.Sr 	 Sc//. Therefore, the mean stress can be approximated as Q�s ' �s=.1�P.Sr 	
Sc//. Substituting this relation to Eq. (5.28), we obtain

�net D �s

�C2
s

�
P.Sr 	 Sc/

1 � P.Sr 	 Sc/

�
: (5.29)

The strain rate and corresponding viscosity can also be approximately estimated.
To evaluate the net strain rate P�net, a characteristic timescale is introduced by the
wavelength � divided by Cs, �=Cs. Then, the net strain rate is computed as

P�net D �net

�=Cs
D �s

��Cs

�
P.Sr 	 Sc/

1 � P.Sr 	 Sc/

�
: (5.30)

Using the viscous constitutive relation (Eq. (2.17)), the effective viscosity 	 can be
calculated as

	 D ��Cs

�
1 � P.Sr 	 Sc/

P.Sr 	 Sc/

�
: (5.31)

Equation (5.31) is derived only for a single wavelength �. In general, the acoustic
field could have a broad range of wavelengths. For a more precise evaluation,
therefore, all the relevant wavelengths and their couplings must be considered.

Furthermore, the specific form of P.Sr 	 Sc/ is unclear. A plausible approxima-
tion is the Gaussian probability density, p.Sr/dSr D exp.�S2r=2˙

2
s /dSr=

p
2�˙s,

where ˙s denotes the standard deviation of the distribution. Then, P.Sr 	 Sc/ can
be computed as

P.Sr 	 Sc/ D
Z 1

Sc

p.Sr/dSr D 1

2

�
1 � erf

�
Scp
2˙s

��
: (5.32)

Here the definition of the error function, Eq. (3.35), was used. For further simplifica-
tion, the simplest assumption that both Sc and˙s are proportional to the overburden
pressure �gh, is employed. Then, the argument of the error function becomes a
constant, Sc=

p
2˙s ' fs, where fs is some constant. Finally, the viscosity by the

acoustic fluidization is approximated as

8Note that the stress can be regarded as the energy density (Eq. (2.129)).
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	 D ��Cs

2

�
1C erf.fs/

1� erf.fs/

�
: (5.33)

Although this formulation of the acoustic fluidization is based on many assumptions
and parameters, it could be helpful to estimate how dry rock debris move and to
speculate the resultant landforms.

5.4.2 Global Seismic Shaking

Next, the basic framework of global seismic shaking and the resultant crater erasure
are discussed in this subsection. When a small astronomical object is subjected to an
impact, its entire body might be shaken by the impact. The maximum acceleration
amax of the impact-induced global seismic shaking can be estimated by considering
the energy balance. The kinetic energy of the impactor Ekei is

Ekei D �

12
�iD

3
i v
2
0; (5.34)

where �i, Di, and v0 are the density, diameter, and velocity of the impactor,
respectively. In contrast, the vibrational energy induced in the target object Evib can
be computed using the maximum acceleration amax and the frequency f :

Evib D �

12
�tD

3
t v
2
vib D �tD3

t a2max

48�f 2
; (5.35)

where �t, Dt, and vvib D amax=2�f are the target density, diameter, and maximum
vibrational speed, respectively. Here the impact seismic efficiency factor 	seis is used
to estimate the vibrational energy Evib. Then, the relation Evib D 	seisEkei yields

amax D 2�fv0

s
	seis

�
�i

�t

��
Di

Dt

�3
: (5.36)

This value is the maximum acceleration attained by the impact-induced global
seismic shaking. Note that this amax is achieved in the whole body. Thus, this effect
is called the global seismic shaking. To compare amax with the surface gravitational
acceleration, we use a relation g D 2�GDt�t=3, where G D 6:67�10�11 m3/kgs2 is
the gravitational constant. Then, the ratio between the vibrational and gravitational
accelerations � defined by Eq. (3.67) is calculated as

� D aamx

g
D 3fv0

G

s
	seis

�i

�3t

D3
i

D5
t

: (5.37)
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In principle, we can estimate the maximum acceleration of the global seismic
shaking using this equation. Note that both the impactor and target are assumed
to be spheres to obtain the above result. Additionally, the value of 	seis and the
dominant frequency f induced by the impact cannot be determined solely by this
form. Actually, 	seis ranges from 10�1 to 10�6 depending on the experimental
conditions ([40] and references therein). As a typical value for Eros or Itokawa,
	seis D 10�4 or 10�6 has been used. For the dominant frequency, Richardson
et al. performed numerical simulations of the seismic wave propagating in a
heterogeneously fractured object [40]. These researchers found that the dominant
frequency is distributed at approximately 5–50 Hz.

The attenuating diffusion of the seismic energy density must be considered to
model the realistic seismic shaking. The seismic energy density es is defined by the
vibrational energy per unit volume9 as follows:

es D �ta2max

8�2f 2
: (5.38)

In usual continua, a seismic wave propagates as a simple elastic wave; however, the
seismicity in astronomical objects might be slightly complex. The direct seismic
observation is limited to the Earth and the Moon. To date, other astronomical
objects have never been observed directly by seismometers. According to the lunar
seismicity, the observed seismic waveforms exhibited spindle-like shapes followed
by a long tail, which indicates highly diffusive propagation of the seismic energy
density with low dissipation [43]. In general, astronomical objects can be very
heterogeneous. Namely, there are many cracks, faults, and boundaries along the
course of the wave propagation. Thus, the elastic wave is scattered many times
at these boundaries, and the seismic energy density propagates similar to random
walks. Then, the propagation of the seismic energy density can be modeled by the
diffusion process (see the discussion near Eq. (3.29)). In such a situation, the diffu-
sion coefficient can be roughly estimated by Kd ' Cs�mfp=3 [40], where Cs is the
elastic wave propagation rate (bulk speed of sound), and �mfp indicates the mean free
path of the elastic wave.10 That is, �mfp corresponds to the average mutual distance
among inhomogeneous distributed faults and boundaries. Additionally, the dissipa-
tion of the propagating seismic energy density should be involved in the model. The
attenuating oscillation equation discussed in Sect. 3.4 is helpful for this purpose.

From the aforementioned considerations, the simplest model for astronomical
seismicity can be written as

@es

@t
D Kdr2es � 2�f

Q
es; (5.39)

9Note that this definition is different from the energy density per unit mass used in Sect. 5.3.1.
10The form of Eq. (3.28) can be obtained by assuming to D �mfp=Cs. The factor three comes from
the isotropic three-dimensionality.
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where Q is the seismic quality factor (Eq. (3.20)). In this model, Kd is related to the
transport rate of the seismic energy density, and 2�f=Q represents its dissipation
rate. These two factors determine how the target object is shaken by the impact-
based energy injection. The second term on the right-hand side of Eq. (5.39) simply
introduces the exponential decay of the energy density. By neglecting the first term,
we obtain a simple solution, es D e0 exp.�2�ft=Q/, where e0 is the initial seismic
energy density. Note that the attenuation factor exp.�2�ft=Q/ is dimensionless.

Using this dimensionless attenuation factor and the relation es / a2amx
(Eq. (5.38)), Eq. (5.37) is improved to the time-dependent form [41]

� .t/ D 3fv0
G

s
	seis

�i

�3t

D3
i

D5
t

exp

�
��ft

Q

�
: (5.40)

The timescale of the diffusive transport for distance Dt can be evaluated as �diff D
D2

t =�
2Kd [40]. This timescale indicates the duration for which the seismic energy

density diffuses to the whole body by a half wavelength (see, e.g., n D 1 in
Eqs. (3.41) and (3.42)). The dissipation during this timescale can be estimated as
2�f �diff=Q. Substituting �diff into t of Eq. (5.40), the strength of global seismic
shaking can be evaluated using this form. It was revealed for Itokawa that � .�diff/ >

1 is attained even by a small-scale impact (Di D 0:01 m) under the plausible
parameter values condition [41]. If � > 1 is satisfied all over the target object, the
global regolith convection might be induced. Although it remains quite uncertain
whether the global regolith convection is really possible, the criterion for the onset
of granular convection, � > 1 (Sect. 3.9.1), is indeed easily fulfilled on the surface
of Itokawa. In either case, surface regolith migration is somehow induced by global
seismic shaking.

Although nobody knows the actual values of Kd, Q, and f induced by the impact
to asteroids, we must estimate these quantities to model the seismicity caused by
the astronomical impact. Continuous efforts have been devoted to determining the
values of these parameters. For instance, hypervelocity impacts to a sand layer were
experimentally measured [44]; however, the details remain unknown. Richardson
et al. combined various types of observational data, experimental results, and
numerical simulations to estimate these values for the asteroid Eros [39, 40]. Similar
values were also used for Itokawa in Ref. [41]. The values estimated and employed
in these studies were Kd D 0:125–2:0km2/s, Q D 200–2000, and f D 5–100Hz.

As a next step, the degradation of crater profiles due to global seismic shaking
is considered. Because of the global seismic shaking, the crater morphology is
gradually degraded. The model of this degradation can also be written using another
diffusion equation. Specifically, the surface crater profile zcra is degraded obeying
the relation

@zcra

@t
D Krr2zcra; (5.41)
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Fig. 5.12 Two types of
diffusion models for
impact-induced seismic
shaking. (a) The propagation
of the seismic energy density
is modeled by an attenuating
diffusion (Eq. (5.39)) due to
the highly inhomogeneous
structure of the target object.
(b) The crater shape
relaxation is described by a
different diffusion equation
(Eq. (5.41)). Note that the two
diffusion coefficients Kd and
Kr are basically independent

b diffusive relaxation of crater shape

time

a diffusive propagation of seismicity

zcra

zcra

zcra

∂zcra
∂t

= Kr∇2zcra

∂es

∂t
= Kd∇2es − 2πf

Q
es

where Kr is a diffusion coefficient that represents the relaxation rate of the crater
profile. Note that the physical meaning of Kr in Eq. (5.41) is completely different
from Kd in Eq. (5.39). Equation (5.39) describes the diffusive propagation of
the seismic energy density. In contrast, Eq. (5.41) is a model of the diffusive
relaxation of the crater profile. This difference is schematically drawn in Fig. 5.12.
The diffusive relaxation of a bumpy profile is also demonstrated in Fig. 3.4. The
diffusive relaxation degrades the high-wavenumber component more efficiently than
the low-wavenumber component. Such a wavenumber-dependent (and temporally
attenuating) solution for the diffusion equation can be found in Eq. (3.41). By
considering the general wavenumber components based on the form of Eq. (3.41),
the relaxation of the crater shape in cylindrical coordinates .r; z/ can be written
as [40]

zcra.r; t/ D
1X

knD0
Ckn J0.knr/ exp

��Krk
2
nt
�
; (5.42)
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where kn, Ckn , and J0 are the wavenumber, amplitude of the kn component, and
zeroth-order Bessel function of the first kind, respectively. Here the axisymmetric
crater shape is assumed to omit the azimuthal dependence.11

Although Eq. (5.42) is a temporally continuous equation, the real seismic shaking
events (or equivalently the corresponding impact events) occur intermittently.
However, in the wavenumber space, the relaxation of the kn component can be
accumulated simply as exp.�Krk2n

P
ti/ because only the exponential relaxation

is considered.12 Here ti is the effective duration of the i-th seismic shaking event.
The value of Krti was numerically evaluated and depends on the thickness of the
regolith layer hrego. Thus, the parameter Ksi D Krti=hrego is used to evaluate the
relaxation of the crater profile13 [39, 40, 46]. Note that Ksi has a dimension of length
ŒKsi� D L. Ksi characterizes the sliding distance per seismic shaking event. The
value of Ksi varies depending on the impact conditions such as the impact energy
and momentum. Thus, its specific value was numerically assessed in Refs. [39, 40].
By summing up Ksi with the help of impact frequency models [47, 48], the degree of
the crater’s shape relaxation can be estimated by Kst D PN

i Ksi, where the number of
total impact events N depends on the age of the target object. Then, the structure of
the wavenumber kn is degraded by the factor exp.�Kstk2nhrego/. Finally, erasure of the
crater shape is evaluated by putting a criterion of the crater’s demise. For instance,
Kst 	 3D2

cra=8hrego was used to define the complete relaxation of the crater’s shape.
This criterion is obtained by assuming kn D 4=Dcra and a factor e�6 (' 1=403) for
the critical degradation (6 � Kst.4Dcra/

2hrego) [39, 40]. To obtain a reliable result
of the crater chronology, particularly for small astronomical objects such as Eros
and Itokawa, crater erasures by global seismic shaking must be considered. In fact,
the effect of global seismic shaking is indispensable when explaining the observed
crater populations [39, 40, 46]. Furthermore, the number of very small craters on
Itokawa has not yet been explained even by the global seismic shaking effect [46].
There might be additional factors to erase very small craters on the surface of small
astronomical objects.

As mentioned thus far, the effect of global seismic shaking depends on various
parameters such as the impact seismic efficiency factor 	seis, seismic quality factor
Q, diffusion coefficient of seismic energy density Kd, thickness of the regolith layer
hrego, crater relaxation coefficients Kr or Kst. We must reduce the uncertainties of
these values by utilizing the information from experiments, numerical simulations,

11The axisymmetric diffusion equation for the polar coordinate can be written as @zcra=@t D
KrŒ.@

2=@r2/C .1=r/.@=@r/�zcra . By assuming the exponential decay form zcra D Qzcra.r/ exp.��rt/
and kn D p

�r=Kr , the diffusion equation is cast into a Bessel’s differential equation Œ.d2=dQr2/C
.1=Qr/.d=dQr/�Qzcra C Qzcra D 0, where Qr D knr.
12The exponential function satisfies the simple relation exp.a/ � exp.b/ D exp.a C b/.
13The thickness of shear banding is in the order of 101 grain diameters in usual granular
experiments (e.g., [45]). If this value is applicable to the regolith migration, hrego is determined
only by the regolith size regardless of its thickness. However, its applicability is unclear.



184 5 Morphodynamics of Planetary Impact Craters

or observations. In other words, informative experiments to estimate these values
are required to increase the precision of the global seismic shaking effect.

5.5 Scaling for Planetary Impact Cratering

In the previous sections, the fundamentals of morphology and related mechan-
ics including degradation of planetary-scale impact craters have been discussed.
Natural planetary craters are extremely complicated to be fully understood. Even
the formation process of simple craters is not so simple. Furthermore, our ability,
particularly for observation, is very limited. What we can observe is a snapshot
of the current state in which all the effects discussed in the previous section are
accumulated. How can we discuss such complex phenomena with only very limited
information? The dimensional analysis method, which was introduced in Chap. 2,
is a powerful tool to approach little known and limited information phenomena.
Therefore, the dimensional analysis method has been applied to the study of impact
cratering [31, 49–52]. Moreover, the scaling method has been applied not only to
the cratering regime but also to fragmentation or catastrophic disruption [53–55]. In
this section, the scaling method for impact cratering is discussed in the following.

Specifically, the ˘ -groups method has been applied to analyze impact cratering.
The crater volume, ejecta velocity, ejecta mass, target porosity, and viscosity
effect can be estimated by the systematic dimensional analysis based on the ˘ -
groups method. The obtained scaling relations are briefly reviewed in the following
subsections.

While these scaling relations were developed for hypervelocity impacts, they
are also applicable to low-velocity loose granular impact. Therefore, some of the
scaling relations obtained in this section are also compared with the low-velocity
loose granular impact experiments. Note that these scaling relations can be applied
only to the transient (initial) crater formation (not to a final crater shape) particularly
in complex craters.

5.5.1 Crater Volume Scaling

The volume of a crater Vc is one of the most fundamental quantities to characterize
the impact crater. We would like to estimate Vc using the dimensional analysis
method.

The first thing we should do is to list all the relevant parameters. Here we
consider the impactor density �i, its diameter Di, the target density �t, its strength
Yt, and the gravitational acceleration g. The goal of this analysis is to obtain a
scale estimate of the crater volume Vc produced by the impact velocity v0 under
the abovementioned conditions. Because we consider a purely mechanical case, the
number of fundamental dimensions is 3 (M, L, T). Thus, we can make 4 D 7 � 3

dimensionless numbers according to the Buckingham˘ theorem (Sect. 2.5.2).



5.5 Scaling for Planetary Impact Cratering 185

Four dimensionless numbers are probably excessive to simply understand the
governing scaling relation for the impact cratering. To reduce the number of free
parameters, an additional restriction can be assumed. Let us first assume that the
kinetic energy of the impactor, Ekei � �iD3

i v
2
0 , is essential. In other words, suppose

that the same Ekei results in an identical cratering event. Under such an assumption,
�i, Di, and v0 can be combined into a single quantity Ekei in the dimensional analysis.
Another candidate for the essential quantity is the momentum of the impactor,
Pimp � �iD3

i v0. Because Ekei and Pimp have similar forms, a generalized quantity
called the point source measure, Cpsm, can be introduced as

Cpsm D Div
�
0 �

�
i ; (5.43)

where � and � are the characteristic exponents, in which 1=3 � � � 2=3 and
� D 1=3. The limit cases � D 1=3 and � D 2=3 correspond to Cpsm � Pimp

1=3 and

Cpsm � E1=3kei , respectively. The exponent � indicates the importance of the kinetic
energy relative to the momentum for the impact cratering. By utilizing Cpsm as a
relevant quantity instead of raw �i, Di, and v0, we can reduce the number of relevant
dimensionless numbers. Moreover, it is difficult to separate each effect of �i, Di,
and v0, from the actual observation data. This unification of the parameters is also
reasonable in this sense.

The concept of point source measure is only valid for the late stage of the
cratering. At the impact moment, complex factors such as the geometries of the
impactor and target affect the cratering. However, at a location far from the impact
point, the cratering events of the identical Cpsm should look similar because the
pressure wave induced by the impact propagates almost hemispherically. Details at
the contact moment are negligible at this late stage of the cratering, which is called
late stage equivalence [56].

Directly before beginning a systematic ˘ -groups analysis, here we introduce a
dimensionless number RgY , which characterizes the ratio between the gravitational
stress and strength:

RgY D �tgDi

Yt
: (5.44)

When RgY is considerably greater than unity (RgY � 1), the gravitational stress
dominates the cratering. This regime is called the gravity regime. At the other limit
(RgY � 1), the strength of the target dominates the cratering mechanics. This regime
corresponds to the small crater regime (small Di), which is called the strength
regime. The scaling will be considered separately in each regime. If we consider
a specific target body, the material-dependent parameters, �t, g, and Yt, are fixed.
Then, RgY is a function only of Di. In small-scale impacts (RgY � 1), the effect
of gravity is negligible and the strength dominates the cratering mechanics—the
strength regime. As Di increases, the gravitational effect becomes important. In the
large Di limit, gravity dominates the cratering mechanics—the gravity regime.
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Table 5.1 Dimension table
for the crater volume scaling

ŒVc� ŒCpsm� Œ�t� ŒYt� Œg�

M 0 � 1 1 0

L 3 1C �� 3� �3 �1 1

T 0 �� 0 �2 �2

By replacing �i, Di, and v0 with Cpsm, the set of relevant quantities becomes (Vc,
Cpsm, �t, Yt, g). Now, the number of relevant dimensionless numbers is 2 D 5 � 3.
This number fits the current demand when considering two limit cases: the gravity
regime and the strength regime. The systematic ˘ -groups method is applied to this
set of relevant quantities. As already learned in Sect. 2.5, a dimension table should
be created, and the corresponding simultaneous equations should be computed to
obtain dimensionless numbers. Table 5.1 is the dimension table for this problem.
Then, Eq. (2.44) for this problem is written as

˘ D Va1
c Ca2

psm�
a3
t Ya4

t ga5 : (5.45)

Using Table 5.1 and the definition of the dimensionless number (Eq. (5.45)), the
following simultaneous equations are obtained:

�a2 C a3 C a4 D 0; (5.46)

3a1 C .1C � � 3�/a2 � 3a3 � a4 C a5 D 0; (5.47)

��a2 � 2a4 � 2a5 D 0: (5.48)

To compute the relevant dimensionless number in the gravity regime (RgY � 1),
the strength dependence should be neglected (a4 D 0). Substituting a4 D 0 into
Eqs. (5.46) and (5.48), we obtain a3 D ��a2 and a5 D ��a2=2. Using these
relations, Eq. (5.47) can be transformed into a2 D �3a1=Œ1 C .�=2/�. Because
we only want to know the scaling of Vc, a1 D 1 should be used. Then, the
remaining exponents are computed as a2 D �6=.2 C �/, a3 D 6�=.2 C �/, and
a5 D 3�=.2 C �/. These exponents compose a dimensionless number relevant in
the gravity regime˘g:
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�
0 �

�
i

�� 6
2C� � �

6�
2C�

t � g
3�
2C�

D Vc

D3
i

�
gDi

v20

� 3�
2C�

�
�t

�i

� 6�
2C�

(5.49)

D �tVc

mi

�
gDi

v20

� 3�
2C�

�
�t

�i

� 6�
2C��1

: (5.50)

Here we use the mass of the impactor, mi � �iD3
i .
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In contrast, Yt is dominant and g is irrelevant in the strength regime. To compute
the dimensionless number for the strength regime, ˘Y , the gravity effect should
be neglected; a5 D 0. Then, the relations a4 D ��a2=2, a3 D Œ.�=2/ � ��a2,
and a2 D �3a1 can be obtained from Eqs. (5.46), (5.47), and (5.48). Substituting
a1 D 1, the exponents for ˘Y are calculated as a2 D �3, a3 D 3� � 3�=2, and
a4 D 3�=2. Thus, the specific form of ˘Y is

˘Y D Vc � �Div
�
0 �

�
i

��3 � �3�� 3
2�

t � Y
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(5.51)
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According to the conventional notation in planetary science,˘g and˘Y are divided
into four dimensionless numbers:

�V D �tVc

mi
; �2 D gDi

v20
; �3 D Yt

�tv
2
0

; �4 D �t

�i
: (5.53)

The normalized crater volume �V is called the cratering efficiency. �2 corresponds
to the reciprocal of Fr (Eq. (2.98)). Furthermore, RgY defined by Eq. (5.44) is �2=�3.
These four dimensionless numbers (�V , �2, �3, �4) compose a set of independent
dimensionless numbers for the original seven quantities. In the current analysis,
these numbers are not independent and are related as˘g and˘Y by the point source
measure constraint. Although the number of relevant quantities can be reduced by
introducing the point source measure, this process also yields two exponents, � and
�. The total number of degrees of freedom is certainly unchanged. However, the
physical insight can be clarified using the point source measure.

What we would like to know is the scaling relation for the volume of the
impact crater, Vc. There are two dimensionless numbers, ˘g and ˘Y , as long as
we assume that the point source measure is relevant. According to Eq. (2.46), these
dimensionless numbers can be related by a certain function as

˘g D  g.˘Y/: (5.54)

Similar to the blast wave analysis (Sect. 2.5.3), we can consider the irrelevant
dimensionless number as a constant. In the gravity regime, the strength is too weak
to be balanced with the impact inertia. Thus,˘Y can be regarded as a small constant,
and hence,  g.˘Y/ is constant. Consequently, the crater efficiency scaling in the
gravity regime is written as
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' const. (5.55)

Therefore, the crater volume at the gravity regime is scaled as

Vc � mi
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gDi

v20
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� 2C��6�
2C�

: (5.56)

Similarly, a crater volume scaling in the strength regime is calculable by assuming
˘Y ' const. The corresponding scaling is written as

Vc � mi

�t

�
Yt

�tv
2
0

�� 3
2 �
�
�t

�i

�1�3�
: (5.57)

Further simplification of the crater volume scaling is helpful to discuss the
essential factors of the scaling laws. It is natural to assume that both the impactor
and target in the planetary impact consist of similar materials, which indicates that
the density ratio dependence is negligible; �4 ' 1. Then, the simplified scaling laws
are written as

�V � �
� 3�
2C�

2 .RgY � 1I �2 � �3/ (5.58)

� �
� 3
2�

3 .RgY � 1I �2 � �3/: (5.59)

The scaling behavior is schematically summarized in Fig. 5.13. In Fig. 5.13, the
qualitative behaviors of log�V vs. log�2 are shown. In the small �2.D gDi=v

2
0/

region, g is irrelevant (strength regime). Thus, �V.D �tVc=mi/ becomes constant
(independent of �2) and this constant value is determined by Eq. (5.59). As the
value of �2 increases, �2 becomes relevant, and the scaling instead obeys Eq. (5.58).
This transition occurs near �2 ' �3; (RgY ' 1). In the very large �2 region,
this scaling might not be applicable. This limit corresponds to the transition scale
from a simple to complex crater. The values of � and � for various materials have
been experimentally measured. Representative values obtained by experiments are
� ' 0:41 for dry sand, � ' 0:55 for nonporous materials, and � ' 0:4 regardless
of the material type [49, 50, 57]. While the experimentally obtained � values are
consistent with the expected range 1=3 � � � 2=3, � is slightly different from the
expected value � D 1=3.

In actual planetary craters, the impactor’s properties �i, Di, and v0 are unknown.
To estimate the specific values of these quantities, in general, some more assump-
tions and approximations are necessary.

Crater-size scalings for the low-velocity loose granular impact cratering
(Eqs. (4.1) and (4.2)) are derivable from Eqs. (5.58) and (5.59). Considering the
relations Dc � .Vc/

1=3 and Ekei / v20 , the scaling Dc / E1=3kei can be obtained
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Fig. 5.13 Scaling of the crater volume. The main parameters are the cratering efficiency �V D
�tVc=mi and the gravity-scaled size �2 D gDi=v
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0 D F�1

r . In the small impactor regime (strength
regime), �V should be almost constant. The value of the constant �V depends on �3 (Eq. (5.59)).
By increasing �2, the gravity regime scaling (Eq. (5.58)) is achieved

from Eq. (5.59) with � D 2=3 (energy scaling). The other scaling, Dc / E1=4kei ,
corresponds to Eq. (5.58) with � D 2=3. These are the reasons why 1=4 and
1=3 scalings correspond to the gravity-dominant and strength-dominant (plastic-
deformation-dominant) cases, respectively, as mentioned in Sect. 4.1.1. A planetary
crater’s aspect ratio Dh=Dc is independent of the crater size (Sect. 5.1). This finding
implies that both the depth and diameter should be scaled similarly. Nevertheless,
the granular impact experiments show different scalings for Dc and Dh (Fig. 4.3).
In the granular impact, the horizontal length scale is governed by gravity, while
the vertical length scale appears to be governed by strength. This behavior might
be qualitatively understandable because the granular matter has apparent strength
in a deep region resulting from the frictional support and hydrostatic pressure.
In fact, the depth-scaling exponent depends slightly on the packing fraction of
the target [58]. The exponent decreases in the looser granular target. Although
it is difficult to directly compare the loose (and low-velocity) granular impact
experiments and hypervelocity impact cratering, some of the characteristics,
particularly for the gravity regime, might be similar because loose granular matter
generally has very small Yt. Because the kinetic energy and momentum are, of
course, the crucial quantities even for the low-velocity loose granular impact, the
abovementioned scaling relations based on the point source measure are presumably
applicable to granular impact.
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The momentum limit � D 1=3 cannot provide any information about the loose
granular impact craters made by a solid impactor. It appears that the kinetic energy
is more relevant for the crater size scaling of loose granular impact. However, the
result of hypervelocity impact on a soil target (� ' 0:41 [50, 59]) is closer to the
momentum limit case � D 1=3. This experimentally obtained value � ' 0:41

results in a simple relation, Vc / v1:00 in the gravity regime. Assuming Vc � D3
c and

Ekei � miv
2
0 , this relation corresponds to

Dc / E1=6kei : (5.60)

For dissipative materials such as porous targets, it has been considered that �
decreases toward 1=3. This idea is natural because the momentum conservation is
more important than the energy conservation for the dissipative (inelastic) impact.
Nevertheless, loose granular impact behavior, which must be very dissipative, can
be explained by � D 2=3.

Even by the energy scaling (� D 2=3), it is impossible to attain a perfect
agreement between the scaling obtained in this section and the loose granular
impact experiments. For instance, the crater diameter is proportional to .�i=�t/

1=4

and the depth is proportional to .�i=�t/
1=2 in loose granular impact (Eqs. (6.31) and

(6.32)) [22]. Using energy scaling (� D 2=3 and � D 1=3), the corresponding
exponents can be calculated from Eqs. (5.49) and (5.51) to be 6�=3.2C �/ D 1=4

and 3�=3 D 1=3, respectively. The former agrees with the experimental result,
whereas the latter does not. The experimentally obtained � value (� D 0:4) provides
a slightly better estimation of the low-velocity loose granular impact.

Scaling using the dimensional analysis method partially works to explain the
impact experiment. The problems mentioned above are some sort of puzzle of
exponents. The main assumption of the late stage equivalence (or point source
measure) might not be the best assumption to obtain a fully consistent result.
Because such a limitation of the capability in the scaling analysis could sometimes
be serious, we should be careful not to be overconfident in its ability.

5.5.2 Ejecta Scaling

The ejecta velocity can also be discussed by scaling through dimensional anal-
ysis [52]. The crater volume scaling discussed in the previous subsection is the
very first step to analyze the impact cratering phenomena by dimensional analysis.
The crater volume (or equivalently its size) is one of the most important pieces
of information when we observe the crater. This parameter is directly related to
the crater morphology. The next parameter that we can discuss using dimensional
analysis is the ejecta velocity, which is also a very crucial quantity to understand
the crater morphology. In particular, the ejection velocity distribution relates to the
ejecta blanket structure.
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The relevant quantities for this problem are the ejecta velocity vej at the launch
position xe (distance from the impact point), Cpsm D Div

�
0 �

�
i , and �t. Then, the only

relevant dimensionless number is immediately obtained as

˘e D xe

Di

�
vej

v0

�� �
�t

�i

��
: (5.61)

From the dimensional homogeneity,˘e ' const. can be assumed. Thus, the ejecta
velocity obeys the scaling

vej

v0
�
�

xe

Di

�� 1
�
�
�t

�i

�� �
�

: (5.62)

Similar to the crater efficiency scaling, Eq. (5.62) is very useful if we have
information about the impactor’s dimensions, density, and impact velocity. Because
the point source measure consists of the impactor’s properties, the corresponding
information is required to use Eq. (5.62). Indeed, the information is available in
usual laboratory experiments. However, it is difficult to speculate the proper values
for actual planetary craters, in general. In contrast, the resultant crater’s size is
generally observable. Furthermore, the scaling of the crater’s size was already
obtained in the previous subsection. Therefore, we can rewrite the ejecta velocity
as a function of the crater’s size by incorporating the scaling relations obtained
thus far. Specifically, we use the crater volume scalings (Eqs. (5.49) and (5.51)) to
transform Eq. (5.62) into a more understandable form.

In the gravity regime, a relation ˘g ' const. can be used. From Eq. (5.49), the
relation Di � Dc�

�
4 .�2Dc=Di/

�=2 D Dc.�t=�i/
�.gDc=v

2
0/
�=2 is obtained. Here we

use the relation Vc D D3
c . Substituting this relation into ˘e ' const., the simple

scaling,

vejp
gDc

�
�

xe

Dc

�� 1
�

.RgY � 1I �2 � �3/; (5.63)

is obtained. Similarly, the following scaling is computed using Eq. (5.51) for the
strength regime:

vejp
Yt=�t

�
�

xe

Dc

�� 1
�

.RgY � 1I �2 � �3/: (5.64)

Equations (5.63) and (5.64) have a similar structure; the normalized ejecta velocity
is scaled by the normalized launch position and the density ratio dependence is
canceled out. Furthermore, the scaling exponent is identical between Eqs. (5.63)
and (5.64).

The mass of ejecta Me with velocity greater than vej can also be evaluated using
dimensional analysis. Because vej should be a monotonically decreasing function
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of xe, Me corresponds to the mass of the spherical region inside xe; Me � �tx3e .
Substituting this relation into ˘3

e D const., the ejecta mass scaling is obtained as

Me

mi
�
�
vej

v0

��3� �
�t

�i

�1�3�
: (5.65)

Similar to the ejecta velocity case, this scaling can be rewritten by the target
properties using Eq. (5.49) for the gravity regime and Eq. (5.51) for the strength
regime. Therefore, the ejecta mass scaling in the gravity regime is written as

Me

�tVc
�
�

vejp
gDc

��3�
; .RgY � 1I �2 � �3/: (5.66)

In the strength regime, the ejecta mass is scaled as

Me

�tVc
�
 

vejp
Yt=�t

!�3�
; .RgY � 1I �2 � �3/: (5.67)

The scaling relations obtained for Me are similar again between the gravity and
strength regimes. The most important quantity is the typical velocity caused by the
gravity

p
gDc or strength

p
Yt=�t.

A slightly different dimensionless number ˘ed has also been considered for the
discussion of the time-dependent ejecta dynamics. Here the characteristic ejecta
velocity vej in Eq. (5.61) is replaced by xe=t to evaluate the ejecta dynamics:

˘ed D xe
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�
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�t

�i

��
: (5.68)

Using this ˘ed, one can estimate the cavity and ejecta velocity scalings for both
the gravity and strength regimes [60]. The cavity development scaling in the gravity
regime can be obtained using the constraints ˘ed D const. and ˘g D const. The
scaling obtained from these constraints is written as
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g
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: (5.69)

The ejecta velocity scaling can be rewritten by substituting Eq. (5.69) into Eq. (5.63)
as
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: (5.70)

For the strength regime, the constraints, ˘ed D const. and ˘Y D const. should be
used to compute the scaling relation. The obtained scaling is written as
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Similar to the gravity regime case, the ejecta velocity scaling can be obtained as
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: (5.72)

In Ref. [52], various experimental results were compiled and analyzed along
the line of the ejecta scaling discussed above. We have to be careful about the
region of scaling of the ejecta velocity. As long as the point source measure
(late stage equivalence) is adopted, the scaling is applicable roughly to the range
of xe > Di=2. In the very vicinity of the impact point (xe < Di=2), a jetting
occurs (see e.g., Ref. [61]). The jetting is different from the usual ejection process
considered thus far. At xe ' Dc=2, vej becomes zero because the gravity or strength
arrests the excavation flow. In other words, the crater radius Dc=2 is determined
by the limit of vej ! 0. Thus, the upper limit of the scaling is xe ' Dc=2.
The scaling relations obtained above hold within the intermediate launch position,
Di=2 < xe < Dc=2 [52]. In this regime, the experimental data can be fitted by the
scaling. In future studies, some unconsidered factors such as the target porosity (or
equivalently packing fraction) and viscosity should be examined.

In the very early stage of the ejection, the ejecta velocity scaling has to be
improved. In the abovementioned scaling for the ejecta velocity, the late stage
equivalence was generally assumed. The speed of sound in the target material Cs

would be an additional relevant quantity for the early stage dynamics. Then, a
possible corresponding dimensionless number˘ 0

ed can be written as

˘ 0
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��
: (5.73)

Therefore, the ejecta velocity at the early stage is scaled as
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����1
: (5.74)

Using the hypervelocity impact (v0 is in the order of 100 km/s) on the quartz sand
target (Dg ' 1mm), the ejecta velocity vej at an early stage was measured and
roughly scaled by Eq. (5.74) [62, 63]. To best fit the experimental data, � D 2=3

and � D 1=3 were used. These values correspond to the energy limit of the point
source measure (Eq. (5.43)). However, the ejection velocity at the late stage was
scaled differently as [63]
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Table 5.2 Dimensionless numbers and scaling relations for the impact cratering by the point
source measure

Gravity regime (RgY �1) General Strength regime .RgY � 1/
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where Dc is the crater diameter. In this late stage, gravity plays an essential role
in the scaling. This form is consistent with the late stage scaling of Eq. (5.70). The
corresponding � is computed as � D 0:41, which is a typical value of � in the
hypervelocity impact of a dry granular target.

Standard scaling relations for hypervelocity impacts have been introduced thus
far based on the concept of point source measure (late stage equivalence). In
Table 5.2, the important dimensionless numbers and scaling relations are summa-
rized.

5.5.3 Oblique Impact Scaling

As almost all meteors obliquely impact the target, an understanding of oblique
impact is indispensable. Nevertheless, oblique impact is much less understood
than vertical impact. Most planetary craters possess an almost circular shape; only
approximately 5% of craters have elliptic shapes that correspond to the low-angle
impact of �imp < 12ı (see Fig. 4.13 for the definition of �imp) [64] because the
propagation of the shock wave is almost independent of the impact angle, at least
in the late stage. How robust are the scaling relations discussed in this section?
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Although the impact angle has not been considered as a relevant parameter in the
aforementioned scaling, it may affect the scaling.

The validity of the scaling relations for the oblique impact was verified both by
an experiment [65] and a numerical simulation [66]. In the numerical simulation, the
effects of the impact angle and the internal friction of the target were systematically
examined using a three-dimensional hydrocode. From the numerical result, the
cratering efficiency scaling in the gravity regime was written as

�V �
 

gDi

v20 sin2 �imp

!� 3�
2C�

D �
� 3�
2C�

2 sin
6�
2C� �imp: (5.76)

This scaling holds at �imp 	 30ı. The limit angle 30ı coincides with that of
the loose granular impact drag force form (Sect. 4.1.8). The modified scaling
(Eq. (5.76)) indicates that only the vertical component of v0 plays a role in the
cratering efficiency. The numerical prefactor and scaling exponent in Eq. (5.76) were
measured in the simulation. Then, both were slightly increasing functions of �imp

and decreasing functions of internal friction coefficient [66]. In addition, similar
scaling is observed experimentally even in a small angle regime �imp � 30ı [65].

The effect of the oblique impact angle has been also studied for shock wave prop-
agation [67], ejecta deposition [68], and central peak formation [69]. However, these
effects are not sufficient to fully understand the oblique impact phenomenology.
Because oblique impact is the majority impact in natural impact cratering, much
more detailed studies, particularly for low-angle impacts, are necessary to conclude
the scaling form of the impact cratering.

5.5.4 Porous Target Impact Scaling

The target material porosity (or equivalently the packing fraction) could affect
the impact cratering. The densities of asteroids have been estimated using various
methods [70]. These estimates suggest that some asteroids have very small densities
(below 1:5 � 103 kg/m3). Comets have also been considered to have highly porous
structures. According to empirical and theoretical modeling, cometary nuclei could
have very low packing fractions 
 D 0:2–0:4 (e.g., [71, 72]). Such very porous
astronomical objects might be rubble-pile objects that are supposed to be produced
by the reaccumulation of disrupted fragments. Impact cratering occurring in rubble-
pile objects could be different from the usual cratering discussed thus far. For
example, the target compression might dominate the cratering process in porous
targets. Perhaps, cohesion among constitutive grains is extremely important for
discussing the impact of porous targets. Using an enhanced-gravity experiment, cra-
tering in porous targets was examined [73]. The researchers observed that the crater
shape, ejecta mass, and cratering efficiency were affected by the porosity. Although
the crater shape exhibited complex behavior, the ejecta mass was generally a
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Fig. 5.14 Cratering efficiency �v vs. gravitational scale �2. U and a in this plot correspond to the
impact velocity v0 and the impactor diameter Di, respectively. Reprinted from Ref. [73] (Copyright
2003, with permission from Elsevier. Data for sand come from Refs. [57] and [59])

decreasing function of the porosity. The experimentally obtained cratering efficiency
scaling is shown in Fig. 5.14. For the cratering efficiency scaling, intermediate
porous targets (porosity of 44 % and 70 %) exhibited roughly constant cratering
efficiency, which implies that cohesion (strength) governs cratering efficiency rather
than gravity. In contrast, loose sand and highly porous targets (porosity 96 %)
exhibited momentum scaling, i.e., � D 1=3; �V � �

�3=7
2 . It is unclear whether

a gravity-dominant regime is present in large �2. In general, momentum scaling
appears to be more appropriate than energy scaling for porous targets including
sand. This result contrasts with the scaling of crater dimensions for the low-velocity
loose granular impacts, in which the energy-based scaling � D 2=3 better explains
the result. The difference between porous targets and loose granular targets is not
very clear. The order of impact velocity might also be an important parameter to
distinguish the impact cratering state.

Sintered snow targets were also used to model small icy satellites [74]. The
porous snow can be strengthened by sintering. The strength of a porous snow
target (packing fraction 
 ' 0:64) varies with the sintering duration. The dynamic
strength defined by the maximum value of the impact stress �max to disrupt the target
is scaled by the sintering duration tsin as �max / t0:28sin . This result indicates that aging
by sintering is also an important factor to be considered, particularly for icy bodies.
The strength of an icy body of the same packing fraction but of different age can be
different. Using a systematic impact experiment, Arakawa and Yasui revealed the
scaling relation for sintered porous snow targets. Specifically, a small icy impactor
(Di D 7mm, mi D 0:21 g, and 
 D 0:7) was shot into a sintered snow target.
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Fig. 5.15 Ejecta curtain
made by a porous snow
target. An icy impactor is shot
with v0 D 41m/s onto the
porous (
 ' 0:64) snow
target sintered for 15 min at
�10ıC (Reprinted from
Ref. [74]. Copyright 2011,
with permission from
Elsevier)

The impact velocity v0 ranged from 31 to 150m/s. Because the experimental range
appears to correspond to the strength regime, these researchers compared �V and
�3. However, the direct comparison of these dimensionless numbers does not yield
good data collapse. Instead, they proposed an improved strength parameter

� 0
3 D Yt

�iCsi�tCst
�iCsiC�tCst

v0
; (5.77)

where Csi and Cst denote the sound speed for the impactor and target, respectively.
To obtain � 0

3, the dynamic pressure �tv
2
0 in the definition of �3 (Eq. (5.53)) is

improved using the idea of shock pressure (Eqs. (5.13) and (5.21)). Then, all the
data are scaled by

�V � � 0�1:2
3 : (5.78)

They also observed a characteristic ejecta curtain shape in the sintered snow target
impact. In Fig. 5.15, a snapshot of the ejecta curtain made by a porous snow target is
shown. This ejecta curtain shape is slightly different from liquid and loose granular
impacts (Figs. 6.1 and 6.4). The boundary between the ejecta and target surface is
discontinuous, whereas the boundary is smooth in fluid or loose granular impact.
Although the dynamics of a porous and sintered icy target must be complex, it would
be a necessary piece to deeply understand the soft impact mechanics relevant to the
planetary science.

5.5.5 Viscosity Scaling

Until now, we have not considered the effect of viscosity in the scaling. The viscosity
has been implicitly regarded as an irrelevant property for this problem. In some class
of impact cratering, however, there might be a viscous regime. The viscosity is too
weak to be balanced with the impact inertia for most of the impact phenomena.
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However, the complex behaviors of fluidized debris, melt, and liquid water must be
considered to explain the various planetary crater shapes. Thus, here we consider
the viscous scaling along the line of point source measure scaling [75]. If Vc, Cpsm,
�t, and 	 are employed as relevant quantities, one dimensionless number can be
obtained by a similar computation performed thus far:

˘	 D Vc

D3
i

�
	

�tDiv0

� 3�
1��

�
�t

�i

� 3�
1��

: (5.79)

Fink et al. performed silicon oil target experiment and assumed � D 1=2 to
conclude that the viscosity significantly affects the cratering efficiency in the
following regime [76]:

	 > �tD
1:2
i v0:60 g0:2: (5.80)

In a typical case (Di ' 1 km, �t ' 103 kg/m3, v0 ' 10 km/s, and g ' 9:8m/s2),
this value roughly corresponds to 	 > 109 Pa�s. This regime is much more viscous
than that of a usual fluid but much less viscous than that estimated for the salt dome
diapir structure (Sect. 2.8.4). The effect of viscosity could play a role in some regime
of the impact cratering event. Fluid-like behavior might be a missing important part
even in planetary-scale impact cratering.

5.6 Summary

A brief review of studies relating to large-scale natural impact cratering was
provided in this chapter. Typical crater structures observed on the surfaces of
planets, satellites, and other astronomical objects were first reviewed. Examples
include the simple crater, central peak structure, multiring basin, ray crater, and
rampart crater. The micro craters observed on returned samples from the Moon
and the asteroid Itokawa were also introduced. Furthermore, the standard scenario
of the processes producing such crater morphologies was briefly overviewed.
In general, the planetary cratering process consists of five stages: contact and
compression, excavation, modification, ejecta deposition, and degradation. What
happens in each stage, such as shock wave propagation, was briefly explained.
Crater erasure by impact-induced seismic shaking, which is particularly relevant
to small astronomical objects, was also discussed. Finally, the scaling analysis
for the cratering process was discussed on the basis of the ˘ -groups method.
A key quantity called the point source measure was used to derive some scaling
relations. The point source measure characterizes the relative importance between
kinetic energy and momentum in impact cratering. Topics argued in this chapter are
actually very limited and biased mainly due to the tether of my ability. For further
study, Ref. [1] is the best reference to learn about general cratering mechanics. The



References 199

possible origin of some curious crater morphologies will be discussed further in the
next chapter. In particular, low-velocity soft impact cratering and the resultant crater
shapes will be analyzed using the scaling method. These simple mimics might be
helpful to understand complex cratering events occurring in space.
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Chapter 6
Soft Impact Cratering

In this chapter, various experiments of impact cratering performed at a laboratory
scale will be reviewed. As discussed in Chap. 5, natural planetary craters have a wide
variety of shapes. Very high-speed and large-scale impact events must be reproduced
to fully mimic the actual planetary craters, which is evidently impossible to
accomplish. Instead, low-velocity soft matter impact experiments might be helpful
for understanding the morphology and fundamental processes of actual cratering
on the basis of scaling concept written in Chap. 2. Moreover, a basic understanding
of the cratering mechanics brings crucial and primordial knowledge to soft matter
physics itself. Therefore, phenomenological studies of soft matter impacts and some
of their tentative relations to the actual cratering will be exemplified in this chapter.

6.1 Liquid Impact Cratering

First, we will focus on the simplest case: Newtonian fluid impact for which some
analytic and approximated calculations are possible. When a liquid droplet (or solid
sphere) impinges on a liquid pool, crater formation can be observed, as illustrated in
Fig. 6.1. In this picture, cavity structures such as those in Fig. 2.8 cannot be observed
because the moment directly after the impact is filmed. If the impact inertia is
sufficiently large, the dynamics of deep cavity formation and its collapse will be
the principal processes. However, if the impact inertia is insufficient, surface cavity
formation including ejecta deposition mainly dominates the cratering mechanics.
Low-velocity liquid droplet impact corresponds to the latter (low inertia case). In
this regime, the surface tension must be considered in addition to impact inertia
and cavity potential. Although the crater’s shape is immediately relaxed in the fluid
impact, its maximal cavity size can be estimated using a simple calculation. Let us
consider this simpler case first.

© Springer Japan 2016
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Fig. 6.1 Typical side-view
snapshot of a crater produced
by a steel ball impact on a
water pool. Cavity and splash
can be clearly observed. At
the edge of the splashing rim,
numerous tiny droplets are
produced by the
capillary-based instability

Fig. 6.2 Schematic image of
the crater cavity and rim
produced by a liquid-droplet
impact onto a liquid pool.
The crater’s cross-sectional
profile is denoted by zcra. The
crater cavity is approximately
hemispherical (with radius
Rcav), and the rim has a tall
sheet with height Hsheet at
x D Rcav. The thickness of
the sheet is negligibly thin r

θ

z

x

Rcav

θ
r

Hsheet

zcra

cavity

rim

6.1.1 Geometric Energy Balance of Liquid Impact Cratering

Cavity formation by a liquid droplet (density �i) impacting onto a liquid pool
(density �t ' �i) will be considered herein. For this simple case, crater formation
and its cavity shape were studied by Engel [1, 2]. The maximum cavity shape can be
calculated by considering the energy balance. A schematic image of the coordinate
system used in the calculation is presented in Fig. 6.2. Let Rcav be the maximal
radius of the hemispherically approximated cavity, z be the vertical axis, and x be
the horizontal distance from the center of the cavity. z D 0 corresponds to the surface
level before the impact. We assume that the cavity has an axisymmetric shape. Then,
the potential energy of the liquid cavity Ecav can be computed by considering an
annular unit zcra � 2�x � dx and its centroid height zcra.x/=2:
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Ecav D �tg
Z Rcav

0

zcra.x/

2
� zcra.x/2�xdx D ��tg

Z Rcav

0

z2cra.x/xdx; (6.1)

where zcra.x/ is the height profile of the crater at the horizontal location x. Using a
relation x2 C z2cra.x/ D R2cav (at x � Rcav), Ecav is computed as

Ecav D ��tg
Z Rcav

0

�
R2cav � x2

�
xdx D �

4
�tgR4cav: (6.2)

Here we assume that the target liquid is incompressible, i.e., the volume of the cavity
is equal to the volume of the rim outside the cavity.1 Thus, the total volume of the
crater rim should be equal to the volume of the hemisphere of radius Rcav:

Z 1

Rcav

zcra.x/2�xdx D 2

3
�R3cav: (6.3)

A simple solution of zcra for Eq. (6.3) is written as

zcra D R4cav

3x3
: (6.4)

This solution satisfies the constraint of zcra.1/ D 0. At x D Rcav, the height of
the cavity becomes zcra D Rcav=3. Moreover, Eq. (6.4) resembles the function of the
ejecta thickness of lunar craters2 (Eq. (5.26)). The potential energy of the rim Erim

can be obtained using Eq. (6.4) and the form of Eq. (6.1) as

Erim D ��tg
Z 1

Rcav

R8cav

9x6
xdx D �

36
�tgR4cav: (6.5)

In general, the capillary effect is not negligible in the small-scale liquid deforma-
tion. By the cratering, the generated surface area at the cavity Scav is written as

Scav D 2�R2cav � �R2cav D �R2cav: (6.6)

At x D Rcav, a vertical rim wall is generated, and its surface area Svw is

Svw D 2�Rcavzcra.Rcav/ D 2

3
�R2cav: (6.7)

1This assumption is called Schröter’s rule.
2This is natural because the lunar craters could also roughly satisfy the volume conservation. Note
that, however, the lunar crater cavity is not spherical. The relation of the rim height and the cavity
radius should be different in actual lunar craters.
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Outside the cavity (x > Rcav), the surface area generated by the rim Srim (the area
difference from the original surface) is numerically obtained as3 [1]

Srim D 2�

Z Rcav=3

0

x

"
1C

�
dx

dzcra

�2#1=2
dzcra �2�

Z 1

Rcav

xdx ' 0:14�R2cav: (6.8)

Finally, the liquid sheet that produces the reverse water bell (surface closure)
substantially contributes to generate the surface area Ssheet as4

Ssheet ' 2 .2�RcavHsheet/ ; (6.9)

where Hsheet is the height of the water sheet above the rim, and the factor 2 comes
from two sides of the liquid sheet. Using a typical value at the maximum cavity state
Hsheet ' 2Rcav, the maximal Ssheet can be approximated as 8�R2cav. Thus, the gener-
ated surface energy in total can be estimated by utilizing the surface tension �c as

Esurf D .Scav C Svw C Srim C Ssheet/ �c ' 10�R2cav�c: (6.10)

On the other hand, the kinetic energy Ekei of an impinging liquid droplet with
diameter Di and impact velocity v0 is expressed as

Ekei D �

12
�iD

3
i v
2
0: (6.11)

Considering that half of Ekei is used for the crater deformation, the following
relation,

Ecav C Erim C Esurf D Ekei

2
; (6.12)

can be assumed at the maximal cavity state. Here we neglect other energy sinks
such as sound wave emission and viscous dissipation. In fact, the sound energy
radiated by the impact is considerably smaller than that radiated by an entrapped
air bubble [3]. Furthermore, their acoustic energies are negligible. Moreover, the
remaining half of Ekei is most likely delivered to the flow field within the target
fluid by the impact (virtual mass). This factor is rather an uncertain parameter.
Substituting Eqs. (6.2), (6.5), (6.10), and (6.11) into Eq. (6.12), we obtain a relation
for the maximal cavity radius Rcav;max,

5

18
��tgR4cav;max C 10��cR

2
cav;max � 1

24
��iD

3
i v
2
0 D 0: (6.13)

3Since both terms in Eq. (6.8) diverge at zcra D 0 (x D 1), these values must be numerically
evaluated.
4Note that the sheet is very thin, and its potential energy is negligible.
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By solving this equation, Rcav;max is calculated as

Rcav;max D
2
4
s�

18�c

�tg

�2
C 3

20

�
�i

�t

�
D3

i v
2
0

g
� 18�c

�tg

3
5
1=2

: (6.14)

If the impact inertia or hydrostatic force is sufficiently strong, the surface tension
effect can be neglected. From Eq. (6.14), a criterion to neglect �c is obtained by
comparing two terms in the square root:

��
�iDiv

2
0

�c

��
�tgD2

i

�c

��1=4
� 1: (6.15)

The first factor on the left-hand side of Eq. (6.15) corresponds to the Weber
number, and the second factor indicates the balance between the hydrostatic force
and surface tension. When this criterion is fulfilled, the maximal cavity size is
considerably greater than

p
18�c=�tg ' 4:2�c, where �c represents the capillary

length (Eq. (2.99)). In this large inertia regime, a simple scaling relation is derived as

Rcav;max �
��
�i

�t

�
D3

i v
2
0

g

�1=4
: (6.16)

Because the potential energy is solely considered in this limit, Eq. (6.16) has a
similar form as Eq. (4.2); the crater’s cavity size is scaled as E1=4kei . In contrast, the
capillary effect plays an important role for a small-cavity and low-inertia regime.
Under such a condition, Eq. (6.14) should be used instead of Eq. (6.16) to estimate
the cavity dimension.

6.1.2 Cavity Growth Dynamics of Liquid Impact Cratering

To discuss the dynamics of cavity growth, the kinetic energy and energy dissipation
of the deformed target should be considered. The potential and surface energies
by the cavity of Rcav were already computed in the previous subsection. Here we
assume that the flow field in the target is irrotational and incompressible. Then, the
flow velocity u can be defined by the velocity potential ˚f as u D r˚f because
of the irrotational condition r � u, and the velocity potential satisfies r2˚f D
0 (Laplace equation) because of the incompressibility (Eq. (2.26)). A well-known
solution of the Laplace equation is

˚f D AcavRcav

r
cos �; (6.17)

where Acav is a constant depending on the boundary conditions. The spherical
coordinate is used to discuss the cavity growth dynamics (Fig. 6.2). The zenith angle
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� is measured from the downward vertical line. The origin is defined at the impact
point, and the distance from the origin is denoted as r. Thus, the x axis corresponds
to r at � D ˙�=2. Then, the radial and angular components of the velocity are
computed from ur D �@˚f =@r and u� D �.1=r/.@ ˚f =@�/, respectively, as

ur D AcavRcav

r2
cos �; (6.18)

u� D AcavRcav

r2
sin �: (6.19)

Therefore, the absolute value of the flow velocity u D juj is written as

u D AcavRcav

r2
: (6.20)

This u becomes zero at r D 1, as expected. At the boundary of the cavity (r D
Rcav), u must be dRcav=dt. Then, Acav is calculated using Eq. (6.20) as

Acav D Rcav
dRcav

dt
: (6.21)

Substituting Eq. (6.21) into Eqs. (6.17) and (6.20), we obtain

˚f D R2cav

r

dRcav

dt
cos �; (6.22)

and

u D R2cav

r2
dRcav

dt
: (6.23)

The kinetic energy of the target fluid Etarget is computed using the velocity
potential as follows [4]5:

Etarget D ��t

2

Z

S
˚f
@˚f

@r
dS; (6.24)

where
R

S dS denotes the surface integral at the cavity. This form is natural because
the integral can be dimensionally regarded as �t

R
ulurdS. Using Eq. (6.22), Etarget at

r D Rcav is calculated as

5Specifically, 2Etarget=�t can be computed as
R

V .r˚f /
2dV D R

V Œr 	 .˚f r˚f / � ˚f r2˚f �dV DR
S ˚f r˚f 	ndS D R

S ˚f vndS, where vn is the outward normal component of velocity at the surface
S. Here, we use Gauss’ theorem and irrotational condition r2˚f D 0.
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Etarget D ��t

2

Z �
R2cav

r

dRcav

dt
cos �

�
�
�
�R2cav

r2
dRcav

dt
cos �

�
dS

D �t

2

Z 2�

0

Rcav

�
dRcav

dt

�2
cos2 � � 2�Rcav sin � � Rcavd�

D ��tR3cav

3

�
dRcav

dt

�2
: (6.25)

The kinetic energy outside the crater cavity Eout is computed as

Eout D �t

2

Z 1

Rcav

2�rzcrahui2dr

D ��tR3cav

60

�
dRcav

dt

�2
: (6.26)

Here we use Eq. (6.4) with x D r and assume hui ' .R2cav=r2/.dRcav=dt/. Eout is
considerably smaller than Etarget; Eout=Etarget D 1=20.

The total dissipation rate Drf by viscosity 	 is given by [4]

Drf D �	
Z

S

@u2

@r
dS: (6.27)

Considering that @u=@r corresponds to the strain rate, Drf indeed becomes 	u P�S,
which corresponds to the energy dissipation rate. Using Eq. (6.23) (and performing
a calculation similar to Eq. (6.25)), Eq. (6.27) can be integrated at r D Rcav as

Drf D 8�	Rcav

�
dRcav

dt

�2
: (6.28)

Thus, the dissipated energy Ediss is given as

Ediss D 8�	

Z t

0

Rcav

�
dRcav

dt0

�2
dt0: (6.29)

Finally, the cavity growth dynamics should be governed by

Ecav C Erim C Esurf C Etarget C Eout C Ediss D Ekei

2
: (6.30)

Here the simple assumption that half of Ekei is spent on target deformation is
employed again similar to the previous static calculation case. Therefore, this
relation corresponds to a modification of Eq. (6.12) by considering the kinetic
energy and viscous dissipation at the cavity surface. Thanks to this improvement,
the time-dependent dynamics of cavity growth can be estimated. Note that, however,
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the kinetic energies and dissipation considered in Eq. (6.30) are computed mainly
at the surface of the cavity and rim; r D Rcav and zcra.x/. Bulky fluid motion
by the impulsive momentum transfer, which may be represented by the virtual
mass, was still not taken into account. The virtual mass could be responsible
for the other half of Ekei; Eout is insufficient to consider the impulsive virtual
mass effect. Unfortunately, Eq. (6.30) is not analytically solvable. Because Ediss

involves the temporal integral of dRcav=dt, Eq. (6.30) becomes an integrodifferential
equation. In Ref. [2], therefore, Eq. (6.30) was numerically solved. The researcher
observed that the numerical solution can explain the experimental results [2]. In the
aforementioned discussion, some unobvious assumptions were used, e.g., Hsheet '
2Rcav and Ekei=2 for the deformation. To analyze the various cratering events,
numerical factors for such nontrivial assumptions must be tuned appropriately.

The model discussed above is based on the energy balance and some assumptions
such as incompressibility and a hemispherical cavity shape. While they appear to
be too simple to fully describe the actual cratering events, laboratory experiments
can be roughly explained using the model [1, 2]. The detailed dynamics of the
cavity growth has also been investigated using other theoretical and numerical
methods [5–7]. Note that the shock wave propagation is not involved in the model.
Therefore, this model is relevant to relatively low-velocity impacts. It might be
difficult to compare this model directly with planetary craters. Moreover, for actual
planetary craters, the final crater shape is evidently different from the maximum
cavity shape created by the impact. The cavity shape is more parabolic than spherical
in actual planetary craters. For the sake of simplicity, we have neglected some
complex factors such as rheological properties (elasticity or plasticity), instability
at the perimeter of the rim, and cavity collapse jetting. These factors might affect
the crater shape as well. Some of these complex effects will be partly discussed in
what follows in this chapter.

Crater formation by a solid sphere’s impact on a viscoplastic target was also
investigated experimentally [8]. Carbopol gels showing Herschel-Bulkley model
rheology (Eq. (3.7)) were employed as the targets, and various spheres were used
as impactors. The measured crater diameter does not monotonically depend on the
impact inertia. The experimental results indicate that the crater diameter Dc is almost
constant in the low Reynolds number regime, Re � 10. Then, Dc slightly decreases
until Re ' 40. After that, Dc increases in the large Re regime, Re > 40. In this large
Re regime, the central peak structure can be observed. Because the Herschel-Bulkley
viscoplastic fluid has a yield stress, it can sustain a complex crater shape after the
dissipation of the impact inertia. The cavity pinch-off depth was also measured in
this experiment and was simply scaled by Re. Up to Re ' 10, the cavity pinch-off
depth is almost constant before beginning to increase in the large Re regime.

6.2 Granular Impact Cratering

If the granular matter is used as a target, the crater shape clearly remains after
the impact. One can readily measure the dimensions of the crater using simple
experiments. However, the quantitative characterization of the crater shape is not
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so easy because the governing equations for dense granular deformation and flow
have not yet been established. Thus, the scaling method is frequently used for the
characterization of granular crater morphology. In this and following sections, such
scaling-based studies for granular impact cratering are reviewed.

6.2.1 Scaling of Granular Impact Craters

The crater shape created by a solid sphere’s impact onto a granular target has been
studied. In Sect. 4.1, the drag force and resultant penetration depth were the main
focus. In this section, the entire crater morphology including the crater diameter and
rim structure will be discussed.

Vertical impact cratering Uehara et al. performed a low-velocity granular impact
experiment with a free-fall solid impactor. These researchers obtained scaling
relations for the crater diameter Dc and the penetration depth d [9, 10]. The obtained
relations are written as

Dc �
�
1

�f

�1=2 �
�i

�t

�1=4
D3=4

i H1=4; (6.31)

d � 1

�f

�
�i

�t

�1=2
D2=3

i H1=3; (6.32)

where �f is the frictional coefficient of the target granular matter and H is the total
drop distance (D free-fall distance h C penetration depth d), i.e., H is proportional
to the total released potential energy. For shallow penetration (h � d), the released
potential energy of the impactor .�=6/�iD3

i gH can be approximated by its kinetic
energy Ekei D .�=12/�iD3

i v
2
0 . Then, the form of Eq. (6.31) is quite similar to

Eq. (6.16). However, the form of the penetration depth scaling is written differently,
and this form is essentially the same as that of Eq. (4.3). In fact, Walsh et al. reported
a 1=4 power-law scaling for both the crater diameter Dc and depth Dh [11]. The
final crater depth Dh and penetration depth d are slightly different. The modification
process might be a reason for the different scaling. In this chapter, the crater depth
Dh should be emphasized rather than the penetration depth d.

Using a laser profilometry system, the crater shapes produced by the granular
impact were precisely measured [12]. The parameters used in Ref. [12] are Di D
3:95–19:26mm, �i D 2:5–15 � 103 kg/m3, v0 D 0:6–4:4m/s, and Dg D 106�212,
180�300, and 200�425�m. According to the experimental result, the crater shape
obeys the scaling

Dc / E0:226kei D0:22
i ; (6.33)

Dh / E0:210kei ��0:264
i : (6.34)
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Table 6.1 Characteristic exponents � and � of the point source measure based on Eqs. (6.35) and
(6.36) and Refs. [13–15]

Dc Dh Nonporous Sand

� 0.5 0.67 0.55 0.41

� 0.25 -0.086 0.4 0.4

These scaling relations are different from Eqs. (6.16), (6.31), and (6.32). Although
the scaling exponents for Ekei are close to 1=4, nontrivial Di or �i dependences are
added in the scaling relations. Put another way, Dc and Dh cannot be scaled solely
by Ekei, which indicates that the concept of point source measure (Sect. 5.5.1) might
be useful for understanding the low-velocity granular impact cratering. The point
source measure description might allow us to obtain meaningful scaling variables
for Dc and Dh instead of combinations of Ekei and Di or �i. Using the relation Ekei �
�iD3

i v
2
0 , Eqs. (6.33) and (6.34) are rewritten approximately as

Dc / �
�0:25i Div

0:50
0

�0:90
; (6.35)

Dh / �
��0:086

i Div
0:67
0

�0:63
: (6.36)

By considering a definition of the point source measure (Eq. (5.43)), the char-
acteristic exponents � and � can be computed for each equation. In Table 6.1,
the computed values are listed, and these values are compared with hypervelocity
impact results [13–15]. Unfortunately, the values are very different from each other.
In particular, the exponent � exhibits significantly small values in Dh scaling. In
fact, the definitions of Dc and Dh are slightly different among Refs. [9, 11–15].
However, the difference is very minor and would not affect the scaling result. A
difference on the order of v0 is rather significant among these studies. From the
current experimental results, it is difficult to obtain quantitative relations among �,
�, and other experimental parameters in the low-velocity granular impact cratering.
Additionally, the difference in the scaling exponents between Dc and Dh is puzzling.
The negative � for Dh indicates that a shallower crater depth is caused by a denser
impactor’s impact. Because the absolute value of � in Dh scaling is very small, the �i

effect on Dh is very weak. In the experiment of Ref. [12], only the craters in which
the impactor was completely buried were measured, i.e., shallow craters were not
involved in the analysis. Thus, this result might only imply that the crater depth is
almost independent of �i once the impactor penetrates deep into the granular target.

More importantly, for the low-velocity granular impact, the cross-sectional
profile of the crater’s cavity could be approximated by a hyperbola rather than a
parabola [12]. The planetary-scale simple craters have nearly parabolic cross sec-
tions, and the liquid impact crater’s cross sections are approximated by a spherical
shape. All of these curves are different types of quadratic curves. Unfortunately, we
have not yet understood what determines the type of crater’s cavity cross section.
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Fig. 6.3 Typical crater
shapes produced by the
low-velocity oblique impact
of a steel sphere onto a loose
granular bed [16]. (a) A
simple crater is produced by a
large �imp impact. (b) An
elliptic crater is observed in
the middle range of the
impact angle:
40ı � �imp � 70ı . (c) A
triangle crater is created by
the low-angle impact
�imp < 40

ı. With kind
permission of The European
Physical Journal (EPJ)

Oblique impact cratering Crater shapes created by a low-velocity oblique impact
on a loose granular bed were also studied experimentally [16]. A steel sphere
(Di D 4–18:3mm) was dropped along an oblique rail groove onto a natural quartz
sand bed. As a result of the nearly vertical impact (�imp 	 70ı; see Fig. 4.13 for the
definition of �imp), a simple crater was formed (Fig. 6.3a). When the impact angle
�imp was in the middle range: 40ı � �imp � 70ı, an elliptic crater was observed
(Fig. 6.3b). In the very small impact angle regime (�imp < 40ı), the crater’s shape
becomes an acute triangle or a tadpole (Fig. 6.3c). The critical angle 40ı is slightly
larger than that for the granular drag force modeling and planetary ˘ -groups
analysis (Sects. 4.1.8 and 5.5.3). In the drag force modeling, the critical angle, above
which the simple drag force law is applicable, was �imp ' 30ı. The same critical
angle was observed in the analysis of the crater efficiency scaling. The morpholog-
ical variation in oblique granular impact cratering originates from the elongation of
the cavity shape due to the horizontal momentum of the impactor. The long axis
length Dl and orthogonal width Dw of the crater were measured and scaled as

Dl � Dal
i h1�al ; (6.37)

Dw � Daw
i h1�aw ; (6.38)
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where Di, h, al, and aw are the impactor’s diameter, its traveling distance along the
rail groove (0:1 � h � 2 m), and two characteristic exponents, respectively. The
exponent al is almost constant, al ' 0:75 at �imp 	 40ı. For low-angle impacts
(�imp < 40ı), al becomes an increasing function of �imp. In contrast, aw becomes a
monotonically decreasing function of �imp. In the large �imp regime, the constant
value al D 0:75 is consistent with the scaling of Eq. (6.31). For the low-angle
impact, the horizontal rolling motion after the impact almost determines the length
of the long axis Dl. In contrast, Dw is mainly determined by the impact inertia, which
corresponds to the released potential energy. By considering that h is directly related
to the impact velocity as v0 ' p

2gh, the tendency of the abovementioned exper-
imental result is qualitatively understandable. However, an adequately quantitative
discussion for the oblique granular impact cratering remains lacking.

6.2.2 Ejecta Splashing

Ejecta splashing and associated corona formation were also studied in low-velocity
granular impact experiment. Morphology and kinematic information of the ejecta
curtain were experimentally investigated by Deboeuf et al. [17]. These researchers
dropped a steel sphere (Di D 10:3–19mm and �i D 7:8 � 103 kg/m3) onto a glass-
bead bed (Dg D 0:4 ˙ 0:1mm) with impact velocity v0 D 1–4m/s. The acquired
side-view images sequence is shown in Fig. 6.4. These researchers observed that
the slope of the ejecta curtain is almost independent of the impact velocity and
time; the angle is a constant of approximately 56ı, which is slightly steeper than
the angle generally observed in hypervelocity impacts (45ı) [18–20]. Indeed, the
angle of the grains’ ejection depends on the ejection point, time, impact velocity,
and impact angle. The precision is not sufficient to discuss the detailed parameter
dependences of the ejecta curtain angle. However, the equality between the grains
ejection angle and ejecta curtain angle is frequently assumed. According to the Z-
model (Sect. 5.3.2), a 56ı ejecta splashing corresponds to 3 � Z � 4. The shape
of the ejecta curtain can be generally explained by the ballistic free-fall motion of
grains with an assumption of the equality between the ejection angle and ejecta
curtain angle.

Deboeuf et al. also measured the effective restitution coefficient of the granular
impact. From the experimental data, it was revealed that the average kinetic energy
of each ejected grain Eej D mgv

2
ej=2 is scaled by the impactor’s kinetic energy

Ekei D miv
2
0=2 as

Eej D 0:56 � 10�7E0:37˙0:05kei ; (6.39)

where mg and vej are the mass and characteristic ejection velocity of each grain,
and mi is the mass of the impactor. Note that vej was effectively computed from
the motion of the ejecta curtain under the assumption that the ejection angle and
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Fig. 6.4 Side-view images of
the granular ejecta curtain
produced by the impact of a
steel sphere (Di D 13:5mm,
�i D 7:8� 103 kg/m3, and
v0 D 2:45m/s). The target
granular bed consists of glass
beads with
Dg D 0:4˙ 0:1mm. Images
were taken every 30ms
(Reprinted with permission
from Ref. [17]. Copyright
2009 by American Physical
Society)

angle of ejecta curtain are identical. For the number of ejected grains, nej, a simple
relation nej D 7:2 � 105E0:70˙0:05kei was obtained by considering the grain number
conservation between the crater cavity and ejecta. Note that the numerical prefactors
in these scaling equations are not dimensionless. The total ejected (restituted) kinetic
energy Eej;total is approximately estimated as Eej;total D nejEej ' 0:031Ekei. Thus, the
effective restitution coefficient by splashing can be computed as

�re D
s

Eej;total

Ekei
' 0:18: (6.40)

Ejecta splashing from a thin (1–10 mm thickness) glass-bead layer (Dg D 65–
600�m) impacted by a steel sphere (Di D 2–14mm, v0 � 1:2m/s) was also
studied [21]. The outer radius of the ejecta curtain was carefully measured in
this experiment. The researchers observed that the radius increased rapidly to
the maximal value and then slightly decreased. This partial closing of the ejecta
curtain occurred at a later stage of the cratering. The timescale of this closing
is considerably longer than that of the initial cavity opening. The reason for this
partial closing might be a negative pressure by Bernoulli’s principle. The researchers
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also revealed that the shear strain rate P� calculated from the ejecta velocity profile
can be explained by the characteristic timescale as P� D p

g=Dg. Although these
findings are interesting, it is not clear whether these characteristics originate from
the thinness of the target layer. The universality and robustness of these findings
should be checked with care.

Using a very high-speed imaging technique, Marston et al. observed granular
impact splashing [22]. The highest frame rate they used was 100;000 fps. These
researchers focused on the very initial stage of the splashing using this very high-
speed imaging. A steel sphere with Di D 20–50mm was impinged on various grain
beds with v0 D 0:78–16m/s. They observed that high-speed grains were ejected
at the lowest ejection angle during the very early stage (before the development of
the ejecta curtain). The grains ejection velocity vej was observed to be up to five
times v0:

maxfvejg ' 5v0: (6.41)

The ejection velocity vej was directly measured by the high-speed imaging. Perhaps,
such a very high-speed jetting6 might be the origin of the ray crater structure
(Fig. 5.4), although the number of grains ejected by the jetting is very limited.
For this very fast jetting, the normalized ejection velocity vej=v0 was scaled by
the normalized time as vej=v0 � .tv0=Di/

�1. This relation indicates that the ejecta
grains released at the late stage have slower ejection velocities than those released
at the early stage. The scaling relation between the kinetic energy of ejecta Eej and
that of impactor Ekei is written as

Eej / E�e
kei; (6.42)

where �e is a characteristic exponent that depends on the range of Ekei. The scaling
shows a crossover at Ekei ' 5 J. At Ekei < 5 J, �e is approximately 1:3; however, it is
approximately 0:4 at large Ekei(> 5 J). While the scaling of Eq. (6.39) is close to �e

in the large Ekei regime, the experimental condition for Eq. (6.39) is on the order of
Ekei ' 10�1–10�2 J [17]. This Ekei regime corresponds to the small one (Ekei < 5 J)
in which �e should be 1:3. Using microgravity experiments, Colwell et al. obtained
a relation Eej � Ekei using the low-velocity impact on granular targets (v0 D 0:2–

2:3m/s, Ekei � 10�2 J). Moreover, another scaling law, Eej / E1=4kei , was derived for
the comparative Di and Dg case (Eq. (4.43)). Currently, it is difficult to conclude the
energy scaling form for the granular impact ejecta. The situation is, unfortunately,
somewhat confusing.

For the fine-grains target case (Dg D 31�m), the propagation velocity of the
ejecta curtain sheet vcurt is approximated as vcurt D 2v0 [22]. This behavior is
somewhat similar to that of the fluid target splashing.

6This jetting is different from the jet induced by the cavity collapse. The jet by cavity collapse is
discussed in the next section.
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The ejecta radius at its neck point rej � rem is scaled by the normalized time
.t � tem/v0=Di as

rej � rem

Di
�
�
.t � tem/

v0

Di

�ˇej

; (6.43)

where rej, rem, and tem are the radius of the ejecta curtain, that at the emergent state,
and its emergent time, respectively, i.e., rej.tem/ D rem. The characteristic exponent
ˇej lies in the range 0:45 � ˇej � 0:75 [22]. In particular, the target made of
loosely packed small grains results in ˇej D 0:49 which is similar to the liquid-
droplet impact onto a liquid film case [23]. Namely, the impact on the granular bed
composed of loosely packed small grains is similar to the fluid impact in terms of
ejecta splashing. The consistency between Eq. (6.43) and the late-stage receding of
the ejecta curtain reported in Ref. [21] is unclear. The target thickness might be an
important parameter for the development of the ejecta curtain.

The collapse of the surface cavity made of liquid impact can be observed as a
reverse water bell (e.g., Fig. 2.8). This collapse is induced by the surface tension
and negative pressure that originated from Bernoulli’s principle. Such a pressure
gradient causes ambient air flow and air drag to the ejecta curtain. For the granular
target case, the smaller grains are affected by air drag more substantially than the
larger grains. As a result, the collapse tendency of the granular ejecta curtain can be
observed to be more significant in the smaller grain target than in the larger grain
target [24]. If the ambient gas density is increased, this cavity collapse can be clearly
observed [25]. For tiny grains, this negative pressure may affect the jet formation as
well as ejecta curtain, as discussed in the next section.

6.3 Impact-Induced Granular Jet Formation

The impact-induced jet formation due to the cavity collapse can be observed even in
granular impacts. For liquid impacts, Worhington performed pioneering works on
this phenomenon [26–28]. Thus, the jet is called the Worthington jet. In a viscous
liquid case, the morphology of the Worthington jet has been evaluated using some
parameters such as density, viscosity, surface tension, and gravity [29]. Similar
jet formation was observed in the granular impact [30, 31]. In Ref. [31], a lead
sphere (Di D 13:4mm, �i D 11:5 � 103 kg/m3) was dropped onto a glass-bead
layer with Dg D 0:08, 0:118, or 0:176mm. According to the experimental result,
the jet height is an increasing function of the impact velocity and a decreasing
function of the grain size Dg. The jet height hjet was scaled as [31] hjet=Di �
Œ.v0=

p
gDi/.Di=Dg/

2�1:2. Although this scaling can be approximately obtained by
slightly improving the energy balance between the kinetic energy of the impactor
�iD3

i v
2
0 and the potential energy of the jet �tgD2

gh2jet (and multiplying the factor
Di=Dg), it actually cannot universally explain the hjet behaviors of various Di [25].
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Lohse et al. observed that hjet can exceed the release height of the impactor
under some impact conditions [32, 33]. To produce such an extraordinary tall jet,
the target grains must be very small. Specifically, fine sand (nonspherical grains
with Dg D 40�m) was used in the experiment. Additionally, the grains were
fluidized by the air flow before the impact. The packing fraction achieved using this
procedure was approximately 0:41. This very loose sand is called dry quicksand.
To make a remarkable granular jet, a very loose granular target (similar to dry
quicksand) consisting of tiny grains and an air-bubble cavity formed by the impact
are necessary. In particular, the grain diameter Dg should be on the order of 10�2 mm
to satisfy the requirements. As discussed in Sect. 3.9.2, the gravity and air drag are
comparable for such small grains (Dg D 10�2 mm) under atmospheric conditions.
Therefore, the ambient air would play a role in the granular jet formation. In the
experiment, granular eruption presumably caused by an air bubble rising in the
granular target was also observed. Rayleigh-type cavity development [33, 34] was
applied to explain cavity pinch-off dynamics.

The granular jet height is reduced under vacuum condition [35], which is
somewhat counterintuitive because the air drag is usually a source of dissipation.
The higher jet can be simply expected under the vacuum condition. Nevertheless,
the vacuum condition suppresses the granular jet formation. Moreover, the two-
stage jet structure was observed in vacuum experiments (Fig. 6.5). In the two-stage
jet, the thin jet emerges at the top of a thick jet with a sharp shoulder. From
Fig. 6.5, one can observe that the thick-jet height is an increasing function of the
ambient pressure. The initial tip velocity of the thick jet vjet depends on the ambient
air pressure p as vjet / .p � pcrit/

1=2, where pcrit is approximately 5:7 kPa under
which the thick jet does not appear [35]. To explain the pressure-dependent jet
height, Royer et al. considered that it is difficult to compress the entire granular
bed under the high ambient pressure condition, while the granular bed can be
easily compressed beneath the impactor under the low-pressure condition. Then, the
energy is rapidly dissipated by the friction due to the grain compaction. Therefore,
the resultant jet height is reduced by this large dissipation in the low-pressure
regime [25].

In addition, these researchers experimentally demonstrated that the jet formation
process does not depend on the density of the interstitial gas [25]. Using a heavy
interstitial gas of SF6, similar experiments were performed with a fixed ambient
pressure. The granular jet formation did not show significant differences from the
case of usual air. Although the density of SF6 is approximately five times greater
than air, this density difference does not affect the jet formation. The only difference
caused by the heavy interstitial gas was the shape of the corona. Because the
negative pressure due to Bernoulli’s principle is pronounced by the large density
of the interstitial gas, the corona tends to shrink rapidly and collapse (forming a
reverse water-bell structure). Then, the jet height is interrupted by the collapsed
corona. However, other behaviors in the granular jet formation were not affected by
the interstitial gas density.

Another research group claims a different scenario for the granular jet formation.
Using systematic experiment, the Twente group (Caballero et al. [36] and von
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Fig. 6.5 Granular jets
produced by the impact of a
steel sphere (Di D 22:5mm)
at various ambient pressures:
(a) 101 kPa, (b) 26:7 kPa, (c)
13:3 kPa, and (d) 2:6 kPa.
The release (free-fall) height
of the sphere is 1:1m, and the
target grains are glass beads
with Dg ' 53�m. Clear
two-stage jet formation can
be observed in (b) and (c)
(Reprinted with permission
from Ref. [25]. Copyright
2008 by American Physical
Society)

Kann et al. [37]) unveiled the effects of ambient air and the container wall on
granular jet formation. These researchers observed that the impactor’s penetration
depth was reduced under low ambient pressure. The reduced jet height and
impactor’s penetration depth exhibited a linear relation in the low-pressure regime:
p � 40 kPa. In addition, the frictional drag parameter k in Eq. (4.4) was computed
from the experimental data in the low v0 (Fr < 80) regime by neglecting the
inertial term. The obtained frictional parameter k depended on the ambient pressure
p as k / p�1=2, which indicates that the solid-like (frictional) property of the
target granular bed is reduced by the ambient air pressure effect. These researchers
consider that the compressed air in front of the impactor fluidizes the granular bed.
Then, the effective drag force (particularly the frictional drag) is weakened by this
compressed ambient air pressure effect. Therefore, deeper penetration and vigorous
jet formation are simultaneously achieved by the larger cavity collapse in a relatively
high-ambient-pressure environment. Furthermore, if the air pressure is very low, the
cavity shape is hardly maintained. Thus, the eruption cannot be observed in the low-
pressure regime. Although this scenario is plausible for loose targets, the penetration
depth in the low ambient pressure regime can be greater in an initially dense target,
as described in Sect. 4.1.7 (Fig. 4.12). Although this trend is opposite to the above
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scenario, the jet formation cannot be observed in the impact of such a very dense
target. The effect of ambient air for the granular jet formation remains a matter of
debate.

This group further tested the effect of the container size (side wall). The jet
height increased when a wider container was used.7 The reason for the enhanced
jet formation in the wider container can be explained by the deeper and faster cavity
closure. The cavity closure depth increases for the wider container. In addition, the
cavity closure time is decreased mainly because of the larger closing speed of the
cavity most likely due to the large hydrostatic pressure. Thus, the resultant jet height
increases in a wider container.

Marston et al. studied the effect of the packing fraction 
 on the granular jet
formation [38]. The experimental results suggested that the jet height was a slightly
decreasing function of 
, particularly in the small 
 regime; however, the jet height
is almost independent of 
 in the relatively large 
 regime. In addition, a two-stage
jet was only observed in the small 
 regime. There is a certain critical packing
fraction above which the two-stage jet does not emerge. Moreover, the size of the
impactor does not affect the onset of the two-stage jet formation. The important
factors for the onset of the two-stage jet are the appropriate ambient pressure level
and low packing fraction.

The physical mechanism of the two-stage jet formation has not yet been
completely solved. The first jet structure is formed by the closure of an impact-
induced cavity. For the second jet, its origin remains controversial. The second jet
might originate from the deep secondary cavity closure or it may come from the
pressure of the rising cavity.

Although the impressively pronounced jet is produced only by the loose
granular target, a certain degree of jet formation can be observed even in the
usual (Dg � 10�1 mm) granular target impact, depending on its experimental
conditions. The jet formation affects the final crater shape to a certain extent.
For instance, Walsh et al. reported some types of crater shapes modified by the
jet formation (Fig. 6.6) [11]. In Fig. 6.6a, one can observe a simple bowl-shaped
crater. This crater shape appears qualitatively similar to planetary-scale simple
craters (Fig. 5.1). In Fig. 6.6b, a small central peak structure can be observed at
the center of the crater. Most likely, this central peak structure was produced by
the jet. To obtain a clear central peak, an appropriate jet must be formed. Indeed,
the impactor’s free-fall height in Fig. 6.6b is slightly higher than that in Fig. 6.6a
case. If the impact inertia is even stronger, the crater shape becomes more complex,
as observed in Fig. 6.6c. A terrace wall structure can be observed in addition
to a central mound. This crater shape might correspond to the complex craters
observed on the actual planetary surface. However, the resemblance is limited
only in their appearances. In general, the planetary-scale craters are formed by a
shock wave rather than the impactor’s penetration and associated cavity formation.
According to the concept of similitude, both large and small-scale impacts could be

7Indeed, the range of container diameter varies within a relatively narrow regime (Dcon � 6Di).
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Fig. 6.6 Crater shapes formed by the impact of a steel sphere (diameter Di D 25:4mm and density
�i D 7:7 � 103 kg/m3) onto a glass-bead bed. (a) A simple bowl-shaped crater (grain diameter
Dg D 180�250 �m and free-fall height h D 0:148m). (b) A bowl-shaped crater with a small
central peak (Dg D 180�250 �m and h D 0:325m). (c) A complex crater with a central mound
and terrace wall (Dg D 45�90�m and h D 0:401m) (Reprinted with permission from Ref. [11].
Copyright 2003 by American Physical Society)

similar at least in the late stage of the cratering. Perhaps, the granular jet formation
might occur on the planetary scale. The physics of the fundamental processes of
the granular jet have been uncovered step by step thus far. Nonetheless, some
principal questions are left unsolved. It is apparent that numerous investigations
are required to understand planetary-scale phenomena. For example, the effect of
gravitational acceleration must be clarified to discuss planetary-scale phenomena.
All the experiments discussed in this section were performed on the surface of the
Earth, i.e., g D 9:8m/s2. Certainly, g depends on the size of the astronomical object
and would affect the crater shape, as discussed in Sect. 5.1.

6.4 Granular-Granular Impact Cratering

A central peak structure can be formed by another way: impact between a granular
impactor and a granular target. Thus far, most attention has been paid to the impact
of an unbreakable solid impactor onto a very weak soft matter target. In this
section, impact cratering caused by a fragile impactor is discussed. Specifically,
some experimental results using a mud ball impactor will be introduced. In the
experiments, a mud ball consisting of a mixture of grains and liquid was dropped
onto a hard floor or a granular bed. Because the impactor is fragile, the resultant
deformation and cratering are different from that in the solid impactor case.

6.4.1 Impact Deformation of a Mud Ball

The deformation dynamics of a mud ball impinging on a hard wall was experimen-
tally studied [39]. A comparison of the impact-induced deformations of a mud ball
and a water droplet is made in Fig. 6.7. As observed, the water droplet deforms until
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Fig. 6.7 Time sequences of deformations of (a) a mud ball (Di D 26mm) impacting onto a thick
glass plate and (b) a water droplet (Di D 3:6mm) impacting onto a hydrophobic glass plate. In
both cases, v0 ' 2:6m/s. The unit of time t is milliseconds (Reprinted with permission from
Ref. [39]. Copyright 2013 by American Physical Society)

it becomes a thin liquid sheet. In contrast, a mud ball cannot deform down to a
thin sheet. Instead, it leaves a mound at the center. Thus, the deformation dynamics
is qualitatively different between the mud ball impact and the water droplet
impact. Nonetheless, these impacts share quantitative similarities. According to the
experimental result [39], the spread diameter Dspread of the impacting mud ball at
the impinging point can be scaled as

Dspread

Di
�
r

t
v0

Di
; (6.44)

where Di, v0, and t are the original impactor’s diameter, impact velocity, and time,
respectively. Equation (6.44) can be expressed using the Strouhal number St as
Dspread=Di � S�1=2

t . Actually, the same scaling has also been observed in the case of
a water droplet impact [40, 41]. In the experiment of Ref. [39], the water saturation8

8Water saturation indicates the fraction of water in the pore space expressed by volume ratio
(Eq. (4.36)).
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in the mud ball was fixed at 0:3. Because the dynamics of wet granular matter
strongly depends on the water saturation as discussed in Sect. 4.1.7, more systematic
experiments with various water saturation levels are necessary to examine the reason
for this similarity among mud balls and water droplets. The physics of wet granular
matter itself is a very complex problem [42, 43].

The splashing condition of the impacting mud ball was also experimentally
examined [44]. When a mud ball impacts a hard floor, splashing occurs because
of grain detachment, particularly in the large impact velocity regime. The onset of
splashing is characterized by the particle-based Weber number. The particle-based
Weber number is defined as Wep D �grgv

2
0=�c, where �g and rg D Dg=2 are the

true density and radius of the grains, respectively. Of course, v0 and �c correspond
to the impact velocity and the surface tension of liquid content, respectively. In the
experiment, it was demonstrated that the onset criterion of splashing corresponds to
Wep ' 14 [44]. The particle-based Weber number can be regarded as a balance
between the impacting kinetic energy per grain and the surface energy on each
splashed grain. In this experiment, the viscosity of the interstitial liquid did not play
an important role in the splashing of an impacting mud ball.

The ejected-grain velocity was also measured in the mud ball impact experiment.
The grains are ejected after the deformation reaches Dspread ' Di. Then, the
maximal ejected-grain velocity decays linearly with time. The ejected-grain velocity
vej satisfies the following relation [39]:

vej

v0
� 2: (6.45)

This vej is smaller than the velocity of the dry grains ejected by the solid impact,
where vej reaches 5v0 (Eq. (6.41)).

6.4.2 Crater Morphology by Granular-Granular Impact

The mound structure observed in Fig. 6.7a recalls the central peak of a complex
crater. In fact, various complex crater shapes can be formed by the impact of a
mud ball onto a granular bed. This type of impact (mud ball vs. granular bed)
is called granular-granular impact [45, 46]. Varying the free-fall height and the
packing fraction of a mud ball, diverse crater morphologies have been observed. The
phase diagram of the granular-granular impact cratering obtained by experiments
with a wide range of v0 is presented in Fig. 6.8. In the experiment, a mud ball with
Di D 36:5mm was made with various packing fraction, 
i D 0:48–0:66. The mud
ball impactor was dropped from a free-fall height h (up to 13:5m). The packing
fraction of the target granular bed was fixed at 
t D 0:55. The representative crater
shapes corresponding to each marker in the phase diagram (Fig. 6.8b) are shown in
Fig. 6.8a. In the low impact velocity and high packing fraction regime, the impactor
maintains its original shape, and the crater shape is similar to that of the solid
impactor case. In the high velocity and low packing fraction regime, the impactor is
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Fig. 6.8 (a) Various crater
morphologies and (b) a phase
diagram of the
granular-granular impact
cratering. Representative
crater shapes for each marker
in (b) are shown in (a) with
corresponding markers. (c)
and (d) show typical complex
crater shapes with a clear
central peak structure. h, 
,
and m in this figure
correspond to the free-fall
height, packing fraction and
mass of the impactor,
respectively (Reprinted with
permission from Ref. [45].
Copyright 2011 by American
Physical Society)

completely pulverized, and a simple crater shape remains again. In the intermediate
regime, complex craters can be observed. Furthermore, the central peak structure
is formed in the relatively high packing fraction and high impact velocity regime.
The origin of this central peak is not a granular Worthington jet. Rather, this peak
originates from the mound structure observed in Fig. 6.7a. Moreover, this mound
structure is most likely related to the stagnation of the obstructed granular flow that
is called a dynamic sand dune [47].

The dimensions of the crater formed by granular-granular impact were measured
and analyzed [45]. The crater diameter of granular-granular impact Dcg is the same
as that of the solid impactor as long as the impactor is not broken. Once the impactor
breaks, Dcg becomes greater than that made by solid impactor. The diameter
difference�Dc D Dcg�Dc is almost a constant in a wide range of impact velocities.
Here Dc indicates the crater diameter created by a solid impact (Eq. (6.31)). Then,
the scaling for the crater diameter by granular-granular impact is written as

Dcg D Cc

�
�i

�t

�1=4
D3=4

i h1=4 C�Dc�.h � hf /; (6.46)

where � is the Heaviside step function9 and Cc is a dimensionless constant. The
free-fall height at which the impactor starts to break is defined as hf . The first term

9�.x/ D 0 for (x < 0) and 1 for (x > 0).



6.4 Granular-Granular Impact Cratering 225

on the right-hand side in Eq. (6.46) comes from Eq. (6.31). The experimentally
observed �Dc is positive, which indicates that the impact kinetic energy is
transferred to the horizontal direction more effectively in the granular-granular
impact than in the solid-granular impact. The value of hf and �Dc must relate to
the cohesion-originated strength of the granular impactor (mud ball).

The behavior of the crater depth is peculiar in the granular-granular impact. In
the low-velocity impact regime (h < hf ), the resultant crater depth is the same as
that in the solid impactor case, as expected. However, the crater depth suddenly
becomes a constant in the large inertia regime (h > hf ). Thus, one can conclude that
a fragile impactor such as a mud ball results in a slightly wider and shallower crater
compared with that in the solid impactor case. Although the modification process
(Sect. 5.3.4) has been considered to be a principal factor in determining the final
crater shape, complex effects such as the abovementioned granular-granular impact
might also play vital roles in the cratering mechanics.

The granular-granular impact craters and actual planetary craters exhibit a similar
scaling [46]. Although the high-velocity impact experiments performed on the Earth
result in a simple relation between the crater volume Vc and its diameter Dc, Vc �
D3

c , the actual craters on the Moon, Ganymede, and Callisto obey slightly different
scaling, Vc / D2:5

c [46]. Additionally, granular-granular impact craters are close to
the latter. Note, however, that the consistency between the relation Vc / D2:5

c and
the constant Dh=Dc (Dh=Dc ' 1=5 for simple craters and 1=8 for complex craters;
see Sect. 5.1) is not clear. We usually expect Vc � D2

cDh � D3
c . Perhaps, a complex

crater shape such as a central peak might affect the scaling. Moreover, the aging of
craters by degradation might be crucial.

In addition to the central peak structure, granular-granular impact can produce
various complex crater morphologies including a ray crater (Fig. 6.9). In Fig. 6.9,
granular-granular impact craters are compared with actual craters observed on
the Moon. The mud ball impactor mimics porous astronomical objects. Such
porous objects are actually very ubiquitous in space. Their physical properties are
determined by cohesiveness among grains [48]. The effect of the target porosity has
been considered in the study of planetary impact cratering [49]. However, the effect
of an impactor’s porosity has not been thoroughly studied. More systematic studies
are required to discuss various impact conditions.

Through direct geological field studies of terrestrial craters, clear central uplifts
of the crater’s floors have been observed, as mentioned in Sect. 5.3.4 [50]. Planetary
explorations have also supported the idea that central peak structures come from
the deep part. Thus, the origin of the central peak structure has been considered as
an uplift rather than a residue of the impactor. The comparison in Fig. 6.9 might
be rather eccentric. However, the general mechanism for the central peak structure
might not be necessarily unique. A much more detailed study of the granular-
granular impact must be performed to discuss the similarity with actual planetary
impact cratering, particularly for the central peak structure.

The penetration of a mud ball into a water target was also studied experimen-
tally [51]. Both the penetration dynamics and the cavity shape opened by the impact
depends on the packing fraction of the mud ball and its impact velocity.
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Fig. 6.9 Various crater
shapes made by the
granular-granular impact
(left), and the actual craters
observed on the Moon (right)
(After [46]; Courtesy of J. C.
Ruiz-Suárez)

EXPERIMENTAL CENTRAL PEAK CRATER LEUSCHNER CRATER (MOON)

EXPERIMENTAL DOME CRATER

EXPERIMENTAL RAY CRATER RAY CRATER (MOON, lat: 9.9° long:113.3°)

DOME CRATER (MOON, lat:34.3°
long:56.6°)

6.4.3 Interaction of Multiple Impactors

One additional interesting experimental result relating to granular-granular impact
was reported by Pacheco-Vázquez and Ruiz-Suárez using multiple impactors [52].
If the breakable impactor moves in a thick atmosphere with a very high speed,
the impactor will break up into many fragments before the impact. Then, a series
of successive impacts by multiple impactors might occur. In this situation, does
a sequence of impacts affect the dynamics of penetration? To investigate this
problem, a sequential-impact experiment with multiple impactors was performed
with a very lightweight-grain bed (Dg D 5mm and �g D 14 kg/m3). The granular
drag force by very lightweight grains is slightly different from the drag force by
usual-weight grains (�g ' O.103/ kg/m3). Specifically, the frictional drag force
in light-weight grains is readily saturated obeying the form written in Eq. (4.33)
mainly due to the Janssen effect. Moreover, for the multiple impactor situation,
the interaction among impactors through interstitial grains could be very complex.
The impactors can experience both repulsive and attractive interactions. In such a
complex system, these researchers observed a curious cooperative motion of plural
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Fig. 6.10 Cooperative
motion of impactors resulting
in a horizontal distribution at
the final state. (a) Five
impactors strike the
lightweight-grain bed
vertically. (b) A clump of
impactors. (c) Numerous
small impactors (Reprinted
by permission from
Macmillan Publishers Ltd:
Ref. [52], Copyright 2010)
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impactors. Because of the complex interactions, the group of impactors finally
lined up horizontally, regardless of the initial state. Representative images of this
horizontal lineup are shown in Fig. 6.10. One can easily observe the horizontally
ordered final state regardless of the state of impact. To understand the complex
interactions in a dynamic lightweight-grain bed, systematic investigations both by
experiments and simulations have been performed [53]. According to Ref. [53],
the lightweight-grain bed is fluidized by the impact and fluid-like interaction
similar to Bernoulli’s principle might become crucial for understanding the coop-
erative motion of the impactors. While it is difficult to directly draw conclusions
concerning the planetary-scale multi-impactor situations from this experimen-
tal result, the possible complexity of the multi-impactors penetration must be
acknowledged.

As discussed in Sect. 4.1.7, when two steel spheres are dropped onto a target
comprising glass beads, the interaction of the two impactors is not very signifi-
cant [54]. The characteristic length scale of the interaction is considerably smaller
than the impactor’s size and approximately 20 times the grain diameter. A general
understanding of the multiple impactors’ penetration on a granular bed has not been
achieved and remains a frontier of active research in this area.
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6.5 Droplet-Granular Impact Cratering

A different class of complex cratering can be observed in a droplet-granular
impact. In the preceding section, the impact of a mud ball, which consists of
a mixture of grains and liquid, was discussed. In this section, the focus is on
cratering by a liquid droplet impacting a granular bed. In Sect. 6.1, cratering on a
liquid target layer was mainly emphasized. In this section, cratering associated with
complex interactions between a liquid droplet and a granular target is specifically
discussed. First, the elementary scaling theory of the deformation dynamics of a
liquid droplet impacting a solid wall is reviewed. Then, the dynamics of the impact
between a liquid droplet and a granular bed is discussed based on experimental
observations.

6.5.1 Droplet Deformation by an Impact on a Solid Wall

First, we would like to estimate the maximal deformation of an impacting liquid
droplet in preparation for the discussion of droplet-granular impact. As already
discussed in the previous section, the spread diameter Dspread of an impacting
mud ball is scaled by the impact velocity v0, original diameter Di, and time t as
Dspread=Di � .tv0=Di/

1=2 (Eq. (6.44)). This scaling is also valid for the deformation
of an impacting liquid droplet. Because the size of an impacting droplet is finite,
there must be a limit of the deformation. Then, the maximal deformation diameter
Dmax can be estimated by considering the energy balance or the force balance.
In general, the spreading dynamics of an impacting droplet strongly depends on
the target hydrophilicity. Here the super-hydrophobic case is mainly considered to
concentrate on the droplet’s intrinsic behavior (Fig. 6.11).

In the case of inviscid liquid droplet impact, the droplet deformation is deter-
mined by the balance between the surface energy and impact kinetic energy. The
former at the maximal deformation state is scaled as �cD2

max, and the latter is
scaled as �iD3

i v
2
0 , where �c and �i are the surface tension and density of the liquid,

respectively. Equating these two energies, a simple scaling for Dmax is obtained as

Dmax � Di

s
�iv

2
0Di

�c
D DiW

1=2
e ; (6.47)

where We is the Weber number. Unfortunately, this simple scaling cannot explain
the experimental result. An experiment of a liquid-droplet impact onto a super-
hydrophobic surface exhibits different scaling, Dmax / W1=4

e [55]. To improve the
scaling, we must introduce an impact capillary length �imp by replacing gravity
g with the characteristic acceleration v20=Di and using �i for the density in the
definition of the capillary length (Eq. (2.99)). Then, �imp is written as



6.5 Droplet-Granular Impact Cratering 229
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maximal deformation statebbefore impacta

Fig. 6.11 Geometry of a droplet impact. Di denotes the droplet diameter before the impact. Dmax

and Hmin correspond to the diameter and height at the maximal deformation state after the impact,
respectively

�imp D
s
�cDi

�iv
2
0

: (6.48)

Substituting this �imp into the characteristic length of the Weber number, Dmax is
rewritten as

Dmax � Di

"
�iv

2
0

�c

�
�cDi

�iv
2
0

�1=2#1=2
;

D Di

�
�iv

2
0Di

�c

�1=4
D DiW

1=4
e : (6.49)

While this scaling explains the experimental results [55–57], one might feel that the
derivation of the scaling is somewhat expedient.

This scaling can be derived in another way [58]. Force balance and geometric
constraint are used in the following derivation. The geometrical notation used is
illustrated in Fig. 6.11. By considering the Euler equation �i.Dv=Dt/ D �rp C�ig,
and neglecting hydrostatic term, the balance between the inertia term and pressure
gradient term should be evaluated. The inertial force per unit volume in the
impacting droplet �iv

2
0=Di should balance with the Laplace pressure gradient at the

maximally deformed sate �c=H2
min. At the same time, a geometric constraint using

an incompressible approximation,

D3
i � D2

maxHmin; (6.50)

must be fulfilled. Using these quantities, one can obtain a relation, �iv
2
0=Di �

�cD4
max=D6

i . From this relation, Eq. (6.49) can be immediately calculated. The
applicability limit of this type of deformation is evaluated by a so-called splashing
parameter that is defined later in Eq. (6.81).

A typical timescale created by the capillary force is also derivable from the
balance between the droplet inertia and the Laplace pressure gradient. Because
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the dimension of �c is Œforce�=Œlength�, it can be regarded as a type of spring
constant (stiffness). Thus, an oscillatory timescale due to this spring-like effect
must exist in the system. To derive this typical timescale t� , we must consider
the balance between inertia and the capillary effect. Therefore, the droplet inertia
per unit volume is dimensionally estimated as �iDi=t2� . For the Laplace pressure
gradient, �c=D2

i should be considered. Because we are interested in the pseudo-
elastic potential of the droplet at its natural length, we employ Di as a representative
length scale. Then, by equating these quantities, we obtain a scaling relation:

t� �
s
�iD3

i

�c
: (6.51)

Because this timescale is a characteristic period of the liquid spring, it must
correspond to a contact time of the bouncing of an impacting droplet. Based on
an impact experiment between a liquid droplet and a super-hydrophobic solid,
the validity of this scaling has been confirmed [59]. Specifically, the contact time
was observed to be independent of the impact velocity and clearly exhibited a
D3=2

i dependence. This experimental result is fully consistent with the expression
of Eq. (6.51). By normalizing the timescale as t�� D t�v0=Di, one can obtain the
scaling

t�� � W1=2
e : (6.52)

Indeed, the abovementioned scaling is not a unique solution. As already dis-
cussed in Sect. 2.5, there remains arbitrariness in the scaling and dimensional
analysis. For instance, if we use a term �iv0=t� for the droplet inertial force per
unit volume instead of �iDi=t2� , the timescale becomes t� � �iv0D2

i =�c. This
form is slightly different from Eq. (6.51) but is dimensionally sound; however, this
scaling cannot fit the experimental result. Put another way, the impact velocity v0
is an irrelevant parameter to characterize the oscillation timescale t� . Therefore,
Eqs. (6.49) and (6.51) are regarded as correct answers for the liquid-droplet
impact dynamics. Validation by experimental tests (or corresponding theoretical
framework) is necessary to confirm the scaling relation, in general.

Furthermore, another scaling can be obtained if we assume an elastic sphere’s
impact. The deformation of an elastic sphere obeys the Hertz law (Sect. 2.5.4).
Because the applied force F and the deformation ı in the Hertz law are related as
F � ED1=2

i ı3=2 (Eq. (2.66)), the corresponding elastic potential energy Ee becomes

Ee � ED1=2
i ı5=2 (because jFj D @Ee=@ı), where E is Young’s modulus. When

this potential energy balances with the impact kinetic energy �iD3
i v
2
0 , the maximal

deformation ımax D Di � Hmin is written as [60, 61]

ımax D Di � Hmin � Di

�
�iv

2
0

E

�2=5
: (6.53)
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Assuming E � �c=Di and t�� D .ımax=v0/.v0=Di/, the following scaling relation is

obtained: t�� � W2=5
e [59]. However, this scaling does not work well for the droplet

impact deformation. The experimental result suggests that Eqs. (6.49), (6.51) and
(6.52) are suitable for the droplet impact. Hertz law is only applicable for small
deformation, whereas the droplet impact deformation is not small. Thus, the Hertz
law is inappropriate in this case. A liquid-droplet impact on a hydrophobic target can
be modeled by a simple spring whose spring constant is �c. Such physical insights
are always required to obtain a proper scaling law.

The temporal variation of Dspread can be computed using the above scaling
relations. Using Eqs. (6.44) and (6.52), one can obtain

Dspread

Di
�
�

t

t�

�1=2
W1=4

e : (6.54)

Note that Eq. (6.54) can be used until the maximal deformation is achieved (t � t� ).
If the liquid droplet is very viscous, the viscosity governs the deformation

dynamics [55]. In such a situation, the balance between the kinetic energy and
viscous dissipation should be considered as

�iD
3
i v
2
0 � 	

�
v0

Hmin

�
D3

max: (6.55)

Here it is assumed that Dmax is a relevant characteristic length scale for the viscous
dissipation.10 The Hmin dependence can be eliminated using a geometric constraint
of Eq. (6.50). Then, Dmax is scaled as

Dmax � DiR
1=5
e : (6.56)

The crossover from the capillary-dominant regime to the viscosity-dominant regime
occurs at W1=4

e ' R1=5e . Thus, Eq. (6.49) can be generalized as

Dmax

Di
� R1=5e  d

�
We

R4=5e

�
; (6.57)

where the function  d.x/ is  d.x/ � x1=4 at x � 1 and  d.x/ � const. at
x � 1. This combined scaling behavior has been experimentally confirmed [55].
Experimental data that are consistent with this scaling are plotted in Fig. 6.12.

The scaling analysis of the deformation of an impacting liquid droplet has
been briefly reviewed in this subsection. There are some additional interesting

10This assumption is important for the scaling. Another scaling relation can be obtained by a
different definition of viscous dissipation. This point will be discussed later in the next section
(see Eqs. (6.78) and (6.79)).
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Fig. 6.12 Scaling of the
maximal deformation of a
liquid-droplet impact. The
experimental data are fully
consistent with the scaling of
Eq. (6.57) (Reproduced with
permission from Ref. [55])

phenomena concerning the impact of a liquid droplet. French researchers performed
various experiments using a water droplet and a super-hydrophobic or very hot
solid target. As an example, these researchers observed that an impacting droplet
can deform into a staircase pyramid or a torus depending on the experimental
conditions [56]. The restitution coefficient �r was also measured. In the impact
between a water droplet and a super-hydrophobic solid target, the impacting droplet
behaves like a spring. However, its restitution coefficient is limited to approximately
0:9 [62]. This limit likely comes from the energy partition to the internal oscillation
of the droplet after the lift-off, and this internal oscillation would be finally
dissipated by viscosity. In the very hot (more than 100ıC) solid target experiment,
the restitution coefficient depends on We as �r � W�1=2

e [57]. That is, in the large
We regime, the very hot solid target cannot behave like a simple hydrophobic target
because of the thermal effect.

6.5.2 Crater Morphology by Droplet-Granular Impact

In this subsection, we consider the result of a liquid-droplet impacting a granular
bed. The principal scope of this subsection is to provide an overview of the crater
morphology resulting from a droplet-granular impact. In Sect. 6.4, we already
surveyed the state-of-the-art of granular-granular impact cratering. The mud-ball
impactor is more fragile than elastic. Because of the fragility, various crater shapes
are produced as observed in Figs. 6.8 and 6.9. Thus, the following natural question
arises: what happens if the impactor is more elastic but still very soft or viscous?
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Fig. 6.13 Phase diagram of the crater shape produced by a water droplet impact onto a SiC-
abrasive bed. Four types of craters (sink-type, ring-type, flat-type, and bump-type) are observed,
depending on the droplet free-fall height and target grain size (Reprinted with permission from
Ref. [63]. Copyright 2010 by American Physical Society)

A liquid droplet is very soft and elastic as discussed in the preceding subsection.
Thus, the impact between a liquid droplet and a granular bed would be intriguing.
We will review the experimental studies on droplet-granular impact cratering in the
following of this section.

Various crater shapes have been observed in droplet-granular impact experi-
ments. The phase diagram of the crater shapes obtained by low-velocity (v0 < 4m/s)
free-fall impacts between a water droplet and SiC abrasive target is presented in
Fig. 6.13 [63]. By varying the free-fall height h and target grain size Dg, we can
observe four types of crater shapes: sink-type, flat-type, ring-type, and bump-type.

A relatively low-velocity impact on a small-grain bed produces a sink-type crater.
In this slow impact regime, an impacting water droplet rebounds without deforming
the target at the initial impact. Then, the droplet falls down to the surface again
and exhibits attenuating oscillation on the surface. Finally, the droplet settles on the
surface and slowly penetrates into the bed by a drain. During the slow penetration by
the drain, a cylindrical hole structure whose wall stands vertically is produced. We
call this structure a sink-type crater. Because SiC abrasives are not very hydrophilic,
a water droplet penetrates very slowly. Additionally, the small-grain target bed has
a small packing fraction, 
0 ' 0:31. Therefore, compaction of the target bed is
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induced by the slow penetration of the liquid droplet. The combination of the slow
drain and associated compaction of the target granular bed induces the sink-type
cratering.

When the impacting velocity or the grain size is increased, a ring-type crater is
formed. In this regime, the impinging droplet is significantly deformed by the initial
impact inertia and also experiences rebound and attenuating oscillation. At the initial
impact moment, some grains are immediately absorbed into the droplet. Moreover,
a clear crater outer rim structure is formed by the initial impact. This outer rim
diameter is greater than the initial droplet diameter. After settling by the attenuating
oscillation, the droplet also penetrates into the target in this case. However, because
the target bed is already compressed by the initial impact,11 the target bed cannot
be compressed further by the penetration. Instead, the ring structure persists after
the drain of the droplet. The diameter of this ring is close to the diameter of the
penetrating droplet because its drain is the cause of this ring structure. As a result of
these processes, concentric rings are produced in this regime. This type of double-
ring crater is defined as a ring-type crater. The ring-type crater is the most popular
crater shape in this phase diagram.12 Although the actual dynamics of the inner
ring formation is not well understood, capillary-driven ring stains formed by a dried
liquid droplet [64, 65] might relate to the inner ring formation. A flat-type crater can
be observed at the boundary of a sink-type crater and a ring-type crater. A central
flat table and an outer rim are produced by the initial impact.

An additional curious shape observed in the droplet-granular impact is the bump-
type crater. The reason we call this crater a bump-type crater is because of its
particular mound-like structure. A usual impact crater has a concave structure
because of the excavation and compression caused by the impact. However, the
bump-type crater has a convex shape. Using precise surface profilometry, it was
established that the peak height of the bump was higher than the initial target bed
height [63]. Moreover, the volume of the created bump was larger than the excavated
volume of the crater. This finding implies that the target bed dilates effectively by
the droplet impact. Why is such a dilation possible? The reason for this dilation
is actually related to the cratering dynamics, which will be discussed later in this
section.

Quantitative characterization of droplet-granular impact cratering is not so easy.
The phase diagram is very useful for qualitative characterization; however, it is
difficult to obtain quantitative information solely from the phase diagram. The
next step that should be performed is an examination of the crater dimensions. As
discussed in the previous chapters as well as the current chapter, crater dimensions
such as the diameter and depth are important quantities for characterizing the crater
shape. For droplet-granular impact craters, the crater diameter Dc was measured and
scaled as [63]

11The typical initial packing fraction is 
0 D 0:44. Furthermore, the target is considerably
compressed by the impact.
12Note that the axes in the phase diagram of Fig. 6.13 are on logarithmic scales.
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Dc

Di
� �t

�i
W1=4

e ; (6.58)

where Di, �i, and �t are the diameter and density of the droplet, and the bulk density
of the target granular bed, respectively. We is the Weber number.

The 1=4 power law for the crater diameter appears again. Equations (4.2), (6.16),
and (6.31) appear similar to this scaling because We is proportional to the square
of the impact velocity. Considering the free-fall relation (v0 D p

2gh), it is easy
to show that W1=4

e is equivalent to h1=4, which indicates that Eqs. (6.58), (6.31),
and (4.2) have almost the same scaling tendency in terms of h dependence (at least
for shallow cratering). The 1=4 power law in these equations can be explained by
the energy transfer from the impactor’s kinetic energy to the ejecta’s gravitational
potential energy (Fig. 4.2b). If we assume that this idea is also applicable to the
droplet-granular impact cratering, the density ratio dependence in Eq. (6.58) is
quite contradictory. The density dependence of the crater diameter is completely
opposite between Eqs. (6.16) and (6.58). Equation (6.58) suggests that a denser
target granular bed results in a larger crater diameter. However, a denser target must
result in a smaller crater if the ejecta’s potential energy is the principal carrier of
the impact energy. Therefore, the scaling of Eq. (6.58) is qualitatively different from
that of Eqs. (4.2) and (6.31).

Droplet deformation is the crucial factor to understand the scaling of Eq. (6.58).
According to Eq. (6.49), the maximal deformation of the impacting droplet obeys
the W1=4

e power law. This scaling is a possible origin of Eq. (6.58). In the droplet-
granular impact, it is difficult to directly deform the target granular bed by the
impact inertia when the target granular bed is dense. Instead, the impacting droplet
deforms itself, and this spreading (deformed) droplet scoops the shallower but wider
granular surface layer. This phenomenon implies that the wider and shallower crater
is formed mainly because of the shearing by an expanding droplet rather than the
normal compression or the excavation. This deformation-based process determines
the outer rim diameter (and depth) of the craters. To consider this deformability
effect, the momentum transfer between the droplet and target should be considered.
The starting point is a simple momentum transfer, �iD3

i v
2=d1 � �tAv2 (Sects. 2.6.2

and 4.1.4). Here we assume that the characteristic length scale d1 is written as
d1 � D3

i =D2
max and effective area A is proportional to DiDmax. Then, we obtain a

simple relation:

Dmax

Di
� �t

�i
: (6.59)

Combining Eqs. (6.49) and (6.59), the scaling of Eq. (6.58) can be understood.
The dilation of the bump-type crater is consistent with the abovementioned

droplet deformation scenario. The bump-type crater is observed only in the large v0
impact onto a large-grain bed. Because the large-grain bed is relatively dense (
0 '
0:5), the impacting droplet has to deform significantly. This deformation results in
a shallower but wider crater. Furthermore, in the initial impact stage, the deformed
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droplet collects surface grains. During the draining stage, grains accumulate on the
surface. These slowly sedimented grains leave a bump made by the relatively porous
grain structure. Slow penetration makes this porous sedimentation possible.

The size ratio of inner and outer rings was examined experimentally [66]. The
outer ring diameter Dc (crater diameter) is determined by the droplet deformation
while the inner ring is a footprint of the drained droplet, and the inner ring diameter
Din is not precisely the same as the initial droplet diameter Di. The ratio Dc=Din

is affected by the competition of timescales between the oscillation (spreading and
recession) and penetration of the droplet. In particular, these two timescales become
comparative when hydrophilic grains such as glass beads are used. The measured
ratio Dc=Din has a maximum value at We ' 200 for a glass-bead target [66].

Various time sequences of the droplet-granular impact cratering are shown in
Fig. 6.14 [67]. In the experiment of Ref. [67], the liquid viscosity and surface tension
were varied by blending water and glycerol or ethanol. Furthermore, the target grain
materials and their sizes were varied; glass beads (Dg D 5–100�m) were used in
addition to SiC abrasives. As observed in Fig. 6.14, typical crater shapes such as
sink-type, ring-type, and bump-type shapes were observed for some experimental
conditions. Some other interesting shapes were also observed in Fig. 6.14.

First, no cratering (perfect wetting) can be observed in Fig. 6.14f. In this case,
small glass beads (Dg ' 5�m) were used as constituents of the target. Because
glass is hydrophilic, it is difficult to completely eliminate the capillary bridge effect
in such a small-bead bed.13 The capillary effect strengthens the structure of the
glass-bead bed. In addition, hydrophilicity emphasizes the permeability of water
that prefers wetting rather than moving to respond to the impact inertia. Therefore,
impacting droplet inertia cannot form a crater. Immediately, a liquid droplet expands
and wets the surface.

Second, one can find secondary crater formation in a low surface tension droplet
impact, which is quite natural because the low surface tension droplet is unstable.
The droplet is easily fragmented into small droplets, as observed in rows (h) and (i)
of Fig. 6.14. In this low surface tension regime, the resultant crater shape and size
are significantly affected by this shattering process.

Third, petal-like rim structures can be observed, e.g., in Fig. 6.14e, g. This
structure appears to originate from the fingering instability of the deformed droplet.
A similar petal-like structure was also observed in other experiments [68]. Fingering
instability and satellite droplet formation are observed in the large We regime. When
the impact inertia is considerably greater than the surface tension effect, the droplet
is fragmented by the impact and satellite droplets are produced. According to the
experimental result of the droplet splashing [69], although the number of satellite
droplets grows as v0 increases, their characteristic sizes decrease as v0 increases.
This result is reasonable if we consider that the droplet shattering originates from
the fingering instability of the impacting droplet. As v0 increases, the deformation

13Because the capillary effect becomes dominant in the small-scale regime (Sect. 2.8.5), its effect
is pronounced in a small-bead bed.
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Fig. 6.14 Various cratering dynamics captured by a high-speed camera. Each row corresponds
to an experimental condition, as cited at left bottom part of each row. Column 0 corresponds to
the instant of impact (t D 0) identified by 210 fps video data. Columns 1–5 present successive
images directly after the impact (1=210 s interval). Columns 6 and 7 show the later stages of
penetration. The scale bar (10mm) is shown at the right bottom. Various droplet deformations
and crater morphologies are observed. The specific experimental conditions are as follows: (a) SiC
with Dg D 4�m vs. water droplet with Di D 2:6mm and free-fall height h D 10mm; (b) same
as (a) except h D 160mm; (c) glass beads with Dg D 50�m vs. water droplet with Di D 4:4mm
and h D 15mm; (d) same as (c) except h D 120mm; (e) same as (c) except h D 240mm; (f) glass
beads with Dg D 5�m vs. water droplet with Di D 4:4mm and h D 160mm; (g) glass beads with
Dg D 100 �m vs. water droplet with Di D 4:4mm and h D 160mm; (h) SiC with Dg D 4�m
vs. ethanol droplet with Di D 3:0mm and h D 160mm; (i) glass beads with Dg D 50 �m
vs. ethanol droplet with Di D 3:0mm and h D 160mm; (j) SiC with Dg D 4�m vs. glycerol
droplet with Di D 3:8mm and h D 160mm; and (k) glass beads with Dg D 50�m vs. glycerol
droplet with Di D 3:8mm and h D 160mm (Reproduced with permission from Ref. [67])
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of the impacting droplet is enhanced, which results in several small fingers at the
perimeter of the deformed droplet. In fact, the fingering instability and resultant
satellite droplet formations can be clearly confirmed in Fig. 6.14e, i. In another
experiment, the onset condition of fingering instability in a droplet-granular impact
was studied [68]. These researchers observed that the fingering instability occurs at

W1=2
e R1=4e 	 120: (6.60)

The fingering instability of an impacting droplet might be crucial when discussing
the complex crater morphologies (e.g., micro crater rim structure and rampart
crater). Because the fingering-like instability of the impacting liquid droplet is also
an interesting problem in soft matter physics, an in-depth discussion of the fingering
structure will be provided in the next section.

According to Ref. [69], the Bond number Bo D �igD2
i =�c (Eq. (2.104)) is

an important dimensionless number to classify the dynamics of droplet-granular
impact. In the large Bo.> 1/ regime, the maximal droplet diameter Dmax is linearly
related to the impact velocity v0. In the small Bo.< 1/ regime, Dmax is scaled as
Dmax=Di � W1=5

e : Note that the estimated scaling exponent is slightly smaller than
1=4. Furthermore, viscosity scaling, Dmax (or Dc) / R1=5e (Eq. (6.56)) could not be
clearly confirmed in the droplet-granular impact experiment [67, 68]. Instead, the
simple We scaling or v0 dependence has been robustly observed. As observed in
Fig. 6.14j, k, very viscous liquid droplets cannot be deformed significantly. Thus,
the cratering by a very viscous droplet resembles the solid impactor case. If the
impact inertia is dissipated by viscosity, Re-dependent scaling must be observed in
principle. In the very viscous droplet impact, however, the impact inertia would be
dissipated mainly by the deformation of the granular target rather than the droplet
viscosity. The target granular bed is weaker than the very viscous droplet.

The hydrophilicity of target grains affects the deformation dynamics. Some
differences among SiC and glass-bead targets were already introduced above. In
addition, if the target glass beads are coated by a hydrophobic suspension, the
droplet deformation by the impact becomes completely different. Specifically, the
maximal droplet diameter is scaled as Dmax / W2=5

e [70]. Moreover, the shape
of the rebounding droplet can be frozen into a very irregular shape in this very
hydrophobic grain case. The scaling exponent 2=5 is different from 1=4 and 1=5.
Indeed, the scaling exponent for the relation between Dmax=Di (or Dc=Di) and We

is distributed from 1=6 to 2=5 [63, 66–71]. The relation Dc / .�iv
2
0D3

i /
1=6 was

observed in the droplet-granular impact experiment [71]. The scaling exponent
1=6 is quite different from 1=4; this 1=6 scaling is similar to a certain class of
hypervelocity impacts [14, 72] and the 1=6 scaling exponent corresponds to the
case of � D 2=5 in Eq. (5.58) scaling (Eq. (5.60)). This � value is closer to the
momentum scaling (� D 1=3) than the energy scaling (� D 2=3) (see Sect. 5.5.1 for
the detail). In addition, the depth-diameter ratio Dh=Dc ' 1=5was confirmed by this
experiment. This result is consistent with the observed planetary-scale simple craters
(Sect. 5.1). The similarity among hypervelocity impacts and very soft impacts is
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suggestive of a simple physical mechanism. Perhaps, this result might indicate
that the droplet-granular impact and hypervelocity solid-granular impact are very
dissipative, whereas the low-velocity solid-granular impact is energy dominated.

Characteristic timescales of droplet-granular impact There are some character-
istic timescales in this phenomenon. The first timescale is the droplet oscillation
period governed by the surface tension, t� (Eq. (6.51)). The measured oscillation
period for the droplet-granular impact is indeed independent of v0 [63, 67]. This
result is consistent with Eq. (6.51), which was originally computed for the droplet
impact onto a hard wall.

Another important timescale is the penetration time, tpen, which is defined by the
duration from the impact instant to the complete drain. The measured tpen shows a
nontrivial dependence on the viscosity as [67]

tpen /
r
	

�i
: (6.61)

Classical theory of liquid penetration into a porous medium predicts a simple
relation called the Washburn law: tpen / 	=�c [73]. Using very slow droplet-
granular penetration experiments, tpen was measured and characterized by a simple
relation which is consistent with the Washburn law [74, 75]. This result is contrary to
Eq. (6.61). The reason for this discrepancy is the effect of the impact itself. When the
impact velocity is sufficiently large, the granular target is significantly deformed and
compacted by the initial impact. The physical property of such a deformed and com-
pacted granular target could be different from the usual (unloaded) porous media.

The timescale of jet formation resulting from the droplet retractive collapse, tjet,

was also measured and scaled as tjetv0=Di � W1=2
e [69]. This scaling is consistent

with Eq. (6.52), which is not so surprising because the timescale of collapse of the
receding droplet is determined by the droplet oscillation timescale. As mentioned
above, the contact time, which represents the duration from the impact to the
detachment by rebound, is almost independent of the impact velocity v0. This
result is also consistent with Eq. (6.51). Thus, the contact time is also governed
by the surface tension of the impacting droplet. Note that Eqs. (6.51) and (6.52)
are consistent with each other; thus, all the timescales discussed in this subsection
except tpen are intrinsically identical.

Ejecta splashing by droplet-granular impact Granular ejecta splashed by liquid-
droplet impact were investigated by Marston et al. [69]. Typical snapshots of the
splashing and final crater shape are presented in the top left and right panels
in Fig. 6.15, respectively. In general, the global structure of the splashing (ejecta
curtain) is similar to that made by a solid sphere’s impact (cf. Fig. 6.4). The
difference between Figs. 6.4 and 6.15 is the degree of clustering in the ejecta curtain.
One can observe the clustering of ejected grains in Fig. 6.15, which might be
granulation due to the capillary bridge effect. Namely, the clustering can be caused
by the liquid-droplet impact that mixes liquid and grains. This clustering structure
is also confirmed in the top right panel of Fig. 6.15, in which a top view of the
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Fig. 6.15 Top left images: side-view snapshots of a droplet impact (Di D 2:4mm and 50%
glycerol) captured by a high-speed camera. The target and impact conditions are 
0 � 0:41,
We D 188, and Oh D 0:019. Top-right image: top view of the final crater and the deposited
ejecta. Bottom image: granule nucleus structure after removal from the target granular bed. The
scale bars are 5mm (top left, bottom) and 10mm (top right) (Reprinted from Ref. [69]. Copyright
2010, with permission from Elsevier)

final crater shape and ejected grains is shown. Several clustered ejecta fragments
are distributed around the crater cavity. By precise tracking of ejecta fragments,
the ejecta grains were classified into two types: the ejecta of water-encapsulated
grains and the dry grains ejected from the periphery of the impact crater [76].
Distributions of the ejection velocity, angle, and travel distance were also measured
in the experiment. However, the physical characterization of these distributions is
not yet sufficient. Much more detailed studies are required to reveal what happens
in the ejecta curtain created by the droplet-granular impact.

Granule nucleation and chemical engineering application The capillary-based
cohesive effect can be observed directly by the granule nucleation as observed in the
bottom plate of Fig. 6.15. The granular nucleus bound by the liquid capillary bridge
is formed by the droplet-granular impact at its center. Such a nucleation process
is very crucial in a wide range of chemical engineering processes. There are many
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chemical engineering processes that require the efficient mixing of granular matter
and liquid. Thus, the droplet-granular impact and the associated penetration have
also been studied extensively in the chemical engineering field [74, 75, 77–80]. To
control the mixture of grains and liquid, we must obtain the phase diagram of the
mixing.

A spray of droplets on a granular bed is used to make granule or a general
mixture of liquid and grains. In chemical engineering processes, the granular target
layer is usually showered by numerous tiny droplets with a constant rate. By
adjusting the spray rate per unit surface area, the granulation process is controlled.
In such a situation, the dimensionless spray flux �sp is useful for characterizing its
behavior [78]. �sp is defined as �sp D 3 PV=2 PADi, where PV , PA, and Di are the spray
(liquid) volume rate, area flux of the spray zone, and average diameter of the sprayed
droplets, respectively.

In Refs. [79, 80], the crater morphologies are classified into three regimes:
tunneling, spreading, and crater formation. The tunneling phase represents slow pen-
etration with granule formation. Most likely, the sink-type crater (e.g., Fig. 6.14a)
corresponds to this tunneling phase. In this capillary-dominated regime, a capillary
force binds the granule structure. Thus, the capillary force must be stronger than
the gravitational force. In contrast, if the capillary effect is not strong enough, the
granular layer cannot be deformed by the penetrating droplet, and the produced
nucleus cannot be stabilized. In this gravity-dominated regime, the impact inertia
must be utilized to characterize the behavior. Cratering and spreading are observed
in this regime. Thus, the balance between the capillary effect and gravity effect could
be an essential factor to categorize the boundary between the tunneling and cratering
(or spreading) phases. The granular Bond number Bog is introduced to characterize
this balance:

Bog D �c

D2
g�gg

; (6.62)

where �c, Dg, and �g are the surface tension of the droplet, diameter of grains,
and density of each particle (not bulk density), respectively. When Bog is less than
60,000, spreading and cratering occurs whereas tunneling dominates at Bog >

60;000 [80]. In the small Bog regime, cratering or spreading occurs depending
on impact inertia and target strength. The spreading phase corresponds to a
rapid spreading of the droplet that results in surface wetting. This phase can be
observed in Fig. 6.14f. To attain the spreading without cratering, grains must be very
hydrophilic. Of course, Bog is not a unique quantity to classify the droplet-granular
impact phases. Other factors such as impact inertia and viscosity could affect the
phase boundary. Because the sprayed droplets are tiny and their impact velocities
are not large in usual chemical engineering processes, Bog is the most important
parameter.

Ring crater morphology At the end of this section, the morphologies of an actual
lunar crater and droplet-granular impact crater are compared. In Fig. 6.16, the
actual complex crater on the Moon and the ring-type crater created by the droplet-
granular impact are displayed. Both craters have similar concentric double-ring
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Fig. 6.16 (a) Actual lunar crater (Hesiodus A) with a concentric double-ring structure. Its
diameter is approximately 15 km. The image was taken by SELENE and is provided courtesy
of T. Morota. (b) Ring-type crater produced by a droplet-granular impact [63]. Its diameter is
approximately 10 mm. Although their crater shapes are similar, the similarity of the underlying
physical mechanisms is not clear. Rather, at present, this similarity is a coincidence

structures. However, their diameters are quite distinct. The diameters of the lunar
crater and droplet-granular impact crater are approximately 15 km and 10mm,
respectively. The difference is over six orders of magnitude! Thus, the governing
physical mechanisms must be different. For the droplet-granular impact cratering,
surface tension of the droplet plays an essential role as discussed in this section.
However, surface tension is completely negligible on a large scale. Although the
surface gravity on the Moon is approximately 1/6 of that on the Earth, it remains
sufficiently large to overwhelm the surface tension effect on the kilometer scale.
Nevertheless, the actual crater’s inner ring exhibits good circularity. The origin of
this ring-type crater has not yet been understood. Whereas thermal effects, such
as phase transitions, have been neglected in almost all the discussions thus far,
these complex effects might be indispensable to rationalize the origin of various
crater shapes. Currently, it is difficult to conclude the similarity between actual
and laboratory-experimented craters. Most likely, these craters appeared similar by
chance. Perhaps it is inappropriate to present these two crater shapes in the same
figure. The similarity of the underlying physical mechanisms is necessary to discuss
the correspondence of these shapes. However, such a morphological coincidence
is sufficiently interesting to invoke curiosity. Much more detailed and systematic
studies of soft impact cratering might provide some useful information to discuss
the origin of various complex craters.

6.6 Instability of Soft Impact Cratering Rim

Instability on the expanding droplet’s rim can be observed in the droplet-granular
impact (e.g., Fig. 6.14e, i). The evidence of instability remains in the form of petal-
like rim structures or secondary craters made by satellite droplets. This type of
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instability induced in the impacted liquids (droplet or target) is related to the so-
called milk-crown structure. Because the morphology of the milk-crown structure is
very impressive, many research efforts have been devoted to the study of instability
on expanding liquid film. Both the impacting droplet [81] and impacted water-
bell structure [82] have been investigated as entities exhibiting the instability.
Furthermore, a similar instability-like pattern was observed at the micro crater’s
rim observed on a sample that returned from the asteroid Itokawa (Fig. 5.6b). If
the wavy crater rim structure observed in Fig. 5.6b originates from the instability,
it will be possible to compare its rim structure with laboratory experiments. Using
this comparison, the useful information from Itokawa’s sample might be extracted
from the morphology of the crater. For this purpose, the relation among the impact
conditions (e.g., v0 and Di) and the number of fingers created by the impact-induced
instability is particularly emphasized in this section. The former is what we want
to know, and the latter is what we can observe directly. Here we introduce two
contrasting scaling analyses. One is based on the impact Reynolds number and the
other is associated with the Rayleigh-Taylor instability. Although these two ideas
are not very consistent with each other, both are introduced and discussed through
this section. The latter will be applied to estimate the impact velocity for the asteroid
Itokawa’s micro craters. However, some serious problems need to be overcome to
reach a fully convincing estimate. Perhaps, we have not merely reached the unified
principle behind this phenomenon. Thus, various understandings are possible and
remain controversial; these understandings may only be empirical approximations.
This situation is very similar to the former controversy concerning the various
scaling laws for the granular impact drag force (Sect. 4.1.2). In the granular drag
force case, the laws were finally unified by the empirical drag force law, Eq. (4.4).
In contrast, our knowledge of the fingering and complex crater morphology remains
very limited.

6.6.1 Impact Reynolds Number Scaling

From the viewpoint of dimensional analysis, the number of fingers induced by the
splashing instability can be scaled by a relevant dimensionless number. The simplest
starting point is the Reynolds number, Re. Although Re denotes the balance between
inertia and viscosity, the surface tension must also be crucial for the fingering
instability. Thus, we must involve the surface tension effect in the dimensionless
number. To consider the surface tension effect, the characteristic timescale of
the liquid spring t� (Eq. (6.51)) is considered here. A characteristic length scale
l	.diffusion length), which is made by viscosity-driven momentum diffusion during
t� , is scaled as14

14See Eq. (3.28). Note that the kinematic viscosity 	=�i corresponds to the diffusion coefficient Kd .
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Using l	 for the length scale of Re, the impact Reynolds number, ReI , is defined as

ReI D �iv0l	
	

D
�
�iv

2
0Di

�c

�1=4 �
�iv0Di

	

�1=2
D W1=4

e R1=2e : (6.64)

In Refs. [83, 84], ReI was introduced and used for the analysis of the fingering
instability induced by the liquid-droplet impact. The number of fingers Nf induced
by the droplet impact on a hard floor is scaled as

Nf � R3=4eI : (6.65)

The scaling exponent 3=4 was obtained by experimental data fitting [83]. However,
the specific origin and physical meaning of the obtained exponent value remains
unrevealed. Moreover, another dimensionless number W5=4

e R�1=2
e can be obtained

from the We form �iv
2
0 l	=�c. However, it appears to be inappropriate for character-

izing the fingering. Because the validity of the scaling of Eq. (6.65) is demonstrated
by the experiment, it is an empirical law.

6.6.2 Rayleigh-Taylor Instability

As introduced in Chap. 1, a type of instability is induced if a denser fluid layer is
horizontally superposed on a lighter fluid layer under the uniform gravity condition.
Because this initial state is gravitationally unstable, an overturning of these layers
will occur. At the very initial stage of this overturn, a fingering structure called the
Rayleigh-Taylor instability is observed. In general, if an acceleration a is applied
normally to the interface of two fluids of densities �h and �l (�h > �l), the Rayleigh-
Taylor instability is induced on the surface. Here the direction of a must be from
the heavier fluid toward the lighter fluid. Otherwise, the layered structure is stable.
By considering the capillary effect, the perturbation of a characteristic (angular)
wavenumber kf is selectively pronounced by the Rayleigh-Taylor instability.

The characteristic wavenumber kf for an inviscid fluid layer is analytically
calculable [85]. Here we derive kf using an intuitive approach developed by
Refs. [86, 87]. Let us consider the situation shown in Fig. 6.17. The heavier fluid is
superposed above the lighter fluid. The initial (equilibrium) interface is taken as the
x direction, and the acceleration is applied in the perpendicular direction from the
heavier fluid to the lighter fluid. The depth dimension of the interface is denoted by
D. Thus, the intersectional area of the interface is written as A D D=kf . We focus on
the case that the depth D is much less than 1=kf , namely, the quasi-two-dimensional
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Fig. 6.17 Schematic drawing of the perturbation induced by the Rayleigh-Taylor instability. At
the initial (equilibrium) state, the pressure is balanced. Any perturbation written by z exp.ikf x/
is always unstable if there is no surface tension. By considering the surface tension effect, the
maximum growth rate is determined at a certain wavenumber written in Eq. (6.75)

situation is mainly considered. In other words, we neglect the perturbation structure
in the depth direction. Both fluids are supposed to be incompressible, inviscid, and
immiscible. At the initial equilibrium state, the pressure on the interface is balanced
although it is unstable.

Here we consider a situation in which the equilibrium interface is disturbed by
a perturbation. The scale of the perturbation to the acceleration direction is denoted
by z, and its wavelength is written as 1=kf . The very early stage of the instability
(z�1=kf ) is emphasized in this analysis. The force made by this perturbation Fp

acting on the intersectional area A is written as

Fp D .�h � �l/azA D .�h � �l/az
D

kf
: (6.66)

Fluids must be moved to develop this perturbation. The mass (inertia) of fluids
relating to this perturbation motion can be estimated as

mp D �h
A

kf
C �l

A

kf
D .�h C �l/

D

k2f
: (6.67)

Here we assume that the related volume is proportional to A=kf rather than Az,
which indicates that z is not a relevant length scale for the motion-relating volume
estimation. The perturbation scale z only relates to the force as written in Eq. (6.66).
Because the fluid motion evidently affects its neighborhood, it is impossible to move
only the volume Az without any other fluid motion. Therefore, the length scale
1=kf becomes relevant instead of z. This relating mass form is a key assumption
in determining the appropriate characteristic wavenumber for the Rayleigh-Taylor
instability.
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Although the surface tension effect is necessary to obtain a meaningful charac-
teristic wavenumber, we initially neglect its effect. Then, from Newton’s equation
of motion (mp.d2z=dt2/ D Fp) and Eqs. (6.66) and (6.67), we obtain the following
relation:

d2z

dt2
D �h � �l

�h C �l
akf z: (6.68)

The solution of this ordinary differential equation (ODE) is

z D z0 exp

�
t
r
�h � �l

�h C �l
akf

�
; (6.69)

where z0 is the initial value of the perturbation. This solution suggests that any
perturbation exponentially grows with time. This result is reasonable because the
initial superposed structure (�h � �l > 0) is absolutely unstable, and there is no
resistance to it. The Atwood number At D .�h ��l/=.�h C�l/ (Eq. (2.108)) indicates
the strength of this instability. The growth rate of this instability is denoted as ıR Dp

Atakf . If �l > �h, Eq. (6.69) represents the oscillation. By considering the viscous
dissipation, the perturbation vanishes because of the attenuating oscillation, namely,
the setup can be stable due to the viscosity.

Next, we consider the role of surface tension for the instability. The surface
tension at the interface works to stabilize (straighten) the interface of two fluids.
The competition between the acceleration-driven instability and the capillary-driven
stabilization determines the characteristic wavenumber of the Rayleigh-Taylor
instability. The surface tension force acting at the interface can be calculated as

F� D �c

Rc
A; (6.70)

where �c is the surface tension of the interface and Rc is the radius of curvature of
the perturbation, i.e., �c=Rc corresponds to the Laplace pressure (two-dimensional
version of Eq. (2.100) with R1 D Rc and R2 D 1). The definition of the radius of
curvature is given as15

Rc D
�
1C .dz=dx/2

	3=2
d2z=dx2

: (6.71)

15The radius of curvature is defined by Rc D ds=d� , where ds D p
.dx/2 C .dz/2 is an arc

length and d� is the corresponding arc angle. The relation d� D .d2z=dx2/dx=Œ1 C .dz=dx/2 � is
obtained from the geometrical condition tan.� C d�/ D dz=dx C .d=dx/.dz=dx/dx (using d��1,
tan � D dz=dx and tan.�Cd�/ D .tan �Ctan d�/=.1�tan � tan d�/). Equation (6.71) is computed
from these relations.
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Although the form of Eq. (6.71) is slightly complicated, the radius of curvature of
the considered perturbation is approximated as

Rc ' � 1

zkf
2
: (6.72)

Here a form of z.x/ D z exp.ikf x/ is used and the conditions kf z � 1 and kf x � 1

are assumed because we focus on the vicinity of the perturbation tip, i.e., the Taylor
expansion is applicable. From the equation of motion mp.d2z=dt2/ D Fp C F� and
Eqs. (6.66), (6.67), (6.70), and (6.72), one can obtain

d2z

dt2
D
"
�h � �l

�h C �l
akf � �ck3f

�h C �l

#
z: (6.73)

The corresponding growth rate becomes

ıRs D
s
�h � �l

�h C �l
akf � �ckf

3

�h C �l
: (6.74)

In contrast to the no surface tension case, this growth rate can be either a real
number or an imaginary number depending on kf even if �h and �l are fixed. The
maximum growth rate is achieved when @ıRs=@kf D 0. Thus, the maximum-growth
wavenumber is obtained as

kf D
s
.�h � �l/a

3�c
: (6.75)

This form is quite natural because it can be expressed by the inverse of the capillary
length. Using .�h��l/a instead of �g in Eq. (2.99), a simple relation kf D .

p
3�c/

�1
is obtained. As long as the competition between the inertia and capillary effect
governs the instability,16 the corresponding capillary length must be a characteristic
length scale.

6.6.3 Instability-Based Scaling and Splashing Parameter

The relation among the fingering number and impact conditions can be evaluated
by assuming that the fingering structure on the splashing rim originates from the
Rayleigh-Taylor instability. Because the impact of a droplet of diameter Di and
velocity v0 is considered, the characteristic acceleration a can be estimated as

16This criterion is equivalent to the condition that the viscosity is negligible.
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a ' v20=Di. Furthermore, let us consider the situation that the density difference is
very large, �i ' �h � �l. Applying these approximations, Eq. (6.75) is rewritten as

kf ' 1p
3Di

W1=2
e : (6.76)

To compute the number of fingers Nf , the total length of the accelerated interface is
required. This value can be approximated by the perimeter length of the droplet at
the maximally deformed state, �Dmax. Because the wavelength is written as 2�=kf ,
Nf D �Dmax=.2�=kf / is calculated as [88]

Nf ' 1

2
p
3

Dmax

Di
W1=2

e : (6.77)

When the droplet deformation obeys spring-like behavior, Eq. (6.49) can be used
to estimate Dmax. Then, a simple scaling Nf � W3=4

e is obtained. The number of
fingers is purely determined by We in this form. However, it is empirically known
that the viscosity also affects the fingering; then, Dmax should be related to the
viscosity. This necessity of viscosity is a slightly tricky assumption to obtain the
general relation among Nf , We, and Re. Moreover, the mode obtained by Eq. (6.75)
is based on the inviscid assumption. Thus, the following derivation of the relevant
dimensionless number is very empirical. The relation between Dmax and Re can be
computed in the viscosity-dominant regime. Although such a relation was already
estimated in Eq. (6.57), another scaling has been used in the literatures for the
fingering instability [89–91]. Concretely, the energy dissipation due to the viscosity
is estimated by the method slightly different from Eq. (6.55). The viscous energy
dissipation W	 is estimated as

W	 � 	

�
v0

Hmin

�2
D2

maxHmintdef; (6.78)

where tdef is the time taken to achieve the maximal deformation, tdef � Di=v0. If the
kinetic energy Ekei � �iD3

i v
2
0 is mainly dissipated by W	, Dmax is scaled by Di and

Re as

Dmax � DiR
1=4
e : (6.79)

Here the geometrical relation HminD2
max � D3

i is used to obtain Eq. (6.79). The
obtained scaling exponent 1=4 is slightly different from the previously calculated
value 1=5 in Eq. (6.56). In the literature, the energy balance was considered with
numerical factors and the relation Dmax ' .1=2/DiR

1=4
e was obtained for the case

We � Re (viscosity-dominant regime) [89–91]. Substituting this relation into
Eq. (6.77), Nf is evaluated as

Nf ' 1

4
p
3

W1=2
e R1=4e : (6.80)
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The dimensionless number Ks defined by

Ks D W1=2
e R1=4e (6.81)

is called the splashing parameter and is often used to characterize the phase bound-
ary between the no-splashing (stable) and splashing (unstable) phases. Actually,
Eq. (6.60) (onset criterion for the splashing) is an example of such characterizations.
The critical splashing parameter was obtained for a smooth surface target case as
57:7 [89], and for a 5�m fiber bed as 87 [92]. According to Eq. (6.56), W1=2

e R1=5e

might also be possible for the splashing parameter. Because the difference between
R1=4e and R1=5e is not remarkable in the studied regime, it is difficult to definitely
conclude which one is better than the other. This type of ambiguity is a typical
limitation of the dimensional analysis, especially when the considered range of
parameters is limited. However, the splashing parameter is usually denoted by
W1=2

e R1=4e .
There is another serious conflict in the scaling of Nf . Whereas the splashing

parameter is denoted as Ks D W1=2
e R1=4e , the impact Reynolds number is expressed

as ReI D W1=4
e R1=2e . This difference originates from the derivation approach of

the relevant dimensionless numbers (Eqs. (6.65) and (6.80)). For the derivation of
the impact Reynolds number, a capillary-based timescale t� and the length scale
of momentum diffusion due to the viscosity were considered. However, capillary-
induced instability and viscous dissipation were considered in the derivation of the
splashing parameter Ks. That is, the origins of the instability are supposed to be the
viscosity-capillary-related momentum diffusion and the capillary-based Rayleigh-
Taylor instability for ReI and Ks, respectively. Note that Eq. (6.65) cannot predict
the absolute number of the induced fingers because it is derived solely on the
basis of dimensional analysis. In contrast, because Eqs. (6.80) and (6.77) include
the numerical factor, the concrete value of Nf can be directly calculated using
these forms. Although Eq. (6.77) is based on the instability theory, the numerical
coefficient in Eq. (6.80) is somehow obtained empirically. Thus, the use of Eq. (6.77)
might be safer than the use of Eq. (6.80) as long as it is useful.

The abovementioned computation has concerned the liquid droplet deformation.
To consider the cratering, the scaling of cratering should be employed instead of
the droplet deformation scaling. By considering the gravity regime for the liquid
cratering, another scaling of Nf is obtained. Here the energy balance between the
crater cavity potential Ecav D ��tg.Dmax=2/

4=4 (Eq. (6.2)) and the kinetic energy
Ekei D ��iD3

i v
2
0=12 is assumed. Then, Dmax is calculated as

Dmax D
�
16

3

�i

�t

D3
i v
2
0

g

�1=4
D 2Di

�
�i

3�t
Fr

�1=4
: (6.82)

Essentially, this form is identical to Eq. (6.16). Substituting Eq. (6.82) into
Eq. (6.77), Nf in the gravity regime is obtained as
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Nf '
�
1

27

�i

�t
Fr

�1=4
W1=2

e : (6.83)

This form might better explain the fingering by cratering of a fluid (gravity regime),
although capillary- and viscosity-based scalings are relevant to the droplet impact
situation.

6.6.4 Instability in Various Cratering and Impact Phenomena

Using Eq. (6.77), one can roughly evaluate the impact velocity causing the wavy rim
structure observed on Itokawa’s micro crater (Fig. 5.6b). The impact velocity v0 is
calculated from Eq. (6.77) as

v0 ' 2Nf

Dc

s
3Di�c

�i
; (6.84)

where Dc is the crater diameter. Of course, Eq. (6.84) provides a reasonable estimate
for the fingering states observed in Fig. 6.14d, e. Substituting typical values (Nf D
10, Dc D 2Di D 10mm, �c D 72� 10�3 J/m2, and �i D 103 kg/m3) into Eq. (6.84),
one can obtain v0 ' 2m/s which is consistent with the actual experimental
condition.

To compute v0 of Itokawa’s micro crater, the characteristic properties of both
the impacting and impacted materials (supposed to be silicate) are assumed to be
�i D 2 � 103 kg/m3, �c D 0:014 J/m2 [93], and Dc ' 2Di ' 200 nm. Then,
from Nf ' 7, v0 D 1:0 � 102 m/s is obtained.17 If the target is molten, �c

becomes approximately one order of magnitude larger. Although this difference
certainly affects the v0 estimation, the order of v0 is 102 m/s as long as Eq. (6.84)
is relevant. The assumption Dc ' 2Di roughly corresponds to Fr'1 in the
gravity regime (Eq. (6.82)). However, it is actually difficult to satisfy this condition
under the microgravity condition. Instead, the finite strength of the target Yt

should be considered. From the simple energy balance with a hemispherical cavity
approximation, �D3

cYt=12 D ��iD3
i v
2
0=12, one can modify Eq. (6.84) as [94]

v0 D
�
12N2�c

�tDi

�3=10 �
Yt

�i

�1=5
: (6.85)

The strength of the target can be estimated as Yt D 2:5MPa using Eq. (6.85) and the
abovementioned parameters. The number of fingers Nf in this strength regime can
be written as

17The assumption Dc ' 2Di is not actually very evident in astronomical impacts. While we assume
this approximation herein, another constraint is necessary to obtain the truly closed form.
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Nf ' 1

2
p
3

�
�iv

2
0

Yt

�1=3
W1=2

e : (6.86)

This form is useful for the rough estimate of the impact conditions particularly in
the microgravity environment. Equations (6.83) and (6.86) represent the number of
fingers in the gravity and strength regimes, respectively.

However, this estimate is far from perfect. First, the impactor and target must
be sufficiently soft to induce the instability. However, the deformed target must
be rapidly solidified directly after the fingering; otherwise, the induced fingering
structure is relaxed by viscosity. It is not apparent whether such a fortunate impact
event is possible. The next problem may be more fatal. We have assumed the
Rayleigh-Taylor instability for the origin of the fingering instability. The Rayleigh-
Taylor instability requires the existence of a boundary interface of two fluids.
However, the space environment is ultra-high vacuum. The existence of ambient
air is essential for splashing instability, although we often forget its presence.
In fact, it turns out that the splashing instability is inhibited under the vacuum
condition [95]. To evaluate the boundary between the splashing (fingering) state and
the nonsplashing state, the stress balance was considered in Ref. [95]. The shock
stress of the surrounding gas �G can be estimated as �G D �GCGvG, where �G,
CG, and vG are the gas density, its speed of sound, and the expanding velocity of
the interface, respectively. And, the stress caused by the capillary and viscosity
effects of the liquid impactor, �L D �c=l	 D �c=

p
	t=�L, works as a counterpart.

Here 	, �L and t denote the liquid viscosity, its density, and the time measured
from the instant of impact, respectively. Considering the ideal gas, �GCGvG can
be written as �GCGvG D .pmm=kBT/

p
�akBT=mm

p
Div0=4t, where mm, �a, kB,

and T are the molecular weight of the gas, adiabatic constant, Boltzmann constant,
and temperature, respectively. According to the experimental result, the unstable
splashing (fingering) occurs when �G=�L exceeds approximately 0:5 [95]. From this
experimental result, one can evaluate the required impact velocity v0r to induce the
instability as

v0r / �2c
	

T

p2
: (6.87)

Because the pressure in space is extremely low (less than 10�10 atm), it is
impossible to attain the fingering instability using a practical impact velocity range.

To overcome these difficulties, melting and vaporization caused by the impact
must be considered. Then, liquid and ambient gaseous phases might be simul-
taneously created. The rheological and thermodynamic properties of molten and
vaporized silicate would be needed for a complete consistency check of this concept.
Perhaps, some other factors such as viscoelasticity might be helpful to induce the
fingering-like instability in space. Whereas the impact onto a viscoelastic target has
been studied [96–98], details specific to the fingering instability have not yet been
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Fig. 6.18 Top-view images of the liquid lamella created by the impact of a liquid droplet
consisting of a mixture of water and glycerol. The droplets are vertically impinged onto geometric
target posts with Re D 550 and We D 250. The number of vertices of the post is denoted by n.
The top row and bottom row correspond to the snapshots at t D 2Di=v0 and 4Di=v0, respectively
(Reprinted with permission from Ref. [100]. Copyright 2012 by American Physical Society)

revealed. In-depth analyses including the thermodynamic effect, phase transitions,
and complex rheology are necessary to assess the possible fingering instability
occurring in space.

Moreover, the splashing instability depends on other factors. For example,
the hydrophilicity of the impactor or target surface significantly affects the
splashing state. When a very hydrophilic impactor impinges on a liquid pool, a
quiet (no-splashing) penetration can be observed [99]. The roughness of the surface
further enhances the instability, and the target shape can also affect the number
of fingers induced by the droplet impact [100]. In Fig. 6.18, geometry-dependent
lamella shapes created by a liquid-droplet impact onto various geometric target
posts are shown. The liquid-droplet impactor comprises a mixture of water and
glycerol. The impact condition for all the impacts in Fig. 6.18 is Re D 550 and
We D 250. The top and bottom rows in Fig. 6.18 correspond to two characteristic
times: t D 2Di=v0 and 4Di=v0, respectively, and n denotes the number of vertices
of the target post. One can clearly observe that the number of fingers induced by the
impact is determined by n. If n is sufficiently large (n > 7), however, the situation is
similar to the cylindrical target posts. In this large n regime, the fingering instability
is presumably determined by the intrinsic fluid property.

In this section, we have overviewed the fingering instability occurring in soft
matter impact. In particular, the liquid-droplet impact and the associated fingering
instability have been emphasized. Two possibly relevant dimensionless parameters,
the impact Reynolds number ReI D W1=4

e R1=2e and the splashing parameter
Ks D W1=2

e R1=4e , were introduced. While the former is based on the liquid spring
mechanism and viscosity-based momentum diffusion length scale, the latter is
derived from the Rayleigh-Taylor instability (or equivalently the corresponding
capillary length) and the viscous dissipation. Additionally, .�i=�t/

1=4F1=4r W1=2
e and

.�iv
2
0=Yt/

1=3W1=2
e were introduced to model the fingering of craters in the gravity and

strength regime, respectively. The number of fingers induced by the droplet-granular
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impact can be estimated using the Rayleigh-Taylor (capillary-based) instability.
However, it is not easy to apply that instability to the fingering (wavy structure)
observed on the asteroid Itokawa’s nano-crater rim. Thermodynamic effects and
complex rheological properties must be involved for a more accurate estimate.
Because various effects such as the surface property and target shape can affect
the fingering instability, several additional studies should be performed to discuss
the origin of the fingering structure observed in the space environment.

6.7 Wet Granular Impact Cratering

How does the target property (e.g., cohesiveness of grains) affect the impact crater
morphology? More specifically, what occurs when the target granular layer is wet
and cohesive? In Sect. 4.1.7, we have already reviewed the effect of the interstitial
liquid content on the impact drag force. However, the effect of the interstitial
liquid on crater morphology has not been discussed. In fact, there are very few
investigations that address wet granular impact cratering. Some studies on crater
morphology produced by the wet granular target will be introduced in this section.

Soupy mud impact In 1978, a high-velocity impact experiment on a “soupy” mud
target was performed to mimic rampart crater formation [101]. A Pyrex glass sphere
with diameter Di D 3:175–6:35mm was shot into a soupy mud target with an
impact velocity of v0 D 1:6 km/s. The soupy mud target consisted of homogeneous
mixtures of potter’s clay and water. A typical resultant crater is shown in Fig. 6.19.
As observed in Fig. 6.19, ejected mud layers compose a petal-like structure, which
indeed resembles the rampart crater morphology. However, the similarity is limited
only in the morphological style. The underlying physical mechanisms causing such
structures have not yet been revealed.

Over 30 years have passed since this pioneering work on wet granular impact
cratering [101]. Nevertheless, only very few studies have tackled wet granular
impact cratering since then.

Fig. 6.19 Crater shape
produced by a hypervelocity
impact (v0 D 1:6 km/s) of a
Pyrex sphere
(Di D 3:175mm) on a soupy
mud target. A typical ejecta
deposition pattern and a
central peak structure can be
observed (Reprinted from
Ref. [101], with permission
from Elsevier)
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Bomb sag The next study was performed to discuss the bomb sag structures
observed on the surface of Mars [102]. Although this study did not focus on the
rampart crater, it is also motivated by the possible cohesiveness-related terrain
observed on Mars. By the Mars exploration rover Spirit, a bomb sag on Mars
was found. Its structure is shown in Fig. 6.20a [103]. The size of the bomb (clast)
is approximately 4 cm. Thus, this structure is not a large-scale structure such as
rampart craters. Bomb sags are usually associated with volcaniclastic deposits.
When a clast exploded by eruption is emplaced onto an ash (fine grains) bed, such
a typical bomb sag is formed, at least on the Earth. Manga et al. performed a low-
velocity impact experiment on the dry or wet granular target (using sand in diameter

Fig. 6.20 (a) Bomb sag
discovered by the Mars
exploration rover Spirit. The
bomb is approximately 4 cm
across. One can confirm the
deflected layer, which
provides evidence of soft
impact. Vertical slices of the
wet granular impact
experiments are shown in
(b)–(d): (b) Dry sand, (c)
damp sand, and (d)
water-saturated sand were
used as targets (Reproduced
from Ref. [102] by permission
of John Wiley & Sons Ltd)



6.8 Fluid Flow Impact Cratering 255

Dg ' 0:5mm) to reproduce the bomb sag structure [102]. The impactors that they
used are spheres and natural scoria particles of �i D 1:0–7:7 � 103 kg/m3 and
Di ' 13–130mm. The bomb sag structure differs from the usual impact cratering
because the impacting clast deforms the layers beneath it. Such deformation cannot
be observed if the target granular bed is cohesionless. The target bed is simply
excavated in usual impact cratering, and the layered structure is never deflected
by the impact (Fig. 6.20b). If the target is wet but its water content is insufficient,
no bomb sag structure is confirmed, whereas the clustered ejecta is observed
(Fig. 6.20c). Although the quantitative characterization of the degree of water-grain
mixing was not conducted in this study, these researchers observed that low-angle
oblique impact onto a water-saturated granular bed is necessary to mimic the bomb
sag structure (Fig. 6.20d). This finding indicates that abundant liquid content and
gentle impact are necessary to form a bomb-sag-like structure. These researchers
also observed that the penetration depth depends on the constituent grain’s size in
the water-saturated granular impact [104].

Crater morphology for wet granular impact A low-velocity impact cratering
experiment using various wet granular beds was systematically performed by Takita
and Sumita [105]. These researchers employed beach sand (Dg ' 0:2mm and �g '
2:6 � 103 kg/m3) as a target and methodically varied the water saturation parameter
Sat (Eq. (4.36)). A steel sphere (Di D 10:0–22:2mm and �i D 7:7� 103 kg/m3) was
dropped onto the wet granular target with v0 D 1:2–5:8m/s. The crater morphology
and its classification were examined in this study. When the water saturation Sat is
less than 0:02, a simple crater is created, i.e., the crater shape is the same as the dry
granular target case. At 0:02 < Sat < 0:04, a transitional crater is formed. In this
regime, the angle of the crater’s wall is steeper than that of the simple crater because
of the stabilization by the water content. In the transitional crater, a corrugated wall
structure can also be observed. This corrugation most likely originates from the
yielding of the wet granular target. When Sat is greater than 0:04 (but less than 0:6),
the side wall of the crater stands vertically against gravity. Thus, the resultant crater
left in this regime has a cylindrical shape. In Ref. [105], the very high saturation
regime (Sat > 0:6) was not tested. In this high saturation regime, the yield stress
of the wet granular matter becomes a decreasing function of Sat [105]. This regime
corresponds to the soupy mud state rather than the wet sand state.

6.8 Fluid Flow Impact Cratering

At the limit of Sat D 1, the granular layer is completely submerged in a liquid layer,
i.e., all the void space is filled by liquid content. In this situation, the interstitial
liquid effect would play a vital role in the cratering dynamics. This completely
saturated state almost corresponds to soupy mud or a dense suspension. In fact,
even in dry granular matter under 1 atm ambient pressure condition, the void
space is filled with air. Therefore the usual dry granular matter is surrounded by
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gas. However, its effect is negligible because of the small R	g as long as we use
macroscopic grains of Dg > 0:1mm (see Sect. 3.9.2). In this case, because the
density of solid grains is much greater than that of interstitial air, only the viscosity
is considered. However, the density of the liquid can be comparable (becomes the
same order) with that of solid grains. Thus, we may need to consider the inertia
of the interstitial fluid as well as that of the grains to analyze the bulk motion of
granular matter submerged in water. The Shields number Sh (Eq. (2.113)) would be
a relevant dimensionless number.

Successive impacts of a train of droplets onto a water-covered sand bed were
experimentally investigated [106]. Specifically, water droplets with diameters of
Di ' 2mm were successively dropped from a free-fall height of approximately
0:1m onto a water-covered sand bed. Then, the crater shape created by the
successive impacts were analyzed. According to Ref. [106], if the impact rate
exceeds a certain critical value (roughly O.100/ drops/s), the crater shape becomes
asymmetric. Although the physical mechanism of this symmetry breaking has not
yet been revealed, this experimental result typically shows the complex interaction
between the interstitial fluid and grains in the crater formation event.

Vortex ring impact cratering If the inertia of the interstitial fluid is sufficiently
strong, fluid flow can directly form a crater-like structure. For instance, a vortex
ring impacting onto a granular layer in a water pool was experimentally stud-
ied [107–109]. A typical temporal sequence of cratering by the vortex ring impact
is shown in Fig. 6.21. Directly after the impact, a symmetric shallow crater is
produced. After a while, radial structures are engraved by the secondary vortex
rings. Although this cratering may be a type of complex cratering, its relevance
to planetary-scale phenomena remains uncertain. If a meteor impactor strikes the

Fig. 6.21 Temporal sequence
of a vortex ring impact onto a
granular surface in water
(Re D 4;100). At the very
initial stage, a symmetric
circular crater is produced.
Then, secondary vortex rings
engrave complex patterns
around the crater rim
(Reproduced by permission
of IOP Publishing: [109],
Copyright: The Japan Society
of Fluid Mechanics)

(a) t=180 ms (b) t=240 ms (c) t=300 ms

(d) t=360 ms (e) t=540 ms (f) t=600 ms

(g) t=660 ms (h) t=720 ms (i) t=780 ms
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ocean, this type of crater can be formed on the seabed. Re and Sh are considered to
be the relevant dimensionless numbers in characterizing this phenomenon. However,
the quantitative description of the phenomena, such as scaling analysis, has not yet
been completely established.

Gas jet impact cratering Even a gas jet flow can produce a crater. Although the
density of gas is small, its inertia is not negligible if the jet speed is sufficiently high.
When a spacecraft leaves or lands on the surface of planets, the surface regolith
layer is exposed to the jet flow from the spacecraft. To appropriately handle the
spacecraft, we must know the cratering dynamics induced by the gas jet impinging
onto a granular bed. This problem has been studied by space engineers since the
1960s. From these pioneering works, three mechanisms in the jet-induced cratering
were proposed [110, 111]. The first mechanism is viscous erosion, in which the
surface layer of the grain bed is eroded by shear. Thus, this mechanism works
tangentially to the surface. The second mechanism is called bearing capacity failure.
This mechanism dominates the phenomenon when the dynamic pressure of the
jet exceeds the bearing capacity of the target granular bed. By this mechanism,
the jet applies mechanical loading and forms a depression; it corresponds to the
normal stress loaded on the surface by the localized source of the gas jet. The
third mechanism is diffused gas eruption, which is an eruption of grains caused
by immersed gas pressure in the granular bed. As previously mentioned, the
cratering by a vortex ring impact appears to be driven mainly by viscous erosion.
Viscous erosion was also studied using the direct gas jet impact on loose granular
matter [112]. According to various experimental results, the depth of the crater
formed by the gas jet logarithmically increases with time [110, 112].

6.9 Summary

Cratering phenomena induced by a relatively low-velocity impact on a soft matter
target have been discussed in this section. Various types of complex crater shapes
were experimentally produced by oblique impact, jet formation, granular-granular
impact, and droplet-granular impact. In particular, the complex interaction among
liquid and granular matter induces various intriguing crater shapes through the
granular-granular and droplet-granular impacts. Some characteristic structures such
as rampart craters, fingering instability, and bomb sag, were also discussed mainly
on the basis of the results of laboratory experiments. Although some of these struc-
tures might be relevant to planetary-scale impact cratering, a large gap between the
low-velocity impact experiments and actual planetary cratering still persists. Nev-
ertheless, both sometimes exhibit similar morphologies and scaling relations. The
usual laboratory experiment is strongly constrained by gravity. On the other hand,
the space environment is ultimate: microgravity, vacuum, and low temperature.
Additionally, the impact velocity could be very high in astronomical impact events.
It is difficult to reproduce impact cratering with such an ultimate environment.
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Instead, various laboratory analogue experiments have been performed. Although
simple analogue experiments could be helpful in understanding the nature of impact
cratering, much further details are required to compare these soft impact results
with actual planetary cratering. For further reading, Ref. [113] is an evocative review
article concerning granular impact cratering phenomena. Soft impact cratering itself
is actually interesting enough for the fundamental physics of soft matter. The
cratering is a result of the complex rheological property of the impactor and target.
In-depth investigations of soft impact cratering are crucial for both planetary science
and fundamental physics.
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Chapter 7
Grains and Dust Dynamics

We have studied impact drag force and impact cratering mechanics thus far in this
book. As a target material, dense granular beds have been principally considered.
Soft impact with a loose granular target causes many intriguing phenomena, as
described in the previous chapters. In this chapter, we will focus on other types of
soft impact phenomena that are also related to planetary science. First, the impact
of dust aggregates in a protoplanetary disk will be discussed. Dust grains coagulate
to become fluffy dust aggregates. The physical properties of the aggregates are
key quantities to understanding the history of planetesimal formation. Next, we
will return to the discussion of dense macroscopic grains called regolith that cover
the surface of various astronomical objects. Some interesting physical properties
relating to the impact of dust aggregates and regolith migration will be briefly
discussed in this chapter.

7.1 Soft Impact of Dust Aggregates

The principal ingredients for forming planets in a protoplanetary disk (PPD) are
most likely very small dust grains. PPD is a rotating disc comprising a mixture of
gas and dust grains. The main components of the solid (dust) materials are silicate
and ice. It is considered that tiny dust grains stick to each other by collisions and
finally form planetesimals with diameters of approximately 1–10 km. Then, planets
are formed by the gravitational accretion of planetesimals. Although this standard
scenario is sufficiently plausible to explain the history of planetary formation, some
difficulties remain with regard to the completion of the solar system biography.
Because the entire story is a long tale, we will not discuss the details of this story.
A comprehensive review of the astrophysics of planetary formation can be found in
e.g. Ref. [1]. Here we only focus on the soft impact among fluffy dust aggregates
that is a leading player in the planetesimal formation process.
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The starting materials that we consider are interstellar particles whose size
is approximately 0:1�m [2, 3]. These dusts can coagulate through their mutual
collisions and grow to a macroscopic size. This naive idea, however, presents
some nontrivial doubts. For example, it is not clear for large aggregates to be
able to continue growth while avoiding shattering. Furthermore, it is unclear
how long the formation of planetesimals takes. The planetesimal formation
timescale must be in the practical range. These issues actually relate to the
known difficulties in planetesimal formation. Additionally, a proper understanding
of soft impact mechanics could be a key factor to overcome the difficulties.
In this section, the theory for the impact velocity among dust aggregates is
briefly reviewed. Then, collision outcomes resulting from the impact among
various dust aggregates are discussed on the basis of soft impact experiments
and simulations.

7.1.1 Relative (Impact) Velocity of Dust Aggregates

In a PPD, the relative impact velocity among dust aggregates is determined by the
aerodynamic effects rather than the gravitational effect when the size of aggregates
is very small. As the dust aggregates grow, they are decoupled from the gas flow.
Therefore, the gravitational effect mainly determines their relative impact velocity
for large bodies. In this chapter, we will focus on the very first stage of the
agglomeration during which the dust aggregates are very fluffy, and their mutual
collision velocity is dominated by aerodynamic effects. To compute a realistic
relative velocity among dust aggregates, various factors must be considered [1, 4–6].
In this aerodynamic regime, the relative impact velocity�v can be expressed by the
root sum square of various components:

�v '
q
.�vB/2 C .�vz/2 C .�vr/2 C .�v'/2 C .�vedd/2; (7.1)

where �vB, �vz, �vr, �v' , and �vedd are the relative velocities due to Brownian
motion, vertical settling, radial drift, azimuthal drift, and turbulence, respectively.
Theoretically derived forms for these terms are briefly reviewed in the following
text. The definition of the directions of vz, vr, and v' are provided in Fig. 7.1. As
already mentioned, the gravitational effect is neglected in Eq. (7.1) because tiny
grains are considered. For sufficiently large bodies (large Stk regime), aerodynamic
drag is less important and the gravitational effect becomes predominant. In this case,
the escape velocity vesc should be a characteristic velocity scale:

vesc D
s
4Gmt

Dt
; (7.2)
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gravitational force
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Fig. 7.1 Schematic image of the dust motion in a PPD. Panel (a) represents the side view (vertical
slice) and panel (b) shows the top view (horizontal slice at the central plane) of the PPD. In panel
(a), the settling force Fz as a net force of the gravitational and the centrifugal forces is shown. A
dust particle at (r, z) settles by the settling velocity vz made by Fz and the Epstein drag FE , as
written in Eq. (7.6). In panel (b), the coordinate system of the azimuthal motion and the radial drift
is shown

where G is the gravitational constant and mt and Dt are the mass and diameter of the
(large) body, respectively. The order of the impact velocity of the crater formation
discussed in Chap. 5 is rather close to vesc. The aerodynamic-based relative velocity
�v is only relevant to the small-scale grains.

Brownian motion The relative velocity due to the Brownian motion is usually
modeled by

�vB D
s
8.m1 C m2/kBT

�m1m2

; (7.3)

where m1 and m2 are the masses of two colliding aggregates. This form originates
from the mean velocity of the Maxwell-Boltzmann distribution (refer to Eq. (2.87))
and the reduced mass m1m2=.m1 C m2/.
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Settling The next simplest motion for dust aggregates is the settling to the central
plane. Let us consider the PPD that has a finite thickness and rotates approximately
by the circular Keplerian motion. The Keplerian motion speed vK can be obtained
from the force balance between the centrifugal and gravitational forces, v2K=r D
GM�=r2. Thus, vK is written as vK D pGM�=r, where M� is the solar mass and r is
the distance from the Sun (central star) on the central plane. The angular frequency
of the Keplerian motion ˝K is computed from the relation, 2�=˝K D 2�r=vK .
Specifically,˝K is written as

˝K D vK

r
D
r

GM�
r3

: (7.4)

If a dust aggregate is at a height z from the central plane, it experiences the vertical
force to the central plane because of the net force created by the gravitational and
centrifugal forces. In Fig. 7.1a, the setup considered here is schematically shown.
The vertical force Fz can be computed by assuming z=r � 1:

Fz ' GM�
r2

z

r
mi D ˝2

Kzmi; (7.5)

where mi is the mass of the dust aggregate. In the PPD, the gas is very tenuous, and
the dust aggregate considered here is very small. The molecular mean free path in
the PPD may be on the order of �mfp ' 0:1m at 1 AU [7]. Thus, the Epstein drag
rather than the Stokes drag should be adopted. By equating Eqs. (7.5) and (2.89),
the settling velocity vz can be obtained as

vz D 1

2ıE

�i

�t

˝2
KzDi

huti D ˝2
Kztb; (7.6)

where ıE, �t, �i, and Di are the efficiency factor of the Epstein drag, density of gas,
density of the dust aggregate, and its diameter, respectively. Here we use a simple
spherical approximation mi D .�=6/�iD3

i , and tb is the braking time of the Epstein
drag (Eq. (2.90)). Although we assume the Epstein drag law to derive Eq. (7.6), the
obtained form vz D ˝2

Kztb is also valid for viscous drag as well, which can be readily
examined using Eq. (2.69) instead of Eq. (2.89). The notable thing in Eq. (7.6) is
that the vertical settling velocity vz principally depends on the diameter of the dust
aggregate Di. If the viscous drag is adopted, vz depends on D2

i . In either case, vz

varies mainly depending on a certain power of Di. Other parameters can be assumed
as almost constants.

Here we define a dimensionless number �b to characterize the competition
between the drag relaxation and Keplerian motion:

�b D tb˝K: (7.7)



7.1 Soft Impact of Dust Aggregates 265

Because �b represents the balance between the settling time and the motion
timescale, it can be regarded as a type of Stokes number (or maybe Deborah
number). This Stokes-like number �b represents the competition between the drag
timescale and the period of Keplerian motion, which indicates that the Epstein (or
Stokes) drag relaxation takes longer time than a Keplerian rotation if �b 	 1. In
contrast, when �b < 1, the steady settling velocity is attained faster than a Keplerian
rotation. The most important factor determining vz is the size of the dust aggregates
Di. The relative velocity of two settling dust aggregates�vz can be modeled by the
difference in vz. Then, from Eq. (7.6), the relative velocity of aggregates 1 and 2 is
written as

�vz D ˝Kzj�b;1 � �b;2j; (7.8)

where the subscripts ;1 and ;2 denote the values for aggregates 1 and 2, respectively.
As mentioned previously, the size difference is the principal factor to produce a
relative (collision) velocity�vz because tb mainly depends on Di.

Radial and azimuthal drift Next, the radial and azimuthal (orbital) drift compo-
nents are evaluated. For this purpose, the force balance for gas in the PPD must be
considered, which is slightly different from the force balance for dust aggregates.
In the PPD, dust aggregates rotate simply by the balance of the gravitational and
centrifugal forces, i.e., Keplerian motion. However, a gas has its own pressure p,
which affects the force balance. Specifically, the azimuthal velocity of gas v';g
should satisfy the following relation:

v2';g

r
D GM�

r2
C 1

�t

dp

dr
: (7.9)

The last term represents the force by the pressure gradient and that is specific for
a gas. Namely, this pressure gradient term is absent in the dust force balance. To
estimate the pressure gradient, a simple power-law form of the gas pressure is
usually assumed as p / r�n. Additionally, a locally isothermal equation of state
p D �tC2

s , where Cs is the speed of sound, is assumed. Then, the pressure gradient
term can be written as

1

�t

dp

dr
D �n

C2
s

r
: (7.10)

Inserting Eq. (7.10) into Eq. (7.9) and considering the Keplerian speed vK DpGM�=r, we find

v';g D vK

p
1 � 	g; (7.11)
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where 	g D nC2
s=v

2
K indicates the degree of gas velocity deviation from the

Keplerian motion due to the pressure gradient. Although the typical order of 	g is
approximately 10�3, it significantly affects the fate of dust aggregates, as discussed
below.

To compute velocities, we consider the equation of motion for dust aggregates.
Dust aggregates do not have a pressure gradient, which indicates that dust motion is
slightly faster than the gas motion. Thus, they are dragged by the headwind due
to the reduced gas velocity written in Eq. (7.11). Then, the dust aggregates are
decelerated and lose their angular momenta. Consequently, dust aggregates drift
inward by the slight excess of the gravitational force against the centrifugal force.

This drift motion can be evaluated by considering the equation of motions
below. The radial velocity vr and azimuthal (orbital) velocity v' for dust aggregates
(Fig. 7.1b) obey the following equation of motions:

dvr

dt
D v2'

r
� v2K

r
� 1

tb

�
vr � vr;g

�
; (7.12)

d

dt

�
rv'

� D � r

tb

�
v' � v';g

�
; (7.13)

where vr;g denotes the radial velocity of the gas. The first and second terms on the
right-hand side of Eq. (7.12) come from the centrifugal and gravitational forces,
respectively. The last term in Eq. (7.12) and the right-hand side of Eq. (7.13) come
from the drag force by the headwind. Here we use the relation tb D mijv=FDj for
the drag force FD. Furthermore, the mi dependence is dropped because it is arbitrary
in Eqs. (7.12) and (7.13). By assuming v' ' vK , the left-hand side of the azimuthal
equation (Eq. (7.13)) can be simplified as

d

dt

�
rv'

� ' vr
d

dr
.rvK/ D 1

2
vrvK : (7.14)

Here the relation dvk=dr D �.1=2/vk=r, which can be derived from the definition
of vk, is used. Then, from Eqs. (7.4), (7.7), (7.13), and (7.14), we obtain

v' � v';g ' �1
2

tbvK

r
vr D �1

2
�bvr: (7.15)

For the radial equation of motion, by replacing v2' with Œv';g C .v' � v';g/�
2 and

using Eq. (7.11), Eq. (7.12) is transformed into
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: (7.16)
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In this calculation, only the lowest order term remains, i.e., 	g.v' � v';g/ and .v' �
v';g/

2 are neglected. In a steady state (dvr=dt D 0), the radial drift of dust aggregates
relative to gas motion is written as

vr � vr;g D 2�b
�
v' � v';g

� � 	g�bvK : (7.17)

Again, the radial drift velocity simply depends on the braking time �b. Thus, the
radial component of the relative velocity of dust impact is also determined mainly
by the size difference of aggregates.

Radial drift yields a crucial constraint to the timescale of planetesimal formation.
Using Eqs. (7.15) and (7.17), vr is computed as

vr D vr;g � �b	gvK

�2b C 1
: (7.18)

This vr exhibits an extreme value at dvr=d�b D 0. From Eq. (7.18), this condition
corresponds to �2b � 1 � 2.vr;g=	gvK/�b D 0. By assuming jvr;g=	gvK j � 1 [1], it
is easy to deduce that jvrj exhibits a peak value at �b ' 1. Therefore, substituting
�b D 1 into Eq. (7.18), the peak drift velocity can be approximated by vr;peak '
�	gvK=2. Here we neglect the vr;g term because it is considerably smaller than
	gvK as mentioned above. The minimum timescale for the radial drift is computed
as tdrift D r=jvr;peakj D 2=	g˝K . Because 	g is on the order of 10�3, its timescale
is approximately 103 years at several AU. This timescale is considerably shorter
than the usual planetesimal growth timescale [1]. This issue is called the radial drift
barrier for planetesimal formation.

The relative impact velocities �vr and �v' can be computed using Eqs. (7.18)
and (7.15). The most important fact is that the velocities are determined by the
braking time �b similar to the case of the settling component vz. Additionally, �b

mainly depends on the aggregates size Di. This tendency is valid both for Stokes
(viscous) and Epstein drags.

Turbulence The motion of dust aggregates is further affected by the turbulence
in the PPD. In general, the turbulent nature of gas motion is not so simple. A
simple model called the astronomical ˛ model (see, e.g., [8]) has been used to
evaluate the turbulent effect in the PPD. The ˛ model defines the turbulent kinematic
viscosity as

�t D ˛�CsHscale; (7.19)

where ˛� is a parameter characterizing the strength of the turbulence, Cs is the speed
of sound, and Hscale is the scale height (roughly corresponding to the thickness)
of the PPD. The turbulent viscosity �t can also be expressed by �t D Leddvedd,
where Ledd and vedd are the largest eddy scale and representative velocity scale,
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respectively. By introducing the angular frequency of the turnover along the largest
eddies ˝t D vedd=Ledd and the relation1 Hscale D Cs=˝K , one can obtain a
relation

vedd D Cs .˛�/
1=2

�
˝t

˝K

�1=2
: (7.20)

The value of ˛� determines the typical turbulent flow velocity. Although the
typical order of ˛� in the PPD is considered ˛� ' 10�3, its origin has not yet
been completely clarified. One of the possible origins of the strong turbulence is
magnetorotational instability (MRI) [9]. Note that the actual turbulent velocity is
rather random, whereas Eq. (7.20) provides the characteristic velocity scale given
by turbulence. Furthermore, the aerodynamic coupling among dust aggregates and
turbulent flow determines the relative velocity of dust aggregates �vedd in the
turbulent case.

Summary of the relative impact velocity of dust aggregates These aerodynamic
effects are coupled with the dust aggregate motion through their dimensionless
braking timescale �b. In addition, the most important parameter in the braking
timescale is the size of the dust aggregates Di. When the size of the dust aggregates
is sufficiently large, the motion is decoupled from the gas flow. The fidelity of the
dust aggregates in a gas flow determines the timescale. Because the main concern
in planetary science is the history of the solar system, appropriate determination of
the timescale for each phenomenon is crucial.

In Fig. 7.2, the contour diagram of impact velocity (unit: m/s) as a function of
two colliding aggregates size is shown. The dashed contours are drawn on the
basis of the calculations discussed thus far2 [5]. The colors in Fig. 7.2 represent
the corresponding collision outcomes and will be discussed later. From Fig. 7.2, we
can confirm that the relatively large (Di > 1m) aggregates experience an impact
velocity of up to 75m/s. However, it is not evident whether the dust aggregates can
sustain their growth without shattering until such a relatively large impact velocity
regime. Numerical and experimental evaluations on this issue are discussed below.

7.1.2 Dust Growth

The dust aggregates must grow to form planetesimals. In the last subsection, the
relative impact velocity among different-size aggregates was estimated. However,
the effect of the growth of aggregates was not considered. Here a simple model of

1The scale height Hscale is computed from the balance between the vertical force Fz in Eq. (7.5)
and the pressure gradient force as ˝2

Kz C .1=�t/dp=dz D 0. Assuming the isothermal condition
p D �tC2

s , the vertical density profile is computed as �t � expŒ�.z=Hscale/
2�.

2˛� D 10�3 is used to calculate the collision velocity.
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Fig. 7.2 Phase diagram of the impact velocities and the corresponding collision outcomes.
Relative impact velocities for two colliding dust aggregates are represented by the dashed contours
with units of m/s. The colored regions indicate the corresponding collision outcomes (Courtesy of
Stefan Kothe and Jürgen Blum)

dust growth is considered. The simplest starting point to discuss dust coagulation
is perfect sticking. If every collision results in sticking, the mass growth rate of a
dust aggregate, dmi=dt, can be computed from the amount of solid material in the
volume swept by the dust aggregate’s motion per unit time:

dmi

dt
D �

4
D2

i�vdg�dust; (7.21)

where �vdg and �dust indicate the relative velocity (among a dust aggregate and
gas) and the bulk (not true) density of solid materials in the PPD. Such a growth
model must be coupled with the aforementioned relative impact velocity models to
consider the temporal development of dust aggregate size. The most serious problem
on dust coagulation is imperfect sticking. If sticking always occurs, the growth
model is indeed very simple. However, perfect sticking is an extreme simplification
of the growth process; there must be various collision outcomes.

To verify the feasibility of dust growth, various experimental studies were per-
formed by Blum and his coworkers3 [10–13]. These researchers performed system-

3Since the handling of tiny grains under a microgravity environment demands sophisticated
experimental techniques, only this group has been able to perform this type of experiment.
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Fig. 7.3 Typical examples of laboratory impact experiments of two SiO2 aggregates. The top row
images represent sticking by impact velocity v0 D 0:004m/s. In the middle row, bouncing by
v0 D 0:16m/s is displayed. The bottom row corresponds to fragmentation by v0 D 5:1m/s.
Colliding aggregates are marked by � in the top and middle rows. The experiments were performed
under a microgravity condition. Note that the time intervals among the pictures are not identical
(Reproduced by permission of the RAA, from Ref. [12])

atic experiments and directly confirmed various representative phases of collision
outcomes. Examples of their experimental results are presented in Fig. 7.3 [12]. In
the low-velocity impact regime, sticking is observed. However, as the impact veloc-
ity increases, bouncing and fragmentation occur. The bouncing and fragmentation
may prevent the dust aggregates from further coagulation. That is, these phases are
barriers to be overcome in the formation of planetesimals from dust aggregates. In
the following subsections, experimental and numerical works related to how these
barriers can be evaluated and overcome by soft impact effects are reviewed.

7.1.3 Static Structure of Dust Aggregates

The first thing we should consider is the static structure of dust aggregates. In the
theoretical framework discussed thus far, only two parameters �i and Di characterize
dust aggregates. We have implicitly assumed that dust aggregates are spheres having
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a homogeneous structure. However, the aggregates could have complex structures
in reality. When submicron-sized particles collide and stick randomly, the resultant
aggregates may become porous. The structures of such aggregates were extensively
studied by numerical simulations [14–16] and experiments [17–19].

The structure of aggregates can be characterized by the fractal dimension df .
The gyration radius Rgy is frequently used to measure df . Rgy of an aggregate is
defined by

Rgy D
vuut 1

N

NX
i

jxi � xMj2; (7.22)

where xi is the position vector of the i-th monomer particle,4 xM corresponds to the
center of mass, and N is the total number of monomer particles constructing the
aggregate. Then, df , Rgy, and N are related as follows:

N / R
df
gy: (7.23)

Evidently, the compact structure in three-dimensional space corresponds to df D
3 because N represents the mass or equivalently the volume of the aggregate. In
general, df can be a noninteger. The value of df indicates the sparseness of the
aggregate. The smaller the df , the sparser the structure of the aggregate becomes.

The value of df of fluffy dust aggregates depends on the recipe for forming the
aggregates. The simplest hit-and-sticking phase can be classified into two extreme
cases [20, 21]. When a single monomer particle ballistically hits and sticks to the
aggregate step by step, the aggregate becomes relatively dense. Then, the resultant
aggregate shows df ' 3. This type of aggregate is called the ballistic particle cluster
aggregate (BPCA). In contrast, if two identical-mass aggregates hit and stick to each
other, the resultant aggregate becomes very sparse, and the corresponding fractal
dimension will be df ' 2. Such an aggregate is called the ballistic cluster cluster
aggregate (BCCA). The algorithms to form BPCA and BCCA are schematically
drawn in Fig. 7.4. In various experiments and simulations, BCCA is assumed as a
candidate of the dust aggregate in the PPD. Moreover, the aggregates with df < 2

are commonly observed in experiments [17–19].

7.1.4 Restructuring and Fragmentation of Dust Aggregates

Next, the restructuring of the aggregate induced by the impact should be dis-
cussed. When the fluffy aggregates collide, the restructuring of aggregates may

4The word monomer represents individual submicron-sized particle that compose the dust
aggregate.
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Fig. 7.4 Recipes to form the
ballistic particle cluster
aggregate (BPCA) and
ballistic cluster cluster
aggregate (BCCA)

BPCA BCCA

occur simultaneously with sticking, bouncing, and fragmentation. Dominik and
Tielens are pioneers who developed a method to simulate the impacting of dust
aggregates [22–24]. These researchers built a model of aggregates consisting of
spherical monomers. The key point of their aggregate modeling is the realistic
quantification of contact mechanics. When two spheres are in contact, there are
four modes for contact mechanics: normal (push or pull), rolling, sliding, and twist.
Because rolling and sliding have two independent degrees of freedom, there are six
degrees of freedom in total. The modeling of the contact mechanics is based on the
JKR theory [25]. In Sect. 2.5.4, the scaling of JKR theory was briefly introduced.
To discuss the deformation at the contact point, the critical values by which the
yielding of the contact modes occurs are essential quantities. The most important
mode is rolling because it is the easiest motion for spherical-monomers contact.
The energy associated with the yielding of the rolling mode eroll can be computed
as [22, 24]

eroll � �c

2
crit; (7.24)

where �c and 
crit are the surface tension of two contacting monomers and the critical
distance for the rolling elasticity, respectively. Namely, if the rolling distance is less
than 
crit, the energy is stored elastically in the rolling mode contact. In contrast,
when the rolling distance exceeds 
crit, the energy is dissipated and the restructuring
of the aggregate due to the yielding (plastic deformation) occurs. In other words,
the elastoplastic constitutive law is assumed in the contact mechanics. Although a
more detailed analytical calculation is necessary to obtain the numerical prefactor
in Eq. (7.24), the dimensional relation is natural in terms of the surface energy that
governs the contact mechanics. Note that eroll is independent of the monomer’s
diameter5 Di, i.e., the yielding criterion is determined only by the local condition.
To characterize the restructuring, a unit of dissipated energy Eroll is defined by
90ı D �=4 rotation. Using this definition, Eroll � �cDi
crit is obtained. In contrast
to eroll, Eroll depends on the monomer diameter Di.

5If two monomer sizes are different (D1 and D2), Di corresponds to the reduced diameter Di D
D1D2=.D1 C D2/.
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The effective impact energy by two spheres of masses m1 and m2 and of the
relative impact velocity v0 is written as

Ekei D 1

2

m1m2

m1 C m2

v20: (7.25)

Numerical simulations have been performed to reveal the details of the soft
impact among fluffy dust aggregates [14–16]. BPCA and BCCA are extreme cases,
and actual aggregates are in between them. Restructuring and compaction are also
caused by the impact. Therefore, df would range between 2 (BCCA) and 3 (BPCA).
The deformable BCCA is the most plausible modeling. According to the numerical
simulation, the global restructuring phases can be classified using Eroll and Ekei.
When Ekei is small, no restructuring is induced. Sticking or bouncing without
visible restructuring is the major outcome in this regime. As Ekei increases, the
visible restructuring begins to occur at Ekei ' 5Eroll. Because the rolling is the
easiest deformation mode for the aggregate restructuring, it is reasonable that the
restructuring threshold is related to Eroll. By further increasing Ekei, the maximum
compression is attained at Ekei ' ncEroll, where nc is the total number of contacts in
the aggregate. This result indicates that the aggregate has to be compressed by the
impact within the range of 5Eroll < Ekei < ncEroll. By the energy injection of ncEroll,
all the contacts can rotate to find the better-compacted structure. Thus, this criterion
is reasonable again.

According to the numerical result [16], the degree of compression of the
impacted aggregate depends on the impact energy Ekei. The resultant gyration radius
Rgy is scaled by the number of constituent monomers N and the normalized impact
energy Ekei=NEroll as

Rgy / N
1
2:5

�
Ekei

NEroll

��0:1
: (7.26)

This form indicates that the aggregates are fractal with df D 2:5. This compression
exhibits a saturation at a certain impact energy, and the maximally compressed
aggregates do not exceed df ' 2:5 [16]. Therefore, even the fully compressed
aggregates still have fluffy structures. It is difficult to compress the aggregate to
the truly compact (df ' 3) state. Moreover, the scaling exponent 0.1 is very
small, which indicates that the drastic compaction by Ekei is not so easy. Examples
of the numerical simulations are presented in Fig. 7.5. Figure 7.5a shows the
low-velocity impact resulting in sticking without restructuring. Furthermore, the
maximum compression is attained at Ekei ' 0:19ncEroll, as observed in Fig. 7.5b.

When Ekei exceeds a certain threshold, the aggregate will be shattered. A unit of
the breaking energy Ebreak is defined as [15, 26]

Ebreak �
�
�5c D4

i

E2

�1=3
: (7.27)
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Fig. 7.5 Examples of collision outcomes of the two deformable BCCA impacts. The final
outcomes by two identical BCCA cluster impacts are shown. (a) No restructuring is observed in
the very low Ekei regime, Ekei D 0:01Eroll . (b) The maximum compression is attained in the large
Ekei regime, Ekei D 0:19ncEroll. Both aggregates consist of 16,384 monomers with radius 0:1 �m
and 
crit D 0:8 nm. Gray circles correspond to the gyration radii Rgy (Reproduced with permission
from Ref. [16]. Copyright: AAS)

Here a simple relation Ebreak � Fbreakıbreak is assumed. In addition, a relation
Fbreak � �cDi and the JKR scaling (Eq. (2.68)) for ıbreak are also used to derive
Eq. (7.27). Thus, E in Eq. (7.27) represents the Young’s modulus. To be more pre-
cise, Ebreak ' 1:54Fbreakıbreak was obtained by the numerical simulation [15]. Using
this Ebreak, the fragmentation phase can be classified in more detail. Specifically, one
monomer particle starts to detach from the aggregate at Ekei ' 3ncEbreak. When Ekei

becomes greater than 10ncEbreak, catastrophic disruption occurs [15, 24].

7.1.5 Experiments of Dust Aggregate Collisions

As already mentioned, the collision outcomes were also studied by various exper-
iments. Comprehensive reviews of relevant experimental works are summarized in
Refs. [10–13]. All three phases [mass gain (sticking), mass conservation (bounc-
ing), and mass loss (fragmentation)] were experimentally reproduced. Compressive
restructuring can be associated with some of these phases. Kothe and Blum com-
piled the experimental and numerical results into a phase diagram, as shown by the
color map in Fig. 7.2. In the phase diagram, the cratering and mass transfer regimes
can be observed in addition to three basic outcomes. These two phases correspond
to intermediate states between mass gain (sticking) and mass loss (fragmentation)
phases. The important fact is that mass gain (sticking) is possible only in a relatively
small-scale regime. Bouncing, mass transfer, cratering, and fragmentation become
predominant in the larger aggregate regime. Thus, it is not easy to continue the
growth for meter-sized aggregates. According to the phase diagram (Fig. 7.2),
bouncing or fragmentation starts to occur at the aggregate size Di D 0:1–1m.
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Although the dust aggregates must grow through these regions to form planetesi-
mals, bouncing and fragmentation clearly prevent aggregates from growing further.

The difference in compactness between the impactor and target is also a crucial
factor to evaluate the collision outcomes [13]. As discussed in Sect. 7.1.1, the size
ratio is the most important parameter to estimate the relative impact velocity. The
ratio of compactness (or equivalently the porosity ratio) between the impactor and
target also significantly affects the collision outcomes. If a small compact impactor
collides against a large porous target, sticking by penetration can be observed.
Furthermore, the mass transfer between two colliding aggregates might be naturally
possible by considering the porosity ratio effect. Therefore, the collision outcomes
appear to depend on the ratios of both size and porosity between the impactor and
target. In Ref. [13], the phase diagrams of collision outcomes were drawn for each
combination of size and porosity ratios, e.g., small compact aggregate vs. large
porous aggregate and small porous aggregate vs. large porous aggregate, etc. Using
the phase diagrams, a numerical simulation of dust coagulation was performed
and the feasibility of dust growth was assessed [27]. According to the numerical
evaluation, the growth is stopped by bouncing rather than fragmentation, which
indicates that direct dust growth by collision is difficult. This is the bouncing
barrier of the growth of dust aggregates. If dust aggregates pass over the bouncing
barrier, they are subjected to the next hurdle of shattering called the fragmentation
barrier.

7.1.6 Soft Impact of Dust Aggregates

As discussed thus far, it is not so easy for dust aggregates to grow to the planetesimal
scale. There are some barriers that must be overcome: radial drift, bouncing, and
fragmentation barriers. In addition, the electric charge of dust aggregates might
also affect their growth scenario [28]. The dust aggregates are very porous and
have a fractal structure as long as they are sufficiently small, which implies
that the target dust aggregates can deform and be restructured by the impact. In
numerical simulations, this restructuring effect was quantified using Eroll and Ebreak,
as discussed above. However, such a simple characterization is not sufficient to
model realistic collision outcomes. There might be some soft impact effects that are
helpful to overcome the barriers. For example, the numerical results introduced thus
far are based on the head-on collision whereas most of the natural impacts undergo
offset collisions. The effect of offset collisions might affect the growth scenario of
dust aggregates. In this subsection, some of the soft impact effects relating to fluffy
dust aggregates are discussed.

Offset collision effect The effect of offset collision was systematically examined
by numerical simulations [29, 30]. To evaluate the degree of offset collision, the
impact parameter bimp is usually utilized. The impact parameter bimp is defined
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center of mass
relative impact velocity

impact parameter bimp

Fig. 7.6 The definition of impact parameter bimp, which characterizes the offset collision

by the distance of the centers of mass in the plane perpendicular to the impact
velocity. A schematic image of bimp is presented in Fig. 7.6. By the energetic
head-on collision among equal-mass dust aggregates, the aggregates are strongly
compressed until they exhibit a pancake-like structure. As a result of the offset
collision, however, the elongation of aggregates can be observed. With the offset
impact having very large Ekei, the fragmentation indeed occurs. In some fragmen-
tation cases, however, the largest fragment mass could be greater than the initial
aggregate mass. Namely, dust aggregates can grow by partial sticking even in such
a fragmentation phase. The condition of this effective growth was numerically
examined for the offset collision among icy BCCA aggregates. Using numerical
simulation, the critical velocity below which the effective growth is possible was
observed to be approximately 35–70 m/s [29]. This value is close to the typical
largest impact velocity in the PPD (Fig. 7.2). Therefore, the fragmentation barrier
could be overcome by considering the offset collision of icy dust aggregates. The
numerical simulation also revealed that the critical Ekei for BCCA in a head-on
collision is smaller than that for BPCA, i.e., BCCA is disrupted more easily than
BPCA. Note that, these researchers assumed icy dust rather than silicate dust. For
silicate grains, the critical velocity is reduced by roughly one order of magnitude
because the surface tension of silicate is also roughly one order of magnitude smaller
than that of ice. Thus, the fragmentation barrier might still be serious issue for
silicate dust aggregates.

Coordination number effect The soft impact of fluffy aggregates might be able
to surmount the bouncing barrier as well. Using numerical simulations, Wada et
al. investigated the coordination number dependence of the collision outcomes [31].
The coordination number nco indicates the average number of contacts per monomer
in the aggregate network structure. These researchers observed that bouncing is
suppressed when nco is less than 6. Notably, this criterion is independent of material
properties. Both ice and silicate aggregates exhibit almost the same behavior. For
very fluffy aggregates with nco < 6, the sticking phase is predominant until frag-
mentation occurs by very large Ekei. The critical value nco D 6 roughly corresponds
to the packing fraction 
 ' 0:3 in three-dimensional packing. Although some
experiments with 
 ' 0:15 exhibit bouncing [10, 32], sticking behavior can also be
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experimentally observed by the impact of highly porous (
 � 0:3) snow balls [33].
By considering these numerical and experimental results, very porous icy aggregates
might be able to overcome the bouncing barrier. However, the effect of coordination
number for dust aggregate growth remains a matter of debate. More controlled
experiments are necessary to confirm this effect.

Fluffy structure effect The radial drift barrier again appears to be related to
the structure of dust aggregates. Assuming icy dust aggregates, the breakthrough
possibility of the radial drift barrier was numerically assessed [34]. Because the
fractal dimension of dust aggregates cannot exceed a certain threshold df ' 2:5

(Eq. (7.26) [16]), the effect of the internal structure on the dust growth scenario
is not trivial. In particular, when the dimensionless braking time �b becomes
larger than unity, the growth rate of dust aggregates is drastically accelerated
because the dominant drag force switches from Epstein to Stokes. The fractal
nature of aggregates and the switch of drag force laws appear to be impor-
tant factors in the numerical simulation. This rapid growth effect is sufficiently
large to overcome the radial drift barrier [34]. It should be noted, however,
that these researchers also used icy dust aggregates to neglect the fragmentation
effect.

Role of ice and its sintering As discussed above, the presence of ice or snow might
be very important to explain planetesimal formation. Our planet Earth is covered
with plenty of water. The existence of water enables us to live on the surface of the
Earth. Furthermore, water plays a crucial role in terrestrial tectonics. In contrast,
the ambient gas pressure is extremely low for water to be liquid in space; water
would be in the form of vapor or solid ice. The location in the PPD at which the
ice condensation (sublimation) starts to occur and water-rich mineral formation is
possible is called the snow line.

Around the snow line, icy dust aggregates experience sintering [35]. As a
result of the sintering, the thickness of the neck between connecting monomers
grows. The driving force of sintering is the redistribution of surface molecules
induced by the Laplace pressure, i.e., surface tension. The Laplace pressure
is inversely proportional to the radius of curvature (Eq. (2.100)), and the thin
neck has a small radius of curvature. Thus, the neck thickness grows to mini-
mize the Laplace pressure (or equivalently maximize the radius of curvature) by
sintering.

The Laplace pressure also affects the size-frequency distribution of constituent
monomers. Let us consider a dust aggregate composed of various-sized icy
monomers. The largest monomer has the smallest Laplace pressure, and
vice versa. Then, the transport of ice molecules from small monomers to
large monomers occurs to minimize the total Laplace pressure. Because of
this effect, the size difference among monomers is enhanced. According to
the numerical investigations, this ripening effect may affect the planetesimal
formation [36, 37]. In particular, the fragmentation of aggregates might be
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caused by the ripening effect [36]. However, because sintering can increase
the strength of the monomer contact by thickening the contacting neck, it may
also affect the mechanical properties of dust aggregates. Both effects proceed
simultaneously. Although some impact experiments with sintered porous ices
were carried out [33, 38], it is not easy to directly compare the numerical and
experimental results, particularly for microscopic aggregate growth. The sintering
of ice occurs very rapidly in laboratory experiments. Thus, its precise control is
very difficult.

Outlook of the soft impact of dust aggregates In short, the detailed processes of
planetesimal formation are still controversial. It appears that there is a possibility
to overcome some barriers by considering the fluffy ice dust aggregates. Although
the numerical investigations have an advantage to model the motion of tiny grains
under a microgravity environment, the numerical methods are not almighty. For
instance, the effect of a nonspherical monomer shape has hardly been considered
and may significantly affect the Eroll. Then, the entire story might be rewritten
again.

There must be a way to form our solar system because the Earth undoubtedly
exists. Additionally, many exoplanets have been located in space. It is an exciting
challenge to build a universal story to produce various planetary systems. It is
impossible for me to provide an exhaustive review of planetary formation. Rather,
I am a learner in this field. For example, the details of the effects of turbulence,
electrostatic, radiation pressure, among others, have not been considered here. The
dynamics of natural dust aggregates would be very complex. However, we must
concentrate on the predominant dynamics to build a physically meaningful model.
I can definitely say that the fundamental processes of microscopic soft impact are
necessary bricks for building the planetary system’s history.

7.2 Regolith Grains

In this section, we will return to the discussion of macroscopic-scale grains. As
mentioned in Chap. 1, surfaces of terrestrial (solid) planets and asteroids are usually
covered with grains called regolith. A part of the surface of the Earth is also covered
with sand. However, the origins and dynamics of the Earth’s soil and planetary
regolith are quite different. On the Earth, an abundance of atmosphere, water, and
biological activities evidently affect surface dynamics and resultant landforms. In
contrast, most of the small astronomical objects have airless and waterless surfaces
that are free from biological activity. In fact, the Earth is a rather peculiar planet.
The origin and dynamics of planetary regolith will be discussed in the following of
this subsections.



7.2 Regolith Grains 279

7.2.1 Regolith Formation by Impacts

First, why are planetary surfaces covered with regolith? The original material of the
solar system is most likely tiny grains, as discussed in the last section. Is the regolith
a direct remnant of such commencing materials? The answer is “no”. Rather,
gardening by impacts is considered to be the main source of regolith formation [39].
Namely, ejecta grains splashed by impacts and finally falling back onto the planetary
surface are deposited and form the regolith layer.

Lunar regolith has been more intensively investigated than other objects because
the Moon is our nearest neighbor. The typical thickness of the lunar regolith layer
is on the order of 100–101 m. Its depth distribution is highly inhomogeneous.
Because the elementary process of regolith formation is supposed to be impacts, a
regolith layer’s thickness must be related to the craters abundance. Impact cratering
cultivates the surface of the target object, and ejecta grains are splashed on its
circumference. The planetary surface is iteratively exposed to various-scale impacts.
Because the frequency of a large-scale impact event is rarer than that of a small-
scale event, the surface layer is cultivated many times in a shallow region. Impact
cratering frequency is roughly expressed by a power-law form, as discussed in
Sect. 5.2.

By assuming that the floor of regolith layer is composed of the bottom of the
crater’s cavities, we can estimate the distribution of the regolith depth using the
crater population. The cavity opened by impact cratering would be deposited by
ejecta grains (regolith) splashed by subsequent nearby impacts. Sooner or later, the
cavity might be filled with grains and the regolith layer is finally formed. In this
case, the local crater population density should be related to the local thickness of
the regolith layer.

A simple model was proposed for the relation between the crater’s size-frequency
distribution and the regolith thickness [39, 40]. First, the coverage factor by craters
in the diameter range from Ds to Deq is computed as

fc.Ds;Deq/ D
Z Ds

Deq

�

4
D2

c

dNcum.Dc/

dDc
dDc D �bcceq

4.bc � 2/

"�
Deq

Ds

�bc�2
� 1

#
:

(7.28)
Here we use Eqs. (5.1) and (5.9) to obtain this form. Deq indicates the equilibrium
crater diameter. At bc D 2, it is impossible to use this form because Deq becomes
arbitrary and Eq. (5.9) is not applicable. Note that fc D 1means that the accumulated
cratered area is simply equal to the considered area. Because the crater depth is
proportional to its diameter (Sect. 5.1), the thickness of the regolith layer (floor
depth) can also be proportional to the crater diameter. If the proportional constant is
independent of crater size, Deq=Ds on the right-hand side of Eq. (7.28) can be simply
replaced by heq=hs. Here the thicknesses (crater depth) of the regoliths made by
craters with diameters Ds and Deq are denoted by hs and heq, respectively. Defining
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the constant proportionality as Ds D Qhs (and Deq D Qheq)6, Eq. (7.28) can be
rewritten as

hs D Deq

Q
�
4.bc � 2/fc.Qhs;Deq/

�bcceq
C 1

� 1
2�bc

: (7.29)

From the crater counting, the values of bc, ceq, and Deq are directly measurable.
Next, we assume that the planetary surface is sufficiently covered by regolith when
the coverage factor fc reaches 2. Roughly speaking, the open cavities can completely
cover the surface at fc ' 1. Then, these cavities can be filled with ejected grains
at fc ' 2. By this coverage factor fc D fmin D 2, the considered surface is
fully mantled by the regolith layer of the corresponding thickness hmin which can
be estimated using Eq. (7.29). The thickness of the regolith layer must be greater
than hmin everywhere in the considered area because fc D 2 is assumed on the Ds

scale. At the time, the portion of the thicker regolith layers can be estimated using
the corresponding fc value. A deeper regolith layer of thickness h1 D Dc=Q is
formed by the cratering in diameter Dc(> Ds). Because the corresponding coverage
factor fc.Qh1;Deq/ at the moment of fc.Ds;Deq/ D 2 is less than 2, the regions of
regolith thickness h1 become patchy. Assuming that the probability P.h1/ to find the
regolith layer with thickness h1 is proportional to the corresponding coverage factor
fc.Qh1;Deq/, one obtains the form of P.h1/ as

P.h1/ D fc.Qh1;Qheq/

fmin
D .heq=h1/bc�2 � 1

.heq=hmin/bc�2 � 1 : (7.30)

Note that the maximum value of h1 is heq D Deq=Q. Finally, the median value Nh1
can be computed from the relation P. Nh1/ D 1=2. Thus, Nh1 is obtained as

Nh1 D 2
1

bc�2 heq

"�
heq

hmin

�bc�2
C 1

# 1
2�bc

: (7.31)

This simple model roughly agrees with the lunar observation results [39]. Moreover,
using Eq. (5.9), the rate of regolith formation can be evaluated as

heq D 1

Q
�

cc.t/

ceq

� 1
bc�2

: (7.32)

However, this model has some limitations. First, the selection of fmin D 2 is
arbitrary. P.h1/ and therefore Nh1 depends on its value. Second, the maximum value
heq D Deq=Q is unclear. In addition, the validity of this model in the regime of small
bc.< 2/ remains uncertain.

6Note that this factor Q and the quality factor Q are different.
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7.2.2 Compaction by Thermal Cycling

The next topic is the thermal behavior of bulk regolith layers. The regolith layer
can be heated by solar radiation. If the surface facing the Sun varies with time
just like the Earth, its surface is exposed to thermal cycling. As mentioned in
Sect. 3.9.2, the effect of temperature variation is almost negligible for granular
behaviors as long as the grain size is macroscopic. However, small but cyclic
temperature perturbation is actually capable of affecting the structure of granular
matter. The gradual compaction of a granular column can be induced by the thermal
cycling [41, 42]. Its compaction rate depends on the amplitude and frequency of the
thermal cycling. Although the compaction proceeds very slowly on the timescale
of laboratory experiments, it may be sufficiently fast for planetary phenomena.
Thus, this type of thermal-driven compaction would take place on every planetary
surface covered with regolith. At a final steady state, the packing fraction should
be approximately 
 D 0:64 in three-dimensional space (random close packing
(RCP)). With the thermal cycling, the packing fraction increases in a logarithmic
manner [43]:


ss � 
ncyc / 1

ln ncyc
; (7.33)

where 
ss, ncyc, and 
ncyc are the packing fraction at the finally achieved steady state,
cycle number, and packing fraction at the ncyc-th cycle, respectively. Because of the
logarithmic functional form, the truly steady state might not be attained even in the
astronomical timescale.

Even with weak mechanical vibration, compaction is induced. The compaction
by weak mechanical vibration obeys the stretched exponential relaxation form [44],


ss � 
ncyc / exp

"
�
�

ncyc

nchar

�ˇchar
#
; (7.34)

where nchar and ˇchar are two fitting parameters characterizing the relaxation. The
reason for different functional forms for the thermal cycling (Eq. (7.33)) and weak
mechanical vibration (Eq. (7.34)) is not yet unveiled; both forms are only empirical
forms.

The thermal property of granular matter is not negligible particularly for quasi-
static deformation. It proceeds slowly but gradually in the regolith behaviors. Slow
and weak mechanical vibration can further affect the packing structure. Such slow
but long timescale effects are ubiquitous in geological and planetary phenomena.
It is not obvious whether granular compaction due to the thermal cycling is
sufficiently fast or not in terms of geological timescale. In either case, the planetary
surface regolith layer is usually subjected to thermal cycling, which results in
compaction. This compacted structure might be strongly disturbed by impact events.
The impact causes regolith splashing, migration, among others. Slow compactions
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and intermittent but intense impacts are very contrastive. Regolith migration and
convection possibly induced by impacts are addressed later in Sects. 7.2.4 and 7.2.5.

Moreover, thermal cycling might be able to cause the weathering-based regolith
formation. When rocks are subjected to thermal cycling, internal cracks are created
by the inhomogeneity of the thermal expansion rate. Because of the thermal cycling,
the cracks grow and the rocks might be fragmented by these cracks. According to
Ref. [45], this thermal fatigue effect could be more efficient than the impact-based
regolith formation. However, the thermal fatigue weathering rate must depend on
various environmental conditions. While it is difficult to conclude that the thermal
fatigue is definitely the main process of regolith formation, it must not be neglected,
at least under some environmental conditions.

7.2.3 Thermal Conduction and Thermal Inertia

In this subsection, the thermal conduction on the surface of regolith layer is
discussed. In general, heat transmits through bulk granular matter mainly by thermal
diffusion. Radiation and convection effects are usually negligible for granular heat
transfer.7 Thus, we can use the diffusion equation to model the thermal conduction
in bulk granular matter. Here we consider thermal diffusion under the thermal cyclic
condition. For the diffusion equation, a solution that is convenient to discuss thermal
cycling was already introduced in Eqs. (3.39) and (3.40). Because we consider
thermal conduction, the general physical quantity� in Eq. (3.39) should be replaced
by temperature T. Then, the equations are rewritten as

T D T0 exp.�knx/ sin.!nt � knx/; (7.35)

kn D
r
!n

2Kd
; (7.36)

where T0 corresponds to the amplitude of sinusoidally oscillating temperature
(thermal cycling). Let us consider the planetary surface heated up and cooled down
by cyclic (diurnal) irradiation. Then, Eq. (7.35) models the temperature variation
in time t and depth x. This model is a simple one-dimensional model, and x D 0

corresponds to the surface. The penetration depth of the thermal cycling depends
on the frequency of the cycle because the decay factor in Eq. (7.35) is written as
exp.�knx/. The thermal penetration depth (or thermal skin depth) ıth is defined by
the reciprocal of the wavenumber kn as

ıth D 2�

s
2Kd

!n
D
s
4��hPcyc

�Cth
: (7.37)

7This situation is the same as that in the case of thermal conduction in rocks.
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Here we use bulk regolith properties such as density �, thermal conductivity �h,
thermal capacity Cth, and period of the cycle Pcyc. By definition, these properties
are related as Kd D �h=�Cth. At the depth x D ıth, the amplitude of the temperature
oscillation decays to 1=e. According to Eq. (7.37), thermal penetration depth is
proportional to the square root of the cycle period. Therefore, thermal cycling with
longer period penetrates deeper in the regolith layer.

Thermal inertia is frequently used to characterize the thermal property of the
heated boundary. At the surface boundary x D 0, the length scale in the heat flux
can be nondimensionalized using ıth as

�h
@T

@x

ˇ̌
ˇ̌
xD0

D
s
�h�Cth

4�Pcyc

@T

@x�

ˇ̌
ˇ̌
x�D0

; (7.38)

where x� D x=ıth is the dimensionless depth. The thermal inertia Ith is defined by

Ith D p
�h�Cth: (7.39)

Thermal inertia is one of the most important properties to characterize planetary
surface. It is necessary information to estimate the heat budget in planets. For
example, a detailed evaluation of thermal inertia on the Martian surface is reported
in Ref. [46]. However, an adequate understanding of the thermal properties of
granular matter is still far from complete. The very slow dynamics of thermally
oscillated granular matter must be investigated in further detail.

7.2.4 Regolith Migration

Regolith migration may be induced by impact-based seismic shaking. As discussed
in Sect. 5.4.2, the meteors impacting onto a small asteroid can play a significant role
in the development of its surface terrain. In Sect. 5.4.2, obliteration of craters by
global seismic shaking was discussed. In the model of obliteration of craters, the
diffusion-type relaxation of the crater’s shape was assumed. It is apparent that the
surface regolith must migrate to relax the crater’s shape.

In fact, the small asteroid Itokawa shows some evidence of the regolith migration.
An image of Itokawa taken by the spacecraft Hayabusa is shown in Fig. 7.7. One can
categorize its surface into two phases: smooth and rough terrains. As observed in
Fig. 7.7, the smooth terrain is localized at the central neck part of the Itokawa. The
smooth terrains are covered with relatively small (sub-centimeter- or centimeter-
sized) grains and pebbles. In contrast, the rough terrains are covered with a mixture
of pebbles, gravels, and boulders of various sizes. Such localization reminds us of
segregation by the Brazil nut effect (BNE) (Sect. 3.9.4). The BNE is vibration-driven
size segregation in a polydisperse granular matter. Such segregation may also be
induced by impact-induced seismic shaking.
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global convection
small-scale convection

smooth terrain

Fig. 7.7 Image of the asteroid Itokawa taken by the spacecraft Hayabusa. A smooth terrain can
be observed on the central part. Schematic image of large-scale (global) convection and small-
scale surface convection are shown on the left and right sides of the image, respectively. Note
that this image does not indicate the actual difference between the left and right sides. This image
shows only the uncertainty of the possible convection size and structure on Itokawa. Moreover,
the convection probably occurs in the underground region, whereas the rolls in the figure look like
surface migration (Modified from the original image of JAXA Digital Archives)

Fig. 7.8 Close examination
of a boundary of rough and
smooth terrains on the
asteroid Itokawa. Alignment
of the longest axis of pebbles
(gravels) can be observed.
The direction of this
alignment (indicated by the
dotted line) is vertical to the
possible landslide slope
direction (arrowed
direction) [47] (Modified
from the original image of
JAXA Digital Archives)

Direct evidence for the regolith migration can be observed in the high-resolution
image of Itokawa, as shown in Fig. 7.8 [47]. In this image, the longest axis of pebbles
and gravels (dotted line in Fig. 7.8) is lined up in the direction perpendicular to
the gravitational gradient (arrow direction in Fig. 7.8). This alignment is a natural
consequence of landslides occurring at the slope. On the surface of landslides flow,
the longest axis of pebbles should be vertical to the slope direction to minimize the
moment of inertia of rotating pebbles. This alignment is observed at the boundary
area of smooth and rough terrains on the Itokawa. Based on these observational
facts, it is plausible to consider that regolith migration has occurred on the surface
of the Itokawa and may result in the segregation.
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7.2.5 Regolith Convection

The main issue that we would like to consider here is whether regolith migration
occurs as a part of global regolith convection. Global seismic shaking is necessary
to induce global regolith convection. Granular convection can be easily observed
in a laboratory experiment of a vibrated granular bed (Sect. 3.9). Because granular
convection can convey the large grains upward, BNE can be simultaneously induced
in the vibrated granular bed. Although reverse BNE (RBNE) can also be induced
under particular vibration conditions, the onset of segregation is important here;
the direction is not the problem. Segregation can result in the localization of
rough and smooth terrains in any case. Miyamoto et al. assessed the possibility of
global seismic shaking using the model discussed in Sect. 5.4.2 [47]. A necessary
condition to induce the granular convection is approximately � > 1, where � is
the ratio of vibrational and gravitational accelerations (Eq. (3.67)). Substituting the
characteristic timescale (diffusion time in the body with size Dt) �diff D D2

t =�
2Kd

into t of Eq. (5.40), one can estimate the globally attained vibrational acceleration
that is induced by the impact (of the impactor’s diameter Di, its density �i, and
impact velocity v0) as

� .�diff/ D 3fv0
G

s
	seis

�i

�3t

D3
i

D5
t

exp

�
� fD2

t

�KdQ

�
: (7.40)

Assuming the values of some parameters (Kd D 0:25 km2/s, Q D 200, 	seis D
10�4, f D 10Hz, �t D 1:9 � 103 kg/m3, �i D 2:5 � 103 kg/m3, v0 D 4 km/s, and
Dt D 400m), these researchers confirmed that the condition � .�diff/ > 1 is satisfied
even by a small impactor with Di D 10mm for the asteroid Itokawa [47]. This
finding indicates that small asteroids such as Itokawa can be readily fluidized by the
small-scale impact. However, this estimate is based only on the criterion � > 1.
It is difficult to estimate the rapidity of the rate of migration and convection. The
possibility of regolith convection should be evaluated more quantitatively.

Some experiments aiming to study granular convection or BNE under the
microgravity condition were performed. In these experiments, parabolic flights were
used to produce the microgravity condition. For example, the granular convective
velocity in a Taylor-Couette shear cell was measured under the microgravity condi-
tion [48–50]. In the sheared cell, a shear banding structure, in which rapidly moving
grains are localized near the shearing wall, can be observed toward the sheared
(primary) direction. This shear banding structure is formed regardless of the strength
of gravity. The secondary flow perpendicular to the primary flow (i.e., the radial
direction in the Taylor-Couette cell) was also induced by the shearing. According
to the experimental result, this secondary flow velocity is strongly affected by the
gravitational acceleration g. The convective velocity drastically decreased under the
microgravity condition, which indicates that gravity is indispensable in producing
the shear-induced granular convection.



286 7 Grains and Dust Dynamics

Another example is on the BNE. The rise velocity of large intruders in a vibrated
granular bed was measured [51]. These researchers simulated the gravitational
accelerations on Mars (gMars D 3:71m/s2) and the Moon (gMoon D 1:62m/s2) by
parabolic flights and measured the rise velocity of large intruders. The obtained
result was compared with the result under gEarth D 9:8m/s2. They observed that the
rise velocity vrise can be roughly scaled by � as vrise / .� �1/1:3. More importantly,
they observed that the rise velocity is approximately proportional to the gravitational
acceleration as

vrise / g: (7.41)

Only three gravitational accelerations (gMars, gMoon, and gEarth) were examined in
this experiment. Thus, it is difficult to determine the precise g dependence of vrise

only on the basis of this experiment although a qualitatively consistent result was
obtained by the numerical simulation as well [52].

Scaling of granular (regolith) convective velocity It is not easy to control g
in experiments on the ground. Therefore, parabolic flights were frequently used
to directly control gravitational acceleration. However, it might be possible to
speculate the gravity effect using laboratory experiments through the scaling
concept. If we can build an appropriate scaling relation among the dimensionless
numbers that include the gravitational acceleration, the gravity dependence can be
estimated from the scaling form. In fact, the scaling for the granular convective
velocity was obtained by a laboratory experiment [53]. In the experiment, some
relevant parameters were systematically varied and the granular convective velocity
was measured. The maximum convective velocity vmax for the vertically vibrated
granular bed is scaled as

vmax D CconS˛� Dˇ
sys; (7.42)

where Ccon and S� are a dimensionless coefficient and the shaking parameter
(Eq. (3.70)), respectively. Additionally, the dimensionless system size Dsys is defined
by the container radius Rs, bed height Hs, and grain diameter Dg as Dsys Dp

RsHs=Dg. The values ˛ D 0:47, ˇ D 0:82, and Ccon D 3:6�10�3 were computed
from the fitting of the experimental data. In Eq. (7.42), S� is used instead of � to
characterize the convective velocity.

The shaking parameter S� can be obtained by a nondimensionalization of
the Navier-Stokes-type equation. First, the Navier-Stokes equation (Eq. (2.30)) is
rewritten with the gravitational body force term a D g as

@u
@t

C u � ru D �1
�

rp C 	

�
r2u C g: (7.43)

While this equation is originally derived for viscous fluid flow, it might also be
useful for granular flow. Here we assume that all the quantities in Eq. (7.43) denote
the properties of bulk granular convective motion. For instance, � in this equation
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corresponds to the bulk density of the convecting granular matter. To simplify
the equation, we consider the steady flow, i.e., @u=@t D 0. To nondimensionalize
Eq. (7.43), we define the representative velocity .2�fA0/ using the vibration ampli-
tude A0 and its frequency f . For the representative length scale, the grain diameter
Dg can be used. Furthermore, we assume that the pressure term is decomposed into
hydrostatic and dynamic pressures: p D phyd C pdyn. These pressures are supposed
to be expressed as phyd � �gDg and pdyn � �.2�fA0/2. Using these assumptions,
Eq. (7.43) is transformed into

.2�fA0/2

gDg

�
u� � r�u� C r�p�

dyn � 	

2�fA0�Dg
r�2u�

�
D Og� � r�p�

hyd; (7.44)

where u� D u=2�fA0, r� D Dgr, and Og� D g=g are the nondimensionalized
velocity, nondimensionalized r operator, and unit vector to the gravitational
direction, respectively. One can confirm that S� D .2�fA0/2=gDg is the principal
dimensionless number in Eq. (7.44). It can be naturally derived by the nondimen-
sionalization of the continuum-based Navier-Stokes-type equation. In fact, S� can
be obtained solely by the balance between the advection term u � ru and gravity g.
The key point is the definition of the characteristic length and velocity scales.

Another dimensionless number �B D S� 	=2�fA0�Dg is simultaneously
obtained by the nondimensionalization (Eq. (7.44)). In the viscosity-dominant
regime, �B should be on the order of unity, which indicates that the granular
viscosity in the vibrated system is written as 	 � 2�fA0�Dg=S� � �g1=2D3=2

g =S1=2� .
The last form is similar to Eq. (4.31). As discussed in Sect. 4.1.6, a relevant
timescale is required to define the granular viscosity. For the vibrated granular
matter, the vibration frequency f brings an independent timescale. In addition,
the gravitational acceleration g participates in the determination of the granular
viscosity. Thus, the effective granular viscosity can be evaluated using f and g.
However, the concrete physical meaning of this viscosity in a vibrated granular
matter remains unclear. There remain some uncertainties, e.g., 	 / S�1

� or 	 / S�1=2
�

and the role of Dg and A0 for the characteristic length scale. Experimental tests are
necessary to resolve these uncertainties. For the strongly shaken system, convective
transport of the granular temperature is modeled in addition to the above mentioned
momentum balance equation. Then, the onset criterion of the strongly shaken
granular convection can be calculated using linear stability analysis [54]. In the
theoretical framework, another dimensionless number corresponding to N=D2

sys is
also used to characterize the onset criterion. Here N denotes the total grain number
in the system. This fact is consistent with the existence of two dimensionless
numbers S� and Dsys D .

p
RsHs=Dg/. Moreover, note that the model discussed in

Ref. [54] is proposed for the strongly shaken regime (� ' 50). However, Eq. (7.42)
was obtained by the experiment of mildly shaken granular convection (� ' 3). The
coincidence of the essential dimensionless numbers (S� and Dsys) is nontrivial.

We can estimate the specific value of the convective velocity using the scaling of
Eq. (7.42). This scaling can be rewritten as
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vmax � g˛C 1
2

�
� 0

2�f

�2˛
D

�˛�ˇC 1
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g


p
RsHs

�ˇ
: (7.45)

Here the dimensionless acceleration � 0 D � � �c is used to involve the onset
criterion of the granular (regolith) convection, e.g., � .�diff/ > �c ' 1. Here �c

is the critical acceleration strength below which the granular convection cannot be
induced.� 0 has also been employed to determine the g dependence of the convective
(and segregative) velocity in the related experiment obtaining Eq. (7.41) [51]. The
possibility of regolith convection on the asteroid Itokawa was also discussed on
the basis of the criterion � > 1 [47]. However, this onset criterion (�c D 1)
might not be universal. Indeed, it clearly varies depending on the experimental
conditions [55]. It is difficult to scale all the data (in particular, various f data) by
the fixed �c. Thus, �c D 0 (� 0 D � ) was employed to approximately obtain the
simple scaling relation in Eq. (7.42) [53]. Substituting the experimentally obtained
value ˛ D 0:47 into Eq. (7.45), one obtains a relation between convective velocity
and gravitational acceleration, vmax / g0:97. This relation is similar to Eq. (7.41).
Thus, the scaling obtained by the laboratory experiment is consistent with the
result of parabolic flights. Furthermore, Eq. (7.45) simultaneously revealed various
parameter dependences, which is an advantage of the scaling analysis.

The obtained scaling is consistent with other laboratory experiments for granular
convection. In two-dimensional granular convection, the convective velocity is
almost proportional to the maximum vibration speed [55]. This result is consistent
with the scaling of Eq. (7.42). Specifically, Eq. (7.42) can be transformed into
another form vmax � .2�fA0/2˛.

p
gd/1�2Dˇ

sys, and the scaling exponent 2˛ D 0:94

is close to unity.
However, g was not directly varied in the laboratory experiment [53]. Thus,

it is difficult to conclude the g dependence solely from this experimental result.
Fortunately, the obtained scaling is consistent with the experimental results obtained
by parabolic-flights [51] in which the gravity was directly controlled.

There are some limitations and weak points in the experimentally obtained
scaling. First, this experiment was performed within a small-scale container. In
contrast, small asteroids are not supported by any wall. Their shapes are sustained
by their own gravities. This is the biggest difference between laboratory experiments
and actual phenomena occurring in space. However, it is impossible to remove the
container wall in any granular convection experiment even under the microgravity
condition. Second, the system size is usually limited to the centimeter scale for
laboratory experiments. In general, the scaling validity is not guaranteed for large-
scale phenomena. Of course, if the governing physical mechanism is identical, the
scaling form would be invariant. However, some other effects not considered in the
experiment might dominate the dynamics in extremely large-scale phenomena. In
particular, for the granular convection, there might be a characteristic length scale
that determines the convective roll size. In fact, a multiple-roll phase was observed
in a laboratory experiment of the two-dimensional granular convection [56]. If the
convective roll size is spontaneously determined by the characteristic length scale,
regolith convection on the asteroid should be localized. This uncertainty is graph-
ically illustrated in Fig. 7.7. Large-scale and small-scale convection structures are



7.2 Regolith Grains 289

schematically drawn on the left and right sides of the Itokawa picture, respectively. It
should be noted that the regolith convection occurs in the vertical direction, although
the image in Fig. 7.7 appears to be surface convection. The thickness of the regolith
layer could also affect the size of the convection roll. Figure 7.7 is nothing but
a conceptual diagram for the uncertainty of the regolith convection. It is difficult
to discern which case (large-scale or small-scale) is correct only from the current
velocity scaling result. As long as the scaling is written in the power-law form, it
does not contain any characteristic length scale. Thus, a different type of analysis is
necessary to clarify the effect of the characteristic length scale.

In any case, the granular (regolith) convective velocity can be estimated using
Eq. (7.45) as a first order approximation. Using this scaling, we can verify the
feasibility of the regolith convection hypothesis. The constraints to be satisfied are
(i) the convective velocity must be lower than the escape velocity, (ii) the impact
energy must be below the catastrophic disruption criterion, and (iii) the endurance
of vibration and resultant migration length per impact must be sufficiently large.
For the asteroid Itokawa, an additional constraint was obtained from the returned
sample. The cosmic-ray exposure duration of Itokawa’s surface grain was estimated
to be approximately 1.5–8 Myr [57, 58]. This timescale could approximately
correspond to a half cycle of the regolith convection, i.e., the surface traveling
time. A feasibility assessment of the regolith convection hypothesis using all the
constraints and velocity scaling (Eq. (7.45)) was performed for the target asteroid
of diameter Da, using the impactors’ population of Ref. [59]. According to that
study, the convective resurfacing timescale Tresurf can be sufficiently shorter than the
mean collisional lifetime of the body in the range of8 102 � Da � 104 m [60].
This estimate indicates that the resurfacing of the asteroid regolith layer is indeed
possible, as predicted by Ref. [47]. Moreover, the order of Tresurf is consistent with
the cosmic-ray exposure duration.

7.2.6 Wind Transport of Regolith

Friction velocity Regolith grains can be transported by wind as well as mechanical
vibration. Wind transport of sand (regolith) produces ripples, dunes, and other
geomorphologies that are ubiquitously observed on the Earth. Because the Earth
has a thick atmosphere, its flow can deliver sand grains efficiently. To estimate its
ability, the friction velocity vf is usually employed. vf is defined by

vf D
r
�s

�
; (7.46)

8The mean collisional lifetime Tlife is determined by the average period of the large impact which
results in the catastrophic disruption of the body. This upper limit of the impact energy relates
to the constraint (ii). Additionally, the convective velocity by the largest impact cannot exceed
the escape velocity. Thus, the constraint (i) is automatically fulfilled. For the convective roll size,
we temporarily assume the small roll size ('100Dg) on the basis of preliminary experimental
observation.
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Fig. 7.9 Schematic images of the (a) vertical wind velocity profile and (b) saltation of sand grains.
The wind velocity profile is characterized by the friction velocity vf defined in Eq. (7.46). In panel
(b), sand is blown by the wind flow characterized by the friction velocity. The grain mass per unit
area Nmg=S is transported to the distance Lsal during the time tsal. The form of flux per unit area is
given in Eq. (7.51). Note that the vertical scales are quite different between (a) and (b)

where �s and � are the shear stress exerted on the surface of the sand layer and
the density of air, respectively. In many cases, the measurement of wind velocity is
considerably more practical than the stress measurement. The friction velocity vf

corresponds to a characteristic value of the wind velocity. The height dependence
of the wind velocity can be estimated by assuming a simple relation v.z/ D �pz P�
based on Prandtl’s mixing length theory [61]. Here v.z/ is the wind velocity at height
(from the surface) z, �p ' 0:37 is a constant called the Kármán constant, and P� D
dv=dz corresponds to the shear strain rate. By integrating the approximated relation
vf D �pz.dv=dz/, one can obtain the velocity profile:

v.z/ D vf

�p
ln

�
z

z0

�
; (7.47)

where the roughness factor z0 is a constant representing the roughness of the blown
surface. The image of the vertical wind velocity profile is illustrated in Fig. 7.9a.
This profile is relevant in the relatively high velocity (or large Reynolds number)
regime. Because �p is considered a universal constant and z0 is determined by
the surface roughness, the characteristic wind velocity is mainly characterized
by the friction velocity vf . The roughness factor z0 is empirically known to be
approximately 1=30 of the surface grains diameter [62].

Saltation threshold The frictional velocity must be sufficiently large to lift up
sand grains. The force exerted on a grain by the wind flow can be estimated as
ff � �v2f D2

g, where Dg is the gain diameter. This force must be greater than the
gravitational force fg � .�g � �/D3

gg, where �g is the true density of the grain. Note
that the factor �g � � indicates the buoyancy effect. Equating ff and fg, the threshold
velocity vft is calculated to be [39, 62]
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vft �
r
�g � �

�
gDg: (7.48)

When the friction velocity exceeds vft, the surface sand is blown, and saltation is
triggered. The form of Eq. (7.48) is similar to the Shields number Sh (Eq. (2.113)).
The numerical coefficient in Eq. (7.48) is determined by various factors such as the
grain shape, surface friction, and cohesion effect among grains. For macroscopic
grains, the coefficient is approximately on the order of 10�1, which indicates that
the kinetic energy to kick up a grain is approximately ten percent of the grain’s
potential energy. The coefficient value drastically increases upon decreasing the
grain size. This finding is not surprising because surface effects, such as cohesive
force, become dominant in small grains (Sect. 2.8.5). Then, the force required to
lift up a grain will be considerably larger than the scaling expectation (Eq. (7.48)),
in which only the gravity effect is considered. The friction Reynolds number
Ref D �vf Dg=	 is employed to classify the dominant effect. In the large Ref .> 3:5/

regime, the coefficient in Eq. (7.48) is roughly constant at approximately 0:1.
At Ref ' 3:5, the value begins to deviate from the constant value and grows
significantly [39].

Bagnold flux The flux of transported sand grains can also be scaled by the friction
velocity [62]. Let us consider the saltation over distance Lsal during the time tsal

(Fig. 7.9b). Considering the surface area S above which there are N grains of mean
mass mg, the stress �s applied to these grains can be estimated as

�s D Nmg

S

Lsal

t2sal

: (7.49)

The flux of sand grains Js is written as

Js D Nmg

S

Lsal

tsal
: (7.50)

It should be noted that Js represents the mass flux per unit area S (from the surface
to infinite height), and Lsal=tsal.D vsal/ corresponds to the mean saltation velocity
(Fig. 7.9b). By incorporating Eqs. (7.49) and (7.50), the flux is written as Js D �stsal.
The saltation time tsal can be estimated by assuming free fall in the vertical direction.
Then, tsal can be scaled as9 tsal � vf =g. From this relation and the ram pressure form
(�s D �v2f ), the flux Js is simply expressed as

Js D Csal
�

g
v3f : (7.51)

9To obtain this relation, we assume that the initial vertical velocity is proportional to the friction
velocity.
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This Bagnold flux form is widely accepted as a first order approximation for the
wind transport of sand grains. Furthermore, Bagnold empirically revealed that the
dimensionless prefactor Csal is proportional to grains size [62].

Sand ripples Sand ripples are rapidly engraved by the wind flowing over a sandy
surface. Its length scale (spacing) is usually less than 10 cm on the Earth. Thus,
its pattern is easily recognized and familiar to us. The orientation of ripples is
perpendicular to the wind direction, and the ripple pattern slowly moves leeward.
The spacing among ripples is regular, and its range is close to the typical saltation
length scale. Therefore, it is natural to consider that the spacing of ripples is mainly
determined by the saltation length scale. However, such a naive idea is denied
by Martian ripples. The typical regolith grain size is larger and the gravitational
acceleration is smaller on Mars than those on the Earth. Therefore, the threshold
friction velocity vft and saltation length Lsal should increase on Mars compared with
those on the Earth. Nevertheless, the ripples spacing on Mars is similar to that on
the Earth [39].

Washboard road patterns The wavy pattern might not necessarily originate only
from the wind-blown ripples. A similar ripple pattern can be produced on the
surface of the granular layer under a rolling wheel. This so-called washboard
road [63] appears when the horizontal velocity of the rolling wheel exceeds a
certain critical value. From this experimental result, Taberlet et al. proposed that
the Froude-number-like dimensionless number could be an essential parameter for
characterizing ripple formation [63]. Although the wind-blown ripples and wash-
board road are completely different in terms of their origins, the resultant patterns
are partly similar. As long as the sand grains are transported along the surface,
the flat leveled surface is unstable; its instability is clearly visible. Nonetheless, we
do not fully understand what controls the length scale of the instability. Although
the relevance of the washboard road pattern to planetary terrains is unclear,10 the
important point to note is the fact that the partly similar patterns can be produced in
various different ways. Because the planetary environment is extreme, the planet’s
surface terrains might be better examples to verify the universality of the underlying
physical mechanism of various phenomena.

Sand dunes Sand dunes are common on Mars as well as on the Earth. Sand
dunes may be initiated by a rock or other obstacle on a sandy surface. The wind
streamline is separated by the obstacle. Then, a wind shadow is formed leeward
of the obstacle. As a result, mobile sand grains accumulate on the windward side
of the obstacle (when Re is sufficiently high); finally, the obstacle is submerged
by sand. Then, the formed sand-dune seed grows by itself. Again, the flat sandy
surface is destabilized by the windy horizontal transport and the perturbation made
by an obstacle. Various sand dune shapes are produced depending on environmental

10To make the two-dimensionally spreading washboard road pattern, an extensively wide wheel is
necessary. It is difficult to imagine such a situation.
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conditions such as the wind direction, supply rate of sand, and temporal changes.
One of the simplest and popular dune forms is barchan. Barchans have a crescent-
like shape and the horns of the crescent point leeward. Barchans are formed under
conditions of a unidirectional wind and a limited sand supply. There are some other
dune shapes such as blowout, transverse, linear, and star shapes. Sand dunes move
slowly to the leeward side, and their velocity depends on the size. The larger dunes
move more slowly than the smaller dunes with intrinsic traveling velocity vtravel.
vtravel is approximately proportional to the reciprocal of the dune height. Because
of this size-dependent traveling velocity, sand dunes exhibit various interactions:
collision, coalescence, splitting, and passing through. In particular, the passing-
through interaction of barchans was demonstrated by numerical simulations [64–66]
and laboratory experiments11 [67]. This passing-through behavior is very similar to
the dynamics of solitary waves. This interesting feature was also confirmed in actual
barchans by a long-term observation [68].

Aeolian processes might be a crucial factor to form various types of geomor-
phologies on planetary surfaces [69]. It is not so trivial because the atmospheres
on planetary surfaces can be very different from that on the Earth. Terrestrial sand
dunes have been extensively examined by many researches [70]. However, these
structures are not fully consistent with planetary sand dunes. Detailed comparisons
among the Earth and other planets might provide novel insight of surface pattern
formation due to regolith transport mainly by the aeolian effect, and would also
improve the understanding of sand dune dynamics on the Earth. In Fig. 7.10, sand

Fig. 7.10 Sand dunes in the
Victoria crater on Mars. The
sharp crater rim structure as
well as the sand dunes in the
crater are impressive. The
diameter is approximately
730m (Credit: NASA)

11To model the large-scale dune migration in a laboratory, water flow was used in the experiment.
This is a type of similar modeling for geological-scale phenomena (Sect. 2.8).
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dunes developed in the Victoria crater on Mars are shown. This image was taken
by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA’s
Mars Reconnaissance Orbiter. It is not clear how the Martian surface produces such
beautiful art on its surface. This landscape might be made by a collaboration of
impact and aeolian processes.

7.3 Summary

Some topics relating to soft impact and planetary science have been reviewed in this
chapter. In particular, the collision outcomes resulting from the impact of tiny dust
aggregates and the impact-originated regolith behaviors are emphasized.

For the former, the structure and contact mechanics of dust aggregates are key
factors to be considered when examining the growth history of dust aggregates.
While there are some barriers in the model of aggregate growth, these barriers might
be overcome by considering soft impact effects such as the fluffiness (coordination
number) of the aggregates and offset collision. However, the aggregate growth
scenario remains far from being completely understood. For example, the porosity
dependence of the collision outcomes is not sufficiently quantitative. Only two
states (porous and compact) have been considered to make the phase diagrams [13].
A systematic investigation with continuously varying porosity might be required.
Then, the porosity effect can be precisely included in the dust aggregate growth
model. Moreover, there might be other hidden parameters that are essential for
determining the collision outcomes of dust aggregates. However, the scenario should
be as simple as possible. Although it is easy to add new factors into the model, such
addition makes the model complicated. Thus, we must select essential but minimal
factors to model the impact of dust aggregates.

The latter part addressed regolith behavior. The principal process of regolith
formation is most likely the impact events that occur intermittently on the surface
of astronomical objects. Although the impact frequency and regolith thickness are
related by a simple model, the universality of this model is not yet concrete. The
effect of thermal cycling and migration of the regolith are also modeled on the basis
of simple granular experiments. However, these considerations are still very rough.
There are many things to be solved with regard to regolith behaviors. Additionally,
the relevance of these models must be tested by comparison with appropriate
observational data. Such interdisciplinary studies among planetary observation,
laboratory experiment, and theoretical modeling are crucial next steps.

There are many other granular-related or impact-related phenomena in geophysi-
cal or planetary sciences. For further reading, Refs. [10–13] provide comprehensive
reviews of the growth of dust aggregates. For geomorphological topics, detailed
discussions can be found in Refs. [39, 71, 72].
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Chapter 8
Perspectives

In this book, dimensional analysis and the scaling method were mainly employed to
reveal the physics of soft impact phenomena. The scaling approach is very helpful
to observe the essence of the underlying physical mechanisms of the considered
phenomena. In particular, scaling is very powerful for the order estimate of phenom-
ena whose scale is widely spreading. To conduct assessments with accurate detail,
however, we need a complete modeling, including numerical factors. Therefore,
the ability of an order estimate based on the scaling should not be overvalued.
However, the order estimate is usually appropriate for geophysical or planetary
phenomena because the observable information for these phenomena is very limited
in most cases. Moreover, most of the geophysical or planetary phenomena occur
on an extremely large scale and over a very long time. Scaling is a unique
method to discuss such phenomena. Furthermore, scaling and dimensional analysis
are important methods in various fields including fluid engineering and astro-
physics. These methods are based only on the concept of dimensional homogeneity.
Although this concept is very simple, its applicability is extensive. The dimensional
homogeneity is only one constraint. In general, it is difficult to obtain a complete
physical formulation solely from the dimensional perspective. Thus, additional
(real or numerical) experiments are necessary to attain useful scaling expressions,
which suggests that dimensional analysis possesses an affinity for experiments.
Therefore, we first studied the fundamentals of dimensional analysis and the scaling
method. Then, the method was applied to various soft impacts mainly based on
experimental results. One of the most important procedures in dimensional analysis
and scaling is to find relevant dimensionless numbers. The relevant dimensionless
numbers can be obtained using a few methods: nondimensionalization of governing
equations,˘ -groups method, and intuitive derivation by considering the underlying
physical mechanics. These methods are important and have been utilized in various
discussions in this book.

The dimensionless numbers used in this book but not listed in Table 2.5 are
tabulated in Table 8.1. These dimensionless numbers are very useful tools to
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Table 8.1 Dimensionless numbers used in this book but not listed in Table 2.5. Although some of
these numbers are not named in the text, temporal names are assigned to them

Name Form Physical meaning Equation

Quality factor 1
Q D 	Dip

mik
Dimensionless dissipation (3.20)

Friction criticality Sfric D jFtj
�0Fn

Tangential vs. frictional forces (3.66)

Normalized acceleration � D .2� f /2A0
g Vibration vs. gravity (acceleration) (3.67)

Viscous efficiency R	g D 18	v

�ggD2
g

Viscosity vs. gravity (3.68)

Temperature efficiency RTg D 6kBT
��ggD4

g
; Thermal fluctuation vs. gravity (3.69)

Normalized velocity S� D .2� fA0/
2

gDg
Vibration vs. gravity (velocity) (3.70)

Improved Froude number Dr D v2
gz



�t
�i

�1=2
Inertia vs. gravity (4.25)

Elastic Froude number Fr� D .�i � �t/ v
2
0

G Inertia vs. elasticity (4.57)

Gravity strength ratio RgY D �tgDi
Yt

Gravity vs. strength (5.44)

Cratering efficiency �V D �tVc
mi

Cratered vs. impactor masses (5.53)

Newton number �3 D Yt

�tv
2
0

Strength vs. inertia (5.53)

Impact Reynolds number ReI D W
1=4
e R

1=2
e Re with visco-capillary length scale (6.64)

Splashing parameter Ks D We1=2R1=4e Splashing strength (6.81)

characterize various soft-matter or planetary phenomena. The principal goals of
this book were to correctly introduce these dimensionless numbers and provide a
physical rationale about their use.

In continuum mechanics, some macroscopic variables such as stress, strain, and
strain rate are used to model the behaviors of solids and fluids. It is apparent
that general continuous media consist of many molecules. Because the constituent
molecular number is very large (	1023), we can forget the details of microscopic
motions in continuous media. The microscopic particularities are averaged out.
Because this strategy works well at least in small (linear) strain (or strain rate)
regime, continuum mechanics can be used to evaluate and predict the macroscopic
behaviors of solids and fluids. For continuum mechanics, governing equations such
as the Navier-Stokes equation have been established. The relevant dimensionless
parameters for this system can be directly derived by the nondimensionalization of
the governing equations. Thus, the theoretical framework of dimensional analysis
has been extensively developed in the field of continuum mechanics. Chapter 2 was
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mainly devoted to explaining the usefulness and limitations of dimensional analysis
and scaling.

This nondimensionalization method is not always applicable to various materials.
There are many phenomena for which the governing equations are not found.
Granular matter, which is the main target material in this book, is a typical example.
For granular matter, the number of grains is generally much smaller than the
order of Avogadro’s constant. That is, we can count the number of constituent
grains. In this situation, one might suppose that the microscopic approach is better
to understand the behaviors of granular matter. Nevertheless, in this book, the
macroscopic approach has been applied to understand the physics of granular matter
because the macroscopic approach is advantageous for understanding the complex
behaviors by scaling experimental data. We consider the granular matter as a type of
continua that exhibits both solid-like and fluid-like behaviors. Furthermore, granular
matter exhibits peculiar behaviors that are quite different from solids and fluids.
To model granular behaviors in the context of continuum mechanics, appropriate
constitutive relations are required. Some of the relevant constitutive relations were
introduced in Chaps. 3 and 4. Unfortunately, the universal governing equation has
not been found for granular behaviors. Thus, the relevant dimensionless numbers
cannot be automatically obtained from the nondimensionalization of the governing
equation. Even in such a difficult situation, the ˘ -groups method enables us to
derive the relevant dimensionless numbers by considering the physical mechanism
for the phenomena of interest. To derive meaningful dimensionless numbers,
appropriate physical intuitions are necessary, which implies that the weak point of
the dimensional analysis is its arbitrariness.

Hopefully, the central idea and its specific applications of the dimensional
analysis and scaling were clarified throughout the various discussions on soft impact
in this book. The dimensional analysis and scaling method have been applied both
for soft matter physics and planetary science. Despite this similarity, these two fields
have developed almost independently. One of the main goals of this book was to
highlight this similarity and search in the direction of their possible unification.

The similarity among soft and planetary impacts is not limited to the methodol-
ogy. Another point of similarity between soft and planetary impacts is the subject
matter. Planetary surfaces are covered by granular matter called regolith. To reveal
the origins of various planetary surface terrains, in-depth understandings of granular
behaviors (under many conditions such as impact, vibration, and thermal cycling)
are necessary. The commencing materials of solid planets—tiny dust aggregates—
can also be regarded as a type of granular matter. While there are many other
subjects in soft matter physics and planetary science, granular matter is the requisite
ingredient both for soft matter physics and planetary science. Therefore, granular
matter is the main focus of this book. Indeed, the comparison between soft matter
physics and planetary science discussed in this book was not exhaustive. Only
some of the characteristic intersections among soft matter impact and planetary-
related phenomena were covered. There are many other phenomena concerning both
fields, e.g., landslides, volcanic lava flow, and Saturn’s ring formation, that were not
discussed in this book.
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As mentioned thus far, because soft impact physics and planetary science
share methodologies and subject materials, these fields can coevolve in principle.
Impact cratering can be a good entity to link soft matter physics with planetary
science. Thus, the impact mechanics and cratering were reviewed from both sides
in Chaps. 4, 5, and 6. These chapters compose the main content of this book.
Unfortunately, the complete unification remains difficult at present. Although the
current cutting edges of soft and planetary impacts were surveyed, the conceptual
identification and classification of these phenomena have not yet been achieved.
Successive interactions among soft matter physics and planetary science are
required to make crucial progress in both fields.

The communication between the fields of soft and planetary impacts is a small
first step. Natural phenomena are too complex to be understood only by a physical
approach. Furthermore, chemical effects must be considered to discuss actual
planetary-related phenomena, although the chemistry is completely omitted in this
book. For example, chemical effects such as surface cohesion can drastically affect
the behavior of small grains. As explained in Sect. 2.8.5, the surface tension effect
becomes predominant for small grains, particularly when the gravity effect is weak
such as in the planetary environment. In addition, the value of surface tension
(cohesion) strongly depends on the surface chemical state. The oxidation degree
of the grains’ surface significantly affects the cohesion. On the Earth, grain surfaces
undergo oxidation in a relatively short time. However, the oxidation rate must be
drastically reduced in space because its gas pressure is extremely low. Moreover,
the grain surface is exposed to cosmic-ray irradiation in space. We do not know
what happens to tiny grains under such extreme conditions in terms of surface
chemistry. Of course, physical approaches such as dimensional analysis are quite
useful to consider the comprehensive framework. However, if we need an accurate
assessment, chemical approaches are also needed to elaborate the precise model.
In some cases, the chemical effects could be more important than the scaling.
Geophysics and planetary science are very interdisciplinary fields. We must compile
a considerable amount of information to build a plausible scenario of geophysical
or planetary phenomena. The necessity of such an interdisciplinary approach has
been actually long propounded. However, achieving an adequate incorporation of
physics, chemistry, and geology has not been very easy. In fact, collaborations
between the fields of soft matter and planetary impacts have not been sufficient
even though these fields share a similar basis of physical approaches.

Recently, the database of planetary observation has grown increasingly larger,
particularly for our neighbors such as the Moon and Mars. Today, we can see
high-resolution surface images of their surfaces. However, the information about
relatively far objects remains very limited. Although the small asteroid Itokawa
was explored in detail, this asteroid is only one example of small asteroids from
which samples have been returned. In this book, we have discussed some interesting
topics concerning Itokawa: the wavy-rimmed nano crater, regolith migration, among
others. These phenomena are intriguing enough to be studied and can be important
features in general asteroids. However, we should keep in mind that Itokawa is only
one example. We know that granular-related phenomena exhibit a strong history
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dependence. Thus, Itokawa’s surface features might also be very unique. In fact,
asteroids are not uniform but are rather diverse and exhibit quite different characters
depending on their histories.

Each astronomical object has its own individual history and characteristics.
Similarly, each regolith grain has its own peculiar history. If the regolith grains
behave like an ideal gas, microscopic individuality does not matter; the collective
dynamics would be simple. However, the behaviors of granular matter such as those
of regolith cannot be simply understood using such an orthodox approach. The
individuality and history may be essential for granular collective behaviors, which
is one of the most difficult points in the investigation of granular matter. The wide
variety of planetary terrains is analogous to this complex history dependence of the
behavior of the constituent grains.

In this book, various recent investigations concerning soft impact have been
surveyed. I would be very pleased if someone developed an interest in the
intersectional field between soft matter physics and planetary science by reading
this book. The ultimate unification of soft impact physics and planetary science has
not yet been achieved. This problem is extremely advanced for me, and I hope that
someone who reads this book begins striving to solve this problem.
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