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Preface

According to its nature, gas discharge is the passage of electric current through a
gas that is located under the action of external fields. The principal property of gas
discharge, its self-maintenance, was formulated in the beginning of the twentieth
century [1–5] and consists in the ionization balance inside gas discharge. This is
provided by formation of an ionized gas called a gas discharge plasma, and the
ionization equilibrium is supported in this plasma. Because of this character of the
passage of electric current through a gas, the processes in the gas discharge plasma
are of importance. Basic processes in gas discharge were studied long ago and
contemporary information about them differs weakly from what we have 10 years
ago. For example, the values of Townsend coefficients and ion mobilities [6–8]
published more than 70 years ago differ weakly from contemporary values. In
addition, the peculiarities of various schemes and regimes of gas discharge are
studied and contained in various works on gas discharge (in particular, [9–23]), as
well as the processes in a gas discharge plasma and its kinetics [24–40]. We add to
this that the gas discharge plasma includes most part of plasma applications.

Thus, gas discharge plasma is the widespread type of plasma whose properties
are determined by the processes in this plasma. Therefore, one can connect
parameters of a certain gas discharge plasma with the parameters of processes in
this plasma. However, in spite of understanding this connection in principle, it is
impossible to give a universal algorithm to express properties of a gas discharge
plasma through the rates of corresponding processes because of a variety of types of
gas discharges, as well as a variety of their regimes, geometric constructions, and
configurations of external fields that support this gas discharge. Therefore, con-
sidering this problem in a given book, we restrict by simple configurations and
types of external fields as well as by helium and argon as a working discharge gas.
Hence, this book has a methodology goal for fulfilling numerical calculations of
various parameters of a gas discharge plasma of helium and argon. This restriction
allows us to use the real rates and rate constants for the processes in the gas
discharge plasma and to obtain certain simple algorithms for determining the
plasma parameters and regimes of its evolution. This book is based on the Russian
author’s book [41] where the above concept is formulated and methodical
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approaches are developed. This book consists of two parts, so that the first part is a
textbook on processes and properties of a gas discharge plasma, and the second part
includes problems related to some aspects of a helium and argon gas discharge
plasma.

The book is aimed at two groups of readers. The first group is students who first
study the problem of the gas discharge plasma. They can understand general
principles of a gas discharge plasma as well as the methods to analyze some aspects
of this area up to numerical determination of plasma parameters. The second group
of readers are users who can obtain methods and codes for computer solutions of
some problems related to certain applications.

Moscow Boris M. Smirnov
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Chapter 1
Introduction

According to the definition, gas discharge is the passing of an electric current through
a gas. Correspondingly, a gas discharge plasma is a matter that provides this process.
It is a weakly ionized gas that is supported by an external electric field. A gas
discharge plasma as a physical object is an nonequilibrium system because of the
character of energy transmission from an electric field to a gas through electrons.
Indeed, electrons as more mobile charged atomic particles acquire an energy from
the electric field and then transfer it to gas atoms or molecules in collisions with
them. From this it follows that the kinetic theory is necessary for description a gas
discharge plasma, and the velocity or energy electron distribution function (EEDF)
is one of characteristics of a gas discharge plasma under consideration.

The first self-consistent scheme of a gas discharge plasma was represented by
Townsend [42] and has the form

e + A → 2e + A+, A+ + M → A + M+ + e (1.0.1)

Within the framework of this scheme the ionization equilibrium is established as
a result of collisions of electrons (e) and atoms (A), and electrons are reproduced
in collisions of ions (A+) with the cathode surface (M). Such collisions lead to
formation of secondary electrons. This scheme is working under certain conditions
and is described by two parameters, namely, by α, the first Townsend coefficient,
and by γ , the second Townsend coefficient (we exclude from the Townsend scheme
ion-atom collisions). Here 1/α is the mean free path of electrons in an external field
with respect to atom ionization, and γ is the probability of formation of a secondary
electron at the cathode as a result of collision with the cathode surface for an ion
which is accelerated by an electric field. This scheme allowed one to explain the
principal properties of gas discharge on the first stage of its study [1–5]. In addition,
this understanding of physics of gas discharge gave an impetus for measurements the
parameters of various processes involving electrons in gases located in an electric
field [6, 7, 12, 43], such as the drift velocity of electrons, the transverse and longi-
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2 1 Introduction

tudinal diffusion coefficients of electrons, the effective electron temperature that is
the ratio of the transverse diffusion coefficient to its mobility, the first and second
Townsend coefficients and rates of various processes.

The principal property of a gas discharge plasma is its self-consistency. A space
self-consistency of a gas discharge plasma follows from the Townsend scheme and
leads to a nonuniform space distribution of a gas discharge plasma. If this plasma
is located in a cylinder tube, this leads to separation of gas discharge in the cathode
layer where electrons are generated, and the positive column with a low electric field
strength, so that this plasma distribution provides the minimum voltage between
electrodes. A kinetic self-consistency of a gas discharge plasmameans that processes
of atom excitation and ionization by electron impact lead to a drop of the electron
distribution function above the thresholds of corresponding processes that in turn
influences on the rates of these processes [44, 45]. Along with a self-consistency of
a gas discharge plasma, its complexity may be connected with various schemes of
the ionization equilibrium in a plasma if it is determined by different processes. As
a result, many regimes and types of gas discharges may be realized each of these
is supported by certain processes (for example [18]). Hence, various regimes of
a gas discharge plasma may exist depending on used gases or gas mixtures, their
pressures, electric currents and powers of gas discharge, temporary dependence for
used fields and on the geometry of a gas discharge system. Due to the variety of these
parameters, a gas discharge plasma cannot be described within an universal scheme
of the ionization balance and basic processes as it takes place in the Townsend case.
In addition, because of the complexity of this object, the description has usually a
qualitative character and is based on simple models. In particular, tau-approximation
for the kinetic equation of electrons is used, as well as simplified parameters of basic
processes. Though this description does not allow one to obtain numerical parameters
of a certain gas discharge plasma under given conditions, but only on the basis of
this approach one can analyze many various discharge types simultaneously.

Hence different types of a gas discharge plasma as a physical object are not
describedwithin the framework of an universal scheme, and a family of gas discharge
plasmas is analogous to a mosaic, where each type requires a specific scheme and
used parameters. One can expect the contemporary development of the gas discharge
plasma theory must be based on computer simulation that must be addressed to a
certain gas discharge plasma and conditions which accompany this plasma.

The interest to a gas discharge plasma is connected with its various applications.
In turn, development of applications induced a more deep study of a gas discharge
plasma. Moreover, experimental investigation of gas discharge in a gas filled tube as
a light source allowed one to formulate for Langmuir [46, 47] a plasma as a physical
object. He exhibits that a matter inside a tube is a uniform quasineutral gas that
includes electrons and ions. According to Langmuir [46] “we shall use the name
plasma to describe this region containing balanced charges of ions and electrons”.
The plasma sheath is formed near electrodes and according to the Langmuir analysis
of the positive column of mercury arc in 1923 [48] “Electrons are repelled from the
negative electrode while positive ions are drawn towards it. Around each negative
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electrode there is thus a sheath of definite thickness containing only positive ions
and neutral atoms”.

The first application of a gas discharge plasma, gas discharge lamps, was started
more than a century ago. These lamps were gas discharge tubes filled with an inert
gas and mercury addition. The light color was determined by an inert gas type. From
that time an efficacy of gas discharge lamps was increased up to 100 lm/W (the
efficacy of an incandescent lamp is approximately 14 lm/W), as well as a number of
their types. Along with inert gases with a mercury addition, gas discharge tubes may
be filled with sodium, sulfur, hydrogen, deuterium, nitrogen, oxygen and halogens.
In addition, various metal vapor additions may be used in gas discharge tube filled
with inert gases. An example of a contemporary lamp of white color is represented
in Fig. 1.1.

A subsequent development of technics of gas discharge lamps is connected with
gas lasers as a source of coherent radiation. He-Ne and argon lasers are the most
spread laser types. Recently, lasers in a vacuum ultrahigh radiation and X-ray lasers
on transitions between ion levels were created on the basis of capillary discharge.
This discharge provides high electron energies that allows one to generate short-
wavelength radiation. As an example, Fig. 1.2 gives a scheme of transitions for
Ne-like argon multicharge ions which allows one to generate laser radiation at the
wavelength 46.9nm [50–52].

Gas discharge is a simple method to create a plasma, and because gas discharge
has many regimes and forms which are increased in time, a number of applications
of a gas discharge plasma grows. Often new applications are based on old ideas, as

Fig. 1.1 Fluorescent lamp as a source of visible light [49]
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Fig. 1.2 Scheme of
transitions in X-ray laser
based on transitions between
Ne-like levels of a
multicharge argon ion in
capillary gas discharge
[50–52]

plasma displays. Its concept for television was described in 1936 by Tihanyi [53] as
a system of single transmission points of a grid with cells arranged in a thin panel
display, where these points are excited to different levels by varying the voltages
at this point. But production of plasma displays started in eighties when they can
compete with electron-beam tubes or liquid crystal displays. Roughly, the plasma
display construction includes two parallel planes with parallel bus-bars in each plane.
Bus-bars of each plane are surrounded by dielectric planes and bus-bars of different
planes have perpendicular directions. As a result, the space inside the bas-bar plane is
divided in some cells, and each cell relates to one intersection of bus-bars. The space
is filled with a mixture of nitrogen and neon (or other inert gas), and gas discharges
occur in each cell almost independently. In back to the cathode each cell is divided in
three parts covered by colored luminophors, so that after absorption radiation of local
gas discharge one of subcells gives a red color, second one gives a green color, and the
third subcell transforms radiation of gas discharge in a blue color. These three colors
are joined in the overall color of this element that depends on the intensity of local
discharge, and this intensity in turn is operated through bus-bars. Competing with
other types of displays, plasma displays or plasma panels are favorable for screens of
large sizes and their applications are determined by possibilities of a new technology
[54–57]. A subsequent development of the plasma panel technics allows one to use
this system as a detector of radiation [58] and even for muon detection [59].

Another system where a plasma is used for generation of electric energy is the
thermoemission converter. It contains two parallel metal plates with different work
functions (the work function is the binding energy of an electron at a surface). One of
these plates is heated and emits electrons which reach the other plate, i.e. an electric
current occurs between electrodes. Connection of the plates through a load leads
to release of the electrical energy in the load. It is evident that a plasma is not the
underlying basis for this device. Nevertheless, using a plasma in the gap between the
plates, one can overcome this trouble. If a plasma is absent in the gap, electric charge
occurs in this region that creates a blocking voltage and locks a current. For typical
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energy fluxes in these systems ∼1W/cm2 the distance between plates must be less
than 10µm. It is difficult to combine a high temperature of the heated plate∼2,000K
with small gap sizes, and a gap plasma allows one to overcome this trouble.

In various applications of a plasma with an intense input of energy, the plasma is
generated in a moving medium. The plasma generator or plasmatrone is usually arc
discharge in a flowing gas or vapor that produces an equilibrium thermal plasma [36].
As a result, plasma torches are formedwithwide applications in various technological
problems including incineration of waste and special medical uses. A moving gas
discharge plasma is used in rocket-propelled vehicles [60–64]. Indeed, the velocity
of combustion products of a rocket vehicle with a chemical fuel is of the order of
the sound speed, or of the order of 106 cm/s. In reality one can accelerate ions in an
electric field up to 108 cm/s, but ion currents are small because a space charge locks
the ion current. To increase this current, one can use a gas discharge plasma which
is accelerated in various configurations of electric and magnetic fields. Of course,
the power of such engines is some orders of magnitude lower than that for engines
with a chemical fuel, and hence such rocket-propelled vehicles may be used for the
control of a spacecraft motion in a space.

Many plasma applications are based on the possibility to insert a high electrical
energy in the plasma. This leads to the creation and maintenance of an ionized gas
containing active atomic particles, electrons, ions, excited atoms, radicals. These
particles may be analyzed by a variety of techniques, and therefore a plasma can
used not only in energetic systems, but also in measuring instruments. In particular,
plasma-based methods of spectral analysis are widely used in metallurgy. In these
methods a small amount of metal in the form of a solution or powder is injected
in a flowing arc plasma, and spectral analysis of the plasma makes it possible to
determine the metal composition. The accuracy of this spectral determination of
admixture concentration with respect to a primary component is of the order of
0.01–0.001%. The optohalvanic method [65, 39] that is based on the connection
between radiative and ionization properties of a gas discharge plasma allows one to
detect small concentrations of gas and vapor admixtures up to 10−10–10−9 g/g. In
such an analysis gas discharge is burnt, and a laser signal is tuned to a resonant line
of a given element that leads to variation of a gas discharge current due to subsequent
ionization processes.

Plasma processing for environmental applications is developing in two directions.
The first one is decomposition of toxic substances, explosive materials, and other
hazardouswasteswhich are injected in an arc plasma and are decomposed in a plasma
into simple chemical constituents. The second one is connectedwith an improvement
of air quality by using corona discharge of a low power. This discharge generates
active atomic particles, such as oxygen atoms. These atoms have an affinity for
active chemical compounds in air and react with them. Such discharges also destroy
microbes, but do not lead to hazards for humans because of low concentrations of
these particles.

Plasma applications are widen in time and are included in new sides of the man
activity. Plasma applications in medicine started several decades ago and are based
on the mechanical or chemical action of a plasma on a living object. For example,
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Fig. 1.3 Plasma knife (or plasma scalpel) for surgery [66]

a plasma knife that is a think plasma flux is used similar to a knife in surgery. An
example of this instrument is represented in Fig. 1.3. As a matter, it is a flowing
plasma which propagates through a nozzle or orifice in atmospheric or rareness air.
Depending on tasks, different types of a gas discharge plasma may be used, and
specific requirements relate to the wall material that must not be destroyed under
the action of this plasma during a long time. In a simple construction, the basis of a
plasma knife may be capillary discharge where plasma motion outside results from
electron drift in an electric field.

The action of a plasma as an active media may be various because of existence of
many plasma forms. In particular, destruction of medical waste including bandages,
medicinal cotton and other disposable materials, with using an arc plasma proceeds
similar to combustion of these materials in oven, but plasma set up is more com-
pact and exclude danger products, though it is also more expensive. Nevertheless,
plasma methods are more favorable in practice than combustion of medicine materi-
als in oven. A not so power plasma intends for decontamination and sterilization of
medicine tool. Because a plasma contains various active particles, as electrons, ions,
metastable atoms andmolecules, radicals, it is applied inwoundhealing, dermatology
and dentistry where the plasma kills microbes and does not destroy a living tissue.
Of course, a suitable plasma form and a certain current regime must be used for each
case and follows from the corresponding study. In addition, plasma technology is
used for production of specific medicine materials and devices.

The oldest applications of a plasma as a heat-transfer agent [36, 67] are in the
welding or cutting of metals. Since the maximum temperature in chemical torches is
about 3,000K, they cannot be used for some materials. The arc discharge (electric
arc) allows one to increase this temperature by a factor of three compared to chemical
sources of energy, so thatmelting or evaporation of anymaterial is possible by plasma
methods. Therefore the electric discharge is used starting a century ago for welding
and cutting of metals. Presently, plasma torches with power up to 10MW are used
for iron melting in cupolas, for scarp melting, for production of steel alloys, and for
steel reheating in tundishes and landlies. Plasma processing is used for extraction
of metals from ores. In some cases plasma methods compete with traditional ones
which are based on chemical heating. One can conclude from comparison plasma
and chemical methods that plasmamethods provide a higher specific output, a higher
quality of product, a smaller amount of waste, but require a larger energy expenditure
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and more expensive equipment. In particular, this relates to plasma chemistry [68–
73] that allows one to produce various chemical compounds and some of them may
be obtained on the basis of standard chemical methods. Especially plasmachemical
processing is convenient for production fine chemical compounds including both
inorganic materials and organic compounds. The latter includes the production of
polymers and polymeric membranes, processes of fine organic synthesis in a cold
plasma [70, 71, 74], etc. In a qualitative assessment of the technological applications
of plasmas, we conclude that plasma technologies have a sound basis, and present
promising prospects for important further improvements.

Returning to the theory of a gas discharge plasma, we note a lot of geometric
constructions of gas discharges and configurations of electric and magnetic fields.
Various gaseous components, different parameters of these components and external
fields create various regimes of evolution of such a plasma and a variety of processes
which determine the plasma properties and its evolution. In other words, if at a given
construction of gas discharge such parameters as its power, the current strength,
the pressure of a gas (and especially, its composition) vary, a lot of regimes of gas
discharge is realized, and these regimes are determined by different processes in
a gas discharge plasma. Therefore, though general principles of gas discharge are
understood a century ago, new types of gas discharge for certain applications are
created now. For this reason a universal description of a gas discharge plasma is
cumbrous and is not practical. Being guided by certain plasma components and field
configurations, one can restrict a group of process that is responsible for plasma
properties and the character of its evolution. In this book we restrict ourselves by
helium and argon as plasma components, by the cylinder and plane geometries of a
gas discharge chamber, and also by constant electric and magnetic fields. Thus, the
goal of this book is the modeling of a gas discharge plasma of helium and argon at
a simple field configuration.

Let us formulate a general scheme for the model of a gas discharge plasma.
Because of a non-equilibrium character of kinetics for electrons and ions in a gas
discharge plasma [41, 75, 76], the model of a gas discharge plasma must be based
on the concept of the distribution function of electrons and ions. In other words,
hydrodynamic and thermodynamic description of a gas discharge plasma has a qual-
itative character. In addition, it is necessary to take into account a real dependence
of the cross sections on the collision energy, in particular, the Ramsauer effect in
the cross section of elastic electron-atom scattering. In this case the minimal cross
section is two orders of magnitude less than the cross section at zero electron energy.
It is clear that the tau-approximation that is used often in the analysis of kinetics of a
gas discharge plasma and simplifies this analysis, is not applicable in this and other
case. From this it follows that detailed information about the dominant processes is
required for the kinetic analysis of a gas discharge plasma, and this information is
analyzed in this book for processes in a helium and argon plasma.

Thus, violation the equilibrium in the gas discharge plasma under consideration is
of importance. In particular, an electron energy changes weakly in single collisions
with atoms and ions because of a large mass difference. Hence, an average electron
energy is enough to ionize gas atoms at moderate electric field strengths, while an
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average ion energy is close to a thermal energy of gas atoms. Another example
relates to propagation of a plasma in a gas on its boundary, in particular, near the
walls of a chamber where this plasma is located. Then the rate of plasma motion is
determined by electrons as a light plasma component, and along with diffusion of
these electrons in a gas their displacement is determined by ion drift under the action
of an electric field that is created by electrons which move away from ions and pull
them. If the electron average energy exceeds the ion energy significantly, this field
gives the main contribution to the rate of plasma propagation to its boundary. These
examples exhibit the specifics of a gas discharge plasma as a non-equilibrium object.

Evidently, methods of computer simulation may be used for the analysis of a cer-
tain gas discharge plasma. In contrast to an universal analysis which has a descrip-
tive character like to [18], computer simulation allows one in principle to describe
a certain gas discharge plasma. For example, computer simulation of an argon gas
discharge plasma is fulfilled in [77–81] with taking into account a large number of
excited states. In particular, in the Vlacek model [82] that is the basis of evalua-
tions [78–80] in which 64 levels are included. But in spite of the affinity of these
evaluations, they are not reliable, i.e. their results do not correspond to real objects.
Indeed, the authors are focused on computer aspects of the problem and cannot
consider correctly peculiarity of processes which accompany a certain problem. We
give one of reasons of the result invalidation. The atom excitation process by elec-
tron impact in a gas discharge plasma is the consistent process [44, 45, 83], i.e. the
electron distribution function above the excitation threshold decreases sharply with
an increasing electron energy, and this in turn influences on the process rate. This
fact is not taken into account in the above papers [77–81]. These troubles are deter-
mined by the complexity of the problem where a certain nonuniform gas discharge
plasma is an object of each paper. This means that though just computer simulation
is the prospective method for the analysis of a nonuniform gas discharge plasma,
the contemporary computer analysis of a certain gas discharge plasma is not reliable
because of ignoring the peculiarities of processes in this plasma in this analysis.

We keep another position compared to computer specialists who use universal
computer codes without a careful analysis of the processes and kinetics of gas dis-
charge plasma. It is convenient to divide a general problem in some blocks, and each
block solves a certain problem. In particular, in the cases of a helium and argon
gas discharge plasma under consideration the first block includes the kinetics of
a uniform gas discharge plasma with elastic and inelastic processes electron-atom
collisions, electron-electron collisions and radiative processes. The second block
relates to a nonuniform plasma and considers the kinetics, transport phenomena in
this plasma and its ionization balance. Note that the first block may be identical for
different problems of a gas discharge plasma if the same processes are its basis. This
approach requires simple computer codes, but allows one to obtain reliable results.
We also tend the accuracy of this approach to be in accordance with the accuracy of
information used.

Practically, this book demonstrates the indicated approach based on the analysis of
physics of a gas discharge plasma. Moreover, the most part of the book is devoted to
the analysis of processes, kinetics and properties of a uniform gas discharge plasma,
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rather than computer simulation of problems of nonuniform gas discharge plasmas.
This exhibits that the understanding of the problem and its details with treatment of
information is of importance for solution of a certain problem. Moreover, computer
codes may be simplified significantly compared to universal computer codes if the
physics of a certain problem is clear. On contrary, replacing of the problem under-
standing by universal and complex computer codes makes the result to be unreliable.

This book consists of four parts, so that first three parts contain a description
of processes in a gas discharge plasma and the analysis of properties of simple gas
discharges. The fourth chapter is devoted to various aspects of gas discharge plasmas
of helium an argon. General properties of a gas discharge plasma and processes in
this plasma, mainly elementary ones, are analyzed in the first book part. Kinetics of
a gas discharge plasma and transport phenomena in this plasma are the content of the
second book part. The third part of the book is a description of elements of simple
gas discharges. The four part is devoted to a uniform helium and argon plasma, and
properties of such a plasma in the positive column, in the cathode layer and near the
walls of a gas discharge chamber is considered in the fifth part of the book. Believing
that properties of certain gas discharge plasmas and processes which are responsible
for regimes of this plasma and its evolution, we give in a preface a list of books where
physics of some gas discharges is analyzed.



Part I
Processes in Gas Discharge Plasma



Chapter 2
Properties of Gas Discharge Plasma

Abstract The distribution function of plasma particles as a function of coordinates
and energies (velocities) is a basis for plasma description as a nonequilibrium system.
The Debye-Hückel radius and plasma frequency are basic plasma parameters. Trans-
port phenomena in a weakly ionized nonuniform plasma and ionization equilibrium
through the processes of formation and decay of charged particles in a plasma are
analyzed. Some parameters are represented which are of interest for a helium and
argon gas discharge plasma.

2.1 Equilibria and Distributions of Particles
in Gases and Plasmas

Processes of collisions of atomic particles in gases and plasmas as the behavior of
these particles in external fields lead to certain distributions of particles. We consider
below the simplest distribution of atomic particles in gases and plasmas. As a result
of elastic collisions of atoms (or molecules) in gases

A + ˜A → A + ˜A

the Maxwell distribution [84] of atoms on velocities is established. Then the velocity
distribution function f (vx ) of atoms is given by

f (vx ) = N

(

T

2πm

)1/2

exp

(

−mv2x

2T

)

, (2.1.1)

where vx is the velocity projection onto the x-axis, N is the number density of atoms,
m is the atom mass, T is the gas temperature that is expressed through the book in
energetic units. Here f (vx )dvx is the number of atoms per unit volume which have
the velocity projection between vx and vx + dvx . This means that the distribution
function is normalized as

© Springer International Publishing Switzerland 2015
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∞
∫

−∞
f (vx )dvx = N

In the case of an isotropic distribution on velocities v, the Maxwell distribution
function has the form

f (v) = N
( m

2πT

)3/2
exp

(

−mv2

2T

)

, (2.1.2)

for the following character of normalization

∞
∫

0

f (v) · 4πv2dv = N

The Maxwell distribution function over the atom kinetic energies ε = mv2/2 has
the form

f (ε) = 2N

(π)1/2T 3/2 exp
(

− ε

T

)

, (2.1.3)

and is normalized by the condition

∞
∫

0

f (ε) · ε1/2dε = N

If the equilibrium of atomic particle is established in a weak external field, the
space distribution function of atomic particles is determined by the Boltzmann dis-
tribution

N (r) = No exp

[

−U (r)
T

]

, (2.1.4)

where U (r) is the particle interaction potential with an external field, No is the
particle number density at point where U = 0. The Boltzmann distribution may be
used for distribution on states. If No is the number density of atomic particles in a
given (ground) state, and the statistical weight (a number of degenerate states) for
this state is go, the number density of atomic particles in a state i is given by

Ni

No
= gi

go
exp

(

−�εi

T

)

, (2.1.5)



2.1 Equilibria and Distributions of Particles in Gases and Plasmas 15

where gi is the statistical weight of i th state,�εi is the excitation energy of this state,
and T is the temperature of particles which establish this distribution. In particular,
if o, i are the ground and excited atom states, and atom excitation and quenching
result from collisions with electrons according to the scheme

e + A ↔ e + Ai , (2.1.6)

T in formula (2.1.5) means the electron temperature. In this case the equilibrium for
the energy distribution of electrons is established in elastic collisions between elec-
trons, and the energy change in electron-electron collision proceeds more effective
than that in electron-atom collisions.

Let us consider an ionization equilibrium in a weakly ionized gas that is estab-
lished as a result of atom ionization by electron impact and three-body electron-ion
recombination according to the scheme

e + A ↔ 2e + A+ (2.1.7)

Then the relation between the number density of electrons Ne, ions Ni and atoms
Na is given by Saha formula [85]

Ne Ni

Na
= gegi

ga

(

meTe

2π�2

)3/2

exp

(

− J

Te

)

(2.1.8)

Here ge, gi , ga are statistical weights of electron, ion and atom correspondingly,me is
the electron mass, Te is the electron temperature, J is the atom ionization potential.

Let us apply the Saha formula (2.1.8) for the helium case, where it has the form

N 2
e

Na
= 3.6 × 1022T 3/2

e exp

(

−24.59

Te

)

, (2.1.9)

where the electron temperature Te is expressed in eV, and the number density is
given in cm−3. Transferring to the electron concentration ce = Ne/Na , we rewrite
this equation for the gas temperature T = 300K as

ce = 1.2 × 103T 3/4
e

p1/2
exp

(

−12.29

Te

)

, (2.1.10)

where the gas pressure p is expressed in Torr. According to this formula total ion-
ization of equilibrium helium at the helium pressure 10–100Torr proceeds at the
electron temperatures 2–3 eV. In reality, the degree of ionization of a plasma of glow
gas discharge in helium with the electron temperature (or typical electron energy)
2–4 eV is less by several orders of magnitude.

The Saha distribution (2.1.8) is an example of equilibrium between the bound
electron state and states of continuous spectrum, and the bound state respects to the
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ground atom state. In principle an atom can be found in excited states, but the number
density of excited atoms is small compared to that of atoms in the ground state. But
for the equilibrium between atomic and molecular ions according to the scheme

A + A+ ↔ A+
2 (2.1.11)

a molecular ion may be found in excited rotation and vibration states. For this equi-
librium the Saha formula has the form [86]

Na Nia

Nim
= gagi

gmol

(

μT

2π�2

)3/2

exp

(

− D

T

)

; gmol =
(

1

2

)

T

B

[

1 − exp

(

−�ω

T

)]−1

,

(2.1.12)
where Nia, Nim are the number densities of atomic and molecular ions correspond-
ingly, T is the gas temperature, μ = M/2 is the reduced ion-atom mass (M is the
atom mass), D is the dissociation energy of the molecular ion, �ω is the vibration
energy of the molecular ion, B is the rotation constant for the molecular ion, and the
factor ( 12 ) equals to one when nuclei are different isotopes, and is 1/2 if nuclei are
identical isotopes because under the condition T � B one half of states is forbidden
due to the state symmetry.

Let us use the dissociation equilibrium (2.1.12) for dissociation equilibrium be-
tween atomic and molecular argon ions in argon in accordance with the scheme

Ar+ + Ar ↔ Ar ,
2 (2.1.13)

where the Saha relation (2.1.12) between the number densities of atomic N (Ar+) and
molecular N (Ar+

2 ) ions leads to the following relation for the equilibrium constant
of dissociation equilibrium for argon ions

χdis ≡ N (Ar+)Na

N (Ar+
2 )

= gagi

gmol

(

μT

2π�2

)3/2 B

T

[

1 − exp

(

−�ω

T

)]

exp

(

− D

T

)

,

(2.1.14)
whereχdis is the equilibrium constant for dissociation of molecular ions, ga, gi , gmol

are the statistical weights for electron states of the atom, atomic and molecular
ions (for the ground electron states we have ga = 1, gi = 6, gmol = 2 in the
argon case, if a molecular ion consisting of nuclei-different isotopes), μ = M/2 is
the reduced mass of the atom and atomic ion, D is the dissociation energy of the
molecular ion, �ω is the energy of vibration excitation, and B is the rotation constant.
We assume here the classical character of rotation degrees of freedom T � B. In
considering the argon case, we use the following parameters of the molecular argon
ion Ar+

2 (2�+
g ) formed from the argon atom Ar and ion Ar+ in the ground states

[87]: the dissociation energy of the molecular ion is D = 1.23eV, the vibration
excitation energy is �ω = 308.9 cm−1, the rotation constant is B = 0.143 cm−1.
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Fig. 2.1 The equilibrium argon temperature Teq according to formula (2.1.15) where the number
density of argon atomic and molecular ions are equal. The argon pressure is expressed in Torr

We below determine the equilibrium temperature Teq of equality for the number
density of atomic and molecular ions, i.e.

N (Ar+, Teq) = N (Ar+
2 , Teq) (2.1.15)

Figure2.1 gives the dependence of the equilibrium temperature Teq for ions on the
argon pressure p = NaTeq .

2.2 Basic Plasma Parameters

Let us consider general plasma properties which are determined by a long-range
Coulomb interaction between charged plasma particles (electrons and ions). Since
this interaction remains in presence of neutral particles, these properties become
apparent also in a weakly ionized gas. If a weak electric field is introduced in a
plasma, it causes displacement of electrons and ions, that leads in the end to screening
of this field. Correspondingly, the electric field strength E on a distance x from the
plasma boundary is given by

E = Eo exp

(

− x

rD

)

, (2.2.1)

where Eo is the electric field strength on the plasma boundary, and rD is the Debye-
Hückel radius. In the same manner the interaction potential of two particles of a
charge e at a distance r between them equals to
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U (r) = e2

r
exp

(

− r

rD

)

, (2.2.2)

the Debye-Hückel radius is given by formula [88]

rD =
[

4πNee2
(

1

Te
+ 1

Ti

)]−1/2

(2.2.3)

Here Te is the electron temperature, Ti is the ion temperature, Ne is the number
density of electrons or ions (a plasma is quasineutral). In the case of an equilibrium
plasma Te = Ti = T this formula takes the form

rD =
√

T

8πNee2
, (2.2.4)

Te = Ti = T . As is seen, the Debye-Hückel radius rD is an important plasma
parameter.

Take a plasma that occupies an infinite space and displace plasma electrons on
some distance. Then an electric field arises that tends to return the electrons in the
initial positions. Because of inertia of electrons, their returning to the initial positions
has the vibration character, and the oscillation frequencyωp, the frequency of plasma
oscillations, is equal to [47, 89, 90]

ωp =
√

4πNee2

me
, (2.2.5)

where me is the electron mass. The reciprocal value 1/ωp is a typical time of plasma
reaction on the action of external fields.

The above parameters, the Debye-Hückel radius rD and plasma frequency ωp are
basic parameters which characterize collective plasma properties. The presence of
atoms andmolecules in a plasma does not change collective plasma properties which
are determined by Coulomb interaction of charged particles because neutral particles
does not influence on this interaction. Note that the ratio of the above parameters
rD/ωp equals to the thermal velocity of electrons, i.e.

rD

ωp
=

√

2T

me
(2.2.6)

Since at first energy is transferred from an external field to electrons, parameters
of electrons characterize a gas discharge plasma in the first turn. Figures2.2 and
2.3 contain electron parameters of various types of nonequilibrium and equilibrium
plasmas.
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Fig. 2.2 Parameters of gas discharges plasmas of various types [91]

Fig. 2.3 The electron temperature of gas discharge plasmas via the gas temperature [83]

2.3 Transport Coefficients

Transport of a charged particle in a gas is characterized by the diffusion coefficient
D and the mobility K are defined that the flux j of particles is given by

j = −D∇N + wN , (2.3.1)
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where N is the number density of charged particles, w is their drift velocity that is
connected with the mobility K of charged particles at low electric field strengths E
by the relation

w = E K (2.3.2)

Let us consider an equilibrium of charged particles in a gas in a weak electric
field and find from this the relation between transport coefficients. On the one hand,
the space distribution of charged particles in a gas in a weak electric field is given
by the Boltzmann formula (2.1.4) that has the form

N (x) = No exp

[

−U (x)

T

]

,

where x is the force direction, U (x) = eEx is the interaction potential of a particle
with an electric field, and E is the electric field strength. This gives the ratio between
the number density of charged particles N (x) and their gradient∇N that has the form
∇N = −eE N/T . Next, the total flux of charged particles (2.3.1) is zero. Substituting
this expression for the gradient number density in (2.3.1) with accounting for (2.3.2),
we find the following relation between transport coefficients of charged particles that
is called the Einstein relation [92–94]

K = eD

T
(2.3.3)

Note that though this relation is called the Einstein relation, it was derived by Nernst
[95] and Townsend [96, 97] several years before (see [98, 27]). Einstein used these
results in the analysis of Brownian motion of particles [94, 99].

The criterion of validity of the Einstein relation relates to a weak field, so that
the mean free path of a charged particle λ is small compared to a typical distance
l ∼ N/∇N of a remarkable variation of the number density, and particle displace-
ment on this distance results from many collisions of a test charged particles with
gas neutral particles. Second, an external field is weak

eEλ 	 T (2.3.4)

and does not change parameters of charged particles because their energy from an
external field is small compared to a thermal energy.

2.4 Ionization Equilibrium in Gas Discharge Plasma

A gas discharge plasma is a self-consistent state of an ionized gas as a result of
passing of an electric current through a gas under the action of external fields and is a
wide type of a low-temperature plasma. Gas discharge consists of several parts with
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a specific destination. Usually gas discharge is burnt in a cylindrical tube where a gas
under certain pressure is located, or between two parallel plates. These cases will be
considered below. The basic elements of gas discharge are the electrodes, the cathode
and anode, to which a voltage is applied, and a gas discharge tube which is restricted
by walls and contains a gas. If gas discharge is maintained by high frequency fields
including a laser field, gas discharge can have another construction. Nevertheless,
below we will be guided by a stationary or quasi-equilibrium gas discharge plasma.
Along with an electric field, a gas discharge plasma under consideration may be
under the action of a magnetic field.

At variety of gas discharges and different regions of gas discharge with a certain
destination we extract two basic regions of gas discharge, the cathode layer and
positive column, that are of principle. Reproduction of electrons and ions proceeds
in the cathode layer, i.e. this region is of importance for self-maintenance of gas
discharge. In accordance with the processes in the cathode layer, the electric field
strength drops at removal from the cathode, and a plasma of the cathode region is
non-uniform. On contrary, a plasma of the positive column is uniform with respect
to displacement along the discharge current. The ionization balance in the positive
column is provided by n external uniform electric field. Hence a variation of the
positive column length with conservation of the electric field strength inside it does
not change parameters of the positive column plasma (Fig. 2.4).

Gas discharge is a widespread method to create and to apply a low temperature
plasma. Therefore a variety of low temperature plasmas and their peculiarities are
determined in a most degree by gas discharge plasmas. Figure2.2 [91] contains the
basic parameters of different types of gas discharge plasmas which include the num-
ber density of electrons and their temperature (or a typical electron energy). Because
the energy is introduced in a gas discharge plasma through electrons, and a number
of electrons in a typical gas discharge plasma is less significantly than the number of

Fig. 2.4 Scheme of
Townsend gas discharge in a
gaseous gap between two
parallel electrodes and the
distribution of the electric
voltage along this gap in
absence of charged particles
inside it
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atoms, non-equilibrium conditions are realized often in a gas discharge plasma when
the electron temperature exceeds the gaseous one. Figure2.3 [91] compares the elec-
tron and gas temperatures for various plasma types. For an equilibrium gas discharge
plasma the electron and gas temperatures are identical, while for a non-equilibrium
plasma they are different.

A gas discharge plasma under consideration is formed in a gas located in a certain
space where an electric current propagates through the gas under the action of an
external electric field that means existence of gas discharge.We havemany forms and
regimes of gas discharge depending on a type and parameters of a gas, a geometry of
a chamber where this gas located as well as positions of electrodes, and by parame-
ters of external fields. We below restrict ourselves by a small part of these regimes
using helium or argon as a working gas for gas discharge which is located in a gap
between two large parallel electrodes or in a cylinder tube. In addition, an electric
voltage between electrodes does not vary in time, i.e. this is d.c. (direct current) gas
discharge. But even in this case we have several regimes of gas discharge which will
be considered below.

For simplicity, we consider first gas discharge in a gaseous gap between two
parallel electrodes. One can see that an ionization equilibrium in this gas discharge
plasma is required for maintaining of an electric current between electrodes, and
this equilibrium is determined by processes involving the gas discharge plasma.
In the simplest and real case we include in consideration two processes following
to Townsend [42]. The first process is ionization in a space in collisions of atoms
with electrons which are accelerated by an external electric field. This process is
characterized by thefirst Townsend coefficientα that is a number of forming electrons
per unit length of a test electron. The second process in this ionization equilibrium
is described by the second Townsend coefficient γ that is the probability to form a
secondary electron at the cathode as a result of its bombardment by a plasma ion.
The ionization equilibrium in this case means reproduction of electrons and ions
attached to electrodes as a result of gas ionization in a space. We have two regimes of
self-consistent gas discharge for this ionization equilibrium. Townsend gas discharge
in a gaseous gap between two parallel electrodes is realized at low electric current of
gas discharge if a small charge density does not influence on the voltage distribution
inside the gaseous gap, as it is shown in Fig. 2.5.

At middle discharge currents it is favorable another form of gas discharge where
two principal regions exist inside a gap, as it is shown in Fig. 2.5. The region near
cathode, or the cathode region, with a heightened electric field strength is responsible
for reproduction of electrons and ions, and in the other region, the positive column,
the electric field strength is small. Such form of the voltage distribution is favorable
because it leads to a lower voltage between electrodes compared with Townsend
gas discharge. This form of gas discharge is glow gas discharge. Of course, the
transition from Townsend to glow discharge may bemore complicate because charge
distribution in glow discharge may be not uniform not only along an electric field,
but also in transverse directions. In this way the optimal number density of electrons
and ions is chosen with respect to the total voltage between electrodes. In addition,
there are intermediate regions between the cathode region and positive column and
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Fig. 2.5 Glow gas discharge
in a gaseous gap between two
parallel electrodes and the
distribution of the electric
voltage along this gap

Fig. 2.6 Character of
distribution of the electric
field in glow gas discharge
inside cylinder tube; Ec is the
electric field strength at the
cathode

near the anode in glow discharge. Figure2.6 represent regions of glow discharge if
it is burnt in a cylinder tube.

2.5 Thermoemission of Electrons from the Cathode

In glow discharge ions bombarded the cathode do not influence the cathode heat
balance. At large currents the cathode is heated and electrons formed at the cathode
as a result of the thermoemission mechanism. This form of gas discharge, arc, is
characterized by a low cathode voltage because of an energy consumed for formation
of one electron is close to the electron binding energy in the cathode material and
exceeds it by a thermal energy. Note that transition from glow discharge to arc is
determined by processes at the cathode, though the positive column of an arc plasma
mayhave another behavior compared to that of the positive columnof glowdischarge.
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Let us find the thermoemission current density from the cathode with use the
analogy between bound of an electron in an atom and metal. Introduce the metal
working function W that is the minimum binding energy of an electron in a metal
and consider the ionization equilibrium for the metal

M ↔ e + M+, (2.5.1)

where m is a metal. Using the analogy of this ionization equilibrium with (2.1.7),
we assume that liberation of one electron does not change a metal state, i.e. metal
parameters are not varied after release of one electron. The latter gives in formula
(2.1.8) Ni = Na and gi = ga . This leads to the equilibrium number density of
electrons over the metal surface

Ne =
(

meT

2π�2

)3/2

exp

(

−W

T

)

(2.5.2)

We assume that this equilibrium is established inside ametal for a small time, and then
electrons may leave a metal surface. Under such assumptions the electron current
density i from a metal surface of a temperature T is equal

i = 1

2
vT eNe,

where the first factor takes into account that electrons are directed outside the metal
surface, vT = √

8T/(πme) is the electron thermal energy. From this we obtain the
Richardson-Dushman formula [100–104] for emission of the electron current density
from a hot metal surface

i = AR T 2 exp

(

−W

T

)

, (2.5.3)

Table 2.1 Parameters of formula (2.5.3) for electron thermoemission from the metal surface [10,
16, 106] of the polycrystal structure; AR is expressed in A/(cm2K2)

Metal AR W (eV) Metal AR W (eV) Metal AR W (eV)

Be 300 3.8 Zr 330 4.1 Re 720 4.7

Ti 60 3.9 Nb 120 4.2 Os 1100 6.0

Cr 120 3.90 Mo 55 4.2 Ir 120 5.3

Feα 26 4.5 Pd 60 5.0 Pt 33 5.3

Feγ 1.5 4.2 Ag 60 4.6 Au 60 5.4

Co 41 4.4 H f 22 3.6 T h 70 3.4

Ni 30 4.6 Ba 60 2.1 U 60 3.3

Cu 120 4.6 Ta 120 4.2 Pa 60 4.9

Y 100 3.3 W 60 4.5 – – –
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where AR is the Richardson parameter. If we use the above assumption that an
outgoing electron does not interact with other metal electrons, on the basis of the
above formulas we have for the Richardson parameter [105]

AR = eme

4π2�3
= 60A/(cm2K2) (2.5.4)

Table2.1 gives the values of the Richardson parameter for real metals.

2.6 Parameters of Helium and Argon Atoms and Ions

We below consider gas discharge plasmas on the basis of helium and argon. Hence,
information is required about properties of these atoms and processes with their par-
ticipation, and we represent below this information partially. Helium has two stable
isotopes with the occurrence for 3He of 1.4× 10−4 % and almost 100% for the iso-
tope 4He. The average atomic weight of helium is 4.003 a.u.m. or 6.647 × 10−24 g.
The natural occurrence of helium in the Earth crust is 8 × 10−7. The helium atom
in the ground state 1S contains two 1s-electrons. Lower excited states of the helium
atom with the electron shell 1s2s are metastable. The excitation energy of the lowest
excited state He(23S) is 19.820eV and for another metastable state He(21S) it is
20.616eV. The lowest resonantly excited state of the helium atom 21P with the exci-
tation energy 21.218eV corresponds to the wavelength λ = 58.433nm for transition
in the ground state; the oscillator strength for this transition is f = 0.276, and the
radiative lifetime with respect to transition in the ground state is τ = 0.56ns.

The radiative transition from the lowest resonantly excited state He(21P) in
the metastable state He(21S) proceeds with the wavelength λ = 2058.1nm; the
oscillator strength for this transition is f = 0.38, and the radiative lifetime with
respect to transition in the ground state is τ = 5ns. The next excited state of the
helium atom He(23P) with the same electron shell 1s2p is characterized by the
excitation energy of 20.964eV; the dipole radiative transition in the metastable state
He(23S) proceeds with the wavelength of λ = 1083.0nm. The oscillator strength
f = 0.539 and the radiative lifetime τ = 0.98ns relates to this transition. Along
with this, the fine splitting of levels, i.e. the energy difference for levels 23P1-23P0 is
0.076 cm−1, and the energy difference for levels 23P0-23P1 is 0.988 cm−1. Spectrum
of the helium atom is given in Fig. 2.7, and spectrum for indicated states of the helium
atom is represented in Fig. 2.8. The polarizability for the helium atom in the ground
state is 1.383 a3

o .
Stable isotopes of argon 40Ar , 39Ar and 37Ar are characterized by the relative

occurrence of 99.6%, 0.34% and 0.06% correspondingly, and the average atomic
weight of argon is 39.948 a.u.m. or 6.634×10−23 g. The natural occurrence of argon
in the Earth crust is 1.2 × 10−4 %.
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Fig. 2.7 The Grotrian diagram for the helium atom involving lower excited states [107]

Fig. 2.8 Expressed in eV
energies of excitation for
lower levels of the helium
atom and radiative transitions
from these states

The argon atom in the ground state is characterized by the electron shell
1s22s22p63s23p6, and the ground state of the argon atom is 1S. Notations for the
lowest excited states of argon atomwith the electron shell 3p54s are given in Fig. 2.8
according to Pashen notations, and also within the framework of the L S and j− j
schemes of momentum summation in the atom. Note that according to notations
within the framework of the j j scheme of momentum coupling the total electron
momentum of the atom core is given inside the square parentheses, and the orbital
momentum of a valence electron is given outside the square parentheses right above,
and themultiplicity of the atomstate is characterized by a low index outside the square
parentheses. Figure2.9 contains also the energies of levels for first excitations of atom
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Fig. 2.9 Notations of lowest
excited states of the argon
atom with the electron shell
3p54s and the excitation
energies from these states

Fig. 2.10 Energies of argon
atom levels of groups with the
electron shells 3p54s and
3p54p in eV. Pashen
notations of excited states are
given right, and notations for
L S-coupling of the lowest
excited group of states are
represented left

states with the electron shell 3p54s, and Fig. 2.10 includes the following group of
levels with the electron shell 3p54p.

Note that the second and forth states of the group given in Fig. 2.8 are resonantly
excited. The wavelengths for transition from these states in the ground one are λ =
106.66nm and λ = 104.82nm, the oscillator strengths for transitions in these states
from the ground state are f = 0.05 and f = 0.25 respectively that correspond
to τ = 10ns and τ = 2ns as the radiative lifetimes of these states with respect to
radiative transitions in the ground state. Parameters of the lowest excited states of the
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Fig. 2.11 Parameters of argon atom levels of groups with the electron shells 3p54s and 3p54p and
radiative parameters of transitions between these states. Along with Pashen notations for excited
states, the notations of L S-coupling and j j-coupling are used. Here �T is the excitation energy
for a given state in cm−1 with respect to the lowest excited state 1s5, τr is the radiative lifetime
of states in ns, the wavelengths of radiative transitions is expressed in Å, and the rate of radiative
transitions Aik is represented in 106s−1

Table 2.2 Parameters of
molecular ions He+

2 and Ar+
2

in the ground electron state,
where a molecular ion
consists of an atom and
atomic ion in the ground
states

Molecular ion He+
2 Ar+

2

De (eV) 2.47 1.23

�ωe (cm)−1 1698 309

�ωexe (cm)−1 35.3 1.66

Be (cm)−1 7.21 0.143

argon atom with the electron shells 3p54s and 3p54p are represented in Figs. 2.10
and 2.11 together with parameters of radiative transitions [108, 109] in the latter
case. In addition, the polarizability of the argon atom in the ground state is 11.1 a3

o .
The ionization potential of the helium atom is 24.588eV, and for the helium ion

the ionization potential equals to 54.418eV. The ionization potential for the argon
atom and its atoms are equal to 15.760eV and 27.630eV correspondingly. Both
elements have stable molecular ions, and the electron state of the molecular ion is
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2�+
g within the framework of the L S scheme of momentum summation. Table2.2

contains parameters of molecular ions in this state, so that De is the potential well
depth for this electron state, �ωe is the vibration energy, �ωexe is the anharmonic
constant, Be is the rotation constant.



Chapter 3
Elementary Processes in Gas Discharge Plasma

Abstract Various elementary processes in a gas discharge plasma are
analyzed. Collision electron-atom processes include elastic collisions, atom exci-
tation by electron impact, quenching of excited atoms, atom ionization and recom-
bination of electrons and ions, collision transitions between nearby atom levels,
and ion-atom processes result from elastic collisions and resonant charge exchange.
Appropriate cross sections and rate constants of the processes under consideration
are used for the subsequent analysis of kinetics of a gas discharge plasma.

3.1 Elastic Collisions of Classical Atomic Particles

Being guided by an atomic gas discharge plasma, we below consider elementary
processes resulted from collision of atomic particles in a gas discharge plasma.
The characteristic of elementary act of collision of two atomic particles (atoms,
molecules, ions, electrons) is the cross section of collision. According to definition
(for example, [110]), the differential cross section for collision of two atomic particles
dσ is the ratio of a number of scattered particles per unit time per unit solid angle
d� to the flux of incident particles in the center-of-mass frame of reference. The
cross section is a basis for parameters of processes resulted from elastic scattering
of particles. We demonstrate it on an example of braking of a fast particle in a gas
of slow particles due to elastic scattering of these particles. Then the variation of the
energy ε of a fast particle per unit time is equal to

dε

dt
= 2ε

μ

M
Nvσ ∗(v) (3.1.1)

where the velocity v of a fast test particle exceeds significantly that of gas atoms,
μ = m1m2/(m1+m2) is the reduced mass of two colliding particles (m1 is the mass
of a fast particle, m2 is the mass of a gas atom), M = m1 + m2 is the total mass of
colliding particles, σ ∗(v) is the diffusion or transport cross section that is defined as

σ ∗(v) =
∫

(1 − cosϑ)dσ (3.1.2)
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The diffusion cross section of particle collision is the most wide used integral cross
section of particles.

In the classical case the main contribution to the scattering cross section is deter-
mined by large collision momenta. This relates to thermal collisions of atoms and
molecules in gases. In particular, let us introduce the gas-kinetic cross section of
collision as the cross section in the expression of the diffusion coefficient of atoms
in a gas under the assumption that this cross section is independent of the collision
velocity. For example, the gas-kinetic cross section is equal to 37Å2 for collision
of two argon atoms, and is equal approximately 13Å2 for collision of two helium
atoms [87].

The cross section of elastic collision of two classical particles is connected unam-
biguously with the interaction potential of these particles. In particular, in the case
ion-atom scattering when the interaction potential U is the polarization one [111]
U (R) = −αe2/(2R4) at large distances R between colliding particles (α is the atom
polarizability, e is the ion charge), the diffusion ion-atom cross section is equal to
[112–115]

σ ∗(v) = 2.2π

√

αe2

μv2
, (3.1.3)

and this exceeds by 10% the cross section of ion-atom polarization capture [110].
Here v is the relative ion-atom velocity, μ is their reduced mass. This cross section
determines the ion mobility in a foreign gas.

In collisions of two classical charged particleswith theCoulomb interaction poten-
tial between them (electron-electron or electron-ion collisions) the diffusion cross
section is diverged due to large impact parameters of collision. Let us determine this
cross section assuming the classical character of scattering and taking into account
that small scattering angles give the main contribution to the cross section. Trans-
ferring to the center-of-mass frame of reference, we reduce the collision problem to
scattering of one particle of the reduced mass μ on a force center, and the interaction
potential between them at a distance R between colliding particles is e2/R, where
e is a charge of each colliding particle. Because of scattering on a small angles, i.e.
particles are moving along straightforward trajectories, the momentum variation �p
for a reduced particle equals to

�p =
∞

∫

−∞
Fdt = 2e2n

ρg
, (3.1.4)

where F is the Coulomb force acted on each particle in the course of their collision,
ρ is the impact parameter of collision, n is the unit vector directed along the impact
parameter of collision, g is the relative velocity of colliding particles. Since the
scattering angle in the center-of-mass frame of reference is
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ϑ = �p

p
= 2e2

ρμg2
,

we have from this for the differential cross section of particle scattering on a small
angle [110]

dσ = 2πρdρ = πe4d�ε

ε(�ε)2
(3.1.5)

Here the energy variation in the center-of-mass frame of reference is equal to

�ε = �p2

2m
= 2e4

ρ2μg2
= e4

ρ2ε

This gives for the diffusion cross section of scattering of two charged particles

σ ∗ =
∞

∫

0

(1 − cosϑ) × 2πρdρ =
∞

∫

0

ϑ2πρdρ = 4πe4

μ2g4

∫

dρ

ρ

As is seen, this integral is diverged at large and small scattering angles. One can
eliminate the divergence t large scattering angles by refusing from the approach of
weak interaction between colliding particles. The divergence at small angles is of
principle and is determined by properties of a matter where the scattering takes place.
We below assume the scattering to proceed in a plasma where interaction between
charged particles is screened at distances of the order of the Debye-Hückel radius.

Thus we have formally for the diffusion cross section of elastic scattering of two
charged particles

σ ∗ = 4πe4

μ2g4
ln

ρmax

ρmin
,

Here the minimum impact parameter of collision ρmin follows from the condition
that the interaction energy of colliding particles is comparable to their kinetic energy
ρmin ∼ e2/(μg2), i.e. the assumption of scattering on small angles is violated. The
maximum impact parameter of collision in an ideal plasma is of the order of the
Debye-Hückel radius ρmax ∼ rD . From this we obtain for the diffusion cross section
of elastic scattering of two charged particles [116]

σ ∗ = 4πe4

μ2g4
ln
, ln
 = ln

e2

rDμg2
(3.1.6)

where ln
 is the Coulomb logarithm.
From this it follows that the diffusion cross sections of electron scattering on

electrons and ions are different because of a different reduced mass of colliding
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particles. In particular, we have for the diffusion cross section of scattering of a fast
electron with a velocity v (or the energy ε = mev

2/2) on an ion because the reduced
mass is μ = me, where me is the electron mass

σ ∗
ei = πe4

ε2
ln
, (3.1.7)

If a fast electron of energy ε collides with a slow electron, the diffusion cross section
of elastic scattering equals to

σ ∗
ee = 4πe4

ε2
ln
, (3.1.8)

Let us evaluate a typical value of the Coulomb logarithm (3.1.6) taking it for a gas
discharge plasma of glow discharge for which a typical number density of charged
particles is Ne ∼ 1012 cm−3, the electron temperature (an average electron energy)
is Te ∼ 1eV, and the gas temperature T = 400K coincides with the ion temperature.
The Debye-Hückel radius of this plasma is determined by the ion temperature and is
estimate as rD ∼ 10−4 cm, a distance of a strong interaction between charged parti-
cles is ρmin ∼ e2/Te ∼ 10Å, and this gives for the Coulomb logarithm ln
 = 7.
As is seen, in this example the values of ρmax and ρmin differ by three orders of
magnitude that justifies the assumption used. Since the Coulomb logarithm value
depends weakly on plasma parameters, we will use below the value ln
 = 7 in
estimations.

3.2 Elastic Electron-Atom Scattering in Slow Collisions

The analysis of electron-atom collisions requires a quantum description, and the
Scrödinger equation for the total electron-atom system is separated in spherical coor-
dinates in the simplest case of a spherically symmetric effective electron-atom inter-
action potential. This means that electron-atom scattering proceeds independently
for different electron momenta l, and electron-atom scattering is described within
the framework of the phase theory [117], where the scattering amplitude f (ϑ) (ϑ is
the scattering angle), and the total σt = ∫

dσ cross section (dσ is the differential
scattering cross section) as well as the diffusion cross section σt = ∫

(1− cosϑ)dσ

are expressed through partial scattering phases δl [111, 117, 118]. In the limit of low
energies, only the zero-th scattering phase δ0 is responsible for the scattering process
that means that scattering of s-electron is determined the collision cross section. In
this limit we have δ0 = −Lq, where q is the electron wave vector, and L is the
electron scattering length. The cross sections of electron-atom elastic collision are
equal at low electron energies

σ ∗(0) = σt (0) = 4π L2 (3.2.1)
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and the the electron scattering length is L = 1.2ao for e − He scattering and
L = −1.6ao for e − Ar scattering [119, 120], where ao = �

2/(mee2) is the Bohr
radius. We note that determination of the electron scattering length L on the basis
of the Schrödinger equation is not reliable even with using contemporary computer
methods. Therefore information about the scattering lengths follow from direct and
indirect experiments.

Since electron-atom scattering is isotropic at zero energy, the electron scattering
length is connected with the wave function� of the scattered electron by the relation

d ln�

dr
|r=0= − 1

L
, (3.2.2)

where r is a distance of the scattering electron from the atom center. Note that the
scattering length is determined by electron-atom interaction inside the atom, where
a one-electron approximation is not correct, i.e. the wave function of a scattering
electron is entangled with the wave functions of atomic electrons, and a resultant
exchange interaction has a complex form. Hence, we consider the scattering length to
be a parameter which results from a combination of a short-range interaction includ-
ing an exchange between scattered and atomic electrons, and a long-range interaction
between them. Transferring to one-electron interaction, one can express the short-
range electron-atom interaction potential through the Fermi formula [121–123]

Ush(r) = −2π L
�
2

me
δ(r) (3.2.3)

where r is the electron coordinate. Along with a short-range electron-atom interac-
tion, a long-range interaction may give a contribution to scattering parameters. In
contrast to a short-range interaction, at low collision energies the contribution from
a long-range interaction is determined by an electron region far from the atom where
coordinates of scattered and atomic electrons may be separated.

Consideration a short-range electron-atom interaction in the form of the Fermi
formula that includes both exchange and electrostatic interaction at small distances
between the electron and atom, allows one to separate the short-range and long range
electron-atom interactions, so that the effective electron-atom interaction potential
U (r) takes the form

U (r) = Ush(r) + Ul(r), (3.2.4)

where Ul(r) is the long-range part of the electron-atom interaction potential, and
we use that the short-range and long-range parts are determined by different
electron space regions. Note that a short-range interaction is enough strong and
hence dependence of scattering parameters on the electron energy is determined
by a long-range electron-atom interaction. Basing on this fact, we below find this
dependence.
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Assuming the long-range electron-atom interaction potential to spherically sym-
metric, one can construct by analogy with the Born approximation [111] the per-
turbation theory for the electron-atom scattering amplitude that includes both the
short-range and the long-range interactions and has the form [124]

f (ϑ) = −L + me

2π�2

∫

[1 − exp(−i Kr)]Ul(r)dr, (3.2.5)

where K = ∣

∣q-q′∣
∣ = 2q sin(ϑ/2) is the variation of the electron wave vector as

a result of scattering, so that q and q′ are the electron wave vectors before and
after collision. Let us apply this formula to electron-atom scattering for the polariza-
tion long-range interaction potential U (r) = −αe2/(2r4) which is realized at large
electron-atom distances r (α is the atom polarizability). We have

f (ϑ) = −L − πα

4ao
K = −L − παq

2ao
sin

ϑ

2
, (3.2.6)

This is an equivalent to expansion of the scattering phases over a small parameter x =
−παq/(2Lao) at low collision energies [125, 126]. As a matter, this formula gives
an expansion of the scattering amplitude on a small parameter that is proportional a
low collision energy. In particular, we have from this for the diffusion cross section
of electron-atom scattering at low electron energies in this approximation [127]

σ ∗
ea = 4π

(

L2 + 4

5
π

αq L

ao
+ π2

6

α2q2

a2
o

)

= 4π L2
(

1 − 8

5
x + 2

3
x2

)

, x = − παq

2Lao

(3.2.7)

The important conclusion resulting from these formulas consists in a sharp min-
imum for the cross sections of electron-atom scattering at small collision energies
if the scattering length L is negative. This is called the Ramsauer effect [128, 129]
which firstly was observed experimentally. A simple interpretation of a sharp min-
imum in the cross sections is that the zero-th phase δ0 in electron-atom scattering
becomes zero at low electron energies where the contribution of other phases to the
cross section is relatively small. The Ramsauer effect is observed in elastic scatter-
ing of electrons on argon, krypton and xenon atoms where the electron scattering
length is negative. Note that one can expect the Ramsauer effect for atoms with
completed electron shell, because in other cases electron-atom scattering for dif-
ferent quantum numbers of the total electron-atom system proceeds independently,
and the observed cross section is the combination of the cross sections for different
quantum numbers of the total system. Next, as it follows from formula (3.2.7), the
diffusion cross section σ ∗ in this approximation has the minimum σmin = 4π L2/25
at the electron wave vector qmin = −12Lao/(5πα) (x = 6/5). Let us apply these
formulas to the case of electron scattering on the argon atom where L = −1.7ao,
α = 11a3

o , and the Ramsauer effect is observed. We obtain on the basis of formula
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Table 3.1 The diffusion cross section σ ∗(ε) for electron scattering on helium and argon atoms
according to [130]

ε, eV He Ar ε eV He Ar

0 4.95 10.0 0.8 6.79 1.05

0.001 4.96 8.35 1.0 6.87 1.38

0.002 4.99 7.80 1.5 6.98 2.07

0.005 5.14 6.61 2.0 6.97 2.70

0.01 5.27 5.60 2.5 6.95 3.37

0.02 5.38 4.15 3 6.93 4.10

0.04 5.58 2.50 4 6.8 6.00

0.06 5.63 1.60 5 6.6 7.60

0.08 5.71 1.00 6 6.3 9.3

0.10 5.80 0.59 7 5.9 11.0

0.15 6.00 0.23 8 5.5 14.0

0.20 6.20 0.10 10 5.0 14.6

0.25 6.26 0.091 15 3.4 14.1

0.30 6.32 0.15 20 2.69 9.5

0.35 6.38 0.24 30 1.60 6.0

0.40 6.44 0.33 40 1.00 4.7

0.50 6.55 0.51 50 0.70 3.5

0.60 6.66 0.68 75 0.36 2.3

0.70 6.74 0.86 100 0.22 1.7

The electron energy ε is expressed in eV, and the diffusion cross section is given in Å2

(3.2.7) qmin = 0.12/ao, εmin = 0.19 eV, σ ∗
min = 0.40Å, σ ∗(0) = 10Å. Thus,

within the framework of this approximation, the scattering cross section drops by
the order of magnitude at low electron energies that it is of importance for processes
in gases or plasmas involving electrons.

We give in Table3.1 the diffusion cross sections of electron scattering on helium
and argon atoms [130] since heliumand argon are the objects of this book. These cross
sections are obtained in [130] from treatment of drift electron parameters in helium
and argon. Figures3.1 and 3.2 contain the diffusion cross sections σ ∗(ε) for electron
scattering on helium and argon atoms which are the object of this consideration.
We give also in Fig. 3.1 the following approximation for the electron-atom diffusion
cross section in the helium case which correspond to a sum of experimental data
[130] with the accuracy of 20–30%

σ ∗
ea(ε) = (6 ± 1)Å2, ε < 10 eV;

σ ∗
ea(ε) ≈ A

ε
, A ≈ 60 eV · Å2, 10 eV < ε < 40 eV (3.2.8)

In addition, Figs. 3.3 and 3.4 give the rate constants kel = vσ ∗(ε) for elastic electron
scattering on helium and argon atoms.
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Fig. 3.1 The diffusion cross section of electron scattering on the helium atom. Stars correspond to
results of various measurements [130], straightforward lines respect to approximation according to
formula (3.2.8)

Fig. 3.2 The diffusion cross section of electron collision with the argon atom [130]

Comparing the behavior of the diffusion cross section of electron-atom scattering
that follows from formula (3.2.7) and from the data of Table3.1, we find that for-
mula (3.2.7) transfers the character of this behavior at low electron energies, but the
value of the minimum cross section for electron scattering on the argon atom differs
approximately in 4 times compared to Table3.1 data. Because the expansion of the
cross section over a small parameter is valid at low electron energy, this difference
leads to the contradiction. One can expect that this difference is that the polarization
interaction potential is used at all the electron-atom distances, whereas this holds
true at large distances. To escape this, we will follow to [131, 132] and will use the
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Fig. 3.3 The rate constant
kel = vσ ∗ of electron elastic
collision with the helium
atom calculated on the basis
of the Table3.1 data

Fig. 3.4 The rate constant
kel = vσ ∗ of electron elastic
collision with the argon atom
calculated on the basis of the
Table3.1 data

long-range interaction potential in the form

U (r) = 2π L
�
2

me
δ(r) − αe2

2(r2 + r2o )2
, (3.2.9)

that is transformed into the polarization interaction potential at large electron-atom
distances r and contains an additional parameter ro compared to the polarization
interaction potential. For this long-range interaction potential, we obtain for the
scattering amplitude instead of formula (3.2.7) [132]

f (ϑ) = −L − πα

4aoro

[

1 − exp

(

−2roq sin
ϑ

2

)]

(3.2.10)
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Table 3.2 The parameters of
the Ramsauer minimum for
electron scattering on an
argon atom [133]

ro/ao εmin, eV σmin/4π L2 xmin

0 0.35 0.04 1.20

0.1 0.36 0.039 1.22

0.3 0.39 0.038 1.26

0.7 0.44 0.035 1.34

1.0 0.50 0.032 1.42

1.5 0.61 0.028 1.58

2.0 0.79 0.023 1.79

2.5 1.11 0.017 2.12

3.0 1.83 0.011 2.73

From this we have for the reduced diffusion cross section

σ ∗

4π L2 = 1

4(roq)4

2roq
∫

0

z3dz
[

1 − y
(

1 − e−z)]2 , y = − πα

4aoro L
= x

2roq
,

(3.2.11)

and z = 2roq sin(ϑ/2). Introducing the electron wave vector qmin corresponding to
the cross section minimum and a new variable t = 2roq, we find from the minimum
condition dσ ∗/dt = 0 the relation between the parameters x and t [133]

y = 2
t4
4

(

1 − e−t
) − ∫ t

0 z3
(

1 − e−z
)

dz
t4
4

(

1 − e−t
)2 − ∫ t

0 z3
(

1 − e−z
)2

dz
(3.2.12)

In particular, in the limit ro → 0 we have from this t → 0, that gives x = yt = 6/5
and σ ∗/(4π L2) = 1/25 in accordance with formula (3.2.6) and (3.2.7) for the
polarization interaction potential. The results for finite values of ro are given in
Table3.2 where the parameters of the cross section minimum are given for electron
scattering on a xenon atom. As it follows from this Table, an ro increase leads
to a decrease the minimum cross section and an increase of the electron energy
εmin = �

2q2
min/(2me) at which this minimum is observed.

3.3 Inelastic Electron Collisions with Atoms

In the case of inelastic collision processes, the rate constant k = vσ(v) of an inelastic
process is a convenient characteristic of this process alongwith the cross section σ(v)

of the transition. This is defined as

ki j (v) = vσi j (v), (3.3.1)
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where v is the collision velocity, σi j is the cross section of transition between i and
j states as a result of collision. If colliding particles are distributed over velocities in
a plasma, in accordance with the velocity distribution function f (v) it is convenient
to use the average rate constants of collision transitions defined according to the
relation

ki j (v) =
∫

f (v)ki j (v)dv, (3.3.2)

where the distribution function is normalized here to unity
∫

f (v)dv = 1. We con-
sider below evolution of atom states if transitions between atom electron states result
from collisions with electrons in a plasma. Then the balance equation for the number
density of atoms Ni in a state i takes the following form if transitions result from
collisions with electrons of the number density Ne

d Ni

dt
= −Ni Ne

∑

j

ki j + Ne

∑

j

N j ki j (3.3.3)

Let us analyze peculiarities of inelastic electron-atom collisions. According to
the principle of detailed balance, the partial rates of direct and inverse transitions are
equal for an equilibrium electron distribution over energies. For the Maxwell energy
distribution of electrons this principle gives

ki j = g j

gi
k ji × exp

(

−εi j

Te

)

, (3.3.4)

where for definiteness we consider a level i to lie below a level j , and εi j is the
excitation energy; gi , g j are the statistical weights for lower and upper transition
states.

According to the principle of detailed balance, the cross section of atom excitation
σex (ε) in collision with an electron of energy ε is connected with the quenching cross
section of this excited atom σq(ε − �ε) by electron impact in the following manner
[134]

σex (ε) = g∗
go

(ε − �ε)

ε
σq(ε − �ε) (3.3.5)

Here ε is the energy of a fast electron, �ε is the excitation energy, g∗, go are the
statistical weights of the atom in the excited and ground states; an argument of the
cross section indicates an electron energy at which the cross section is taken.

The threshold law for the excitation cross section of an atom by electron impact
has the form [135, 136]

σex (ε) ∼ √
ε − �ε (3.3.6)
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Fig. 3.5 The threshold
excitation cross section of an
argon atom by electron
impact [137]

This simple form of the threshold excitation assumes that only one channel partake
in the excitation process. In reality other excitation states may partake in this process
if their excitation energy is below the electron energy and also excitation states with
a higher excitation energies through resonances in electron-atom interaction. As a
result, the excitation cross section has a not smooth dependence on the electron
energy, as it follows from the example given in Fig. 3.5 where the excitation cross
section of an argon atom by electron impact is represented near the threshold. From
this threshold law it follows that the rate constant of quenching of an excited atom by
electron impact kq is independent of the electron energy in the limit of low electron
energies. The principle of detailed balance gives for the rate constant kex of atom
excitation by electron impact

kex = kq
g∗
go

√

ε − �ε

ε
, (3.3.7)

where ε is the energy of an incident electron, go, g∗ are the atom statistical weights
for the ground and excited states.

If atoms are excited by electrons located in a plasma and have the Maxwell
distribution over energies, an average of the excitation rate constant (3.3.7) over
electron energies gives

kex = kq
g∗
go

exp

(

−�ε

Te

)

, (3.3.8)

where Te is the temperature of electrons which establishes the equilibrium between
the atom states as a result of collisions with them. Here we use that the quenching
rate constant kq is independent of an electron energy if the latter is relatively small.
Therefore formula (3.3.8) holds true if Te 	 �ε.

If an atom is found in a resonantly excited state, one can assume that the quenching
process is determined by dipole interaction between an incident electron and atom,
as it takes place for the radiative transition with the dipole atom interaction with an
electromagnetic field. This allows us to connect the rate constant of quenching of
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a resonantly excited state by electron impact with parameters of the corresponding
radiative transition. Let us use this analogy in excitation and quenching of resonantly
excited states.We consider first the casewhere the electron velocity is large compared
with a characteristic electron velocity of a bound electron, and the Born approxima-
tion [111, 118, 136] holds true. Just at large collision velocities one can construct the
perturbation theory [138–140] which allows us to separate interaction of colliding
atomic particles from their motion and internal degrees of freedom. The strongest
interaction corresponds to transitions between resonantly bound states where the
transition between an initial and final atom states are possible as a result of dipole
radiation. For excitation of resonantly excited states this perturbation theory leads to
the Bethe formula [111, 118, 136, 141] which may be represented in the form

σ0∗ = 4π

εao
|(Dx )0∗|2 


( ε

�ε

)

= σ∗

( ε

�ε

)

,

σ∗ = 2πe4

�ε2
f0∗, 
 (x) → lnC

√
x

x
, x → ∞ (3.3.9)

Here indices 0, ∗ refer to certain initial and final states of the excitation process, ε

is the electron energy, �ε is the excitation energy, e is the electron charge, ao is
the Bohr radius, (Dx )0∗ is the matrix element of the dipole atom moment projection
between the transition states, C is a constant, and f0∗ is the oscillator strength for
this transition which being averaged over states of the initial state group 0 and being
summarized over states of the upper group ∗, is given by

f0∗ = 2meω

3e2�go
|(D)0∗|2 (3.3.10)

Here the matrix element square (D)0∗|2 is summarized over states of the initial and
final group. As a result, we express the excitation cross section of resonantly excited
atom states by electron impact through parameters of radiative dipole transitions of
this atom. This analogy follows from an analogy in the interaction operators for a
fast charged particle with an atom and between an electromagnetic wave and the
atom [118, 141–143]. Near the excitation threshold the function 
(x) introduced in
formula (3.3.9) is given by


(x) = a
√

x − 1, x → 1, (3.3.11)

and a = 0.130 ± 0.07 [38].

3.4 Resonant Atom Transitions in Collisions with Electrons

In evaluation the kinetic parameters of a gas discharge plasma, we need in data
for collision processes related for the most part with processes involving electrons.
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But numerical calculations of the cross sections of electron-atom processes are not
reliable, and hence experimental data are the basis of such information. Neverthe-
less, the theoretical analysis helps us to use experimental results, and we exhibits
it for inelastic electron-atom collisions with transition between resonant levels, i.e.
the dipole radiative transition is possible between these levels. In this case at large
collision energies the cross section of this transition is given by formula (3.3.9), but
low collision energies are of interest for a gas discharge plasma and our task is to
continue formula (3.3.9) to low collision energies with using experimental data. We
assume in this operation that by analogy with large energies the cross section of
a resonant transition is determined by the dipole electron-atom interaction. In this
case a general form of the atom excitation cross section in collision with an electron
has the form (3.3.9). Then accounting for the threshold dependence (3.3.6) of the
excitation cross section [111], we find for the cross section near the threshold for
excitation of resonantly excited states [144–146]

σ0∗(ε) = σ∗ ×
√

ε

�ε
− 1, (3.4.1)

where ε is the electron energy, �ε is the excitation energy, σ∗ is a constant. Just
this range of electron energies is of importance for a gas discharge plasma, and we
assume here [144] that the dipole interaction remains the main contribution to the
electron-atom interaction in slow collisions as well as at large collision energies.
Comparison with experimental data allows us to find the numerical coefficient in
formula (3.4.1) that is [38, 145]

a = 0.130 ± 0.007 (3.4.2)

We below analyze this result.
At low electron-atom collision energies it is convenient to operate with the rate

constant kq of quenching of an excited state because this quantity is independent of
the electron energy ε at small energies. Let us use the expression [147–149] for the
average rate of the spontaneous dipole radiative transition 1/τr from the group ∗ to
the group 0 of atom states

1

τr
= 4ω3go

3g∗�c3
|〈0|D|∗〉|2 (3.4.3)

Then on the basis of the principle of detailed balance (3.3.7) we have on the basis of
formulas (3.3.9) and (3.4.3) for the rate constant of quenching of a resonantly excited
state by electron impact [38, 133]

kq = const
go f0∗

g∗(�ε)3/2
= ko

(�ε)7/2τr
(3.4.4)
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Fig. 3.6 The rate constant ko obtained from formula (3.4.5) if kex is the experimental constant
for excitation of resonant levels K (42P), Rb(52P), Cs(62P) from the ground state by electron
impact, if �ε is given in formula (3.4.5) in eV, and τr is taken in ns

As is seen, this formula contains the average rate of spontaneous emission from levels
of the upper state group and is independent of statistical weights of states of these
groups.

From the principle of detailed balance (3.3.5) we have for the rate constant of
atom excitation by electron impact on the basis of formula (3.4.4)

kex = kog∗
go(�ε)7/2τr

√

ε − �ε

ε
(3.4.5)

The value of the rate constant ko in formulas (3.4.4) and (3.4.5) follows from compar-
ison of the above excitation rate constant with experimental data. Figure3.6 contains
the results of treatment of experimental data [141, 150–152] for excitation of potas-
sium, rubidium and cesium atoms by electron impact from the ground state to the
states K (42P), Rb(52P), Cs(62P). A statistical average of the data of Fig. 3.6
gives ko = (4.3 ± 0.7) × 10−5 cm3/s for s–p electron transition if the atom exci-
tation energy �ε is expressed in eV in formula (3.4.4), and the radiative lifetime
is given in ns. The accuracy of this approximation according to data of Fig. 3.6 is
estimated as 20–30%.

If we deal with processes of atom excitation and quenching by electron impact
in a gas discharge plasma with excited states in the initial state, one can remove
from the threshold range because of a not large excitation energy for excited state.
Hence we return to a general formula (3.3.9) for the atom excitation cross section by
electron impact and will be based on experimental data. Figure3.7 gives the reduced
cross section (3.3.9) with using experimental data for atoms with a simple structure
of excited state, and Table3.3 gives the parameters of resonant excitation of these
atoms.
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Fig. 3.7 The reduced cross section according to formula (3.3.9) for atom resonant excitation by
electron impact from the ground states of lithium, sodium and potassium atoms and from the
metastable states He(23S) for the helium atoms. Experimental data are taken: 1—[153] for Li,
2—[154] for Na, 3—[155] for K, 4—[156] for K, 5—[152] for K, 6—[157, 158] for He(23S)

Table 3.3 Parameters of excitation of the lowest resonant states for atoms with a simple structure
of excited states

Atom Transition �ε, eV fo∗ σ∗, 10−14 cm2

Li 22S → 22P 1.848 0.73 2.8

Na 32S → 32P 2.103 0.96 2.8

K 42S → 42P 1.614 1.05 5.2

He 23S → 23P 1.144 0.54 5.4

Formula (3.4.5) near the threshold of excitation may be represented in the form

σex = σog∗
go(�ε)4τr

√
x − 1, (3.4.6)

where we have on the basis of the above data σo = (7 ± 1) × 10−13 cm2, the atom
excitation energy �ε is expressed in eV in formula (3.4.4), and the radiative lifetime
is given in ns, x = ε/�ε, and formula (3.4.6) holds true near the excitation threshold.

Basing on the position that the theory cannot give reliable cross sections of inelas-
tic electron-atom processes at not large collision energies which are of importance
for a gas discharge plasma, and using experimental data, we analyze briefly pecu-
liarities of measurements of these cross sections. Monochromatic electron beams
are used for this goal, and because of an energy dispersion in the electron beam,
the accuracy of such measurements is restricted near the excitation threshold. Next,
for determination of these cross sections it is necessary to know the atom number
densities at the initial and final states. But formation of excited atoms takes place as
a result of direct and cascade populations of these states, and the latter hampers the
determination of the excitation cross sections (for example, [159–163]). Removing
the cascade transitions in population of excited states influences the accuracy of
results.
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It should be noted that the accuracy of measurements of the average rate con-
stants of excitation of atoms by electron impact in a plasma and correspondingly
the accuracy the rate constant of excited atom quenching in slow collisions with
electrons is better than the accuracy of measurements of the excitation cross sections.
In particular, the summarized error in the measured cross sections for excitation of
metastable atoms He(23S) by electron impact at collision energies compared with
the atom excitation energy is estimated as 45% [157, 164]. Evidently, the cross sec-
tions of excitation of excited argon atoms with the electron shell Ar(3p54s) in states
Ar(3p54s) which are measured in [79, 164, 165] is not lower that the above value
because of a large number of transitions.

We note that formula (3.4.4) has not the universal character, but relates to the s–p
electron transition. We are based on formula (3.3.9) where the cross section of the
rate constant of this transition is proportional to the square |(D)sp|2 of the dipole
momentum matrix element between these states. Let us take into consideration the
role of level splitting for this transition due to additional interaction. This situation
takes the place in reality for light atoms where in the first approximation we have the
shell atom structure and in the next approximation each shell gives several levels due
to exchange, spin-orbit and other interactions inside the atom. Then if the transition
proceeds between some groups of states, and this statistical weight must be taken into
account. According to the definition, the rate constant of quenching in this case must
be summed over final states and averaged over initial ones. But the rate of a dipole
radiative transition is proportional to the square of the above matrix element also
and in the same manner the summation takes place over final states and averaging
over the initial ones. Hence, formula (3.4.4) remains valid also in the case where
levels for s and p electrons are split. In addition, because of the symmetry of the
matrix element this formula holds true for s–p electron transitions and p–s electron
transitions.

As an example, we consider the transition from the any state of the electron shell
Ar(3p54p) to the state Ar(3p54s3P2), where the upper state is characterized by the
statistical weight g = 36, while the statistical weight of the lower state is g = 5. Then
1/τr in formula (3.4.4) is the rate of the radiative transition in any level of the group
Ar(3p54s3P2) that is equal 1.45 × 107 s−1. Correspondingly according to formula
(3.4.4) the quenching rate constant for this transition is kq = 1.2× 10−7 cm3/s (the
average energy of this transition is �ε ≈ 1.62eV. In evaluation the excitation rate
constant in accordance with formula (3.4.5) we use g∗ = 36, go = 5.

3.5 Transitions Between Neighboring Atom States
in Collisions With Electrons

Let us consider one more type of exchange inelastic processes in electron collisions
with excited atoms where transitions take place between states with nearby energies
and these states belong to the same electron shell. As an example, we first consider
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the collision process

e + He(21S) → e + He(23S) (3.5.1)

that leads to quenching of the metastable state He(21S). Both atom states of this
process belongs to the electron shell He(1s2s) of the helium atom. The mechanism
of this process consists in exchange of an incident and valence electron in electron-
atom collision. As a result, a valence electron acquires a new spin direction. Hence
one can connect the rate constant of this process with that of the process

e ↓ +He(23S) → e ↑ +He(23S), (3.5.2)

if an electron energy exceeds remarkably the energy difference between transition
states. This mechanism for transitions under consideration results from the exchange
interaction of incident and valence electrons, i.e. we ignore weak relativistic inter-
actions in these processes. Let us use the statistical approach according which the
atom after an exchange event “forgets” its initial state. Then we have the following
relations between the rate constants of corresponding processes

k[e + He(21S)] → e + He(23S)] = 3
4kexch,

k[e + He(23S)] → e + He(21S)] = 1
4kexch,

k[e ↓ +He(23S)] → e ↑ +He(23S)] = 3
4kexch (3.5.3)

Here kexch is the rate constant of the process (3.5.2) with exchange of incident
and valence electrons if these electrons have different spin directions. Accord-
ing to experimental data [166], the cross section of the process (3.5.2) in thermal
collisions is (160 ± 40)Å2, that corresponds to the rate constant of this process
approximately kpol = (1.7 ± 0.4) × 10−7 cm3/s. This leads to the rate constant of
the exchange process (3.5.1) the value kexch ≈ 2 × 10−7 cm3/s. Direct measure-
ment of the rate constant of the process (3.5.1) according to measurement [167] is
kqu ≈ 3.5 × 10−7 cm3/s that exceeds twice the above value. On the basis of these
data we have kexch = (3 ± 1) × 10−7 cm3/s.

Another example of electron exchange collisions under consideration relates to
an excited argon atom with the electron shell 3p54s. The excitation energy for these
states lies between 11.624eV for 3P2 metastable state up to 11.828eV for the res-
onantly excited 1P1 state, and we take the energy ε of an incident electron to be
ε � 0.2eV, so that the difference of excitation energies for these states does not
influence on the character of electron-atom collision. Then as well as in the helium
case, mixing of these states results from exchange collisions

e ↓ + Ar(3p54s ↑) → e ↑ + Ar(3p54s ↓), (3.5.4)

where vertical arrows indicates spin directions for an incident electron and 4s-valence
electron. The rate constant of mixing of these levels is estimated as [168, 169]
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kexch ∼ 1 × 10−7 cm3/s, and then the rate constant of transition between states
i and j of this group is

ki j = g j

12
kexch, (3.5.5)

where g j = 2J + 1 is the statistical weight of the final state, so the J is the total
electron moment for a final state.

We also give a general expression for the cross section of the exchange process
that proceeds according to the scheme

e(free) ↓ + e(bound) ↑→ e(free) ↑ + e(bound) ↓, (3.5.6)

where e(free) and e(bound) mean incident and valence electrons respectively, and
according to this scheme the exchange interaction between incident and valence elec-
trons exceeds that between valence electron and atom core. Hence during collision
one can characterized the states of free and valence electrons by the symmetry of the
wave function of these two electrons and separate these states in symmetric (s) and
antisymmetric (a) in accordance with the symmetry of the coordinate wave function
of two electrons. Correspondingly, the phase theory of electron-atom scattering [111,
117, 118] gives for the cross section σexch of exchange process (3.5.6) [170]

σexch = 4π

q2

∑

l

(2l + 1) sin2(δs
l − δa

l ), (3.5.7)

where q is the wave vector of an incident electron, l is the electron momentum, δs
l

and δa
l are the scattering phases for the symmetric and antisymmetric states of the

total system. In particular, in the limit of small collision energies (q → 0) this cross
section is equal to

σexch = 4π(Ls − La)2, (3.5.8)

Ls and La are the electron scattering lengths for the symmetric and antisymmetric
states of the total electron system correspondingly.

Let us consider from this standpoint the process

e + Ar(3p54s3P2) → e + Ar(3p54s), (3.5.9)

i.e. this process of electron collision with the metastable 3P2 atom state trans-
fers the argon atom into any state of the electron shell Ar(3p54s). The ioniza-
tion potential of Ar(3P2) is 4.21eV and we will model it by the rubidium atom
Rb(4s) in the ground state with the ionization potential 4.18eV. Both atoms have
the valence s-electron and nearby ionization potentials. For the Rb—atom we have
[119, 120] Ls = 2ao and La = −17ao. This gives according to formula (3.5.8)
σexch = 1.3 × 10−13 cm2 for the cross section σexch of the exchange process and
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leads to an estimate kexch ∼ 10−6 cm3/s for the rate constant of this process. Note
that because the electron scattering lengths on alkali metal atoms is determined in the
most degree by parameters of the autodetachment state 3P in electron-atom interac-
tion [119, 120], the estimation for the rate constant of the exchange process (3.5.9)
is rough.

3.6 Atom Ionization by Electron Impact

Among inelastic processes of electron-atom collisions, the process of atom ionization
by electron impact

e + A → 2e + A+ (3.6.1)

is of importance. We analyze this process on the basis of the simplest model of this
process—the Thomson model [171]. Within the framework of this model one can
ignore interaction of incident and valence electrons with an atomic core in the course
of their scattering that is assumed to have the classical character. Atom ionization
corresponds to exchange by energy between an incident and valence electrons that
exceeds the atom ionization potential J , and the ionization cross section for an atom
with one valence electron according to the Thomson model is equal to [171]

σion = πe4

ε

(

1

J
− 1

ε

)

(3.6.2)

If several electrons partake in the ionization process, summation over partial cross
sections for individual electrons is made.

Analyzing lacks of the Thomson model, we note first the quantum character of
electron-atom scattering. But because the classical and quantum cross sections coin-
cide for Coulomb interaction of elastically colliding particles, this lack is not of
principle. Second, the scattering cross section depends on the initial velocity of a
bound electron [172, 173] that is assumed within the Thomson model to be motion-
less. Third, at large collision energies the cross section of inelastic collision contains a
factor ln(ε/J ) [174], that is determined by large impact parameters of collision [175],
where the ionization probability is small in the quantum case and is zero in the classi-
cal case. In principle, the classical theory cannot give the logarithmdependence of the
ionization cross section on the collision energy even for ionization of highly excited
atomswhere the classical description is applicable. This principal distinction between
a classical and quantum description was eliminated by Kingston [176–178], who
proved that in spite on difference between classical and quantum formulas, they give
close values for the ionization cross sections in a range of validity of both approaches.
Therefore, accounting for a roughness of the Thomson model (3.6.2), nevertheless
it is convenient to use this model for a quantitative analysis of direct atom ionization
by electron impact because of the simplicity and principal validity of this model.
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Let us modify the Thomson model conserving the classical character of electron
motion and considering the bound electron to be free in the course of collision, but
accounting for a nonzero velocity of a bound electron. For simplicity we consider
scattering on small angles, and the momentum change �p of a valence electron
according to formula (3.1.4) is given by

�p = 2e2n
ρg

,

where n is the unit vector directed along the impact parameter ρ of collision, and g is
the relative velocity of colliding electrons. If u is the velocity of a valence electron,
the change �ε of its energy is equal

�ε = (meu + �p)2 − m2
eu2

2me

Wenote thatwithin the frameworkof theThomsonmodelwe ignore the bondbetween
the valence electron and atomic core during collision, i.e. assume the valence electron
to be free. From this we have for the momentum change �p of the valence (and the
incident) electron if we express it through the energy change �ε

�p =
√

(meuk)2 + 2me�ε − muk ,

where k is the unit vector directed along �p. This gives for ionization cross section
σion = ∫

2πρdρ which include collision impact parameters ρ at which �ε ≥ J .
Using the connection between the momentum change �p and the impact collision
parameter ρ, we obtain for the ionization cross section

σion =
ε

∫

J

dσ = 4πe4

g2

ε
∫

J

〈

med�ε

(
√

(meuk)2 + 2me�ε − muk)3
√

(meuk)2 + 2me�ε

〉

,

where an average in the angle brackets is made over an angle between vectors u and
k, and over the velocities u of the valence electron. Averaging over this angle and
assuming the energy ε of an incident electron to be large compared with the kinetic
energy of an incident electron, we obtain

σion = πe4

ε

ε
∫

J

〈

med�ε

�ε3
(�ε + 2

3
meu2

〉

= πe4

ε

[

1

J
− 1

ε
+ 2ε

3

(

1

J 2 − 1

ε2

)]

,

(3.6.3)

where ε = meg
2/2 is the energy of an incident electron, ε = meu2/2 is the aver-

age kinetic energy of a valence electron, and an average is made over the electron
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distribution inside the atom. The used condition ε � J allows us to separate para-
meters of the incident and valence electrons. If we assume the valence electron to be
motionless, i.e. ε = 0, this formula is converted into the Thomson formula (3.6.2).
Assuming the valence electron to be located mostly in the Coulomb field of the
atomic core, we obtain ε = J according to the virial theorem. As a result, we obtain
[172, 173]

σion = πe4

ε

(

5

3J
− 1

ε
− 2J

3ε2

)

(3.6.4)

The Thomson formula (3.6.2) leads to themaximumof the cross section at ε = 2J
with the value σmax = πe4/(4J 2), whereas the maximum of the cross section
according to formula (3.6.4) is approximately twice compared to that of the Thomson
formula, and this maximum occurs at the electron energy ε = 1.85J . Next, the cross
section according to the modified Thomsonmodel (3.6.4) is in 5/3 times exceeds that
according to the Thomson formula (3.6.2). In addition, at the threshold the Thomson
formula gives

σion = πe4

J 2 (ε − J ), ε − J 	 J ,

while formula (3.6.4) gives near the threshold

σion = 7πe4

3J 2 (ε − J ), ε − J 	 J

Thus, the values of values of the ionization cross sections according to the Thomson
formula (3.6.2) and formula (3.6.4) for the modified Thomson model differs up to
factor 2.

Our task is to construct a simple and reliable model for the cross section of atom
ionization by electron impact. As is seen, the Thomson model and its modification
satisfy to these requirements and are able to give the accuracy of the ionization cross
section roughly 50%. One can improve this accuracy if we use experimental results
along with the classical approach of the Thomsonmodel and its modifications. Let us
construct the cross section of atom ionization by electron impact σion assuming the
classical character of this process as a result of collision of free and bound electrons.
This cross section is composed on the basis of the following parameters: e is the
electron charge, me is the electron mass, ε is the energy of an incident electron, J is
the atom ionization potential. In a general form this cross section constructed from
the dimensional consideration has the form

σion = πe4n

J 2 f (ε/J ), (3.6.5)

where n is a number of identical valence electrons, and f (x) is an universal function
that is equal
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f (x) = 1

x
− 1

x2

for the Thomson model (3.6.2) and

f (x) = 5

3x
− 1

x2
− 2

3x3

for the modified Thomson model (3.6.4). We give in Fig. 3.8 the reduced ionization
cross section for atomic particles with valence s-electrons [170]. Experimental data
are approximated by the function [170, 190]

f (x) = 10(x − 1)

πx(x + 8)
(3.6.6)

with the accuracy about 20% at electron energies above the cross section maxi-
mum and about 40% at electron energies below the cross section maximum. This
dependence is taken from Fig. 3.8. The maximum of the approximated reduced cross
section (3.6.6) is equal to f (xmax ) = 0.2 at xmax = 4 instead of f (xmax ) = 0.25
at xmax = 2 for the Thomson model. For the modified Thomson model (3.6.4) we
have f (xmax ) = 0.5 at xmax = 1.85. At large electron energies the ratio of the
approximated reduced cross section (3.6.6) to that for the Thomson model (3.6.2)
is 10/π , whereas this ratio near the ionization threshold is 10/(9π). Thus, as it fol-
lows from the above analysis various modifications of the Thomson model gives
the same form of the ionization cross section as a function of the electron energy,

Fig. 3.8 The reduced cross section f for atom ionization by electron impact constructed on
the basis of experimental cross section for atoms with valence s-electrons. Experimental data:
1—H [179], 2—He [180], 3—He+ [181], 4—He(23S) [182], 5—He(23S) [183], 6—Li+ [184],
7—Li+ [185], 8—Li+ [186], 9—Li [187], 10—Li [188], 11—H2 [189]. Approximation func-
tions: A − f (x) = 10(x−1)

x(x+8) , B − f (x) = 10(x−1)
x+0.5)(x+8)
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while the values of cross section may differ by factor ∼2. We below will be guided
by the approximated ionization cross section (3.6.6) that is based on experimental
data.

On the basis of formula (3.6.6) for the approximated reduced cross section f (x)

one can determine the differential cross section dσ(�ε) for collision of incident and
valence electrons if an energy exchange is �ε. We have

dσ

d�ε
= −dσion

d J
(J = �ε) = πe4n

�ε3

[

2 f (y) + y
d f (y)

dy

]

, (3.6.7)

where y = ε/�ε. From this we obtain for the Thomson model [ f (y) = 1/y −1/y2]

dσ

d�ε
= πe4n

ε(�ε)2
,

that coincides with formula (3.1.5). In the case of the modified Thomson model in
accordance with formula (3.6.4) we have f (y) = 5/(3y) − 1/y2 − 2/(3y3), that
gives on the basis of formula (3.6.7)

dσ

d�ε
= −dσion

d J
(J = �ε) = πe4n

3ε

(

5

�ε2
+ 2

ε2

)

(3.6.8)

Repeating these operations in the case of the approximated reduced cross section
[formula (3.6.6)], we obtain

dσ

d�ε
= 10e4n(ε2 + 16ε�ε − 8�ε2)

ε�ε2(ε + 8�ε)2
(3.6.9)

Let us use the above expressions for the cross sections of a given exchange by
energy for colliding electrons in order to determine the average kinetic energy ε of
a released electron. We have by definition

ε = �ε − J =
∫

�ε
dσ

�ε
d�ε − J (3.6.10)

In the case of the Thomson model this formula along with the above expressions for
electron-electron cross sections gives

ε

J
= x ln x

x − 1
− 1 (3.6.11)

in the same manner we have in the case of the modified Thomson model

ε

J
= 5x2 ln x + x2 − 1

(x − 1)(5x + 2)
− 1 (3.6.12)
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Similarly we have for the reduced energy of a released electron as a result of atom
ionization by electron impact in the case where the ionization cross section is approx-
imated by formulas (3.6.5) and (3.6.6) on the basis of experimental data and formula
(3.6.9) for the cross section of exchange by a given energy as a result of collision of
two free electrons

ε

J
= (x + 8)

(x − 1)

x
∫

1

dy

y

(y2 + 16y − 8)

(y + 8)2
− 1 (3.6.13)

Figure3.9 gives the dependence of the reduced average exchange energy between a
free and valence electron �ε/ε in the course of the ionization process as a function
of the reduced energy of an incident electron ε/J on the basis of formulas (3.6.11),
(3.6.12) and (3.6.13). Note that the average energy of a released electron ε is equal
to the binding energy of a valence electron J at the reduced energy ε/J = 4.9 of
an incident electron in the case of the Thomson model. This value is equal to 4.5
for the modified Thomson model, and ε/J = 10 if the ionization cross section is
constructed on the basis of experimental data and is given by formulas (3.6.5) and
(3.6.6).

We also evaluate the ionization rate constant kion for the approximated formula
(3.6.6) with averaging over the Maxwell distribution function of electrons (2.1.2).
This gives for the ionization rate constant

kion =
∫

√

2ε

πme

2√
πT 3/2

e

√
ε exp

(

− ε

Te

)

dε
πe4

J 2 f (x) (3.6.14)

Fig. 3.9 The reduced average energy of a released electron ε/J as a function of the reduced energy
ε/J of an incident electron. 1—the Thomson model—formula (3.6.11), the modified Thomson
model—formula (3.6.12), 3—the classical model of atom ionization based on experimental data—
formula (3.6.13)

http://dx.doi.org/10.1007/978-3-319-11065-3_2
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where f (x) is given by formula (3.6.6), Te is the electron temperature. Evaluating
the integral in the limiting cases Te 	 J and Te 	 J and sewing the results for these
limiting cases, we obtain the rate constant of atom ionization within the framework
of the classical consideration with the reduced cross section (3.6.6) that has the form

kion = 10

√

8πTe

me

e4

J 2 exp(−J/Te) × (9 + Te/J )−1 (3.6.15)

We will use below this expression for the ionization rate constant of an atom by
electron impact. Usually for a gas discharge plasma we have Te 	 9J , and formula
(3.6.15) in this limiting case for the Maxwell distribution of electrons takes the form

kion(Te) = 4.85 × 10−6
√

Te

J 2[1 + Te/(9J )] exp
(

− J

Te

)

, (3.6.16)

where the rate constant is expressed in cm3/s, while the electron temperature Te and
the atom ionization potential J are given in eV.

It is convenient to represent this rate constant in the form

kion(ε) = ko F(z), ko = 10

√

8π J

me

e4

J 2 , z = Te/J, F(z) = ko

√
z

(9 + z) exp(1/z)

(3.6.17)

The universal function F(z) has the maximum F(zmax ) ≈ 0.15, at zmax ≈ 10.
In reality the ionization rate constant kion is of interest at low values z, and the
dependence F(z) is represented in Fig. 3.10.

It should be noted that ionization of atoms by electron impact in a gas discharge
plasma has an interest for excited atoms mostly. Since helium and argon are objects
of our consideration, we give in Table3.4 the values of the ionization rate constants
which relate to excited helium and argon atoms.

Fig. 3.10 Function F(z)
according to formula (3.6.17)
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Table 3.4 The reduced rate
constant ko of atom ionization
by electron impact in
accordance with formula
(3.6.16)

Atom J , eV ko, 10−6 cm3/s

He(23S) 4.77 3.0

He(21S) 3.97 3.9

He(23P) 3.62 4.5

He(21P) 3.37 5.0

Ar(3P2)(1s5) 4.21 3.6

Ar(1P1)(1s2) 3.93 4.0

Ar(2p10) 2.85 6.4

Ar(2p1) 2.28 9.0

Fig. 3.11 The contributions
P to consumption of the
electron energy as a result of
collisions with argon atoms
depending on the electron
energy [191]

In considering the energy loss for a fast electron moved in an atomic gas note
that the cross section of electron-atom elastic scattering exceeds that for inelastic
collisions. But the factor me/M for the mass ratio that is included in formula for
the rate of energy loss, makes the elastic channel to be weak compared to inelastic
channels at energies where inelastic collisions are effective. This is demonstrated in
Fig. 3.11 where the contribution of some channels to the electron energy loss is given
depending on the electron energy. As is seen, at low energies below the excitation
threshold the electron energy loss is determined by elastic electron-atom collisions.
An increase of the incident electron energymakes as amain channel of the energy lass
excitation of atoms and then their ionization. In particular, fast secondary electrons
resulted from cathode bombardment by fast ions consume the energy mostly in atom
ionization.
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3.7 Recombination of Electrons and Ions in Plasma

Recombination of electrons and ions requires an additional degree of freedom for
transfer of an excess energy that releases due to formation of a bound state of an
electron in the ion field. In the case of molecular ions the energy excess is consumed
on breaking of the chemical bond, and the process of dissociative recombination
proceeds according to the scheme

e + AB+ → A + B∗ (3.7.1)

The rate constant of dissociative recombination (3.7.1), that is called the coefficient
of dissociative recombination αdis is of the order of an atomic value under optimal
conditions of this process. In the helium case positions of the electron terms of mole-
cular helium ion He+

2 and excited helium molecule He∗
2 for states which partake

in process (3.7.1) is unfavorable, and hence the coefficient of dissociative recom-
bination depends strongly from vibrational and rotational states of the molecular
ion. Averaging over many measurements [190] gives for the coefficient of dissocia-
tive recombination with participation of the helium molecular ion He+

2 the value
α = 5×10−9±0.3 cm3/s at room temperature. The coefficient of dissociative recom-
bination of electrons and molecular argon ions Ar+

2 at room temperature is equal to
α = (7 ± 2) × 10−7 cm3/s as it follows from an average of a sum of experimental
results many measure αdis = 6.9 × 10−7 cm3/s [190].

The coefficient of dissociative recombination depends both on the electron tem-
perature Te and on a vibration-rotation state. Usually is assumed that the dependence
of α on the electron temperature Te at constant gas temperature αdis ∼ T 1/2

e ; if
the gas temperatures varies simultaneously with the electron one, this dependence is
more sharp αdis ∼ T 3/2

e . Note that these dependencies are rough.
Associative ionization, the inverse process with respect to dissociative recombi-

nation, proceeds according to the scheme

A + B∗ → e + AB+ (3.7.2)

andmay be responsible for formation of ions in a plasma. Another ionization process,
the Penning process [192, 193], takes place in a mixture of gases in the case when
the excitation energy of one atom exceeds the ionization potential of another one.
This process proceeds according to the scheme

A + B∗ → e + A+ + B (3.7.3)

This process is of importance for gas breakdown when a small admixture of atoms
with a small ionization potential varies the breakdown parameters. In particular, the
rate constant for the Penning process involving helium metastable atoms He(23S)

and He(21S) and argon atoms is equal to 8 × 10−11 cm3/s and 3 × 10−10 cm3/s
at room temperature [194]. In the case of the metastable argon atom Ar(3P2) that
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Table 3.5 The rate constant kP of the Penning process (3.7.4) and the energy of a released electron
�ε that corresponds to the maximum of the energy distribution function for released electrons

Colliding atoms kP , 10−9 cm3/s �ε, eV

2He(23S) 2.0 ± 0.2 14.4

He(23S) + He(21S) 4.0 ± 0.5 15.4

2He(21S) 4.1 ± 0.9 16.2

2Ar(3P2) 1.2 ± 0.2 7.3

collides with krypton and xenon atoms, and also hydrogen, nitrogen and oxygen
molecules the rate constant of the Penning process at room temperature in units cm3/s
is equal to 5× 10−12, 2× 10−10, 9× 10−11, 2× 10−10 4× 10−11 correspondingly.
The ratio of the cross section of the Penning process (3.7.4) involving metastable
atoms He(23S) and He(21S) collided with an argon atom equals to 3.1 according
to measurement [195].

The Penning process (3.7.3) proceeds also in collisions of two metastable atoms
that proceeds according to the scheme

2A∗ → A + A+ + e (3.7.4)

The rate constants of the process (3.7.4) at room temperature are given in Table3.5
together with the energy values �ε which correspond to the maximum of the
distribution function of released electrons. These data follow from measurements
[196–199]. Experiment [200] gives additional information for collisions of two
atomic beams including metastable atoms.

3.8 Three Body Processes and Stepwise Ionization of Atoms

Three body processes are responsible for formation of bound state for free colliding
particles, and a third particle takes an energy excess that releases as a result of
formation of a bound state of initially free particles. Recombination of electrons and
ions in a dense plasma results from the three body process according to the scheme

2e + A+ → e + A∗ (3.8.1)

and is a reverse process with respect to the ionization process (3.6.1). Usually the
electron temperature Te in a plasma is relatively small

Te 	 J (3.8.2)

Then electron capture on a high level results from three-body collisions, and then
an excited electron transfers in lower levels as a result of radiative transitions and
collisions with plasma electrons. This is the scheme of Bates and Kingston [201],
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Bates et al. [202, 203] for evolution of excitations in processes of ionization or
recombination.

Note that in contrast to the above elementary inelastic processes of electron-atom
collisions which result from one pair collision, the scheme of Bates and Kingston
[201], Bates et al. [202, 203] describes a many-stage process of evolution of atom
excitation states involvingmany excited atomstates.Hence three body recombination
of electrons and ions (3.8.1), as well the inverse process of stepwise ionization, is
many-step evolution on excited states. In considering transitions between excited
atom states, the scheme of Bates and Kingston [201], Bates et al. [202, 203] accounts
for both collisions of excited atoms with electrons of an equilibrium plasma and
radiative transitions involving excited atom states. Some models of this scheme is
represented in book [15].

In this context it is of interest the limit of a dense plasma when electron-atom
collision processes dominate and radiative processes are not essential.Next, due to the
criterion (3.8.2) electron energies are small and the classical description of collision
processes holds true. Then the temperature dependence for the rate constant Kei of
the three body process (3.8.1) may be determined from dimension consideration that
gives [204]

Kei = α

Ne
= C

e10

m1/2
e T 9/2

e

(3.8.3)

The same dependence of the rate constant on the process parameters follows from
the Thomson theory [205] for the three-body process that accounts for the process
nature [15]. The numerical factor in formula (3.8.3) taken from a sum of numerical
calculations is equal to [83, 190]

C = 4 × 10±0.2 (3.8.4)

Expressing the electron temperature in formula (3.8.3) in eV, one can rewrite this
formula on the basis of formula (3.8.4) in the form

Kei = α

Ne
= 1 × 10±0.2 × 10−26cm6/s

T 9/2
e

(3.8.5)

Along with the recombination process (3.8.1) with formation of an excited atom
state, a bound state of an electron and ion, it can be responsible for formation of
a bound state of heavy atomic particles. Conversion of atomic ions into molecular
ones in gases at a low temperature proceeds according to the scheme

A+ + 2A → A+
2 + A (3.8.6)

Subsequently molecular ions can be destructed as a result of dissociative recombina-
tion (3.7.1). The rate constant of this process at room temperature according to a sum
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of measurements in the helium case (A ≡ He) equals to Kas(He) = (1.0 ± 0.2) ×
10−31 cm6/s, and in the argon case it is Kas(Ar) = (2.2 ± 0.7) × 10−31 cm6/s as a
result of an average of the results of measurements [206–221]. The indicated error
results from the statistics of indicated measurements [190].

In a dense gas excited atoms are converted in excited molecules in three body
collisions according to the scheme

A∗ + 2A → A∗
2 + A (3.8.7)

The rate constant of this process involving the metastable helium atom He(23S)

in helium is equal to 2.3 × 10−34 cm6/s at room temperature, while for lowest
excited states of the argon atoms with the electron shell Ar(3p54s) in argon at room
temperature is 1.2 × 10−32 cm6/s.

Stepwise ionization of atoms in a plasma is the inverse process with respect to
(3.8.1), and in the course ionization in this process an atom passes through many
excited states. This process is of importance for a dense plasma where transitions
between excited atom states and destruction of excited atoms in collisions with
electrons dominate. Because this process is inverse with respect (3.8.1), one can
connect the rate constants of these processes on the basis of the principle of detailed
balance that gives for the rate constant of stepwise ionization in the limit of a high
electron density and small electron temperatures [190, 222]

κion = 2
gi

ga

mee10

�3T 3
e

exp

(

− J

Te

)

, Te 	 J (3.8.8)

Here the coefficient C is given by formula (3.8.4), gi , ga are the statistical weights
of an atom in an initial state and ion in the ground state, me is the electron mass, J
is the atom ionization potential.

This rate constant describes stepwise ionization at low electron temperature if the
ionization process is a sum of processes which proceed through different excited
states, and decay of these excited states results from collisions with electrons. Hence
the real rate constant of ionization of an atom in a given state is less than that according
to formula (3.8.8) and exceeds the rate constant (3.6.16). The ratio of the limiting
rate constant is

kion

κion
= 3 × 2±0.2 ga

gi

(

Te

J

)2 (

�
2Te

mee4

)3/2

(3.8.9)

One can see from this that in the limit of low electron temperatures in a dense plasma
the stepwise ionization process ismore effective than the direct one. This holds true at
low electron temperatures until processes of collision of excited atoms with electrons
suppress other channels of destruction of excited atoms as radiative processes and
collisions of excited atoms with walls. In violation of this, direct ionization of atoms
in electron-atom collisions may dominate in a plasma.
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3.9 Collision Processes Involving Ions

Processes of ion-atom collisions with a remarkable variation of ion momentum are
of importance for transport of ions in a plasma which in turn can influence on dis-
placement of a plasma as a whole in a space. Such processes involving ions are
elastic ion-atom collisions and the charge exchange process. Elastic scattering of
ions on atoms at not high plasma temperatures is determined by polarization inter-
action between ion and atom. Then the ion-atom interaction potential U (R) at large
distances R between them has the form

U (R) = − αe2

2R4 (3.9.1)

where α is the atom polarizability, the ion is assumes to be single charged, i.e. e is the
electron charge. The peculiarity of the interaction potential (3.9.1) is the possibility
of particle capture that means approach of colliding particles up to R = 0. The cross
section of capture σcap for the polarization interaction potential is [110]

σcap = 2π

√

αe2

μg2
, (3.9.2)

where μ is the reduced mass of colliding ion and atom, g is their relative velocity.
In reality, the interaction potential differs from the polarization one (3.9.1) at dis-

tances compared with atoms size and corresponds to repulsion at small ion-atom
distances. Therefore the capture cross section (3.9.2) means only a strong approach
of colliding ion and atom compared to the impact parameter of collisions. Neverthe-
less, the diffusion cross section of ion-atom collision for the polarization interaction
potential (3.9.1) between them σ ∗

ia is close to the capture cross section (3.9.2) and is
equal to [225] σ ∗

ia = 1.10σcap.
The resonant charge exchange in ion collision with own atom proceeds according

to the scheme

A+ + ˜A → ˜A+ + A, (3.9.3)

where tilde marks one of colliding particles. Usually at room temperature and higher
collision energies the cross section of resonant charge exchange exceeds remarkable
the cross section of ion-atom elastic collision, and therefore transport of ions in the
parent gas is determined by resonant charge exchange.

The cross section of resonant charge exchange is large because this process results
from interference the even and odd states of the system of colliding ion and atom
[224]. This nature of interaction causes the transition of a valence electron between
atomic cores at large distances between them also for the classical character of
electron motion [225]. A tunnel character of electron transition leads to a weak
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Table 3.6 The cross sections
of resonant charge exchange
σres are expressed in
10−16 cm2, an argument
indicates colliding particles,
and the collision energy ε is
taken in the laboratory frame
of reference [41]

ε, eV σres(He+ + He) σres(Ar+ + Ar)

0.01 43 83

0.03 39 77

0.1 35 70

0.3 32 64

1 28 58

3 25 52

10 24 47

logarithm dependence of the cross section of resonant charge exchange σres on the
collision velocity v [226, 227]

σres(v) = C ln2
(vo

v

)

, (3.9.4)

where C and vo are constants. This dependence can be represented in the form

σres(v) = π

2

[

Ro + 1

γ
ln

(vo

v

)

]2

, (3.9.5)

where π R2
o is the cross section at the collision velocity vo; the ionization potential J

and the parameter γ of this formula are connected by the relation J = �
2γ 2/(2me).

Becausewe are guided by a gas discharge plasmaof heliumand argon,we consider
the resonant charge exchange in these cases. Table3.6 contains the cross sections of
resonant charge exchange for these cases [228–230]. Then formula (3.9.4) for the
cross sections of resonant charge exchange in a given range of collision energies has
the form

σres(He+ + He) = (5.5 − 0.28 ln ε)2

in the helium case and

σres(Ar+ + Ar) = (7.62 − 0.326 ln ε)2

in the argon case. In these formulas the cross section of resonant charge exchange
σres is expressed in Å2, and the ion energy ε is given in eV in the laboratory frame of
reference (an atom is motionless). An argument indicates particles involving in this
process. In addition, Table3.6 contains the values of the resonant charge exchange
cross sections for the helium and argon cases at collisions energies which are of
interest for a gas discharge plasma.



Chapter 4
Radiative Processes in Gas Discharge Plasma

Abstract Radiative plasma processes under consideration includes radiative
transitions between discrete atom levels, photoionization of atoms and photorecom-
bination of electrons and ions. Propagation of resonant photons in a gas including
reabsorption of photons in the course of this process is analyzed, and parameters of
this process for helium and argon are represented.

4.1 Radiative Transitions in Atoms

Electrons in a gas discharge plasma are able to excite atoms, and therefore a gas
discharge plasma may be used as a basis of lamps in light sources [235–237] and
lasers [238–242]. In considering the radiation processes in a gas discharge plasma,
we pay attention to two of them—dipole radiative transitions in atoms and pho-
torecombination radiation involving electrons and ions of a gas discharge plasma.
We analyze interaction of atomic particles of a gas-discharge plasma with a weak
electromagnetic field as it take place in gas discharges, so that the intensity of this
electromagnet field is small in comparison with the corresponding atomic value, and
therefore typical times of radiative transitions are large compared to typical atomic
times; one more small parameter respects to this interaction when valence electrons
partake in radiative transitions and their typical velocity is small compared to the
light speed c. A small parameter of radiative transitions is the fine structure constant
α = e2/(�c) = 1/137, where e is the electron charge, � is the Planck constant, c is
the light velocity, and e2/� is a typical atomic velocity that corresponds to a typical
velocity of valence electrons on their orbits. If we characterize a radiative transition
between two atomic states by the radiative lifetime of the upper state with respect
to the radiative transition τr , for strongest transitions this time is τr ∼ τo

r = α3τo,
where τo = 2.42 × 10−17 s is the atomic time, and τo

r = 6.2 × 10−11 s.
In addition, we will consider the strongest interaction between the radiation field

and atomic system whose interaction operator has the form ̂V = −ED [151, 153],
where E is the electric field strength of the radiation field, D is the dipole moment
operator of the atomic system. Therefore the strongest radiative transitions are called
dipole transitions and connect transition states with non-zero matrix element of

© Springer International Publishing Switzerland 2015
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Table 4.1 Parameters of radiative transitions involving lowest excited states of helium and argon
atoms

Radiative transition �ε (eV) λ (nm) τr (ns)

He(21P → 11S) 21.22 58.433 0.56

He(23P → 23S) 1.144 1083 98

He(21P → 21S) 0.602 2058 500

Ar(3p54s3P1 → 11S) 11.62 106.67 10

Ar(3p54s1P1 → 11S) 11.83 104.82 2

�ε is the transition energy, λ is the wavelength of an emitting photon, τr is the radiation lifetime
with respect to this transition [109]

the dipole moment operator. We restrict below by only such radiative transitions.
The upper excited state of a radiative transition is named as a resonantly excited
state if the dipole radiative transition in the ground state is possible from this state.
For example, for the helium atom this state is He(21P) and for the resonantly excited
argon atoms are Ar(33P1) and Ar(31P1). Table4.1 lists parameters of radiative tran-
sitions involving lowest excited states of helium and argon atoms. Note that the radia-
tive time for these transitions exceeds τo

r , because the interaction is shared between
many excited states and the transition energy is less than the atomic one.

We also give the expression for the rate of dipole radiation [151–153], i.e. the
lifetime τr of a resonantly excited state with respect to spontaneous radiative transi-
tion into the group of lower transition states according to formula (3.4.3)

1

τr
= 4ω3

3�c3
|〈0|D|∗〉|2go (4.1.1)

Here indices 0, ∗ relate to the group of lower and upper states of the radiative tran-
sition, D is the dipole momentum operator, ω is the transition frequency, go is the
statistical weight of a lower transition state, c is the light velocity.

Because processes in a helium and argon gas discharge plasma is the subject
of the subsequent analysis, we represented in Fig. 2.6 the Grotrian diagram for the
helium atom. The Grotrian diagram includes along with positions of excited atoms
some parameters of radiative transitions between states, usually dipole radiative
transitions. In the argon case we gave in Fig. 2.7 the lower part of this diagram which
contains radiative transitions between lower excited states of the argon atomwith the
electron shells Ar(3p54s) and Ar(3p54p). Because these transitions are determined
mostly by transitions of a valence electron, radiative transitions from states with the
electron shell Ar(3p54p) in the ground electron state Ar(3p6)(1S) are forbidden in
the dipole approximation.

http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_2
http://dx.doi.org/10.1007/978-3-319-11065-3_2
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4.2 Photoionization and Photorecombination Process

The photoionization process proceeds according to the scheme

�ω + A → e + A+, (4.2.1)

and the opposite process, the process of photorecombination, is

e + A+ → �ω + A (4.2.2)

We first derive the connection between the cross sections of processes (4.2.1) and
(4.2.2) on the basis of the principle of detailed balance [243]. We have the following

grecσrec ji = gionσion jp,

where σi , σr are the cross sections of photoionization and photorecombination
correspondingly, gion, grec are the statistical weights of for these states, je, jp are
the fluxes of electrons and photons in these channels. Taking the statistical weights
as a number of states per one electron or photon, we have

grec = gegi
4πk2dk

(2π)3
, gion = ga · 24πq2dq

(2π)3
,

where ge, gi , ga are the statistical weights of an electron, ion and atom with respect
their electron states, k, q are the wave vectors of a photon and electron, the factor 2
accounts for two photon polarizations, and we consider the ion to be motionless in
this consideration. Because one photon is located in this volume V , we have for a
photon flux jp = c/V and an electron flux je = ve/V , where c is the light velocity,
and the electron velocity is ve = �q/me.

Using the conservation energy for these transitions

�ω = J + �
2q2

2me
,

where J is the atom ionization potential, and the dispersion relation for the photon
ω = kc, we have

σrec = 2ga

gegi

k2

q2 σion (4.2.3)

We now give the expression for the photoionization cross section in the limiting
cases. When an atom A in processes (4.2.1) and (4.2.2) is the hydrogen atom in the
ground state [244–246]
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σion = 29π2

3

e2

�c
a2

o F(aoq), F(x) = exp
(− 4

x arctan x
)

(1 + x2)4[1 − exp(− 2π
x )] (4.2.4)

In the limit x → 0 we have

F(0) = 1

exp(4)

(ωo

ω

)8/3

where �ωo = Ry = 13.6 eV is the ionization potential for the hydrogen atom in the
ground state. This give in the limit when the photoionization process proceeds near
the threshold

σion = σo

(ωo

ω

)8/3
, (4.2.5)

where the parameter σo, the photoionization cross section at the threshold, is equal

σo = 29π2

3 exp(4)

e2

�c
a2

o = 0.225a2
o = 6.3 × 10−18 cm2 (4.2.6)

The principle of detailed balance (4.2.3) gives on the basis of formula (4.2.5)
the following expression for the photorecombination cross section involving a slow
electron in the ground state of the hydrogen atom

σrec = 2ω2

c2q2 σion = 29π2

3 exp(4)

(

e2

�c

)3
ω
5/3
o

ω2/3(ω − ωo)
a2

o = σ1
ω
5/3
o

ω2/3(ω − ωo)
,

(4.2.7)

where

σ1 = 28π2

3 exp(4)

(

e2

�c

)3

a2
o = 0.225a2

o = 1.7 × 10−22 cm2 (4.2.8)

In the case of a highly excited initial atom state when a transferring electron is
described due to classical laws, the photoionization cross section is given by the
Kramers formula [247]

σion = σK

n5

(ωo

ω

)3
, (4.2.9)

where n is the principal quantum number of a bound electron in the initial state, and
averaging is fulfilled over other quantum numbers of this electron; the parameter σK

in this formula is equal
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σK = 64π

3
√
3

e2

�c
a2

o = 7.9 × 10−18 cm2 (4.2.10)

Correspondingly, according to the principle of detailed balance (4.2.3) formula
(4.2.9) gives for the photorecombination cross section when the final atom state
is a highly excited state with the principal quantum number n

σrec = 32π

3
√
3

(

e2

�c

)3
ω2

o

ω(ω − ωo/n2)

a2
o

n3 = 8π

3
√
3

(

e2

�c

)3
e4

�ωεn3 , (4.2.11)

where �ωo = mee4/�
3, 2ωoao = e2/�, n is the principal quantum number of a

transferred electron in the final state. Kramers formulas correspond to the limit when
both transition states may be described classically [248]. Transitions between excited
states respect to this limit, and this follows from Tables for parameters of radiative
transitions of an electron that is located in the central field of an atomic core [249].

It is of interest to use the Kramers formula (4.2.9) for photoionization of the
hydrogen atom in the ground state when the classical description of a transferring
electron is not valid. In this case according to this classical description the threshold
photoionization cross section is equal to σK of formula (4.2.10) that is 25% higher
than the accurate value (4.2.6) of this quantity. This means that two limiting cases
under consideration are able to give correct estimations of radiative parameters for
real cases. Note that if the electron shell of an atom contains several valence electrons,
the above general peculiarities are conserved [250].

4.3 Broadening of Spectral Lines

Radiation due to a certain radiative transition is monochromatic in scales of emitting
photons, i.e. a width of frequencies of emitting photons is small compared with
the frequency of this radiative transition. Nevertheless this narrow spectrum is of
importance for reabsorptionprocesses, and thereforeweanalyzenow themechanisms
of broadening of spectral lines.

Let us introduce in this manner the distribution function of emitting photons aω

[152], so that aωdω is the probability that the emitting photon frequency lies in a
range between ω and ω + dω. Because the probability is normalized to one, the
frequency distribution function of photons aω satisfies to the relation

∫

aωdω = 1, (4.3.1)

and in scales of emitting photons the photon distribution function is given by

aω = δ(ω − ωo) , (4.3.2)
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where ωo is the frequency of an emitting photon. This means that spectral line is
narrow, i.e. the line width �ω is small compared to its frequency

�ω � ωo

We first find the frequency distribution function aω due to a finite lifetime of
transition states. Note that the amplitude of radiative transitions is expressed through
the matrix element between transition states, and we analyze the time dependence
of the matrix element. Since the stationary wave function of a state k contains a
time factor exp(−i Ekt/�), where Ek is the energy of this state, the matrix element
for transition between stationary states i and k includes the time factor exp(−iωot),
where ωo = (Ei − Ek)/�. If we account for a finite lifetime τr of an upper state
and represent the wave function of this state as exp(−i Ei t/� − t/2τr ), the time
dependence of the matrix element for transition between two states has the form
c(t) = (−iωot − t/2τr ). Hence, the frequency dependence for a matrix element, the
Furie component from the function c(t), is given as cω ∼ |i(ω − ωo) + 1/2τr |, and
therefore the frequency distribution function of emitting photons is

aω = |cω|2 = ν

π
· 1

(ω − ωo)2 + ν2
, (4.3.3)

where ν = 1/(2τr ) is the spectral line width.We above account for the normalization
of the frequency distribution function according to the condition (4.3.1). This shape
of the frequency distribution function is named the Lorenz one.

We now consider anothermechanismof broadening of spectral lines due tomotion
of emitting atoms. Indeed, if an emitting particles moves with respect to a receiver
with a velocity vx and emits a photon of frequency ωo, according to the Doppler
effect it is perceived by the receiver as having the frequency

ω = ωo

(

1 + vx

c

)

, (4.3.4)

where c is the light velocity. Therefore if radiating atoms are distributed over veloc-
ities, their radiation by a motionless receiver will be detected as to be frequency dis-
tributed. This distribution is determined by the velocity distribution function f (vx )

of radiating atoms.
If the atom distribution function is normalized by unity (

∫

f (vx )dvx = 1), the
frequency distribution function follows from the relation

aωdω = f (vx )dvx ,

Let us consider a spread case with the Maxwell distribution over velocities and are
characterized by the distribution function
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f (vx ) = C exp

(

−mv2x

2T

)

,

where T is the atom temperature expressed in energetic units, m is the radiating
particle mass, C is the normalized constant. From this we find for the frequency
distribution function that is normalized according to the condition (4.3.1)

aω = 1

ωo

(

mc2

2πT

)1/2

· exp
[

−mc2(ω − ωo)
2

2T ω2
o

]

(4.3.5)

Note that the ratio of a typical spectral line width due to Doppler broadening �ωD

to the photon frequency ωo, that is the ratio of atom thermal velocity to the light
velocity, is relatively small

�ωD

ωo
∼

√

T

mc2

For example, for heliumatoms at room temperature the right-hand side of this relation
equals to 2.6 × 10−6.

Broadening of spectral lines is of importance for a gas discharge plasma where a
radiating atom interacts with surrounding atomic particles. This broadening may be
divided in two limiting cases. In the first case collision of individual particles of this
plasma with a radiating atom proceeds fast, and these collisions are seldom, i.e. at
each timemoment an interaction of a radiating atom is possible with one surrounding
atomic particles only. This mechanism relates to a rare plasma. The other limiting
case corresponds to interaction of a radiating atom with many surrounding atomic
particles and relates to a dense plasma. The first case of broadening of spectral lines
is described by the impact theory, and the second case respects to the quasistatic
theory of broadening of spectral lines.

In the case of impact broadening of spectral lines, the phase of the transitionmatrix
element get a change during each interaction of a radiating atom with an incident
atom. Then the width of a spectral line is characterized by the rate of collisions of
an radiating atom with atomic particles (atoms, electrons, ions) of a plasma and is
given by the cross section σb that determines broadening of a spectral line as a result
of collisions. Describing the frequency distribution function of photons aω by the
Lorenz formula (4.3.3), we have for the collision rate in this formula ν = Na〈vσb〉.
The cross section σb that characterizes broadening of a spectral line is connected
with the total cross section by the relation [152] σb = σt/2, where σt = ∫

dσ is the
total cross section of collision between a radiating atom and atomic particles, and an
average is made over the velocity distribution function of colliding particles.

Note that though perturbation of a radiating atom proceeds in both upper and
lower transition states, we reduce the interaction to the upper state only because of
a more strong interaction for this state. Next, the total cross section σt is based on
the phase shift, that in its turn is determined in the classical limit as

∫

U (R)dt/�, so
that U (R) is the interaction potential between colliding particles at the distance R
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between them. Hence, in the classical limit the total cross section σt of collision is
estimated as

σt = πρ2t ,
U (ρt )

�
∼ v

ρt
, (4.3.6)

where v is the relative velocity of colliding particles, and the quantity Ro is called the
Weiskopf radius. The criterion of validity of this broadeningmechanism corresponds
to a small probability of perturbed particle location in a region of a Weiskopf radius
size formula that gives

Naσ
3/2
t � 1 , (4.3.7)

In the case of the opposite criterion with respect to (4.3.7) the quasistatic theory
of spectral line broadening is realized. This theory assumes perturbed particles to
be motionless during times which are responsible for broadening. Assuming the
interaction potential of a radiating atomwith perturbed atomic particles to be pairwise
and isotropic, we find the frequency distribution function on the spectral line wing.

The wing of a spectral line is determined by location of perturbed atomic particles
on a small distances from a radiating atom where the probability of location of
perturbed particles is small. This gives for the frequency distribution function

aωdω = w(R)d R = Na · 4πR2d R

where w(R)d R is the probability of location of a perturbed particle in a distance
range from R up to R + d R for the radiating atom. This gives

aω = 4πR2Na�(dU/d R)−1 (4.3.8)

where we assume a monotonic dependence U (R). One can estimate the spectral line
width for the quasistatic theory of broadening as

�ω ∼ U (N−1/3
a )

�
(4.3.9)

We now write the criterion of validity of the quasistatic theory of broadening that
is based on the assumption of immobility of perturbed atomic particles during times
which are responsible for broadening. We have for a typical time of a particle shift
τ ∼ N−1/3/v, because N−1/3 is the average distance between perturbed particles.
Because τ ∼ (�ω)−1, on the basis of formula (4.3.9) we have for this criterion

U (N−1/3
a )N−1/3

a

�v
	 1 (4.3.10)
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Comparing this criterion with formula (4.3.6) of definition of the Weiskopf radius
and assuming the monotonic dependence U (R), we find from this the criterion of
validity of the quasistatic theory in the form

ρt N 1/3
a 	 1 (4.3.11)

One can see that this criterion is opposite to (4.3.7) and is based on the assumption
that the probability to locate for two and more surrounding particles in a region
of a strong interaction with a radiating atom is small. A typical size of this region
correspond to ρt ∼ √

σt , and the criterion of the collision broadening of a spectral
line for a typical frequency shift is (4.3.7), i.e. the impact theory and quasistatic
theory of broadening of spectral lines relate to opposite cases of interaction of a
radiating atom with surrounding atomic particles.

We now consider in detail broadening of the spectral line that results from tran-
sition from the resonantly excited state in the ground atom state and broadening
proceeds due to collision between atoms in the ground and resonantly excited states.
The operator of the interaction that governs by broadening of the spectral line in this
case has the form

U (R) = D1D2 − 3(D1n)(D2n)

R3 (4.3.12)

Here R is the distance between colliding atoms, n is the unit vector directed along
R, D1, D2 are the dipole moment operator for an indicated atom. Since the matrix
element d = |〈o|D|∗〉| is nonzero, the total cross section for collision of these atoms
that is responsible for broadening in this case, according to formula (4.3.6) equals to
σt ∼ d2/�v, where v is the collision velocity.

In this case of spectral line broadening the frequency distribution of emitting
photons has the Lorenz form according to formula (4.3.3), where the line width is
given by [152]

ν = 1

2
Na〈vσt 〉, (4.3.13)

Na is the number density of atoms in the ground state, σt is the total cross section
of collisions of atoms in the ground and resonantly excited state, and averaging
is made over collision velocities. In the case under consideration the interaction
potential between colliding atoms is U ∼ d2/R3, where d is the matrix element
from the operator of the atom dipole moment, R is a distance between colliding
atoms. One can estimate a typical cross section for scattering of atoms by large
angles in the standard way [208, 251]

σ ∼ R2
o,

U (Ro)

�
∼ v

Ro
,
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that gives for the cross section of atom collision σ ∼ d2/v. The numerical coefficient
in this expression for the cross section depends on the symmetry of the ground and
excited atom states. In particular, if the ground atom state is 1S, and resonantly excited
atom state is 1P , the total cross section of for collision of atoms in the ground and
resonantly excited states is [252]

σt = 4.8π
d2

�v
, (4.3.14)

and the matrix element d from the dipole moment operator taken between radial
wave functions is connected with the oscillator strength f of this transition by the
relation

f = 2me�εd2

e2�2
, (4.3.15)

where �ε is the energy of this transition. From this one can find the width of the
spectral line for the radiative transition A(1S) + �ω → A(3P) [252]

ν = 2.4πNad2

�
(4.3.16)

As is seen, the width of the spectral line is independent of atom velocities. In par-
ticular, in the case of collision of helium atoms in the ground He(11S) and the
lowest resonantly excited state He(3P), where the wavelength of this transition is
λ = 58.4 nm, the radiative lifetime of the excited state is τ = 0.56 ns, the oscillator
strength for transition between these states is f = 0.276, and d2 = 0.177e2a2

o , we
have for the reduced width of the spectral line

ν

Na
= 2.4πd2

�
= 8.2 × 10−9 cm3/s (4.3.17)

Let us consider briefly the quasistatic theory of broadening of a spectral line in the
case of a resonantly excited radiating atoms where the interaction potential operator
has form (4.3.12). There are in this case several states of the quasimolecule consisting
of interacting atoms, and these states differ by the momentum projections and the
state parity. Averaging over these states, we have the estimation for interaction in this
case U ∼ d2/R3, and formula (4.3.8) gives for the frequency distribution function
at the line wings

aωdω ∼ Nad2

�

dω

|ω − ωo|2 (4.3.18)

As is seen, the character of line broadening is the same as for the Lorenz mechanism
of line broadening, but an average over states has another form.
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One can see that if broadening of a spectral line is connected with interaction
of a radiating atom with surrounding atomic particles, the character of broadening
transfers from the Lorenz one, where it is determined by collision processes, to the
quasistatic casewith interaction ofmotionless atomic particles, as the number density
of atomic particles or the frequency shift are increased. The criterion of the Lorenz
broadening of spectral lines requires a fast flight of a perturbed atomic particle and
has the form

v

ρb
	 |ω − ωo|, (4.3.19)

where ρb is the impact parameter for collision created broadening that follows from
the relation for the total cross section σt = πρ2b/2 of scattering of a radiating atom
and a perturbed atomic particle. In particular, if the broadening of a spectral line is
determined by interaction of a resonantly excited radiating atom with a parent atom
in the ground state, i.e. if the interaction potential operator has form (4.3.12), the
criterion of the Lorenz mechanism of line broadening is given by

|ω − ωo|2 � �v3

d2 (4.3.20)

This criterion for the central part of a spectral line |ω − ωo| ∼ ν takes the form

Na � 0.1

(

�v

d2

)3/2

(4.3.21)

One can see that it is opposite to the criterion (4.3.10), if we neglect by numerical
coefficients. As we remove from the spectral line center, conditions for the Lorenz
mechanismof spectral line broadening becomeworse, and the criterion of the validity
of this broadening mechanism is given by (4.3.20). Note also that in the above
consideration we assume �|ω − ωo| � T and for room temperature this gives
|ω − ωo| � 200 cm−1. This criterion allows us to consider the collision energy of
colliding atoms in the ground and excited states to be large compared to the splitting
between energies of electron terms which determine the broadening cross section.

4.4 Cross Section and Absorption Coefficient
for Resonant Photons

Let us consider the behavior of an atom that is located in an electromagnetic field of
frequency ω. This field can cause atom transitions between a lower o and excited ∗
states. Then the rates of transitions between these states (the transition probabilities
per unit time) may be represented in the form



76 4 Radiative Processes in Gas Discharge Plasma

w(o, nω → ∗, nω − 1) = A · nω; w(∗, nω → o, nω + 1) = 1

τ
+ B · nω, (4.4.1)

where τ is the radiative lifetime of an excited state ∗ with respect to spontaneous
radiative transition to a state o, nω A and B are the Einstein coefficients [253]. The
arguments of the transition rates indicates that atom excitation is accompanied by
absorption of one photon of a given frequency, and atomquenching leads to formation
of one photon.

The expressions of the Einstein coefficients A and B may be obtained from the
balance of these radiative transitions under thermodynamic equilibrium. Indeed,
under equilibrium the number of transitions in both direction are equal, i.e.

Now(o, nω → ∗, nω − 1) = N∗ w(∗, nω − 1 → o, nω),

where No, N∗ are the number densities of atom in the lower and upper states of
transition, nω is the number of photons of a given frequency in one state. Under
thermodynamic equilibrium the number density of atoms in a given state is given
by Boltzmann formula, and the number of photons in one state of frequency ω is
determined by the Planck formula [254, 255], and hence we have

N∗ = g∗
go

No exp

(

−�ω

T

)

, nω =
[

exp

(

−�ω

T

)

− 1

]−1

,

where T is the temperature expressed in energy units, go, g∗ are the statistical weights
of the lower and upper states, and the photon energy �ω coincides with the energy
difference between the two states. Substituting these expressions in the balance equa-
tion and equalizing terms which do not contain terms exp(−�ω/T ) and contain this,
we get for the Einstein coefficients

A = g∗
goτ

, B = 1

τ
(4.4.2)

Let us derive the expression for the absorption cross section that is according to
the cross section definition the ratio of the transition rate w(o, nω → ∗, nω − 1) to
the photon flux jω . The photon flux is jω = cd Nω , where the number density of
photons in a range of photon wave vectors is d Nω = 2nωdk/(2π)3, so that k is the
photon wave vector, dk/(2π)3 is the number of states in a range dk of the wave
vector values, and the factor 2 accounts for the two independent polarization states.
From this it follows for the photon flux jω = ω2dω/(π2c2) if we use the dispersion
relation ω = kc for photons. Finally, we find for the absorption cross section σω

σω = w(o, nω → ∗, nω − 1)

jω
= Anω

jω
= π2c2

ω2 · g∗
go

· aω

τ
= λ2

4
· g∗
go

· aω

τ
(4.4.3)
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In the same manner one can derive the expression for the stimulated cross section
σ′

ω as the ratio of the rate of photon formation under action of the radiation field Bnω

to the photon flux jω . We obtain

σ′
ω = Bnω

jω
= π2c2

ω2 · aω

τ
(4.4.4)

Let us introduce the absorption coefficient kω such that the intensity of radiation
Iω of frequency ω that propagates in a gas of atoms in direction x , is given by

d Iω
dx

= −kω Iω , (4.4.5)

One can see that 1/kω is the mean free path of photons in a gas of atoms. According
to the definition, the absorption coefficient kω is expressed through absorption cross
section σω and the cross section of stimulated radiation σ′

ω as

kω = Noσω − N∗σ′
ω = Noσω

(

1 − N∗
No

go

g∗

)

(4.4.6)

If the distribution of atom densities is determined by the Boltzmann formula (2.1.5),
the expression for the absorption coefficient takes the form

kω = Noσω

[

1 − exp

(

−�ω

T

)]

(4.4.7)

We have for the absorption coefficient (4.4.7) in the spectral line center with using
the expression (4.4.3) for the absorption cross section

ko = Noσω ∼ No
c2

ω2

ao

τ
(4.4.8)

Since the frequency distribution function at the cental frequency is ao ∼ 1/�ω ∼
�/(Nod2) and the radiative time according to formula (4.1.1) is 1/τ ∼ ω3d2/(�c3),
the absorption coefficient at the spectral line center is estimated as

ko ∼ ω

c
∼ 1

λ
, (4.4.9)

where λ is the wavelength for radiation. As it follows from this, the mean free path
of resonant photons at the center of the resonant spectral line is of the order of the
wavelength λ of resonant radiation. This is determined by the identical nature of
interaction for atom resonant radiation and for collisions of atoms in the ground and
resonantly excited states.

http://dx.doi.org/10.1007/978-3-319-11065-3_2
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Using this fact, we determine now the absorption coefficient for the line center
for the radiative transition

A(1P) → A(1S) + �ω, (4.4.10)

where A(1S) is the ground atom state, so that the total collision cross section σt

involving the ground 1S and resonantly excited atom state 1P is given by formula
(4.3.14) [252]

σt = 4.8πd2

�v

Here d is the matrix element of the dipole atom moment for transition between these
states, and the line width due to collisions is [152] ν = Navσt/2. According to
formulas (4.3.3), (4.3.16), (4.4.3), and (4.4.6) we have for the absorption coefficient
in the line center

ko = πc2

2ω2

1

vσtτr

g∗
go

, �ω 	 T, (4.4.11)

The radiative lifetime τr of an isolated atom in the ground state due to the dipole-
dipole interaction is given by [152, 153]

1

τr
= 4ω3

3�c3
d2go, (4.4.12)

where the matrix element of the dipole moment operator d is taken between radial
wave functions of the valence electron. We note that introducing the matrix element
of the operator of the dipole moment d, we average it over polarization of the electro-
magnetic wave. If we account for the polarization of an electromagnet wave, we also
take into account the selection law for a radiative transition, and as a consequence
from this the final state of the transition between states s and p of a valence electron
is chosen depending on the wave polarization. This means that for a given wave
polarization we have go = g∗ = 1, and after averaging over a wave polarization we
obtain

ko = ωg∗
1.8c

= 3.5

λ
(4.4.13)

In particular, for the resonant transition in helium

He(21P) → He(11S) + �ω

with the wavelength λ = 58.43 nm this formula gives ko = 6.0 · 105 cm−1. In the
case of the resonant transitions in argon
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Ar(3p54s)(1P1) → Ar(3p6)(1S1) + �ω, Ar(3p54s)(3P1) → Ar(3p6)(1S1) + �ω

with the wavelengths λ = 104.8 nm and λ = 106.7 nm we have approximately
ko = 3.3 · 105 cm−1 for these states Ar(1P1) and Ar(3P1). As is seen, the mean free
path of a resonant photon at the line center ∼ 1/ko is small compared with a typical
laboratory size.

4.5 Propagation of Resonant Radiation in the Gas

Atomic radiative transitions are of interest for a gas discharge plasma in two
relations—for kinetics of excited atoms and when this plasma is a source of radia-
tion. Let us consider kinetics of excited atoms when it is governed by the following
processes

e + A ←→ e + A∗ ; A∗ → A + �ω , (4.5.1)

where A, A∗ are the atoms in the ground and excited states, and �ω denotes a res-
onance photon. Taking A∗ to be a resonantly excited state, we obtain the following
balance equation on the basis of the above scheme of processes

d N∗
dt

= Ne Nokex − Ne N∗kq − N∗
τ

, (4.5.2)

where No, N∗ are the number densities of atoms in the ground and resonantly excited
states, Ne is the number density of electrons, kex is the rate constant of atom excitation
by electron impact, kq is the rate constant of quenching of a resonantly excited atom
by electron impact, and τ is a lifetime of the resonantly excited atom with respect to
radiation, and this lifetime accounts for the reabsorption process if it takes place, i.e.
τ ≥ τr , where τr is the radiative lifetime of an isolated atom. The solution of this
equation under stationary conditions gives

N∗ = No
kex

kq

(

1 + 1

Nekqτ

)−1

(4.5.3)

From this formula it follows that radiation does not violate an equilibrium in the
plasma if the following criterion is fulfilled

Nekqτ 	 1 (4.5.4)

Under the opposite criterion, when electron-atom collisions do not restore the equi-
librium number density of excited atoms, it is given by

N∗ = No Nekexτ (4.5.5)
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Let us introduce the optical thickness u of a plasma for a given photon frequency
ω as u = kω L , where L is a plasma size. We below consider the case of optically
thick plasma for the center of the resonant spectral line uo = ko L 	 1 and analyze
the character of plasma radiation in this case. We find first the probability P(L) that
a resonant photon propagates on a distance L without absorption. This probability is
the product of the probability aωdω for photon emission at a given frequency ω and
the probability exp(−kω L) of photon surviving, i.e. this quantity is equal to [256,
257]

P(L) =
∫

aωdω exp(−kω L) (4.5.6)

For the Lorentz line shape (4.3.3) we introduce a new variable s = (ω − ωo)/ν and
take the optical thickness of this plasma for the line center as u = ko L . Then we have

aωdω = ds

π(1 + s2)
, kω = ko

1 + s2
,

and formula (4.5.6) gives for the probability of photonpropagation on agivendistance
for a large optical thickness u [256, 257]

P(L) = 1√
πu

, u 	 1 (4.5.7)

In the case of the Doppler shape of the spectral line, using a new variable

t = u exp

[

−mc2

2T

(

ω − ωo

ωo

)2
]

,

we obtain for the probability for photon surviving when it passes a distance L

P(L) = 1√
πu

u
∫

0

e−t dt
(

ln
u

t

)−1 = 1√
πu

√
ln u + C

, u 	 1 (4.5.8)

where C = 0.577 is the Euler constant.
Let us consider competition of thesemechanisms of broadening in order to choose

the strongest one among them. In the case of reabsorption of resonant photons we
obtain different contribution to the broadening of spectral lines depending on a dis-
tance passed by radiation. The ratio of probabilities of surviving of resonant photons
after propagation on a distance L is equal according to formulas (4.5.7) and (4.5.8)

PL(L)

PD(L)
= kD L

√
ln(kD L) + C√

kL L
, (4.5.9)



4.5 Propagation of Resonant Radiation in the Gas 81

where PL(L) and PD(L) are the probability of photon surviving as a result of its
propagation on a distance L , kL and kD are the absorption coefficients at the line
centers for the Lorentz and Doppler broadening mechanisms. In particular, one can
find from formula (4.5.9) that if the Doppler width of the spectral line for an indi-
vidual atom is larger than the Lorenz width, i.e. the Doppler mechanism determines
radiation of an optically think plasma, for an optically thick plasma the role of the
Lorenz mechanism of broadening increases. Indeed, the ratio (4.5.9) increases with
an increasing L , and if at small L it is smaller one, it exceeds one at some L .

We note the assumption used that the rate of radiation of a photon of a given
frequency is proportional to the photon distribution function aω , i.e. we are based
on the principles of statistical physics. Then a given distance is reached without
reabsorption by photons whose mean free path is compared to this distance. Because
wings of the Doppler spectral line drop sharper than that in the case of the Lorentz
spectral line, the probability to propagate on large distances for the Lorentz spectral
line is larger than that for the Doppler one.

It should be noted that in the case under consideration, where ko L 	 1 the
character of propagation of resonant photons through a gas differs from the diffusion
character of propagation if a particle with a small mean free path moves in a gas.
Since in this case photons are absorbed at one frequency and are emitted at other
one, they reach the plasma boundary as a result single reabsorption at a central part
of the spectral line, and by single reabsorption at the wing of the spectral line. This
leads to broadening of the wavelength for radiation that passes through an optically
thick gas. One can determine the width of this line such that the mean free path of
photons at the boundary frequency is comparable with a plasma dimension, i.e. in the
case where an uniform plasma fills an infinite cylinder tube the boundary frequency
ω is given by kω L ∼ 1. Then denoting the line width as �L , we have on the basis of
formula (4.3.3) we have for the Lorenz mechanism of broadening

�ωL ∼ ν
√

ko L, (4.5.10)

and for the Doppler mechanism of broadening (4.3.5) the width of the frequency
distribution function for the yield radiation has the form

�ωD ≈ �ωD√
π

ln(ko L)
√

ko L, (4.5.11)

where �ωD = 1/a(ωo) = ωo

√

(2πT/mc2) is the width of the spectral line for radi-
ation of a single atom. In the case of competition of these mechanisms of broadening
it is necessary to choose such of the larger width.

Note that radiation fluxes at frequencies where a uniform plasma is optically
thick have the same order of magnitude, but these fluxes are determined by different
plasma volumes. For the line center the radiation flux is created by a region near
the surface that restricts this plasma, and a typical depth of this region is ∼1/ko,
whereas the main part of the spectral line corresponds to the total plasma volume.
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Fig. 4.1 Geometry of formation of the photon flux from a region filled by a uniform plasma. 1—a
point of photon emitting of an individual photon that is directed to a point 2 of the plasma surface
and gives a contribution to a total photon flux j through this point. 3 is the plasma boundary

This character of broadening of plasma spectral lines leads to a specific effect that
is called a self-reversal of spectral lines and consists in a depression of the spectral
line center. This effect relates to a non-uniform plasma when the number density of
excited atoms (or the plasma temperature) drops near the plasma boundary. Then the
radiation flux for the central part of the spectral line is created by a plasma region
near its boundary is lower than that for wings of the spectral line for which the total
plasma volume is responsible.

We now determine the flux of resonant radiation through a boundary that separates
a uniform plasma from a vacuum. The number density of resonantly excited atoms
is N∗ the number density of atoms in the ground state is Na , and resonant photons
occur as a result of the radiative transition between these states. Then the radiative
flux resulted from the radiative transitions between indicated states is given by

jωdω =
∫

N∗(r)dr
τ

· aωdω · 1

4πr2
· exp

⎛

⎝−
r

∫

0

kωdr ′
⎞

⎠ · cos θ (4.5.12)

We construct this radiative flux in accordancewith notations of Fig. 4.1 as a product of
several factors assuming that emitted photons are distributed isotropically. In formula
(4.5.12) the first factor is the rate of photon emission in a given volume element, the
second factor is the probability of photon generation in a given frequency range, the
third factor accounts for that the emission rate relates to the square 4πr2 where r is
the photon way inside a plasma, the fourth factor is the probability that the emitted
photon reaches the surface, and the last factor accounts that the photon trajectory
intersects the plasma surface with an angle θ. Because of the plasma uniformity, we
obtain for the total flux of photons j , introducing the probability P(r) for a photon
to propagate on a distance r without absorption

j =
∫

jωdω = N∗
τ

∫

P(r)dr
4πr2

· cos θ (4.5.13)

In integrating formula (4.5.12) over frequencies, we above assume that partial fluxes
jω have the same direction. It holds true for symmetric volumes filled by a plasma,
in particular, if a plasma is located inside a cylinder tube as we consider below.
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Fig. 4.2 The frame of reference for radiation of a uniform plasma located inside an infinite cylinder
tube. 0 is the origin located on the cylinder surface, the axis x is directed perpendicular to the plasma
surface, the axis y lies in the cylinder cross section, and the axis z is directed along the cylinder axis

We now evaluate the photon flux emitted by an infinite cylinder tube that is filled
by a uniform plasma. Let us use the frame of reference (see Fig. 4.2) with the origin
located on the cylinder surface and the axis of this frame of reference passes through
this point and is directed perpendicular to the surface, i.e. it passes through the
cylinder axis. Taking the flux direction as the axis x , the cylinder axis to be directed
along the axis z, we reduce formula (4.5.13) to the form

j = N∗
4πτ

∫

xdxdydz

(x2 + y2 + z2)3/2
P(r)

We below restrict ourselves by the Lorenz shape of the spectral line and optically
thick plasma for the center of the spectral line, i.e. ko R 	 1, where R is the cylinder
radius. Then on the basis of formulas (4.5.7) and (4.5.13) we obtain for the photon
flux at the cylinder boundary

j = jo J, jo = N∗
√

R

τ
√

ko
, J = 1

4π3/2
√

R

∫

xdxdydz

(x2 + y2 + z2)7/4
(4.5.14)

Integrating over dz and taking t = z/
√

x2 + y2, we find

∫

xdxdydz

(x2 + y2 + z2)7/4
=

∫

xdxdy

(x2 + y2)5/4

∞
∫

0

dt

(1 + t2)7/4
,

and

∞
∫

0

dt

(1 + t2)7/4
= 1

2

1
∫

0

ξ1/4dξ

(1 − ξ)1/2
= 1

2
B

(

5

4
,
1

2

)

=
√

π�(5/4)

�(7/4)
= 0.875
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where ξ = 1/(1 + t2). Introducing the polar coordinates x = ρ cosϕ, y = ρ sinϕ
in the next integration, we obtain

∫

xdxdy

(x2 + y2)5/4
=

π/2
∫

−π/2

2R cosϕ
∫

0

dρ√
ρ

= √
2R

1
∫

0

dζ

ζ1/2
(1 − ζ)1/4

= √
2πR

�(5/4)

�(7/4)
= 4.95

√
R

Summing up these integrations, we obtain for the flux of resonant photons from the
surface of a cylinder uniform plasma [258, 259]

j = 0.194
N∗

√
R

τ
√

ko
(4.5.15)

Let us introduce the effective lifetime of resonantly excited atoms in a cylinder
uniform plasma. If this plasma is optically think, the photon flux from its surface
equals to N∗ R/(2τr ). Reducing the photon flux from an optically thick plasma to
this expression, we obtain

τe f = τr
√

ko R

2 × 0.194
= 2.6τr

√

ko R (4.5.16)

One can use a simple approximation for the effective radiative lifetime for excited
atoms in a plasma

τe f = τr

P(2R)
(4.5.17)

where P(r) is the probability for a resonant photon to pass a distance r without
absorption in a optically dense gas in accordance with formula (4.5.7). One can
find on the basis of this formula the effective radiative lifetime for resonantly excited
atoms located in an optically dense gas if the line width is determined by the Doppler
effect. By analogy with formulas (4.5.16) and (4.5.17) we have now on the basis of
formula (4.5.8)

τe f = 6.4τko R
√

ln(ko R) + 1.3 (4.5.18)

4.6 Resonant Radiation in Excited Helium and Argon

We now summarize the results for broadening of resonant spectral lines of transitions
in helium and argon
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Table 4.2 Parameters of transport of resonant photons in a gas discharge plasma of helium and
argon with processes (4.6.1) and parameters of broadening of spectral lines for these transitions in
the parent plasma

Initial state He(21P → 11S) He(11S) Ar(1S0) Ar(1S0)

Final state He(23P → 23S) He(21P) Ar(3p54s3P1) Ar(3p54s1P1)

λ (nm) 58.433 106.67 104.82

�ε (eV) 21.22 11.62 11.83

ωo, 1016s−1 3.2 1.8 1.8

f0∗ 0.276 0.051 0.25

τr (ns) 0.56 10 2

d2/(e2a2
o) 0.177 0.06 0.29

ko, (105 cm−1) 6.0 3.3 3.3

τe f (ρo = 1 cm), µs 1.1 15 3.0

�ωD, cm−1 0.19 0.11 0.11

σD, 10−13 cm2 1.9 2.0 9.4

kD/p, 103 cm−1Torr−1 4.5 4.8 23

�ωD(0), cm−1 0.19 0.10 0.10

�ωL (0)/p, 10−3 cm−1Torr−1 3.3 1.1 5.4

�ωcr , cm−1 1.1 15 3.0

PL (2ρo) 5.2 × 10−4 6.9 × 10−4 7.0 × 10−4

PD(2ρo) 1.4 × 10−5 2.3 × 10−6 1.3 × 10−5

He(11S) + �ω → He(21P), Ar(1S0) + �ω → Ar(1,3P1), (4.6.1)

and also to analyze reabsorption of these radiative transitions in a gas discharge
plasma of helium and argon. The results are given in Table4.2, where λ is the wave-
length of the corresponding radiative transition, �ε is the excitation energy for the
resonantly excited atom, ωo = �ε/� is the photon frequency, f0∗ is the oscilla-
tor strength for this transition, τr is the lifetime of an excited state with respect to
the radiative transition, and the matrix element d is given by formula (4.3.15). The
absorption coefficient in the line center ko for the Lorenz mechanism of broadening
of spectral lines is given by formula (4.4.13) and is evaluated above. Next, τe f is the
average lifetime of resonantly excited atoms accordance to formula (4.5.16) at the
indicate radius (ρo = 1cm) of the discharge tube.

For definiteness, we consider a uniform gas discharge plasmawith the gas temper-
ature T = 400K and the spectral line width for the Doppler broadening mechanism
and an individual atom in accordance with formula (4.3.5) is given by

�ωD = ωo

√

2πT

mc2
(4.6.2)
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Correspondingly, the cross section of absorption for the spectral line center in the
case of the Doppler mechanism of line broadening according to formulas (4.4.3) and
(4.3.5) is equal to

σD = 3λ2

4
· 1

ωoτ
·
√

mc2

2πT
= 1.2 × 10−12 cm2, (4.6.3)

that leads to the following expression for the absorption coefficient at the line center

kD = NaσD = 3Naλ2

4
· 1

ωoτ
·
√

mc2

2πT
(4.6.4)

We use these formulas to determine the parameters of broadening of resonant spectral
lines for theDoppler broadeningmechanismand in the heliumand argon cases collect
the results in Table4.2. The argument 0 in Table4.2means that the width corresponds
to an individual atom.

In the case of the Lorenz broadening of the spectral line the mechanism of broad-
ening results from collision of a resonantly excited atom with a parent atom in the
ground state according to the scheme

A∗ + A → A + A∗(A∗ + A); (4.6.5)

Here the processes of elastic scattering of colliding atoms, excitation transfer and
depolarization are entangled. If one colliding atom is found in 1S state and the state
of another atom is 1P , the total cross section of collision of these atoms is given by
formula (4.3.14) [252] and the broadening cross section is one half of the total cross
section [152]. The Lorenz width of a spectral line for an individual atom according
to formulas (4.3.3) and (4.3.13) is given by

�ωL(0) = 1

a(ωo)
= πν = 2.4π2Nad2

�

Table4.2 contains the values of this quantity for considering transitions at the gaseous
temperature T = 400K that corresponds to the number density of atoms Na =
2.4 × 1016 cm−3 at the pressure 1Torr.

The absorption coefficient ko at the center line is determined on the basis of
formula (4.4.13) and its values are given in Table4.2. Note that in the Lorenz case
in accordance with formula (4.4.13) the absorption coefficient is independent of
the atom number density and gas temperature. Table4.2 contains also the bound-
ary width of a spectral line �ωcr for resonant radiation at which the Lorenz and
quasistatic broadening mechanisms give an identical contribution to line broaden-
ing. The boundary width of a spectral line is determined by formula (4.3.20) and has
the form
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�ωcr = v√
σt

, v =
√

8T

πM
, (4.6.6)

where we take the average atom velocity as v, and the total cross section of atom
scattering is given by formula (4.3.14).

The probabilities to survive for a resonant photon propagated on a distance L
which is large compared to the mean free path of the resonant photon at the line
center, i.e. ko L 	 1 for the Lorenz mechanism of line broadening and kD(0)L 	 1
for the Doppler mechanism of line broadening, are given by formulas (4.5.7) and
(4.5.8) correspondingly for the Lorenz and Doppler mechanisms of line broadening

PL(l) = 1√
πkLl

, PD(l) = 1

kDl
√

π
√
ln(kDl) + C

, kLl 	 1, kDl 	 1,

where l is a distance of photon propagation, and C = 0.577 is the Euler constant.
The values PL(2l) and PD(2l) are represented in Table4.2 for a distance ρo = 1cm
and the pressure p = 1Torr. Under these conditions the width of a spectral line of
an individual atom for resonant radiation is determined by the Doppler mechanism
of line broadening, while the the width of a band of resonant radiation that leaves a
gas discharge plasma of laboratory sizes is determined by Lorenz broadening. This
means that the mean free path of a resonant photon in a gas at a spectral line wing is
determined by the Lorenz broadening mechanism.

Figure4.3 gives the dependence on the gas pressure for a passing distance lo,
where the probabilities of photon surviving for Lorenz and Doppler mechanisms of
spectral line broadening are equal, i.e. the following relation holds true

PL(lo) = PD(lo) (4.6.7)

Figure4.4 contains the values of the surviving probabilities in accordance with equa-
tion (4.6.7) depending on the gas pressure p.

Fig. 4.3 Dependence of the
distance lo of resonant photon
propagation on the gas
pressure p in accordance with
(4.6.7)
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Fig. 4.4 Dependence of the
probabilities of photon
surviving PL (lo) = PD(lo) at
a distance lo of resonant
photon propagation on the gas
pressure p in accordance with
(4.6.7)

4.7 Block Model for Atom Levels

The structure of atom levels may be complex due to various types of electron inter-
action inside the atom. In considering the spectroscopy of atoms in a gas discharge
plasma it is necessary to account for positions of each level until the width of a spec-
tral line for radiative transitions involving this level is relatively small. Nevertheless,
kinetics of corresponding excited atoms may be identical, and it can be considered
on the basis of the model where some nearby levels of the same nature are joined in
one level. As a result, atom states are divided in blocks [15], and this block model
simplifies the analysis of kinetics of excited atoms. Being guided by an argon gas
discharge plasma, we use this model for excited argon atoms.

In considering the population of lower excited states of the argon atoms, we
are based on data of Fig. 4.2 and construct form this the block model with joining
the states with the electron shell Ar(3p54p) in one state. In reality, this state is
characterized by a valence 4p electron which is located in the field of the atomic
core with the electron shell 3p5. Figure4.5 contains the parameters of this model,
where the energy of the lowest excited state 3P2 of the argon atom is used as zero.
The excitation energy E of the combined level is taken as

E =
∑

i gi Ei
∑

i gi
,

∑

i

gi = 36 (4.7.1)

and the rates 1/τ of radiative transition in each level of the electron shell Ar(3p54p)

is defined according to formula

1

τr
=

∑

i
gi
τi

∑

i gi
(4.7.2)

Note that if we take the excitation energy of the combined level as an average of
excitation energies of 2p1 and 2p10 levels, it is equal E = 1.65 eV instead of
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Fig. 4.5 Model for excited states of the argon atomwhere the levels of the electron shell Ar(3p54p)

are joined in one level and the average parameters are used for the combined level. The excitation
energy in eV is indicated on a line of each level along with its statistical weight g. The rates of
radiative transitions are given in 106 s−1 near the corresponding arrow. States of the electron shell
3p54s are given at the foot of the level line

1.62 eV of Fig. 4.5 with taking into account all the levels. Next, the summarized
rate of radiative transitions gives τ = 33 ns in comparison with τ = 35 ns which is
obtained on the basis of the radiative lifetimes of 2p-levels. In addition, the rate of
radiative transitions per one state of the electron shell Ar(3p54 s) in units 106 s−1 is
equal 2.9, 2.6, 2.9, 2.6 for the states 3P2, 3P1, 3P0 and 1P1 correspondingly (the
average value is (2.8 ± 0.2) · 106 s−1. One can see that introduction of a unit level
in the block model leads to an error in atom parameters, and we assume this error to
be small.

Let us find the quenching rate constant kq for atom transition from a state of the
electron shell Ar(3p54 p) to a state with the electron shell Ar(3p54 s) on the basis
of formula (3.4.4) which are based on measurements for alkali metal atoms with
transitions from p to s state of a valence electron where transition proceeds from one
upper state in all lower states, and the rate of the radiative transition in a group of
lower states with the statistical weight gi is gi/(τrgo), where 1/τr is the total radiative
rate of the radiative transition in all lower states, and go is the total statistical weight
of states of a given group. Correspondingly, the rate of transition between the lower
and upper states that is the transition from one state of the lower state in all upper
states is given by

kex = kog∗
go(�ε)7/2τr

exp

(

−�ε

Te

)

= kq
g∗
go

exp

(

−�ε

Te

)

, (4.7.3)

where we assume the Maxwell energy distribution of electrons, �ε is the excitation
energy, and τr is the radiative lifetime of each state of an upper level group. As is
seen formulas (4.7.3) and (3.4.5) are identical in the cases where transitions between
s and p states proceed in cases of level splitting and in their absence.

http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_3
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From this one can evaluate the average rate constant of quenching of states
Ar(3p54p) by electron impact with transitions in atom states with the electron shell
Ar(3p54 s). According to formula (3.4.4) we have for the quenching rate constant
kq with transition between these states is kq = 2.3 · 10−7 cm3/s. The rate of the
inverse transition follows from the principle of detailed balance and is given by
formula (3.3.8)

kex = kq
g∗
go

exp

(

−�ε

Te

)

Let us consider the equilibrium between states

Ai + e ↔ Ak + e, Ak → Ai + �ω (4.7.4)

Balance equations for the number density of atoms in i th Ni and kth Nk states lead
to the following formal solution in accordance with formula (4.5.3)

Nk

Ni
= Nekex

Nekq + 1/τ
= gk

gi
exp

(

−�ε

Te

)

Ai + e ↔ Ak + e, Ak → Ai + �ω, (4.7.5)

and 1/τ is the rate of the radiative transition between these states. One can see that
this formula coincides with the Boltzmann formula (2.1.5) if the criterion (4.5.4)
holds true

Ne 	 1

kqτ

In the limit of a low number density of excited atoms in the lower state τ is the radia-
tive lifetime of an isolated atom. In particular, in the case if the state i is Ar(3p54s)
and the state k is Ar(3p54p) the criterion (4.5.4) takes the form (τ = 35 ns,
kq = 2.3 × 10−7 cm3/s)

Ne 	 1014 cm−3 (4.7.6)

If reabsorption of resonant photons takes place, the above average over states of a
given group is not valid. The effective lifetime τe f of a certain level of a group k
is given by formula (4.5.16) with the absorption coefficient ko ∼ 1/λ according to
formula (4.4.13), and this consideration requires the validity of the criterion

N∗λ3 	 1,

and in the case of the transition between Ar(3p54s) and Ar(3p54p) states this
criterion N∗ 	 1012 cm−3 relates to each state of this group. Since the criterion
(4.7.6) is not fulfilled under considering conditions, as well as the criterion for the
partial number density of excited atoms, the relative population of levels Ar(3p54p)

is lower than that due to the Boltzmann formula (2.1.5).

http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_2
http://dx.doi.org/10.1007/978-3-319-11065-3_2
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Chapter 5
Collision Processes in Kinetics of Gas
Discharge Plasma

Abstract Kinetics of gases and plasma is described by the Boltzmann kinetic
equation, and the expression for the collision integral of electrons is represented
for cases where electron-atom collisions or electron-electron collisions dominate.
Depending on the relation between these collision integrals two different regimes of
plasma evolution are possible.

5.1 Kinetic Equation for Charged Particles

A gas discharge plasma is a self-consistent state of an ionized gas that is formed
and maintained by an external electric field and processes inside it. The electric field
creates and supports a plasma and provides passage of the electric current through a
gas. An energy from an external electric field is transferred first to electrons and then
is transmitted to gas atoms as a result of electron-atom collisions. Ions as a charged
component influence on properties of a gas discharge plasma especially by their
charge. Thus the properties of the gas discharge plasma result from both interaction
of electrons with an external field and various collision processes. Therefore kinetics
of atomic particle in gas discharge plasma is of importance for creation of a certain
self-consistent state of this system.

In description the kinetics of atomic particles in a gas discharge plasma, we will
be based in first turn on the kinetic equation for the distribution function of atomic
particles under consideration that has the form [256]

∂ f (v)

∂t
+ eE

m
· ∂ f (v)

∂v
= Icol( f ) (5.1.1)

Here r is a coordinate, v is the particle velocity, m is the particle mass, f (v) is the
velocity distribution function for these particles that is normalized to the number
density N of particles (

∫

f (v)dv = N ), and eE is the force that acts on a charged
particle (e is its charge) from an external field. The collision integral Icol( f ) is of
principle in this equation and is responsible for collision of this particle with some
particles of a plasma. As a matter, the kinetic equation (5.1.1) is the balance equation
for particles of a given type in the velocity space so that transitions of a particle in

© Springer International Publishing Switzerland 2015
B.M. Smirnov, Theory of Gas Discharge Plasma, Springer Series on Atomic,
Optical, and Plasma Physics 84, DOI 10.1007/978-3-319-11065-3_5
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the phase space results both from evolution of an individual particle in external field
and from pair collisions with other particles of this gaseous system.

In the case of elastic collisions of these particles with gas atoms the collision
integral has the form

Icol( f ) =
∫

( f ϕ − f ′ϕ′) | v − va | dσdv′dv′
adva, (5.1.2)

where v, v′ are the velocities of a test particle before and after collision, va, v′
a are

the atom velocities before and after collision, dσ is the differential cross section
of scattering of a test particle on a gas atom. We use the following notations for
the distribution functions of a test particle f ≡ f (v), f ′ ≡ f (v′) and for the
Maxwell distribution function of gas atoms ϕ ≡ ϕ(va), ϕ′ ≡ ϕ(v′

a). This collision
integral may be used for the analysis of particle evolution in a gas discharge plasma
as a result of elastic collisions with gas atoms. The simplest representation of the
collision integral corresponds to “tau-approximation”

Icol( f ) = − f (v) − fo

τ
, (5.1.3)

where fo(v) is the equilibrium distribution function, and τ is a relaxation time. In
this approximation we consider a gas as a continuous matter, and the parameter τ
characterizes the friction force acted on a test atomic particle which moves in a gas.

If inelastic collisions are included in the kinetic equation (5.1.1), the collision
transitions between states must be introduced in the right-hand side of equation.
In particular, the collision integral for the electron distribution function f has the
following form if we take into account the processes of atom excitation in a state ∗
by electron impact as well as quenching of this state

Icol( f ) = −Nakex (ε) f (v) + N∗kq(ε′) f (v′), (5.1.4)

where ε = mev
2/2 is the electron energy, me is the electron mass, kex (ε) is the

rate constant of atom excitation in collision with an electron of an energy ε, �ε is
the excitation energy (ε > �ε), kq(ε′) is the rate constant of atom quenching with
an electron of an energy ε′ = ε − �ε = me(v

′)2/2; N , N∗ are the atom number
densities in the ground and excited states correspondingly. In the same manner the
collision integral may be represented in the case of other inelastic processes.

We note the property for average parameters of electrons and ions in a gas if
the concentration of these atomic particles is small and one can neglect interaction
between them. In this regime of low concentration of charged particles the electric
field strength E is included in the kinetic equation in the combination E/Na , where
Na is the number density of gas atoms. Therefore both the distribution function of
charged particles and their average parameters depend on the electric field strength
through the combination E/Na . This is demonstrated in Figs. 5.1 and 5.2 for the drift
velocity of electrons in helium and argon in the regime of low electron concentration.
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Fig. 5.1 The electron drift velocity we in helium as a function of the electric field strength E/Na
in the regime of a low electron number density according to measurements [257–262]

Fig. 5.2 The electron drift
velocity we in argon as a
function of the electric field
strength E/Na in the regime
of low electron number
densities according to
measurements [6, 7, 258, 260,
261, 263–267]

5.2 Integral Relations for an Average Momentum and Energy
of a Charged Particle in Gas in Electric Field

We have a specific character of energy transmittance in a gas discharge plasma. An
external electric field acts on electrons and does not act on gas atoms. Hence, the
equilibrium for gas atoms results from elastic collisions between them, and atoms are
characterized by theMaxwell velocity distribution functionwith a gas temperature T .
For electrons and ions such an equilibrium is violated by an action of an external
electric field, and the behavior of charged particles in a plasma is described by the
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kinetic equation that accounts for both collisions of charged particles with gas atoms
and the action of external fields on charged particles.One can simplify this description
replacing collisions by interaction of charged particles with a continuousmatter. This
corresponds to a hydrodynamic description of motion of charged particles in a gas.
Transferring from the kinetic description to the hydrodynamic one, we really go
from the kinetic equation of charged particles to its integral form with additional
assumptions. For this reason it is useful to obtain integral relations for parameters
of charged particles moved in a gas in an external field directly from the kinetic
equation. This operation will be done below [38].

We below derive from this the equation for the average momentum of a charged
particle assuming that their elastic collisions with gas atoms are responsible for the
energy change for these charged particles. Then we use the kinetic equation (5.1.1)
with the collision integral (5.1.2) in this case, multiply the kinetic equation (5.1.1)
by the momentum mv of a charged particle and integrate over velocities dv of this
particle. We assume the space distribution of particles to be uniform and take use the
following normalization of the distribution functions

∫

f (v)dv = Ni ,

∫

ϕ(va)dva = Na (5.2.1)

Here v, va are the velocities of charged particles and gas atoms, f (v) is the distri-
bution function of test particles, ϕ(va) is the Maxwell distribution function of gas
atoms, Ni , Na are the number densities of charged particles and gas atoms. In the
course of integration of the kinetic equation, we use he principle of detailed balance
for elastic scattering of charged particles of gas atoms that consists in evolution of
the system in the inverse direction as a result of time inverse t → −t that leads
to mutual replacing of velocities of colliding particles before and after collision
v ↔ v′, va ↔ v′

a , where the particle velocities after collision are denoted by a
superscript ′. This gives

∫

v f (v′)ϕ(v′
a)dσdvdva =

∫

v′ f (v)ϕ(va)dσdvdva

This leads to the following relation after integration

m
dw
dt

= eE − m

Ni

∫

(v′ − v)gdσ f (v)ϕ(va)dvdva,

where m is the mass of a charged particle, M is the atom mass, w is the average
velocity (drift velocity) of charged particles, g = v − va is the relative particle
velocity.

The velocities of a charged particle are expressed through the relative velocity of
colliding particles g and the velocity of their center of mass V through relations

v = V + Mg
m + M

, v′ = V + Mg′

m + M
, m(v − v′) = μ(g − g′)
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where μ = m M/(m + M) is the reduced mass of colliding charged and gaseous
particle. Let us represent the relative velocity of particles in the form g′ = g cosϑ +
kg sin ϑ, where ϑ is the scattering angle, and the unit vector k directs perpendicular
to the relative velocity g. Because of the random character of scattering, the second
term gives zero after integration over scattering angles, and

∫

(g − g′)dσ = gσ∗(g),

whereσ∗(g) = ∫

(1−cosϑ)dσ is the diffusion cross section for collision of a charged
particle with a gas atom. As a result, we have the following integral relation

m
dw
dt

= eE − μ

Ni

∫

ggσ∗(g) f (v)ϕ(va)dvdva (5.2.2)

As a matter, this is the motion equation for a charged particle, where the first term
in the right hand side of the equation is a force from an external electric field, and
the second term is a friction force due to collisions of a charged particle with gas
atoms. Just this term is responsible for energy transfer from the field to a gas through
interactionwith charged particles. If the rate of elastic collisions of a charged particles
with gas atoms ν = Nagσ∗(g) is independent of the collision velocity, the relation
(5.2.2) takes a simple form

m
dw
dt

= eE − μνw, (5.2.3)

that is the motion equation for charged particles.
We now derive the integral relation for the average energy of a charge particle

with use the above method. Indeed, multiplying the kinetic equation (5.1.1) by the
energy of a charged particle mv2/2 and integrating over particle velocities dv, we
obtain the following integral equation with use of the principle of detailed balance

dε

dt
= eEw − m

2Ni

∫

[(v′)2 − v2]gdσ f (v)ϕ(va)dvdva ,

where ε is the average energy of charged particles. Transferring to the relative velocity
of a colliding charged particle and gas atom g and to velocity of their center of mass
V, we have

m

2
[(v′)2 − v2] = μV(g − g′) ,

because the velocity of the center of masses is conserved as a result of collision, and
the relative velocity change a direction only, i.e. (g′)2 = g2. This gives

dε

dt
= eEw − μ

Ni

∫

V(g − g′)gdσ(g) f (v)ϕ(va)dvdva
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Integrating over the scattering angle and averaging over a polar scattering angle in
the plane that is perpendicular to the relative velocity of colliding particles, we have
as early

(g − g′)dσ(g) = gσ∗(g)

where σ∗(g) is the diffusion cross section of elastic collision between a charged
particle and gas atom. As a result, we obtain

dε

dt
= eEw − μ

Ni

∫

(Vg)gσ∗(g) f (v)ϕ(va)dvdva (5.2.4)

This is the balance equation for the energy of charged particles. The first term of the
right hand side describes energy transfer from an external field to charged particles,
and the second term is responsible for energy transfer from charged particles to gas
atoms.

The relation (5.2.4) is simplified if the collision rate for a charged particle with gas
atoms ν = Nagσ∗(g) is independent of the collision velocity. Then in a motionless
gas the integral relation (5.2.4) takes the form

dε

dt
= eEw − μν〈Vg〉,

where an average is made over the distribution functions of charged particles and
atoms. Returning to velocities of charged particles and gas atoms, we obtain

〈Vg〉 = m

m + M
〈v2〉 − M

m + M
〈v2a〉

The average energy of a charged particle equals to ε = m〈v2〉/2, and an average
atom kinetic energy is 3T/2 = 〈Mv2a/2〉, where T is the gas temperature expressed
in energy units. On the basis of the expression w = eE/μν for the drift velocity of
a charged particle, we reduce the equation to the form

dε

dt
= μw2ν − ε

2μν

m + M
+ T

3μν

m + M
(5.2.5)

In particular, this gives in the stationary case for the average energy of charged
particles

ε = (m + M)w2

2
+ 3

2
T (5.2.6)

The relations obtained describe the behavior of average parameters for charged par-
ticles moving in a gas in an external electric field.
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5.3 Integral of Electron-Atom Collisions

Kinetics of electrons in an atomic gas located in an external field is governed by
a small parameter me/M in an energy range where elastic electron-atom collisions
dominate. In particular, colliding electron and atom can be changed by ∼me/M
part of the electron energy, and hence the velocity distribution function of electrons
in a gas is close to a spherically symmetric one [268, 269]. This fact allows us
to represent the electron distribution function f (v) as an expansion over spherical
harmonics [270–276]

f (v) = f0(v) + vz f1(v), (5.3.1)

where the electric field strength E directs along the axis z. Then the kinetic equation
(5.3.1) for the electron distribution function f (v) takes the form

eE
me

· ∂ f

∂v
= Iee( f ) + Iea( f ), (5.3.2)

where Iee( f ), Iea( f ) are the integrals of electron-atom and electron-electron col-
lisions correspondingly. Integrating the kinetic equation (5.3.2) over the angle θ
between the electron velocity and the electric field with accounting for the expres-
sion (5.3.1) for the electron distribution function, and also integrating the equation
(5.3.2) after its multiplication by cos θ, we obtain from (5.3.2) the following equation
for spherical harmonics [272–275]

a
vzd f0
vdv

= Iea(vz f1),
a

3v2
d

dv

(

v3 f1
)

= Iea( f0), (5.3.3)

where a = eE/me and we ignore electron-electron collisions (Iee( f ) = 0), i.e. this
equation holds true for low number densities of electrons. The character of kinetics
of electrons in gases is similar to that in semiconductors where interaction between
electrons is negligible, and therefore the theory of electron kinetics in semiconductors
[277–281] was the basis for the theory of electron kinetics in gases.

In determination the collision integral from the nonsymmetric part of the distribu-
tion function vz f1(v), we take into account that because of a small parameter me/M
the relative collision velocity g = |v−va | is not changes as a result of electron-atom
collision that gives v = v′ and va = v′

a . This gives [134, 275]

Iea(vz f1) = −
∫

(

fa(va)dva(v − v′)
z f1(v)vdσ = −νea(v)vz f1(v), (5.3.4)

where νea(v) = Navσ∗(v), Na is the number density of gas atoms, σ∗(v) = ∫

(1 −
cosϑ)dσ is the diffusion electron-atom scattering, ϑ is the scattering angle, dσ is the
differential cross section for electron-atom scattering.
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The collision integral from the spherically symmetric part of the distribution
function f0 that results from elastic electron-atom collision has the form of the
electron diffusion flux in the energy space because the electron energy change in
one elastic collision with an atom is relatively small. Hence, a general form of this
collision integral is

Iea( f0) = − ∂ j (ε)

ρ(ε)∂ε

Here ρ(ε)∼(ε)1/2 is the state density in the energy space, and it is convenient to use
the following normalization of the distribution function

∞
∫

0

fo ε1/2dε = 1

The electron flux in the energy space j (ε) is the right hand side of the Fokker-Planck
equation [282, 283] and consists of the hydrodynamic and diffusion fluxes in the
energy space [134, 276]

j (ε) = ρ(ε)A(ε) fo(ε) − ∂[B(ε)ρ(ε) fo(ε)]
∂ε

(5.3.5)

The connection between the quantities A(ε) and B(ε) follows from the condition,
that the flux is zero if the electron distribution function is the Maxwell one and the
electron temperature coincides with the gas one. This gives

Iea( f0) = 1

ρ(ε)

∂

∂ε

[

ρ(ε)B(ε)

(

∂ f0
∂ε

+ f0
T

)]

, (5.3.6)

and the quantity B(ε) is an analog of the diffusion coefficient in the energy space.
Taking into account elastic electron-atomic collisions only, we have for this quantity
according to its definition

B(ε) = 1

2

〈∫

(ε − ε′)2Navdσ(ε → ε′)
〉

, (5.3.7)

where the angle brackets mean an average over the atom distribution, and dσ is the
differential cross section of electron elastic scattering on an atom.

We below takes into account that the relative electron-atom velocity changes the
direction as a result of their elastic scattering, but the velocity value is conserved.
Because of a large atom mass, its momentum and velocity vary weakly as a result of
one collision act. Therefore we have

| v − va |=| v′ − va |,
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where v, v′ are the electron velocities below and after elastic collision with an atom
of a velocity va . This gives for change of the electron energy after collision

ε − ε′ = me

2
[v2 − (v′)2] = meva(v − v′)

where me is the electron mass. We next substitute this in the expression for B(ε) and
take into account the definition for the average atomkinetic energy 〈Mv2a/2〉 = 3T/2,
where M is atommass, T is the gas temperature. Use also use |v−v′| = 2v sin(ϑ/2),
where ϑ is the electron scattering angle. As a result we obtain the following formula
for the diffusion coefficient of an electron in the energy space

B(ε) = m2
e

2

〈

v2a

3

〉 ∫

(v − v′)2Navdσ = me

M
T mev

2Navσ∗(v), (5.3.8)

where σ∗(v) = ∫

(1 − cosϑ)dσ is the diffusion cross section for electron-atom
scattering. Substituting this expression in formula (5.3.6) and transferring in a space
of electron velocities, we obtain for the collision integral

Iea( f0) = me

M

∂

v2∂v

[

v3νea

(

f0 + T ∂ f0
mev∂v

)]

, (5.3.9)

where νea = Navσ∗(v) is the rate of elastic electron-atom collisions.

5.4 Landau Collision Integral

We now consider the collision integral resulted from electron-electron collisions.
This collision integral for the velocity distribution function of electrons, the Landau
collision integral, is determined by elastic collision of electrons with a relatively
small energy change. Correspondingly, evolution of electrons in the energy space has
a diffusion character, and the collision integral can be represented in the form [116]

Iee( f ) = −∂ ji
∂vi

, (5.4.1)

where i, k are vector components (x, y, z) in the electron velocity space. But in
contrast to the above case for the collision integral with electron scattering on atoms,
now the collision integral is bilinear function with respect to the distribution function
of electrons. Following to the Landau derivation [116], we use a general expression
for the collision integral with accounting for elastic scattering of particles

Iee( f1) =
∫

[ f (v′
1) f (v′

2 − (v1) f (v2)]W (v1, v2 → v′
1, v′

2)dv′
1dv′

2dv2, (5.4.2)
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where W (v1, v2 → v′
1, v′

2) is the probability of transition between indicated elec-
tron velocities per unit time and unit number density, and the distribution function of
electrons is normalized to the electron number density. The principle of detailed bal-
ance with respect to elastic scattering of electrons is used in derivation of expression
(5.4.2)

W ( v1, v2 → v′
1, v′

2) = W (v′
1, v′

2 → v1, v2)

This form of the collision integral allows us to use in full measure the problem
symmetry. For this goal we represent the specific transition probability as a result of
elastic collision of two electrons as

W (v1, v2 → v′
1, v′

2) ≡ W

(

v1 + v
′
1

2
,

v2 + v
′
2

2
,�v

)

≡ W

(

v1 + �v
2

, v2 − �v
2

,�v
)

,

where �v is an electron velocity change resulted from elastic collision with another
electron. According to the principle of detailed balance W is an even function of�v,
that isW (�v) = W (−�v). This formof the probability accounts for conservation of
the total electronmomentum or the total electron velocity in collision. This decreases
a number of integration up d�vdv2 instead of d v′

1dv′
2dv2.

Expanding the collision integral over a small parameter �v, we obtain in the first
approximation over this small parameter

Iee( f ) = −
∫ [

f (v2)
∂ f (v1)

∂v1
− f (v1)

∂ f (v2)
∂v2

]

�vW d(�v)dv2

Since the function W is even with respect to �v, this integral is zero.
In the second approximation over a small parameter �v we have

Iee( f ) = −
∫

d�vdv2W ·
(

1

2
�i�k

∂2 f1
∂v1i∂v1k

f2 − �i�k
∂ f1
∂v1i

∂ f2
∂v2k

+ 1

2
�i�k f1

∂2 f2
∂v2i∂v2k

)

−
∫

�vdv2
1

2
�i

(

∂W

∂v1i
− ∂W

∂v2i

)

�k

(

∂ f1
∂v1k

f2 − f1
∂ f2
∂v2k

)

,

where we use notations f1 ≡ f (v1), f2 ≡ f (v2), �i ≡ �vi , indices i, k
corresponds to components x, y, z, and summation is made over twice repeated
indices.

Some terms of this expression may be determined from integration over parts. We
have

1

2

∫

d�vdv2W · �i�k
∂ f1
∂v1i

∂ f2
∂v2k

+ 1

2

∫

d�vdv2�i�k
∂W

∂v2i

∂ f1
∂v1k

f2
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= 1

2

∫

d�vdv2�i�k
∂ f1
∂v1i

∂

∂v2k
(W f2) = 0,

1

2

∫

d�vdv2W · �i�k f1
∂2 f2

∂v2i∂v2k
+ 1

2

∫

d�vdv2�i�k
∂W

∂v2i
f1

∂ f2
∂v2k

= 1

2

∫

d�vdv2 · �i�k f1
∂

∂v2i

(

W
∂ f2
∂v2k

)

= 0,

because the velocity distribution function of electrons and its derivation equal to zero
at infinite electron velocities. From relations obtained we have [116]

Iee( f1) = −1

2

∫

d�vdv2�i�k(W
∂2 f1

∂v1i∂v1k
f2 − W

∂ f1
∂v1i

∂ f2
∂v2k

+ ∂W

∂v1i

∂ f1
∂v1k

f2 − ∂W

∂v2i
f1

∂ f2
∂v2k

Representing the collision integral as the flux divergence in a space of electron
velocities (5.4.1), we have for such a flux on the basis of the above expression of the
collision integral

ji =
∫

dv2

(

f1
∂ f2
∂v2k

− ∂ f1
∂v1k

f2

)

Dik, Dik = 1

2

∫

�i�k W d�v (5.4.3)

where we use the notation � = �v.
In evaluating the electron diffusion coefficient Dik in the velocity space, we use

the relation

W d�v = gdσ,

that follows from the definition of the differential cross section of elastic scattering
dσ, and g is the relative velocity of colliding electrons. We have for a change of the
electron velocity � ≡ �v at scattering on a small angle at the impact parameters of
collision ρ

� = 2e2

ρgme
, (5.4.4)

and a velocity change for a test electron �v directs along the impact parameter of
collision, and in components this relation has the form

�i = 2e2ρi

ρ2gme

Since the classical differential cross section of elastic scattering is dσ = 2πρdρ, we
have for the diffusion tensor in the velocity space [116]
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Dik = 1

2

∫

�i�k W d�v = 1

2

∫

�i�igdσ = 2e4

m2
eg

∫

ρiρk

ρ4
dσ = 4πe4

m2
eg

ni nk ln�

(5.4.5)
Here ni , nk are components of the unit vector directed along the impact parameter
of collision, and the Coulomb logarithm for collision of two charged particles in an
ideal plasma is equal to [116]

ln� =
ρ>
∫

ρ<

dρ

ρ
= ln

rDε

e2
, (5.4.6)

where rD Is the Debye-Hückel radius.
Use the frame of reference where the vector of the relative velocity of colliding

electrons g directs along the axis x , and scattering proceeds in the plane xy, i.e. the
impact parameter vector directs along the axis y. Then only the component�y is not
zero, and correspondingly only the tensor component Dyy is not zero and equals to

Dyy = 2e4

meg

∫

1

ρ2
2πρdρ = 4πe4 ln�

meg
(5.4.7)

If the relative velocity directs along the axis x , and axes y and z are directed in an arbi-
trary method with respect to the impact parameter of collision, nonzero components
of the diffusion tensor are equal to

Dyy = Dzz = 2πe4 ln�

meg
,

and these components are averaged over the angle between the impact parameter of
collision and over the axes. Constructing the diffusion tensor in an arbitrary frame
of reference, we use the symmetry of this tensor, so that this can be assembled from
tensors δik and gigk . Taking the diffusion tensor as a combination of these tensors,
we have [116]

Dik = 2πe4 ln�

meg3
(g2δik − gigk) (5.4.8)

Thus on the basis of relations (5.4.1), (5.4.3) and (5.4.8) we have the follow-
ing expression for the collision Landau integral that includes elastic scattering of
electrons in an ideal plasma

Iee( f ) = − ∂

∂vi

[∫

dv2

(

f1
∂ f2
∂v2k

− ∂ f1
∂v1k

f2

)

Dik

]

, (5.4.9)

where summation is taken over twice repeated indices, and the tensor Dik is given
by formula (5.4.8).
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5.5 Kinetics of Fast Electrons in Plasma

In considering the character of test electrons in a plasma, we focus on the limiting
case, where the velocity of motion of a test electron is large compared to a thermal
electron velocity in a plasma and braking of a fast electron results from collisions
with thermal electron. Variation of the energy of a fast electron in collisions with
thermal electrons is given by

dε

dt
= −A(ε), (5.5.1)

where ε is a current energy of a fast electron, and the braking coefficient according
to definition (5.3.5) is equal to

A(ε) =
〈∫

(ε − ε′)Nevdσ(ε → ε′)
〉

=
∫

(�p)2

2me
Nev2πρdρ = 4πe4Ne ln�

mev
(5.5.2)

Taking according to formula (5.4.4) �p = 2e2/(ρv), we obtain for the rate of
variation of the fast electron energy (5.5.1) as a result of collisions with plasma
electrons [40]

dε

dt
= −A(ε) = −4πe4Ne ln�

mev
, ε � Te (5.5.3)

One can find also the diffusion coefficient B(ε) of fast electrons in an energy
space ε from the general relation [134] A = B/T , where a fast electron interacts
with an equilibrium gas system of a temperature T . This gives

B(ε) =
〈∫

(ε − ε′)2Nevdσ(ε → ε′)
〉

=
∫ [

(�p)2

2me

]2

Nev2πρdρ = 4πe4Te Ne ln�

mev
,

(5.5.4)

where Te is the temperature of thermal electrons. It should be noted that the expression
(5.5.4) may be obtained from formula (5.3.8), if we replace in this formula the atom
mass M by the electron mass me, and the gas temperature T by the temperature Te

of thermal electrons. Indeed, in both cases the system of particles is divided in two
subsystems ¡ and the energy of test particles varies weakly in single collisions with
particles of a thermal system. Therefore, a small parameter 1/ ln� is of principle
for the behavior of fast electrons under consideration. Correspondingly, the diffusion
cross section in formula (5.5.4) is given by formula (3.1.7) if an energy of one electron
exceeds significantly an energy of other collided electron.

σ∗ = πe4

ε2
ln� = 4πe4

m2
ev

4 ln�,

http://dx.doi.org/10.1007/978-3-319-11065-3_3
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since ε, the energy of fast electron, is large compared to a thermal electron energy Te.
This also leads to the following expression for the collision integral [40]

Iee( f ) = ∂

v∂ε

[

vB(ε)

(

∂ f

∂ε
+ f

Te

)]

, ε � Te (5.5.5)

where f = f (ε) is the distribution function of fast electrons, Te is the electron tem-
perature for thermal electrons, and the diffusion coefficient of fast electrons in an
energy space B(ε) is given by formula (5.5.4). Using this expression, we take into
account that on the one hand, evolution of a fast electron in the energy space has
a diffusion character (an exchange by energy in one collision is relatively small),
and in the other hand, fast electrons are separated from thermal ones, and hence
the collision integral is linear with respect to the distribution function of fast elec-
trons. Assuming a number of fast electrons to be relatively small, we can ignore
by the influence of fast electrons on the Maxwell distribution function of thermal
electrons.

One can use the above expressions for collision integrals in the analysis of electron
evolution in a plasma. Let us analyze the character of electron relaxation in a plasma
located in an electric field, if an electric field switches off or on. On the basis of
the equations for the average electron velocity in an electric field (drift velocity)
and average electron energy, we obtain two relaxation times of electrons, for the
momentum τP and the energy τε, which are defined as

dwe

dt
= eE − we

τP
; dε

dt
= eEwe − ε

τε
(5.5.6)

Comparing this equation with (5.2.3) for electrons, we obtain for a typical relaxation
time of the electron momentum τP∼1/νea , where νea is the effective rate of electron
collisions with atoms. In the same manner on the basis of (5.2.4) we obtain for
a typical time of electron energy variation τε as a result of elastic electron-atom
collisions τε∼M/(meνea). Thus, the ratio of typical relaxation times of the electron
energy and momentum variation is of the order of M/me.

Let us consider the relaxation process on the basis of the kinetic equation for the
electron distribution function that has the form

∂ f

∂t
+ eE

me
· ∂ f

∂v
= Iee( f ) + Iea( f )

Multiplying this equation by the electron kinetic energy and integrating over electron
velocities, we obtain the relaxation equation for the average electron energy ε =
3Te/2 [133, 170]

dε

dt
= eEwe − m2

e

M
·
(

1 − T

Te

)

< v2νea > (5.5.7)
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We used above the relation

∫

me(v
2 − v′2)
2

Iee( f )dv = 0

This means that exchange by energy between electrons does not change the total
energy of the electron subsystem.

Let us introduce the rate constants kP and kε for relaxation of the electronmomen-
tum and electron energy in accordance with (5.5.6), so that

kP ≡ 1

NaτP
= eE

Nawe
; kε ≡ 1

Naτε
= eEwe

Naε
, (5.5.8)

and in accordance with formulas (5.5.6) the balance equation for the average electron
momentum and energy have the form

dwe

dt
= − we

NakP
; dε

dt
= − ε

Nakε
(5.5.9)

We now generalize (5.5.7) for evolution of the average energy ε, if excitation
of atoms by electron impact is of importance. We then have the following kinetic
equation

∂ f

∂t
+ eE

me
· ∂ f

∂v
= Iee( f ) + Iea( f ) − Nakex f, (5.5.10)

where Na is the number density of atoms, and kex is the rate constant of atom
excitation by electron impact.We above neglect by the quenching process, i.e. assume
that excited atoms are destructed in other channels and the number density of excited
atoms is small compared to its equilibrium value. Multiplying this kinetic equation
by the electron energy and integrating over electron velocities, we obtain an equation
for the average electron energy that is a generalization of (5.5.7)

dε

dt
= eEwe − m2

e

M
·
(

1 − T

Te

)

< v2νea > −�ε

Ne

d N∗
dt

(5.5.11)

Here the rate of formation of excited atoms is given by

d N∗
dt

= Na

∫

kex f dv, (5.5.12)

andwe assume that themain contribution to this rate follows from a not large electron
energies ε−�ε � ε. From this it follows that an electron loses its energy as a result
of atom excitation if

kex � me

M
kel , (5.5.13)
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where kex and kel are typical rate constants for inelastic and elastic electron-atom
collisions. One can represent this criterion in another manner if we require in formula
(5.5.11) a small contribution to the energetic balance from elastic electron-atom
scattering. Let us introduce the parameter

β = m2
e < v2νea >

MeEwe
, (5.5.14)

in the limit Te � T , and this parameter characterizes a contribution of elastic
electron-atom scattering to the total energetics. In particular, if the diffusion cross
section of elastic electron-atom scattering σ∗

ea is independent of the electron velocity.
In this case we have

β ≈ 12
me

M

(

Te

eEλ

)2

, λ = (Naσ∗
ea)−1 (5.5.15)

Figure5.3 gives the boundary (β = 1) in the helium case, where we take σ∗
ea = 6Å2.

In the helium case we have

β = 0.1
T 2

e

x2
,

where the electron temperature is expressed in eV, and the reduced electric field
strength x = E/Na is given in Td. The criterion (5.5.13) is fulfilled above the curve
1 (β = 1) of Fig. 5.3), and this curve gives the connection of the reduced electric
field strength and electron temperature if the electric energy introduced in a helium
gas discharge plasma is consumed on electron-atom elastic scattering.

We now consider the process of atom excitation from another standpoint. Assum-
ing the criterion (5.5.13) to be fulfilled, we represent the rate of atom excitation by
electron impact as the rate of excess of the atom excitation energy, that is

d N∗
dt

= −
∞

∫

vo

Ieedv, (5.5.16)

where vo = √
2�ε/me, and �ε is the atom excitation energy. Taking the boundary

condition f (�ε) = 0 under the above assumptions, we obtain the energy distribution
function of electrons in the form [288]

f0(v) = Ne

(

me

2πTe

)3/2 [

exp

(

− ε

Te

)

− exp

(

−�ε

Te

)]

, (5.5.17)

that is normalized by the relation
∫

f dv = Ne and is a generalization of theMaxwell
distribution function (2.1.2). From this it follows on the basis of expressions (5.5.4)
and (5.5.5)

http://dx.doi.org/10.1007/978-3-319-11065-3_2
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Fig. 5.3 Reduced electric field strength as a function of the electron temperature in the process
of excitation of a helium atom in the metastable state He(23S1). Curve 1 satisfies to the relation
β = 1 for a helium gas discharge plasma, curves 2 and 3 are determined by formula (5.5.22) for
the electron concentration ce = 10−6 and ce = 10−5 correspondingly. Formula (5.5.22) holds true
if curves 2 and 3 are situated above curve 1

d N∗
dt

= 2(�ε)1/2B(�ε)Ne√
πT 5/2

e

exp

(

−�ε

Te

)

= 4
√
2πe4N 2

e ln�

m1/2
e T 3/2

e

exp

(

−�ε

Te

)

(5.5.18)

We now assume that the criterion (5.5.13) holds true, and the balance equation
(5.5.11) for an average electron energy has the form

dε

dt
= eEwe − �ε

Ne

d N∗
dt

= eEwe − 4
√
2πme�ε3/2Ne ln�

T 2
e

exp

(

−�ε

Te

)

(5.5.19)

Under stationary conditions this gives the relation between the reduced electric field
strength E/Na and the electron temperature Te at a given concentration ce = Ne/Na

of electrons, that is

(

eE

Na

)2

= ce ∗ 12
√
2πe4�ε ln�

〈v/σ∗
ea〉m1/2

e T 3/2
e

exp

(

−�ε

Te

)

, (5.5.20)

where σ∗
ea is the diffusion cross section of electron-atom cross section. In the case

where the cross section is independent of an electron velocity σ∗
ea = const , as it

takes place in the helium case, formula (5.5.20) gives

(

eE

Na

)2

= ce ∗ 6πe4σ∗
ea ln� ∗ ye−y, y = �ε/Te (5.5.21)
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In particular, taking ln� = 10 and in the helium case σ∗
ea = 6Å2, one can represent

formula (5.5.21) in the form

(

eE

Na

)2

= Ace ∗ ye−y, A = 6πe4σ∗
ea ln� (5.5.22)

Figure5.3 gives the dependence of the electron temperature on the electric field
strength according to formula (5.5.22) where it is determined by the balance of an
electron energy due to helium atom excitation in the state He(23S). It should be
noted that formula (5.5.22) is valid at β � 1, that requires for curves 2 and 3 to be
located above curve 1.

5.6 Electron Regimes in Gas Discharge Plasma

We above analyze general relations and equations for some parameters of a gas
discharge plasmas under various conditions. In reality the results of the theory of
gas discharge plasma consist in determination of numerical plasma parameters. The
numerical results allows us, on one hand, to understand real parameters of a gas
discharge plasma and require, on the other hand, some parameters of elementary
processes and kinetics of this plasma, and determination of this parameters is a
certain problem.

We below focus on the helium and argon gas discharge plasma. The cross section
of elastic electron-atom scattering as an important elementary process for gas dis-
charge plasmas is different for these cases, and hence consideration of these examples
gives the possibilities a variety in properties of gas discharge plasmas. From another
standpoint, parameters of elementary processes and kinetics used are ambiguous, so
that the evaluation of certain plasma parameters gives some experience in this way.

We first consider some plasma properties where this gas discharge plasma may
be considered as uniform. We have two different regimes of electron equilibrium in
a gas discharge plasma depending on the character of the electron energy change in a
plasma. Namely, at high electron concentrations the energy distribution function of
electrons is established as a result of collisions between electrons andhas theMaxwell
form (2.1.2). At low electron concentrations electron-atom collisions determine the
way to establish the electron distribution function.

In both regimes the electron distribution function results from change of the elec-
tron energy in collisions with atoms or electrons by small portions, and the boundary
number density of electrons N∗

e between two regimes under consideration results
from equality of the diffusion coefficients d〈(�ε)2〉/dt = B(ε) for electrons in a
space of electron energies due to electron-electron and electron-atom collisions

Bea(ε) = Bee(ε), (5.6.1)

where ε is the electron energy.

http://dx.doi.org/10.1007/978-3-319-11065-3_2
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Fig. 5.4 The boundary
electron concentration
between the regimes of low
and high number densities of
electrons for helium and
argon gas discharge plasmas

Using formulas (5.3.8) and (5.5.4) for the electron diffusion coefficient in the
electron energy space for the regimes under consideration,we obtain for the boundary
concentration of electrons c∗

b = (Ne/Na)b in accordance with formula (5.6.1)

c∗
b(ε) = 1

π

me

M

T

Te

ε2σ∗
ea(ε)

e4 ln�
(5.6.2)

For definiteness, we take the gas temperature T = 400K and a typical value for
the Coulomb logarithm ln� = 10, and the electron temperature Te = 1 eV. The
boundary electron concentrationbetween two regimes c∗

b according to formula (5.6.2)
is represented in Fig. 5.4.

Let us use formula (5.6.2) at the excitation threshold. In the helium case the
diffusion cross section of elastic electron-atom scattering is σ∗

ea(�ε) = 2.7Å2 at the
atom excitation energy ε = �ε = 19.8 eV, that gives at Te = 1 eV the boundary
electron number density c∗

b(�ε) according to formula (5.6.2) c∗
b(�ε) = 7.0 · 10−7

for a helium gas discharge plasma. In the argon case we have �ε = 11.7 eV and
σ∗

ea(�ε) = 14.3 Å2. This gives for the boundary electron number density c∗
b(�ε) =

1.4 · 10−7 at the atom excitation energy for an argon gas discharge plasma.
From the data of Fig. 5.4 in helium and argon plasmas of glow discharge with

the number density of atoms Na = (1017–1018 cm−3) and the number density of
electrons it follows that the regime of a low number density of electrons Ne = (1010–
1012 cm−3) that corresponds to the electron concentration ce = Ne/Na∼10−8–10−5,
and a typical electron energy ε = 2–4 eV the regimeof a high electron number density
competes with the regime of a low electron number density. For an arc plasma of
helium and argon the regime of a high electron number density is realized, while in
a plasma of Townsend discharge the regime of a low electron number density takes
place.

Note that the criterion Bea(ε) � Bee(ε) means that evolution of the electron
energy results from electron-electron collisions. We consider below the case of a
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weakly ionized gas discharge plasma where the electron momentum is established
as a result of electron-atom collisions that corresponds to the criterion

νea � νee (5.6.3)

This criterion takes the form

ce = Ne

Na
� x2

4πe2σ∗
ea ln�

, (5.6.4)

where x = E/Na is the reduced electric field strength. Taking the electron energy ε
to be equal to the atom excitation energy ε = �ε, we rewrite the above criterion

ce � σea(vo)�ε2

5πe4 ln�
(5.6.5)

In particular, in the case of excitation of the metastable state 23S of the helium atom
this formula gives

ce � 0.05 (5.6.6)



Chapter 6
Kinetic Processes in Gas Discharge Plasma

Abstract If electrons are located in a gas in an external electric field, one can
divide the range of electric field strengths in three ranges, where the electric field
influences weakly of the electron energy distribution function (EEDF) in the first
range, elastic electron-atom collisions determine the EEDF in the second range, and
inelastic electron-atom collisions are of importance for EEDF as well as excited
atoms. Atom excitation in a plasma by electron impact is a self-consistent process,
because the excitation process acts on the EEDF at energies near the excitation
threshold, and the EEDF acts in turn on the excitation rate. Expressions for the
rate constants of atom excitation by electron impact are represented under various
conditions.

6.1 Distribution Function of Electrons Located in Rareness
Gas in Electric Field

Collision processes electrons and atoms in a gas discharge plasma lead to a change
of the electron energy as a result of many elastic and inelastic collisions. Because
evolution of an electron energy proceeds in many stages, the analysis of this evolu-
tion follows from kinetics of electrons. In addition, transport phenomena involving
electrons and ions in a gas discharge plasma result from many collisions of charged
particles with atoms. Hence below we consider kinetics of electrons and ions in gas
discharge plasma.

If the number density of electrons is relatively small, collisions between electrons
are not important for establishment of equilibrium of electrons in a gas. In this case
when an electron moves in a gas in an electric field of a strength E, its average
parameters depend on the ratio E/Na, where Na is the number density of atoms, as
it follows from the kinetic equation for the electron distribution function. A unit of
measurement of the reduced strength E/Na of the electric field is Townsend (Td)
[98] (1 Td = 1× 10−17 V · cm2). Figures5.1 and 5.2 contain measured values of the
drift velocities of electrons, i.e.averaged directed electron velocity, as a function of
the reduced electric field strength E/Na. Here the experimental values of the electron
drift velocity [257–262] are used for helium and [6, 7, 258, 260, 261, 263–267] for
argon.
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Let us determine the distribution function of electrons in a gas in a constant electric
field. The peculiarity of the behavior of electron kinetics in a gas is determined
by the character of electron-atom collisions where the electron momentum varies
strongly in a single collision, whereas the energy variation is small. This allows
one to represent the electron distribution function over spherical harmonics [270–
274] that corresponds to expansion of the kinetic equation for electrons over a small
parameter. This small parameter allows us to expand the velocity distribution function
of electrons over spherical harmonics according to (5.3.2). Let us start from thekinetic
equation (5.1.1) for the distribution function f (v) of electrons moved in a gas in a
stationary electric field that has the following form

eE
me

· ∂f

∂v
= Iee(f ) + Iea(f ), (6.1.1)

where Iee(f ), Iea(f ) are collision integrals for electron-electron and electron-atom
elastic collisions. From this there are two regimes for electron drift in an electric
field depending on the electron number density. We consider first the regime of a low
number density of electrons Ne according to the criterion

Ne � me

M

σea

σee
Na, (6.1.2)

where M is the atom mass, Na is the number density of atoms. In this regime one
can ignore the term Iee(f ) in the kinetic equation (6.1.1), and this limiting case
corresponds to drift of a single electron in a gas.

Substitution of the expressions (5.3.4) and (5.3.9) for the collision integrals in the
set (5.3.3) of equations leads to the following form of this set

a
df0
dv

= −νvf1,
a

3
f1 = me

M
Tν

(

df0
mevdv

+ f0
T

)

(6.1.3)

This set of equations may be reduced to the following equation for the spherically
symmetric part of the distribution function

(

T + Ma2

3ν2

)

df0
dε

+ f0 = 0 (6.1.4)

Solution of this equation has the form

f0 = C exp

⎛

⎝−
v

∫

0

mevdv

T + Ma2

3ν2

⎞

⎠ , (6.1.5)

where C is the normalization constant, and this solution holds true if the electron
distribution function is determined by elastic electron-atom collisions. From this we
have for the drift electron velocity

http://dx.doi.org/10.1007/978-3-319-11065-3_5
http://dx.doi.org/10.1007/978-3-319-11065-3_5
http://dx.doi.org/10.1007/978-3-319-11065-3_5
http://dx.doi.org/10.1007/978-3-319-11065-3_5
http://dx.doi.org/10.1007/978-3-319-11065-3_5
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we =
∫

v2x f1dv = eE

3me

∫

f0dv
mev

2

T + Ma2

3ν2

, (6.1.6)

and a general form of the expression for the electron drift velocity in this case is
[275]

we =
∫

v2x f1dv = eE

3me

〈

1

v2

d

dv

(

v3

ν

) 〉

, (6.1.7)

where an average is made with using the electron distribution function (6.1.5). In
particular, in the case if the rate of electron-atom scattering ν is independent of the
electron velocity, formula (6.1.7) gives

we = eE

meν
(6.1.8)

Let us consider the Druyvesteyn case [269, 285, 286], if the diffusion cross
section of electron-atom scattering σ ∗

ea(v) is independent of the electron energy,
and the average electron energy is large compared to a thermal energy of atoms.
Then the distribution electron function normalized to the electron number density
Ne (

∫

4πv2fo(v)dv = Ne) according to formula (6.1.5) has the form

f0(ε) = Ne

π�(3/4)

(

me

2εo

)3/2

exp

(

−ε2

ε2o

)

, εo = eEλ

√

M

3me
, (6.1.9)

and εo � T . From this on the basis of formula (6.1.7) we have for the electron drift
velocity in this case ( λ(v) = 1/(Naσ

∗
ea) = const)

we = 2eEλ

3me
·
〈

1

v

〉

=
√
2π

33/4�(3/4)

(me

M

)1/4
(

eEλ

me

)1/2

= 0.90
(me

M

)1/4
(

eEλ

me

)1/2

(6.1.10)

Correspondingly, the average electron energy is equal in this case

ε = εo
�(5/4)

�(3/4)
= 0.74εo (6.1.11)

One can generalize this formula for a case of a monotonic dependence for the
diffusion cross section of electron-atom scattering σ ∗

ea(v) on the electron velocity v.
Let us use for the rate of elastic electron-atom scattering ν the dependence on the
electron velocity v in the form ν(v) = bvk , i.e. the diffusion cross section of electron-
atom scattering is characterized by the dependence σ ∗

ea(v) ∼ vk−1. Then according
to formula (6.1.21) the symmetric part of the energy distribution function of electrons
is given by



116 6 Kinetic Processes in Gas Discharge Plasma

f0(ε) = C exp

[

− 3meb2v2+2k

(2 + 2k)Ma2

]

, (6.1.12)

where v is the electron velocity, me is the electron mass, M is the atom mass,
a = eE/me, E is the electric field strength. The normalized coefficient C corre-
sponds to the following normalization of the distribution function

∞
∫

0

4πv2f0dv = Ne

and is equal

C = Ne(2k + 2)

4π�( 3
2k+2 )

·
[

3meb2

(2k + 2)Ma2

]3/(2k+2)

From this we obtain on the basis of formula (6.1.7) for the electron drift velocity

we = eE(3 − k)

3meb
·

∞
∫

0

4πv2−kf0dv = eE(3 − k)

3meb

[

(2k + 2)Ma2

3meb2

]−k/(2k+2)

·
[

�( 3−k
2k+2 )

�( 3
2k+2 )

]

(6.1.13)

This formula is converted in formula (6.1.18) in the case k = 0 since b = ν and in
formula (6.1.10) in the case k = 1, where b = 1/λ. On the basis of the distribution
function (6.6.5) one can determine the average electron energy

ε = me

2
·
[

(2k + 2)Ma2

3meb2

]1/(1+k)

· �( 5
2k+1 )

�( 3
2k+1 )

(6.1.14)

In the case k = 0 we have from this formula ε = Mw2/2.
In a range of electron energies where inelastic processes do not influence on the

energy distribution function, one can use the expression (6.1.5) for the distribution
function of electrons that may be represented in the form

f0 = C exp(−χ), χ =
ε

∫

0

dε′

T + x2F(ε′)
, ε < 
ε (6.1.15)

where the dependence on the electric field strength is separated. Here x = eE/Na

is the reduced electric field strength, ε is the electron energy, C is the normalization
constant, and the function F(ε) is given by formula

F(ε) = M

6meε[σ ∗(ε)]2 (6.1.16)



6.1 Distribution Function of Electrons Located in Rareness Gas in Electric Field 117

Fig. 6.1 The function F(ε) for helium according to formula (6.1.16) and the data of Table3.1 for
the diffusion cross section

Fig. 6.2 The function F(ε) for argon according to formula (6.1.16) and the data of Table3.1 for
the diffusion cross section

Figs. 6.1 and 6.2 give the dependence on the electron energy ε for the function F(ε)

if an electron is located in helium and argon. One can see one sharp minimum of
this function for helium and two sharp minima in the argon case. Note that this
function must be used for electron energies below the excitation energy for atoms
where inelastic processes do not influence on the distribution function.

As it follows from formula (6.1.15), the function T + x2F(ε) is the effective
temperature for electrons. If the effective electron temperature is large at a given
electron energy, this energy gives a small contribution to an increase of the value
χ given by formula (6.1.15). Let us consider the Druyvesteyn case [269, 285, 286],

http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_3
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Fig. 6.3 Calculated on the basis of formula (6.1.15) the energy distribution function f (ε) for
electrons located in helium in a constant electric field at some electric field strengths

where the diffusion cross section of electron-atom scattering is independent of the
electron energy. In this case the effective electron temperature Tef is

Tef = T + M

6me

(eEλ)2

ε
(6.1.17)

The electron distribution functions are given in Figs. 6.3 and 6.4 in the helium and
argon cases. If the effective temperature exceeds the electron energy, the distribution

Fig. 6.4 Calculated on the basis of formula (6.1.15) the energy distribution function f (ε) for
electrons located in helium in a constant electric field at some electric field strengths
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function at such energies has the form of a plateau as it is seen at some energies of
Figs. 6.3 and 6.4. Note that formula (6.1.15) and the distribution functions of Figs. 6.3
and 6.4 are valid below the excitation energies for atoms where inelastic processes
in electron-atom collisions do not act on the electron distribution function.

Note that the distribution function (6.1.5) corresponds to the electron energy
range where elastic collisions dominate, and the change of the electron energy is
determined by elastic electron-atom collisions. Above the excitation threshold this
may be violated if

νex � me

M
ν, (6.1.18)

where νex is the rate of atom excitation by electron impact. Under this criterion, if
the electron energy ε attains the atom excitation energy 
ε, it excites an atom and
loses its energy. Therefore this corresponds to the boundary condition

f0(
ε) = 0 (6.1.19)

We assume that this boundary condition acts only near the excitation energy, i.e.
atom excitation corresponds to the distribution function tail only. Then we obtain for
the distribution function

f0(ε) = C exp

⎛

⎝−
vo

∫

v

mev
′dv′

T + Ma2

3ν2

⎞

⎠ (6.1.20)

where vo = √
2
ε/me is the electron velocity at the excitation threshold, and the

electron energy is below the excitation threshold ε < 
ε, whereas f0(ε ≥ 
ε) = 0.
Note that far from the excitation threshold the distribution function (6.1.20) is con-
verted in (6.1.5). Next, the normalization constant in expression (6.1.20) is equal

C = Ne

⎡

⎣4π

vo
∫

0

v2dv exp

⎛

⎝

vo
∫

v

mev
′dv′

T + Ma2

3ν2

⎞

⎠

⎤

⎦

−1

, (6.1.21)

where Ne is the electron number density. In particular, in the case ν(v) = const this
formula gives

C = Ne

(

me

2πTef

)3/2

, Tef = T + Ma2

3ν2
(6.1.22)

In the case under considerationwe assume the excitation energy
ε to be found on
the tail of the electron distribution function. Then the electron distribution function
has the following structure
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f0(ε) = ϕ(ε) − ϕ(
ε) (6.1.23)

Here ϕ(ε) is the distribution function in neglection the inelastic electron-atom
processes. In addition, the transition range of energies where excitation (i.e. the
second term in formula (6.1.23)) becomes significant, is narrow that corresponds to
the criterion

d ln ϕ

dε |ε=
ε
� 1

ε
(6.1.24)

6.2 Regime of High Electron Density in Electron Kinetics

The regime of a high electron density in electron kinetics corresponds to the criterion
for the electron number density Ne that is inverse with respect to (6.1.2)

Ne � me

M

σea

σee
Na, (6.2.1)

Then instead of (6.1.4) the equation set for the electron distribution function takes
the form

a
df0
dv

= −νeavf1,
a

3v2
d

dv

(

v3f1
)

= Iea(f0) + Iee(f0), (6.2.2)

Expansion of the second equation of this equation set over a small parameter (6.2.1)
gives in the first approximation

Iee(f0) = 0 (6.2.3)

The solution of this equation is the Maxwell distribution function (2.1.2)

f0(v) = Ne

(

me

2πTe

)3/2

exp

(

−mev
2

2Te

)

, (6.2.4)

where Te is the electron temperature. In this regime an ionized gas consists of two
subsystems, an atomic and electron gas, and an equilibrium is established in each
subsystem independently. The first equation of the set (6.2.2) gives for the drift
electron velocity according to its definition

we =
∫

vxf1dv = eE

3Te

〈

v2

νea

〉

, (6.2.5)

where an average is made on the basis of the Maxwell distribution function (6.2.4).
Figures6.5 and 6.6 contain the dependencies of the electron drift velocity on the
electron temperature in helium and argon correspondingly.

http://dx.doi.org/10.1007/978-3-319-11065-3_2
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Fig. 6.5 The electron drift velocity we in helium as a function of the electron temperature Te
calculated on the basis of formula (6.2.5) with using the diffusion cross sections from Table3.1

Fig. 6.6 The electron drift velocity we in argon as a function of the electron temperature Te
calculated on the basis of formula (6.2.5) with using the diffusion cross sections from Table3.1

Thus the electron drift velocity is expressed through the cross section of elastic
electron-atom collision as well as in the regime of a low electron number density.
In addition, because of thermodynamic equilibrium for the electron component, the
electron diffusion coefficient De and its mobility Ke = we/E are connected through
the Einstein relation [92, 93]

http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_3
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De = KeTe

e
= weTe

eE

For determination the difference of the electron Te and gas temperature T , when
the gas is located in a constant electric field, we multiply the kinetic equation (6.1.1)
by the electron kinetic energy mev

2/2 and integrate this over the electron velocities.
This gives in the first approximation

∫

mev
2

2
Ieedv = 0,

since electron-electron collisions conserve the total electron energy. Next approxi-
mation leads to the following balance equation

eEwe =
∫

mev
2

2
Ieadv =

(

1 − T

Te

)

m2
e

M
〈v2νea〉 (6.2.6)

The left hand side of this equation is the power that is transferred from the electric
field to electrons, and the right hand side corresponds to the power that is transferred
from electrons to atoms in their collisions. Using formula (6.2.5) for the electron
drift velocity, we obtain for the difference of electron and gas temperatures [83, 133,
170]

Te − T = Ma2

3

〈v2/νea〉
〈v2νea〉 (6.2.7)

The dependence of the electron temperature on the electric field strength is given
in Fig. 6.7 in helium and argon. Replacing the electron temperature in expression
(6.2.5) for the electron drift velocity on the basis of (6.2.7), one can determine the
drift velocity dependence on the electric field strength in the regime of high electron
number densities. Of course, this dependence may differ from that for the regime of
low number densities of electrons.

In considering high electron temperatures Te � T , rewrite formula (6.2.7) in the
form

Te = Me2x2

3m2
e

〈v/σ ∗
ea〉

〈v3σ ∗
ea〉

, (6.2.8)

where an average in brackets is made with the Maxwell distribution function (6.2.4).
On the basis of formulas (6.2.5) and (6.2.8) we represent the expressions for the
electron drift velocity we and the electron temperature Te for simple dependencies
νea(v). In the case ν(vea) = const these formulas give

we = eE

meνea
, Te − T = Ma2

3ν2ea
= Mw2

e

3
(6.2.9)
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Fig. 6.7 The dependence of the electron temperature Te on the reduced electric field strength E/Na
in helium. This dependence is calculated on the basis of formula (6.2.7) with using the distribution
function of electrons according to formula (6.2.4) and cross sections from Table3.1

In the case λ = v/νea(v) = const we obtain on the basis of formulas (6.2.5) and
(6.2.8)

we =
√
8

3
√

π

eEλ√
meTe

= 0.532
eEλ√
meTe

, Te − T = M

me

(eEλ)2

12Te
= 0.294Mw2

e

(6.2.10)

In particular, if the electron temperature is enough high Te � T , we have from
formula (6.2.10)

Te =
√

M

12me
eEλ, we = 0.99

(me

M

)1/4
√

eEλ

me
(6.2.11)

The second formula gives the same dependence of the electron drift velocity on the
electric field strength as that in the limit of low electron number densities according
to formula (6.1.10), but the factor in this formula exceeds that in formula (6.1.10)
by 10%. In particular, using in the helium case that σ ∗

ea(ε) ≈ 6Å2 at ε < 10 eV, we
obtain on the basis of first formula (6.2.11)

Te = 0.41x, Te � T , (6.2.12)

where Te is expressed in eV, the reduced electric field strength x = E/Na is given
in Td. Formula (6.2.12) holds true at low fields.

http://dx.doi.org/10.1007/978-3-319-11065-3_3
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In the helium case for awider energy rangewe use formula (3.2.8) for the diffusion
cross section of electron-atom scattering

σ∗
ea(ε) = (6 ± 1)Å2, ε < 10 eV; σ∗

ea(ε) ≈ A

ε
, A ≈ 60 eV · Å2, 10 eV < ε < 20 eV,

and the accuracy of this cross section is about 20%. Taking the energy distribution
function in the form [288]

f0(ε) = Ne

(

me

2πTe

)3/2 [

exp

(

− ε

Te

)

− exp

(

−
ε

Te

)]

, 
ε � Te (6.2.13)

instead of (6.2.4), we obtain (6.2.8) in the form

x2 = 300

z2
2 − e−z(z + 2)

1 + e−z(1 + 2/z)
, (6.2.14)

where z = εc/Te = 10 eV/Te. In the limit of low electric field strengths z � 1
this formula is transformed into (6.2.12). Figure6.8 gives these dependencies in
the helium case given by formulas (6.2.12) and (6.2.14). Figure6.9 represents the
dependence of the electron temperature on the reduced electric field strength for an
argon plasma in accordance with formula (6.2.11) on the basis of data of Table3.1
for the cross section of electron scattering on the argon atom.

Fig. 6.8 Electron temperature Te in ionized helium located in the electric field as a function of
the reduced electric field strength x. The dependence 1 corresponds to the cross section (3.2.8) for
electron scattering on the helium atom, the dependence 2 relates to σ ∗

ea = 6 Å2

http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_3
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Fig. 6.9 The electron temperature Te as a function of the reduced electric field strength x = E/Na
for ionized argon located in the electric field

6.3 Atom Excitation as Electron Diffusion in Energy Space

The electron distribution function f0(ε) determines the rates of atom excitation and
ionization in a plasma. If these processes do not influence on the electron distribution
function and the electron distribution function has theMaxwell form, the rate constant
of atom excitation is given by formula (3.3.8), and the rate constant of atom ionization
by electron impact is given by formula (3.6.15) if the ionization cross section is taken
on the basis of experimental data which are approximated by formulas (3.6.5) and
(3.6.6) related to a release of s-electron. Let us determine also the rate constants of
excitation and ionization of atoms in a gas discharge plasma for the Druyvesteyn
distribution function (6.1.9) of electrons if the diffusion cross section of electron-
atom elastic scattering is independent of the collision velocity. We have for the rate
constant of atom excitation on the basis of formula (3.3.7)

kex = g∗
go

kq

∞
∫


ε

√

ε − 
ε

ε
f0(ε)dε/Ne,

where the distribution function is normalized in a usual way (
∫

f0(ε)dε = Ne). Using
in the above formula the Druyvesteyn distribution function (6.1.9) of electrons, we
find in the limit of low electric field strengths

kex =
√

π

2
√
2�(3/4)

g∗
go

kq

(

ε2o

2
ε

)3/2

exp

(

− ε2o


ε2

)

, εo � 
ε (6.3.1)

In reality this formula is valid only for the limiting case εo � 
ε where the assump-
tion holds true that the rate constant of atom quenching kq by electron impact does

http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_3
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not depend on the collision energy. Nevertheless, one can spread it on a wide range
of the parameter εo/
ε. Then evaluating the above integral at εo � 
ε and sewing
the obtained result with formula (6.3.1), we obtain for the rate constant of atom
excitation

kex = g∗
go

kq exp

(

− ε2o


ε2

)

[

1 + 1.95

(


ε

εo

)3/2
]−1

(6.3.2)

The above results correspond to the assumption that the process of atom excitation
does not influence on the energy distribution function of electrons near the excitation
threshold that corresponds to a tail of the distribution function. This holds true at
large electric field strengths and depends on the atom excitation rate constant by
electron impact. We now consider another limiting case if the excitation process
leads to a sharp variation of the energy distribution function of electrons with an
increasing electron energy. In analyzing the case of a low electron number density,
we note that usually the inelastic cross section of electron-atom collisions is less
than the cross section of elastic electron-atom collisions, and therefore evolution
of the electron momentum is determined by elastic collisions with atoms. But the
energy change in elastic electron-atom collision is of the order of me/M portion
of the kinetic electron energy. Therefore the inelastic channel of the energy loss
may dominate above the excitation threshold. Hence, this case corresponds to the
following criterion at electron energies above the atom excitation energy
ε between
the rates of elastic νea and inelastic νex electron-atom collisions

νea � νex � νea
me

M


ε

ε
, (6.3.3)

In the regime under consideration the electron distribution function at energies
below the excitation threshold is determined by elastic electron-atom and electron-
electron collisions, while above the threshold the inelastic channel of energy loss
dominates. Then the rate of atom excitation in an ionized gas is given by the rate of
loss of fast electrons

dN∗
dt

= −dNe

dt
= −

∫

4πv2dv
∂f0
∂t

, (6.3.4)

where N∗ is the number density of excited atoms, and we take into account that the
loss of fast electrons is determined by atom excitation. The electron distribution f0
is normalized by the relation

∞
∫

0

f0(v) · 4πv2dv = Ne (6.3.5)
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On the basis of a non-stationary kinetic equation for electrons, we have the
following equation set instead of (6.1.4)

∂f0
∂t

+ a

3v2
∂(v3f1)

∂v
= Iea(f0),

∂f1
∂t

+ a
∂f0
∂v

= −νeavf1

A non-stationary is of importance only near the excitation threshold because the rate
of atom excitation is small compared to that of elastic electron-atom collisions. From
this we have

∂f0
∂t

= Iea(f0) + a2

3v2
∂

∂v

(

v2

νea

∂f0
∂v

)

(6.3.6)

Using the expression (5.3.9) for the collision integral, one can neglect it because a
thermal atom energy T is small compared to a typical electron energy, and the mass
ratio me/M is small. Integrating over electron velocities, we obtain for ε � T

dN∗
dt

= 4πa2mev
3
o

3νea

∣

∣

∣

∣

df0
dε

∣

∣

∣

∣

ε=
ε

, (6.3.7)

where ε = mev
2/2 is the electron energy, 
ε = mev

2
o/2 is the energy of atom exci-

tation, ϕ(ε) is the energy distribution function of electrons in ignoring the excitation
in accordance with formula (6.1.23), so that f0 = ϕ0 far from the atom excitation
threshold, and we assume that the excitation energy corresponds to the tail of the
distribution function. This leads to the rate constant k< of atom excitation if this
process is determined by the electron flux in a space of electron energies below the
atom excitation threshold

k< = 1

NaNe

dN∗
dt

= 4πv3o

3meko

(

eE

Na

)2 ∣

∣

∣

∣

df0
Nedε

∣

∣

∣

∣|ε=
ε

, (6.3.8)

where ko = νea(vo)/Na, and the electron distribution functions are normalized in
accordance with relation (6.3.5).

We now use formula (6.3.8) for the excitation rate constant for simple expressions
of the electron distribution function. Taking theMaxwell distribution function (6.2.4)
of electrons, we obtain on the basis of formula (6.3.8)

k< = 4

3
√

πmekoTe

(

eE

Na

)2

exp

(

−
ε

Te

)

(6.3.9)

In the case of the Druyvesteyn distribution function of electrons (6.1.9) formula
(6.3.8) gives

http://dx.doi.org/10.1007/978-3-319-11065-3_5
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k< = C
1

mekoεo

(

eE

Na

)2 (


ε

εo

)3/2

exp

(

−
ε2

ε2o

)2

, εo = eEλ

√

M

3me
, (6.3.10)

where C = 2/[3�(3/4)] = 0.817.
Let us formulate in a general form the character of electron diffusion in a space of

its energy as an element of atom excitation in a gas discharge plasma.Atom excitation
in a gas discharge plasma is determined by electrons located at the tail of the energy
distribution function, and we evaluate the part of the excitation rate constant of
atoms by electron impact which is determined by formation of fast electrons, and
subsequently these electrons excite atoms. One can represent the non-stationary
kinetic equation for the distribution function f0(v) of electrons in a space of electron
velocities as the continuity equation

∂f0
∂t

+ 1

v

∂

∂ε
(vJ) = 0, (6.3.11)

where the electron flux in a velocity space results from electron interaction with
an environment. We above consider the case where formation of fast electrons is
determined by the action of an electric field, and the corresponding flux in a space
of electron energies has the diffusion character J = −B∂f0/∂ε. We exclude from
the consideration the hydrodynamic part of the flux, because it is proportional to the
distribution function at the excitation boundary which is equal to zero. Hence, we
have from this for the rate of formation of excited atoms

dN∗
dt

=
∞

∫

εo

4πv2dv
∂f0
∂t

= 4πvo

me
B(
ε)

∣

∣

∣

∣

df0
dε

∣

∣

∣

∣

ε=
ε

, (6.3.12)

and in the case under consideration the electron diffusion coefficient in an energy
space due to an electric field is equal in accordance with formula (6.3.8)

BE(ε) = (eE)2v2

3νea
(6.3.13)

In addition, one can use in formula (6.3.12) the unperturbed distribution function
ϕ0(ε) that coincides with the distribution function f0(ε) at lower energies far from
the excitation boundary. One can use two more mechanisms of electron diffusion in
an energy space due to collisions with atoms and electrons, and the corresponding
diffusion coefficients Bea and Bee are given by formulas (5.3.8) and (5.5.4) in the
form

Bea(ε) = me

M
Tmev

2νea, Bee(ε) = 4πe4TeNe ln�

mev

http://dx.doi.org/10.1007/978-3-319-11065-3_5
http://dx.doi.org/10.1007/978-3-319-11065-3_5
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Correspondingly, in a general case formula (6.3.12) takes the form

dN∗
dt

= 4πvo

me
(BE + Bea + Bee)

∣

∣

∣

∣

df0
dε

∣

∣

∣

∣

ε=
ε

, (6.3.14)

In particular, in the case the Maxwell distribution of electrons formula (6.3.14) gives
for a corresponding mechanism of electron diffusion

dN∗
dt

= 2√
π

(


ε

Te

)1/2 NeB(
ε)

T2
e

exp

(

−
ε

Te

)

, k< = 2√
π

(


ε

Te

)1/2 B(
ε)

NaT2
e

exp

(

−
ε

Te

)

(6.3.15)

From the above analysis it follows that the contribution of each mechanism of
electron diffusion in a space of its energies is determined by the diffusion coefficient
B(
ε) for the corresponding mechanism at the electron energy near the atom exci-
tation energy 
ε. We compare in Fig. 6.10 the diffusion coefficients in a space of
electron energies BE and Bee where the energy variation proceeds under the action
of an electric field and as a result of electron-electron collisions. We have for the
ratio of these diffusion coefficients taking into account that BE is proportional to
the number density of atoms Na, while Bee is proportional to the electron number
densityNe

Bee

BE
= ceζ, ζ = 6πe4 ln�σ ∗

ea

ε(eE/Na)2
, (6.3.16)

where ce = Ne/Na is the electron concentration, and vo is the electron velocity at the
atomexcitation energy. This gives the rate constant of excitation due to electron kinet-
ics in a space of electron energies in the regime of high electron number densities in

Fig. 6.10 The ratio of electron diffusion coefficients in a space of reduced electric field strengths
in accordance with formula (6.3.16) if the Coulomb logarithm is ln� = 10
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accordance with formula (5.5.18) if we account for simultaneously electron diffusion
in the electron energy space due to an electric field [287]

k< = 1

NaNe

dN∗
dt

= 4
√
2πe4ln�

3 m1/2
e T5/2

e

exp

(

− εo

Te

)

(

ce + x2

4πe2σea(vo) ln�

)

(6.3.17)

The excitation rate constant by electron impact in accordance with formula (6.5.7)
is given by

k> = 4.6g∗kq
ε3/2

π3/2goT3/2
e κ1.2

exp

(

− εo

Te

)

, (6.3.18)

and these expressions are valid if the criterion (6.5.4) holds true.

6.4 Efficiency of Atom Excitation by Electron Impact

We also analyze the above results from the standpoint of the energy expense in a gas
discharge plasma on excitation of atoms. Let us assume the rate of electron-atom
collisions νea to be independent of the electron energy. Under the above assumption,
if fast electrons expense its energy on atom excitation, we have for the field energy
consumed on atom excitation per unit volume and per unit time in the regime of high
electron number densities as


ε
dN∗
dt

= Na
4

3
√

π

(


ε

Te

)5/2 Ne · (eE)2

meνea
exp

(

−
ε

Te

)

(6.4.1)

One can find the portion γ of the energy injected in a gas discharge plasma from an
electric field that is consumed on atom excitation as the ratio of the power
εdN∗/dt
for atom excitation to the power iE = E ·eNewe transferred to a gas discharge plasma
from an external field. We have for this ratio if the rate of electron-atom collisions
νea does not depend on the electron velocity

γ = 
ε
dN∗
dt

/(NeeEwe) = 4

3
√

π

(


ε

Te

)5/2

exp

(

−
ε

Te

)

, (6.4.2)

where we use formula (6.2.9) for the electron drift velocity. This dependence is
represented in Fig. 6.12. In the same manner one can construct the efficiency of atom
excitation by electron impact in a gas discharge plasma in the case where the cross
section of elastic electron-atom collisions σ ∗

ea and respectively the mean free path of
electrons λ = 1/(Naσ

∗
ea) are independent of the electron velocity. Then the electron

drift velocity is determined by formula (6.2.10), and the power portion consumed on
atom excitation is given by

http://dx.doi.org/10.1007/978-3-319-11065-3_5
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Fig. 6.11 Dependence on the specific electron temperature for the ratio of the specific powers
consumed on atom excitation by electron impact in a gas discharge plasma and as a result of elastic
electron-atom collisions in the cases where the rate of elastic electron-atom collisions and the mean
free path of electrons in a gas discharge plasma are independent of the electron energy in accordance
with formulas (6.4.2) and (6.4.3)

γ = 
ε
dN∗
dt

/(NeeEwe) ≈
(


ε

Te

)3

exp

(

−
ε

Te

)

, (6.4.3)

The ratio of powers resulted from inelastic and elastic electron-atom collisions is
given in Fig. 6.11 under corresponding conditions.

Let us define the efficiency ξ of atom excitation in an ionized gas as the ratio of
an energy that is consumed on atom excitation to the total electric energy injected in
a gas. This value is given by

ξ = 
ε dN∗
dt

NeeEwe + 
ε dN∗
dt

= γ

1 + γ
, (6.4.4)

wherewe is the electron drift velocity, and the parameter γ is the ratio of inelastic and
elastic energy losses and is defined by formula (6.4.2). In the regime of a high electron
number density or in the regime of a low number density of electrons in the case
ν(v) = const this parameter is given by formula (6.4.2). One can see the maximum
of the function (6.4.4) at Te = 0.4
ε, that corresponds to γ = 0.61 and ξ = 0.38.
This shows that the efficiency of atom excitation may be essential. Figure6.12 [133]
contains the dependence of the excitation efficiency ξ on the reduced average electron
energy ε/
ε, where ε = 3Te/2 for the regime of a high electron number density if
an ionized gas is located in an external electric field.

Let us determine the efficiency of atom excitation in the regime of a low electron
number density for the Druyvesteyn case where the cross section of electron-atom
scattering is independent of the electron velocity. Based on the criterion (6.3.3), we
assume in this consideration that in the course of electron-atom collisions the electron
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Fig. 6.12 Efficiency of atom excitation by electron impact in a gas discharge plasma depending
on the specific electron temperature in the cases where the rate of electron-atom collisions is
independent of the electron velocity as well as the mean free path of electrons in a gas discharge
plasma

energy reaches the threshold of atom excitation and slightly exceeds this value. Then
the electron energy is consumed on atom excitation and an electron obtains almost
zero energy. We assume that this excitation energy does not return to an electron
(for example, this energy is taken by a radiating photon). Under these conditions we
compare the power consumed on atom excitation with that transferred to atoms in
the course of electron-atom collisions. The energy distribution function of electrons
has the form (6.1.9) far from excitation threshold for the Druyvesteyn case where
λ(v) = const. Near the excitation threshold in accordance with formula (6.1.20) we
have (
ε � T )

f0(ε) = Ne

π�(3/4)

(

me

2εo

)3/2
[

exp

(

−ε2

ε2o

)

−
(

−
ε2

ε2o

)]

, εo = eEλ

√

M

3me
, 
ε � εo

(6.4.5)

This gives for the excitation rate on the basis of formula (6.3.7)

dN∗
dt

= 4
√
2

�
( 3
4

)

me

M


ε2

ε
3/2
o m1/2

e

Ne

λ
exp

(

−
ε2

ε2o

)

, (6.4.6)

where λ = 1/(Naσ
∗
ea), 
ε is the excitation energy, and εo is a typical energy

εo = eEλ
√

M/(3me). From this we obtain for the parameter γ

γ = 
ε dN∗
dt

NeeEwe
= 4√

π


ε3

ε3o
exp

(

−
ε2

ε2o

)

, (6.4.7)
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where we use formula (6.1.13) for the electron drift velocity in the Druyvesteyn case.
This value has a maximum at ε2o/
ε2 = 1.5 or ε/
ε = 0.604. At this value of the
average reduced electron energy we have γmax = 0.925 and the efficiency of atom
excitation is ξmax = 0.48. As is seen, in both regimes, the regime of a high electron
number density where the efficiency parameter γ is given by formula (6.4.2) and in
the Druyvesteyn case of the regime of a low electron number density, the powers
transferred from an electron to buffer gas atoms and consumed on atom excitation,
are comparable under optimal conditions.

In considering the regime of a high electron number density, we use formula
(6.3.7) for this regime

dN∗
dt

= 4π

3

mea2v3o
νea

∂f0
∂ε

(6.4.8)

On the basis of the Maxwell distribution function for electrons we obtain for the
excitation rate constant

k< = 4

3
√

π

(


ε

Te

)3/2 me

k∗
ea(vo)Te

(

eE

meNa

)2

exp

(

−
ε

Te

)

(6.4.9)

This formula coincides with formula (6.4.2) if we introduce in this formula the
electron temperature as Te = Ma2/(3ν2ea). As it follows from the above analysis, the
rate constant k< is determined by the character of variation of the electronmomentum
in the course of electron evolution in a space of electron energies.

Let us formulate the problem under consideration. Atom excitation in a gas dis-
charge plasma is determined by electrons located at the tail of the energy distribution
function, and we evaluate the part of the excitation rate constant of atoms by electron
impact which is determined by formation of fast electrons. For this channel of atom
excitation we assume that an electron with an energy above the excitation threshold
expends its energy on atom excitation. In this case in accordance with formula (6.3.4)
the rate of atom excitation by electron impact is determined by the electron flux in
an energy space through the surface ε = 
ε. In this consideration the rate of atom
excitation is given by

k< = 4πvoBE

me

∂ϕ0

Ne∂ε
(
ε), BE = mea2v2o

3νea
, (6.4.10)

where ϕ0 is unperturbed distribution function of electrons, BE is the diffusion coeffi-
cient of electrons in an energy space which is determined by electron drift under the
action of an external electric fieldwith braking of thismotion in collisionswith atoms.
We have the two other mechanisms of electron diffusion in an energy space due to
collisions with atoms and electrons, and the corresponding diffusion coefficients Bea

and Bee are given by formulas (5.3.8) and (5.5.4) in the form

http://dx.doi.org/10.1007/978-3-319-11065-3_5
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Fig. 6.13 Ratio of the rate
constants of atom excitation
by electron impact in a gas
discharge of a high electron
concentration as a function of
the electron temperature Te

Bea(ε) = me

M
Tmev

2νea, Bee(ε) = 4πe4Te

mev
Ne ln�,

and (6.4.10) takes the form

k< = 4πvo(BE + Bea + Bee)

meNa

∂ϕ0(
ε)

Ne∂ε
(6.4.11)

In particular, in the case the Maxwell distribution of electrons formula (6.4.11) gives
for a corresponding mechanism of electron diffusion this leads to formula (6.3.15).
One can compare the rate constant of atomexcitation by electron impact k< according
to formula (6.4.11) if it is determined by an electronflux in an energy space at energies
below the atom excitation energy, with the excitation rate constant kth according
to formula (3.3.8) for thermodynamic equilibrium between excited and nonexcited
atoms that is supported by collisions with electrons. The ratio of these quantities
is given in Fig. 6.13. As is seen, violation of thermodynamic equilibrium due to
excitation process leas to a decrease of this ratio.

6.5 Electron Distribution Function Above the Atom
Excitation Threshold

Above we used the model for atom excitation in a gas discharge plasma where the
elastic channel for electron-atom collisions acts at the electron energies below the
atom excitation threshold, whereas above this electron energy the inelastic channel of
electron-atom collisions dominates. Then atom excitation is determined by electrons
which energy intersects the threshold of atom excitation, and this allows one to
determine the rate of atom excitation in a gas discharge plasma. Now remaining in
the regime of a low electron number densities, we find the structure of the electron
distribution function accurately, if the criterion (6.3.3) holds true.

Let us account for atom excitation by electron impact in a gas discharge plasma
by inserting in the second equation of the set (6.1.4) the excitation channel, that gives

http://dx.doi.org/10.1007/978-3-319-11065-3_3
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− a

3v2
d

dv
(v3f1) = Iea(f0) − νexf0

Using the relation (5.3.9) for the collision integral in this case and assuming the
electron energy to be large ε � T , we obtain the following equation for the symmetric
part of the electron distribution function

a2

3v2
d

dv

(

v2

ν ea

df0
dv

)

+ me

M

1

v2

d

dv
(v3νeaf0) − νexf0 = 0 (6.5.1)

Accounting for a sharp change of the electron distribution function above the
excitation threshold due to the criterion (6.3.3), we solve (6.5.1) in the quasiclassi-
cal approach representing the distribution function in the form f0 = A exp(S) and
assuming (S′)2 � S′′. Ignoring the second term in (6.5.1), i.e., neglecting by the
energy loss due to elastic electron-atom collisions, and solving this equation, we
have S′ = −√

3νexνea/a, where a = eE/me and ε � ε. This gives [83]

f0(v) = f (vo) exp(−S) = f (vo) exp

⎛

⎝−
v

∫

vo

dv

a

√

3νexνea

⎞

⎠ , (6.5.2)

where the distribution function ϕ(v) is determined by elastic electron-atom colli-
sions only and is introduced in formula (6.1.22), the threshold electron velocity
is vo = √

2
ε/me. Using the threshold law (3.3.6) for the excitation cross section
σex ∼ √

ε − 
ε and expressing according to formula (3.3.7) the atom excitation rate
constant kex through the quenching rate constant kq that is independent of ε − 
ε

near the threshold, we obtain at electron energies near the threshold

S = κ

(

ε − 
ε


ε

)5/4

, κ = α

x
, α = 0.4vokef me/e, νef =

√

3
g∗
go

νqνo = Nakef

(6.5.3)

Here νo = Nakel(vo) = Navoσel(vo) is the rate of elastic electron-atom collisions
near the excitation threshold, x = E/Na is the reduced electric field strength, the
quenching rate is νq = Nakq, where go, g∗ are the statistical weights for the ground
and excited atom states.We add to this the criterion of the validity of the quasiclassical
exponent form (S′)2 � S′′. We also represent in Table6.1 the parameters of formula
(6.5.3) for the lowest excited states of helium and argon atoms.

In this consideration we assume the electron distribution function (6.5.2) to be
decreased sharply near the excitation threshold. This means that for the electron
energy S(ε∗) ∼ 1 we have ε∗ − 
ε � 
ε, that is fulfilled at low electric field
strengths

κ � 1 (6.5.4)

http://dx.doi.org/10.1007/978-3-319-11065-3_5
http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_3


136 6 Kinetic Processes in Gas Discharge Plasma

Table 6.1 Parameters of excitation of helium and argon atoms in a gas discharge plasma

Atom He(23S) Ar(3P2) Ar(3P1) Ar(3P0) Ar(1P0)


ε (eV) 19.82 11.55 11.62 11.72 11.83

vo (108 cm/s) 2.64 2.02 2.02 2.03 2.04

g∗ 3 5 3 1 3

ko = kel(vo) (10−8 cm3/s) 7.1 29 29 30 30

kq (10−9cm3/ s) 3 0.4 0.82 0.4 3.9

kef (10−8 cm3/s) 4.4 4.2 4.2 1.9 10

α (Td) 263 191 213 86 471

This criterion means that the electron distribution function is distorted above the
excitation threshold due to atom excitation. Another limiting case is given by formula
(6.1.5) if the rate constant of elastic electron-atom collisions is independent of the
collision velocity.

It should be added to criterion (6.4.5) that the atom excitation energy 
ε corre-
sponds to the tail of the electron distribution function (6.1.20), and the regime of low
electron number densities may be represented in the form

a � voνo

√

me

M

or

κ � νex

νo

√

me

M
(6.5.5)

One can see that the criteria (6.5.4) and (6.5.5) have an identical structure, and one
can expect the criterion (6.5.5) to be more strong.

One can determine the rate of direct atom excitation by electron impact on the
basis of the distribution function (6.5.2) under assumption that the main contribution
to atom excitation gives a narrow range of electron energies in accordance with
criteria (6.5.4) and (6.5.5). Using formula (3.3.7) for the rate constant of excitation,
we have for the rate of direct excitation

dN∗
dt

= Na

∫

kexf0(v) · 4πv2dv = 4πvo

me

g∗
go

νq

∞
∫


ε

√

ε − 
ε


ε
f0(v)e−Sdε = NaNe

f0(vo)

ϕ0(vo)
F,

(6.5.6)

where νq = Nakq, and κ is given by formula (6.5.3). One can introduce the rate
constant of atom excitation for a given electron distribution over velocities

k> = 1

NaNe

dN∗
dt

, (6.5.7)

http://dx.doi.org/10.1007/978-3-319-11065-3_3
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and we have

k> = kth
f0(vo)

ϕ0(vo)
, kth = kq

g∗
go

· exp
(

−
ε

Te

)

, F = 2√
πT3/2

e

∞
∫

0

√
ε′ exp

[

− ε′

Te
− κ

(

ε′


ε

)5/4
]

(6.5.8)

Evaluating the parameterF in the limiting caseswhere one can remain in the exponent
only one term and sewing the limiting cases, we obtain finally

k> = kth
f0(vo)

ϕ0(vo)
F, F =

[

1 + κ1.2
(

Te


ε

)5/4
]−1

(6.5.9)

In analyzing the limiting cases, we account for f0 ∼ exp(−ε/Te), and if in a range
ε − 
ε ∼ Te we have S = 0, this limit gives

k> = kth
f0(vo)

ϕ0(vo)
, kth = kq

g∗
go

· exp
(

−
ε

Te

)

,

and the excitation rate constant kth corresponds to the thermodynamic equilibrium.
In the other limiting case where S(v) varies sharply near the atom excitation, we
obtain

k> = kth
f0(vo)

ϕ0(vo)
, kth = kq

g∗
go

· exp
(

−
ε

Te

)

,

where fo = f0(vo), and vo is the electron velocity at the excitation threshold,
νo = ν(vo) is the rate of electron-atom elastic scattering at this energy. Note that for-
mula (6.5.7) for the excitation rate is valid both for regimes of low and high electron
number densities. Substituting in this formula the Maxwell distribution function of
electrons far from the excitation threshold for the regime of a high electron num-
ber density, we obtain for the atom excitation rate by electron impact in the limit if
k, � k> and hence fo = ϕo

dN∗
dt

= 0.83NeNa
g∗
go

kq

(


ε

Te

)3/2

exp

(

−
ε

Te

)

κ−1.2 (6.5.10)

Comparing this expression for direct atom excitation by electron impact in an
ionized gas with that due to diffusionmotion of electron in an energy space according
to formula (6.3.7), we find for the ratio of these rates

ζ
fo
ϕo

= 0.37

κ1.2

g∗
go

M

me

νq

νo

fo
ϕo

(6.5.11)

As is seen, both mechanisms of atom excitation may be realized depending on the
electric field strength E (or the parameter a) under conditions where criteria (6.5.4)
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and (6.5.5) are fulfilled. Formula (6.5.11) allowsus tofind the electric field strengthE∗
at which both mechanisms gives the same contribution to the rate of atom excitation.
This corresponds to ζ = 1 and gives

eE∗
Na

= 0.175mevokef

(

go

g∗
me

M

kq

ko

)5/6

, (6.5.12)

where kef = νef /Na, kq = νq/Na, ko = νo/Na. Note that because of the identical
distribution functions of electrons ϕ(vo) in the expressions for the excitation rates
in the diffusion (6.3.7) and direct (6.5.6) mechanisms of atom excitation by electron
impact, formulas (6.5.11) and (6.5.12) are valid both for regimes of a low electron
number densities and high electron number densities.

Thus, on the basis of formula (6.3.8) we evaluate the rate k< of travelling of
electrons in a space of electron energies to the excitation threshold and also express
the atom excitation rate k> through the electron distribution function at the excitation
threshold according to formula (6.5.7). One can introduce also the rate k′

< of electron
travelling in a space of electron energies that describes reflection of electrons form
the excitation threshold in a space of electron energies. The corresponding fluxes are
given in Fig. 6.14, and from the equality of total fluxes j ≤ j> + j′< one can find both
the effective excitation rate constant kex and the electron distribution function fo at
the excitation threshold if ϕo is the distribution function of electrons far before the
excitation threshold [287]

kex = k<k>

k< + k>

= 4.6
g∗
go

kqv
3
oϕo/Ne

(1 + ζ )κ1.2 , fo = k<

k< + k>

ϕo (6.5.13)

Fig. 6.14 The character of electron fluxes near the atom excitation threshold. The flux of electrons
towards the excitation boundary k< is proportional to the derivation of the electron distribution
function at the the excitation threshold and hence is expressed through the distribution function ϕo
in ignoring the absorption process for fast electrons. The reflected electron flux k′

< is proportional
to the electron distribution function at the absorption boundary [287]
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This formula shows that the mechanisms of electron travelling to the excitation
rate and the excitation rate above the excitation threshold do not compete, but they
establish the distribution fo at the excitation threshold. In this formula the rate constant
k< of electron motion to the excitation boundary in a space of electron energies
corresponds to the diffusion character of this motion where electrons do not reflect
from the excitation boundary. In other words, the quantity k< in formula (6.5.13)
relates to the boundary condition (6.1.19), where the distribution function at the
excitation boundary fo is zero. On contrary, the rate constant of atom excitation k>

by fast electrons in formula (6.5.13) is regarded to the case where the electron flux
toward the excitation boundary in a space of electron energies is equal to the reflected
flux, i.e. the electron distribution function at the excitation boundary fo is equal to
its non-perturbed value ϕo.

Let us sew the expressions (6.1.20) and (6.5.2) for the electron distribution func-
tion above the excitation threshold. Let us represent the electron distribution function
in this energy range in the quasiclassical form as [83]

f0(ε) = f0(
ε) exp(−S1 − S2), S1 =
vo

∫

v

mev
′dv′ 3ν2

Ma2
, S2 =

v
∫

vo

dv

a

√

3νexνo,

and the energy derivations of these exponents are equal

S′
1 = 3ν2

Ma2
, S′

2 = 4νef

mevoa

(

ε − 
ε

ε

)1/4

, νef =
√

3
g∗
go

νqνo (6.5.14)

A schematic character of the dependence (6.5.14) of the electron distribution function
on the electron energy is given in Fig. 6.14. In this consideration we require that the
characteristic electron energy εb defined as the derivations are equal S′

1(εb) = S′
2(εb)

to be close to the excitation energy 
ε. This corresponds to a small parameter

δ =
(

εb − 
ε


ε

)1/4

� 1 (6.5.15)

If this criterion holds true, the distortion of the distribution function above the exci-
tation threshold due to atom excitation becomes important. According to formula
(6.5.14) this parameter is equal

δ = 3me

4M

voν
2
o

aνtf
∼ 1

κ

me

M

ν2o

ν2ex
(6.5.16)

In the case under consideration where the electron distribution function above the
excitation threshold decreases sharply at removal from the threshold, the point of
change of the distribution function derivation in Fig. 6.15 is located close to the
excitation threshold.
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Fig. 6.15 The energy
distribution function of
electrons near the threshold of
atom excitation

We now sum up the results of the above analysis and find the rate of atom exci-
tation in a gas discharge plasma. In the case of small electric field strengths E the
atom excitation threshold corresponds to a tail of the energy distribution function
of electrons, and then the distribution function varies sharply at the atom excitation
energy with energy variation. In addition, slow electrons resulted from atom excita-
tion does not change the distribution function that allows us to ignore this process in
determination of the distribution function of slow electrons. In this case the excitation
rate is relatively small and it can be determined on the basis of the above model that
is given by formula (6.5.14). We must modify formula (6.5.14) in this case. Indeed,
represent the electron distribution function in the form

f0(ε) = f0(
ε) exp(−S1), ε < εb; f0(ε) = f0(
ε) exp(−S2), ε > εb

In the regime of a high electron number density, where the energy distribution func-
tion of electrons is the Maxwell one (2.1.2), it may be represented in the form [288]

f0(v) ∼
[

exp

(

− ε

Te

)

− exp

(

−
ε

Te

)]

, (6.5.17)

if we identify the boundary energy εb with the atom excitation energy 
ε.
The above form of the distribution function given in Fig. 6.14 divides the electron

energy range in two ranges with the boundary ε = εb. At lower energies the distrib-
ution function is determined by elastic electron-atom collisions, while all electrons
of the second group excite atoms and become slow electrons. Then the rate of atom
excitation in this gas discharge plasma is determined by formula (6.5.13) and consists
of two parts. The first part includes the electron flux k< in the electron energy space
towards the boundary energy εb, and this flux is created by elastic electron-atom col-
lisions. The second part is excitation of atoms that takes energy of fast electrons, i.e.
fast electrons disappears as a result of this process. The total excitation rate constant
is given by formula (6.5.13).

http://dx.doi.org/10.1007/978-3-319-11065-3_2
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6.6 Electron Kinetics in Gas in Strong Field

The above expressions for the energy distribution function of electrons hold true if
a typical electron energy is small compared to the excitation energy of atoms, and
then inelastic electron-atom collisions do not influence on the electron distribution
function. Let us consider the case of high electric field strengths at low electron
number densities where electron-electron interactions are neglected. In this case
each electron is accelerated under the action of the electric field, and when it reaches
the atom excitation energy, the electron transfers energy on atom excitation and stops,
starting to accelerate again (see Fig. 6.16).

Webelowdetermine the electron distribution function accounting for the recurring
character of the energy of a test electron, as it shown in Fig. 6.16. Then the energy
distribution function of electrons f0(ε)dε is proportional to a time interval dt at
which the electron energy ranges from ε to ε + dε. Note that in determination the
electron distribution function on the basis of dynamics of a test electron, we use the
ergodic theorem [289–291] according to which after an average over a large time
the probability that some parameter is located in a certain interval is proportional to
a time during which this parameter is found in an indicated interval. Let us use the
energy equation for a test electron

me
dε

dt
= eEwe, (6.6.1)

where ε is a current electron energy,we = welE/Na is a current electron drift velocity
when it has an energy ε. We assume that due to a small parameter me/M (the ratio of

Fig. 6.16 Character of energy variation for a test electron in time. A test electron acquires an energy
from an external electric field and an increase of the electron energy is restricted by excitation of
gas atoms, so that the electron stops after each atom excitation. τ is a time of one period during
which the electron energy varies from zero up to the excitation threshold
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Fig. 6.17 Current reduced drift velocity of an electron in helium at a given electron energy in
accordance with formula (6.6.2). The curve with open circles is constructed on the basis of cross
sections of Table3.1 [130], open triangles correspond to the approximation dependence wel =
5.6× 104ε1/2, where the reduced drift velocity is expressed in cm/(s ·Td), and the electron energy
is given in eV

electron and atom masses) the electron distribution function is almost isotropic with
a small width 
ε ∼ (me/M)ε. Hence a current electron drift velocity is

we = eE

meNavσea(ε)
(6.6.2)

Figure6.17 contains the reduced current drift velocity of an electron wel = weNa/E
in helium as a function of its energy ε, and Fig. 6.18 contains this dependence in
the argon case. Correspondingly, the energy distribution function of electrons in this
case is [292]

f0(ε)dε = Cvσea(ε)dε, C = Ne

(∫

vσea(ε)dε

)−1

(6.6.3)

Note that this distribution function differs from theMaxwell one (6.2.4) if the energy
change of a test electron results from collision with other electrons of a gas discharge
plasma. In the case under variation an external electric field dominates in kinetics
of the spherically symmetric distribution function of electrons rather than collisions
with other electrons. In other words, in this case electron-atom collisions determine
variation of themomentum of a test electron in electron kinetics in a space of electron
velocities, whereas variation of a current energy of a test electron results from the
action of an external electric field.

We assume in this formula that an electron partakes in many collisions with atom
until it attains the energy of atom excitation. Using formula (6.1.7) for the current
electron drift velocity and as early the dependence ν ∼ vk ( σ ∗

ea(v) ∼ vk−1) for the
rate of electron-atom collisions, we obtain for the electron distribution function

http://dx.doi.org/10.1007/978-3-319-11065-3_3
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Fig. 6.18 Current reduced drift velocity of an electron in argon at a given electron energy in
accordance with formula (6.6.2). The curve with open circles is constructed on the basis of cross
sections of Table3.1, open triangles correspond to the approximation dependence for a current
electron drift velocity wel = 2.2 × 106/ε3/2, where the current reduced drift velocity is expressed
in cm/(s · Td), and the electron energy is given in eV: 1 optically thin plasma, 2 optically thick
plasma

f0(ε)dε = Cεk/2dε, ε ≤ 
ε (6.6.4)

Here C is the normalization coefficient that is equal to

C = Ne
1 + k/2

(
ε)1+k/2
(6.6.5)

We have for a current electron drift velocity at the threshold electron energy 
ε

we = eE

meν(
ε)
(6.6.6)

The energy distribution function of electrons (6.6.4) allows one to determine the
average electron energy ε is an electron moves in a gas in an external electric field
of a strength E that is equal to

ε =

ε
∫

0

ε
f0(ε)dε

Ne
= 1 + k/2

2 + k/2

ε (6.6.7)

Let us apply these results to helium and argon. Approximating the diffusion cross
section of electron-atomscattering below the excitation energy in accordancewith the
data of Table3.1, we obtain approximately σ ∗(ε) ∼ 1/ε for helium and σ ∗(ε) ∼ ε

for argon. This gives k ≈ −1 for helium and k ≈ 3 for argon, and the energy
distribution function has the following form in these cases

http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_3
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fHe(ε)dε = Ne
2dε√
ε
ε

, fAr(ε)dε = Ne
2ε3/2dε

5(
ε)5/2
, ε ≤ 
ε, (6.6.8)

where an index at the distribution function indicates a gas, and the excitation energy
is 
ε = 19.8eV for helium and 
ε = 11.55eV for argon. The average electron
energy according to formula (6.6.7) is equal in the helium and argon cases

ε(He) = 
ε

3
≈ 7 eV, ε(Ar) = 5

7

ε ≈ 8 eV (6.6.9)

The rate constant of ionization of excited atoms by electron impact k∗
ion is given by

k∗
ion =


ε
∫

J∗

f (ε)kion(ε)dε, (6.6.10)

where the rate of atom ionization kion(ε) is determined by formula (3.6.17). Since
the energy distribution function of electrons does not depend on the electric field
strength in a range of strong fields under consideration, this rate constant is indepen-
dent of the electric filed strength and k∗

ion(He) = 2.5 × 10−7 cm3/s for ionization
metastable helium atoms He(23S), whereas k∗

ion(Ar) = 3.6 × 10−7 cm3/s for ion-
ization metastable argon atoms Ar(3P2).

We also have from (6.6.1) for the distance 
x that is passed by electron during
one period and the period time τ in accordance with Fig. 6.16 is given by


x = 
ε

eE
, τ = 1

eE


ε
∫

0

dε

we(ε)
(6.6.11)

Formula (6.6.11) gives for the reduced way of an electron per one cycle


x(He)E ≈ 20V, 
x(Ar)E ≈ 12V (6.6.12)

Using the dependence of a current reduced drift velocity of electrons on its energy
that is wel(He) ∼ ε1/2 and wel(Ar) ∼ ε−3/2, we find the average reduced drift
velocity of electrons as

wel = 1

Ne


ε
∫

0

wel(ε)f0(ε)dε

This gives for the helium and argon cases

http://dx.doi.org/10.1007/978-3-319-11065-3_3
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wel(He) = 1

2
wel(He)|ε=
ε = 1.2 × 105

cm

s · Td ,

wel(Ar) = 5

2
wel(Ar)|ε=
ε = 1.5 × 105

cm

s · Td (6.6.13)

We assume above that the main contribution to this value give electron energies
where a power approximation holds true. As it follows from Figs. 6.16 and 6.17, this
is fulfilled better for argon, whereas for helium it leads to an error. Next, the electron
drift velocity we that is averaged over electron energies is expressed through the
reduced one as

we = wel
E

Na
(6.6.14)

Next, on the basis of formula (6.6.11) we have

τ(He) = 2
x

we(
ε)
, τ (Ar) = 2
x

5we(
ε)

Introducing the reduced time τo of one cycle as τo = τ(E2/N2
a ), we find for this

parameter

τo(He) = 1.6 × 10−4s · V

cm
· Td, τo(Ar) = 7.9 × 10−5s · V

cm
· Td (6.6.15)

The peculiarity of the electron drift process in strong electric fields is such, that
an electron is accelerated and acquires an energy from the electric field, so that it is
able to excite an atom. Hence, the parameters of electron drift do not depend on the
mass ratio me/M because inelastic collisions determine the electron energy and this
scheme works untilwe � √


ε/me. This character of the electron process allows us
to determine the rate constant kex of atom excitation in this regime. Since the power
obtained from an external field by an electron is eEwe and the atom excitation energy
is 
ε, the excitation rate constant kex is given by

kexNa = eEwe


ε
(6.6.16)

In derivation this formula we assume that the main resistance an electron consumes
to attain the atom excitation energy, and after this the excitation process proceeds
effectively. Since the electron drift velocity in this regime is proportional to E/Na,
one can represent the excitation rate constant as

kex = ko

(

E

Na

)2

(6.6.17)

where the reduced excitation rate constant ko is independent of the electric field
strength E and the atom number density Na. One can express the excitation rate
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constant through a time τ that is acquired by an electron per one cycle and is spent
on atom excitation. This gives

kex = 1

τNa
,

and ko ∼ 1/τo. From this we have for the reduced excitation rate constants

ko(He) = 6.2×10−14 cm3/(s·Td2), ko(Ar) = 1.3×10−13cm3/(s·Td2) (6.6.18)

Let us determine the electron diffusion coefficient if an ionized gas is located in
a strong electric field. As above we assume the electron momentum variation to be
resulted in electron-atom collisions that gives an isotropic velocity distribution. We
also consider the above regime where a tail of the distribution function at electron
energies above the atom excitation energy ε > 
ε gives a small contribution the the
distribution function normalization. Then the electron diffusion coefficient is

De =

ε
∫

0

v2

3ν
f0(ε)dε, (6.6.19)

where v is a current electron velocity, ν = Navσea is the rate of elastic electron-
atom collisions, so that v2/(3ν) is a current diffusion coefficient of a test electron.
Using the energy distribution function (6.6.4), we obtain for the electron diffusion
coefficient De averaged over electron energies

De = Do
1 + k/2

2
, (6.6.20)

where Do is the diffusion coefficient of electrons at the energy ε = 
ε. These
formulas give in the helium case at the excitation threshold vσea = 7.1×10−8 cm3/s
that gives DoNa = 3.3×1023 cm−1s−1 and DeNa = 8.1×1022 cm−1s−1 (k = −1).
In the same manner we have in the argon case vσea = 3.0 × 10−7 cm3/s that gives
DoNa = 4.6 × 1022 cm−1s−1 and DeNa = 5.8 × 1022 cm−1s−1 (k = 3).

The above case holds true under the condition if

eEwe � νeaδε, (6.6.21)

where we is the current electron number density, νea = Nakea is the rate of elas-
tic electron collision with atoms, kea is the rate constant of elastic electron-atom
collisions, δε is a typical energy which characterizes a remarkable variation of this
rate constant. Under these conditions an electron changes the motion direction many
times until its energy varies remarkably, i.e. a current distribution function of a test
electron at each time has the spherical form as it is given in Fig. 6.19. Hence criterion
(6.6.21) takes the form
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Fig. 6.19 Current energy distribution function of electrons in the course of electron motion in a
gas in an electric field. Because of a large elastic cross section of electron-atom collisions compared
with inelastic ones, the energy distribution function of electrons is close to an isotropic one: 1
optically thin plasma, 2 optically thick plasma

(

eE

Na

)2

� k2eameδε (6.6.22)

In particular, taking in the helium case at the atom excitation threshold kea = 7.1 ×
10−8cm3/s and δε = 10 eV, we obtain the criterion (6.6.22) as E/Na � 500 Td. In
the argon case at the atom excitation threshold we have kea = 3.0× 10−7cm3/s and
δε = 6eV, that gives E/Na � 2,000 Td. In the opposite limiting case the energy
distribution function is f (v) = Cδ(v − iwx), where i is the unit vector along the
electric field.

The expression (6.6.16) for the excitation rate constant kex holds true also if
k< � k>, i.e. the atom excitation is determined by the electron flux in the electron
energy space where the electron energy is small compared to the atom excitation
energy. Let us analyze the atom excitation process in a gas discharge plasma located
in a strong field from another standpoint considering this process when the electron
energy exceeds the atom excitation energy ε > 
ε. Because the criterion holds
true that is opposite with respect to criterion (6.5.4), the equation of variation of the
electron energy ε if it moves in a gas in an external electric field of a strength E has
the form

dε

dt
= eEwe − Nakex
ε (6.6.23)

One can use the principle of detailed balance (3.3.7) and express the excitation rate
through the quenching rate constant kq of the lowest atom excited state by electron
impact which is independent on the electron energy at small energies. We have

http://dx.doi.org/10.1007/978-3-319-11065-3_3
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dε

dt
= eEwe − Nakq

g∗
ε(ε − 
ε)

goε
(6.6.24)

Taking t = 0 when ε = 
ε, we solve (6.6.24) in the range ε−
ε � ε, assuming
that the atom excitation process proceeds mostly near the excitation threshold. In
consideration this equation under the above conditions, we assume the electron drift
velocity to be independent on time and take it at the excitation threshold according
to formula (6.6.6). The solution of (6.6.24) has the form

ε − 
ε = εo
[

1 − exp(−t/τo)
]

, εo = 3x2

mek2ef

, τo = go

g∗Nakq
, (6.6.25)

where the reduced electric field strength x = eE/Na, and the rate constant kef is
given by formula (6.5.3).

Note that (6.6.24) describes evolution of the average electron energy, and hence
(6.6.24) may be used as estimations. In particular, the parameter εo is a typical excess
of the threshold energy for the electron energy, and τo is a typical time

εo � 
ε (6.6.26)

Let us find the reduced electric field strength at which εo = 
ε/2 in the helium
and argon cases. In the helium case according to the data of Table6.1 we obtain
kq = 3 × 10−9cm3/s and kef = 1.4 × 10−7cm3/s, and this gives x = 600 Td. In
the argon case we join 4 atomic excited levels of Table6.1 with the electron shell
3p54s. The rate constant of the joined level with the statistical weight g∗ = 12 is
1.4×10−9 cm3/s, and this leads to the effective rate constant kef = 1.2×10−7cm3/s.
From this it follows x = 400 Td, if εo = 
ε/2.

Let usfind the rate constant of ionizationof excited atoms in agas dischargeplasma
of helium and argon by electrons moved in a strong electric field. This determines
stepwise ionization in this plasma. Taking formulas (3.6.15), (3.6.16) for the cross
section of an atom with one valence s-electron by electron impact, we obtain for the
ionization rate constant in a strong electric field

k∗
ion = ko

Ne


ε
∫

J

(x − 1)f (ε)dε

x1/2(x + 8)
, ko = 10e4

J2

√

2J

me
, x = ε

J
, (6.6.27)

and the atom ionization potential for the lowest excited state is J = 4.77 eV in the
helium case, and J = 4.21 eV in the argon case.We have ko(He) = 1.2×10−6cm3/s
and ko(Ar) = 1.4 × 10−6 cm3/s. This leads to the following expressions for the
ionization rate constants in the helium and argon cases

k∗
ion(He) = k∗(He)

4.15
∫

1

(x − 1)dx

x(x + 8)
, k∗

ion(Ar) = k∗(Ar)

2.74
∫

1

x(x − 1)dx

(x + 8)
(6.6.28)
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with k∗(He) = 1.2×10−6cm3/s and k∗(Ar) = 4.6×10−8cm3/s. From this we find
the ionization rate constants of excited helium and argon atoms by electron impact
for a gas discharge plasma located in a strong electric field as

k∗
ion(He) = 1.8 × 10−7cm3/s, k∗

ion(Ar) = 1.5 × 10−8cm3/s (6.6.29)

Note that formula (6.6.3) for the energy distribution function of electrons cor-
responds to conditions of Fig. 6.16, where a test electron excites an atom of a gas
discharge plasma near the threshold, and hence the tail of the energy distribution
function of electrons at energies above the atom excitation energy does not give
a contribution to the normalization of the distribution function. In deriving formula
(6.6.3),we take into account that the inelastic cross section of electron-atomcollisions
is small compared to that for elastic collisions, and hence the velocity distribution
function of electrons is close to an isotropic one. In addition, one can neglect by
variation of an electron energy in elastic electron-atom collisions. We assume also

eEλ � 
ε, (6.6.30)

where λ = 1/(Naσ
∗
ea) is the mean free path of electrons in a gas with respect to

elastic collisions with electrons, 
ε is the atom excitation energy. In the helium and
argon case criterion (6.6.30) has the form E/Na � 103 Td.

Let us determine the energy distribution function at energies above 
ε. For sim-
plicity we assume that the distortion of the tail of the energy distribution function of
electrons fo(ε) results for excitation of one level (may be, a joined level). From the
statistical consideration, this distribution function follows from the relation

fo(ε)dε = W(t)dt,

where W(t) is the probability of surviving of a test electron with respect to atom
excitation, if at t = 0 the electron energy coincides with the atom excitation energy
ε = 
ε. This probability satisfies to equation

dW

dt
= −NakexW ,

and its solution is

W = exp(−ξ), ξ(ε) =
t

∫

0

Nakexdt = Nakq
g∗
go

ε
∫


ε

ε − 
ε

ε

dε

eEwe(ε)
, (6.6.31)

where we use the principle of detailed balance (3.3.7), kq is the rate constant of
quenching of an excited atom. Using expression (6.6.2) for a current electron drift
velocity we(ε), we have

http://dx.doi.org/10.1007/978-3-319-11065-3_3
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Fig. 6.20 Dependence of the reduced electric field strength E/Na on the electron energy ε∗ in a
helium gas discharge plasma in accordance with equation ξ(ε∗) = 1

ξ(ε) =
(

Na

eE

)2

kqme
g∗
go

ε
∫


ε

dε(ε − 
ε)

ε
vσea(ε) (6.6.32)

We give in Fig. 6.20 the dependence of the reduced electric field strength E/Na on
the electron energy ε∗ which satisfies to equation ξ(ε∗) = 1.

We now formulate criteria of electron drift in a gas in an external electric field.
Until the electron energy ε is small compared to the atom excitation energy 
ε, the
rate of elastic electron-atom collisions dominates compared with other scattering
mechanisms. This leads to the spherically symmetric velocity distribution function
of electrons like to that of Fig. 6.19. In addition, the diffusion character of evolu-
tion of the electron distribution function over energies takes place at energies below
the atoms excitation energy 
ε that is determined by electron-electron collisions,
electron-atom collisions and under the action of an external electric field. The cor-
responding diffusion coefficients Bee, Bea and BE in an energy space are given by
formulas (5.5.4), (5.3.8) and (6.4.10). In particular, the distribution function (6.6.3)
satisfies to the criterion

BE � Bea � Bee (6.6.33)

http://dx.doi.org/10.1007/978-3-319-11065-3_5
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Chapter 7
Transport Processes in Gas Discharge Plasma

Abstract Transport processes involving atoms, electrons and ions are considered for
various regimes of evolution of a gas discharge plasma with using appropriate mod-
els for collision processes. Ambipolar diffusion characterizes transport of charged
particles in a plasma as a whole if the plasma expands in a surrounding space or
attaches to walls. Electrons as more mobile particles remove outside a plasma region
faster and create a field which acts on ions, and external fields influences on the
ambipolar diffusion coefficient in a gas. Character of plasma properties as a result
of its heating or under the action of a magnetic field is analyzed.

7.1 Transport Phenomena in Gases

Because atoms or molecules are usually the main component of ionized gases, their
transport in gases may be of importance. We below formulate the definitions of
basic kinetic (transport) coefficients which characterize transport phenomena in a
weakly nonuniform gas. Then small gradients of certain quantities in a gas cause
corresponding fluxes, and kinetic coefficients connects these fluxes with gradients
of gas parameters. We first consider a gas consisting of several components, and
the concentration c of a given component varies weakly in a space. Then the flux j
of this component occurs that trends to eliminate the concentration gradient and is
proportional to this gradient

j = −DNa∇c, (7.1.1)

where Na is the total number density of gas atoms ormolecules, and D is the diffusion
coefficient. If the concentration of a given component is small (c � 1), as it takes
place when electrons, ions or excited atoms are an admixture to a neutral gas, one
can rewrite this formula

j = −D∇N , (7.1.2)

© Springer International Publishing Switzerland 2015
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where N = Nac is the number density for particle of a given component. One can
see the analogy of this definition with (6.1.7). We consider a weakly nonuniform gas
where the mean free path λ of particles is small compared to a typical dimension L
of this plasma where the quantity under consideration varies remarkable, i.e.

L � λ (7.1.3)

Along with diffusion of particles of another components in a gas, formulas (7.6.7)
and (7.1.2) describe the self-diffusion process where diffusion of some probe gas
atoms is studied.

Let us give the definitions for other transport phenomena which will be studied
below. The thermal conductivity coefficient κ characterizes the connection between
the heat flux q and temperature gradient ∇T , i.e.

q = −κ∇T (7.1.4)

The viscosity coefficient η is the proportionality coefficient between the friction force
F per unit gas area and the gradient of the drift gas velocity. If the gas drift velocity w
directs along the axis x , and its gradient directs along the axis z, the friction force acts
on the plane xy and is proportional to the gradient of the drift gas velocity ∂wx/∂z.
Then the gas viscosity coefficient is defined as

F = −η
∂wx

∂z
, (7.1.5)

In addition, formula (2.3.2) gives the definition of the mobility K of charged
particles in aweak electric field. This definition requires aweak electric field strength,
so that the energy transmitted to a probe particle from the field in a time between
neighboring collisions must be relatively small. In particular, for ions whose mass is
comparable with the mass of gas atoms this criterion has the form

eEλ � T, (7.1.6)

where T is a typical thermal energy of ions or their temperature expressed in energetic
units. This criterion means that the energy obtained from field between neighboring
ion-atom collisions is small compared to a thermal ion energy.

Let us introduced the conductivity � of a weakly ionized quasineutral gas on the
basis of the Ohm law that connects the electric current density i and the electric field
strength E as

i = �E (7.1.7)

Because the electric current in a weakly ionized gas is determined by electrons and
ions, it is equal

http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_2
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i = eNewe + eNi wi ,

where Ne, Ni are the number densities of electrons and ions, and we, wi are their
drift velocities. From this on the basis of formula (2.3.2) we have for the conductivity
of a weakly ionized gas located in a weak electric field

� = Ke Ne + Ki Ni (7.1.8)

Transport coefficients of gases are determined by collisions between their atoms
or molecules, namely, by elastic collisions between them because the cross sections
of elastic collisions of atoms exceeds the cross sections of inelastic processes at
thermal conditions. Hence, transport coefficients of gases are expressed through the
cross sections of elastic collisions of gas atoms or molecules. The simple connec-
tion between these quantities is given by the practical Chapman-Enskog method
[293–295] that is in reality the expansion of transport coefficients over a small
numerical parameter, and we use below the first Chapman-Enskog approximation for
transport coefficients. In this approximation the diffusion coefficient of a test atomic
particle in a gas is given by [296–298]

D = 3
√

πT

8Na
√
2μσ

, σ ≡ 	(1,1)(T ) = 1

2

∞
∫

0

e−t t2σ ∗(t)dt, t = μg2

2T
. (7.1.9)

Here T is the gas temperature expressed in energetic units, μ is the reduced mass of
a test atomic particle and gas atom, σ ∗(g) is the diffusion cross section for collision
of these particles with the relative velocity g, and the averaging 〈〉 is given with the
Maxwell distribution function of gas atoms.

The thermal conductivity coefficient κ the first Chapman-Enskog approximation
is determined by formula [296–298]

κ = 25
√

πT

32σ2
√

m
, (7.1.10)

where m is the mass of gas atoms or molecules, and the average cross section of two
gas atoms is given by

σ2 ≡ 	(2,2)(T ) =
∞
∫

0

t2 exp(−t)σ (2)(t)dt, t = μg2

2T
, σ (2)(t) =

∫

(1 − cos2 ϑ)dσ,

(7.1.11)

The viscosity coefficient η in the first Chapman-Enskog approximation is
determined by formula [296, 297]

http://dx.doi.org/10.1007/978-3-319-11065-3_2
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η = 5
√

πT m

24σ2
, (7.1.12)

where the average cross section σ2 for collision of two atoms is given by formula
(7.1.11). As is seen, in the first Chapman-Enskog approximation the thermal
conductivity and viscosity coefficients are connected by the relation

κ = 15

4m
η (7.1.13)

We also give the expression for the mobility of a single charged atomic particle that
follows from formula (7.1.9) for its diffusion coefficient in the first Chapman-Enskog
approximation and the Einstein relation (2.3.4)

K = 3e
√

π

8N
√
2μT σ

, σ ≡ 	(1,1)(T ) = 1

2

∞
∫

0

e−t t2σ ∗(t)dt, t = μg2

2T
(7.1.14)

In reality the interaction potential of colliding gas atoms or molecules depends
sharply on a distance between them. This provides the validity of the hard sphere
model according towhich atoms collide like to billiard balls. Note that just thismodel
allows to Boltzmann and Maxwell to create the kinetics theory of gases [84, 256,
299, 300]. According to the hard sphere model, the differential cross section dσ for
particle scattering in the center of mass frame of reference is connected with the
scattering angle ϑ in this frame of reference as

dσ = σod cosϑ, σo = π R2
o,

where Ro is the hard sphere radius. This simplifies the expressions (7.1.9), (7.1.10),
and (7.1.12) since the average cross sections has now the following form

σ = σo; σ2 = 2

3
σo, (7.1.15)

From this we obtain the following expressions for the above transport coefficients of
gases

D = 3
√

πT

8
√
2μNaσo

; κ = 75
√

πT

64σo
√

m
; η = 15

√
πT m

32σo
(7.1.16)

The basic component of a gas discharge plasma under consideration of helium
and argon is a neutral atomic gas of helium or argon. Therefore, in the analysis
of transport phenomena in a gas discharge plasma, we start from such processes
in helium and argon. The diffusion coefficient of atoms in a gas is under normal
conditions at temperature T = 300K [301, 302] D(He − He) = 1.6 cm2/s for

http://dx.doi.org/10.1007/978-3-319-11065-3_2
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helium atoms in helium, D(He − Ar) = 0.76 cm2/s for helium atoms in argon or
argon atoms in helium, and D(Ar − Ar) = 0.16 cm2/s for argon atoms in argon.
The hard sphere model (for example, [284]) describes well collision processes of
atoms in these gases, so that colliding atoms in these processes are modelled by rigid
balls. In that time, this model, the model of billiard balls, allowed to Maxwell and
Boltzmann [84, 256, 299, 300] to construct the kinetic theory of gases. Within the
framework of our consideration, the hard sphere model means that the cross section
which determines a given transport coefficient is independent of the collision velocity
of atoms.

Using the hard spheremodel,we introduce the gas kinetic cross sectionσgas , defin-
ing it as the cross section that leads to a measured value of the diffusion coefficient
under the condition that the diffusion cross section of atom collision is independent
of the collision velocity. Then in the first Chapman-Enskog approximation [296,
297] for the diffusion coefficient, we obtain the following connection between the
gas kinetic cross section σgas and the diffusion coefficient D

σgas = 0.47

Na D

√

T

μ
, (7.1.17)

where Na is the number density of atoms, T is the gas temperature expressed in
energetic units,μ is the reducedmass of colliding atoms.On the basis of experimental
values of the diffusion coefficients [301, 302] we obtain from formula (7.1.17) for
the gas kinetic cross sections: σgas = 13Å2 for collision of two helium atoms,
σgas = 21Å2 for collision of helium and argon atoms, and σgas = 37Å2 for collision
of two argon atoms.

Table7.1 contains the coefficients of thermal conductivity and viscosity of helium
and argon [301, 303]. The thermal conductivity coefficient of argon in the temperature
range T = 300−1,000K with the accuracy 2% is approximated by the dependence

κ(T ) = κo

(

T

To

)k

(7.1.18)

Table 7.1 The thermal conductivity coefficients (κ) in 10−4W/(cm K ) and viscosity coefficients
(η) in 10−5g/(cm s) for helium and argon [301, 303]

T κ(He) η(He) κ(Ar) η(Ar)

100 7.2 9.77 0.66 8.3

200 11.5 15.4 1.26 16.0

300 15.1 19.6 1.77 22.7

400 18.4 23.8 2.22 28.9

600 25.0 31.4 3.07 38.9

800 30.4 38.2 3.74 47.4

1,000 35.4 44.5 4.36 55.1

An argument in these coefficients indicates a gas, the gas temperature T is expressed in K
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with the parameters To = 300K, k = 0.75 κo = 1.8 × 10−4W/(cmK). In the
temperature range T = 1,000 − 8,000K with the accuracy 5% this formula is
described by the parameters To = 1,000K, k = 0.68, κo = 4.2 × 10−4W/(cmK).

Processes in a gas discharge plasma involving excited atoms can influence on ion-
ization equilibrium in the plasma. On the other hand, important channel of destruc-
tion of excited atoms results from diffusion of atoms to the walls. The diffusion
coefficient D of excited atoms in a gas is inversely proportional to the number den-
sity Na of gas atoms and usually is reduced to the normal number density of atoms
Na = 2.69×1019 cm−3. Thediffusion coefficients of excited heliumatoms andmole-
cules in helium averaged over measurements [167, 305–319] is [194] 0.59 cm2/s for
a metastable atom He(23S) in helium, 0.52 cm2/s for a metastable atom He(21S)

in helium, and 0.45 cm2/s for a metastable molecule He(23�u) in helium. The dif-
fusion coefficient of metastable argon atoms Ar(3P2), Ar(3P0) in argon at room
temperature averaged over measurements [317–325] is [194] 0.071 cm2/s. Though
the diffusion coefficients for atoms in metastable states Ar(3P2) and Ar(3P0) are
different, a difference between their values is less than that from statistics due to a
sum of measurements. Note that the diffusion coefficients of excited atoms in a gas
are lower than those for atoms in the ground state.

7.2 Electron Drift in Gas in External Electric Field

The electron distribution function contains various information about the electron
behavior in a gas discharge plasma including transport coefficients for electrons
moved in a gas in an external field. In particular, the electron drift velocity according
to its definition is

we =
∫

vx f dv =
∫

v2x f1dv = 1

3

∫

v2 f1dv,

where we use the expansion (6.1.3) for the distribution function and the spherical
symmetry of functions fo and f1. From this on the basis of the first equation of the
set (6.1.20) for the kinetic electron one can transform the expression for the electron
drift velocity we to the following form [275] in accordance with formula (6.1.7)

we =
∫

v2x f1dv = eE

3me

〈

1

v2

d

dv

(

v3

ν

) 〉

,

where an average is made over the spherical distribution function f0 and only elas-
tic electron-atom collisions are taken into account. Formula (6.1.7) exhibits the
dependence of the electron drift velocity on the reduced electric field strength E/Na .
This dependence in the case of electron drift in helium and argon is represented in
Figs. 5.1 and 5.2. These Figures are based on experimental results [257–262] for
helium and [6, 7, 258, 260, 261, 263–267] for argon. Though this information is

http://dx.doi.org/10.1007/978-3-319-11065-3_6
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obtained long ago, it determines contemporary knowing of this problem. Rich infor-
mation for transport coefficients of electrons in gases is collected in review [43].

In the simple case where the rate of elastic electron-atom collisions ν(v) is
independent of the electron velocity, we have from formula (6.1.7a) for the electron
drift velocity and from formula (5.2.5) for the average electron energy

we = eE

meν
, ε = 3

2
T + M

2
w2

e (7.2.1)

From this it follows that an external electric field influences significantly on an
electron energy at large electric field strengths. An average in formula for the electron
drift velocity is made over the spherical part of the electron distribution function. In
the case ν(v) = const the drift velocity is proportional to the electric field strength. In
other cases for amonotonic dependence of the rate of elastic electron-atom scattering
on the electron velocity in the form ν(v) = bvk dependence the electron drift velocity
is given by formula (6.1.13).

The diffusion coefficient in the transverse direction with respect to the electric
field according to its definition is equal to

D⊥ = 〈 v2

3ν
〉, (7.2.2)

According to this formula, the diffusion coefficient is inversely proportional to the
number density of gas atoms. Figures7.1 and 7.2 contain experimental data for
the reduced transverse diffusion coefficient D⊥Na of electrons as a function of the
reduced electric field strength E/Na in helium and argon correspondingly. At a
monotonic dependence of the rate of elastic electron-atom scattering on the electron

Fig. 7.1 Reduced diffusion coefficient for electrons in helium in an external electric field con-
structed on the basis of experimental data [43]. Dotted curve is calculated on the basis of formula
(7.2.3)

http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_5
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Fig. 7.2 Reduced diffusion coefficient for electrons in argon in an external electric field constructed
on the basis of experimental data [43]

velocity if it has the form ν(v) = bvk and large electron energy compared to a
thermal energy of atoms the energy distribution function of electrons is given by
(6.6.5). Then the diffusion coefficient of electrons in a gas discharge plasma in the
transversal direction with respect to the electric field is given by

D⊥ =
〈

v2

3ν

〉

= 1

3b
·
[

(2k + 2k)Ma2

3meb2

](2−k)/(2k+2)

·
[


( 5−k
2k+2 )


( 3
2k+2 )

]

(7.2.3)

A convenient parameter of electron drift in a gas in an external electric field at low
electron number densities is the characteristic temperature Tef [326] that is defined as

Tef = eD⊥
K

= eE D⊥
w

(7.2.4)

At small electric field strengths the characteristic temperature coincides with the gas
temperature. If the rate of electron-atom collisions is independent of the electron
velocity (ν(v) = const), the electron distribution function conserves the form of
the Maxwell distribution function, as it follows from (6.1.4), at any electric field
strengths, i.e. fo(v) ∼ exp(−ε/Tef ).

In the casewhere one can neglect inelastic processes and the dependence of the rate
of elastic electron-atom scattering on the electron velocity has the form ν(v) = bvk ,
the characteristic electron temperature according to formula (7.2.4) is given by

Tef = eE D⊥
we

= me

3 − k

[

(2k + 2k)Ma2

3meb2

]1/(k+1)

·
[


( 5−k
2k+2 )


( 3−k
2k+2 )

]

(7.2.5)
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The diffusion coefficient of electrons in a gas discharge plasma is isotropic D⊥ =
D‖ at small electric field strengths when the average electron energy corresponds
to their thermal energy. In strong fields the equality between the electron diffusion
coefficients in transverse and longitudinal directions with respect to the electric field
direction is violated. The ratio of these diffusion coefficients is determined by the
dependence σea(v). In particular, in the case σea(v) = const in strong electric
fields we have D‖/D⊥ = 0.49. As is seen, transport coefficients of electrons in a gas
discharge plasma in the case of elastic electron-atom collisions are expressed through
the diffusion cross section of electron-atom collision. Note that in these collisions
an electron velocity exceeds significantly an atom one, and hence an atom may be
assumed to be motionless in such collisions.

Let us determine the characteristic temperature Tef for a helium and argon gas
discharge plasma if it is located in a strong electric field. In this case according to
formula (6.6.20) we have D⊥Na = 8.1 × 1022 cm−1s−1 in the helium case and
D⊥Na = 5.8 × 1022 cm−1s−1 in the argon case. The reduced electron mobility
follows from formula (6.6.13) and is equal Ke Na/e = 1.2 × 105 cm/(s Td) and
Ke Na/e = 1.5 × 105 cm/(s Td) in the argon case. As a result, we obtain for the
characteristic energy in strong electric fields according to formula (7.2.4) Tef =
6.6 eV in the helium case and Tef = 3.9 eV in the argon case. Since energies of
electrons ε < �ε and ε ∼ �ε, one can expect that Tef ∼ �ε. In particular, in the
helium and argon cases the average electron energy 3Tef /2 ≈ �ε/2.

The method of measurement of the characteristic temperature of electrons was
suggested by Townsend [327, 328] 100years ago and consists in determination of a
space distribution of electrons in a plane that is perpendicular to the electron flux. This
electron flux is generated by a point electron source, and a distance from this source
exceeds significantly the mean free path of electrons in a gas, so that propagation
of electrons in the transverse direction results from electron diffusion in this gas.
Figures7.3, 7.4 and 7.5 contain the characteristic electron energies in helium and
argon correspondingly resulted from such measurements [7, 261, 262, 266].

The electron mobilities and the electron diffusion coefficients for helium and
argon are given in Table7.2 at room gas temperature and for small electric field
strengths when the electron drift velocity is proportional to the electric field strength
[329, 330]. The reduced mobilities are obtained on the basis of the Einstein relation
(2.3.3).

Being guided by a gas discharge plasma of helium and argon, we give in Tables7.3
and 7.4 the electron transport coefficients in helium and argon under the action of an
electric field. These data are based on the measurements given in Figs. 5.1, 5.2, 7.1,
7.2, 7.3 and 7.4 and relate to the regime of low electron number densities (6.1.2).
Old data are collected in review [43]. The error in these data is approximately 30%.
In the limit of low electric field strengths the reduced diffusion coefficient is equal
to that given in Table7.1. Note that this limit takes place at E/Na � 0.003Td for
heliumand at E/Na � 3×10−4Td for argon. The limiting value of the electron drift

http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_2
http://dx.doi.org/10.1007/978-3-319-11065-3_5
http://dx.doi.org/10.1007/978-3-319-11065-3_5
http://dx.doi.org/10.1007/978-3-319-11065-3_6
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Fig. 7.3 Townsend characteristic energy of electrons in helium constructed on the basis of experi-
mental data [43]. Dotted curve is calculated on the basis of formula (7.2.5)

Fig. 7.4 Townsend characteristic energy of electrons in helium at room temperature and low electric
field strengths constructed on the basis of experimental data [43]. Dotted curve is calculated on the
basis of formula (7.2.5)

velocity for large electric field strengths is given by formula (6.6.8). The diffusion
coefficient of electrons at large electric field strengths, as it follows from formula
(7.2.2) with using the energy distribution function of electrons (6.6.8), is equal to

D⊥ = 〈 v2

3ν
〉 = �ε

3mekel(�ε)
(7.2.6)

This formula gives Dtr Na = 1.6 × 1023(cm s)−1 in the helium case and Dtr Na =
2.2 × 1022(cm s)−1 in the argon case.
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Fig. 7.5 Townsend characteristic temperature of electrons in argon constructed on the basis of
experimental data [43]

Table 7.2 Reduced transport coefficients of electrons in helium and argon at room temperature
and in the limit of small electric field strengths [329, 330]

Gas He Ar

De Na, 1021 cm−1s−1 6.6 21

Ke Na, 1023 (cm sV)−1 2.6 8.1

Table 7.3 Transport coefficients for electrons in helium in the regime of a low electron number
density

E/Na(Td) we(cm/s) Dtr Na(cm s−1) eDtr /K (eV)

0.001 2.5 × 103 6.2 × 1021 0.025

0.003 7.4 × 103 6.2 × 1021 0.025

0.01 2.5 × 104 7.2 × 1021 0.029

0.03 7.4 × 104 8.9 × 1021 0.036

0.1 1.6 × 105 (1.7 × 105) 1.0 × 1022 (7.8 × 1021) 0.064 (0.046)

0.3 2.9 × 105 (2.9 × 105) 1.4 × 1022 (1.3 × 1022) 0.15 (0.14)

1 4.9 × 105 (5.3 × 105) 2.2 × 1022 (2.4 × 1022) 0.44 (0.46)

3 9.0 × 105 (9.1 × 105) 3.6 × 1022 (4.2 × 1022) 1.2 (1.4)

10 2.1 × 106 (1.7 × 106) 7.6 × 1022 (7.8 × 1022) 3.6 (4.6)

30 7.0 × 106 [6.5 × 106] 1.2 × 1023 5.3

100 2.50 × 107 [2.2 × 107] 2.2 × 1023 8.2

300 7.0 × 107 [6.5 × 107] 3.0 × 1023 11

Here E/Na is the reduced electric field strength given in Td (1Td = 10−17 V cm2), we is the
electron drift velocity, D⊥ is the coefficient of transverse diffusion, K = we/E is the electron
mobility [27, 43, 191]. The gas temperature is 300K. Values in parentheses are calculated on the
basis of formulas (7.3.3), and the values in square parentheses correspond to high electric field
strengths in accordance with formula (6.6.8)

http://dx.doi.org/10.1007/978-3-319-11065-3_6
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Table 7.4 Transport coefficients for electrons in argon in the regime of a low electron number
density

E/Na(Td) we(105 cm/s) Dtr Na(1022cm s)−1 eDtr /K (eV)

0.001 0.15 5.7 0.038

0.003 0.48 21 0.13

0.01 1.0 47 0.47

0.03 1.4 47 1.0

0.1 1.8 29 1.6

0.3 2.3 19 2.5

1 2.7 12 4.4

3 4.3 10 6.9

10 10 7.1 7.1

30 24 [18] 5.9 7.4

100 60 [62] 5.0 8.3

300 140 [180] 4.0 8.5

Here E/Na is the reduced electric field strength given in Td (1Td = 10−17V cm2),we is the electron
drift velocity, D⊥ is the coefficient of transverse diffusion, K = we/E is the electron mobility [43,
331–333]. The gas temperature is 300K, and the values in square parentheses correspond to high
electric field strengths in accordance with formula (6.6.8)

We also represent in Figs. 7.6 and 7.7 the rate constants of relaxation of the electron
momentum kP and energy kε which are defined by formulas (5.5.8). These values are
obtained by substitution in formulas (5.5.8) experimental values of the dependencies
on the reduced electric field strength E/Na for the electron drift velocity we, the
reduced diffusion coefficient Dtr Na and the characteristic energy Tef which are
given in Figs. 5.1, 5.2, 7.1, 7.2, 7.3, 7.4 and 7.5, and Tables7.3 and 7.4. In the limit of
low electron number densities one can express an average electron energy in balance

Fig. 7.6 Rate constants of momentum kP (1) and energy kε (2) for relaxation of electrons located
in helium in a constant electric field

http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_5
http://dx.doi.org/10.1007/978-3-319-11065-3_5
http://dx.doi.org/10.1007/978-3-319-11065-3_5
http://dx.doi.org/10.1007/978-3-319-11065-3_5
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Fig. 7.7 Rate constants of momentum kP (1) and energy kε (2) for relaxation of electrons located
in argon in a constant electric field

(5.5.9) as ε = 3Tef /2. Then formula (5.5.8) for relaxation of the electron average
energy takes the form

kε = 2w2
e

3Dtr Na
(7.2.7)

Table7.5 contains numerical values of the relaxation rate constants for the electron
momentum and energy in helium and argon.

Table 7.5 Defined by formulas (5.5.9) and expressed in cm3/s the relaxation rates for the average
momentum kP and average energy kε of electrons in helium and argon

Value kP (He) kε(He) kP (Ar) kε(Ar)

0.001 7.0−9 6.7−16 1.1−9 2.6−15

0.003 7.1−9 5.9−15 1.1−9 7.4−15

0.01 7.1−9 5.8−14 1.8−9 1.4−14

0.03 7.1−9 4.1−13 3.8−9 2.8−14

0.1 1.1−8 1.7−12 1.0−8 7.5−14

0.3 1.8−8 3.9−12 2.3−8 1.8−13

1 3.6−8 7.4−12 6.5−8 4.1−13

3 5.9−8 1.5−11 1.3−7 1.3−12

10 6.7−8 3.9−11 1.8−7 9.4−12

30 7.5−8 2.6−10 2.2−7 6.5−11

100 8.8−8 1.6−9 2.9−7 4.8−10

300 1.9−7 5.1−9 3.8−7 3.3−9

The value 7.0−9 means 7.0 × 10−9

http://dx.doi.org/10.1007/978-3-319-11065-3_5
http://dx.doi.org/10.1007/978-3-319-11065-3_5
http://dx.doi.org/10.1007/978-3-319-11065-3_5
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7.3 Electrons in Gas of Hard Spheres

Using the model of hard spheres for electron-atom collisions in a gas, we assume the
diffusion cross section of such collisions to be independent on the electron velocity.
Because this assumption holds true for collision of an electronwith helium atoms (see
Fig. 3.7), where the diffusion cross section is σ ∗

ea = 6Å2 with the accuracy of 20% at
collision energies below 10 eV, we consider this model in greater detail. In the limit
of low electric field strengths the electron mobility Ke and the diffusion coefficient
De are determined in this case by formulas (7.1.14) and (7.1.16) correspondingly,
where σ = σo = σ ∗

ea . Taking the diffusion cross section of electron-atom scattering
to be σ ∗

ea = 6Å2, we obtain for the reduced diffusion coefficient of electrons in
helium at temperature T = 300K De Na = 5.5 × 1021 cm−1s−1 instead of (6.4 ±
0.3) × 1021 cm−1s−1 according to experiments [329, 330].

We also consider large electron energies

T � eEλ � 10 eV, (7.3.1)

where T is the gas temperature expressed in energetic units, and λ = 1/(Naσ ∗
ea)

is the mean free path of electrons, E is the electric field strength. In this limiting
case the electron drift velocitywe given by formula (6.1.10), the transverse diffusion
coefficient Dtr according to formula (7.2.3) with k = 1, the characteristic tempera-
ture according to formulas (7.2.5), and the average electron energy given by formula
(6.1.11) have the form

we = 0.90
(me

M

)1/4
(

eEλ

me

)1/2

, Dtr = 0.29

(

M

me

)1/4

λ

(

eEλ

me

)1/2

,

Tef = 0.325

√

M

me
eEλ, ε = 0.43

√

M

me
eEλ (7.3.2)

In the helium case these formulas take the form

we = wo
√

x, Dtr Na = a
√

x, Tef = 0.76ε, ε = bx (7.3.3)

Here x = E/Na that is expressed in Td, the coefficients of this formulas are wo =
5.3 × 105 cm/s, a = 2.4 × 1022 cm−1s−1, b = 0.6 eV. Applying these formulas
to the helium case and taking the electron-atom cross section of elastic scattering
σ ∗

ea = 6Å2, we obtain that the criterion (7.3.1) holds true more or less in the range
electric field strengths 0.1Td < E/Na < 10 Td. The values of the electron drift
velocitywe, the reduced transverse diffusion coefficient Dtr Na and the characteristic
energy Tef are given in Table7.3 in parentheses.

One can join the cases of low and high electric field strengths in determination
the electron drift velocity we and the electron temperature Te in the regime of a large

http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_6
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electron number density. In the limit of low electric field strengths one can ignore
the second term in the denominator of the distribution function (6.1.15) compared
with the first term. Correspondingly, the criterion of low fields is

x2F(T ) � T

In the helium case where the mean free path λ of electrons in a gas is independent
of the electron velocity, this criterion has the form

eEλ �
√

m

M
T (7.3.4)

Taking σ ∗
ea = 6Å2 for collision of an electron and helium atom and T = 300K, we

have in the helium case

E

Na
� 0.02Td (7.3.5)

The electron distribution function in this limiting case coincides with theMaxwell
one

f0 = 2

π1/2T 3/2 ε1/2 exp
(

− ε

T

)

,

where this function is normalized to one. In the limit under consideration formulas
(6.1.7) and (2.1.2) give for the drift velocitywe and electron diffusion coefficient D⊥

we = 2eE
√
2

3
√

πmeT 5

∞
∫

0

ελ(ε)dε exp
(

− ε

T

)

, D⊥ = 1

3

√

8

πmeT 3

∞
∫

0

ελ(ε)dε exp
(

− ε

T

)

(7.3.6)

In the helium case, where the cross section of electron-atom collision σ ∗ and
correspondingly the mean free path of electrons in a gas λ are independently of
the electron energy, these expressions take the form

we = eEλ

3

√

8

πmeT
, D⊥ = λ

3

√

8T

πme
(7.3.7)

As it follows from the above formulas, the drift velocity and the transverse diffusion
coefficient of electrons are connected by the Einstein relation (2.3.3)

we

D⊥
= eE

T

http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_2
http://dx.doi.org/10.1007/978-3-319-11065-3_2
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Using the value σ ∗ = 6Å2 for the diffusion cross sections for elastic scattering of an
electron on the helium atom, we obtain in the zero field limit for the reduced electron
coefficient diffusion coefficient D⊥Na = 6.0 × 1021 cm−1s−1 in the helium case at
T = 300K and the reduced electron mobility equals to K = 2.3× 1023(Vcm s)−1.

The limit of high electric field strengths corresponds to the following criterion
that is opposite to the criterion (7.3.4)

eEλ �
√

me

M
T, (7.3.8)

Taking the average diffusion cross section of electron-atom scattering to be 6Å2 in the
heliumcase and the ratio of the nuclearmass to the electron one to be M/me = 7,297,
we obtain on the basis of formula (6.1.10) for the electron drift velocity we

we = b
√

x, (7.3.9)

where b = 7.4 × 105 cm/s.
The electron distribution function according to formula (6.1.5) allows us to

evaluate the average electron energy that is equal in this limiting case

ε = 
(5/4)


(3/4)
εo = 0.427

√

M

me
eEλ = 0.530Mw2

e (7.3.10)

In the helium case this formula gives

ε = 0.427

√

M

me
eEλ = ax,

where a = 0.6 eV, and x is taken here and below in Td.
The transverse electron diffusion coefficient D⊥ according to formula (7.2.2) in

the case λ(v) = const is equal to

D⊥ = λ

3
·v =

(

M

me

)1/4

λ

√

eEλ

me

√
2

35/4

( 3
4

) = 0.292

(

M

me

)1/4

λ

√

eEλ

me
(7.3.11)

In the helium case this formula for the transverse electron diffusion coefficient has
the form

D⊥ = c
√

x,

where c = 1,500 cm/s and the transverse electron diffusion coefficient relates to the
normal number density of atoms Na = 2.69 × 1019 cm−3.

The characteristic electron temperature according to formula (7.2.4) is equal to

http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_6


7.3 Electrons in Gas of Hard Spheres 167

Tef = 0.325

√

M

me
eEλ

The ratio of the effective temperature to the average kinetic energy ε of electrons
equals to

3

2

Tef

ε
= 1.14

Using formula (6.2.1) for the electron drift velocity in this limiting case, we have

we =
√
8

3
√

π

(

12me

M

)1/4
√

eEλ

me
= 0.99

(me

M

)1/4
√

eEλ

me
(7.3.12)

This formula leads to the same dependence on the problem parameters, as formula
(6.1.10) that relates to another character of equilibrium for the electron component
in the gas. The ratio of the electron drift velocities according to formulas (7.3.12)
and (6.1.10) is 1.1.

Substituting the electric field strength from formula (7.3.20) in formula (7.3.12),
we express the electron drift velocity through the electron temperature

we =
√

32Te

3π M
= wo

√

Te (7.3.13)

From this it follows, that the electron drift velocity is small compared to their typical
velocity. In the helium case wo = 9.0 × 105 cm/s if the electron temperature is
expressed in eV.

The transverse electron diffusion coefficient D⊥ is expressed through the electron
drift velocity (7.3.12) on the basis of the Einstein relation. Then, using the connection
(7.3.20) between the electric field strength and the electron temperature, we obtain

D⊥ = Tewe

eE
=

√

M

12me
weλ =

√

8Te

9πme
λ (7.3.14)

Note that at the normal number density of atoms the mean free path of electrons is
λ = 0.62µm that gives D⊥ = 24 cm2/s at the normal number density of helium
atoms or D⊥Na = 6.2 × 1020(cm s)−1.

One can combine the expressions (7.3.7) and (6.1.10) for the electron drift velocity
in the limit of low and high electric field strengths, that gives for the electron drift
velocity in a wide range of electric field strengths in the regime of a low electron
number density

we = 0.53eEλ

√
meT

[

1 + 0.59
(

M
me

)1/4 √

eEλ
T

] (7.3.15)
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Fig. 7.8 The electron drift velocity in helium. Solid curve is given by formula (7.3.16), signs are
experimental points according to [43]

In the helium case (σ ∗
ea = 6Å2) this formula gives

we = vo

1 + C
√

x
, (7.3.16)

where vo = 2.8 × 106 cm/s, C = 3.7, and the reduced electric field strength x
is expressed in Td. This dependence in Fig.7.8 is compared with this experimental
dependence [43].

We now consider the regime of a high electron number density where the energy
distribution function of electrons is the Maxwell one (2.1.2). Then formula (6.2.5)
gives for the drift electron velocity in the case where the mean free path of electrons
in a gas is independent of the electron velocity

we =
√
8

3
√

π

eEλ√
meTe

= 0.532
eEλ√
meTe

, (7.3.17)

and formula the difference of electron and gaseous temperatures is equal on the basis
of formula (6.2.7)

Te − T = M

me

(eEλ)2

12Te

This leads to the following connection between the electron temperature and the
reduced electric field strength

Te = T

2
+

√

T 2

4
+ M

12me
(eEλ)2 (7.3.18)

Taking the average diffusion cross section of elastic electron collision with a helium
atom to be σ ∗

ea = 6Å2, we get

http://dx.doi.org/10.1007/978-3-319-11065-3_2
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Te = 0.0129 +
√

1.67 × 10−4 + 0.169x2, (7.3.19)

where the electron temperature Te is expressed in eV and the electric field strength
x = E/Na is given in Td. In the limit Te � T the electron temperature is equal to

Te =
√

M

12me
eEλ (7.3.20)

We also determine within the framework of the hard sphere model the relaxation
rate constants for electrons in a gas which are given by formulas (5.5.8). Using
expressions for we and ε according to formulas (7.3.2), we have for these rate con-
stants

kP = eE

Naweme
= 1.1

(

M

me

)1/4
√

eEσ∗
ea

Name
, kε = eEwe

Naε
= 2.1

(me

M

)3/4
√

eEσ∗
ea

Name
(7.3.21)

As it follows from this formula, the ratio of the relaxation rates in the field range
under consideration is given by

kP

kε

= 0.5
M

me
(7.3.22)

Thus, in the range (7.3.1) of electric field strengths, where a typical electron energy is
large compared to a thermal atom energy and is less than the atom excitation energy,
i.e. electron relaxation is determined by elastic electron-atom collisions, a typical
relaxation rate of the electron momentum exceeds that for a typical electron energy
in M/me times. Note that the relaxation rate constants kP and kε evaluated on the
basis of formula (7.3.21) for helium with σ ∗

ea = 6Å2 in the range of the reduced
electric field strengths E/Na = 0.3 − 3Td coincide with those given in Fig.7.6
within 10%. Since at large electric fields the average electron energy cannot exceed
the excitation energy, the difference between the rate constants kP and kε decreases
with an increasing electric field strength.

Let us join now the results for the electron drift velocity in helium obtained for
different ranges of the electric field strengths in which this system is located. At
low electric field strengths according to the definition the electron drift velocity is
we = E K , where the reduced electron mobility is given in Table7.2. At higher
electric field strengths, where the electron drift velocity is determined by elastic
electron-atom collisions and the cross section of this collision is independent of a
collision energy (we approximate it asσea = 6Å2), the electron drift velocity is given
by formula (6.1.10) [or by formula (7.3.2)]. At more higher electric field strengths
electron braking is determined by the excitation process and the electron drift velocity
is given by formula (6.6.8). The results of this joining is given in Fig.7.9, where
theoretical values with using of indicated formulas are given by straightforward
lines, and experimental data are taken from Fig. 5.1.

http://dx.doi.org/10.1007/978-3-319-11065-3_5
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Fig. 7.9 Electron drift velocity in heliumdepending on the reduced electric field strength in neglect-
ing electron-electron collisions. Range 1 [formula (2.3.2)] corresponds to low electric field strengths
where the action of the electric field leads to a relatively small change of the electron energy; in the
range 2 [formula(6.1.10)] this action is strong, but the energy distribution function of electrons is
determined by elastic electron-atom scattering, excitation of atoms dominates in formation of the
energy distribution function of electrons in range 3 [formula (6.6.6)], but the electron drift velocity
is small compared to its typical isotropic velocity. Signs include experimental data [43] taken from
Fig. 5.1

7.4 Conductivity of Weakly Ionized Gas

The electron drift velocity organizes the conductivity � of a weakly ionized gas
including a gas discharge plasma. The plasma conductivity is defined as the ratio of
the current density i = eNewe to the electric field strength � = eNewe/E that is
limit of a low electric field strengths is given by

� = Nee2

3me

〈

1

v2

d

dv

(

v3

ν

)〉

(7.4.1)

In the case if the rate ν = 1/τ of electron-atom collisions is independent of the
electron velocity v, this formula is reduced to a widely used form

� = Nee2τ

me
(7.4.2)

Let us consider now the case if the mean free path of an electron in a gas is
independent of the electron velocity ( λ(v) = 1/(Naσ ∗

ea) = const) in the regime of
a low electron number density where the electron drift velocity is given by formula
(6.1.10). This formula relates to the limit of high electric field strengths when a

http://dx.doi.org/10.1007/978-3-319-11065-3_2
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typical electron energy εo in formula (6.1.10) exceeds significantly a typical atom
thermal energy T (eEλ � T ). Then the conductivity of an ionized gas is given by

� = 0.90
Nee3/2λ1/2

(me M)1/2E1/2 (7.4.3)

As is seen, in this case the conductivity of an ionized gas depends on the electric
field strength E .

Let us consider the regime of a high electron number density where we have the
Maxwell distribution function of electrons over electron velocities, and this distribu-
tion function is characterized by the electron temperature Te that may differ from the
gas temperature T . Then the drift velocity of electrons is given by formula (6.2.5),
and formula (6.2.7) determines the electron temperature Te. In particular, in the case
where the mean free path of electrons is independent of the electron velocity these
formulas give for the conductivity � of an ionized gas

�ea = Ne

Na

2
√
2

3
√

π

e2

σea
√

meTe

Ne

Na
�o; �o = 2

√
2

3
√

π

e2

σea
√

meTe
, (7.4.4)

where σea = 6Å2 in the helium case. One can represent formula (7.4.4) in the helium
case in the form

�ea = Ne

Na

Co√
Te

,

where the electron temperature Te is expressed in eV, and Co = 1.1 × 108

eV1/2/(	 cm).
Above we consider the limiting case where the conductivity of an ionized gas is

determined by elastic electron-atom scattering. But electron-ion scattering becomes
significant at not large electron number densities, and this takes place at low degrees
of gas ionization because of a long-range character for the Coulomb electron-ion
interaction. Let us determine the conductivity of an ionized gas in the limiting case
where it is determined by electron-ion scattering. Then on the basis of formula (3.1.7)
for the electron-ion diffusion cross section we obtain for the electron-ion scattering
rate

νei = Ni
4πe4 ln�

m2
ev

3 ,

where Ni is the number density of ions. Substituting this in formula (6.2.5) for the
drift velocity with the Maxwell distribution function (6.2.4) of electrons, we obtain
for the electron drift velocity

we = 25/2

π3/2

ET 3/2
e

m1/2
e Ni e3 ln�

(7.4.5)
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From this we find the plasma conductivity � = eNewe for a quasineutral plasma
Ne = Ni that is given by Spitzer formula [334] for the plasma conductivity

�ei = 25/2T 3/2
e

π3/2m1/2
e e2 ln�

(7.4.6)

This formula is valid at low degree of ionization Ne � Na . Indeed, because the
Coulomb electron-ion interaction potential exceeds that for electron-atom interac-
tion, electron-ion scattering becomes dominate at low ionization degree, and then
the Spitzer formula (7.4.6) holds true.

The Spitzer formula holds true in the limit of a high electron concentration of
electrons, where the plasma conductivity is given by

�ei = CspT 3/2
e

Expressing the electron temperature Te in eV and taking a typical value of the
Coulomb logarithm ln� = 7, we get the proportionality coefficient in the Spitzer
formula in the helium case Csp = 8.8 × 106 eV−3/2	−1cm−1. As it follows from
this, at the electron temperature the contribution to the plasma conductivity is identi-
cal for atoms and ions at the electron temperature Te = 1 eV, if the ionization degree
is several percent.

In a general case we take into account both electron-atom and electron-ion scat-
tering, so that the scattering rate is given by

ν = Naσ ∗
eav + Ni

4πe4 ln�

m2
ev

3

Here Na , Ni are the number densities of atoms and ions correspondingly, and formula
(3.1.7) is used for the diffusion cross section of electron-ion collision. Let us assume
for definiteness that the mean free path of an electron in a gas is independent of
the electron velocity ( λ(v) = 1/(Naσ ∗

ea) = const). We then obtain for the gas
conductivity

This gives for the electron drift velocity

� = �ea�(ξ), ξ = Ni

Na

πe4 ln�

T 2
e σ ∗

ea
, �(ξ) =

∞
∫

0

e−x xdx

1 + ξ/x2
, (7.4.7)

where the conductivity of an ionized gas�ea due to electron-atom scattering is given
by formula (7.4.4). As is seen, the competition of contributions for electron-atom
and electron-ion scattering in an ionized gas is determined by the parameter ξ . The
function �(ξ) has the following limiting expressions

http://dx.doi.org/10.1007/978-3-319-11065-3_3


7.4 Conductivity of Weakly Ionized Gas 173

Fig. 7.10 Function �(ξ) that characterizes the contribution of the electron-ion scattering to the
conductivity of an ionized gas. The Dotted curve corresponds to the approximation �(ξ) = (1 +
ξ/6)−1

�(ξ) = 1 − ξ

2
ln

1

e2Cξ
, ξ � 1; �(ξ) = 6

ξ

(

1 − 20

ξ

)

, ξ � 1 (7.4.8)

Figure7.10 represents the dependence �(ξ), and also its simple approximation
(1 + ξ/6)−1 which gives the same limiting results.

The parameter ξ in formula (7.4.7) for the helium case, where we take σea = 6Å2,
is given by

ξ = Ni

Na

πe4 ln�

T 2
e σ ∗

ea
= Ni

Na

1,600

T 2
e

Here the electron temperature Te is taken in eV, and ln� = 7. In particular, if
Ni/Na = 10−4 and the electron temperature Te = 1 eV, the electron drift velocity
decreases due to electron-ion scattering by 6%, at Ni/Na = 10−5 a decrease of the
electron drift velocity is about 2% due to electron-ion scattering, and in the case
Ni/Na = 10−6 this drift velocity decrease is approximately 0.3%.

7.5 Electron Thermal Conductivity of Helium Arc Plasma

Transport of electrons gives a certain contribution to heat transport in a gas discharge
plasma, and we analyze this below. For definiteness, we consider the helium case
of electron transport in the regime of a high number density of electrons, when this
gas is located in an external electric field with a weak gradient ∇Te of the electron
temperature that causes a heat flux. We are guided by typical conditions in a gas
discharge plasma when the electron concentration is low, but due to a high mobility
electrons creates a heat flux qe that is independent of the gas heat flux and can be
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included in equation (8.6.1) of heat transport. Correspondingly the total heat flux is
a sum of these fluxes.

Let us introduce the coefficient of electron thermal conductivity κe according to
the heat transport equation

qe = −κe∇Te, (7.5.1)

where the electron temperature Te characterizes the Maxwell distribution function
of electrons ϕ(v). The gradient of the electron temperature induces the additive
non-symmetric distribution function, and the total velocity distribution function of
electrons has the form

f (v) = ϕ(v) + (v∇ ln Te) f1(v)

Using the stationary kinetic equation for electrons v∇ f = Iea( f ) that takes into
account a change of the electron momentum as a result of their collisions with atoms,
together with the gas state equation for the electron pressure pe = NeTe, we have
from the kinetic equation for the electron distribution function

ϕ(v)

(

mev
2

2Te
− 5

2

)

v∇Te = Iea( f )

From this we have on the basis of the expression (5.3.4) for the collision integral for
the antisymmetric part of the electron distribution function

f1(v) = −ϕ(v)

ν

(

mev
2

2Te
− 5

2

)

From this we find the heat flux due to electron transport

(qe)x =
∫

me v2

2
vx f (v)dv =

∫

me v2

2
v2x∇ ln Te f1(v)dv

From this and the definition (7.8.2) for the electron thermal conductivity coefficient,
we have

κe = Ne

〈

v2

3νea

me v2

2Te

(

me v2

2Te
− 5

2

)〉

, (7.5.2)

where an average is made over the Maxwell distribution function of electrons, and
the coefficient of the electron thermal conductivity is proportional to the electron
concentration in a gas.

We first consider a general case where the dependence of the rate of electron-atom
collisions νea(v) on the electron velocity v is approximated by the dependence

http://dx.doi.org/10.1007/978-3-319-11065-3_8
http://dx.doi.org/10.1007/978-3-319-11065-3_5
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νea ∼ vk . At this approximation including a variable z = mev
2/(2Te), we obtain for

the electron thermal conductivity

κe = 4

3
√

π
· Te Ne

νome

(

1 − k

2

)




(

7 − k

2

)

In the case νea = const this gives

κe = 5Te Ne

2νome
,

and in the case k = 1 it follows from the above formula

κe = 2

3
√

π
Neλ

√

2Te

me
, (7.5.3)

where the relation νea = v/λ is used with the expression λ = 1/(Naσea) for the
mean free path of electrons in a gas.

In the helium case, taking the diffusion cross section of electron-atom collisions
to be independent of the electron velocity, we transform formula (7.5.3) to the form

κe =
√
8

3
√

π
Neλ

√

Te

me
= 0.532ce

1

σ ∗
ea

√

Te

me
,

where ce = Ne/Na is the electron concentration. Taking the average cross section
of electron-atom collisions as σea = 6Å2, we obtain for the electron thermal con-
ductivity coefficient in helium

κe = 3.08ce

√

Te, (7.5.4)

where the electron temperature Te is expressed in eV, and the thermal conductivity
coefficient κe is given in W/(cmK).

One can compare the electron thermal conductivity coefficient κe in helium with
the gas thermal conductivity coefficient κ that in helium at room temperature is equal
to κa = 1.51× 10−3W/(cmK). Taking the diffusion cross section of electron-atom
scattering in helium to be σea = 6Å2, we obtain for the electron thermal conductivity
coefficient κe/ce = 0.616

√
Te/ToW/(cmK), where To = 1 eV, and ce = Ne/Na

is the electron concentration. From this we obtain for the ratio of the electron and
gaseous thermal conductivity coefficients

κe

κa
≈ 410ce, Te = 1 eV,

κe

κa
≈ 580ce, Te = 2 eV, (7.5.5)

One can see that the contribution of electron thermal conductivity to the heat transport
is significant at a high electron concentration ce ∼ 0.001 − 0.01.
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7.6 Ion Drift and Diffusion in Gas in External Electric Field

Because of a small electron mass, electrons are more mobile than ions. But transport
of electrons outside a gas discharge plasma creates electric fields that keep electrons
and cause transport of ions together with electrons conserving the plasma to be
quasineutral. In other words, transport of a plasma as a whole proceeds in this case,
and this transport is determined by ion rates. Therefore drift of ions in an external
field determines transport of a plasma as a whole.

In considering the ion drift in an external field, we use the macroscopic equation
(5.2.2) for the mean electron momentum P when charged particles are located in a
gas in an external electric field [190]

dP
dt

= eE − μ

Ni Na

∫

ggdσ ∗(g) f ϕdvdva,

In the simplest case when the rate of ion-atom collisions kia = ∫

gdσ ∗(g) is
independent of the collision velocity, this equation takes the form

m
dw
dt

= eE − μwkia Na, (7.6.1)

where w is the ion drift velocity, and the mean ion momentum is P = mw. In the
stationary case this equation gives

w = eE
μkia Na

(7.6.2)

This case relates to motion of ions in a foreign gas with the polarization ion-atom
interaction potentialU (R) that corresponds to ion-atom interaction at large distances
R and has the form

U (R) = − αe2

2R4

where α is the atom polarizability, e -is the ion charge. Then the ion mobility K is
given by the Dalgarno formula [113]

K = 36√
αμ

, (7.6.3)

Here the polarizability is given in cm2/(V s), the atom polarizability α is expressed
in a3

o , the reduced mass μ of colliding particles is given in a.u.m. It is of importance
that the ion drift velocityw according to formula (7.6.2) is proportional to the electric
field strength E at any strengths, including large E where the ion energy exceeds a
thermal ion energy.

http://dx.doi.org/10.1007/978-3-319-11065-3_5


7.6 Ion Drift and Diffusion in Gas in External Electric Field 177

If an atomic ion is located in a parent gas, ion drift in a gas in an external electric
field results from the resonant charge exchange process (3.5.4). In the absence of
elastic scattering charge transfer has a relay character [226], i.e. a forming ion obtains
the velocity of an atom that partakes in the charge exchange event. This character
of the charge exchange process is called theSena effect.Note that at room temperature
the contribution of elastic ion-atom scattering in the mobility of helium atomic ions
in helium is 6%, and in the case of argon atomic ions in argon this contribution is
11% [190].

The ion mobility in a small electric field may be evaluated on the basis of the
Chapman-Enskog method [294–297], that corresponds to expansion of transport
coefficients over a small numerical parameter. The ionmobility in the first Chapman-
Enskog approximation is given by

K = eD

T
= 3

√
π

16
√

MT Naσ ∗ (7.6.4)

where M is the ion mass, σ ∗ is the diffusion cross section of ion-atom scattering, and
the connection between the mobility K and the diffusion ion coefficient D follows
from the Einstein relation (2.3.3). In the absence of elastic scattering the diffusion
cross section of ion-atom scattering is expressed through the cross section of resonant
charge exchange σres as σ ∗ = 2σres [335]. In addition, the contribution of the second
approximation to the first one is about 2% [336]. Accounting for a weak dependence
on the collision velocity for the cross section σres(v) of resonant change exchange,
we obtain for the mobility of atomic ions in a parent gas [190]

Ko = 1342√
MT σres(

√
9T/M)

, (7.6.5)

where the ion mobility K is expressed in cm2/(V s) and relates to the normal number
density of atoms (2.69×1019 cm−3), the ion and atommass M is given in a.u.m., the
gas temperature T is given in K , the cross section of resonant charge exchange σres is
expressed in 10−15 cm2, and an argument in the cross section indicates a velocity at
which it is taken with accounting for a weak velocity dependence of the cross section
of resonant charge exchange. Elastic ion-atom scattering is ignored in this formula.
Accounting for a small contribution of elastic scattering into the ion mobility due
to ion-atom polarization interaction, we have for the atomic ion mobility in a parent
gas at small electric field strength [190]

K = Ko

1 + x + x2
, x =

√

αe2/T

σres(
√
7.5T/M)

(7.6.6)

where Ko is the ion mobility in absence of elastic scattering according to formula
(7.6.3), α is the atom polarizability. Note that accounting for elastic scattering leads
to a mobility decrease.

http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_2
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The diffusion coefficient of atomic ions in a parent atomic gas in weak electric
fields is given by formula (7.1.16) with the diffusion cross section σo of ion-atom
collisions σo = 2σres [335]. In the first approximation the mean free path of ions in
the expression for the ion diffusion coefficient is independent of the ion velocity. In
the second approximation this dependence is such as in formula (7.6.5)

Di = 3
√

π

8
λ

√

T

M
= 3

√
π

16

√

T

M

1

Naσres(
√
9T/M)

(7.6.7)

Note that all the above expressions relate to low electric field strengths, i.e.
between neighboring collisions an ion obtains from the electric field a small energy
compared to a thermal one that corresponds to criterion

eEλ � T, (7.6.8)

where E is the electric field strength, λ = 1/(Naσres) is the ion mean free path in a
gas, and N is the number density of atoms in a gas. In this limiting case the ion drift
velocity w in a parent gas is proportional to the electric field strength

w = E K (7.6.9)

In the limit of high electric field strengths, when the criterion

eEλ � T, (7.6.10)

holds true, the velocity ion distribution function in the field direction (the axis x) has
the form

f (vx ) = C exp

(

− Mv2x

2eEλ

)

, vx > 0, (7.6.11)

where C is the normalization constant, and the cross section of resonant charge
exchange assumes to be independent of the collision velocity. In this case the ion
distribution function is the Maxwell one with the gas temperature in directions per-
pendicular to the field. We have for the ion drift velocity and ion energy

wi = vx =
√

2eEλ

π M
, ε = Mv2x

2
= eEλ

π
(7.6.12)

In the next approximation one can include a weak velocity dependence for the
cross section σres of resonant charge exchange, and then the cross section σres

of resonant charge exchange in formula (7.6.12) is taken at the collision velocity
wi = √

2eEλ/(π M).
In an intermediate range of electric field strength, when the ion drift velocity

is comparable with a thermal ion velocity, it can be found from solution of the
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kinetic equation (5.1.1) for the ion distribution function [216, 337, 338]. A simple
approximation for the ion drift velocity for an intermediate range of the electric field
strength takes the form [190, 339], if we account for a weak velocity dependence of
the cross section of resonant charge exchange

w =
√

2T

M
· 0.48β

(1 + 0.22β3/2)1/3
, β = eE

2T Naσres

[

√

2T
M (4.5 + 1.6β)

] , (7.6.13)

where an argument indicates a velocity at which the charge exchange cross section
is taken. The dependence of the reduced drift velocity u = wi/

√
2T/M on the

parameter β that characterizes the electric field strength is given in Fig. 7.11.
Being guided by a gas discharge plasma of helium and argon, we give in Table7.5

the values of the mobilities K and diffusion coefficients D of helium and argon ions
in parent gases at temperatures T = 300K and T = 800K and in zero electric field.
At temperature T = 300K are used experimental values of mobilities averaged
over various measurements [190]. The dependence of the cross section of resonant
charge exchange σres on the collision energy ε is taken in the form σres ∼ εk , where
k = 0.084 for helium and k = 0.082 for argon [339, 229]. Transport coefficients
of molecular ions in parent gases are taken at temperature T = 300K by averaging
on various measurements, and the rate constant of ion elastic scattering on atoms
assumes to be independent of the collision energy, as it takes place for the polarization
ion-atom interaction.

The contribution of elastic scattering to the mobility of atom ions in a parent gas
that is determined by formula (7.6.6) decreases with an increase of an average ion

Fig. 7.11 The ion drift velocity in a gas in an electric field in accordance with formula (7.6.13).
Lines 1, 2 correspond to the limits of low and high electric field strengths

http://dx.doi.org/10.1007/978-3-319-11065-3_5
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Fig. 7.12 The drift velocity of the atomic helium and argon ions in the parent gas in a constant
electric field

energy, and this contribution at room temperature and in low fields is 6% in the
helium case and 11% in the argon case. The dependence on the reduced electric field
strength E/Na for the drift velocity of atomic ions of helium and argon in parent
gases is given in Fig. 7.12.

One can separate the average ion energy ε in a thermal and field parts basing on
formula (5.2.6). Requiring the accurate asymptotic behavior of the average energy
in the limit small and large electric field strengths, we represent formula (5.2.6) for
the average energy of the average ion energy in the form

ε =
√

(

3T

2

)2

+
(

eEλ

2

)2

(7.6.14)

where the mean free path of ions in a parent gases at large electric field strengths is
given by

λ = 1

Naσres

(

√

4ε
M

) (7.6.15)

Figure7.13 gives the mean energy of helium and argon atomic ions in parent gases
depending on the reduced electric field strength E/Na on the basis of formulas
(7.6.14) and (7.6.15).

http://dx.doi.org/10.1007/978-3-319-11065-3_5
http://dx.doi.org/10.1007/978-3-319-11065-3_5
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Fig. 7.13 The average energy of helium and argon ions in parent gases in accordance with formulas
(7.6.14) and (7.6.15)

The electric current in a gas discharge plasma is determined by electrons and ions
give a small contribution to this. Indeed, the electric current density in an ionized
gas under the action of the electric field is given by

i = −eNewe + eNi wi ,

where Ne, Ni are the number densities of electrons and ions, we, wi are their drift
velocities, and the electron drift velocity exceeds significantly that for ions because
of a less mass. Since a plasma is quasineutral Ne = Ni , the contribution of ions
into the plasma conductivity is wi/we. We give this ratio in Fig. 7.14 for the case

Fig. 7.14 The ratio of the drift velocities of atomic helium ions and electrons in helium
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where atomic ions are located in a gas discharge plasma. Note that this contribution
is higher for helium compared to other inert gases because of a less atom mass.

We have two limiting cases of ion drift with respect to the electric field strengths,
and the ion drift velocity is determined by formula (7.6.5) at low electric field
strengths and by formula (7.6.12) at high field strengths. The parameter β defined by
formula (7.6.13) determines the transition between these limiting cases. In particu-
lar, in the case of helium atomic ions transition between these limiting cases takes
place at β = 2.8 where the above formulas give identical values for the ion drift
velocity.According to formula (7.6.13) at thisβ the iondrift velocity exceeds a typical
thermal ion velocity

√
2T/M by 6%. Next, β = 2.8 corresponds to E/Na = 50 Td

for helium and E/Na = 100 Td for argon. These reduced electric field strengths are
intermediate for transition from low to high electric field strengths.

Let us make a similar analysis in the case where molecular ions are realized in a
gas discharge plasma. One can use formula (7.6.2) for the drift velocity of ions in a
foreign gas, and then the ion mobility is determined by the polarization interaction
(7.6.3) of ions and gas atoms. But, it is convenient to use the experimental values
of the ion drift velocity (in particular, [8, 190, 340]) and determine the ion drift
velocity in the limit of low electric field strengths. At an intermediate value of the
electric field strength the ion drift velocity is equal to a typical thermal velocity. The
mobility of helium molecular ions He+

2 in helium at the normal number density of
atoms is 18 cm2/(V s) (with the accuracy of 10%) and for molecular argon ions Ar+

2
in argon this value is 1.9 cm2/(V s). This gives the intermediate electric field strength
approximately 20 Td for helium and 50 Td for argon. These values are lower than
those in the case of atomic ions.

One can check the accuracy of the polarization theory [113] for the mobility of
molecular ions basing on experimental data which according to the data of Table7.6
are equal K = (18 ± 2) cm2/(V s) for helium molecular ions He+

2 in helium
and K = (1.86 ± 0.05) cm2/(Vs) for the mobility of molecular ions in helium

Table 7.6 The zero-field mobilities K and diffusion coefficients D for helium and argon ions in
parent gases

T = 300K T = 800K

K (He+ − He) 10.4 ± 0.3 6.9

K (He+
2 − He) 18 ± 2 18

D(He+ − He) 0.27 0.40

D(He+
2 − He) 0.46 1.2

K (Ar+ − Ar) 1.55 ± 0.1 1.0

K (Ar+
2 − Ar) 1.86 ± 0.05 1.9

D(Ar+ − Ar) 0.040 0.060

D(Ar+
2 − Ar) 0.048 0.13

An argument indicates the ion and gas sort; the mobilities are given in cm2/(V s), the diffusion
coefficients are expressed in cm2/s and reduce to the normal number density of atoms 2.69 ×
1019 cm−3
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and molecular ions Ar+
2 in argon in zero field at the normal number density of

atoms. In the case of the ion-atom polarization interaction the ion mobility in
an atomic gas in zero field is given by formula (7.6.3). The polarizability of a helium
atom is 1.383 a3

o , and the polarizability of an argon atom is 11.1 a3
o . On the basis of

formula (7.6.3) we obtain the zero field mobility of molecular ions He+
2 in helium

K = 19 cm2/(Vs), and for molecular argon ion Ar+
2 in argon K = 2.1 cm2/(V s).

As is seen, these values are in accordance with experimental data with the accuracy
10–20%.

One can compare the drift velocity of electrons and ions. In particular, at the
pressure of 10 Torr and the electric field strength of 50V/cm we have the electron
drift velocity in argon is 1.5×106 cm/s, the drift velocity of atomic ions Ar+ in argon
is 6 × 103 cm/s (their mobility equals to 120 cm2/(V s)) and the drift velocity of
molecular ions Ar+

2 is 8×103 cm/s (theirmobility in argon equals to 160 cm2/(V s)).
As is seen, the drift velocity of electrons exceeds that of ions bymore than two orders
of magnitude. Therefore the contribution of ions to the conductivity of a quasineutral
argon ionized gas under indicated conditions is below 1%.

The ion diffusion coefficient of atomic ions in a parent gas in the longitudinal
direction at high electric field strengths D‖ is given by [254]

D‖ = 0.137λw (7.6.16)

In derivation the expression for the transverse diffusion coefficient D⊥ of atomic
ions in a strong field eEλ � T we start from a general expression for the diffusion
coefficient

D⊥ =
〈

v2z

ν

〉

,

where vz is an ion velocity in the transverse direction, ν is the rate of variation of
the transverse ion velocity in collisions with atoms ν = Nawiσres , and an average
is made over ion-atom collision velocities. Since 〈v2z 〉 = T/M , where M is the ion
mass, we obtain for the ion diffusion coefficient in a transverse direction to the field
[254]

D⊥ = T

M

λ

wi
= T

√
πλ√

2eE M
, (7.6.17)

One can join the expressions for the ion transverse diffusion coefficient in low
(7.6.7) and strong (7.6.17) electric fields. Let us construct the expression for the
transverse diffusion coefficient of atomic ions in a parent gas assuming that the cross
section of resonant charge exchange in collisions of an atomic ionwith an own atom is
independent of the collision velocity.We require this expression to be transferred into
formulas (7.6.7) and (7.6.17) in the limits of low and strong electric field strengths.
One can combine these formulas as
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Fig. 7.15 Reduced to the normal density of atoms the diffusion coefficient of helium and argon
ions in a parent gas as a function of the reduced electric field strength according to formula (7.6.18)
at the gas temperature T = 400K

D⊥ = 3
√

π

16
λ

√

T

M

(

1 + 3

8
√
2

√

eEλ

T

)−1

(7.6.18)

Figure7.15 gives the dependence of the diffusion coefficient of atomic helium and
argon atoms in a parent gases at the gas temperature T = 400K in accordance with
formula (7.6.18). A weak increase of the ion diffusion coefficient with an increasing
electric field strength proceeds due to a decrease of the cross section of resonant
charge exchange with an increased energy of ion-atom collision.

7.7 Ambipolar Diffusion of Plasma in Gas in Electric Field

If a plasma is propagated in an empty space, its quasi neutrality is violated due to
different velocities of electrons and ions. This leads to creation of an electric field
that brakes electrons and accelerated ions, and this plasma moves as a whole. If this
self-consistent regime of plasma motion proceeds in a dense gas, where electron and
ion displacement is accompanied by their diffusion in a gas, this regime of plasma
motion is called ambipolar diffusion and proceeds near the walls of gas discharge of
a not low pressure [18, 29].

We now consider such a self-consistent regime of transport of a gas discharge
plasma near its boundary, in particular, plasma departure to electrodes or walls of a
chamber where this plasma is located. Because separation of a plasma charge creates
high electric fields, the plasma tries tomove as awhole, conserving the quasineutrality
in the course of propagation. Nevertheless, because of different electron and ion
masses and hence due to differentmobilities of electrons and ions, electrons turn away
from plasma ions and create in this way an electric field that pulls and accelerates
the ions. Assuming the number density of electrons and ions in a gas discharge
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plasma with a high density of atoms to be small compared the atom number density,
we have for the flux of electrons je and ions ji

je = −Ke NeEa − De∇Ne, ji = Ki Ni Ea − Di∇Ni (7.7.1)

Here Ne, Ni are the number densities of electrons and ions, Ke, De are the mobility
anddiffusion coefficient of electrons, Ki , Di are themobility anddiffusion coefficient
of ions, Ea is the electric field strength due to separation of electron and ion charges,
and we take into account that the force from this electric field acts on electrons and
ions in different directions. Since the quasineutrality of this plasma conserves in the
course of its evolution, the electron and ion fluxes are equal je = ji. From this it
follows that because Ke � Ki and De � Di , in scales of electron values we have
je = 0. From this we find the electric field strength created by a charge separation

Ea = De

Ke
· ∇Ne

Ne
(7.7.2)

Taking the plasma flux as

j = ji = −Da∇N (7.7.3)

and defining in thismanner the coefficient Da of ambipolar diffusion, one can find for
the coefficient of ambipolar diffusion with accounting for the plasma quasineutrality
Ne = Ni = N

Da = Di + De

Ke
Ki (7.7.4)

Thus, propagation of this plasma reduces to the diffusion regime of ion motion in
a dense gas. This regime, ambipolar diffusion, is typical for a gas discharge plasma
[18, 29].

In the case of the Maxwell distribution function of electrons and ions this formula
have the form

Da = Di

(

1 + Tef

Ti

)

, (7.7.5)

where Tef is the effective temperature of electrons, and Ti ia the temperatures of ions.
In a general case of a strong electric field the electron temperaturemust be replaced by
the effective temperature which coincides with the characteristic temperature (7.2.4)

Tef = eD

K

for electrons and ions separately.
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The effective temperature of electrons coincides with the electron temperature
if the electron distribution function has the Maxwell form (6.2.4). In other cases it
requires amore precise. Let us consider a spread case of a gas discharge plasmawhen
it is located in a cylinder tube along which a voltage is applied and a plasma goes to
walls in the transverse direction due to ambipolar diffusion. Because of high electric
field strengths E the dependence we(E) for the electron drift velocity is nonlinear.
We find in this case the effective electron temperature Te that is included in formula
(7.7.4) and according to its definition it is equal to

Tef = eDe⊥/
wa

Ea
,

where De⊥ is the electron diffusion coefficient in the transverse direction with respect
to a discharge electric field Eo, Ea is the electric field strength in the transverse
direction resulted from ambipolar diffusion, i.e. separation of electrons and ions, and
wa is the electron drift velocity under the action of this field. Denoting by wo the
electron drift velocity due to the discharge electric field strength Eo, we find a change
of the electron drift velocity δw resulted from inclusion of ambipolar diffusion that
corresponds to addition of the electric field strength δE in the transverse direction

δw = ∂w

∂ E
δE =

√

w2
o + w2

a − wo = w2
a

2wo
, δE = E2

a

2Eo

From this it follows

wa

Ea
=

√

w

E

∂w

∂ E

This gives for the effective electron temperature in the transverse direction

Tef = eDe⊥ ·
(

w

E

∂w

∂ E

)−1/2

(7.7.6)

Evidently, this expression gives a correct transition to the limit of low electric field
strengths.

Let us consider one more peculiarity of ambipolar diffusion at high electric field
strengthswhere the average electron energy exceeds its significantly a thermal energy
of heavy atomic particles. A weak change of an energy in elastic electron-atom
collisions leads to a dominate role of the second term of formula (7.7.4) in a wide
range of electric field strengths. Let us demonstrate this for the case when the rate of
electron-atom collisions ν is independent of the collision velocity. Then according
to formulas (2.3.2) and (7.2.2) we have

Tef

T
= 1 + Mw2

e

3T

http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_2
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Taking the same formula for ions, we obtain that since the electron drift velocity
exceeds remarkably the ion drift velocity, we obtain a wide range of electric field
strengths, where the ion and gas temperatures coincide, while a typical electron
energy exceeds significantly a thermal atom energy.

Let us formulate the criterion of the ambipolar diffusion regime for plasma propa-
gation. Denote by L a typical distance on which plasma parameters vary remarkably,
and this distance exceeds significantly he mean free path of charged particles in the
gas. From the Poison equation we have for a typical difference between the electron
and ion number densities

�N ≡| Ni − Ne |∼ E

4πeL

An estimate for the electric field strength resulted from charge separation has the
form

�N

N
∼

(rD

L

)2
,

where rD is the Debye-Hückel radius. From this it follows that a quasineutrality of
this plasma �N � N corresponds to the criterion rD � L , that is the condition of
plasma existence.

Note that a typical electron temperature exceeds significantly a thermal ion energy
because a small part of an electron energy transfers to atoms in single collisions with
atoms. Therefore in a wide range of electric field strengths a typical electron energy
exceeds a thermal one, whereas the energy distribution function of ions coincides
with that at zero field. As it follows from the data of Table7.3 and Fig. 7.3, a typical
electron energy in heliumexceeds a thermal one at the electric field strengths E/Na >

0.1Td. In the argon case it takes place at E/Na > 0.001Tddue to the data ofTable7.4
and Fig. 7.4. At low electric field strengths at which the electron drift velocity is small
compared to a thermal electron velocity, electrons are found in equilibrium with a
gas and the effective electron temperature Tef in formula (7.7.5) is equal to the gas
temperature Tef = T . In this limit Da = 2Di , i.e. the contribution to the ambipolar
diffusion coefficient is equal due to ion diffusion and their drift under the action of an
electric field that is created by electrons. But in the course of an increasing electric
field strength the contribution to the ambipolar diffusion coefficient from ion drift
owing to an electron electric field increases. There is a wide range of electric field
strengths where a typical electron energy is large compared with a thermal energy of
atoms, whereas the electric field acts weakly on the energy distribution of ions. In this
range the ion diffusion coefficient Di in formula (7.7.5) for the ambipolar diffusion
coefficient is independent of the electric field strength, whereas as the second term
in the parentheses of this formula varies with an increasing electric field strength.

Figure7.16 contains the coefficients of ambipolar diffusion in a helium gas
discharge plasma as a function of the reduced electric field strengths for two regimes
where atomic or molecular ions dominate. In this case the diffusion coefficient of
helium atomic ions is 0.27 cm2/s and the diffusion coefficient of helium molecular
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Fig. 7.16 The ambipolar diffusion coefficient of a helium plasma in accordance with formula
(7.7.5) if the basic ion sort in the plasma is He+ or He+

2

ions is 0.46 cm2/s in accordance with the data of Table7.6. The effective electron
temperature according to formula (7.2.4) is Tef = eDe/Ke in helium in an external
electric field is taken from Table7.3, so that De is the transverse diffusion coefficient
of electrons and Ke = We/E is the electron mobility at this electric field strength
(we is the electron drift velocity, E is the electric field strength). Note that these
values of the ambipolar diffusion coefficient relate to the normal number density of
gas atoms Nn = 2.87 × 1019 cm−3. If the number density of atoms is Na , these
diffusion coefficients must be multiplied by the factor Nn/Na .

The coefficients of ambipolar diffusion given in Fig. 7.17 for an argon gas
discharge plasma are obtained in the same method. The diffusion coefficient of
argon atomic ions Ar+ in argon is 0.040 cm2/s and the diffusion coefficient of argon

Fig. 7.17 The ambipolar diffusion coefficient of an argon plasma in accordance with formula
(7.7.5) if the basic ion sort in the plasma is Ar+ or Ar+

2
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Fig. 7.18 The ambipolar diffusion coefficient in a helium gas discharge plasma for regimes of low
and high electron number densities if the basic ion sort is He+

2

Fig. 7.19 The ambipolar diffusion coefficients in accordance with formula (7.7.5) for the regime
of a low electron number density in a helium plasma where the basic ion sort is He+. Open circles
correspond to low electric field strengths where the ion diffusion coefficient in formula (7.7.5) does
not depend on the electric field strength and these values are represented also in Fig. 7.16. Closed
circles take into account the field dependence of the ion diffusion coefficient in accordance with
formula (7.7.1)

molecular ions Ar+
2 in argon is 0.048 cm2/s according to the data of Table7.6. The

effective electron temperatures Tef = eDe/Ke in argon in an electric field are taken
from Table7.4. One can see that the data of Figs. 7.16 and 7.17 relate to the regime
of a low electron number density where one can ignore electron-electron collisions
(Fig. 7.18).

In the regime of a high number density of electrons the coefficient of ambipolar
diffusion in a plasma is given by formula (7.7.5) and the electron temperature in
the helium case is determined according to formula (6.2.7) that is valid for E/Na <

50 Td. Figure7.19 contains the coefficients of ambipolar diffusion in a helium plasma

http://dx.doi.org/10.1007/978-3-319-11065-3_6
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Fig. 7.20 The ambipolar diffusion coefficients in accordance with formula (7.7.5) for the regime
of a low electron number density in an argon plasma where the basic ion sort is Ar+. Open circles
correspond to low electric field strengths where the ion diffusion coefficient in formula (7.7.5) does
not depend on the electric field strength and these values are represented also in Fig. 7.17. Closed
circles take into account the field dependence of the ion diffusion coefficient in accordance with
formula (7.7.7)

if the basic ion sort is He+, and the same results are given in Fig. 7.20 for the argon
case with Ar+ as the basic ion sort in a gas discharge plasma. In these figures the
values of ambipolar diffusion are compared for the regimes of low and high electron
number density. In reality the difference between these values is comparable with
the accuracy of measurements for the effective temperature of electrons (Tables7.3
and 7.4).

We now consider the case of large electric field strengths where an average ion
energy differs from a thermal atom energy. For definiteness we consider the situation
in a cylinder discharge tubewhere an electric field directs along the tube axis, whereas
plasma drift proceeds to walls, i.e. in the perpendicular direction. Therefore it is
necessary to use the transverse diffusion coefficient of ions in formula (7.7.5) for the
diffusion coefficient of ions. At large electric field strengths we use formula (7.6.17)
for the transverse diffusion coefficient of ions. Being guided by a typical ion energy of
0.1eV, we take the cross section of resonant charge exchange to be 3.5× 10−15 cm2

for the helium case and 7.0 × 10−15 cm2 for the argon case according to Table3.4
data. At the gas temperature T = 300K formula (7.6.18) for the transverse diffusion
coefficient of ions has the following form for atomic helium ions He+ in helium and
for atomic argon ions Ar+ in argon correspondingly

Di (He) = 0.27

1 + 0.088
√

x
, Di (Ar) = 0.040

1 + 0.060
√

x
, (7.7.7)

where the diffusion coefficient is given in cm2/s and is reduced to the normal number
density of atoms, x = E/Na is the reduced electric field strength expressed in Td.
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The values of the ambipolar diffusion coefficient are evaluated according to
formula (7.7.5) where the dependence of the diffusion coefficients of ions are
connected with the resonant charge exchange process and their values are determined
by formula (7.7.7). Values of the effective temperature of electrons Tef are taken
from Table7.3 for a helium gas discharge plasma and from Table7.4 for an argon
gas discharge plasma. The latter means that these data relate to the regime of a low
electron number density.

7.8 Heat Processes in Gas Discharge Plasma

Heat processes in a gas discharge plasma accompany the processes of energy transfer
from an external electric field to a gas through electrons. As a result of heat processes,
a gas is heated, and the gas temperature at the axis of a discharge tube is higher than
that near its walls. Therefore the reduced electric field E/Na is higher at the axis,
and electric properties of a plasma inside a cylinder gas discharge tube at axis differs
from those near the walls. This requires the analysis of heat processes in a gas
discharge plasma. Below we analyze them for a gas discharge plasma in discharges
of a restricted power where the temperature at the tube axis is comparable with that
at its walls.

Let us consider first a gas discharge plasma in the regime of a high electron
number density and determine the rate of relaxation of the electron temperature. For
this goal we transform the balance equation for the average electron energy (6.2.9)
to the equation for the electron temperature Te = 2ε/3

3dTe

2dt
= eEwe − m2

e

M
·
(

1 − T

Te

)

〈

v2νea

〉

, (7.8.1)

where νea is the rate of electron-atom collisions. In particular, in the case νea =
ν = const the balance Equation (7.8.1) takes the form

dTe

dt
= −νε(Te − To),

where To is the equilibrium temperature for a given electric field strength, Te is a
current electron temperature, νε is the rate of relaxation of the electron temperature
that is connected with the rate of electron-atom collisions by the relation

νε = 2
me

M
ν,

From this it follows that relaxation of the electron temperature proceeds longer in
M/(2me) times than relaxation of the electron momentum. For helium the ratio of
these relaxation times is 4 × 103, and in the argon case this ratio is ∼4 × 104.

http://dx.doi.org/10.1007/978-3-319-11065-3_6
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The heat flux in a gas discharge plasma is a sum of fluxes due to transport of atoms
and electrons because these fluxes are independently. We now determine the partial
thermal conductivity of an ionized gas due to electron transport in the regime of a
high number density of electrons. This flux occurs due to a weak gradient∇Te of the
electron temperature. Let us introduce the coefficient of electron thermal conductivity
κe according to the heat transport equation

qe = −κe∇Te, (7.8.2)

where the electron temperature Te characterizes the Maxwell distribution function
of electrons ϕ(v). The gradient of the electron temperature induces the additive
non-symmetric distribution function, and the total velocity distribution function of
electrons has the form

f (v) = ϕ(v) + (v∇ ln Te) f1(v)

Using the stationary kinetic equation for electrons v∇ f = Iea( f ) that takes into
account a change of the electron momentum as a result of their collisions with atoms,
together with the gas state equation for the electron pressure pe = NeTe, we have
from the kinetic equation for the electron distribution function

ϕ(v)

(

mev
2

2Te
− 5

2

)

v∇Te = Iea( f )

From this we have on the basis of the expression (5.3.4) for the collision integral for
the antisymmetric part of the electron distribution function

f1(v) = −ϕ(v)

ν

(

mev
2

2Te
− 5

2

)

From this we find the heat flux due to electron transport

(qe)x =
∫

me v2

2
vx f (v)dv =

∫

me v2

2
v2x∇ ln Te f1(v)dv

From this and the definition (7.8.2) for the electron thermal conductivity coefficient,
we have

κe = Ne

〈

v2

3νea

me v2

2Te

(

me v2

2Te
− 5

2

)〉

, (7.8.3)

where an average is made over the Maxwell distribution function of electrons, and
the coefficient of the electron thermal conductivity is proportional to the electron
concentration in a gas.

http://dx.doi.org/10.1007/978-3-319-11065-3_5
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Wenote that because the electron thermal conductivityκe in a gas dischargeplasma
results from electron-atom collisions, its value is connected with the dependence of
the rate of electron-atom collisions νea(v) depends on the electron velocity v that we
take below in the form νea ∼ vk . Using this dependence, we determine the coefficient
of the electron thermal conductivity in κe a gas discharge plasma. Formula (7.8.3)
with accounting for an indicated approximation for the electron-atom collisions in
the form νea(v) = νozk/2, where z = mev

2/(2Te), gives

κe = 4

3
√

π
· Te Ne

νome

(

1 − k

2

)




(

7 − k

2

)

In the case νea = const this gives

κe = 5Te Ne

2νome
,

and in the case k = 1 it follows from formula (7.8.3)

κe = 2

3
√

π
Neλ

√

2Te

me
, (7.8.4)

where the relation νea = v/λ is used with the mean free path λ = 1/(Naσea) of
electrons in a gas.

7.9 Plasma Transport in Magnetic Field

Magnetic fields influence on the behavior of charged particles of a gas discharge
plasma, and we below consider properties of this plasma located in a magnetic field.
A magnetic field compels a free charged particle to move by circle trajectories with
the Larmor frequency ωH that is given by

ωH = eH

mc
(7.9.1)

Here H is the magnetic field strength, m is the particle mass, c is the light speed,
e is the electron charge that assumes to be the particle charge. Electrons of a gas
discharge plasma are magnetized, if the Larmor frequency for electrons

ωH = eH

mec
, (7.9.2)

is large compared to the rate of collision involving electrons.We assume this criterion
to be not valid for atomic ions, i.e. a magnetic field acts only the electron component
of a gas discharge plasma.
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Let us consider the behavior of electrons in crossed electric and magnetic fields.
Then in the regime of low density of electrons the kinetic (5.1.1) takes the form

(

eE + e

c
[vH]

) ∂ f

∂v
= Iea( f )

Take the direction of the electric field E along the axis x , and take the direction of
the magnetic field H along the axis z. Then by analogy with formula (6.1.3) the
distribution function of electrons has the form

f (v) = f0(v) + vx f1(v) + vy f2(v),

and the collision integrals from the symmetric and asymmetric distribution functions
are given by expressions (5.3.4) and (5.3.9). Substituting this in the kinetic equation,
we find by analogy with (6.1.4) the following connection between partial distribution
functions

v f1 = aν

(ν2 + ω2
H )

d f0
dv

, v f2 = aωH

(ν2 + ω2
H )

d f0
dv

,

where a = eE/me, ωH is the Larmor frequency (7.9.2) for electrons, and ν =
Navσ ∗

ea is the rate of electron-atom elastic collisions. This gives for the electron drift
velocity

wx = eE

3me

〈

1

v2

d

dv

(

νv3

ν2 + ω2
H

)〉

, wy = eE

3me

〈

1

v2

d

dv

(

ωH v3

ν2 + ω2
H

)〉

,

(7.9.3)

where the average is made on the basis of the spherical distribution function f0 of
electrons. In the limit of a small magnetic fieldωH � ν the first formula is converted
into (6.1.7), and in the limit of a rareness gas

ωH � ν (7.9.4)

this plasma is magnetized. In this limiting case the electrons move in the direction
that is perpendicular both to the electric and to the magnetic field, and the electron
drift velocity is

wy = eE

meωH
= c

E

H
(7.9.5)

The drift velocity in the direction of the electric field is equal in the limit (7.9.4) of
magnetized electrons

wx = eE

3meω
2
H

〈

d(v3ν)

v2dv

〉

(7.9.6)

http://dx.doi.org/10.1007/978-3-319-11065-3_5
http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_5
http://dx.doi.org/10.1007/978-3-319-11065-3_5
http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_6
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In particular, if the cross section of electron-atom collision σ ∗
ea is independent of the

collision velocity v, formula (7.9.6) gives

wx = 4eEv

3meλω2
H

, (7.9.7)

where v is the average electron velocity, λ = 1/(Naσ ∗
ea) is the mean free path of

electrons in a gas. From this it follows for the plasma conductivity (7.4.2) if it is
located in a strong magnetic field

� = eNewe

E
= 4Nee2v

3meλω2
H

, (7.9.8)

In the regime of a high electron number density with the Maxwell distribution
function of electrons, we determine the electron temperature Te from the energy
balance equation

eEwx =
∫

mev
2

2
Iea( f0)dv

This equation takes into account that electrons obtain energy from the electric field
and transfer it to atoms in electron-atom elastic collisions. This equation with using
formula (7.9.3) for the electron drift velocity and formula (5.3.9) for the integral
of electron-atom collisions gives for the difference of electron Te and gaseous T
temperatures by analogy with expression (6.2.7)

Te − T = Ma2

3

〈 v2ν

ν2+ω2
H

〉
〈v2ν〉 (7.9.9)

In the limiting case of a strong magnetic field ωH � ν this formula takes a simple
form

Te − T = Ma2

3ω2
H

= Mc2E2

3H2 = M

3
w2

y, ωH � ν (7.9.10)

Weconsider the coefficient of the electron transverse diffusion in a strongmagnetic
field ωH � ν in a gas discharge plasma in the absence of an electric field (or
an electric field is directed along the magnetic field). Then the trajectory of a test
electron consists ofmany circleswhose centers are displaced after each electron-atom
collision. Then according to definition of the diffusion coefficient we have

D⊥ =
〈

x2
〉

t
,

http://dx.doi.org/10.1007/978-3-319-11065-3_5
http://dx.doi.org/10.1007/978-3-319-11065-3_6
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where
〈

x2
〉

is the square of the electron displacement for time t in the direction x that
is perpendicular to the magnetic field. Because

x − xo = rH cosωH t

where xo is the projection on the axis x for a current circle of electron rotation,
rH = vρ/ωH is the Larmor radius, and vρ is the electron velocity component in the
direction perpendicular to the magnetic field. We have for the square of the electron
trajectory

〈

x2
〉

= n
〈

(x − xo)
2
〉

= nv2ρ

2ω2
H

,

where n is a number of collision during a time t = n/ν. This gives

D⊥ =
〈

v2ρν

2ω2
H

〉

=
〈

v2ν

3ω2
H

〉

, ωH � ν, (7.9.11)

where an average is made over electron velocities. This formula for the electron
diffusion coefficientmay be combinedwith that (7.2.2) in the absence of themagnetic
field. This gives

D⊥ = 1

3

〈

v2ν

ω2
H + ν2

〉

(7.9.12)
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Processes in Gas Discharge



Chapter 8
Ionization Equilibrium in Gas Discharge
Plasma

Abstract Various forms of ionization equilibrium in a plasma are considered for
atom ionization in single collisions with electrons, stepwise atom ionization and
various regimes of loss of electrons and ions.

8.1 Townsend Scheme for Self-maintaining of Gas Discharge

A gas discharge plasma is a weakly ionized gas in an external field that occupies
a volume restricted by a discharge construction, and this plasma is supported by
processes in it. As a result of leaving of charged particles for electrodes and walls,
this plasma perishes, and within the framework of the Townsend scheme plasma
reproducing proceeds due to processes of atom ionization by electron impact. Self-
maintaining of gas discharge is its principal property, and now the rate of this process
is characterized by the first Townsend coefficient α that is expressed through the
ionization cross section σion of an atom by electron impact with the formula

α(E) = Na
〈vσion〉

we
, (8.1.1)

where Na is the number density of atoms, v is the electron velocity,we is the electron
drift velocity, and an average is made over the energy distribution of electrons.

In considering a gas discharge plasma, we will guided mostly by glow discharge
where gas heating under the action of the electric discharge current does not act sig-
nificantly on the gas properties. Figure2.6 represents basic regions of gas discharge
that is supported in a cylinder tube. In addition to this, Fig. 8.1 gives the space distri-
bution for the electric field strength and voltage along the discharge tube. Note that
our consideration relates to gas discharge of a not low pressure, so that the mean free
path of atomic particles in the gas is relatively small. The cathode region where a gas
discharge plasma is created and the positive columnwhere the ionization equilibrium
is supported by ionization of atoms by electron impact and plasma attachment to the
tube walls, are of principle for this plasma. The dark region is an intermediate region
between the cathode region and positive column, and fast electrons penetrate there
from the cathode region and these electrons are responsible for ionization in this
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Fig. 8.1 The character of
plasma parameters in glow
gas discharge

region. The attachment of ions to the anode increases slightly the electric field near
the anode, but its contribution to the discharge voltage is not of principle. Therefore
we focus below on two principal regions of gas discharge, the cathode region and the
positive column. Note that if we increase a length of the discharge tube, an additional
tube length will be occupied by the positive column.

Let us derive the condition of self-maintaining of discharge within the framework
of the Townsend scheme [2, 3, 5]. Along with ionization in a volume in electron-
atom collisions, this scheme uses the process of formation of secondary electrons
on the cathode as a result of cathode bombardment by ions accelerated in an electric
field. This process is characterized by the second Townsend coefficient γ that is the
probability of formation of a secondary electron per ion contacted with the cathode.
The balance equation for the electron number density Ne near the cathode and its
solution has the form

d Ne

dz
= αNe; Ne = No exp

(∫

αdz

)

, (8.1.2)

where z is the distance from the cathode, and No is the electron number density at the
cathode. Let us consider a gas discharge plasma between two plane electrodes with
a distance L between them. Then the condition of self-maintaining of this plasma
has the form

L
∫

0

αdz = ln(1 + 1/γ) (8.1.3)

This Townsend scheme of ionization balance was introduced a century ago and
conserves its actuality now.
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In the Townsend scheme of ionization balance we use the first Townsend
coefficient as the single parameter to describe the atom ionization by electron impact.
This is simplification of a real character for ionization of gas atoms in an electric field
because it requires direct atom ionization in pair collision with an electron. In reality
other ionization channels exist, in particular, ionization processes involving excited
atoms. Location of excited atoms in a gas discharge plasma acts on the ionization
balance twofold. First, excitation of atoms leads to a loss of fast electrons and causes
a decrease of the ionization rate in a gas discharge plasma. Second, the ionization
channel involving excited atoms may give a contribution to the total ionization rate
under certain conditions. According to this example, the Townsend scheme requires
to use caution. Therefore, based on this scheme we will use only experimental values
of the first Townsend coefficient assuming the conditions analyzed to be identical to
the experimental conditions.

If we assume a pair character of atom ionization and assume that the rate of the
ionization process (and α) do not depend on the electron number density, a general
form of the first Townsend coefficient as a function of the atom number density is

α

Na
= F

(

E

Na

)

, (8.1.4)

Figure8.2 gives experimental values of the reduced first Townsend coefficient α/Na

[43, 341–343] as a function of the reduced electric field strength eE/Na , and Fig. 8.3
represents these values for argon [43, 137, 331, 344–346]. Though the usedmeasure-
ments relate to a half-century period, the data of different time are in accordance. It
is convenient to use a simple approximation [4, 12] for the function F(x) of formula
(8.1.4) that is

Fig. 8.2 The reduced first Townsend coefficient for helium as a function of the reduced electric
field strength [43, 341–343]
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Fig. 8.3 The reduced first Townsend coefficient for argon as a function of the reduced electric field
strength [43, 137, 331, 344–346]

F(x) = A exp

(

− B

x

)

, (8.1.5)

It is suggested [4, 12] to use the parameters of this formula for helium A =
0.85 × 10−16 cm2, B = 96Td in a range of reduced electric field strengths
E/Na = 60 − 400 Td, and for argon these parameters are A = 4.0 × 10−16 cm2,
B = 500 Td in a range E/Na = 300− 1,700 Td. But this approximation is not well
in the total indicated range. In order to convince in the validity of the approximation
(8.1.5), it is convenient to give these experimental dependencies of the reduced first
Townsend coefficient α/Na on the reciprocal electric field strength Na/E as it is
represented in Figs. 8.4 and 8.5 in the helium and argon cases. Then in logarithmic
axes these dependence are expressed by straightforward lines. From Figs. 8.4 and 8.5
it follows that it is convenient to divide the range of E/Na into some intervals where
these dependencies may be approximated by straightforward lines in Figs. 8.4 and
Fig. 8.5, and then the parameters of formula (8.1.5) relate to a corresponding range of
electric field strengths. In particular, in a range of high fields 104 > E/Na > 103 Td
we have for the parameters of formula (8.1.5) A = 2.5× 10−16 cm2, B = 1,100 Td
for helium and A = 9.0 × 10−16 cm2, B = 1,540 Td for argon. This approxima-
tion is represented in Figs. 8.4 and Fig. 8.5 that shows a restricted accuracy of this
approximation.

At lower electric field strengths it is convenient to approximate F(x) by a power
dependence on the reduced electric field strength taking it in the form

α

Na
= a · (E/Na)k (8.1.6)
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Fig. 8.4 Constructed on the basis of Fig. 8.2, the reduced first Townsend coefficient for helium as
a function of a reciprocal reduced electric field strength

Fig. 8.5 Constructed on the basis of Fig. 8.3 data, the reduced first Townsend coefficient for argon
as a function of a reciprocal reduced electric field strength

The parameters of this formula in the argon case area = 9.2×10−25 cm2, k = 3.67 in
the range E/Na ≤ 50 Td, a = 8.6×10−23 cm2, k = 2.54 in the range 50 < E/Na ≤
100 Td, and a = 1.2× 10−19 cm2, k = 1.09 in the range 100 < E/Na ≤ 1,000 Td.

We also give in Table8.1 the values of the first Townsend coefficientα and the rate
constant of atom ionization kion that according to the relation (8.1.1) is determined
by the formula

kion = αwe

Na
(8.1.7)
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Table 8.1 Ionization parameters of helium and argon atoms by an electron moved in the gas in an
electric field

E/Na (Td) α(He)/Na (cm2) kion(He) (cm3/s) α(Ar)/Na (cm2) kion(Ar) (cm3/s)

10 4 × 10−20 1 × 10−13 1 × 10−21 1 × 10−15

30 2 × 10−18 4 × 10−11 2 × 10−19 5 × 10−13

100 1 × 10−17 2 × 10−10 1 × 10−17 8 × 10−11

300 5 × 10−17 4 × 10−9 6 × 10−17 1 × 10−9

1,000 9 × 10−17 3 × 10−8 2 × 10−16 1 × 10−8

3,000 4 × 10−16 2 × 10−7 2 × 10−16 3 × 10−8

E/Na is the reduced electric field strength in T d (1Td= 10−17 V · cm2), α is the first Townsend
coefficient, kion is the atom ionization rate constant by electron impact according to formula (8.1.7)

Table 8.2 Parameters of the
approximation (8.1.5) of the
first Townsend coefficient

Gas Range E/Na (Td) A 10−17 (cm2) B (Td)

He 100−300 8.7 200

He 300−1,000 14 340

He 1,000−3,000 22 850

Ar 100−300 1.3 230

Ar 300−1,000 3.4 520

Ar 1,000−3,000 9.1 1,600

The data of Table8.1 use a sum of measurements according to review [43] and are
based on average values of the first Townsend coefficient and electron drift velocities
in helium and argon given in Figs. 5.1 and 5.2. In addition, the approximation (8.1.5)
of experimental data for the first Townsend coefficient is valid in a not wide range
of electric field strengths. Table8.2 contains parameters of this approximation in an
indicated range of the reduced electric field strengths.

We note one more peculiarity of the first Townsend coefficient α. According to its
definition (8.1.2) of the first Townsend coefficient, an electron is moving along the
electric field, so that a random diffusion motion of electrons is ignored. Because due
to drift electron motion its removal from an initial electron position through time t is
wet and due to diffusion electron motion this removal is ∼√

Det , the drift electron
motion dominates through times

t � De

w2
e

This criterion must be valid for a time of electron doubling t ∼ (weα)−1, so that the
criterion of the Townsend mechanism of ionization has the form

α � we

De

http://dx.doi.org/10.1007/978-3-319-11065-3_5
http://dx.doi.org/10.1007/978-3-319-11065-3_5
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Introducing the electron mobility Ke = we/E and replacing above the longitudinal
diffusion coefficient De for electrons in a gas by the transverse diffusion coefficient,
we use the characteristic or the Townsend temperature Tef = eDe/Ke in accordance
with formula (7.2.4). Then the criterion of the drift character of electron propagation
in a gas in an external electric field is

ξ = αTef

eE
� 1 (8.1.8)

This criterion holds true usually.
Based on the above experimental data forα(E/Na)/Na , we assume experimental

conditions to be analogous to those under consideration. But at low reduced electric
field strengths this quantity is sensitive to other ionization channels. In particular, a
low concentration of excited atoms in a gas discharge plasmamay change remarkable
the value of α. Therefore experimental values of the first Townsend coefficient can
be used at not very small values of α.

It should be noted that the Townsend concept [42] with using the first Townsend
coefficientα as the characteristic of gas ionization is analogous to ionization of atoms
or molecules in collisions with electrons in gases. Along with the first Townsend
coefficient α, one can introduced the effective cross section of atom excitation σex ,
so that the quantity 1/β is the electronmean free path in a gaswith respect to excitation
of gas atoms. One can determine this value at high electric field strengths where the
electron distribution function is given by formula (6.6.4). In this case the energy
acquired by an electron from an external electric field is consumed on excitation
of gas atoms. The power P transmitted by one electron is eEwe, where E is the
electric field strength, we is the electron drift velocity. This gives for the excitation
rate constant by electron impact in this regime according to formula (6.6.17)

kex = eEwe

�εNa
= ko

(

E

Na

)2

,

and the values of ko are given by formula (6.6.18) and in Table8.2. In this limit the
effective excitation cross section σex is equal

σex = kex

we
= eE

�εNa
= σo · E

Na
(8.1.9)

The effective cross section of atom excitation σex in the lowest excited state is
compared with the reduced first Townsend coefficient α/Na in Fig. 8.6 for helium
and in Fig. 8.7 for argon in the range of high electric field strengths. In addition,
Table8.2 contains values of the parameters ko and σo for helium and argon.

http://dx.doi.org/10.1007/978-3-319-11065-3_7
http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_6
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Fig. 8.6 Reduced first Townsend coefficient α/Na (1) in helium constructed on the basis of exper-
imental data of Fig. 8.2 and the effective cross section of atom excitation σex (2) in the limit of high
electric field strengths

Fig. 8.7 Reduced first Townsend coefficient α/Na (1) in argon constructed on the basis of experi-
mental data of Fig. 8.3 and the effective cross section of atom excitation σex (2) in the limit of high
electric field strengths
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8.2 Ionization Equilibrium in Positive Column
of Gas Discharge

In addition to the regime of self-maintaining ionization along a tube with a gas where
electric current of gas discharge propagates, a self-maintaining regime is realized in
a transverse direction of a long gas discharge tube. We below consider such a self-
consistent regime in a long cylinder tubewhere an ionization equilibrium is supported
inside it due to ionization processes in a gas under the action of an electric field of
gas discharge (Table 8.3).

Thus, we analyze the ionization equilibrium in a long tube with a gas and a
longitudinal electric field, so that electrons and ions are formed in pair electron-atom
collisions and perish as a result of attachment to the tube walls. The gas distribution
over the tube cross section assumes to be uniform, and themean free path of electrons
is small compared to a tube radius. Such conditions are typical for glowdischarge, and
this regime of ionization equilibrium is called the Schottky regime [347, 348]. This
regime relate to a small electron number density, where electrons do not influence
on the distribution of atomic particles in the gas discharge tube.

The equation of ionization balance under the above conditions has the following
form for the electron number density Ne

Da�Ne + kion Ne Na = 0, (8.2.1)

where Da is the coefficient of ambipolar diffusion, Na is the number density of gas
atoms, kion is the rate constant of atom ionization in collisions with electrons. We
use the cylinder symmetry of the electron distribution if a gas discharge plasma is
located in a cylinder tube of a radius ρo. Then (8.2.1) has the form

Da

ρ

d

dρ

(

ρ
d Ne

dρ

)

+ kion Ne Na = 0, (8.2.2)

Solution of this equation with the boundary condition Ne(ρo) = 0 is given by

Ne(ρ) = No J0

(

2.4ρ

ρo

)

, (8.2.3)

where J0 is the Bessel function, and No is the electron number density at the tube
axis. This dependence is called the Schottky distribution. The boundary condition
Ne(ρo) = 0 leads to the following relation between parameters of processes

Table 8.3 Parameters of excitation of helium and argon atoms by electrons in the limit of low
electron number densities and high electric field strengths

Parameter He Ar

ko, 10−14 cm3/(Td2s) 6.2 13

σo, 10−19 cm2/Td 5.1 8.5
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Na
kionρ2o

Da
= 5.78 (8.2.4)

As a matter, this relation accounts for the balance between the process of destruc-
tion of charged particles as a result of ambipolar diffusion and the process of their
formation in electron-atom ionization collisions. In particular, this balance equation
gives for the flux of electrons and ions to walls

je = −Da
d Ne

dρ
|ρ=ρo = 1.25Da No

ρo
, (8.2.5)

where No is the electron number density at the axis.
Let us consider the limit of low electron number densities for the Schottky regime

of ionization equilibrium, where the ionization balance results from formation of
electrons and ions in collisions with electrons and loss of electrons and ions owing to
attachment to walls of a gas discharge tube. In this case one can neglect by collisions
between electrons, and the rate of atom ionization is expressed through the first
Townsend coefficient α in accordance with formula (8.1.1). As a result, equation of
ionization equilibrium (8.2.4) takes the form

αwe = 5.78Da

ρ2o
(8.2.6)

We now estimate the parameter αρo that is the ratio of a tube radius to the mean free
path of electrons with respect to ionization. From (8.2.6) of ionization equilibrium
it follows

(αρo)
2 ∼ α

Da

we

According to its structure, the right hand side of this relation is the ratio of the mean
free path of elastic scattering of electrons in a gas to that due to atom ionization.
Evidently, this ratio is small, i.e.

αρo � 1 (8.2.7)

Thismeans that existence of the positive column requires that the length of a discharge
tube exceeds significantly its radius.

The distribution of electrons (8.2.3) over the cross section of the discharge tube
allows one to determine various parameters of the positive column for the Schottky
regime of gas discharge. In particular, we below find the electric potential between
the axis and walls of a cylinder discharge tube for this regime. Indeed, as a result of
ambipolar diffusion, an electric field occurs that compels ions to move towards the
walls. According to formula (7.7.2) this electric field strength E is equal for a dense
plasma which is characterized by the electron temperature Te

E = Te

e

∂Ne

Ne∂ρ
,

http://dx.doi.org/10.1007/978-3-319-11065-3_7
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and correspondingly the electric potential �U between the axis and walls is

�U =
ρ∗

∫

0

Te

e

∂Ne

Ne∂ρ
dρ,

where ρ∗ ≈ ρo, i.e. this point is located near the walls and the diffusion character of
plasma motion takes place in this point. Hence ρo − ρ∗ ∼ λ, where λ is the mean
free path of electrons or ions in a gas. This gives

�U = Te

e
ln

No

Ne(ρ∗)
,

where No is the electron number density at the tube axis.In considering the Schottky
regime, we have on the basis of formula (8.2.4)

�U ≈ −Te

e
ln J0 [2.405(1 − λ/ρo)] ≈ Te

e
ln

8ρo

λ
(8.2.8)

As is seen, the energy that is transferred to an ion during its motion from the axis to
walls exceeds significantly a typical thermal electron energy.

8.3 Stepwise Ionization of Atoms in Positive Column

We consider above the Schottky regime of ionization equilibrium in the positive
column of gas discharge. This case corresponds to low electron number densities at
which excited atoms do not partake in the ionization balance. At higher number den-
sities of electrons ionization of metastable or excited atoms may give contribution
to ionization processes, and we below consider the ionization regime where the ion-
ization process proceeds through formation of a metastable state, and the ionization
process corresponds to the following scheme

e + A → e + Am, e + Am → 2e + A+ (8.3.1)

Here free electrons result from ionization of metastable atoms by electron impact,
and destruction of metastable atoms in this regime proceeds due to travelling of
electrons in a space and due to attachment ofmetastable atoms to thewalls.According
the scheme (8.3.1), instead of direct ionization of atoms by electron impact that
corresponds to the Schottky regime we are based on stepwise ionization through a
metastable state, and decay of ions A+ and excited atoms Am in this case results
from diffusion to walls. The set of balance equations which describe the scheme
the ionization scheme (8.3.1) has the following form for the number densities of
electrons Ne, metastable atoms Nm and atoms Na in the ground state
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4Da
d

dx

(

x
d Ne

dx

)

+ km
ion Ne Nmρ2o = 0, 4Dm

d

dx

(

x
d Nm

dx

)

+ kex Ne Naρ2o = 0

(8.3.2)

Here we use the reduced distance from the axis x = ρ2/ρ2o, where ρ is a distance
from the axis, and ρo is a radius of the discharge tube, and the reduced variable x
varies from 0 to 1. In addition, we denote above the rate constant for atom excitation
in the metastable state by electron impact as kex , the rate constant for ionization of
metastable atoms as km

ion , the diffusion coefficient for metastable atoms as Dm , and
the ambipolar diffusion coefficient for a gas discharge plasma as Da . The boundary
conditions Ne(ρo) = Nm(ρo) = 0 must be added to these equations.

By analogy with the Schottky regime, where we find the parameters of the ion-
ization balance as the eigen values of (8.2.2), we now make the same operation for
the set of (8.3.2). In order to simplify this operation, we use the following space
distributions for the number densities of electrons and metastable atoms

Ne = Ne(0)(e
−ax − e−a), Nm = Nm(0)(e−bx − e−b) (8.3.3)

Determination of the parameters a and b for these expressions will allow us to find
the eigen values of the equation set (8.3.2). In order to determine the accuracy of this
operation, we apply it first to the balance (8.2.2) of the Schottky regime. Let us set
the above expression for the electron number density Ne into (8.2.2) and take it at
x = 0. In addition, integrate this equation over the tube cross section. On the basis
of these operations we obtain a = 0.842 and

Nakionρ2o
Da

= 4a

1 − e−a
= 5.9

instead of the numerical parameter 5.78 for the precise solution of (8.2.2) according
to (8.2.4). The difference of these values characterizes the accuracy of the used
operation.

We now return to the set (8.3.2) of equations apply to that the above operations.
As a result, we obtain

a = 1.435, b = 0.988, km
ion Nm(0) = 7.55Da

ρ2o
, Na Ne(0)kex = 6.28Dm Nm(0)

ρ2o
(8.3.4)

These parameters characterize the distribution of electrons and ions, as well as
metastable atoms over the cross section of a discharge tube for this ionization mech-
anism through metastable atoms. One can exclude the number density of metastable
atoms from two last relations, and this gives

kex km
ionce(0) = 7.55Da Na

ρ2o
· 6.28Dm Na

ρ2o
, (8.3.5)
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where ce = Ne/Na is the electron concentration. This equation of ionization balance
describes the voltage-current characteristic of the positive column of gas discharge
for the mechanism (8.3.1) for ionization equilibrium where destruction of electrons
and metastable atoms is determined by diffusion of these particles toward walls and
subsequent their attachment to the walls.

We now consider another regime of ionization equilibrium where destruction of
metastable atoms within the framework of the scheme (8.3.1) results in collisions
with electrons rather than as a result of excitation transfer to the walls.We than obtain
the following set of balance equations instead of the set (8.3.2)

4Da
d

dx

(

x
d Ne

dx

)

+ km
ion Ne Nmρ2o = 0 , kQ Nm Ne = kex Ne Na, (8.3.6)

where kQ is the rate constant of metastable atom destruction by electron impact that
includes quenching of the metastable atom with its transition in the ground and other
excited states and also its ionization. As early, we ignore gas heating due to discharge
currents, so that Na = const over the tube cross section. Then the second equation of
the set (8.3.3) gives Nm = const over the tube cross section except a wall boundary
layer, and the first equation of the set (8.3.6) is analogous to the balance (8.2.2).
Therefore using formula (8.2.4), we obtain now

Na
km

ionkex

kQ
= 5.78

Da

ρ2o
(8.3.7)

One can see that this regime of ionization equilibrium dominates if Na NekQ �
6Dm Nm/ρ2o (we replace the factor 5.78 by 6), or

(Naρo)
2 ce

cm
� 6Dm Na

kQ
(8.3.8)

From this it follows that the diffusion mechanism of destruction of metastable atoms
takes place at a low reduced number density of atoms or radius of a discharge tube.

8.4 Plasma of Positive Column of Low Pressure Gas Discharge

In the positive column of gas discharge of low pressure the mean free path of charged
particles exceeds a size of a gas discharge chamber. Because plasma quasineutrality
is conserved except a narrow region near walls, a specific distribution of the plasma
potential is established that equalizes fluxes of electrons and ions on walls. This
equilibrium determines the regime of ionization equilibrium in this plasma [89, 349]
that is considered below on the basis of the Firsov method [350]. This method allows
one to obtain the expression for the ion current density to walls for the Boltzmann
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space distribution of electrons and ions in a plasma irrespectively to the rate constant
of atom ionization, though the ionization character is used there.

Wefirst consider the geometry of this positive columnwhenagas dischargeplasma
is located between two parallel plane electrodes. Taking the direction x perpendicular
to electrodes and the origin in the middle between electrodes, we have for the plasma
electric potential ϕ(x) because of the symmetry ϕ(x) = ϕ(−x). This potential
drops monotonically from the center to walls, and we take for definiteness ϕ(0) = 0.
Assuming a thermodynamic equilibriumof locked in a gap electronswith the electron
temperature Te, we have for the number density of electrons Ne(x) in a space

Ne(x) = No exp

[

eϕ(x)

Te

]

,

where No is the number density of electrons in the middle between electrodes. Ignor-
ing collisions of ions with gas atoms, we have that an ion formed in a point ξ has a
velocity vx = √

2e[ϕ(ξ) − ϕ(x)]/M in point x . Denoting by g(ξ) a number of ions
formed in point ξ per unit time and unit volume, we have for the number density of
ions Ni (x) in point x

Ni (x) = Ne(x) = No exp

[

eϕ(x)

Te

]

=
x

∫

0

g(ξ)dξ√
2e[ϕ(ξ) − ϕ(x)]/M

, (8.4.1)

Let us introduce the dimensionless potential η(x) = −eϕ(x)/Te and a typical
electron flux jo = No

√
2Te/M . In these variables (8.4.1) takes the form

j0e−η =
x

∫

0

g(ξ)dξ√
η(x) − η(ξ)

, (8.4.2)

where η > 0. In solving (8.4.2), we use the relation

x
∫

0

dη(x)

dx
dx

1√[η(y) − η(x)][η(x) − η(ξ)] =
η(y)
∫

η(ξ)

dη√[η(y) − η][η − η(ξ)] = π

Multiplying (8.4.2) by (dη/dx) [η(y) − η(x)]−1/2 and integrating over dx in the
limits between ξ and y, we obtain the ion (electron) flux j (y) at a distance y from
the origin with using the above relation

j (y) =
y

∫

0

g(ξ)dξ = j0
π

η(y)
∫

0

exp(−η)
dη√

η(y) − η
(8.4.3)
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Let us represent the ion (electron) flux to the electrode in the form

j (η) = jo
π

η
∫

0

exp(−η′) dη′
√

η − η′ = 2 jo
π

√
η + 2 jo

π

η
∫

o

exp(−η′)
√

η − η′dη′,

and this flux increases at moving toward the electrode. The boundary condition at
the electrode is d j/dη = 0 and gives the equation for the reduced electric potential
ηo = η(0) at the electrode

√
η0

ηo
∫

0

exp(−η)
dη√

ηo − η
= 1 (8.4.4)

Solution of this equation gives ηo = 0.855, that gives for the flux of charged particles
on the electrode

j = jo
π
√

ηo
= 0.344 jo = 0.344No

√

2Te

M
(8.4.5)

From this it follows the ionization balance where charged particles are formed by
atom ionization in collisions with electrons. This balance equation has the form [38,
170]

Nokion(Te)Na

x0
∫

0

e−ηdx = 0.344N0

√

2Te

M
, (8.4.6)

where Na is the number density of atoms, kion is the rate constant of atom ionization
by electron impact. This balance equation corresponds to the following character
of processes. Ions move to electrodes freely, while the electric plasma potential
hampers pass of electrons to electrodes and equalizes the fluxes of electrons and
ions. Reproduction of charged particles results from atom ionization by electron
impact.

Evidently, the same situation takes place in a cylinder discharge tube, where the
electric potential of walls with respect to the tube center is equal to [38]

eU (ρo) = 1.145Te, (8.4.7)

where ρo is a tube radius. Figure8.8 gives the distribution of the transverse potential
over the tube radius.

Correspondingly, the flux of ions ji or electrons on walls is equal [38, 350]

ji = 0.272No

√

2Te

M
(8.4.8)
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Fig. 8.8 The electric
potential distribution over a
radius of a cylinder discharge
tube with a gas discharge
plasma of a low pressure

By analogy with (8.4.6), the ionization balance equation for an individual electron
at this geometry has the form

Nakion(Te) = 0.76

ρo

√

2Te

M
(8.4.9)

Thus, the nature of this regime is that electrons and ions of a gas discharge plasma
are formed due to atom ionization by electron impact and are lost as a result of
electron and ion attachment to walls where they recombine. A charge on walls causes
repulsion of electrons during their motion towards the walls and accelerate ions that
equalizes currents of electrons and ions attached to walls. This regime is realized if
the following criterion holds true

λi � ρo � rD, (8.4.10)

so that the regime under consideration is determined by plasma separation over all
the tube cross section rather than in a near-wall layer where the wall field acts.

Note that formula (8.4.8) for the ion flux to walls coincides almost with the ion
flux to the wall surface if these ions are located in a space which is free from fields.
Indeed, if the ion number density in this space is No and the ion temperature is Te,
their flux to a surface is

ji = No · 1
4

√

8Te

πM
= 0.282No

√

2Te

M
, (8.4.11)

that coincides with (8.4.8) within the accuracy of several percent.

8.5 Heat Processes in Positive Column of Gas Discharge

In considering the Schottky regime of the positive column for a low-current discharge
(8.2.4), we assume that electrons do not change the atom distribution on the cross
section of a discharge tube, and hence the number density of atoms is constant
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over the cross section. But this influence starts at relatively small currents. Indeed,
propagation of a discharge current causes a heat release, that in turn leads to an
increase of the gas temperature at the tube axis. Because the gas temperature in the
tube center is stronger than that at walls, and the gas pressure is constant over the
tube cross section, the number density of atoms Na at the tube center is lower than
in the tube center. The electric field strength E is constant over the cross section, and
therefore the reduced electric field strength E/Na is higher at the center. Because of
a strong dependence of the ionization rate on E/Na , a region of ionization tightens
to the axis. In the end, another ionization regime of gas discharge occurs that differs
from the Schottky one. As it follows from this, the heat regime of the positive column
requires a special analysis.

Let us consider the heat regimeof the positive columnof gas discharge in a cylinder
tube if heat release results from a gas thermal conductivity. The heat balance equation
has the form

1

ρ

d

dρ

[

ρκ(T )
dT

dρ

]

+ p(ρ) = 0, (8.5.1)

where ρ is a distance from the tube axis, κ is the thermal conductivity coefficient of a
gas, p(ρ) = i E is the specific power of heat release, where i = eNewe is the electric
current density, E is the electric field strength, we is the electron drift velocity, Ne is
the electron number density.

In determination the temperature profile T (ρ) over the cross section, it is con-
venient to introduce new variables x = ρ2/ρ2o and Z = ∫ To

T κ(T )dT , where T is
a current temperature, To is the temperature at the center. In these variables (8.5.1)
takes the form

d

dx

(

x
d Z

dx

)

+ pρ2o
4

= 0 (8.5.2)

Approximating the specific power as p(ρ) = po(1 − xn), we have for solution of
this equation

Z(x) = P

4π
· n + 1

n

[

x − xn+1

(n + 1)2

]

,

where P is the heat release power per unit tube length that is given by

P = 2πρo

[

−κ
dT (ro)

dρ

]

= 4π
d Z(x = 1)

dx
= π poρ

2
o · n

n + 2

Thus, we have

Z(1) ≡
To

∫

Tw

κ(T )dT = P

4π

n + 2

n + 1
, (8.5.3)
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where Tw is the wall temperature. In particular, the Schottky regime (8.2.3) corre-
sponds to n = 0.67, and then (8.5.3) gives

To
∫

Tw

κ(T )dT = 0.13P

Thus, introducing the function

g(n) = Z(1)

P
= n + 2

4π(n + 1)
, (8.5.4)

we obtain that this function varies weakly in the range of the parameter n that cor-
responds to real space distributions of heat release (n < 0.67). The dependence of
this function on n is given in Fig. 8.9.

One can expect that the space distribution of the electron number density in reality
may be sharper only than that in the Schottky limit, i.e. n < 0.67. Hence, the ratio
g(n) of the thermal transport function Z(1) and the released power P per unit tube
length lies in the limits from g = 0.159 for the constriction form of the electron
distribution and g = 0.127 in the Schottky limit. One can average formally this
quantity over possible distributions

g = 0.143 ± 0.016 (8.5.5)

Fig. 8.9 The ratio g according to formula (8.5.4). An arrow corresponds to the case where the heat
release is proportional to the electron number density in the Schottky case according to formula
(8.2.3)
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From this we obtain on average

To
∫

Tw

κ(T )dT = 0.14P (8.5.6)

with the accuracy of 10%. In particular, in the limit of low discharge power (�T =
To − Tw � To) we have for the temperature difference

�T = 0.14
P

κ
(8.5.7)

If we take the temperature dependence for the coefficient of gas thermal conduc-
tivity in the form of a power dependence κ(T ) ∼ T α, (8.5.6) takes the form

Toκ(To) − Twκ(Tw) = 0.13(1 + α)P

In particular, in the helium and argon cases α ≈ 0.71 at strong gas heating To � Tw

we have

Toκ(To) = 0.22E I, (8.5.8)

where E is the electric field strength, I is a current strength.
Let us analyze the constructed form of the distribution of the electron number

density in a cylinder tube. We introduce a typical radius a occupied by an electric
current inside a cylinder discharge tube of a radius ρo such that the released specific
power P is connected with the released power po per unit volume at the tube axis as

P = πa2 po (8.5.9)

Hence

a2

ρ2o
= n

n + 2
(8.5.10)

and for a constricted discharge we have

a = ρo

√

n

2

In this limiting case instead of formula (8.5.6) we have

To
∫

Tw

κ(T )dT = 0.16P (8.5.11)
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In addition, we consider heat balance for a plasma of the positive column of
gas discharge located in a cylinder tube if the Schottky regime is realized, so that
the electron number density is distributed over the tube cross section according to
formula (8.2.3). Then (8.5.2) takes the form

d

ρdρ

[

κ(T )ρ
dT

dρ

]

+ po J0

(

2.4ρ

ρo

)

= 0,

whereκ is the gas thermal conductivity coefficient, p(ρ) = i(ρ)E is the power of heat
release per unit volume, po is the specific discharge power at the tube axis. Using the
variables x = ρ2/ρ2o and Z = ∫ To

T κ(T )dT , where T is a current temperature, To is
the temperature at the axis, and approximating theBessel function as J0(2.405

√
x) =

1− 1.38x + 0.38x2 that is valid within the accuracy of 1%, we obtain after the first
integration of equation of heat transport over the tube cross section

d

dx

(

x
d Z

dx

)

= poρ
2
o

2
(x − 0.69x2 + 0.13x3)

We here use that the heat flux is zero at the axis. For the power P of heat release per
unit tube length that is expressed through the heat flux to the walls

P = −2πρo · dT

dρ
|ρ=ρo = 4π

d Z

dx
|x=1

This reduces equation of heat transport to the form

d Z

dx
= 0.182P(1 − 0.69x + 0.13x2)

Solution of this equation by analogy with formula (8.5.6) gives

To
∫

Tw

κ(T )dT = 0.13P (8.5.12)

where Tw, To is the gas temperature at walls and axis respectively. This coincides
practically with the relation (8.5.7) that corresponds to an average over various dis-
tributions of the electron number density over the tube cross section.

Note that the gas temperature T (ρ) as a function from a distance from the tube
axis has the form

T (ρ) = To − βρ2, (8.5.13)

as it follows from the symmetry of a cylinder tube. One can find the parameter β
from two considerations. In the first case we solve (8.5.1) near the axis that gives
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T (ρ) = To − β1ρ
2 = To − poρ

2

4κ(To)
(8.5.14)

In the second case we require relation (8.5.13) to be valid at any distances from the
axis that gives

T (ρ) = To − β2ρ
2 = To − (To − Tw)ρ2

ρ2o
, (8.5.15)

where Tw is the wall temperature. We compare these distributions assuming the
specific power is proportional to the number density of electrons Ne(ρ) that is given
by formula (8.2.3). From this it follows for the total power per unit length

P =
ρo

∫

0

p(ρ) · 2πρdρ = 1.36poρ
2
o

Being guided by helium and argon, we have the temperature dependence for the
thermal conductivity coefficient

κ(T ) ∼ T 0.7

From this it follows

Z =
To

∫

Tw

κ(T )dT = [Toκ(To) − Twκ(Tw)]
1.7

= Toκ(To)

1.7

[

1 −
(

Tw

To

)1.7
]

Hence on the basis of relation (8.5.12) we obtain

Z

P
= 0.13 =

To
∫

Tw

κ(T )dT = [Toκ(To) − Twκ(Tw)]
1.7

= Toκ(To)

1.7

[

1 −
(

Tw

To

)1.7
]

This gives

β1

β2
= 4κ(To)(To − Tw)

poρ2o
= 1.2

1 − Tw/To

1 − (Tw/To)1.7
(8.5.16)

Figure8.10 represents this ratio at Tw = 300K .
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Fig. 8.10 The ratio of the parameters for the temperature space distribution in accordance with
formula (8.5.16)

8.6 Local Thermodynamic Equilibrium in Arc Plasma
of High Pressure

Wenowconsider the heat regimeof the positive columnof high pressure arc discharge
when heat release result form gaseous and electron thermal conductivity. the heat
balance equation has the following form instead of (8.5.1)

1

ρ

d

dρ

[

ρκ(T )
dT

dρ

]

+ 1

ρ

d

dρ

[

ρκe(Te)
dTe

dρ

]

+ p(ρ) = 0, (8.6.1)

where κe(Te) is the coefficient of electron thermal conductivity that is proportional
to the electron number density Ne, p(ρ) the specific heat release. This equation is
called the Elenbaas-Heller equation, if p(ρ) is represented in the form p(ρ) = �E2

(� is the plasma conductivity, E is the electric field strength). Though the number
density of electrons is small compared to the atom number density, heat transport
due to electrons may be significant because of a high electron mobility.

In considering the heat balance in the arc positive column, we will be guided the
case of a dense plasma with thermodynamic equilibrium for electrons, so that the
number density of electrons Ne is connected with the electron temperature Te by
the Saha formula (2.1.8)

Ne ∼ exp

(

− J

Te

)

,

where J is the atom ionization potential, and the criterion J � Te provides a sharp
dependence on the electron temperature both the electron number density and the
parameters κe(Te) and p(ρ). Because of a sharp dependence of the electron number

http://dx.doi.org/10.1007/978-3-319-11065-3_2
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density on the electron temperature, electrons may be concentrated mostly in the
region near the tube axis. For the analysis of the electron distribution near the axis,
it is convenient to use the variable

y = [Te(0) − Te(ρ)] J

2T 2
e (0)

, (8.6.2)

Assuming thermodynamic equilibrium for electrons, we have on the basis of the
Saha formula (2.1.8)

Ne(ρ) = Ne(0)e
−y

Because the specific power of heat release and the coefficient of electron thermal con-
ductivity are proportional to the electron number density, we have for these quantities
near the axis

p(ρ) = p(0)e−y, κe ∼ Ne ∼ e−y

Correspondingly, the heat balance (8.6.1)with using the variable x = ρ2/ρ2o takes
the form

d

dx

[

x
(

e−y + ζ
) dy

dx

]

− Ae−y = 0, (8.6.3)

and the parameters of this equations are given by

ζ = T κ(T )

κe(Te)
α, α = dT (ρ)

dTe(ρ)
, A = poρ

2
o J

8T 2
e κe(Te)

(8.6.4)

Thus, a sharp dependence of the electron number density on the electron temperature
allows us to obtain the balance equation with plasma parameters on the axis of a
discharge tube.

Let us consider the limiting case where heat transport is determined by the gas
thermal conductivity ζ � 1. Then equation (8.6.3) has the Fock solution

y = 2 ln

(

1 + Ax

2ζ

)

(8.6.5)

This solution leads to the following distribution of the electron number density over
the cross section of a discharge tube

Ne(ρ) = Ne(0)e
−y = Ne(0)

(

1 + ρ2

r2o

)−2

(8.6.6)

http://dx.doi.org/10.1007/978-3-319-11065-3_2


222 8 Ionization Equilibrium in Gas Discharge Plasma

If a typical size ro of a region occupied by a plasma is small compared to the radius
of a discharge tube ρo, the discharge contraction takes place that is determined by
heat processes in a plasma.

The heat release power per unit length of a discharge tube is connected with the
rate of heat release and is given by

P = I E =
∫

poe−y · 2πρdρ = 16T 2
e T κ(T )α

J
(8.6.7)

Expressing this quantity through the electron number density with the distribution
(8.6.6) over the tube cross section, one can determine a size of a region that is occupied
by the current.

In other limiting case ζ � 1 heat transport is determined by electron thermal
conductivity, and equation (8.6.3) in a region y < ln (1/ζ), where the plasma is
concentrated, is transformed to the form

d

dx

(

x
dY

dx

)

+ AY = 0

where the variable Y = Ne(ρ)/Ne(0) = e−y . The solution of this equation

Y = J0
(

2
√

Ax
)

(8.6.8)

leads to the following expression for the electric power per unit tube length

P = I E =
∫

poY · 2πρdρ = 1.36por2o ,

where

r2o = 5.78ρ2o
A

= 12T 2
e κe(Te)

po J
,

and the specific power in this regime is

P = I E = 16T 2
e κe(Te)

J
(8.6.9)

Joining formulas (8.6.7) and (8.6.9), we have for the specific power per unit length
of the positive column of arc discharge

P = I E = 16T 2
e κe(Te)(1 + 3.2ζ)

J
(8.6.10)
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In the same manner we obtain for the radius of a region occupied by a current in the
case of the Schottky regime

∫

Ne · 2πρdρ = 1.36Nor2o

This gives in a general case for the radius of a region occupied by a plasma

r2o = 12T 2
e κe(Te)(1 + 3.2ζ)

po J
(8.6.11)

We now analyze equation (8.6.1) in the form (8.6.3) from the standpoint of current
contraction.We have that the heat release power depends sharply on the electron tem-
perature. Heat transport due to electron thermal conductivity also depends strongly
on the electron temperature, while this dependence due to the atom thermal con-
ductivity is weak. Therefore if heat transport is determined by the electron thermal
conductivity, i.e. ζ � 1, according to solution (8.6.8) an arc plasma is spread over
all the cross section, and contraction of the positive column is absent. In the case
ζ � 1 with the plasma distribution (8.6.6) contraction of the electric current in the
arc positive column is possible in the case ro � ρo.

In order to find the criterion when contraction starts, we analyze the heat balance
equation (8.6.1) for the total tube cross section with ignoring the electron thermal
conductivity that can eliminate the arc contraction. Counting the gas temperature T
out the wall temperature Tw, we introduce the reduced temperature as

� = T − Tw

Tw

,

and (8.6.1) in this case takes the form

1

x

d

dx

(

x
d�

dx

)

+ B exp(b�) = 0

where we ignore the temperature dependence κ(T ) for the thermal conductivity
coefficient, and the parameters of this equation are

B = r2o p(Tw)

4Twκ(Tw)
; b = Tw

d ln p(T )

dT |T =Tw

This equation is added by the boundary conditions �(1) = 0, d�(0)/dx = 0
according to its physical nature. In contrast to (8.6.3) that describes a region near the
axis x � 1, this equation relates to all the distances from the axis 0 < x < 1. Next,
the variable of this equation is connected with the gas temperature.
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One can represent formally the Fock solution of this equation

� = 1

b
ln

[

2γ

Bb(1 + γx)2

]

, (8.6.12)

where γ is a variable parameter, and the validity of this solution may be checked
by the substitution of this solution into equation. This solution takes into account
the boundary condition d�(0)/dx = 0 at the axis, and on the basis of the other
boundary condition �(1) = 0 one can find the equation for the variable parameter γ

2γ = Bb(1 + γ)2 (8.6.13)

From this it follows that the real solution of the heat balance equation takes place
for the following relation between parameters

Bb ≤ 1

2
(8.6.14)

Violation of this condition leads to a thermal instability. Its physical sense is such
that an exponential growth of the rate of heat release is not compensated by heat
transport which rate depends weakly on the temperature. This instability leads to
contraction that increases the rate of heat transport.

The threshold of this instability is given by Bb = 1/2, γ = 1, that gives b� =
ln[2/(1+κ)]. This leads to the following relation between the specific power of heat
release at the axis and on the walls for the threshold of thermal instability

p(To) = 4p(Tw), (8.6.15)

where To is the temperature at the axis.

On the basis of the above analysis one can estimate a size ro of the region that is
occupied by the discharge electric current which follows from the balance of heat
release and heat transport. This gives

r2o ∼ κ(To)

dp/dT
(8.6.16)

Thus, heat transport in arc of high pressure is of importance and determines the
temperature distribution in the positive column. In addition, due to the character of
ionization equilibrium in this gas discharge plasma, the ionization processes proceed
mostly in a region near the axis of the gas discharge tube. This leads to two regimes
of ionization equilibrium for the plasma over all the tube. In the regime of local
thermodynamic equilibrium, the number density of electrons and ions at a given
distance from the tube axis is determinedby the temperature of this point.On contrary,
in the Schottky regime formed electrons and ions propagate over all the tube cross
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section, i.e. in contrast to the case of local thermodynamic equilibrium, the number
density of electrons and ions has the same order of magnitude for any tube cross
section, and its distribution over the cross section is determined by the boundary
condition.

Let us give the criterion of local thermodynamic equilibrium in a discharge tube
with an arc plasma of high pressure. Taking ionization equilibrium according to the
scheme (3.8.1)

2e + A+ ↔ e + A, (8.6.17)

where A and A+ are an atom and atomic ions respectively,we have the rate of electron
decay in this scheme 1/τ = K Na . On the other hand, according to formula (8.4.1)
a typical rate for electron travel to walls is approximately 6Da/ρ2o, where Da is the
ambipolar diffusion coefficient, ρo is the tube radius. From this it follows that local
thermodynamic equilibrium is not realized inside the discharge tube if the following
criterion holds true

K Na Ne � 6Da

ρ2o
(8.6.18)

If this criterion is violated, plasma transport takes place on a distance �ρ from the
point of its formation in accordance with

�ρ ∼
√

6Da

K Na
� ρo (8.6.19)

Because the ionization rate∼ exp(−J/Te), where J is the atom ionization potential,
it is necessary for local thermodynamic equilibrium that the electron temperature Te

varies on a distance �ρ on a value that is small compared with T 2
e /J .

8.7 Ionization Equilibrium in Arc Plasma of High Pressure

In considering a dense arc plasma, one can introduce separately the gaseous T and
electron Te temperatures because of a high electron number density. On the other
hand, because of high electric currents, heat processes are of importance for parame-
ters of this plasma. We below analyze properties of a dense arc plasma located in a
cylinder tube where the criterion (8.6.18) holds true, i.e. this plasma is characterized
by the gaseous T (ρ) and electron Te(ρ) temperatures and is supported by an external
electric field of a strength E , but the local thermodynamic equilibrium is violated
in this regime. Evidently, both temperatures depend on the reduced electric field
strength x = eE/Na . We first find the connection between the gaseous T (ρ) and
electron Te(ρ) temperatures in this regime in the case if the cross section of elastic
electron-atom collision is independent on the electron velocity. Then according to
formula (6.2.7) we have

http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_6


226 8 Ionization Equilibrium in Gas Discharge Plasma

(Te − T )Te = const ·
(

eE

Na

)2

This balance equation takes into account the energy transfer from an electric field to
gas atoms through collisionswith electrons and uses the assumption that the diffusion
cross section of elastic electron-atom collisions is independent of the electron energy.
Since the electric field strength is constant over the tube cross section, we have

Te

T

(

Te

T
− 1

)

= const, (8.7.1)

that is the electron temperature varies over the tube cross section proportional to its
gaseous temperature.

Since the ionization rate depends on the electron temperature as ∼ exp(−J/Te),
where J is the atom ionization potential, one can find from this that in a region which
is responsible for the ionization balance, variations of the electron �Te and gaseous
�T are given by relations

�Te ∼ T 2
e

J
,

�T

T
∼ Te

J
, (8.7.2)

There are two regimes of the positive column of gas discharge, diffusive and con-
tracted ones, and the Schottky case relates to the diffusive regime, where an electron
current and discharge glowing occupy all the tube cross section. On contrary, in
the contracted regime an electric current possesses a small part of the tube cross
section. Transition between these forms of gas discharge takes place if the differ-
ence of helium gaseous temperatures �T between center and walls of the discharge
tube satisfy to formula (8.7.2). Taking a typical electron temperature for a helium
plasma of the positive column to be Te ∼ 3eV , obtain that this transition proceeds
at �T ∼ 40K .

We now analyze ionization equilibrium for the positive column of a dense arc
plasma in this ionization regime where formation of electrons and ions proceeds
from atom ionization by electron impact, and plasma decay results from ambipolar
diffusion of this plasma to tube walls. Under given conditions, electrons and ions
are formed in a narrow region near the tube axis and then are spread over the total
tube cross section by ambipolar diffusion with recombination on tube walls. Let us
assume for simplicity that ionization proceeds in a region of a radius a that is small
compared with the tube radius ρo, i.e. a � ρo. Because the total electron flux toward
the walls j = −Da · 2πρd Ne/dρ is independent of a distance ρ from the axis aside
the ionization boundary ρ ≥ a, we have for the electron number density in this region

Ne = No
ln(ρo/ρ)

ln(ρo/a)
, ρ > a (8.7.3)

where we account for the boundary condition Ne(ρo) = 0.
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Under this condition equation of ionization equilibrium takes the form

∫

kion(ρ)2πρdρ = 2πρDa
d Ne

dρ |ρ=a
= 2πDa(ρo)No

ln(ρo/a)
, (8.7.4)

where we use the above expression for the electron number density Ne(ρ). Assuming
the ionization rate constant kion and the ambipolar diffusion coefficient to be inde-
pendent of a distance from the axis ρ, we assume the ionization balance equation in
the form

Nakion = 2Da

a2 ln(ρo/a)
(8.7.5)

This equation corresponds to the criterion ρo � a and is valid within the accuracy of
a constant factor under the logarithm. Take this factor such that the balance (8.7.5)
is transformed into (8.2.4) in the limit ρo = a. Then we obtain the equation of
ionization equilibrium in the form

Nakion = 2Da

a2 [0.35 + ln(ρo/a)] (8.7.6)



Chapter 9
Cathode and Wall Processes

Abstract Properties of the cathode region of glowdischarge are analyzed depending
on the character of cathode processes. Principles of magnetron discharged are
described.

9.1 Electric Breakdown of Gases

Let us define the breakdown electric potential in gases as the voltage between two
electrodes which provides a stationary electric current in a gas located in a gap
between two electrodes in accordance with the relation (8.1.3). Basing on the con-
dition of existence of an electric current in a gas between two electrodes separated
a distance L between them, we leave aside dynamics of origin of an electric current
that may have various mechanisms [12, 17–19, 21, 22]. So, the Townsend electric
breakdown under consideration is multiplication of electron avalanches where an
individual avalanche is a circle of processes of electron and ion production starting
from formation of a secondary electron at the cathode and finishing by attachment
of resulted electrons to the anode. In this consideration we suppose each avalanche
to be developed independently on other ones and are based on the relation (8.1.3)
as the condition of a self-maintaining process. Along with this mechanism of elec-
tric breakdown, the streamer mechanism [21, 351–357] is possible and dominates at
large distances between electrodes.

Within the framework of the Townsend mechanism of electric breakdown for
a gas located in a gap between two parallel electrodes, it is convenient to use the
approximation (8.1.5) for the reduced first Townsend coefficient (8.1.4) that leads to
the following expression for the breakdown electric potential Ub = E L of a gaseous
gap [4]

Ub = B(Na L)

ln
[

ANa L/ ln(1 + 1/γ )
] (9.1.1)

The dependence of the breakdown electric potential Ub on the reduced gas pressure
or on the reduced number density of atoms Na L , the Pashen curve [358] is given in
Fig. 9.1 for helium and argon.
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Fig. 9.1 Pashen curves for
helium and argon calculated
on the basis of formula (9.1.1)
and data of Table8.1

Within the framework of the approximation (8.1.5) for the reduced first Townsend
coefficient (8.1.4), one can find that the minimum value of the breakdown electric
potential corresponds to the following value of the reduced number density of atoms
(or the gap size) [4]

(Na L)min = e

A
ln

(

1 + 1

γ

)

(9.1.2)

This leads to the following expression for the minimum breakdown electric
potential [4]

Umin = B(Na L)min = B

A
ln

(

1 + 1

γ

)

(9.1.3)

Let us use formulas (9.1.2) and (9.1.3) for electric breakdown of helium and argon if
this gas is located between plane copper electrodes. The results are given in Table8.2.
Note that the accuracy of the approximation (8.1.5) influences on the values of
parameters (Na L)min andUmin, as it exhibits in Table8.2. Note that the experimental
values of the cathode voltage are 177V for helium and 130V for argon [12], and
they conform to the minimum voltage of the Townsend discharge form in accordance
with Table8.2 data. One more notation relates to the second Townsend coefficient
that accounts for generation of secondary electrons from the cathode which may be
resulted both from ion bombardment the cathode and also from collisions excited
atoms and photons with the cathode surface. These excited atoms and photons are
formed in electron collisions with atoms. In the geometry of measurement of the
Pashen curves a radius of the electric current is small compared with a size of a
region occupied by a gas, and hence a small part of formed excited atoms or photons
loses on the cathode. Hence the second Townsend coefficient for the Pashen curve
is determined by ion collisions with the cathode, and under conditions of Table9.3
for a copper cathode it is equal γ = 0.19 in helium and γ = 0.08 in argon.

Parameters of the minimum of the Pashen curves for a gap with helium and argon
between copper electrodes evaluated on the basis of formulas (9.1.2) and (9.1.3).

http://dx.doi.org/10.1007/978-3-319-11065-3_8
http://dx.doi.org/10.1007/978-3-319-11065-3_8
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These parameters are given if the approximation (8.1.5) is obtained in different
ranges of the reduced electric field strength, that leads to different parameters A and
B of formula (8.1.5) and respectively to different values of yield parameters.

Introducing a new variable ξ = (Na L)/(Na L)min, one can represent formula
(9.1.1) in the form

U = Umin
ξ

ln ξ + 1

From this it follows that large breakdown potential corresponds to a large distance be-
tween electrodes. Therefore another mechanism of breakdown corresponds to large
values of the parameter Na L , when the plasma uniformity is violated, and break-
down is realized in the streamer form [21, 351–357] that is a non-uniform plasma
propagated between electrodes.

Note thatwe use above the condition (8.1.3) as the condition of electric breakdown
of a gas. In reality it is the condition of self-maintaining of an electric current in a
gas, and within the framework of electric breakdown means that an increase of the
electric field strength compared with that followed to the condition (8.1.3) leads to
an exponential current growth in time in some range of currents.

9.2 Electron Emission from Cathode in Ion Collisions

The Townsend scheme of ionization (1.01) relates to some conditions of gas dis-
charge, in particular, to glow gas discharge. In this scheme, reproduction of electrons
which attach to the anode and walls of a discharge tube, takes place in ion collisions
with the cathode surface (the second (1.0.1)). The ion velocity in this process is small
compared to a typical electron velocity, and hence the process of formation of sec-
ondary electrons at the cathode surface has the potential character that is represented
in Fig. 9.2 [359–361]. As is seen, two channels may be responsible for formation
of secondary electrons. The first channel (Fig. 9.2a) is similar to the Auger process
[362, 363] in an atom (or ion) with a removed electron from an internal electron
shell. This hole is filled in electron transition from a higher electron shell, and an
electron energy difference is transferred to another electron of higher electron shell
that leads to its release. The Auger effect is used for diagnostics of some materials
in the form of Auger spectroscopy [364, 365].

Another channel of generation of free electrons at the cathode corresponds to
collisions of excited atoms with the cathode surface (Fig. 9.2b). As a result of this
process, an atom transits in the ground state and a released energy is consumed on
ionization of ametal electron. An analog of this process is the Penning process (3.7.3)
[192, 193] in collisions involving an excited atom. It is possible that ion collision
with the cathode surface has a two-stage character and corresponds to the scheme
[366, 367]:

A+ + M → A∗ + M+, A∗ + M+ → A + M++ (9.2.1)

http://dx.doi.org/10.1007/978-3-319-11065-3_8
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http://dx.doi.org/10.1007/978-3-319-11065-3_3
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Fig. 9.2 Two mechanisms of electron liberation from a cold cathode. a Auger process as a result
of ion interaction with metal electrons; b Penning process in interaction of an excited atom with
metal electrons

This mechanism of electron emission is confirmed experimentally [368]. Note that
this process is effective if the cathode surface absorbs atoms of a surrounding gas, so
that the resonant charge exchange process includes incident ions and bound atoms.

In consideration of these processes a simple model is used for metal electrons
(Fig. 9.2) where electrons occupy a band in the energetic space, and the minimum
electron binding energy is the metal work function W . Hence the process (Fig. 9.2a)
is possible if the criterion J > 2W , and the process (Fig. 9.2b) requires the criterion
Δε > W , and the ionization potentials J for helium and argon atoms are equal to
24.59 and 15.76eV correspondingly, and the excitation energies Δε for metastable
helium and argon atoms are equal to 19.82 and 11.55eV. In addition, Table2.1
contains the average work functions of metals which are used as the cathode. As is
seen, the criteria of processes of Fig. 9.2 are fulfilled in the helium and argon cases.

The second Townsend coefficient which is responsible for reproduction of elec-
trons at the cathode, is different for breakdown in a gas gap located in a space between
two electrodes and that in the cathode layer. Indeed, in the case of the cathode layer
because of its small depth compared to a current radius the second Townsend coef-
ficient γ may be represented in the form [24, 369]

γ = γi + γm + γp, (9.2.2)

where γi , γm , and γp correspond to emission of secondary electrons due to ions,
excited atoms and photons. Excited atoms may be also an intermediate channel of
formation of secondary electrons, and the photoionization process is shown to be im-
portant for emission of secondary electrons from the cathode [370]. One can separate
these processes in a special experimental setup which concept is given in Fig. 9.3. In
this case a beam of ions of a certain type and energy is directed to the cathode and
formed secondary electrons are collected. The second Townsend coefficient γi due

http://dx.doi.org/10.1007/978-3-319-11065-3_2
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Fig. 9.3 Character of measurement of the second Townsend coefficient γi [371]. 1 source of ions,
2 mass-spectrometer, 3 accelerator of ions, 4 beam of ions, 5 cathode, 6 collector of electrons

Table 9.1 The partial second
Townsend coefficient γi due
to ions [373–378]

Ion/Cathode Mo Ta W

He+ 0.25 0.14 0.295

He+
2 - 0.10 -

He++ 0.72 0.6 0.74

Ar+ 0.083 - 0.095

Ar++ - - 0.42

to ions is determined as the ratio of the current of collected electrons to the current of
incident ions.Measurements in the range of ion energies 10–1000eV exhibits a weak
dependence of γi on the ion energy that confirms the potential character of formation
of secondary electrons in accordance with the scheme of Fig. 9.3. Some results of
these measurements [371–375] are given in Table9.1 together with [376]. One can
see that if ions in the experimental scheme of Fig. 9.3 can reflect from the surface,
the measured second Townsend coefficient may result frommany ion collisions with
the surface until the ion attaches to this surface.

The second Townsend coefficient depends on the cathode surface and is changed
if the cathode surface absorbs gaseous atoms or molecules. This is confirmed by
data given in Fig. 9.4 where the results are given for second Townsend coefficients
for the Mo-cathode if its surface is pure or is covered by a monolayer of absorbed
atoms. An additional information gives the energy distribution of electrons resulted
from collisions of helium ions with the cathode surface measured in [374, 375, 377].
According to the Auger mechanism of electron emission, the energy of released
electrons ε exceeds J − 2W (J is the ionization potential of gaseous atoms, W is
the working function of a cathode material). Figures9.5 and 9.6 give the measured
distribution functions of electrons if a cathode material is a semiconductor [377].
The boundary electron energy in these distributions is close to J − 2W .
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Fig. 9.4 The partial second Townsend coefficient γi for a Mo-cathode due to helium ions in
helium. The cases 1 and 3 correspond to atomically clean molybdenum, while in the cases 2, 4, 5
the molybdenum cathode is covered by a monolayer of gas atoms. Ion sorts are indicated [371]

Fig. 9.5 The energy distribution function of released electrons in collisions of He+-ions with the
germanium cathode surface of the direction 111 some energies of incident ions [377]

9.3 Properties of Cathode Region of Glow Discharge

Let us consider glow discharge of high pressure where themean free path of electrons
and ions in a gas is small compared to typical sizes of their space distribution. Two
elements of gas discharge are of principle from the standpoint of discharge self-
maintaining, that are the cathode region and the positive column. The cathode region
is responsible for reproduction of charged particles that are destructed on electrodes,
i.e. for self-maintaining of the gas discharge current. The positive column contains an
uniform plasma in the longitudinal direction, and reproduction of charged particles
in the positive column compensates their destruction on walls of the discharge tube.
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Fig. 9.6 The energy
distribution function of
released electrons in
collisions of the 10 eV
He+-ions with the silicon
surface of different directions
[377]

The condition of self-maintaining of gas discharge in the cathode region is given by
formula (9.1.1) that is generalized to a non-uniform electric field

∫

αdz = ln(1 + 1/γ ) (9.3.1)

Here z is the distance from the cathode, and we assume the cathode region depth to
be small compared to the cathode radius, that allows us to reduce the problem to a
one-dimensional case.

We first consider in accordancewith [4] the cathode layer of glow dischargewhere
the ionization balance in the cathode region is given by (9.3.1) and the parameters of
these processes are the first and second Townsend coefficients. In addition to (9.3.1)
that describes reproduction of charged particles at the cathode, we have the Poisson
equation

d E

dz
= 4πe(Ni − Ne), (9.3.2)

that describes a non-uniformity of the electric field strength E near the cathode and
where Ni , Ne are the number densities of ions and electrons. Because the mean free
path of ions and electrons is large compared to a size of the cathode region, the ion
current densities for electrons ie and ions ii according to definition are given by

ii = eKi Ni E, ie = −eKe Ne E

where Ke, Ki are the mobilities of electrons and ions. Since Ke � Ki , the number
density of electrons in the cathode region is respectively small Ne � Ni , and the
Poisson equation (9.3.2) is reduced to the form

d E

dz
= 4πeNi = −4π

ii

Ki E
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A sign of the last equation accounts for a drop of the electric field strength with
removal from the cathode.

Note that the total current density i = ii + ie, is conserved in the cathode region,
and accounting for generation of secondary electrons by ion impact, we have the
boundary condition at the cathode ie(0) = γ ii (0), or ii (0) = i/(1 + γ ) as the
relation between the electron ie and ion ii current densities. Because ions are not lost
in the cathode region, their current is constant along x , and the last relation is valid
for the total cathode region

ii = i

(1 + γ )

Accounting for this in solution of the Poisson equation, we have [4]

E2 = E2
c − 8π i

Ki (1 + γ )
z, (9.3.3)

Here z is a distance from the cathode, and Ec = E(0) is the electric field strength
at the cathode. Introducing a length l of the cathode region such that the electric
field strength on the boundary is zero E(l) = 0 and assuming the ion mobility to be
independent of the electric field strength,wefind from the solution of this equation [4]

i = E2
c Ki (1 + γ )

8πl
(9.3.4)

Note that the electric field strength is nonzero at any discharge point, and the boundary
conditionmeans only that outside the cathode region the electric field strength is small
compared with that at the cathode Ec. The voltage drop Uc in the cathode region
is expressed through the electric field strength at the cathode Ec, in turn according
to formula (9.3.4) Ec depends on a size of the cathode region. Evidently, optimal
parameters of the cathode region corresponds to the minimum of the voltage drop.
Hence, by variation of the current density i and the length l of the cathode layer we
choose the optimal conditions which lead to the minimum of the cathode voltage
drop Uc. This corresponds to the normal regime of glow discharge. The values of
the cathode voltage drop Uc depend on the cathode material and gas sort. Table9.2
contains experimental values of Uc for gas discharge in helium and argon and some
cathode materials.

The values of the cathode voltage drop Uc may be found from the minimum
condition for the voltage drop. But as it follows from the relations obtained, the
electric field strength Ec aswell as the cathode voltage dropUc are expressed through
a current density. Therefore the condition of theminimumof the cathode voltage drop
chooses an optimal value of the current density.

In the normal regime of gas discharge the electric current density i and the cathode
region length l under optimal conditions do not vary at change of the discharge
electric current. Hence the regime under consideration corresponds to low discharge
currents, when a discharge current occupies a restricted part of the cathode. This
gives the following criterion of the normal regime of glow gas discharge
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Table 9.2 Values of the cathode voltage drop Uc, V [12]

Cathode He Ar Cathode He Ar

Mg(3.7) 125 119 Sr(2.6) 86 93

Al(4.2) 140 100 Ag(4.6) 162 130

K (2.3) 59 64 Cd(4.1) 167 119

Ca(2.9) 86 93 Ba(2.5) 86 93

Fe(4.7) 150 165 Pt (5.6) 165 131

Ni(5.2) 158 131 Au(5.4) 165 131

Cu(4.8) 177 130 Pb(4.2) 177 124

Zn(3.6) 143 119 Bi(4.3) 137 136

The work functions of cathode materials [452] are given in parentheses

I < i · πr2o (9.3.5)

Here I is the total discharge current, i is the current density, ro is a cathode radius
that assumes to be equal to the tube radius. This is the normal discharge regime. At
large currents when the criterion (9.3.5) is violated (abnormal discharge regime) the
current number density exceeds the optimal value. As a discharge current increases,
the cathode is heated, and in the end this regime is violated. In particular, we have
the arc discharge regime when the cathode temperature becomes high, and electrons
are formed at the cathode as a result of thermoemission.

The peculiarity of the cathode region is violation of plasma quasineutrality in it,
and an external voltage is required to support this unipolar plasma. The properties
of this plasma are determined by the boundary conditions at the cathode, that in
turn are connected with processes of formation of charged particles at the cathode.
In the case of glow discharge secondary electrons are formed as result of cathode
bombardment by ions and then electrons are multiplied in the cathode region. We
now consider one more type of the cathode region as it takes place in diodes. Then
electrons are formed at the cathode and reach another electrode without collisions.
Our goal is to connect the voltageUo between electrodes, the electric current density
i and a distance L between electrodes. For definiteness, we assume that electrons are
located in a space between electrodes as it takes place in an electron lamp. If ions
determine a charge in a space near the cathode, as it takes place in the cathode layer
of glow discharge and magnetron discharge, it is necessary to substitute the electron
mass in subsequent formulas by the ion mass.

In a collisionless plasma the electron velocity at a distance x from the elec-
trode equals to ve = √

2eU (x)/me, where me is the electron mass, U (x) is the
plasma potential that is zero at a corresponding electrode. The Poisson equation in the
gap is

d E

dz
= −4πeNe(z) = −4π i

√

me

2eU
,
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where Ne is the electron number density. Because the electrons are not formed
and perish in the gap, the electron current density is conserved i = eNe(x)v(x) =
const in the gap or the cathode region. Let us multiply the Poisson equation by
E = −dU/dx , and using the boundary condition E(0) = 0, U (0) = 0, we obtain

E2(z) = 16π i

√

meU (z)

2e

Counting off the plasma electric potential U from the cathode, we find from solution
of this equation (E = −dU/dz)

U (z) =
(

9π i

√

me

2e

)2/3

z4/3, (9.3.6)

This gives for the discharge current density under the action of the voltageUo between
electrodes

i = 2

9π

√

e

2me

U 3/2
o

l2
, (9.3.7)

where l is a distance between electrodes. This relation is known as the three halves
law [378–381] or the Child law. If the voltage U (l) is given together with the current
density i , the above formulas give the size l of the gap through which the electric
current passes in accordance with the expression

l =
(

2

9π

)1/2 (

e

2me

)1/4 U 3/4
o

i1/2
(9.3.8)

We above ignore electron-atom collisions using the expression ve = √
2eU (x)/me

for the electron velocity. Hence these formulas require the validity of the following
criterion

l � λ, (9.3.9)

where λ is the mean free path of electrons in a gas. Next, ions are absent in a gap
in the above consideration. In the same way one can apply the above formulas to
the case where only ions are located inside the gap. Then the electron mass me in
these formulas must be changed by the ion mass M and λ in criterion (9.3.9) is the
mean free path of ions. Such a situation takes place in magnetron discharge where
electrons do not penetrate to the cathode due to an external magnetic field, and ions
are accelerated in the gap, so that their bombardment of the cathode causes formation
of secondary electrons that provides self-maintaining of this discharge.

The above formulas describe the electron behavior in the electron lamp where
electrons are formed at a hot cathode as a result of thermoemission and are acceler-
ated in a vacuum under the action of the net electric potential. Another example of
this relates to gas discharge with a diode configuration (for example [382]), where
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ions are formed at the anode and accelerating under the action of an electric field of
gas discharge. These ions bombard the cathode causing its sputtering. This phenom-
enon is known from 19 century [383–386]. This allows one to form a flux of metal
atoms which are deposited onto a surface and form there films. But magnetron dis-
charge [387–389] becomes more effective for this goal because identical sputtering
parameters are achieved there at voltages in several times lower.

Let us apply the relation (9.3.6) to the cathode region of glow discharge assuming
the criterion is fulfilled that is opposite with respect to criterion (9.3.9). Taking into
account that the space charge in the cathode region is created by ions as a more slow
component,we assume atomic ions to be located in the cathode region. Then the drift
ion velocitywi is determined by the resonant charge process and is given by formula
(7.6.12) that has the form

wi =
√

2eEλ

π M
, eEλ � T,

where λ is the mean free path of ions in the cathode region, and M is the ion or atom
mass. In determination the parameters of the cathode layer, we repeat operation used
for deduction of formula (9.3.6). Indeed, substituting the expression (7.6.12) for the
ion drift velocity into the Poisson equation, we reduce the latter to the form

d E

dz
= 4πeNi = −4π i

wi
= −4π i

√
π M√

2eEλ
,

where x is a distance from the cathode, Ni is the ion number density, i is the ion
current density to the cathode, and a sign “minus” account for drift of ions in a negative
direction. Solving this equation, obtain instead of (9.3.3) the following expression
for the electric field strength in the cathode region

E3/2 = E3/2
n − 6π i

√
π M√

2eλ
z, eEnλ � T (9.3.10)

where Ec is the electric field strength at the cathode which we denote by En for the
normal regime of the cathode region. From this we obtain instead of formula (9.3.4)
the following formula for the current density in the normal regime of glow discharge
(γ � 1)

in = Enwn

6πl
= E3/2

n (eλ)1/2

3πl(2π M)1/2
, (9.3.11)

where wn is the ion drift velocity near the cathode, the electric fields strength is Ec,
and l is the depth of the cathode layer. Correspondingly, the electric field strength
distribution over the cathode layer has the form

E = En(1 − z/ l)2/3, (9.3.12)

http://dx.doi.org/10.1007/978-3-319-11065-3_7
http://dx.doi.org/10.1007/978-3-319-11065-3_7
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that gives for the cathode voltage Uc in this case

Uc = 3Enl

5
(9.3.13)

The electric field strength near the cathode Ec follows from the condition of discharge
self-maintenance (9.3.1). Introduction the reduced distance from cathode x = z/ l
leads to the relation

J (b) =
1

∫

0

exp

(

− b

z2/3

)

dz = ln(1 + 1/γ )

ANal
, (9.3.14)

where b = B Na/Ec and the first Townsend coefficient α is given by formula (8.1.4).
Taking the cathode voltage (9.3.13) as a function of the parameter b, we require
this voltage to be minimal with respect to this parameter that is equivalent to the
maximum of the function bJ (b) and leads to the following value of this parameter

b = B Na

En
= 0.665 (9.3.15)

This gives En/Na = 1650Td for helium and En/Na = 2300Td for argon. From
this we have the following relations for other quantities

y = ANal = 3.24 ln(1 + 1/γ ), Uc = 2.92
B

A
ln(1 + 1/γ ), (9.3.16)

and these relations allow one to determine the parameters of the cathode region on
the basis of parameters A and B of the first Townsend coefficient and the value γ

of the second Townsend coefficient. In using of these relations and experimental
values of parameters of the cathode layer, one can determine the second Townsend
coefficient. In particular, the second relation (9.3.16) gives

γ = 1

exp
(

AUc
B

)

− 1
(9.3.17)

Table9.3 contains values of the second Townsend coefficient in helium and argon
obtained on the basis of formula (9.3.17). Of course, the accuracy of these data is
less, the less value γ is. Assuming the reduced electric field strength at the cathode
to be in the range 103 Td < En/Na < 3 · 103 Td, we obtain on the basis of Table9.2
data and formulas (9.3.16) for the cathode voltage Uc in helium and argon

Uc(He) = 97 ln(1 + 1/γ ), Uc(Ar) = 48 ln(1 + 1/γ ) (9.3.18)

http://dx.doi.org/10.1007/978-3-319-11065-3_8
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Fig. 9.7 Local character of
atom ionization by electron
impact in the cathode layer. In
this case neglecting by energy
losses as a result of electric
electron-atom collisions, one
can assume that each electron
produces one ionization act if
it acquires from the electric
field on average an energy εo,
the energetic cost of an
electron-ion pair. Values
mean a number of electron
generation

where the cathode voltage Uc is expressed in V . Correspondingly, on the basis of
formulas (9.3.16) and (9.3.18) with using A = 2.2Å for helium and A = 0.91Å
according to formula (8.1.5) we obtain

Nal(He) = 1.5Uc(He), Nal(Ar) = 7.4Uc(Ar), (9.3.19)

where Uc is the cathode voltage given in Table9.2 and expressed in this formula in
V , and Nal is expressed in 1014 cm−2.

In the above consideration we are based on the local character of ionization in the
cathode layer, as it is shown in Fig. 9.7. Introducing an energy εo that is consumed on
one ionization act on average, we obtain a number of ionization acts k = Uc/εo for
a secondary electron which is formed at the cathode surface. As a result, we have for
the total number of electrons formed from one secondary electron which is emitted
from the cathode surface by ion bombardment

n = 2k,

that is valid in the limit k → ∞. Since the condition of electron reproduction has the
form n = 1/γ (for simplicity we assume γ � 1), we obtain on the basis of formulas
(9.3.18)

k = ln(1/γ )

ln 2
= Uc

Uo ln 2
= Uc

εo

http://dx.doi.org/10.1007/978-3-319-11065-3_8
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Table 9.3 Values of the second Townsend coefficient obtained on the basis of formula (9.3.17)

Cathode/Gas He Ar Cathode/Gas He Ar

Mg 0.38 0.10 Sr 0.70 0.18

Al 0.31 0.16 Ag 0.23 0.08

K 1.2 0.38 Cd 0.22 0.10

Ca 0.70 0.18 Ba 0.70 0.18

Fe 0.27 0.038 Pt 0.22 0.079

Ni 0.24 0.079 Au 0.22 0.079

Cu 0.19 0.08 Pb 0.19 0.091

Zn 0.30 0.10 Bi 0.32 0.071

From this we obtain for the energetic cost εo of one electron-ion pair

εo = Uo ln 2 (9.3.20)

This gives εo = 67eV in the helium case and εo = 33eV in the argon case. Cor-
respondingly, the efficiency of ionization J/εo (J is the atom ionization potential)
is equal to 0.36 in the helium case and 0.47 in the argon case. We thus conclude
within the framework of the local model that the energetic cost εo of formation of
one electron-ion pair in the cathode layer, as well as the efficiency J/εo of this act,
is independent of the cathode material. One can explain this by facts that the electric
field strength Ec near the cathode and ionization processes in the cathode layer are
independent of the cathode material.

By analogy with formulas (9.3.18) and (9.3.19) we obtain for the reduced normal
current density in at the cathode on the basis of formulas (9.3.11) and (9.3.15)

in

N 2
a

= E3/2
n (eλ)1/2

3N 2
a πl(2π M)1/2

= 0.078B3/2

Nal
√

σres M
, (9.3.21)

where σres is the cross section of resonant charge exchange, M is the ion mass.
Tables9.4 and 9.5 contain the values of Nal according to formula (9.3.19) and the
reduced normal current density in/N 2

a according to formula (9.3.21) for helium and
argon, where the cross sections of the resonant charge exchange process are taken
from [228, 229] at the collision energy 10eV.

It should be noted a restricted accuracy of data of Tables9.3, 9.4, and 9.5. The
basis of determination of these data is the used scheme of processes in the cathode
layer. We assume the number density of atoms to be large, and the ion mean free path
as a result of the resonant charge exchange process is small compared to the depth
of the cathode layer. In addition, we assume the Townsend mechanism of electron
reproduction at the cathode as a result of ion bombardment and also the number
density of electrons to be low that leads to a direct character of atom ionization in
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Table 9.4 The reduced
cathode layer depth Nal
calculated on the basis of
formula (9.3.19), and the
reduced electric current
density in/N 2

a in accordance
with formula (9.3.21) for
helium

Cathode γ Nal, 1016 cm−2 in/N 2
a , 10−38 A · cm4

Mg 0.38 1.9 4.5

Al 0.31 2.1 4.0

K 1.2 0.9 9.5

Ca 0.70 1.3 6.5

Fe 0.27 2.3 3.5

Ni 0.24 2.4 3.5

Cu 0.19 2.7 3.2

Zn 0.30 2.2 3.9

Sr 0.70 1.3 6.5

Ag 0.23 2.5 3.4

Cd 0.22 2.5 3.4

Ba 0.70 1.3 6.5

Pt 0.22 2.5 3.4

Au 0.22 2.5 3.4

Pb 0.19 2.7 3.2

Bi 0.32 2.1 4.1

Table 9.5 The reduced
cathode layer depth Nal
calculated on the basis of
formula (9.3.19), and the
reduced electric current
density in/N 2

a in accordance
with formula (9.3.21) for
argon

Cathode γ Nal, 1016 cm−2 in/N 2
a , 10−39 A · cm4

Mg 0.10 8.6 2.5

Al 0.16 7.4 2.9

K 0.38 4.8 4.5

Ca 0.18 6.9 3.1

Fe 0.038 12 1.7

Ni 0.079 12 2.2

Cu 0.08 9.6 2.2

Zn 0.10 8.8 2.4

Sr 0.18 6.9 3.1

Ag 0.08 9.6 2.2

Cd 0.10 8.8 2.4

Ba 0.18 6.9 3.1

Pt 0.079 9.7 2.2

Au 0.079 9.7 2.2

Pb 0.091 9.2 2.3

Bi 0.071 10 2.1

pair collisions of electrons with atoms. If any of these assumptions violates, the data
of Tables9.3, 9.4, and 9.5 becomes wrong.

The above regime of the cathode region is typical for atomic gases or vapors where
ion transport is determined by the resonant charge exchange process. The electric
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current in this regime, the normal regime of glow discharge, occupies only a part of
the cathode, and the depth l of the cathode region is less than a distance L between
electrodes. Under these conditions, this form of the cathode region is independent
of the geometry of a discharge chamber. In particular, it is suitable for gas discharge
between two parallel electrodes with a small distance L between them compared to
their radius R or if gas discharge is burnt in a cylinder tube.

Let us consider also another case where the ion drift velocitywi is proportional to
the electric field strength E . This holds true at low electric field strength (eEλ � T )
or at any electric field strengths for the polarization ion-atom interaction potential
that is suitable more or less for molecular ions located in inert gases. In this case the
Poisson equation gives for the electric field strength in the cathode region

E = En
√

1 − z/ l, (9.3.22)

where l is the cathode layer length, Ec is the electric field strength at the cathode.
According to the definition, the electric field strength is zero at the cathode layer
boundary, that means in reality that the electric field strength at the cathode layer
boundary is lower than that near the cathode, because a plasma becomes quasineutral
there. Formula (9.3.22) gives for the cathode drop

Uc = 2

3
Enl (9.3.23)

Next, equation (9.3.1) of ionization balance takes the form now

y

1
∫

0

exp

(

− b

x1/2

)

dx = ln(1 + 1/γ ),

where y = ANal, x = √
1 − x/ l. From this it follows

b = B Na

En
= 2B Nal

3Uc
= 2By

3AUc
,

and this equation connects parameters y and b. One more equation of the minimum
of the cathode voltage dUc/dy = 0 has the form

db

dy
= b

y

These two equations with the dependence (8.1.4) for the first Townsend coefficient
on the electric field strength give

b = B
Na

Ec
= 0.71 (9.3.24)

http://dx.doi.org/10.1007/978-3-319-11065-3_8
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Fig. 9.8 Dependence of the voltage on the discharge current for a system with plane copper elec-
trodes of a diameter 78mm and the product pl = 2 cm · Torr (Nal = 7 · 1015 cm−2), where l is
a distance between plates and p is the the pressure of argon that fills a space between electrodes
[390]

From this we have the following relations for parameters of the cathode layer

y = ANal = 3.06 ln(1 + 1/γ ), Uc = 2.87
B

A
ln(1 + 1/γ ) (9.3.25)

These relations are analogous to (9.3.16) for the regime of the cathode region with
atomic ions. They allow us to connect the electric parameters of the cathode region
with the reduced first and second Townsend coefficients α/Na, γ and the ion drift
velocity wi .

9.4 Transition from Glow Discharge to Arc and Townsend
Discharges

As a result of this analysis, one can understand the role of the cathode region of
gas discharge consists in self-maintaining of this gas discharge. This is based on
the ionization balance in the cathode region, i.e. the rate of electrons attached to the
cathode is equal to the rate of electron formation as a result of ionization processes
in a gas. According to the character of ionization processes in the cathode plasma
one can separate three range of cathode currents which are represented in Fig. 9.8 for
certain parameters of discharge in argon between two parallel electrodes in the form
of disks. At low currents which we call the Townsend discharge form, the ionization
equilibrium is determined by equation (8.1.3). In this limit the electron concentration
is low and electrons of this discharge do not interact with each other. the electric field
strength in a space between electrodes is uniform in this case.

As the discharge current increases, i.e. the electron number density in a space
between electrodes increases, the space distribution of the electric field becomes
nonuniform owing to noncompensated space charge between electrodes. Moreover,

http://dx.doi.org/10.1007/978-3-319-11065-3_8
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Fig. 9.9 The boundary
between normal glow
discharge and arc in argon
and for an aluminum cathode

the optimal current density is realized in this regime that allows one to chose the
minimum cathode drop which is independent of the electric current. In this normal
regime of the cathode region electrons and ions occupy only a part of the cathode
surface, and this part increases with an increasing current. Therefore the voltage-
current characteristic in this current range is given by a horizontal line, as it takes
place in Fig. 9.8. At large currents the abnormal regime of the cathode region occurs.
In this regime the current covers all the cathode region that does not allowone to reach
the optimal voltage, and an additional space charge is compensated by an increasing
voltage of the cathode region in accordance with Fig. 9.8.

A subsequent increase of the discharge current leads to transition from glow
discharge to arc. It should be noted that this transition results from change of electron
emission from the cathode, while properties of the positive column does not vary
at this transition. Indeed, emission of electrons as a result of cathode bombardment
by ions for glow discharge is changed by thermoemission of electrons for arc. In
this case heat release from the cathode is restricted and the cathode temperature
becomes enough large. In arc the thermoemission current exceeds remarkable that
due to emission of second electrons as a result of cathode bombardment of ions. As
example, in the case of the Al cathode and argon as a gas the normal current density
is in = 0.22mA/(cm2Torr2) [393] for glow discharge in argon. Figure9.9 shows
the dependence of the argon pressure p on the argon temperature T if the normal
current density in in glow discharge is equal to the current density of thermoemission
emission of electrons ith given by formula (2.5.3). Transition from glow discharge
to arc takes place at cathode temperatures of such of an order of magnitude.

The above analysis of the cathode region of normal glow discharge allows us also
to estimate at which parameters the transition to Townsend or dark gas discharge
occurs. In analyzing the transition between the Townsend and glow regimes, we use
that reproduction of electrons at the cathode is the same in both cases, so that the
character of this transition is determined by the second Townsend coefficient γ and
the number density Na of gas atoms in the standard consideration that was analyzed
both experimentally [392, 393] and theoretically (for example [394–397]. Now we
only compared parameters of Townsend and glowdischarges and a boundary between
these discharge regimes.

http://dx.doi.org/10.1007/978-3-319-11065-3_2
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Let us consider for simplicity glow gas discharge between two parallel electrodes
which are disks, and the current occupies a small part of the electrode surface in the
normal regime. The current may travel along the electrode surface, and in order to
exclude this effect, let us place in the electrode center small discs that decreases a
distance between electrodes in this region and compels the current to pass through
this electrode region. The parameters of the cathode region for glow discharge are
determined by formulas (9.3.13) and (9.3.16). Since the current occupies a small part
of the electrode surface, parameters of a gas discharge plasma in the cathode region
are independent of the discharge geometry.

Based on the data for helium and argon, we obtain two regimes of the electric
current between electrodes - disks, so that for the Townsend regime the current is
distributed more or less uniformly over the electrode surface, in the glow regime the
current occupies a small part of the electrode area. One can compare these regimes
if L > l, i.e. a distance between electrodes L exceeds the cathode region depth l of
glow discharge. Practically this corresponds to the right part of the Pashen curves
given in Fig. 9.1. On the basis of data of Tables9.2 and 9.4 we have Uc > Umin so
that near the minimum of the Pashen curve the Townsend regime of gas discharge
is favorable. At larger number densities of atoms or a distance between electrodes
glow discharge form becomes preferable. It should be noted that the accuracy of
data of Table9.2 and 9.4 is restricted because of errors in experimental data and
in approximation of the first Townsend coefficient. But the general conclusion of
existence of two regimes of gas discharge holds true. At given parameters one of
these regimes is stable, and the other one is metastable.

We note that the parameters (Na L)min andUmin of the Townsend discharge given
by formulas (9.1.2) and (9.1.3) are in conformity with the parameters Nal and Uc

according to formula (9.3.16) for glow discharge. Indeed, if the first Townsend co-
efficient is approximated by formulas (8.1.4) and (8.1.5) and the parameters A and
B of this approximation are the same in all the range of electric field strengths, the
ratios of these parameter are

(Na L)min

Nal
= e

3.24
= 0.84,

Ub

Uc
= e

2.92
= 0.93 (9.4.1)

Nevertheless, these two forms of gas discharge differ significantly and the character
of electric currents in them is not the same. Transition to glow discharge corresponds
to plasma shrinking and charge separation in it, so that the electric field strength
near the cathode increases by an order of magnitude under optimal conditions for
Townsend discharge.

Thus, we have two forms of gas discharge in a gap between two parallel elec-
trodes filled by a gas, if reproduction of electrons near the cathode results from ion
bombardment of the cathode. A gas discharge plasma occupies uniformly all the
space between electrodes for Townsend discharge and the number density of elec-
trons and ions is small, i.e. an electric field created by electrons and ions is weak. In
glow discharge the electric current occupies a small part of the electrode area and a
gas discharge plasma is concentrated in a small part of a space between electrodes.

http://dx.doi.org/10.1007/978-3-319-11065-3_8
http://dx.doi.org/10.1007/978-3-319-11065-3_8
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At low currents the latter becomes unstable because transverse diffusion of a gas
discharge plasma in a surrounding space. But the transition between Townsend and
glow discharge requires redistribution of a gas discharge plasma in a space and may
be dependent of certain discharge conditions.

9.5 Plasma Sheath at Walls

If a plasma is a restricted by boundaries, one can extract two regions [46, 47, 90].
The main part of this is uniform, and just this part obtained the name “plasma” [46].
This plasma is almost neutral and drift of charged particles, electrons and positive
ions, to the plasma boundary results in this region from ambipolar diffusion [18, 29].
The plasma near boundaries is nonuniform and according to the Langmuir analysis
of the positive column of mercury arc in 1923 [48], this plasma region forms “a
sheath of definite thickness containing only positive ions and neutral atoms”. This
structure of the boundary region equalizes the electron and ion currents to the plasma
boundaries.

We first consider the case where the thickness Δ of the plasma sheath region is
small compared to themean free path of ions λi [398–400], i.e. a plasma of the double
layer is collisionless. We take the electron temperature Te to be large compared to
the ion temperature that is equal to the gaseous temperature T , i.e. Te � T . This
criterion leads to a large drift velocity of ions compared to that in the presheath
region. If ions penetrate in the sheath region with the velocity uo, the conservation
of the ion flux gives

Ni (z) = No
√

1 − −2eU (z)/(Mu2
o)

, (9.5.1)

where U (z) is the electric potential of the sheath plasma on a distance z from walls.
The Poisson equation has the following form in this case

d2U

dz2
= 4πe(Ni − Ni ) = 4πeNo

[

1
√

1 − 2eU (z)/(Mu2
o)

− exp

(

−eU

Te

)

]

,

(9.5.2)
where we use the Boltzmann formula for the electron number density

Ne(z) = No exp

[

−eU (z)

Te

]

One can see that in the region eU � Te this problem may be reduced to the Child-
Langmuir problem [378–381] if atomic charged particles are moving through a plane
gap, and the charge of these particles created the electric fieldwhich acts onmotion of
these charged particles. In particular, we encounter with this problem in the analysis
of the cathode layer, and then the electric voltageU (x) for the plane layer, the current
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density i of ions in this layer and the layer thickness L are connected by formulas
(9.3.6), (9.3.7), and (9.3.8). These relations corresponds to the criterion (9.3.9).More
precise solution of (9.5.2) is given in [401].

Let us consider one more peculiarity of interaction of the ion flux with a plasma
through which it propagates [402–404]. Oscillations may be developed in a uniform
plasma in the form of the ion sound with the phase velocity

√
Te/M , if the electron

temperature is large compared to the ion temperature Te � Ti . Therefore strong
interaction takes place of an ion flux with the ion sound if the flux velocity exceeds
weakly the phase velocity

√
Te/M of the ion sound. But though the velocity of an ion

flux in the double layer may exceed the phase velocity of the ion sound, interaction
of this ion flux with ion sound is weak because of a low number density of electrons.

We now consider another limiting case if the double layer thickness Δ is large
compared to the mean free path λ of ions. In this case motion of electrons and ions
in a gas is determined by their kinetic coefficients in gas, and assuming the double
layer to be narrow, one can describe the distribution of the number densities of
electrons Ne(x) and ions Ni (x) within the framework of a one-dimensional problem
by equations of the electron and ion balance and Poisson equation for the electric
field strength E(x) as

j = −De
d Ne

dz
−E Ke Ne, j = −Di

d Ni

dz
+E Ki Ni ,

d E

dz
= 4πe(Ni −Ne), (9.5.3)

Here z is a distance from walls, j is the flux of electrons and ions toward walls,
De, Di are the diffusion coefficients of electrons and ions in a gas, Ke, Ki are their
mobilities, and we take the drift velocities of electronswe and ionswi aswe = E Ke,
wi = E Ki . The boundary conditions for (9.5.3) are

Ne(0) = 0, Ni (0) = 0, E(0) = Eo, (9.5.4)

and Eo is the electric field strength at walls. Equations (9.5.3) with boundary con-
ditions (9.5.4) describes a general concept of the double layer and its transition to a
uniform plasma with the ambipolar mechanism of plasma drift to walls. Take for def-
initeness that a gas discharge plasma is restricted by dielectric walls. Then a negative
charge is accumulated on the walls which repel electrons and equalizes currents of
electrons and ions toward the walls. Attaching to walls, electrons and ions recombine
of this surface subsequently.

In considering the double layer as a transient layer between the positive column
and walls, let us describe the positive column of gas discharge within the framework
of the Schottky model [347, 348], if the number density of electrons is relatively
small and the electric current does not influence on its temperature distribution along
the cross section. For a gas discharge plasma inside a cylinder tube of a radius ρo the
number density of electrons and ions along the tube cross section is equal [347, 348]

Ne(ρ) = No J0

(

2.405
ρ

ρo

)

,
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where No is the number density of electrons at the tube axis, ρ is a distance of a
given point from the axis. This formula gives near walls ρ ≈ ρo

Ne(ρ) = 1.25No

(

1 − ρ

ρo

)

(9.5.5)

Let us use an approximated solution of the set (9.5.3) of equations assuming inside
the double layer Ne � Ni . Solving the Poisson equation (9.5.3) for the electric field
strength with the boundary conditions (9.5.4) E(0) = Eo and E(Δ) = 0 we have

E(x) = Eo

(

1 − x2

Δ2

)

, (9.5.6)

where x = ρo − ρ is a distance from walls. Taking the distribution of ions (9.5.5)
near walls, we have the relation between the double layer thicknessΔ and the electric
field strength Eo at walls

Δ =
√

Eoρo

2.5π Noe
(9.5.7)

It should be noted that a general form of the electric field strength Eo has the form
[221]

Eo ∼ Te

rD

because this field is screened at a distance that is of the order of the Debye-Hückel
radius rD that increases with a decreasing number density of electrons and ions.
Since we take the Debye-Hückel radius rD that corresponds to the number density
of electrons and ions No at the axis, the expression for the double layer thickness
contains the tube radius ρo.

We note that the electron temperature inside the double layer coincideswith that in
the positive column because themean free path of electrons in inert gaseswith respect
to change their energy exceeds that for change of the direction of electron motion
roughly by two orders of magnitude [76]. Hence the energy distribution function of
electrons located inside the double layer coincides with that in the positive column.
Introducing the effective electron temperature Te according to the Einstein relation
[92, 93] as well as the ion temperature Ti

Te = eDe

Ke
, Ti = eDi

Ki
,

we have for the number densities of electrons Ne(x) and ions Ni (x) inside the double
layer with accounting for the boundary conditions (9.5.4)
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Fig. 9.10 Dependencies
f (a) (the upper curve) and
F(a) (the lower curve)
according to formulas
(9.5.10)

Ne(x) = j

De
exp

[

eU (x)

Te

]

x
∫

0

exp

[

−eU (x ′)
Te

]

dx ′,

Ni (x) = j

Di
exp

[

eU (x)

Ti

]

x
∫

0

exp

[

−eU (x ′)
Ti

]

dx ′, (9.5.8)

and the electric voltage U (x) is

U (x) = Eox

(

1 − x2

3Δ2

)

, Uo = U (Δ) = 2eEoΔ

3
(9.5.9)

We define the electric voltage U (0) = 0 and take at the double layer boundary
Ne(Δ) = Ni (Δ). From this relationship we have on the basis of formulas (9.5.8) for
the number densities of electrons and ions

De(Te)

Di (Ti )
= f (ai )

F(ae)
, ai = eEoΔ

Ti
, ae = eEoΔ

Te
,

f (a) =
1
∫

0
dt exp

[ a
3 (1 − t)(2 − t − t2)

]

,

F(a) =
1
∫

0
dt exp

[− a
3 (1 − t)(2 − t − t2)

]

(9.5.10)

The dependencies f (a) and F(a) are given in Fig. 9.10. In the limit of high a these
functions are

f (a) = exp(2a/3)

a
, F(a) =

√

π

4a
(9.5.11)

We note that for typical electric field strengths in the positive column of glow gas
discharge the ion temperature coincides with the gas temperature T , i.e. the velocity
distribution function of electrons is close to the Maxwell one, and an electric field
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of glow gas discharge acts weakly on ions. On contrary, action of electric field on
electrons is strong, and the effective electron temperature exceeds strongly the ion
and atom temperature.

Let us consider the Townsend regime of the positive column where the number
density of electrons and ions is small and does not influence on plasma properties.
Evidently, this regime correspond to criteria

rD � ρo, λ � Δ (9.5.12)

Under these criteria we have for the fluxes of charged particles to the walls for a
two-temperature gas discharge plasma

je = No

√

Te

2πme
exp

(

−eU

Te

)

, ji = No

√

Ti

2πmi
, (9.5.13)

where No is the number densities of electrons and ions in the quasineutral plasma
region, me andmi are the electron and ion masses, andU is the wall electric potential
with respect to the plasma. These formulas are based on the Maxwell distribution
function of electrons and ions far from the walls. From equality of the electron and
ion fluxes to walls we obtain for the wall potential

eUo = Te

2
ln

(

Temi

Ti me

)

(9.5.14)

9.6 Principles of Magnetron Discharge

The magnetic field inserted in a plasma may create magnetic traps for electrons and
in this manner to influence the parameters of gas discharge. In magnetron discharge
that we consider below a magnetic trap varies cathode processes because it does
not allow for electrons to penetrate in the cathode region from a plasma. This leads
to an increase the cathode voltage, and ions accelerate in the cathode region up to
high energies in order to maintain the ionization equilibrium. As the secondary
phenomenon, sputtering of the cathode proceeds due to a high ion energy, and such
a generator of metal atoms is used widely in applications.

A concept of the magnetron discharge was suggested by Penning [387], and later
this scheme was modified [388, 389, 405, 406] that provides using the magnetron
discharge for applications. A typical scheme of magnetron discharge [407] is given
in Fig. 9.11 where the magnetic field is created by two coaxial magnets with opposite
positions of poles. At these positions of magnets the total magnetic field strength has
a maximum near the cathode and is directed parallel to its radius, as it is shown
in Fig. 9.12 [408]. Under the action of the electric and magnetic fields, the electron
trajectory in absence of collisions takes place along the circle of the maximum mag-
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Fig. 9.11 Scheme of typical
magnetron discharge [408]

netic field according to formula (7.9.5). As a result, we obtain a magnetic trap which
captures slow electrons. Captured electrons move in the region of a high magnetic
field and can leave this region in collisions with other electrons if an exchange by
energy is comparable with the energy of a magnetic well that is of the order of μH ,
where H is the magnetic field strength, μ is the magnetic moment for a captured
electron. In the scheme of (Fig. 9.11) the electric field directs along the axis and has
the axial symmetry. Though in reality the axial symmetry of the electric field may
be violated, we conserve it subsequently for simplification of the analysis.

Let us determine the depth of the magnetic trap well eUmax that is equal to
eUmax = μH , and the magnetic moment μ for this trap is

μ = JS

c
,

where J = eve/2πr is the electric current for a test electron, ve is its drift velocity
according to formula (7.9.5), r is the radius of a circle - the electron trajectory that is
determined by the geometry of the magnetic field, and S = πr2 is the area restricted
the electron trajectory. On the basis of these expressions we obtain

eUmax = μH = eEr

2
(9.6.1)

http://dx.doi.org/10.1007/978-3-319-11065-3_7
http://dx.doi.org/10.1007/978-3-319-11065-3_7
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Fig. 9.12 Magnetic lines of force for positions of magnets given in Fig. 9.11. The regions of the
maximum magnetic fields is marked [408]

From this it follows that the depth of the potential well for a captured electron is
independent of the magnetic field strength and is determined by the electric field
strength. The criterion of the magnetic trap

μH > Te, (9.6.2)

where Te is the electron temperature, requires that the number density of electrons in-
creases in the region of the magnetic trap and is connected with a large electric field
strength. Note that we assume a uniform electric field in the scheme of Fig. 9.11,
while in reality it is essential the electric field strength in the region of the mag-
netic trap. Hence, a nonuniform electric field distribution in a space is used usually
[408–411]. Nevertheless, wewill use a uniform electric field, as it is given in Fig. 9.11
since this simplifies the analysis.

Assuming the magnetic trap to be located near the cathode, we have that electrons
are captured mostly by the magnetic trap and cannot not to reach the cathode. This
means that ionization in the cathode region proceeds due to ions only which bombard
the cathode that leads to formation secondary electrons. These secondary electrons
compensate losses due to departure of ions to the cathode and in this manner main-
tain the magnetron discharge. Hence, the condition of maintaining of magnetron
discharge has the form

γ (n + 1) = 1, (9.6.3)

where γ is the probability of formation of a secondary electron as a result of cathode
bombardment by an ion, and n is a number of electrons formed in the cathode region
due to one secondary electron. This criterion holds true if the cathode layer dimension
L is small compared with the mean free path λ of ions

λ � L , (9.6.4)
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Table 9.6 Energetics of typical processes including cathode processes for argon sputtering in
magnetron discharge [414, 415]

Cathode ε Ekin Erad Eheat

Al 3.33 6 4 13

Ti 4.86 8 9 21

V 5.29 7 8 20

Cr 4.11 8 4 18

Fe 2.26 9 4 18

Ni 4.45 11 4 17

Cu 3.50 6 2 14

Zr 6.34 13 7 34

Nb 6.50 13 8 28

Mo 6.88 13 6 36

Rh 5.60 13 4 33

Cd 1.16 4 1 7

In 2.52 4 2 15

Hf 6.33 20 7 48

Ta 8.10 21 9 43

W 8.80 22 9 56

Au 3.92 13 2 21

The specific energies of corresponding processes are expressed in eV/atom and relate to the
binding energy in solid metals ε, the average kinetic energy of sputtered atoms Ekin , the radiation
cathode energy Erad , and a typical specific heat energy transferred to argon and to the cathode
Eheat

and ions pass the cathode region without collisions. In addition, the current density of
ions is restricted, and the voltage drop (9.3.6) due to the ion charge is small compared
to the cathode potential Uc

Uc � U (9.6.5)

Because the cathode voltage drop for magnetron discharge is several hundreds of eV,
ion bombardment of the cathode along with formation of secondary electrons leads
to other phenomena, in first turn, to cathode erosion and formation of free metal
atoms that is the reason of applications of magnetron discharge. Typical values for
energetic processes on the cathode of magnetron discharge are given in Table9.6
[412, 413]. These values are guided by axial magnetron discharge in argon of a
pressure 0.13-1.3 Pa, the magnetic fields strength of 100–200 Gs near the cathode,
the discharge voltage of 500–1000V and electric current densities of 30–120A/m2.

In the end of this paragraph we compare the cathode layers of glow gas discharge
and magnetron discharge as regions where electrons are reproduced. In glow dis-
charge the reproduction of electrons results from ionization electron-atom collisions
in the cathode layer, and this region length exceeds the mean free path of electrons by
some orders of magnitude. In addition, reproduction of electrons results from plasma
electrons located in the cathode layer, while in magnetron discharge these electrons
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are locked in the magnetic trap and cannot partake in the reproduction process.
Hence in magnetron discharge the process of discharge self-maintenance is owing to
secondary electrons, and the ionization process proceeds outside the cathode layer
where secondary electrons lose their energy. Thus, introduction of a magnetic field
change the mechanism of electron reproduction, and hence parameters of magnetron
discharge depend on the position of the magnetic trap.

In this consideration, an additional element, the magnetic trap, is introduced in
magnetron gas discharge compared with glow discharge, and hence the position of
the magnetic trap with respect to position of the cathode acts on the parameters
of magnetron discharge. Indeed, the electric potential that act on electrons is a sum
of the cathode and magnetic trap [414], and the cathode voltage becomes large, if the
magnetic trap is located far from the cathode (until magnetron discharge transfers
into glow discharge), and action of the magnetic filed decreases if the magnetic trap
approaches to the cathode. Evidently, the optimal distance of the magnetic trap from
the cathode is of the order of the mean free path of ions, and detailed analysis of the
cathode region (for example, [411, 414–417]) testifies the complexity of processes
which provide self-maintenance of magnetron discharge.



Part IV
Helium and Argon Gas Discharge Plasmas



Chapter 10
Atom Excitation in Helium and Argon
Uniform Plasma

Abstract Atom excitation in a uniform gas discharge plasma of helium and argon
is analyzed under various conditions. Fast electrons under consideration determine
the rates of atom excitation and ionization in a gas discharge plasma. The specific
power of plasma radiation in a continuous spectrum range resulted from the photore-
combination process is given.

10.1 Excitation of Metastable State in Helium Plasma
at Low Electron Concentrations

Taking the diffusion cross section for electron scattering on the helium atom accord-
ing to formula (3.2.8), we obtain for the parameter χ defined by formula (6.5.3)

χ = 350

x2
, (10.1.1)

where the reduced electric field strength x = E/Na is given in T d. We assume the
average electron energy to be small compared to εc = 10 eV, and the normalization of
the distribution function coincides with that for theDruyvesteyn distribution function
(6.1.9). Note that in the Druyvesteyn case with σ∗ = 6Å2 we have χ = 580/x2, i.e.
the transition from the constant cross section to the cross section (3.2.8) leads to a
change of the distribution function at the excitation threshold for any electric field
strength. This shows that the behavior of the electron-atom elastic cross section is
important for atom excitation by electron impact in a gas discharge plasma.

We now analyze the validity of the criterion (6.5.4) that corresponds to a relative
smallness of the parameter 1/κ, where κ is given by formula (6.5.3). Substituting
in formula (6.5.3) parameters of excitation of the metastable helium atom He(23S),
namely, vo = 2.64×108 cm/s, kq = 3.1×10−9 cm3/s, k(vo) = 7.1×10−8 cm3/s,
kef = 4.5 × 10−8 cm3/s, we obtain for excitation of the 23S state

κ = 268

x
(10.1.2)
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As is seen, in the range of the electric field strengths 2T d < x < 10T d this parameter
is large. This means a strong distortion of the tail of the electron distribution function
due to atom excitation.

Let us use the parameter δ in accordancewith formulas (6.5.15) and (6.5.16)which
characterizes the closeness of the effective energy of atom excitation and the atom
excitation energy �ε. For excitation of the state He(23S) the parameter (6.5.16) is
equal

δ =
(

εb − �ε

�ε

)1/4

= 3me

4M

voν
2
o

aνe f
= 0.23

x
, (10.1.3)

and in the range of the electric field strengths 2T d < x under consideration this
parameter is small.

Thus, there are two limits for atom excitation by electron impact in a gas dis-
charge plasma. In the first case the rate of excitation is relatively small, so that the
excitation process does not influence on the energy electron distribution function at
energies above the atom excitation threshold. Then in the regime of a high electron
number densities we have the Boltzmann distribution function of electrons above
the excitation threshold, and the rate constant of atom excitation is given by formula
(3.3.8). In the other limit, where the criterion (6.5.4) holds true, atom excitation by
electron impact is a self-consistent process, so that this process leads to a decrease of
the electron distribution function and this, in turn, influences on the excitation rate.
Hence the rate of atom excitation by electron impact is given by formula (6.5.13).
The latter takes place in the case of excitation of the helium atom into the metastable
state.

We first consider the regime of a low number density of electrons and determine
the rate constants of excitation of the metastable He(23S) state k< and k> according
to formulas (6.3.8) and (6.5.7). Using the energy distribution function (6.1.9), we
obtain the rate constant of formation of fast electrons in an ionized helium under the
action of the electric field

k< = 3.8 · 10−9

x3/2
exp

(

−350

x2

)

, (10.1.4)

where the rate constant is given in cm3/s and the reduced electric field strength
x = E/Na is expressed in T d.

In the same manner on the basis of formulas (6.1.9) and (6.5.9) we find the rate
constant of excitation of helium atoms k> which corresponds to assumption that a
weak process is atom excitation above the excitation threshold, but the excitation
process disturbs significantly the electron distribution function above the excitation
threshold (κ � 1). We have

k> = 1.6 · 10−9x−0.3 exp

(

−350

x2

)

(10.1.5)
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Fig. 10.1 Rate constants of helium atom excitation to the metastable state He(23S) by electron
impact for weakly ionized helium located in a constant electric field in the regime of low electron
number densities. The rate constants k> calculated on the basis of formula (10.1.6) are given by
closed circles, the rate constants k< determined by to formula (10.1.5) are represented by closed
squares, and open circles correspond to the total rate constants kex of atom excitation according to
formula (10.1.7)

From this on the basis of formula (6.5.13) we obtain for the rate constant of excitation
of the metastable state He(23S) by electron impact without assumption about the
ratio between k< and k>

kex = 1.6 · 10−9 exp(−350/x2)

x0.3(1 + 0.43x1.2)
(10.1.6)

Figure10.1 contains dependencies (10.1.6), (10.1.6), and (10.1.6) in the appropriate
range of electric field strengths.

Using formulas (10.1.4) and (10.1.5) for the rate constants k< and k> of atom
excitation in the state He(23S) by electron impact in an external electric field in
the regime of low electron number densities, we obtain for the ratio of these rate
constants

ζ = k>

k<

= x1.2

2.3
(10.1.7)

Figure10.2 contains this ratio as a function of the reduced electric field strength
x = E/Na in the appropriate range of the electric field strengths. These rate constants
coincide at the reduced electric field strength x = 2T d, and in the range under
consideration atom excitation above the excitation threshold dominates.

From this one can determine the efficiency of atom excitation in a gas discharge
plasma, i.e. the part of energy transferred from an electric field to electrons which
is consumed on atom excitation. We have for the parameter γ defined according to
formula (6.4.3)

http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_6
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Fig. 10.2 The ratio for the atom excitation rates by electron impact between pair electron-atom
collisions for the tail of the electron distribution function and that resulted from diffusion electron
motion in an energy space for excitation of the helium atom in the metastable state He(23S) by
electron impact in weakly ionized helium located in a constant electric field for the Druyvesteyn
case of electron-atom scattering in the regime of a low electron number density. The reduced electric
field strength x = E/Na is expressed in T d

γ = pex

pel
, (10.1.8)

where pex = �εkex is the specific power that is consumed on atom excitation, and
pel = eEwe/Na is the specific power that is consumed on elastic electron scattering
on atoms. Using formula (6.1.10) for the electron drift velocity in the Druyvesteyn
case, where the diffusion cross section of electron-atom scattering is independent of
the collision velocity, we have for the specific power due to elastic electron-atom
scattering in helium

pel = 5.3 · 10−12x3/2, (10.1.9)

where the specific power is expressed in eV · cm3/s, and the reduced electric field
strength is given in T d.

The efficiency of atom excitation is given by formula (6.4.4)

ξ = γ

1 + γ

Figure10.3 contains the efficiency of excitation of the helium atom in the metastable
state He(23S) by electron impact in a helium gas discharge plasma that follows from
formulas (10.1.7), (10.1.8) and (10.1.9).
Note that according to formulas (10.2.1) and (10.2.2), at large electric field strengths
k> � k<, and kex ≈ k< for specific powers of processes involving electron-atom
collisions. This gives for the parameter γ

http://dx.doi.org/10.1007/978-3-319-11065-3_6
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Fig. 10.3 Given by formulas (6.4.7) and (6.4.4) the efficiencies of excitation of the helium atom
in the metastable state He(23S) by electron impact in weakly ionized helium located in a constant
electric field for the Druyvesteyn case of electron-atom scattering and in the regime of a low electron
number density. The reduced electric field strength x = E/Na is expressed in T d

γ = 1.4 · 104
x3

exp

(

−350

x2

)

This parameter has a maximum at x = 15, where γ = 0.88, and the maximum
efficiency of atom excitation is ξ = 0.47. But this electric field strength corresponds
to the boundary of stability of ionized helium.

10.2 Excitation of Metastable State in Helium
Plasma at High Electron Concentrations

We now determine the rate constants of excitation of helium atoms in the metastable
He(23S) state by electron impact in the regime of a high electron number density.
Using theMaxwell distribution function (2.1.3) for electrons and formula (6.3.17) for
the rate constant of atom excitation by electron impact in an ionized gas in the regime
of high electron number densities, we have for excitation of metastable helium atoms
in the 23S state [287]

k< = 8.1 · 10−4

T 5/2
e

exp

(

−19.8

Te

)

(ce + 2.0 · 10−7x2) (10.2.1)

Here ce = Ne/Na is the electron concentration, we take a typical value ln� = 7, the
rate constant is expressed in cm3/s, the reduced electric field strengths x are given
in T d, the electron temperature is measured in eV. At low electric field strengths, i.e.

http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_2
http://dx.doi.org/10.1007/978-3-319-11065-3_6
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Fig. 10.4 The rate constants of excitation of the helium atom in the state 23S by electron impact
if this process proceeds in weakly ionized helium located in a constant electric field in the regime
of high electron number densities. The excitation rate constant k< is given by formula (10.2.1)
and corresponds to the electron concentration ce = 10−6, and the excitation rate constant k> is
determined by formula (10.2.2). The values k< are given by open circles, the values of k> are
marked by filled squares, and the total excitation rate constants kex in accordance with formula
(10.2.3) are labelled by filled circles

for the Druyvesteyn case, the connection between the electron temperature Te and the
reduced electric field strength x = E/Na is given by formula (6.2.12) (Te = 0.41x)
at low electric fields strengths, and at higher electric field strengths it is determined
from equation (6.2.14).

In the case, where atom excitation is determined by electron acceleration in helium
below the excitation threshold dominates, we have for the excitation rate constant on
the basis of formula (6.3.8) and heMaxwell distribution function (6.2.4) for electrons
[287]

k> = 8.3 · 10−10 x1.2

T 1.5
e

exp

(

−19.8

Te

)

(10.2.2)

Figure10.4 gives the rate constants k< and k> according to formulas (10.2.1) and
(10.2.2) in the range Te � �ε, and also the excitation rate constant that is the
combination of these quantities according to formula (6.5.13) [287]

kex = 8.3 · 10−10 (ce + 2.0 · 10−7x2)

(ce + 2.0 · 10−7x2 + 1 · 10−6x1.2Te)

x1.2

T 1.5
e

exp

(

−19.8

Te

)

(10.2.3)
In addition, we compare the excitation rate constants for the metastable helium atom
by electron impact in a gas discharge plasma in the regime of low and high electric
field strengths. This comparison is made in Fig. 10.5.

One can evaluate the efficiency of excitation of the helium atom in the regime
of a high electron number density in accordance with formula (6.4.4) by analogy
with that given in Fig. 10.3. As above, the parameter γ characterized the efficiency

http://dx.doi.org/10.1007/978-3-319-11065-3_6
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Fig. 10.5 The rate constants kex of atom excitation to the metastable state He(23S) by electron
impact in a constant electric field. Closed squares correspond to the regime of low electron number
densities in accordancewith formula (10.1.6), the rate constants for the regime of high electron num-
ber densities are determined by formula (10.2.3). Closed circles relate to the electron concentration
ce = 10−6 and open circles correspond to the electron concentration ce = 10−5

of atom excitation is defined according to formula (10.1.8)

γ = pex

pel
,

where pex = �εkex is the specific power that is consumed on atom excitation, so
that the rate constant of atom excitation in a helium gas discharge plasma is given
by formula (10.2.3), and pel = Pel/Na = eEwe/Na , where pel is the power per
electron that is consumed on elastic electron scattering on atoms. Using formula
(6.2.10) for the electron drift velocity in a gas, we obtain for the specific power pel

due to elastic electron scattering on helium atoms in the regime of high electron
number densities

pel = 3.7 · 10−12 x2√
Te

(10.2.4)

where pel is measured in eV · cm3/s, the reduced electric field strength x is given in
T d, and the electron temperature Te is expressed in eV. In the limit of low electric
field strengths, where the Druyvesteyn case is valid and the electron temperature of
electrons in helium is connected with the reduced electric field strength x through
formula (6.2.12) (Te = 0.41x), formula (10.2.4) takes the form

pel = 5.8 · 10−12x3/2,

The efficiency of atom excitation by electron impact in an ionized gas is the part
of energy that is consumed on atom excitation. Figure10.6 contains the efficiencies

http://dx.doi.org/10.1007/978-3-319-11065-3_6
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Fig. 10.6 The efficiency of excitation of the helium atom in the metastable state He(23S) by elec-
tron impact in weakly ionized helium located in a constant electric field. Filled squares correspond
to the regime of low densities of electrons, filled circles relate to the regime of high densities of
electrons with the electron concentration ce = 10−6, and open circles correspond to the regime of
high densities of electrons with the electron concentration ce = 10−5

of atom excitation in the regimes of low and high electron number densities which
are obtained on the basis of the above formulas.

Let us compare the rate constant of atom excitation by electron impact in the
regime of a high electron number density under conditions of thermodynamic equi-
librium. This limit corresponds to the criterion which is opposite to the criterion
(6.5.4)

κ � 1 (10.2.5)

In addition, one more criterion must be fulfilled

k< � k> (10.2.6)

These criteria do not hold true in the case of excitation of the metastable state 23S by
electron impact. Nevertheless, under conditions of thermodynamic equilibrium the
rate constant of atom excitation by electron impact in a plasma is given by formula
(3.3.8), and in the case of excitation of the metastable state 23S by electron impact
in a helium gas discharge plasma has the form

k B
ex = 9.3 · 10−9 exp

(

−19.8

Te

)

, (10.2.7)

where the rate constant is measured in cm3/s, and the electron temperature is
expressed in eV.

http://dx.doi.org/10.1007/978-3-319-11065-3_6
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Fig. 10.7 The rate constants kex of atom excitation to the metastable state He(23S) by electron
impact in a constant electric field. Open circles correspond to thermodynamic equilibrium accord-
ing to formula (10.2.7). The excitation rates for the regime of high electron number densities in
accordance with formula (10.2.3) are represented by closed squares for the electron concentration
ce = 10−6 and by filled circles for the electron concentration ce = 10−5

Note that the excitation rate constant (10.2.7) under conditions of thermodynamic
equilibrium exceeds that (10.2.3) under the condition κ � 1 because as a result of
violation of the criterion (10.2.6) becomes the electron energy distribution function
is small compared to the Maxwell distribution function, and violation of the crite-
rion (10.2.5) leads to a sharp decrease of the electron distribution function with an
increasing electron energy above the excitation threshold. Figure10.7 represents the
comparison of the thermodynamic rate constant of helium atom excitation in the state
23S given by formula (10.2.7) with those for the case where an ionized helium is
located in an external electric field for the regime of high electron number densities.
This excitation rate constant in ionized helium is given by formula (10.2.3), and
the connection between the electron temperature Te and the reduced electric field
strength x follows from (6.2.14).

10.3 Inelastic Electron Collisions with Excited
Helium Atoms

We above consider excitation of helium atoms in a gas discharge plasma from the
ground state that leads to formation themetastable atoms He(23S)mostly. Excitation
of higher excited states and formation of ions in a gas discharge plasma proceeds
through metastable 23S atoms. Figure10.8 gives the rates of transitions between the
lowest excited helium states which are grouped around themetastable state He(23S).

There are two channels of quenching of the metastable state 23S by elec-
tron impact. The first channel results from transition in the ground state and

http://dx.doi.org/10.1007/978-3-319-11065-3_6
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Fig. 10.8 The lowest excited states of a helium atom and the rates of transitions involving these
states [40]

is characterized by the quenching rate constant kq = 3.1× 10−9 cm3/s. The second
channel consists in excitation the metastable state 23S in the states 21S and 23P in
collisions with electrons. The first channel dominates if the following criterion holds
true

kq � kms + kmp (10.3.1)

Here indices m, s, P, p denote the states 23S, 21S, 21P and 23P correspond-
ingly, kq is the rate constant of quenching of the metastable state by electron impact
with transition in the ground state, other rate constants correspond to transitions in
accordance with indices. The criterion (10.3.1) means that decay ofmetastable atoms
in collisions with electrons results in atom transition in the ground state rather than
transition in excited states.

For determination the population of excited states we use the principle of detailed
balance that connects the rates of excitation and quenching according to formula
(3.3.7). Because the equilibrium between atoms in the metastable and connected
with it states, the number density of atoms in an excited state Nex which is in the
equilibrium with the state 23S is given by

Nex = Nm
gex

gm

〈
√

ε − �ε

ε

〉

,

where gm = 3 is the statistical weight of the state 23S, gex is the statistical weight
for a given excited state (21S or 23P), �ε is the excitation energy of this state, and
an average in the above formula is made with the electron distribution function. We
use that in the helium case the electron-atom diffusion cross section of scattering
σ∗

ea is independent of the electron velocity. Then the electron distribution is given by
the Druyvesteyn distribution function [269, 285, 286] according to formula (6.1.9).
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Therefore the above formula for the number density Nex of atoms in a certain excited
state that is connected with themetastable state by electron transitions, takes the form

Nex = Nm
gex

gm
J (

�ε

εo
), J (a) = 2

�(3/4)

∞
∫

0

√
z exp

[

−(z + a)2
]

dz, (10.3.2)

For simplicity we construct the function J (a) from its limiting values, so that J (0) =
1 and

J (a � 1) =
√

π exp(−a2)

23/2�(3/4)a3/2 = 0.51a−3/2 exp(−a2)

Taking the function J (a) such that it obtains the precise limiting values, we have

J (a) = 1

1 + 1.96a3/2 exp(a2)
(10.3.3)

We now compare the contribution of two channels for decay of metastable helium
atoms, so the the first channel corresponds to quenching of this state with atom
transition in the ground state, while the second channel of decay of the metastable
He(23S) state relates to excitation in nearby excited states. According to the criterion
(10.3.1), the first channel dominates if

1

3
J (a) + J (1.44a) � 0.01 (10.3.4)

The boundary of the transition between two channels corresponds to a = 1.6 or
εo = 0.5 eV. Taking the diffusion cross section of electron scattering on a helium
atom to be 6Å2, we find according to formula (6.1.9) the boundary reduced electric
field strength E/Na = 0.6T d. We are guided by the range 2T d < x < 10T d for the
specific electric field strength where quenching of metastable atoms in a helium gas
discharge plasma results from transitions in higher excited states in collision with
electrons.

Let us determine the number density of helium atoms in the metastable He(23S)

state for a gas discharge plasma in the regime of high electron number densities being
guided by the electron number densities Ne ∼ 1012 cm−3, as it takes place in glow
discharge.We use formula (10.2.3) for the rate constant of excitation of helium atoms
in a gas discharge plasma by electron impact. Connecting the electron temperature
Te and the reduced electric field strength x by the relation Te = 0.41x , that holds
true at low electron temperatures, we obtain instead of formula (10.2.3) for the rate
constant of atom excitation in the metastable state He(23S) by electron impact

kex = 3.1 · 10−9(ce + 2.0 · 10−7x2)

x0.3(ce + 2.0 · 10−7x2 + 4.2 · 10−7x2.2)
· exp

(

−48

x

)

, (10.3.5)
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where the rate constant kex is given in cm3/s. The quenching rate for the metastable
state He(23S) in the ground electron state is equal to kq = 3.1× 10−9 cm3/s and is
independent on the electron energy near the excitation threshold. This rate constant
characterizes quenching of the metastable state if it is in thermodynamic equilibrium
with neighboring excited states. This equilibrium is supported by collisions of elec-
trons with excited atoms, but along with collision transitions, radiative transitions
proceed in a uniform ionized gases and they violate the thermodynamic equilibrium
between excited atoms.

In this analysis we are guided by the scheme of processes involving the lowest
excited states of the helium atom which are given in Fig. 10.8. The violation of the
thermodynamic equilibrium proceeds due to radiation of atoms in the state 21P and
is governed by the criterion Nekq(21P)τe f � 1, where kq(21P) = 8× 10−7 cm3/s
is the total rate constant of transitions in lower states as a result of collisionswith elec-
trons τe f is the effective radiative time of the helium atom state 21P with accounting
for reabsorption processes. We are guided by the case where a gas discharge plasma
of helium is located in a cylinder tube of a radius 1 cm, and then τe f = 1.1µs as it
is obtained in Chap.4. Then the criterion of violation of thermodynamic equilibrium
for excited atoms He(21P) has the form

Ne � 1012 cm−3 (10.3.6)

We are guided by a helium plasma of glow gas discharge with

1010 cm−3 � Ne � 1012 cm−3, (10.3.7)

where the criterion (10.3.6) holds true. Hence the population of the state 21P is
small compared with thermodynamic one, and one can neglect the process of atom
quenching with transitions between 21P and 21S states. In the analysis of these
transitions, we restrict by the left branch of processes given in Fig. 10.8, and the
notations of these processes are represented in Fig. 10.9.

Fig. 10.9 The scheme of
transitions between the lowest
excited states of a helium
atom which are taken into
account in the balance of
metastable helium atoms and
notations of the rate constants
of corresponding transitions.
This scheme is a truncated
scheme of Fig. 10.8

http://dx.doi.org/10.1007/978-3-319-11065-3_4
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Thus, basing on the scheme of transitions between excited states of the helium
atom according to Fig. 10.9, we have the following balance equations for the number
density of atoms Nm in the metastable state 23S and the number density of atoms Ns
in the metastable state 21S

1

Ne

d Nm

dt
= kex Na − kq Nm − kms Nm + ksm Ns ,

1

Ne

d Ns
dt = kms Nm − ksm Ns − ksp Ns

This allows us to introduce the effective rate constant kef of quenching of the
metastable atom state 23S by electron impact in accordancewith the balance equation
for the number density of metastable atoms

1

Ne

d Nm

dt
= kex Na − kQ Nm, kQ = kq + kmsksp

ksm + ksp
, (10.3.8)

where kQ is the total rate constant of quenching of themetastable state 23S by electron
impact. Solution of balance equations gives for the number densities of metastable
atoms

Nm = kex

kQ
Na, Ns = Nm

kms

ksm + ksp
(10.3.9)

where Na is the number density of atoms in the ground state. Note we use the
stepwise character of excitation of the metastable state 21S and other states because
the electron distribution function decreases sharply at energies above the threshold
of excitation of the 23S state (see Fig. 6.14).

We use the scheme of processes with transitions between lower excited states
of the helium atom given in Fig. 10.10 and represent in this figure notations of the
rate constants for processes which partake in excitation of the resonantly excited
state He(21P) through the state He(23P). From this scheme we have the following
balance equation for the number density of atoms NP located in the state He(21P)

Fig. 10.10 Transitions
between the lowest excited
states of the helium atom and
notations of the
corresponding rate constants
within the framework of the
scheme of Fig. 10.8

http://dx.doi.org/10.1007/978-3-319-11065-3_6
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d NP

dt
= Ne Nmkm P − NP

(

1

τ
+ NekPm + NekPp

)

The solution of this equation gives for the relative number density of atoms NP in
the state He(21P)

NP

Nm
= km P

(τ Ne)−1 + kPm + kPp
≈ Neτkm P , (10.3.10)

since decay due to radiation dominates in detachment of the state He(23P) under
given conditions.

From this we find an addition to the effective quenching rate constant due to
excitation of atoms in the state He(21P) through the state He(23P)

�k = NP

Nm
kpP ≈ τ NekPmkPp (10.3.11)

This formula is valid for Ne � 3 × 1013 cm−3 and at Ne = 1012 cm−3 gives

�k ≈ 1 · 10−8 exp(−1.398/Te),

where the electron temperature is expressed in eV, and the rate constant is given
in cm3/s. Comparing this with the effective quenching rate constant kQ of the
metastable atom He(23S) according to formula (10.3.13), we find that under given
conditions �k � kQ . In particular, at the electron temperature Te = 3 eV we have
�k/kQ = 0.14.

We now determine the total rate constant for quenching of metastable atoms
He(23S) by electron impact in a gas discharge plasma for the regime of low electron
number densities by analogy with that in the regime of a high number density of
electrons. This rate constant kQ for quenching of metastable atoms He(23S) by
electron impact is determined by formula (10.3.8)

kQ = kq + kmsksp

ksm + ksp
,

where the rate constants of transition in lower states by energy are given in Fig. 10.8,
and the rate constant for transitions in higher states are calculated on the basis of
formula (6.3.2) with using the distribution function (6.1.9). Note that in contrast to
excitation of atoms in the ground state in a plasma, now due to a not large exci-
tation energy these rate constants are determined by electron energies where the
Druyvesteyn distribution function (6.1.9) is valid. According to formula (6.3.2) we
have

kms = exp(− 0.94
x2

)

1 + 1.86
x3/2

, ksp = 5
exp(− 0.54

x2
)

1 + 1.23
x3/2

(10.3.12)
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where the rate constants are expressed in 10−7 cm3/s and the the specific electric
field strength x = E/Na is given in T d. The results are given in Fig. 10.11.

Let us determine the concentrations of metastable atoms He(23S) and He(21S)

located in the helium gas discharge plasma in the regime of high electron number
densities as a function of the electron temperature Te being guided by the electron
number densities Ne ∼ 1012 cm−3 that is typical for glow gas discharge. In this
consideration we restrict ourselves by the scheme of processes of Fig. 10.9, so that
the concentration cm = Nm/Na of atoms in the metastable state (23S) is given by
formula (10.3.9)

cm = kex

kQ
,

where the rate constant of atom excitation by electron impact in an external electric
field is determined by formula (10.2.3). We use the connection (6.1.10) between the
electron temperature Te and the reduced electric field strength x = E/Na in the
helium case where the diffusion cross section of electron-atom collisions is indepen-
dent on the electron velocity, and this connection has the form Te = 0.41x , if we
express the electron temperature in eV and the reduced electric field strength in T d.
Figure10.12 contains the dependence of the concentration of the metastable atoms
in the state 23S in a gas discharge plasma, where atom excitation proceeds through
formation of fast electrons in the plasma due to electron kinetics in a space of elec-
tron energy and subsequent excitation of atoms by fast electrons. Data of Fig. 10.12
corresponds to the regime of low electron number densities where electron-electron
collisions are not important for establishment the energy distribution function of

Fig. 10.11 The rate constant of quenching ofmetastable atoms He(23S) by electron impact in a gas
discharge plasma. Filled circles correspond to the regime of low electron number densities where
the rate constant is calculated on the basis of formulas (10.3.8) and (10.3.12). The rate constants
for the regime of high electron number densities are indicated by open circles and are evaluated
according to formula (10.3.13)

http://dx.doi.org/10.1007/978-3-319-11065-3_6
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Fig. 10.12 Concentration of
metastable helium atoms in a
gas discharge plasma of
helium in an external electric
field as a function of the
reduced electric field
strength. Concentrations of
He(23S) are given by filled
circles, and concentrations of
He(21S) are labelled by open
circles. These data are based
on formulas (10.3.9) and
correspond to the regime of
low electron number densities

electrons. These data are obtained on the basis of formulas (10.3.9), (10.3.5) and
(10.3.12).

We now consider the regime of a high electron number density with the Maxwell
distribution function of electrons by energy which results from electron-electron
collisions. In considering as early the range of not high electron temperature, we
take the rate constant of quenching of an excited state by electron impact to be
independent of the electron energy for slow electrons that simplifies our analysis.
Since this holds true for low electron energies, the results will be valid for low electric
field strengths and will contain an error for middle electric field strengths. Using the
principle of detailed balance, we then obtain for the excitation rate constants on the
basis of the relation (3.3.7)

kex = kq
g∗
go

exp

(

−�ε

Te

)

On the basis of parameters of Fig. 10.9, we obtain for the effective rate constant of
quenching of the metastable state that is expressed in cm3/s

kQ = 3 · 10−9 + 5 · 10−7 exp(−1.398/Te)

1 + 5 exp(−0.602/Te)
, (10.3.13)

where the electron temperature Te is expressed in eV. Figure10.13 gives the ratio
of the effective quenching rate constant kQ of the metastable atom He(23S) by
electron impact to the quenching rate constant. As is seen, excitation of themetastable
atom He(23S) by electron impact in higher excited states with subsequent radiation
of the He(21P) gives the main contribution to quenching of the He(23S) atom
at temperatures Te ∼ 1 eV which are of interest for these transitions. Note the
connection between the electron temperature Te expressed in eV and the reduced
electric field strength x = E/Na expressed in T d that according to formula (6.2.10)
gives Te = 0.41x .

http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_6
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Fig. 10.13 The ratio of the total rate constant of quenching of the metastable state He(23S) of the
helium atom by electron impact in a helium gas discharge plasma to the rate constant of quenching
with atom transition in the ground state as a function of the electron temperature Te

Note that in the regime of a high electron number density of a gas discharge plasma
with the Maxwell distribution function of electrons (2.1.2) an equilibrium between
electronsmeans also electron equilibriumwith excited atoms until other mechanisms
of destruction of excited atoms are weaker than that as a result of collision with
electrons. This leads to the thermodynamic equilibrium between nearby excited atom
states in the case of a helium gas discharge plasma, and the number densities of
excited helium states is connected with the number density of metastable helium
atoms Nm = N (23S) by relations

Ns ≡ N (21S) = Nm

3
exp

(

−0.794

Te

)

/(1 + Ne/N1), N (23P) = Nm exp

(

−1.144

Te

)

,

(10.3.14)

NP ≡ N (21P) = Nm

3(1 + Ne/N2)
exp

(

−1.398

Te

)

(10.3.15)

Here Ne is the electron number density, N1 = 4× 1012 cm−3, N2 = 2× 1015 cm−3,
the electron temperature Te is expressed in eV, and for simplicity we assume the
gas discharge plasma to be optically transparent for radiation with the wavelengths
λ = 2.058 µm and λ = 1.083 µm.

The criterion of the thermodynamic equilibrium between electrons andmetastable
helium atoms requires that quenching ofmetastable atoms by electron impact transfer
these atoms in the ground state. This criterion has the form

kq � ko

[

1

3
exp

(

−0.794

Te

)

+ exp

(

−1.144

Te

)]

, (10.3.16)

http://dx.doi.org/10.1007/978-3-319-11065-3_2
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where ko = 3 × 10−7 cm3/s. One can see that the criterion (10.3.16) is fulfilled at
Te < 0.2 eV. But under conditions of a self-maintained gas discharge plasma the
second channel of quenching of the metastable state He(23S) by electron impact
dominates, i.e. quenching of metastable atoms leads to their excitation.

Above in determination the number density of helium atoms in the metastable
He(23S) state for an ionized helium located in a constant electric field in the regime
of high electron number densities we are restricted ourself by the left branch of
quenching processes given in Fig. 10.8. We estimate the contribution of transitions
in the 21P state through 23P state to the effective rate constant of quenching of the
metastable state He(23S) being guided by for the electron number density Ne =
1012 cm−3 which are typical for glow gas discharge.

We give in Fig. 10.14 the concentration of metastable atoms He(23S) in a helium
gas discharge plasma as a function of the electron temperature dependence for the
regime of high electron number densities, and Fig. 10.15 represents the same data
foe metastable atoms He(21S). As is seen, at not small electric field strengths or
electron temperatures the concentration of metastable atomsmay exceed the electron
concentration.

Summing up the analysis of kinetics of excited states in a helium gas discharge
plasma, we conclude that the first stage of this process is excitation of metastable
states He(23S) by electron impact. The rate constant of this process is determined
both by formation of fast electrons as a results of their diffusion in a space of electron
energies and by excitation of helium atom in collisions with fast electrons. The latter
is a self-consistent process that leads to a sharp decrease of the energy distribution
function of electrons with an increasing electron energy above the excitation thresh-
old. As a result of a sharp decrease of the energy distribution function of electrons

Fig. 10.14 Concentration ofmetastable helium atoms He(23S) in a gas discharge plasma of helium
as a function of the electron temperature which are based on formulas (10.3.9) and correspond
to the regime of high electron number densities. Open squares and stars relate to the electron
concentrations ce = 10−6 and ce = 10−5 respectively, filled circles correspond to thermodynamic
equilibrium in accordance with formula (10.2.7)
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Fig. 10.15 Concentration ofmetastable helium atoms He(21S) in a gas discharge plasma of helium
as a function of the electron temperature which are based on formulas (10.3.9) and correspond
to the regime of high electron number densities. Open squares and stars relate to the electron
concentrations ce = 10−6 and ce = 10−5 respectively, filled circles correspond to thermodynamic
equilibrium for excited atoms and electrons

in this energy range excitation of higher excited states of the helium atom proceeds
through the lowest metastable state He(23S), rather than by direct electron impact.
One more peculiarity of kinetics of excited states in a helium gas discharge plasma
is that quenching of the lowest metastable state He(23S) in collisions with electrons
proceeds through transitions in higher levels, rather than transition in the ground
state of the helium atom. This character of processes improves the efficiency to use
metastable atoms for plasma radiation and plasma ionization.

As it follows from the above analysis, quenching of metastable atoms proceeds
through excitation and radiation of more excited atom states. Hence the basic part of
the electric energy consumed on atom excitation will be transformed in the energy
of emitted photons. Let us determine the rate of emission of resonant photons in a
uniform helium gas discharge plasma as a result of the radiative transition

He(21P) → He(11S) + �ω

We are guided by not high electron number densities Ne � 1013 cm−3 at which
decay of atoms He(21P) results from emission of resonant photons which leave the
plasma region.

Under given conditions formation of resonant photons proceeds through a chain
of processes given in Fig. 10.10, and because decay of all the atoms in the state 21P
results from their radiation, the rate of this process is determined by the following
formula

Np

dt
= Ns Neksp
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Let us define the rate of formation of resonant photons krad in this case as

d Np

dt
= Ne Nakrad ,

and the rate constant of photon formation is

krad = ksp
Ns

Na
(10.3.17)

On the basis of formula (10.3.9) we have

krad = kspksm

ksm + ksp

Nm

Na
,

and according to the expression (10.3.8) for kQ with accounting for formula (10.3.9)
for the concentration of atoms in the 21S state we obtain

krad = kex

kQ

kspksm

ksm + ksp
kex

(

1 − kq

kQ

)

(10.3.18)

Since according to the data of Fig. 10.9 and formula (10.3.12) kQ � kq in the
range of the electron temperatures under consideration, the main channel of decay of
metastable atoms is excitation in the 21P state with subsequent photon emissions, all
the excitations of helium metastable states are finished by emission of resonant pho-
tons.We also give the criterion of this scenariowhere quenching of resonantly excited
atoms results in emission of photons rather than quenching by electron impact. The
corresponding criterion has the form

NekQτe f � 1, (10.3.19)

and the effective lifetime of resonant excitation with respect to its leaving the plasma
region is given by formula (4.5.16) τe f = 2.6τr

√
ko R. Taking for the radiative

transition He(21P) → He(11S) + �ω the effective lifetime for a typical plasma
size R ∼ 1 cm to be τe f = 1.1µs and the rate constant of quenching of an excited
state by electron impact kQ < 10−7 cm3/s, we have the criterion (10.3.19) in the
form Ne � 1013 cm−3.

10.4 Excitation of Atoms in Argon Gas Discharge
Plasma

Weabove analyze the character of excitation of the lowest excited states of the helium
atom in a gas discharge plasma by electron impact. This process results from the sum
of the process of formation of fast electrons which are able to excite atoms and the

http://dx.doi.org/10.1007/978-3-319-11065-3_4
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process of atom excitation by fast electrons which leads to a sharp decrease of the
electron distribution function of electrons with an increasing electron energy above
the excitation threshold. The latter influences the resulted rate constant of excitation,
i.e. the process of atom excitation in a gas discharge plasma is a self-consistent
process. One can expect that the same situation takes place in excitation of argon
atoms by electron impact in an argon gas discharge plasma. We below analyze the
process

e + Ar(3p6) → e + Ar(3p54s) (10.4.1)

in the limit of high electron concentrations (see Fig. 10.1) where the distribution
function is the Maxwell one (2.1.3) for the most part of electrons. We represent in
Fig. 10.16 positions of excited levels for processes (10.4.1).

In considering processes (10.4.1), we construct the parameter κ which according
to formula (6.5.3) is equal

κ = 2voνe f

5a
= α

x
, νe f = Na

√

3
g∗
go

kokq (10.4.2)

Here ko = vσ∗
ea(vo) is the rate constant of elastic electron-atom scattering at the

excitation threshold, kq is the rate constant of quenching of an excited atom by
electron impact, a = eE/me, go, g∗ are the statistical weights for the ground and
excited atom states, x = E/Na is the reduced electric field. strengths expressed
in T d. Table10.1 contains experimental rate constants [197, 199, 418] of quenching
of metastable state Ar(3P2) by electron impact. We assume an identical exchange
interaction between an incident electron and metastable atom in 3P2 and 3P0 states
that leads to identical rate constants of these states. Given in Table10.1 the rate

Fig. 10.16 Energies of the lowest levels (in cm−1) for states involving in the process (6.5.15) and
notations of these states

http://dx.doi.org/10.1007/978-3-319-11065-3_2
http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_6


280 10 Atom Excitation in Helium and Argon Uniform Plasma

Table 10.1 Rate constants of quenching of the argon atomwith the electron shell 3p54s in collisions
with a slow electron if the atom transfers in the ground state

State 3P2
3P1

3P0
1P1

kq , 10−10 cm3/s 4 8.2 4 39

Table 10.2 Values of the parameter α in formula (6.5.16) for excitation of argon atom states with
the electron shell 3p54s if the reduced electric field strength is measured in T d

State 3P2
3P1

3P0
1P1

α 190 220 87 470

constant of quenching of resonantly excited 3P1 and 1P1 states we determine on
the basis of formula (3.4.4). Note that the average rate constant of excited state
quenching for an argon gas discharge plasma with the electron temperature 1-3eV
[137] corresponds to these data averaged over the electron shell 3p54s.

Table10.2 contains the values of the coefficient α defined by formula (10.4.2)
which are obtained on the basis of data of Table10.1. As it follows from data of
Table10.2, in the range of electric field strengths under consideration 2T d < x <

20T d the criterion (6.5.4) κ � 1 holds true.
The rate constant of atom excitation in a gas discharge plasma is formed from

origin of fast electrons with the energy �ε, the threshold energy of atom excitation,
and its rate constant is according to formula (6.3.17)

k< = 8
√
2π

3

e4εo ln�

m1/2
e T 5/2

e

exp

(

−εo

Te

)(

ce + x2

4πe2σea(vo) ln�

)

(10.4.3)

Another part of the rate constant of atom excitation in a gas discharge plasma by
electron impact as a result of atom excitation by electrons with the energy above the
excitation threshold one �ε is given by formula (6.5.7) that now has the form

k> = 4.6�ε3/2

(πTe)3/2

g∗
go

kq

κ1.2 exp

(

−εo

Te

)

(10.4.4)

The total rate constant of atom excitation by electron impact is expressed through
the above ones on the basis of formula (6.5.13)

kex = k<k>

k< + k>

(10.4.5)

Figure10.17 represents the dependencies on the electron temperature Te for the rate
constants given by formulas (10.4.3), (10.4.4) and (10.4.5) in the case of excitation
of the state Ar(3p54s3P2) by electron impact in an argon gas discharge plasma.

http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_6
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Fig. 10.17 Rate constants of excitation of an the argon atom by electron impact in the state 3P2
as a function of the electron temperature in an argon gas discharge plasma in the regime of high
electron number densities in accordancewith formulas (10.4.3), (10.4.4), and (10.4.5) at the electron
concentration ce = 10−6

Connection between the reduced electric field strength x = E/Na and the electron
temperature Te is given by the lower curve of Fig. 10.3.

It should be noted that the energy distribution function of electrons in an argon
gas discharge plasma varies weakly in a range of excited levels with an electron shell
3p54s. Indeed, according to formulas (6.5.2) and (6.5.3) the electron distribution
function above the excitation threshold of the state Ar(33P2) has the form

f0(ε) = f (�ε) exp(−ε/Te−S), S =
∑

i

κi

(

ε − �εi

�εi

)5/4

η(ε−�εi ), (10.4.6)

where f (�ε) is the distribution function at the excitation threshold for the lowest
excited level Ar(33P2), κi is given by formula (6.5.16), �εi is the excitation energy
for i−th level, η(z) is the unit function, so that it is equal to zero at z < 0 and one
at z > 0. Using parameters of formula (6.5.16) given in Table10.1, we represent in
Fig. 10.18 the character of variation of the energy distribution function of electrons
above the threshold of excitation of the lowest excited level. On the basis of this one
can assume that the electron distribution function varies not strongly in the range of
excitation of stateswith the electron shell 3p54s, whereas in the range of excitation of
states with electron shell 3p54p this variation is strong. From this one can conclude
that excitation of state with other electron shells than 3p54s can proceed only in a
stepwise manner through the states with the electron shell 3p54s.

In determination the concentration of excited argon atoms in a gas discharge
plasma where excitation and quenching processes in collisions with electrons are
of importance, we ascertain first the mechanism of decay of excited atoms. In the
case of metastable atoms it is necessary to compare the rate of mixing of states
which is given by formula (3.5.5) and with the rate of excitation of metastable atoms

http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_3
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Fig. 10.18 Logarithm of the energy distribution function of electrons according to formula (10.4.6)
above the threshold of excitation of the lowest excitation state which is taken as zero for the electron
energy. Arrows indicate the boundaries of excitation of states with electron shell 3p54p

Fig. 10.19 The rate constants of transitions of argon atoms from the states 3P2, 3P1 and 1P1 to the
electron shell Ar(3p54p) as a result of collisions with electrons. These rate constants are evaluated
on the basis of formula (3.4.4)

kexci = k(3P2 → 3p54p) in states with the electron shell Ar(3p54p). According
to formula (3.4.4) which has the form

kexci = ko

(�ε)7/2τr
,

the rate constants for excitation of Ar(3P2) and Ar(3P0) are nearby, and Fig. 10.17
gives the excitation rate for the state 3P2. The rate constants of excitation of excited
argon atoms with the electron shell 3p54s in states with the the electron shell 3p54p
kexci are represented in Fig. 10.19.

http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_3
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Table 10.3 The rate constants of electron-atom inelastic collisions involving the lowest resonantly
excited states Ar(3p54s(3P1) and Ar(3p54s(1P1) calculated on the basis of formula (3.4.4)

Process Rate constant, cm3/s

e + Ar(3p54s 3P1) → e + Ar(3p6 1S0) 8.2 × 10−10

e + Ar(3p54s 1P1) → e + Ar(3p6 1S0) 3.9 × 10−9

e + Ar(3p54p) → e + Ar(3p54s 3P1) 2.8 × 10−7

e + Ar(3p54p) → e + Ar(3p54s 1P1) 4.6 × 10−7

Fig. 10.20 Dependence on the electron temperature for the concentration of excited argon atoms
3P2, 3P1 and 1P1 of the electron shell 3p54s in a gas discharge plasma in the regime of high electron
number densities in accordance with formula (10.4.8)

In evaluation the concentrations for the lowest resonantly excited argon atoms
Ar(3p54s)(3P1) and Ar(3p54s)(1P1), we first find the rate constants of quenching
processes in collisions with electrons which involve these states. These rate constants
are independent of the electron energy for a slow electron. Evaluated on the basis of
formula (3.4.4) and are given in Table10.3. The excitation rate constants from the
states Ar(3p54s)(3P1) and Ar(3p54s)(1P1)

Figure10.20 contains the concentration of metastable atoms located in the lowest
excited state Ar(3P2) which is given by

c(3P2) = kex

kexci
(10.4.7)

Correspondingly, in accordance with the statistical weights of metastable states,
c(3P0)=0.2c(3P2).Next, the excitation rate constants from the states Ar(3p54s(3P1)

and Ar(3p54s(1P1) into states with the electron shell 3p54p are determined by
formulas (10.4.3), (10.4.4) and (10.4.5) where the quenching rate constant in the
ground state of the argon atom is represented in Table10.3. The rate constants of
excitation of argon atoms by electron impact from the ground state Ar(3p6 1S0) to

http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_3
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Fig. 10.21 The rate constants of excitation of argon atoms from the ground state 1S0 to excited
states of the electron shell Ar(3p54p) as a result of collision with electrons. These rate constants
are evaluated on the basis of formulas (10.4.3), (10.4.4) and (10.4.5) (3.4.4) and Table10.3 data

the lowest excited states with the electron shell Ar(3p54s) are given in Fig. 10.21.
We consider first the limit of high electron number densities where the concentration
of excited atoms is given by formula (10.4.6) like to the case of metastable atoms

co = kex

kexci

Concentrations of resonantly excited states of argon atoms Ar(1P1) and Ar(3P1)

are given in Fig. 10.20 in the limit of high electron densities if this concentration is
established as a result of electron-atom collisions. As early, we assume that excited
argon atoms Ar(3p54p) decay as a result of ionization and transitions inmore excited
states, whereas transitions to the electron shell Ar(3p54s) give a small contribution
to quenching of these states. Note that all the results of Fig. 10.20 correspond to
conditions where decay of states of the group Ar(3p54p) results from electron
collisions with these excited atoms.

Including in the balance equation radiation of excited atoms, one can rewrite
equation for the concentration c of atoms in states 3P1 and 1P1 in the form

c = kex No

kexci (Ne + No)
, (10.4.8)

where

No = 1

τe f kq(4p)

Here τe f is the lifetime of excited atom with respect to its location inside a gas
discharge plasma. If a uniform plasma is located in a cylinder of a radius 1 cm,
this effective lifetime is equal to 2.6µs for the state Ar(3P1) and to 3.0µs for

http://dx.doi.org/10.1007/978-3-319-11065-3_3
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the state Ar(1P1), as it is given in Chap.4. Using data of Table10.3, we obtain
No = 1.4 × 1012 cm−3 for the state Ar(3P1) and No = 7.2 × 1011 cm−3 for the
state Ar(1P1).

We nowanalyze the above results from the standpoint of general balance equations
for the number density of excited argon atoms which have the following form

d N (4s)

dt
= Nekex N (3p) − Nekexci N (4s) − N (4s)

τr (4s → 3p)
+ N (4p)

[

1

τr (4p → 4s)
+ Nekq

]

,

d N (4p)

dt
= Nekexci N (4s) − Nekq N (4p) − N (4p)

τr (4p → 4s)
− Nekdec N (4p)

(10.4.9)

Here N (3p) is the number density of argon atoms in the ground state Ar(3p6 1S0,
N (4s) and N (4p) are the number densities of argon atoms in one or group of states
with the electron shell 3p54s and 3p54p respectively, τr is a time of radiative tran-
sitions between indicated states, kex is the excitation rate constant for transition
3p → 4s, kexci is the rate constant of transition 4s → 4p, kq is the rate constant of
transition 4p → 4s by electron impact, kdec is the summary rate constant of tran-
sitions from the states with the electron shell 3p54p in higher excited states and in
ionized states as a result of collisions with electrons. Other notations are explained
in previous formulas.

One can see that the concentrations of excited atoms in states 3p54s given in
Fig. 10.20 correspond to an equilibrium that takes into account two first terms of
the first balance equation (10.4.9). The third term of the first balance equation
(10.4.9) may be taken into account by using formula (10.4.8) for the concentration of
resonantly excited argon atoms instead of formula (10.4.7). In addition, this consid-
eration is based on fast destruction of excited Ar(4p) states that holds true under the
criterion

kdec � 1

Neτr (4p → 4s)
+ kq(4p → 4s) (10.4.10)

10.5 Continuous Spectrum of Radiation
of Equilibrium Plasma

A dense gas discharge plasma emits both broaden resonant radiation that was con-
sidered above and radiation in continuous spectrum due to process (4.2.2). The cross
section of this process with formation of an excited atom with n principal quantum
number according to Kramers formula (4.2.11) is given by

σrec = 16π

3
√
3

e10

mec3v2n3�4ω
, (10.5.1)

http://dx.doi.org/10.1007/978-3-319-11065-3_4
http://dx.doi.org/10.1007/978-3-319-11065-3_4
http://dx.doi.org/10.1007/978-3-319-11065-3_4
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where v is the velocity of an incident electron, and the energy balance for this process
has the form

�ω = mev
2

2
+ mee4

2�2n2 ,

if photorecombination leads to formation of a bound electron state with the principal
quantum number n. One can rewrite this formula for the differential cross section
of scattering dσ of a classical electron on an ion with emitting of a photon with
frequencies in a range from ω to ω + dω [149, 419]

dσ = 16π

3
√
3

e6

m2
ec3v2

dω

�ω
(10.5.2)

Let us determine from this the power of radiation per unit volume Prad of a
uniform gas discharge plasma that is given by

Prad = 〈Ne Ni �ωvσrec〉 = 16π

3
√
3

(

e2

�c

)3
e4

men3

〈

1

v

〉

(10.5.3)

Here Ne = Ni is the electron or ion number density, v is the electron velocity, and an
average is made over the Maxwell distribution function (2.1.3) for electrons, where
the electron energy is ε = mev

2/2. Since for the Maxwell distribution function we
have

〈

1

v

〉

=
√

2me

πTe
,

this leads to the following expression for the specific power of plasma radiation

Prad

N 2
e

= 16
√
2π

3
√
3

(

e2

�c

)3
e4

(meTe)1/2n3 , (10.5.4)

where the final atom state is a bound electron state with the principal quantum
number n. As is seen, the main contribution to the specific power of plasma radiation
follows from low n.

Above we are based on the Kramers formula (4.2.11) that assumes the validity
for a classical electron description for initial and final transition states. But the main
contribution to the specific power of plasma radiation gives low n, where the classical
approach is violated. Nevertheless, one can use the fact that Kramers formulas for
the ground state of the hydrogen atom leads to an error of 25% [149]. Hence we will
use formula (10.5.4) for the ground atom state, and then the total specific power of
plasma radiation is given by

Prad

N 2
e

= 64
√

π

3
√
3

(

e2

�c

)3
�
3 J 3/2

m2
ee2T 1/2

e

, (10.5.5)

http://dx.doi.org/10.1007/978-3-319-11065-3_2
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10.5 Continuous Spectrum of Radiation of Equilibrium Plasma 287

where we use the following connection between the atom ionization potential J and
the principal quantum number n in accordance with the energy balance equation for
an electron and photon in this process

J = mee4

2�2n2

Let us represent formula (10.5.4) in the form

Prad

N 2
e

= κo J 3/2

T 1/2
e

, (10.5.6)

and if we express the atom ionization potential J and the electron temperature Te in
eV, the proportionality coefficient isκo = 8.3×10−33W · cm3.Within the framework
of the classical approach and based on the Kramers formulas, one can use formula
(10.5.2) for both bremsstrahlung electron scattering on ions and photorecombination
of electrons and ionswith formation of highly excited atoms. On the basis of Kramers
formula (10.5.2) one can find also spectrum of formed photons. Indeed, until the
classical description holds true, we have on the basis of formula (10.5.2)

d Prad(ω) ∼ dω, (10.5.7)

and large photon energies give the main contribution to the radiation power. Trans-
ferring to the ground atom state, we neglect the discrete structure of atom levels.
Nevertheless, it is convenient to use the above formulas for estimations.

Let a uniform gas discharge plasma be located in a cylinder volume of a radius R
that is small compared to a cylinder length. Its total radiation power is equal

P = πR2N 2
e
κo J 3/2

T 1/2
e

As is seen, the radiation power increases with an increasing number density of elec-
trons and ions Ne and a cylinder radius. If this power becomes very large, plasma
radiation takes place only from the plasma surface and its power per unit length of
the cylinder is equal in this limit according to the Stephan-Boltzmann formula

PS = 2πRσT 4
e ,

where σ = 5.67 × 10−12 W/(m2K4) = 1.03 × 105 W/(cm2eV4) is the Stephan-
Boltzmann constant. Figure10.22 contains the dependence of the reduced radius on
its temperature Te if the equality P = PS is fulfilled. As one can conclude from this
figure, a laboratory gas discharge plasma is optically thin.
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Fig. 10.22 Reduced number density of electrons in an uniform gas discharge plasma of helium
and argon where the optical plasma thickness is compared to one

10.6 Tail of the Energy Distribution Function
of Electrons

In consideration electron kinetics in a gas discharge plasma, we above neglect the
influence of excited atoms on the energy distribution function of electrons, and the
latter has the form as it is shown in Fig. 6.12. This corresponds to zero concentration
of excited atoms. In reality, there is an additional contribution to the energy distri-
bution function of fast electrons due to processes of quenching of excited atoms by
electron impact. As a result of this process, a drop of the energy distribution function
of electrons with an increasing electron energy, and Fig. 10.23 gives the electron
distribution function in a gas discharge plasma with accounting for this process.

Let us find the tail part of the energy distribution function of electrons in the case
of the Maxwell distribution function ϕ(ε) according to formula (2.1.2) before the
atom excitation energy (ε < �ε), and if the drop of the distribution function in the
range 2 of Fig. 10.23 is sharp, i.e. the electron energy ε∗ is close to the atom excitation
energy �ε. In this case in accordance with the character of equilibrium as a result of
electron-atom collisions the tail part of the electron distribution function is given by

f0(ε) = kq

kQ
ϕ(ε) (10.6.1)

Here kq is the rate constant of electron collision with an excited atom with atom
transition in the ground state, kQ = kexci + kion is the rate constant of quenching of
an excited atom with its transition in other states, so that kexci is the rate constant of
transition in other excited states, and kion is the rate constant of atom ionization, and
they rate constants in the helium and argon case were evaluated above. Correspond-
ingly, the electron energy ε∗ of Fig. 10.23 from which the tail part of the electron
distribution function starts is determined by formula

http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_2
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Fig. 10.23 Energy distribution function of electrons in the case of a high electron number density
where the trunk of the distribution function in the range 1 corresponds to the Maxwell distribution
ϕ(ε). The range 2 accounts for a drop of the distribution function due to atom excitation, and the
distribution function in the range 3 is determined by quenching processes in electron collisions with
excited atoms

ε∗ − �ε

�ε
= 1

κ
ln

(

kq

kQ

)

(10.6.2)

where we use formulas (6.5.2), (6.5.3) for the distribution function in the range 2 of
Fig. 10.23.

It should be noted that the energy electron distribution function in the ranges 2 and
3 of Fig. 10.23 is determined by different processes of electron kinetics. Indeed, the
most part of electrons penetrates in the range 2 as a result of diffusion in the energy
space from the range of lower energies and accounts for the loss of fast electrons
as a result of atom excitation. On contrary, the range 3 of Fig. 10.23 results from
quenching of excited atoms by slow electrons. Hence, these range of the electron
distribution function are independently, and if the range 2 is narrow, the equilibrium
between atoms in the ground and excited states leads to the concentration cm of
excited atoms in lower excited states due to the second mechanism

cm = gm
kq

kQ
exp

(

−�ε

Te

)

(10.6.3)

Evidently, the first mechanism for establishment of the equilibrium between atoms in
the ground and excited states due to collisions with electrons results at low electron
temperatures, whereas the second mechanism determines this equilibrium for more
high electron temperatures. Figure10.24 contains the comparison of formula (10.6.3)
for population of lowest levels 3P2 with experimental data. Figure10.24 considers
two versions of quenching of excited atoms in collisions with electrons. In the second
version any transition in more excited states is irreversible, and the rate constant of

http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_6
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Fig. 10.24 Concentration of argon metastable atoms in the lowest excited state 3P2 via the electron
temperature due to the second mechanism of equilibrium in accordance with formula (10.6.3).
Experimental results [164, 165] are given between filled squares, triangles correspond to destruction
of metastable atoms by electron impact through subsequent excitation and ionization and upturned
triangles correspond to quenching of metastable atoms through ionization by electron impact only

this process is given in Fig. 10.20. The second version relates to low electron number
densities where after transition in more excited states an atom returns in the initial
state as a result of radiation, and hence the irreversible process of quenching of an
argon metastable atom in a gas discharge plasma results in atom ionization. Note
that in the second version kinetics of excitation may be more complex since mixing
of excited states with close excitation energies may be essential.



Chapter 11
Ionization in Helium and Argon Gas
Discharge Plasma

Abstract Ionization processes in a helium and argon gas discharge plasma are
analyzed for single and stepwise ionization in electron-atom collisions. The rates
of ionization processes and the equilibrium reduced electric field strength as a func-
tion of the atom number density are determined for helium and argon plasmas.

11.1 Single Ionization of Atoms in Helium Gas Discharge
Plasma

Single ionization of atoms in a gas discharge plasma proceeds according to the
scheme

e + A → 2e + A+, (11.1.1)

and stepwise ionization proceeds through excited atom states according to the scheme

e + A → e + A∗, e + A∗ → 2e + A+, (11.1.2)

It is convenient to describe the rate of single ionization in a gas discharge plasma by
the first Townsend coefficient (8.1.1), and the values of the first Townsend coefficient
in helium and argon are given in Figs. 8.3 and8.4. Evidently, stepwise ionization
dominates in a gas discharge plasma if the number density of excited atoms is not
low.

It is of importance for single ionization that the electron distribution function by
energy drops sharply after the threshold of excitation of each atom level. From this
it follows that at low electric field strengths stepwise ionization dominates usually.
We first determine the dependence of the first Townsend coefficient in helium on the
reduced electric field strength at not large electric fields. This allows us to understand
the role of the electron distribution fall with an increasing electron energy due to
excitation process in gas ionization.

Let us determine the behavior of the energy distribution function electrons above
the threshold of excitation that has form (6.5.2) [38, 83] not far from the atom
excitation threshold �ε
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f0(ε) = f0(�ε) exp(−S), (11.1.3)

and in the quasiclassical approach is valid if the criterion (S′)2 >> S′′ holds true. In
this case we obtain formula (6.5.3) [83] for the function S that follows from solution
of equation (6.5.1) near the excitation threshold

S = κ

(

ε − �ε

�ε

)5/4

, κ = 2vo

5a

√

3
g∗
go

νqνea,

where vo is the electron velocity at the excitation threshold, a = eE/me, the quench-
ing rate is νq = Nkq , where N is the number density of atoms, g∗, go are the statis-
tical weights of an atom in the ground and excited states, kq is the rate constant of
quenching of a given state of the helium atom by electron impact with transition in
the ground atom state, and νea = Nvoσ

∗
ea is the rate of elastic electron-atom scatter-

ing, so that σ ∗
ea is the diffusion cross section of electron-atom elastic scattering. As

is seen, this quasiclassical solution is valid, if κ � 1.
The first Townsend coefficient α, as well as the ionization rate constant of atoms

by electron impact in an electric field, is proportional to the electron distribution
function at the atom ionization potential. The electron distribution function drops
with an increasing electron energy, and on the basis of formula (6.5.2) the isotropic
part of the electron distribution function at the ionization threshold f0(J ) may be
represented as

f0(J ) ∼ exp

[

−
∑

i

κi

(

J − �εi

�εi

)5/4
]

, (11.1.4)

where κi is given by formula (6.5.2) for a given state, and �εi is the excitation
energy of this state. One can convince that highly excited or Rydberg states with
large principal quantum numbers n do not give not a contribution to this sum because
it is∼ n−15/4. Hence, because mostly s and p states of excited electron in the helium
atoms partake in this coupling, highly excited states do not give a contribution to the
drop of the electron distribution function.

As it follows from the above analysis, the drop of the electron distribution func-
tion in an electron energy space is determined at the atom ionization potential by a
restricted number of excited atom states. We below remain in the sum of formula
(11.1.4) only 23S, 21S and 21P states, and the parameters of this and previous formu-
las for the drop of the electron distribution function above the corresponding excita-
tion threshold are given in Table11.1. Assuming that quenching of metastable states
23S and 21S by electron impact in the ground atom state results from exchange colli-
sions, i.e. an incident electron replaces the bound excited electron, we obtain almost
identical quenching rate constants of 21S state for a slow electron kq ≈ 3·10−9 cm3/s
as it take place for 23S-state [198]. Quenching of the resonantly excited state 21P
by electron impact is determined by the dipole-dipole interaction that gives for the
quenching rate constant with transition in the ground state kq = 8 ·10−8 cm3/s [40].

http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_6
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Table 11.1 The parameters of a sharp decrease of the energy distribution function of electrons due
to three excited states of the helium atom

State 23S 21S 21P

�εi (eV) 19.82 20.62 21.22

σea (Å2) 2.7 2.7 2.6

kq (10−9 cm3/s) 3 3 8

κi 270/x 150/x 130/x

Si (J ) 45/x 20/x 14/x

Here �εi is the excitation energy of a given state (the ionization potential of the helium atom is
J = 24.59 eV), σea is the diffusion cross section of elastic electron-atom scattering at the threshold
of an indicated excitation, kq is the rate constant of quenching of this state in collisions with a slow
electron with the atom transition in the ground state, x = E/N is the reduced electric field strength
given in Td (1 Td = 10−17V · cm2), the quantities κi and Si (J )are given by formulas (11.1.3) and
(6.5.2) respectively

These quenching rate constants are used for evaluation the parameters represented
in Table11.1.

On the basis of the data of Table11.1, assuming the first Townsend coefficient to
be proportional to the distribution function at the atom ionization potential α(x) ∼
f0(J ), we obtain the dependence of the first Townsend coefficient α on the reduced
electric field strength in the form

α

Na
= C exp

(

−80

x

)

(11.1.5)

Figure11.1 gives comparison of the measured values of the reduced first Townsend
coefficient [43, 345–347] with calculated ones on the basis of this formula (11.1.5).
From this comparison one can find the appropriate constant in formula (11.1.5)
C = 0.2Å2.

In evaluating the ionization rate for helium atoms by electron impact in a gas
discharge plasma in the range 10–100Td, we assume that the dependence of the first
Townsend coefficient α on the reduced electric field strength x = E/N is determined
by jumps of the logarithm of the electron distribution function near corresponding
thresholds of atom excitation. As it follows from the data of Fig. 11.1, thismechanism
leads to amore or less right this dependence.Nevertheless, amore deep analysis of the
electron distribution function testifies about its specific dependence on the electron
energy. Indeed, let us use the approximation (3.2.8) for the diffusion cross section of
electron scattering on the helium atom that is compared with the experimental cross
sections [134] in Fig. 3.1. We below use the approximation (3.2.8) in the kinetic
equation (6.5.1) for the electron distribution function.

The limit of low electron number densities corresponds to the Druyvesteyn case
[273, 289] for the electron distribution function, where the diffusion cross section
of electron-atom is independent of the electron energy. In this limiting case we have
for the electron distribution function

http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_6
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Fig. 11.1 The reduced first Townsend coefficient as a function of the reduced electric field strength
in the range of low strengths. Filled squares correspond to measured data, which collected in [43]
and are averaged now, and filled circles relate to values calculated on the basis of formula (11.1.5)
with C = 0.2Å2

f0 = B exp

(

−ε2

ε2o

)

, εo =
√

M

3me
eEλ, ε ≤ εc, εc = 10 eV, (11.1.6)

where B is the normalization coefficient, λ = 1/(Naσ ∗
ea), and in the helium case

εo = 0.82x, ε ≤ εc, (11.1.7)

where the characteristic energy εo is measured in eV, and the reduced electric field
strength x = E/Na is expressed in Td. Next, at more high electron energies ε ≥ εc

the electron distribution function has the form

f (ε) = f (εc)
(ε

ε

)−γ

, ε ≥ εc, γ = 6A2me

e2x2M
≈ 300

x2
(11.1.8)

The distribution function at the energy which is equal to the atom ionization potential
is given in Fig. 11.2.

We consider the ionization process in a range 10 Td < x < 100 Td. One can see
that according to formulas (11.1.6), (11.1.7), (11.1.8) the variation of the electron
distribution function below the excitation threshold of the helium atom is essential
on the lower edge of the indicated range of reduced electric field strengths. As a
result, we obtain for the reduced first Townsend coefficient

α

Na
= σo exp

(

−80

x
− 150

x2

)

· 2.46−γ , γ = 300

x2
, (11.1.9)
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Fig. 11.2 The reduced first Townsend coefficient as a function of the reduced electric field strength
in the range of low strengths. Filled squares correspond to measured data, which collected in [43]
and are averaged now, and filled circles relate to values calculated on the basis of formula (11.1.5)
with C = 0.2Å2

Fig. 11.3 The reduced first Townsend coefficient as a function of the reduced electric field strength
in the range of low strengths. Filled circles correspond to measured data [43], and filled triangles
relate to values calculated on the basis of formula (11.1.9)

where σo = 2.5Å2. The results on the basis of this formula are compared with
experimental data in Fig. 11.3. As is seen, formula (11.1.9) is found in a rough
accordance with experimental data.

We above consider ionization of helium in an external electric field in the range
of the electric field strengths 10 Td < x < 100 Td, where the ionization process
proceeds at the tail of the energy distribution function of electrons. The ionization
process corresponds to direct atom ionization by electron impact according to the
scheme
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e + He → 2e + He+, (11.1.10)

and atomic ions He+ result from this process.

11.2 Stepwise Ionization of Atoms in Helium Gas Discharge
Plasma

The main contribution to stepwise ionization is determined by the metastable state
He(23S) because of higher concentration for such excited atoms. To convince in
this, we find below the contribution to atom ionization by electron impact through
the metastable state 21S in the regime of high electron number densities.

Let us represent the balance equation for the rate of formation of electrons in the
form

d Ne

dt
= Kion Ne Na,

and this is the definition of the rate constant Kion of stepwise ionization. Next,
expressing this equation through the number density of metastable atoms Nm in the
23S state, we obtain for this balance equation

d Ne

dt
= kion Ne Nm,

where kion is the rate constant of ionization of the metastable atom in the 23S state by
electron impact. Comparing these balance equations, we have for the rate constant
of stepwise ionization

Kion = cmkion = kex kion

kQ + kion
, (11.2.1)

where we use formula (11.2.6) for the concentration of metastable atoms. Figure11.4
gives the values of this rate constant as a function of the electron temperature.

We now find the criterion of stepwise ionization in a helium gas discharge plasma
restricted by the metastable state He(23S) only. Let us introduce a typical time τ

of decay of metastable atoms through other decay channels, and the criterion of
stepwise ionization has the form

τ � 1

(kQ + kion)Ne
,

where kQ and kion are the rate constants of quenching and ionization of themetastable
state by electron impact correspondingly. From the above formula we have for the
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Fig. 11.4 Stepwise ionization rate constant of helium atoms by electron impact depending on the
electron temperature Te according to formula (11.2.1) at the electron concentration ce = 10−6 if
ionized helium is located in a constant electric field. The partial rate constant of ionization through
the metastable 23S state is given by open circles, the partial rate constant of ionization through
the metastable 21S state is marked by filled circles, the total rate constant of stepwise ionization is
represented by stars

criterion of stepwise ionization

(Neτ)−1 � kQ + kion, (11.2.2)

Let us consider firstly the regime of low electron concentrations. Basing on the
Druyvesteyn distribution function (6.1.9) of electrons by energy and using the rate
constant of atom ionization by electron impact (3.6.16) near the ionization threshold
we have for the averaged rate constant of atom ionization

kion =
∫

√

2ε

me
· 10e4(ε − J )

9εJ 2 f0(ε)dε,

where the distribution function f0(ε) is given by formula (6.1.9) and is normalized
to one

f0(ε)dε = 2

ε
3/2
o �(3/4)

exp

(

−ε2

ε2o

)

ε1/2dε, εo = eEλ

√

M

3me

Assuming that ionization proceeds mostly near the threshold, i.e. the integral con-
verges at εo 
 J , and taking the integral at this assumption, we obtain

kion = 0.64
√

εo

me

e4

J 2 exp

(

− J 2

ε2o

)

(11.2.3)
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This formula holds true at εo 
 J where the electron energies near the atom ion-
ization threshold give the main contribution to the above integral. In addition, this
formula corresponds to ionization of excited atoms for which the atom ionization
energy is small compared to the excitation energy of the ground atom state where the
electron distribution function of electrons by energy drops sharply with an increasing
electron energy.

In particular, considering ionization of the metastable helium atom He(23S), we
have J = 4.77 eV. Taking the average cross section of electron-atom diffusion cross
section σ ∗

ea = 6Å2, we have εo = 0.82x , where εo is given in eV, and the reduced
electric field strength x is measured in Td. In this case formula (11.2.3) takes the
form

kion = ko
√

x exp

(

−33.8

x2

)

, (11.2.4)

where ko = 2.2·10−8 cm3/s. In this considerationwe are based on the approximation
(3.2.8) for the diffusion cross section of electron-atomscattering and take into account
that at energies which determine ionization of helium atoms by electron impact, the
cross section of elastic electron-atom collision, is independent of the collision energy.

We now consider the case of a high electron number density with the Maxwell
distribution function of electrons above the threshold of atom ionization, beingguided
by ionization of excited atoms. Applying formula (3.6.16) for the ionization rate
constant kion of metastable atoms He(23S) and He(21S) by electron impact, using
the data of Table3.5 and taking the electron temperature Te < 5 eV that is typical
for gas discharge, we obtain for the ionization rates of these atoms

kion(23S) = 1.5 ·10−7
√

Te exp

(

−4.77

Te

)

, kion(21S) = 2.2 ·10−7
√

Te exp

(

−3.97

Te

)

(11.2.5)
where the rate constant is expressed in cm3/s, and the electron temperature Te is
given in eV. The rate constant of quenching of the metastable atom He(23S) by
electron impact in cm3/s in accordance with formula (10.3.13) takes the form

kQ = 3 · 10−9 + 5 · 10−7 exp(−1.398/Te)

1 + 5 exp(−0.602/Te)

The dependencies on the electron temperature for the rate constants kQ and kion are
given in Fig. 11.5 in accordance with formulas (10.3.13) and (11.2.5).

Since according to Fig. 11.5 the rate constant of ionization of the metastable atom
He(23S) by electron impact is comparable with the rate constant of quenching of this
state in other channels, ionization of metastable atoms may give a contribution to the
population of these excited atoms in a gas discharge plasma. Indeed, transforming
formula (10.3.9) for the concentration cm of metastable atoms in the state (23S), we
have

http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_10
http://dx.doi.org/10.1007/978-3-319-11065-3_10
http://dx.doi.org/10.1007/978-3-319-11065-3_10


11.2 Stepwise Ionization of Atoms in Helium Gas Discharge Plasma 299

Fig. 11.5 The rate constant kQ of quenching of the metastable atom He(23S) by electron impact
in a helium gas discharge plasma and the rate constant kion of ionization of the metastable atom
He(23S) by electron impact as a function of the electron temperature

cm = kex

kQ + kion
(11.2.6)

Figure11.6 gives the concentration cm ofmetastable atoms He(23S) calculatedon the
basis of formula (11.2.6) with using formula (10.2.3) for the excitation rate constant,
formula (10.3.13) for quenching with transition in other bound states and formula
(11.2.5) for ionization ofmetastable atoms.As is seen, ionization ofmetastable atoms
does not change significantly the concentration of metastable atoms under typical
parameters of a helium gas discharge plasma.

In consideration stepwise ionization of a helium gas discharge plasma we assume
that themain contribution to stepwise ionization is determined by themetastable state
He(23S). In order to ascertain the validity of this, we determine the contribution of
the state He(21S) in stepwise ionization of helium. Let us introduce the ratio of the
ionization rates from the states He(21S) and He(23S) as

y = N (21S)kion(21S)

N (23S)kion(23S)
, (11.2.7)

and according to formula (10.3.9)

N (21S)

N (23S)
= exp(−0.796/Te)

3 + 5 exp(−0.602/Te)
, (11.2.8)

where we consider the regime of a high electron number density, and the electron
temperature is expressed in eV. The rate constants are taken according to the scheme
of Fig. 10.8 and the principle of detailed balance (3.3.7). In addition, we use formula
(11.2.5) for the ionization rate constants of atoms in the states He(23S) and He(21S)

http://dx.doi.org/10.1007/978-3-319-11065-3_10
http://dx.doi.org/10.1007/978-3-319-11065-3_10
http://dx.doi.org/10.1007/978-3-319-11065-3_10
http://dx.doi.org/10.1007/978-3-319-11065-3_10
http://dx.doi.org/10.1007/978-3-319-11065-3_3
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Fig. 11.6 Concentration ofmetastable heliumatoms in a gas discharge plasma of helium in an exter-
nal electric field as a function of the reduced electric field at the electron concentration ce = 10−6.
The concentrations of metastable atoms He(23S) are labelled by filled circles, the concentrations of
metastable atoms He(21S) are marked by stars. For comparison the concentrations of metastable
atoms He(23S) in neglecting the ionization decay of these atoms are represented as open circles

which are obtained on the basis of formula (3.6.16) and are valid at Te < 5 eV. From
this we find for the parameter

y = N (21S)kion(21S)

N (23S)kion(23S)
= 0.48

1 + 1.67 exp(−0.602/Te)
(11.2.9)

Figure11.7 gives the temperature dependence for the contribution y/(1+ y) of ion-
ization ofmetastable atoms He(21S) to stepwise ionization of a helium gas discharge
plasma for the regime of a high electron number density. From this it follows that the
main contribution to stepwise ionization of a helium gas discharge plasma follows
from excitation of the metastable state He(23S).

In the case of the Maxwell distribution function of electrons if highly excited
atoms are in equilibrium with electrons, the asymptotic rate constant of ionization is
given by formula (3.8.8)

kas = 2
gi

go

mee10

�3T 3
e

exp

(

− J

Te

)

according to the equilibrium for weakly bound and free electrons. As it is given by
(3.8.4)

C = 4 · 10±0.2

http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_3
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Fig. 11.7 The ratio of the rates of ionization of helium atoms by electron impact in a helium gas
discharge plasma through formation of metastable atoms in states 21S and 23S depending on the
electron temperature Te

This accounts for a hydrogenlike spectrum for excited states. In addition, the asymp-
totic formula ignores radiative processes. This is fulfilled partially for metastable
helium atoms, where in a wide range of electron number densities their decay results
from transitions in the He(21P) statewith their subsequent radiation. Formula (3.8.8)
gives for the ionization rate constant κion in the case of ionization themetastable atom
He(23S) by electron impact in this limiting case (C = 4, go = 3, gi = 2)

κion = 6.6 · 10−4

T 3
e

exp

(

−4.77

Te

)

, (11.2.10)

where κion is expressed in cm3/s, and Te is given in eV.
Using formula (11.2.5) for the ionization rate constant of the metastable atom

He(23S) by electron impact and formula (11.2.10) for the ionization rate constant
in the asymptotic limit, we find for their ratio

� = kion(23S)

κion
= 6.5 · 10−4T 7/2

e

4.77 + Te
(11.2.11)

Figure11.8 gives the temperature dependence for this ratio in accordance with for-
mula (11.2.11). As is seen, in the range of real electron temperatures the limiting
case of the metastable atom He(23S) by electron impact is not realized.

Being guided by a gas discharge plasma of glow discharge with Ne 
 1012 cm−3,
we obtain the role of radiation in the helium gas discharge plasma by resonantly
excited atoms He(21P). As a result, themain contribution to ionization of this plasma
follows from metastable helium atoms He(23S) and the ionization rate constant
is small compared to the asymptotic ionization rate constant (3.8.8) that we have
in the case of thermodynamic equilibrium between excited states and ions. Let us

http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_3
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Fig. 11.8 The ratio of the ionization rates the metastable atom He(23S) by electron impact through
single collisions and in participation of more excited atoms according to formula (11.2.11)

consider another limiting case when one can ignore radiative processes compared
to collision ones for excited helium atoms in He(21P) and He(23P) states. This
takes place at high electron number density Ne � 1013 cm−3 and corresponds to arc
discharge.Then thermodynamic equilibrium is established for excited atomstates and
their population is determined by the Boltzmann formula (2.1.5). Correspondingly,
formula (3.8.8) for the ionization rate constant is valid in this case.Webelowascertain
which excited states give the main contribution to this ionization rate constant.

Using the Boltzmann formula (2.1.5) for the population of excited states of helium
atoms and formula (3.6.16) for the ionization rate constant from each state, we obtain
for the total ionization rate constant kion

kion = kion(23S) ·
∑

i

gi

3

(

4.77

J

)2

, (11.2.12)

where kion(23S) is the rate constant of atom ionization by electron impact from the
state 23S, Ji is the ionization potential for i th state that is expressed in eV, gi is
the statistical weight of this states 4.77 eV and 3 are the ionization potential and
statistical weight for the 23S state. From this one can find that taking into account
the states 23S, 21S, 23P and 21P increases the ionization rate constant in 9 times
compared with the case of ionization of the 23S state. The contribution of the next
group of levels with the principal quantum number n = 3 for a valence electrons
(the ionization potentials for these states ranges from 1.5 up to 1.87eV) is 113
compared to that from the 23S state. Note that according to formula (11.2.11) the
contribution of the 23S state to ionization of the equilibrium plasma is 3 · 10−4 at
the temperature Te = 1 eV, 1 · 10−3 at the temperature 1.5 eV, and 4 · 10−3 at the
electron temperature 2 eV. One can conclude from this that excited states with n > 3
give the main contribution to ionization of the equilibrium plasma. Since these states

http://dx.doi.org/10.1007/978-3-319-11065-3_2
http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_2
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are not important for ionization processes in a nonequilibrium plasma, we have that
the formula (3.8.8) leads to overvaluation of the ionization rate constant of atoms by
electron impact in a nonequilibrium plasma.

11.3 Single and Stepwise Ionization of Atoms in Argon Gas
Discharge Plasma

In considering ionization in an argon gas discharge plasma, we analyze two limiting
cases for the number density of electrons, as well as in the case of the helium gas
discharge plasma. Namely, in the limit of a low electron number density, where
electron-electron collisions are negligible, the ionization process proceeds from the
ground atom state, and in the other limit of a high electron number density the
ionization process has a stepwise character and proceeds through excited states. We
first find a drop of the energy distribution function of electrons f0(ε) above the
excitation threshold �ε due to excitation of argon atom in states with the electron
shell 3p54s, that according to formulas (6.5.2) and (6.5.3) is given by

f0(ε) = f (�ε) exp(−S), S = κ

(

ε − �ε

�ε

)5/4

, κ = 2vo Na

5a

√

3

∑

i gi ki
q

go
νqkea,

(11.3.1)
where ki

q is the rate constant of quenching of i th state with transition in the ground

state. Restricting by states with the electron shell 3p54s, we have on the basis of the
Table12.1 data

∑

i gi ki
q = 8.0·10−9 cm3/s. In addition,we have vo = 2.0·108 cm/s,

the rate constant of electron-atom elastic collision at the excitation threshold is kea =
2.9 · 10−7 cm3/s, that gives in this case

κ = 407

x
, (11.3.2)

where the reduced electric field strength x is expressed in Td. This gives at the
ionization threshold

S(J ) = κ ·
(

J − �ε

�ε

)5/4

= 110

x
, (11.3.3)

where J is the atom ionization potential, and we use the average excitation energy
�ε = 11.65 eV for the state groupwith the electron shell 3p54s. Taking the threshold
dependence for the ionization rate constant by electron impact kion(ε) ∼ ε − J , we
have for the total ionization rate constant

http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_12
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Fig. 11.9 The reduced first Townsend coefficient α/Na as a function of the reduced electric field
strength x = E/Na . Signs-measured values given in Fig. 5.2, solid curve—evaluation on the basis
of formula (11.3.5) with C = 5 · 10−19 cm2

kion ∼
∞

∫

J

exp[−S(ε)](ε − J )dε ∼ x2 exp[−S(J )] = x2 exp(−110/x) (11.3.4)

We also determine the reduced average energy ε of a released electron as

ε − J

J
=

∫ ∞
J (ε − J )2dε exp[−S(ε)]
∫ ∞

J (ε − J )dε exp[−S(ε)] = x

270

From this it follows that formula (11.3.4) is valid at x 
 300 Td. Taking in the range
20 Td < x < 300 Td the dependence of the electron drift velocity in argon we ∼ x
on the reduced electric field strength x according to Fig. 5.2, we obtain

α(x) = kion

we
= Cx exp(−110/x) (11.3.5)

Figure11.9 compares measured values of the reduced first Townsend coefficient in
accordance with Fig. 5.2 and evaluated values on the basis of formula (11.3.5) with
C = 5 · 10−19 cm2.

http://dx.doi.org/10.1007/978-3-319-11065-3_5
http://dx.doi.org/10.1007/978-3-319-11065-3_5
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The stepwise character of ionization in an argon gas discharge plasma proceeds
through ionization of excited atoms and takes place at not very small number density
of excited atoms. Let us estimate the lower limit for the concentration of excited
argon atoms being guided by the electric field strength 8–10 Td. We have according
to Table8.1 the rate constant of single ionization to be 6 ·10−20 cm3/s at the reduced
electric field strength 10 Td. Next, according to Fig. 6.9 the electron temperature
Te = 5 eV corresponds to the reduced electric field strength x = 4 Td in the regime
of high electron number densities. At this temperature formula (3.6.16) gives kion =
1.5 · 10−7 cm3/s for the rate constant of atom ionization in the state 3P2 by electron
impact. As it follows from Fig. 5.4, stepwise ionization is realized in an argon gas
discharge plasma with the concentration of electrons above 1 ·10−9, while according
to Fig. 10.20 the equilibrium concentration of metastable atoms is 6 · 10−5 at this
electron temperature. Therefore one can expect a compared electron concentration
that justifies the regime of a high electron number densities used for the above
estimation.

In determination the rate of stepwise ionization, we reduce the ionization rate
constant Kion to the ground state, so that the balance equation term accounted for
this process has the form

d Ne

dt
= Kion Ne Na,

where Na is the number density of atoms in the ground state. According to this
definition, the ionization rate constant is given by

Kion =
∑

i

ci k
i
ion, (11.3.6)

where ci is the concentration of excited atoms in i th state, and ki
ion is the rate constant

of ionization of atoms in this state.
Let us consider the case of not high electron number density Ne 
 1012 cm−3

which corresponds to a gas discharge plasma of glow discharge. In this case the
concentrations of resonantly excites states 3P1 and 1P1 of argon atoms are small
compared with that of metastable atoms, and these states do not give the contribution
to stepwise ionization in this plasma. Applying formula (3.6.16) for ionization of
excited state, we note that this formula describes liberation of a classical s-electron,
and this electron is found now in 4s state. Let us apply formula (3.6.16) to each state
of the group 4s and accounts for c(3P0) = 0.2c(3P2). In the case under consideration
we assume for simplicity kion(3P2) = kion(3P0), and then formula (11.3.6) takes the
form

Kion = 1.2c(3P2)kion(3P2), (11.3.7)

where the argument indicates the state to which a given quantity relates. Figure11.10
contains the dependence of the stepwise ionization rate constant (11.3.7) on the

http://dx.doi.org/10.1007/978-3-319-11065-3_8
http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_5
http://dx.doi.org/10.1007/978-3-319-11065-3_10
http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_3
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Fig. 11.10 The ionization rate constant of ionization of argon atoms by electron impact under
the action of an electric field. The rate constant of stepwise ionization is evaluated on the basis of
formula (11.3.7) and the electron concentration ce = 10−6, values of the rate constant of single
ionization are taken from Table8.1

reduced electric field strength for an argon gas discharge plasma with using the
connection between the reduced electric field strength and the electron temperature
in an argon gas discharge plasma given in Fig. 10.3. In addition, the single ionization
rate constant is given in this Fig. 11.10 in accordance with Table8.1 data. As is seen,
stepwise ionization is realized at lower electric field strengths. The reason of this
results from a not low number density of excited atoms that optimizes ionization of
atoms by electron impact.

We now consider ionization equilibrium in an argon gas discharge plasma with
molecular ions as a basic ion type, so that the channel of electron destruction corre-
sponds electron-ion dissociative recombination according to the scheme

e + Ar+
2 → A + A∗, (11.3.8)

and the ionization balance equation takes the form in the regime of low electron
number densities

kion Na = αNe (11.3.9)

Here kion is the rate constant of single ionization of argon atoms by electron impact
which values are given in Table8.1, and α is the coefficient of dissociative recombi-
nation. Statistical averaging of measured data [214, 309, 424, 425, 427–431] gives
for the dissociative recombination coefficient at room temperature

α(Ar+
2 ) = (7 ± 2) · 10−7 cm3/s

The ionization balance equation (11.3.9) gives for the equilibrium electron con-
centration

http://dx.doi.org/10.1007/978-3-319-11065-3_8
http://dx.doi.org/10.1007/978-3-319-11065-3_10
http://dx.doi.org/10.1007/978-3-319-11065-3_8
http://dx.doi.org/10.1007/978-3-319-11065-3_8
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ce = kion

α(Ar+
2 )

,

and in determination the equilibrium electron concentration ce it is important the
temperature dependence of the dissociative recombination coefficient α(Ar+

2 ). An
experience inmeasurement of this dependence [429, 430, 432] shows that this depen-
dence is different for cases, where the electron and gas temperatures are identical or
different. Roughly, this dependence has the form

α ∼ T −1.5
e , Te = T ; α ∼ T −0.5

e , Te � T, (11.3.10)

where T is the gas temperature. Basing on the second case and using the data of
Table8.1 for kion and Table7.4 for the effective electron temperature, we obtain
ce = 4 ·10−8 at the electric field strength E/Na = 10 Td and higher values at higher
electric field strengths. Comparing this with data of Fig. 10.1, we obtain that this
ionization equilibrium with dissociative electron-ion recombination corresponds to
the regime of high electron number densities.

11.4 Thermodynamic of Stepwise Ionization in Gas Discharge
Plasma

The above analysis shows violation of the thermodynamic equilibrium in a gas dis-
charge plasma between atoms in the ground and excited states if this equilibrium is
determined by electron-atom collisions in the regime of a high electron number den-
sity where the Maxwell distribution function of electrons holds true for the most part
of electrons. This results from violation of the Maxwell form of the electron distrib-
ution function at its tail. The thermodynamic equilibrium may violate also between
excited states if emission of excited atoms is a strong process. We now analyze the
equilibrium for free electrons in the regime of a high electron number density if we
assume stepwise ionization through the metastable state. Then equilibrium for free
electrons is established according to the scheme

e + He(23S) → 2e + He+, 2e + He+ → e + He∗ (11.4.1)

Because a formed excited state He∗ may differ from the state He(23S), the equi-
librium number density of electrons differs from that according to the Saha formula
(2.1.8). The rate constants of processes for the scheme (11.4.1) are given by formulas
(11.2.5), (3.8.3) and (3.8.4) which have the form

Kei = 1.0 ∗ 10−26

T 9/2
e

, kion = 2.1 · 10−7√Te

1 + 0.023Te
exp

(

−4.77

Te

)

, (11.4.2)
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Fig. 11.11 The equilibrium ionization constant for equilibrium between free electrons and
metastable atoms He(23S) according to formulas (11.4.3) and (11.4.4)

where Kei is expressed in cm6/s, kion is given in cm3/s and is determined by for-
mula (11.2.5), the electron temperature is expressed in eV. From this we find the
equilibrium constant between free electrons and metastable atoms that follows from
the balance equation for equilibrium (11.4.1) in a helium quasineutral gas discharge
plasma

d Ne

dt
= −Kei N 3

e + kion Ne Nm

this gives for the equilibrium constant χ between electrons and metastable atoms
He(23S)

χion ≡ N 2
e

Nm
= kion

Kei
= 2.1 · 1019T 5

e

1 + 0.023Te
exp

(

−4.77

Te

)

, (11.4.3)

One can compare this equilibrium constant with that for the ionization equilibrium
according to the Saha formula (2.1.8)

χSaha ≡ gegi

gm

(

meTe

2π�2

)3/2

exp

(

− J

Te

)

= 4.0·1021T 3/2
e exp

(

−4.77

Te

)

, (11.4.4)

where the electron temperature is given in eV. Figure11.11 gives the dependence
on the electron temperature for the ionization equilibrium constant between free
electrons and metastable atoms He(23S) for equilibrium (11.4.1) and the Saha equi-
librium in accordance with formulas (11.4.3) and (11.4.4). In addition we give in
Fig. 11.12 the electron concentration under thermodynamic equilibrium between
free electrons and metastable helium atoms He(23S) in accordance with equilib-
rium (11.4.1).We assume theMaxwell distribution function of electrons which cause

http://dx.doi.org/10.1007/978-3-319-11065-3_2
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Fig. 11.12 The equilibrium concentration of free electrons in helium in the case of the Maxwell
distribution function of electrons and the scheme (11.4.1) for electron equilibrium. The number
density of helium atoms is : 1—Na = 1016 cm−3, 2—Na = 1017 cm−3

Fig. 11.13 The ionization equilibrium constant in an argon gas discharge plasma of a high electron
number density for equilibrium between free electrons and metastable argon atoms Ar(3P2) in
accordance with formula (11.4.7) for an equilibrium plasma and formula (11.4.9) for a nonequilib-
rium plasma

formationof free electrons as a result of electron collisionswithmetastable atoms, and
the number density of metastable atoms is determined by formula (10.3.9). Though
according to this formula the number density ofmetastable atomsdepends on the elec-
tron concentration, this dependence is weak. Next, the concentration of metastable
atoms in the range of the electron temperatures of Fig. 11.12 (Te = 0.8 − 2 eV) is
small compared to the electron concentration and ranges from cm = 6 · 10−13 at
Te = 0.8 eV up to cm = 1 · 10−6 at Te = 2 eV.

We give in Fig. 11.13 the electron concentration under thermodynamic equi-
librium between free electrons and metastable helium atoms He(23S) in accor-
dance with equilibrium (11.4.1). We assume the Maxwell distribution function of

http://dx.doi.org/10.1007/978-3-319-11065-3_10
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electrons which cause formation of free electrons as a result of electron collisions
with metastable atoms, and the number density of metastable atoms is determined by
formula (10.3.9). Though according to this formula the number density of metastable
atoms depends on the electron concentration, this dependence is weak. Next, the con-
centration of metastable atoms in the range of the electron temperatures of Fig. 11.13
(Te = 0.8 − 2 eV) is small compared to the electron concentration and ranges from
cm = 6 · 10−13 at Te = 0.8 eV up to cm = 1 · 10−6 at Te = 2 eV. We also note that
the scheme (11.4.1) holds true if the criterion

Kei N 2
e τ � 1 (11.4.5)

is fulfilled, where τ is a typical time of electron loss due to other channels. Usually
this criterion is violated.

We also consider the ionization equilibrium for excited argon atoms in an argon
gas discharge plasma that by analogy with the helium case (11.4.1) has the form

e + Ar(3p54s) → 2e + Ar+, 2e + Ar+ → e + Ar∗ (11.4.6)

By analogy with formula (11.4.4), the ionization equilibrium constant in an argon
gas discharge plasma according to the Saha formula (2.1.8) has the following form
with respect to the excited argon atom state 3p54s(3P2)

χSaha = 7.2 · 1021T 3/2
e exp

(

−4.21

Te

)

, (11.4.7)

where index “m” corresponds to the atom state 3p54s(3P2), and the electron tem-
perature Te is expressed in eV. If we assume that atom ionization in an argon gas
discharge plasma is determined by step ionization of atoms in excited states with the
electron shell 3p54s, the equilibrium constant for ionization has the form

χion ≡ N 2
e

Nm
=

∑

i
ci ki

ion

cm Kei
, (11.4.8)

where ci is the concentration of excited atoms in i th state, cm is the concentration of
3P2 atoms, ki

ion is the rate constant of ionization by electron impact for excited atoms
in i th state. In particular, in a rare argongas discharge plasma,where the concentration
of excited atoms in resonantly excited states 3P1 and 1P1 is small compared with
that in the state 3P2, formula (11.4.8) takes the form [c(3P0) = 0.2c(3P2)]

χion ≡ N 2
e

Nm
= kion

Kei
= 3.2 · 1019T 5

e

1 + 0.026Te
exp

(

−4.21

Te

)

, (11.4.9)

Figure11.13 contains the dependence of the ionization equilibrium constant
between free electrons and metastable atoms Ar(3P2) in an argon gas discharge

http://dx.doi.org/10.1007/978-3-319-11065-3_10
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Fig. 11.14 The ionization equilibrium constant (11.4.10) in a helium and argon gas discharge
plasma of a high electron number density for equilibrium between free electrons and atoms of
helium and argon in the ground state. The data of Figs. 11.11, 10.12, 11.13 and10.21 are used

plasma on the electron temperature according to formula (11.4.7) for an argon equi-
librium plasma and on the basis of formula (11.4.9) for a nonequilibrium argon
plasma. Note that under equilibrium conditions the ionization rate constant of argon
atoms by electron impact is given by formula (3.8.8) in a gas discharge plasma of
a high electron number density. As is seen from Figs. 11.11 and11.13, in a real gas
discharge plasma of helium and argon equilibrium conditions are not fulfilled.

We also give in Fig. 11.14 the ionization equilibrium constant

ξion ≡ N 2
e

Na
= cχion (11.4.10)

related to the number density Na of atoms in the ground state.

11.5 Ionization in Argon Gas Discharge Plasma Involving
Excited Atoms

In consideration the ionization processes in a gas discharge plasma we above assume
that these processes are caused by collisions with electrons. In reality, there are
other mechanisms of ionization, and we consider them briefly for a helium gas
discharge plasma due to presence of metastable atoms in this plasma. In particular,
if an admixture of argon is located in helium, the Penning process (3.7.3) proceeds
according to the scheme

He(23S) + Ar(1S) → e + Ar+(22P) + He(11S) + 4.06 eV, (11.5.1)

http://dx.doi.org/10.1007/978-3-319-11065-3_10
http://dx.doi.org/10.1007/978-3-319-11065-3_10
http://dx.doi.org/10.1007/978-3-319-11065-3_3
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Fig. 11.15 The ratio of the electron and argon atom concentrations for the identical contribution of
stepwise ionization and the Penning process (11.5.1) to ionization of a helium gas discharge plasma

and the rate constant of this process is equal to kP = 8 · 10−11 cm3/s. The identical
contribution of the Penning process and stepwise ionization takes place at the relation
between the electron ce and argon cAr concentrations

ce

cAr
= kP

kion
, (11.5.2)

where the rate of ionization of metastable atoms by electron impact is given by
formula (11.2.5). Figure11.15 represents the dependence of this quantity on the
electron temperature.

In the same manner, the Penning process

2He(23S) → e + He+(12S) + He(11S) + 14.4 eV (11.5.3)

may be of importance both for ionization in a helium gas discharge plasma and for
formation of fast electrons which increase the rate of excitation of helium atoms.
The rate constant of this process in thermal atomic collisions is [198] k(23S) =
(9 ± 1) · 10−10 cm3/s that is larger than the rate constant of the process (11.5.2)
by one order of magnitude. Correspondingly, comparing the rate of this process and
stepwise ionization of atoms by electron impact, we obtain that they become equal
at the ratio of the electron and metastable atom He(23S) concentration which is by
one order of magnitude higher than that for the ratio of electron and argon atom
concentrations given in Fig. 11.14. Hence, if the electron concentration exceeds the
concentration of metastable atoms He(23S) in a helium gas discharge plasma, the
Penning process (11.5.3) gives a small contribution to plasma ionization.

Onemore channel of ionization in a gas discharge plasma is associative ionization.
In the helium case it proceeds according to the scheme
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e + He(11S) → e + He(33D), He(33D) + He → He+
2 + e, (11.5.4)

and the process of associative ionization, the last process in this scheme, is char-
acterized by the cross section σas ≈ 2 · 10−15 cm2 [433–435]. This channel of
ionization is hampered in a gas discharge plasma because of the character of atom
excitation in this. Note that because of formation of molecular ions the ionization
threshold decreases from 24.59 to 23.07 eV. Nevertheless, associative ionization is
not of importance for helium and argon gas discharge plasmas.



Chapter 12
Helium and Argon Plasma in Positive
Column of Gas Discharge

Abstract Various types of ionization equilibrium in the positive column of gas
discharge are considered. Parameters of ionization equilibrium for helium and argon
gas discharge plasmas are found. Properties of a plasma of capillary discharge are
analyzed as an example of ionization equilibrium.

12.1 Schottky Regime for Ionization Equilibrium in Positive
Column

The Schottky regime of ionization equilibrium corresponds to the regime of a gas
discharge plasma located in a cylinder tube where formation of electrons results from
electron-atom collisions and their loss is due to motion of a plasma as a whole to
walls by ambipolar diffusion. The number of electrons assumes to be not large, so
that electric current does not create plasma non-uniformity including gas heating.
Under these conditions equation (8.1.1) of ionization balance takes place, and this
leads to the relation (8.2.6) between parameters of ionization balance

Nakion = αwe = 5.78Da

ρ2o
(12.1.1)

Here kion is the rate of atom ionization by electron impact, and the first Townsend
coefficient is α = Nakion/we, where we is the electron drift velocity, kion is the
ionization rate constant by electron impact, Da is the ambipolar diffusion coeffi-
cient. Solution of this equation determines the electric field strength that provides
the ionization equilibrium under given conditions. Since Da ∼ 1/Na , the reduced
electric field strength that follows from solution of this equation on the tube radius
ρo or the atom number density Na are included in the balance equation in the form
of the combination Naρo.

Applying this formula to the helium case, we use the electron drift velocity in
helium [260, 261] given in Fig. 5.1, the values of the first Townsend coefficient in
helium [341, 342] from Fig. 8.3 and the values of the ambipolar diffusion coefficient
from Fig. 7.15. Assuming that the basic sort of ions is He+, we give in Fig. 12.1 the

© Springer International Publishing Switzerland 2015
B.M. Smirnov, Theory of Gas Discharge Plasma, Springer Series on Atomic,
Optical, and Plasma Physics 84, DOI 10.1007/978-3-319-11065-3_12

315

http://dx.doi.org/10.1007/978-3-319-11065-3_8
http://dx.doi.org/10.1007/978-3-319-11065-3_8
http://dx.doi.org/10.1007/978-3-319-11065-3_5
http://dx.doi.org/10.1007/978-3-319-11065-3_8
http://dx.doi.org/10.1007/978-3-319-11065-3_7


316 12 Helium and Argon Plasma in Positive Column of Gas Discharge

Fig. 12.1 Reduced electric field strength for the Townsend mechanism of atom ionization (the
regime of low electron number densities) and basic atomic ions He+ in a plasma as a function of
the reduced number the density of helium atoms according to formula (12.1.1)

dependence of the reduced electric field strength x = E/Na on the reduced number
density of atoms Naρo in a helium gas discharge plasma in accordance with formula
(12.1.1) for the regime of a low number density of electrons.

In the same manner one can analyze the ionization balance equation for argon
in the case of the Townsend mechanism of ionization and in the regime of low
electron number density. We are based on the dependencies on the reduced electric
field strength for the electron drift velocity in argon from Fig. 5.2 and for the first
Townsend coefficient in argon from Fig. 8.4, and use the values of the ambipolar
diffusion coefficient in argon from Fig. 7.16, assuming that Ar+ is the basic ion sort
in an argon gas discharge plasma. On the basis of these data and formula (12.1.1) we

Fig. 12.2 Dependence of the reduced electric field strength on the reduced tube radius Naρo for
Townsend discharge in argon with basic ions Ar+. Arrows correspond to pressures 1 Torr and 10
Torr at the tube radius ρo = 1 cm
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represent in Fig. 12.2 the dependence of the reduced electric field strength x = E/Na

on the reduced number density of atoms Naρo in an argon gas discharge plasma in
the regime of a low number density of electrons at T = 300K.

It should be noted that the drift character of electron motion along the discharge
tube axis in the positive column requires the validity of the criterion (8.1.8)

ξ = αTef

eE
� 1

This allowsone to neglect bydiffusionof electronmotion for the gas discharge plasma
in comparison with drift motion of an electron. Using the values of parameters of
this formula in a helium gas discharge plasma, we find the dependence on the electric
field strength for of this parameter, that is given in Fig. 12.3. One can see that the
criterion (8.1.8) is fulfilled in the range of electric field strengths under consideration.

Thevalue 1/α is themean free path of electronswith respect to ionization. Formula
(12.1.1) for ionization equilibrium allows one to compare this mean free path of
electrons with the tube radius, if the Schottky character of ionization equilibrium
holds true. According to formula (12.1.1) this parameter is

αρo = 5.78Da

ρowe

Figure12.4 gives the dependence of the parameter αρo on the electric field strength
in a helium gas discharge plasma if the ionization equilibrium holds true and the
basic ion sort is He+

2 . As is seen, the mean free path of electrons with respect to
ionization is large compared to the discharge tube radius.

Fig. 12.3 The dependence of the parameter ξ = αTef /eE , defined in accordance with formula
(8.1.8), on the reduced electric field strength for Townsend discharge in helium
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Fig. 12.4 The ratio of the discharge tube radius to the electron mean free path with respect to atom
ionization at the Schottky character of ionization equilibrium in a helium gas discharge plasma

The Schottky regime corresponds to a loss of a plasma as a result of attachment
of electrons and ions to walls. This can be violated if molecular ions are present
in a gas discharge plasma and a loss of electrons and ions results from dissociative
recombination. In the helium case this possibility is problematic because dissociative
recombination of electrons and molecular ions He+

2 is effective for vibrationally
excited molecular ions. But it is possible for an argon gas discharge plasma where
the basic sort of ions is Ar+

2 . Then the Schottky regime of ionization equilibrium
according to formula (12.1.1) is realized if the rate of dissociative recombination
involving electrons and molecular ions Ar+

2 is less than the rate of plasma departure
to walls as a result of ambipolar diffusion, that is

αrec Ne � 5.78Da

ρ2o
≡ αwe (12.1.2)

Here αrec is the coefficient of dissociative recombination, Ne is the electron number
density. From this criterion it follows that the Schottky regime is realized at low
electron number densities. We are based on the dependencies on the reduced electric
field strength, and use the values of the ambipolar diffusion coefficient in argon from
Fig. 7.15, assuming that Ar+ is the basic ion sort in an argon gas discharge plasma.

In order to obtain numerical parameters of the criterion (12.1.2) under given
conditions,we use the right hand side of this criterion taking the electron drift velocity
in argon from Fig. 5.2 and for the first Townsend coefficient in argon from Fig. 8.4.
Considering weak discharge currents, we ignore the heating of the gas discharge
plasma. The coefficient of dissociative recombination is αrec = 7 × 10−7 cm3/s at
room temperature according to a sum of measurements [190]. Though the coefficient
of dissociative recombination drops with an increasing of an electron energy, we
neglect this fact. As a result we have for the criterion of the Schottky ionization
equilibrium

http://dx.doi.org/10.1007/978-3-319-11065-3_7
http://dx.doi.org/10.1007/978-3-319-11065-3_5
http://dx.doi.org/10.1007/978-3-319-11065-3_8


12.1 Schottky Regime for Ionization Equilibrium in Positive Column 319

Fig. 12.5 The upper limit for the electron concentration in an argon gas discharge plasma with the
basic sort ion Ar+

2 . The electron concentration below this line corresponds to the Schottky regime
of ionization equilibrium

ce = Ne

Na
� cmax ≡ α

Na

we

αrec
(12.1.3)

Fig. 12.5 represents the dependence of the parameter cmax on the reduced electric
field strength.

According to definition of the positive column of gas discharge, the ionization
balance is supported inside each cross section of the tube, and passage of charged
particles to tube walls is compensated by atom ionization inside the tube. Therefore
a distance between electrodes L exceeds an average way Lo that an electron passes
during its lifetime τ inside the tube, and this way equals to

Lo = weτ = we

Nakion
= 1

α
,

wherewe is the electron drift velocity, and α is the first Townsend coefficient. On the
basis of the ionization equilibrium (12.1.1) one can express this value through the
ambipolar diffusion coefficient Da of a gas discharge plasma because this parameter
does not depend sharply on the discharge regime. In these terms a length of the
positive column satisfies to the criterion

L � Lo = α
weρ

2
o

6Da
(12.1.4)

If this criterion holds true, the basic part of a distance between electrodes is occupied
by the positive column. Then a subsequent increase of a distance between electrodes
will not lead to a change of electrode regions, but gives an increase of the positive
column length. Figure12.6 gives the minimum length of the positive column Lo with
a helium gas discharge plasma of a low electron number density. Values of Lo are
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Fig. 12.6 The lowest limit for the positive column length in accordance with formula (12.1.4)

obtained on the basis of formula (12.1.4) with parameters of this formula according
to Figs. 7.15 and12.1, Tables7.2 and8.2.

Let us determine the difference of electric potentials between the axis and walls
of the positive column of a cylinder discharge tube for a regime of a high density of
electrons and for the Schottky regime of ionization balance. We consider an argon
gas discharge plasma located in a cylinder tube. For definiteness, we take the tube
radius to be ρo = 1 cm, the argon pressure to be p = 1Torr, that corresponds to the
number density of argon atoms Na = 3.3 × 1016 cm−3 at room temperature, and
the electron temperature to be Te = 2 eV. According to data of Table3.6 the cross
section of resonant charge exchange in collision Ar+ − Ar is σres ≈ 8× 10−15 cm2

that gives the mean free path of argon atomic ions in argon to be λ = 1/(2Naσres) ≈
2 × 10−3 cm. Assuming that the mean free path of electrons in argon has the same
order of magnitude, we obtain from this on the basis of formula (8.2.8) that the
difference plasma electric potentials at the axis and near walls to be �U ≈ 17 eV.
As is seen, this value exceeds remarkably a thermal electron energy.

We above are guided by the mechanism of atom ionization in a gas discharge
plasma by electron impact.We now consider onemoremechanism of atom ionization
that results from the Penning process proceeds according to the scheme

A∗ + B → A + B+,

Let us consider a helium gas discharge plasma with a small addition of argon and
include the Penning process in equation of ionization balance. Then equation for the
rate of electron formation takes the form

d Ne

dt
= Ne Nakion + Nm NAr kP
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Here Na , NAr are the number densities of helium and argon atoms in the ground
states, Nm is the number density of metastable helium atoms, kion is the effective
rate constant of atom ionization by electron impact in pure helium, kP is the rate
constant of the Penning process that is equal to 8×10−11 cm3/s for the state He(23S)

of the metastable helium atom, and is 3× 10−10 cm3/s for the state He(21S) of the
metastable helium atom.

For simplicity we assume the number density of metastable atoms He(23S) to be
of the order of the electron number density. Then formula (12.1.1) gives the following
estimation for the boundary number density of admixture atoms that can influence
on the ionization rate

NAr ∼ 6Da

kPρ2o

We have the following estimation for the ambipolar diffusion coefficient Da ∼
104 cm2/s at the helium pressure of 10 Torr. This gives for the boundary number
density of argon atoms to helium that can change the ionization balance under given
conditions

NAr ∼ 1014 cm−3,

that corresponds to the concentration of argon atoms in helium of ∼0.03%.

12.2 Stepwise Ionization in Helium Positive Column

At high electron number densities ionization in the positive column may have a
stepwise character where electrons and ions are formed as a result of collisions of
electrons with excited atoms. Because the energy distribution function of electrons
drops sharply above the threshold of excitation of lowest excited states, only lowest
excited states give a basic contribution to the ionization balance. In particular, in the
helium case this state is He(23S). When ionization in helium proceeds through this
state, the ionization balance equation has the following form instead of (12.1.1)

Nmkm
ion = 5.78Da

ρ2o
, (12.2.1)

where Nm is the number density of metastable atoms in the 23S state, and km
ion in

(12.2.1) is the rate constant of ionization of the 23S metastable atom by electron
impact.

Because the electron temperature Te exceeds significantly the ion temperature
Ti , which coincides with the gaseous temperature at electric field strengths under
consideration, we have on the basis of formula (7.7.5)

Da = Te

T
Di ,

http://dx.doi.org/10.1007/978-3-319-11065-3_7
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where Di is the diffusion coefficient of helium ions in helium. Assuming atomic ions
He+ to be present in a gas discharge plasma of the positive column of gas discharge,
we have for the ionmobility Ki = 10.4 cm2/(V · s) [8] under normal number density
of atoms. Transferring to the ion diffusion coefficient Di on the basis of the Einstein
relation, we obtain Di Na = 7.7 × 1018 cm−1s−1.

Let us rewrite (12.2.1) in the form

Na Kion = 5.78Di Te

T ρ2o
, (12.2.2)

where we introduce the effective rate constant Kion of stepwise ionization from the
ground state on the basis of formula

Kion = kex km
ion

kQ + km
ion

, (12.2.3)

so that
Na Kion = Nmkm

ion

According toFig. 11.4 stepwise ionization through themetastable atomstate He(23S)

gives the main contribution to ionization of a helium gas discharge plasma.
Figure12.7 gives the dependence of this quantity on the reduced electric field strength
for different values of the electron concentration ce. As is seen, the dependence of
the effective ionization rate constant Kion on the electron concentration is weak. This
dependence of the electron concentration in the regime of stepwise ionization occurs
due to competition of electron-electron collisions and electron-atom collisions in
formation of fast electrons which are able to excite helium atoms in the metastable

Fig. 12.7 Rate constant Kion of helium atom ionization by electron impact through the metastable
state He(23S) as a function of the reduced electric field strength. Squares correspond to the electron
concentration ce = 10−7 in a helium gas discharge plasma, circles relate to the electron concentra-
tion ce = 10−5, and triangles correspond to the electron concentration ce = 10−3

http://dx.doi.org/10.1007/978-3-319-11065-3_11
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state He(23S). Because of an unique dependence of the electron temperature Te and
the electric field strength (6.2.7), one can transfer to the dependence of the effective
ionization rate constant Kion on the electric field strength given in Fig. 12.7 in its
dependence on the electron temperature that is represented in Fig12.8.

One can see that equation (12.2.2) of the ionization balance contains the number
density of atoms Na and a discharge tube radius ρo in the combination Naρo. Hence,
this equation allows us to evaluate the electron temperature as a function of the
parameter Naρo. Expressing Te in eV, Kion in cm3/s, Na in cm−3, and ρo in cm, we
rewrite (12.2.2) as

(Naρo)
2 = 1.7 × 1021Te

Kion(Te)
(12.2.4)

if atomic ions He+ are present in a gas discharge plasma.
Figure12.9 gives this dependence, where we use the dependence Kion(Te) in

accordance with data of Fig. 12.7 for the rate constant of stepwise ionization and
formula (12.2.4). In addition, Fig. 12.10 contains the dependence of the reduced
tube radius (or the number density of helium atoms) on the reduced electric field
strength at different electron concentrations. One can see a weak dependence of
Naρo on the electron concentration. We use here the dependence (6.2.14) of the
electron temperature Te on the reduced electric field strength x = E/Na . We assume
in Fig. 12.10 that destruction of metastable atoms results from their quenching by
electron impact, rather than their collisions with walls.

One can compare the dependence of the reduced electric strength and the atom
number density in the positive column for the regimes of low and high electron num-
ber densities, i.e. for the Townsend and stepwise character of ionization equilibrium.
In the case of the Townsendmechanism of atom ionization by electron impact we use
formula (8.1.7) for the ionization rate constant and take values of the first Townsend

Fig. 12.8 Rate constant Kion of stepwise ionization of a helium atom by electron impact through
themetastable state He(23S) as a function of the electron temperature in the regime of high electron
number densities
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Fig. 12.9 Dependence of the reduced number density of helium atoms on the electron temperature
in the positive column of glow discharge for the stepwise character of atom ionization through the
metastable state He(23S) at the electron concentration ce = 10−7

Fig. 12.10 Dependence of the reduced number density of helium atoms (or the radius of the dis-
charge tube) on the reduced electric field strength if atom ionization proceeds through themetastable
state He(23S). The electron concentration is : 1 ce = 10−7, 2 ce = 10−5, 3 ce = 10−3

coefficient and the ionization rate constant from Table8.1. We approximate the first
Townsend coefficient by formulas (8.1.4) and (8.1.5) with parameters in each range
of the electric field strengths given in Table8.2. The electron drift velocity we in he-
lium in a constant electric field strength we approximate on the basis of experimental
data [43] (Table7.3) by the expression we = 2.4 × 105cm/s · x, where x = E/Na

is the reduced electric field strength. As a result, one can approximate the ionization
rate constant in the range of the reduced electric field strengths x = 10–100 Td for
the regime of low electron number densities as

κion = 4.8 × 10−12x exp(−80/x),
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where the ionization rate constant κion is measured in cm3/s.
Basing on the ionization balance equation given by formula (8.2.6)

αwe = 5.78Da

ρ2o
,

and using the above approximation for the ionization rate constant, we find the
connection between the reduced electric field strength x = E/Na and the reduced
tube radius Naρo that is represented in Fig. 12.11.

As is seen, the ionization balance equations for the Townsend and stepwise mech-
anisms of ionization equilibrium have an identical form, and hence the mechanism
with a larger rate constant of ionization is realized under equilibrium conditions. Let
us calculate the rate constant Kion , assuming that the ionization process proceeds
through formation ofmetastable atoms He(23S) in the regimeof lowelectron number
densities. Using formula (10.1.6) for the rate constant of excitation of the metastable
state 23S by electron impact, formulas (10.3.5) and (10.3.12) for quenching of the
metastable state by electron impact with electron transition in other bound states,
and formula (12.2.4) for ionization of this metastable atom by electron impact, we
find the total rate constant of ionization Kion in this case. Its values are represented
in Fig. 12.11.

One can determine the range of electric field strengths κion > Kion , where the
Townsend mechanism of ionization is realized. The first range is x < 4 Td, but
the rate constant there is very small. For example, κion = 4.0 × 10−20 cm3/s and
Kion = 1.3 × 10−20 cm3/s at the reduced electric field strength x = 4 Td. At the
helium pressure p = 1Torr and the gas temperature T = 300K a typical time of
electron doubling is of the order of a hour. A subsequent decrease of the electric field
strength leads to increasing timeswhich are not of interest in reality. Another range of

Fig. 12.11 Dependence of the reduced electric field strength on the number density of helium
atoms in the positive column of glow discharge for the Townsend (1) and stepwise (2) character of
ionization

http://dx.doi.org/10.1007/978-3-319-11065-3_8
http://dx.doi.org/10.1007/978-3-319-11065-3_10
http://dx.doi.org/10.1007/978-3-319-11065-3_10
http://dx.doi.org/10.1007/978-3-319-11065-3_10


326 12 Helium and Argon Plasma in Positive Column of Gas Discharge

the electric field strengths, where the Townsend mechanism of ionization is realized
(κion > Kion) takes place at x > 20 Td if we use formally the above expressions
for the rate constants of atom ionization. But the above evaluation of Kion is valid at
x < 10 Td because we assume in these evaluations the rate constant of quenching
of excited atom states by electron impact to be independent of the electron energy.
Hence, one can state that the Townsend mechanism of ionization holds true at large
reduced electric field strengths x ∼ 20 Td, but the used approach does not allow one
to determine more precisely the boundary between these mechanisms of ionization.

Let us determine the criterion for the glow and Townsend regime of ionization
equilibrium of a gas discharge plasma located in the positive column of helium glow
discharge. Indeed, the Townsend mechanism of ionization in the positive column of
gas discharge is realized at not low gas pressures that corresponds to the criterion
of smallness of the mean free path of electrons in a gas λ compared to the tube
radius λ � ρo. Since the gas-kinetic cross section of an electron in helium is σg =
1.3 × 10−15 cm2. Hence in considering the Townsend mechanism of ionization in
the positive column of gas discharge, we require fulfilling of the criterion

Naρo � 8 × 1014cm−2 · exp
(

80

x

)

(12.2.5)

This dependence of the parameter Naρo on the electric field strength that is the solu-
tion of equation (12.1.1) of ionization equilibrium and is represented in Fig. 12.11,
and relation (12.1.1) is valid, at least, at the reduced electric field strengths x �
100 Td.

In considering the Schottky character of ionization equilibrium, we assume that
metastable atoms are destructed in collisions with electrons, while loss of electrons
results from their recombination on walls. Along with this, another version of step-
wise ionization is possible where destruction of metastable atoms proceed on walls.
Thus, we have three regimes of ionization, and they are represented in Fig. 12.12 un-
der assumption that stepwise ionization proceeds only through the metastable state
23S, and destruction of metastable atoms proceeds at walls or in collisions with
electrons. Ionization equilibrium in the case of stepwise ionization is described by
equations (8.3.7) or (8.3.4) respectively depending on the character of destruction
of metastable atoms. In the case of the Townsend character of ionization equilib-
rium in the regime of low electron number densities for the positive column of gas
discharge the ionization balance is given by formula (8.2.6). In this formula we
use measured values of the first Townsend coefficient for the reduced electric field
strengths x > 10 Td given in Table8.2 and continue this dependence to lower elec-
tric field strengths. Comparison of the ionization balance for the above three cases
is represented in Fig. 12.12.

We now analyze the criterion if the Schottky ionization equilibrium dominates in
the regime of high electron number density, and this criterion has the form

(km
ion + kQ)Ne � 5.78Dm

ρ2o
,
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Fig. 12.12 Dependence the reduced radius Naρo of a discharge tube in the positive column of
helium discharge for the reduced electric field strength x = E/Na in the regime of low electron
number density. 1—Townsend discharge,where the ionization balance is given by formula (8.2.6),
2, 3—glow discharge with stepwise ionization of atoms through the state 23S, where the ionization
balance is determined by formulas (8.3.7) and (8.3.4) correspondingly

where Dm is the diffusion coefficient of metastable atoms in a gas, and this in-
equality means that metastable atoms are destroyed by electron impact. Comparing
this inequality with equation of ionization equilibrium (12.2.1), we obtain the above
criterion in the form

ce

cm
�

(

ce

cm

)

min
= km

ion

km
ion + kQ

Dm

Da
(12.2.6)

Figure12.13 gives the minimum values of the ratio between the electron and
metastable atom concentrations in accordance with formula (12.2.6). We assume
that molecular ions He+

2 are located in ionized helium, the temperature of atoms and
ions is room one, and take the diffusion coefficient of metastable atoms in helium to
be Dm ≈ 0.59 cm2/s at the normal number density of atoms, and from the sum of ex-
periments [167, 304–315, 317] we have Dm Na = (1.6 ± 0.1)× 1019 cm−1s−1. For
the diffusion coefficient of molecular ions He+

2 in helium we have Di ≈ 0.46 cm2/s
[41, 190] at the normal number density of atoms. This gives

Dm

Di
= 1.3 ± 0.1

and is used in Fig. 12.13.
As it follows from the data of Fig. 12.13, ionization equilibrium with the stepwise

character of atom ionization is realized at not lowelectron concentrations. In addition,
Fig. 12.4 gives the values of the parameter αρo, where ρo is the tube radius and He+

2
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Fig. 12.13 The ratio of electron and metastable atom concentrations. The Schottky character of
ionization equilibrium is realized if this ratio is located above a given curve

Fig. 12.14 Given by curve 1 the boundary between two types of ionization equilibrium in a helium
gas discharge plasma for the regime of high electron number densities. Above this curve the equilib-
rium for metastable atoms is established by collisions with electrons, below this curve destruction
of metastable atoms results from their attachment to walls. The regime of high electron number
densities is realized for electron concentrations above the line 2

as the basic ion. In the case of the Townsend character of atom ionization and the
Schottky regime of ionization equilibrium in accordance with (12.1.1) the reduced
radius of the discharge tube is given by

Naρo =
√

5.78Da N 2
a

αwe
,

that is used in Fig. 12.4.
As is seen, the criterion of theSchottky character of ionization equilibrium (12.2.6)

for the regime of a high electron number density includes the concentration cm of
metastable atoms that is contained in Fig. 10.14 for this regime of the gas discharge

http://dx.doi.org/10.1007/978-3-319-11065-3_10
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plasma existence. From this one can find the boundary between two types of ion-
ization equilibrium for the regime of a high number density of electrons by analogy
with the regime of low densities of electrons represented in Fig. 12.12. We give in
Fig. 12.14 the boundary between these two types of ionization equilibrium, namely,
between the Schottky equilibrium where the number density of the metastable he-
lium atoms results from electron-atom collisions and an electron loss is determined
by their attachment to walls, and the ionization equilibrium where destruction of
metastable atoms is connected with their travelling to walls. Note that the line 2 in
Fig. 12.14 characterizes the boundary between the regimes of a low and high electron
number densities in accordance with formula (5.6.2) and Fig. 5.3. One can see that
the second mechanism of ionization equilibrium results in a narrow range of electron
concentrations above line 2 and below curve 1 of Fig. 12.14.

Thus, the analysis of ionization equilibrium in a helium gas discharge of the
positive column in the cylinder discharge tube shows the validity of the Schottky
character of this ionization equilibrium where a loss of electrons and ions proceeds
at tube walls. In the regime of low electron number densities the origin of electrons
and ions results from single atom ionization by electron impact, while in the regime
of high electron number densities atom ionization has the stepwise character and pro-
ceeds mostly through the metastable atom state He(23S). Destruction of metastable
atoms in this equilibrium results mainly in collisions with electrons.

Properties of a gas discharge plasma are determined by several external and inter-
nal parameters. Being guided by a cylinder discharge tube, where the electric field
strength in the positive column of stationary gas discharge is constant both along the
tube axis and in the transversal direction, we consider above the dependence of the
reduced electric field strength on the tube radius and the number density of helium
atoms in different regimes of gas discharge. Let us analyze now the voltage–current
dependence for the positive column of gas discharge in helium in ignoring the gas
heating. In the regime of low electron number density, where the ionization balance
equation is given by formula (8.2.6), all terms of this equation are independent of the
electron number density and, correspondingly, on the electric current density. Hence,
at low current densities the voltage–current characteristic is described by straightfor-
ward line, as it is given in Fig. 12.15. In the regime of high electron number densities
we have a weak dependence of the reduced electric field strength on the electron
current density in accordance with Fig. 12.10, as it is given in Fig. 12.15. The jump
from one line to another one proceeds in accordance with Fig. 5.3 for each Naρo, and
values for the upper and lower parts of the voltage-current characteristic at a given
Naρo are determined in accordance with data of Figs. 12.10 and12.11.

In considering the ionization equilibrium in a helium gas discharge plasma of
the positive column of gas discharge, we take the electron concentration ce as an
external parameter, i.e. this parameter is determined by an external source of gas
discharge. This means that the discharge current and its voltage are determined by
parameters of a general system which joins gas discharge and external source. In this
case electrons from an external source which are introduced in gas discharge give a
certain contribution to formation of electrons and ions in the positive column. Let us
consider the casewhere external electrons do not give a contribution to ionization, i.e.

http://dx.doi.org/10.1007/978-3-319-11065-3_5
http://dx.doi.org/10.1007/978-3-319-11065-3_5
http://dx.doi.org/10.1007/978-3-319-11065-3_8
http://dx.doi.org/10.1007/978-3-319-11065-3_5
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Fig. 12.15 General form of the voltage-current characteristic for a gas discharge plasma in the
positive column of gas discharge

the ionization balance is realized due to processes inside a gas discharge plasma. In
particular, in the regime of high electron number densities this equilibrium proceeds
according to the following scheme

e + He(23S) → 2e + He+, 2e + He+ → e + He∗ (12.2.7)

In the regime of high electron number densities we use formula (3.8.3) for the rate
constant Kei of three body recombination. The ionization balance equation in this
case has the form

Ne Nmkm
ion ≡ Ne Na Kion = N 2

e Ni Kei (12.2.8)

Since Ne = Ni , we obtain the equilibrium constant for this equilibrium and for the
thermodynamic equilibriumdescribed bySaha formula (2.1.8), and these equilibrium
constants are given in Fig. 11.11.

Analyzing the positive column with a gas discharge plasma located in a cylinder
discharge tube, we include in the ionization balance a loss of electrons and ions at
walls. Then equation of the ionization balance takes the following form instead of
(12.2.8)

Ne Na Kion = N 2
e Ni Kei + 5.78Da Ne

ρ2o
(12.2.9)

If two terms of the right hand side of (12.2.9) are equal, the equilibrium constant

χ = N 2
e

Na

http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_2
http://dx.doi.org/10.1007/978-3-319-11065-3_11
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decreases twice compared to its equilibrium value which is given in Fig. 11.11. Thus,
an increase of the role for the process of ambipolar diffusion compared three body
recombination in a gas discharge plasma, the electron number density decreases.

12.3 Ionization in Argon Gas Discharge Plasma of Positive
Column

In analyzing the ionization equilibrium in an argon gas discharge plasma of the
positive column of gas discharge, we first evaluate the rate constant of stepwise
ionization (12.2.3) by analogy with the helium case. This value is given in Fig. 11.10
as a function of the electric field strength for an optically thin plasmawhere resonantly
excited atoms do not give contribution to the ionization process has the form

Kion =
∑

i

ki
ex ki

ion

ki
exci

=
∑

i

ki
ionci , (12.3.1)

where index i corresponds to each excited state of the argon atom with the electron
shell 3p54s, ki

ex is the excitation rate constant of this state by electron impact, ci is
the concentration of excited atoms in a given excited state, ki

ion is the ionization rate
constant of an atom in this state, ki

exci is the rate constant of quenching of this state
which results in excitation from this state in states with the electron shell 3p54p.
We give in Fig. 12.16 the ionization rate constants for excited argon atoms of the
electron shell 3p54s by electron impact which are calculated on the basis of formula
(3.6.16). We neglect here the destruction of excited states as a result of ionization
and transition in other excited states except indicated ones. Figure12.16 gives the

Fig. 12.16 Rate constant of stepwise ionization of an argon atom by electron impact from lower
excited atom states of the electron shell 3p54s at the electron concentration ce = 1 × 10−6

http://dx.doi.org/10.1007/978-3-319-11065-3_11
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http://dx.doi.org/10.1007/978-3-319-11065-3_3
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dependence on the electron temperature Te for the effective rate constant of stepwise
ionization in two limiting cases Ne � No and Ne � No. Note that for a cylinder
discharge tube of a radius ρo = 1 cm filled by argon is No = 1.4 × 1012 cm−3 for
the state Ar(3P1) and No = 7.2 × 1011 cm−3 for the state Ar(1P1) (Fig. 12.17).

In considering a helium gas discharge plasma of the positive column of gas dis-
charge, we were guided mostly by molecular ions He+

2 , whereas atomic helium ions
He+ may be present in a gas discharge plasma. Note that from the sum of measure-
ments [190] the mobility of molecular ions He+

2 at the temperature T = 300K is
18 ± 2 cm2/(V · s), whereas the mobility of atomic ions He+ at this temperature
is 10.4 ± 0.3 cm2/(V · s). In addition, the mobility dependence on the electric field
strength E at large electric field strengths is E−1/2 for atomic ions and weak de-
pendence on the high electric field strength corresponds to molecular ions. Hence
transition from atomic to molecular ions leads to a change of the ion mobility in
two–three times. It should be noted that pair recombination of electrons and molec-
ular helium ions proceeds effectively for excited vibration states only and is not of
principle for a helium gas discharge plasma.

In the case of an argon gas discharge plasma with molecular ions the process
of dissociative recombination of electrons and molecular ions Ar+

2 is effective in-
cluding lower vibration states, and hence formation of molecular ions Ar+

2 in a gas
discharge plasma may influence dramatically on its existence. Figure10.5 gives the
temperature at which the number densities of atomic and molecular ions are equal
at a given argon pressure. According to data of this Figure, molecular ions dominate
at temperatures below 1, 000K in argon of a pressure p∼1Torr if an equilibrium
between atomic and molecular ions is realized. Let us consider the ionization equi-
librium in an argon gas discharge plasma where a loss of charged particles results

Fig. 12.17 Rate constant of ionization of an argon atom in the ground state by electron impact
if the ionization process proceeds through excited atom states of the electron shell 3p54s at the
electron concentration ce = 1 × 10−6. The rate constant is determined by formula (12.3.1) and
curve 1 corresponds to an optically thin plasma where resonantly excited states do not partake in
atom ionization, whereas curve 2 relates to an optically thick gas discharge plasma

http://dx.doi.org/10.1007/978-3-319-11065-3_10
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from dissociative recombination of electrons and ions. We considered this equilib-
rium above (Sect. 11.3) and convinced that this ionization equilibrium corresponds
to the regime of high electron number densities, so that atom ionization in a gas dis-
charge plasma has the stepwise character. In this case the ionization balance equation
has the form

Kion Na = αNe, (12.3.2)

and we use the dependence of the dissociative recombination coefficient α on the
electron temperature Te as

α(Te) ∼ T −0.5
e , (12.3.3)

and α(300K) = (7 ± 2) × 10−7 cm3/s. We give in Fig. 12.18 the dependence on
the electron temperature Te for the electron or ion concentrations in the case of
ionization equilibrium (12.3.2). Let us indicate the conditions where this ionization
equilibrium is realized. First, we assume that destruction of excited atoms, which
partake in ionization equilibrium, is determined by electron impact rather than by
diffusion of excited argon atoms towalls. Second, the lifetime of electrons and ions in
this gas discharge plasma is connected with dissociative recombination of electrons
and ions.

We now consider the Schottky mechanism of ionization equilibrium where the
lifetime of electrons and ions in the positive column of gas discharge is determined
by their diffusion to walls, and in accordance with formula (8.2.4) has the form

Kion Na = 5.78Da

ρ2o
, (12.3.4)

Fig. 12.18 Equilibrium electron and ion concentration for a stepwise formation of electrons and
ions in an argongas discharge plasma in the regimeof a high electronnumber density anddissociative
recombination for destruction of charged atomic particles: 1 optically thin plasma, 2 optically thick
plasma

http://dx.doi.org/10.1007/978-3-319-11065-3_11
http://dx.doi.org/10.1007/978-3-319-11065-3_8
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and the ambipolar diffusion coefficient Da is connected with the ion diffusion coef-
ficient Di by formula (7.7.5)

Da = Di

(

1 + Te

T

)

and the ion diffusion coefficient under normal conditions according to Table7.6
is equal Di = 0.048 cm2/s. This ionization equilibrium leads to dependence of the
reduced tube radius (or reduced number density of atoms) on the electron temperature
that according to (12.3.3) has the form

(Naρo)
2 = 5.78Di Na

Kion

(

1 + Te

T

)

(12.3.5)

Figure12.19 represents this dependence in the argon case.
One can combine both mechanisms of ionization equilibrium and then the ion-

ization balance equation takes the form

Kion Na = 5.78Da

ρ2o
+ αNe (12.3.6)

Ifwedenote the equilibriumelectron concentration of Fig. 12.18 as c∗ and the reduced
tube radius (or the reduced atom number density) of Fig. 12.19 as (Naρo)∗. One can
represent the ionization balance equation in these notations in the form

ce

c∗
+ (Naρo)

2∗
(Naρo)2

= 1 (12.3.7)

Fig. 12.19 Parameters of an argon gas discharge plasma of the positive column of gas discharge
for the Schottky mechanism of plasma destruction and stepwise ionization of atoms by electron
impact in accordance with (12.3.4): 1 optically thin plasma, 2 optically thick plasma

http://dx.doi.org/10.1007/978-3-319-11065-3_7
http://dx.doi.org/10.1007/978-3-319-11065-3_7
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From this equation it follows that the electron concentration at ionization equilib-
rium in a general case is lower than that follows from the ionization balance (12.3.2).
Equation (12.3.6) and its solution (12.3.7) allow one to find the connection between
parameters of an argon gas discharge plasma of the positive column in a multidimen-
sional space of plasma parameters. In the limit of low electron number densities this
equation is converted into (12.3.4) with its solution (12.3.5) (Fig. 12.19), whereas in
the limit of high atom density this leads to (12.3.2) of the ionization balance, and its
solution is given in Fig. 12.18.

Above we assume the gas temperature T for a gas discharge plasma to be small
in accordance with Fig. 10.5 data. In this case atomic argon ions are formed at the
first stage and then they are converted into molecular ones according to the scheme

Ar+ + 2Ar → Ar+
2 + Ar (12.3.8)

We above assume the rate of this process is enough high, so that molecular ions
are located in this gas discharge plasma. Let us include in consideration the process
(12.3.8) and then under stationary conditions the balance equations for ions the
ionization equilibrium (12.3.6) take the form

Kion Ne Na = 5.78Da(Ar+)N (Ar+)

ρ2o
+ Kas N 2

a N (Ar+),

Kas N 2
a N (Ar+) = 5.78Da(Ar+

2 )N (Ar+
2 )

ρ2o
+ αNe N (Ar+

2 ) (12.3.9)

Here Kas is the rate constant of the three body process and N (Ar+), N (Ar+
2 ) are

the number densities for atomic and molecular ions correspondingly, and

Ne = N (Ar+) + N (Ar+
2 ) (12.3.10)

because of the plasma quasineutrality.
Note that the diffusion coefficients of the ambipolar diffusion for a plasma with

atomic and molecular ions is expressed through the diffusion coefficients of ions
through formula (7.7.5), and the diffusion coefficients of atomic and molecular ions
which are the basis for the ambipolar diffusion coefficients are close. Namely, accord-
ing to Table7.6 data the diffusion coefficients for atomic and molecular ions in argon
at room temperatures are Di (Ar+) = 0.040 cm2/s and Di (Ar+

2 ) = 0.048 cm2/s
respectively under normal conditions. Let us simplify the problem taking these dif-
fusion coefficients to be equal, namely, Di (Ar+) = Di (Ar+

2 ) = 0.044 cm2/s. Then
summarizing two equation of the set (12.3.9), we obtain the following equation of
the ionization balance

Kion Na = 5.78Da

ρ2o
+ αN (Ar+

2 ) (12.3.11)
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Ifmolecular ions dominate in this plasma, (12.3.11) coincideswith equation (12.3.6).
This transition corresponds to a high rate of ion conversion.

Let us construct the parameter with the pressure dimensionality

ζ = 5.78Da Na

Kas(Naρo)2
· T (12.3.12)

that is responsible for high rate of ion conversion at large atom number densities
or gas pressures. Keeping ionization equilibrium (12.3.4) with the balance equation
(12.3.5), we reduce this parameter to the form

ζ = Kion

Kas
· T (12.3.13)

Statistical averaging gives for the rate constant of the process (12.3.10) Kas =
(2.2 ± 0.7) × 10−31 cm6/s on the basis of measurements [209, 216, 220, 432] at
room temperature. The temperature dependence for this rate constant is [433, 190]

Kas ∼ T −3/4

in the case of the polarization interaction of an ion with atoms. If we use the rate
constant of stepwise ionization given in Fig. 12.17, we obtain the dependence ζ(Te)

represented in Fig. 12.20 at the gas temperature T = 300K. Note that the ionization
equilibrium in an argon gas discharge plasma of the positive column of gas discharge
with destruction of a plasma due to ambipolar diffusion that is described by the
balance (12.3.4) is realized at gas pressures p � ζ.

Fig. 12.20 Dependence on the electron temperature Te for the parameter ζ defined by formula
(12.3.12). This parameters corresponds to an optically thick argon gas discharge plasma at room
gas temperature, and the ionization equilibrium in this plasma is described by formula (12.3.4).
This relates to large number densities of atoms where this parameter is given by formula (12.3.13)
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Because of a low rate of the process (12.3.8), from data of Fig. 12.20 it follows that
the number density of molecular ions N (Ar+

2 ) in the ionization balance (12.3.11)
is small compared to the electron number density Ne in the basic range of electron
temperatures excluding low ones where the ionization rate is small. Therefore we
consider the case where this relation holds true, i.e. N (Ar+

2 ) � Ne, N (Ar+) ≈ Ne.
Moreover, we consider the case where the Schottky regime of ionization equilibrium
holds true, and for an argon gas discharge plasma this corresponds to the criterion

5.78Da

ρ2o
� αNe

In this case from the second equation of the set (12.3.9) we have

N (Ar+
2 )

N (Ar+)
= N (Ar+

2 )

Ne
= Kas N 2

a

5.78Da/ρ2o
,

and the ionization balance (12.3.11) takes the form

Kion Na = 5.78Da

ρ2o

(

1 + Ne

χ

)

, χ = [5.78Da/ρ2o]2
α · Kas N 2

a
(12.3.14)

One can see that the Schottky mechanism for ionization equilibriumwith the balance
(12.3.4) holds true if

Ne � χ (12.3.15)

Near the Schottky ionization equilibrium (12.3.4) we have

χ = K 2
ion

α · Kas
(12.3.16)

Fig. 12.21 represents the dependence χ(Te) near this ionization equilibrium. As
shows this Figure, the criterion (12.3.15) holds true for the basic range of electron
temperatures. This means the realization of the Schottky mechanism for ionization
equilibrium with the balance equation (12.3.4).

Note that in this analysis we assume room temperature of argon, i.e. this analysis
relates to low powers injected in a gas discharge plasma. In addition we assume the
diffusion character of electron and ion transport in this plasma, i.e. the gas pressure
is not small, and a not small number density of electrons that leads to stepwise
ionization. But even in a restricted range of these parameters one can obtain several
versions of ionization equilibrium that depends on rates of processes in this plasma.
In an argon gas discharge plasma under consideration we use certain parameters for
processes which influence on the ionization equilibrium that decreases a number of
regimes for this gas discharge plasma.
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Fig. 12.21 Dependence on the electron temperature Te for the parameter χ defined by formula
(12.3.16). This parameters corresponds to an optically thick argon gas discharge plasma at room
gas temperature, and the ionization equilibrium in this plasma is described by formula (12.3.4)

12.4 Hot Gas Discharge Plasma of Positive Column

Above in considering properties of a gas discharge plasma of gas dischargewe ignore
gas heating under the action of the discharge electric current. Therefore these results
are valid at low currents or at low number densities of electrons and ions where
gas heating is small. We now determine the temperature at the axis of a discharge
tube of the positive column where a gas discharge plasma is located. Denoting the
temperature at the axis as To and taking the temperature at walls Tw = 300K, we
are based on equation (8.5.6) of thermal balance

To
∫

Tw

κ(T )dT = 0.14P = 0.14E I, (12.4.1)

where we used the temperature dependence for the thermal conductivity coefficient
κ(T ) ∼ T 0.7 for helium and argon in accordance with data of Table7.1, P is the
power per unit length of a discharge tube, E is the electric field strength that is
independent of the coordinate both in transversal and longitudinal direction for a gas
discharge plasma of the positive column, I is the discharge current. Let us use the
space distribution (8.2.3) for the number density of electrons (and ions) inside the
tube, that gives

I = 1.36eNoweρ
2
o,

so that No is the number density of electrons at the tube axis, we is the electron drift
velocity, and ρo is a discharge tube radius. This reduces the balance equation (12.4.1)
to the form

http://dx.doi.org/10.1007/978-3-319-11065-3_8
http://dx.doi.org/10.1007/978-3-319-11065-3_7
http://dx.doi.org/10.1007/978-3-319-11065-3_8
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Toκ(To)

1.7

[

1 −
(

Tw

To

)1.7
]

= 0.19ce
eE

Na
(Naρo)

2we, (12.4.2)

where ce is the electron concentration at the tube axis. If we assume weak heating of
a gas inside a tube, one can use the Schottky mechanism for ionization equilibrium
in accordance with (8.2.4). Then one can rewrite (12.4.2) of the thermal balance in
the form

1 −
(

To

Tw

)1.7

= 1.9ce
eE

Na

Da Na

kionTwκ(Tw)
we, (12.4.3)

In the regime of low electron number densities the ionization rate constant in accor-
dance with formula (8.1.1) is

kion = α

Na
we

In the regime of high electron number densities it is necessary to replace the
ionization rate constant kion of single ionization in formula (12.4.3) by the effec-
tive rate constant Kion of stepwise ionization in accordance with formula (12.2.3).
Figure12.22 represents gas heating for a helium gas discharge plasma in the regime
of low electron number densities. According to Fig. 10.1 data, this regime corre-
sponds to the electron concentration below 2 ∗ 10−8, and Fig. 12.22 relates to the
electron concentration ce = 1 × 10−9. The basic ion in a gas discharge plasma is
the atomic one He+, and the coefficient of ambipolar diffusion for this ion is given
in Fig. 7.15. The drift velocities of electrons we are taken from Table7.2, and the
rate constants of single ionization of helium atoms by electron impact are given in
Table8.3. Note that a range of reduced electric field strengths is taken in accordance

Fig. 12.22 Dependence of gas heating �T = To − Tw for a helium gas discharge plasma located
in a cylinder tube for the positive column of gas discharge in the regime of low electron number
densities at the electron concentration ce = 10−9. Gas heating is given by formula (12.4.3) and
He+ is the basis ion type in a gas discharge plasma

http://dx.doi.org/10.1007/978-3-319-11065-3_8
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with ionization equilibrium for typical pressures of gas discharge (see Figs. 12.11
and12.12). As is seen, gas heating in the regime of low electron number densities is
weak because of a small electron concentration, and hence one can ignore thermal
effects in the analysis of a gas discharge plasma in this regime.

In considering the regime of high electron number densities, we use again formula
(12.4.3) for gas heatingwith use the rate constant Kion of stepwise ionization (12.2.3)
and ionization equilibrium that is described by formula (12.2.4). Figure12.23 rep-
resents gas heating for a helium gas discharge plasma in the regime of high electron
number densities at the electron concentration ce = 1 × 10−7. We use the rate con-
stant Kion of stepwise ionization according to formula (12.2.3) and an atomic ion
He+ as the basic ion sort in a gas discharge plasma. One can see from results given in
Figs. 12.22 and12.23 that the gas heating is weak at not large electron concentrations
if the ionization process proceeds effectively.

We also consider gas heating in an argon gas discharge plasma of the positive
column of gas discharge for stepwise mechanism of atom ionization by electron
impact. Figure12.24 gives argon heating under the action of the discharge current
in accordance with formula (12.4.3) at the electron concentration ce = 1 × 10−6,
where the rate constant Kion of stepwise ionization is taken from Fig. 12.17 under
conditions if the basic ion sort is Ar+ and resonant radiation from the states Ar(3P1)

and Ar(1P1) leaves this plasma freely, i.e. stepwise ionization of argon atoms by
electron impact is determined by the states Ar(3P2) and Ar(3P0). Note that the
discharge electric currents I under these conditions correspond to the µA scale. In
particular, we have I Na = 2.1× 1012 A/cm3 at the electron temperature Te = 3 eV
and electron concentration ce = 1 × 10−6. This corresponds to the power per unit
length of the tube I E = 250µW/cm (E/Na = 12 Td). Since the tube radius ρo in
this regime is large compared to the mean free path of atoms, we obtain in this case

Fig. 12.23 Dependence of gas heating �T = To − Tw for a helium gas discharge plasma located
in a cylinder tube for the positive column of gas discharge in the regime of high electron number
densities at the electron concentration ce = 10−7. Gas heating is given by formula (12.4.3) and
He+ is the basic ion type in a gas discharge plasma
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Fig. 12.24 Dependence of gas heating �T = To − Tw for an argon gas discharge plasma located
in a cylinder tube for the positive column of gas discharge in the regime of high electron number
densities at the electron concentration ce = 10−6. Gas heating is given by formula (12.4.3) and
Ar+ is the basis ion type in a gas discharge plasma

I

ρo
� 10−3 A/cm

Heating of a gas discharge plasma in the positive column of gas discharge is
determined by a power which is transferred to a gas through electrons. The power
per unit length of a discharge tube evolved in a gas discharge plasma is equal

P = E I = 1.36Noρ
2
o · eEwe = 1.36ce(Naρo)

2 · eEwe

Na
= 7.9ce

eEwe

Na

Da Na

Kion
,

(12.4.4)
where No is the electron number density at the tube axis, ce is the electron concen-
tration there. We give in Fig. 12.25 the specific power for an argon gas discharge
plasma on the basis of formula (8.57) under the same conditions which are used in
Fig. 12.24.

It should be noted that in the above analysis we choose the reduced electric
field strength or the electron temperature as a parameter which characterizes a gas
discharge plasma under consideration and restrict by low electron concentrations.
This means that the electron concentration is a free parameter here that is given by
an external source which provides an electric current passed through a gas. We also
assume gas heating to be weak that allows us to use the ionization balance equation
(8.2.4) where the ionization rate is proportional to the electron number density.
If the temperature at the tube axis differs significantly from the wall temperature,
the ionization balance equation becomes more complex. In order to understand the
scale of powers where this influence becomes strong, we represent in Fig. 12.26 the
dependence of the gas temperature To at the tube axis on the specific power that is
given to electrons of a gas discharge plasma and subsequently it is consumed on gas
heating.

http://dx.doi.org/10.1007/978-3-319-11065-3_8
http://dx.doi.org/10.1007/978-3-319-11065-3_8
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Fig. 12.25 Specific power P transferred from an external electric field to a gas through electrons of
an argon gas discharge plasma of the positive column of gas discharge in accordance with formula
(12.4.4). These results relate to the electron concentration ce = 10−6 and to ion Ar+ as the basic
ion type in a gas discharge plasma

Fig. 12.26 Connection between the gas temperature To at the axis of a discharge tube and the
specific power P transferred from an external electric field to a gas through electrons in a helium
and argon gas discharge plasma of the positive column of gas discharge according to formula
(8.5.12)

In conclusion we note that variation of the gas temperature in a gas discharge
plasma is relatively small at low electron concentrations both in the regime of low and
high electron number densities. Thismeans that the above consideration of properties
of a helium and argon gas discharge plasmas which is located in the positive column
of gas discharge holds true at not large electron concentrations.

We now consider a gas discharge plasma of arc of high pressure where the concen-
tration of charged atomic particles is not small and thermal processes are important
for its properties. Due to a high electron number density, ionization equilibrium
at each point is established in an arc plasma due to collisions with electrons. We

http://dx.doi.org/10.1007/978-3-319-11065-3_8
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then encounter with a specific character of ionization processes in a discharge tube.
Indeed, the electric field strength is constant in the transversal direction¡ but the ion-
ization rate is determined by the reduced electric field strength E/Na , and because
the gas pressure is constant over the tube cross section, the number density of atoms
is higher at the tube axis, and a more strong electric field strength acts in this region.
As a result, the main contribution to ionization gives a region near the tube axis. We
first consider this problem for the case where electron-atom elastic collisions may
be considered within the framework of the hard sphere model (see Sect. 7.3). This
model is suitable for a helium gas discharge plasma at electron energies ε < 10 eV.
In this case the relation between the electron Te and gas T temperature is given by
formula (8.7.1)

Te

T

(

Te

T
− 1

)

= const

This consideration is valid if a typical distance, where these temperatures vary re-
markably, is large compared to the mean free path of electrons. In this case the rate of
atom ionization is nonuniform and ionization may proceed in a narrow region near
the tube axis. We analyze in detail this case which holds true for a helium gas dis-
charge plasma of not large temperatures. A simple connection between electron and
atomic temperatures simplifies the analysis of the ionization balance. Note we insert
now in consideration an additional parameter, the gas temperature T , in comparison
with the above analysis of ionization equilibrium. A nonuniform temperature space
distribution complicates this analysis.

Let us first ascertain the hierarchy of times for processes which establish an
equilibrium in the helium gas discharge plasma under consideration. For definiteness
we take the electron temperature at the axis to be Te = 3 eV, the helium pressure to
be p = 10 Torr and the gas temperature at the axis to be To = 600–2, 000K that
differs from the wall temperature Tw = 300K. We now determine the character of
equilibrium in such a system. The connection (6.2.7) between the electron Te and
gas T temperatures is established in elastic electron-atom collisions and leads to the
above relation (8.7.1) in helium where the electron-atom diffusion cross section is
independent on the collision energy. A typical time for this equilibrium is

τea = 1

NavT σea
∼ 10−10s

Here Na ∼ 1017 cm−3 is the number density of helium atoms, vT ∼ 108 cm/s is a
thermal electron velocity, σea ≈ 6Å2 is the diffusion cross section of electron scat-
tering on an helium atom. At this equilibrium formula (6.2.7) connects the electron
temperature Te and the reduced electric field strength x = E/Na . At the chosen
electron temperature we have x ≈ 8Td or E ≈ 10V/cm.

A chosen range of the gas temperatures at the axis To = 600–2,000K corresponds
to a definite range of powers in accordance with formula (8.5.12). Taking the temper-
ature dependence for the thermal conductivity coefficient κ(T ) ∼ T 0.7 and its value
from Table7.1, we obtain from this a range of the powers P per unit tube length to be
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P∼10–100W/cm that relates for typical discharge currents I = P/E = 1–10A.
For typical laboratory tube radii ρo ∼ 1 cm this corresponds to the current density
i = eNewe = 1–10A/cm2. Because a typical electron drift velocity in helium is
we ∼ 106 cm/s at the above electric field strengths, we estimate the electron number
density in this gas discharge plasma as Ne∼1013–1014 cm−3. This corresponds to
a high electron concentration ce∼10−4–10−3 for this plasma. These parameters we
use for subsequent estimations. Evidently ionization equilibrium is determined by
stepwise ionization now. Taking according to the analysis of Sect. 12.3 a typical rate
constant of destruction of the metastable state He(23S) by electron impact to be
kQ ∼ 10−7 cm3/s, we have a typical time τm for equilibrium establishment for this
state

τm = 1

NekQ
∼ 10−7 − 10−6s

Loss of electrons and ions in the ionization equilibrium is determined by two
processes, three body electron-ion recombination (3.8.1) and by pass of electrons
and ions to walls as a result of ambipolar diffusion. The rate constant of three body
electron–ion recombination at the electron temperature Te = 3 eV according to
formula (3.8.5) is equal Kei ≈ 7 × 10−29 cm6/s that leads to a recombination time

τrec = 1

N 2
e Kei

∼ 1–100 s

The ion diffusion coefficient at the temperature T = 1,000K [110] Di ≈ 0.7 cm2/s
under normal atom density. Then formula (7.7.5) gives for the ambipolar diffusion
coefficient Da ≈ 6×103 cm2/s at the electron temperature Te = 3 eV and the above
number density of helium atoms Na = 1 × 1017 cm−3. From this we have for a
typical time of electron and ion travelling to walls according to formula (8.2.4)

τD = ρ2o
5.78Da

∼ 3 × 10−5s

As is seen, the Schottky mechanism of ionization equilibrium is realized now, and
the electron number density is less than that according to Saha formula (2.1.8).

As a result of a nonuniform distribution of the electron temperature over the
tube cross section, the ionization rate drops remarkably at removing from the tube
axis. We take the dependence on a distance ρ from the axis according to formulas
(8.5.14) and (8.5.15) as T (ρ) = To − βρ2, where To is the gas temperature at
the axis. Because the temperature dependence on the electron temperature Te for the
rate constant (11.2.1) of stepwise ionization as Kion ∼ exp(−J/Te), where J is the
ionization atom potential, we obtain the following dependence for the ionization rate
constant

Kion(ρ) = Kion(0) exp

(

−ρ2

a2

)

, a2 = ToTe(0)

Jβ
, (12.4.5)

http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_3
http://dx.doi.org/10.1007/978-3-319-11065-3_7
http://dx.doi.org/10.1007/978-3-319-11065-3_8
http://dx.doi.org/10.1007/978-3-319-11065-3_2
http://dx.doi.org/10.1007/978-3-319-11065-3_8
http://dx.doi.org/10.1007/978-3-319-11065-3_8
http://dx.doi.org/10.1007/978-3-319-11065-3_11


12.4 Hot Gas Discharge Plasma of Positive Column 345

and we assume a < ρo. On the basis of formula (8.5.14) we obtain a2/ρ2o ≈ 0.08 and
a2/ρ2o ≈ 0.11on the basis of formula (8.5.15) at temperatures To under consideration.
As a result we obtain that formation of free electrons and ions in a gas discharge
plasma proceeds in a narrow region of the tube cross section. This leads to the total
rate of electron and ion formation per unit tube length

J1 = Na No

ρo
∫

0

2πρdρKion(ρ) = Na Noπa2Kion(0) (12.4.6)

In order to rewrite the ionization balance equation, we analyze the electron and
ion distribution outside the ionization region that has the following form by analogy
with heat balance equation (8.5.2)

d

dx

(

Da x
d Ne

dx

)

= 0,

where x = ρ2/ρ2o. We have that the ambipolar diffusion coefficient Da ∼ 1/Na ∼ T
and according to formula (7.7.5) it is proportional to a factor Te/T . Hence if we
neglect by a more weak temperature dependencies for the ion velocity and cross sec-
tion of ion-atom collision, the ambipolar diffusion coefficient becomes independent
of the gas temperature. Solving the above equation for the electron number density
Ne(x), we assume Ne = No in the region ρ < a. Then we have for the electron num-
ber density Ne in a region outside a region of their formation according to formula
(8.7.3)

Ne = No
ln(ρo/ρ)

ln(ρo/a)
, ρ > a

From this we find for the rate of attachment of electrons and ions to walls

J2 = −2πρo Da
∂Ne

∂ρ(ρ = ρo)
= 2πDa No

ln(ρo/a)

Equalizing this and the rate (12.4.6) of formation of electrons and ions, we obtain
the ionization balance equation J1 = J2 in this case

Na(0)Kion(0) = 2Da(ρo)

a2 ln(ρo/a)
(12.4.7)

Taking the number density of atoms at walls Na ≡ Na(ρo), one can reduce this
equation to the form

(Naρo)
2 = 4Di Na

Kion(Te) ln(J/Te)
· J To

T 2
w

(12.4.8)
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In particular, for a helium gas discharge plasma (J = 24.56 eV) with atomic ions
(4Di Na = 3.1 × 1019 cm−1s−1) at the wall temperature Tw = 300K this formula
takes the form

(Naρo)
2 = 4Di Na

Kion(Te) ln(J/Te)
· J To

T 2
w

(12.4.9)

This coincides with (8.7.6) if we replace the ionization rate constant by the rate
constant of stepwise ionization at the tube axis. We use in this derivation formula
(8.7.1) which connects the electron and gas temperatures, so that formula (12.4.7)
holds true if the diffusion cross section of electron-atom scattering is independent
on the electron energy.

Note that according to its structure the ionization balance (12.4.7) is analogous to
equation (12.2.2) for stepwise ionization at a low power, so that the temperature at the
axis coincides with the wall temperature. In the case under consideration equation
(12.4.7) of the ionization balance must be added to equation (8.5.12) of the thermal
balance. Figure12.27 compares the reduced gas pressure pρo in helium as a function
of the electron temperature Te at low and high electron concentrations. In the first case
the gas temperature at the axis coincides with that at walls, i.e. To = Tw = 300K,
while in the second case the gas temperature at the axis is To = 2,000K, and at walls
Tw = 300K. As is seen, parameters of a gas discharge plasma depends on several
external parameters. Figure12.28 gives the electron concentration depending on the
electron temperature at a certain gas temperature at the discharge tube axis.

Fig. 12.27 Dependence of the helium pressure on the electron temperature Te at the axis for the
axis temperature To = Tw = 300K of helium atoms according to equation of ionization balance
(12.2.2) and the gas temperature at the axis To = 2,000K at the same temperature Tw = 300K at
walls in accordance with equation of ionization balance (12.4.7)

http://dx.doi.org/10.1007/978-3-319-11065-3_8
http://dx.doi.org/10.1007/978-3-319-11065-3_8
http://dx.doi.org/10.1007/978-3-319-11065-3_8
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Fig. 12.28 Dependence of the electron concentration ce at the axis on the electron temperature Te
at the injected specific power P = 8W/cm and P = 180W/cm, so that the gas temperature at the
axis is To = 2,000K and To = 3,000K respectively

12.5 Capillary Discharge

Capillary gas discharge is characterized by a small radius of a discharge tube that
provides a high energy of electrons. As a result, the drift velocity of electrons is high
and electrons can pass outside discharge tube. A high energy of electrons in a plasma
torch outside the tube allows one to use this plasma as a source of radiation in VUV
(vacuum ultraviolet) range. In particular, the intensity of radiation near resonance
line HeI (λ = 58.43 nm) is 1011–1012 s−1 [434–440]. Because of a high electron
temperature, capillary discharge may be a source of X-rays [441–443] and even a
basis of a laser. In particular, capillary discharge in argon allows one to generate
laser radiation on the transition of Ne-like argon multicharge ions at the wavelength
46.9 nm [50–52]. Since the lengthof a plasma torchoutside the tube is up to5 cm [444,
445], this plasmamayhavemedical applications both for sterilization ofmicrobes and
modification of biological materials with specific schemes of discharge depending
on applications [72, 446, 448]. Though some schemes of capillary discharge are
analyzed theoretically and codes for these discharges are elaborated (for example,
[449–451]), a more detailed analysis is required in order to establish connections
between processes in this gas discharge. This will help to understand the sensibility
of output discharge parameters to the rates of some processes in this gas discharge
plasma.

We below analyze capillary gas discharge of low pressure where the mean free
path of ions is large compared to the tube radius. Because of a small residence time
of ions in a capillary plasma, a high electric field strength is required to support this
plasma. Electrons move with a high drift velocity under the action of such fields. As a
result, electrons located near the tube edge shoot outside the tube and form a plasma
torch with fast electrons. An excess negative charge of the plasma torch returns back
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along a conductive external side of the tube or is compensated by positive ions which
are drawn in the plasma torch. This provides a stationary or quasistationary regime
of the capillary plasma.

Let us consider first capillary gas discharge of low pressure, where a tube radius
is small compared to the mean free path of ions. A general scheme of capillary
discharge is represented in Fig. 12.29. An ionized gas is created in a specific chamber
and flows through a capillary tube where it is supported by an external electric field.
Because of the rate of ion attachment to walls is large for a small tube radius, a strong
field is required to support this plasma in a capillary tube. Therefore fast electrons
are located in this plasma and electrons have a high drift velocity. As a result, an
electric field creates an additional gas pressure through electrons, and this pressure
compels an ionized gas to flow towards an open tube edge. Thus, a plasma torch with
fast electrons arises in a space outside the capillary tube. For capillary discharge of
low pressure this plasma torch with fast electrons is a source of vacuum ultraviolet
radiation.

In determination the residence time of electrons and ions in the capillary plasma,
we will reduce the current of ions to walls to formula (8.4.8) obtained on the based
of the Firsov method [38, 350]

ji = 0.272No

√

2Te

M
,

where No is the number density of electrons and ions at the axis, Te is the electron
temperature. Because the electron temperature Te = ε⊥ ∼ Ne and the electron
number density varies over the tube cross section, we introduce the average electron
temperature To = 〈Te〉, where an average is made over the tube cross section. Taking
the dependence of the plasma electric potential U (ρ) for electrons with respect to
the tube axis as U (ρ) = βρ2, we obtain

〈√Te〉 = √

To

∫ ρo
0 exp[−1.5U (ρ)/To] · 2πρdρ
∫ ρo
0 exp[−U (ρ)/To] · 2πρdρ

= 0.8
√

To,

where U (ρo) = 1.145To [38]. This gives according to formula (8.4.8) for the ion
(and electron) flux to walls [38]

Fig. 12.29 Scheme of capillary discharge. 1 gas flow, 2 container with an ionized gas, 3 capillary
tube, 4 battery created an electric field in the tube, 5 plasma torch

http://dx.doi.org/10.1007/978-3-319-11065-3_8
http://dx.doi.org/10.1007/978-3-319-11065-3_8
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ji = 0.22No

√

2To

M
(12.5.1)

From thiswefind the average time τw of ion travelling towalls taking for simplicity
the parabolic dependence of the self-consistent electric potential U (ρ) on a distance
ρ from the axis

τi =
No

ρo
∫

0
2πρdρ exp[−U (ρ)/Te])

2πρo ji
≈ 2ρo

√

M

To
(12.5.2)

Because for discharge of low pressure the ion residence time inside a tube is small
compared to a typical time of the charge exchange process with this ion, the criterion
of low pressure discharge has the form

ξ = Naσresρo � 1, (12.5.3)

where Na is the number density of atoms, σres is the cross section of resonant
charge exchange. In particular, taking the tube radius ρo = 0.5mm, the number
density of gas atoms Na = 1 × 1015 cm−3 and being guided by the ion temperature
Ti = 1,000K, we use the cross sections of resonant charge exchange σres = 34Å2

in the helium case and σres = 70Å2 in the argon case [110]. This gives for the
parameter ξ characterized the gas rareness for ions the values ξ = 0.17 in the helium
case and ξ = 0.35 in the argon case. In addition, according to formula (12.5.3) the
average times of ion residence inside the tube are τi = 20 ns in the helium case and
τi = 64ns in the argon case.

Due to a small lifetime of electrons and ions in a gas discharge plasma, a strong
electric field strength is required to provide ionization equilibrium that is described
by

1

τi
= αwe (12.5.4)

Taking experimental values of the first Townsend coefficient α from [43] and the
electron drift velocity we according to formula (6.6.14), one can find from equa-
tion (12.5.4) of ionization balance in the helium case x = E/Na = 1,400 Td
(α/Na = 2.8 × 10−16 cm2), while in the argon case formula (12.5.4) gives
x = 700 Td (α/Na = 1.4 × 10−16 cm2).

We collect in Table12.1 parameters of a capillary plasma in helium and argon at
certain parameters. For definiteness we take, as above, a tube radius ρo = 0.5mm,
the number density of helium and argon atoms Na = 1 × 1015 cm−3, and the gas
temperature Ti = 1,000K. The values of the reduced electric field strengths E/Na

and the residence time for ions τi which are determined above are represented this
Table. The electron drift velocities in helium and argon are evaluated on the basis of
formula (6.6.14); formula (6.6.11) is used for determination of the electron way �x

http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_6
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Table 12.1 Parameters of
helium and argon gas
discharge plasmas of capillary
discharge of low pressure that
is burnt in a capillary tube of
a radius ρo = 0.5mm, the
number density of atoms
Na = 1015 cm−3 and gas
temperature T = 1, 000K

Plasma sort He Ar

E/Na (Td) 1,400 700

E (V/cm) 14 7

τi (ns) 20 64

we (cm/s) 1.7 × 108 1.0 × 108

mew
2
e /2 (eV) 22 3.1

�x (cm) 1.4 1.7

kex (cm3/s) 1.2 × 10−7 6.4 × 10−8

l (cm) 5.6 6.7

τrel (µs) 0.41 0.22

pe (Pa) 71 10

Ne/N∗ 1.4 7.0

εo/�ε 2.7 1.5

per one atom excitation, and formulas (6.6.17), (6.6.18) are used for calculation of
the atom excitation rate constants kex in the lowest excited states.

Electrons located close to the tube edge do not attach to tube walls and go out
the tube forming a plasma torch. Ions attached to tube walls charge it positively near
a tube edge; hence dielectric walls near the tube edge repel ions and they follow to
the plasma torch also. The length of the region l from which electrons and ions go
outside the tube is given by

l = weτi (12.5.5)

Numerical values of this length l of a capillary plasma region from which electrons
and ions leave the tube are given in Table12.1 for helium and argon gas discharge
plasmas. Electron drift under the action of an electric field creates a pressure along
the tube that is

pe = Nemew
2
e (12.5.6)

The values of pe for helium and argon capillary plasmas are given in Table under
the above conditions and the electron number density Ne = 1013 cm−3 (the ion-
ization degree of a capillary plasma is 1%). Since this pressure is small compared
to atmospheric one, this capillary plasma of low pressure cannot be injected in at-
mospheric air and may be used as a source of vacuum ultraviolet radiation only.
For comparison, the gas pressure in a capillary tube under considering conditions
(Na = 1015 cm−3, T = 1,000K) is 14Pa.

Let us analyze the balance of atoms in the lowest excited states for a capillary
plasma of low pressure. These atoms are formed in electron-atom collisions and are
destructed as a result of attachment to walls, so that the balance equation for the
number density N∗ of excited atoms has the form

http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_6
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Ne Nakex = N∗vT

〈

1

R

〉

, (12.5.7)

where vT = √
8T/(πM) is the average atom velocity, T is the gas temperature,

M is the atom mass, kex is the excitation rate constant averaged over energies of
incident electrons, R is a distance from a point of formation of an excited atom to the
surface point on the atom trajectory, and triangle parentheses mean an average over
trajectories of excited atoms towards walls. After an average over atom trajectories
we obtain for the boundary electron number density

N∗
Ne

= Nakexρo

vT
(12.5.8)

where kex is given by formulas (6.6.17), (6.6.18). Note that we deal with atoms in the
lowest excited states because of a low rate constant of atom excitation in higher states.
Values of this ratio given in Table12.1 show that under considering conditions the
number density of electrons in the capillary plasma is lower than the number density
of excited atoms.

Note that under conditions of a plasma of glowdischarge the criterion (6.5.4) holds
true and the self-consistency of the excitation process is of importance [83, 287].
Then the energy distribution function of electrons drops sharply above the excitation
threshold, and this influences in turn on the excitation rate. In the helium and argon
cases it is valid at the reduced electric field strengths E/Na � 100 Td. In a capillary
plasma because of high electric field strengths this effect is absent. Next, let us
determine at which parameters the contribution of stepwise atom ionization becomes
comparable to single ionization. Evidently, equation of the ionization balance in the
case of stepwise ionization has the form

k∗
ion N∗ = 1

τi
(12.5.9)

Taking the rate constants of ionization of excited atoms k∗
ion by electron impact

according to formula (6.6.29) and the above values of the residence time τi for ions,
we obtain for the number densities of excited atoms in a capillary plasma which
provide stepwise ionization N∗ = 3× 1014 cm−3 for a helium gas discharge plasma
and N∗ = 1 × 1015 cm−3 for an argon gas discharge plasma. Comparing these
values with the number density of atoms in the ground state Na = 1015 cm−3, one
can conclude that stepwise ionization is not realized in a capillary plasma.

The main part of capillary discharge is a plasma torch with fast electrons, and a
region of the capillary tube of a size∼ l is responsible for formation and existence of
the plasma torch. Hence, the scheme of Fig. 12.30 is more profitable with the length
l of a capillary tube. This scheme uses the fact that in principle a capillary plasma is
not effective because of a low residence time for electrons and ions. In this scheme
the regions where a gas discharge plasma is formed and where this plasma is used for
origin of the plasma torch. An intermediate region between these ones may have the

http://dx.doi.org/10.1007/978-3-319-11065-3_6
http://dx.doi.org/10.1007/978-3-319-11065-3_6
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http://dx.doi.org/10.1007/978-3-319-11065-3_6
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Fig. 12.30 Shape of a gas discharge chamber for formation of the plasma torch. 1 region of a gas
discharge plasma of high pressure, 2 intermediate region, 3 region of a capillary plasma of low
pressure, 4 plasma torch, 5 axis

conic shape. Next, according to data of Table12.1 the plasma torch of low pressure
is characterized by a low pressure of electrons and hence this plasma torch may be
used as a source of vacuum UV radiation. A plasma of high pressure is required for
capillary discharge which allows one to obtain a plasma torch in atmospheric air, and
this plasma may be used for medical goals. Therefore, we below consider capillary
discharge of high pressure.

Being guided by a high pressure of electrons which push out a plasma from capil-
lary tube, we consider this object from another standpoint and determine parameters
of capillary discharge which allows one to obtain a plasma torch in atmospheric air.
Let us consider a plasma flow inside a capillary tube as laminar motion with small
Reynolds numbers [452, 453]. If a gas flows in a cylinder tube of a radius R and
length l, and the pressure difference for the beginning and end tube is �p, the flow
velocity v(r) at a distance r from the tube axis is given by [454]

v(r) = �p

4ηl
(R2 − r2) (12.5.10)

This gives the following distribution of the flow velocity over the tube cross section
that was obtained in study of blood propagation in a blood vessel [455–457] and is
called as the Poiseuille formula

v(r) = vo

(

1 − r2

R2

)

, (12.5.11)

where vo is the flow velocity at the axis that is given by [454, 458]

vo = �pR2

4ηl
(12.5.12)
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The Poiseuille formula leads to the following gas expense Q (the gas mass per
unit time) in the course of its flow through a tube [454, 458]

Q = πma�pR4

8ηl
(12.5.13)

In considering capillary discharge of high pressure, we restrict for definiteness
by argon as a working gas of pressure p = 1 atm and a pressure variation in the
tube �p = 0.1 atm. Taking a tube radius R = 0.5mm, a tube length l = 5 cm and
the argon temperature T = 1, 000K, we have for the argon expense Q ≈ 60mg/s
that corresponds to the gas expense approximately 3l/s under normal conditions. In
addition, formula (12.5.12) gives the flow velocity vo = 2.3 × 104 cm/s at the tube
axis under given conditions. On the basis of the ionization balance equation (12.1.1),
one can find the reduced electric field strength E/Na and the number density of
electrons Ne which provides these flow parameters.

Note that electron drift cannot provide an addition pressure which causes flow
of a gas through a tube. Indeed, let us estimate the electron number density Ne

which provides the above pressure variation �p = pe = 0.1 atm at the atmospheric
argon pressure in accordance with formula (12.5.6) at the reduced electric field
strength E/Na = 300 Td. This gives Ne ≈ 5 × 1017 cm−3 that is a remarkable
part of the number density of argon atoms Na ≈ 7 × 1018 cm−3 at T = 1,000K.
But this creates very high current and leads to a strong gas heating. From this we
conclude that in contrast to the case of capillary discharge of low pressure, it is
impossible to create a pressure excess for formation the plasma torch due to an
electron drift, and this results fromahigher pressure in a container before the capillary
tube. In this case it is not necessary attachment of ions to walls and absence this
attachment for electrons in the course of this process, i.e. the gas flowdue to a pressure
excess in the container captures simultaneously electrons and ions. On the basis of
formula (12.4.1) we find that the gas temperature at the tube axis T = 1,000K at the
reduced electric field strength E/Na = 300 Td is provided by the electric current
I = P/E = 0.1mA. For the above radius of the capillary tube R = 0.5mm and
the average flow velocity v ≈ 2 × 104 cm/s this corresponds to the excess electron
number density Ne ∼ 4 × 1012 cm−3.

In order to decrease the argon expense in this version it is convenient to decrease
the radius of a capillary orifice and change the tube shape. Let us take a conic shape
of the capillary tube which is ended by a nozzle which radius is large compared to
the mean free path of atoms and small compared to the tube radius at the beginning.
Assuming the pressure variation in this tube to be relatively small, one can solve
the Poiseuille equation (12.5.10) at the flow axis assuming the gas temperature and
pressure along the axis to be constant

dp

dz
= 4ηvo

R2 , (12.5.14)
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Fig. 12.31 Geometry and notations for parameters of a conic capillary tube

where z is the direction along the axis, R is a current tube radius. Using notations of
Fig. 12.31 and solving this equation, we obtain (for example [459])

�p = 4ηvo

3ro tanα
, (12.5.15)

where we assume ro � Ro and vo is the flow velocity at the tube axis. From this we
obtain for the flow velocity at the orifice

vo = 3ro�p tanα

4η
, (12.5.16)

i.e. transition from a cylinder tube to conic one leads to a change of a cylinder tube
length l in formula (12.5.13) by ro/3. In determination the gas expense Q of a gas
flow, we assume the gas temperature To at the axis is large compared to that Tw at
walls, and the gas temperature at a distance r from the axis is

T (r) = To

(

1 − r2/R2
)

,

where R is a radius for a current cross section. Integration over the cross section
gives for a gas expense

Q = πr2o vo Noma = 3π

4

r3o�p tanα

η
ρo, (12.5.17)

where No is the number density of atoms at the orifice axis, and ρo = Noma is the
mass density of the flow there.

We now consider the heat regime of the flow. Taking the temperature distribution
over the cross section as early

T (r) = To − �T
r2

R2 ,
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where �T = To − Tw is the temperature difference between the axis and walls, we
find the average temperature change to be �T/2 in this process. Averaging the flow
velocity and the atom number density over the cross section as early, we obtain for
the power � that is required for heating of a flowing gas, if we model a conic tube
near an orifice by a cylinder tube

� = cp�T

2ma
Q = π

2
cp�T vo Nor2o = 15π

16η
�T vo No�p tanαr3o , (12.5.18)

where cp = 5/2 is the atom heat capacity at constant pressure. In particular, if we
take for definitenessα = 20◦, ro = 50µm and�p = 0.1 atm, we obtain for argon at
atmospheric pressure vo = 3.1 × 105 cm/s, � = 2.1W, Q = 400 sccm (standard
cubic cm per second) or 12mg/s.

Next, this temperature according to formula (8.5.6) corresponds to the power P
per unit length P = 1.8W/cm injected in this plasma if we model a flow near an
orifice to have the cylindrical shape. As is seen, an external field heats a plasma
flow in a volume ∼ 0.01 cm3. Based on the reduced electric field strength E/Na =
300 Td (the electric field strength E = 20 kV/cm is comparable to the breakdown
strength for dry air), we find a current I = P/E ≈ 80µA, and the current density
i ≈ 1A/cm2. Because the electron drift velocity at the above reduced electric field
strength is we = 1.4× 107 cm/s (Table7.4), this corresponds to the excess electron
number density �Ne = 5 × 1011 cm−3. Note that this is the difference between
the number density of plasma electrons and ions, while the total number density of
electrons (and ions) exceeds this value, but is less than the number density of atoms
(Na ≈ 1019 cm−3) by several orders of magnitude. A distance L at which an external
electric field must support this excess electron number density is given by

L ≈ E

4πe�Ne
≈ 8 cm,

i.e. this field is enough to have the above excess electron number density in a region
with plasma heating.

Let us consider the ionization equilibrium in the plasma flow under consideration.
Taking the ionization equilibrium in the form (8.2.4),we take the transversal diffusion
coefficient of argon ions in argon to be Di = 0.06 cm2/s at E/Na = 300 Td accord-
ing to Fig. 7.5. Using data of Fig. 7.5, we obtain on the basis of formula (7.7.5) for
the reduced ambipolar diffusion coefficient Da ≈ 5 cm2/s under given conditions.
This leads to a typical time τat of electron and ion attachment to walls

τat = r2o
5.78Da

= 9 × 10−7 s

This corresponds to the ionization rate constant of argon atoms by electron impact
kion = Na/τat = 1.6 × 10−13 cm3/s and according to data of Table8.1 ionization
equilibrium may be fulfilled at E/Na ≈ 10 Td, i.e. under considering conditions
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additional ionization proceeds in the plasma flow. One can see that charge separation
due to ion attachment to walls and electron drift outside the capillary tube takes place
at a distance l from an orifice

l = voτat ∼ 0.2 cm

It is clear that yield parameters of a flow capillary plasma depends on external and
geometric parameters of this capillary discharge. Nevertheless, the above analysis
with using certain discharge parameters shows the reality of such a system.



Chapter 13
Processes at Boundaries of Gas Discharge
Plasma

Abstract Cathode processes in the normal and abnormal regimes of glow discharge
in helium and argon are analyzed. They determine parameters of the cathode plasma
in helium and argon. The character of plasma processes in helium and argon near
walls is represented. Properties of a magnetron plasma in helium and argon are
considered.

13.1 Cathode Plasma of Glow Discharge Near Equilibrium

In the classical consideration [4], we assume that reproduction of electrons at the
cathode in the normal regime of glow discharge proceeds owing to three above
mechanisms, bombardment by ions, quenching by excited atoms and photoionization
of the cathode material (see Fig. 9.2) that is described by the second Townsend
coefficient γ given by the following ratio between the electron ie and ion ii current
densities at the cathode

ie = γ ii (13.1.1)

The classical theory of the cathode plasma of normal glow discharge is represented
in §9.3, where from the minimum of the cathode voltage it follows that the current
density is independent of the total discharge current and is given by formula (9.3.11)
in a dense gas.

The classical theory of the cathode layer [4] assumes the cylinder shape of the
current, so that the depth l of the cathode layer is small compared to a current radius
r , that is

l � r (13.1.2)

This leads to an one-dimensional model of the cathode plasma with an excess of
the electrons number density Ni compared to the electron one Ne. In this model
electrons are formed at the cathode layer boundary, and electrons from the positive
column cannot penetrate in the cathode layer because of the potential barrier at is
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boundary (see Fig. 8.1). But when the ion flux propagates from the cathode layer
boundary towards the cathode, it expands due to a transverse electric field, and the
transversal electric field strength at the cathode plasma boundary E⊥ exceeds the
cathode electric field strength Ec, so that a transversal plasma expansion �r may be
large compared to the cathode layer width l. Indeed, because the drift velocity wi of
atomic ions in a parent atomic gas depends on the electric field strength aswi ∼ √

E ,
we have �r/ l ∼ √

E⊥/Ec � 1. From this we have

�r

r
∼ l

r

√

E⊥
Ec

∼
√

l

r
� 1, (13.1.3)

and this justifies the validity of the classical theory of the cathode layer.
Following to the classical theory of the cathode layer [4], we require the cathode

voltage Uc according to formula (9.3.13) to be minimal Umin among its possible
values. Let us denote by Ec the electric field strength at the cathode, by lo the
cathode layer depth, by ro the radius of a region occupied by an electric current.
Introducing the number density Na of atoms and the discharge electric current I ,
we consider optimal conditions where the cathode voltage is minimal in accordance
with formula (9.3.13). Variations of the cathode voltageU , the cathode layer depth l,
and the radius r of a plasma region near this equilibrium as a function of the reduced
electric field strength Ec/En are given in Fig. 13.1.

From this analysis it follows that the dynamics of propagation of the ion flux
towards the cathode creates an electric lens that tends to shrink the ion flux in order
to keep the cathode plasma in a certain region. From Fig.13.1 it follows that the
quantity u(x) is quadratic with respect to deviation of the specific electric field
strength x = Ec/En from one, while other quantities of Fig. 13.1 are linear with
respect to this deviation from the equilibrium. Let us construct the quantity

Fig. 13.1 Parameters of the cathode layer near the equilibrium
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Fig. 13.2 Dependence for ζ(x) according to formula (9.3.1)

ζ(x) = U/Umin − 1

(r/ro − 1)2
(13.1.4)

Figure13.2 gives this dependence on the parameter x = Ec/En .
Though the parameter ζ(x) varies with a varying x , one can introduce an average

value of this parameter ζ = 0.28 near the equilibrium with an accuracy 10%. One
can understand the role of this parameter. If some ion transfers outside the current
radius ro, it is returned by a force F which is proportional to r − ro, where r is the
ion position. The motion equation for this ion is

M
d2r

dt2
= −∂2U

∂r2 |ro

(r − ro), (13.1.5)

where M is the ion mass. This equation describes oscillation motion of an ion near
the equilibrium with the frequency

ω =
√

0.28Umin

Mr2o
(13.1.6)

This character of ion motion testifies about an equilibrium for the cathode layer that
is realized near the minimal cathode voltage U ≈ Umin and is described by the
classical theory [4] of the cathode layer for glow discharge.

This effect may lead to stabilization of the cathode plasma if ωτ � 1, where τ

is the lifetime of the cathode plasma as a time of the ion pass through the cathode
layer

τ =
∫

dx

wi
= 3l

2wi (Ec)
(13.1.7)
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From this we have on the basis of formula (13.1.6) for the parameter ωτ because
Umin = 3Ecl/5

ωτ = 0.8
l

ro

√

l

λi
(13.1.8)

Since we use an one-dimensional model of the cathode layer, l � ro, but l � λi .
Hence, the stability of the cathode layer, if it is described by the classical theory
of the cathode layer [4], is valid in a restricted range of discharge currents and
gas pressures. In particular, in the case of a copper cathode in argon the criterion
ωτ � 1 gives Naro � 5 × 1016 cm−2. Note that according to Table9.5 in this case
Nal = 9.6× 1016 cm−2. As a result we obtain the criterion ωτ � 1 in the case of a
copper cathode in argon in the form

I � Io, Io = 60mA (13.1.9)

Nevertheless, some features of normal glow discharge are conserved outside this
criterion.

We below consider another way to violate the classical theory of the cathode layer
of normal glow discharge if ionization results through formation of excited atoms.
In these case an electric field in the cathode region does not act on excited atoms
and hence stepwise ionization may increase a region where the electric current to the
cathode is concentrated. In order to account for the contribution of stepwise ionization
to the total rate constant of atom ionization by electron impact, we represent the first
Townsend coefficient in the form

α = αT + αst , (13.1.10)

where αT is the first Townsend coefficient due to single ionization, and αst is the first
Townsend coefficient owing to stepwise ionization. In this consideration we evaluate
αst and find the criterion where αst � αT , i.e. the Townsend ionization regime is
realized.

Assuming that the ionization coefficient αst proceeds due to stepwise ionization,
we use the balance equation for the number density N∗ of excited atoms that has the
form

d N∗
dt

= − N∗
τ

+ Ne Nakex , (13.1.11)

where kex is the rate constant of atom excitation by electron impact, τ is the lifetime
of excited atoms. This gives for the number density of excited atoms

N∗ = Ne Nakexτ, (13.1.12)
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We assume that the process

e + Ar(3p6) → e + Ar(3p54s) (13.1.13)

gives the main contribution to the loss of the electron energy. This leads to the energy
balance equation

Nakex�ε = eEwe, (13.1.14)

where kex is the rate constant of atom excitation, we is the electron drift velocity, �ε

is the atom excitation energy, we is the electron drift velocity. From this mechanism
of atom excitation it follows

we ∼ E

Na
, kex ∼

(

E

Na

)2

, (13.1.15)

and at the cathode these parameters are k∗
ex = 4×10−7 cm3/s,we = 1.4×108 cm/s.

One can divide the states of an excited argon atom with the electron shell 3p54s
in metastable (3P2,3P0) states and resonantly excited ones (3P1,

1P1). Based on the
statistical character of excitation of atom sublevels, we assume the rate constant of
excitation of a given sublevel to be proportional to its statistical weight. Then we
obtain the rate constant of excitation of metastable argon states (3P2,3P0) at the
cathode to be km

ex = 2.7× 10−7 cm3/s and for resonantly excited states (3P1,1P1) it
is equal kr

ex = 1.3×10−7 cm3/s. We restrict ourselves by contribution of metastable
states in stepwise ionization of atoms only since the population of resonantly excited
atoms is small. Then the lifetime of excited atoms τ is equal by their quenching on
the cathode owing to their diffusion

τ = l2

2D∗
, N∗ = Ne Nakexl2

2D∗
, (13.1.16)

where D∗ is the diffusion coefficient of excited atoms, and we consider the depth of
the cathode layer l to be small compared with a current radius that corresponds to the
normal regime of glow discharge. The reduced diffusion coefficient for metastable
helium atoms He(23S) in helium is D∗Na = (1.5 ± 0.1) × 1019 cm−1s−1 accord-
ing to experimental data [306–316], for excited argon atoms in states 3P2 and 3Po

the reduced diffusion coefficient in argon is D∗Na = (1.9 ± 0.3) × 1018 cm−1s−1

according to measurements [321–326], and the above data corresponds to the sta-
tistical average of indicated measurements. In addition, as it is obtained in §6.6, the
rate constant of ionization of metastable helium atoms He(23S) by electron impact
in strong electric fields is k∗

ion(He) = 2.5 × 10−7 cm3/s, and the rate constant of
ionization of metastable argon atoms Ar(3P

2 ) by electron impact in strong elec-
tric fields is k∗

ion(Ar) = 3.6 × 10−7 cm3/s. Next, according to formulas (6.6.17)
and (6.6.18) the rate constant of helium atom excitation in the metastable state
He(23S) by electron impact near the cathode is kex (He) = 1.7 × 10−7 cm3/s.
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For metastable state Ar(3P2) this rate constant is kex (Ar) = 6.9× 10−7 cm3/s. We
add to this that at the cathode the drift electron velocity in a helium cathode plasma
is we(He) = 3.3× 108 cm/s, and in the argon case the electron drift velocity at the
cathode is we(Ar) = 1.1 × 108 cm/s. These values follow from Tables7.3, 7.4 or
from Figs. 5.1 and 13.2, if we continue their drift velocities for larger electric field
strengths.

According to the definition of the reduced first Townsend coefficient due to step-
wise ionization is equal in accordance with formula (13.1.16)

αst

Ne
= 1

Ne

k∗
ion N∗
we

= k∗
ionkex (Nal)2

2we(D∗Na)
, (13.1.17)

where notations and values of parameters in this formula are given above. Repre-
senting formula (13.1.16) in the form

αst

Ne
= a(Nal)2, (13.1.18)

and the proportionality coefficient is a = 4.3 × 10−42 cm6 in the helium case and
a = 5.9×10−40 cm6 in the argon case. Tables13.1 and 13.2 contain the values of the

Table 13.1 Parameters of the helium cathode plasma near the cathode, namely, a part of the reduced
first Townsend coefficient αst/Ne due to stepwise ionization according to formulas (13.1.17) and
(13.1.18), the boundary concentration of electrons cmax , below which stepwise ionization gives
a small contribution to ionization near the cathode, the reduced number density of ions Ni /N 2

a
according to formula (13.1.21)

Cathode αst/Ne cm2 cmax Ni /N 2
a 10−25 cm3 ce/Na 10−29 cm3

Mg 1.6 × 10−9 6.9 × 10−8 3.2 2.7

Al 1.9 × 10−9 5.8 × 10−8 2.9 2.0

K 3.5 × 10−10 3.1 × 10−7 6.8 18

Ca 7.3 × 10−10 1.5 × 10−7 4.7 7.0

Fe 2.3 × 10−9 4.8 × 10−8 2.7 1.6

Ni 2.5 × 10−9 4.4 × 10−8 2.5 1.3

Cu 3.1 × 10−9 3.6 × 10−8 2.3 1.5

Zn 2.1 × 10−9 5.2 × 10−8 2.8 1.9

Sr 7.3 × 10−10 1.5 × 10−7 4.7 7.0

Ag 2.7 × 10−9 4.1 × 10−8 2.4 1.2

Cd 2.7 × 10−9 4.1 × 10−8 2.4 1.2

Ba 7.3 × 10−10 1.5 × 10−7 4.7 7.0

Pt 2.7 × 10−9 4.1 × 10−8 2.4 1.2

Au 2.7 × 10−9 4.1 × 10−8 2.4 1.2

Pb 3.1 × 10−9 3.6 × 10−8 2.3 0.97

Bi 1.9 × 10−9 5.8 × 10−8 2.9 2.0
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Table 13.2 Parameters of the argon cathode plasma near the cathode, which include a part of
the reduced first Townsend coefficient αst/Ne due to stepwise ionization according to formulas
(13.1.17) and (13.1.18), the boundary concentration of electrons cmax , below which the stepwise
ionization gives a small contribution to ionization near the cathode, the reduced number density of
ions Ni /N 2

a according to formula (13.1.21)

Cathode αst/Ne cm2 cmax Ni /N 2
a 10−25 cm3 ce/Na 10−29 cm3

Mg 4.4 × 10−6 1.1 × 10−10 2.4 0.53

Al 3.2 × 10−6 1.5 × 10−10 2.9 1.0

K 1.4 × 10−6 3.4 × 10−10 1.9 1.6

Ca 2.8 × 10−6 1.7 × 10−10 2.7 1.1

Fe 8.6 × 10−6 5.5 × 10−11 5.0 0.42

Ni 8.6 × 10−6 5.5 × 10−11 3.9 0.68

Cu 5.5 × 10−6 8.5 × 10−11 3.9 0.69

Zn 4.6 × 10−6 1.0 × 10−10 3.5 0.77

Sr 2.8 × 10−6 1.7 × 10−10 2.7 1.1

Ag 5.5 × 10−6 8.5 × 10−11 3.9 0.69

Cd 4.6 × 10−6 1.0 × 10−10 3.5 0.77

Ba 2.8 × 10−6 1.7 × 10−10 2.7 1.1

Pt 5.6 × 10−6 8.4 × 10−11 3.9 0.68

Au 5.6 × 10−6 8.4 × 10−11 3.9 0.68

Pb 5.0 × 10−6 9.4 × 10−11 3.7 0.74

Bi 5.9 × 10−6 8.0 × 10−11 4.0 0.62

reduced first Townsend coefficient for the helium and argon gas discharge plasma at
the cathode.

For the normal regime of glow discharge, where the cathode layer depth l to
be small compared to its radius in accordance with (13.1.2), the reduced electric
field strength at the cathode is independent of a cathode material and according to
formula (9.3.15) is equal En = 1650 Td in the helium case and En = 2300 Td in the
argon case. Correspondingly, as it follows from formula (9.3.15), the reduced first
Townsend coefficient at the cathode is

αT

Na
= A exp(−0.665) = 0.51A, (13.1.19)

if we use approximations (8.1.4) and (8.1.5) for this quantity. From this on the basis
of the Table8.2 data we obtain for the reduced first Townsend coefficient at the
cathode αT /Na = 1.1Å2 in the helium case and αT /Na = 4.7Å2 in the argon case.
Hence, the criterion of a small contribution to ionization of the cathode plasma from
stepwise ionization αT � αst may be represented in the form ce � cmax , where

cmax = αT /Na

αst/Ne
(13.1.20)
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Values of this parameter for the helium and argon gas discharge plasmas at the
cathode are given in Tables13.1 and 13.2.

We now determine the ion and electron concentration at the cathode in a real
cathode plasma that allows us to estimate the contribution of stepwise ionization
to the total ionization. The number density of ions at the cathode follows from the
Poisson equation (9.3.2) and formula (9.3.12) is given by

Ni = 1

4πe

d E

dz
= En

6πel
(13.1.21)

Tables13.1 and 13.2 contain the values of the reduced ion velocity in accordance
with formula (13.1.21). In this case the ion drift velocity wi and the average ion
energy ε are determine by formula (7.6.12) for a dense gas, where l � λi , and
λi = 1/(Naσres), σres is the cross section of resonant charge exchange process. In
the helium case at the cathode En/Na = 1650 Td we have from formula (7.6.12) for
the average ion energy ε = 1.8 eV, for the ion drift velocity wi = 9.3 × 105 cm/s,
and the cross section of resonant charge exchange σres = 26Å2 corresponds to this
average energy. In the argon case at the cathode, where En/Na = 2300 Td, these
parameters are equal ε = 1.3 eV, wi = 2.4 × 105 cm/s, and σres = 57Å2.

For determination the electron number density at the cathode, use formula of
Sect. 9.3 ie = γ ii , where ie, ii are the current densities at the cathode for electrons
and ions. From this we obtain

Ne

Ni
= γ

wi

we
, (13.1.22)

Using the above drift velocities of electrons and ions near the cathode, we rewrite
formula (13.1.22) in the form

Ne

Ni
= 2.2 × 10−3γ, (13.1.23)

and the proportionality coefficient in formula (13.1.22) is identical for helium and
argon cases. Tables13.1 and 13.2 contain the values of the reduced electron con-
centrations at the cathode in a helium and argon cathode plasma obtained on the
basis of formulas (13.1.21) and (13.1.23). From the results given in Tables13.1 and
13.2 it follows that at the gas pressures p � 1 atm related to glow discharge we
have ce � cmax , i.e. stepwise ionization gives a small contribution to the ionization
process.

13.2 Cathode Layer of Abnormal Glow Discharge

Until the criterion (9.3.5) is fulfilled, the normal regime of the cathode region is
realized. Then the discharge current occupies only a part cathode region and the
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current density in is independent of the total discharge current and provides the
optimal cathode voltageUc that is independent of the discharge current as well as the
electric field strength Ec near the cathode. We below consider the abnormal regime
of glow gas discharge, where the character of electron formation at the cathode is
determined by emission of secondary electrons due to ion impact and the current
density i exceeds that in in the case of the normal regime of the cathode region. We
below consider the abnormal regime of the cathode region i > in for helium and
argon if atomic ions are located in the cathode region.

In this analysiswe use as early the Poisson equation for the electric field strength in
the cathode region whose solution is given by formula (9.3.10) that gives by analogy
with formulas (9.3.11) and (9.3.12)

i = Enwn

6π L
= E3/2

n (eλ)1/2

3π L(2π M)1/2
, E(z) = En

( z

L

)2/3
, (13.2.1)

where i is the current density, wn is the ion drift velocity near the cathode, where is
En is the electric fields strength at the cathode, L is the depth of the cathode layer, z
is the distance from the boundary of the cathode region.

We add to this the equation of ionization balance in the cathode region of the
abnormal regime that has the form in accordance with (9.3.6)

1
∫

0

exp

(

− b

z2/3

)

dz = 1

ANa L
ln(1 + 1/γ ),

where b = B Na/Ec, A and B are the parameters of formula (8.1.4) for the first
Townsend coefficient. Let us introduce the function

f (b) =
1

∫

0

exp

(

− b

z2/3

)

dz = 1

ANa L
ln(1 + 1/γ ), (13.2.2)

We give in Fig. 13.3 the dependence (13.2.2).
On the basis of the above equations, one can reduce the cathode region parameters

in the abnormal regime to those in the normal regime. Let in be the current density
for the cathode region in the normal regime, En is the electric field strength at the
cathode, Ln is the thickness of the cathode region; i, Ec, L are the same parameters
of the cathode region in the abnormal regime. Figure13.4 gives the reduced electric
field strength Ec at the cathode and the reduced voltage drop in the cathode region.
Figure13.5 contains the dependence of the reduced depth of the cathode region for
abnormal glow discharge as a function of the reduced current density.

We have the following relations between these parameters
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Fig. 13.3 Dependence f (b) according to formula (13.2.2). The arrow corresponds to the normal
regime of the cathode region if atomic ions are located in the cathode region

Fig. 13.4 Reduced electric field strength and the cathode voltage for the cathode region in argon
in the abnormal regime according to formulas (13.2.3) and (13.2.4)

i

in
=

(

Ec

En

)3/2 Ln

L
,

L

Ln
= 0.665

f
(

En
1.5Ec

) (13.2.3)

We obtain also on the basis of formula (9.3.13) for the voltage of the cathode region
Uc in the abnormal regime

Uc

Un
= Ec

En

1

1.5 f
(

En
1.5Ec

) (13.2.4)

where Un is the cathode voltage in the normal regime.
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Fig. 13.5 Reduced thickness of the cathode region in argon for the abnormal regime according to
formula (13.2.4)

Fig. 13.6 Voltage-current characteristic of the cathode region of abnormal glow discharge in argon.
Signs—experimental data [392], solid curve—formulas (13.2.3) and (13.2.4) for γ = 0.1

The peculiarities of these evaluations follow from the following assumptions.
We assume that the electric current of gas discharge does not influence on the heat
balance of the cathode region and its temperature is equal to T = 300K. This may
be violated at high electric currents. Next, we used the approximation (8.1.5) for the
first Townsend coefficient on the basis of experimental data in accordance with data
of Figs. 8.5 and 8.6. But these measurements are made for restricted values of the
electric field strengths, at least, E/Na < 104 Td.

Figures13.6 and 13.7 contain parameters of the cathode region in the abnormal
regime on the basis of experimental data which are collected in a review [392]. Note
that these data include high reduced electric field strengths which correspond to high
electron and ion energies.We give in Figs. 13.6 and 13.7 the results of evaluations for

http://dx.doi.org/10.1007/978-3-319-11065-3_8
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Fig. 13.7 Reduced thickness of the cathode region of abnormal glow discharge in argon as a
function of the reduced current density. Signs—experimental data [392], solid curve—formulas
(13.2.3) for γ = 0.1

restricted electric field strengths where the used theory holds true. Other mechanisms
of ionization in the cathode region are possible at higher energies.

13.3 Transition Region in Glow Discharge

The transition region occurs between the cathode layer and positive column of
normal glow discharge provides the transition from the cathode layer of normal glow
discharge where a discharge electric currents occupies a part of the cross section and
the positive columnwhere a gas discharge plasma fills all the space inside a discharge
tube. Hence the transition region which we call a dark region ensures expansion of
the electric current at removal from the cathode (see Fig. 13.8).

Fig. 13.8 Schematic distribution of the electric current over the cross section of glow discharge
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Fig. 13.9 Character of distribution of the electric voltage in the transition region between cathode
layer and positive column

Defining the depth l of the cathode layer as E(l) = 0, we found at its boundary
Ni � Ne in the helium and argon case. Figs. 8.1 and 8.10 give the character of
distribution of the electric field strength and electric voltage at the axis of a cylinder
discharge tube, and the electric potential for ions in the transition region is given
additionally in Fig. 13.9. It is important the voltage maximum at the boundary of the
cathode region. This creates a partition for ions at the cathode layer boundary, so that
ions cannot transfer between the cathode layer and dark region and and vice versa.
This prevents from expansion the current region of the cathode layer.

Note that the potential well for ions exists only at the axis. There is a potential well
in the cathode region in the radial direction, and this well prohibits for the cathode
plasma to expand and shrink. On contrary, a radial potential well is absent in the dark
region, and a dark region plasma propagates to the walls.

An electric current in the cathode region of normal glow discharge occupies a
small part of the cathode area. If glow discharge is burnt in a long tube, the positive
column takes usually all the tube length and the electric current in it propagates over
all the tube cross section. Hence, there is an intermediate region between the cathode
region and positive column, and different names are used for this region depending
on a property under consideration. We below call this region as the dark region of
glow discharge and will consider it from the standpoint of enlargement of the electric
current as it is given schematically in Fig. 13.8.

In order to estimate a size of the dark region, we use three values of the length
dimension, namely, ln , the depth of the cathode layer, 1/α, a way where single
ionization proceeds, and ρo, a tube radius. One can exclude from this list the value
1/α, since α(E p)ρo � 1 according to Fig. 12.4 and Ed < E p, where E p is the
electric field strength in the positive column, and Ed is a typical electric field strength
in a dark region. Usually ln � ρo, and hence a size of the dark region is of the order
of the tube radius, and electrons penetrate in the positive column from the cathode
layer as a result of diffusion.

http://dx.doi.org/10.1007/978-3-319-11065-3_8
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The character of ionization processes is of importance for formation of the transi-
tion region between the cathode layer and positive column in glow discharge. Using
the relation (8.1.3) for the ionization balance, we assume the local character of this
process where the first Townsend coefficient α is determined by the electric field
strength at a point where the ionization process proceeds. This means that the energy
distribution function of electrons is established at each point in accordance with the
electric field strength under the local ionization equilibrium. In reality in accordance
with (5.5.6) we have two relaxation time if electrons travel in a gas in a nonuniform
electric field.

The electric field strengths drops in the cathode region as we remove from the
cathode. Because rates of atom excitation and ionization by electron impact depend
strongly on the electron energy, these processes in cathode layer regions with a
small electric fields has a nonlocal character. In other words, electrons which excite
an ionize atoms in these regions, go there from regions with a large electric field
strengths. This is possible because of a high time of electron energy relaxation in
atomic gases. The rate constants of relaxation of the electron momentum and energy
in helium and argon are given in Table7.5, as well as in Figs. 7.6 and 7.7. One can see
that relaxation of the electron energy proceeds slower than relaxation of the electron
momentum, and proceeds at a distance � from a point that is given by

� ∼ λkP/kε (13.3.1)

Because we assume here that the drift character of electron motion dominates, this
corresponds to the criterion

� � DL

w
(13.3.2)

13.4 The Wall Plasma Sheath for Positive Column in Helium
and Argon

We now consider the transition layer between walls and the positive column of
glow discharge in helium and argon. Because the thickness of this layer � is small
compared to the wall curvature, this layer may be considered as flat. In the limiting
case of a dense gas

� � λi , (13.4.1)

whereλi = (Naσ ∗
ia)−1 is themean free path of ions in a gas, so thatσ ∗

ia is the diffusion
cross section of ion-atom scattering. In particular, if atomic ions are present in the
positive column of gas discharge, we represent the criterion (13.4.1) as

Naσres� � 1, (13.4.2)
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where σres is the cross section of resonant charge exchange.
The thickness of the plasma sheath layer � and the electric field strength at the

wall surface Eo follows from (9.5.7) to (9.5.10) which give

� =
(

ai Tiρo

2.5π Noe2

)1/3

, eEo = (ai Ti )
2/3

(

2.5π Noe2

ρo

)1/3

, (13.4.3)

where No is the number density of electrons and ions at the center of a cylinder
discharge tube, ρo is a radius of this tube, parameters ai and ae follow from (9.5.10)

De(Te)

Di (Ti )
= f (ai )

F(ae)
,

and ai Ti = aeTe. We use expressions (9.5.10) for functions f (a) and F(a) which
are given in Fig. 8.9 and their asymptotic expressions follow from formulas (9.5.11).

Applying these formulas to a glow gas discharge plasma in helium and argon, we
take into account that the mean free path of electrons with respect to variation of
their energy is large compared to the layer thickness �, and electron parameters in
the double layer coincides with those in the positive column. We use the data [43]
of Tables7.3 and 7.4 for parameters of electron drift in helium and argon, and the
electron mobility in the transversal direction is given by

Ke =
√

∂we

∂ E

we

E

where we(E) is the electron drift velocity at an indicated electric field strength. This
allows us to evaluate the voltage in the positive column of glow discharge in helium
and argon between the center and walls of a cylinder discharge tube. One can see
that this exceeds significantly the voltage drop near walls.

Assuming atomic ions to be the basic ion sort in helium and argon, we take
into account that typical values of the reduced electric field strengths in the pos-
itive column do not change a thermal distribution function of ions. Therefore
according to the Table7.6 data we have for the reduced diffusion coefficients
of ions Na D(He+ − He) = 7.3 × 1018 cm−1s−1 and Na D(Ar+ − Ar) =
1.1 × 1018 cm−1s−1. Figure13.10 contains the double layer thickness � between
the positive column of glow gas discharge as a function of the effective temperature,
and these values are based on the data of Tables7.3 and 7.4. According to formula
(13.4.3) this quantity depends on the electron and ion number density No at the axis
and a tube radius ρo as

� ∼
(

ρo

No

)1/3

,

and according to Fig. 13.10 this value depends weakly on the effective electron tem-
perature. Figure13.11 contains values of the electric field strength Eo at walls of
glow gas discharge as a function of the effective temperature obtained on the basis of
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Fig. 13.10 Thickness of the double layer near walls of glow discharge in dense helium and argon
at the number densities of electrons and ions No = 1012 cm−3 at the axis of a discharge tube of a
radius ρo = 1 cm. The ion temperature Ti = 300K is equal to the gas and wall temperature

the data of Tables7.3 and 7.4. According to formula (13.4.3) this quantity depends
on the electron and ion number density No at the axis and a tube radius ρo as

Eo ∼
(

No

ρo

)1/3

,

and according to Fig. 13.11 this value depends weakly on the effective electron tem-
perature. Figure13.12 represents the voltage Uo of the double layer of glow gas
discharge in helium and argon as a function of the effective electron temperature,
and these values are based on the data of Tables7.3 and 7.4. According to formula
(13.4.3) this quantity is independent of both the electron number density No at the
axis of a gas discharge tube and a tube radius ρo. Again we have a weak dependence
of this quantity on the electric field strength in the positive column and the same
order of its values for helium and argon. In addition, the voltage drop in this region
of the tube cross section is small compared with the total voltage drop from the tube
axis up to its walls in this regime of a high gas pressure.

The double layer thickness given in Fig. 13.10 allows us to determine the boundary
of the regime of a high gas density in accordance with the criterion (13.4.2). Let us
introduce the boundary gas pressure pb = NbT , so that according to criterion (13.4.2)
the boundary number density of atoms Nb = 1/(�σres) separates ranges of high and
lowdensities of gases. Taking the gas temperature to be T = 300K,we have that at an
average collision energy about 0.1 eV the cross section of resonant charge exchange
is σres(He+ − He) = 3.5 × 10−15 cm2 and σres(Ar+ − Ar) = 7.0 × 10−15 cm2

according to the data of Table3.4. On the basis of these cross sections and the data
of Fig. 13.10 we obtain for the boundary pressure pb ≈ 1.2 Torr in the helium case
and pb ≈ 0.6Torr in the argon case.
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Fig. 13.11 Electric field strength of the double layer Eo between the positive column and walls
for glow discharge in dense helium and argon in a discharge tube of a radius ρo = 1 cm and the
number densities of electrons and ions No = 1012 cm−3 at its axis. The ion temperature Ti = 300K
is equal to the gas and wall temperatures

Fig. 13.12 Voltage drop of the double layer separated the positive column and walls of glow
discharge in dense helium and argon at the number densities of electrons and ions No = 1012 cm−3

at the axis of a discharge tube of a radius ρo = 1 cm. The ion temperature Ti = 300K is equal to
the gas and wall temperatures

Let us consider now the limit of low atom number densities where the double
layer thickness is small compared to the ion mean free path. In this limit the voltage
of the double layer becomes larger than that in the limit of a high gas density and
exceeds the value Te/e because just this electric potential determines the separation
of charges in the plasma sheath region. If the number densities of electrons and ions
are equal, the voltage drop in the plasma sheath region is determined by formula
(9.5.14)

http://dx.doi.org/10.1007/978-3-319-11065-3_9
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Fig. 13.13 Voltage between the tube center and walls for glow discharge in rareness helium and
argon as a function of the electron temperature Te at the center if the ion temperature Ti = 300K
is equal to the gas and wall temperatures

Fig. 13.14 Voltage drop of the plasma sheath for a gas discharge plasma located between two par-
allel electrodes [462]. Signs—experiment, solid curve—numerical solution of the Poisson equation
(9.5.2), dotted curve—the Child model [380–383]

Uo = Te

2e
ln

(

Temi

Ti me

)

in the regime of a high number density of electrons where the electron Te and ion
Ti temperatures may be introduced. Figure13.14 represents the voltage drop of the
plasma sheath region for this regime.

In the limit of a lowgas densitywhere the double layer thickness is small compared
to the mean free path of ions. One can use the Child laws (9.3.6), (9.3.7) and (9.3.8)

http://dx.doi.org/10.1007/978-3-319-11065-3_9
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Fig. 13.15 The ion number density in the plasma sheath region for a gas discharge plasma located
between two parallel electrodes [462]. Signs—experiment, solid curve—numerical solution of the
Poisson equation (9.5.2), dotted curve—the Child model [380–383]

under the assumption that one can ignore the presence of electrons in the plasma
sheath. In the argon case, the results of this model are compared with experimental
data [462] in Figs. 13.14, 13.15 and 13.16. In this experiment the argon pressure is
0.05Pa (the number density of argon atoms at the temperature T = 300K is 1.3 ×
1013 cm−3) that corresponds to the ion mean free path λ ≈ 11 cm. A gas discharge
plasma is located between two parallel electrodes, and outside the plasma sheath the
electron temperature is Te = 0.53 eV and the number density of electrons and ions
is No = 9 × 107 cm−3 that corresponds to the Debye radius rD = 0.57mm, while
the sheath thickness ia approximately 2 cm. Figure13.14 compares the potential
distribution between plane electrodes according to experiment (closed circles), to
numerical solution of (9.5.2) (solid curve) and its solution in neglecting the electron
number density in the plasma sheath (dotted curve). The same notations are used in
Fig. 13.15, where the ion number density is given in a gap, and in Fig. 13.16, where
the ion velocity in the plasma sheath is represented.

It should be noted that strong separation of the regions of the positive column and
plasma sheath near walls in gas discharge that is burnt in a cylinder discharge tube
takes place in the limit of a high gas density because there is a simultaneous separation
of the region of ionization equilibrium and the near-wall region that corresponds to
criterion (13.4.1)

λi � (r2Dρo)
1/3, (13.4.4)
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Fig. 13.16 Ion velocity in the plasma sheath region for gas discharge between two parallel elec-
trodes [462]. Signs—experiment, solid curve—numerical solution of the Poisson equation (9.5.2),
dotted curve—the Child model ([380–383]

where the Debye-Hückel radius rD corresponds to a gas discharge plasma in the
region of ionization equilibrium. In the case of a rareness gas the regions of ion-
ization equilibrium and near-wall layer are not separated as it takes place in arc of
low pressure with criterion (8.4.10). Therefore the plasma sheath layer exists in a
plane geometry where its properties may be connected with the character of plasma
generation.

13.5 Magnetron Plasma in Helium and Argon

We now consider various aspects of a helium and argon gas discharge plasma in
magnetron discharge. A general scheme of magnetron discharge is given in Fig. 9.10
andwe determine parameters of each region of this gas discharge in heliumand argon.
Figure13.17 indicates principal regions of magnetron discharge. Since electrons are
magnetized in the region of a magnetic trap, electrons do not penetrate in the cathode
region, so that ions bombard the cathode and generate secondary electrons with some
γ probability which depends on the ion energy. When the secondary electron passes
the cathode layer, it acquires an energy eUo, whereUo is the cathode voltage.We first
determine a number of electrons resulted from one fast secondary electron emitted
from the cathode.

http://dx.doi.org/10.1007/978-3-319-11065-3_9
http://dx.doi.org/10.1007/978-3-319-11065-3_8
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Fig. 13.17 Radial cross section of magnetron gas discharge. 1 anode, 2 ion current, 3 the region
with a steady plasma, 4 magnetic trap, 5 cathode layer, 6 cathode

Let us use the Thomson formula (3.6.4) according to which the average energy ε

consumed per a released electron in the ionization process with ε—the energy of an
incident electron is given by

ε = εJ

ε − J
· ln ε

J
,

where J is the atom ionization potential. In the limit ε � J the number n of released
electrons is large and is determined by

n =
Uo
∫

J

dε

ε
=

Uo/J
∫

1

dx(x − 1)

x ln x
=

lnUo/J
∫

0

dt (et − 1)

t
,

where x = ε/J and t = ln x .
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Fig. 13.18 Average number of electrons results from collision of an electron of energy eUo with
helium and argon atoms

Fig. 13.19 Cathode voltageUo depending on the current density i in magnetron discharge in argon
(1 − L = 0.4mm, 3 − L = 0.2mm) and in helium (2 − L = 0.4mm, 4 − L = 0.2mm)

Let us apply this formula for ionization of helium and argon atoms to magnetron
discharge. Taking J = 24.59 eV for the ionization potential of the helium atom and
J = 15.76 eV for that of the argon atom, we find on the basis of the above formula
the average number of released electrons n depending on the initial energy eUo of a
secondary electron after passage the cathode region. This dependence is represented
in Fig. 13.18. The criterion of self-maintaining of magnetron discharge is given by
formula (9.6.3) n = 1/γ − 1, where γ is the probability of formation of a secondary
electron as a result of cathode bombardment by ions with energy eUo.

Another aspect of self-maintaining of magnetron discharge is connected with the
character of screening of the discharge voltage in the cathode region where electrons
are absent. We use for this goal the Child law (9.3.6), (9.3.8) and (9.3.22). It should

http://dx.doi.org/10.1007/978-3-319-11065-3_9
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Fig. 13.20 Power P released per cathode unit area as a function of the current density i for
magnetron discharge in argon (1 − L = 0.4mm, 3 − L = 0.2mm) and in helium (2 − L =
0.4mm, 4 − L = 0.2mm)

be noted that a gap between the magnetic trap and cathode of magnetron discharge
is given by the discharge geometry, and it is profitable to place the magnetic trap so
close to the cathode as it is possible. The connection between the cathode voltage
Uo and the current density i is given now by formula (9.3.7)

Uo =
(

9π i

√

M

2e

)2/3

L4/3,

where M is the ion mass. Fig. 13.19 gives the dependence of the cathode voltage on
the electric current density in accordance with this formula, and Fig. 13.20 represents
the reduced power at the cathode P = iUo that follows from these data. It should
be noted that the cathode layer voltage is the basic part of voltage for magnetron
discharge. Moreover, according to an empirical formula [413], the cathode layer
voltage is approximately 0.73U , whereU is the total voltage of magnetron discharge
in a cylinder chamber.

We also represent the criterion for magnetron discharge that requires that the
thickness of the cathode layer L is small compared with the mean free path of
ions λi . Let us introduce the probability ζ to survive of ions

ζ = exp(−ξ), ξ =
∫

Naσres(ε)dx,

where the integral is taken over the cathode layer depth. For definiteness, we take
the cathode temperature T = 1000K. Using the cross sections of resonant charge
exchange [230, 231] σres(He+ − He) = 35 Å at the collision energy ε = 0.1 eV

http://dx.doi.org/10.1007/978-3-319-11065-3_9
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and σres(Ar+ − Ar) = 70 Å at this collision energy and the dependence of these
cross sections on the collision energy, we obtain

ξ ≈ 0.9Naσres(εo)L ,

where L is the cathode layer thickness, εo ≈ 0.1 eV. Assuming that magnetron
discharge exists if the probability of ion surviving is ξ ≤ 0.9, we obtain from this
that magnetron discharge is realized in helium at the pressure p < 0.2 Torr(20 Pa)
and in argon at p < 0.1Torr (10 Pa).

In considering the magnetic trap region of magnetron discharge in helium and
argon, we take for definiteness the maximum magnetic field strength to be H =
140Gs that can be obtained on the basis of simple magnetic materials, and the gas
pressure to be p = 10 Pa that does not exceed the maximum pressure provided
the existence of magnetron discharge. In addition, we will be guided by the gas
temperature in the region of the magnetic trap to be T = 500K (i.e. the number
density of atoms is Na = 1.6×1015 cm−3) and a typical electron temperature in this
region to be Te = 3 eV. These parameters more or less correspond to real parameters
of magnetron discharge. The Larmor frequency at this magnetic field strength is
ωH = 2.5 × 109 s−1, and in the helium case the rate of electron-atom collision is
ν = NavT σ ∗

ea = 1 × 108 s−1, vT = √
8Te/(πme) = 1.2 × 108 cm/s is the average

electron velocity at a given electron temperature Te = 3 eV, and σ ∗
ea = 6Å2 is the

diffusion cross section for electron scattering on the helium atom. As is seen, the
criterion (7.9.4) of a magnetized plasma

ωH � ν,

holds true. Thus, electrons are magnetized in the magnetic trap region. Electrons
remain to be magnetized also at the magnetic trap periphery, because the relation
ωH = ν corresponds to the magnetic field strength H = 8Gs, i.e. in the region of
the magnetic trap and near it where H > 8Gs plasma electrons are magnetized.

Let us consider the validity of the criterion (7.9.4) for atomic ions in a helium
and argon magnetron plasma under the above conditions. The Larmor frequencies
are equal for helium and argon atomic ions correspondingly at the magnetic field
strength H = 140Gs

ωHe = eH

MHec
= 3.4 · 105 s−1, ωAr = eH

MAr c
= 3.4 · 104 s−1,

http://dx.doi.org/10.1007/978-3-319-11065-3_7
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where MHe is the mass of the helium atom, MAr is the mass of the argon atom. The
rate of ion-atom collisions is given by

νia = NavT σ ∗
ia = Na

√

8T

π M
· 2σres,

where Na = 1.6 × 1015 cm−3 is the number density of atoms, M is the atom mass,
T is the gas temperature, σ ∗ is the cross section ion-atom scattering, σres is the cross
section of resonant charge exchange, and since the cross section of resonant charge
exchange exceeds the elastic ion-atom cross section, we have [337] σ ∗ = 2σres .
Since Na = 2.6 × 1015 cm−3, and in the helium case we have a thermal velocity
of ions vT = 1.6 × 105 cm/s, and the cross section of resonant charge exchange
is σres = 35Å2. This gives for the rate of ion-atom collisions in the helium case
under the above conditions νia = 3 × 106 s−1. In the same manner we obtain in
the argon case vT = 5 × 104 cm/s, σres = 70Å2, that gives in the argon case
νia = 1.9×106 s−1. Comparing these rates with the Larmor frequencies, we find that
ions in the helium plasma are magnetized under given conditions, if H � 1200Gs.
The same criterion in the case of the argon plasma gives H � 8 × 103 Gs. As is
seen, ions are not magnetized in the magnetron plasma under the above conditions
if stationary magnets are used.

Note that a size of the magnetic trap must exceed the Larmor radius of electrons.
In particular, for a secondary electron of energy ε = 200 eV that corresponds to
the electron velocity of ve = 8.4 × 108 cm/s, the Larmor radius is rL = 0.3 cm.
If it is small compared to a size of the magnetic trap region, electrons penetrated
in the region of the magnetic trap are reflected from the magnetic trap and delay
in this region. In this case a strong interaction between a secondary electron with a
magnetic trap leads to electron delay in the magnetic region, and ionization owing
to secondary electrons proceeds just in this region. The Larmor radius for thermal
electrons is lower than that for secondary electrons. Hence amagnetic trap dimension
∼ 1 cm is suitable for action on electrons.

We have for the electron temperature Te of a magnetized plasma located in per-
pendicular electric and magnetic fields according to formula (7.9.10)

Te − T = Mv2τ

3
= Mc2E2

3H2 , ωH � ν

where M is the atom mass, c is the light velocity, E, H are the electric and magnetic
field strengths respectively. Assuming the electron temperature to be Te = 3 eV, so
that Te � T , and the magnetic field strength to be H = 140Gs, we obtain from
this for the electric field strength E = 2.1V/cm that provides these parameters of
a magnetized plasma in helium and E = 0.65V/cm in argon. Correspondingly, the
electron drift velocity in crossed electric and magnetic fields under these conditions
is vτ = 1.5 × 106 cm/s in the helium case and vτ = 4.7 × 105 cm/s in the argon
case (Fig. 13.21).

http://dx.doi.org/10.1007/978-3-319-11065-3_7
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Fig. 13.21 Parameters of a helium magnetron plasma in the magnetic trap. Te is the electron
temperature in accordance with formula (7.9.10), β is the ratio of the electron number density in
the magnetic trap to that outside trap according to formulas (13.5.1) and (13.5.2). The magnetic
field strength is H = 140Gs, the magnetic trap radius is r = 4 cm

Let us consider the behavior of a magnetron plasma in the magnetic trap. Being
guided by experimental conditions, we take the circle radius with the maximum
magnetic field to be r = 4 cm that according to formula (9.6.1) gives the potential
depth of the magnetic trap Umax = eEr/2 = 4.2 eV in the helium case and Umax =
1.3 eV in the argon case. From this it follows

χ = Umax

Te
= 3er H2

2Mc2E
(13.5.1)

This parameter is equal χ = 1.4 in the helium case and χ = 0.44 in the argon case.
Let us assume that the space distribution of electrons is established quickly. Then
the ratio of the number density of electrons inside the magnetic trap Nmax and far
from it No is given by

β = Nmax

No
= exp

(

Umax

Te

)

, (13.5.2)

and under the above conditions these values are equal to 4.0 and 1.6 in the helium
and argon cases correspondingly. The parameter β characterizes an increase of the
electron number density in magnetic trap. Because this plasma is quasineutral, the
number density of ions increases in the same manner. Ions are not magnetized in
the magnetic trap, and hence the ion current from the magnetic trap region to the
cathode exceeds in β times the ion current from regions with a low magnetic field if
we assume the electric field to be uniform in a space.

http://dx.doi.org/10.1007/978-3-319-11065-3_7
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Figure13.21 gives the dependencies of the electric field strength E and an increase
of the electron number density in the magnetic trap β on the electron temperature.
One can expect that large electric field strengths are more favorable for the magnetic
trap action, while according Fig. 13.21 the magnetic trap acts at not high electric
fields at which the parameter β characterized electron capture in the magnetic trap
becomes small. Evidently, large values of β cause an instability of the magnetic trap,
and its optimal values are β ∼ 10 that are used in Fig. 13.21. In order to transfer
from helium to argon, it is convenient to rewrite formula (13.5.2) in the form

β = Nmax

No
= exp

(

Umax

Te

)

= exp

(

Eo

E

)

, Eo = 3eH2r

2Mc2
(13.5.3)

One can see that Eo ∼ M , and for parameters under consideration (H = 140Gs, r =
4 cm) we have Eo = 2.8V/cm in the helium case and Eo = 0.28V/cm in the argon
case. Correspondingly, according to formula (7.9.10) we have Te(Eo) = 5.5 eV in
the helium case and Te(Eo) = 0.55 eV in the argon case.

One can connect the current parameters for the cathode layer and themagnetic trap
region. We require the current lines near the cathode to be straightforward lines, i.e.
the current density i does not vary in transition from the magnetic trap to the cathode
layer. Let us determine the conductivity � of a plasma inside the magnetic trap that
is the sum of the electron �e and ion �i conductivities which ratio is proportional
to the ratio of the electron we drift velocity in the direction of the electric field and
the ion drift velocity. The electron velocity along the electric field in a plasma with
magnetized electrons according to formula (7.9.8) is given by

we = 4eE

3meλeω
2
H

vT , vT =
√

8Te

πme

This formula relates to the helium case where the cross section of electron-atom
scattering is independent of the collision velocity.

In determination the electron drift velocity for magnetron discharge in argon,
we take for definiteness in the center of the magnetic trap E = 0.9V/cm that
corresponds to the Fig. 13.19 data Te = 0.6 eV and the ratio of the plasma density
in the magnetic trap and far from it β = 21. Next, vT = 4.6 × 107 cm/s, ωH =
2.5 × 109s−1, λe ≈ 1 cm (the number density of helium atoms is 1.6 × 1015 cm−3

at the temperature T = 500K and pressure p = 10 Pa), and according to the above
formula the electron drift velocity along the electric field is we = 1.4 × 104 cm/s.
Using the above parameters of the helium gas discharge plasma in the magnetic trap,
we have for ions eEλi/T = 4, and the ion drift velocity according to Fig. 7.12 data is
wi = 2.1× 105 cm/s. Though the above operations has the character of estimations
rather than evaluations, they exhibit that the plasma conductivity is determined by
ions. We note also that the electron mean free path in this gas discharge plasma
λe ≈ 1 cm is larger than the mean free path of ions λi = 1/(Naσres) ≈ 0.2 cm.

http://dx.doi.org/10.1007/978-3-319-11065-3_7
http://dx.doi.org/10.1007/978-3-319-11065-3_7
http://dx.doi.org/10.1007/978-3-319-11065-3_7
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Fig. 13.22 Track on the
cathode surface formed as a
result of cathode erosion
under the action of ion current
on the cathode [409]

If the conductivity of a magnetron plasma is determined by ions and a magnetic
trap is approached to the cathode, the electric current density in the region of the
magnetic trap center exceeds significantly that for the cathode region far from the
magnetic trap center. Onemore action of themagnetron current is cathode sputtering.
As a result, a track is formed on the cathode as it is shown in Fig. 13.22. Of course,
track formation changes characteristics of magnetron discharge as well as the space
distribution of the electric current to the cathode.

Let us take the distribution of the density current i(ρ) to the cathode as

i(ρ) = io exp

[

−β(ρ − r)2

Te

]

(13.5.4)

where io is the maximum current density that passes through the magnetic field
maximum ρ − r = 0, where r is the radius of the magnetic trap. As is seen, the
electric current of magnetron discharge is concentrated mostly near the magnetic
field maximum. From this the connection between the total current I and the current
density i at the center of the magnetic trap takes the form

I = 2π3/2rβ−1/2i,

In particular, for conditions under consideration (p = 10 Pa, r = 4 cm) it follows
fromFig. 13.22 β = 2 cm−2. Then under optimal parameters ofmagnetron discharge
with the current I = 0.5A we obtain for the electric current density i = 16mA/cm2

if this current passes through themagnetic trap center. Taking the cathode temperature
T = 1000K, we have the number density of argon atoms near the cathode Na =
7.5× 1014 cm−3, and the mean free path for argon ions is equal λi = 1/(Naσres) ≈
3mm. Under these conditions the dimension of the cathode region where ions are
accelerated, is comparable with the mean free path of ions in the cathode region.
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Note that though the above evaluations relate to the helium case under indicated
parameters of magnetron discharge, general conclusions about the role of ion charge
transport are valid for other parameters in a helium plasma and also for magnetron
discharge in argon. From this one can find the number density of electrons and ions
in a magnetron helium plasma under consideration according to the relation

Ne = i

ewi

This gives the number density of electrons and ions at the magnetic trap center is
Ne = 4.5 × 1011 cm−3, and far from it is equal Ne = 2.1 × 1010 cm−3.

Let us connect the magnetic trap region of magnetron discharge with the region
of steady discharge where magnetic field is absent and the plasma conductivity is
created by electrons. In this consideration we are based on the continuity of the
electric current density and the straightforward form of electric current lines. The
electron drift velocity in this region is equal we = βwi ≈ 4× 106 cm/s. According
to Fig. 5.2 this corresponds to the reduced electric field strength E/Na ≈ 20 Td, or if
the helium pressure is p = 10 Pa and its temperature is T = 400K, this corresponds
to the electric field strength E = 0.4V/cm. Thus, the electric field strength in regions
of the magnetic trap and steady form of discharge are comparable. This is valid both
for magnetron discharge in helium and argon.

We now determine parameters of the magnetron plasma in the anode region.
In accordance with the scheme of magnetron discharge represented in Fig. 13.17,
electrons move to the anode and attach to it, and the electron reproduction takes
place in the anode region. Hence each electron propagated through the anode region
creates one electron-ion pair, and the condition of ion reproduction in the anode
region has the following form

L
∫

0

αdx = 1,

instead of (8.1.3). Here α is the first Townsend coefficient, and L is a size of the
anode region. Take for definiteness the helium pressure p = 10 Pa and the temper-
ature T = 400K in the anode region that corresponds to number density of atoms
Na = 1.8 × 1015 cm−3. We use the approximation (8.1.5) for the first Townsend
coefficients with parameters A = 2.5Å2 and B = 1, 100 Td for large reduced
electric field strength E/Na > 103 Td. Denoting by Ea the electric field strength
in the anode region, we have now Ea/Na = 1550T d on the basis of formula
(9.3.24) that corresponds to Ea = 13V/cm. Next, from formula (9.3.25) we have
ANa L = 3.06 ln 2 that gives L = 0.5 cm. From formula (9.3.23) we have for the
anode voltage Ua = 2Ea L/3 = 4V. We note that used formulas correspond to the
criterion λe � L , and in this case λe ≈ 1 cm, i.e. this criterion is not fulfilled. This

http://dx.doi.org/10.1007/978-3-319-11065-3_5
http://dx.doi.org/10.1007/978-3-319-11065-3_8
http://dx.doi.org/10.1007/978-3-319-11065-3_8
http://dx.doi.org/10.1007/978-3-319-11065-3_9
http://dx.doi.org/10.1007/978-3-319-11065-3_9
http://dx.doi.org/10.1007/978-3-319-11065-3_9
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Fig. 13.23 Space distribution of the electric potential in magnetron discharge : 1 cathode layer, 2
magnetic trap region, 3 region of steady discharge, 4 anode layer region

leads to a higher length of the anode region L and larger voltage Ua . Figure13.23
gives the schematic space distribution of voltage for magnetron discharge. Note that
though our estimations correspond to the helium case under certain parameters, a
general character of properties of magnetron discharge are valid also in the argon
case.



Chapter 14
Principles of Gas Discharge Plasma

Abstract Principal properties of a gas discharge plasma and models for their
description are the object of this analysis. It is shown that the tau-approximation
that is a basis of the gasdynamical plasma model leads to an error in the evaluation
of plasma parameters. Self-consistent character of atom excitation in a gas discharge
plasma is of importance for its analysis. Many regimes of a gas discharge plasma
may be realized depending on plasma parameters and character of plasma processes.

14.1 Gas Discharge Plasma as Complex Physical Object

In summing up the results of the above analysis, one can conclude that a gas discharge
plasma is a complex physical object, andwe repeat briefly its peculiarities. The nature
of this object is connected with the character of energy injection in a gas by energy
transfer from an electric field to gas atoms through electrons. Therefore a gas dis-
charge plasma is an nonequilibrium systemwhich properties are determined by some
processes, and the behavior of electrons is described by electron energy distribution
function (EEDF). In addition, because gas discharge is supported by an electric volt-
age between two electrodes, a space plasma distribution corresponds to theminimum
of this voltage.

Since a gas discharge plasma consists, at least, of three components, atoms
(molecules), electrons and ions, and processes involving each of these components
are responsible for certain plasma properties, a gas discharge plasma is characterized
by a large number of regimes which differ from each other in principle. Each regime
requires a specific description, and hence we have no an universal description of a
gas discharge plasma. To decrease the number of these regimes, we restrict ourselves
by helium and argon gas discharge plasmas, but even in this case the regimes are
manifold.

Ionization processes are important for properties and evolution of a gas discharge
plasma, and ionization equilibrium is supported basically by electron-atomcollisions.
Usually the average electron energy in a gas discharge plasma is small compared to
the atom ionization potential or the atom excitation energy, and subsequently the
rate of atom ionization in a gas discharge plasma is less than the rate of elastic
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electron-atom collisions. Therefore processes of atom excitation and ionization in
a gas discharge plasma are determined by fast electrons, i.e. by a tail of the EEDF
that includes a small part of electrons. From this it follows that processes of atom
excitation and ionization by electron impact in a gas discharge plasma has a self-
consistent character. Indeed, these processes lead to a decrease of fast electrons that in
turn causes a decrease of the rate of these processes. Along with the self-consistency
of excitation and ionization processes, from this it follows the role of excited atoms
in a gas discharge plasma. Excited atoms facilitate ionization processes, and in some
regimes the ionization process has a stepwise character, which first stage is formation
of excited atoms and the second stage is ionization of excited atoms.

The complexity of a gas discharge plasma complicates its analysis. To simplify this
analysis, simple models are used which allow one to change the kinetic character of
processes in a gas discharge plasma by hydrodynamic one or apply to a gas discharge
plasma a thermodynamic description. Being guided as early by the helium and argon
cases, we check the accuracy of such models on simple examples.

Let us consider first the validity of the hydrodynamic model for drift of electrons
and ions in gases in an external electric field. Within the framework of this model
the friction force F is introduced for motion of electrons in a gas that is independent
of an electron velocity. Equation for the average electron velocity we, that is the
electron drift velocity, is analogous to the equation of motion for electrons

me
dwe

dt
= F, F = mewe

τ
, (14.1.1)

where me is the electron mass, and the rate of electron-atom collisions is 1/τ =
Nakel , so that Na is the number density of gas atoms, kel is the rate constant of
elastic collisions of a test electron with gas atoms, and it assumes to be independent
of the electron velocity. In this approximation we describe the friction force by one
parameter τ , and this corresponds to tau-approximation (5.1.3) that gives usually a
qualitative description of drift of atomic particles in a gas.

Let us use this approximation for electron drift in gases under the action of an
external electric field. In the stationary case solution of the motion equation (14.1.1)
has the form

we = eE

me Nake
= cx, x = eE

Na
, c = e

mekel
(14.1.2)

According to this formula, the electron drift velocity is proportional to the reduced
electric field strength E/Na . If we take the rate constant of elastic electron-atom
scattering at the electron energy ε = 1 eV, that is kel = veσ

∗
ea = 4.1 × 10−8 cm3/s

at the collision energy of 1 eV for helium and kel = 8× 10−9 cm3/s for argon if we
take the cross sections of electron-atom collisions taken from Table3.1. This gives
for the proportionality coefficient in formula (14.1.2) c = 4×105 cm/s in the helium
case and c = 2 × 106 cm/s in the argon case. Comparison of formula (14.1.2) with
experimental results is given in Fig. 14.1 in the helium case and in Fig. 14.2 in the

http://dx.doi.org/10.1007/978-3-319-11065-3_5
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14.1 Gas Discharge Plasma as Complex Physical Object 389

Fig. 14.1 Electron drift velocity in helium as a function of the electric field strength in the regime
of a low electron number density. Signs–experimental data [43], a solid line–formula (14.1.2)

argon case. The experimental data are taken from review [43] in the helium case and
from old Townsend and Bailey measurements [7] of the electron drift velocity in
argon that accord to contemporary data.

Comparison of the hydrodynamic approach (14.1.2) with experimental results in
Figs. 14.1 and14.2 shows that this approach correspondsmore or less to experimental
data in the helium case and differs from this in principle in the argon case. But it is
necessary to note the principal lack of this consideration. The proportionality of the
electron drift velocity to the electric field strength takes place at low electric field
strengths [formula (2.3.2)] where an external electric field does not perturb the energy
electron distribution and at large electric fields [formula (6.6.6)] where electron
acceleration in an external electric field is limited by inelastic processes. But the
later does not relate to hydrodynamic approach in principle where the friction force
is determined by elastic electron-atom collisions. At lower electric field strengths,

Fig. 14.2 The electron drift velocity in argon as a function of the electric field strength in the regime
of a low electron number density. Signs–experimental data according to measurements [7], a dash
line–formula (14.1.2)

http://dx.doi.org/10.1007/978-3-319-11065-3_2
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where the average electron energy exceeds significantly a thermal energy of gas atoms
and the electron drift velocity is determined by elastic electron-atom collisions, the
proportionality of the electron drift velocity to the electric field strength is not fulfilled
in helium and argon cases.

Thus, from this comparison we obtain that the kinetic analysis of the elec-
tron behavior in a gas located in a strong electric field gives additional aspects
of this behavior which cannot be taken into account in the hydrodynamic or tau-
approximation. Hence, though the hydrodynamic approximation may be used for
the qualitative analysis of a gas discharge plasma, this approach is valid only at low
electric field strengths (2.3.4) where an external field does not influence on distribu-
tions in this plasma. As is seen, the kinetic consideration gives additional aspects of
a gas discharge plasma compared with the hydrodynamic one.

Usually in consideration complex plasma properties, such as plasma oscillations,
plasma structures and plasma instabilities, the number density of electrons Ne and
electron temperature Te usually are taken as plasma parameters (for example, [465–
474]). Note that the electron temperature Te may be used as a plasma parameter if
an energy exchange in electron-electron collisions is stronger than that in electron-
atom collisions, and then an electron subsystem is separated from an atomic system
thermodynamically. This possibility is fulfilled strictly if the criterion (6.1.2) holds
true (see Fig. 5.4), and the collision integral of electron-electron collisions exceeds
that for electron-atom collisions in the kinetic equation (6.1.1). In particular, at the
electron energy ε = 3 eV the regime of low electron number densities takes place
at the electron concentrations ce = Ne/Na below 2 × 10−8 for helium, and below
1 × 10−9 for argon. Correspondingly, at larger electron concentrations electrons
may be considered as an independent thermodynamic subsystem, and the velocity
distribution function of electrons has the Maxwell form (6.2.4).

In this context it should be noted that the electron temperature as the parameter of
the EEDFmay be used in a restricted range of electric field strengths and corresponds
to the range 2 of Fig. 5.2 where elastic electron-electron collisions dominate in for-
mation of the EEDF compared with electron-atom collisions and the action of the
electric field. But this relates only to the skeleton of the energy distribution function,
whereas the tail of distribution function differs from the Maxwell distribution at not
large electric field strengths, as it is shown above.

14.2 Self-consistent Character of Processes Involving
Excited Atom States

Since usually a typical electron energy is small compared with the atom excitation
energy and the atom ionization potential, the processes of atom excitation and ioniza-
tion are determined by the tail of EEDF. Though the tail of the distribution function
is distorted due to processes of atom excitation, we consider first the case where the
Maxwell distribution is valid at the tail of EEDF. The excitation rate constant kex for

http://dx.doi.org/10.1007/978-3-319-11065-3_2
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a given atom state ∗ from a state o is connected with the rate constant kq of quenching
of an excited state ∗ by electron impact by the principle of detailed balance which is
given by formula (3.3.8)

kth = kq
g∗
go

exp

(

−�ε

Te

)

, Te � �ε (14.2.1)

which corresponds to thermodynamic equilibrium (2.1.5) between these states under
the action of collisions with electrons and is convenient for comparison.

We now construct the EEDFwith taking into account the self-consistent character
of the excitation process and the EEDF for fast electrons. Then we have the following
kinetics equation for EEDF as an enlarged stationary kinetic equation (5.1.1)

− a2

3v2
d

dv

(

v2

νea

d f0
dv

)

= Iea( f0) + Iee( f0) − Na

∞
∫

�ε

kex (ε) f0(ε)dε

+ Nm

∞
∫

0

kq(ε − �ε) f0(ε − �ε)dε − f0(ε)

τ
, (14.2.2)

where a = eE/me, and the left hand side of equation (14.2.2) describes action of an
external electric field on the electron distribution function, the integral of electron-
atom collisions is given by formula (5.3.9), the integral of electron-electron collisions
is determined by formula (5.5.5) with formula (5.5.4) for the diffusion coefficient
of a fast electron in the electron energy space. The third and forth terms of the right
hand side of equation (14.2.2) correspond to processes

e + A ↔ e + A∗, (14.2.3)

and the last term takes into account other processes (without participation of elec-
trons) for loss of electrons with a given energy. Kinetic equation (14.2.2) is coupled
with the balance equation for the number density Nm of excited atoms

d Nm

dt
= Na

∞
∫

�ε

kex (ε) f0(ε)dε − Nm

∞
∫

0

kq(ε −�ε) f0(ε −�ε)dε − Nm

τm
, (14.2.4)

where the first and second processes are given by equation (14.2.3), and the third
term accounts for other processes involving excited atoms. Set of equations (14.2.2)
and (14.2.4) allows one to consider the behavior of the electron distribution function
for various electron energies.

Let us divide the energy dependence for the energy distribution function of
electrons in parts. At low energies far from the excitation threshold the energy
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Fig. 14.3 ReducedEEDF,where ε is the electron energy, f0 is the electron distribution function, and
ϕ0 is the Maxwell distribution function (6.2.4). The arrow indicates the atom excitation threshold
�ε and the atom ionization potential J = 24.59eV .Curve a corresponds to the electron temperature
Te = 2 eV, curve b relates to Te = 3 eV, and curve c corresponds to Te = 4 eV

distribution function of electrons f0(ε) coincides with the Maxwell distribution
function ϕ0(ε) given by formula (6.2.4). At the excitation threshold we have

f0(ε)

ϕ0(ε)
= k<

k< + k>

according to data of Fig. 6.11 and formula (6.17). This is represented as the range
1 in Fig. 14.3. The following range 2 of Fig. 14.3 is given by formulas (6.5.2) and
(6.5.3) according to which the electron distribution function drops sharply due to the
atom excitation process. This range occurs at the simultaneous solution of equations
(14.2.2) and (14.2.4), if we conserve the third term in the right hand side of equation
(14.2.2) and the first term of the right hand side of equation (14.2.4).

In the range 3 of Fig. 14.3 the equilibrium of electrons with atoms in the ground
and excited states proceeds according to the scheme (14.2.3) that gives the electron
distribution function as

f0(ε) = Nm

Na
f0(ε − �ε) (14.2.5)

Assuming the electron distribution function corresponds to the Maxwell one (6.2.4)
f0(ε) = ϕ(ε), we obtain in the range 3 of Fig. 14.3

f0(ε) = Nm

N B
m

ϕ0(ε), (14.2.6)
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Fig. 14.4 EEDF in argon at the electric field strengths of 10 Td (curves 1 and 3) and 20 Td (curves
2 and 4) under stationary conditions according to calculations [45]. In the case of curves 1 and 2
the concentration of metastable argon atoms is cm = 6 × 10−5, and in the case of curves 3 and
4 metastable atoms are absent in ionized argon. The arrow indicates the excitation energy of the
metastable state

where the number density N B
m of excited atoms is given byBoltzmann formula (2.1.5)

N B
m = Na

gm

go
exp

(

−�ε

Te

)

(14.2.7)

One can see the self-consistent character of processes of atom excitation and
quenching in collisions with electrons influences both on the EEDF and the rate of
atom excitation in a gas discharge plasma. The form of the connection between these
quantities depends on the electron energy. One more example of the behavior of the
EEDF is given in Fig. 14.4 [45] for an argon gas discharge plasma. As is seen, we
have the same behavior of the EEDF as in the helium case in three electron energy
ranges, and the presence of excited atoms in a gas discharge plasma is responsible
for a slightly sloping part of the EEDF at large electron energies. A sharp decrease
of the EEDF above the excitation threshold leads to the character of formation of
following excited scheme in accordance with Fig. 14.5.

http://dx.doi.org/10.1007/978-3-319-11065-3_2
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Fig. 14.5 Scheme of inelastic processes in electron-atom collisions in a gas discharge plasmawhere
electron-atom inelastic processes are separated in two blocks, so that the ground and lowest excited
atom states are included in the first block, whereas the second block includes other excited states
and ionized states. Here the ordinate axis indicates the excitation energy for atomic levels, and 0
relates to the atom ground state, �ε is the excitation energy for the lowest excited states, J is the
atom ionization potential

Since excited atoms influence on the properties of a gas discharge plasma, one
can consider the latter to be consisted of four components, atoms, electrons, ions
and excited atoms, so that each component is responsible for certain its properties.
In particular, processes involving excited atoms are determined so called dark phase
in evolution of the positive column of glow discharge [475–479]. This stage of
gas discharge characterizes transition to a stationary plasma state with respect to
its ionization or radiative properties after initiation of gas discharge or its pulse
excitation. The presence of excited atoms in a gas discharge plasma is determined
its radiative properties. Spectrum of plasma radiation due to excited atoms has a
discrete character and determines a basic radiative flux of the plasma at not large
gas pressures. Spectral lines due to excited atom states are broaden significantly, and
spectroscopy of a gas discharge plasma [39, 480, 481] is the simplest method for its
diagnostics.

In considering the self-consistent character of atom excitation in a gas discharge
plasma, we assume only one excited state to be responsible for the EEDF for fast
electrons. In reality, excited states may be combined in groups by their excitation
energies. In particular, one can divide excited states of atoms first in accordance with
an electron shell of these atoms. In the case of an argon gas discharge plasma the
first group of excited states belongs to the electron shell 3p54s, the second group of
states corresponds to the electron shell 3p54p as it is shown in Fig. 2.10. We have
two limiting cases in consideration of transitions involving excited atom states. If the
rate of mixing of excited states by electron impact, as the process (3.5.4) in the argon
case, is large compared with the rate of quenching of these states, one can combine
the states of the same electron shell in one state with appropriate parameters that
corresponds to the block model [15, 482, 483] in the kinetic equation for electrons

http://dx.doi.org/10.1007/978-3-319-11065-3_2
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and excited atoms. If a reciprocal relation is fulfilled for the rates of the above
processes, it is necessary to consider the excited states of the electron shell 3p54s
independently.

Excitation of lowest excited states by electron impact leads to a sharp decrease in
the EEDF with an increasing electron energy, as it is shown in Figs. 14.3 and14.4.
Excitation of the lowest excited atom states has a self-consistent character, i.e. exci-
tation of each state is accompanied by a subsequent decrease of the number density
of fast electrons which are able to excite the states of a subsequent group. As a result,
excitation and ionization of atoms by electron impact has a stepwise character, as it is
shown in Fig. 14.5, so that the rate of formation of not low excited states is determined
by collisions involving atoms in the lowest excited states, rather than collisions of
electrons with atoms in the ground state. The stepwise character of atom excitation
takes place at low electron temperatures

Te � �ε,

where �ε is the atom excitation energy, and this criterion is fulfilled usually.
It should be noted that computer models for description of a gas discharge plasma

are disseminated and in the argon case were used in [77–82]. Computer models allow
one to use a large number of processes. For example, 64 levels are included in the
Vlsek model [82] which is a basis of subsequent computer calculations [78–80].
In this book we develop some algorithms to transfer step by step from elementary
processes in a plasma and plasma kinetics to some numerical parameters of helium
and argon gas discharge plasmas. Computer models promise to transfer from ele-
mentary processes to some parameters of a gas discharge plasma in one step with
using various information about processes in this plasma. In principle, it may be so
if all the elements of computer simulation including information used are reliable.
Unfortunately, it is not fulfilled for indicated papers; in particular, the self-consistent
character of atom excitation, the basis of Figs. 14.3 and14.4, is ignored in the above
computer models. This lack of computer models is a result of the complexity of
the analysis of a gas discharge plasma and reflects the contemporary state of this
problem. This means that the analysis of a certain gas discharge plasma requires a
careful preparation to it, and the most part of this book (parts I, II, III) are devoted
to this stage of the analysis.

14.3 Regimes of Gas Discharge Plasma

A self-consistent character of atom excitation in a gas discharge plasma influences
on parameters of this plasma. Summation of results of Sect. 6 for the electron drift
velocity we and an average electron energy ε is given in Fig. 14.6. A range 1 of this
figure corresponds to low electric fields, elastic electron-atom scattering determines
electron parameters in a range 2, in a range 3 a test electron consumes a remarkably
part of the energy obtained from an external field on atom excitation. In other words,
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Fig. 14.6 Character of dependencies of the electron drift velocity and average electron energy on
the reduced electric field strength E/Na

if an electron energy exceeds the atom excitation energy, an atom is excited, and a
formed slow electron increases its energy as a result of interaction with an external
field and scattering on atoms. In region 4 the rate of energy loss in inelastic electron-
atom collisions is less than the rate of an energy increase under the action of the
electric field if the electron energy exceeds the atom excitation energy.

An important feature of a gas discharge plasma results in a variety of regimes of its
existence and evolution. As an example, let us consider ionization equilibrium in an
argon gas discharge plasmawhere a sharp decrease of the energy distribution function
of electrons takes place with an increasing electron energy, as it is represented in
Figs. 14.3 and14.4. Then if excited atoms are accumulated in a plasma, the scheme
of Fig. 14.5 is realized in excitation and ionization of a gas. But if excited atoms do
not give a contribution to atom ionization, as it takes place at low electron number
densities, ionization equilibrium shifts to higher electric field strengths. As a result,
we obtain two regimes of ionization equilibrium depending on the electron number
density and the electric field strength, as it is shown in Fig. 14.7.

Presence of atomic or molecular ions in helium and argon gas discharge plas-
mas lead to different plasma properties and regimes of its evolution. The processes
involving ions determine transport of a plasma as a whole and recombination of
electrons and ions. Thus, a gas discharge plasma is governed by various processes
and parameters, and as a result many regimes of existence of a gas discharge plasma
are possible. Table14.1 lists processes and plasma parameters which may lead to
different regimes of its existence and evolution.

Production of electrons and ions in a gas is an important element of ionization
equilibrium in a gas discharge plasma. Though we consider ionization processes as
a result of electron-atom collisions as a wide spread channel of atom ionization,
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Fig. 14.7 Regimes of ionization of an argon gas discharge plasma depending on the electric field
strength and electron number density at the argon pressure of the order of 1 Torr

Table 14.1 Factors which determine different regimes of a gas discharge plasma

Factor Possibilities

1. Energy distribution function The electron distribution function may be determined by

for thermal electrons electron-atom collisions or electron-electron collisions

depending on the number density of electrons

2. Single or stepwise Depending on the number density of electrons, the

ionization ionization process of gas atoms by electron impact

results from single ionization of atoms in the

ground state or proceeds through excited states

3. Radiative transitions Excited atoms are quenched in collisions with

between atom states electrons or as a result of photon emission

4. Atomic or molecular The rate of plasma decay proceeds through different

ions in a plasma processes depending on an ion sort

5. Ionization through excited Associative ionization or Penning process

atom states may influence on plasma parameters

6. Heat processes Diffusive and constricted forms of the positive column may

depend on heat release processes

7. Cathode processes Emission electrons from the cathode may proceed through

cathode bombardment by ion impact or thermoemission

processes of collisions of excited and nonexcited atoms, as associative ionization
and Penning process, may be significant in ionization equilibrium. In general, new
elementary processes and new combination of elementary processes may lead to
new regimes of plasma existence. Along with elementary and transport processes
in a plasma, heat processes may be significant in this problem. In particular, the
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diffusive and constricted regimes of the positive column of gas discharge are possible
depending on a discharge power.

In order to reduce a number of plasma regimes, we restrict ourselves in this
book by a stationary gas discharge plasma of helium and argon located between
plane electrodes or in a cylinder discharge tube. One can expect that removal of
these restrictions causes an increase of possible regimes of plasma existence because
of new elementary processes in a gas discharge plasma and new conditions of its
supporting. In particular, new possibilities occur if a plasma is supported by an
alternative field, and a typical field frequency ω is large compared to a typical rates
of collisions processes. Elementary processes in a plasma depend on a gas sort.
Excitation of vibration states by electron impact is of importance for the energy
balance and ionization equilibrium in molecular gases. Formation of negative ions
is possible in an electronegative gas. A variety of regimes for plasma existence and
its evolution does not allow us to use universal methods for plasma description.

14.4 Conclusion

Summarizing the above analysis of a gas discharge plasma, where we try to transfer
from understanding of the problem to its numerical simulation, note that this analysis
cannotbe fulfilled in a universal form due to many situations and regimes for this
object. From this book we conclude on examples of helium and argon that determi-
nation of numerical parameters of a gas discharge plasma requires information about
some processes which dominate for this system under given external conditions. In
addition, the understanding of physical principles of a gas discharge plasma is a basis
of such an analysis and the description of these fundamentals occupies the most part
of this book.
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A.1 Fundamental Physical Constants

Electron mass me = 9.10939 × 10−28 g
Proton mass mp = 1.67262 × 10−24 g
Atomic unit of mass ma = 1

12m(12C) = 1.66054 × 10−24 g
Ratio of masses mp/me = 1836.15, ma/me = 1822.89
Electron charge e = 1.602177 × 10−19C = 4.8032 × 10−10 CGSE

e2 = 2.3071 × 10−19 erg · cm
Planck constant h = 6.62619 × 10−27 erg · s, � = 1.05457 × 10−27 erg · s
Light velocity c = 2.99792 × 1010 cm/s
Fine-structure constant α = e2/(�c) = 0.07295
Inverse fine-structure 1/α = �c/e2 = 137.03599
constant
Bohr radius ao = �

2/(mee2) = 0.529177Å
Rydberg constant R = mee4/(2�

2) = 13.6057 eV = 2.17987 × 10−18 J
Bohr magneton μB = e�/(2mec) = 9.27402 × 10−24J/T = 9.27402 × 10−21 erg/Gs
Avogadro number NA = 6.02214 × 1023 mol−1

Stephan-Boltzmann σ = π2 /(60�
3c2) = 5.669 × 10−12 W/(cm2K4)

constant
Molar volume R = 22.414 l/mol
Loschmidt number L = NA/R = 2.6867 × 1019 cm−3

Faraday constant F = NAe = 96485.3C/mol

A.2 Conversional Factors for Units

See Tables A.1, A.2, A.3, A.4, A.5, A.6, A.7, A.8, A.9, A.10, and A.11.
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Table A.3 Units of electric
charge

1 e 1CGSE 1C

1 e 1 4.8032 ×10−10 1.60218 × 10−19

1 CGSE 2.0819 × 109 1 3.33564 × 10−10

1 C 6.2415 × 1018 2.99792 × 109 1

Table A.4 Units of electric
voltage

1V 1CGSE 1CGSM

1V 1 3.33564 ×10−3 108

1CGSE 299.792 1 2.99792 ×1010

1CGSM 10−8 3.33564 ×10−11 1

Table A.5 Units of electric
field strength

1V/cm 1CGSE 1CGSM

1V/cm 1 3.33564 ×10−3 108

1CGSE 299.792 1 2.99792 ×1010

1CGSM 10−8 3.33564 ×10−11 1

Table A.6 Units of specific
electric field strength

1Tda 1V/(cm · Torr)
1Tda 1 2.829

1V/(cm · Torr) 0.3535 1
a1Td=1 × 10−17 V · cm2

Table A.7 Units of
conductivity

1/(� · cm) 1/s

1/(� · cm) 1 1.11265 ×10−12

1/s 8.98755 ×1011 1

Table A.8 Units of electric
resistance

1� 1CGSE 1CGSM

1� 1 1.11265 ×10−12 109

1CGSE 8.98755 ×1011 1 8.98755 ×1020

1CGSM 10−9 1.11265 ×10−21 1

Table A.9 Units of current
density

1 e/(cm2 · s) 1CGSE 1A/m2

1 e/(cm2 · s) 1 2.99792 4.8032 × 10−10 1.60218 ×10−15

1 CGSE 2.0819 ×109 1 3.3356 × 10−6

1A/m2 6.2415 ×1014 2.9979 × 105 1
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Table A.10 Units of
magnetic field strength

1Oe 1CGSE 1A/m

1Oe 1 2.99792 ×1010 79.5775

1CGSE 3.33564 ×10−11 1 2.65442 ×10−9

1A/m 0.012566 1.11265 ×10−21 1

Table A.11 Units of
magnetic induction

1CGSE 1 T = 1Wb/m2 1Gs

1CGSE 1 2.99792 ×106 2.99792 ×1010

1 T = 1Wb/m2 3.33564 ×10−7 1 104

1Gs 3.33564 ×10−11 10−4 1

A.3 Conversional Factors in Formulas

See Tables A.12, A.13, A.14, A.15, and A.16.

Table A.12 Formulas of general physics

Number Formulaa Factor C Units used

1. v = C
√

ε/m 5.931 × 107 cm/s ε in eV, m in me
a

1.389 × 106 cm/s ε in eV, m in ma
a

5.506 × 105 cm/s ε in K, m in me
a

1.289 × 104 cm/s ε in K, m in ma
a

2. v = C
√

T/m 6.692 × 107 cm/s T in eV, m in me
a

6.212 × 105 cm/s T in K, m in me
a

1.567 × 106 cm/s T in eV, m in ma
a

1.455 × 104 cm/s T in K, m in ma
a

3. ε = Cv2 3.299 × 10−12 K v in cm/s, m in me
a

6.014 × 10−9 K v in cm/s, m in ma
a

2.843 × 10−16 eV v in cm/s, m in me
a

5.182 × 10−13 eV v in cm/s, m in ma
a

4. ωH = CH/m 1.759 × 107 s−1 H in Gs, m in me
a

9648 s−1 H in Gs, m in ma
a

5. v = CE/H 1 × 108 cm/s E in V/cm, H in Gs

6. rH = C
√

εm/H 3.372 cm ε in eV, m in me
a, H in Gs

143.9 cm ε in eV, m in ma
a, H in Gs

3.128 × 10−2 cm ε in K , m in me
a, H in Gs

1.336 cm ε in K , m in ma
a, H in Gs

7. p = CH2 4.000 × 10−3 Pa = 0.04 erg/cm3 H in Gs
a me = 9.108 × 10−28 g is the electron mass, ma = 1.6605 × 10−24 g is the atomic mass unit
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Explanations to Table

1. The particle velocity is v = √
2ε/m, where ε is the energy, m is the particle mass.

2. The average particle velocity is v = √
8T/(π m) with the Maxwell distribution

function over velocities; T is the temperature expressed in energetic units, m is
the particle mass.

3. The particle energy is ε = mv2/2, where m is the particle mass, v is the particle
velocity.

4. The Larmor frequency is ωH = eH/(mc) for a charged particle of a mass m in a
magnetic field of a strength H.

5. The drift velocity of a singly charged particle in crossed electric and magnetic
fields of strengths E and H correspondingly.

6. The Larmor radius of a charged particle is rH = √
2ε/m/ωH , where ε is the

energy of a charged particle, m is its mass, ωH is the Larmor frequency.
7. The magnetic pressure is pm = H2/(8π).

Table A.13 Formulas of gas and plasma physics

Number Formula Proportionality factor C Units

1. α = CNe/T3 2.998 × 10−21 Ne in cm−3, T in eV

4.685 × 10−9 Ne in cm−3, T in K

2. f = Cm3/2T3/2 2.415 × 1015 cm−3 T , m in me
a

3.019 × 1021 cm−3 T in K, m in me
a

1.879 × 1020 cm−3 T in K, m in ma
b

2.349 × 1026 cm−3 T in eV, m in ma
b

3. K = C/T9/2
e 2.406 × 10−22 cm6/s Te in 1,000 K

3.894 × 10−27 cm6/s Te in eV

4. ωp = C
√

Ne/m 5.642 × 104 s−1 Ne in cm−3, m in me
a

1322 s−1 Ne in cm−3, m in ma
b

5. rD = C
√

T/Ne 525.3 cm Ne in cm−3, T in eV

4.876 cm Ne in cm−3, T in K
a me = 9.108 × 10−28 g is the electron mass
b ma = 1.6605 × 10−24 g is the atomic mass unit

Explanations to Table

1. The ideality plasma parameter is α = Nee6/T3
e , where e is the electron charge,

Ne is the number density of electrons, Te is the electron temperature.
2. Preexponent of the Saha formula is ξ = [mT/(2π �

2)]3/2.
3. The rate constant of three body electron ion recombination (2e + A+ → e + A)

is K = 1.5e10/(m1/2
e T9/2

e ).
4. The plasma frequency is ωp = √

4π Nee2/me.
5. The Debye-Hückel radius is rD = √

T/(8π Nee2).
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Table A.14 Radiative transition between atom states

Number Formula Conversional factor C Used units

1. ε = Cω 4.1347 × 10−15 eV ω in s−1

6.6261 × 10−34 J ω in s−1

2. ω = Cε 1.519 × 1015 s−1 ε in eV

1.309 × 1011 s−1 ε in K

3. ω = C/λ 1.884 × 1015 s−1 λ in μm

4. ε = C/λ 1.2398eV λ in μm

5. fo∗ = Cωd2g∗ 1.6126 × 10−17 ω in s−1, d in D a

0.02450 	ε = �ω in eV, d in D a

6. fo∗ = Cd2g∗/λ 0.03038 λ in μm, d in D a

7. 1/τ∗o = Cω3d2go 3.0316 × 10−40 s−1 ω, s−1, d, D a

1.06312 × 106s−1 	ε = �ω in eV, d in D a

8. 1/τ∗o = Cd2go/λ
3 2.0261 × 106 s−1 λ in μm, d in D a

9. 1/τ∗o = Cω2gofo∗/g∗ 1.8799 × 10−23 s−1 ω in s−1, d in D a

4.3393 × 107 s−1 	ε = �ω in eV; d in D a

10. 1/τ∗o = Cfo∗go/(g∗λ2) 6.6703 × 107 s−1 λ in μm, d in D a

aD is Debye, 1 D = eao = 2.5418 × 10−18 CGSE

Explanation to Table

1. The photon energy ε = �ω, where ω is the photon frequency.
2. The photon frequency is ω = ε/�.
3. The photon frequency isω = 2π c/λ, where λ is the wavelength, c is the light

speed.
4. The photon energy is ε = 2π �c/λ.

5, 6. The oscillator strength for a radiative transition from the lower o to the upper
∗ state of an atomic particle that is averaged over lower states o and is summed
over upper states ∗ is equal to

fo∗ = 2meω

3�e2
|〈o |D| ∗〉|2 g∗ = 2meω

3�e2
d2g∗ = 4π cme

3�e2λ
d2g∗ ,

whered = 〈o|D|∗〉 is thematrix element for the operator of the dipolemoment
of an atomic particle taken between transition states. Here me, � are atomic
parameters, g∗ is the statistical weight of the upper state, ω = (ε∗ − εo)/� is
the transition frequency, where εo, ε∗ are the energies of transition states, λ is
the transition wavelength.

7–10. The rate of the radiative transition is

1

τ∗o
= B∗o = 4ω3

3�c3
d2go = 32π3

3�λ3
d2go = 2ω2e2go

mec3g∗
fo∗ = 8π2 go

�g∗λ2c
fo∗

Here B is the Einstein coefficient; other notations are the same as above.
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Table A.15 Transport coefficients

Number Formula Coefficient C Units

1. D = CKT 8.617 × 10−5 cm2/s K in cm2/(V × s), T in K

1 cm2/s K in cm2/(V × s), T in eV

2. K = CD/T 11,604 cm2/(V × s) D in cm2/s, T in K

1 cm2/(V · s), D in cm2/s, T in eV

3. D = C
√

T/μ/(Nσ1) 4.617 × 1021 cm2/s σ1 in Å2, N in cm−3, T in K,

μ in ma
a

1.595 cm2/s σ1 in Å2, N = 2.687 × 1019 cm−3,

T in K, μ in ma
a

171.8 cm2/s σ1 in Å2, N = 2.687 × 1019 cm−3,

T in eV μ in ma
a

68.1115 cm2/s σ1 in Å2, N = 2.687 × 1019 cm−3,

T in K , μ in me
a

7338 cm2/s σ1 in Å2, N = 2.687 × 1019 cm−3,

T in eV, μ in me
a

4. K = C(
√

TμNσ1)
−1 1.851 × 104 cm2/(V · s) σ1 in Å2, N = 2.687 × 1019 cm−3,

T in K, μ in me
a

171.8 cm2/(V · s) σ1 in Å2, N = 2.687 × 1019 cm−3,

T in eV, μ in ma
a

7.904 × 105 cm2/(V · s) σ1 in Å2, N = 2.687 × 1019 cm−3,

T in K , μ in me
a

7338 cm2/(V · s) σ1 in Å2, N = 2.687 × 1019 cm−3,

T in eV, μ in me
a

5. κ = C
√

T/m/σ2 1.743 × 104 W/(cm · K) T in K, m in ma
a, σ2 in Å2

7.443 × 105 W/(cm · K) T in K, m in me
a, σ2 in Å2

6. η = C
√

Tm/σ2 5.591 × 10−5 g/(cm · s) T in K, m in ma
a, σ2 in Å2

7. ξ = CE/(TNσ) 1.160 × 1020 E in V/cm, T in K,

σ in Å2, N in cm−3

1 × 1016 E in V/cm, T in eV,

σ in Å2, N in cm−3

a me = 9.108 × 10−28 g is the electron mass, ma = 1.6605 × 10−24 g is the atomic mass

Explanation to Table

1. The Einstein relation for the diffusion coefficient of a charged particle in a gas
D = KT/e, where D, K are the diffusion coefficient and mobility of a charged
particle, T is the gas temperature.

2. The Einstein relation for the mobility of a charged particle in a gas K = eD/T .
3. The diffusion coefficient of an atomic particle in a gas in thefirstChapman-Enskog

approximation D = 3
√
2π T/μ/(16Nσ1), where T is the gas temperature, N is

the number density of gas atoms ormolecules,μ is the reducedmass of a colliding
particle and gas atom or molecule, σ1 is the average cross section of collision.
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4. The mobility of a charged particle in a gas in the first Chapman-Enskog approx-
imation K = 3e

√
2π /(Tμ)/(16Nσ1); notations are the same as above.

5. The gas thermal conductivity in the first Chapman-Enskog approximation κ =
25

√
π T/(32

√
mσ2), where m is the atom or molecule mass, σ2 is the average

cross section of collision between gas atoms or molecules; other notations are the
same as above.

6. The gas viscosity in the first Chapman-Enskog approximation η = 5
√

π Tm/

(24σ2); notations are the same as above.
7. The parameter of ion drift in a gas in a constant electric field ξ = eE/(TNσ),

where E is the electric field strength, T is the gas temperature, N is the number
density of atoms or molecules, σ is the cross section of collision.

Table A.16 Clusters or small particles

Number Formula Coefficient C Used units

1. rW = C(m/ρ)1/3 0.7346 Å m in ma
a, ρ in g/cm3

2. n = C(ro/rW )3 4.189 ro and rW in Å

3. ko = Cr2W
√

T/m 4.5714 × 10−12cm3/s rW in Å, T in K , m in ma
a

4. w = Cρr2/η 0.2179 cm/s r in μm, ρ in g/cm3,

η in 10−5g/(cm · s)
w = Cr2 0.01178 cm/s r in μm, ρ, η relate to air

at p = 1 atm, T = 300K

5. D = CKT 8.617 × 10−5 cm2/s K in cm2/(V · s), T in K

1 cm2/s K in cm2/(V · s), T in eV

6. K = CD/T 11,604 cm2/(V · s) D in cm2/s, T in K

1 cm2/(V · s), D in cm2/s T in eV

7. Do = C
√

T/m/(Nar
2
W ) 1.469 × 1021cm2/s rW Å, Na in cm−3, T in K,

m in ma
a

0.508 cm2/s rW Å, Na = No, T in K,

m in ma
a

54.69 cm2/s rW in Å, Na = No, T in eV,

m in ma
a

8. Ko = C(
√

Tm Nr2W )−1 1.364 × 1019 cm2/(V · s) rW in Å, Na in cm−3,

T in K, m in ma
a

0.508 cm2/(V · s) rW in Å, Na = No, T in K,

m in ma
a

54.69 cm2/(V · s) rW in Å, N = No, T in K,

m in ma
a

9. Do = CT/(rW η) 7.32 × 10−5 cm2/s rW in Å, T in K,

η in 10−5g/(cm · s)
10. Ko = C/(rW η) 0.085 cm2/(V · s) rW in Å, η in 10−5g/(cm · s)
a ma = 1.66054 × 10−24 g is the atomic mass
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Explanations to Table

1, 2. A number of atoms in a cluster or spherical particle consisting of n atoms and
having a radius r is n = (r/rW )3 within the framework of the liquid drop
model, where rW is the Wigner-Seits radius of a cluster material. A cluster
mass is nma = 4π r3ρ/3, where ma is the atom mass, ρ is the mass density of
a cluster material.

3. The reduced rate constant for collisions involving clusters is ko = π r2 ·√
8T/(π ma).

4. The free fall velocity w in the gravitation field for a spherical particle of a
radius ro : w = 2ρgr2o/(9η), where g is the free fall acceleration, ρ is the mass
density for a particle material, η is the viscosity of a media where the particle
moves.

5. The Einstein relation for a charged particle located in a gas D = KT/e, where
D, K are the diffusion coefficient and mobility of a charged particle, T is the
gas temperature.

6. The Einstein relationK = eD/T for themobilityK of a charged particle moved
in a gas.

7. The reduced diffusion coefficient Do of a particle in a gas in the kinetic regime,
so that the particle diffusion coefficient D of a particle consisting of n atoms at
the normal number density Na = No = 2.687 × 1019 cm−3 of gas molecules,
that is equal Dn = Do/n2/3, where Do = 3

√
2T/π m/(16Nor

2
W ), T is the gas

temperature, m is the gas atom mass, rW is the Wigner-Seits radius.
8. The reduced zero-field mobility of a spherical particle Ko in the kinetic regime,

so that K is the mobility of a particle consisting of n atoms is Kn = Ko/n2/3,
where Ko = 3e/(8Nor

2
W

√
2π mT)) at the normal number density of gas atoms

Na = No = 2.687×1019 cm−3, andother notations are indicated in the previous
point.

9. The reduced diffusion coefficient do = T/(6π rW η) of a particle in a gas in the
diffusion regime at the normal number density Na = No = 2.687× 1019 cm−3

of gas molecules, so that the particle diffusion coefficient Dn of a particle
consisting of n atoms is equal to Dn = do/n1/3. Here, η is the gas viscosity, rW

is the Wigner-Seits radius; other notations are given above.
10. The reduced zero-field mobility of a spherical particle is Ko = e/(6π rW η) in

the diffusion regime at the normal number density of gas atoms Na = No =
2.687 × 1019 cm−3, so that the mobility of a particle consisting of n atoms is
equal Kn = Ko/n1/3, and the notations used are indicated above.
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