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Preface

We learn about the properties of quantized optical fields in quantum optics.
Although this may sound old and traditional, it is not. In reality, we assumed optical
fields as classical fields until very recently. We did not have to quantize the field
because our light source was only a laser and whose state, a coherent state, can be
regarded as a classical field.

We have to use quantum optics nowadays, of course. It is because squeezed light
is easily created these days and we have to handle it. Squeezed light is a pure
quantum mechanical state, which cannot be described without quantum optics. In
that sense, the “phase transition” occurred when Slusher et al. created the squeezed
light for the very first time in 1985. After the “phase transition,” various “pure”
quantum states were created, which include superposition of a vacuum and a
single-photon state, a Schrédinger’s cat state, and so on.

In this book, we explain the definition and the way to create these “modern”
quantum states of light. For that purpose we use many figures to visualize the
quantum states to help the readers’ understanding, because the quantum states
sometimes look very counterintuitive when one only looks at equations.

Tokyo Akira Furusawa
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Chapter 1
Quantum States of Light

1.1 Quantization of Optical Fields

In this section, we present an intuitive description of quantum optics.
According to the quantum field theory a vector potential operator of optical fields
A(r, 1) can be described as

A, 1) = Age®"0q 4 Age i kr—engh (1.1)

Here the spatial mode is a plane wave which propagates in the direction of the wave
vector k, Ay denotes a complex vector potential orthogonal to the wave vector, w is
the angular frequency of the optical field, a and a' are the annihilation and creation
operators, respectively, and 2 = a'a is the number operator.

a and a' act on eigenstates of the number operator (Fock states) |n) (7i|n) = n|n))
as

aln) = v/nln — 1),
a'ln) = Vn+1n+ 1), (1.2)
n|n) = nln).

We can create an electrical-field operator £ (r,t) and a magnetic-flux density
operator lg’(r, t) of the optical field by using the following equations and Eq. (1.1).
Namely, by using
OA(r, 1)

ot (1.3)
B@r,t) =V x A, 1)

Er, 1) =—

and Eq.(1.1), we can get

© The Author(s) 2015 1
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2 1 Quantum States of Light

Er, 1) = iw(Age'®T0a — Aze=ikr=ongh), (14)
B(r, 1) = ik x (Age'®r0g — Axe—ikr—wn gty (1.5)

Moreover, from k - Ay = 0 and |.Ay| = Ay, we can get the Hamiltonian H which
corresponds to the field energy as

~ 1 4 A 1 A ~
H = / (—608(1‘, H-E@rt)+—B@,t) - B(r, t)) dr
2 2p0

1 1 .
= — (eng + —|k|2) /Agdr @aa" +a'a)
2 Lo

hw .. .
= —@a" +aa)
2
1
=fw(ﬁ+§), (1.6)

where ¢ is the permittivity of vacuum, p is the magnetic permeability of vacuum,
[ Aldr = h/2eow, and [ e***"dr = 0.

Now let the optical field operators evolve in time. When the Hamiltonian does
not change in time, the Heisenberg equation of motion of an operator A(1) becomes

ih% = [A®), H]. (1.7)

By using this equation, we can get
A@) = A0y (1.8)

So the time evolution of an electrical-field operator £ (r, ) of an optical field
should obey

i -

Er ) =enEr, 0)e i, (1.9)

By using Egs.(1.6) and (1.9) we can check Eq.(1.4) from the view point of time
evolution of operators. Note that we used the following equation here:

CRAw@1/2) , . hw(it1/2)
l?tae I t

e = ae ", (1.10)

Similarly we can check Eq. (1.5) for the magnetic-flux density operator é(r, 1)
of an optical field from the view point of time evolution with Egs. (1.6) and (1.9).
Although everything is “peaceful and quiet” so far, we do more in quantum optics.

In quantum optics we think that an annihilation operator a evolves according to
Eq.(1.10). Namely we set a(f) = ae~™". It is a misunderstanding in some sense,
because an annihilation operator is a field operator and should not evolve in time.
However, if we set it like this, it becomes very convenient. So in quantum optics we
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treat an annihilation operator as a complex amplitude of an optical field. Of course,
we know that it is a “dialect” which only works in quantum optics.

We will explain the “dialect” in more detail here. First of all, we define Hermitian
operators x and p, which are called quadrature operators, as follows:

h
X = —(a+a),
= ,/ (a—a

It follows from [a, a'] = 1 that [&, p] = ihand % and p satisfy the same commutation
relationship as the one for position and momentum operators, which means that the
quadrature operators are conjugated variables like position and momentum. x and p
are thus sometimes called generalized position and momentum. Of course, they are
totally different from position and momentum, though.

Next we rearrange Eq.(1.11) and get the following equations:

. [w, \/T

az\/%x—i—z %,

&‘z\/zfc—i\/zﬁ.
2h 2hw

By using these equations we can rewrite the electrical-field operator of an optical
field E(r, t) (Eq.(1.4)) with X and p and get the following equation:

4 [w, . /I
£(r,t)=—2one|: ﬁxsm(kr—wt)—i- ﬁpcos(k~r—wt)i|, (1.13)

where we assume that e = Ay/Ag and Ay is a real number. We do not loose the
generality by this assumption, because there is no absolute phase of an optical field.

We make a more “rough” treatment in quantum optics. That is, we select some
proper unit and letw = 1, h = 1/2, and 2.4y = 1. As the result Eq. (1.13) becomes

(1.11)

(1.12)

A

E(r, 1) = —e[xsin(k - r — wt) + pcos(k - r — wi)]. (1.14)

Here we keep w in sine and cosine to stress the temporal dependence.
Withw =1, A= 1/2, and 24, = 1, Eq.(1.12) becomes

(1.15)

and, of course, [, p] = i/2.
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Comparing Eq. (1.14) with Eq.(1.15) we can say that we might be able to treat
an annihilation operator a as a complex amplitude of an optical electric-field as we
mentioned before. It means that x and p look like the amplitudes of sine and co-
sine components of the complex amplitude a, respectively. Here X and p are called
quadrature amplitude operators. It is of course a “distorted interpretation”, but it is
a “de facto standard” nowadays. However, it is a big benefit that we can intuitively
understand quantum-optics experiments. In any case, we should not forget the im-
portance of Egs.(1.4) and (1.10). In other words, we can do anything we like in
quantum optics if we do not forget it.

Note that there is another way to simplify Eq. (1.12), where we take 7 = 1 instead
of h = 1/2. Then we get

. X+ip
a= ,

AﬁA (1.16)
s X—ip

\/5 b

and [x, p] = i. i = 1 and i = 1/2 are both frequently used and it is therefore some-
times really confusing. We take & = 1/2 in this book except for a few cases where we
explicitly declare to take 7 = 1. This is because the author prefers 7 = 1/2. There
is of course no essential difference between them.

There is one more thing. That is the uncertain relationship between x and p.
General operators Aand B satisfy the following inequality for an arbitrary state |):

~ ~ 1 ~ A
VAAR) (B = 3 (A, B)|. (1.17)
where,
((AA)?) = (YIA% ) — (PlAJ)>. (1.18)

When i = 1/2, the commutation relationship between x and p is [X, p] = i/2. Then
Eq.(1.17) for x and p becomes

V(AR ((Ap)?) =

(1.19)

FNy

This is the uncertainty relationship between x and p.

1.2 Coherent States

We explained the “de facto standard” of quantum optics in the previous section. Now
we will describe various quantum states of light by using this standard. As a first
example we describe coherent states, which correspond to a state of laser light. The
formalization of quantum optics was made by Glauber just after the invention of the
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laser and it was actually for the quantum state of laser light. In that sense coherent
states should be called Glauber states.
The coherent state |«) is defined as an eigenstate of an annihilation operator a as

ala) = ala), (1.20)

where « corresponds to the complex amplitude of the optical electric field. As the
readers might notice, this is the origin of the “de facto standard” of quantum optics,
namely this is the reason why we can treat an annihilation operator as the com-
plex amplitude of the optical electric field. Of course, we know that an annihilation
operator a is not a Hermitian operator, which means it is not an observable.

From the definition of coherent states (Eq. (1.20)),

(ala" = (a]a*, (1.21)

and with [a, '] = 1 and Eq. (1.15), we can derive the following equations:

(alX|e)

I
B

= %a}, (1.22)

I
)

(alpla)

= 3{a}, (1.23)

=mmf+%, (1.24)

(1.25)
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((A%)?) = (alf?la) — (ali|a)?

1
=mm¥+z—mmf

_! 1.26
((Ap)*) = (alp’la) — {lpley)*
=%mﬁ+l—%mﬁ
R 773
_ ! 1.27
=7 (1.27)

From above equations we can say the following things.

From the “de facto standard” of quantum optics we can think of x and p as am-
plitudes of the sine and cosine components of the optical electric field, respectively,
as in Eq.(1.14). So the mean values correspond to the ones of real and imaginary
components of the complex amplitude. Moreover the standard deviations, i.e., square
root of the variances ((A%)?) and ((Ap)?) both become 1/4 in any case. It means
that the standard deviations are always 1/4 irrespective of the complex amplitude.
Therefore a coherent state in phase space is described as shown in Fig. 1.1. Note that
a coherent state is a minimum uncertainty state which corresponds to the case where
the equality holds in Eq. (1.19).

Fig. 1.1 A coherent state in
phase space

1
D4 P 1
ImoL - - — 4 |

=
(D | A ——
Q
=1
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Next we show that a coherent state of light can be described by a superposition of
the photon-number (Fock) states |n). It is possible because the photon-number states
|n) are an orthonormal basis of quantum states of light. Namely,'

(llm) = O, (1.28)

and an arbitrary quantum state |v)) can be described as

) =D caln), (1.29)
n=0

where ¢, is a complex number.
By using above equation a coherent state |«) can be described as a superposition
of photon-number states |n) with

o) =" waln). (1.30)

n=0

From the definition of a coherent state (Eq. (1.20)) follows that

ala) = ala) = Zawnm). (1.31)
n=0
From Eq. (1.2),
ala) = > wyv/nln - 1). (1.32)
n=0

From Egs. (1.31) and (1.32) and taking into account that |n) is an orthonormal basis,

Wyt = QW,. (1.33)
Therefore,
o
W, = —W,—

S
« « «

= -— RS _w
ﬁ n—1 1 0
ail

= . 1.34
mwo (1.34)

16, is called Kronecker delta and it is 1 when [ = m and O when [ # m.
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Since |av) has to be normalized, we can get the following equation by using Egs. (1.31)
and (1.34):

1 = (afa)
oo
= > |w,l?
n=0
[o¢]
|a|2n )
= lwol
n=0 \/m ’
N ES (1.35)
Hence, ,
|wol* = e™1*" (1.36)
In general, wy should satisfy
wo = e T, (1.37)

In the case of light we do not have to worry about the initial phase and we can set
¢ = 0. Finally we get

_la?
2

wy=-¢e (1.38)

From above derivation we can get the following equation for a coherent state |«):

) =T > jmm). (1.39)

Since the probability distribution of photon number can be determined by the square
of the coefficients of |n), we can get the following function of n for it:

(|a|2)n ei|a|2.

(1.40)
n!

We know that it is a Poisson distribution with an averaged value of |c|?.

Let’s think about the time evolution of a coherent state with a Hamiltonian
hw(n + 1/2) (Eq. (1.6)) and the following Schrdinger equation with a time-invariant
Hamiltonian:

(1) = e~ 11 1h(0)). (1.41)

We set the initial state as |a) and the final state as |a(?)).
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() = =)

— e—i%te—iﬁwt|a>

o (—IAWD)™ o e
:e_'%t —.e_aT n
> 2 =i

m=0 n=0

o0 . o0
e (—iwn)™ P o,
—ey Gy i
m! n!
aﬂ

m=0 n=0

(—iwD)" o ~—
= i3 Z — e z mnmm)

m=0 n

o0
—i%t —inwt — o «
=e '2'e e 2 z |n)
v/n!

= e 2 e, (1.42)

Since the phase factor for the overall state has no meaning here, we can say that the
final state of the time evolution of a coherent state |«) with a Hamiltonian Aw(n +
1/2) is |oe™™'). Namely, the initial coherent state with a complex amplitude of o
becomes the one with a complex amplitude of ce ™" after time ¢ (Fig. 1.3). As will be
explained later, although a quantum state of light changes through the time evolution
in general, a coherent state keeps to a coherent state, and it only changes in phase
as shown in Fig. 1.2. Moreover, the time evolution of a coherent state can also be

Fig. 1.2 Time evolution of a
coherent state in phase space p A

ae-l(v)t\
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Fig. 1.3 Time dependence E
of the real or the imaginary
part of the optical electric
field of a coherent state

plotted as a time dependence of the real or the imaginary part of the optical electric
field as shown in Fig. 1.3. This is just a wave!

Here we think about time dependence of general states [¢)) = >~ ¢,|n) (Eq.(1.29))
for the sake of showing the specialness of coherent states which keep the state through
the time evolution. Namely, we can time evolve [¢) = Z;io cy|n) with Eq. (1.41) as
follows:

() = e~ 71 4h(0))

—ist —mwtzcnm)
e it Z e ™ ). (1.43)

This result shows that the phase frequency is proportional to photon number n, where
we neglect the overall phase factor e 727, So the phase does not change when n = 0
and it does change at the frequency rate of w when n = 1. So far everything seems
to be trivial, however, the phase frequency becomes 2w when n = 2 and it becomes
nw when the photon number is n. Although coherent states keep the state through
the time evolution as pointed out above (Fig. 1.2), it is not true in general because the
phase frequency depends on the photon number and Eq. (1.43) cannot be simplified
like Eq. (1.42).

1.3 Balanced Homodyne Measurement

We can check the time dependence of the coherent state shown in Fig. 1.3 by experi-
ments. It is called balanced homodyne measurement. Figure 1.4 shows the schematic
of balanced homodyne measurement. Here the measured light beam (spatial mode)
is a; and the light beam a; is called a local oscillator which is a large-amplitude
coherent light beam. It is convenient to use the “de facto standard” of quantum



1.3 Balanced Homodyne Measurement 11

Fig. 1.4 Balanced
homodyne measurement.
Here the measured light
beam (spatial mode) is a)
and the light beam a is
called a local oscillator
which is a large-amplitude
coherent light beam

50/50 beam splitter

optics; a can be treated as the quantum complex amplitude, in order to understand
the mechanism of balanced homodyne measurement. On top of that, we should under-
stand the unitary transformation of beam splitters for quantum complex amplitudes.
So we will explain beam splitters as quantum devices in the next section.

1.3.1 Beam Splitters

A beam splitter is an optical device which has two input light beams a; and a, and two
output light beams &) and @). The input-output relation, i.e., the relationship between
(a1, ap) and (&}, @), can be described by a 2x2 matrix B as follows (Fig. 1.5):

a, a By B2\ (ai
~)1=Bl. )= ~ 1. 1.44
() =2 () = (o 52) () 44

Fig. 1.5 A beam splitter

beam splitter
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B cannot be an arbitrary matrix but has a constraint. That is energy conservation, i.e.,
the total photon number should be kept during the beam-splitter transformation:

alay + asay, = alfa) + d) a. (1.45)
From Eq. (1.45), B should satisfy the following conditions:
1Bu* + 1B |* = [Bio|* + B, (1.46)
B{,Bi» + B3 B»n = 0. (1.47)
TlTlese conditions are actually equivalent to the ones for the unitarity of matrix B, i.e.,
B'B=E.

An arbitrary 2x2 unitary matrix can be described with real numbers A, ¥, ©,
and @ as follows:

_ A2 &¥/2 cos (®@/2) sin(O®/2) 6?2
B=e (0 e /2] \ —sin (©/2) cos (©/2) 0 e-i®2)- (1.48)

Since A, ¥, and @ are phase factors, we can freely tune them in experiments. So we
can set A = ¥ = @ = ( without loss of generality:
[ cos(®/2) sin(O/2)
B= (— sin (©/2) cos (©/2)) - (1.49)

In experiments we have the following relations for transmissivity 7' and reflectivity
R of the beam splitter:

VT = cos (©/2), (1.50)
VR = —sin (0)2), (1.51)
T+R=1. (1.52)

Note that we can determine the value of ® from experiments. So the beam splitter
matrix can be described as follows:

VT —VR
B= . 1.53
8= (Y v7 (159
Although we did not explicitly say that we were using the Heisenberg picture
thus far, we will switch to the Schrodinger picture from here on. It is sometime
convenient to use the state-transformation picture of beam splitters. For that purpose
we introduce the operators L; (i = 0, 1, 2, 3) as follows:
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io = L (3t + ala 1.54
0=73 a,a; + aas | , (1.54)
£y = L (a]a, + aa} 1.55
1—2 aa; +aia, ), (1.55)
R 1 /e

i, = Z—i(a{az— la;), (1.56)
~ | R A

Li=3 ( T — a;az). (1.57)

These operators have the following relations:

il (cp) Jito _ it (le) , (1.58)
a, az

—iol, a iof, _ [ cos(®/2) sin(0/2) a
e (&2) e = (— sin (®/2) cos (@/2)) (&2) ) (1.59)

N i2 ~
il (cp) S0l (6’ 2 Q¢) (‘}1) ) (1.60)
ar 0 e 2 a

From a comparison between Eq.(1.48) and the time-evolution relationship
(Eq.(1.8)) ) )
A CH A CH

A@t) = €' rTA0)e R, (1.61)

a beam splitter operator B can be described as follows:
B= ei¢i3ei(-)i26iwi3eiAl:'). (1.62)
Here we take ii as a beam-splitter Hamiltonian and — A, —¥, —®, and —© as time.

Now we got everything we need for the explanation of balanced homodyne mea-
surement. Let’s get back there.

1.3.2 Balanced Homodyne Measurement

We use a 50/50 beam splitter for balanced homodyne measurement, i.e., transmis-
sivity and reflectivity, are both 0.5 (7 = R = 0.5 in Eq. (1.53)). So the beam splitter

matrix is
1/v2 —1/3/2
1/vV2 V2 )

(1.63)

We will calculate the output of the balanced homodyne measurement I, — I, shownin
Fig. 1.4 by using above matrix. Here the output ; — /; is the photocurrent difference
of two detectors and /; and I, correspond to the photon numbers of modes 1 and 2,

AT AL

ie, I, =aa and I, = a5,
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From Eq.(1.63)

I =aja,
L S P P
=3 ( a1+ ayap — aan — alaz) , (1.64)
and
I, = ),
| S P s
= > (alal + aya, +a;as +a1a2) . (1.65)

So the output of the balanced homodyne measurement I, — I, can be calculated as
L—1 =dla,+aal. (1.66)

When the input states of light beams 1 and 2 are |¢)); and |¢),, which means that
the overall state of the input is [1)); ® |¢)2, the expected value of the output of the
balanced homodyne measurement can be calculated as

(L —T1) = 2(pl @ 1 (W] (T2 — TDIY)1 @ |9)a
=2 (pl ® 1 (W]@}ar + @1ah) ) @ 9)a. (1.67)

Here one of the input light beams a; is a local oscillator beam which is in a coherent
state |«) with a large amplitude |«|. Then

(L — 1) =2 (ol ® 1(¥|(@]ar + @1ah) )1 ® |a)
=1 (Pla]|1)1 - 2(alaale)s
+ 1l w) - 2(elddla)
= (Yla; )i+ 1 (Yla Yy aF. (1.68)

When we use a = |a|e? in the equation above, we get

(b =) =210l (1w cos 0 + 1 (Wlpi[¥)ising),  (1.69)

where we use a; = x; + ip;.

From Eq.(1.69) we can see that the output of the balanced homodyne mea-
surement is proportional to the inner product between the expected-value vector
of (1{(¥|x11¥)1, 1{¥|p1]%)1) and the local-oscillator-amplitude vector of (|a| cos 6,
|« sin 8). Moreover, since the amplitude |«| of the local oscillator is usually large,
we can amplify a very weak input like a single photon.

Figure 1.6 shows an interpretation of balanced homodyne measurement output.
A balanced homodyne measurement corresponds to projection of an input to a local
oscillator beam.
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Fig. 1.6 Interpretation of balanced homodyne measurement output. The output of the balanced
homodyne measurement is proportional to the inner product between the expected value vector
of (1 (|x1|¥)1, 1{(¢|p1]1)1) and that of local oscillator amplitude of (Ja|cos @, |«|sinf). So it
corresponds to projection of an input to the axis at the local oscillator phase. Of course, the input is
not limited by a coherent state

So far we have discussed the expected value of balanced homodyne measure-
ments. We will from now on discuss the instantaneous value of balanced homodyne
measurement of 1, — 1. Precisely speaking the local oscillator amplitude |« is an
averaged value. However, since it is usually much bigger than the quantum fluctu-

ation , / (Afc%) = (Aﬁ%) = 1/2, it can be treated as constant. So the instantaneous
value of balanced homodyne measurement corresponds to the instantaneous value
of x; cos @ + p; sin 6, namely, the instantaneous value of projection of the input onto
the axis at the local oscillator phase (xy). By using this method we can get the dis-
tribution of the measured value for the component of the input at the local oscillator
phase 6. When we scan 6, we can get the phase dependence which corresponds to
the temporal structure of the input electric field. Figure 1.7 shows this example. It is
phase dependence of amplitude for very weak laser light.

We will discuss these things more precisely in the next section especially on
eigenstates of quadrature amplitude operators and marginal distributions.

1.3.3 Eigenstates of Quadrature Amplitude Operators
and Marginal Distributions

As mentioned in Sect. 1.1, quadrature amplitude operators X and p (a = X + ip, h =
1/2) correspond to sine and cosine components of the electric field of light and they
are canonical conjugate variables which satisfy [X, p] = i/2. So they correspond in
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amplitude

Fig. 1.7 Phase dependence of amplitude for very weak laser light

some sense to “position”” and “momentum”. Furthermore we can define eigenstates of
quadrature amplitude operators |x) and |p) just like those of position and momentum
operators as

Fx) = x|x), (1.70)
plp) = plp). (1.71)

Here they satisfy the following relations:

(x|x") = 8(x — x), (1.72)

{plp’) = o(p —p", (1.73)

/+OO dx |x) (x| =1, (1.74)
~ A

/Oo dp Ip)(pl =1, (1.75)

(x|p) = %emp. (1.76)

Since the input is projected onto the xy axis in balanced homodyne measurements,
we have to define the operator Xy as

Xp = Xcosf + psinf. (1.77)
The eigenstate |xy) should satisfy

Xglxg) = xglxg). (1.78)
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Here,
(xolxp) = d(xg — xp), (1.79)

+00
/ dxy |xg) (xg| = 1. (1.80)

o0

Projection onto the xy axis corresponds to taking inner product with |xy) and the
probability distribution can be calculated by squaring the inner product. More pre-
cisely, when the input state is [)), the inner product is (xp|v) and it is equal to the
wave function 7(xy). Of course, the probability distribution is |t (xg)|?.

Let’s think about balanced homodyne measurement of a coherent state |«). The
probability distribution should be |(xs|a)|? from above discussion. It is called a
marginal distribution. We will calculate it here, but before doing so, we have to make
some preparations.

First of all we define ay here. That is

ap = Xp + ipy. (1.81)
Xy is already defined as in Eq. (1.77) and py is defined as follows:
Do = —Xxsinf + pcos. (1.82)
From these definitions, we can get
ap = e "a. (1.83)
This can be verified as follows:
ag = Xp + ipy

= (xcosf + psinf) + i(—xsin O + p cos 0)
= X(cos @ — isin6) + p(sin 6 + i cos 0)

a+a' a—a'
= cosf —isinf
> ( i ) + %

= e (1.84)

(sinf + icos )

The commutation relationship of Xy and py is [Xg, pg] = i/2 (h = 1/2) which is
exactly the same as that of x and p. It can be verified as follows:

(X9, Po] = XoPo — PoXo
= (xcosf + psin@)(—xsinf + p cos 0)
— (—xsin @ + pcos ) (x cos 6 + p sin 0)
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~

= xpcos? @ — px sin® 0 + ipsin® 6 — px cos’ 0

>

A AA

=Xp — DX

|~

(1.85)

Now we are ready to calculate |(xp|a)|?. We first get an equation which (xg|a)

should satisfy. From Eq. (1.84) and a|a) = a|a)

(xplagler) = (xgle " ala)
= e Palxyla). (1.86)

With ayp = Xy + ipy it becomes

(xglaglar) = (xpl(Xg + ipg)|cx)
= Xo(xg|r) + i(xg|pylc)
1d
= Xo(xglar) + 55“‘*‘"‘”' (1.87)
Here we used the relation

. 1d
(xglpel®y) = —iz——{(xgl¥). (1.88)

2 dXQ

By combining Egs. (1.86) and (1.87) we see that the equation which (xyp|«) should
satisfy is

. 1 d
(xg — e a) (xglar) + = — (xgla) = 0. (1.89)
2 dXQ
By solving this equation we get

(xg|r) = ce~¥it2ae "5 (1.90)

where ¢ is a normalization constant. By using a normalization condition fj;o dxp
l(xglce)|> = 1 and [ dx e = /T we get

2\* .
c= (_) ef(aRcost9+aIsm9) i (191)
7T

where o = agr + ioy.
So the marginal distribution of coherent state |(xg|a)|> can be calculated as

2 —2[xg—(ag cos O+ay sin 0)]?
|(X9|Oé)|2=\/;€ Ao (ncostharsindl, (1.92)
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Fig. 1.8 Marginal distribution of a coherent state. The peak position changes as the local oscillator
phase 6 changes with the relation of ar cos 6 + ag sin 6

OlRCOSO + 0L SinO OlRCOSO + 0L SINO
amplitude amplitude

marginal distribution

Fig. 1.9 Relation between the marginal distribution and phase dependence of amplitude shown in
Fig. 1.7

It is a Gaussian distribution with a variance of 1/2 and the peak is at ag cos 6 +
ag sin 0, which is shown in Fig. 1.8. As shown in the figure the peak position changes
with the expression ag cos 6 + o sin § which depends on the local oscillator phase 6.
We also show the relation between the marginal distribution and Fig. 1.7 as Fig. 1.9.

As a final subject in this section we will discuss a vacuum state |0) as a special
case of a coherent state |a). We can get the marginal distribution of a vacuum when
we set @ = ar + iag = 01in Eq.(1.92) as

|(xp|0)]* = ﬁe—hf?. (1.93)
v

This is shown in Fig. 1.10. The important point here is that the peak position does
not change as the local oscillator phase 6 changes. So when we make a balanced
homodyne measurement for a vacuum state |0), we get the phase dependence of
amplitude as shown in Fig. 1.11.

In classical mechanics a vacuum means nothing, but we can see something in
Fig. 1.11. In quantum mechanics we regard an annihilation operator a = X + ip as
the quantum complex amplitude and X and p as sine and cosine components of the
electric field of light. Moreover, X and p satisfy [, p] = i/2 (h = 1/2) and they have
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Fig. 1.10 Marginal distribution of a vacuum state |0). The peak position does not change as the
local oscillator phase 6 changes

amplit}lde

marginal distribution

Fig. 1.11 Phase dependence of amplitude of a vacuum state |0)

the uncertainty relationship as shown in Eq. (1.19). So sine and cosine components of
the electric field of light cannot be determined simultaneously. In other words, when
one of them is determined then the other becomes completely undetermined. In the
case of a vacuum, it is a symmetric and minimum-uncertainty state, for which the
equality of Eq. (1.19) holds. Now it is obvious that the phase dependence of amplitude
of a vacuum state |0) becomes like Fig. 1.11. It comes from the uncertainty principle.
The energy comes from /w /2 of E,, = hw(n + 1/2) which corresponds to zero-point
fluctuation of a quantum.

As shown in this section we can visualize a quantum state of light by using
balanced homodyne measurements like Figs. 1.7 and 1.11. In the next sections we
will show nonclassical states of light by using this method.

1.4 Single-Photon States

Some readers might think it is weird when they hear that a single-photon state is a
nonclassical state. A lot of readers might think that they can get a single-photon state
when they reduce laser power by using a neutral density filter. Unfortunately it is not
true. Very weak laser light and a single-photon state |1) are totally different.
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amplitude

Fig. 1.12 Phase dependence of amplitude of a single-photon state |1)

In the case of very weak laser light, when we count the photon number, it is mostly
zero and sometimes one. That means the averaged photon number is much less than
one. On the other hand, in the case of a sigle-photon state |1) the count is always
one. It is a phenomenon totally different from the classical world.

The phase dependence of amplitude of very weak laser light is shown in Fig. 1.7.
How does that of a single-photon state | 1) look like? The answer is shown in Fig. 1.12.
The big difference between Figs. 1.7 and 1.12 is that there is a wavy structure in
Fig. 1.7 but there isn’t in Fig. 1.12. What is going on here?

Since a single-photon state |1) is an energy eigenstate which means the energy is
determined, the conjugate variable, i.e., the phase, should be totally undetermined in
accordance with the uncertainty principle. So a single photon does not have a wave
structure and it is interpreted as a wavelet without a phase, which is very nonclassical!
Therefore we cannot make a single photon state |1) with reducing the power of laser
light, because very weak laser light always has to have a wave structure.

So far we have given an intuitive explanation of the single-photon state |1). In the
next section we will explain it with equations. Especially we will show the reason why
the phase dependence of amplitude of a single-photon state |1) looks like Fig. 1.12.

1.4.1 Marginal Distribution of a Single-Photon State

We will calculate the marginal distribution of a single-photon state |(xg|1)|?> here.

For that purpose, we should rewrite the equation of (xy|0) and (xy|1) in the following
way:

(xpl1) = (xgla’10)
= (xgle”a}|0)
= (xgle” (X9 — iPg)|0)

. 1 d
= e"xy(xy]0) — " = — (x9|0), (1.94)
2dx€
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where we used Eqgs. (1.84) and (1.88). Since a vacuum state |0) is a special case of a
coherent state |a) with o = 0, we can use Egs. (1.90) and (1.91). Then

2\ o
(xg]0) = (;) e, (1.95)

By using this result and Eq. (1.94) we get

1

(pl1) =2 (3)4 xpe ™. (1.96)
™

So the marginal distribution | (xy|1)|? can be calculated with the following expression:

2
| (x| 1)) = 4\/;x§e2"5. (1.97)

We plot it and get Fig. 1.13. The important point here is that the shape does not
change even when the local oscillator phase changes, which is similar to the case of
a vacuum state |0) but is totally different from the case of a coherent state. By using
Fig. 1.13 we can understand Fig. 1.12 as shown in Fig. 1.14.

Let’s think about the physical meaning of Figs.1.12 and 1.14. A single photon
should be an electromagnetic wave. We simply cannot see the wave structure. It
is because a single-photon state |1) is an energy eigenstate which means that the
energy is determined, and the conjugate variable, i.e., the phase, should be totally
undetermined in accordance with the uncertainty principle as pointed out in the
previous section. So the image might be like Fig. 1.15, which means a total mixture
of waves with a constant amplitude but random phases.

[(zol1)I"

0 1 2 Lo

Fig. 1.13 Marginal distribution of a single-photon state |1). The shape does not change even when
the local oscillator phase changes, which is similar to the case of a vacuum state |0) but is totally
different from the case of a coherent state. Note that in this book we use h=1/2 and a = X + ip
when we do not make a special remark. So the peak of the marginal distribution does not exist
at xg = 1 but xy = 1/+4/2. On the other hand, when we use A = 1 and & = (& + ip)/~/2, the peak
exists at xg = 1. Therefore some people like i = 1 and @ = (% + ip)/~/2. However the author likes
h=1/2anda = % + ip. It is because the author hates the /2 in @ = (% + ip)/+/2. Of course there
is no fundamental difference between them. You can use which one you like
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Fig. 1.14 Marginal distribution and phase dependence of amplitude of a single-photon state |1).
The shape of the marginal distribution does not change even when the local oscillator phase 6
changes

Fig. 1.15 An image of a
single photon state |1). Itis a P X
total mixture of waves with a
constant amplitude but
random phases

1.5 Photon-Number States

The story in the previous section is not only for light. General harmonic oscillators
have the same property. So we can visualize general harmonic oscillators with the
same method.

Everybody knows that the wave function of a harmonic oscillator ¢, (x) can be

described as
1 mw mw _me 2
©n x) = 2l EHﬂ 7)6 e 2hT (1.98)

where 7 is a quantum number, H, (x) is the Hermite polynomials, m is the mass,
and w is the angular frequency of the harmonic oscillation. However, almost nobody
knows that | (x)|? corresponds to the marginal distribution of a single-photon state
|1) and that the phase dependence of amplitude is like Fig. 1.14, where we setm = 1,
w =1, and i = 1/2. Similarly | (x)|> corresponds to the marginal distribution of
a vacuum.
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This correspondence can be extended to general photon-number states of light |n)
(eigenstates of i = a'a, Fock states), namely, |, (x)|> corresponds to the marginal
distribution of photon-number states |n). Here we think about a two-photon state |2),
a three-photon state |3), and a four-photon state |4).

InEq.(1.98)wesetm = 1,w = 1, h = 1/2 and by using the Hermite polynomials,

we can get

Yo(x) = (—
T

p1(x) =2

Ho(¢) = 1,
Hi(§) =2¢,
Hy(§) = 4&* -2,

Hs(&) = 8¢ — 12¢,
Hy(§) = 166" — 486 + 12,

~— NS}
AN
N
Y
%

4
42
—) xe ™,

1\ .
<pz(x)=(—) (4x= — e,

27

()—i(i)iﬁ—m-xz
gp3x—ﬁ o X xX)e

1

(x) = (! Z(l6x4—24x2+3)e_x2
P4 RNAY: .

The marginal distributions of these states will then be

2
o) =/ =e™>,
s
2
1) = 4/ =%,
iy
1
o207 =/ 2—(4x2 — )2,
vy
1 1
lps (0> = 5,/§(x3 — 6x)%e 2,

1 1
lpa(0)|* = E\’ g(mx“ —24x% +3)2e72,

(1.99)
(1.100)
(1.101)
(1.102)
(1.103)

(1.104)

(1.105)

(1.106)

(1.107)

(1.108)

(1.109)

(1.110)

(1.111)

(1.112)

(1.113)
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Fig. 1.16 Phase dependence of amplitude of a two-photon state |2)

amplitude

4

phase
Fig. 1.17 Phase dependence of amplitude of a three-photon state |3)
amplitude
0
phase

Fig. 1.18 Phase dependence of amplitude of a four-photon state |4)

Similar to a vacuum state |0) and a single-photon state |1), these marginal distrib-
utions do not depend on the phase. These are phase-insensitive states, which mean
that these are “waves” without wave structures. It is of course because these states
are energy eigenstates with determined energies and it follows from the uncertainty
principle that the phases become fully undetermined. The situation is exactly the
same as the cases for a vacuum state |0) and a single-photon state |1).

We plot Egs. (1.111)—(1.113) as marginal distributions of a two-photon state |2), a
three-photon state |3), and a four-photon state |4) in Figs. 1.16, 1.17 and 1.18. There
are no phase dependence in any of these states, which means they are “waves without
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phase”. However, a superposition of such states like coherent states has phase and
shows wave nature. We will think about the origin of the wave nature in the next
section.

1.6 Superposition States of a Vacuum and a Single-Photon
State

In the previous section we explained the nature of photon-number states |n). We
showed that there is no phase dependence of amplitude of the states. In this section
we explain how we can create waves from particles like single photons |1), more
precisely, we explain how we can create waves with a superposition.

As explained in the previous section, a vacuum |0) and a single photon |1) do
not have any phase dependence of amplitude, which is shown in Figs. 1.19 and 1.20.
However, if we think of their superposition (|0) + |1))/ V2, the situation changes
totally. Before the detailed explanation we think about an incoherent mixture of a
vacuum |0) and a single photon |1), which is shown in Fig. 1.21. This is just a mixture
of Figs. 1.19 and 1.20, and totally different from a superposition of a vacuum |0) and
a single photon |1).

Figure 1.22 shows the amplitude dependence on phase for a superposition of a
vacuum |0) and a single photon [1), (|0) + [1))/ V2. We can see phase dependence of
the amplitude, i.e., a wave structure, which is different from an incoherent mixture
of them shown in Fig. 1.21. Where does the wave structure come from? To think
about it, we show another phase dependence of amplitude of a superposition of a
vacuum |0) and a single photon |1) in Fig. 1.23, which is now (|0) — [1))/+/2. From
the comparison between Figs. 1.22 and 1.23, we can see that the wave structures have
opposite phases. So we can draw the following two conclusions:

ampli}ude

Fig. 1.19 Phase dependence of amplitude of a vacuum |0) (Fig.1.11)
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amplitude

Fig. 1.20 Phase dependence of amplitude of a single-photon state |1) (Fig.1.12)

amplitude

phase

Fig. 1.21 Phase dependence of amplitude of an incoherent mixture of a vacuum |0) and a single
photon |1)

amplitude

Fig. 1.22 Phase dependence of amplitude of a superposition of a vacuum |0) and a single photon

1), (10) + 1)/+/2

1. The wave structure is created by a superposition of a vacuum |0) and a single
photon |1). We can not create it with an incoherent mixture of them.

2. The phase of the wave structure is flipped when the sign of the superposition
between a vacuum |0) and a single photon |1) changes.

From these facts we can say that the phase of the wave structure is determined by the
relative phase between the vacuum state |0) and the single photon state |1). Moreover
the average amplitude of the wave structure is 1/+/2 compared to the case of a single
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amplitude

Fig. 1.23 Phase dependence of amplitude of a superposition of a vacuum |0) and a single photon

1), (10) = [1))//2

amplitude

Fig. 1.24 Phase dependence of amplitude of a superposition of a vacuum |0) and a single photon

1), (10) +2[1)/+/5

photon |1). This reflects the factor of 1/ V2 of the superposition state (|0) = |1))/ V2.
It is trivial in some sense because the probabilities of a vacuum and a single photon
are 1/2 respectively and the average photon number of the state should be a half,
which corresponds to 1/+/2 of the average amplitude of a single photon.

To get more information on the influence of superposition factors on the amplitude
of the wave structure, we think about (]0) 4 2|1))/ V5. Figure 1.24 shows the phase
dependence of amplitude of (|0) + 2|1))/ V5. The average amplitude of the wave
structure is 2/~/5 compared to one for a single photon |1). This is also explained by the
fact that the probabilities of a vacuum and a single photon are 1/5 and 4/5 respectively
and the average photon number of the state should be 4/5, which corresponds to 2/~/5
of the average amplitude of a single photon.

As another example we think about (2]0) + |1))/ V5. Figure 1.25 shows the phase
dependence of amplitude of (2|0) + |1))/ /5. The average photon number is 0 x
4/5+4+ 1 x 1/5=1/5 and the average amplitude of the wave structure should be
1/ NG compared to the case of a single photon. We can check this in Fig. 1.25.

From above observations we found that the wave structure is created by a super-
position of a vacuum |0) and a single photon |1). We also found that the phase and
average amplitude are determined by the superposition factor. We have so far mys-
teriously explained the creation of waves from a superposition of a vacuum |0) and
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Fig. 1.25 Phase dependence of amplitude of a superposition of a vacuum |0) and a single photon

1), 210) + [1))/v/5

a single photon |1). However, it is trivial in some sense. You can easily understand
it when you remember that a coherent state |«) is a superposition of photon-number

states:
2 "

_lolZ - (67
—e 2 Z«/ﬁ (1.114)

n=0

When |« is small enough, a coherent state can be regarded as a superposition of
a vacuum |0) and a single photon |1). Of course, the wave structures of all types
of superposition states of a vacuum |0) and a single photon |1) do not get a perfect
sine curve. It is simply because we need the higher photon-number terms to create a
perfect sine curve.

In the next section we will think about superposition of coherent states, which
include all photon-number states.

1.7 Coherent States and Schrodinger Cat States

Before explaining superposition of coherent states, we add some explanation on
coherent states. We can expand a coherent state as a superposition of photon-number
states with Eq.(1.114),e.g., a = 1:

9]

Z

( )+ 1) + |2>+[|3>+ f|4>+ ) (1.115)

Figure 1.26 shows the phase dependence of amplitude of the coherent state o = 1).
It is trivial that a coherent state has a wave structure. However, it seems strange that
a superposition of phase-independent photon-number states has phase dependence.
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amplitude

Fig. 1.26 Phase dependence of amplitude of a coherent state |o = 1)
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Fig. 1.27 Phase dependence of amplitude of a coherent state |« = —1)

Let us think about the opposite-phase coherent state |« = —1). It can be expanded
as a superposition of photon-number states with Eq. (1.114) as follows:

Il
AN
[N]

(I0>—|1>+ |4)—--.). (1.116)

1 1 1
VA 12) 76 13) + NG
Figure 1.27 shows the phase dependence of amplitude. It is trivial but the phase is
flipped compared to Fig. 1.26.

From the comparison between Egs. (1.115) and (1.116), we can see that the coef-
ficients of even-photon-number states are the same but those of odd-photon-number
states are sign-flipped, which correspond to that the phase of even-photon-number
states are the same but those of odd-photon-number states are flipped. This situation
is the same as that of a superposition of a vacuum |0) and a single photon |1) as
shown in the previous section.

Now we move on to the explanation of a superposition of coherent states
Ny+(Ja) £ | — ) (N, is a normalization factor). This superposition state is called
a Schrodinger’s cat state. The reasons are the following. Coherent states are a super-
position of many photons (quanta) as seen in Eq. (1.114). Our daily world or macro-
scopic world also consists of many atoms (quanta). In that sense coherent states can
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superposition

Fig. 1.28 Does a superposition of coherent states |«) and | — «) becomes a vacuum state?

superposition

Fig. 1.29 Does a superposition of coherent states ) and | — ) becomes a mixture of them?

be regarded as a macroscopic existence. Since a Schrodinger’s cat state is a superpo-
sition state of macroscopic existence, i.e., a superposition of an alive and dead cat,
a superposition of coherent states |«) and | — «) can be regarded as a Schrodinger’s
cat state. Here coherent states |a) and | — «) are phase-flipped semiclassical waves.
Therefore there are some misunderstandings. Figure 1.28 shows one of them. Some
people think that a superposition of coherent states |a) and | — «) become a vacuum
state. Of course, it is not right. Figure 1.29 shows another misunderstanding. Some
people think a superposition of coherent states |«) and | — o) becomes a mixture of
them. Of course, that is not right, either. What is the true picture of the Schrédinger’s
cat state?

First we consider one of the Schrodinger cat’s states, No— (o) — | — ). It is
sometimes called a “minus cat state”. We calculate |a) — | — «) with Eq.(1.114)
and get
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[o.¢]
@
=2 2 ——2n+1). (1.117)
2 o
From this result we can see that this minus cat state is a superposition of odd photons.
The normalizing factor will be calculated as Eq. (1.134), that is,

1

T 2l = e 2Py

So the minus cat state with o« = 1 is described as

2e 1 1
Na(|a=1)—|a=—1))=‘/ez—(ll) f f )

(1.119)

(1.118)

Figure 1.30 shows the phase dependence of amplitude of the Schrodinger’s cat state
No—(la) = —a)) (a=1).

From a comparison between Figs. 1.29 and 1.30, we can see that a minus cat state
or a superposition state of two coherent states is totally different from their mixture.
Especially the zero probability around zero amplitude is the most prominent feature.
As seen in Sect. 1.5, odd photon-number states show the zero probability around
zero amplitude. Therefore the minus cat state also has this feature. In other words,
quantum interference or superposition cancels the probability of zero amplitude. It
corresponds to cancellation of even-photon-number components in Eq. (1.119).

Now we change the value of o from 1 to 2. Figure 1.31 shows the phase dependence
of amplitude of the Schrodinger’s cat state N, (|a) — | — a)) (o = 2). Itlooks really
complicated and it is the limit of this type of pictures. So we will introduce the Wigner
function in the next section to handle this type of complicated situations.

Fig. 1.39 Phase dependence amplitude
of amplitude of a ;

Schrodinger’s cat state

No_(l2) — | —a)) (@ = 1) 16
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ampli"fude

phase :

Fig. 1.31 Phase dependence of amplitude of a Schrodinger’s cat state N,,— (Jo) — | — ) (o = 2)

1.8 The Wigner Function

Until this section we have visualized quantum states of light with phase dependences
of quadrature amplitudes. This is because we believe that wave structures appearing
in coherent states give us an image of quantum states. However, as pointed out for
a Schrodinger’s cat state with o = 2, there are some limitations to that method. So
we introduce the Wigner function in this section to solve that problem.

The definition of the Wigner function W (x, p) is

oo

1 j 1
o= 1 [ o (D)o L

I O P

x— %§> (1.120)

where p is the density operator for the quantum state which we want to visualize.
Here the definition of a density operator is

p=" pultha) (thnl, (1.121)

n=0

and p, is the probability of quantum state |1,,). For example, the density operator for
a coherent state |a) is |a){«|. Moreover, we can handle a mixed state as well as a
pure state with the density operator, which cannot be written with a single |¢). This
feature is really powerful and we can handle any states with the Wigner function.
The Wigner function is called a pseudo-probability density function and it can
be regarded as a probability distribution in phase space with “position” x and
“momentum” p. Of course, x and p are quadrature amplitudes in quantum optics. The
interpretation of the Wigner function is the following. The part (x + 3¢|  |x — $¢)in
1

Eq. (1.120) represents the probability of a “quantum jump” from positions ( -3 )
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to (x + %f), and it can be regarded as the existence of the quantum at position x
(a middle point of x — %f and x + %5 ) and its movement by length . The integral
[, d&exp (—£p€) in Eq.(1.120) corresponds to the Fourier transformation from
position space to momentum space and thus the length ¢ is transformed to a mo-
mentum p. The Wigner function can therefore be regarded as a probability density
distribution of x and p.

The above explanation gives us an impression that the Wigner function is just a
classical probability distribution. However, it is not. It is because the Wigner function
can be negative. As you know, a classical probability distribution cannot be negative.
That is why the Wigner function is called a pseudo-probability density function.

The Wigner function has the following property:

// dxdpW (x,p) = 1. (1.122)

This property corresponds to that a total probability becomes one. Moreover, two
Wigner functions [¢1) and |¢») have the following property when these Wigner
functions correspond to two pure states |¢;) and |i,), respectively:

(i) 2 = 27k / / drdpW, (x. p) W (x, p). (1.123)

This property means that overlap between two Wigner functions corresponds to
the overlap between two states. Naively speaking, we can say that two states are
similar when the overlap between the two Wigner functions is big enough. Note that
Eq.(1.123) is valid when the two states are pure states. In the case of mixed states,
the situation is much more complicated.

We will show some examples of the Wigner functions. As the first example we
will show the Wigner function of a vacuum |0). We put |0) (0| to 5 in Eq. (1.120) and
we use h = % Then we get the Wigner function of a vacuum Wy (x, p) as follows:

Wo(x, p) = %/d{e‘z”’g(x +£/2|0)(0|x — £/2). (1.124)

To calculate this equation we first calculate (x|0). This is actually ¢ (x) (Eq. (1.104))
calculated in Sect. 1.5, that is,

1

2

2
Yo(x) = (x]0) = (;) e (1.125)

By using this we calculate Eq. (1.124).



1.8 The Wigner Function 35

1 .
%mm=;/%fmu+amwm—am

1 .
=—/ﬁ&*W%u+am%u—am
iy

1 L
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™
From this result we see that the Wigner function of a vacuum Wy (x, p) is a complex
Gaussian distribution as shown in Fig. 1.32.
As the second example of the Wigner function we will take the one of a coherent
state |a) (o = xo + ipg) Wa(x, p). Since the density operator of a coherent state is
|a) (|, we first calculate v, (x) = (x|a) to get W, (x, p):

Yo (x) = (x|a),
= (x|D()|0)
_ x|e*ixnpo £ 2P0% p—i2x0p 0)

— e—ixopgeinox <x|e—i2xof)|0)
= ¢ My (x — Xo)

2
s

) 4 e—ix0p0+i2pox—(x—xo)2 , (1 . 127)

Fig. 1.32 The Wigner function of a vacuum |0)



36 1 Quantum States of Light

where D(a) represents the displacement operation which will be used in the next
chapter. We also used the following property:

(x|e”9P|0) = (x| / dp|p) (ple~">7|0)

0o
1 ., .
/ dp_612xp712x0p (p|0)
— ™

oo
o0 1 .
— / dp_elZp(xf)m) (p|0)
oo T
= (x — x0/0). (1.128)
As will be explained in the next chapter, the displacement operator D(w) transforms
a vacuum |0) to a coherent state |«) and it can be regarded as laser oscillation. When
a = Xxp + ipy, the displacement operator is

D(a) = e~ opogi2pot p=iziob, (1.129)

By using Eq. (1.127) we get
2
Wa(x, p) = —e 2670 20—p0)* (1.130)
™

We can see that the Wigner function of a coherent state |«) (av = xo + ipo) is a shifted
vacuum-Wigner function in phase space by (x, po) as shown in Fig. 1.33.

Fig. 1.33 The Wigner function of a coherent state (xo, po) = (0, 4)
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So far we have not seen the negativity of the Wigner function. However, we can
see it in the one of a minus cat state. We will calculate the Wigner function of a
minus cat state. First we calculate the normalization factor N,_ of the state vector
of a minus cat state |cat,_ ). The minus cat state is defined as

[cata—) = No— (la) — | — ) . (1.131)
The normalization condition is {cat,—|cat,—) = 1 and we get

(cato—cato—) = Ni_ ({(a] = (—al) No- (Jo) — | — @)
= [No—I” ((ala) + (—a| — a) = (o] — a) — (—ala))
= [No—? 2 = (o] — @) — (—ala))
=1. (1.132)

By using the property of a coherent state |«v) given in Eq. (1.114), we get

o0 o0
—laf? o —lof? o
(ol —a) =e2 ——(m|-e™2 )

2 2
S 2\n
—|a? (—|Oé| )

— e—2|u|2_ (1.133)
Then by using Eq. (1.132) we get
1

- (1.134)

T 200 e 2Py

Next, we get the density operator of a minus cat state Py . From the definition it
should be

peat— = INa— > (J0) = | = @) (] = (—al)
= [No-I> (la) (el + | = @){=al = [a){(—a] = | = a)(a]). (1.135)

The Wigner function of a minus cat state Wy, (x, p) can therefore be derived from
the definition of Eq. (1.120) as follows:

1 [= ;
Weaa(x, p) = — / dge™ N, P (x + €/2]) (ol — €/2)

+ (x +&/2] = a)(—alx = §/2)
— (x+&/2|a)(—alx = &/2)

— (¢ +&/2l - a)alx —£/2)]



38 1 Quantum States of Light

L[ ;
=- / dge™ P INo | + €/210) (o — €/2)
+{x+£/2l = a)(—alx = £/2)

2\+ _. . 2
_ e—lxopo+12p0(x+f/2)—(X+f/2—xo)

™

2\ . .
N = eXoPo+i2po(x—€/2)—(x—E/2—x0)
™

2\¢ . :
_( ) o~ XoPo—i2po (x+€/2) —(x+€/2—x0)
T

2\ . .
<« (= ezxopo—zzpo<x—s/2>—<x—§/2—xo>]
™

= [Na— PWo(x, p) + INa P Wo (x, p)
2 . ,
_ |Na7|2; [614(pox—xw) + 6—14@0)5—)(017)]
1

_ —2(x—x0)?—2(p—po)* —2(x+x0)2—2(p+po)?
= _fzw)[e (=20 =2(—p0)? | =200 ~2(p+po)

— 267272 o d(pox — xop)]. (1.136)

From the equation above we can see that the Wigner function of a minus cat
state W, has the structures of two coherent states of |a) and | — ), which are
e~ 20x0)*=2(=p0)* apd =200 =2(+P0)*  On top of that we can see an interference
term of —2¢~ 2~ cos 4(pox — xop). So we can say that an “alive cat state” |«) and
a “dead cat state” | — «) exist simultaneously and the quantum interference is there.
Moreover, the Wigner function has a minimum value at the origin (x, p) = (0, 0)
and the value is

e—2x8—2p(2) + €—2x(2)—2p% -2
Weata—(0,0) =
cato ( ) ) 7'('(1 — e*2|a’|2) 3

2
=——. (1.137)
™
It is always negative irrespective of the value of a.
Although the Wigner function is a sort of probability density function, it can take
a negative value. Therefore it is called a “pseudo-"probability density function. The
negative value of the Wigner function has no classical counterpart and it is a sign of
nonclassicality. One can say that it is a nonclassical state when the state shows the
negativity of the Wigner function. Figures 1.34 and 1.35 show the Wigner functions
of minus cat states with « = 1 and o = 2, respectively.
The negative value of the Wigner function of a minus cat state with o =1
(Fig. 1.34) corresponds to the zero-probability around zero-amplitude in the phase
dependence of amplitude of the state (Fig. 1.30). Of course, we already pointed out
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that there are two structures of coherent states |«) and | — «) in the Wigner func-
tion, which also appears in Fig. 1.30. Moreover, we saw a complicated structure in the
phase dependence of amplitude of the minus cat state with « = 2 in Fig. 1.31. We can
see that it comes from the quantum interference term —2e~"" %" cos 4(pox — xop)
in Eq. (1.136). The frequency of cosine changes depending on o = xg + ipp. In the
case of &« = 11itis one and in the case of « = 2 it is two, which is two times “faster”.
Therefore the structure looks more complicated for o = 2 than for o = 1.

More quantitatively speaking the Wigner function W (x, p) and the marginal dis-
tribution |4 (x)|*> (x¢g = x cos # + p sin ) have the relation

oo
wen = [ dpuweep) (1.138)
oo
where dpy = —xsin 0 + pcosf. We can get the marginal distribution at the phase

0 when we integrate the Wigner function along the axis which makes the angle 6
with x axis. So we can get Figs. 1.30 and 1.31 from Figs. 1.34 and 1.35, respectively.
Moreover, we can get a Wigner function from marginal distributions at various phase
axes with the above relation, where the marginal distributions can be obtained by
quantum (homodyne) tomography.

To check quantum coherence in a minus cat state, we will consider a mixed state
of two coherent states |«) and | — ). The ability to handle such a mixed state is a

W(x,p)

4 3 2 0 1 2 3 4 p

X

Fig. 1.34 The Wigner function of a minus cat state with o = 1, where (xop, po) = (1, 0). We can
see an “alive cat state” |a = 1), a “dead cat state” |o = —1) and the quantum interference with a
negative value in between
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1

40

(2,0). We can

—2) and the quantum interference with a

Fig. 1.35 The Wigner function of a minus cat state with o = 2, where (xo, po)

see an “alive cat state” | = 2), a “dead cat state” |«

negative value in between

big advantage of the Wigner function. The density operator of the mixed state of |a)

and | — ) is

(1.139)

(1) tal + |-a) (=al).

1
2

~
Pamix

The Wigner function Wix (x, p) becomes therefore

[ee]

[+ €/210)(alx — €/2)

1
dee—2re L
g

/

1

Womix (x, p) = —
™

o0

+ (x+€/2] - a)(—alx — £/2)]

(x +&/2]|a)(alx — £/2)

1
2

e e}
/ dge "
—00

alx—£/2)]

)

—

+ (x+&/2

1

Wa(x, p) + 5 W_,(x,p)

2

(1.140)

[e—z(x—xo>2—2<p—po)2 + e—2<x+xU>2—2<p+po>2]'

1
R
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Fig. 1.36 The Wigner function of a mixed state of two coherent states |o) and | — «), where
(x0, po) = (2,0)

Figure 1.36 shows the Wigner function of a mixed state of two coherent states
|a) and | — «). The difference from a minus cat state (Fig. 1.35) is obvious. In the
case of the mixed state there is no quantum interference structure at all and only two
structures of coherent states |«) and | — ). So there is no negativity of the Wigner
function and it is just a classical probability density.

So far we have explained minus cat states. We mentioned that the negativity of
the Wigner function is a sign of nonclassicality. Now we will make a detour. We will
show the Wigner functions of photon-number states (Fock states). That is because
these are nonclassical states which have negativities in the Wigner function.

First of all, we will calculate the Wigner function of a single-photon state |1).
Since the density operator of a single-photon state |1) is p; = |1)(1], we have to
calculate 11 (x) = (x|1) to calculate the Wigner function of a single-photon state |1).
Fortunately we have already done so and got Eq. (1.96), also given in Eq.(1.105).
Itis 1

2 1 2
(x[1) =2 (—) xe . (1.141)

s

By using this we can calculate the Wigner function of a single-photon state |1) as
follows:
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1 .
Wi, p) = — / dée P (x + £/2|1)(1]x — £/2)

_! / dge2P64p, (x + €/2)1h1 (x — £/2)
s

1

™

™
1
2\ 4
x 2 (—) (x— 5/2)6_()‘_5/2)2
™
= 22 mh g 4?1y, (1.142)
T

Figure 1.37 shows the Wigner function of a single-photon state |1). From the
figure we can see that the Wigner function takes a negative value around the origin
(0, 0). So we can say that the single-photon state |1) is a nonclassical state and not
a classical particle.

Similar to a single-photon state |1), we can calculate the Wigner functions of a
two-photon state |2), a three-photon state |3), and a four-photon state |4) (W, (x, p),
Wi(x, p), and Wy(x, p), respectively) with Egs. (1.106), (1.107), and (1.108). They
are the following:

Ws(x, p) = %e—ﬂxzﬂ’“ [8(x* +pP)? — 8(:% +p*) + 1], (1.143)
W(x,p) T

_—
20N

N AN
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Fig. 1.37 The Wigner function of a single-photon state |1)
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Fig. 1.38 The Wigner function of a two-photon state |2)

2 32
Ws(x, p) = ;e—”’“””“ [;(x2 +0°)° =247 4 p)? + 1203 + p?) — (11}144)

2 32 128
Wa(x, p) = ;e—“”f’“[?(f +p = 0 D) + 4807 + )

—16(x* + p?) + 1}. (1.145)

Figures 1.38, 1.39, and 1.40 show the Wigner functions of a two-photon state |2), a
three-photon state |3), and a four-photon state |4) (W» (x, p), Wi (x, p), and W4 (x, p)),
respectively.

As mentioned before, there is a relation between a Wigner function and a mar-
ginal distribution (Eq.(1.138)). So we can understand the meaning of the Wigner
functions by comparing Figs. 1.38 and 1.16, Figs. 1.39 and 1.17, and Figs. 1.40 and
1.18. For example, there is no phase dependence in Figs. 1.16, 1.17, and 1.18, which
corresponds to that the respective Wigner functions have rotation symmetries around
the vertical axis at the origin. Moreover, we can see zero-probability parts of am-
plitudes in the marginal distributions, which correspond to the negativities of the
Wigner functions.

As a last note, we show some convenient things about the Wigner functions.
One is that we can easily switch to another unit system, e.g., i=1and a = (x +
ip)/~/2, from the present unit system where /i = 1/2 and @ = % + ip. That should
be completed by just changing ~/2x and +/2p to x and p, respectively. Of course, it
is not a fundamental change but only a scale change. Another convenient thing is
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that we have a formula for calculating the Wigner functions of photon-number states
(Fock states) W, (x, p), that is,

2
Wo(x, p) = (=1)"=e 2 OL, (407 + 4p?), (1.146)
m
where L, (€) is a Laguerre polynomial, which is

3 4"
L ==

—Een
T (e t¢m). (1.147)

1.9 Superposition States of a Vacuum and a Two-Photon
State

As shown in the previous sections, photon-number states have no phase dependence.
However, in Sect. 1.6, we showed that their superposition have phase dependence,
where we considered a superposition of a vacuum |0) and a single-photon state
|1). The superposition state has a sine-wave, i.e., “transverse wave” structure. In
this section we will consider a “longitudinal wave” of an electro-magnetic field. The
typical example should be a superposition, (|0) + |2))/~/2. Let’s calculate its Wigner
function, i.e., W12 (x, p).
First we calculate the density operator of (|0) + |2))/ V2, P042:

. 1)’
mﬂ=(79<m+umm—@0
1
= 5 (0M01 + 12)¢2] + [0)42] + [2){0) . (1.148)

Then we can calculate the Wigner function Wy, (x, p):

— l > —2ip£l —
Wosa(rop) = — [ dge™ 2 (r+€/2(0) (0 — €/2)

+ (x4 &£/212)(2lx — £/2)
+ (x 4+ £/210)(2lx — £/2)

+ (x4 €/212)000x — £/2)
1 1
= EWO(va) + EWZ(X’P)
1 [ el
+—/d&Wﬁpmwammw%m
T J_so 2

o0 (+E/2) 2 (x—€/2) ]
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1 1
= EWO(va) + EWZ(X,P)
1 [ (LY 2 _ -2
+7T/_Dod§e g 2{(%) [4(x+g/2) 1] e
(%) *(X £/2)?
s
(2—) [46—e/22 — 1] e
(%) *(X+€/2) ]
s

— l . 2 —2(x +p%)
2 7
12
e e 2802 4 p) — 862 4 pD) 4 1]
s
+ 4\/5672(x2+p2)(x2 Y
™
2 .
= D26 >[4(x2 + 02?2 — 40 +pH) + 2202 = pH) + 1],
s

(1.149)

where we used Eqgs. (1.104) and (1.106).

Figure 1.41 shows Wy, (x, p) and Fig. 1.42 shows the view in the x direction.
Moreover, we calculate the marginal distributions with Eq. (1.138) from the Wigner
function and get the phase dependence of amplitude of (|0) + |2))/ /2, which is
shown in Fig. 1.43.

It is obvious from Fig. 1.43 that the phase dependence of amplitude of (|0) +
12))/ /2 has no sine-wave, 1.e., “transverse wave’ structure. Instead, we can see a
“compressional wave” or “longitudinal wave” structure. This structure can also be
seen in the Wigner function shown in Fig. 1.42, in which there is dyad symmetry and
the rotation corresponds to time evolution. In the case of no rotation symmetry in
the Wigner function, the phase dependence of amplitude has to have a “transverse
wave” structure. That is because the Wigner function comes back to the original
one after one rotation, which creates a transverse-wave structure. However, in the
case of dyad symmetry like in the Wigner function of (|0) + |2))/+/2, it creates a
“compressional-wave” or “longitudinal-wave” structure. In that sense, since a minus
cat state has dyad symmetry in the Wigner function as shown in Figs. 1.34 and 1.35, it
also can be regarded as a “compressional wave” or “longitudinal wave” of an electro-
magnetic field. Figure 1.44 shows the Wigner function of superposition of a vacuum
|0) and a single-photon state |1), (|0) + |1))/«/§. From the figure we do not see any
rotation symmetry. So the phase dependence of amplitude have a sine-wave structure
as shown in Fig. 1.22. Note that the frequency of a wave structure without rotation
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-2

Fig. 1.41 The Wigner function of a superposition of a vacuum |0) and a two-photon state |2),

(10) + 12))/v/2

0.6

W(x,p)

0.4

0.2

-0.2

-0.4

Fig. 1.42 View of the Wigner function Wy (x, p) from the x direction
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amplitude

Fig. 1.43 Phase dependence of amplitude of (|0) + |2))/ V2
W(x,p)

06

0.4

0.2

Fig. 1.44 The Wigner function of a superposition of a vacuum |0) and a single-photon state |1),
(10) + |1))/ﬁ. There is no rotation symmetry

symmetry in the Wigner function is the same as the one of the electro-magnetic field,
but it becomes twice as large when the Wigner function shows dyad symmetry.

1.10 Squeezed States

In Sect. 1.7 we considered a wave structure of a coherent state as the extension of
that of (]0) + [1))/ V2. In this section we will consider a “compressional-wave”
or “longitudinal-wave” structure of a squeezed vacuum as the extension of that of
(10) + 12))/v/2.

A squeezed vacuum is defined by using photon-number states:
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[ee]

310y = (1 =[5>

n=0

2n)!

T K"2n). (1.150)

Here & = |£|e/¥¢, k = ¥ tanh |€], € is a squeezing parameter, ¢ is a squeezing
phase, and S (&) is a squeezing operator. Of course, |0) is a vacuum. We now define
r as the value of ¢ at ¢ = 0 and treat it as a squeezing parameter hereafter. We can
do so without loss of generality. Then Eq. (1.150) becomes

. - /(20)!
S()[0) = (1 — tanh? )3 Z,(; o " tanh” r|2n)
B , (VO NI
= (1 —tanh” r)4 (20—0' tanh” r|0) + W tanh r|2)

N T -
+22—2!tanh r|4)+23—3!tanh r|6)+~-~>. (1.151)

We consider —3 dB(decibel)-squeezing, which is experimentally feasible. When
the squeezing level is 3dB, we can get tanh r = 1/3 by usinge 2" = 0.5 (r = In2/2).
Then the —3 dB-squeezed vacuum can be written as

. 1\¢ 1
$(n2/2)|0) = (1 - ?) (|o> i mm : )
= 0.971|0) + 0.229]2) + - - - . (1.152)

Here we have neglected states with photon number higher than two. It can be justified
by the fact that 0.971% + 0.229% = 0.995. So the —3 dB-squeezed vacuum can be
well approximated by a superposition of a vacuum |0) and a two-photon state |2). The
Wigner function W3 gp_sq,(x, p) can be easily calculated with Eq. (1.149) as follows:

L[ ;
%mw@MZ;/ dge™ 70971 (x + €/210)(0lx — £/2)

+0.229%(x 4+ £/2]2) (2]x — £/2)
+0.971 x 0.229(x + £/2]|0)(2|x — £/2)

+0.971 x 0.229(x + £/2|2)(0]x — 5/2>]
= 0.943Wy(x, p) + 0.0524W, (x, p)

1 [ 4
+— / dfe_z’”50.222[g02 (x+£/2) po (x — £/2)

™ oo
00 (+E/2) 02 (x = €/2) ]

—0.943. 2o 2
T
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Fig. 1.45 The Wigner function of a 3 dB-squeezed vacuum approximated by a superposition of a
vacuum |0) and a two-photon state |2). Although there is some negativity in the Wigner function,
it is an artifact caused by lack of accuracy in the approximation due to omission of higher order
terms. If we take more photons into account, the negativity should vanish

2
+0.0524 - ;e*("z% [8(x2 +p)2 =8 +pP) + 1]

8v/2

10.222- Te—W*PZ)(x2 -

= 2 2w [0.419(x2 4 1% — 041903 + pP)
Vs

+1.26(x% —p?) + 0.995]. (1.153)

Figure 1.45 shows the Wigner function W3 ¢g.sq (x, p). The view in the x direction
is shown in Fig. 1.46. Although there is some negativity in the Wigner function, it is
an artifact caused by lack of accuracy in the approximation due to omission of higher
order terms. If we take more photons into account, the negativity should vanish.

We can see that the Wigner function has a dyad symmetry as shown in Fig. 1.45.
So the state should show a “compressional-wave” or “longitudinal-wave” structure
in the phase dependence of amplitude. Figure 1.47 shows the phase dependence
of amplitude. We can see a “compressional-wave” or “longitudinal-wave” structure
there. Moreover, we can see the reason why the state is called a “squeezed” state, that
is, the Wigner function of a vacuum |0) (Fig. 1.48) is “squeezed” in the p direction
and get the shape of Fig.1.45. It is “anti-squeezed” in the x direction. Therefore
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W(x,p)

06

Fig. 1.46 The view of Fig. 1.45 in the x direction

Fig. 1.47 Phase dependence
of amplitude of a

3 dB-squeezed vacuum
approximated by a
superposition of a vacuum
|0) and a two-photon state
12)

amplitude

the variance of amplitude becomes small in one quadrature component (p) and it
becomes large in the other quadrature component (x) in Fig. 1.47. Here the minimum
variance is smaller than the one of a vacuum in this case. So a squeezed vacuum can
be regarded as a nonclassical state in this sense and we sometimes call only this case
squeezing.
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Fig. 1.48 The Wigner function of a vacuum |0)

1.11 Squeezing Operation and Squeezed States

We will describe a squeezed vacuum and general squeezed states in a different way
from the previous section in order to explain them more extensively. We will do it in
historical order.

A coherent state is an eigenstate of annihilation operator a as mentioned in
Sect. 1.2. We make a Bogoliubov transformation of operator a and get operator b
as follows: A

b=upa+va" (u*—|vP*=1. (1.154)

Squeezed states will then be the eigenstates of operator b. Here the Bogoliubov trans-
formation is called a squeezing operation. Note that the Bogoliubov transformation
was introduced to explain the process of creation of Cooper pairs of electrons in su-
perconducting materials in the BCS theory. Therefore the squeezing process makes
pairwise photons, where a photon is a Boson and an electron is a Fermion and we
have to be careful about the difference between the commutation relationship and
the anti-commutation relationship.

The Bogoliubov transformation can be regarded as time-evolution of an operator
in the Heisenberg picture. In the Schrédinger picture we treat time-evolution of a
quantum state |¢») with the Schrédinger equation (Eq. (1.41)) as follows:

£y

1)) = e~"n'[1(0)). (1.155)
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In the Heisenberg picture we treat time-evolution of an operator A with the
Heisenberg equation of motion (Eq. (1.8)) as follows:

A = e A0y (1.156)
Here we define a squeezing operator S(r) as
S(r) = ez (@ =2, (1.157)

Note that r € R is the squeezing parameter £ at ¢ = 0 as mentioned in the previous
section.
When we set the Hamiltonian of squeezing as

A i

ngzz@z—a”) (1.158)

-i:lS Z
the squeezing operator S(r) can be regarded as the time-evolution operator e

with » — ¢. So the squeezing operation can be regarded as the time-evolution of
quantum complex amplitude a with Eq. (1.156). Thus it can be written as follows:

ai) = ¢ e B
= ST(mas)

_ o5 o )

1 r
Jll IS RS RS N
+2l[ S@? -, [5G )aH+
—a+mT+i —Z(&Q—az) ra|+
2! 2
2 3
=a+ra’ +5a+§a + -
= acoshr + &' sinhr. (1.159)
Here we used the formula
. <2
BAecE A+CBM+ B,[B,All + - - (1.160)

It is obvious that the time-evolution corresponds to the Bogoliubov transformation
with cosh? r — sinh? r = 1. Moreover, we can calculate a squeezed vacuum with
Eq.(1.157) and

S())0) = ez (@ =4 |0y, (1.161)
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and get Eq. (1.151). Of course, we can derive Eq.(1.150) with »r — £. In any case,
since the created state is a superposition of even-photon-number states, it follows
that photon-photon correlation is created through the Bogoliubov transformation.

I think it is not clear why the eigenstates of b is called squeezed states from the
explanation above. We will explain the reason here. It should be obvious if we see
the following equation:

b =acoshr +a' sinhr = fe” + ipe . (1.162)

It is extended in x-direction and shrunk in p-direction. Of course, it can be seen as
the time-evolution as follows:

ST MaSe) = ST (2’ J;&T) S(r)

N =

(acoshr+a' sinhr +a" cosh r + asinh r)
.

e, (1.163)

I
>

and

. . . a—at\
T\ 5 il
S (rpS(r) = 8'(r) ( T ) S(r)
| B J at A
=5 (acoshr+a'sinhr —a' coshr — asinhr)
i
= pe". (1.164)
However, they are in any case just transformations of operators and we do not get
much information on the transformation from these equations. So we will calculate
the average values and variances of the corresponding physical quantities with the

operators.
First we will calculate the average values of %, p, %, and p?, respectively:

a+a’

(018*(NxS(r)10) = (015" (r) (

1 .
= (O|§ (acoshr 4 &' sinhr + a' cosh 7 + asinhr) |0)
=0, (1.165)

01T (NpS(M10) =0, (1.166)

0157 (HZR2S(r)|0) = %ezr, (1.167)
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Fig. 1.49 Image of a

squeezed vacuum in phase p
space
| ———
X
QT AR2 T 1,
(0|S" (r)p=S(n0) = Ze . (1.168)

Then we can calculate the variances, i.e., quantum fluctuation, with Eq.(1.18) and
get

1
Axsqz = zer, (1169)

and |
Apsq, = Ee". (1.170)

From these results we can see the average values of x and p components are both
zero, which are the same as the ones of a vacuum |0). The quantum fluctuations of x
and p components, however, are asymmetrical. Furthermore, we can see that the state
is a minimum-uncertainty state from AxyqApsq = }1. Thus the image of a squeezed
vacuum is shown in Fig. 1.49. As is clear from the figure, the name “squeeze” comes
from the asymmetry of quantum fluctuation between x and p components. Note that
we can “rotate” the asymmetry with » — &£, which is defined in Eq. (1.150).

Now we calculate the Wigner function of a squeezed vacuum. For that purpose
we introduce the following equation:

S(r)|x) = |xe’). (1.171)

This relation can be checked in the following way:

xx) = xlx),
S(ilx) = S(rxlx),
S(MEST(NS()1x) = S(r)xlx),
ke S(r)|x) = S(r)xlx),

FSM)|x)) = xe’ (Sr)|x). (1.172)
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Since the last equation shows that S(r) |x) is an eigenfunction of operator X with the
eigenvalue of xe”, we can check Eq. (1.171). Here we use Eq. (1.163) and STMSr) =
I

So the Wigner function of a squeezed vacuum Wy, can be calculated as follows:

1 . R e
Wosgs (. p) = — / dée "% (x 4+ £/21S (1) |0) (018" (r)|x — £/2)

‘ /dfe_%”f((x +&£/2)e7"10)(01(x — §/2)e™")
™

= e?_r / dﬁe—Zipfwo ((x + §/2)e—’)1/,0 ((x _ g/z)e_r)

—r 1 1
=< / dge (3)4 e (HE/2 e (2)4 o /27
™ T T

_ 2 e e (1.173)
T

By using Eq.(1.173) we can get the Wigner function of a —10dB-squeezed vac-
uum S‘(V = 1.15)|0) as shown in Fig. 1.50. From the Wigner function we can get
the phase dependence of amplitude as shown in Fig. 1.51. We do not see any neg-
ativity in the Wigner function here in contrast to the case of approximation of a

Fig. 1.50 The Wigner function of a 10dB-squeezed vacuum S’(r = 1.15)|0). When r = 1.15,
e~2" = 0.1 and then the quantum fluctuations of the p component become 1/10 = —10dB compared
to the case of a vacuum
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Fig. 1.51 Phase dependence amplitude
of amplitude of a
10dB-squeezed vacuum
S(r = 1.15)|0)

—3dB-squeezed vacuum W3 gp_sq, (X, p) with a superposition of a vacuum |0) and a
two-photon state |2), which is shown in Fig. 1.45. It is because the Wigner function
presented here is not an approximated one but a true one. Moreover, we can see a
“longitudinal-wave” structure in Fig. 1.51.

1.12 Quantum Entanglement

So far we have dealt with one optical beam. We will now deal with two optical beams.
Of course, it is extendable to more than two beams, but we only deal with two beams
here for simplicity.

First we deal with the simplest case, where a single photon [1) enters a 50:50
beam splitter as shown in Fig. 1.52. Note that a vacuum |0) enters another port of the
beam splitter. The output state of the two beams from the beam splitter |t)apent) 1S
described as

[YABent) = T(H Al0)g — [0)a[1)B). (1.174)

Fig. 1.52 A single photon
[1) enters a 50:50 beam
splitter B
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When a photon exists in beam A in this state then no photon exists in beam B and
vice versa. When we make a measurement on one of the two outputs then the state
of the other beam gets determined. The two beams A and B are entangled. More
precisely, the overall state of the two outputs A and B [1/apent) cannot be described
by a tensor product of the state of beam A |¢,) and that of beam B |¢p);

[aBent) # |Pa) ® lpB). (1.175)

Obviously |tapent) satisfies this relation.
Note that this entanglement cannot be distinguished with photon-number mea-
surement from a classical correlation papclas:

1
PABelas = 5(|1>A<1| ® [0)5 (0] + 0)A (0] @ s (1]). (1.176)

Even in this state when a photon exists in beam A then no photon exists in beam B
and vice versa.

The difference between the entangled state [/ apen) and the classically correlated
state Papclas 1S the existence or non-existence of a non-local superposition.

Let’s check this difference. We define |4) and |—) as

10) + [1)
=, 1.177
I+) 7 ( )
oy = 9 =10 (1.178)
V2 '
Then we can get the equations
[+) + )
0) = ——, 1.179
10) 7 ( )
I+) —1-)
1) = ——~. 1.180
1) 7 ( )

By using above equations we deform Eq.(1.174) and get

(|+>A —|=)a ® |+)p + |—)B
V2 V2 V2

701 AlO)s = 10)al1)5) =

a4 1-)a ® [+)B — |—>B)
V2 V2
1
= E(|+)A|_)B —|=)al+)B). (1.181)

In this equation we can see that when the state of beam A is |+) then the state of
beam B is |—) and when the state of beam A is |—) then the state of beam B is |+).
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There is still a correlation between beams A and B. Since the transformation from
|0) and |1) to |+) and |—) corresponds to basis transformation, it follows that the
entanglement is preserved under basis transformation.

On the other hand, when we make the same basis transformation for the classically
correlated state of Eq.(1.176), we get the following equation:

1
S (DAL ® 1018101 +10)401 & [1)a(11)
_ l(l"‘)A — A Ha—{=la _ [+ +1-)8 (+I8 +{=IB

EEANYG N . 7
[+H)a +[=)a (FHla+(—la _ |+)B—|-)B (+]B — <_|B)

NN SN N
1
= [ (A + a1 = a1 = 1)atH)

® (14D (+ + =) (~1 + [+ (~] + [=)s(+])
(0 + [=hal=T+ FHa =1+ =al+H)
® (1+)n{+ + 1-)n(—] = [+)s (=] = |=)n(+]) ]
= 2[(PatH+ 1981 @ (s (H + 1)nt-1)
= (A=l + 190 H) @ (s (=1 + 1) (+) . (1.182)

From the result we can see that beams A and B have no correlation in this case.
The original correlation in the classically correlated state papclas Vanishes when we
change the measurement basis. So it follows that in the case of entangled states
a correlation exists even after changing the measurement basis but in the case of
classically correlated states it doesn’t.

Where does the entanglement of the state |1agen:) come from? It is obvious when
we look at the density operator of state [t)apent):

5 _ 1Dal0)s — [0)all)s (11 {0s — (Oa(1]p
'ABent ﬁ ﬁ

1
= §(|1>A<1| ® 10)B(0] 4+ [0)A (0] ® [1)B (1]

= 11a(0l ® [0)p (1] — [0)a(l| ® |1>B(0|)
== ﬁABclas

1
— 5 (1001 ® 108 (11 + [0)a (1] @ [1)a (0])- (1.183)
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Fig. 1.53 Photon-number
states |n1) and |n;) enter a
beam splitter B

|m)
[ 7
‘ |n,)
In this density operator there is off-diagonal terms on top of the classical correlation
term Paperas- In other words, the entanglement is preserved even after changing the
measurement basis like in Eq.(1.181) because of the existence of the off-diagonal
terms. Off-diagonal terms make entanglement.
So far we have discussed how to create entanglement with a single photon |1) and
a 50:50 beam splitter. We can extend this methodology to arbitrary photon-number
states and beam splitters. Let’s think about the situation shown in Fig. 1.53, where
photon-number states |n;) and |ny) enter a beam splitter. The input state can be
described as |n;)a ® |ny)g but we describe it as |ng, ngA) for simplicity. The output

state can be described with a beam splitter operator B, which was introduced in
Sect. 1.3.1, as B|ny, n;). We calculate the output state as follows:

Blny, my) = B

1
gim "Tﬂz
nplng! “ 10.0)
1

nplng!

|
WB&I”‘BT B B0, 0). (1.184)
1-112-

Il
o>

aimal™ B0, 0)

Here the second equality comes from energy conservation |0, 0) = B0, 0), and the
third equality comes from BB = I. Moreover, if we use BB = I, then we get the
following equality for Ba[" B Ba)B':

Bal" B'Bal"B' = Ba,B' - BayB' - - - Ba,B" - BalB' - BalB' - .- BalB'
= (B11d| + By a))" (Bpodl + Bynal)™. (1.185)

Since the derivation of the second equality is a bit complicated, we will explain it in
detail.

As explained in Sect. 1.3.1, a beam-splitter input-output relation can be described
with a 2 x 2 matrix B and when two input field operators (annihilation operators)
are a; and a, and two output field operators (annihilation operators) are @) and a),
then the input-output relation is described as follows (Eq. (1.44)):
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a) ai By1 B2\ (a
~ =B~ )= ~ ] 1.186
( /) - (Clz) (321 Bxn ) \& ( )
Since B is a unitary matrix, we have
~ * * Y
B (41) = (B Bar) (4. (1.187)
@ By, By ) \@,
We can describe the input-output relation with the beam splitter operator B, that is,

(‘3}) =Bt (‘f‘) B. (1.188)
a, aj

Therefore, when we exchange the input and the output, i.e., input beams enter from
the opposite side of the beam splitter, we have the following equation:

~ ~1
(‘fl) —B (f‘,l) B, (1.189)
ay ay
From Egs. (1.187) and (1.189), we can get
B &/1 BT — By, B, &/1
B(3) = (5 ) (2): (1190
We can get rid of prime (/) in above equation and get
A (@) p By B3\ (@
Bl. )B' =, .: ~ - 1.191
(“2) (BIZ Bzz) (“2) ( )

We take dagger () of this equation and get

At T
~fa\ . a
B )8 = (B“ 321) . (1.192)
ay B> B ay
By using the result above we can thus check the second equality of Eq. (1.185):

(B11a] + By1ah)" (Baa] + Bydih)™|0, 0)

“ 1
Blni, ny) = ﬁ
11iny!
1 > > (nl) (nz)
= (Bi)" (By)" ™
\/I’llll’lz!](lz::')kzz::') kl k2

X (B12)* (By) 2/ (ki + k)\(ny 4+ ny — ky — ka)!
X ki + ky,ny +ny — ky — ky).

(1.193)
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Fig. 1.54 A coherent state
|a) and a vacuum |0) enter to
a 50/50 beam splitter B

L A
o

It is obvious from this equation that in any configuration of n; and n, when the
photon number of one of the output beams is (k; + k) then the other one is (n; +
n, — ki — k), which corresponds to energy conservation, and the overall state is a
superposition of those. In short, in any configuration of n; and n, the two output
beams are entangled.

Since photon-number states |n) are basis states, any state can be described by a
superposition of them. So one might think that we could create entanglement with
any states of inputs. That is however not true. For example, we consider the case of
Fig. 1.54, where a coherent state |«) and a vacuum |0) enter a 50/50 beam splitter.
The matrix of a 50/50 beam splitter is

I (1-1
Bsos0 = NG (1 1 ) : (1.194)

By using this equation and Eq. (1.193) we calculate the output from a 50/50 beam
splitter when a photon-number state n and a vacuum enter the beam splitter.

© k=0

n n 1 n
= — ) kn—k). 1.195
2 (@) () e s

By using this equation we can calculate the output state when a coherent state |ca)
and a vacuum |0) enter the 50/50 beam splitter as follows:

() ()
=e — ) lk,n—k
2 (k va) ek
2 ()
—e zz — ) k,n—k)
S\ k(=R \ V2
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Ia/f ® |a/v2)s. (1.196)

From the result we can see that the two output beams are not entangled.

The reason for this is that a coherent state is a classical state even though it is
superposition of photon-number state. On the other hand, photon-number states are
nonclassical states, and that is why these states can create entanglement. We need
non-classical resources to create entanglement.

From now on we will explain two historical examples of quantum entanglement.
The two examples are the Hong—Ou—Mandel effect and the Einstein—Podolsky—
Rosen (EPR) state. The Hong—Ou—Mandel effect is the first example of a quantum-
mechanical effect of photons and the EPR state originates from the paradox proposed
by Einstein et al. to elucidate the incompleteness of quantum mechanics.

First we explain the Hong—Ou-Mandel effect. Figure 1.55 shows the situation for
the Hong—Ou-Mandel effect, where two single photon states |1) enter a 50/50 beam
splitter from both sides. We can calculate the state 350:50|1, 1) by using Eq.(1.193)
as follows:

i
Bsosol1, 1) Z
—0

kzl;)( ) (})lkl (—%)kz (%)11«2

x (k1 + k)2 — ki — k)! [ky + k2, 2 — ki — k),

1
_ L L 2110, 2)
V2 V2
l
V1L, 1)

2
Fig. 1.55 Two
single-photon states |1) enter
a 50/50 beam splitter from B
both sides
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+7 TJI'_H 1)
( )@|2,0>,
:7( ,2) —12,0)). (1.197)

Of course, the output beams A and B are entangled, but the most striking fact is
that there is no probability of |1, 1), which is caused by quantum interference. It
means that there is no probability that two single photons simultaneously exist in
both beams A and B. It cannot happen in classical mechanics but can happen in
quantum mechanics. This effect is called the Hong—Ou—Mandel effect, named after
the people who verified it. It elucidates that photons are not classical particles but
quanta and is sometimes called “bunching” of photons. It is because photons stick
together instead of being separated when they meet at a beam splitter.

Another important example of entanglement is the EPR state. Einstein, Podolsky,
and Rosen proposed the following EPR state to elucidate the incompleteness of
quantum mechanics. Position operator X and momentum operator p for quantum A
do not commute and satisfy [Xa, pa] = ih. Similarly [Xg, pg] = il holds for quantum
B. Naively speaking there is the uncertainty relationship between the position and
momentum for quanta A and B. On the other hand, “global” operators X5 — Xg and
Da -+ pp do commute as follows:

[Xa — XB, Pa + PB] = [Xa, Pal + [Xa, PB] — [XB, DAl — [XB, PB]
=ih—ih
=0. (1.198)

So there should be simultaneous eigenstates of these global operators. When both of
the eigenvalues are zero (xp — g — 0, pa + pg — 0), the eigenstate is called the
EPR state |[EPR). The definition is the following:

(Xa — xg)|EPR) = 0, (1.199)
(Pa + pB)[EPR) = 0. (1.200)

When we describe the EPR state |[EPR) with eigenstates of X (]x)), we get

|EPR) = /OO dx|x) A |x)B. (1.201)

oo

We can easily understand the equation because x5 — xg — 0. Furthermore, we can
see that quanta A and B are entangled because the equation cannot be described with
a simple tensor product of state vectors of quanta A and B.

We can change the basis from |x) to |p) and get
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/ dx|x)alx)s

- / dx / dpAlpA)A A(PAIXIA ® / dpgIps)s 5(Pelv)s

[ee]

=/ dx dpA\/—e ’LpAlpA)A(X) de«/_e "pB|PB)

o0
/ / dpAde— dx e~ #HPAtPE) Ipa)alpB)B,
—00

=/ / dpadped(pa + pe)IPa)alPB)B

o0
=/ dpalpa)al — pa)s

oo

=/ dplp)al — p)B. (1.202)

oo

Here we used the equations

1 [ .
S(pa — pp) = > / dx etxPa=pe) (1.203)
T J—c0
and o
i:/ dplp) (p|. (1.204)

In Eq. (1.202) we can see that the EPR state is also an eigenstate of py + pg with
an eigenvalue of zero. Of course, since quanta A and B are entangled, the state cannot
be described with a simple tensor product of state vectors of quanta A and B even
after changing the basis from |x) to |p).

On top of that, we can show that the entanglement is intact after changing from a
continuous basis to a discrete basis with

| astoiain =3 sl (1.205)

n=0

We can check this in the following way:

/ dx|x)lx)B

:/ dx Z [n)a A(nalX)a ® Z |n)B B(nBlx)B

na=0 ng=0
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) 0 1 2
= / dx Z mHnA (x)e” 7 na)a
—oo 0 !

.’(2
®Z Tyt s (07 I}

ng =0

[ 2
2nA+anA|n / dXHVlA(x)HnB(x)e “|na)alng)s
B-
nA—OnB—O

=D Inaln)s (1.206)

n=0

Here H,(x) are the Hermite polynomials, (n|x) = ¢,(x),and we setm = 1, w = 1,
and i = 17 in Eq. (1.98). We also used the formula

/ dxH,, (X)Hpy ()™ = /T8, np 2" 0. (1.207)
—0oQ

Thus, we can describe the entanglement of the EPR state |[EPR) with continuous
and discrete bases. There is one caveat. The EPR state |[EPR) is an unphysical state,
because it cannot be normalized. So we have to think about a physical state which
asymptotically approaches the EPR state |EPR) in an extreme condition. That is a
two-mode squeezed vacuum |[EPRx).

A two-mode squeezed vacuum |[EPRx) is created by two independent squeezed
vacua and a 50/50 beam splitter as shown in Fig. 1.56. Here we take a beam splitter
matrix By s, for that purpose:

1 /11
Bsos0+ = E (1 _1) . (1.208)

So the Heisenberg picture of the beam splitter transformation should be

Fig. 1.56 Squeezed vacua
S(r)|0) and S(—r)|0) enter a

50/50 beam splitter. The B
output state is a two-mode A
squeezed vacuum |EPRx) S (!‘)1 O)
(e
A
$(-r)lo)

2We can use i = 1/2 instead of h = 1.
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o aa\ _ A aa\ ai
Bso /50 (&B) Bso/50+« = Bso/50+ (&B) B3y 504

| .
- G _11) (Z/;) . (1.209)

The reason why we use the beam splitter matrix above is that the inverse transforma-
tion, i.e., the inverse matrix, is the same as the original one and everything becomes
simpler.

Let’s calculate the output state |EPRx) z:

[EPR#) 55 = Bso/50:54(1)10)a ® Sp(—r)[0)s
—B T2 a2 T a2 0 0
= Bso/50+ €Xp 2(aA ay) | exp 2(03 ag) |10)a ®10)s
—B a2 ek —anlgt 0 0
= D50/50+« CXP Z(aA a, +ag —ag ) 50/50*| 'a ®10)s

= exp [ (@5 — andn) |[0)a ® 0}

=VI=¢> q"Ina® |n)s. (1.210)
n=0
Here g = tanh r and we used the following equation for the last equality.

exp [ r(@al, - anim) |
.

= exp (&L&g tanh r) exp [—(&L&A + agag + 1) In (cosh r)]
x exp (—aaap tanh r). (1.211)

It is obvious from Eq.(1.210) that the two output beams are entangled. Although
the exception is the case of r = 0, where the output state becomes [0)5 ® |0)p. It is
trivial because this case corresponds to both of input beams are vacua.

Here the transformation exp [r(&j\&g —a A&B)] inEq. (1.210)is called “two-mode

squeezing”. So |[EPRx),p is called a “two-mode squeezed vacuum”. In the limit of
r — 00 (g — 1) a two-mode squeezed vacuum becomes the EPR state |EPR). Of
course, it is obvious that we cannot create a perfect EPR state because we need
infinite amount of energy for r — oo.



Chapter 2
Creation of Quantum States of Light

In the previous chapter we described various aspects of quantum states of light.
Following a historical order we will now explain how to create quantum states of
light, including coherent states, squeezed states, a Schrodinger’s cat state, a single-
photon state, and a superposition of photon-number states. In the end of this chapter
we will explain how to create entanglement.

2.1 Creation of Coherent States of Light

Coherent states of light can in principle be created by a laser. Laser oscillation
occurs through amplification of spontaneous emission from the laser material, which
corresponds to a vacuum |0). We will not explain in detail, but the process corresponds
to the displacement operation D(a) in phase space, as shown in Egs.(1.127) and
(1.129). In Eq. (1.129) we used

D(Oé) — e—iX()poeiZI)g,%e—inOﬁ’ (21)

which is equivalent with
D(q) = e’ (2.2)

Let’s make the displacement operation for a vacuum |0):

D(@)|0) = " ~"4|0)

P P TS § NP S
— Q' pmata, slaa’, ua]|0>

e oat _ota
=e 2e%e |0)

Y
_ lal®

laf™ 4t
=e 2 e |0)
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Fig. 2.1 A coherent state
|a) is created from a vacuum p 4 | CC)
|0) through displacement
operation ﬁ(a)

D()

_ —# o ~ftn 0
=Ty —a™o)
n=0
laf? o
— 2 - !
=e Z p vn!lin)
n=0
L)
=e n
0 /n!
= |a) (2.3)
Here we used the formula
eA+1§ _ eAeée*[A,él/Z. (2.4)

Note that this formula holds only when [A, [A, l§]] = [l§, [A, I§]] = 0. Figure 2.1
illustrates the displacement operation.
If we take a Hamiltonian for the displacement operation as

H, xi(aa" — a*a), (2.5)

then the “time evolution” of the quantum complex amplitude or the annihilation
operator a can be described as

lht’\ lht_

e ae

(2.6)
By using this and Eq. (1.160) we can calculate the “time evolution” of a as

D' (a)aD(a) = e~0 ~"Dgeod’—'d

¥

n n A A I A oA A A
=a— [aa —a*a,a]—l—;[aa‘h—a*a,[aaT—a*a,a]]+~~

=a+a. 2.7)
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Fig. 2.2 Phase diffusion of
an actual laser p 1

Here we can see that the quantum complex amplitude or the annihilation operator a
changes to @ + « through the displacement operation D(«). This situation can be
understood from Fig.2.1. In short, the displacement operation ﬁ(a) corresponds to
laser oscillation itself when it acts on a vacuum |0). This situation can be seen in the
Hamiltonian of the displacement operation (H,) given in Eq. (2.5). In Eq.(2.5) can
aa’ and o*a be regarded as stimulated emission and absorption, respectively.

In the case of an actual laser there is phase diffusion on top of stimulated emission
and absorption. So the actual picture of a laser should be the one shown in Fig.2.2.
Although there are even some technical (classical) noises on top of the phase diffu-
sion, the quantum noise is dominant in the high-frequency region. Also, when we
want to cancel out the phase diffusion, we use a coherent beam as the reference.
More precisely, we usually use a coherent beam from the same laser for the local
oscillator light for homodyne measurement to cancel out the phase diffusion.

There is another way to create coherent states of light. We can create coherent
states of light at the sideband of the laser frequency by using amplitude or phase
modulators. The advantage of this method is that technical (classical) noises are
intrinsically very small at higher frequencies and it is easy to realize a situation in
which the quantum noise is dominant. So we can create an ideal coherent state with
this method. As an example we show an experimental result of quadrature amplitude
measurement of a coherent state which is created with this method. Laser light was
divided into two beams, and one of the beams was used for a local oscillator beam
and the other was modulated to create a coherent state at the modulation sideband.
Figure 2.3 shows the experimental phase dependence of amplitude for the coherent
state. We can see that it is qualitatively a coherent state. As a reference we show the
result of the same experiment for a vacuum |0) in Fig. 2.4. We can see that the quantum
fluctuations in Figs. 2.3 and 2.4 look similar. More quantitatively we can calculate the
photon-number distribution for the coherent state with the data presented in Fig. 2.3.
The result is shown in Fig.2.5. We can see a Poisson distribution there, which is
supposed to follow Eq. (1.40). Finally we show a Wigner function calculated from
Fig.2.3 as Fig. 2.6.
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Fig. 2.3 Experimental result
of phase dependence of
amplitude for a coherent
state

Fig. 2.4 Experimental result
of phase dependence of
amplitude for a vacuum

Fig. 2.5 Photon-number
distribution calculated with
the data presented in Fig.2.3
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Fig. 2.6 Wigner function
calculated with the data
presented in Fig.2.3
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Fig. 2.7 An intensity- )
fluctuating beam enters a Intensity change W
50/50 beam splitter
B
e
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We consider quantum fluctuation here. We showed an experimental result of phase
dependence of amplitude for a vacuum |0) in Fig. 2.4, which corresponds to quantum
fluctuation or quantum noise. The experiment was done with balanced homodyne
measurement, where measured light mode a; was in a vacuum state |0), i.e., no input
and the other input a, was used for a local oscillator in a coherent state |c). It might
seem funny at a first glance. The reason is the following. Some light beam enters a
50/50 beam splitter. It can be in a coherent state but it can be in other states as well.
In any case, the two output beams have the same intensity fluctuations. So naively
speaking the output of the balanced homodyne measurement should be zero, because
the same signals should be totally cancelled out when we took the difference signal of
two homodyne currents. However, we got Fig. 2.4. What happened here? Of course,
it can be easily solved when we use the particle picture of photons (Fig.2.7).

We can explain the situation with Fig.2.8b. It is the particle picture. In this picture
individual photons have no correlation and randomly enter the 50/50 beam splitter.
Each photon has a 50 %-chance of transmission and a 50 %-chance of reflection at the
beam splitter. Of course, a reflected photon cannot be transmitted and a transmitted
photon cannot be reflected. So the output two beams have opposite-phase intensity
noises. Since we take the difference of them to get a balanced homodyne signal, we
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Fig. 2.8 A light beam in a (a)
coherent state enters a 50/50

beam splitter. a State picture, B
|y and |0). b Particle picture

@)
—— ?
0)
(b) [
e':>° //
o o
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consequently take the sum of the opposite-phase intensity noises. As a result, we can
get the noise originated from the particle picture of photons, which corresponds to
the quantum noise or vacuum noise shown in Fig.2.4. In other words, the existence
of this noise is a proof of the existence of photons. Moreover, since the photon’s
(particle’s) temporal mode is a time-domain delta function §(¢), the noise spectrum
becomes uniform or white in frequency domain. Thus, it is often called “shot noise”.

2.2 Creation of a Squeezed Vacuum

A coherent state can be regarded as a classical electro-magnetic field plus quantum
noise, which corresponds to a classical state of light in some sense. So the “true”
quantum state of light created for the very first time would be a squeezed vacuum
S (r)]0). As mentioned in the preface, although it was created by Slusher et al. in
1985 [1] for the very first time with a third-order nonlinear process, most people
nowadays use a degenerate parametric process (second-order nonlinearity), which
was realized by Wu et al. in 1986 [2]. It is because the parametric process is far more
efficient than the third-order nonlinear process. We will thus explain the degenerate
parametric process in this section.

Figure2.9 shows the schematic of the degenerate parametric process. In the
process, strong pump light of frequency 2w (complex amplitude E3) and input light of
frequency w (complex amplitude Ej,) are coupled in a second-order nonlinear crys-
tal (x?) and create the difference frequency component of frequency w = 2w — w
(complex amplitude E;). This component couples coherently with the input light
and creates the E, output. The input-output relation is
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Fig. 2.9 Degenerate 2
parametric process X( :

E, (o)

| Eul(®@)
E,(0) —

E20)
« < N
Fig. 2.10 Degenerate
optical parametric process N X(2) ~
with a cavity, which .a b
corresponds to the input output
Bogoliubov transformation, o o
i.e., squeezing operation \
pump
2m
Eou = Eincoshr + E} sinhr, (2.8)
where ;W
2
r=—-—|x?E;], (2.9)
2¢c n

r is the squeezing parameter, z is the length of the nonlinear crystal, ¢ is the speed
of light, n is the refractive index of the nonlinear crystal, and X(Z) is the nonlinear
coefficient.

From |coshr|?> — |sinhr|> = 1, we can see that Eq.(2.8) corresponds to the
Bogoliubov transformation in Egs. (1.154) or (1.162). When we take a as a complex
amplitude of a light field, Eq. (2.8) is the Bogoliubov transformation itself. We can
make a Bogoliubov transformation by using a degenerate parametric process. Note
that we cannot get very big r when we use ordinary nonlinear crystals. So we usu-
ally use a cavity to enhance the nonlinearity to get bigger r, which corresponds to
lengthening the effective crystal length z. A schematic of the process is shown in
Fig.2.10.

We usually create a squeezed vacuum S(r) |0) in actual experiments. It is because
we can have a vacuum input |0) even without preparing some input state. Although
we inevitably will suffer from losses, e.g., coupling losses in the case of some actual
input state, we do not have to be worried about losses in the case of a vacuum input.
Losses always introduce a vacuum, that always makes the coupling efficiency 100 %
for a vacuum input! So it is easy to make a high-level squeezing operation when the
input is a vacuum. Moreover, squeezing parameter » should go to infinity depending
on the pump power as can be seen in Eq. (2.9). However, the observable r is not so
big in the real experiments. We will explain the reason below.
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We have to make a balanced homodyne measurement to detect squeezed light,
which was explained in Sect. 1.3. It is because a balanced homodyne measurement
is a phase-sensitive measurement and we can independently measure squeezed and
anti-squeezed components. We use the setup shown in Fig. 1.4 for homodyne mea-
surements and obtain (I, — I,) of Eq.(1.69) to get the marginal distributions. To
get the squeezing parameter » we usually obtain ((fz - jl)2> by using a spectrum
analyzer. In that case, we use Eq. (1.69) and get

(I — 11)?) = 4]a® - 1 (Y] (%) cos O + py sin 0)*[1),;. (2.10)

Since the input state is a squeezed vacuum S’(r)l()), then [¢); = 3’(r)|0)1. So the
output of the spectrum analyzer should be

(I — 1)?) = 4laf* - 1(018] () (%1 cos O + py sin 0)25,(r)|0)
- 4|a|2[1 (0187 (1)328,(r)|0) 1 cos? 0
+1(018] (r) p181(r)[0), sin” 6
+ 1(018T (") R1 p1 + 12181 (r)]0)y sin § cos 9]
= 4|a|2(1 (0]1x2e7%"10); cos® @ + 1 (0] p?e*"|0); sin’ 9)
= |a|*(e™¥ cos® 0 + ¢ sin® ). (2.11)

Here we used Eqs. (1.165)—(1.168). From the result we should see a periodic structure
corresponding to squeezed and anti-squeezed quadratures (e~ and e?") depending
on the phase of the local-oscillator beam for the balanced homodyne measurement.
Here e and e* correspond to variances ((Ax1)?) and ((Ap;)?). It is because
1(O|S‘1T(r))?13‘1 |0y, = 1(O|.§‘}L(r)ﬁ1.§’1 (r)|0); = 0 which corresponds to that the
averaged amplitude is zero.

As shown above, we can measure the squeezing level and determine the squeezing
parameter . Now we have to think about the influence losses have on squeezing.
A squeezed vacuum is a superposition of even-photon states as shown in previous
sections. When a squeezed vacuum is exposed to loss, the even-photon nature or
nonclassicality is degraded. Especially the e~> component is degraded. We will
consider the consequences of this below.

We make a model shown in Fig.2.11 to think about the influence of loss. In this
figure we have a fictitious beam splitter (BS) on top of the setup of Fig. 1.4, which
represents losses. Here the input for the homodyne measurement is a; and loss is
represented by a vacuum |0)3 from the BS. The input after having losses is a;.
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Fig. 2.11 Power
measurement with a
spectrum analyzer (SA) for
balanced homodyne current.
The input beam a;
experiences losses, which is
represented by mode as (a
vacuum |0)) and a fictitious
beam splitter (BS)

LO

50/50 beam splitter

When we set the local-oscillator phase § = 0, the output from a spectrum analyzer
((I — I})?) can be calculated with Eq.(2.10) as follows:

((Fy — 11)?) = 4105 (0] ® 1 (V]e 122269 L2 by, @ |0)3
= 4|al*3(0] ® 1 (Y[[£] cos® (©/2) + 23 sin® (O/2)]1Y)1 ® |0)3
= 4lal |1 (WIF1¥)1 cos? (©/2) +3 (01520 sin’ (©/2)

1
_ 4|a|2[1<¢|£12|w)1 cos? (©/2) + 7 sin’ (@/2)]. 2.12)

Here we used Eq.(1.59)" and 3(0]%3]0)3 = 0. From the result we can see that some
portion of the output of the spectrum analyzer is replaced by a vacuum variance of
1/4 by the ratio of the reflectivity of the fictitious beam splitter sin® (@ /2). Of course,
we can calculate the case of non-zero 6, where the result is similar.

In summary, we can obtain the following result from the measurement of a
squeezed vacuum with loss;

la*[(e7% cos® 6 + € sin® ) cos” (©/2) + sin” (©/2)]. (2.13)
When the vacuum fluctuation is set to be one, the squeezing level becomes

e cos? (©/2) + sin® (©/2). (2.14)
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Fig.2.12 An experimental result of measurements of a squeezed vacuum [3]. It was a world record
in squeezing in 2007. a Vacuum fluctuation, b measurement result when the local oscillator phase
was locked at the squeezed quadrature, ¢ measurement result when the local oscillator phase was
locked at the anti-squeezed quadrature, d the local oscillator phase was scanned

The anti-squeezing level becomes
e cos? (©/2) + sin® (©/2). (2.15)

We will check them with an experimental result below.

Figure2.12 shows the experimental result from a measurements on a squeezed
vacuum. The squeezing level is —9dB (0.126) and the anti-squeezing level is 15dB
(31.6). It was a world record in squeezing in 2007. We can understand these values
by using Eqs. (2.14) and (2.15). In Eq. (2.15) we can neglect the influence of loss. It
is because the vacuum fluctuation is minute compared to the anti-squeezing. So we
take

31.6 ~ ¥, (2.16)

and get

1
e = — ~0.0316. (2.17)
31.6

From Eq. (2.14) we get

0.126 ~ 0.0316 x cos® (©/2) + sin® (©/2). (2.18)
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So we get sin® (©/2) = 0.1 with cos? ©®/2) + sin? (®/2) = 1. From these consid-
erations we can conclude that the squeezing level before having a loss was —15dB
(0.0316) and the total loss was 10 %. Note that we usually take an observed squeez-
ing level as the experimental squeezing level. So in the above case we usually take
the experimental squeezing level as e~ = 0.126 and the experimental squeezing
parameter as r' = 1.04.

We mention the history of experimental squeezing level here. The world record
in squeezing, reported by Kimble’s group at Caltech was —6dB (e™>" = 0.25) from
1992 to 2006 [4]. Since this record was not broken for 14 years, it became common
sense that —6 dB of squeezing would be a physical limit. However, the author’s group
bravely tried to improve the squeezing level and finally realized —7 dB of squeezing
in 2006 [5], and then the world-wide race of chasing a high level of squeezing begun.
It is a typical example of “common sense is nonsense”.

In 2007 the author’s group succeeded in —9 dB of squeezing as shown in Fig. 2.12.
In 2008 Schnabel’s group at Hannover reported —10dB [6]. By 2013 a couples of
groups in the world reported —13 dB [7]. In any case, the important point was how to
reduce pump-induced losses. As previously mentioned, losses degrade the squeezing
level. It is trivial now but it was not trivial until 2006.

Before closing this section we show examples of experimental squeezed vacua in
various ways. Figure 2.13 shows the phase dependence of amplitude for a squeezed
vacuum, Fig.2.14 shows the photon number distribution calculated with the data
presented in Figs.2.13, and 2.15 shows the Wigner function calculated with the data
presented in Fig.2.13. Figure2.13 agrees well with the one of theoretical —10dB of
squeezing shown in Fig.1.51, and we can see the even-photon nature in Fig.2.14.
Figure 2.15 also agrees well with the one for a theoretical Wigner function shown in
Fig.1.50.

Fig. 2.13 An example of 151
phase dependence of
amplitude for an
experimental squeezed
vacuum

amplitude
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Fig. 2.14 Photon number 0.5 : ‘
distribution calculated with ; Eheor}’
the data presented in 04 ™ Xperiment |
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Fig. 2.15 Wigner function
calculated with the data
presented in Fig.2.13

2.3 Creation of a Single-Photon State

There are several ways to generate a single-photon state. However, the only way
to get the negativity of a single-photon Wigner function is the heralded method,
which will be explained below. Of course, in that situation we should see the phase
dependence of amplitude for a single-photon state |1) as shown in Fig.2.16.

In the case of a heralded way to generate a single-photon state, we use a —3 dB-
squeezed vacuum S (In2/2)]0) in Eq.(1.152). Note that we use a non-degenerate
squeezed vacuum in this case, not an ordinary degenerate one. For the non-degenerate
case, two photons of state |2) are created in different modes A and B, for example two
orthogonally polarized modes. These photon pairs can be created with some particular
phase-matching condition. So Eq. (1.152) is modified and we get the [PDC) state:

IPDC) = 0.971]0)5|0)g 4 0.229]1)a[1)5 + - - . (2.19)
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amplitude

Fig. 2.16 Phase dependence of amplitude for a single-photon state |1) (Fig. 1.12)

This state is a vacuum |0) with a probability of 0.971% and is a photon pair A,B
with a probability of 0.229%. That means it is a vacuum |0) most of the time and
a photon pair A,B with a very small probability. We sometimes call it “parametric
downconversion” (PDC). Of course, it is just a squeezed vacuum with a different
phase-matching condition.

A photon pair created by parametric downconversion can be divided into two
photons in different paths. For example, we can use a polarization beam splitter
when the two photons have orthogonal polarizations. If we detect a photon in beam
A for heralding creation of a single-photon state, then we can get a single-photon
state | 1) in beam B. Figure 2.17 shows the scheme of heralded single-photon creation.

Figure2.18 shows an example of phase dependence of amplitude for an exper-
imental single-photon state |1). The Wigner function calculated with the data pre-
sented in Fig.2.18 is shown in Fig.2.19, and the photon-number distribution cal-
culated with the data presented in Fig.2.18 is shown in Fig.2.20. We can see the
similarity between Figs.2.16 and 2.18 and reasonable agreement between the the-
oretical prediction and the experimental result. We can clearly see the negativity
of the experimental single-photon Wigner function and it tells us that the state is
a highly pure experimental single-photon state. Actually, the portion of calculated
single-photon component is more than 80 % as shown in Fig.2.20.

Fig. 2.17 Scheme of photon detector
heralded single-photon

creation. If we detect a O

photon in beam A, then we A o

can get a single-photon state

|1) in beam B pump X(.z)
. B

parametric downconversion
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Fig. 2.18 An example of
phase dependence of 4}
amplitude for an
experimental single-photon
state |1). Note that we
usually use i = 1 for this
type of plot for some reason
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Fig. 2.19 Wigner function
calculated with the data
presented in Fig.2.18
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Fig. 2.20 Photon-number 1.0
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2.4 Creation of a Minus Cat State

We will explain how to create one of the Schrodinger’s cat states, a minus cat state,
in this section. We consider a heralded creation similar to the previous section. Note
that the word “herald” is replaced by “photon subtraction” in this section. As seen
in Eq. (1.150), a squeezed vacuum is a superposition of even photons. On the other
hand, a minus cat state is a superposition of odd photons. So we can create a minus
cat state by subtracting a single photon from a squeezed vacuum.

Let’s think about this example. From Eq.(1.151) we can describe a —4dB-
squeezed vacuum |sqz — 4 dB) (—4 dB-squeezing: e~ = 0.398) as

Isqz — 4dB) = 0.950|0) + 0.289]2) + 0.108]4) + 0.0424(6) 4+ --- . (2.20)

Figure2.21 shows the phase dependence of amplitude of —4 dB-squeezed vacuum
|sqz — 4 dB) calculated with above equation. The envelope of the plot agrees well
with the one of a minus cat state in Fig. 1.30.

We subtract a single photon from the —4 dB-squeezed vacuum |sqz —4 dB). From
Eq.(2.20) we get without normalization

amplitude

Fig. 2.21 Phase dependence of amplitude of the —4 dB-squeezed vacuum |sqz — 4 dB) calculated
with Eq.(2.20)
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pump .
X( ) » » ,

degenerate parametric process

photon detector

Fig. 2.22 We can create the minus cat state | = 1) — |&« = —1) with single-photon subtraction
from the —4 dB-squeezed vacuum |sqz — 4 dB)

|sqz — 4 dB(1subtract)) = 0.289|1) 4 0.108|3) + 0.0424(5) + - - - . (2.21)

For the normalization we have to divide it by 4/0.2892 4 0.1082 + 0.04242 + - .. &~
0.311. Then we get

|sqz — 4 dB(1subtract)) ~ 0.929|1) 4+ 0.347|3) + 0.136|5) + - - - . (2.22)

This state agrees well with the state |« = 1) — | = —1), whose equation is the
following (Eq.(1.119)):

2
No-(la=1) = la = —1)) =/ 5= ('IHTB +—0= f )
= 0.922|1) 4+ 0.377|3) + 0.00769|5) +
(2.23)

Actually, when we calculate the phase dependence of amplitude of the state [sqz —
4 dB(1subtract)), we cannot see any difference from Fig. 1.30. So we can create the
minus cat state |« = 1) — | = —1) with single-photon subtraction from the —4 dB-
squeezed vacuum |sqz —4 dB) as shown in Fig.2.22. The intuitive explanation of the
single-photon subtraction is the following. When we detect a photon at the photon
detector, we eliminate the probability of no photon or a vacuum |0) for the other
output from the 7 ~ 1 beam splitter. So we can eliminate the probability of small
amplitude of the —4 dB-squeezed vacuum |sqz — 4 dB) in Fig.2.21.

We explain the schematic of Fig.2.22 a bit in detail. First we create a squeezed
vacuum by using a degenerate parametric process. Here we set the squeezing level so
as to create a minus cat state as seen above (—4 dB or so). Then the squeezed vacuum
enters a beam splitter with transmissivity 7 ~ 1. The reflected beam contains one
photon at most because the reflectivity is very small. Therefore, when we detect a
photon at the photon detector, it follows that we subtract a single photon from the
squeezed vacuum. So we can get a minus cat state. The process is similar to heralding
creation of a single photon in some sense.
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Fig. 2.23 An example of
phase dependence of 4
amplitude of an experimental
minus cat state

| = 1) — | = —1), which
was created by single-photon
subtraction

amplitude
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phase
Fig. 2.24 Wigner function
calculated with the data
presented in Fig.2.23
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Figure 2.23 shows an example of phase dependence of amplitude of an experi-
mental minus cat state |« = 1) — |a = —1), which was created by single-photon
subtraction. The calculated Wigner function with the data presented in Fig.2.23
is shown in Fig.2.24 and the calculated photon-number distribution with the data
presented in Fig.2.23 is shown in Fig.2.25

Figures2.23 and 1.30 agree well with each other, which means that the experimen-
tal result and the theoretical calculation agree well with each other. We can clearly
see two opposite-phase coherent states and elimination around zero-amplitude in
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Fig. 2.25 Photon-number distribution calculated with the data presented in Fig.2.23

the experimental result. Moreover, we can see the negativity and two peaks of the
Wigner function in Fig. 2.24, which agree well with Fig. 1.34 (90-degrees phase space
rotated: switch x and p). In Fig.2.25 we can see the odd-photon nature of a minus
cat state.

2.5 Creation of a Superposition of Photon-Number States

We can create a superposition of photon-number states with heralding. We will
describe that in this section. The simplest example is a superposition of a vacuum
|0) and a single-photon state |1).

Figure2.26 shows the schematic. A photon pair A,B is created by parametric
downconversion. As mentioned in Sect.2.3, it is just a vacuum most of the time
and very rarely a photon pair. Photon A enters a beam splitter with transmissivity
T =~ 1 and the output is combined with a very weak coherent beam, in which the

very weak coherent beam photon detector

-

aout
A0
T=1

% @

parametric downconversion

o

Fig. 2.26 Creation of a superposition of a vacuum |0) and a single-photon state |1). A photon pair
A, B is created by parametric downconversion. Photon A enters a beam splitter with transmissivity
T ~ 1 and the output is combined with a very weak coherent beam, in which the average photon
number is much less than one. When we detect a photon at the photon detector, we can get a
superposition of a vacuum |0) and a single-photon state |1) in beam B
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average photon number is much less than one. When we detect a photon at the photon
detector, we can get superposition of a vacuum |0) and a single-photon state |1) in
beam B. Note that we assume that we can neglect the probability of simultaneous
existence of photons in both beam A and the very weak coherent beam.

We try to make a naive explanation of the mechanism for creation of a superpo-
sition of a vacuum |0) and a single-photon state |1) here. When we detect a photon,
there are two possibilities. One is that the photon was photon A created by paramet-
ric downconversion. Another possibility is that the photon came from the very weak
coherent beam. Fortunately or unfortunately the photon detector cannot distinguish
the two possibilities, and that is why we can create the superposition. This expla-
nation is really naive and we have to consider entanglement explained in Sect. 1.12
to make the precise explanation. From now on we will deal with entanglement or
a two-mode squeezed vacuum (Eq.(1.210)) and try to explain the mechanism for
creation of a superposition of a vacuum |0) and a single-photon state |1).

The word “parametric downconversion” is used when the pump in Fig. 2.26 is very
weak. In the general case for the pump it becomes a two-mode squeezed vacuum
(Eq.(1.210)) explained in Sect. 1.12. We reintroduce Eq. (1.210) here:

[EPR%) = /1 -2 D" q"In)a ® [n)s. (2.24)
n=0

Moreover, since a beam splitter matrix with transmissivity 7 is

(o)
-V1-T JT )’

the input-output relation of the beam splitter should satisfy

éout — \/T % 1-T &A (2 26)
ag —/1=-T JT ar )’ '
where aa represents beam A, ap represents the very weak coherent beam, doy rep-

resents one of the output beams from the beam splitter, which is going to the photon
detector, and ag represents the other output beam. By using above equations we get

dow = VTan +~/1—Tay. (2.27)

(2.25)

Here we assume that the very weak coherent beam is in a coherent state |3). In the
limit of T — 1 and when we assume |G| — 00, V1 —T3 — «, and |a] > 1,
we can treat /1 — Tdp as a. It is because we can neglect the quantum fluctuations
when |3| > 1. So in the limit of T — 1 and |3] — oo, we get

Qout = ap + . (2.28)
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It is obvious that we can make a displacement operation D(a) on mode G,. We can
check it by Eq.(2.7), where we calculate displacement operation in the Heisenberg
picture, D (a)aD(a).

From above considerations we can see that we are making a displacement oper-
ation on one of the two-mode squeezed vacuum in the setup of Fig.2.26. So the
process can be written as

Da(e)VT— 4> q"In)a ® In)p
n=0
=V1=¢2D q"Da(@)ln)s ® In)s
n=0
o o AT kA\Nm
= /1 —qZZq"Z%mA@ n)s. (229)

!
n=0 m=0
When the pump is very weak (¢ < 1) and the displacement is very small (jo| < 1),
we get

00 o0 AT xA\m
NIPED WD S RN T

n=0 m=0

~(1+ad" —a*@)|0)a ®[0)p + (1 +ad’ — a*a)g|1)a ® [1)s

= (10)a + all)a) ® [0)5 + g (I1)a + av/22)a — a*[0)a) ® |1)p
=10)a10)5 + al1)al0)s + gl1)all)s + v2gal2)al 1) — ga*[0)al1)s

~ 0)al0)5 + [1)a ® (a|0)p + ¢[1)B). (2.30)

where we neglected the terms of ga (ga™) for the last nearly-equality. Therefore
when a photon is detected in beam A, beam B becomes”

al0)s +¢q|1)B. (2.31)

We can thus create a superposition of a vacuum |0) and a single-photon state |1).
Here we can say that the displacement operation on beam A was transferred to
beam B because of entanglement between beams A and B. Moreover, we can get
an arbitrary superposition of a vacuum |0) and a single-photon state |1) by tuning
the pump power ¢ and the displacement .. Note that when we set o = 0 the output
(Eq.(2.31)) becomes g|1)p. We can see that it is heralding creation of a single photon
with parametric downconversion in this case.

Figure 2.27 shows an example of phase dependence of amplitude of an experimen-
tal superposition of a vacuum |0) and a single-photon state |1) (one cycle). This figure
agrees well with Figs. 1.22 and 1.23, which are theoretically calculated superposi-

21t is not normalized. We should only use the ratio between « and ¢.
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Fig. 2.27 An example of
phase dependence of 4
amplitude of an experimental
superposition of a vacuum
|0) and a single-photon state
|1) (one cycle). Note that the
method of getting this figure
is similar to Fig.2.26 but not
exactly the same

amplitude

phase

tion states of a vacuum |0) and a single-photon state |1) ((|0) + |1)) / V/2). Moreover,
various types of the superposition is examined as shown in Fig. 2.28, where the states
are represented by the Wigner functions. These are cases of |a| : |g| = 1 : 1 and
they are called “qubits” (quantum bits). The results agree well with Fig. 1.44, which
is a theoretical calculation. Of course, we can create other states than qubits with just
tuning the pump power ¢ and the displacement .

By using a similar methodology we can create a superposition of many photon-
number states. Figure2.29 shows how to create an arbitrary superposition up to a

% 2 a4 o0 1 2 3 B

R FE B
”~

B R B

I

Fig. 2.28 Examples of the Wigner functions of an experimental superposition of a vacuum and a
single-photon state «r|0) + ¢g|1) (Ja| : |g| = 1 : 1). It is called (single-rail) qubit
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photon detector beam splitter

D: displacement

parametric process

Fig. 2.29 Heralded creation of an arbitrary superposition up to a three-photon state |3). Two-mode
squeezed vacuum (beams A, B) is created by a parametric process. Beam A is divided into three
beams. Each beam has displacement operation realized by a beam splitter with 7 & 1 and a very
weak coherent beam as shown in Fig. 2.26. When we have triple coincidence of three photon detector
clicks, we can get superposition up to a three-photon state |3)

three-photon state |3). In this scheme we use a methodology similar to Fig.2.26,
where we use entanglement and the displacement operation. The “D” in Fig.2.29
corresponds to the displacement operation and can be realized by a beam splitter
with T ~ 1 and a very weak coherent beam as shown in Fig.2.26.

We will explain the mechanism of the heralded creation of an arbitrary superpo-
sition up to a three-photon state |3) with Fig.2.29. We label the three output beams
from the two-beam-splitter network as 1, 2, and 3 and describe the two beam-splitter
operators as l§13 and 323 as shown in Fig.2.29. We set transmissivity of the beam
splitters to 773 = 2/3 and T3 = 1/2. So the beam splitter transformation becomes

A 2 1 ~
At (a1 p 3 3 ap
B, (a3) e (&3) (2.32)
3
.. (a4 a
B, (aj) By = \f (2) : (2.33)

When beam A is in a photon-number state |n), the input state to the two-beam-splitter
network can be described as |0); ® |0), ® |n)3 = |0, 0, n), because there is no input
beam from the other ports of the two-beam-splitter network than beam A as shown
in Fig.2.29.
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By using the equations above we can describe the state just before the three
photon detectors in Fig.2.29 as

Di(@)Dy(B)D3 (1) B3 Bisy/T —q*> D ¢"10,0,n) @ |n)p.  (2.34)

n=0

To calculate this, we first calculate the following equations by using Eq. (1.193).

A 1 { ka 3 1—k,
Bi3l0,1) = z (klz) (\/;) (\/;) Vio!(1 =)k, 1 — k)
\/7|01 \/7|1 0). (2.35)

B1300.2) = f Z (,Q) (\/E )kz (\@ )HZ Vi!2 = k)llks. 2 k)

= §|0’2)+§|1»1)+§|2,0). (2.36)
3 ko 3 3—ky
B1310,3) = T Z ( )(\/») (\/;) Vk!(3 — k)k2, 3 — ka)
\/__ V2 1
= 0,3 —1,2 —12,1 —13, 0). 2.37
3\/—| )+ 511,2) + 3 | >+3«/§| ) (2.37)

A | R
B0, 1) = Z (klz) (\/;) (\/;) V(1 = k) !ko, 1 — kp)
ky=0
—\/To 1 \/T1 0 2.38
= §| 1)+ El , 0). (2.38)

R |2 k> T 2—ky
B300,2) = 72( )(\f) (\E) Vil —k)lka, 2 — ko)

1 1 1
= E'O 7 1) + §|2, 0). (2.39)
I < (3 I "
Bx10.3) = ﬁk;(kz) (\g) (\g) Vh!G = k)llkz, 3 — ko)
1 «/— \/_
=——=10,3) + 1,2 2,1 3,0 2.40
AW L R D f| ) (2.40)
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By using above equations we get

[e]
ByBi3 Y q"10,0,n) ® |n)s

n=0

—10,0,0) ® |0)g

+q[f|001 f|o,1,o f|100}®|1
[|002) Y201+ |002>

+ %1,0, 1)+ %u, 1,0) + §|2,o,o>} ® 12)

1 1 1
+¢3* —=10,0,3) + =10, 1,2) + =10,2, 1
q[wgl ) 3| ) 3| )

1 2 1
+ —11,0,2) + gll, 11+ §|1,2,0)

V3

1 1
+§|2,0,1)~|—§|2,1,0)—|— |3,0,0)]®|3)B+~-~ . (2.41)

1
3V3
Now we make three displacement operations on this state. We assume |a| < 1,
6] < 1, |7] <« 1, and ¢ <« 1 as before, and then we can make the following

approximation: .
D(a) ~ 14+ aa’ — a*a. (2.42)

By discarding terms of fourth order and higher of «, (3, v, and ¢ and also discarding
terms that does not have at least one photon in each beam (1, 2, 3) we get

D) Do(B) D3(1) Bz Bisv/1 — > D ¢"10,0,7) & [n)p

n=0
= afy|1,1,1) ® |0)s

+q[ﬁaﬁ|l,1,1>+fa7|1 1, 1) fﬂﬂl 1, 1}®|1)

+q [£a|1,1,1)+£ﬁ|1 1, 1)+£’y|1,1,1):|®|2)

+q3[§|1, 1, 1>} ® 13)s

1
=|LLD® |:0457|0)B +q\/;(045+ ay + I

2 2
+q2§(a+ﬁ+w>|2>3+q3§|3>3]. (243)
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Therefore, when we have a triple coincidence count of the three photon detectors,
the state of beam B becomes

1 2 2
aBy10)s + q\/;(aﬁ + ay + Bl + cf%(a + B84+ V2 + q3§|3>3.

(2.44)

Here the coefficients originally appearing in beam A appear in beam B after the triple
coincidence count. Of course, it is caused by entanglement between beams A and
B. Note that the state of Eq.(2.44) is not normalized. So only the ratio between the
coefficients has meaning.

We describe the state |¢)) that we want to create as

3
W) =D caln). (2.45)
n=0

To create arbitrary states we have to control ¢, ¢y, ¢z, and c3 with the experimental
parameters «, (3, v, and g. We can see that it is possible because of the following equa-
tions, which can be obtained from the comparison between Egs. (2.44) and (2.45):

afy = co, (2.46)

q\/g (af + By +ya) = c, (2.47)
ng(a +B8+7) =c (2.48)
q3? =c3. (2.49)

By using the above equation we get

3 3
q = (Eq) . (2.50)

We can get the other experimental parameters by solving the following third order
equation:

x—a)x - -7 =0. (2.51)
It can be rearranged as follows:

X — (a4 B+7)x* + (af + By + y)x — afy = 0. (2.52)



94 2 Creation of Quantum States of Light

W(x,p)

0.1
0.05

-0.05
0.1
0,154

p 4 -4

Fig. 2.30 Wigner function of an experimental superposition of a single-photon state |1) and a
three-photon state |3) created by the scheme in Fig. 2.29 [8]. It corresponds to a minus cat state with
a =2, No—(Ja) — | — a)). It should have at least three negative parts in the Wigner function
and we can see them in this figure. Note that we can see only one negative part in Fig. 1.34, where
a=1

So we can get «, 3, and y from ¢, which we already got in Eq.(2.50), by using the
following third order equation:

x3 3¢ 2 i \/§C1

X

V2¢? q
Therefore, we can create an arbitrary superposition up to a three-photon state |3)
by tuning the pump power and the three displacement parameters. In principle we
can extend this methodology up to an arbitrary photon-number state. However, the
coincidence rate becomes very small when the photon number increases. So the
practical limit is a four-photon state.

Figures 2.30 and 2.31 show examples of Wigner functions of experimental super-
position states up to a three-photon state created by the scheme of Fig.2.29.
Figure2.30 shows Wigner function of an experimental superposition of a single-
photon state |1) and a three-photon state |3). As mentioned in Sects. 1.7 and 2.4, a
minus cat state N,—(Ja) — | — «)) is a superposition of odd photon-number states,
and can be created by using single-photon subtraction from a squeezed vacuum.
However, since the portions of a two-photon state |2) and a four-photon state |4) in
a squeezed vacuum cannot be changed independently, it is impossible to get a minus
cat state with |o| > 1 and high fidelity by using single-photon subtraction. So we
use the scheme in Fig.2.29 instead of single-photon subtraction to create a “bigger”
minus cat state with || > 1. For example, we can create a “bigger” minus cat state
with @ = +/2, which is

x —co=0. (2.53)

1)+ —=13) (2.54)

without the normalizing factor.
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Fig. 2.31 Wigner function of an experimental superposition of a vacuum |0) and a three-photon
state |3) created by the scheme of Fig. 2.29 [8]. It might be called “three-headed cat state”, because
it corresponds to a superposition of three coherent states

Figure2.30 shows the Wigner function of an experimental superposition of a
single-photon state |1) and a three-photon state |3) created by the scheme in Fig.2.29.
It corresponds to a minus cat state with o = V2, No_(Ja) — | — «)) as mentioned
above. Its Wigner function should at least have three negative parts as we can see
in Fig.2.30. Note that we can see only one negative part in Fig. 1.34, where oo = 1.
Moreover, the fidelity of the Wigner function in Fig.2.30 is rather high for a minus
cat state with o = +/2.

Another example is shown in Fig.2.31, which corresponds to a superposition of
three coherent states, |a) + |ae"%ﬂ) + |ae”'2TW>. We create this state by the scheme
in Fig.2.29. Here we use the equation

3

: o P2 (0%
lo) + |’ 3) + Jae™ ) o |0) + —=[3) + -+, (2.55)
NG
where v = —1.2i. We can clearly see three peaks and dips rotated by 120°, which

correspond to three coherent states and quantum interference fringes between them,
respectively. So it is obvious that three coherent states are superposed in this result.

Before closing this section, we show an experimental three photon state |3), which
is also created by the scheme in Fig.2.29. The example is shown in Fig.2.32.
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Fig. 2.32 Wigner function of an experimental three-photon state |3) created by the scheme in
Fig.2.29 [8]. The experimental Wigner function agrees with the theoretical one in Fig. 1.39

2.6 Creation of Quantum Entanglement

As mentioned in the previous section, we need to have quantum entanglement
between beams A and B for heralding creation of quantum states, and the most
important entanglement would be a two-mode squeezed vacuum. It is the nonclassi-
cal correlation that causes the photon number of beam B to become n given that the
one of beam A is n. Of course, we have other types of correlations, e.g., amplitudes,
as shown in Eq. (1.205). In this section we consider a two-mode squeezed vacuum
from this point of view.

As shown in Sect. 1.12 the EPR state |[EPR) is a maximally entangled state. So
if we make an x-measurement on beam A and get the value of x then we know the
value of beam B is also x without measuring it (x4 —xs — 0). Similarly, if we make
a p-measurement on beam A and get the value of p then we know the value of beam
B is — p without measuring it (ps + pa — 0). Figure2.33 shows this concept.

So far we have mainly dealt with pure states, where we can use a wavefunction.
We extend the story to a general state here. In Sect. 1.12 we explained that the EPR
state is the simultaneous eigenstate of X5 — Xg and pa + pg with zero eigenvalues.
It can be described with quantum mechanical expectation values ( ) as

([AGA — £8)1%) + ([A(Pa + pr)]1H) = 0. (2.56)

The point here is that we can use the above condition for all types of states. It is
really powerful for experiments.

As mentioned in Sect. 1.12, it is impossible to create a perfect EPR state because
we need an infinite amount of energy to do so. However, as also mentioned in
Sect. 1.12, we can create an entangled state or a two-mode squeezed vacuum without
infinite amount of energy. So we think about loosening the condition of Eq. (2.56).
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Fig. 2.33 Concept of
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It is well known that beams A and B are entangled if the following condition holds
[9, 10]:

~

([AGA — 2)1%) + ([A(PA + PB)I) < 1. (2.57)

Now let’s think about the case where beams A and B are not entangled (separable)
and both are in a vacuum state. In this case, since the overall state is |0) 5 ® |0)g and

A2) = (| A2|Y) — (| A)2, we get

([AGA — )1 + ([A(Pa + pr)1D)
= (0] ® A(0|(£a — £5)*|0)a ® 0)5
— [8(01 ® A{0I(Ga — £8)10)4 ® [0)s]"
+5(0 ® A(0(Pa + PB)*|0)a ® [0)5

— [401 ® A (01(Pa + PB)I0)a ® [0)s]
=1. (2.58)

Here we used Egs. (1.22), (1.23), (1.24), and (1.25) with a = 0. Obviously the
inequality of Eq. (2.57) does not hold.

As an example in which the inequality of Eq.(2.57) holds, we consider a two-
mode squeezed vacuum |[EPRx%)ap. By using the “two-mode squeezing operator”
S .5 () shown in Sect. 1.12 we will show that a two-mode squeezed vacuum satisfies
the inequality of Eq. (2.57). The “two-mode squeezing operator” S’AB (r)is

$\5(r) = Byps: exp [2 (a; aﬁ)] exp [; (&]23 - &[ﬁ)] (2.59)
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http://dx.doi.org/10.1007/978-4-431-55960-3_1
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By using this operator a two-mode squeezed vacuum can be described as
|[EPR*)Ap = SI’\B(r)|O)A ® |0)g, which is shown in Eq.(1.210). So we can cal-
culate ([A(£s — %B)]%) + ([A(Pa + pB)]?) for a two-mode squeezed vacuum as
follows:

([AGA — £6)7) + ([A(Pa + PB)])

= as(EPRx|(£s — £5)*|EPRx)Ap
— [aB(EPR#|(£a — B)|EPRx) ]
+ AB(EPR*|(pa + pp)*[EPR*)ap
— [aB(EPR*|(pa + pp)|EPRx*)p]*

= 5(0] ® A(0S{5 (N (Ga — £)*S)5(1)10)a ® [0)5
— [8(0] ® A(0IS5 (" (Fa — £8)Syp (11004 @ [0)5]?
+ (0] ® A(0IS)5 (1) (a + PB)2Sh5(r)|0)4 ® |0)p
— [8(0] ® A(OISK5 (") (Pa + PB)Shp(1)[0)a ® 0)5]%. (2.60)

Here the following equations holds:
Sip(Ea — 88)*Shp(r) = Sk (1) (Ra — £8)Spp (M SAs (M (Ea — £8) S ()
B (er)?A +e"xg  e€'xa—e"Xp )2

N V2
= 2e V32, (2.61)

e’)?A + 67r£B ErﬁA — Eir)?B
V2 V2
= 2e 7" i, (2.62)

S () (Ga — i) Shp(r) =

S (Pa + Pr)*Shp () = SAu(r)(Pa + PB)Sap (1) Sks (1) (Pa + Pr)Sap(r)
_ (erﬁA+erﬁB ErﬁA—erﬁB)z
V2 J2
=2¢" 2 pa, (2.63)

and

e"patepp e "pa—e'py
V2 V2
=/2e 7" pa. (2.64)

S (Pa + pr)Sip(r) =


http://dx.doi.org/10.1007/978-4-431-55960-3_1
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Time (u s)

Fig.2.34 Anexample of experimental EPR-type correlation or a two-mode squeezed vacuum [11].
Time dependences of x are shown for beams A and B. Each point corresponds to a measurement.
‘We can see strong correlation between xa and xp

2
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Time (u s)
Fig. 2.35 Anexample of experimental EPR-type correlation or a two-mode squeezed vacuum [11].

Time dependences of p are shown for beams A and B. Each point corresponds to a measurement.
We can see strong anti-correlation between pa and pp

Note that we use Eqgs. (1.157) and (1.209) here.
From these equations we can get

([AGA — X)) + ([A(Pa + PRI = (2.65)


http://dx.doi.org/10.1007/978-4-431-55960-3_1
http://dx.doi.org/10.1007/978-4-431-55960-3_1
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Fig. 2.36 An example of experimental EPR-type correlation or a two-mode squeezed vacuum
[11]. We can see strong correlation for x and anti-correlation for p. The degree of (anti-)correlation
corresponds to the resource squeezing level e~2"

for a two-mode squeezed vacuum. So if » > 0 then beams A and B are entangled.
In other words, when the inequality of Eq.(2.57) holds for a two-mode squeezed
vacuum |EPRx) g, we should see the nonclassical correlation of x (X — xa — 0)
and anti-correlation of p (pa + pa — 0) between beams A and B. Although, they
are of course not perfect correlations. They become perfect in the limit of r — oo,
where r is the squeezing parameter. Again, r cannot reach infinity, because it needs
infinite amount of energy. However, we can increase the r to be high enough. As
mentioned in Sect. 2.2, the world record of squeezing level at the moment is —13 dB.
That means we can get r = 1.5. Although r = 1.5 seems to be very small, the
inequality is scaled by e~%" and it is already very small. In that sense even when
r = 1.5, we can say it is big enough.

We show a last example of experimental EPR-type correlation or a two-mode
squeezed vacuum here. The time dependences of x are shown for beams A and B in
Fig.2.34. We can see a strong correlation between x» and xg. The time dependences
of p are shown for beams A and B in Fig.2.35. We can see a strong anti-correlation
between pa and pg. Figure 2.36 shows the correlation plots. So we can see a strong
correlation for x and a strong anti-correlation for p. The degree of (anti-)correlation
corresponds to the resource squeezing level e~ In this experiment we use —4 dB
of squeezing which corresponds to r = 0.46. Even with r = 0.46 we can get a rea-
sonably strong EPR-type of correlation. Note that the name “two-mode squeezing”
originates from the shapes of the correlation plots of Fig.2.36.



References

R.E. Slusher et al., Phys. Rev. Lett. 55, 2409 (1985)
L.-A. Wu et al., Phys. Rev. Lett. 57, 2520 (1986)

Y. Takeno et al., Opt. Express 15, 4321 (2007)

E. Polzik et al., Appl. Phys. B 55, 279 (1992)

S. Suzuki et al., Appl. Phys. Lett. 89, 061116 (2006)
H. Vahlbruch et al., Phys. Rev. Lett 100, 033602 (2008)
T. Eberle et al., Phys. Rev. Lett. 104, 251102 (2010)
M. Yukawa et al., Opt. Express 21, 5529 (2013)
L.-M. Duan et al., Phys. Rev. Lett. 84, 2722 (2000)
R. Simon, Phys. Rev. Lett. 84, 2726 (2000)

N. Takei et al., Phys. Rev. A 74, 060101(R) (2006)

SOV NN R W~

—_—

© The Author(s) 2015 101
A. Furusawa, Quantum States of Light, SpringerBriefs
in Mathematical Physics, DOI 10.1007/978-4-431-55960-3



Index

Symbols
h=1,4
h=1/2,3
L, 12

Xp, 16

A
Annihilation operator, 1, 2, 5

B

Balanced homodyne measurement, 10, 13
Beam splitter, 11

Beam splitter matrix, 12

Beam splitter operator, 13

Beam-splitter transformation, 12

Bigger minus cat state, 94

Bogoliubov transformation, 52, 75

C

Coherent state, 5, 29
Commutation relationship, 3
Creation operator, 1

D

De facto standard, 4

Degenerate parametric process, 74
Dialect, 3

Displacement operation, 69, 88, 92

E
Electrical-field operator, 1
Entangled, 58

© The Author(s) 2015

Entanglement, 58, 87, 96

EPR state, 64, 96

EPR-type correlation, 100
Experimental squeezing level, 79

F
Fock states, 1

H

Hamiltonian of squeezing, 53

The Heisenberg equation of motion, 2
Herald, 80, 86

Hermite polynomials, 23, 66
Hong-Ou-Mandel effect, 63

I
Intensity noise, 73

L
Longitudinal wave, 45
Loss, 75

M

Magnetic-flux density operator, 1
Marginal distribution, 17, 21
Minus cat state, 83

Momentum, 3, 16

N

Number operator, 1

A. Furusawa, Quantum States of Light, SpringerBriefs
in Mathematical Physics, DOI 10.1007/978-4-431-55960-3

103



104

0o
Orthonormal basis, 7

P

Parametric downconversion, 81, 87
Phase diffusion of a laser, 71
Phase-matching condition, 80
Photocurrent difference, 13
Photon-number state, 24

Photon subtraction, 83

Poisson distribution, 8

Position, 3, 16

Pump-induced loss, 79

Q

Quadrature amplitude operators, 15
Quadrature operator, 3

Quantum bits, 89

Quantum complex amplitude, 11
Quantum fluctuation, 15, 55

Qubit, 89

R
Reflectivity, 12

S
Schrodinger’s cat state, 30, 83
Shot noise, 74

Index

Sideband, 71

Single-photon state, 20, 21, 80

Spectrum analyzer, 76

Squeezed vacuum, 48, 74

Squeezing, 54

Squeezing level, 49

Squeezing operator, 49

Squeezing parameter, 49, 75, 100

Superposition of coherent states, 30

Superposition of photon-number states, 86

Superposition of a vacuum |0) and a single photon
[1), 26

Superposition of a vacuum |0) and a two-photon state
[2), 45

T

Total mixture of waves, 22
Transmissivity, 12

Two-mode squeezed vacuum, 66, 87, 96

U

Uncertainty relationship, 4
Unitarity, 12

2x2 unitary matrix, 12

A\
Variance, 76
Vector potential operator, 1



	Preface
	Acknowledgments
	Contents
	1 Quantum States of Light
	1.1 Quantization of Optical Fields
	1.2 Coherent States
	1.3 Balanced Homodyne Measurement
	1.3.1 Beam Splitters
	1.3.2 Balanced Homodyne Measurement
	1.3.3 Eigenstates of Quadrature Amplitude Operators  and Marginal Distributions

	1.4 Single-Photon States
	1.4.1 Marginal Distribution of a Single-Photon State

	1.5 Photon-Number States
	1.6 Superposition States of a Vacuum and a Single-Photon State
	1.7 Coherent States and Schrödinger Cat States
	1.8 The Wigner Function
	1.9 Superposition States of a Vacuum and a Two-Photon State
	1.10 Squeezed States
	1.11 Squeezing Operation and Squeezed States
	1.12 Quantum Entanglement

	2 Creation of Quantum States of Light
	2.1 Creation of Coherent States of Light
	2.2 Creation of a Squeezed Vacuum
	2.3 Creation of a Single-Photon State
	2.4 Creation of a Minus Cat State
	2.5 Creation of a Superposition of Photon-Number States
	2.6 Creation of Quantum Entanglement

	References
	Index



