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Preface

Devices based on the phenomenon of electron resonant tunneling are widely used in
electronics. Efforts are directed toward refining properties of resonance structures.
There are prospects for building new nanosize electronics elements based on
quantum dot systems. However, the role of resonance structure can also be given to
a quantum wire of variable cross-section. Instead of an “electrode—quantum dot—
electrode” system, one can use a quantum wire with two narrows. A waveguide
narrow is an effective potential barrier for longitudinal electron motion along a
waveguide. The part of the waveguide between two narrows becomes a “resonator”,
where electron resonant tunneling can occur. This phenomenon consists of the fact
that, for an electron with energy E, the probability TðEÞ to pass from one part of the
waveguide to the other part through the resonator has a sharp peak at E ¼ Eres,
where Eres denotes a “resonant” energy. Such quantum resonators can find appli-
cations as elements of nanoelectronics devices and provide some advantages in
regard to operation properties and production technology.

In the book, we study electron resonant tunneling in two- and three-dimensional
quantum waveguides of variable cross-sections in the time-independent approach.
We suggest mathematical models for resonant tunneling and develop asymptotic
and numerical approaches for investigating the models. We also present schemes
for several electronics devices based on the phenomenon of resonant tunneling. The
book is addressed to mathematicians, physicists, and engineers interested in
waveguide theory and its applications in electronics.
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Chapter 1
Introduction

1.1 Resonance Structures

As a preliminary, we consider a brief example of resonant tunneling. A resonance
structure where resonant tunneling can occur consists of a potential well bordered by
two potential barriers, an electron source, and a drain. A “one-dimensional” model
of such a structure is exemplified by the Schrödinger equation

− �
2

2m
� ′′(x) + U (x)�(x) = E�(x), −∞ < x < +∞, (1.1.1)

where U (x) = U1 for x ∈ [x1, x2], U (x) = U2 for [x3, x4], U1 and U2 are positive
constants, and x1 < x2 < x3 < x4; moreover, U (x) = 0 for the rest x . The parts
of U over [x1, x2] and [x3, x4] are called potential barriers and [x2, x3] is a potential
well; the barriers and the well comprise a resonator. An electron wave function �

satisfies Eq. (1.1.1), where E is the electron energy, m is the electron mass, and U is
the electron energy. Besides, � can be chosen to satisfy the equalities (see, e.g., [3,
13, 18])

�(x) =
{

eikx + re−ikx as x < x1,
teikx as x > x4,

where k = (2m E/�
2)1/2. For x < x1, functions eikx and re−ikx are considered as an

incomingwave and a reflectedwave, respectively, and, for x > x4, teikx is a transmit-
ted wave. The values T (E) = |t (E)|2 and R(E) = |r(E)|2 are called a transmission
coefficient and a reflection coefficient. It turns out that T (E) + R(E) = 1; the
T (E) (R(E)) is interpreted as a probability for the electron to transmit through the
resonator (to be reflected from the resonator). Under certain conditions, there exists
a “resonance” Eres , 0 < Eres < min{U1, U2}, such that for E = Eres the transmis-
sion coefficient T takes a maximal value (in particular, T (Eres) = 1 can be the case).

© Springer International Publishing Switzerland 2015
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2 1 Introduction

Then with probability close to 1 the electron transmission can take place, under the
barriers, through the resonator. This phenomenon is called resonant tunneling.

There is a variety of electronics devices (transistors, key devices, energy mono-
chromators) based on resonant tunneling.Classic two-barrier resonant devices use the
process of one-dimensional resonant tunneling. Efforts are directed towards refining
production technology and operation properties of resonance structures. At present,
electron tunneling is being studied intensively in the “metallic electrode-quantum
dot-metallic electrode” systems (e.g., see [2, 45]). A quantum dot is a conductive
domain of about 10nm size and is separated from electrodes by “tunnel” intervals
(vacuum gaps or dielectric layers). Owing to resonant tunneling, the conductivity
of such a system can abruptly vary with voltage between the electrodes. There are
prospects for building new nanosize electronics elements that are based on the afore-
mentioned quantum dot systems and have a frequency-operating range of around
1012 Hz. However, the properties of such systems heavily depend on inevitable inho-
mogeneities of the electrode-vacuumand quantumdot-vacuum interfaces. Therefore,
the production of the systems must satisfy not easily accessible accuracy conditions.

The role of resonant structures can be given to quantum wires. Resonant tun-
neling occurs as an electron propagates in a quantum waveguide (wire) of variable
cross-section. Instead of an “electrode-quantum dot-electrode” system, one can use
a quantum wire with two narrows. This can be explained heuristically by the fol-
lowing reasons. For simplicity, let us consider a waveguide whose cross-section is
a disk. If the waveguide is a cylinder, the full energy of an electron is the sum
E = E⊥ + E‖, E⊥ being the (quantized) transverse motion energy and E‖ the lon-
gitudinal motion energy; E⊥ is inversely proportional to the cross-section square.
When a waveguide cross-section varies along the axis, the narrows of the waveguide
play the role of effective barriers for the longitudinal motion. Indeed, the full energy
E remains constant. One can consider E = E⊥ + E‖ as an approximate relation.
In a narrow, E⊥ is increasing, so E‖ is decreasing. For E⊥ > E , the electron wave
function is exponentially decaying in the narrow just as it does in electron tunneling
under a potential barrier. The part of the waveguide between two narrows becomes a
“resonator,” and conditions for electron resonant tunneling can occur. The tunneling
consists of the fact that, for an electron with energy E , the probability T (E) to pass
from one part of the waveguide to the other through the resonator has a sharp peak at
E = Eres , where Eres denotes a “resonant” energy. That resonant tunneling happens
in deformed waveguides was confirmed by numerical experiments in [5, 32].

To analyze the operation of devices based on this phenomenon, it is important
to know Eres , the behavior of T (E) for E close to Eres , the height of the resonant
peak, and its width at the half-height (which is inversely proportional to the so-called
resonator quality factor). Approximate numerical calculations are effective only if the
narrows of a waveguide are “not too narrow” so that the resonant peak is sufficiently
wide. That is why, to obtain a detailed picture of the phenomenon, it is of value to
use both numerical and asymptotics methods which complement each other.

We consider electron propagation in a waveguide with two cylindrical outlets to
infinity and two narrows of small diameters ε1 and ε2 (Fig. 1.1). The boundary of
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Fig. 1.1 The waveguide
with narrows

G(ε
1
, ε
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ε
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the waveguide is assumed to be smooth. The electron motion is described by the
Helmholtz equation (or the Pauli system for the electron motion in magnetic field).
In particular, we obtain asymptotic formulas for the aforementioned characteristics
of the resonant tunneling as ε1 and ε2 tend to zero.

Resonant devices based on quantum wires can provide advantages in regard to
both operation properties and production technology. Such a device is homogeneous,
i.e., it is made of onematerial only.When tunneling, an electron crosses no interfaces
of dielectrics, electrodes, or vacuums. Therefore, the operation of the device is more
stable under small perturbations of its geometry.

1.2 Scattering Matrix

The basic characteristics of electron resonant tunneling can be expressed in terms of a
waveguide scatteringmatrix. Therefore, when studying tunneling,wemainly analyze
the scatteringmatrix behavior. Chapters2–4 define scatteringmatrices, describe their
properties, and present a method for approximate computing of such matrices.

In these chapters, we consider waveguides of somewhat more complicated struc-
ture (with finitely many cylindrical outlets to infinity) than those in the studies of
electron resonant tunneling in the subsequent chapters. In fact, this does not make the
discussion more complicated, rather, it provides possibilities for introducing other
applications (e.g., see the description of an electron flow switch for quantum nets in
Chap.10).

Chapter2 presents a radiation principle for the Helmholtz equation inwaveguides,
that is the solvability of a boundary value problem with radiation conditions, the
asymptotics of solutions at infinity, and the scattering matrix definition. In essence,
there is given a version (for the Helmholtz equation) of the theory exposed in [37]
for the general elliptic self-adjoint elliptic systems in domains with cylindrical ends.
(Detailed references are given in the Bibliographical sketch; as a rule, in the body of
the book, we restrict ourselves to technical references.)

http://dx.doi.org/10.1007/978-3-319-15105_2
http://dx.doi.org/10.1007/978-3-319-15105_4
http://dx.doi.org/10.1007/978-3-319-15105_10
http://dx.doi.org/10.1007/978-3-319-15105_2


4 1 Introduction

We are now going to define a scatteringmatrix, and to this endwe need to consider
certain issues. Let G be a domain in R

n+1, n = 1, 2, with smooth boundary ∂G
coinciding, outside a large ball, with the union �1+ ∪ · · · ∪ �T+ of finitely many
non-overlapping semi-cylinders

�r+ = {(yr , tr ) : yr ∈ �r , tr > 0},

where (yr , tr ) are local coordinates in B �r+ and �r is a bounded domain in R
n

(Fig. 1.2). We consider the boundary value problem

−��(x) − μ�(x) = 0, x ∈ G, (1.2.1)

�(x) = 0, x ∈ ∂G,

with � = ∑n+1
j=1 ∂2/∂x2j . We suppose that, under certain conditions, electron wave

functions satisfy (1.2.1); moreover, the functions are bounded and do not vanish at
infinity. To describe the wave function behavior at infinity, we will use solutions to
the problem in the cylinder

− (�y,t + μ)u(y, t) = 0, (y, t) ∈ � × R = �,

u(y, t) = 0, (y, t) ∈ ∂�, (1.2.2)

where � is a domain in R
n and

�y,t = �y + ∂2t , �y = ∂21 + ∂22 , ∂ j = ∂/∂y j .

Straightforward calculation shows that the nonzero functions

� × R � (y, t) 	→ exp (±i(μ − τ)1/2t)ϕ(y)

Fig. 1.2 The waveguide

G
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satisfy (1.2.2) if and only if

−(�y + τ)ϕ(y) = 0, y ∈ �, (1.2.3)

ϕ(y) = 0, y ∈ ∂�,

that is,ϕ has to be an eigenfunction of problem (1.2.3),whereas τ is the corresponding
eigenvalue. The eigenvalues of problem (1.2.3) form an increasing positive sequence
τ1 < τ2 < · · · that tends to +∞. Let us assume, for the time being, that τ1 <

μ < τ2 (recall that τ1 is a simple eigenvalue). We denote by ϕ1 an eigenfunction
corresponding to τ1, normalized by the condition

∫
�

|ϕ1(y)|2 dy = 1,

and set

u±
1 (y, t) = (2|λ∓

1 |)−1/2 exp(iλ∓
1 t)ϕ1(y) (1.2.4)

with λ±
1 = ±(μ − τ1)

1/2. Functions (1.2.4) are bounded, satisfy (1.2.2), and do not
decay at infinity. We will call the u+

1 (u−
1 ) a wave incoming from +∞ (outgoing

to +∞).
For μ ∈ (τ2, τ3), besides u±

1 in (1.2.4), we have waves of the form

u±(y, t) = (2|λ∓
2 |)−1/2 exp(iλ∓

2 t)ψ(y), (1.2.5)

where λ±
2 = ±(μ− τ2)

1/2 andψ is an eigenfunction of problem (1.2.3) correspond-
ing to τ2. The number of pairs of the form (1.2.5) is equal to the multiplicity κ(τ2)

of the eigenvalue τ2; as an eigenfunction ψ , the elements ψ1, . . . , ψκ(τ2) of a basis
in the eigenspace of problem (1.2.3) have to be chosen, subject to the orthogonality
and normalization conditions

∫
�

ψp(y)ψq(y) dy = δp,q , p, q = 1, . . . , κ(τ2).

In general, forμ ∈ (τl , τl+1), the number of the wave pairs in the cylinder� is equal
to κ(τ1) + · · · + κ(τl).

Letμ be different from the eigenvalues of problems (1.2.3) in�1, . . . , �T . Given
μ, we enumerate all wave pairs in the cylinders �1, . . . ,�T by the same index
j = 1, 2, . . . , M . Among electron functions in G, there exist �1, . . . , �M that
admit the representations

�l(x) = u+
l (x) +

M∑
j=1

Sl j u
−
j (x) + O(exp (−ε|x |)) (1.2.6)
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for |x | → ∞, sufficiently small positive ε, and l = 1, . . . , M . The matrix

S(μ) = ‖Sl j (μ)‖M
j,l=1 (1.2.7)

is called the scattering matrix.
Let us discuss the definition in more detail. The eigenvalues of problems (1.2.3)

for � = �1, . . . , �T are called the thresholds (of the waveguide G). Let τ1 denote
the minimal threshold; τ1 > 0. We have defined the scattering matrix S = S(μ) for
μ > τ1 except the thresholds; later, in Chap.3, it will be defined at the thresholds as
well. The set [τ1,+∞) is called the waveguide continuous spectrum. Thus, the S is
a matrix-valued function on the continuous spectrum. The size M = M(μ) of S(μ)

depends on μ, remains constant between two neighboring thresholds, and jumps at
the thresholds increasing to +∞ as μ tends to +∞. It will be shown that, at any
threshold τ , there exist both one-sided limits of S(μ) as μ → τ ± 0 and, moreover,
the S is continuous from the right at the threshold τ .

The scattering matrix S(μ) is unitary for every μ ∈ [τ1,+∞). Given μ, we
consider awave pair u+

j , u−
j , j = 1, . . . , M(μ), as a scattering channel. The |Sl j (μ)|2

is interpreted as the probability of an electron, incoming through the lth channel, to
go out through the j th channel.

Remark 1.2.1 For the one-dimensional resonance structure (1.1.1) there are two
related scattering channels: u+

1 , u−
1 and u+

2 , u−
2 , where u+

1 (x) = eikx (u−
1 (x) =

e−ikx ) is an incoming (outgoing) wave to the left of the resonator, and u+
2 (x) = e−ikx

(u−
2 (x) = eikx ) is an incoming (outgoing) wave to the right of the resonator. Thus,

the scattering matrix is of size 2 × 2.

1.3 Method for Approximate Computation
of Scattering Matrices

Next we are going to state themethod employed for numerical simulation of resonant
tunneling. In the introduction, we restrict ourselves to considering the scattering
matrix on a finite interval of the continuous spectrum containing no thresholds. In
Chap.4, we modify the method to calculate the scattering matrix also in vicinity of
thresholds and present a justification for the method in both of these situations.

Introduce the notation

�
r,R
+ = {(yr , tr ) ∈ �r : tr > R}, G R = G \ ∪N

r=1�
r,R
+

for large R. Then ∂G R \ ∂G = 
R = ∪r

r,R , where 
r,R = {(yr , tr ) ∈ �r :

tr = R}. We seek the row (Sl1, . . . , Sl M ) of the scattering matrix S = S(μ). As
approximation to the row, we take the minimizer of a quadratic functional. To con-
struct such a functional, we consider the problem

http://dx.doi.org/10.1007/978-3-319-15105_3
http://dx.doi.org/10.1007/978-3-319-15105_4
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− (� + μ)X R
l = 0, x ∈ G R;

X R
l = 0, x ∈ ∂G R \ 
R;

(∂ν + iζ )X R
l = (∂ν + iζ )(u+

l +
∑M

j=1
a j u

−
j ), x ∈ 
R, (1.3.1)

where ζ ∈ R\{0} is an arbitraryfixednumber, ν is an outwardnormal, anda1, . . . , aM

are complex numbers.
Let us explain the origin of the problem. Being a solution to problem (1.2.1), the

electron wave function �l satisfies the first two equations (1.3.1). The asymptotics
(1.2.6) can be differentiated, so

(∂ν + iζ )�l = (∂ν + iζ )(u+
l +

M∑
j=1

a j u
−
j ) + O(e−γ R)

for a j = Sl j . Thus, �l satisfies the last equation in (1.3.1) up to an exponentially
small discrepancy. As an approximation for the row (Sl1, . . . , Sl M ), we take the
minimizer a0(R) = (a0

1(R), . . . , a0
M (R)) of the functional

J R
l (a1, . . . , aM ) = ‖X R

l − u+
l −

M∑
j=1

a j u
−
j ; L2(


R)‖2, (1.3.2)

where X R
l is a solution to problem (1.3.1). One can expect that a0

j (R, μ) → Sl j (μ)

at exponential rate as R → ∞ and j = 1, . . . , M .
Let [μ′, μ′′] be an interval of the continuous spectrum without thresholds. In

Chap.4, we prove, in particular, that for all R ≥ R0 and μ ∈ [μ′, μ′′] there exists
a unique minimizer a(R, μ) = (a1(R, μ), . . . , aM (R, μ)) of functional (1.3.2) and
the estimates

|a j (R, μ) − Sl j (μ)| ≤ c(�)e−�R, j = 1, . . . , M, (1.3.3)

hold with some positive constants � and c(�) independent of R and μ.

1.4 Asymptotic and Numerical Studies of Resonant
Tunneling in 2D Waveguides for Electrons
of Small Energy

Chapter 5 begins an asymptotic and numerical study of resonant tunneling. Electrons
propagate in a 2D waveguide that coincides with an infinite strip in a plane having
two identical narrows of the diameter ε and symmetric about the waveguide axis.
Electron wave functions satisfy the Helmholtz equation in the strip and vanish at its

http://dx.doi.org/10.1007/978-3-319-15105_4
http://dx.doi.org/10.1007/978-3-319-15105_5
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boundary. The electron energy is supposed to be between the first and the second
thresholds, so only one scattering channel relates to each of the waveguide outlets to
infinity. The purpose is to obtain, as ε → 0, the asymptotics for the resonant energy
Eres , the transmission T (E) and reflection R(E) coefficients, and for the resonator
quality factor.

It turns out that such asymptotic formulas depend on the limiting shape of the
narrows. We assume that the limiting waveguide in a neighborhood of each narrow
coincides with two cones intersecting only at their common vertex. We first con-
struct an asymptotics of the corresponding electron wave function by the method of
“compound” asymptotic expansions (the general theory of the method was exposed,
e.g., in [30, 33]). The expansions contain terms of two kinds: the first kind terms
depend on the “slow” variables x and approximate the wave function “far” from
the narrows; the second kind terms depend on the “fast” variables x/ε and serve
as an approximation in a neighborhood of the narrows. The terms are obtained by
solving the so-called first and second kind limit problems, respectively. The analysis
of the obtained expansions enables us to get asymptotic formulas for the mentioned
characteristics of resonant tunneling.

Let us discuss the situation in more detail. To describe the domain G(ε) in R
2

occupied by the waveguide, we first introduce two auxiliary domains G and � in
R
2. The domain G is the strip

G = R × D = {(x, y) ∈ R
2 : x ∈ R = (−∞,+∞); y ∈ D = (−l/2, l/2)}.

We denote by K a double cone with vertex at the origin O that contains the x-axis
and is symmetric about the coordinate axes. The set K ∩ S1, where S1 is a unit circle,
consists of two simple arcs. Assume that � contains the cone K and a neighborhood
of its vertex; moreover, outside a large disk (centered at the origin) � coincides with
K . The boundary ∂� of � is supposed to be smooth (see Fig. 1.3).

Denote by �(ε) the domain obtained from � by the contraction with center at O
and coefficient ε. In other words, (x, y) ∈ �(ε) if and only if (x/ε, y/ε) ∈ �. Let
K j and � j (ε) stand for K and �(ε) shifted by the vector r j = (x0j , 0), j = 1, 2.

We assume that |x01 − x02 | is sufficiently large so the distance from ∂K1 ∩ ∂K2 to G
is positive. We put G(ε) = G ∩ �1(ε) ∩ �2(ε) (Fig. 1.4).

The wave function of a free electron of energy k2 satisfies the boundary value
problem

−�u(x, y) − k2u(x, y) = 0, (x, y) ∈ G(ε),

u(x, y) = 0, (x, y) ∈ ∂G(ε).

Moreover, u is subject to certain radiation conditions at infinity (that correspond, for
example, to an electron wave incoming from −∞).

We set G(0) = G ∩ K1 ∩ K2 (Fig. 1.5); thus, G(0) consists of three parts G0, G1,
and G2, where G1 and G2 are infinite domains, while G0 is a bounded resonator.
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Fig. 1.3 Domain �

O1 O2

G(ε)

Fig. 1.4 Waveguide G(ε)
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1
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Fig. 1.5 The “limit waveguide” G(0)

The problems

− �v(x, y) − k2v(x, y) = f, (x, y) ∈ G j ,

v(x, y) = 0, (x, y) ∈ ∂G j , (1.4.1)
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where j = 0, 1, 2, are called the first kind limit problems. In the domains � j ,
j = 1, 2, we consider the boundary value problems

�w(ξ j , η j )= F(ξ j , η j ), (ξ j , η j ) ∈ � j ,

w(ξ j , η j ) = 0, (ξ j , η j ) ∈ ∂� j ,

which are called the second kind limit problems; (ξ j , η j ) are Cartesian coordinates
with origin at O j .

We denote by k2e a simple eigenvalue of problem (1.4.1) in the resonator G0 and
by k2r (ε) a resonance frequency such that k2r (ε) → k2e as ε → 0. For |k2 − k2r | =
O(ε2π/ω) the asymptotic representations hold:

T (k, ε) = 1

1 + P2

(
k2 − k2r
ε4π/ω

)2

(
1 + O(ε2−δ)

)
,

k2r (ε) = k2e + Qε2π/ω + O
(
ε2π/ω+2−δ

)
,

ϒ(ε) = 1

P
ε4π/ω

(
1 + O(ε2−δ)

)
,

where T (k, ε) is the electron transmission coefficient and ϒ(ε) is the width of the
resonant peak at its half-height (which is inversely proportional to the resonator
quality factor), δ being an arbitrarily small positive number; the P and Q are the
products of several constants in the asymptotics of limit problem solutions near
corners or at infinity.

Without numerical values of the constants, the asymptotic formulas provide only a
qualitative picture. To find the constants, one has to solve numerically several bound-
ary value problems. We state the problems and describe a way to solve them. When
the constants are found, the asymptotics can be used as an approximate solution.
However, it remains uncertain for what band of parameters the approximation is reli-
able. On the other hand, one should expect numerical approach to be efficient only
if the waveguide narrows are not too small in diameter and if the resonant peak of
the transition coefficient is sufficiently wide. Therefore a detailed picture of resonant
tunneling can be achieved when the asymptotic and numerical approaches are com-
bined. Independently of asymptotic approach, an approximation to the waveguide
scatteringmatrix is calculated. For that purpose, we employ themethod fromChap. 4.
Then we can compare the asymptotics with calculated constants and the scattering
matrix (the transition and reflection coefficients). It turns out, that there is an interval
for ε, where the asymptotic and numerical results practically coincide. To the right
of the interval, the asymptotics vanishes but the numerical method for calculation of
the scattering matrix is effective; to the left of the interval, the numerical method is
ill-conditioned while the asymptotics is reliable.

http://dx.doi.org/10.1007/978-3-319-15105_4
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1.5 The Impact of a Finite Waveguide Work Function
on Resonant Tunneling

This subject concludes Chap.5.When considering electron transport in a waveguide,
we assume that the electron wave functions vanish at the waveguide boundary. This
means that an electron can not get out of the waveguide because of the infinite
potential barrier at the boundary. In reality, the assumption has never been fulfilled:
the surface potential barrier is always of a finite height and some electrons can
penetrate through the waveguide boundary and go away some distance from the
waveguide. In other words, in reality we deal with a waveguide of a finite work
function.Due to this phenomenon, the effectivewidths of awaveguide andwaveguide
narrows are greater than their geometric widths. Therefore, to draw a conclusion
about the adequacy of the boundary condition used in the mathematical model,
we have to clarify the impact of a finite waveguide work function on the resonant
tunneling.

To this end, we present some physics preliminaries concerning work functions,
introduce a boundary value problem with regard to a finite work function, and ana-
lyze the problem numerically. The results show the need, when employing resonant
tunneling in awaveguidewith narrows, to restrict somewhat the range of narrowpara-
meters and that of electron energy. In particular, by decreasing the narrow diameter
at a resonator, one can not diminish the effective narrow diameter beyond a certain
critical value. This restricts the possibility to improve the resonator quality factor by
diminishing the narrow diameter. The angle of a wedge-like narrow should not be too
small. However, increasing the angle causes an increase in the effective width of the
potential barrier and a decrease in the width of the resonant peak. This increases the
resonant tunneling time and affects the frequency properties of the system. Optimal
angles for wedge-like narrows range between 20◦ and 35◦.

1.6 Asymptotic Study of Resonant Tunneling in 3D
Waveguides for Electrons of Small Energy

In Chap.6, we consider 3D waveguide with two non-overlapping cylindrical outlets
C1 and C2 to infinity; the axes of the outlets may be of any directions. There are two
waveguide narrows, one narrow in C1 and the other one in C2. Generally, the narrow
diameters ε1 and ε2 are different. The resonator (that is, the waveguide part between
the narrows) can be of arbitrary form. The boundary of the waveguide is supposed
to be smooth. We denote the waveguide by G(ε1, ε2). The limit set G(0, 0) consists
of unbounded parts G1, G2, and a bounded resonator G0. In a neighborhood of the
point O j = G0 ∩ G j , the set G(0, 0) coincides with a double cone K j , j = 1, 2.

A wave function of a free electron of energy E = �
2k2/2m satisfies the boundary

value problem

−�u − k2u = 0 in G(ε1, ε2), u = 0 on ∂G(ε1, ε2),

http://dx.doi.org/10.1007/978-3-319-15105_5
http://dx.doi.org/10.1007/978-3-319-15105_6
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and certain radiation conditions at infinity. We consider the scattering of a wave
coming from C1 and seek the resonant values kr = kr (ε1, ε2) of the parameter k,
where the transition coefficient T = T (k, ε1, ε2) takes maximal values.

Let k2e be a simple eigenvalue (between the first and second thresholds) of the
boundary value problem in the resonator,

−�v(x) − k2v(x) = f, x ∈ G0; v(x) = 0, x ∈ ∂G0.

Near such an eigenvalue there is a resonant value kr (ε1, ε2) satisfying

k2r (ε1, ε2) = k2e + D1ε
ν1
1 + D2ε

ν2
2 + O

(
ε
ν1+τ1
1 + ε

ν2+τ2
2

)

as ε1, ε2 → 0. The coefficients D1 and D2 are constant, ν j and τ j are some positive

numbers, j = 1, 2. Under the condition |k2 − k2r | = O
(
ε
2μ11+1+τ1
1 + ε

2μ21+1+τ2
2

)
,

the transition coefficient T1(k, ε1, ε2) admits the asymptotics

T1(k, ε1, ε2) =
(
1

4

(
z + 1

z

)2

+ P2
(

k2 − k2r
ε
2μ11+1
1 ε

2μ21+1
2

)2
)−1

× (
1 + O(ε

τ1
1 + ε

τ2
2 )

)
,

where τ j are the same as in (6.1.6), z = Qε
2μ11+1
1 /ε

2μ21+1
2 , while P and Q are

constant. Thewidth of the resonant peak at its half-height (calculated for the principal
part in the asymptotics of T ) is

ϒ(ε1, ε2) = | 1
P

(z + 1

z
)|ε2μ11+1

1 ε
2μ21+1
2 (1 + O(ε

τ1
1 + ε

τ2
2 )).

1.7 Electron Resonant Tunneling in the Presence
of Magnetic Fields

The presence of a magnetic field can essentially affect the basic characteristics of
the resonant tunneling and bring new possibilities for applications in electronics. In
particular, in the presence of a magnetic field, the tunneling phenomenon is feasible
for producing spin-polarized electron flows consisting of electrons with spins of the
same direction. In Chaps. 7 and 8 we consider the same 2D and 3D waveguides with
narrows as in Chaps. 5 and 6, respectively. A part of the resonator is occupied by a
homogeneous magnetic field. An electron wave function satisfies the Pauli equation
in a waveguide and vanishes on its boundary. An electron energy is in between
the first and the second thresholds. The asymptotics of basic resonant tunneling
characteristics are presented as the narrow diameters tend to zero. Moreover, in
Chap.7, the asymptotic results for 2D waveguides are compared with numerical

http://dx.doi.org/10.1007/978-3-319-15105_6
http://dx.doi.org/10.1007/978-3-319-15105_7
http://dx.doi.org/10.1007/978-3-319-15105_8
http://dx.doi.org/10.1007/978-3-319-15105_5
http://dx.doi.org/10.1007/978-3-319-15105_6
http://dx.doi.org/10.1007/978-3-319-15105_7
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ones obtained by approximate computing the scattering matrix; there is an interval
of ε (the narrow diameter) where the asymptotic and numerical results practically
coincide. Using the approximate scattering matrix, we also observe the dependence
of the tunneling characteristics on a magnetic field position in the resonator.

1.8 Numerical Simulation of High Energy Electron
Resonant Tunneling, the Fano Resonances

Chapter 9 is devoted to the numerical simulation of high energy electron scatter-
ing. We consider multi-channel resonant tunneling. An electron wave of energy E
incident on a resonator with transverse quantum number n passes through the res-
onator and arises with transverse number k; shortly, the wave passes from state n
to state k. We denote by Tnk(E) the transmission coefficient of the wave, calculate
the dependence E → Tnk(E) by computing the scattering matrix S(E), and obtain
Tnk(E) = |Snk(E)|2, where Snk(E) is the entry of S(E). The curve E → Tnk(E)

can be sufficiently complicated and not always easily interpreted. To explain the
curve, we consider Snk(E) as a probability amplitude and represent it in the form
Snk(E) = ∑

s Ansk(E), where Ansk(E) is the probability amplitude of the transmis-
sion fromn to k through an intermediate state s; the summation is over all intermediate
states (cf. [19]).

As before, we denote by G(ε1, ε2) be a waveguide with two narrows and let G0
be the closed resonator, that is, the bounded part of the limit waveguide G(0, 0)(see
Fig. 1.5); generally, the resonator formmay be arbitrary.We denote by k21 ≤ k22 ≤ · · ·
the eigenvalues of problem (1.4.1) with j = 0 numbered according to their multi-
plicities. Then the resonant energies of the waveguide G(ε1, ε2) form the sequence
ReE1, ReE2, . . . , where E1, E2, . . . can be viewed as the “perturbed” k21, k22, . . .
and ImE j < 0 for all j = 1, 2, . . . . The amplitude Ansk admits the representation

Ansk(E) = H (s)
nk (E) + R(s)

nk (E)

E − Es

with continuous functions E → H (s)
nk (E) and E → R(s)

nk (E). In a small neighborhood
of ReEr ,

|Snk(E)|2 = |
∑

s

Ansk(E)|2 ≈ |Hnk(Er ) + Rnk(Er )

E − Er
|2 ≡ Tnk(E),

where Hnk(Er ) and Rnk(Er ) are constant.We take the function Tnk(E) as an approx-
imation to the calculated |Snk(E)|2 and find the constants Hnk(Er ), Rnk(Er ), and
Er by the method of least squares.

http://dx.doi.org/10.1007/978-3-319-15105_9
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1.9 Asymptotic Analysis of Multichannel Resonant
Tunneling

InChap.10, for electrons of high energy,wegeneralize the asymptotic theory exposed
in Chap.6. We present and justify the asymptotics of tunneling characteristics as the
narrow diameters tend to zero.

1.10 Electronics Devices Based on Resonant Tunneling
in Waveguides of Variable Cross-Sections

Chapter 11 presents electronics devices based on a quantumwaveguidewith narrows:
transistors controlled by external electric field and magnetic field sensors controlled
by external magnetic field. Besides, we describe an electron flow switch for quantum
nets. The switch is not related to resonant tunneling, however, the description is based
on analyzing the corresponding scatteringmatrix calculated by themethodofChap. 4.
We present the switch to demonstrate the method.

http://dx.doi.org/10.1007/978-3-319-15105_10
http://dx.doi.org/10.1007/978-3-319-15105_6
http://dx.doi.org/10.1007/978-3-319-15105_11
http://dx.doi.org/10.1007/978-3-319-15105_4


Chapter 2
Waveguides. Radiation Principle. Scattering
Matrices

First, we briefly outline the chapter content. Section2.1 is devoted to the boundary
value problem

(−� − μ)u(y, t) = f (y, t), (y, t) ∈ �,

u(y, t) = 0, (y, t) ∈ ∂�, (2.0.1)

in the cylinder � = {(y, t) : y = (y1, . . . , yn) ∈ �, t ∈ R}, where � is a bounded
domain in R

n with smooth boundary and μ ∈ R. The Fourier transform

v̂(λ) = (2π)−1/2
∫ +∞

−∞
exp (−iλt)v(t) dt (2.0.2)

reduces the problem to the family of problems depending on the parameter λ:

(−�y + λ2 − μ)̂u(y, λ) = f̂ (y, λ), y ∈ �,

û(y, λ) = 0, y ∈ ∂�. (2.0.3)

If the inverse operatorA(λ, μ)−1 of problem (2.0.3) exists for all λ ∈ R, the μ being
fixed, we obtain a solution u to problem (2.0.1) of the form

u(·, t) = (2π)−1/2
∫ +∞

−∞
exp (iλt)A(λ, μ)−1 f̂ (·, λ) dλ. (2.0.4)

However, the spectrum of the pencil λ �→ A(λ, μ), that is, the set of numbers λ such
that the operatorA(λ, μ) is not invertible, consists of an imaginary number sequence
accumulating at infinity and, for sufficiently large μ, additionally contains finitely
many real numbers. Therefore, formula (2.0.4) can fail and we will use the complex
Fourier transform

v̂(λ) = (2π)−1/2
∫

R

exp (−iλt)v(t) dt, λ ∈ R + iβ,

© Springer International Publishing Switzerland 2015
L. Baskin et al., Resonant Tunneling, Lecture Notes on Numerical Methods
in Engineering and Sciences, DOI 10.1007/978-3-319-15105-2_2

15



16 2 Waveguides. Radiation Principle. Scattering Matrices

where R + iβ = {λ ∈ C : Imλ = β}; there are the inversion formula

v(t) = (2π)−1/2
∫

R+iβ
exp (iλt )̂v(λ)dλ

and the Parseval equality

∫
R

exp (2βt)|v(t)|2 dt =
∫

R+iβ
|̂v(λ)|2 dλ.

Let us assume that the line R + iβ is free from the spectrum of A(·, μ) and the f in
(2.0.1) satisfies the condition

∫
�

exp (2βt)| f (y, t)|2 dydt =
∫

R+iβ
| f̂ (y, λ)|2 dydλ < ∞.

Then, according to Theorem 2.1.4, there exists a unique solution u to problem (2.0.1)
such that

u(·, t) = (2π)−1/2
∫

R+iβ
exp (iλt)A(λ, μ)−1 f̂ (·, λ) dλ (2.0.5)

and the inequality

∑
|α|+k≤2

∫
�

exp (2βt)|∂k
t ∂α

y u(y, t)|2 dydt ≤ C
∫

�

exp (2βt)| f (y, t)|2 dydt

holds with a constant C independent of f .
These considerations motivate the statement of the boundary value problem in the

domain G with cylindrical ends

− �u(x) − μu(x) = f (x), x ∈ G, (2.0.6)

u(x) = 0, x ∈ ∂G,

in function spaces with weighted norms (see Fig. 1.2 and the definition of G just after
the figure). For integer l ≥ 0, we denote by Hl(G) the Sobolev space with norm

‖v; Hl(G)‖ =
( l∑

j=0

∫
G

∑
|α|= j

|Dα
x v(x)|2 dx

)1/2
.

For real β, we denote by ρβ a smooth positive function on G given by the equality
ρβ(x) = exp(β|x |) for large |x |. We also introduce the space Hl

β(G) with norm

‖u; Hl
β(G)‖ = ‖ρβu; Hl(G)‖. Let Ḣ2

β (G) denote the closure in H2
β (G) of the set

of smooth functions in G that have compact supports in G and vanish on ∂G. The

http://dx.doi.org/10.1007/978-3-319-15105-2_1
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operator u �→ (−� − μ)u of problem (2.0.6) implements a continuous mapping

Aβ(μ) : Ḣ2
β (G) → H0

β (G).

Wedenote by kerAβ(μ) the kernel ofAβ(μ), i.e. the space {u ∈ Ḣ2
β (G) : Aβ(μ)u =

0}, and we denote by ImAβ(μ) the range of Aβ(μ),

ImAβ(μ) = { f ∈ H0
β (G) : f = Aβ(μ)u, u ∈ Ḣ2

β (G)}.

The operator Aβ(μ) is called Fredholm if ImAβ(μ) is closed, and kerAβ(μ) and
cokerAβ(μ) := H0

β (G)/ImAβ(μ) are finite-dimensional, where H0
β (G)/ImAβ(μ)

is the factor space H0
β (G) modulo ImAβ(μ). From Theorem 2.2.2 it follows that

Aβ(μ) is Fredholm for all β ∈ R except a certain sequence accumulated at infinity.
Moreover, dim(H0

β (G)/ImAβ(μ)) = dim kerA−β(μ) and the index IndAβ(μ) of
Aβ(μ) can be defined by

IndAβ(μ) = dim kerAβ(μ) − dim kerA−β(μ).

We describe the asymptotics at infinity of solutions to problem (2.0.6) and calculate
the difference IndAβ(μ) − IndAγ (μ). Then we make use of these results when
defining the scattering matrix and proving the existence of a unique solution to
problem (2.0.6) subject to radiation conditions at infinity (the radiation principle).

2.1 Boundary Value Problem in a Cylinder

2.1.1 Statement of the Problem. Operator Pencil

Let � be a bounded domain in R
n with smooth boundary ∂�. In the cylinder � =

{(y, t) : y = (y1, . . . , yn) ∈ �, t ∈ R}, we consider the problem

(−� − μ)u(y, t) = f (y, t), (y, t) ∈ �, (2.1.1)

u(y, t) = 0, (y, t) ∈ ∂�,

where

� = �y + ∂2t , �y =
n∑

j=1

∂2j , ∂ j = ∂/∂y j .

We apply to problem (2.1.1) the Fourier transform

v̂(λ) = (2π)−1/2
∫ +∞

−∞
exp (−iλt)v(t) dt (2.1.2)
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and obtain the family of boundary value problems depending on the parameter λ:

(−�y + λ2 − μ)̂u(y, λ) = f̂ (y, λ), y ∈ �, (2.1.3)

û(y, λ) = 0, y ∈ ∂�.

Now, we introduce an operator-valued function C 	 λ �→ A(λ, μ) defined by the
equality

A(λ, μ)v(y) = (−�y + λ2 − μ)v(y), y ∈ �, (2.1.4)

for the functions v, smooth in � and equal to zero on ∂�; for the time being, the
parameter μ is fixed. The function A(·, μ) is called an operator pencil. A number
λ0 ∈ C is said to be an eigenvalue of A(·, μ) if there exists a nontrivial solution ϕ0

(an eigenvector) to the equation A(λ0, μ)v = 0, that is, the λ0 and ϕ0 satisfy the
boundary value problem

(−�y + λ20 − μ)ϕ0(y) = 0, y ∈ �,

ϕ0(y) = 0, y ∈ ∂�.

We also consider the problem

(−�y − μ)v(y) = 0, y ∈ �, (2.1.5)

v(y) = 0, y ∈ ∂�,

with spectral parameter μ. The eigenvalues of problem (2.1.5) are called the thresh-
olds of problem (2.1.1). The thresholds form a positive sequence τ1 < τ2 < . . . ,
which strictly increases to infinity. Any eigenvalue τl is of finite multiplicity, that
is, there exist at most finitely many linearly independent eigenvectors correspond-
ing to τl . Let us introduce the non-decreasing sequence {μk}∞k=1 of the eigenvalues
of problem (2.1.5) counted according to their multiplicity. Generally speaking, the
numbering of τl and that of μk are different; every μk coincides with one of the
thresholds τl .

For any μ, the eigenvalues of the pencil λ �→ A(λ, μ) are defined by the equality
λ±

k (μ) = ±(μ − μk)
1/2; more precisely, we set λ±(μ) = ±i(μk − μ)1/2 for

μk > μ with (μk − μ)1/2 > 0 and λ±(μ) = ±i(μ − μk)
1/2 for μk < μ with

(μ − μk)
1/2 > 0. If μ = μk , we have λ+

k (μ) = λ−
k (μ) = 0; in such a case we will

sometimes write λ0k(μ) instead of λ±
k (μ). Moreover, we sometimes write simply λ±

k
instead of λ±

k (μ). For μk−1 < μ < μk , the λ±
k (μ), λ±

k+1(μ), . . . are imaginary and
the λ±

1 (μ), . . . , λ±
k−1(μ) are real. To the eigenvalues λ±

k there corresponds the same
eigenvector ϕk , which is also an eigenvector of problem (2.1.5) corresponding to
the eigenvalue μk . Any eigenvalue of the pencil A(·, μ) coincides with one of the
eigenvalues mentioned in this paragraph.

We denote by Hl(�) the Sobolev function space in � with norm
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‖u‖l =
(∫

�

∑
|α|≤l

|∂α
y u(y)|2 dy

)1/2
, (2.1.6)

where l = 0, 1, . . . ; in particular, H0(�) = L2(�). Besides, we denote by Ḣ2(�)

the closure in H2(�) of the set of smooth functions in � that vanish on ∂�.
Let us consider the problem

(−�y + λ2 − μ)v(y) = f (y), y ∈ �, (2.1.7)

v(y) = 0, y ∈ ∂�.

Proposition 2.1.1 (e.g., see [1]) (i) Assume that λ is not an eigenvalue of the pencil
A(·, μ), the μ being fixed. Then for any f ∈ L2(�) there exists a unique solution
v ∈ Ḣ2(�) to problem (2.1.7) and the inequality

2∑
j=0

|λ|2 j‖v‖22− j ≤ C‖ f ‖20 (2.1.8)

holds with a constant C independent of f .
(ii) Let F be a closed subset in C that belongs to a strip {λ ∈ C : |Imλ| <

h < +∞} and contains no eigenvalues of the pencil A(·, μ). Then, for any λ ∈ F,
estimate (2.1.8) holds with a constant C = C(F) that depends on F and remains
independent of λ and f .

Let λ0 be an eigenvalue of A(·, μ), and let ϕ0 be an eigenvector corresponding to
λ0. Smooth functions ϕ1, . . . , ϕm−1 on � which vanish on ∂� and satisfy

l∑
k=0

1

k!∂
k
λA(λ0, μ)ϕl−k = 0, l = 1, . . . , m − 1, (2.1.9)

are called generalized eigenvectors. The ordered collection ϕ0, ϕ1, . . . , ϕm−1 is said
to be a Jordan chain corresponding to λ0. Clearly, in view of (2.1.4), the relations
(2.1.9) take the form

A(λ0, μ)ϕ0 = 0,

A(λ0, μ)ϕ1 + 2λ0ϕ
0 = 0, (2.1.10)

A(λ0, μ)ϕl + 2λ0ϕ
l−1 + 2ϕl−2 = 0, l = 2, . . . , m − 1.

There are no generalized eigenvectors for λ±
k 
= 0. Indeed, assuming, for example,

that a Jordan chain ϕ0
k , ϕ1

k exists for λ+
k 
= 0, we obtain the equations

A(λ+
k , μ)ϕ0

k = 0,

A(λ+
k , μ)ϕ1

k + 2λ+
k ϕ0

k = 0,
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which can be written in the form

(−�y − μk)ϕ
0
k = 0, (2.1.11)

(−�y − μk)ϕ
1
k + 2λ+

k ϕ0
k = 0.

The boundary value problem

(−�y − μk)v(y) = f (y), y ∈ �; v(y) = 0, y ∈ ∂�, (2.1.12)

has a solution, if and only if ( f, ψ)� = 0 for each eigenvectorψ of this problem that
corresponds to the eigenvalue μk ; the ( f, ψ)� denotes the inner product in L2(�).
Therefore, there is no solution ϕ1

k to the equation (2.1.11) with λ+
k 
= 0. In the case

of μ = μk , we have λ+
k = λ−

k = 0 and a Jordan chain ϕ0
k , ϕ1

k . Both of these vectors
satisfy the same homogeneous boundary value problem (2.1.12) with f = 0; the ϕ0

k
must be nonzero, and the ϕ1

k may equal 0. It is easy to see from the equation (2.1.10)
with l = 0 and λ0 = 0 that there is no generalized eigenvector ϕ3

k .
The operator function λ �→ A(λ, μ)−1 : L2(�) → Ḣ2(�) except the poles at

the eigenvalues of the pencil λ �→ A(λ, μ) is holomorphic everywhere. To describe
the behavior of A(λ, μ)−1 in a neighborhood of the poles, we specify the general
Keldysh’s theorem for our problem. Let τ be an eigenvalue of problem (2.1.5) and
let J be the geometric multiplicity of τ . We introduce a basis ϕ(0,1), . . . , ϕ(0,J ) of
the eigenspace corresponding to τ . For μ > τ , we denote by λ± = λ±(μ) the
eigenvalues ±(μ − τ)1/2 of the pencil A(·, μ). The multiplicity of each of the λ±
is equal to J , and the eigenspace is spanned by ϕ(0,1), . . . , ϕ(0,J ). According to the
Keldysh theorem, in a neighborhood of λ+ there holds the representation

A(λ, μ)−1 = (λ − λ+)−1
J∑

j=1

(·, ψ(0, j))� ϕ(0, j) + �(λ), (2.1.13)

where (u, v)� denotes the inner product in L2(�), �(λ) : L2(�) → Ḣ2(�) is
a holomorphic function, and the ψ(0,1), . . . , ψ(0,J ) are eigenvectors of the pencil
A(·, μ) that correspond to λ+ (and, simultaneously, to λ−) and satisfy the conditions

(∂λA(λ+, μ)ϕ(0, j), ψ(0,k))� = δ jk .

Since ∂λA(λ+, μ) = 2λ+, we have 2λ+(ϕ(0, j), ψ(0,k))� = δ jk and, assuming
‖ϕ(0, j)‖0 = 1, obtain ψ(0, j) = (2λ+)−1ϕ(0, j). Therefore, representation (2.1.13)
takes the form

A(λ, μ)−1 = (λ − λ+)−1
J∑

j=1

(2λ+)−1(·, ϕ(0, j))�ϕ(0, j) + �(λ). (2.1.14)
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To obtain a representation forA(λ, μ)−1 in a neighborhood of the pole λ−, it suffices
to change λ+ for λ− in (2.1.14).

For μ < τ , we set λ±(μ) = i(τ − μ)1/2, where (τ − μ)1/2 > 0, and denote
by ϕ(0,1), . . . , ϕ(0,J ) an orthonormal basis in the eigenspace corresponding to λ±
(recall that λ+(μ) and λ−(μ) have the same eigenspace). We arrive at the following
assertion.

Proposition 2.1.2 For any real μ 
= τ , the operator function λ �→ A(λ, μ)−1

admits the representation

A(λ, μ)−1 = (λ − λ±)−1
J∑

j=1

(2λ±)−1(·, ϕ(0, j))�ϕ(0, j) + �(λ) (2.1.15)

in a neighborhood of λ± = λ±(μ) with holomorphic function λ �→ �(λ) : L2(�) →
Ḣ2(�).

Now, we suppose that μ = τ . Then λ0 = 0 is an eigenvalue of the pencil
λ �→ A(λ, μ); the geometric multiplicity of λ0 is equal to J . Let ϕ(0,1), . . . , ϕ(0,J )

be a basis in the eigenspace corresponding to λ0 and ϕ(0, j), ϕ(1, j) a Jordan chain,
where j = 1, . . . , J . By the Keldysh theorem, in a neighborhood of the eigenvalue
λ0 there holds the representation

A(λ, μ)−1 =
J∑

j=1

2∑
k=1

(λ − λ0)−k
2−k∑
q=0

(·, ψ(q, j))�ϕ(2−k−q, j) + �(λ), (2.1.16)

where ψ(0, j), ψ(1, j), j = 1, . . . , J , is a collection of Jordan chains of the pencil
A(·, μ) that correspond to the λ0 and satisfy the conditions

∑
p+q+r=2+ν

1

p! (∂
p
λ A(λ0, μ)ϕ(q,σ ), ψ(r,ζ ))� = δσ,ζ δ0,ν , (2.1.17)

with σ, ζ = 1, . . . , J and ν = 0, 1; the operator function λ �→ �(λ) : L2(�) →
Ḣ2(�) is holomorphic in a neighborhood of λ0. Let the basis ϕ(0,1), . . . , ϕ(0,J )

be orthonormal and let every generalized eigenvector ϕ(1, j) be zero. Then (2.1.17)
reduces to the relations

(ϕ(0,σ ), ψ(0,ζ ))� = δσ,ζ , (ϕ(0,σ ), ψ(1,ζ ))� + (ϕ(1,σ ), ψ(0,ζ ))� = 0.

The equalities (ϕ(0,σ ), ψ(0,ζ ))� = δσ,ζ imply thatψ(0,σ ) = ϕ(0,σ ) for σ = 1, . . . , J .
Since ϕ(1,σ ) = 0, we have (ϕ(0,σ ), ψ(1,ζ ))� = 0, which leads to ψ(1,ζ ) = 0 for
ζ = 1, . . . , J .
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Proposition 2.1.3 For μ = τ , in a neighborhood of λ0 = 0 the operator function
λ �→ A(λ, μ)−1 admits the representation

A(λ, μ)−1 = (λ − λ0)−2
J∑

j=1

(·, ϕ(0, j))�ϕ(0, j) + �(λ) (2.1.18)

with holomorphic function λ �→ �(λ) : L2(�) → Ḣ2(�).

2.1.2 The Solvability of the Problem in a Cylinder

LetC∞
c (�) denote the set of smooth functionswith compact supports in�; as before,

� = {y, t) : y ∈ �, t ∈ R}. For l = 0, 1, . . . and β ∈ R, we introduce the space
Hl

β(�) as the completion of C∞
c (�) in the norm

‖u; Hl
β(�)‖ =

( ∑
|α|+k≤l

∫
�

exp (2βt)|∂k
t ∂α

y u(y, t)|2 dydt
)1/2

. (2.1.19)

We denote by Ḣ2
β (�) the closure in H2

β (�) of the set of smooth functions in �

that have compact supports in � and vanish on ∂�. The operator of problem (2.1.1)
implements a continuous mapping

Aβ(μ) : Ḣ2
β (�) 	 u �→ (−� − μ)u ∈ H0

β (�). (2.1.20)

We will use the complex Fourier transform

v̂(λ) = (2π)−1/2
∫

R

exp (−iλt)v(t) dt, λ ∈ R + iβ, (2.1.21)

where R + iβ = {λ ∈ C : Imλ = β}, the inversion formula

v(t) = (2π)−1/2
∫

R+iβ
exp (iλt )̂v(λ)dλ, (2.1.22)

and the Parseval equality

∫
R

exp (2βt)|v(t)|2 dt =
∫

R+iβ
|̂v(λ)|2 dλ. (2.1.23)
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Theorem 2.1.4 Let the line R + iβ be free from the eigenvalues of the pencil λ �→
A(λ, μ). Then, for any f ∈ H0

β (�) there exists a unique solution u ∈ Ḣ2
β (�) to

problem (2.1.1). The estimate

‖u; H2
β (�)‖ ≤ C‖ f ; H0

β (�)‖ (2.1.24)

holds with a constant C independent of f .

Proof The Fourier transform (2.1.21) reduces problem (2.1.1) to the family of prob-
lems

(−�y + λ2 − μ)̂u(y, λ) = f̂ (y, λ), y ∈ �, (2.1.25)

û(λ, y) = 0, y ∈ ∂�,

with λ ∈ R + iβ. This line contains no eigenvalues of the pencil A(·, μ). Therefore,
by Proposition 2.1.1, for any λ ∈ R + iβ there exists a unique solution û(·, λ) :=
A(λ, μ)−1 f̂ (·, λ) to problem (2.1.25), which subject to the inequality

2∑
j=0

|λ|2 j‖û(·, λ)‖22− j ≤ C‖ f̂ (·, λ)‖20 (2.1.26)

and the constant C is independent of λ and f̂ (λ, ·). Consequently,
∫

R+iβ

2∑
j=0

|λ|2 j‖û(·, λ)‖22− j dλ ≤ C
∫

R+iβ
‖ f̂ (·, λ)‖20 dλ.

By virtue of (2.1.23), the left-hand side is equivalent to ‖u; H2
β (�)‖2 and the right-

hand side is equal to C‖ f ; H0
β (�)‖2. Thus, the function

u(·, t) = (2π)−1/2
∫

R+iβ
exp (iλt)A(λ, μ)−1 f̂ (·, λ) dλ (2.1.27)

satisfies problem (2.1.1) and admits estimate (2.1.24). �

2.1.3 Asymptotics of Solutions

Let us assume that f is a smooth function with compact support in �. Then the
function λ �→ f̂ (·, λ) is analytic on C and rapidly decaying in anystrip {λ ∈ C :
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|Imλ| ≤ h < ∞} as λ → ∞. The function û(·, λ) = A(λ, μ) f̂ (·, λ) is analytic
everywhere except at the poles of the function λ �→ A(λ, μ). Moreover, in view of
inequality (2.1.26), û(·, λ) is also rapidly decaying in the aforementioned strip as
λ → ∞. Let β and γ be real numbers such that the lines {λ ∈ C : Imλ = β} and
{λ ∈ C : Imλ = γ } contain no poles of A(·, μ). Then, in a representation of the
form (2.1.27), we can, using the residue theorem, change β for γ .

We now calculate the residues of the function

λ �→ F(λ) := (2π)−1/2 exp (iλt)A(λ, μ)−1 f̂ (·, λ). (2.1.28)

By Proposition 2.1.2,

resF(λ)|λ=λ± = (2π)−1/2 exp (iλ±t)
J∑

j=1

(2λ±)−1
∫

�

f̂ (y, λ±)ϕ(0, j)(y) dy ϕ(0, j);

as before, λ± = λ±(μ), where λ±(μ) = ±(μ − τ)1/2 for μ > τ and λ±(μ) =
±i(τ − μ)1/2 for μ < τ . For the real λ±, we have

∫
�

f̂ (y, λ±)ϕ(0, j)(y) dy = (2π)−1/2
∫

R

∫
�

exp (−iλ±s) f (y, s)ϕ(0, j)(y) dyds

= (2π)−1/2( f, Z±
j )�,

where
Z±

j (y, s) = exp (iλ±s)ϕ(0, j)(y) (2.1.29)

and (·, ·)� is the inner product in L2(�). Thus, for the real λ±,

resF(λ)|λ=λ± = (2π)−1
J∑

j=1

(2λ±)−1( f, Z±
j )�Z±

j . (2.1.30)

For the imaginary λ±, we obtain

resF(λ)|λ=λ± = (2π)−1
J∑

j=1

(2λ±)−1( f, Z∓
j )�Z±

j , (2.1.31)

where Z±
j (y, s) is defined by equality (2.1.29). By Proposition 2.1.3, for λ0 = 0 we

have
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resF(λ)|λ=λ0 = (2π)−1/2
J∑

j=1

ϕ(0, j)
∫

�

(
i t f̂ (y, 0) + ∂λ f̂ (y, 0)

)
ϕ(0, j)(y) dy

(2.1.32)

= (2π)−1
J∑

j=1

ϕ(0, j)
∫

R

∫
�

(i t − is) f (y, s)ϕ(0, j)(y) dyds

= (2π)−1
J∑

j=1

(
( f, Z0

j )�Z1
j + ( f, Z1

j )�Z0
j

)

with

Z0
j (y, t) = ϕ(0, j)(y), Z1

j (y, t) = i tϕ(0, j)(y). (2.1.33)

Lemma 2.1.5 Let λ± be an eigenvalue of A(·, μ), Imλ± 
= 0, and β < Imλ+ <

γ (β < Imλ− < γ ). Then, for any Z = Z−
j (Z = Z+

j ) in (2.1.29), the estimate

|( f, Z)�| ≤ C(‖ f ; H0
β (�)‖ + ‖ f ; H0

γ (�)‖)

holds for f ∈ H0
β (�)∩ H0

γ (�) with constant C independent of f . If β < 0 < γ and

λ± is a real eigenvalue, this estimate is also valid for any Z±
j in (2.1.29), Z = Z0

j ,

and Z = Z1
j in (2.1.33).

Proof We choose η1, η2 ∈ C∞(R) such that 0 ≤ η2(t) ≤ 1, η2(t) = 1 for t ≥ 1,
η2(t) = 0 for t ≤ −1, and η1 + η2 = 1. For instance, we assume that Imλ+ 
= 0
and β < Imλ+ < γ . Then, for Z = Z−

j , we have

|( f, Z)�| ≤ C
∫
�

| f (y, s)| exp (−sImλ−) dyds

≤
∫
�

η1(s)| f (y, s)| exp (βs) exp (−s(Imλ− + β)) dyds

+
∫
�

η2(s)| f (y, s)| exp (γ s) exp (−s(Imλ− + γ )) dyds.

Since Imλ+ = −Imλ−, we obtain Imλ− + γ > 0 and Imλ− + β < 0. Therefore,

|( f, Z)�| ≤ C‖η1 f ; H0
β (�)‖

(∫ 0

−∞
exp (−2s(Imλ− + β)) ds

)1/2

+ C‖η2 f ; H0
γ (�)‖

(∫ +∞

0
exp (−2s(Imλ− + γ )) ds

)1/2

≤ C(‖ f ; H0
β (�)‖ + ‖ f ; H0

γ (�)‖). �

The next theoremdescribes the asymptotics of a solution to problem (2.1.1) at infinity.
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Theorem 2.1.6 Let the lines {λ ∈ C : Imλ = β} and {λ ∈ C : Imλ = γ } be free
from the eigenvalues of the pencil A(·, μ) and f ∈ H0

β (�) ∩ H0
γ (�). Then

uβ = uγ + 2π iS(β, γ ), (2.1.34)

where uβ and uγ are solutions to problem (2.1.1) in Ḣ2
β (�) and Ḣ2

γ (�) respectively,
β < γ , and S(β, γ ) is the sum of the residues of function (2.1.28) in the strip
{λ ∈ C : β < Imλ < γ }. All functions Z±

j in (2.1.29), Z0
j , and Z1

j in (2.1.33) satisfy
homogeneous problem (2.1.1). Equality (2.1.34) can be taken as an asymptotics of
uβ(y, t) for t → +∞ and as an asymptotics of uγ (y, t) for t → −∞; the uγ (uβ )
plays the role of a remainder as t tends to + ∞ (to − ∞) .

Proof For f in the set C∞
c (�) of smooth functions with compact support in �,

equality (2.1.34) was discussed at the beginning of Sect. 2.1.3. By Lemma 2.1.5, the
functionals f �→ ( f, Z)� inS(β, γ ) are continuous on H0

β (�)∩ H0
γ (�). Therefore,

we can obtain (2.1.34) for f ∈ H0
β (�) ∩ H0

γ (�) by closing C∞
c (�) in the norm

‖ f ‖ := ‖ f ; H0
β (�)‖ + ‖ f ; H0

γ (�)‖ of the space H0
β (�) ∩ H0

γ (�).

Straightforward calculation shows that the functions Z±
j , Z0

j , and Z1
j satisfy homo-

geneous problem (2.1.1) (it also follows from (2.1.34) and the fact that the difference
u1 − u2 satisfies this problem). �

We now rewrite (2.1.34) using a more detailed notation. Let λ±
k = λ±

k (μ) be
the eigenvalue notation defined in the paragraph before formula (2.1.6). Besides,
we assume that Z±

k corresponds to λ±
k (μ), i.e., Z±

k (y, t) = exp (iλ±
k (μ)t)ϕk(y),

where ϕk is an eigenvector corresponding to λ±
k (μ) etc. [see (2.1.29), (2.1.32), and

(2.1.33)]. Then (2.1.34) takes the form

uβ − uγ =
∑

max{0,β}<Imλ+
k <γ

i(2λ+
k )−1( f, Z−

k )�Z+
k (2.1.35)

+
∑

0>Imλ−
k >min{0,β}

i(2λ−
k )−1( f, Z+

k )�Z−
k

+
∑

λ±
k ∈R

i(2λ±)−1( f, Z±
k )�Z±

k

+
∑
λ0k=0

i
(
( f, Z0

k )�Z1
k + ( f, Z1

k )�Z0
k

)

and the two last sums (corresponding to the real eigenvalues) are absent if βγ ≥ 0.
The right-hand side of (2.1.35) is a linear combination of the solutions Z+

k ,
Z−

k , and so on, to homogeneous problem (2.1.1) (where f = 0). The coefficients
i(2λ+

k )−1( f, Z−
k )�, i(2λ−

k )−1( f, Z+
k )�, and so on, of this linear combination are

continuous functionals on the space H0
β (�) ∩ H0

γ (�).
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The following simplifications of equality (2.1.35) for some special cases are evi-
dent. For 0 < β < γ , (2.1.35) reduces to the form

uβ − uγ =
∑

β<Imλ+
k <γ

i(2λ+
k )−1( f, Z−

k )�Z+
k .

In the case of β < γ < 0,

uβ − uγ =
∑

β<Imλ−
k <γ

i(2λ−
k )−1( f, Z+

k )�Z−
k .

If the strip β < Imλ < γ contains no eigenvalues of the pencil A(·, μ), except the
real ones, we have

uβ − uγ =
∑

λ±
k ∈R

i(2λ±)−1( f, Z±
k )�Z±

k +
∑
λ0k=0

i
(
( f, Z0

k )�Z1
k + ( f, Z1

k )�Z0
k

)
;

if, in addition, the μ is not a threshold, this equality takes the form

uβ − uγ =
∑

λ±
k ∈R

i(2λ±)−1( f, Z±
k )�Z±

k ,

which is the most important situation in the subsequent chapters.

2.2 Problem in a Domain G with Cylindrical Ends

2.2.1 Statement and Fredholm Property of the Problem

Let G be a domain in R
n+1 with smooth boundary ∂G coinciding, outside a large

ball, with the union �1+ ∪ · · · ∪ �T+ of finitely many non-overlapping semicylinders

�r+ = {(yr , tr ) : yr ∈ �r , tr > 0},

where (yr , tr ) are local coordinates in �r+ and �r is a bounded domain in R
n . We

consider the problem

− �u(x) − μu(x) = f (x), x ∈ G,

u(x) = 0, x ∈ ∂G. (2.2.1)
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For integer l ≥ 0, we denote by Hl(G) the Sobolev space with norm

‖v; Hl(G)‖ =
⎛
⎝ l∑

j=0

∫
G

∑
|α|= j

|Dα
x v(x)|2 dx

⎞
⎠

1/2

.

Weassume thatβ = (β1, . . . , βT )with realβr anddenote byρβ a smooth positive on
G function given on �r+ by the equality ρβ(yr , tr ) = exp(βr tr ). We also introduce
the space Hl

β(G) with norm ‖u; Hl
β(G)‖ = ‖ρβu; Hl(G)‖. Let Ḣ2

β (G) denote the

closure in H2
β (G) of the set of smooth functions in G that have compact supports in

G and vanish on ∂G. The operator u �→ (−� − μ)u of problem (2.2.1) implements
a continuous mapping

Aβ(μ) : Ḣ2
β (G) → H0

β (G). (2.2.2)

We denote by kerAβ(μ) the kernel ofAβ(μ), i.e. the space {u ∈ Ḣ2
β (G) : Aβ(μ)u =

0}, and denote by ImAβ(μ) the range of Aβ(μ),

ImAβ(μ) = { f ∈ H0
β (G) : f = Aβ(μ)u, u ∈ Ḣ2

β (G)}.

Definition 2.2.1 The operator Aβ(μ) is called Fredholm if ImAβ(μ) is closed and
kerAβ(μ) and cokerAβ(μ) := H0

β (G)/ImAβ(μ) are finite-dimensional, where

H0
β (G)/ImAβ(μ) is the factor space H0

β (G) modulo ImAβ(μ).

Let us introduce an operator pencil λ → Ar (λ, μ) defined by (2.1.4) for the
domain �r , r = 1, . . . , T .

Theorem 2.2.2 (i) Operator (2.2.2) is Fredholm if and only if the line {λ ∈ C :
Imλ = βr } is free from the eigenvalues of the pencilAr (·, μ) for every r = 1, . . . , T .

(ii) dim(H0
β (G)/ImAβ(μ)) = dim kerA−β(μ).

(iii) f ∈ ImAβ(μ) if and only if ( f, v)G = 0 for all v ∈ kerA−β(μ); here
(·, ·)G means the extension of the inner product in L2(G) by continuity to the pair
H0

β (G), H0−β(G).

2.2.2 Asymptotics of Solutions

Theorem 2.2.3 Let u be a solution to problem (2.2.1) such that u ∈ Ḣ2
β (G) with

β = (β1, . . . , βT ). Let ηr f ∈ H0
γ r (�

r+ ∩ G) for a certain r , where βr < γ r , ηr

denotes a smooth function with support in �
r
+ ∩ G, and ηr (yr , tr ) = 1 for tr > T

with a large T . We assume the lines {λ ∈ C : Imλ = βr } and {λ ∈ C : Imλ = γ r }
to be free from the eigenvalues of the pencil Ar (·, μ).
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Then in �r+ for tr > T there holds the equality

u =
∑

max{0,βr }<Imλ+
k <γ r

c+
k Z+

k +
∑

0>Imλ−
k >min{0,βr }

c−
k Z−

k (2.2.3)

+
∑

λ±
k ∈R

c±
k Z±

k +
∑
λ0k=0

(c1k Z1
k + c0k Z0

k ) + v,

where the functions Z+
k , Z−

k , and so on, are defined in � := �r = �r ×R like those
in (2.1.35), the c+

k , c−
k , and so on, are some constant coefficients and ηrv ∈ Ḣ2

γ r (�
r ).

(The two last sums (corresponding to the real eigenvalues) are absent if βrγ r ≥ 0.)

Proof We have

(−� − μ)(ηr u)(x) = g(x), x ∈ �r , (2.2.4)

(ηr u)(x) = 0, x ∈ ∂�r ,

where g = ηr f − 2∇ηr∇u − u�ηr . Because∇ηr and�ηr have compact supports,
the g belongs to H0

β1
(�r )∩ H0

β2
(�r ). Applying Theorems 2.1.4 and 2.1.6, we obtain

(2.1.35) with f = g, u1 = ηr u, and v = u1. This leads to equality (2.2.3), where

c+
k = i(2λ+

k )−1(g, Z−
k )�r , c−

k = i(2λ−
k )−1(g, Z+

k )�r , . . . , c0k = i(g, Z1
k )�r . (2.2.5)

�

Note that, in the proof, the function g depends on f , u, and ηr . Therefore, formulas
(2.2.5) do not present explicit expressions of the coefficients in (2.2.3) as functionals
defined immediately for f in (2.2.1). Such expressions are given in Sect. 2.2.4.

2.2.3 Properties of the Index Ind Aβ(μ) and of the Spaces
kerAβ(μ) and cokerAβ(μ)

Let Aβ(μ) be Fredholm (see Definition 2.2.1). The difference dim kerAβ(μ) −
dim cokerAβ(μ) is called the index ofAβ(μ) and denoted by IndAβ(μ). Assuming
both of the operators Aβ(μ) andAγ (μ) to be Fredholm, we calculate, in particular,
the difference IndAβ(μ)– IndAγ (μ) in termsof the spectrumof the pencilsAr (·, μ).

Recall that, for any non-zero eigenvalue λ0 of a pencil Ar (·, μ), there are no
generalized eigenvectors and, consequently, the full multiplicity of λ0 is equal to its
geometric multiplicity, i.e., the full multiplicity coincides with dim kerAr (λ0, μ).
If λ0 = 0 turns out to be an eigenvalue of a certain Ar (·, μ), for any eigenvector
ϕ0 ∈ kerAr (λ0, μ) there exists a generalized eigenvector and the full multiplicity of
λ0 equals its doubled geometric multiplicity.
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Theorem 2.2.4 Let β = (β1, . . . , βT1 , βT2 , . . . , βT ) and γ = (γ 1, . . . , γ T1 ,
βT2 , . . . , βT ), where βr < γ r for r = 1, . . . , T1, and let the lines R + iβr and
R + iγ r be free from the eigenvalues of the pencil Ar (·, μ) for r = 1, . . . , T . We
denote by κ

r the sum of the full multiplicities of the eigenvalues of the pencilAr (·, μ)

in the strip {λ ∈ C : βr < Imλ < γ r } with r = 1, . . . , T1 and set κ = κ
1+· · ·+κ

T1 .
Then

dim
(
kerAβ(μ)/kerAγ (μ)

) + dim
(
kerA−γ (μ)/kerA−β(μ)

) = κ, (2.2.6)

IndAβ(μ) = IndAγ (μ) + κ. (2.2.7)

Proof We number all functions of the form ηr Z±
k , ηr Z0

k , and ηr Z1
k that correspond

to the eigenvalues of the pencil Ar (·, μ) in the strip {λ ∈ C : βr < Imλ < γ r },
r = 1, . . . , T1, by the same index and obtain the collection Z1, . . . , Zκ. According
to Theorem 2.2.3, any function u in kerAβ(μ) admits the asymptotics

u = c1Z1 + · · · + cκZκ + v, (2.2.8)

with constant coefficients c j and v in Ḣ2
γ (G). Therefore, there exist at most κ

vectors in the space kerAβ(μ) linearly independent modulo kerAγ (μ); we set
d := dim

(
kerAβ(μ)/kerAγ (μ)

)
and have 0 ≤ d ≤ κ. Without loss of generality,

we assume that there exist vectors U j in kerAβ(μ) such that

U j = Z j +
κ∑

k=d+1

c jk Zk + v j , j = 1, . . . , d, (2.2.9)

where c jk = const and v j ∈ Ḣ2
γ (G). Clearly, theU1, . . . , Ud are linearly independent

modulo kerAγ (μ).
Let D denote dim

(
kerA−γ (μ)/kerA−β(μ)

)
; we will now verify that D = κ−d.

We first assume that D < κ −d and denote by ϕ1, . . . , ϕD a collection of vectors
in kerA−γ (μ) linearly independent modulo kerA−β(μ). Then there exists a non-
trivial linear combination Z = c0d+1Zd+1 + · · · + c0

κ
Zκ such that f := Aβ(μ)Z ∈

H0
γ (G) and, moreover, ( f, ϕ j )G = 0 for j = 1, . . . , D. This and Theorem 2.2.2(iii)

imply the existence of a function V satisfying Aγ (μ)V = f . Therefore, we have
U0 := V − Z ∈ kerAβ(μ) and the vectors U0, U1, . . . , Ud are linearly independent
modulo kerAγ (μ), which contradicts d = dim

(
kerAβ(μ)/kerAγ (μ)

)
. Thus, we

obtained the inequality D ≥ κ − d.
Now, we suppose that D > κ − d. Let ϕ1, . . . , ϕD be a collection of elements

in kerA−γ (μ) linearly independent modulo kerA−β(μ). We choose a collection
�1, . . . , �D in H0

γ (G) such that

(� j , ϕk)G = δ jk, j, k = 1, . . . , D,

(� j , ψ)G = 0 for all ψ ∈ kerA−β(μ).
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Then there exists χ j that satisfies Aβ(μ)χ j = � j , where j = 1, . . . , D. If needed,
we can subtract from the χ j a linear combination of U1, . . . , Ud in (2.2.9) to provide
the inclusions

χ j −
κ∑

h=d+1

d jh Zh ∈ Ḣ2
γ (G), j = 1, . . . , D. (2.2.10)

No nontrivial linear combination of χ1, . . . , χD belongs to Ḣ2
γ ; otherwise there is a

linear combination of Aγ (μ)χ j = � j orthogonal to all of the vectors ϕ1, . . . , ϕD ,
which is impossible in view of the choice of the �1, . . . , �D . This and (2.2.10)
imply that D ≤ κ − D. Therefore, we obtain the equality D = κ and, consequently,
equality (2.2.6).

Let us verify formula (2.2.7). According to Theorem 2.2.2(ii), dim cokerAβ(μ) =
dim kerA−β(μ), hence IndAβ(μ) = dim kerAβ(μ) − dim kerA−β(μ), and the
same with β replaced by γ . From (2.2.6) it follows that

dim kerAβ(μ) = dim kerAγ (μ) + d,

dim kerA−β(μ) = dim kerA−γ (μ) + d − κ,

and therefore IndAβ(μ) = IndAγ (μ) + κ. �

2.2.4 Calculation of the Coefficients in the Asymptotics

Now, we are in a position to obtain explicit expressions for the coefficients in (2.2.3).
We will use the notation Z j with j = 1, . . . , κ, defined at the beginning of the proof
of Theorem 2.2.4, and introduce also

Z∗
j := (2λ±

k )−1ηr Z±
k for Z j = ηr Z∓

k and λ±
k /∈ R;

Z∗
j := (2λ±

k )−1ηr Z±
k for Z j = ηr Z±

k and λ±
k ∈ R \ 0; (2.2.11)

Z∗
j := ηr Z0

k for Z j = ηr Z1
k and λ0k = 0;

Z∗
j := ηr Z1

k for Z j = ηr Z0
k and λ0k = 0;

the connection between Z j and Z∗
j has been stated in (2.1.35).

We assume the hypotheses of Theorem 2.2.3 to be fulfilled and write the asymp-
totics of a solution u ∈ Ḣ2

β in the form (2.2.8).
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Proposition 2.2.5 Let V = Z∗
j + ηrv, where Z∗

j is a function in (2.2.11) with a

certain r and v ∈ Ḣ2−β(G). We suppose the V satisfies the equations

(−� − μ)V (x) = 0, x = (yr , tr ) ∈ �r+, tr > T,

V (x) = 0, x ∈ ∂�r+ ∩ ∂G, tr > T .

Then, for the coefficient c j in (2.2.8) there holds the equality

c j = i(Aβ(μ)ηr u, V )G . (2.2.12)

Proof We set ηr,ε(yr , tr ) := ηr (yr , εtr ) with small positive ε and obtain

(Aβ(μ)ηr u, V )G = (Aβ(μ)ηr,εu, V )G + (Aβ(μ)(ηr − ηr,ε)u, V )G .

The function (ηr − ηr,ε)u vanishes on infinity, so we can integrate the second term
on the right by parts :

(Aβ(μ)(ηr − ηr,ε)u, V )G = ((−� − μ)(ηr − ηr,ε)u, V )�r+
= ((ηr − ηr,ε)u, (−� − μ)V )�r+ = 0.

Therefore,

(Aβ(μ)ηr u, V )G = (Aβ(μ)ηr,εu, V )G = (Aβ(μ)ηr,εu, Z∗
j )G (2.2.13)

+ (Aβ(μ)ηr,εu, V − Z∗
j )G .

According to Theorem 2.2.3,

c j = i(Aβ(μ)ηr,εu, Z∗
j )G . (2.2.14)

Moreover,

|(Aβ(μ)ηr,εu, V − Z∗
j )G | ≤ C‖ηr,εu; H2

β (G)‖‖v; H0−β‖ (2.2.15)

with a constant C independent of ε. Since ‖ηr,εu; H2
β (G)‖ → 0 as ε → 0, relations

(2.2.13), (2.2.14), and (2.2.15) lead to (2.2.12). �

Proposition 2.2.6 Let the hypotheses of Theorem 2.2.4 be fulfilled and let
U1, . . . , Ud be vectors in kerAβ(μ) that satisfy (2.2.9), where d = dim(
kerAβ(μ)/kerAγ (μ)

)
. Then there exist vectors U∗

d+1, . . . , U∗
κ

in kerA−γ (μ) such
that
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U∗
k = Z∗

k −
d∑

j=1

c jk Z∗
j + v∗

k , k = d + 1, . . . , κ, (2.2.16)

and v∗
k ∈ Ḣ2−β(G).

Proof By virtue of Theorem 2.2.4, there exist vectors Vd+1, . . . , Vκ in kerA−γ (μ)

linearly independent modulo kerA−β(μ). According to Theorem 2.2.3, Vk admits
the representation

Vk =
κ∑

j=1

bkj Z∗
j + vk, vk ∈ H2−β(G), k = d + 1, . . . , κ. (2.2.17)

We have

0 = (Aβ(μ)Uh , Vk)G = (Aβ(μ)

T1∑
r=1

ηr Uh , Vk)G + (Aβ(μ)(1 −
T1∑

r=1

ηr )Uh , Vk)G . (2.2.18)

The function (1 − ∑T1
r=1 ηr )Uh belongs to Ḣ2

γ (G) hence

Aβ(μ)(1 −
T1∑

r=1

ηr )Uh = Aγ (μ)(1 −
T1∑

r=1

ηr )Uh .

Taking into account this equality, the relation Vk ∈ kerA−γ (μ), and Theorem

2.2.2(iii), we obtain Aγ (μ)(1 − ∑T1
r=1 ηr )Uh = 0 and

0 = (Aβ(μ)Uh, Vk)G = (Aβ(μ)

T1∑
r=1

ηrUh, Vk)G .

To calculate the right-hand side, we employ Proposition 2.2.5 and, in view of (2.2.9),
arrive at

bkh +
κ∑

j=d+1

chj bk j = 0, h = 1, . . . , d, k = d + 1, . . . , κ. (2.2.19)

Therefore, the first d columns of the (κ − d) × d-matrix b = ‖bkp‖ are linear
combinations of the rest κ − d columns. The rank of the matrix b is equal to κ − d
because Vd+1, . . . , Vκ are linearly independent modulo kerA−β(μ). It follows that
the matrix ‖bkj‖κ

k, j=d+1 is nonsingular. This allows us to assume in (2.2.17) that
bkj = δk j for k, j = d + 1, . . . , κ. Then, by virtue (2.2.19), we obtain

bkh = −chk, h = 1, . . . , d, k = d + 1, . . . , κ,
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which completes the proof. �

We now pass on to the basic theorem of this section. As before, we suppose
that β = (β1, . . . , βT1 , βT2 , . . . , βT ) and γ = (γ 1, . . . , γ T1 , βT2 , . . . , βT ), where
βr < γ r for r = 1, . . . , T1, and the linesR+ iβr andR+ iγ r contain no eigenvalues
of the pencil Ar (·, μ) for r = 1, . . . , T . We denote by κ

r the sum of the full
multiplicities of the eigenvalues of the pencil Ar (·, μ) in the strip {λ ∈ C : βr <

Imλ < γ r } with r = 1, . . . ,T1 and set κ = κ
1 + · · · + κ

T1 . We also keep the
notation d := dim

(
kerAβ(μ)/kerAγ (μ)

)
.

Theorem 2.2.7 Let f ∈ H0
γ (G) and let problem (2.2.1) have a solution in Ḣ2

β (G).

Then, for any constant c1, . . . , cd , there exists a solution u ∈ Ḣ2
β (G) to problem

(2.2.1) such that

u =
d∑

j=1

c j Z j +
κ∑

k=d+1

bk Zk + v,

where v ∈ Ḣ2
γ (G) and Z1, . . . , Zκ are the same as in (2.2.8). The constant bk with

k = d + 1, . . . , κ is defined by

bk = i( f, U∗
k )G +

d∑
h=1

chchk,

where U∗
k belongs to kerA−γ (μ) and satisfies (2.2.16), k = d + 1, . . . , κ.

Proof Letw ∈ Ḣ2
β (G) be an arbitrary solution to problem (2.2.1) and letU1, . . . , Ud

be the vectors in kerAβ(μ) defined by (2.2.9). We choose a linear combination L of
U1, . . . , Ud such that v := w + L admits the representation

v =
κ∑

j=d+1

a j Z j + ρ, ρ ∈ Ḣ2
γ (G)

with constant coefficients a j . Let us calculate the ak . The function v(1 − ∑T1
r=1 ηr )

belongs to Ḣ2
γ (G), which follows (Aβ(μ)v(1−∑T1

r=1 ηr ), U∗
k )G = 0 (compare with

the proof of Proposition 2.2.6). Therefore,

i( f, U∗
k )G = i(Aβ(μ)v, U∗

k )G =
T1∑

r=1

i(Aβ(μ)ηrv, U∗
k )G .

From Proposition 2.2.5, it follows that the right-hand side is equal to ak . The solution
u in the statement of this theorem is defined by the equality u = v + c1U1 + · · · +
cdUd . �
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2.3 Waves and Scattering Matrices

2.3.1 Waves

We start with the boundary value problem

(−� − μ)u(y, t) = 0, (y, t) ∈ �,

u(y, t) = 0, (y, t) ∈ ∂�, (2.3.1)

in the cylinder � = {(y, t) : y = (y1, . . . , yn) ∈ �, t ∈ R} and with the operator
pencil

A(λ, μ)v(y) = (−�y + λ2 − μ)v(y), y ∈ �; v|∂� = 0. (2.3.2)

Let {μk}∞k=1 be the non-decreasing sequence of the eigenvalues of the problem

(−�y − μ)v(y) = 0, y ∈ �,

v(y) = 0, y ∈ ∂�. (2.3.3)

counted according to their multiplicity (see 2.1.1). We fix a real μ 
= μk , k =
1, 2, . . . , that is, the μ is not a threshold, and introduce the functions

u±
k (y, t;μ) = (2|λ∓

k |)−1/2 exp(iλ∓
k t)ϕk(y) (2.3.4)

with real λ±
k = ±(μ − μk)

1/2 in the cylinder �; these functions satisfy problem
(2.3.3). The u+

k (u−
k ) will be called a wave incoming from +∞ (outgoing to +∞).

The number of the waves is equal to twice the number of μk (counted according to
their multiplicities) such that μk < μ. Recall that λ±

k are eigenvalues of the pencil
A(·, μ)with the same eigenvector ϕk , which is also an eigenvector of problem (2.3.3)
corresponding to the eigenvalueμk . The eigenvectors are orthogonal and normalized
by the condition

(ϕ j , ϕk)� = δ jk . (2.3.5)

Let G be a domain in R
n+1 introduced at the beginning of Sect. 2.2.1; we consider

problem (2.2.1). With every �r+, we associate a problem of the form (2.3.1) in the
cylinder �r = {(yr , tr ) : yr ∈ �r , tr ∈ R}. A number τ is called a threshold
for problem (2.2.1) if the τ is a threshold for at least one of the problems in the
cylinders �r . In this section, we consider problem (2.2.1) for a real μ different from
the thresholds.

Let χ ∈ C∞(R) be a cut-off function, χ(t) = 0 for t < 0 and χ(t) = 1 for
t > 1. We multiply each wave in �r by the function t �→ χ(tr − tr

0 ) with a certain
(sufficiently large) tr

0 > 0 and then extend the product by zero to the domain G.
We denote the obtained functions by v1, . . . , v2M , where 2M is the number of all
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real eigenvalues of the pencils A1(·, μ), . . . ,AT (·, μ) counted according to their
(geometric) multiplicity.

For l = 0, 1, . . . and δ ∈ R, we introduce the space Hl
δ(G) with norm

‖u; Hl
δ(G)‖ = ‖ρδu; Hl(G)‖, where ρδ denotes a smooth positive on G function

given on �r+ ∩ G by the equality ρδ(yr , tr ) = exp (δtr ); unlike a similar definition
in 2.2.1, from now on we choose the weight index δ to be the same in all cylindrical
ends. Let Ḣ2

δ (G) denote the closure in H2
δ (G) of the set of smooth functions in G

that have compact supports in G and vanish on ∂G. We now assume that the δ is
positive and small so that the strip {λ ∈ C : |Imλ| < δ} contains no eigenvalues of
the pencils Ar (·, μ), r = 1, . . . , T , except the real ones.

We denote by M the linear space spanned by the functions v1, . . . , v2M and
introduce the quotient space W(μ, G) := (M � Ḣ2

δ (G))/Ḣ2
δ (G). The elements in

W(μ, G) are called waves in G. We will often writeW instead of W(μ, G).

Proposition 2.3.1 The bilinear form

q(u, v) := ((−� − μ)u, v)G − (u, (−� − μ)v)G (2.3.6)

makes sense for u and v in M � Ḣ2
δ (G). Moreover, if one of the elements u and

v belongs to Ḣ2
δ (G), the q(u, v) vanishes. Therefore, the form q( , ) is defined on

W × W . For any waves U and V in W , there holds the equality q(U, V ) =
−q(V, U ).

Proof Any function inM� Ḣ2
δ (G) is of the form c1v1 + · · ·+ c2Mv2M +w, where

c1, . . . , c2M are some constants and w ∈ Ḣ2
δ (G). The support of (−� − μ)v j is

compact and (−�−μ)w belongs to H0
δ (G), so the right-hand side in (2.3.6) makes

sense. Let us assume that u or v belongs to Ḣ2
δ (G); then, integrating by parts, we

obtain the equality

((−� − μ)u, v)G = (u, (−� − μ)v)G .

Therefore, we can set
q(ũ, ṽ) := q(u, v), (2.3.7)

for any u and v in u ∈ M � Ḣ2
δ (G), where ũ and ṽ denote the classes of u and

v in W . The equality q(U, V ) = −q(V, U ) follows immediately from (2.3.6) and
(2.3.7). �

The number q(U, U ) is imaginary for any U ∈ W . We call wave U outgoing
(incoming) if iq(U, U ) is a positive (negative) number. Let u± be a wave of the form
(2.3.4) in a cylinder�r+. We extend the function (yr , tr ) �→ χ(tr − tr

0 )u
±(yr , tr , μ)

by zero to G and denote by U± the class in W of the obtained function in G.
In this way, we define the waves U±

1 , . . . , U±
M ; as before, 2M = 2M(μ) is equal

to the number of all real eigenvalues of the pencils A1(·, μ), . . . ,AT (·, μ) counted
according to theirmultiplicity. Integrating by parts in expressions of the form q(u, v),
where u and v are representatives of the waves U±

j , we arrive at the following
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Proposition 2.3.2 The U+
j (U−

j ), j = 1, . . . , M, are incoming (outgoing) waves.

The collection U+
1 , . . . , U+

M , U−
1 , . . . , U−

M forms a basis in the space W subject to
the orthogonality and normalization conditions

q(U j , Uk) = 0 for j 
= k, iq(U+
j , U+

j ) = −1,

iq(U−
j , U−

j ) = 1 for j = 1, . . . , M. (2.3.8)

2.3.2 Continuous Spectrum Eigenfunctions. The Scattering
Matrix

In this section, we consider the parameter μ in an interval [μ′, μ′′] that contains no
thresholds of problem (2.2.1), where μ′ > τ1 and τ1 is the first threshold. Therefore,
there exists such a positive δ that, for all μ ∈ [μ′, μ′′], the strip {λ ∈ C : |Imλ| < δ}
is free from the eigenvalues of the pencils Ar (·, μ), r = 1, . . . , T , except the real
ones.

Now, we introduce several definitions. If u ∈ kerA−δ(μ0) and u /∈ L2(G), the u
is called a continuous spectrum eigenfunction of the problem

− �u(x) − μu(x) = 0, x ∈ G,

u(x) = 0, x ∈ ∂G, (2.3.9)

at the point μ0. If u ∈ kerA−δ(μ0), u 
= 0, and u ∈ L2(G), the u is said to
be an eigenfunction and μ0 is an eigenvalue of problem (2.3.9) embedded in the
continuous spectrum; in fact, any such eigenfunction belongs to kerAδ(μ0) (this can
be derived fromTheorem 2.2.3). For problem (2.3.9), it is known that the eigenvalues
do not accumulate at finite distance. Therefore, the interval [μ′, μ′′] contains finitely
many eigenvalues at most. The number dim (kerA−δ(μ)/kerAδ(μ)) is called the
continuous spectrum multiplicity at μ. Equality (2.2.6) for β = −δ and γ = δ takes
the form

dim (kerA−δ(μ)/kerAδ(μ)) = M(μ) (2.3.10)

because, in this case, κ = 2M(μ). The interval [μ′, μ′′] contains no thresholds and
therefore the continuous spectrum multiplicity is constant on this interval.

Any element v ∈ kerA−δ(μ) defines a certain class ṽ in the wave space W; we
let K denote the image of kerA−δ(μ) inW . The K is a subspace inW .

Theorem 2.3.3 Let U+
1 (μ), . . . , U+

M (μ), U−
1 (μ), . . . , U−

M (μ) be the same basis of
W(μ, G) as in Proposition 2.3.2. Then there exist bases ζ̃1(μ), . . . , ζ̃M (μ) and
η̃1(μ), . . . , η̃M (μ) in K(μ) such that
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ζ̃ j (μ) = U+
j (μ) +

M∑
k=1

S jk(μ)U−
k (μ), (2.3.11)

η̃ j (μ) = U−
j (μ) +

M∑
k=1

Tjk(μ)U+
k (μ). (2.3.12)

The matrix S(μ) = ‖S jk(μ)‖ is unitary and S(μ)−1 = T (μ) = ‖Tjk(μ)‖.

Proof Let v1, . . . , vM be linear independent elements in kerA−δ(μ)/kerAδ(μ) and
ṽ1, . . . , ṽM their classes inW . We have

ṽ j =
M∑

k=1

m+
jkU+

k +
M∑

k=1

m−
jkU−

k , j = 1, . . . , M.

The matrices M+ = ‖m+
jk‖ and M− = ‖m−

jk‖ are nonsingular. Indeed, if, for
instance, detM+=0, there exists a nonzero ṽ ∈ W with v ∈ kerA−δ(μ) such that

v =
M∑

k=1

akuk + w,

where ak is a constant, ũk = U−
k , and w ∈ Ḣ2

δ (G). From (2.3.6) it follows that
q(v, v) = 0. On the other hand,

q(v, v) = q
( M∑

k=1

akuk,

M∑
k=1

akuk

)
=

M∑
k=1

|ak |2q(Uk, Uk) = i
M∑

k=1

|ak |2 
= 0,

which is a contradiction. Therefore, there exist linear combinations ζ̃ j and η̃ j of the
ṽ1, . . . , ṽM that satisfy (2.3.11) and (2.3.12), respectively.

We now pass to verifying the second part of this theorem. For ζ̃l and η̃m in (2.3.11)
and (2.3.12), we choose representatives ζl and ηm in kerA−δ(μ). Then q(ζl , ηm) = 0
and, moreover,

q(ζl , ηm) = q
(

U+
l +

M∑
j=1

Sl jU
−
j , U−

m +
M∑

k=1

TmkU+
k

)

= q
( M∑

j=1

Sl jU
−
j , U−

m

)
+ q

(
U+

l ,

M∑
k=1

TmkU+
k

)
= i Slm − iT ml ,
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hence S(μ) = T ∗(μ). Let us consider

ṽ :=
M∑

j=1

Sl j η̃ j =
M∑

j=1

Sl jU
−
j +

M∑
j=1

M∑
k=1

Sl j TjkU+
k .

The coefficients of the ṽ and ζ̃ j are the same at U−
j , j = 1, . . . , M . Therefore,

the coefficients also coincide at U+
k , k = 1, . . . , M ; otherwise, for the ṽ − ζ̃ j ,

we obtain a contradiction like that in the first part of the proof. Thus, we have
S(μ)−1 = T (μ). �

Definition 2.3.4 Thematrix S(μ) = ‖S jk(μ)‖M
j,k=1 with entries in (2.3.11) is called

the scattering matrix.

2.3.3 The Intrinsic Radiation Principle

Let U+
1 (μ), . . . , U+

M (μ), U−
1 (μ), . . . , U−

M (μ) be the same basis of W(μ, G) as in
Proposition 2.3.2 and in Theorem 2.3.3. We choose any representatives u−

j of U−
j ,

j = 1, . . . , M and denote by N the linear hull of u−
1 , . . . , u−

M . We define the norm
of u = ∑

c j u
−
j + v ∈ N � Ḣ2

δ (G) with c j ∈ C and v ∈ Ḣ2
δ (G) by

‖u‖ =
∑

|c j | + ‖v; H2
δ (G)‖.

Let A(μ) be the restriction of the operator A−δ(μ) to the space N � Ḣ2
δ (G). The

map
A(μ) : N � Ḣ2

δ (G) → H0
δ (G)

is continuous. The following theorem provides the statement of problem (2.2.1) with
intrinsic radiation conditions at infinity (the numbers μ and δ are supposed to satisfy
the requirements given at the beginning of 2.3.2.

Theorem 2.3.5 Let z1, . . . , zd be a basis in the space kerAδ(μ), f ∈ H0
δ (G) and

( f, z j )G = 0, j = 1, . . . , d. Then:
1. There exists a solution u ∈ N � Ḣ2

δ (G) of the equation A(μ)u = f determined
up to an arbitrary term in kerAδ(μ).

2. The inclusion

v ≡ u − c1u−
1 − · · · − cM u−

M ∈ Ḣ2
δ (G) (2.3.13)
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holds with c j = i( f, η̃ j )G.
3. The inequality

‖v; H2
δ (G)‖ + |c1| + · · · + |cM | ≤ const

(
‖ f ; H0

δ (G)‖ + ‖v; L2(G
c)‖

)
(2.3.14)

holds with v and c1, . . . , cM in (2.3.13), while Gc is a compact subset of G. A solution
u0 that is subject to the additional conditions (u0, z j )G = 0 for j = 1, . . . , d is
unique and satisfies (2.3.14) with right-hand side changed for const‖ f ; H0

δ (G)‖.

Proof Let us outline the proof. The operator A−δ(μ) is Fredholm. Therefore, the
orthogonality conditions ( f, z j )G = 0, j = 1, . . . , d, provide the existence of a
solution u ∈ Ḣ2−δ(G) to the equation A−δ(μ)u = f . Since z1, . . . , zd , η1, . . . , ηM

form a basis in kerA−δ(μ), the general solution is of the form

u = u0 +
M∑

j=1

a jη j +
d∑

k=1

bk zk (2.3.15)

with a particular solution u0 ∈ Ḣ2−δ(G) and arbitrary constants ak and bk . According
to Theorem 2.3.3, we have det ‖Tjk‖ 
= 0. Therefore, in view of (2.3.12), we can
obtain (2.3.13) by choosing the coefficients ak . The equality c j = i( f, η̃ j )G now
follows from Theorem 2.2.7 and the relations q(U−

j , ηk) = −iδ jk , j, k = 1, . . . , M .
In connections with estimate (2.3.14) see Theorems 5.3.5 and 5.1.4 in [37]. �

http://dx.doi.org/10.1007/978-3-319-15105-2_5
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Chapter 3
Properties of Scattering Matrices
in a Vicinity of Thresholds

We assume τ ′ < τ ′′ to be thresholds of problem (3.1.16) such that the interval
(τ ′, τ ′′) contains the only threshold τ . We also suppose that the three thresholds
relate to the same cylindrical end. On the interval (τ, τ ′′), one can choose a basis of
incomingw+

1 (·, μ), . . . , w+
κ

(·, μ) and outgoingw−
1 (·, μ), . . . , w−

κ
(·, μ)waves with

analytic functions (τ, τ ′′) � μ �→ w±
j (·, μ) that admit the analytic continuation to

(τ ′, τ ′′); here κ = κ(μ′′) (recall that κ(μ) = const for μ ∈ [τ, τ ′′)). Such a basis is
called stable at the threshold τ . For μ ∈ (τ ′, τ ), some incoming waves and the same
number of outgoing waves turn out to be exponentially growing as x → ∞. On the
interval (τ, τ ′′), in the space of continuous spectrum eigenfunctions, there exists a
basis Y1(·, μ), . . . ,Yκ(·, μ) satisfying the conditions

Y j (x, μ) = w+
j (x, μ) −

M∑
k=1

S jk(μ)w−
k (x, μ) + O(e−ε|x |). (3.0.1)

The functions μ �→ Y j (·, μ) and μ �→ S jk(μ) are analytic and admit the analytic
continuation to (τ ′, τ ′′). Unlike S(μ), the new matrix S(μ) = ‖S jk(μ)‖ keeps its
size on this interval; the matrix is unitary for allμ ∈ (τ ′, τ ′′). The entries of S(μ) can
be expressed in terms related only to the matrix S(μ). In particular, this enables us to
prove the existence of finite limits of S(μ) asμ → τ ±0, to calculate the limits, and,
in essence, to reduce (in Chap. 4) the approximate calculation of the matrix S(μ)

with μ ∈ [μ′, μ′′] to that of the augmented matrix S(μ).

© Springer International Publishing Switzerland 2015
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3.1 Augmented Space of Waves

3.1.1 Waves in a Cylinder

We start with the boundary value problem

(−� − μ)u(y, t) = 0, (y, t) ∈ �,

u(y, t) = 0, (y, t) ∈ ∂�, (3.1.1)

in the cylinder � = {(y, t) : y = (y1, . . . , yn) ∈ �, t ∈ R} and with the operator
pencil

A(λ, μ)v(y) = (−�y + λ2 − μ)v(y), y ∈ �; v|∂� = 0. (3.1.2)

Let {μk}∞k=1 be the non-decreasing sequence of the eigenvalues of the problem

(−�y − μ)v(y) = 0, y ∈ �,

v(y) = 0, y ∈ ∂� (3.1.3)

counted according to their multiplicity (see Chap.2). We fix a real μ 	= μk , k =
1, 2, . . . , that is, theμ is not a threshold, and introduce a linear complex space W (μ)

spanned by the functions

u±
k (y, t;μ) = (2|λ∓

k |)−1/2 exp(iλ∓
k t)ϕk(y) (3.1.4)

with real λ±
k = ±(μ − μk)

1/2. We will call W (μ) the space of waves. Its dimension
is equal to twice the number of μk (counted according to their multiplicities) such
that μk < μ. Recall that λ±

k are eigenvalues of the pencil A(·, μ) with the same
eigenvector ϕk , which is also an eigenvector of problem (3.1.3) corresponding to the
eigenvalue μk . The eigenvectors are orthogonal and normalized by the condition

(ϕ j , ϕk)� = δ jk . (3.1.5)

Assume now that μ = τ is a threshold and, consequently, μ is an eigenvalue of
(3.1.3) with multiplicity κ ≥ 1. Then κ numbers μl satisfy μl = τ . For each l, the
functions exp(iλ+

l t)ϕl(y) and exp(iλ−
l t)ϕl(y) coincide. Therefore, the number of

linearly independent functions of the form (y, t) �→ exp(iλ±
k t)ϕk(y) for μ = τ is κ

less than the number of such functions for μ satisfying τ < μ < τ + β with small
β > 0. However, for a more general notion of the waves, the dimension of the space
W (μ) is continuous from the right at the threshold. In such a case the definition of
incoming and outgoing waves is based on reasons of energy, as in the Sommerfeld
and Mandelstamm principles.

http://dx.doi.org/10.1007/978-3-319-15105-2_2
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For the definition, we introduce the form

qN (u, v) := ((−� − μ)u, v)�(N ) + (u,−∂νv)∂�(N )∩∂�

− (u, (−� − μ)v)�(N ) − (−∂νu, v)∂�(N )∩∂�, (3.1.6)

where �(N ) = {(y, t) ∈ � : t < N }, the number μ ∈ R is for the time being not
a threshold, u = χ f and v = χg, while f and g are any of the functions (3.1.4)
corresponding to real λ±

k (μ) (possibly, with distinct indices); χ denotes a smooth
cut-off function, χ(t) = 0 for t < T − 1 and χ(t) = 1 for t > T with T < N .
Integrating by parts, we see that

iqN (χu±
k , χu∓

l ) = 0 for all k, l, (3.1.7)

iqN (χu±
k , χu±

l ) = ∓δkl , (3.1.8)

so the result is independent of N and χ ; in what follows we drop N but keep χ . We
name the wave u+

k (u−
k ) incoming (outgoing) for −(+) on the right in (3.1.8) and

obtain the definition of incoming (outgoing) waves equivalent to the old definition.
We are going to construct a basis in the (augmented) space of waves “stable at a

threshold”. Letμ ∈ R be a regular value of the spectral parameter of problem (3.1.3)
and μm the eigenvalue with the greatest number satisfying μm < μ. We also assume
that μl < μl+1 = · · · = μm . Then the numbers τ ′ := μl , τ := μl+1 = · · · = μm ,
and τ ′′ := μm+1 turn out to be three successive thresholds τ ′ < τ < τ ′′ of problem
(3.1.1) in cylinder �. (We discuss the general situation; the cases l + 1 = m, m = 1,
and so on, can be considered with evident simplifications.)

We set

w±
k (y, t;μ) = 2−1/2

(
eit

√
μ−μk + e−i t

√
μ−μk

2
∓ eit

√
μ−μk − e−i t

√
μ−μk

2
√

μ − μk

)
ϕk(y),

(3.1.9)

w±
p (y, t;μ) = u±

p (y, t;μ), (3.1.10)

where k = l + 1, . . . , m, p = 1, . . . , l, and u±
p are defined in (3.1.4).

Proposition 3.1.1 The functions μ �→ w±
k (y, t;μ), k = l + 1, . . . , m, admit the

analytic continuation to the whole complex plane. These analytic functions smoothly
depend on the parameters y ∈ �̄ and t ∈ R (i.e., any derivatives in y and t are
analytic functions as well).

The functions μ �→ w±
p (y, t;μ) are analytic on the complex plane with cut along

the ray {μ ∈ R : −∞ < μ ≤ μp}, p = 1, . . . , l; they smoothly depend on y and t.
All the functions w±

k , k = 1, . . . , m, are solutions to problem (3.1.1). For every
μ in (τ ′ < μ < +∞) the functions (3.1.9), (3.1.10) satisfy the orthogonality and
normalization conditions
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iq(χw±
r (· ;μ), χw∓

s (· ;μ)) = 0 for all r, s = 1, . . . , m, (3.1.11)

iq(χw±
r (· ;μ), χw±

s (· ;μ)) = ∓δrs . (3.1.12)

Proof The first and second fractions in the parentheses in (3.1.9) can be decomposed
in the series

∑
l≥0

(μk − μ)l t2l

(2l)! and i t
∑
l≥0

(μk − μ)l t2l

(2l + 1)! , (3.1.13)

which are absolutely and uniformly convergent on any compact K ⊂ {(μ, t) : μ ∈
C, t ∈ R}. This implies the analyticity properties ofw±

k (y, t;μ) for k = l+1, . . . , m.
The corresponding assertions about w±

p (y, t;μ) with p = 1, . . . , l are evident.
It remains to verify the orthogonality and normalization conditions. We first

assume that μ > τ and consider, for instance, (3.1.12). If r and s are distinct,
then the equalities (3.1.12) follow from the orthogonality of ϕr and ϕs (as well as
(3.1.7) and (3.1.8)). In the case r = s ≤ l, relation (3.1.8) contains the needed
formula. Finally, assume that r = s > l and substitute the expressions (3.1.9) into
q(χw±

r , χw±
s ). Setting λ := √

μ − τ , we obtain

iq(χw±
s , χw±

s ) = λ−2((λ ± 1) (λ ∓ 1)iq+− + (λ ∓ 1) (λ ± 1)iq−+

+ (λ ∓ 1)2 iq++ + (λ ± 1)2 iq−−), (3.1.14)

where, for example, q+− = 2−3q(χeitλϕs, χe−i tλϕs), and so on. Taking account of
(3.1.4), (3.1.7), and (3.1.8), we arrive at (3.1.12).

We now consider the function

C � μ �→ qN (u, v;μ) := ((−� − μ)u, v)�(N ) + (u,−∂νv)∂�(N )∩∂�

− (u, (−� − μ̄)v)�(N ) − (−∂νu, v)∂�(N )∩∂�,

(3.1.15)

where �(N ), N , and χ are the same as in (3.1.6), u = χw±
r (· ;μ), and v =

χw∓
s (· ; μ̄)). Since u and v̄ are analytic, the function μ �→ qN (u, v;μ) is ana-

lytic as well. Therefore, the equalities (3.1.12) (with r = s > l) are valid for all
μ ∈ C. �

It follows from (3.1.9) that w±
k (y, t; τ) = 2−1/2(1∓ i t)ϕk(y), k = l + 1, . . . , m,

and, in the case μ < τ , the amplitudes of the waves exponentially grow as t → ∞.
The space spanned by waves (3.1.9) and (3.1.10) is called the augmented space of
waves for τ ′ < μ < τ and denoted by Wa(μ). We let W (μ) denote the linear hull
of functions (3.1.9) and (3.1.10) for τ ≤ μ < τ ′′ and the linear hull of functions
(3.1.10) for τ ′ < μ < τ . The lineal W (μ) is called the space of waves. An element
w ∈ Wa(μ) (or W (μ)) is called a wave incoming from +∞ (outgoing to +∞), if
iq(χw, χw) < 0 (iq(χw, χw) > 0).
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The collection ofwaves {w±}m
k=1 defined by (3.1.9) and (3.1.10) is called a basis of

waves stable in a neighborhood of the threshold τ . A basis ofwaves of the form (3.1.4)
is by definition stable on (μ′, μ′′) if the interval [μ′, μ′′] contains no thresholds.

3.1.2 Waves in Domain G

Let G be a domain in R
n+1 with smooth boundary ∂G coinciding, outside a large

ball, with the union �1+ ∪ · · · ∪ �T+ of finitely many non-overlapping semicylinders

�r+ = {(yr , tr ) : yr ∈ �r , tr > 0},

where (yr , tr ) are local coordinates in B�r+ and �r is a bounded domain in R
n . We

consider the problem

− �u(x) − μu(x) = 0, x ∈ G,

u(x) = 0, x ∈ ∂G. (3.1.16)

With every �r+ we associate a problem of the form (3.1.1) in the cylinder �r =
{(yr , tr ) : yr ∈ �r , tr ∈ R}. Let χ ∈ C∞(R) be a cut-off function, χ(t) = 0
for t < 0 and χ(t) = 1 for t > 1. We multiply each wave in �r by the function
t �→ χ(tr − tr

0 ) with a certain tr
0 > 0 and then extend it by zero to the domain G.

All functions (for all �r ) obtained in such a way are called waves in G. A number
τ is called a threshold for problem (3.1.16) if the τ is a threshold at least for one
of problems of the form (3.1.1) in �r , r = 1, . . . , T . Let τ ′ < τ < τ ′′ be three
successive thresholds for problem (3.1.16); then the intervals (τ ′, τ ) and (τ, τ ′′) are
free from the thresholds.

For μ ∈ (τ ′, τ ), we introduce the augmented space Wa(μ, G) of waves in G as
the union of the waves in G corresponding to those in Wa(μ) for �r , r = 1, . . . , T ;
if a space Wa(μ) is not introduced on the interval τ ′ < μ < τ for a certain �r

(which means that the τ is not a threshold for problem (3.1.1) in such a cylinder),
then, from this cylinder, we include into the spaceWa(μ, G) the waves generated by
the elements of the corresponding W (μ). By definition, for μ ∈ (τ ′, τ ′′), the space
W(μ, G) of waves in G is the union of the waves in G that correspond to the waves
in W (μ) for �r , r = 1, . . . , T .

The bases {u±
j (·, μ)} and {w±

j (·, μ)} of waves inW(μ, G) andWa(μ, G) consist
of thewaves obtained inG from the basiswaves in�r , r = 1, . . . , T . The basiswaves
in the spacesW(μ, G) andWa(μ, G) are subject to orthogonality and normalization
conditions like (3.1.7) and (3.1.8) or (3.1.11) and (3.1.12)with the formq in a cylinder
replaced by the form qG in G:

qG(u, v) := ((−� − μ)u, v)G + (u,−∂νv)∂G

− (u, (−� − μ)v)G − (−∂νu, v)∂G . (3.1.17)
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An element w in Wa(μ, G) (or in W(μ, G)) is called a wave incoming from ∞
(outgoing to ∞), if iqG(χw, χw) < 0 (iqG(χw, χw) > 0).

A basis of waves in G is called stable near a value ν of the spectral parameter if
the basis consists of bases in the cylinders �1, . . . ,�T stable near ν.

3.2 Continuous Spectrum Eigenfunctions. Scattering
Matrices

Let τ ′ < τ < τ ′′ be three successive thresholds for problem (3.1.16). For the sake of
simplicity, we assume that these three numbers are thresholds for a problem of the
form (3.1.1) only in one of the cylinders �1, . . . , �T , for instance in �1 = �1 ×R.
Moreover, we suppose that τ ′ = μl , τ = μl+1 = · · · = μm , and τ ′′ = μm+1, where
μk are eigenvalues of problem (3.1.3) in �1. Thus for � = �1 we deal with the
situation considered in 3.1.1.

3.2.1 Intrinsic and Expanded Radiation Principles

We consider the boundary value problem

− �u(x) − μu(x) = f (x), x ∈ G,

u(x) = g(x), x ∈ ∂G, (3.2.1)

and recall two correct statements of the problem with radiation conditions at infinity:
the intrinsic and expanded radiation principles. In the first principle, the intrinsic
radiation conditions contain only outgoing waves in the spaceW(μ, G). The second
(expanded) principle includes the outgoingwaves in the augmented spaceWa(μ, G).
We will apply the intrinsic principle with spectral parameter outside a neighborhood
of the thresholds. In the vicinity of a threshold, wemake use of the expanded principle
employing the stable basis of waves inWa(μ, G) constructed in Sect. 3.1.

We first define the needed function spaces. For integer l ≥ 0, we denote by Hl(G)

the Sobolev space with norm

‖v; Hl(G)‖ =
⎛
⎝ l∑

j=0

∫
G

∑
|α|= j

|Dα
x v(x)|2 dx

⎞
⎠

1/2

,

and let Hl−1/2(∂G) with l ≥ 1 stand for the space of traces on ∂G of the functions
in Hl(G). Assume that ργ is a smooth positive on G function given on �r+ by the
equalityργ (yr , tr ) = exp(γ tr )with γ ∈ R.We also introduce the spaces Hl

γ (G) and
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Hl−1/2
γ (∂G) with norms ‖u; Hl

γ (G)‖ = ‖ργ u; Hl(G)‖ and ‖v; Hl−1/2
γ (∂G)‖ =

‖ργ v; Hl−1/2(∂G)‖. The operator of problem (3.2.1) implements the continuous
mapping

Aγ (μ) : H2
γ (G) → H0

γ (G) × H3/2
γ (∂G). (3.2.2)

As is known, operator (3.2.2) is Fredholm if and only if the line {λ ∈ C : Imλ = γ }
is free of the eigenvalues of the pencils λ �→ Ar (λ, μ), r = 1, . . . , T , where Ar is a
pencil of the form (3.1.2) for problem (3.1.1) in the cylinder�r . (An operator is called
Fredholm if its range is closed and the kernel and cokernel are finite dimensional.)

We now proceed to the intrinsic radiation principle. Assume that μ does not
coincide with a threshold, μ ∈ (τ ′, τ ′′), and μ 	= τ . Let δ denote a small positive
number such that the strip {λ ∈ C : |Imλ| ≤ δ} contains only real eigenvalues of the
pencils Ar (·, μ), r = 1, . . . , T ; we denote the number of such eigenvalues (counted
with their multiplicities) by 2M = 2M(μ). There exist collections of elements
{Y +

1 (·, μ), . . . , Y +
M (·, μ)} and {Y −

1 (·, μ), . . . , Y −
M (·, μ)} in the kernel kerA−δ(μ) of

A−δ(μ) such that

(
Y +

j (·, μ) − u+
j (·, μ) −

M∑
k=1

S jk(μ)u−
k (·, μ)

)
∈ H2

δ (G), (3.2.3)

(
Y −

j (·, μ) − u−
j (·, μ) −

M∑
k=1

Tjk(μ)u+
k (·, μ)

)
∈ H2

δ (G), (3.2.4)

where S(μ) = ‖S jk(μ)‖ is a unitary scattering matrix and S(μ)−1 = T (μ) =
‖Tjk(μ)‖. For future needs, we rewrite (3.2.3)–(3.2.4) in the form

Y +
j (·, μ) = u+

j (·, μ) +
M∑

k=1

S jk(μ)u−
k (·, μ) + O(e−δ|x |),

Y −
j (·, μ) = u−

j (·, μ) +
M∑

k=1

Tjk(μ)u+
k (·, μ) + O(e−δ|x |). (3.2.5)

Every collection {Y +
1 (·, μ), . . . , Y +

M (·, μ)} and {Y −
1 (·, μ), . . . , Y −

M (·, μ)} is a basis
modulo kerAδ(μ) in kerA−δ(μ). This means that any v ∈ kerA−δ(μ) is a linear
combination of the functions Y +

1 (·, μ), . . . , Y +
M (·, μ) up to a term in kerAδ(μ); the

same is true also for Y −
1 (·, μ), . . . , Y −

M (·, μ). If μ is not an eigenvalue of opera-
tor (3.2.2), that is, kerAδ(μ) = 0, every collection {Y +

j } and {Y −
j } is a basis of

kerA−δ(μ) in the usual sense.
The elementsY (·, μ) in kerA−δ(μ)\kerAδ(μ) are called the continuous spectrum

eigenfunctions of problem (3.1.16) corresponding to μ.
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Denote byN the linear hullL(u−
1 , . . . , u−

M ).We define the normof u = ∑
c j u

−
j +

v ∈ N � H2
δ (G) with c j ∈ C and v ∈ H2

δ (G) by

‖u‖ =
∑

|c j | + ‖v; H2
δ (G)‖.

LetA(μ) be the restriction of the operatorA−δ(μ) to the spaceN � H2
δ (G). Themap

A(μ) : N � H2
δ (G) → H0

δ (G) × H3/2
δ (∂G) =: Hδ(G) (3.2.6)

is continuous. The following theorem provides the statement of problem (3.2.1) with
intrinsic radiation conditions at infinity (the numbers μ and δ are supposed to satisfy
the requirements given above (3.2.3)).

Theorem 3.2.1 Let z1, . . . , zd be a basis in the space kerAδ(μ), { f, g} ∈ Hδ(G)

and ( f, z j )G + (g,−∂νz j )∂G = 0, j = 1, . . . , d. Then:
1. There exists a solution u ∈ N � H2

δ (G) of the equation A(μ)u = { f, g}
determined up to an arbitrary term in kerAδ(μ).

2. The inclusion

v ≡ u − c1u−
1 − · · · − cM u−

M ∈ H2
δ (G) (3.2.7)

holds with c j = i( f, Y −
j )G + i(g,−∂νY −

j )∂G.
3. The inequality

‖v; H2
δ (G)‖ + |c1| + · · · + |cM | ≤ const (‖{ f, g};Hδ(G)‖ + ‖ρδv; L2(G)‖) .

(3.2.8)
holds with v and c1, . . . , cM in (3.2.7). A solution u0 that is subject to the additional
conditions (u0, z j )G = 0 for j = 1, . . . , d is unique and satisfies (3.2.8) with right-
hand side changed for const‖{ f, g};Hδ(G)‖.

4. If { f, g} ∈ Hδ(G) ∩ Hδ′(G) and the strip {λ ∈ C : min{δ, δ′} ≤ Imλ ≤
max{δ, δ′}} contains no eigenvalues of the pencils Ar (·, μ), r = 1, . . . , T , then the
solutions u ∈ N� H2

δ (G) and u′ ∈ N� H2
δ′(G) coincide, while the choice between

δ and δ′, in essence, affects only the constant in (3.2.8).

Remark 3.2.2 In Theorem 3.2.1, one can take the numbers δ and “const” in (3.2.8)
invariant for all μ in [μ′, μ′′] ⊂ (τ, τ ′′) (in [μ′, μ′′] ⊂ (τ ′, τ )). If μ′′ approaches τ ′′
(τ ), the δ must tend to zero: an admissible interval for δ has to be narrowed because
the imaginary eigenvalues of the pencils move closer to the real axis; the constant
in (3.2.8) increases. From the proof of Theorem 3.2.1 in [37] one can see that the
constant also increases when μ′ approaches τ (or τ ′).

We now turn to the expanded radiation principle in a neighgborhood of τ . To
this end, for problem (3.1.16), we construct a basis of waves stable at the threshold
τ . We make up such a basis from the waves generated by functions (3.1.9) and
(3.1.10), and from the waves corresponding to the real eigenvalues of the pencils
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Ar (·, μ), r = 2, . . . , T . According to our assumption at the beginning of 3.2, the
interval [τ ′, τ ′′] contains no threshold for problems of the form (3.1.1) in the cylinders
�2, . . . ,�T . Therefore, the number of real eigenvalues for each one of the pencils
R � λ → Ar (λ, μ), r = 2, . . . , T , remains invariant for μ ∈ [τ ′, τ ′′]. Thus, when
passing from the cylinder�1 to the domain G, the dimension of wave space increases
by the same number for all μ ∈ (τ ′, τ ′′). We set 2L = dimW(μ, G) for μ ∈ (τ ′, τ )

and 2M = dimW(μ, G) for μ ∈ (τ, τ ′′); then M − L = m − l, where m and l are
the same as in (3.1.9) and (3.1.10), while dimWa(μ, G) = 2M for μ ∈ (τ ′, τ ).

We choose the number γ for the operators A±γ (μ) to be proper for all μ in
a neighborhood of the threshold τ = μm . Let us explain such a choice. We have
λ±

k (μ) = ±(μ − μk)
1/2, μl+1 = · · · = μm , so λ±

k (τ ) = 0 with k = l + 1, . . . , m.
The interval of the imaginary axis with ends −i(μm+1 − μm)1/2, i(μm+1 − μm)1/2

punctured at the coordinate origin is free of the spectra of the pencilsAq(·, μm), q =
1, . . . , T . Ifμmoves a little along R, the eigenvalues of the pencilsAq(·, μ) slightly
shift along the coordinate axes. Therefore, for a small α > 0, there exists β > 0 such
that, for μ ∈ (μm − β,μm + β), the intervals i I±α := ±i(α, (μm+1 − μm)1/2 − α)

are free of the spectra of the pencilsAq(·, μ). So the lines {λ ∈ C : Imλ = ±γ }with
γ ∈ Iα do not intersect the spectra of Aq(·, μ), while the strip {λ ∈ C : |Imλ| ≤ γ }
contains only the real eigenvalues of the pencils and the numbers λ±

k (μ) = ±(μ −
μk)

1/2 = ±(μ − μm)1/2 in (3.1.9), k = l + 1, . . . , m.
Let μ ∈ (τ −β, τ +β), γ ∈ Iα , and let {w±

k (·, μ)} be the stable basis of waves in
G described in 3.1.1 and 3.1.2. In the kernel kerA−γ (μ) ofA−γ (μ), there exist col-
lections of elements {Y+

1 (·, μ), . . . ,Y+
M (·, μ)} and {Y−

1 (·, μ), . . . ,Y−
M (·, μ)} such

that

(
Y+

j (·, μ) − w+
j (·, μ) −

M∑
k=1

S jk(μ)w−
k (·, μ)

)
∈ H2

γ (G), (3.2.9)

(
Y−

j (·, μ) − w−
j (·, μ) −

M∑
k=1

T jk(μ)w+
k (·, μ)

)
∈ H2

γ (G), (3.2.10)

whereS(μ) = ‖S jk(μ)‖ is the unitary andS(μ)−1 = T (μ) = ‖T jk(μ)‖. Every col-
lection {Y+

1 (·, μ), . . . ,Y+
M (·, μ)} and {Y−

1 (·, μ), . . . ,Y−
M (·, μ)} is a basis (modulo

kerAγ (μ)) in kerA−γ (μ).
The elements Y(·, μ) in kerA−γ (μ) \ kerAγ (μ) are called the continuous spec-

trum eigenfunctions of problem (3.1.16) corresponding to the number μ. The matrix
S(μ) (with μ ∈ (τ − β, τ)) is referred to as the augmented scattering matrix.

LetK denote the linear hullL(w−
1 , . . . , w−

M ).We define a normofw = ∑
c jw

−
j +

v ∈ K � H2
γ (G), where c j ∈ C and v ∈ H2

γ (G), by the equality

‖w‖ =
∑

|c j | + ‖v; H2
γ (G)‖.
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Let A(μ) be the restriction of A−γ (μ) to the space K � H2
γ (G); then the mapping

A(μ) : K � H2
γ (G) → H0

γ (G) × H3/2
γ (∂G) =: Hγ (G). (3.2.11)

is continuous.

Theorem 3.2.3 Let μ ∈ (τ −β, τ +β), γ ∈ Iα , and let {w±
k (·, μ)} be the aforemen-

tioned basis of waves in G. Assume z1, . . . , zd to be a basis in the space kerAγ (μ),
{ f, g} ∈ Hγ (G) and ( f, z j )G + (g,−∂νz j )∂G = 0, j = 1, . . . , d. Then:

(1) There exists a solution w ∈ K � H2
γ (G) to the equation A(μ)w = { f, g}

determined up to an arbitrary term in the lineal L(z1, . . . , zd).
(2) The inclusion

v ≡ w − c1w
−
1 − · · · − cMw−

M ∈ H2
γ (G) (3.2.12)

holds with c j = i( f,Y−
j )G + i(g,−∂νY−

j )∂G.
(3) Such a solution w satisfies the inequality

‖v; H2
γ (G)‖ + |c1| + · · · + |cM | ≤ const

(‖{ f, g};Hγ (G)‖ + ‖ργ v; L2(G)‖) .

(3.2.13)
A solution w0 that is subject to the conditions (w0, z j )G = 0 for j = 1, . . . , d is
unique, and estimate (3.2.13)holds with the right-hand side changed for const‖{ f, g};
Hγ (G)‖.

(4) If { f, g} ∈ Hγ (G) ∩ Hγ ′(G) and the strip {λ ∈ C : min{γ, γ ′} ≤ Imλ ≤
max{γ, γ ′}} contains no eigenvalues of the pencils Ar (·, μ), r = 1, . . . , T , the
solutions w(·, μ) ∈ K�H2

γ (G) and w′(·, μ) ∈ K�H2
γ ′(G) of the equation A(μ)w =

{ f, g} coincide, while the choice between γ and γ ′, in essence, affects only the
constant in (3.2.13).

We would like to extend relations of the form (3.2.9) and (3.2.10) to the interval
(τ ′, τ ′′) with analytic functions μ �→ Y±

j (μ). Unlike the situation in Remark 3.2.2,
it is not possible, generally speaking, to extend (3.2.9) and (3.2.10) to any interval
[μ′, μ′′] ⊂ (τ ′, τ ′′) with the same index γ . However, to that purpose, one can use
a finite collection of indices for various parts of [μ′, μ′′]. The following lemma
explains how to compile such a collection.

Lemma 3.2.4 For any interval [μ′, μ′′] ⊂ (τ ′, τ ′′), there exists a finite covering
{Up}N

p=0 consisting of open intervals and a collection of indices {γ p}N
p=0 subject to

the following conditions (with a certain nonnegative number N):
(1) μ′ ∈ U0, μ′′ ∈ UN ; U0 ∩ Up = ∅, p = 2, . . . , N ; UN ∩ Up = ∅, p =

0, . . . , N − 2; moreover, Up overlaps only Up−1 and Up+1, 1 ≤ p ≤ N − 1.
(2) The line {λ ∈ C : Imλ = γ p} is free of the spectra of the pencils Ar (·, μ),

r = 1, . . . , T , for all μ ∈ Up ∩ [μ′, μ′′] and p = 0, . . . , N.
(3) The strip {λ ∈ C : γ p ≤ Imλ ≤ γ p+1} is free of the spectra of the pencils

Ar (·, μ), r = 1, . . . , T , for all μ ∈ Up ∩ Up+1 and p = 0, . . . , N − 1.
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(4) The inequality |Im(μ − τ)1/2| < γ p holds for μ ∈ Up ∩ [μ′, μ′′] (recall that
±(μ − τ)1/2 are eigenvalues of A1(·, μ) and τ = μl+1 = · · · = μm); there are
no other eigenvalues of the pencils Ar (·, μ), r = 1, . . . , T , in the strip {λ ∈ C :
|Imλ| ≤ γ p}, except the real ones, p = 0, . . . , N.

Proof Let us outline the proof. We consider an interval [μ′, μ′′] and assume that
τ ∈ (μ′, μ′′). Just before formulas (3.2.9) and (3.2.10), we have defined the interval
(τ − β, τ + β) that can be taken as an element of the desired covering. It was
earlier shown that as an index γ for such an element one can choose any number in
Iα = (α, (μm+1 − μm)1/2 − α) with small positive α; the number β depends on α.

Let us take some ν ∈ (τ, τ + β). The eigenvalue λm(μ) = (μ − μm)1/2 of the
pencil A1(·, μ) is real for μ > ν, the eigenvalue λm+1(μ) = i(μm+1 − μ)1/2 of
the pencil tends to zero when μ increases from ν to τ ′′ = μm+1, and the interval
{z ∈ C : z = i t, 0 < t < (μm+1 − μ′′)1/2} of the imaginary axis remains free
of the spectra of the pencils Ar (·, μ), μ′ ≤ μ ≤ μ′′, r = 1, . . . , T . Therefore,
the interval (ν, ν̃) with μ′′ < ν̃ < τ ′′ can serve as an element of the covering, and
any number γ ∈ (0, (μm+1 − μ′′)1/2) can be an index for the element. Finally,
we choose the elements Up to the left of the threshold τ so that the graphs of the
functions Up � μ �→ γ p = const are located between the graphs of the functions
(τ ′, τ ) � μ �→ Imλk(μ) = (μk − μ)1/2, k = m, m + 1, and the indices form a
decreasing sequence γ 0 > γ 1 > · · · . �

3.2.2 Analyticity of Scattering Matrices with Respect
to Spectral Parameter

Let us consider the bases {Y+
j } and {Y−

j } in the spaces of continuous spectrum eigen-
functions (CSE) defined near the threshold τ (see (3.2.9) and (3.2.10)). We first show
that the functions μ �→ Y±

j (·, μ) admit analytic extension to the interval (τ ′, τ ′′). In
what follows, by the analyticity of a function on an interval we mean the possibility
of analytic continuation of the function in a complex neighborhood of every point
in the interval. Then we prove the analyticity of the scattering matrix μ �→ S(μ) on
(τ ′, τ ′′). The analyticity does not exclude the existence of eigenvalues of problem
(3.1.16) embedded into the continuous spectrum; however, the analyticity eliminates
the arbitrariness in the choice of CSE. Moreover, we establish the analyticity of
the elements μ �→ Y ±

j (·, μ) in (3.2.3) and (3.2.4) as well as the analyticity of the
corresponding scattering matrix μ �→ S(μ) on (τ ′, τ ) and (τ, τ ′′).

In a neighborhood of any point of the interval (τ ′, τ ′′), one can define an operator
Aγ (μ), which is needed for relations like (3.2.9) and (3.2.10). The index γ has been
provided by Lemma 3.2.4: the same number γ p can serve for allμ ∈ Up. Therefore,
for μ ∈ Up, there exist the families {Y±

j (·, μ)} ⊂ kerA−γ p (μ) satisfying relations
like (3.2.9) and (3.2.10) with unitary matrix S(μ), so Theorem 3.2.3 holds with
μ ∈ Up. Thus, it suffices to prove the analyticity of the “local families” {Y±

j (·, μ)}
and that of the matrix S(μ) on Up and to verify the compatibility of such families
on the intersections of neighborhoods.
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We first obtain a representation of the operator A(μ)−1, where A(μ) is operator
(3.2.6) or (3.2.11), in a neighborhood of an eigenvalue of problem (3.1.16). To this
end we recall some facts in the theory of holomorphic operator-valued functions
(e.g., see [22, 23, 29]). Let D be a domain in a complex plane, B1 and B2 Banach
spaces, and A a holomorphic operator-valued function D � μ �→ A(μ) : B1 → B2.
The spectrum of the function A(·) is the set of points μ ∈ D such that A(μ) is a
noninvertible operator. A number μ0 is called an eigenvalue of A if there exists a
nonzero vector ϕ0 ∈ B1 such that A(μ0)ϕ0 = 0; then ϕ0 is called an eigenvector. Let
μ0 and ϕ0 be an eigenvalue and an eigenvector. Elements ϕ1, . . . , ϕm−1 are called
generalized eigenvectors, if

n∑
q=0

1

q! (∂
q
μA)(μ0)ϕn−q = 0,

where n = 1, . . . , m. A holomorphic functionA is said to be Fredholm if the operator
A(μ) : B1 → B2 is Fredholm for all μ ∈ D and is invertible at least for one μ.
The spectrum of a Fredholm function A consists of isolated eigenvalues of finite
algebraic multiplicity. The holomorphic function A

∗ adjoint to A is defined on the
set {μ : μ̄ ∈ D} by the equality A

∗(μ) = (A(μ̄))∗ : B∗
1 → B∗

2 . If one of the
functions A and A

∗ is Fredholm, then the other one is also Fredholm. A number μ0
is an eigenvalue of A if and only if μ̄0 is an eigenvalue of A

∗; the algebraic and
geometric multiplicities of μ̄0 coincide with those of μ0.

Let us consider the operator-valued functionμ �→ A(μ) in (3.2.6) or (3.2.11) on an
interval [μ′, μ′′] that belongs to one of the intervals (τ ′, τ ) or (τ, τ ′′). Taking account
of Remark 3.2.2, we choose the same index δ in (3.2.6) and in Theorem 3.2.1 for all
μ ∈ [μ′, μ′′]. When considering the function μ �→ A(μ) in (3.2.11) on an interval
[μ′, μ′′] ⊂ (τ ′, τ ′′), we suppose the interval to be so small that Lemma 3.2.4 enables
us to take the same γ in (3.2.11) and in Theorem3.2.3 for allμ ∈ [μ′, μ′′]. According
to Proposition 3.1.1, the waves in the definitions of operators (3.2.6) and (3.2.11)
are holomorphic in a complex neighborhood of the corresponding interval [μ′, μ′′].
Therefore, the functions μ �→ A(μ) in Theorems 3.2.1 and 3.2.3 are holomorphic
in the same neighborhood.

Proposition 3.2.5 (i) Let μ �→ A(μ) be the operator-valued function in Theorem
3.2.3, μ0 an eigenvalue of operator (3.2.2), and (z1, . . . , zd) a basis of kerAγ (μ0).
Then, in a punctured neighborhood of μ0, there holds the representation

A−1(μ){ f, g} = (μ − μ0)
−1P{ f, g} + R(μ){ f, g}, (3.2.14)

where { f, g} ∈ Hγ (G),

P{ f, g} = −
d∑

j=1

(
( f, z j )G + (g,−∂νz j )∂G

)
z j , (3.2.15)
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and the function R(μ) : Hγ (G) → K � H2
γ (G) is holomorphic in a neighborhood

of μ0.
(ii)Let μ �→ A(μ) be the operator-valued function in Theorem 3.2.1, μ0 an eigen-

value of operator (3.2.2) in (τ ′, τ ) or (τ, τ ′′), and (z1, . . . , zd) a basis of kerAδ(μ0).
Then, in a punctured neighborhood of μ0, there holds representation (3.2.14), where
P{ f, g} is defined by (3.2.15) and the function R(μ) : Hδ(G) → N � H2

δ (G) is
holomorphic in a neighborhood of μ0.

Proof (i) By Theorem 3.2.3, (1), the operator A(μ) is Fredholm at anyμ ∈ [μ′, μ′′].
We may consider A(μ) as Fredholm in a neighborhood U (the Fredholm property is
stablewith respect to perturbations that are small in the operator norm).Moreover, the
operatorA(μ) is invertible for allμ ∈ [μ′, μ′′] except the eigenvalues of the operator
(3.2), which are real and isolated. Hence the function μ �→ A(μ) is Fredholm in
a neighborhood of μ0 in the complex plane. From Theorem 3.2.3, (4), it follows
that the eigenspaces of operators (3.2.11) and (3.2.2) coincide, that is, kerA(μ0) =
kerAγ (μ0) ⊂ H2

γ (G). It is easy to verify that the operator-valued function A has
no generalized eigenvectors at μ0. Then the Keldysh theorem on the resolvent of
holomorphic operator-valued function (see [23, 29]) provides the equality

A−1(μ){ f, g} = (μ − μ0)
−1T{ f, g} + R(μ){ f, g}; (3.2.16)

here T{ f, g} = ∑d
j=1〈{ f, g}, {ψ j , χ j }〉z j , the duality 〈·, ·〉 on the pair Hγ (G),

Hγ (G)∗ is defined by 〈{ f, g}, {ψ, χ}〉 = ( f, ψ)G + (g, χ)∂G , and (·, ·)G and
(·, ·)∂G are the extensions of the inner products on L2(G) and L2(∂G) to the
pairs H0

γ (G), H0
γ (G)∗ and H3/2

γ (∂G), H3/2
γ (∂G)∗, respectively. The elements {ψ j ,

χ j } ∈ kerA(μ0)
∗ ⊂ W (G; γ )∗ are subject to the orthogonality and normalization

conditions

〈(∂μA)(μ0)z j , {ψk, χk}〉 = δ jk, j, k = 1, . . . , d. (3.2.17)

Furthermore, (∂μA)(μ0)z j = {−z j , 0} ∈ W (G; γ ). The elements {ψk, χk} can be
interpreted in terms of the Green formula and, in view of (3.2.17), rewritten in the
form {ψk, χk} = {−zk, ∂νzk} (e.g., see [37]). Now, T{ f, g} coincides with P{ f, g}
in (3.2.15), and (3.2.16) takes the form (3.2.14).

(ii) One can repeat, with evident modifications, the argument in (i). �

We are now ready to discuss the analyticity of bases in the space of the continuous
spectrum eigenfunctions. For instance, we proceed to the basis {Y+

j } in (3.2.9).

From the definition of the wave w+
j in G (see 3.1.2), it follows that the function

G � x �→ w+
j (x, μ) is supported by one of the cylindrical ends of G,

−�w+
j (x, μ) − μw+

j (x, μ) = f j (x, μ), x ∈ G,

w+
j (x, μ) = 0, x ∈ ∂G,
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and the support of the function x �→ f j (x, μ) is compact. Let us consider the
equation

A(μ)w(·, μ) = { f j (·, μ), 0} (3.2.18)

on an interval [μ′, μ′′] ⊂ (τ ′, τ ′′). We first assume that the interval [μ′, μ′′] is free
of the eigenvalues of the operator-valued function μ �→ A(μ). In view of Theorem
3.2.3, for all μ ∈ [μ′, μ′′], there exists a unique solution w = v + c1w

−
1 + · · · +

cMw−
M to Eq. (3.2.18),

w(·, μ) = {c1(μ), . . . , cM (μ), v(·, μ)} ∈ K � H2
γ (G). (3.2.19)

Since the functions μ �→ A(μ)−1 and μ �→ f j (·, μ) are holomorphic in a complex
neighborhood of the interval [μ′, μ′′], the components of the vector-valued function
μ �→ w(·, μ) are holomorphic as well. Therefore, the analyticity of the function
μ �→ Y+

j (·, μ) in the same neighborhood follows from the equality

Y+
j = w+

j − w. (3.2.20)

Assume now that the interval [μ′, μ′′] contains an eigenvalue μ0 of the operator-
valued function μ �→ A(μ). We find the residue P{ f, g} in (3.2.14) for { f, g} =
{ f j , 0} in the right-hand side of (3.2.18). For z ∈ kerAγ (μ0), we have

( f, z)G + (g,−∂νz)∂G = ( f j , z)G = (−�w+
j − μw+

j , z)G = (w+
j ,−�z − μz)G = 0.

Hence P{ f j , 0} = 0 and, by virtue of (3.2.14),

w(·, μ) = A(μ)−1{ f j , 0} = R(μ){ f j , 0},

which means that the function μ �→ w(·, μ) is analytic in a neighborhood of μ0.
This implies the analyticity of the function μ �→ Y+

j (·, μ).

The analyticity of the functions μ �→ Y−
j (·, μ) can be proved in the same way.

When verifying the analyticity of functions of the form μ �→ Y +
j (·, μ) and μ �→

Y −
j (·, μ) in (3.2.3) and (3.2.4) in a complex neighborhood of the interval [μ′, μ′′] ⊂

(τ ′, τ ) or [μ′, μ′′] ⊂ (τ, τ ′′), one has to make only an evident modification of the
above argument.

Lemma 3.2.4 and Theorem 3.2.3, (4) enable us to extend formulas (3.2.9) and
(3.2.10) to the whole interval (τ ′, τ ′′) for the analytic families μ �→ Y±

j (·, μ);
however, one index γ has to be replaced by a collection of indices. Nonetheless, in a
neighborhood of any given point μ ∈ (τ ′, τ ′′), one can do with one index γ . Remark
3.2.2 and Theorem 3.2.1, (4) allow to extend (3.2.3) and (3.2.4) to the intervals (τ ′, τ )

and (τ, τ ′′) for the analytic families μ �→ Y ±
j (·, μ).
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Theorem 3.2.6 Let τ ′ and τ ′′ be thresholds of problem (3.1.16) such that τ ′ < τ ′′
and the interval (τ ′, τ ′′) contains the only threshold τ . We also suppose that the three
thresholds relate to the same cylindrical end. Then:

(i) On the intervals (τ ′, τ ) and (τ, τ ′′), there exist analytic bases {μ �→ Y ±
j (·, μ)}

in the spaces of continuous spectrum eigenfunctions of problem (3.1.16) satisfying
(3.2.3) and (3.2.4) with the scattering matrix μ �→ S(μ) analytic on the mentioned
intervals.

(ii) On the interval (τ ′, τ ′′), there exist analytic bases {μ �→ Y±
j (·, μ)} in the

spaces of continuous spectrum eigenfunctions of problem (3.1.16) satisfying (3.2.9)
and (3.2.10) with the scattering matrix μ �→ S(μ) analytic on (τ ′, τ ′′).

Proof In view of the argument in 3.2.2, it suffices to verify the analyticity of the
scattering matrices. For example, let us consider the matrix μ �→ S(μ). Equality
(3.2.20), the representation w = v + c1w

−
1 + · · · + cMw−

M , and inclusion (3.2.19)
lead to

Y+
j (·, μ) = w+

j (·, μ) −
M∑

k=1

ck(μ)w−
k (·, μ) ∈ H2

γ (G).

Therefore, S jk(μ) = −ck(μ), k = 1, . . . , M . It remains to take into account that
the functions μ �→ ck(μ) are analytic on (τ ′, τ ′′). �

For the basis {Y+
j (·, μ)}M

j=1 (see Theorem 3.2.6, (ii)), we introduce the columns

Y+
(1) = (Y+

1 , . . . ,Y+
L )t and Y+

(2) = (Y+
L+1, . . . ,Y

+
M )t and write down the scattering

matrix in the form

S(μ) =
(
S(11)(μ) S(12)(μ)

S(21)(μ) S(22)(μ)

)
,

where S(11)(μ) is a block of size L × L and S(22)(μ) is a block of size (M − L) ×
(M − L), while μ ∈ (τ ′, τ ′′). We also set

D = ((μ − τ)1/2 + 1)/((μ − τ)1/2 − 1)

with (μ − τ)1/2 = i(τ − μ)1/2 for μ ≤ τ and (τ − μ)1/2 ≥ 0. The next assertion
will be of use in Sect. 3.3.

Lemma 3.2.7 Assume that μ ∈ (τ ′, τ ] andS(μ) is the scattering matrix in Theorem
3.2.6, (ii). Then

ker(D + S(22)(μ)) ⊂ kerS(12)(μ), (3.2.21)

Im(D + S(22)(μ)) ⊃ ImS(21)(μ). (3.2.22)

Therefore, the operator S(12)(μ)(D + S(22)(μ))−1 is defined on Im(D + S(22)(μ)).
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Proof Let us consider (3.2.21). We assume that h ∈ ker(D +S(22)(μ)) and (0, h)t ∈
C

M . Then
(
S(11)(μ) S(12)(μ)

S(21)(μ) S(22)(μ)

) (
0
h

)
=

(
S(12)(μ)h

−Dh

)
.

Since thematrixS(μ) is unitary and |D| = 1, we have ‖h‖2 = ‖S(12)(μ)h‖2+‖h‖2,
so S(12)(μ)h = 0 and (3.2.21) is valid. Inclusion (3.2.22) is equivalent to

ker(D + S(22)(μ))∗ ⊂ kerS(21)(μ)∗. (3.2.23)

Moreover,

S(μ)∗ =
(
S(11)(μ)∗ S(21)(μ)∗
S(12)(μ)∗ S(22)(μ)∗

)

and the matrix S(μ)∗ is unitary; therefore (3.2.23) may be proven by the same
argument as (3.2.21). �

3.3 Other Properties of the Scattering Matrices

Here we clarify the connection between the matrices S(μ) and S(μ) on the interval
τ ′ < μ < τ , prove the existence of the one-side finite limits of S(μ) as μ → τ ± 0,
and describe the transformation of the scattering matrix under changes of basis in
the space of waves W(μ, G) for μ ∈ (τ, τ ′′).

3.3.1 The Connection Between S(μ) and S(μ) for τ ′ < μ < τ

Let us recall the description of the stable basis chosen for the definition of S(μ). In
the semicylinder �1+, we introduce the functions

�1+ � (y, t) �→ e±
k (y, t;μ) := χ(t) exp (±i t

√
μ − μk)ϕk(y), (3.3.1)

where k = l + 1, . . . , m (the notation is the same as in (3.1.9); as before, μl+1 =
· · · = μm = τ ). We extend the functions by zero to the whole domain G and set

w±
L+ j (· ;μ) = 2−1/2

(
e+

l+ j (· ;μ) + e−
l+ j (· ;μ)

2
∓ e+

l+ j (· ;μ) − e−
l+ j (· ;μ)

2
√

μ − μl+ j

)

(3.3.2)
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for j = 1, . . . , m − l = M − L (the equality m − l = M − L was explained just after
Remark 3.2.2). All the rest of the waves with supports in�1+ obtained from functions
(3.1.10) and the waves of the same type with supports in �2+, . . . , �T+ we number
by one index j = 1, . . . , L and denote by w±

1 (· ;μ), . . . , w±
L (· ;μ). The obtained

collection {w±
1 , . . . , w±

M } is a basis of waves in G stable in a neighborhood of the
threshold τ . Finally, we introduce the columns w±

(1) = (w±
1 , . . . , w±

L )t , w±
(2) =

(w±
L+1, . . . , w

±
M )t , and (w±

(1), w±
(2)) = (w±

1 , . . . , w±
M )t , where t stands for matrix

transposing.
The components of the vector w±

(1) are bounded, while the components of w±
(2)

exponentially grow at infinity in �1+. Setting e±
(1) = (e±

1 , . . . , e±
L )t and e±

(2) =
(e±

L+1, . . . , e±
M )t , we arrive at

w±
(2) = D∓e+

(2) + D±e−
(2) (3.3.3)

with

D± = ((μ − τ)1/2 ± 1)/2
√
2(μ − τ)1/2.

The following assertion is, in essence, contained in [38] and in [37], Ch. 12.

Proposition 3.3.1 Let μ ∈ (τ ′, τ ) and let S(μ) and S(μ) be the scattering matrices
in Theorem 3.2.6. Then

S(μ) = S(11)(μ) − S(12)(μ)(D + S(22)(μ))−1S(21)(μ), (3.3.4)

with

D = D+/D− = ((μ − τ)1/2 + 1)/((μ − τ)1/2 − 1).

Proof We verify (3.3.4). Let us write (3.2.9) in the form

Y+
(1) − w+

(1) − S(11)w
−
(1) − S(12)w

−
(2) ∈ H2

γ (G),

Y+
(2) − w+

(2) − S(21)w
−
(1) − S(22)w

−
(2) ∈ H2

γ (G). (3.3.5)

Recall that the γ > 0 has been chosen according to Lemma 3.2.4, so the strip
{λ ∈ C : |Imλ| < γ } contains the eigenvalues±(μ−τ)1/2 of the pencilA1(·, μ).We
take δ > 0 such that the strip {λ ∈ C : |Imλ| < δ} contains only the real eigenvalues
of the pencils Ar (·, μ), r = 1, . . . , T ; then δ < γ and H2

γ (G) ⊂ H2
δ (G). Instead of

w±
(2), we substitute into (3.3.5) their expressions in (3.3.3); for the aforementioned

δ, the vector-valued function e+
(2) belongs to H2

δ (G). As a result we obtain

Y+
(1) = w+

(1) + S(11)w
−
(1) + S(12)D−e−

(2) + �(1), (3.3.6)

Y+
(2) = S(21)w

−
(1) + (D + S(22))D−e−

(2) + �(2), (3.3.7)



58 3 Properties of Scattering Matrices in a Vicinity of Thresholds

where �(1),�(2) ∈ H2
δ (G). We now introduce the orthogonal projector

P : C
M−L → Im(D + S(22)(μ)).

Taking account of (3.2.22) and (3.3.7), we arrive at

PY+
(2) = S(21)w

−
(1) + (D + S(22))D−e−

(2) + P�(2). (3.3.8)

We apply the operator S(12)(μ)(D +S(22)(μ))−1 to both sides of (3.3.8) and subtract
the resulting equality from (3.3.6). We then have

Z = w+
(1) + (S(11)(μ) − S(12)(μ)(D + S(22)(μ))−1S(21)(μ))w−

(1) + R, (3.3.9)

where

Z = Y+
(1) − S(12)(μ)(D + S(22)(μ))−1PY+

(2), (3.3.10)

R = �(1) − S(12)(μ)(D + S(22)(μ))−1P�(2). (3.3.11)

The components of the vectors Y+
(1) and Y+

(2) satisfy problem (3.1.16); in view
of (3.3.10), the same is true for the components of the vector Z . Moreover, from
�(1),�(2) ∈ H2

δ (G), and (3.3.11) it follows that R ∈ H2
δ (G). Hence the formula

(3.3.9) describes the scattering of the vector w+
(1) of incoming waves in the basis

w+
(1), w−

(1) as well as (3.2.3), so we obtain (3.3.4). �

3.3.2 The Connection Between S(μ) and S(μ)

for τ < μ < τ ′′

We consider two bases in the wave space W(μ, G) for τ < μ < τ ′′. One of the
bases consists of the waves in G corresponding to functions of the form u±

q (·, μ) in
(3.1.4), while the other one comprises the waves generated by the functionsw±

q (·, μ)

(see (3.1.9), (3.1.10)). As before, the scattering matrices, defined in these bases, are
denoted by S(μ) and S(μ) (see Theorem 3.2.6); this time, that is, for μ ∈ (τ, τ ′′),
the matrices are of the same size M × M .

The scattering matrices are independent of the choice of the cut-off function χ in
the definition of the space W(μ, G). Identifying “equivalent” waves, one can omit
such a cut-off function from consideration. To this end, we introduce the quotien
space

Ẇ(μ, G) := (W(μ, G)+̇H2
γ (G))/H2

γ (G).

Let v̇ stand for the class in Ẇ(μ, G) with representative v ∈ W(μ, G). In what
follows, waves of the form χu±

q (·, μ) and χw±
q (·, μ) in G are denoted by u±

q (·, μ)
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andw±
q (·, μ). The collections {u̇±

q (·, μ)}M
j=1 and {ẇ±

k (·, μ)}M
k=1 are bases in the space

Ẇ(μ, G), so dim Ẇ(μ, G) = 2M . The form qG(u, v) in (3.1.17) is independent of
the choice of representatives in u̇ and v̇; hence it is defined on Ẇ(μ, G)×Ẇ(μ, G).
From (3.1.7) and (3.1.8) it follows that

iqG(u̇±
k (· ;μ), u̇∓

l (· ;μ)) = 0 for all k, l = 1, . . . , M, (3.3.12)

iqG(u̇±
k (· ;μ), u̇±

l (· ;μ)) = ∓δkl , (3.3.13)

and equalities (3.1.11) and (3.1.12) lead to

iqG(ẇ±
r (· ;μ), ẇ∓

s (· ;μ)) = 0 for all r, s = 1, . . . , M, (3.3.14)

iqG(ẇ±
r (· ;μ), ẇ±

s (· ;μ)) = ∓δrs . (3.3.15)

Thus Ẇ(μ, G) turns out to be a 2M-dimensional complex spacewith indefinite inner
product < u̇, v̇ >:= −iqG(u̇, v̇). The projection

π : W(μ, G)+̇H2
γ (G) → Ẇ(μ, G) (3.3.16)

maps the space of continuous spectrum eigenfunctions onto a subspace in Ẇ(μ, G)

of dimension M ; we denote the subspace by E(μ).
Let V1, . . . , V2M be a basis in Ẇ(μ, G) subject to the orthogonality and normal-

ization conditions

< Vj , Vl >= δ j l , < Vj+M , Vl+M >= −δ j l for j, l = 1, . . . , M. (3.3.17)

The elements V1, . . . , VM are called incoming waves, and the elements VM+1, . . . ,

V2M are called outgoing waves. Assume that X1, . . . , X M is a basis of E(μ) that
defines, in the basis of waves V1, . . . , V2M , the scatteringmatrixS(μ) of size M ×M
(compare with (3.2.3)). We represent the vectors X j as coordinate rows and form the
M ×2M-matrix X = (X1, . . . , X M )t (which is a column of the letters X1, . . . , X M ).
Finally, let I denote the unit matrix of size M × M . Then a relation of the form (3.2.3)
leads to

X = (I,S(μ))V, (3.3.18)

where V is the 2M × 2M-matrix (V1, . . . , V2M )t consisting of the coordinate rows
of the vectors Vj and (I,S(μ)) is a matrix of size M × 2M .

Assume that Ṽ1, . . . , Ṽ2M is another basis of waves subject to conditions of the
form (3.3.17), X̃1, . . . , X̃ M is a basis of E(μ), and S̃(μ) is the corresponding scat-
tering matrix such that

X̃ = (I, S̃(μ))Ṽ . (3.3.19)

We suppose that Ṽ = TV andwrite down the 2M×2M-matrixT asT = (T(k l))
2
k, l=1

with blocks T(k l) of size M × M .
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Lemma 3.3.2 The matricesT(1 1) + S̃(μ)T(2 1) andT(1 2) + S̃(μ)T(2 2) are invert-
ible and

S(μ) = (T(1 1) + S̃(μ)T(2 1))
−1(T(1 2) + S̃(μ)T(2 2)). (3.3.20)

Proof For the bases X1, . . . , X M and X̃1, . . . , X̃ M there exists a nonsingular M×M-
matrix B such that X̃ = B X . Therefore, by virtue of (3.3.19), we have

B X = (I, S̃(μ))TV .

Taking account of (3.3.18), we obtain B(I,S(μ))V = (I, S̃(μ))TV, so

B(I,S(μ)) = (I, S̃(μ))T.

Let us write this equality in the form

(B, BS(μ)) = (T(1 1) + S̃(μ)T(2 1),T(1 2) + S̃(μ)T(2 2)).

Now, the assertions of lemma are evident. �

We intend to make use of (3.3.20) taking as Ṽ the image, under canonical pro-
jection (3.3.16), of the stable basis ofW(μ, G) in (3.2.9) and as V the image of the
wave basis in (3.2.3). As S̃(μ) and S(μ), we choose S(μ) and S(μ), respectively.
Let us proceed to computing the matrix T in the equality Ṽ = TV . In doing so,
instead of Ṽ and V we can consider their just-mentioned pre-images in W(μ, G).
We set

u j := u+
j , u j+M := u−

j , j = 1, . . . , M, (3.3.21)

where u±
j are the waves inW(μ, G) generated by functions of the form (3.1.4). We

also introduce

w j := w+
j = u+

j , w j+M := w−
j = u−

j , j = 1, . . . , L , (3.3.22)

wp := w+
p , wp+M := w−

p , p = L + 1, . . . , M,

where w±
p are the waves inW(μ, G) generated by functions (3.1.9). For the matrix

T, the equality w = Tu holds with the columns w = (w1, . . . , w2M )t and u =
(u1, . . . , u2M )t . For convenience, we will here denote functions (3.1.9) in the same
way as the waves w±

p ; let us write down these functions in the form

w±
p (μ) = 2−1/2((eitλ + e−i tλ)/2) ∓ (eitλ − e−i tλ)/2λ)ϕp,

where λ = √
μ − τ and τ is a threshold; we also write functions (3.1.4) in the form

u±
p (μ) = (2λ)−1/2e∓i tλϕp.
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Then we have

w±
p = (1/2)(u+

p (λ1/2 ± λ−1/2) + u−
p (λ1/2 ∓ λ−1/2)), p = L + 1, . . . , M;

here byw±
p and u±

p one can mean the functions in the cylinder and the corresponding
waves in the domain G alike. Together with (3.3.21) and (3.3.22), this leads to the
following description of the blocks T(i j) of the matrix T.

Lemma 3.3.3 Each of the matrices T(i j) consists of four blocks and is block-
diagonal. The equalities

T(11)(μ) = T(22)(μ) = diag{IL , 2−1(λ1/2 + λ−1/2)IM−L}, (3.3.23)

T(21)(μ) = T(12)(μ) = diag{OL , 2−1(λ1/2 − λ−1/2)IM−L} (3.3.24)

hold; IK is the unit matrix of size K × K , OL is the zero matrix of size L × L, and
λ = √

μ − τ with μ ∈ (τ, τ ′′).

We return to (3.3.20) with S and S instead of S̃ and S. Let us divide the matrix S
into four blocks with S(11) of size L × L and S(22) of size (M − L) × (M − L). We
also set d± = 2−1(λ1/2 ± λ−1/2). Then

T(11) + ST(21) =
(

IL S(12)d−
O S(22)d− + IM−L d+

)
. (3.3.25)

According to Lemma 3.3.2, the matrix T(11) + ST(21) is invertible, so the matrix
S(22)d− + IM−L d+ is invertible as well, therefore

(T(11) + ST(21))
−1 =

(
IL −S(12)d−(S(22)d− + IM−L d+)−1

O (S(22)d− + IM−L d+)−1

)
. (3.3.26)

In view of (3.3.20), we now obtain

Proposition 3.3.4 For μ ∈ (τ, τ ′′), the blocks S(i j) of the scattering matrix

S(μ) = (T(11) + S(μ)T(21))
−1(T(12) + S(μ)T(22))

admit the representations

S(11) = S(11) − S(12)d
−(S(22)d

− + IM−L d+)−1S(21), (3.3.27)

S(12) = S(12)d
+ − S(12)d

−(S(22)d
− + IM−L d+)−1(S(22)d

+ + IM−L d−),

(3.3.28)

S(21) = (S(22)d
− + IM−L d+)−1S(21), (3.3.29)

S(22) = (S(22)d
− + IM−L d+)−1(S(22)d

+ + IM−L d−). (3.3.30)
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3.3.3 The Limits of S(μ) as μ → τ ± 0

To calculate the one-sided limits of S(μ), we make use of (3.3.4) as μ → τ − 0
and apply (3.3.27)–(3.3.30) as μ → τ + 0. The computation procedure depends on
whether the number 1 is an eigenvalue of the matrix S22(τ ).

3.3.3.1 The Limits of S(μ) as μ → τ ± 0, Provided 1 Is Not an
Eigenvalue of S(22)(τ )

Recall that the functions μ �→ S(kl)(μ) are analytic in a neighborhood of μ = τ .
Therefore, from (3.3.4) it immediately follows that

lim
μ→τ−0

S(μ) = S(11)(τ ) − S(12)(τ )(S(22)(τ ) − 1)−1S(21)(τ ). (3.3.31)

Let us proceed to compute lim S(μ) asμ → τ +0. By virtue of (3.3.27) and (3.3.31),

lim
μ→τ+0

S(11)(μ) = lim
μ→τ+0

(S(11)(μ) − S(12)(μ)(S(22)(μ) + d+(μ)/d−(μ))−1S(21)(μ))

(3.3.32)

= S(11)(τ ) − S(12)(τ )(S(22)(τ ) − 1)−1S(21)(τ ) = lim
μ→τ−0

S(μ).

According to (3.3.30),

lim
μ→τ+0

S(22)(μ) = lim
μ→τ+0

(S(22) + d+/d−)−1(S(22)d
+/d− + 1) (3.3.33)

= (S(22)(τ ) − 1)−1(−S(22)(τ ) + 1) = −IM−L .

It follows from (3.3.29) that

S(21)(μ) = (S(22) + d+/d−)−1S(21)/d−.

Since d−(μ) = 2−1((μ − τ)1/2 − 1)/(μ − τ)1/4, we arrive at

S(21)(μ) = O((μ − τ)1/4) → 0 for μ → τ + 0. (3.3.34)

Finally, consider S(12)(μ). We write (3.3.28) in the form

S(12) = S(12)d
+(1 − (S(22) + d+/d−)−1(S(22) + d−/d+))

= S(12)d
+(S(22) + d+/d−)−1(d+/d− − d−/d+).



3.3 Other Properties of the Scattering Matrices 63

In view of

d+(μ)(d+/d− − d−/d+) = 2(μ − τ)1/4/((μ − τ)1/2 − 1),

we obtain

S(12)(μ) = O((μ − τ)1/4) → 0 for μ → τ + 0. (3.3.35)

3.3.3.2 The Limits of S(μ) as μ → τ ± 0, Provided 1 Is an Eigenvalue
of S(22)(τ )

We set λ = √
μ − τ with μ = τ + λ2 and consider the function λ �→ �(λ) :

C
M−L → C

M−L ,

�(λ) := S(22)(μ) + d+(μ)/d−(μ) = S(22)(τ + λ2) + (λ + 1)/(λ − 1). (3.3.36)

The number λ = 0 is an eigenvalue of the function λ �→ �(λ) if and only if 1 is
an eigenvalue of the matrix S(22)(τ ); in such a case ker (S(22)(τ ) − 1) = ker�(0).
To calculate the limits of S(μ) as μ → τ ± 0, we need knowledge of the resolvent
λ �→ �(λ)−1 in a neighborhood of λ = 0. Propositions 3.3.5 and 3.3.6 provide the
required information.

Proposition 3.3.5 There holds the equality

ker (S(22)(τ ) − 1) = ker (S(22)(τ )∗ − 1). (3.3.37)

Proof Assume that h ∈ ker (S(22)(τ )−1). Then, aswas shown in the proof of Lemma
3.2.7, the vector (0, h)t ∈ C

M belongs to ker (S(τ )−1) andS(12)(τ )h = 0. The same
argument withS(τ )∗ instead ofS(τ ) shows that the inclusion g ∈ ker (S(22)(τ )∗−1)
implies (0, g)t ∈ ker (S(τ )∗ − 1) and S(21)(τ )∗g = 0. Since S(τ )∗ = S(τ )−1, we
have

ker (S(τ ) − 1) = ker (S(τ )∗ − 1). (3.3.38)

Let h1, . . . , hκ be a basis of ker (S(22)(τ ) − 1) and g1, . . . , gκ a basis of ker (S(22)

(τ )∗ − 1). We set h̃ j = (0, h j )
t and g̃ j = (0, g j )

t . From (3.3.38) it follows that

h̃ j , g̃ j ∈ ker (S(τ ) − 1) = ker (S(τ )∗ − 1), j = 1, . . . , κ.

Therefore, any vector of the collection h1, . . . , hκ is a linear combination of the
vectors g1, . . . , gκ, and vice versa. �

Proposition 3.3.6 Let � be the matrix function in (3.3.36) and dim ker�(0) = κ >

0. Then, in a punctured neighborhood of λ = 0, the resolvent λ �→ �(λ)−1 admits
the representation
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�(λ)−1 = −(2λ)−1
κ∑

j=1

{·, h j }h j + �(λ); (3.3.39)

here h1, . . . , hκ is an orthonormal basis of ker (S(22)(τ ) − 1), {u, v} is the inner
product on the space C

M−L , and λ �→ �(λ) : C
M−L → C

M−L is a matrix function
holomorphic in a neighborhood of λ = 0.

Proof It is known (e.g., see [22, 23]) that, under certain conditions, the resolvent
A(λ)−1 of a holomorphic operator function λ �→ A(λ) in a punctured neighborhood
of an isolated eigenvalue λ0 admits the representation

A(λ)−1 = (λ − λ0)
−1

κ∑
j=1

(·, ψ j )φ j + �(λ), (3.3.40)

where φ1, . . . , φκ and ψ1, . . . , ψκ are bases of the spaces kerA(λ0) and kerA(λ0)
∗

satisfying the orthogonality and normalization conditions

(∂λA(λ0)φ j , ψk) = δ jk, j, k = 1, . . . , κ, (3.3.41)

and � is an operator function holomorphic in a neighborhood of λ0. The formula
(3.3.40) is related to the case where the operator function λ �→ A(λ) has no gener-
alized eigenvectors at the point λ0. To justify (3.3.39), we have to show that there
are no generalized eigenvectors of the function λ �→ �(λ) at the point λ = 0 and to
verify agreement between (3.3.39) and (3.3.40).

We first take up the generalized eigenvectors. Assume that 0 	= h0 ∈ ker�(0).
The equation �(0)h1 + (∂λ�)(0)h0 = 0 for a generalized eigenvector h1 is of the
form

(S(22)(τ ) − 1)h1 = 2h0.

The orthogonality of h0 to the lineal ker (S(22)(τ )∗ − 1) = ker (S(22)(τ )− 1) is nec-
essary for the solvability of this equation (see (3.3.37)). Since 0 	= h0 ∈ ker�(0) =
ker (S(22)(τ )− 1), the solvability condition is not fulfilled, so the generalized eigen-
vectors do not exist.

Let us compare (3.3.39) and (3.3.40). We have (∂λ�)(0) = −2IM−L . Moreover,
in view of (3.3.37), the basesφ1, . . . , φκ andψ1, . . . , ψκ in (3.3.40) can be chosen to
satisfy φ j = −ψ j = h j/

√
2 and, as h1, . . . , hκ, there can be taken an orthonormal

basis of ker (S22(τ ) − 1). Then

{(∂λ�)(0)φ j , ψk} = δ jk, j, k = 1, . . . , κ,

and the representation (3.3.40) takes the form of (3.3.39). �
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Let us calculate lim S(μ) as μ → τ − 0. According to Lemma 3.2.7,

Im(S(22)(τ ) − 1) ⊃ ImS(21)(τ ).

Therefore, Proposition 3.3.5 leads to the equalities {S(21)(τ ) f, h j } = 0 for any
f ∈ C

L and h1, . . . , hκ in (3.3.39). Because the function μ → S(21)(μ) is analytic,
we have S(21)(μ) = S(21)(τ ) + O(|μ − τ |); recall that |μ − τ | = |λ|2. Applying
(3.3.39), we obtain

(S(22)(μ) + D(μ))−1S(21)(μ) = �(λ)S(21)(μ) + O(|λ|). (3.3.42)

Now, from (3.3.4) it follows that

lim
μ→τ−0

S(μ) = S(11)(τ ) − S(12)(τ )�(0)S(21)(τ ); (3.3.43)

Lemma 3.2.7 allows to treat the right-hand side as the operator S(11)(τ ) − S(12)(τ )

(S(22)(τ ) − 1)−1S(21)(τ ) (see (3.3.31)). For μ → τ − 0, there holds the estimate

S(μ) − (S(11)(τ ) − S(12)(τ )�(0)S(21)(τ )) = O(|μ − τ |(1/2)). (3.3.44)

Let us proceed to calculating the limits asμ → τ + 0.Wecompute limμ→τ+0 S(11)(μ)

in the same way as limμ→τ−0 S(μ) and obtain

lim
μ→τ+0

S(11)(μ) = lim
μ→τ−0

S(μ). (3.3.45)

In view of (3.3.30),

S(22)(μ) = (
S(22)(μ) + d+/d−)−1 (

S(22)(μ) + d−/d+)
d+/d−

= d+/d− + (
S(22)(μ) + d+/d−)−1 (

d−/d+ − d+/d−)
d+/d−.

Applying resolvent representation (3.3.39), we write the last equality in the form

S(22)(μ) = λ + 1

λ − 1

⎛
⎝I + 2

λ2 − 1

κ∑
j=1

(·, h j )h j − 4λ

λ2 − 1
�(λ)

⎞
⎠ . (3.3.46)

Hence

lim
μ→τ+0

S(22)(μ) = 2
κ∑

j=1

(·, h j )h j − I = P − Q, (3.3.47)
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where P = ∑
κ

j=1(·, h j )h j is the orthogonal projectorC
M−L onto ker (S(22)(τ )−1)

and Q = I − P . Moreover, for μ → τ + 0, it follows from (3.3.46) that

S(22)(μ) − P + Q = O(|μ − τ |1/2). (3.3.48)

In accordance with (3.3.29),

S(21)(μ) = (S22(μ) + IM−L d+/d−)−1S(21)/d−.

Taking account of (3.3.42) and of d− = (λ − 1)/2
√

λ, we obtain

S(21)(μ) = (
�(λ)S(21)(μ) + O(|λ|)) 2√λ/(λ − 1).

Consequently,

S(21)(μ) = O(|μ − τ |1/4) → 0 for μ → τ + 0. (3.3.49)

It remains to find the limit of S(12)(μ). By virtue of (3.3.28),

S(12)(μ) = S(12)(μ)d+ (
I − (S(22)(μ) + d+/d−)−1(S(22)(μ) + d−/d+)

)
.

Since

(S(22)(μ) + d+/d−)−1(S(22)(μ) + d−/d+) = I − 4λ

λ2 − 1
(S(22)(μ) + d+/d−)−1,

we arrive at

S(12)(μ) = 2
√

λ

λ − 1
S(12)(μ)

(
− 1

2λ

∑
(·, h j )h j + �(λ)

)
.

Recall that h j ∈ ker(S22(τ )−1) ⊂ kerS12(τ ) (see (3.2.21)), S(12)(μ) = S(12)(τ )+
O(|μ − τ |), and μ − τ = λ2. Therefore, as μ → τ + 0 we have

S(12)(μ) = O(|μ − τ |1/4) → 0. (3.3.50)



Chapter 4
Method for Computing Scattering Matrices

Section4.1 is independent of Chap.3. Section4.2 is devoted to computing the
scattering matrices in a neighborhood of a threshold and uses the results of Chap. 3.
In fact, the scheme of the method in Sect. 4.2 is similar to that in Sect. 4.1; however,
near a threshold we first calculate the augmented scattering matrix defined in a basis
of waves stable at the threshold and then take into account its connection with the
usual (not augmented) S-matrix.

4.1 A Method for Computing Scattering Matrices Outside
Thresholds

4.1.1 Statement of the Method

We introduce the notation

�
r,R
+ = {(yr , tr ) ∈ �r : tr > R}, G R = G \ ∪N

r=1�
r,R
+

for large R. Then ∂G R \ ∂G = �R = ∪r�
r,R , where �r,R = {(yr , tr ) ∈ �r :

tr = R}. We seek the row (Sl1, . . . , Sl M ) of the scattering matrix S = S(μ). As an
approximation to the row we take a minimizer of a quadratic functional. To construct
such a functional, we consider the problem

(−� − μ)X R
l = 0, x ∈ G R;

X R
l = 0, x ∈ ∂G R \ �R;

(∂ν + iζ )X R
l = (∂ν + iζ )(u+

l +
∑M

j=1
a j u

−
j ), x ∈ �R, (4.1.1)

where ζ ∈ R \ {0} is an arbitrary fixed number, ν is the outward normal, and
a1, . . . , aM are complex numbers.
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Let us explain the origin of the problem. The solution Yl to the homogeneous
problem (3.1.16) satisfies the first two Equation in (4.1.1). The asymptotics (3.2.5)
can be differentiated, hence

(∂ν + iζ )Yl = (∂ν + iζ )(u+
l +

M∑
j=1

a j u
−
j ) + O(e−δR)

for a j = Sl j . Thus, Yl gives an exponentially small discrepancy in the last equation
(4.1.1). As an approximation to the row (Sl1, . . . , Sl M ), we take aminimizer a0(R) =
(a0

1(R), . . . , a0
M (R)) of the functional

J R
l (a1, . . . , aM ) = ‖X R

l − u+
l −

M∑
j=1

a j u
−
j ; L2(�

R)‖2, (4.1.2)

where X R
l is a solution to problem (5.6.4). One can expect that a0

j (R, μ) → Sl j (μ)

at exponential rate as R → ∞ for j = 1, . . . , M . To find the dependence of X R
l on

a1, . . . , aM , we consider the problems

(−� − μ)v±
j = 0, x ∈ G R;

v±
j = 0, x ∈ ∂G R \ �R; (4.1.3)

(∂ν + iζ )v±
j = (∂ν + iζ )u±

j , x ∈ �R; j = 1, . . . , M.

It is evident thatX R
l = v+

l,R +∑
j a jv

−
j,R , where v±

j = v±
j,R are solutions to problems

(4.1.3). Let us introduce the M × M–matrices with entries

E R
i j =

(
(v−

i − u−
i ), (v−

j − u−
j )

)
�R

,

F R
i j =

(
(v+

i − u+
i ), (v−

j − u−
j )

)
�R

,
(4.1.4)

and set

GR
i = (

(v+
i − u+

i ), (v+
i − u+

i )
)
�R .

The functional (4.1.2) can be written in the form

J R
l (a, μ) = 〈aE R(μ), a〉 + 2Re 〈F R

l (μ), a〉 + GR
l (μ),

where F R
l is the lth row of the matrix F R and 〈·, ·〉 is the inner product in CM . The

minimum is attained at a0 = a0(R, μ) (a row) satisfying the system a0(R, μ)E R +
F R

l = 0. Thus, as an approximation SR(μ) to the scattering matrix S(μ), we take a
solution of the equation SRE R + F R = 0.

http://dx.doi.org/10.1007/978-3-319-15105-2_3
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To justify the algorithm, we have to show that problems (4.1.3) are uniquely
solvable for ζ ∈ R\{0} and large R, the matrix E R is nonsingular, and the minimizer
a0(R, μ) of J R

l (·, μ) tends to the row (Sl1(μ), . . . , Sl M (μ)) of the scattering matrix
as R → ∞ and μ ∈ [μ1, μ2].

In the following theorem, the number ζ ∈ R \ {0} participating in the definition
of the functional J R

l (·, μ) is any (fixed) and the interval [μ1, μ2] of the continuous
spectrum of problem (3.1.16) is free of the thresholds and may contain eigenvalues
whose eigenfunctions exponentially decay at infinity.

Theorem 4.1.1 For all μ ∈ [μ1, μ2] and R ≥ R0, where R0 is a sufficiently large
number, there exists a unique minimizer a(R, μ) = (a1(R, μ), . . . , aM (R, μ)) of
the functional J R

l (a, μ) in (4.1.2). The estimates

|a j (R, μ) − Sl j (μ)| � Ce−δR, j = 1, . . . , M,

hold with the same δ as in (3.2.5) and the constant C is independent of R and μ.

4.1.2 The Problem in G R

Let us consider the problem

(−� − μ)u(x) = 0, x ∈ G R;
u(x) = 0, x ∈ ∂G R \ �R; (4.1.5)

(∂ν + iζ )u(x) = h(x), x ∈ �R,

where ζ ∈ R \ {0}, μ ∈ R, and h ∈ L2(�
R). We introduce a generalized solution of

the problem. We set

H = {u ∈ H1(G R) : u ∈ C2(G R \ ∂�R); u(x) = 0, x ∈ ∂G R \ �R};

as usual, H1(G R) denotes the Sobolev space in G R with norm

‖u; H1(G R)‖ =
(∫

G R

∑
|α|≤1

|Dαu(x)|2 dx
)1/2

.

A function u ∈ H is a solution to problem (4.1.5) if and only if

((−� − μ)u, v)G R + (u, ∂νv)∂G R\�R + (∂νu + iζu, v)�R = (h, v)�R (4.1.6)

http://dx.doi.org/10.1007/978-3-319-15105-2_3
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for all v ∈ H. Integrating by parts and taking into account that u and v vanish on
∂G R \ �R , we can write (4.1.6) in the form

(∇u,∇v)G R − μ(u, v)G R + iζ(u, v)�R = (h, v)�R . (4.1.7)

Each term in (4.1.7) makes sense for u and v in H1(G R). Let H denote the closure
of H in the norm of H1(G R).

A function u ∈ H is called a generalized solution to problem (4.1.5) if equality
(4.1.7) holds for all v ∈ H.

Let T : H(G R) → L2(G R) and T : H1/2(�R) → L2(�
R) be the embedding

operators. It is known that these operators are compact. Besides, let j : H(G R) →
H1/2(�R) be the restriction operator. Then

(u, v)G R = (T u, T v)G R = [T ∗T u, v],

where [·, ·] is an inner product in H1(G R) (or, what is the same, inH(G R)) defined
by the relation

[w, v] = (∇w,∇v)G R + (w, v)G R .

We also have

(u, v)�R = (T ju, T jv)�R = [ j∗T ∗T ju, v].

Now, equality (4.1.7) means that

[u, v] + [V u, v] = [ f, v] (4.1.8)

for any v ∈ H; here

V = −(μ + 1)T ∗T + iζ j∗T ∗T j

and f = j∗T ∗h. Therefore,
u + V u = f. (4.1.9)

Since the operator V is compact inH, the Fredholm alternative is valid for equation
(4.1.9). Thus, to prove the unique solvability of this equation, it suffices to show that
ker(I + V ) = 0.

Proposition 4.1.2 For all μ ∈ R, ζ ∈ R \ 0, and h ∈ L2(�
R), problem (4.1.5) has

a unique generalized solution u ∈ H.

Proof Let us assume that u ∈ ker(I +V ). Setting v = u and h = 0 in relation (4.1.7),
we obtain ζ(u, u)�R = 0, that is, u = 0 on �R . Problem (4.1.5) is elliptic; according
to known properties of solutions to elliptic problems, the generalized solution is a
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smooth function on G R \ ∂�R . From the third equation of problem (4.1.5) with
h = 0, it follows that ∂νu = −iζu = 0 on �R . Thus, u has zero Cauchy data on
�R . Therefore, u ≡ 0 in G R by the unique continuation theorem (see [14], Part II,
Sect. 1.4). �

Proposition 4.1.3 Let u be a generalized solution to problem (4.1.5)with right-hand
side h ∈ L2(�

R). Then there holds the estimate

‖u; L2(�
R)‖ ≤ 1

|ζ | ‖h : L2(�
R)‖. (4.1.10)

Proof Relation (4.1.7) for v = u takes the form

(∇u,∇u)G R − μ(u, u)G R + iζ(u, u)�R = (h, u)�R . (4.1.11)

It follows that ζ(u, u)�R = Im(h, u)�R . Hence

‖u; L2(�
R)‖2 ≤ 1

|ζ | ‖h : L2(�
R)‖‖u; L2(�

R)‖. �

Proposition 4.1.4 Let u be a generalized solution to problem (4.1.5), where h is a
smooth function on �R and h ∈ L2(�

R). Then

(∂νu, u)�R − (u, ∂νu)�R = 0. (4.1.12)

Proof From the assumptions of the proposition it follows that the u is a smooth
function on G R \ ∂�R . Therefore, the boundary condition on �R can be understood
in the classical sense. Setting h = ∂νu + iζu in (4.1.11), we obtain

ζ(u, u)�R = Im(∂νu + iζu, u)�R = Im(∂νu, u)�R + ζ(u, u)�R

and Im(∂νu, u)�R = 0. �

4.1.3 Justification of the Method for Computing
the Scattering Matrix

To justify the method, we have to verify that the matrix E R with entries (4.1.4) is
nonsingular and the minimizer a0(R) of functional (4.1.2) tends to the lth row of the
scattering matrix as R → ∞.

Proposition 4.1.5 The matrix E R with entries (4.1.4) is nonsingular for all R � R0,
where R0 is a sufficiently large number.
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Proof Suppose that the required assertion is false. Then, for any R0, there exists a
number R > R0 such that the matrix E R is singular and the functions U = ∑

j c j u
−
j

and V = ∑
j c jv

−
j are related by

U(x) = V(x), x ∈ �R, (4.1.13)

where v−
j is a solution to problem (4.1.3) and −→c = (c1, . . . , cM ) is a vector with

|−→c | = 1. According to the equation on �R in (4.1.3), we have

∂νU(x) = ∂νV(x), x ∈ �R . (4.1.14)

In view of Proposition 4.1.4,

(∂νV,V)�R − (V, ∂νV)�R = 0.

Now, (4.1.13) and (4.1.14) lead to the equality

(∂νU ,U)�R − (U , ∂νU)�R = 0. (4.1.15)

For the waves u±
j in G [see (2.3.4) and (2.3.5)], the relations

(∂νu±
j , u±

k )�R − (u±
j , ∂νu±

k )�R = ∓iδ jk, (4.1.16)

(∂νu±
j , u∓

k )�R − (u±
j , ∂νu∓

k )�R = 0. (4.1.17)

hold. From (4.1.15), (4.1.16), and (4.1.17), it follows that

0 =
∑
j,k

c j ck((∂νu−
j , u−

k )�R − (u−
j , ∂νu−

k )�R ) = i
∑

j

|c j |2 = i,

a contradiction. �

Proposition 4.1.6 Suppose that a vector a(R) = (a1(R), . . . , aM (R)) minimizes
the functional J R

l in (4.1.2). Then

J R
l (a(R)) = O(e−2δR) as R → ∞, (4.1.18)

where δ is the same number as in (3.2.5). For all R � R0, the components of a(R)

are uniformly bounded, that is,

|a j (R)| � const < ∞, j = 1, . . . , M. (4.1.19)

http://dx.doi.org/10.1007/978-3-319-15105-2_2
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Proof Denote byY R
l the solution to problem (4.1.1), where for a j , j = 1, . . . , M , the

elements Sl j of the scatteringmatrix S of problem (3.1.16) are taken. The asymptotics
(3.2.5) can be differentiated; hence

(∂ν + iζ )(Y R
l − Yl)|�R = O(e−δR).

Since Y R
l − Yl satisfies the first two equations of problem (4.1.5) with f = 0 and

g = 0, it follows that estimate (4.1.10) holds for u = Y R
l − Yl :

‖Y R
l − Yl; L2(�

R)‖ � |ζ |−1‖(∂ν + iζ )(Y R
l − Yl); L2(�

R)‖ � ce−δR .

This inequality, together with (3.2.5), provides the estimate

J R
l (Sl) = ‖Y R

l − (u+
l +

M∑
j=1

Sl j u
−
j ); L2(�

R)‖2 � ce−2δR

with constant c independent of R. To obtain (4.1.18), it remains to note that
J R

l (a(R)) � J R
l (Sl)

We proceed to estimating theminimizer a(R). Let Z R
l denote the solution to prob-

lem (4.1.1) corresponding to the vector a(R) = (a1(R), . . . , aM (R)). By Proposition
4.1.4,

(∂ν Z R
l , Z R

l )�R − (Z R
l , ∂ν Z R

l )�R = 0. (4.1.20)

In view of (4.1.18),

‖Z R
l − (u+

l +
M∑

j=1

a j (R)u−
j ); L2(�

R)‖ = O(e−δR), R → ∞. (4.1.21)

Since

(∂ν + iζ )Z R
l |�R = (∂ν + iζ )(u+

l +
M∑

j=1

a j (R)u−
j )|�R ,

from (4.1.21) it follows that

‖∂ν(Z R
l − (u+

l +
M∑

j=1

a j (R)u−
j )); L2(�

R)‖ = O(e−δR), R → ∞. (4.1.22)

http://dx.doi.org/10.1007/978-3-319-15105-2_3
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From (4.1.21) and (4.1.22) we derive that Z R
l = ϕl + T R , where ϕl = u+

l +∑
a j (R)u−

j and ‖T R; L2(�
R)‖ = O(e−δR) and ‖∂νT R; L2(�

R)‖ = O(e−δR). We

substitute the expression of Z R
l into (4.1.20) and obtain

(∂νϕl , ϕl)�R − (ϕl , ∂νϕl)�R

= (ϕl , ∂νT R)�R − (∂νT R, ϕl)�R + (T R, ∂νϕl)�R − (∂νϕl , T R)�R (4.1.23)

+ (T R, ∂νT R)�R − (∂νT R, T R)�R .

In view of (4.1.16) and (4.1.17), the left-hand side of (4.1.23) is calculated straight-
forwardly:

(∂νϕl , ϕl)�R − (ϕl , ∂νϕl)�R = −i(1 − |a(R)|2).

This and equality (4.1.23) lead to the estimate

|1 − |a(R)|2| = (‖ϕl; L2(�
R)‖ + ‖∂νϕl; L2(�

R)‖)O(e−δR).

Moreover, taking into account the inequality (‖ϕl; L2(�
R)‖ + ‖∂νϕl; L2(�

R)‖ ≤
C(1 + |a(R)|), we obtain

|1 − |a(R)|2| = (1 + |a(R)|O(e−δR)

and |a(R)| = 1 + o(1) as R → ∞. �

Proof of Theorem 4.1.1 Let Yl , Z R
l and (a1(R), . . . , aM (R)) be the same as in

Proposition 4.1.6. We substitute u = Ul := Yl − Z R
l into (4.1.12) and obtain

(∂νUl , Ul)�R − (Ul , ∂νUl)�R = 0. (4.1.24)

We set

ϕl = u+
l +

M∑
j=1

a j (R)u−
j , ψl = u+

l +
M∑

j=1

Sl j u
−
j (4.1.25)

and write Ul as

Ul = Yl − Z R
l = (Yl − ψl) + (ψl − ϕl) + (ϕl − Z R

l ).

By virtue of (3.2.5), (Yl − ψl)|�R = O(e−γ R); the waves u±
j are bounded as well

as the minimizer [see (4.1.19)], hence ψl − ϕl = O(1). Taking into account also
(4.1.21) and (4.1.22), we pass from (4.1.24) to the relation

(∂ν(ψl − ϕl), ψl − ϕl)�R − (ψl − ϕl , ∂ν(ψl − ϕl))�R = O(e−δR). (4.1.26)

http://dx.doi.org/10.1007/978-3-319-15105-2_3
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Here the left-hand side is calculated straightforwardly (bymeans of (4.1.25), (4.1.16),
and (4.1.17)) and equals i

∑M
j=1 |a j (R) − Sl j |2 . Finally, we obtain

M∑
j=1

|a j (R) − Sl j |2 = O(e−δR). (4.1.27)

We now prove that the estimate

M∑
j=1

|a j (R) − Sl j |2 = O(exp−2δ(1 − 2−N )R), (4.1.28)

which coincides with (4.1.27) for N = 1, is valid for any positive integer. It suffices
to show that N in (4.1.28) can be replaced by N + 1. Using (4.1.28), we obtain

ψl − ϕl =
M∑

j=1

(Sl j − a j (R))u−
j = O(exp−δ(1 − 2−N )R).

Let us employ this estimate instead of ψl − ϕl = O(1) and pass from (4.1.24)
to (4.1.26) with right-hand side changed for O(exp (−δ(1 − 2−N )R − δR)). Once
again, calculating the left-hand side of (4.1.26), we have

M∑
j=1

|a j (R) − Sl j |2 = O(exp−2δ(1 − 2−N−1)R). (4.1.29)

Let us notice that, instead of δ, we could from the outset take a slightly greater number
δ′. Choosing now a sufficiently large N , we obtain 2δ′(1 − 2−N−1) > 2δ. �

4.2 A Method for Computing Scattering Matrices
in Vicinity of Thresholds

We now proceed to calculating the matrix S(μ) in Theorem 3.2.6, (ii) with μ ∈
[μ′, μ′′] ⊂ (τ ′, τ ′′). The interval [μ′, μ′′] contains the threshold τ and, possibly,
some eigenvalues of operator (3.2.11). For the sake of simplicity, we suppose that the
interval [μ′, μ′′] is narrow enough to be contained in an open intervalUp provided by
Lemma 3.2.4. Then the index γ in asymptotics (3.2.9) is independent ofμ ∈ [μ′, μ′′]
and satisfies

√
τ − μ′ < γ <

√
μ′′ − τ ′′. We introduce the boundary value problem

http://dx.doi.org/10.1007/978-3-319-15105-2_3
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− �X R
j − μX R

j = 0, x ∈ G R;
X R

j = 0 x ∈ ∂G R \ �R;
(∂n + iζ )X R

j = (∂n + iζ )(w+
j +

∑M

k=1
akw

−
k ), x ∈ �R, (4.2.1)

where w±
j is stable basis (3.1.9), (3.1.10) in the space of waves, ζ ∈ R \ {0}, and

ak ∈ C. As an approximation to the row (S j1, . . . ,S j M ), we suggest a minimizer
a0(R) = (a0

1(R), . . . , a0
M (R)) of the functional

J R
j (a1, . . . , aM ) = ‖X R

j − w+
j −

M∑
k=1

akw
−
k ; L2(�

R)‖2, (4.2.2)

where X R
j is a solution of problem (4.2.1). Let us consider the problems

−�z±
j − μz±

j = 0, x ∈ G R;
z±

j = 0, x ∈ ∂G R \ �R;
(∂n + iζ )z±

j = (∂n + iζ )w±
j , x ∈ �R; j = 1, . . . , M,

set

E R
jk =

(
z−

j − w−
j , z−

k − w−
k

)
�R

, (4.2.3)

F R
jk =

(
z+

j − w+
j , z−

k − w−
k

)
�R

,

GR
j =

(
z+

j − w+
j , z+

j − w+
j

)
�R

,

and rewrite functional (4.2.2) in the form

J R
j (a) = 〈aE R, a〉 + 2Re 〈F R

j , a〉 + GR
j ,

where F R
j is the j th row of the matrix F R . Thus the minimizer a0(R) is a solution

to the system a0(R)E R + F R
j = 0.

The justification of the method is similar to that in the previous section. The next
proposition can be verified in the same way as Proposition 4.1.5.

Proposition 4.2.1 The matrix E R(μ) with entries (4.2.3) is non-singular for all
μ ∈ [μ′, μ′′] and R � R0, where R0 is sufficiently large number.

Proposition 4.2.2 Let a0(R, μ) = (a0
1(R, μ), . . . , a0

M (R, μ)) be a minimizer of the
functional J R

l in (4.2.2). Then

J R
l

(
a0(R, μ)

)
� Ce−2γ R for R → ∞, (4.2.4)

http://dx.doi.org/10.1007/978-3-319-15105-2_3
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where the constant C is independent of R � R0, μ ∈ [μ′, μ′′], and γ is the same
number as in (3.2.9). For all R � R0 and μ ∈ [μ′, μ′′], the components of the vector
a0(R, μ) are uniformly bounded,

|a0
j (R, μ)| � const < ∞, j = 1, . . . , M.

Proof Relation (4.2.4) has been obtained in the same manner as 4.1.18. Let us verify
the uniform boundedness of the minimizer a0(R, μ). Denote by Z R

l the solution of
problem (4.2.1) corresponding to a0(R, μ) = (a0

1(R, μ), . . . , a0
M (R, μ)). Setting

u = v = Z R
l in the Green formula, we obtain

(∂ν Z R
l , Z R

l )�R − (Z R
l , ∂ν Z R

l )�R = 0. (4.2.5)

By virtue of (4.2.4),

‖Z R
l − (w+

l +
M∑

j=1

a j (R, μ)w−
j ); L2(�

R)‖ = O(e−γ R), R → ∞, (4.2.6)

uniformly with respect to μ. Since

(∂ν + iζ )Z R
l |�R = (∂ν + iζ )(w+

l +
M∑

j=1

a0
j (R)w−

j )|�R ,

from (4.2.5) it follows that

‖∂ν(Z R
l − (w+

l +
M∑

j=1

a0
j (R)w−

j )); L2(�
R)‖ = O(e−γ R), R → ∞. (4.2.7)

Recall that, for μ > τ , the waves w±
l are bounded functions; for μ < τ , the waves

w±
l with L < l � M defined by (3.3.2) grow at infinity as O(e

√
τ−μ |x |) and, for

μ = τ , as O(|x |). Moreover,
√

τ − μ′ < γ .
We use (4.2.6) and (4.2.7) to reduce (4.2.5) to the form

(∂νϕl , ϕl)�R − (ϕl , ∂νϕl)�R = (‖ϕl; L2(�
R)‖ + ‖∂νϕl; L2(�

R)‖)
× O(e−(γ−√

τ−μ−ε)R),

where ϕl = w+
l + ∑

a0
j (R)w−

j ; as before,
√

τ − μ = i
√

μ − τ for μ > τ , ε being
an arbitrary small positive number. In view of (3.1.11) and (3.1.12), the left-hand
side is equal to −i(1 − ∑ |a0

j (R)|2). Therefore,

http://dx.doi.org/10.1007/978-3-319-15105-2_3
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http://dx.doi.org/10.1007/978-3-319-15105-2_3
http://dx.doi.org/10.1007/978-3-319-15105-2_3


78 4 Method for Computing Scattering Matrices

|1 − |a(R)|2| = (1 + |a(R)|)O(e−(γ−√
τ−μ−ε)),

which leads to |a0(R)| = 1 + o(1). �

Theorem 4.2.3 For all R � R0, where R0 is a sufficiently large number, and for all
μ ∈ [μ′, μ′′] ⊂ (τ ′, τ ′′), there exists a unique minimizer a0(R, μ) = (a0

1(R, μ), . . . ,

a0
M (R, μ)) of the functional J R

l in (4.1.2). The estimates

M∑
k=1

|S jk(μ) − a0
k (R, μ)| � Ce−�R (4.2.8)

hold for all R � R0, μ ∈ [μ′, μ′′], and 0 < � ≤ γ −√
τ − μ′, where γ is the same

as in (3.2.9) and the constant C = C(�) is independent of R and μ.

Proof Let Y R
l be a solution to problem (4.2.1), where a j , j = 1, . . . , M , are taken to

be the entriesSl j of the scatteringmatrixS, and let Z R
l and (a0

1(R, μ), . . . , a0
M (R, μ))

be the same as in Proposition 4.2.2. We substitute u = v = Ul := Yl − Z R
l into the

Green formula. Since Ul satisfies the first two equations in (4.2.1), we have

(∂νUl , Ul)�R − (Ul , ∂νUl)�R = 0. (4.2.9)

Setting

ϕl = w+
l +

M∑
j=1

a0
j (R, μ)w−

j , ψl = w+
l +

M∑
j=1

Sl j (μ)w−
j , (4.2.10)

we write down Ul in the form

Ul = Yl − Z R
l = (Yl − ψl) + (ψl − ϕl) + (ϕl − Z R

l ).

Note that (Yl − ψl)|�R = O(e−γ R) by virtue (3.2.9). Moreover, by Proposition
4.2.2, the components of the minimizer a j (R, μ) are uniformly bounded. In view of
(4.2.6) and (4.2.7), this leads from (4.2.9) to the relation

(∂ν(ψl − ϕl), (ψl − ϕl))�R − ((ψl − ϕl), ∂ν(ψl − ϕl))�R = O(e−(γ−√
τ−μ−ε)R),

(4.2.11)
where ε is an arbitrary small positive number. Straightforward calculation shows that
the left-hand side is equal to i

∑M
j=1 |a0

j (R, μ) − Sl j (μ)|2 (it suffices to use (4.2.9),
(3.1.11), and (3.1.12)) and we arrive at

M∑
j=1

|a0
j (R, μ) − Sl j (μ)|2 = O(e−(γ−√

τ−μ−ε)R). (4.2.12)
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We now prove the inequality

M∑
j=1

|a j (R, μ) − Sl j (μ)|2 = O(e−2(γ−√
τ−μ−ε)(1−2−N )R), (4.2.13)

which coincides with (4.2.12) as N = 1. It suffices to show that N in (4.2.13) can
be replaced by N + 1. Using (4.2.13), we obtain

ψl − ϕl =
M∑

j=1

(Sl j − a j (R))u−
j = O(exp {−(γ − √

τ − μ − ε)(1 − 2−N )R}).

Let us employ this estimate instead of ψl − ϕl = O(e(
√

τ−μ+ε) |x |) and pass from
(4.2.9) to (4.2.11) with right-hand side changed for O(exp (−δ(1 − 2−N )R − δR))

as δ = γ − √
τ − μ − ε. Once again calculating the left-hand side of (4.2.11), we

have

M∑
j=1

|a j (R) − Sl j |2 = O(exp {−2(γ − √
τ − μ − ε)(1 − 2−N−1)R}). (4.2.14)

Let us notice that, instead of γ , we could from the outset take a slightly greater
number γ ′ such that γ ′ − ε > γ . Choosing now a sufficiently large N , we obtain
2(γ ′ − √

τ − μ − ε)(1− 2−N−1) > 2(γ − √
τ − μ). It remains to replace

√
τ − μ

by maxμ∈[μ′,μ′′]
√

τ − μ = √
τ − μ′. �

In a neighborhood of the threshold τ , the matrix S(μ) can be calculated by the
presented method. Since the limits of S(μ) as μ → τ ± 0 are finite, the connection
between S(μ) and S(μ) allows us to calculate S(μ) for μ in vicinity of τ .



Chapter 5
Asymptotic and Numerical Studies
of Resonant Tunneling in 2D-Waveguides
for Electrons of Small Energy

In this chapter, we consider a 2D-waveguide that coincides with a strip having two
narrows of the same width ε symmetric about the waveguide axis. The resonant
tunneling is discussed for electrons with energy between the first and the second
thresholds, so only one incoming wave and one outgoing wave can propagate in
every outlet of the waveguide; in other words, we deal with electrons of small energy.
There are no external fields. We derive asymptotics for the resonant energy, for the
transmission coefficient, and for the width of the resonant peak at its half-height
as ε tends to zero. Then we compare the asymptotic results with those obtained by
numerical calculation of the scattering matrix. Finally, we discuss the impact of a
finitewaveguidework function on the resonant tunneling and assess themathematical
model adequacy for the tunneling in quantum waveguides with narrows.

The scheme of the asymptotic analysis developed in the chapter will be general-
ized and implemented for 3D-waveguides with resonator of arbitrary form and two
narrows of width ε1 and ε2 (Chap. 6) and for the resonant tunneling in the presence
of a magnetic field in the resonator (Chaps. 7 and 8).

5.1 Statement of the Problem

To describe the domain G(ε) in R
2 occupied by the waveguide, we first introduce

two auxiliary domains G and � in R
2. The domain G is the strip

G = R × D = {(x, y) ∈ R
2 : x ∈ R = (−∞,+∞); y ∈ D = (−l/2, l/2)}.

Let us define�. Denote by K a double cone with vertex at the origin O that contains
the x-axis and is symmetric about the coordinate axes. The set K ∩ S1, where S1 is
a unit circle, consists of two simple arcs. Assume that � contains the cone K and a
neighborhood of its vertex; moreover, outside a large disk (centered at the origin) �

coincides with K . The boundary ∂� of � is supposed to be smooth (see Fig. 5.1).

© Springer International Publishing Switzerland 2015
L. Baskin et al., Resonant Tunneling, Lecture Notes on Numerical Methods
in Engineering and Sciences, DOI 10.1007/978-3-319-15105-2_5

81

http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_7
http://dx.doi.org/10.1007/978-3-319-15105-2_8


82 5 Asymptotic and Numerical Studies of Resonant Tunneling …

O

Ω

ω

Fig. 5.1 Domain �

O
1

O
2

G(ε)

Fig. 5.2 Waveguide G(ε)

We now turn to the waveguide G(ε). Denote by�(ε) the domain obtained from�

by the contraction with center at O and coefficient ε. In other words, (x, y) ∈ �(ε)

if and only if (x/ε, y/ε) ∈ �. Let K j and � j (ε) stand for K and �(ε) shifted by
the vector r j = (x0j , 0), j = 1, 2. We assume that |x01 − x02 | is sufficiently large, so
the distance from ∂K1 ∩ ∂K2 to G is positive. We put (see Fig. 5.2)

G(ε) = G ∩ �1(ε) ∩ �2(ε).

The wave function of a free electron of energy k2 satisfies the boundary value
problem

− �u(x, y) − k2u(x, y) = 0, (x, y) ∈ G(ε), (5.1.1)

u(x, y) = 0, (x, y) ∈ ∂G(ε).
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Moreover, u is subject to radiation conditions at infinity. To formulate the conditions
we need the problem

− �v(y) − λ2v(y) = 0, y ∈ D, (5.1.2)

v(−l/2) = v(l/2) = 0.

The eigenvaluesλ2q of this problem,whereq = 1, 2, . . . are called the thresholds; they
form the sequenceλ2q = (πq/ l)2,q = 1, 2, . . ..We suppose that k2 in (5.1.1) satisfies
(π/ l)2 < k2 < (2π/ l)2, i.e., k2 is between the first and the second thresholds. Then,
in the space of bounded wave functions, a basis is formed by the wave functions
subject to the radiation conditions

u1(x, y) =
{

U1(x, y) + S11(k) U2(x, y) + O(eδx ), x → −∞,

S12(k) U1(x, y) + O(e−δx ), x → +∞; (5.1.3)

u2(x, y) =
{

S21(k) U2(x, y) + O(eδx ), x → −∞,

U2(x, y) + S22(k) U1(x, y) + O(e−δx ), x → +∞.
(5.1.4)

In the strip G, the functionU1(x, y) = eiν1x
1(y) is a wave incoming from−∞ and
outgoing to +∞, while U2(x, y) = e−iν1x
1(y) is a wave going from +∞ to −∞.

Here ν1 =
√

k2 − λ21; 
1 is an eigenfunction of problem (5.1.2) that corresponds to

the eigenvalue λ21,


1(y) = √
2/ lν1 cos λ1y. (5.1.5)

The matrix

S = ‖Smj‖m, j=1,2

with elements from conditions (5.1.3) and (5.1.4) is called the scattering matrix; it
is unitary. The values

R1 = |S11|2, T1 = |S12|2

are called the reflection and transition coefficients, relatively, for the waveU1 incom-
ing to G(ε) from −∞. (Similar definitions can be given for the wave U2 coming
from +∞.) The goal is to find a “resonant” value kr = kr (ε) of the parameter k cor-
responding to the maximum of the transition coefficient and to describe the behavior
of Tm(k, ε), m = 1, 2, for k in a neighborhood of kr (ε) as ε → 0.



84 5 Asymptotic and Numerical Studies of Resonant Tunneling …

5.2 Limit Problems

We derive the asymptotics of a wave function (i.e., the solution of problem (5.1.1)
as ε → 0) by use of the method of compound asymptotic expansions. To this end,
we introduce “limit” boundary value problems independent of the parameter ε.

5.2.1 First Kind Limit Problems

Put G(0) = G ∩ K1 ∩ K2 (Fig. 5.3); thus, G(0) consists of three parts, G0, G1, and
G2, where G1 and G2 are infinite domains, while G0 is a bounded resonator.

The problems

− �v(x, y) − k2v(x, y) = f, (x, y) ∈ G j , (5.2.1)

v(x, y) = 0, (x, y) ∈ ∂G j ,

where j = 0, 1, 2, are called the first kind limit problems.
Now we introduce function spaces for problem (5.2.1) in G0. Let φ1 and φ2 be

smooth real functions in the closure G0 of G0 such that φ j = 1 in a neighborhood
of O j , j = 1, 2, and φ2

1 + φ2
2 = 1. For l = 0, 1, . . . and γ ∈ R, the space V l

γ (G0) is
the completion in the norm

‖v; V l
γ (G0)‖ =

⎛
⎝∫

G0

l∑
|α|=0

2∑
j=1

φ2
j (x, y)r2(γ−l+|α|)

j |∂αv(x, y)|2 dx dy

⎞
⎠

1/2

of the set of smooth functions in G0 which vanish near O1 and O2; here r j is the dis-
tance between (x, y) and O j ,α = (α1, α2) is amulti-index, and ∂α = ∂ |α|/∂xα1∂yα2 .
Proposition 5.2.1 follows from well-known general results, e.g., see [37, Chaps. 2
and 4, Sect. 1–3] or [33, Vol. 1,Chap. 1].

O
1

O
2

G
1

G
2

G
3

Fig. 5.3 The “limit waveguide” G(0)
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Proposition 5.2.1 Assume that |γ − 1| < π/ω. Then, for every f ∈ V 0
γ (G0) and

any k2 except the positive increasing sequence {k2p}∞p=1 of eigenvalues, k2p → ∞,

there exists a unique solution v ∈ V 2
γ (G0) to problem (5.2.1) in G0. The estimate

‖v; V 2
γ (G0)‖ ≤ c ‖ f ; V 0

γ (G0)‖ (5.2.2)

holds with a constant c independent of f . If f is a smooth function in G0 vanishing
near O1 and O2 and v is any solution in V 2

γ (G0) of problem (5.2.1), then v is smooth

in G0 except at O1 and O2 and admits the asymptotic representation

v(x, y) =
{

b1 J̃π/ω(kr1)�(ϕ1) + O
(
r2π/ω
1

)
, r1 → 0;

b2 J̃π/ω(kr2)�(π − ϕ2) + O
(
r2π/ω
2

)
, r2 → 0

near the points O1 and O2, where (r j , ϕ j ) are polar coordinates with center at O j ,
b j are some constant coefficients, J̃μ stands for the Bessel function multiplied by a
constant so that J̃μ(kr) = rμ + o(rμ), and �(ϕ) = π−1/2 cos (πϕ/ω).

If k2 = k2e is an eigenvalue of problem (5.2.1), then problem (5.2.1) will be
solvable in G0 if and only if ( f, ve)G0 = 0 for any eigenfunction ve corresponding to
k2e . The condition being fulfilled, there exists a unique solution v to problem (5.2.1),
which is orthogonal to the eigenfunctions and satisfies (5.2.2) (i.e., the Fredholm
alternative holds).

We turn to problems (5.2.1) for j = 1, 2. Let χ0, j and χ∞, j be smooth real
functions in the closure G j of G j such that χ0, j = 1 in a neighborhood of O j ,
χ0, j = 0 outside of a compact set, and χ2

0, j + χ2∞, j = 1. We also assume that the
support suppχ∞, j is located in the cylindrical part of G j . For γ ∈ R, δ > 0, and
l = 0, 1, . . ., the space V l

γ, δ(G j ) is the completion in the norm

‖v; V l
γ, δ(G j )‖ =

⎛
⎝∫

G j

l∑
|α|=0

(
χ2
0, j r

2(γ−l+|α|)
j + χ2∞, j exp(2δx)

)|∂αv|2 dx dy

⎞
⎠

1/2

of the set of smooth functions in G j having compact supports and vanishing near O j .
Recall that, according to our assumption, k2 lies between the first and the second

thresholds, so that in every G j there is only one outgoing wave. Let U−
1 = U2 be the

outgoing wave in G1, andU−
2 = U1 be the outgoing wave in G2 (for the definition of

U j in G see Sect. 5.1). The next proposition follows, e.g., from [37, Theorem5.3.5].

Proposition 5.2.2 Let |γ −1| < π/ω and suppose that there is no nontrivial solution
to homogeneous problem (5.2.1) (where f = 0) in V 2

γ, δ(G j ) with arbitrary small

positive δ. Then, for any f ∈ V 0
γ, δ(G j ), there exists a unique solution v to problem

(5.2.1) that admits the representation

v = u + A jχ∞, jU
−
j ,
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where A j = const, u ∈ V 2
γ, δ(G j ), and δ is sufficiently small. Furthermore, the

inequality

‖u; V 2
γ, δ(G j )‖ + |A j | ≤ c ‖ f ; V 0

γ, δ(G j )‖,

holds with a constant c independent of f . If the function f is smooth and vanishes
near O j , then the solution v in G1 admits the representation

v(x, y) = a1 J̃π/ω(kr1)�(π − ϕ1) + O
(
r2π/ω
1

)
, r1 → 0,

and the solution in G2 admits the representation

v(x, y) = a2 J̃π/ω(kr2)�(ϕ2) + O
(
r2π/ω
2

)
, r2 → 0,

where a j are some constants.

5.2.2 Second Kind Limit Problems

In the domains� j , j = 1, 2 (introduced in Sect. 5.1) we consider the boundary value
problems

�w(ξ j , η j ) = F(ξ j , η j ), (ξ j , η j ) ∈ � j ,

w(ξ j , η j ) = 0, (ξ j , η j ) ∈ ∂� j ,
(5.2.3)

which are called the second kind limit problems; (ξ j , η j ) are Cartesian coordinates
with origin at O j .

Let ρ j = dist((ξ j , η j ), O j ) and let ψ0, j , ψ∞, j be smooth real functions in � j

such that ψ0, j = 1 for ρ j < N/2, ψ0, j = 0 for ρ j > N , and ψ2
0, j + ψ2∞, j = 1,

N being a sufficiently large positive number. For γ ∈ R and l = 0, 1, . . ., the space
V l

γ (� j ) is the completion in the norm

‖v; V l
γ (� j )‖ =

⎛
⎝∫

� j

l∑
|α|=0

(
ψ0, j (ξ j , η j )

2 + ψ∞, j (ξ j , η j )
2ρ

2(γ−l+|α|)
j

)|∂αv(ξ j , η j )|2 dξ j dη j

⎞
⎠
1/2

of the set C∞
c (� j ) of smooth functions with compact supports in � j . The next

proposition is a corollary of [37, Theorem 4.3.6].

Proposition 5.2.3 Let |γ − 1| < π/ω. Then, for every F ∈ V 0
γ (� j ), there exists a

unique solution w ∈ V 2
γ (� j ) to problem (5.2.3), and

‖w; V 2
γ (� j )‖ ≤ c ‖F; V 0

γ (� j )‖
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holds with a constant c independent of F. If F ∈ C∞
c (� j ), the w is smooth in � j

and admits the representation

w(ξ j , η j ) =
⎧⎨
⎩

dl
jρ

−π/ω
j �(π − ϕ j ) + O

(
ρ

−3π/ω
j

)
, ξ j < 0,

dr
j ρ

−π/ω
j �(ϕ j ) + O

(
ρ

−3π/ω
j

)
, ξ j > 0,

(5.2.4)

as ρ j → ∞; here (ρ j , ϕ j ) are polar coordinates in � j with center at O j , and
function � is the same as in Proposition 5.2.1. The constant coefficients dl

j and dr
j

are defined by

dl
j = −(F, wl

j )�, dr
j = −(F, wr

j )�,

where wl
j and wr

j are unique solutions to homogeneous problem (5.2.3) such that,
as ρ j → ∞,

wl
j =

{(
ρ

π/ω
j + αρ

−π/ω
j

)
�(π − ϕ j ) + O

(
ρ

−3π/ω
j

)
, ξ j < 0;

βρ
−π/ω
j �(ϕ j ) + O

(
ρ

−3π/ω
j

)
, ξ j > 0; (5.2.5)

wr
j =

{
βρ

−π/ω
j �(π − ϕ j ) + O

(
ρ

−3π/ω
j

)
, ξ j < 0;(

ρ
π/ω
j + αρ

−π/ω
j

)
�(ϕ j ) + O

(
ρ

−3π/ω
j

)
, ξ j > 0; (5.2.6)

the coefficients α and β depend only on the geometry of the set � and should be
calculated.

5.3 Special Solutions to the First Kind Homogeneous
Problems

Here we introduce special solutions to homogeneous problems (5.2.1) in G j , j =
0, 1, 2. In the domain G j , j = 1, 2, there exists a bounded solution Vj such that

Vj (x, y) =
{

U+
j (x, y) + S0

j jU
−
j (x, y) + O(exp(−δx)), x → ∞,

s j J̃π/ω(kr j )� j (ϕ j ) + O
(
r2π/ω

)
, r → 0,

(5.3.1)

with arbitrary small positive δ, �1(ϕ1) = �(π − ϕ1), and �2(ϕ2) = �(ϕ2). The
scattering matrix in G j consists of the only entry S0

j , |S0
j | = 1.

Let K l be the part of the double cone K to the left of the coordinate origin,
K l = {(ξ, η) ∈ K : ξ < 0}. Let us consider the problem

−�u − k2u = 0 in K l ,

u = 0 on ∂K l .
(5.3.2)
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The function

v(r, ϕ) = Ñπ/ω(kr)�(π − ϕ) (5.3.3)

satisfies (5.3.2); Ñπ/ω stands for the Neumann functionmultiplied by a constant such
that

Ñπ/ω(kr) = r−π/ω + o(r−π/ω)

and � is the same as in Proposition 5.2.1. Let t �→ �(t) be a cut-off function on R

equal to 1 for t < δ/2 and to 0 for t > δ, δ being a small positive number. Introduce
a solution

v1(x, y) = �(r1)v(r1, ϕ1) + ṽ1(x, y) (5.3.4)

of homogeneous problem (5.2.1) in G1, where ṽ1 solves (5.2.1) with f = −[�,�]v;
the existence of ṽ1 is provided by Proposition 5.2.2. Thus,

v1(x, y) =
⎧⎨
⎩
(
Ñπ/ω(kr1) + a1 J̃π/ω(kr1)

)
�(π − ϕ1) + O(r3π/ω

1 ), r1→ 0,

A1U−
1 (x, y) + O(eδx ), x→ −∞,

(5.3.5)
where J̃π/ω is the same as in Propositions 5.2.1 and 5.2.2. The constant A 	= 0
depends only on the geometry of the domain G1 and should be calculated.

Define the solution v2 to the problem (5.2.1) in G2 by v2(x, y) = v1(d − x, y),
where d = dist(O1, O2). Then

v2(x, y) =
{(

Ñπ/ω(kr2) + a2 J̃π/ω(kr2)
)
�(ϕ2) + O(r3π/ω

2 ), r2→ 0,

A2U−
2 (x, y) + O(e−δx ), x→ +∞; (5.3.6)

where obviously a2 = a1, A2 = A1e−iν1d .

Lemma 5.3.1 The equalities |A j |2 = 2Im a j , A j = is j S0
j j hold.

Proof Let (u, v)Q denote the integral
∫

Q u(x)v(x) dx and let G N , δ stand for the
truncated domain G1 ∩ {x > −N } ∩ {r1 > δ}. By the Green formula,

0 = (�v1 + k2v1, v1)G N , δ
− (v1,�v1 + k2v1)G N , δ

= (∂v1/∂n, v1)∂G N , δ
− (v1, ∂v1/∂n)∂G N , δ

= 2i Im (∂v1/∂n, v1)E ,

where E = (∂G N , δ ∩{x = −N })∪ (∂G N , δ ∩{r1 = δ}). Taking into account (5.3.5)
as x → +∞ and (5.1.5), we have
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Im (∂v1/∂n, v1)∂G N , δ∩{x=−N } = −Im
∫ l/2

−l/2
A1

∂U−
1

∂x
(x, y)A1U−

1 (x, y)

∣∣∣
x=−N

dy + o(1)

= |A1|2ν1
∫ l/2

−l/2
|
1(y)|2dy + o(1) = |A1|2 + o(1).

Using (5.3.5) as r1 → 0 and the definition of � (see Proposition 5.2.1), we obtain

Im (∂v1/∂n, v1)∂G N , δ∩{r1=δ} = Im
∫ π+ω/2

π−ω/2

[
− ∂

∂r1

(
Ñπ/ω(kr1) + a1 J̃π/ω(kr1)

)]

×
(

Ñπ/ω(kr1) + a1 J̃π/ω(kr1)
)
|�(π − ϕ1)|2r1

∣∣∣
r1=δ

dϕ1 + o(1)

= − (Im a1)
2π

ω

∫ π+ω/2

π−ω/2
|�(π − ϕ1)|2dϕ1 + o(1)

= − Im a1 + o(1).

Thus |A1|2 − Im a1 + o(1) = 0 as N → ∞ and δ → 0. The relation for j = 2 can
be verified in a similar way. To obtain A j = is j S0

j j , it suffices in the same manner
to apply the Green formula to the functions Vj and v j . �

Let k2e be a simple eigenvalue for−�withDirichlet boundary condition inG0, and
let ve be an eigenfunction corresponding to k2e and normalized by

∫
G0

|ve|2dx = 1.
By Proposition 5.2.1,

ve(x) ∼
{

b1 J̃π/ω(ker1)�(ϕ1), r1 → 0,

b2 J̃π/ω(ker2)�(π − ϕ2), r2 → 0.
(5.3.7)

We assume that b j 	= 0; it is true, e.g., for the eigenfunction corresponding to the
least eigenvalue of the resonator. Since the resonator is symmetric with respect to
the mapping (x, y) �→ (d − x, y), we have q = b1/b2 = ±1. For k2 in a punctured
neighborhood of k2e separated from the other eigenvalues, we introduce solutions v0 j

to homogeneous problem (5.2.1) in G0 by

v0 j (x, y) = �(r j )v(r j , ϕ j ) + ṽ0 j (x, y), j = 1, 2, (5.3.8)

where v is defined by (5.3.3) and ṽ0 j is the bounded solution to problem (5.2.1) in
G0 with f j (x, y) = [�,�(r j )]v(r j , ϕ j ).

Lemma 5.3.2 In a neighborhood V ⊂ C of k2e containing no eigenvalues of problem
(5.2.1) in G2 except k2e , the equalities v0 j = −b j (k2 − k2e )−1ve + v̂0 j hold with b j

from (5.3.7) and functions v̂0 j analytic in k2 ∈ V .

Proof Let us first prove that (v0 j , ve)G0 = −b j/(k2 − k2e ), with v0 j defined by
(5.3.8). We have

(
v0 j + k2v0 j , ve)Gδ − (v0 j ,
ve + k2ve)Gδ = −(k2 − k2e )(v0 j , ve)Gδ
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in the domain Gδ obtained from G0 by cutting out the balls of radius δ centered at
O1 and O2. Applying the Green formula as in the proof of Lemma 5.3.1, we arrive
at −(k2 − k2e )(v0 j , ve)Gδ = b j + o(1). It remains to let δ go to zero.

Since k2e is a simple eigenvalue, we have

ṽ0 j (x) = B j (k2)

k2 − k2e
ve(x) + v̂ j (x), (5.3.9)

where B j (k2) is independent of x and v̂ j are some functions analytic in k2 near the
point k2 = k2e . Multiplying (5.3.8) by ve and taking into account (5.3.9), the proved
formula for (v0 j , ve)G0 , and the normalization condition (ve, ve)G0 = 1, we find that
B j (k2) = −b j + (k2 − k2e )B̃ j (k2) with analytic function B̃ j . Together with (5.3.9),
this leads to the required statement. �

In view of Proposition 5.2.1,

v01(x, y) ∼
{(

Ñπ/ω(kr1) + c11(k) J̃π/ω(kr1)
)
�(ϕ1), r1 → 0,

c12(k) J̃π/ω(kr2)�(π − ϕ2), r2 → 0,
(5.3.10)

v02(x, y) ∼
{(

c21(k) J̃π/ω(kr1)
)
�(ϕ1), r1 → 0,(

Ñπ/ω(kr2) + c22(k) J̃π/ω(kr2)
)
�(π − ϕ2), r2 → 0.

(5.3.11)

According to Lemma 5.3.2 and relations (5.3.7),

cpq(k) = − bpbq

k2 − k2e
+ ĉpq(k), (5.3.12)

where ĉpq analytically depends on k2 nearby k2e .

Lemma 5.3.3 If v01 and v02 in (5.3.10) and (5.3.11) make sense for a number k,
then c12(k) = c21(k).

Proof It suffices to apply the Green formula to v01 and v02 in the same domain
Gδ as in the proof of Lemma 5.3.2, to use (5.3.10) and (5.3.11), and to let δ tend
to 0. �

5.4 Asymptotic Formulas

This section is devoted to derivation of the asymptotic formulas. In Sect. 5.4.1, we
present the formula for the wave function (see (5.4.1)), explain its structure, and
describe the solutions of the first kind limit problems involved in the formula. Con-
struction of formula (5.4.1) is completed in Sect. 5.4.2, where the solutions to the
second kind limit problems are given and the coefficients in the expressions for the
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solutions of the first kind limit problems are calculated. In Sect. 5.4.3, we analyze
the expression for s̃12 obtained in 5.4.2 and derive formal asymptotics for the char-
acteristics of resonant tunneling. Notice, that the remainders in (5.4.24)–(5.4.27)
arose at the intermediate stage of considerations on simplifying the principal part of
the asymptotics; they are not the remainders in the final asymptotic formulas. The
“final” remainders are estimated in Sect. 5.5 (see Theorem 5.5.3). First, we derive
the integral estimate (5.5.21) for the remainder in the formula (5.4.1), which proves
to be sufficient to obtain more simplified estimates of the remainders in the formulas
for the characteristics of resonant tunneling. The formula (5.4.1) and the estimate
(5.5.21) are auxiliary and are investigated only to that extent which is necessary for
deriving the asymptotic expressions for the characteristics of resonant tunneling.

5.4.1 Asymptotics of the Wave Function

In the waveguide G(ε), we consider the scattering of the wave U+
1 (x, y) =

eiν1x
1(y) incoming from −∞. The wave function admits the representation

u(x, y; ε) = χ1, ε(x, y)v1(x, y; ε)

+ �(r1)w1(ε
−1x1, ε

−1y1; ε) + χ0, ε(x, y)v0(x, y; ε) (5.4.1)

+ �(r2)w2(ε
−1x2, ε

−1y2; ε) + χ2, ε(x, y)v2(x, y; ε) + R(x, y; ε).

Let us explain the notation and the structure of this formula. When composing the
formula, we first describe the behavior of the wave function u outside of the narrows,
where the solutions v j to homogeneous problems (5.2.1) in G j serve as approxima-
tions to u. The function v j is a linear combination of the special solutions introduced
in the previous section; v1 and v3 are subject to the same radiation conditions as u:

v1(x, y; ε) = V1(x, y) + C11v1(x, y) ∼ U+
1 (x, y)

+ S̃11(ε)U
−
1 (x, y), x → −∞; (5.4.2)

v0(x, y; ε) = C12(ε)v01(x, y) + C13(ε)v02(x, y); (5.4.3)

v2(x, y; ε) = C14v2(x, y) ∼ S̃12(ε)U
−
2 (x, y), x → +∞; (5.4.4)

the approximations S̃11(ε), S̃12(ε) to the elements S11(ε), S12(ε) of the scattering
matrix and the coefficients C11(ε), . . . , C14(ε) are yet unknown. By χ j,ε we denote
cut-off functions defined by

χ1, ε(x, y) = (1 − �(r1/ε)) 1G1(x, y), χ2, ε(x, y) = (1 − �(r2/ε)) 1G2(x, y),

χ0, ε(x, y) = (1 − �(r1/ε) − �(r2/ε)) 1G0(x, y),
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where r j =
√

x2j + y2j , and (x j , y j ) are the coordinates of a point (x, y) in the system

obtained by shifting the origin to the point O j ; 1G j is the indicator of G j (equal to 1
in G j and to 0 outside G j ); �(ρ) is the same cut-off function as in (5.3.4) (equal to
1 for 0 � ρ � δ/2 and to 0 for ρ � δ, δ being a fixed positive number). Thus, χ j, ε

are defined on the whole waveguide G(ε) as well as the functions χ j, εv j in (5.4.1).
Being substituted to (5.1.1), the sum

∑2
j=0 χ j, εv j gives a discrepancy in the right-

hand side of the Helmholtz equation supported near the narrows. We compensate
the principal part of the discrepancy by means of the second kind limit problems.
Namely, the discrepancy supported in the neighborhood of the point O j is rewritten
into coordinates (ξ j , η j ) = (ε−1x j , ε

−1y j ) in the domain � j and is taken as a right-
hand side for the Laplace equation. The solutions w j of the corresponding problem
(5.2.3) are rewritten into coordinates (x j , y j ) and multiplied by a cut-off function.
As a result, the terms �(r j )w j (ε

−1x j , ε
−1y j ; ε) arise in (5.4.1).

Proposition 5.2.3 provides the existence of solutions w j decaying at infinity as

O(ρ
−π/ω
j ) (see (5.2.4)). But those solutions will not lead us to the goal, because

substitution of (5.4.1) into (5.1.1) gives a high-order discrepancy, which has to be
compensated again. Therefore, we require the rate w j = O(ρ

−3π/ω
j ) as ρ j → ∞.

By Proposition 5.2.3, such a solution exists if the right-hand side of problem (5.2.3)
satisfies the additional conditions

(F, wl
j )� j = 0, (F, wr

j )� j = 0.

These conditions (two at each narrow) uniquely determine the coefficients S̃11(ε),
S̃12(ε), and C11(ε), . . . , C14(ε). The remainder R(x, y; ε) is small in comparison
with the principal part of (5.4.1) as ε → 0.

5.4.2 Formulas for ˜S11, ˜S12, and C1 j

Now, let us specify the right-hand sides Fj of the problems (5.2.3) and find S̃11(ε),
S̃12(ε), and C1 j (ε). Substituting χ1, εv1 into (5.1.1), we get the discrepancy

−(� + k2)χ1, εv1 = −[�,χε,1]v1 − χε,1(� + k2)v1 = −[�, 1 − �(ε−1r1)]v1,

which is non-zero in the neighborhood of the point O1, where v1 can be replaced
by asymptotics; the boundary condition in (5.1.1) is fulfilled. According to (5.4.2)
and (5.3.1), (5.3.5)

v1(x, y; ε) = (
a−
1 (ε)Ñπ/ω(kr1) + a+

1 (ε) J̃π/ω(kr1)
)
�(π − ϕ1)

+ O(r3π/ω
1 ), r1 → 0,
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where

a−
1 (ε) = C11, a+

1 = s1 + C11a1. (5.4.5)

We select the leading term in each summand, take ρ1 = r1/ε, and obtain

−(� + k2)χε,1v1 ∼ −[�, 1 − �(ε−1r1)]
(

a−
1 r−π/ω

1 + a+
1 rπ/ω

1

)
�(π − ϕ1)

= −ε−2[�(ρ1,ϕ1), 1 − �(ρ1)]
(

a−
1 ε−π/ωρ

−π/ω
1 + a+

1 επ/ωρ
π/ω
1

)
�(π − ϕ1).

(5.4.6)

In the sameway, taking account of (5.4.3), (5.3.10), and (5.3.11), wewrite the leading
discrepancy of χε,0v0 supported in a neighborhood of O1:

−(�+k2)χε,0v0 ∼ −ε−2[�(ρ1,ϕ1), 1−�(ρ1)]
(

b−
1 ε−π/ωρ

−π/ω
1 + b+

1 επ/ωρ
π/ω
1

)
�(ϕ1),

(5.4.7)
where

b−
1 = C12(ε), b+

1 = C12(ε)c11 + C13(ε)c21. (5.4.8)

As a right-hand side F1 of problem (5.2.3) in �1, we take the function

F1(ξ1, η1) = − [�, ζ−]
(

a−
1 ε−π/ωρ

−π/ω
1 + a+

1 επ/ωρ
π/ω
1

)
�(π − ϕ1)

− [�, ζ+]
(

b−
1 ε−π/ωρ

−π/ω
1 + b+

1 επ/ωρ
π/ω
1

)
�(ϕ1), (5.4.9)

where ζ+ (respectively ζ−) denotes the function 1−�, first restricted to the domain
ξ1 > 0 (respectively ξ1 < 0) and then extended by zero to the whole domain �1.
Let w1 be the corresponding solution; then the term �(r1)w1(ε

−1x1, ε−1y1; ε) in
(5.4.1), being substituted in (5.1.1), compensates discrepancies (5.4.6) and (5.4.7).

Now, we use (5.4.3) and (5.4.4), (5.3.10) and (5.3.11), and (5.3.6) to find the
right-hand side of problem (5.2.3) for j = 2:

F2(ξ2, η2) = − [�, ζ−]
(

a−
2 ε−π/ωρ

−π/ω
2 + a+

2 επ/ωρ
π/ω
2

)
�(π − ϕ2)

− [�, ζ+]
(

b−
2 ε−π/ωρ

−π/ω
2 + b+

2 επ/ωρ
π/ω
2

)
�(ϕ2),

where

a−
2 (ε) = C13(ε), a+

2 (ε) = C12(ε)c12 + C13(ε)c22,

b−
2 (ε) = C14(ε), b+

2 (ε) = C14(ε)a2.
(5.4.10)
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Lemma 5.4.1 Let the solution w j to problem (5.2.3) with right-hand side

Fj (ξ j , η j ) = − [�, ζ−]
(

a−
j ε−π/ωρ

−π/ω
j + a+

j επ/ωρ
π/ω
j

)
�(π − ϕ j )

− [�, ζ+]
(

b−
j ε−π/ωρ

−π/ω
j + b+

j επ/ωρ
π/ω
j

)
�(ϕ j ),

j = 1, 2, be majorized by O(ρ
−3π/ω
j ) as ρ j → ∞. Then the relations

a−
j ε−π/ω − αa+

j επ/ω − βb+
j επ/ω = 0, b−

j ε−π/ω − αb+
j επ/ω − βa+

j επ/ω = 0,
(5.4.11)

hold with α and β in (5.2.5) and (5.2.6).

Proof In view of Proposition 5.2.3, we have w j = O(ρ
−3π/ω
j ) as ρ j → ∞ iff the

right-hand side of the problem (5.2.3) satisfies the conditions

(Fj , w
l
j )� j = 0, (Fj , w

r
j )� j = 0, (5.4.12)

where wl
j and wr

j are solutions to the homogeneous problem (5.2.3), for which the
expansions (5.2.5)–(5.2.6) hold. We introduce the functions f± on � j by equalities

f±(ρ j , ϕ j ) = ρ
±π/ω
j �(ϕ j ). To derive (5.4.11) from (5.4.12), it suffices to check

that

([�, ζ−] f−, wl
j )� j = ([�, ζ+] f−, wr

j )� j = −1,

([�, ζ−] f+, wl
j )� j = ([�, ζ+] f+, wr

j )� j = α,

([�, ζ+] f−, wl
j )� j = ([�, ζ−] f−, wr

j )� j = 0,

([�, ζ+] f+, wl
j )� j = ([�, ζ−] f+, wr

j )� j = β.

Let us prove the first equality; the rest are treated analogously. Since [�, ζ+] f−
is compactly supported, in the calculation of ([�, ζ−] f−, wl

j )� j one may replace

� j by �R
j = � j ∩ {ρ j < R} with sufficiently large R. Let E denote the set

∂�R
j ∩ {ρ j = R} ∩ {ξ j > 0}. By the Green formula

([�, ζ−] f−, wl
j )� j = (�ζ− f−, wl

j )�R
j

− (ζ− f−,�wl
j )�R

j

= (∂ f−/∂n, wl
j )E − ( f−, ∂wl

j/∂n)E .

Considering (5.2.5) for ξ j < 0 and the definition of � from Proposition 5.2.1, we
arrive at
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([�, ζ−] f−, wl
j )� j =

[
∂ρ

−π/ω
j

∂ρ j
(ρ

π/ω
j + αρ

−π/ω
j ) − ρ

−π/ω
j

∂

∂ρ j
(ρ

π/ω
j + αρ

−π/ω
j )

]
ρ j

∣∣∣∣
ρ j =R

×
∫ π+ω/2

π−ω/2
�(π − ϕ j )

2dϕ j + o(1)

= − 2π

ω

∫ π+ω/2

π−ω/2
�(π − ϕ j )

2dϕ j + o(1) = −1 + o(1).

It remains to pass to the limit as R → ∞. �

Remark 5.4.2 The solutions w j mentioned in Lemma 5.4.1 can be represented as
linear combinations of functions independent of ε. Let wl

j and wr
j be the solutions

of problem (5.2.3) specified by conditions (5.2.5) and (5.2.6) and let ζ+ and ζ− be
the same cut-off functions as in (5.4.9). Put

wl
j = wl

j − ζ− (ρπ/ω
j + αρ

−π/ω
j

)
�(π − ϕ j ) − ζ+βρ

−π/ω
j �(ϕ j ),

wr
j = wr

j − ζ−βρ
−π/ω
j �(π − ϕ j ) − ζ+ (ρπ/ω

j + αρ
−π/ω
j

)
�(ϕ j ).

A straightforward verification shows that

w j = a+
j επ/ωwl

j + b+
j επ/ωwr

j . (5.4.13)

It is convenient to write (5.4.11) in the form

(a−
j , b−

j ) = (a+
j , b+

j )� ε2π/ω, � =
(

α β

β α

)
. (5.4.14)

We use (5.4.5) and (5.4.8) to transform (5.4.14) with j = 1 to the equality

(C11, C12) = (s1 + C11a1, C12c11 + C13c21)� ε2π/ω. (5.4.15)

For j = 2, taking (5.4.10) into account, we reduce (5.4.14) to

(C13, C14) = (C12c12 + C13c22, C14 a2)� ε2π/ω. (5.4.16)

Setting � = diag {�,�},

a =

⎛
⎜⎜⎝

a1 0 0 0
0 c11 c12 0
0 c21 c22 0
0 0 0 a2

⎞
⎟⎟⎠ , (5.4.17)
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and combining the above relations for C1 j , we obtain

(C11, C12, C13, C14) = (s1, 0, 0, 0)� ε2π/ω + (C11, C12, C13, C14) a � ε2π/ω,

hence

(C11, C12, C13, C14)(I − a � ε2π/ω) = (s1, 0, 0, 0)� ε2π/ω. (5.4.18)

Let us calculate the inverse matrix for I − a�ε2π/ω, assuming ε to be sufficiently
small. From (5.3.12) it follows that

a(k) = − b∗b
k2 − k2e

+ â(k),

where b = (0, b1, b2, 0) and the matrix â is analytic near k = ke and defined by
(5.4.17), whereas cpq is replaced for ĉpq . We have

I − a � ε2π/ω = I − â � ε2π/ω + b∗b � ε2π/ω

k2 − k2e

=
(

I + b∗b � ε2π/ω(I − â � ε2π/ω)−1

k2 − k2e

)
(I − â � ε2π/ω);

it is evident that (I − â � ε2π/ω)−1 exists for small ε. Straightforward calculation
shows that

(
I + b∗c

k2 − k2e

)−1

= I − b∗c
k2 − k2e + 〈c, b〉

for c = b � ε2π/ω(I−â � ε2π/ω)−1,where 〈·, ·〉 is the inner product inC
4. Therefore,

(I − a� ε2π/ω)−1 = (I − â � ε2π/ω)−1

×
(

I − b∗b � ε2π/ω(I − â � ε2π/ω)−1

k2 − k2e + 〈b � ε2π/ω(I − â � ε2π/ω)−1, b〉
)

.

This leads to

(C11, C12, C13, C14) = (s1, 0, 0, 0)� ε2π/ω(I − a � ε2π/ω)−1

= (s1, 0, 0, 0)

(
D − D b∗b D

k2 − k2e + 〈bD, b〉
)

, (5.4.19)

where b = (0, b1, b2, 0), D = � ε2π/ω(I − â � ε2π/ω)−1 and the matrix â is
analytic in k near ke and defined by (5.4.17) with cpq replaced by ĉpq (see (5.3.12)).



5.4 Asymptotic Formulas 97

We now seek an approximation to the entries of the first row (S11, S12) of the
scattering matrix. By virtue of (5.4.2) and (5.4.4),

(S̃11, S̃12) = (S0
11 + C11A1, C14A2). (5.4.20)

We set

A =

⎛
⎜⎜⎝

A1 0
0 0
0 0
0 A2

⎞
⎟⎟⎠ , s =

(
s1 0 0 0
0 0 0 s2

)
;

S0 = diag (S0
11, S0

22); then, by Lemma 5.3.1, A = is∗S0. In view of (5.4.20) and
(5.4.19), we obtain

(S̃11, S̃12) = (S0
11, 0) + (C11, C12, C13, C14)A

= (S0
11, 0) + i(s1, 0, 0, 0)

(
D − D b∗b D

k2 − k2e + 〈bD, b〉
)

s∗S0.

(5.4.21)

An approximation to the second row of the scattering matrix is of the form

(S̃21, S̃22) = (0, S0
22) + i(0, 0, 0, s2)

(
D − D b∗b D

k2 − k2e + 〈bD, b〉
)

s∗S0.

(5.4.22)

Lemma 5.4.3 The matrix S̃(ε) is unitary.

Proof Let B temporarily denote the matrix (I − a�ε2π/ω)−1�ε2π/ω. Since (S0)∗
S0 = I , the equalities

S̃(ε)S̃(ε)∗ = S̃(ε)(S0)∗S0 S̃(ε)∗ = (I + is Bs∗)(I − is B∗s∗)
= I + is(B − B∗ − i Bs∗s B∗)s∗

hold. We have to show that B − B∗ − i Bs∗s B∗ = 0. By Lemma 5.3.1,

a − a∗ = i AA∗ = i(is∗S0)(is∗S0)∗ = is∗s

and, consequently,

B − B∗ − i Bs∗s B∗ = B − B∗ − B(a − a∗)B∗

= B(I + a∗ B∗) − (I + Ba)B∗.
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Moreover,

I + Ba = I + (I − �aε2μ1+1)−1�aε2μ1+1 = (I − �aε2μ1+1)−1,

I + a∗ B∗ = (I + Ba)∗ = (I − a∗�ε2μ1+1)−1,

whence

B(I + a∗ B∗) − (I + Ba)B∗ = 0.

�

5.4.3 Formulas for Resonant Tunneling Characteristics

The solutions of the first kind limit problems involved in (5.4.1) are defined for
complex k as well. Expressions (5.4.21) and (5.4.22) for S̃ have a pole kp in the
lower complex half-plane. To find k2p we equate k2 − k2e +〈bD, b〉 to zero and solve
the equation for k2 − k2e :

k2 − k2e = −〈bD, b〉 = −ε2π/ω〈b�(I − â �ε2π/ω)−1, b〉. (5.4.23)

Since the right-hand side of the last equation behaves like O(ε2π/ω) as ε → 0, it
may be solved by the successive approximation method. Considering the formulas
b1 = ±b2, Im a1 = Im a2 = |s1|2/2, which follow from the waveguide symmetry
and Lemma 5.3.1, and discarding the lower order terms, we get k2p = k2r − ik2i , where

k2r = k2e − 2αb21ε
2π/ω + O(ε4π/ω), k2i = β2b21|s1(k2e )|2ε4π/ω + O(ε6π/ω).

(5.4.24)
From (5.4.21) and (5.4.22), we obtain

S̃(k, ε) =S0(k) + is(k)� s∗(k)S0(k)ε2π/ω − i
s(k)� b∗b � s∗(k)S0(k)

k2 − k2p
ε4π/ω

+ O

(
ε6π/ω

k2 − k2p

)

=
(

S0
11(k) 0
0 S0

22(k)

)
+ i

(|s1(k)|2α1S0
11(k) 0

0 |s2(k)|2α2S0
22(k)

)
ε2π/ω

− i

k2 − k2p

( |s1(k)|2b21β
2S0

11(k) s1(k)s2(k)b1b2β2S0
22(k)

s2(k)s1(k)b1b2β2S0
11(k) |s2(k)|2b22β

2S0
22(k)

)
ε4π/ω

+ O

(
ε6π/ω

k2 − k2p

)
.
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Let k2 − k2e = O(ε2π/ω), then cε4π/ω ≤ |k2 − k2p| ≤ cε2π/ω, s j (k) = s j (ke) +
O(ε2π/ω), S0

j j (k) = S0
j j (ke) + O(ε2π/ω), and

S̃12(k, ε) = −iε4π/ω s1(k)s2(k)b1b2β2S0
22(k)

k2 − k2p

(
1 + O(ε2π/ω)

)

= −
q

s1(ke)

|s1(ke)|
s2(ke)

|s2(ke)| S0
22(ke)

1 − i P
k2 − k2r
ε4π/ω

(
1 + O(ε2π/ω)

)
, (5.4.25)

S̃21(k, ε) = −iε4π/ω s1(k)s2(k)b1b2β2S0
11(k)

k2 − k2p

(
1 + O(ε2π/ω)

)

= −
q

s1(ke)

|s1(ke)|
s2(ke)

|s2(ke)| S0
11(ke)

1 − i P
k2 − k2r
ε4π/ω

(
1 + O(ε2π/ω)

)
,

where q = b2/b1 and P = (b21β
2|s1(ke)|2)−1. Thus,

T̃1(k, ε) = T̃2(k, ε) = |S̃12|2 = 1

1 + P2

(
k2 − k2r
ε4π/ω

)2 (1 + O(ε2π/ω)). (5.4.26)

The obtained approximation T̃ j to the transition coefficient Tj has a peak at k2 = k2r
whose width at its half-height is

ϒ̃(ε) = 2

P
ε4π/ω. (5.4.27)

5.5 Justification of the Asymptotics

Introduce functional spaces for the problem

− �u − k2u = f in G(ε), u = 0 on ∂G(ε). (5.5.1)

Let � be the same function as in (5.3.4) and let the cut-off functions η j , j = 0, 1, 2,
be nonzero in G j and satisfy the relation η1(x, y) + �(r1) + η0(x, y) + �(r2) +
η2(x, y) = 1 in G(ε). For γ ∈ R, δ > 0, and l = 0, 1, . . . , the space V l

γ,δ(G(ε)) is
the completion in the norm
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‖u; V l
γ,δ(G(ε))‖

=
(∫

G(ε)

l∑
|α|=0

( 2∑
j=1

�2(r j ) (r2j + ε2j )
γ−l+|α| + η21e2δ|x | + η0 + η22e2δ|x |

)
|∂αv|2 dx dy

)1/2

of the set of smooth functions compactly supported on G(ε). Denote by V 0,⊥
γ,δ the

space of function f , analytic in k2, with values in V 0
γ,δ(G(ε)) that satisfy, at k2 = k2e ,

the condition (χ0,εσ f, ve)G0 = 0 with a small σ > 0; here k2e is a simple eigenvalue
of problem (5.2.1) in G0, and ve is an eigenfunction corresponding to k2e .

Proposition 5.5.1 Let k2r be a resonance, k2r → k2e as ε → 0, and let |k2 − k2r | =
O(ε2π/ω). Let γ satisfy the condition π/ω − 2 < γ − 1 < π/ω, f ∈ V 0,⊥

γ,δ (G(ε)),
and let u be a solution to problem (5.5.1) that admits the representation

u = ũ + η1A−
1 U−

1 + η2A−
2 U−

2 ;

here A−
j = const and ũ ∈ V 2

γ,δ(G(ε)) for small δ > 0. Then

‖ũ; V 2
γ,δ(G(ε))‖ + |A−

1 | + |A−
2 | ≤ c‖ f ; V 0

γ,δ(G(ε))‖, (5.5.2)

where c is a constant independent of f and ε.

Proof Step A. First we construct an auxiliary function u p. As mentioned above, S̃
has a pole k2p = k2r − ik2i (see (5.4.24)). Let us multiply the solutions to the limit
problems, involved in (5.4.1), by g := −(k2 − k2e +〈bD(k), b〉)/〈(s1, 0, 0, 0)D, b〉,
put k = kp, and denote the resulting functions by adding the subscript p. In view of
(5.4.19) and the equality (s1, 0, 0, 0)Db∗ = 〈(s1, 0, 0, 0)D, b〉, we get

g (C11, C12, C13, C14)|k=kp = bD(kp) = (b1β, b1α, b2α, b2β)ε2π/ω + O(ε4π/ω).

(5.5.3)
This and (5.4.2), (5.4.4) lead to

v1p(x, y; ε) = g C11|k=kp v1(x, y; kp) = ε2π/ω
(

b1β + O
(
ε2π/ω

))
v1(x, y; kp),

(5.5.4)

v2p(x, y; ε) = g C14|k=kp v2(x, y; kp) = ε2π/ω
(

b2β + O
(
ε2π/ω

))
v2(x, y; kp);

the dependence of kp on ε is not shown. According to (5.4.3) and Lemma 5.3.2,

v0p(x, y; ε) = − (g C12b1 + g C13b2)|k=kp

k2p − k2e
ve(x, y) + g C12|k=kp v̂01(x, y)

+ g C13|k=kp v̂02(x, y).
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Taking into account (5.4.19), we obtain

C12b1 + C13b2 = (C11, C12, C13, C14)b∗ = (s1, 0, 0, 0)Db∗

×
(
1 − 〈bD, b〉

k2 − k2e + 〈bD, b〉
)

= (k2 − k2e )
〈(s1, 0, 0, 0)D, b〉
k2 − k2e + 〈bD, b〉 . (5.5.5)

Hence,

v0p(x, y; ε) = ve(x, y) + ε2π/ω(b1α + O(ε2π/ω))̂v01(x, y)

+ ε2π/ω(b2α + O(ε2π/ω))̂v02(x, y).

Finally, using (5.4.13) and formulas (5.4.5), (5.4.8), (5.4.10) for a+
j and b+

j , we find

w1p(ξ1, η1; ε) = (gC11)|k=kp a1ε
π/ωwl

1(ξ1, η1)

+ (gC12c11 + gC13c21)|k=kpε
π/ωwr

1(ξ1, η1),

w2p(ξ2, η2; ε) = (gC22c11 + gC23c21)|k=kpε
π/ωwl

2(ξ2, η2)

+ (gC14)|k=kp a2ε
π/ωwr

2(ξ2, η2).

Compare the equalities (5.3.12), (5.5.5), and (5.5.3); then

(gC12c1 j + gC j3c2 j )|k=kp = −b j
(g C12b1 + g C13b2)|k=kp

k2p − k2e

+ (gC12ĉ1 j + gC j3ĉ2 j )|k=kp

= b j + O(ε2π/ω),

where j = 1, 2. Thus

w1p(ξ1, η1; ε) = ε3π/ω(a1b1β + O(ε2π/ω))wl
1(ξ1, η1)

+ επ/ω(b1 + O(ε2π/ω))wr
1(ξ1, η1), (5.5.6)

w2p(ξ2, η2; ε) = επ/ω(b2 + O(ε2π/ω))wl
2(ξ2, η2)

+ ε3π/ω(a2b2β + O(ε2π/ω))wr
2(ξ2, η2). (5.5.7)
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We set

u p(x, y; ε) = �(x, y)
[
χ1,ε(x, y)v1p(x, y; ε) + �(ε−2σ r1)w1p(ε−1x1, ε

−1y1; ε)

+ χ0,ε(x, y)v0p(x, y; ε) + �(ε−2σ r2)w2p(ε−1x2, ε
−1y2; k, ε)

+ χ2,ε(x, y)v2p(x, y; k, ε)
]
, (5.5.8)

where � is a cut-off function in G(ε) that is equal to 1 on the set G(ε) ∩ {|x | < R}
and to 0 on G(ε) ∩ {|x | > R + 1} for a large R > 0; σ is such that 2σ < 1. The
principal part of the norm of u p is given by χ0,εv0p. Considering the definitions of
v0p and v̂0 j (see Sect. 5.2) and Lemma 5.3.2, we obtain ‖χ0,εv0p‖ = ‖ve‖ + o(1).

Step B. Let us show that

‖(� + k2p)u p; V 0
γ, δ(G(ε))‖ ≤ cεπ/ω+κ , (5.5.9)

where κ = min{π/ω, 3π/ω−σ1, γ +1}, σ1 = 2σ(3π/ω−γ +1). If π/ω < γ +1
and σ is small so that 2π/ω > σ1, we have κ = π/ω. One can take σ < 1/4, since,
due to π/ω − γ < 1 and 1 < π/ω,

σ1 = 2σ(3π/ω − γ + 1) < 2σ(2π/ω + 2) < 8σπ/ω < 2π/ω.

In view of (5.5.8),

(� + k2p)u p(x, y; ε) = [�,χ1,ε]
(
v1p(x, y; ε) − b1βε2π/ω(r−π/ω

1 + a(k p)rπ/ω
1 )�(π − ϕ1)

)

+ [�,�]w1p(ε−1x1, ε
−1y1; ε) + k2p�(ε−2σ r1)w1p(ε−1x1, ε

−1y1; ε)

+ [�,χ0,ε]
(
v0p(x, y; ε) − �(r1)

(
b−
1p(ε)r−π/ω

1 + b+
1p(ε)rπ/ω

1
)
�(π − ϕ1)

− �(r2)
(
a−
2p(ε)r−π/ω

2 + a+
2p(ε)rπ/ω

2
)
�(ϕ2)

)

+ [�,�]w2p(ε−1x2, ε
−1y2; ε) + k2p�(ε−2σ r2)w2p(ε−1x2, ε

−1y2; ε)

+ [�,χ2,ε]
(
v2p(x, y; ε) − b2βε2π/ω(r−π/ω

2 + a(k p)rπ/ω
2 )�(ϕ2)

)

+ [�,�]v1p(x, y; ε) + [�,�]v2p(x, y; ε),

where b−
1p = O(ε2π/ω), b+

1p = b1 + O(ε2π/ω), a−
2p = O(ε2π/ω), and a+

2p =
b2 + O(ε2π/ω). Taking into account the asymptotics of v1 as r1 → 0 and passing to
the variables (ξ1, η1) = (ε−1x1, ε−1y1), we obtain

∥∥∥(x, y) �→ [�,χ1,ε]
(

v1(x, y) − (r−π/ω
1 + a(kp)r

π/ω
1 )�(π − ϕ1)

)
; V 0

γ,δ(G(ε))

∥∥∥2

≤ c
∫

G(ε)

(r21 + ε2)γ
∣∣∣[�,χ1,ε]r−π/ω+2

1 �(π − ϕ1)

∣∣∣2 dxdy ≤ cε2(γ−π/ω+1).
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This and (5.5.4) imply the estimate

∥∥∥(x, y) �→ [�,χ1,ε]
(
v1p(x, y) − (r−π/ω

1 + a(kp)r
π/ω
1 )�(π − ϕ1)

)
;

V 0
γ,δ(G(ε))

∥∥∥ ≤ cεγ+π/ω+1.

Likewise,

∥∥∥(x, y) �→ [�,χ0,ε]
(
v0p(x, y) − �(r1)

(
b−
1p(ε)r

−π/ω
1 + b+

1p(ε)r
π/ω
1

)
�(π − ϕ1)

− �(r2)
(
a−
2p(ε)r

−π/ω
2 + a+

2p(ε)r
π/ω
2

)
�(ϕ2)

)∥∥∥ ≤ cεγ+π/ω+1,∥∥∥(x, y) �→ [�,χ2,ε]
(
v2p(x, y) − (r−π/ω

2 + a(kp)r
π/ω
2 )�(ϕ2)

)
; V 0

γ,δ(G(ε))

∥∥∥
≤ cεγ+π/ω+1.

It is evident, that

∥∥∥[�,�]v j p; V 0
γ,δ(G(ε))

∥∥∥ ≤ cε2π/ω, j = 1, 2.

Further, since wl
j behaves like O(ρ

−3π/ω
j ) at infinity,

∫
G(ε)

(r2j + ε2)γ
∣∣∣[�,�]wl

j (ε
−1x j , ε

−1y j )

∣∣∣2 dx j dy j

≤ c
∫

K j

(r2j + ε2)γ
∣∣∣[�,�](ε−1r j )

−3π/ω�2(ϕ j )

∣∣∣2 dx j dy j

≤ cε2(3π/ω−σ1),

where σ1 = 2σ(3π/ω − γ + 1). A similar inequality holds with wl
j replaced by wr

j .
Considering (5.5.6)–(5.5.7), we obtain

∥∥∥[�,�]w j p; V 0
γ,δ(G(ε))

∥∥∥ ≤ cε4π/ω−σ1 .

Finally, using (5.5.6)–(5.5.7) once again, taking into account the estimate

∫
G(ε)

(r2j + ε2)γ
∣∣∣�(ε−2σ r j )wl

j (ε
−1x j , ε

−1y j )

∣∣∣2 dx j dy j

= ε2γ+2
∫

�

(ρ2
j + 1)γ

∣∣∣�(ε1−2σ ρ j )wl
j (ξ j , η j )

∣∣∣2 dξ j dη j ≤ cε2γ+2,



104 5 Asymptotic and Numerical Studies of Resonant Tunneling …

and a similar estimate for wr
j , we derive

∥∥∥(x, y) �→ �(ε−2σ r j )w j p(ε
−1x j , ε

−1y j ); V 0
γ,δ(G(ε))

∥∥∥ ≤ cεπ/ω+γ+1.

Combining the obtained estimates, we arrive at (5.5.9).
Step C. This part contains somewhat modified arguments from the proof of The-

orem 5.1.1 in [33]. Let us write the right-hand side of problem (5.5.1) in the form

f (x, y) = f1(x, y; ε) + f0(x, y; ε) + f2(x, y; ε)

− ε−γ−1F1(ε
−1x1, ε

−1y1; ε1) − ε−γ−1F2(ε
−1x2, ε

−1y2; ε),

where

fl(x, y; ε) = χl,εσ (x, y) f (x, y),

Fj (ξ j , η j ; ε) = −εγ+1�(ε1−σ ρ j ) f (xO j + εξ j , yO j + εη j ),

(x, y) are arbitrary Cartesian coordinates, (xO j , yO j ) stand for the coordinates of O j

in the system (x, y), and x j , y j were introduced in Sect. 5.4. From the definition of
the norms, it follows that

‖ f1; V 0
γ, δ(G1)‖ + ‖ f0; V 0

γ (G0)‖ + ‖ f2; V 0
γ, δ(G2)‖

+ ‖Fj ; V 0
γ (� j )‖ ≤ c‖ f ; V 0

γ, δ(G(ε))‖. (5.5.10)

We consider solutions vl and w j to the limit problems

−�vl − k2vl = fl in Gl , vl = 0 on ∂Gl ,

�w j = Fj in � j , w j = 0 on ∂� j ,

respectively; moreover, the vl with l = 1, 2 satisfy the intrinsic radiation conditions
at infinity, and the v0 is subject to the condition (v0, ve)G0 = 0. According to
Propositions 5.2.1, 5.2.2, and 5.2.3, the problems in Gl and� j are uniquely solvable
and

‖v0; V 2
γ (G0)‖ ≤ c0‖ f0; V 0

γ (G0)‖,
‖vl; V 2

γ,δ,−(Gl)‖ ≤ cl‖ fl; V 0
γ,δ(Gl)‖, l = 1, 2, (5.5.11)

‖w j ; V 2
γ (� j )‖ ≤ C j‖Fj ; V 0

γ (� j )‖, j = 1, 2,
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where cl and C j are independent of ε. We set

U (x, y; ε) = χ1,ε(x, y)v1(x, y; ε) + ε−γ+1�(r1)w1(ε
−1x1, ε

−1y1; ε)

+ χ0,ε(x, y)v0(x, y; ε) + ε−γ+1�(r2)w2(ε
−1x2, ε

−1y2; ε)

+ χ2,ε(x, y)v2(x, y; ε).

Estimates (5.5.10) and (5.5.11) lead to

‖U ; V 2
γ, δ,−(G(ε))‖ ≤ c‖ f ; V 0

γ,δ(G(ε))‖ (5.5.12)

with c independent of ε. Let Rε denote the mapping f �→ U .
Let us show that −(� + k2)Rε = I + Sε, where Sε is an operator in V 0

γ,δ(G(ε))

of small norm. We have

(� + k2)Rε f (x, y) = (� + k2)U (x, y; ε) = − f (x, y) + [�,χ1,ε]v1(x, y; ε)

+ ε−γ+1[�,�]w1(ε
−1x1, ε

−1y1; ε) + k2ε−γ+1�(r1))

× w1(ε
−1x1, ε

−1y1; ε) + [�,χ0,ε]v0(x, y; ε)

+ ε−γ+1[�,�]w2(ε
−1x2, ε

−1y2; ε) + k2ε−γ+1�(r2)

× w2(ε
−1x2, ε

−1y2; ε) + [�,χ2,ε]v2(x, y; ε). (5.5.13)

Let d be a positive number such that γ − d + π/ω − 1 > 0. On the support of the
function [�,χ1,ε]v1 the estimate (x21 + y21 )

1/2 = O(ε) holds, therefore,

‖[�,χ1,ε]v1; V 0
γ,δ(G(ε))‖ ≤ cεd‖[�,χ1,ε]v1; V 0

γ−d,δ(G1)‖
≤ cεd‖v1; V 2

γ−d,δ(G1)‖.

This and (5.5.11) lead to

‖[�,χ1,ε]v1; V 0
γ,δ(G(ε))‖ ≤ cεd‖ f1; V 0

γ−d,δ(G1)‖.

Moreover, f1 = 0 outside the zone cεσ ≤ (x21 + y21 )
1/2 ≤ Cεσ , therefore,

‖ f1; V 0
γ−d,δ(G1)‖ ≤ cε−dσ ‖ f1; V 0

γ,δ(G1)‖.

The two last estimates together with (5.5.10) show that

‖[�,χ1,ε]v1; V 0
γ,δ(G(ε))‖ ≤ cεd(1−σ)‖ f ; V 0

γ, δ(G(ε))‖. (5.5.14)

In a similar way, we obtain

‖[�,χl,ε]vl; V 0
γ,δ(G(ε))‖ ≤ cεd(1−σ)‖ f ; V 0

γ, δ(G(ε))‖, l = 0, 2. (5.5.15)
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We now assume in addition that the d satisfies γ + d − π/ω − 1 < 0. Because
the support of the function [�(ξ j ,η j ),�(ερ j )]w j (ξ j , η j ; ε), j = 1, 2, belongs to the
domain cε−1 ≤ (ξ2j + η2j )

1/2 ≤ Cε−1,

‖(ξ j , η j ) �→ [�ξ j ,η j ,�(ερ j )]w j (ξ j , η j ; ε); V 0
γ (� j )‖

≤ cεd‖(ξ j , η j ) �→ [�ξ j ,η j ,�(ερ j )]w j (ξ j , η j ; ε); V 0
γ+d(� j )‖

≤ cεd‖w j ; V 2
γ+d(� j )‖.

Now, taking into account (5.5.11), we obtain

ε−γ+1‖(x j , y j ) �→[�,�(r j )]w j (ε
−1x j , ε

−1y j ; ε); V 0
γ,δ(G(ε))‖

≤ cεd‖Fj ; V 0
γ+d(� j )‖.

Since Fj = 0 for (ξ2j + η2j )
1/2 > cε−σ ,

‖Fj ; V 0
γ+d(� j )‖ ≤ cε−dσ ‖Fj ; V 0

γ (� j )‖. (5.5.16)

Consequently,

ε−γ+1‖(x j , y j ) �→[�,�(r j )]w j (ε
−1x j , ε

−1y j ; ε); V 0
γ,δ(G(ε))‖

≤ cεd(1−σ)‖ f ; V 0
γ, δ(G(ε))‖. (5.5.17)

It remains to estimate the middle terms of the two last lines in (5.5.13). We have

ε−γ+1‖(x j , y j ) �→ �(r j )w j (ε
−1x j , ε

−1y j ; ε); V 0
γ,δ(G(ε))‖

= ε2‖(ξ j , η j ) �→ �(ερ j )w j (ξ j , η j ; ε); V 0
γ (� j )‖

≤ ε2‖(ξ j , η j ) �→ �(ερ j )w j (ξ j , η j ; ε); V 2
γ+2(� j )‖

≤ cεd‖w j ; V 2
γ+d(� j )‖;

in the last inequality we took into account that �(ερ j )w j (ξ j , η j ; ε) = 0 for ρ j ≥
cε−1; besides, we assume that 2− d > 0. In view of (5.5.11), (5.5.16), and (5.5.10),
we obtain

ε−γ+1‖(x j , y j ) �→�(r j )w j (ε
−1x j , ε

−1y j ; ε); V 0
γ,δ(G(ε))‖

≤ cεd(1−σ)‖ f ; V 0
γ, δ(G(ε))‖. (5.5.18)

Thus, (5.5.13)–(5.5.15) and (5.5.17)–(5.5.18) lead to the inequality

‖ − (� + k2)Rε f − f ; V 0
γ, δ(G(ε))‖ ≤ cεd(1−σ)‖ f ; V 0

γ, δ(G(ε))‖,
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which means that −(� + k2)Rε = I + Sε and the norm of the operator Sε in the
space V 0

γ, δ(G(ε)) admits the estimate ‖Sε‖ ≤ cεd(1−σ).

Step D. Let us recall that the operator Sε is defined on the subspace V 0,⊥
γ, δ (G(ε)).

We also need the range of the operator Sε be included in V 0,⊥
γ, δ (G(ε)). To this end,

we replace the mapping Rε by R̃ε : f �→ U ( f ) + a( f )u p, the u p was constructed
in Step A, and a( f ) is a constant. Then −(� + k2)R̃ε = I + S̃ε with S̃ε = Sε −
a(·)(� + k2)u p. As k = ke, the condition (χ0,εσ S̃ε f, ve)G0 = 0 implies a( f ) =
(χ0,εσ Sε f, ve)G0/(χ0,εσ (�+k2e )u p, ve)G0 .Now,weprove that‖S̃ε‖ ≤ c‖Sε‖,where
c is independent of ε and k. We have

‖S̃ε f ‖ ≤ ‖Sε f ‖ + |a( f )| ‖(� + k2)u p‖.

Estimate (5.5.9) (with γ > π/ω − 1 and 2π/ω > σ1), the formula for kp, and the
condition k2 − k2e = O

(
ε2π/ω

)
imply the inequalities

‖(� + k2)u p; V 0
γ,δ‖ ≤ |k2 − k2p| ‖u p; V 0

γ,δ‖ + ‖(� + k2p)u p; V 0
γ,δ‖ ≤ cε2π/ω.

Since the supports of the functions (� + k2p)u p and χ0,εσ are disjoint, we obtain

|(χ0,εσ (� + k2e )u p, ve)G0 | = |(k2e − k2p)(u p, ve)G0 | ≥ cε2π/ω.

Moreover, γ − 1 < π/ω and, consequently,

|(χ0,εσ Sε f, ve)G0 | ≤ ‖Sε f ; V 0
γ,δ(G(ε))‖ ‖ve; V 0−γ (G0)‖ ≤ c‖Sε f ; V 0

γ,δ(G(ε))‖.

Hence,

|a( f )| ≤ cε−2π/ω‖Sε f ; V 0
γ,δ(G(ε))‖

and ‖S̃ε f ‖ ≤ c‖Sε f ‖. Thus, the operator I + S̃ε in V 0,⊥
γ,δ (G(ε)) is invertible, which

is also true for the operator of problem (5.5.1):

the consists of the elements in V 2
γ,δ,−(G(ε)) that vanish on ∂G(ε),

and the operator −� − k2 takes to V 0,⊥
γ,δ (G(ε)).

The inverse operator A−1
ε = R̃ε(I + S̃ε)

−1 is bounded uniformly with respect to ε

and k. Therefore, the inequality (5.5.2) holds with c independent of ε and k. �
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Consider a solution u1 to the homogeneous problem (5.1.1) defined by

u1(x, y) =
{

U+
1 (x, y) + S11 U−

1 (x, y) + O(exp (δx)), x → −∞,

S12 U−
2 (x, y) + O(exp (−δx)), x → +∞.

Let S11 and S12 be the elements of the scattering matrix determined by this solution.
Denote by ũ1,σ the function defined by (5.4.1) with �(r j ) replaced by �(ε−2σ

j r j )

and remainder R removed; S̃11, S̃12 are the same as in (5.4.21).

Theorem 5.5.2 Let the hypotheses of Proposition 5.5.1 be fulfilled. Then the
inequalities

|S11 − S̃11| + |S12 − S̃12| ≤ c|S̃12|ε2−δ, (5.5.19)

|S21 − S̃21| + |S22 − S̃22| ≤ c|S̃22|ε2−δ (5.5.20)

hold with a constant c, independent of ε and k, δ being an arbitrarily small positive
number.

Proof For example, we verify (5.5.19). The difference R = u1 − ũ1,σ is in the
space V 2

γ, δ,−(G(ε)) and f1 := −(� + k2)(u1 − ũ1,σ ) belongs to V 0,⊥
γ, δ (G(ε)). By

Proposition 5.5.1,

‖R; V 2
γ, δ,−(G(ε))‖ ≤ c ‖ f1; V 0

γ,δ(G(ε))‖. (5.5.21)

Let us show that

‖ f1; V 0
γ, δ(G(ε))‖ ≤ c|S̃12|(εγ−π/ω+1 + ε2π/ω−σ1), (5.5.22)

where σ1 = 2σ(3π/ω − γ + 1). (Then estimate (5.5.19) follows from (5.5.21) and
(5.5.22) with γ = π/ω + 1− δ and σ1 = δ.) Arguing, as in the proof of Proposition
5.5.1, Step B, we obtain the estimate

‖ f1; V 0
γ, δ(G(ε))‖ ≤ c(εγ+1 + ε3π/ω−σ1)

× max
j=1,2

(|a−
j (ε)|ε−π/ω + |a+

j (ε)|επ/ω + |b−
j (ε)|ε−π/ω

+ |b+
j (ε)|επ/ω).

From (5.4.11) it follows that

|a−
j (ε)| + |b−

j (ε)| ≤ cε2π/ω(|a+
j (ε)| + |b+

j (ε)|).
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Using (5.4.5) and (5.4.10) for a+
1 , b+

2 and taking account of relations (5.4.19) and
(5.4.25) and of the fact that k2 − k2p = O(ε2π/ω), we obtain

|a+
1 (ε)| + |b+

2 (ε)| ≤ c
ε2π/ω

|k2 − k2p|
≤ cε−2π/ω|S̃12(ε)|.

Analogously, using (5.4.5) and (5.4.8) for a+
2 , b+

1 and the relations (5.3.12), (5.5.5),
we get

|a+
1 (ε)| + |b+

2 (ε)| ≤ max j=1,2

∣∣∣∣−b j
〈(s1, 0, 0, 0)D, b〉
k2 − k2e + 〈bD, b〉 + C12ĉ1 j + C13ĉ2 j

∣∣∣∣
≤ c

ε2π/ω

|k2 − k2p|
≤ cε−2π/ω|S̃12(ε)|.

Combining the above inequalities, we arrive at (5.5.22) and, consequently,
at (5.5.19). �

Let us recall some notations. We denote by k2e a simple eigenvalue of problem
(5.2.1) in the resonator G0 and by k2r (ε) a resonance frequency such that k2r (ε) → k2e
as ε → 0.Moreover, let b j be the constants in asymptotics (5.3.7) of an eigenfunction
corresponding to the eigenvalue k2e and s j (k) the constant in asymptotics (5.3.1) of the
special solution Vj for r j → 0, j = 1, 2. Finally, the constants α and β are defined
by (5.2.5) and (5.2.6). We set P = (b21β

2|s1(ke)|2)−1; this is the same constant as in
(6.4.27) and (6.4.29).

Theorem 5.5.3 For |k2 − k2r | = O(ε2π/ω), the asymptotic expansions

T1(k, ε) = T2(k, ε) = 1

1 + P2

(
k2 − k2r
ε4π/ω

)2

(
1 + O(ε2−δ)

)
,

k2r (ε) = k2e + 2b21αε2π/ω + O
(
ε2π/ω+2−δ

)
,

ϒ(ε) =
∣∣∣ 1

P

∣∣∣ε4π/ω
(
1 + O(ε2−δ)

)

hold: ϒ(ε) is the width of the resonant peak at its half-height (the so-called resonant
quality factor), δ being an arbitrarily small positive number.

Proof Theorem 5.5.2 leads to |Sp2 − S̃p2| ≤ c|S̃p2|ε2−δ with a positive δ. Therefore

|Tp − T̃p| ≤ c|S̃p2||Sp2 − S̃p2| ≤ cT̃pε
2−δ

http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
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and, in view of (5.4.26),

Tp(k, ε) = T̃p(1 + O(ε2−δ)) = 1

1 + P2

(
k2 − k2r
ε4π/ω

)2

(
1 + O(ε2−δ)

)
.

This leads to formulas for k2r (ε) and ϒ(ε). �

5.6 Comparison of Asymptotic and Numerical Results

The principal parts of the asymptotic formulas in Theorem5.5.3 contain the constants
b1, |s1(ke)|, α, and β. To find them, one has to solve numerically several boundary
value problems. We state the problems and describe a way to solve them. Then the
asymptotics with calculated constants and the numerically found scattering matrix
are compared.

5.6.1 Problems and Methods for Numerical Analysis

5.6.1.1 Calculation of b1

To find b1 in (5.3.7), we solve the spectral problem

−�v − k2v = 0 in G0, v = 0 on ∂G0,

by FEM, as usual. Let ve be an eigenfunction corresponding to k2e and normalized by

∫
G0

|ve(x, y)|2 dxdy = 1.

Then b1 can be determined (approximately) by

b1 = ε−π/ω ve(ε, 0)

�(0)
= √

πε−π/ωve(ε, 0).

5.6.1.2 Calculation of |s1|

The constant s1 	= 0 has arisen in the asymptotics (5.3.1) of the solution V1 to
homogeneous problem (5.2.1) in G1. Denote the truncated domain G1 ∩ {(x1, y1) :
x1 > −R} by G R

1 and put �R := ∂G R
1 ∩ {(x1, y1) : x1 = −R}. Now we introduce

the problem
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−�V (x1, y1) − k2V (x1, y1) = 0, (x1, y1) ∈ G R
1 ;

V (x1, y1) = 0, (x1, y1) ∈ ∂G R
1 \�R;

∂n V (x1, y1) + iν1V (x1, y1) = 2iν1eiν1R
1(y1), (x1, y1) ∈ �R;
(5.6.1)

the function 
1 is defined in (5.1.5). The solution V is found by FEM. One may put

s1 = √
πε−π/ωV (−ε, 0).

5.6.1.3 Calculation of α and β

Let us introduce the boundary value problem for calculation of α and β in (5.2.6).
Denote the truncated domain�∩{(r, ϕ) : r < R} by�R and put�R := ∂�∩{(r, ϕ) :
r = R}. Consider the problem

�w(ξ, η) = 0, (ξ, η) ∈ �R;
w(ξ, η) = 0, (ξ, η) ∈ ∂�R\�R;

∂nw(ξ, η) + ζw(ξ, η) = g(ξ, η), (ξ, η) ∈ �R .

(5.6.2)

If w is a solution and ζ > 0, then

‖w; L2(�
R)‖ � ζ−1‖g; L2(�

R)‖. (5.6.3)

Indeed, substitute u = v = w to the Green formula

(�u, v)�R = (∂nu, v)∂�R − (∇u,∇v)�R

= (∂nu, v)∂�R\�R + (∂nu + ζu, v)�R − ζ(u, v)�R − (∇u,∇v)�R ,

and get

0 = (g, w)�R − ζ‖w; L2(�
R)‖2 − ‖∇w; L2(�

R)‖2.

From this and the obvious chain of inequalities

ζ‖w; L2(�
R)‖2 � ζ‖w; L2(�

R)‖2 + ‖∇w; L2(�
R)‖2 = (g, w)�R

� ‖w; L2(�
R)‖ ‖g; L2(�

R)‖

we obtain (5.6.3). Denote the left (right) part of �R by �R− (�R+). Let W be the
solution of (5.6.2) as ζ = π/ωR, g|�R− = 0, and g|�R+ = (2π/ω)R(π/ω)−1�(ϕ). Let,
in addition, wr be a solution to homogeneous problem (5.2.3) in the domain � with
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asymptotics of the form (5.2.6). Since the asymptotics can be differentiated,wr − W
satisfies (5.6.2) with g = O(R−(3π/ω)−1). According to (5.6.3),

‖wr − W ; L2(�
R)‖ � c

ωR

π
R−(3π/ω)−1 = c′ R−3π/ω

as R → +∞. We find W with FEM and determine β by the equality

β = W (−R, 0)

�(0)
Rπ/ω = √

πW (−R, 0)Rπ/ω.

Obviously, ‖(wr −Rπ/ω�(ϕ))−(W −Rπ/ω�(ϕ)); L2(�
R)‖ � c′ R−3π/ω, therefore

we put

α = W (R, 0) − Rπ/ω�(0)

�(0)
Rπ/ω = √

πW (R, 0)Rπ/ω − R2π/ω.

5.6.1.4 Calculation of the Scattering Matrix

Let us describe the method for calculation of the scattering matrix, considering
electrons of energy between the first and the second thresholds only. Then in (5.1.5)
we have M = 1. We put

G(ε, R) = G(ε) ∩ {(x, y) : −R < x < d + R},
�R
1 = ∂G(ε, R) ∩ {(x, y) : x = −R}, �R

2 = ∂G(ε, R) ∩ {(x, y) : x = d + R}

for large R. As an approximation to the row (S11, S12) of the scattering matrix
S = S(k), we take the minimizer of a quadratic functional. To construct such a
functional, we consider the problem

− �X R − k2X R = 0 inG(ε, R),

X R = 0 on ∂G(ε, R) \ (�R
1 ∪ �R

2 ),

(∂n + iζ )X R = i(−ν1 + ζ )e−iν1R
1(y) + a1 i(ν1 + ζ )eiν1R
1(y) �R
1 ,

(∂n + iζ )X R = a2 i(ν1 + ζ )eiν1(d+R)
1(y) �R
2 , (5.6.4)

where ζ ∈ R\{0} is an arbitrary fixed number, and a1, a2 are complex numbers. As an
approximation to the row (S11, S12), we take theminimizer a0(R) = (a0

1(R), a0
2(R))

of the functional

J R(a1, a2) = ‖X R − e−iν1R
1 − a1eiν1R
1; L2(�
R
1 )‖2 (5.6.5)

+ ‖X R − a2 eiν1(d+R)
1; L2(�
R
2 )‖2,
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where X R is a solution to problem (5.6.4). From Theorem 4.1.1 it follows that
a0

j (R, k) → s1 j (k) with exponential rate as R → ∞. More precisely, there exist

constants � and C , such that |a0
j (R, k) − S1 j (k)| � C exp(−�R), j = 1, 2, for

all k2 ∈ [μ1, μ2] and sufficiently large R; the interval [μ1, μ2] of the continuous
spectrum of problem (5.1.1) lies between the first and the second thresholds and
does not contain the thresholds. To express X R by means of a1, a2, we consider the
problems

− �v±
1 − k2v±

1 = 0 in G(ε, R), v±
1 = 0 on ∂G(ε, R)\(�R

1 ∪ �R
2 ),

(∂n + iζ )v±
1 = i(∓ν1 + ζ )e∓iν1R
1 on�R

1 , (∂n + iζ )v±
1 = 0 on�R

2 ,

(5.6.6)

and

− �v±
2 − k2v±

2 = 0 in G(ε, R), v±
2 = 0 on ∂G(ε, R)\(�R

1 ∪ �R
2 ),

(∂n + iζ )v±
2 = 0 on �R

1 , (∂n + iζ )v±
2 = i(∓ν2 + ζ )e∓iν2(d+R)
2 on �R

2 .

(5.6.7)

Let v±
j = v±

j,R be solutions to problems (5.6.6), (5.6.1); then X R = v+
1,R +∑

j a jv
−
j,R . Now, functional (5.6.5) can be written in the form

J R(a; k) = 〈aE R(k), a〉 + 2Re 〈F R
1 (k), a〉 + GR

1 (k),

where 〈·, ·〉 is the inner product on C
2 and E R denotes the 2× 2-matrix with entries

E R
11 =

(
(v−

1 − eiν1R
1), (v
−
1 − eiν1R
1)

)
�R
1

+ (
v−
1 , v−

1

)
�R
2

,

E R
12 =

(
(v−

1 − eiν1R
1), v
−
2

)
�R
1

+
(
v−
1 , (v−

2 − eiν1(d+R)
1)
)

�R
2

,

E R
21 =

(
v−
2 , (v−

1 − eiν1R
1)
)

�R
1

+
(
(v−

2 − eiν1(d+R)
1), v
−
1

)
�R
2

,

E R
22 = (

v−
2 , v−

2

)
�R
1

+
(
(v−

2 − eiν1(d+R)
1), (v
−
2 − eiν1(d+R)
1)

)
�R
2

,

F R(k) is the row (F R
11(k),F R

12(k)), andGR
1 (k) is the number defined by the equalities

F R
11 =

(
(v+

1 − e−iν1R
1), (v
−
1 − eiν1R
1)

)
�R
1

+ (
v+
1 , v−

1

)
�R
2

,

F R
12 =

(
(v+

1 − e−iν1R
1), v
−
2 )
)

�R
1

+
(
v+
1 , (v−

2 − eiν1(d+R)
 j )
)

�R
2

,

GR
1 =

(
(v+

1 − e−iν1R
1), (v
+
1 − e−iν1R
1)

)
�R
1

+ (
v+
1 , v+

1

)
�R
2

.
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Fig. 5.4 Asymptotic description k2res,a(ε) (solid curve) and numerical description k2res,n(ε) (dashed
curve) for resonant energy k2res(ε)

Theminimizer a0 = (a0
1(R, k), a0

2(R, k)) satisfies a0E R +F R
1 = 0. A solution to

this equation serves as an approximation to the first row of the scattering matrix. As
an approximation to the scattering matrix S(k), one can take a solution SR = SR(k)

to a matrix equation of the form SRE R + F R = 0. Choosing ζ = −ν1, we obtain
v−
1 = v−

2 = 0, E R = (1/ν1)Id, and SR = −ν1F R .

5.6.2 Comparison of Asymptotic and Numerical Results

Let us compare the asymptotics k2res,a(ε) of resonant energy k2res(ε) and the approx-
imate value k2res,n(ε) obtained by a numerical method. Figure5.4 shows good agree-
ment of the values for 0.1 � ε � 0.5. We have

|k2res,a(ε) − k2res,n(ε)|/k2res,a(ε) � 10−3

for 0.1 � ε � 0.3, and only for ε = 0.5 the ratio approaches 2 × 10−2. For ε < 0.1
the numerical method is ill-conditioned. This is caused by the fact that the waveguide
tends to the‘limit’ (see Fig. 5.3), on which the problems for calculation of the scat-
tering matrix are incorrect (ill-posed). This means that the round-off errors cause
the larger deviations in the solution, and at some ε we get a random vector instead
of the sought-for vector of coefficients of the piecewise polynomial function. The
asymptotics moves this ‘incorrectness’ out of the numerical part (i.e., the problems
for the constants that have to be solved numerically) and thus remains efficient at
ε → 0.
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Fig. 5.5 The shape of the
resonant peak for ε = 0.2:
asymptotic description
Ta(k2 − k2res,a) (solid curve)
and numerical description
Tn(k2 − k2res,n) (dashed
curve) for transition
coefficient T (k2 − k2res). The
width of the resonant peak at
height h: asymptotic
�a(h, ε) = AA; numerical
�n(h, ε) = B B
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Fig. 5.6 The dependence of
the width �(h, ε) of resonant
peak on ε for various heights
h (dashed line for numerical
description, solid line for
asymptotic description): the
upper pair of lines for
h = 0.2; the middle lines for
h = 0.5; the bottom lines
for h = 0.7
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The difference between the asymptotic and numerical values becomes more sig-
nificant as ε increases going out of the interval; the asymptotics becomes unreliable.
The numerical method shows that for ε ≥ 0.5 the resonant peak turns out to be
so wide that the resonant tunneling phenomenon dies out by itself. The forms of
“asymptotic” and “numerical” resonant peaks are almost the same (see Fig. 5.5).
The difference between the peaks is quantitatively depicted in Fig. 5.6. Moreover, it
turns out that the ratio of the width �n(h, ε) of the numerical peak at height h to
�a(h, ε) of the asymptotic peak is independent of h. The ratio as a function in ε is
displayed in Fig. 5.7.

Note that for ε = 0.1 (i.e., at the left end of the band where the numerical and
asymptotic results can be compared) the disparity of the results is more significant
for the width of the resonant peak than that for the resonant energy.
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Fig. 5.7 Ratio
�n(h, ε)/�a(h, ε) as a
function of ε. The ratio is
independent of h within the
accuracy of the analysis
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5.7 The Impact of a Finite Waveguide Work Function
on Resonant Tunneling

To describe electron transport in a waveguide, we assumed in Sects. 5.1–5.6 that the
electron wave functions vanish at the waveguide boundary. This means that, being
in the waveguide, an electron can not cross the waveguide boundary because of the
infinite potential barrier. In reality, the assumption has never been fulfilled: generally,
electrons can penetrate through the waveguide boundary and go some distance away
from the waveguide. Therefore, we have to clarify how this phenomenon affects the
resonant tunneling.

5.7.1 Preliminaries

In a crystal, the electric field of positive ions of the lattice impedes electrons from
escaping through the crystal surface. This field acts in a narrow layer near the surface;
the layer is called the surface potential barrier. Thus, being in the crystal, an electron
is in a potential well. Some energy is required to remove such an electron from the
well.

Considering a moving electron of the minimal kinetic energy in a large crystal,
the electron is at the bottom of the potential well. To withdraw the electron from the
crystal, the energy required is equal to the height of the surface potential barrier. This
energy is called the full work function Wa of the crystal.

Let us describe the structure of the surface potential barrier inmore detail.Within a
small distance x0 from the crystal surface, an electron is subject to the almost constant
force of interaction with a surface layer of positive ions of the lattice. At a distance
x from the surface, x0 < x < l, the mirror interaction force acts on the electron,



5.7 The Impact of a Finite Waveguide Work Function on Resonant Tunneling 117

Fig. 5.8 The dependence of
the electron potential energy
outside a crystal on the
distance to the cristal
surface. The electron
potential energy inside the
crystal is assumed to be zero

Table 5.1 Total work functions of some metals

Metal Cs Ba Mo W Pt Ag Zn Ni

Wa, eV 3.4 4.9 10.0 10.4 11.3 ∼ 14 15.5 ∼ 16

that is, the force of interaction with a surface positive charge induced by inter-
electron repulsion. The mirror interaction force is proportional to x−2. Qualitatively,
the x-dependence of the electron potential energy is shown in Fig. (5.8). The x0 is
considerably less than the lattice period and usually ranges between 0.03 and 0.1 nm.
The width l of the transition zone is in the range 0.3–0.5 nm.

Experimental values of the full work function for some metals are presented in
Table5.1 ([21]).

Now, we consider an electron of the maximal kinetic energy in a metal at temper-
ature T = 0. The minimal energy required to withdraw the electron from a solid and
to place it just beyond the surface potential barrier (that is, at the distance l from the
surface) is called the effective work function of the solid and denoted by eϕ, where
−e is the electron charge.

The effective work function eϕ plays an important role in the description of an
electron withdrawing from a solid. In what follows, the effective work function is
frequently called the work function.

At T = 0, the maximal electron kinetic energy is called the Fermi energy (the
Fermi level) and is denoted by WF . Figure (5.9) shows the structure of the potential
barrier near a metallic surface, the conductivity band and the effective work function
eϕ = Wa − WF . (The potential energy of an electron is defined up to a constant
term; in vacuum, the energy is assumed to be zero.)

In the semiconductors, the electrons are located in the conductivity band (above
the Fermi level) and in the valence band (below the Fermi level) Fig. (5.10). In this
figure, the energy difference χ of the vacuum level and the conductivity band bottom
level is called the electron affinity. For an electron at the conductivity band bottom,
the χ is equal to the minimal energy required to withdraw the electron from the solid.

The work function of various materials ranges between 1 and 5 eV. However, for
the most part of the materials used in nanotechnology, this range is 3–5 eV. Table5.2
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Fig. 5.9 The surface potential barrier and the conductivity band of a metal

Fig. 5.10 The work function and the electron affinity of a semiconductor

Table 5.2 The work function of some metals

Metal Cs Ba Nb Au Ag Cu W Pt

eϕ, eV 1.81 2.49 4.0 4.3 4.3 4.4 4.54 5.35

shows the work function for some metals, and Table5.3 depicts the effective work
function and the electron affinity for the most-used semiconductors.

In spite of the complicated structure of the surface potential barrier, the “rec-
tangular” barriers are in common use; for all practical purposes, this is a feasible
approximation.
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Table 5.3 The work function and the electron affinity of some semiconductors

Semiconductors Si Ge GaAs

eϕ, eV 4.5 4.3 4.7

χ , eV 4.05 4.0 4.07

Fig. 5.11 The increase in
the waveguide effective
width caused by electron
penetration under the surface
potential barrier

5.7.2 A Qualitative Analysis of a Finite Work Function Impact
on Electron Transport

We first consider a waveguide that coincides with an infinite strip � = {(x, y) ∈
R
2 : −∞ < x < +∞,−d/2 < y < d/2}. In the case of a finite work func-

tion, electrons can penetrate through the surface potential barrier; this leads to an
increase in the effective diameter of the waveguide cross-section (Fig. 5.11) and to a
decrease in the threshold energies. We will take account of the change in thresholds
to estimate the work function impact. We assume that the electron potential energy
is zero inside the waveguide � and equal to U = constant > 0 outside �. For the
semiconductors, the U is the electron affinity χ and, for the metals, the U equals the
effective work function.

Let us introduce the problem

− �
2

2m∗ ψ ′′(y) = E⊥ψ(y), |y| < d/2,

− �
2

2m
ψ ′′(y) + Uψ(y) = E⊥ψ(y), |y| > d/2, (5.7.1)

where E⊥ is a spectral parameter, m is the electron mass, and m∗ is the effective
electron mass. The function ψ and its derivative ψ ′ are supposed to be continuous
at y = ±d/2 and, moreover, ψ(y) → 0 as |y| → +∞. The interval (0, U ) may
contain only isolated eigenvalues of problem (5.7.1). These eigenvalues represent
the waveguide threshold energies not exceeding the U and calculated with regard to
the finite work function (see [20, 35]).
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Setting λ2 = (2m∗/�
2)E⊥ and μ2 = (2m/�

2)(U − E⊥), we write equations
(5.7.1) in the form

ψ ′′(y) + λ2ψ(y) = 0, |y| < d/2,

ψ ′′(y) − μ2ψ(y) = 0, |y| > d/2.

The λ and μ satisfy the transcendental equation

tan(λd) = 2λμ(λ2 − μ2)−1. (5.7.2)

Therefore, to obtain approximate values of the mentioned threshold energies, it suf-
fices to solve approximately this equation.

Typically, the U comprises several eV and for lower thresholds E⊥(n) ≈
π2

�
2n2/2m∗d2. For m = m∗ and d = 10 nm, we even have E⊥(6) ≈ 0.2 eV,

which is, roughly, 20 times less than the work function. Thus, U � E⊥(n) for lower
thresholds, μ � λ, and we can restrict ourselves to considering the first approxima-
tion only. For several lower thresholds, μ2 ≈ (2m/�

2)U . From Eq. (5.7.2) it follows
that

tan((2m∗
�

−2E⊥)1/2d) ≈ −2(E⊥/U )1/2. (5.7.3)

The right-hand side is small, therefore,

(2m∗
�

−2E⊥)1/2d = nπ + δ, δ � 1.

In view of (5.7.3), δ ≈ −2(E⊥/U )1/2 hence

E⊥(n) ≈ π2
�
2n2

2m∗d2

(
1 +

( 2�
2

md2U

)1/2)−2

.

The factor

η =
(
1 +

( 2�
2

md2U

)1/2)−2

shows the work function impact on E⊥(n). Assuming the impact to be small, we can
take it into account by changing the real waveguide width d for the effective width

def f = d

(
1 +

( 2�
2

md2U

)1/2)
.

For d = 10 nm and U = 4 eV, we obtain η = 0.96. This justifies our assumption
that the work function impact on E⊥(n) is small. However, for very thin waveguides,
especially with small work functions, this assumption is less reliable. For d = 3 nm
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Fig. 5.12 The increase in the waveguide effective width caused by an electron wave function
penetration under the surface potential barrier. The waveguide widening is much more significant
at the waveguide narrows

Fig. 5.13 Qualitative picture of a wave function outside a waveguide in the vicinity of narrows

and U = 2 eV, we obtain η = 0.84. For large n, the relation U � E⊥(n) is false
and the work function impact is much more significant.

Let us now turn to a waveguide of variable cross-section. It is clear that the most
notable impact of the waveguide work function should be expected at the waveguide
narrows (Fig. 5.12). The effective diameter of a narrow remains greater than a certain
positive value, even though the real diameter tends to zero. A finite work function
essentially restricts a choice of narrow forms. Indeed, for a wedge-like narrow, the
parts of an electron wave function, corresponding to different sides of the wedge,
overlap (Fig. 5.13); therefore, for a wedge with a small angle, the narrow practically
vanishes. These qualitative considerations are confirmed by the results of numerical
simulations in Sect. 5.7.3.

5.7.3 Numerical Simulation of Resonant Tunneling
with Regard to the Waveguide Work Function

Now,wepass on tonumerical simulationof electron resonant tunneling inwaveguides
with finite work function. The waveguide geometry is the same as in Sect. 5.6. To
take into account the electron penetration under the potential barrier, we embed
the waveguide G0 in the strip G of a sufficiently large width; in our calculations,
the strip width is equal to 5 times the waveguide width d. Outside the waveguide,
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Fig. 5.14 The geometry of a system used for numerical simulation of a work function impact on
resonant tunneling

the wave function of an electron decays exponentially with characteristic penetration
depth δ = �/

√
mU , the U is the electron potential energy, and U > 0 outside the

waveguide; for the semiconductors, U is equal to the electron affinity χ . Therefore,
the wave function at the strip boundary is by factor exp (−d

√
mU/�) less than that

at the waveguide boundary. Even for small work functions and thin waveguides, the
inequality d

√
mU/� > 10 holds, so we assume the electron wave function to be

zero at the strip boundary. Inside the waveguide, the electron potential energy equals
zero. Between the boundaries of the waveguide and the strip, to the left of plane A
(Fig. 5.14), the electron potential energy is chosen to be infinite, while to the right of
plane A the energy is equal to the material work function. Inside the waveguide, an
incident wave is of the same form as in Sect. 5.6 . We consider the scattering of the
incident wave in the waveguide shown in Fig. 5.14. The width of the narrow is equal
to 0.2 times the width of the waveguide; the angle at the narrow is 0.1π . In such a
waveguide, the impact of the finite work function is clearly recognizable.

The wave function satisfies the boundary value problem

−�U − k2U = 0 inG0,

−�U − (k2 − D2)U = 0 inG \ G0,

U = 0 on ∂G,

where D = d/2δ, and the radiation conditions

U (x, y) = eiλm x�m(y) +
nmax∑
j=1

Smj e
−iλ j x� j (y) + O(e−ε|x |) as x → −∞,

U (x, y) =
nmax∑
j=1

Sm, j+nmaxeiλ j x� j (y) + O(e−ε|x |) as x → +∞,
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Fig. 5.15 D-dependence of the resonant center kres

where ε > 0, λm > 0, and �m are solutions to the problem

−�′′(y) − (k2 − λ2)�(y) = 0, |y| < d/2,
−�′′(y) − (k2 − D2 − λ2)�(y) = 0, y ∈ (−5d/2,−d/2) ∪ (d/2, 5d/2),

�(y) = 0, y = ±5d/2,

and the functions � and �′ are supposed to be continuous at y = ±d/2. In addition,
�m are normalized by

∫ 5d/2

−5d/2
|�m(y)|2dy = 1

2λm
.

We study the D-dependence of the basic characteristics of resonant tunneling. The D
ranges between 10 and 100. The minimal value of D corresponds to the waveguide
width d = 3 nm and U = 2 eV, while d = 20 nm and U = 5 eV for the maximal D.
The range 20 < D < 50 of the greatest practical utility corresponds to d ≈ 10 nm
and U in the range 2–5 eV. Figure5.15 shows kres and Fig. 5.16 depicts the width �

of the resonant peak. For sufficiently small D, the impact of the finite work function
manifests itself in a certain shift of the resonant level and, mainly, in a sharpwidening
of the resonant peak. A choice of too small diameters of the waveguide narrows at
the resonator causes a significant increase in the effective narrow diameters and in
the resonator volume, which notably affects the resonator quality factor.
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Fig. 5.16 D-dependence of the resonant peak width

Fig. 5.17 Distribution of |ψ(·, kres)|2 (where ψ(x, y, k) is an electron wave function) at the
waveguide cross-section outside the resonator

The above results lead to the following conclusions:

1. Far from narrows, a wave function penetrates through waveguide walls in a dis-
tance significantly smaller than the diameter of the waveguide (Fig. 5.17). In a
neighborhood of narrows, the situation changes (Fig. 5.18), that’s why, decreasing
the narrow diameter at the resonator, one can not diminish the effective narrow
diameter beyond a certain critical value. This restricts the possibility to improve
the resonator quality factor by diminishing the narrow diameter.
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Fig. 5.18 Distribution of |ψ(·, kres)|2 (whereψ(x, y, k) is an electronwave function) at the narrow
cross-section

2. The distance between the vertical sides of a rectangular waveguide narrow should
be significant (say, more than 1 nm), see Fig. 5.13a.

3. The angle of a wedge-like narrow should be sufficiently large. However, increas-
ing the angle causes an increase in the effective width of the potential barrier
(Fig. 5.13b) and a decrease in the width of the resonant peak. This increases
the resonant tunneling time and affects the frequency properties of the system.
Optimal angles for wedge-like narrows range between 20◦ and 35◦ (Fig. 5.13c).

4. When choosing a waveguide material, one should prefer that of maximal work
function. For instance, for a waveguide of the cross-section diameter ≈10 nm, a
wedge-like narrow of diameter >3 nm and angle ≈30◦, made of a material with
electron affinity ≈4 eV (e.g., Si), the finite work function impact manifests itself
as a negligible shift in the resonant levels and a small decrease in the resonator
quality factor.



Chapter 6
Asymptotics of Resonant Tunneling in 3D
Waveguides for Electrons of Small Energy

In this chapter, we consider electron propagation in a waveguide with two cylindric
outlets to infinity and two narrows of small diameters ε1 and ε2. The boundary of
the waveguide is assumed to be smooth. The electron motion is described by the
Helmholtz equation. The electron energy is supposed to be between the first and the
second thresholds.We generalize and implement the asymptotic approach developed
in Chap.5. The basic results are presented by Theorem 6.4.5.

6.1 Statement of the Problem and Outline of the Results

To describe the waveguide, we first introduce three domains G, �1, and �2 in R
3

independent of the parameters ε1 and ε2. Let G be a domain inR
3 that, outside a large

ball, coincides with the union of two nonoverlapping half-cylinders C1 and C2 with
bounded cross-sections D1 and D2, respectively. The boundary ∂G of G is smooth,
and ∂ D1 and ∂ D2 are simple contours. Let us consider the domain �1 (Fig. 5.1). We
denote by K1 and L1 open cones in R

3 that are symmetric to each other about their
common vertex, that is, K1 ∪ L1 is a double cone. The cone K1 (resp., L1) cuts out
on the unit sphere centered at the vertex a domain S(K1) (resp., S(L1)) bounded
by a smooth contour. We suppose that �1 contains both cones K1 and L1 as well
as a neighborhood of their vertex; moreover, outside a large ball (with center at the
vertex), �1 coincides with K1 ∪ L1; the boundary of �1 is smooth. The domain �2
is described like �1 with cones K2 and L2.

We now consider the waveguide G(ε1, ε2) (Fig. 1.1). For the time being, we let
O1 and O2 be arbitrary (interior) points of the domain G placed (for the sake of
simplicity) in the half-cylindersC1 andC2, respectively.Wenow introduce orthogonal
coordinates x j = (x j

1 , x j
2 , x j

3 )with origin O j and axis x j
1 parallel to the generatrices

of the half-cylinder C j , j = 1, 2; the positive half-axis x j
1 lies inside C j . The domain

� j is located so that the vertex of K j and L j coincides with O j and the positive

half-axis x j
1 lies inside K j . From now on, we assume that the points O1 and O2
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are disposed far enough from the “noncylindrical” part of G so that the connected
component of the set ∂G ∩ ∂L j nearest to O j coincides with ∂C j ∩ ∂L j . We denote
by � j (ε j ) the domain obtained from � j by the contraction with center at O j and
coefficient ε j > 0. In other words, x j ∈ � j (ε j ) if and only if (x j/ε j ) ∈ � j . Let
G(ε1, ε2) be the domain obtained from G by changing C1 and C2 for C1 ∩ �1(ε1)

and C2 ∩ �2(ε2), respectively.
A wave function of a free electron of energy E = �

2k2/2m satisfies the boundary
value problem

− �u − k2u = 0 in G(ε1, ε2), u = 0 on ∂G(ε1, ε2). (6.1.1)

Before formulating radiation conditions at infinity, let us make some comments
on the boundary condition. The waveguide boundary is a potential barrier for an
electron. The electron wave function exponentially decays outside the waveguide.
The characteristic depth of electron penetration under the barrier is about 0.1nm for
the typical electron work function of 4–5eV. The width of realistic waveguides (even
at the narrows) is a few nanometers. Therefore, we neglect the electron penetration
under the barrier and assume that u = 0 on ∂G(ε1, ε2).

To formulate the radiation conditions, we need the boundary value problem on
the cross-section D j of the semicylinder C j , j = 1, 2:

− �v − λ2v = 0 in D j , v = 0 on ∂ D j . (6.1.2)

The eigenvalues λ2j m of this problem, where m = 1, 2, . . . , are called the thresholds;
they form an increasing sequence of positive numbers tending to +∞. We denote
by � jm an eigenfunction of the problem (6.1.2) that corresponds to the eigenvalue
λ2j m and is normalized by

2ν j m

∫
D j

|� j m(x2, x3)|2dx2 dx3 = 1 (6.1.3)

with ν j m =
√

k2 − λ2j m . In this chapter, we discuss only the situation where the

parameter k2 is “between the first and second thresholds” or, more precisely, in the
interval (λ211, λ

2
12)∩ (λ221, λ

2
22) (supposed to be nonempty). The functionU+

1 defined
in the semicylinder C1 by U+

1 (x1) = exp (−iν11x11)�11(x12 , x13) is a wave coming
in C1 from infinity (recall that the positive half-axis x11 lies in C1). The function
U+
2 (x2) = exp (−iν22x21 )�21(x22 , x23 ) is a wave coming from infinity in C2. The

outgoing waves U−
m , m = 1, 2, are obtained from the incoming ones by complex

conjugation: U−
m = U+

m .
There exist (smooth) solutions um , m = 1, 2, to problem (6.1.1) satisfying the

radiation conditions
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u1(x) =
{

U+
1 (x1) + S11 U−

1 (x1) + O(exp (−δx11)), x11 → +∞,

S12 U−
2 (x2) + O(exp (−δx21 ), x21 → +∞,

(6.1.4)

u2(x) =
{

S21 U−
1 (x1) + O(exp (−δx11)), x11 → +∞,

U+
2 (x2) + S22 U−

2 (x2) + O(exp (−δx21 ), x21 → +∞,
(6.1.5)

with sufficiently small positive δ. The scatteringmatrix S = ‖Sp q‖p, q=1,2 is unitary.
We consider the scattering of the wave coming from C1 and seek the resonant

values kr = kr (ε1, ε2) of the parameter k, where the transition coefficient T1 =
T1(k, ε1, ε2) = |S12|2 takes the maximal values. Moreover, we are interested in
the behavior of kr (ε1, ε2), T1(k, ε1, ε2) and that of the reflection coefficient R1 =
R1(k, ε1, ε2) = |S11|2, as ε1, ε2 → 0.

To outline the results, we present some formulas obtained in the chapter. The limit
domain G(0, 0) consists of the unbounded parts G1, G2 and the bounded resonator
G0. Let S(L j ) be the domain that the cone L j cuts out on the unit sphere centered at
O j and let 0 < μ j 1 < μ j 2 < · · · stand for the numbers such that μ j m(μ j m + 1)
are the eigenvalues of the Dirichlet problem for the Beltrami operator in S(L j ),
(m = 1, 2, . . .). Assume that k2e is any eigenvalue (lying between the first and second
thresholds) of the boundary value problem in the resonator,

−�v(x) − k2v(x) = f, x ∈ G0; v(x) = 0, x ∈ ∂G0.

Near such an eigenvalue, there is a resonant value kr (ε1, ε2) satisfying

k2r (ε1, ε2) = k2e +D1ε
2μ11+1
1 +D2ε

2μ21+1
2 + O

(
ε
2μ11+1+τ1
1 + ε

2μ21+1+τ2
2

)
(6.1.6)

as ε1, ε2 → 0. The coefficientsD1 andD2 are constant, τ j = min{μ j2−μ j1, 2−σ j },
and σ j are small positive numbers; for more detail, see Theorem6.4.5.

Under the condition |k2 − k2r | = O
(
ε
2μ11+1+τ1
1 + ε

2μ21+1+τ2
2

)
, the transition

coefficient T1(k, ε1, ε2) satisfies

T1(k, ε1, ε2) =
(
1

4

(
z + 1

z

)2

+ P2
(

k2 − k2r
ε
2μ11+1
1 ε

2μ21+1
2

)2
)−1 (

1 + O(ε
τ1
1 + ε

τ2
2 )

)
,

where τ j are the same as in (6.1.6), z = Qε
2μ11+1
1 /ε

2μ21+1
2 , and P and Q are constant.

(For further detail, we again refer to Theorem6.4.5.)
Finally, thewidth of the resonant peak at its half-height (calculated for the principal

part in the asymptotics of T1) is ϒ(ε1, ε2) = |(z + z−1)/P|ε2μ11+1
1 ε

2μ21+1
2 (1 +

O(ε
τ1
1 + ε

τ2
2 )).
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6.2 Limit Problems

To derive an asymptotics of a wave function (i.e., a solution to problem (6.1.1)) as
ε1, ε2 → 0, we use the method of compound asymptotic expansions. To this end,
we introduce “limit” boundary value problems independent of the parameters ε1 and
ε2. Actually, the reader could skip every mention of function spaces in the section;
this will not prevent the reader from understanding the rest of the text apart from
Sects. 4.4 and 5.3.

6.2.1 First Kind Limit Problems

Recall that the limit domain G(0, 0) consists of the unbounded parts G1, G2 and the
bounded resonator G0. The problems

− �v(x) − k2v(x) = f, x ∈ G j ; v(x) = 0, x ∈ ∂G j , (6.2.1)

are called the first kind limit problems, where j = 0, 1, 2.
We introduce function spaces for the problem (6.2.1) in G0. Let φ1 and φ2 be

smooth real functions in the closure G0 of G0 such that φ j = 1 in a neighborhood of
O j , j = 1, 2, and φ2

1 + φ2
2 = 1. For l = 0, 1, . . . and γ j ∈ R, the space V l

γ1,γ2
(G0)

is the completion in the norm

‖v; V l
γ1,γ2

(G0)‖ =
⎛
⎝∫

G0

l∑
|α|=0

2∑
j=1

φ2
j (x)r j (x)2(γ j −l+|α|)|∂αv(x)|2 dx

⎞
⎠

1/2

(6.2.2)
of the set of smooth functions in G0 vanishing near O1 and O2; here r j (x) =
dist(x, O j ), α = (α1, α2, α3) is a multi-index, and ∂α = ∂ |α|/∂xα1

1 ∂xα2
2 ∂xα3

3 . Propo-
sition 6.2.1 follows from the well-known general results; e.g., see [37, Chapters2
and 4, Sections 1–3] or [33, v.1, Chapter 1].

Proposition 6.2.1 (i) Assume that |γ j − 1| < μ j 1 + 1/2, where μ j 1 ( j = 1, 2)
is the same as in (6.1.6). Then, for every f ∈ V 0

γ1,γ2
(G0) and any k2, except the

positive increasing sequence {k2p}∞p=1 of eigenvalues, k2p → ∞, there exists a unique

solution v ∈ V 2
γ1,γ2

(G0) to problem (6.2.1) in G0. The estimate

‖v; V 2
γ1,γ2

(G0)‖ ≤ c‖ f ; V 0
γ1,γ2

(G0)‖ (6.2.3)

holds with a constant c independent of f .
(ii) Let f be a smooth function in G0 vanishing near O1 and O2 and let v be any

solution in V 2
γ1,γ2

(G0) of problem (6.2.1). Then v is smooth in G0 except at O1 and
O2 and admits the asymptotic representations

http://dx.doi.org/10.1007/978-3-319-15105-2_4
http://dx.doi.org/10.1007/978-3-319-15105-2_5


6.2 Limit Problems 131

v(x) = b j
1√
r j

J̃μ j1+1/2(kr j )�
L
j1(ϕ j ) + O

(
r
μ j2
j

)
, r j → 0, j = 1, 2

near the points O1 and O2, where (ρ j , ϕ j ) are polar coordinates with center at O j ,
b j are some constant coefficients, and J̃μ denotes the Bessel function multiplied by
a constant such that r−1/2 J̃μ j1+1/2(kr) = rμ j1 + o(rμ j1); the �L

j1 is an eigenfunc-
tion of the Beltrami operator corresponding to the eigenvalue μ j1(μ j1 + 1) and
normalized by the condition

(2μ j1 + 1)
∫

S(L j )

|�L
j1(ϕ)|2dϕ = 1.

(iii)Assume that k2 = k2e is an eigenvalue of problem (6.2.1). Then problem (6.2.1)
in G0 is solvable if and only if ( f, ve)G0 = 0 for any eigenfunction ve corresponding
to k2e . Under such conditions, there exists for problem (6.2.1) a unique solution v that
is orthogonal to the eigenfunctions and satisfies (6.2.3) (i.e., the Fredholm alternative
holds).

We turn to problems (6.2.1) for j = 1, 2. Let χ0, j and χ∞, j be smooth real
functions in the closure G j of G j such that χ0, j = 1 in a neighborhood of O j ,
χ0, j vanishes outside a compact set and χ2

0, j + χ2∞, j = 1. We also assume that the
support suppχ∞, j is located in the cylindrical part C j of G j . For γ ∈ R, δ > 0, and
l = 0, 1, . . . , the space V l

γ, δ(G j ) is the completion in the norm

‖v; V l
γ, δ(G j )‖ =

⎛
⎝∫

G j

l∑
|α|=0

(
χ2
0, j r

2(γ−l+|α|)
j + χ2∞, j exp(2δx j

1 )
)|∂αv|2 dx j

⎞
⎠

1/2

(6.2.4)
of the set of smooth functions in G j vanishing near O j and having compact supports.

Let S(K j ) be the domain that the cone K j cuts out on the unit sphere centered
at O j . Since the domains S(K j ) and S(L j ) are symmetric, the eigenvalues of the
Dirichlet problem for the Beltrami operator in S(K j ) coincide with μ j m(μ j m + 1),
m = 1, 2, . . . . Recall that, according to our assumption, k2 lies between the first and
the second thresholds, so in every G j there is the only outgoing wave U−

j . The next
proposition follows, e.g., from [37, Theorem 5.3.5].

Proposition 6.2.2 Assume that |γ − 1| < μ j1 + 1/2 and, moreover, there is no
nontrivial solution to the homogeneous problem (6.2.1) (where f = 0) in V 2

γ, δ(G j )

with arbitrary small positive δ. Then, for any f ∈ V 0
γ, δ(G j ), there exists a unique

solution v to problem (6.2.1) that admits the representation

v = u + A jχ∞, jU
−
j ,
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where A j = const, u ∈ V 2
γ, δ(G j ) with a sufficiently small δ, and the estimate

‖u; V 2
γ, δ(G j )‖ + |A j | ≤ c‖ f ; V 0

γ, δ(G j )‖ (6.2.5)

holds with a constant c independent of f . If, in addition, f is smooth and vanishes
near O j , the solution v satisfies

v(x j ) = a j
1√
r j

J̃μ j1+1/2(kr j )�
K
j 1(ϕ j ) + O

(
r
μ j 2
j

)
, r j → 0,

where a j is a constant and �K
j1 denotes an eigenfunction to the Beltrami operator

corresponding to μ j1(μ j1 + 1) and normalized by

(2μ j1 + 1)
∫

S(K j )

|�K
j1(ϕ)|2dϕ = 1.

6.2.2 Second Kind Limit Problems

In the domains� j , j = 1, 2, introduced in Sect. 6.1, we consider the boundary value
problems

�w(ξ j ) = F(ξ j ) in � j , w(ξ j ) = 0 on ∂� j , (6.2.6)

which are called the second kind limit problems; by ξ j = (ξ
j
1 , ξ

j
2 , ξ

j
3 ) we mean

Cartesian coordinates with origin at O j .
Let ρ j (ξ

j ) = dist(ξ j , O j ) and let ψ0, j , ψ∞, j be smooth real functions in � j

such that ψ0, j equals 1 for ρ j < N/2, vanishes for ρ j > N , and ψ2
0, j + ψ2∞, j = 1,

the N being a sufficiently large positive number. For γ ∈ R and l = 0, 1, . . . , the
space V l

γ (� j ) is the completion in the norm

‖v; V l
γ (� j )‖ =

⎛
⎝∫

� j

l∑
|α|=0

(
ψ0, j (ξ

j )2 + ψ∞, j (ξ
j )2ρ j (ξ

j )2(γ−l+|α|))|∂αv(ξ j )|2 dξ j

⎞
⎠

1/2

(6.2.7)
of the set C∞

c (� j ) of compactly supported smooth functions in � j . The next propo-
sition follows from [37, Theorem 4.3.6].

Proposition 6.2.3 Let |γ − 1| < μ j1 + 1/2. Then, for every F ∈ V 0
γ (� j ), there

exists a unique solution w ∈ V 2
γ (� j ) to problem (6.2.6), and

‖w; V 2
γ (� j )‖ ≤ c‖F; V 0

γ (� j )‖ (6.2.8)
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holds with a constant c independent of F. For F ∈ C∞
c (� j ), the w is infinitely

differentiable in � j and admits the representation

w(ξ j ) = d K
j ρ

−μ j1−1
j �K

j1(ϕ j ) + O
(
ρ

−μ j2−1
j

)
, ρ j → ∞ (6.2.9)

in the cone K j ; here (ρ j , ϕ j ) are polar coordinates in � j with center at O j , the
μ j p and �K

j1 are the same as in Proposition 6.2.2, and d K
j is a constant coefficient.

In the cone L j , a similar expansion holds with d L
j and �L

j1 instead of d K
j and �K

j1.

The d K
j and d L

j are defined by

d K
j = −(F, wK

j )� j , d L
j = −(F, wL

j )� j ,

where wK
j and wL

j are unique solutions to homogeneous problem (6.2.6) such that,
as ρ j → ∞,

wK
j =

{(
ρ

μ j1
j + α jρ

−μ j1−1
j

)
�K

j1(ϕ j ) + O
(
ρ

−μ j2−1
j

)
in K j ,

β jρ
−μ j1−1
j �L

j1(ϕ j ) + O
(
ρ

−μ j2−1
j

)
in L j ,

(6.2.10)

wL
j =

{
β jρ

−μ j1−1
j �K

j1(ϕ j ) + O
(
ρ

−μ j2−1
j

)
in K j ,(

ρ
μ j1
j + α jρ

−μ j1−1
j

)
�L

j1(ϕ j ) + O
(
ρ

−μ j2−1
j

)
in L j ,

(6.2.11)

the coefficients α j , β j being constant.

6.3 Tunneling in a Waveguide with One Narrow

The purpose of this section is to carry out preliminary constructions which will be
of use in further steps but not related to the phenomenon of resonance. We thereby
lighten the exposition of the next section and, in so doing, demonstrate the compound
asymptotics method in a more simpler situation. We consider the electron motion in
a waveguide G(ε) with one narrow. To describe G(ε), we assume that G = D × R,
where D is a bounded domain in R

2 and ∂ D is a smooth simple contour. A double
cone K ∪ L with vertex O ∈ G, domains � and �(ε) are defined like K1 ∪ L1, �1,
and�1(ε) in Sect. 6.1. We set G(ε) = G ∩�(ε). The limit waveguide G(0) consists
of two components; either of them has one conical point and one cylindrical end at
infinity. We denote the components by G1 and G2.
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6.3.1 Special Solutions to the First Kind Homogeneous
Problems

In the domain G1, there exists a bounded solution V1 satisfying the radiation condi-
tion

V1(x) = U+
1 (x) + S0

11U−
1 (x) + O(exp(−δx1)), x1 → +∞, (6.3.1)

with arbitrary small positive δ. The scattering matrix in G1 consists of the only entry
S0
11, |S0

11| = 1. The solution V1 serves as a first approximation to the wave function
u1 determined by radiation conditions (6.1.4). In a neighborhood of O , there is the
asymptotics

V1(x) = s1
1√
r

J̃μ1+1/2(kr)�K
1 (ϕ) + O

(
rμ2

)
, r → 0. (6.3.2)

In G2, we consider analogous solution admitting the expansions

V2(x) =
⎧⎨
⎩

U−
2 (x) + S0

22U−
2 (x) + O(eδx1), x1 → −∞,

s2
1√
r

J̃μ1+1/2(kr)
)
�L

1 (ϕ) + O(rμ2), r → 0.
(6.3.3)

In either of the domains G1 and G2, we assume that the homogeneous problem
(6.2.1) (with f = 0) has no nontrivial bounded solutions exponentially decaying at
infinity. In what follows, to construct an asymptotics of a wave function, we will use
special solutions to the problem unbounded near the point O .

Let us consider the problem

− �u − k2u = 0 in K , u = 0 on ∂K . (6.3.4)

The function

vK
1 (r, ϕ) = 1√

r
Ñμ1+1/2(kr)�K

1 (ϕ) (6.3.5)

satisfies (6.3.4); Ñμ stands for the Neumann function multiplied by a constant such
that

1√
r

Ñμ1+1/2(kr) = r−μ1−1 + o(r−μ1−1),

μ1 and �K
1 are the same as in Proposition 6.2.2. Let t 
→ �(t) be a cut-off function

on R equal to 1 for t < δ/2 and to 0 for t > δ with a small positive δ. We introduce
a solution



6.3 Tunneling in a Waveguide with One Narrow 135

v1(x) = �(r)vK
1 (x) + ṽ1(x) (6.3.6)

of homogeneous problem (6.2.1) in G1, where ṽ1 is the solution provided by Propo-
sition 6.2.2 for problem (6.2.1) with f = [�,�]vK

1 . Thus,

v1(x) =
⎧⎨
⎩

1√
r

(
Ñμ1+1/2(kr) + a1 J̃μ1+1/2(kr)

)
�K

1 (ϕ) + O(rμ2), r → 0,

A1U−
1 (x) + O(e−δx1), x1 → +∞,

(6.3.7)

where J̃μ is the same as in Propositions 6.2.1 and 6.2.2. In G2, analogous solution
v2 admits

v2(x) =
⎧⎨
⎩

1√
r

(
Ñμ1+1/2(kr) + a2 J̃μ1+1/2(kr)

)
�L

1 (ϕ) + O(rμ2), r → 0,

A2U−
2 (x) + O(eδx1), x1 → −∞.

(6.3.8)

Lemma 6.3.1 The equalities |A j |2 = 2 Im a j , A j = is j S0
j j hold.

Proof We prove the Lemma as j = 1; the case j = 2 can be treated in a similar way.
Let (u, v)Q denote the integral

∫
Q u(x)v(x) dx and let G N , δ stand for the truncated

domain G1 ∩ {x1 < N } ∩ {r > δ}. By the Green formula,

0 = (�v1 + k2v1, v1)G N , δ
− (v1,�v1 + k2v1)G N , δ

= (∂v1/∂n, v1)∂G N , δ
− (v1, ∂v1/∂n)∂G N , δ

= 2i Im (∂v1/∂n, v1)E

with E = (∂G N , δ ∩ {x1 = N })∪ (∂G N , δ ∩ {r = δ}). Taking into account (6.3.7) as
x1 → +∞ and (6.1.3), we have

Im (∂v1/∂n, v1)∂G N , δ∩{x1=N } = Im
∫

D1

A1
∂U−

1

∂x1
(x)A1U−

1 (x)

∣∣∣
x1=N

dx2 dx3 + o(1)

= |A1|2ν1
∫

D1

|�1(x2, x3)|2dx2 dx3 + o(1)

= |A1|2/2 + o(1).

Using (6.3.7) as r → 0 and the normalization of �K
1 (see Proposition 6.2.2), we

obtain

Im (∂v1/∂n, v1)∂G N , δ∩{r=δ} = Im
∫

S(K )

[
− ∂

∂r

1√
r

(
Ñμ1+1/2(kr) + a1 J̃μ1+1/2(kr)

)]

× 1√
r

(
Ñμ1+1/2(kr) + a1 J̃μ1+1/2(kr)

)|�K
1 (ϕ)|2r2

∣∣∣
r=δ

dϕ + o(1)

= − (Im a1)(2μ1 + 1)
∫

G N ,δ

|�K
1 (ϕ)|2dϕ + o(1) = −Im a1 + o(1).
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Thus, |A1|2/2 − Im a1 + o(1) = 0 as N → ∞ and δ → 0, which implies the first
equality of this lemma. To obtain the second one, we apply the Green formula in the

domain G N ,δ for the functions v1 and V1 and arrive at i A1S0
11 + s1 + o(1) = 0 with

N → ∞ and δ → 0. It remains to take into account that S0
11 = 1/S0

11. �

6.3.2 Passing Through the Narrow

Let v1 and v2 satisfy the homogeneous first kind limit problems in G1 and G2,
respectively, and let

v1 = 1√
r

(
a−
1 Ñμ1+1/2(kr) + a+

1 J̃μ1+1/2(kr)
)
�K

1 (ϕ) + O(rμ2), r → 0, (6.3.9)

v2 = 1√
r

(
a−
2 Ñμ1+1/2(kr) + a+

2 J̃μ1+1/2(kr)
)
�L

1 (ϕ) + O(rμ2), r → 0.

(6.3.10)

We assume that a wave function in G(ε) is approximated, outside of a neighborhood
of the narrow, by v1 in G1 and by v2 in G2. To find a relation between a±

1 and a±
2 ,

we construct the principal term of the wave function asymptotics as ε → 0.
Let us employ to this end the compound asymptotics method. We introduce a

cut-off function χε,1(x) = (
1− �(ε−1r)

)
1G1(x), where � is the same as in (6.3.6)

and 1G1 is the indicator of G1 (equal to one in G1 and to zero outside G1). Extend
χε,1v1 by zero to the whole G(ε) and substitute to problem (6.1.1) with G(ε1, ε2)

changed for G(ε). We obtain the discrepancy

−(� + k2)χε,1v1 = −[�, χε,1]v1 − χε,1(� + k2)v1 = −[�, 1 − �(ε−1r)]v1,

while the boundary condition is fulfilled. The discrepancy differs from 0 only near
the narrow, where v1 can be replaced by its asymptotics. Then, with ρ = ε−1r ,

−(� + k2)χε,1v1 ∼ −[�, 1 − �(ε−1r)] (
a−
1 r−μ1−1 + a+

1 rμ1
)
�K

1 (ϕ)

= −ε−2[�(ρ,ϕ), ζ
K (ρ)] (

a−
1 ε−μ1−1ρ−μ1−1 + a+

1 εμ1ρμ1
)
�K

1 (ϕ);

ζ K denotes the function 1 − � first restricted to the cone K and then extended
by zero to the whole �. Similarly, we introduce the cut-off function χε,2(x) =(
1−�(ε−1r)

)
1G2(x) and extendχε,2v2 by zero to G(ε). Then, by virtue of (6.3.10),

−(� + k2)χε,2v2 ∼ −ε−2[�(ρ,ϕ), ζ
L(ρ)] (

a−
2 ε−μ1−1ρ−μ1−1 + a+

2 εμ1ρμ1
)
�L

2 (ϕ),

where ζ L = 1− � − ζ K . We also introduce the solution w of problem (6.2.6) in �

with right-hand side
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F(ρ, ϕ) = − [�, ζ K ]
(

a−
1 ε−μ1−1ρ

−μ1−1
1 + a+

1 εμ1ρ
μ1
1

)
�K

1 (ϕ)

− [�, ζ L ]
(

a−
2 ε−μ1−1ρ

−μ1−1
1 + a+

2 εμ1ρ
μ1
1

)
�L

1 (ϕ) (6.3.11)

and substitute χε,1(x)v1(x) + �(r)w(ε−1x) + χε,2(x)v2(x) into (6.1.1)(for the
waveguide G(ε)):

(� + k2)
(
χε,2(x)v2(x) + �(r)w(ε−1x) + χε,2(x)v2(x)

)

= [�, χε,1(x)]
(
v1(x) −

(
a−
1 r−μ1−1 + a+

1 rμ1
)

�K
1 (ϕ)

)

+ [�,�(r)]w(ε−1x) + k2�(r)w(ε−1x)

+ [�, χε,2(x)]
(
v2(x) −

(
a−
2 r−μ1−1 + a+

2 rμ1
)

�L
1 (ϕ)

)
.

Thus, the principal terms of the discrepancies, originated from the terms χε, jv j ,
are compensated. It will be shown in the proof of Theorem 6.3.6 that the term
k2�w is small. For [�,�(r)]w to be small, the w must rapidly decay at infinity.
Proposition 6.2.3 provides a solution w satisfying the estimate w = O(ρ−μ1−1) as
ρ → +∞.However, in this case, [�,�(r)]w is of the sameorder as the terms already
compensated. Therefore, we require the estimate w = O(ρ−μ2−1) as ρ → +∞.

Lemma 6.3.2 Let the solution w of problem (6.2.6) with right-hand side

F(ξ) = − [�, ζ K ]
(

a−
1 ε−μ1−1ρ

−μ1−1
j + a+

1 εμ1ρμ1
)

�K
1 (ϕ)

− [�, ζ L ]
(

a−
2 ε−μ1−1ρ−μ1−1 + a+

2 εμ1ρμ1
)

�L
1 (ϕ)

admit the estimate O(ρ−μ2−1) as ρ → ∞. Then

a−
1 ε−μ1−1 − αa+

1 εμ1 − βa+
2 εμ1 = 0, a−

2 ε−μ1−1 − αa+
2 εμ1 − βa+

1 εμ1 = 0,
(6.3.12)

where α and β are the coefficients in (6.2.10) and (6.2.11).

Proof By Proposition 6.2.3, w = O(ρ−μ2−1) as ρ → ∞, if and only if the right-
hand side of problem (6.2.6) satisfies the conditions

(F, wK )� = 0, (F, wL)� = 0, (6.3.13)

wherewK andwL are the solutions to homogeneous problem (6.2.6) with expansions
(6.2.10) and (6.2.11). In �, we introduce the functions

f K± (ρ, ϕ) = ρ±(μ1+1/2)−1/2�K
1 (ϕ), f L± (ρ, ϕ) = ρ±(μ1+1/2)−1/2�L

1 (ϕ).

To derive (6.3.12) from (6.3.13), it suffices to verify that
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([�, ζ K ] f K− , wK )� = ([�, ζ L ] f L− , wL)� = −1,

([�, ζ K ] f K+ , wK )� = ([�, ζ L ] f L+ , wL)� = α,

([�, ζ L ] f L− , wK )� = ([�, ζ K ] f K− , wL)� = 0,

([�, ζ L ] f L+ , wK )� = ([�, ζ K ] f K+ , wL)� = β.

Let us check the first equality; the other ones can be considered in a similar way. The
support of [�, ζ K ] f K− is compact, so when calculating ([�, ζ K ] f K− , wK )�, one can
replace � by �R = � ∩ {ρ < R} with sufficiently large R. Let E denote the set
∂�R ∩ {ρ = R} ∩ K . By the Green formula,

([�, ζ K ] f K− , wK )� = (�ζ K f K− , wK )�R − (ζ K f K− ,�wK )�R

= (∂ f K− /∂n, wK )E − ( f K− , ∂wK /∂n)E .

Taking into account (6.2.10) in K and the definition �K
1 in Proposition 6.2.2, we

obtain

([�, ζ K ] f K− , wK )�

=
[

∂ρ−μ1−1

∂ρ
(ρμ1 + αρ−μ1−1) − ρ−μ1−1 ∂

∂ρ
(ρμ1 + αρ−μ1−1)

]
ρ2

∣∣∣∣
ρ=R

×
∫

S(K )

�K
1 (ϕ)2dϕ + o(1) = −(2μ1 + 1)

∫
S(K )

�K
1 (ϕ)2dϕ + o(1) = −1 + o(1).

It remains to let R → ∞. �

Remark 6.3.3 The solution w mentioned in Lemma 6.3.2 can be written as a linear
combination of certainmodel functions independent of ε.We present the correspond-
ing expression, whichwill be needed in the next section for estimating the remainders
of asymptotic formulas. Let wK and wL be the solutions to problem (6.2.6) defined
by (6.2.10) and (6.2.11) and let ζ K , ζ L be the same cut-off functions as in (6.3.11).
We set

wK = wK − ζ K
(
ρμ1 + αρ−μ1−1

)
�K

1 (ϕ) − ζ Lβρ−μ1−1�L
1 (ϕ),

wL = wL − ζ K βρ−μ1−1�K
1 (ϕ) − ζ L

(
ρμ1 + αρ−μ1−1

)
�L

1 (ϕ).

A straightforward verification shows that

w = a+
1 εμ1wK + a+

2 εμ1wL . (6.3.14)

�
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It is convenient to write (6.3.12) in the form

(a−
1 , a−

2 ) = (a+
1 , a+

2 )� ε2μ1+1, � =
(

α β

β α

)
. (6.3.15)

6.3.3 Formal Asymptotics

Here we obtain the asymptotics of the amplitudes of the reflected and transited waves
as ε → 0. Let the wave function u1, defined by asymptotics (6.1.4), be approximated
in G1 by the solution v1 = V1 + C11v1 and in G2 by the solution v2 = C12v2 of
the homogeneous limit problem. The special solutions V1, v1, and v2 were defined
in 6.3.1. For the time being, the constants C11 and C12 are unknown; we will find
them when compensating the principle terms of discrepancy. According to (6.3.2)
and (6.3.7), we have, as r → 0,

v1 = 1√
r

(
C11 Ñμ1+1/2(kr) + (s1 + C11a1) J̃μ1+1/2(kr)

)
�K

1 (ϕ) + O(rμ2), r → 0,

v2 = 1√
r

(
C12 Ñμ1+1/2(kr) + C12 a2 J̃μ1+1/2(kr)

)
�L

1 (ϕ) + O(rμ2), r → 0,

that is, v1 and v2 admit expansions (6.3.9) and (6.3.10) with the constants

(a−
1 , a−

2 ) = (C11, C12), (a+
1 , a+

2 ) = (s1 + C11a1, C12 a2). (6.3.16)

As was shown in Sect. 6.3.2, the constants must satisfy the relation

(C11, C12) = (s1 + C11a1, C12 a2)� ε2μ1+1.

We introduce the matrix a = diag (a1, a2) and, taking into account that �(I −
A �)−1 = (I − � A )−1� for A = a ε2μ1+1, obtain

(C11(ε), C12(ε)) = (s1, 0)(I − � a ε2μ1+1)−1�ε2μ1+1. (6.3.17)

By virtue of (6.3.1) and (6.3.7) for x11 → +∞,

v1(x1) = U+
1 (x1) + (S0

11 + C11(ε)A1)U
−
1 (x1) + O(exp(−δx11)), x11 → +∞,

v2(x2) = C12(ε)A2U−
2 (x2) + O(exp(−δx21 )), x21 → +∞.

This provides an approximation (S̃11, S̃12) to the first line of the scattering matrix:

(S̃11(ε), S̃12(ε)) = (S0
11 + C11(ε)A1, C12(ε)A2) = (S0

11, 0) + (C11(ε), C12(ε))A,
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where A = diag (A1, A2). We set s = diag (s1, s2) and S0 = diag (S0
11, S0

22), then
by Lemma 6.3.1

A = is∗S0. (6.3.18)

In view of (6.3.17) and (6.3.18), we obtain

(S̃11(ε), S̃12(ε)) = (S0
11, 0) + i(s1, 0)(I − � a ε2μ1+1)−1� s∗S0ε2μ1+1. (6.3.19)

An approximation to the wave function is of the form

ũ1(x; ε) = χε,1(x)v1(x; ε) + �(r)w(ε−1x; ε) + χε,2(x)v2(x; ε), (6.3.20)

where, owing to (6.3.14),

v1(x; ε) = V1(x) + C11(ε)v1(x), (6.3.21)

w(ξ ; ε) = a+
1 (ε)εμ1wK (ξ) + a+

2 (ε)εμ1wL(ξ), (6.3.22)

v2(x; ε) = C12(ε)v2(x). (6.3.23)

From (6.3.16) and (6.3.17) it follows that

(a+
1 (ε), a+

2 (ε)) = (s1, 0) + (s1, 0)(I − � a ε2μ1+1)−1� a ε2μ1+1. (6.3.24)

Taking account of the equality I + (I − B)−1B = (I − B)−1 for B = a �ε2μ1+1,
we have

(a+
1 (ε), a+

2 (ε)) = (s1, 0) (I − � a ε2μ1+1)−1.

An approximation ũ2 to wave function (6.1.5) is derived in the same way. It takes
the form of (6.3.20), where

v1(x; ε) = C21(ε)v1(x),

w(ξ ; ε) = a+
1 (ε)εμ1wK (ξ) + a+

2 (ε)εμ1wL(ξ),

v2(x; ε) = V2(x) + C22(ε)v2(x).

The functions v1 and v2 admit, near the point O , expansions of the form (6.3.9) and
(6.3.10) with constants

(a−
1 , a−

2 ) = (C21, C22), (a+
1 , a+

2 ) = (C21a1, s2 + C22 a2),

related by the equality

(C21, C22) = (C21a1, s2 + C22 a2)� ε2μ1+1
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(see (6.3.15)). It follows that

(C21(ε), C22(ε)) = (0, s2)(I − � a ε2μ1+1)−1 �ε2μ1+1,

(a+
1 (ε), a+

2 (ε)) = (0, s2) (I − � a ε2μ1+1)−1.

Using expansions (6.3.1) and (6.3.7) for x11 → +∞ and the formulas for C21 and
C22, we obtain an approximation to the second line of the scattering matrix:

(S̃21(ε), S̃22(ε)) = (0, S0
22) + i(0, s2)(I − � a ε2μ1+1)−1�s∗S0ε2μ1+1. (6.3.25)

We set S̃ = ‖S̃pq‖p,q=1,2 and unite (6.3.19) and (6.3.25) into the matrix equality

S̃(ε) = S0 + is(I − � a ε2μ1+1)−1�s∗S0ε2μ1+1. (6.3.26)

Lemma 6.3.4 The matrix S̃(ε) is unitary.

Proof Let us temporarily denote the matrix (I − a �ε2μ1+1)−1� by B. Since
(S0)∗S0 = I , we obtain

S̃(ε)S̃(ε)∗ = S̃(ε)(S0)∗S0 S̃(ε)∗ = (I + is Bs∗ε2μ1+1)(I − is B∗s∗ε2μ1+1)

= I + is(B − B∗ − i Bs∗s B∗ε2μ1+1)s∗ε2μ1+1.

We have to verify that B − B∗ − i Bs∗s B∗ε2μ1+1 = 0. By Lemma 6.3.1,

a − a∗ = i AA∗ = i(is∗S0)(is∗S0)∗ = is∗s

and, consequently,

B − B∗ − i Bs∗s B∗ε2μ1+1 = B − B∗ − B(a − a∗)B∗ε2μ1+1

= B(I + a∗ B∗ε2μ1+1) − (I + Baε2μ1+1)B∗.

We have

I + Baε2μ1+1 = I + (I − �aε2μ1+1)−1�aε2μ1+1 = (I − �aε2μ1+1)−1,

I + a∗ B∗ε2μ1+1 = (I + Baε2μ1+1)∗ = (I − a∗�ε2μ1+1)−1,

whence B(I + a∗ B∗ε2μ1+1) − (I + Baε2μ1+1)B∗ = 0. �
We set T̃1(ε) = |S̃12(ε)|2 and T̃2(ε) = |S̃21(ε)|2. According to (6.3.26),

S̃(ε) = S0 + is�s∗S0ε2μ1+1 + O(ε4μ1+2)

=
(

S0
11 0
0 S0

22

)
+

(|s1|2αS0
11 s1s2βS0

22
s2s1βS0

11 |s2|2αS0
22

)
ε2μ1+1 + O(ε4μ1+2).
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Therefore,

T̃1(ε) = T̃2(ε) = |s1|2|s2|2β2ε4μ1+2 + O(ε6μ1+3). (6.3.27)

By Lemma 6.3.4, R̃p(ε) + T̃p(ε) = 1 with R̃p(ε) = |S̃0
pp(ε)|2, p = 1, 2, and

R̃1(ε) = R̃2(ε) = 1 − |s1|2|s2|2β2ε4μ1+2 + O
(
ε6μ1+3

)
.

We emphasize that the remainders in the above formulas denote the summandswhich
were omitted in the explicit expressions for approximations and do not show the
distinction between the kept terms and the real values of the coefficients we are
interested in. We estimate this distinction in the next section (cf. Corollary 6.3.7).

6.3.4 The Estimate of the Remainder

We now introduce function spaces for the problem

− �u − k2u = f in G(ε), u = 0 on ∂G(ε). (6.3.28)

Let� be the same as was introduced before (6.3.6), and let η j , j = 1, 2, be supported
by G j and satisfy η1(x) + �(r) + η2(x) = 1 in G(ε). For γ ∈ R, δ > 0, and
l = 0, 1, . . . , the space V l

γ, δ(G(ε)) is the completion in the norm

‖v; V l
γ, δ(G(ε))‖ =

⎛
⎝∫

G(ε)

l∑
|α|=0

⎛
⎝�2 (r2 + ε2)γ−l+|α| +

2∑
j=1

η2j e
2δx j

1

⎞
⎠ |∂αv|2 dx

⎞
⎠

1/2

(6.3.29)
of the set of smooth functions in G(ε) having compact supports. The next proposition
can be proved by a somewhat simplified argument from the proof of Proposition 6.4.3
below (which, in turn, is a modification of the proof of [33, Theorem 5.1.1]).

Proposition 6.3.5 Let |γ −1| < μ1 +1/2, f ∈ V 0
γ, δ(G(ε)), and let u be a solution

to (6.3.28) that admits the representation

u = ũ + η1A−
1 U−

1 + η2A−
2 U−

2 ,

where A−
j = const and ũ ∈ V 2

γ, δ(G(ε)), δ being a small positive number. Then

‖ũ; V 2
γ, δ(G(ε))‖ + |A−

1 | + |A−
2 | ≤ c‖ f ; V 0

γ, δ(G(ε))‖ (6.3.30)

holds with a constant c independent of f and ε.
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Theorem 6.3.6 Under the hypotheses of Proposition 6.2.2, the inequality

|Sp1(ε) − S̃p1(ε)| + |Sp2(ε) − S̃p2(ε)| ≤ c(εμ2+1 + εγ+3/2)εμ1 (6.3.31)

holds, where p = 1, 2, γ > 0, |γ −1| < μ1+1/2, and the constant c is independent
of ε.

Proof Let us verify, for instance, the inequality for p = 1. The difference u1 − ũ1
satisfies (6.3.28), where, in view of (6.3.20),

f (x; ε) = [�, χε,1]
(
v1(x; ε) − (a−

1 (ε)r−μ1−1 + a+
1 (ε)rμ1)�K

1 (ϕ)
)

+ [�, χε,2]
(
v2(x; ε) − (a−

2 (ε)r−μ1−1 + a+
2 (ε)rμ1)�L

1 (ϕ)
)

+ [�,�]w(ε−1x; ε) + k2�(r)w(ε−1x; ε). (6.3.32)

Moreover, the asymptotics of u − ũ contains only outgoing waves. To apply Proposi-
tion 6.3.5, we estimate ‖ f ; V 0

γ,δ(G(ε))‖. In view of the asymptotics of v1 as r → 0,
we have

‖x 
→ [�, χε,1]
(
v1(x; ε) − (a−

1 (ε)r−μ1−1 + a+
1 (ε)rμ1)�K

1 (ϕ)
)

; V 0
γ,δ(G(ε))‖2

≤ c
∫

G(ε)

(r2 + ε2)γ
∣∣∣[�, χε,1](a−

1 (ε)r−μ1+1 + a+
1 (ε)rμ1+2)�K

1 (ϕ)

∣∣∣2 dx .

Passing to the variables ξ = ε−1x and taking into account (6.3.15), we obtain

‖x 
→ [�, χε,1]
(
v1(x; ε) − (a−

1 (ε)r−μ1−1 + a+
1 (ε)rμ1)�K

1 (ϕ)
)

; V 0
γ,δ(G(ε))‖

≤ cεγ+3/2
(
|a−

1 (ε)|ε−μ1−1 + |a+
1 (ε)|εμ1

)
≤ c|a+

1 (ε)|εγ+μ1+3/2.

Analogously,

‖x 
→ [�, χε,2]
(
v2(x; ε) − (a−

2 (ε)r−μ1−1 + a+
2 (ε)rμ1)�L

1 (ϕ)
)

; V 0
γ,δ(G(ε))‖

≤ c|a+
2 (ε)|εγ+μ1+3/2.

In view of (6.3.22) and of the fact that w± behaves as O(ρ−μ2−1) at infinity, we get
the estimate

∫
G(ε)

(r2 + ε2)γ
∣∣∣[�,�]w(ε−1x; ε)

∣∣∣2 dx ≤ cε2μ1
(|a+

1 (ε)| + |a+
2 (ε)|)2

×
(∫

K
(r2 + ε2)γ

∣∣∣[�,�](ε−1r)−μ2−1�K
2 (ϕ)

∣∣∣2 dx
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+
∫

L
(r2 + ε2)γ

∣∣∣[�,�](ε−1r)−μ2−1�L
2 (ϕ)

∣∣∣2 dx

)

≤ c
(|a+

1 (ε)| + |a+
2 (ε)|)2 ε2μ1+2μ2+2.

Finally, again due to (6.3.22), we see that

∫
G(ε)

(r2 + ε2)γ
∣∣∣�(r)w(ε−1x; ε)

∣∣∣2 dx = ε2γ+3
∫

�

(ρ2 + 1)γ |�(ερ)w(ξ ; ε)|2 dξ

≤ c
(|a+

1 (ε)| + |a+
2 (ε)|)2 ε2μ1+2γ+3.

Combining the obtained estimates, we arrive at

‖ f ; V 0
γ,δ(G(ε))‖ ≤ c

(|a+
1 (ε)| + |a+

2 (ε)|)(εμ2+1 + εγ+3/2)εμ1 . (6.3.33)

Now, let us apply Proposition 6.3.5 to the function u1 − ũ1. In (6.3.30), the u and
A−

j must be replaced by u1 − ũ1 and S1 j − S̃1 j . From (6.3.33) and the estimates

a+
1 = O(ε2μ1+1) and a+

2 = O(1) (cf. (6.3.24)), we obtain

|S11(ε) − S̃11(ε)| + |S12(ε)− S̃12(ε)| ≤ ‖u − ũ; V 2
γ,δ,−(G(ε))‖ ≤ c(εμ2+1 + εγ+3/2)εμ1 .

�

Corollay 6.3.7 The asymptotic formulas

Tp(ε) = |s1|2|s2|2β2ε4μ1+2 + O
(
ε4μ1+2+τ

)
,

Rp(ε) = 1 − |s1|2|s2|2β2ε4μ1+2 + O
(
ε4μ1+2+τ

)

hold with p = 1, 2 and τ = min{μ2 − μ1, 2 − σ }, where σ is a small positive
number.

Proof Theorem 6.3.6 leads to |Sp2 − S̃p2| ≤ cε2μ1+1+τ with τ = min{μ2 − μ1,
2 − σ } and σ = μ1 + 3/2 − γ . Therefore,

|Tp − T̃p| ≤ c|S̃p2||Sp2 − S̃p2| ≤ cε4μ1+2+τ .

To obtain the formula for Tp, it remains to take account of (6.3.27). The expansion
for Rp follows now from the equality Rp + Tp = 1. �
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6.4 Tunneling in a Waveguide with Two Narrows

We turn to the waveguide G(ε1, ε2) with two narrows. The limit domain G(0, 0)
consists of the infinite domains G1, G2, and the bounded “resonator” G0.We assume
that k2 varies in a neighborhood of an eigenvalue k2e of limit problem (6.2.1) in G0.
For the sake of simplicity, the eigenvalue is supposed to be simple.

6.4.1 Special Solutions to the Problem in the Resonator

Let k2e be a simple eigenvalue for the operator −� with Dirichlet boundary condi-
tion in G0 and let ve be an eigenfunction corresponding to k2e and normalized by∫

G0
|ve|2dx = 1. By Proposition 6.2.1,

ve(x) ∼
{

b1r−1/2
1 J̃μ11+1/2(ker1)�L

11(ϕ1) near O1,

b2r−1/2
2 J̃μ21+1/2(ker2)�L

21(ϕ2) near O2,
(6.4.1)

where (r j , ϕ j ) are polar coordinates centered at O j , μ j1(μ j1 + 1), and �L
j1 are the

first eigenvalue and eigenfunction of the Laplace–Beltrami operator on the base of L j

normalized by (2μ j1 + 1)
∫ |�L

j1|2dϕ = 1. For k2, in a punctured neighborhood of

k2e separated from the other eigenvalues of the problem in the resonator, we introduce
solutions v0 j to the homogeneous problem (6.2.1) in G0 by

v0 j (x) = �(r j )v
L
j1(r j , ϕ j ) + ṽ0 j (x), j = 1, 2, (6.4.2)

where t 
→ �(t) is a cut-off function on R equal to 1 for t < δ/2 and to 0 for t > δ

with a small positive δ, vL
j1 are defined by (6.3.5) with L j instead of K j , and ṽ0 j is

the bounded solution to the problem (6.2.1) in G0 for f = [�,�]vL
j1.

Lemma 6.4.1 In a neighborhood V ⊂ C of k2e containing no eigenvalues of problem
(6.2.1) in G0 except k2e , the relations v0 j (x) = −b j (k2 − k2e )−1ve(x) + v̂0 j (x) hold
with b j in (6.4.1) and functions v̂0 j analytic in k2 ∈ V .

Proof Let us first prove that (v0 j , ve)G0 = −b j/(k2 − k2e ) with v0 j defined by
(6.4.2). We have

(�v0 j + k2v0 j , ve)Gδ − (v0 j ,�ve + k2ve)Gδ = −(k2 − k2e )(v0 j , ve)Gδ

in the domain Gδ obtained from G0 by cutting out the balls of radius δ centered at
O1 and O2. Applying the Green formula as in the proof of Lemma 6.3.1, we arrive
at −(k2 − k2e )(v0 j , ve)Gδ = b j + o(1). It remains to let δ go to zero.
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Since k2e is a simple eigenvalue, we have

ṽ0 j (x) = B j (k2)

k2 − k2e
ve(x) + v̂ j (x), (6.4.3)

where B j (k2) is independent of x and v̂ j are some functions analytic in k2 near the
point k2 = k2e . Multiplying (6.4.2) by ve and taking into account (6.4.3), the proved
formula for (v0 j , ve)G0 , and the normalization condition (ve, ve)G0 = 1, we find that
B j (k2) = −b j + (k2 − k2e )B̃ j (k2) with analytic function B̃ j . Together with (6.4.3),
this leads to the required statement. �

Owing to Proposition 6.2.1,

v01(x) ∼
{

r−1/2
1

(
Ñμ11+1/2(kr1) + c11(k) J̃μ11+1/2(kr1)

)
�L

11(ϕ1), r1 → 0,

c12(k)r−1/2
2 J̃μ21+1/2(kr2)�L

21(ϕ2), r2 → 0,

(6.4.4)

v02(x) ∼
{

r−1/2
1 c21(k) J̃μ11+1/2(kr1)�L

11(ϕ1), r1 → 0,

r−1/2
2

(
Ñμ21+1/2(kr2) + c22(k) J̃μ21+1/2(kr2)

)
�L

21(ϕ2), r2 → 0.

(6.4.5)

In view of Lemma 6.4.1 and asymptotics (6.4.1), we obtain

cpq(k) = − bpbq

k2 − k2e
+ ĉpq(k), (6.4.6)

where ĉpq analytically depends on k2 in a neighborhood of k2e .

Lemma 6.4.2 If v01 and v02 in (6.4.4) and (6.4.5) make sense for a number k, then
c12(k) = c21(k).

Proof It suffices to apply the Green formula to v01 and v02 in the same domain Gδ

as in the proof of Lemma 6.4.1, to use (6.4.4) and (6.4.5), and to let δ tend to 0. �

6.4.2 Formal Asymptotics

Let us consider the wave function u1 in G(ε1, ε2) satisfying

u1(x; k, ε1, ε2) ∼
{

U+
1 (x1; k) + S11(k, ε1, ε2) U−

1 (x1; k), x11 → +∞,

S12(k, ε1, ε2) U−
2 (x2; k), x21 → +∞.
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In G j , j = 0, 1, 2, u1 is approximated by the solutions v j to (6.2.1) such that

v1 = V1 + C11v1, v0 = C12v01 + C13v02, v2 = C14v2, (6.4.7)

the V1 and v1 are defined in 6.3.1, the v0 j is defined in 6.4.1, and the v2 is an analog
of the v1 in the domain G2. The constants C1 j depend on ε1, ε2 and k. According to
(6.3.2), (6.4.4), (6.4.5), and (6.3.7) for r → 0,

v1 = 1√
r1

(
C11 Ñμ11+1/2(kr1) + (s1 + C11a1) J̃μ11+1/2(kr1)

)
�K
11(ϕ) + O(r

μ12
1 ), r1 → 0,

v0 =

⎧⎪⎪⎨
⎪⎪⎩

1√
r1

(
C12 Ñμ11+1/2(kr1) + (C12c11 + C13c21) J̃μ11+1/2(kr1)

)
�L
11(ϕ1) + O(r

μ12
1 ), r1 → 0,

1√
r2

(
C13 Ñμ21+1/2(kr2) + (C12c12 + C13c22) J̃μ21+1/2(kr2)

)
�L
21(ϕ2) + O(r

μ22
2 ), r2 → 0.

v2 = 1√
r2

(
C14 Ñμ1+1/2(kr2) + C14 a2 J̃μ1+1/2(kr2)

)
�L
21(ϕ) + O(r

μ22
2 ), r2 → 0.

For every narrow, we introduce a matrix� j (like the matrix� in (6.3.15)). Applying
Lemma 6.3.2, we obtain

(C11, C12) = (s1 + C11a1, C12c11 + C13c21)�1 ε
2μ11+1
1

for the first narrow and

(C13, C14) = (C12c12 + C13c22, C14 a2)�2 ε
2μ21+1
2

for the second narrow. The corresponding solutions of the second kind limit problems
are of the form (see (6.3.14))

w1(ξ
1) = (s1 + C11a1)ε

μ11
1 wK

1 (ξ1) + (C12c11 + C13c21)ε
μ11
1 wL

1 (ξ1), (6.4.8)

w2(ξ
2) = C14a2ε

μ21
2 wK

2 (ξ2) + (C12c12 + C13c22)ε
μ21
2 wL

2 (ξ2), (6.4.9)

where wK
j and wL

j are analogs for the domains� j , j = 1, 2, of the functions defined

in Remark 6.3.3. We set � = diag {�1,�2}, E = diag {ε2μ11+1
1 , ε

2μ11+1
1 , ε

2μ21+1
2 ,

ε
2μ21+1
2 }, and

a =

⎛
⎜⎜⎝

a1 0 0 0
0 c11 c12 0
0 c21 c22 0
0 0 0 a2

⎞
⎟⎟⎠ , (6.4.10)

and, combining the relations obtained for C1 j , we arrive at the equality

(C11, C12, C13, C14) = (s1, 0, 0, 0)� E + (C11, C12, C13, C14) a � E .
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Thus,

(C11, C12, C13, C14)(I − a � E) = (s1, 0, 0, 0)� E . (6.4.11)

Let us calculate the inverse matrix of I − a�E , assuming ε1 and ε2 to be sufficiently
small. It follows from (6.4.6) that

a(k) = − b∗b
k2 − k2e

+ â(k),

where b = (0, b1, b2, 0) and the matrix â is analytic near k = ke and is defined by
equality (6.4.10) with cpq changed for ĉpq . We have

I − a � E = I − â � E + b∗b � E
k2 − k2e

=
(

I + b∗b � E(I − â � E)−1

k2 − k2e

)
(I − â � E);

it is evident that the matrix (I − â � E)−1 exists for small ε1 and ε2. Straightforward
calculation shows that

(
I + b∗c

k2 − k2e

)−1

= I − b∗c
k2 − k2e − 〈c, b〉

for c = b � E(I − â � E)−1, where 〈·, ·〉 is the inner product in the space C
4. Thus,

(I − a�E)−1 = (I − â � E)−1
(

I − b∗b � E(I − â � E)−1

k2 − k2e + 〈b � E(I − â � E)−1, b〉
)

.

Using this equality and (6.4.11), we find the constants C1 j :

(C11, C12, C13, C14) = (s1, 0, 0, 0)� E(I − a � E)−1

= (s1, 0, 0, 0)

(
D − D b∗b D

k2 − k2e + 〈bD, b〉
)

, (6.4.12)

where D = � E(I − â � E)−1; thereby, we have constructed an approximation to
the wave function u1. However, before presenting this approximation, we modify the
solution v0 of the limit problem in the resonator and the solutions w j of the second
kind limit problems; we show that these solutions do not have a pole at k2 = k2e . In
view of Lemma 6.4.1,

v0(x) = C12v01(x)+C13v02(x) = C12̂v01(x)+C13̂v02(x)− C12b1 + C13b2
k2 − k2e

ve(x).
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By virtue of (6.4.12),

C12b1+C13b2 = (C11, C12, C13, C14)b∗ = (s1, 0, 0, 0)

(
Db∗ − D b∗b Db∗

k2 − k2e + 〈bD, b〉
)

.

Since D b∗b Db∗ = D b∗〈bD, b〉, we have

C12b1 + C13b2 = (s1, 0, 0, 0)D b∗ k2 − k2e
k2 − k2e + 〈bD, b〉 (6.4.13)

and

v0(x) = C12̂v01(x) + C13̂v02(x) − (s1, 0, 0, 0)D b∗

k2 − k2e + 〈bD, b〉ve(x). (6.4.14)

Let us modify (6.4.8) and (6.4.9) for w j . Taking into account (6.4.6) and (6.4.13),
we obtain

C12c1 j + C13c2 j = C12ĉ1 j + C13ĉ2 j − b j (C12b1 + C13b2)

k2 − k2e

= C12ĉ1 j + C13ĉ2 j − b j (s1, 0, 0, 0)D b∗

k2 − k2e + 〈bD, b〉 , (6.4.15)

whence

w1(ξ
1) = (s1 + C11a1)ε

μ11
1 wK

1 (ξ1) +
(

C12ĉ11 + C13ĉ21 − b1(s1, 0, 0, 0)D b∗

k2 − k2e + 〈bD, b〉
)

ε
μ11
1 wL

1 (ξ1),

(6.4.16)

w2(ξ
2) = C14a2ε

μ21
2 wK

2 (ξ2) +
(

C12ĉ12 + C13ĉ22 − b2(s1, 0, 0, 0)D b∗

k2 − k2e + 〈bD, b〉
)

ε
μ21
2 wL

2 (ξ2).

(6.4.17)

Finally, we present the asymptotics of the wave function. Let the cut-off functions
t 
→ �(t) and x j 
→ χε j , j (x j ), j = 1, 2, be the same as in Sects. 3.2 and 3.3. We
introduce x 
→ χε1,ε2(x) = 1G0(x) (1−�(r1/ε1)) (1−�(r2/ε2)), where 1G0 is the
characteristic function of G0. The principal term ũ1 of the asymptotics of the wave
function u1 is of the form

ũ1(x; k, ε1, ε2) = χ1,ε1(x1)v1(x1; k, ε1, ε2) + �(r1)w1(ε
−1
1 x1; k, ε1, ε2)

+ χε1,ε2(x)v0(x; k, ε1, ε2) + �(r2)w2(ε
−1
2 x2; k, ε1, ε2)

+ χ2,ε2(x2)v2(x2; k, ε1, ε2), (6.4.18)

http://dx.doi.org/10.1007/978-3-319-15105-2_3
http://dx.doi.org/10.1007/978-3-319-15105-2_3
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where the solutions v1 and v2 of the first kind limit problems are defined by relations
(6.4.7), v0 is given by (6.4.14), and the solutions w1 and w2 of the second kind limit
problems are defined by (6.4.16) and (6.4.17).

We now find an approximation S̃i j to the entries of the scattering matrix S =
(Si j )

2
i, j=1. By virtue of (6.3.1) and (6.3.7) for x11 → +∞,

v1(x1) = U+
1 (x1) + (S0

11 + C11(ε)A1)U
−
1 (x1) + O(exp(−δx11)), x11 → +∞,

v2(x2) = C14(ε)A2U−
2 (x2) + O(exp(−δx21 )), x21 → +∞,

whence

(S̃11, S̃12) = (S0
11 + C11A1, C14A2). (6.4.19)

We set

A =

⎛
⎜⎜⎝

A1 0
0 0
0 0
0 A2

⎞
⎟⎟⎠ , s =

(
s1 0 0 0
0 0 0 s2

)
;

as before, let S0 = diag (S0
11, S0

22); then, by Lemma 6.3.1, equality (6.3.18) remains
valid. Taking into account (6.4.19), (6.4.12), and (6.3.18), we obtain

(S̃11, S̃12) = (S0
11, 0) + (C11, C12, C13, C14)A

= (S0
11, 0) + i(s1, 0, 0, 0)

(
D − D b∗b D

k2 − k2e + 〈bD, b〉
)

s∗S0, (6.4.20)

where D = � E(I − â � E)−1. The approximation

(S̃21, S̃22) = (0, S0
22) + i(0, 0, 0, s2)

(
D − D b∗b D

k2 − k2e + 〈bD, b〉
)

s∗S0. (6.4.21)

to the second row of the scattering matrix S is derived from the asymptotics of the
wave function u2,

u2(x; k, ε1, ε2) ∼
{

S21(k, ε1, ε2) U−
1 (x1; k), x11 → +∞,

U+
2 (x1; k) + S22(k, ε1, ε2) U−

2 (x2; k), x21 → +∞.

The principal term ũ2 of the asymptotics takes the form of (6.4.18), where

v1(x1) = C21v1(x1),

w1(ξ
1) = C21a1ε

μ11
1 wK

1 (ξ1) +
(

C12ĉ11 + C13ĉ21 − b1(s1, 0, 0, 0)D b∗

k2 − k2e + 〈bD, b〉
)

ε
μ11
1 wL

1 (ξ1),
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v0(x) = C22v̂01(x) + C23̂v02(x) − (0, 0, 0, s2)D b∗

k2 − k2e + 〈bD, b〉ve(x),

w2(ξ
2) = (s2 + C24a2)ε

μ21
2 wK

2 (ξ2) +
(

C12ĉ12 + C13ĉ22 − b2(s1, 0, 0, 0)D b∗

k2 − k2e + 〈bD, b〉
)

ε
μ21
2 wL

2 (ξ2),

v2(x2) = V2(x2) + C24v2(x2),

the constants C2 j are given by

(C21, C22, C23, C24) = (0, 0, 0, s2)

(
D − D b∗b D

k2 − k2e + 〈bD, b〉
)

.

Combining relations (6.4.20) and (6.4.21), we obtain the approximation S̃ =
‖S̃pq‖2p,q=1 to the scattering matrix S:

S̃(k, ε1, ε2) = S0(k) + is(k)

(
D − D b∗b D

k2 − k2e + 〈bD, b〉
)

s∗(k)S0(k), (6.4.22)

where D = D(k, ε1, ε2) = � E(ε1, ε2)(I − â(k)� E(ε1, ε2))
−1; the k2e and b are

independent of k, ε1, ε2. Arguing as in the proof of Lemma 6.3.4 and taking into
account (� E)∗ = � E and a∗ − a = is∗s (Lemma 6.3.1), one can verify that the
matrix S̃ is unitary.

We denote by kp the pole of the matrix S̃, that is, kp satisfies the equation k2 −
k2e + 〈bD, b〉 = 0. We substitute the expression for D and obtain

k2 − k2e = 〈b� E(I − â(k)� E)−1, b〉; (6.4.23)

here E = diag (ε
2μ11+1
1 , ε

2μ11+1
1 , ε

2μ21+1
2 , ε

2μ21+1
2 ) and � = diag (�1,�2) with

� j =
(

α j β j

β j α j

)
, j = 1, 2.

Since ε1 and ε2 are small, a solution to Eq. (6.4.23) can be found by the successive
approximaton method. We have k2p = k2r − ik2i , where

k2r = k2e − 〈b � E, b〉 + O
(
ε
4μ11+2
1 + ε

4μ21+2
2

)

= k2e − α1b21ε
2μ11+1
1 − α2b22ε

2μ21+1
2 + O

(
ε
4μ11+2
1 + ε

4μ21+2
2

)
, (6.4.24)

k2i = Im 〈b � E â(ke)� E, b〉 + O
(
ε
6μ11+3
1 + ε

6μ21+3
2

)

= 1

2
|s1(ke)|2b21β

2
1ε

4μ11+2
1 + 1

2
|s2(ke)|2b22β

2
2ε

4μ21+2
2 + O

(
ε
6μ11+3
1 + ε

6μ21+3
2

)
;

(6.4.25)
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in the last equality, we used the relation Im a j = |s j |2/2, j = 1, 2, which follows
from Lemma 6.3.1. We suppose the constants b j and s j to be distinct from zero.

Then, by virtue of (6.4.25), |k2 − k2p| � c(ε4μ11+2
1 + ε

4μ21+2
2 ) for all real k.

Let us find the principal terms of the power series in ε1 and ε2 for the matrix S̃.
To this end we verify that

1

k2 − k2e + 〈bD(k), b〉 = 1 + O(ε
4μ11+2
1 + ε

4μ21+2
2 )

k2 − k2p
(6.4.26)

uniformly with respect to k in any interval that is placed between the first and second
thresholds and contains no eigenvalues of the resonator except ke. Indeed, since
k2p − k2e = 〈bD(kp), b〉, we have

1

k2 − k2e + 〈bD(k), b〉 − 1

k2 − k2p
= k2e − 〈bD(k), b〉 − k2p

(k2 − k2e + 〈bD(k), b〉)(k2 − k2p)

= − 〈b(D(k) − D(kp)), b〉
(k2 − k2e + 〈bD(k), b〉)(k2 − k2p)

.

Applying the Hilbert identity

(I − A)−1 − (I − B)−1 = (I − A)−1(A − B)(I − B)−1

for A = â(k)� E and B = â(kp)� E , we obtain

D(k) − D(kp)

k2 − k2p
= � E (I − â(k)� E)−1 − (I − â(kp)� E)−1

k2 − k2p

= � E(I − â(k)� E)−1(̂a(k) − â(kp))� E(I − â(kp)� E)−1

k2 − k2p

= D(k)
â(k) − â(kp)

k2 − k2p
D(kp).

From the last two equalities and the estimate D = O(ε
2μ11+1
1 + ε

2μ21+1
2 ), it follows

that
1

k2 − k2e + 〈bD(k), b〉 − 1

k2 − k2p
= O(ε

4μ11+2
1 + ε

4μ21+2
2 )

k2 − k2e + 〈bD(k), b〉 ,

which leads to (6.4.26). We substitute (6.4.26) into (6.4.22) and take into account
that D = � E + O(ε

4μ11+2
1 + ε

4μ21+2
2 ). Then
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S̃(k, ε1, ε2) ∼ S0(k) + is(k)�Es∗(k)S0(k) − i
s(k)�E b∗b �Es∗(k)S0(k)

k2 − k2p

=
(

S0
11(k) 0
0 S0

22(k)

)
+ i

(
|s1(k)|2α1S0

11(k)ε
2μ11+1
1 0

0 |s2(k)|2α2S0
22(k)ε

2μ21+1
2

)
− i

k2 − k2p

×
(

|s1(k)|2b21β
2
1 S0

11(k)ε
4μ11+2
1 s1(k)s2(k)b1b2β1β2S0

22(k)ε
2μ11+1
1 ε

2μ21+1
2

s2(k)s1(k)b1b2β1β2S0
11(k)ε

2μ11+1
1 ε

2μ21+1
2 |s2(k)|2b22β

2
2 S0

22(k)ε
4μ21+2
2

)
,

where we dropped the terms that admit the estimate O(ε
2μ11+1
1 +ε

2μ21+1
2 ) uniformly

with respect to k. For (k2 − k2p)
−1 = O(1), the third term can be neglected as well;

however, it must be taken into account for small k2 − k2p.

Let us choose a more narrow interval for k2, assuming k2 − k2r = O
(
ε
2μ11+1
1 +

ε
2μ21+1
2

)
. Using relations (6.4.24), (6.4.25), S0

j j (k) = S0
j j (ke) + O(k2 − k2e ), and

s j (k) = s j (ke) + O(k2 − k2e ), we obtain

S̃12(k, ε1, ε2) =
i

s1(ke)

|s1(ke)|
s2(ke)

|s2(ke)|
i

2

(
z + 1

z

)
+ P

k2 − k2r
ε
2μ11+1
1 ε

2μ21+1
2

(
1 + O(ε

2μ11+1
1 + ε

2μ21+1
2 )

)
,

(6.4.27)

S̃21(k, ε1, ε2) =
i

s2(ke)

|s2(ke)|
s1(ke)

|s1(ke)|
i

2

(
z + 1

z

)
+ P

k2 − k2r
ε
2μ11+1
1 ε

2μ21+1
2

(
1 + O(ε

2μ11+1
1 + ε

2μ21+1
2 )

)
,

(6.4.28)

where

z = b1β1|s1(ke)|ε2μ11+1
1

b2β2|s2(ke)|ε2μ21+1
2

, P = 1

b1b2β1β2|s1(ke)||s2(ke)| .

Now, we find approximations to the transmission and reflection coefficients:

T̃ j (k, ε1, ε2) = 1

1

4

(
z + 1

z

)2

+ P2

(
k2 − k2r

ε
2μ11+1
1 ε

2μ21+1
2

)2

(
1 + O(ε

2μ11+1
1 + ε

2μ21+1
2 )

)
,

R̃ j (k, ε1, ε2) =

1

4

(
z − 1

z

)2

+ P2
(

k2 − k2r
ε
2μ11+1
1 ε

2μ21+1
2

)2

1

4

(
z + 1

z

)2

+ P2

(
k2 − k2r

ε
2μ11+1
1 ε

2μ21+1
2

)2

(
1 + O(ε

2μ11+1
1 + ε

2μ21+1
2 )

)
.
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It is easy to see that T̃ j has a peak at k2 = k2r whose width at its half-height is

ϒ̃(ε1, ε2) = |(z + z−1)/P|ε2μ11+1
1 ε

2μ21+1
2 . (6.4.29)

6.4.3 The Estimate of the Remainder

We introduce function spaces for the problem

− �u − k2u = f in G(ε1, ε2), u = 0 on ∂G(ε1, ε2). (6.4.30)

Let � be the same as in (6.3.6), and let η j , j = 0, 1, 2, be supported by G j and
satisfy η1(x) + �(r1) + η0(x) + �(r2) + η2(x) = 1 in G(ε1, ε2). For γ1, γ2 ∈ R,
δ > 0, and l = 0, 1, . . . , the space V l

γ1,γ2,δ
(G(ε1, ε2)) is the completion in the norm

‖u; V l
γ1,γ2,δ

(G(ε1, ε2))‖

=
(∫

G(ε1,ε2)

l∑
|α|=0

( 2∑
j=1

�2(r j ) (r2j + ε2j )
γ j −l+|α| +

2∑
j=1

η2j e
2δx j

1 + η20

)
|∂αv|2 dx

)1/2

(6.4.31)

of the set of smooth functions in G(ε1, ε2)with compact supports. Denote by V 0,⊥
γ1,γ2,δ

the space of functions f that are analytic in k2, take values in V 0
γ1,γ2,δ

(G(ε1, ε2)),

and, for k2 = k2e , satisfy (χεσ
1 ,εσ

2
f, ve)G0 = 0 with small σ > 0.

Proposition 6.4.3 Let k2r be a resonance, k2r → k2e as ε1, ε2 → 0, and let |k2 −
k2r | = O(ε

2μ11+1
1 + ε

2μ21+1
2 ). Assume that γ1, γ2 satisfy μ j1 − 3/2 < γ j − 1 <

μ j1 + 1/2, f ∈ V 0,⊥
γ1,γ2,δ

(G(ε1, ε2)) and u is a solution to (6.4.30) that admits the
representation

u = ũ + η1A−
1 U−

1 + η2A−
2 U−

2 ;

here A−
j = const and ũ ∈ V 2

γ1,γ2,δ
(G(ε1, ε2)) with small δ > 0. Then

‖ũ; V 2
γ1,γ2,δ

(G(ε1, ε2))‖ + |A−
1 | + |A−

2 | ≤ c‖ f ; V 0
γ1,γ2,δ

(G(ε1, ε2))‖, (6.4.32)

where c is a constant independent of f and ε1, ε2.

Proof Step A. First, we construct an auxiliary function u p. The solutions of the
first kind limit problems involved in (6.4.18) are defined for complex k2 as well.
Multiply the limit problem solutions involved in ũ1 by g := −(k2 − k2e +
〈bD(k), b〉)/〈(s1, 0, 0, 0)D, b〉, put k = kp, and denote the resulting functions by
adding the subscript p. Then
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g(C11, C12, C13, C14)|k=kp = bD(kp)

= (b1β1ε
2μ11+1
1 , b1α1ε

2μ11+1
1 , b2α2ε

2μ21+1
2 , b2β2ε

2μ21+1
2 )

+ O(ε
4μ11+2
1 + ε

4μ21+2
2 )

and, in view of (6.4.7) and (6.4.14)–(6.4.17),

v j p(x; ε1, ε2) = ε
2μ j1+1
j

(
b jβ j + O

(
ε
2μ11+1
1 + ε

2μ21+1
2

))
v j (x; kp),

v0p(x; ε1, ε2) = ve(x) + ε
2μ11+1
1

(
b1α1 + O

(
ε
2μ11+1
1 + ε

2μ21+1
2

))
v̂01(x; kp)

+ ε
2μ21+1
2

(
b2α2 + O

(
ε
2μ11+1
1 + ε

2μ21+1
2

))
v̂02(x; kp),

w j p(ξ
j ; ε1, ε2) = b jε

μ j1
j

[
ε
2μ j1+1
j

(
a j (kp)β j + O

(
ε
2μ11+1
1 + ε

2μ21+1
2

))
wK

j (ξ j )

+
(
1 + O

(
ε
2μ11+1
1 + ε

2μ21+1
2

))
wL

j (ξ
j )

]
,

where j = 1, 2; the dependence of kp on ε1, ε2 is not shown. We set

u p(x; ε1, ε2) = �(x)
[
χ1,ε1(x1)v1p(x1; ε1, ε2) + �(ε−2σ

1 r1)w1p(ε
−1
1 x1; ε1, ε2)

+ χε1,ε2(x)v0p(x; ε1, ε2) + �(ε−2σ
2 r2)w2(ε

−1
2 x2; k, ε1, ε2)

+ χ2,ε2(x2)v2(x2; k, ε1, ε2)
]
,

where� is a cut-off function in G(ε1, ε2) that equals 1 on the set G(ε1, ε2) ∩ {|x | <

R} and 0 on G(ε1, ε2) ∩ {|x | > R + 1} for a large R > 0. The principal part of the
norm of u p is given by χε1,ε2v0p. Taking into account the definitions of v0p and of
v̂0 j (see Sect. 6.4.1), we obtain ‖χε1,ε2v0p‖ = ‖ve‖ + o(1). Note that (� + k2p)u p is
nonzero only in the region {r1 < c1ε2σ1 } ∪ {r2 < c2ε2σ2 }. Arguing as in the proof of
Theorem 6.3.6, we obtain

‖(� + k2p)u p; V 0
γ1,γ2, δ

(G(ε1, ε2))‖ ≤ c
(
ε
μ11+κ1
1 + ε

μ21+κ2
2

)
, (6.4.33)

where κ j = min{μ j1+1, μ j2+1−σ j , γ j +3/2}, σ j = 2σ(μ j2−γ j +3/2). When
μ j1−3/2 < γ j −1 and σ is small such thatμ j2−μ j1 > σ j , we have κ j = μ j1+1.

Step B. This part contains somewhat modified arguments from the proof of Theo-
rem 5.1.1 in [33]. Let ‖v; V 2

γ j , δ,−(G j )‖2 and ‖v; V 2
γ1,γ2, δ,−(G(ε1, ε2))‖2 denote the

left-hand side of (6.2.5) (with γ = γ j ) and (6.4.32). Rewrite the right-hand side of
(6.4.30) in the form

f (x) = f1(x; ε1) + f0(x; ε1, ε2) + f2(x; ε2)

+ ε
−γ1−3/2
1 F1(ε

−1
1 x1; ε1) + ε

−γ2−3/2
2 F2(ε

−1
2 x2; ε2),
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where

f0(x; ε1, ε2) = χεσ
1 , εσ

2
(x) f (x), f j (x; ε j ) = χεσ

j , j (x) f (x),

Fj (ξ
j ; ε j ) = ε

γ j +3/2
j �(ε1−σ

j ρ j ) f (xO j + ε jξ
j );

x are arbitraryCartesian coordinates; xO j denotes the coordinates of O j in the system
x ; x j are introduced in Sect. 6.1. From the definition of the norms it follows that

‖ f0; V 0
γ1,γ2

(G0)‖+‖ f j ; V 0
γ j , δ

(G j )‖+‖Fj ; V 0
γ (� j )‖ ≤ c‖ f ; V 0

γ1,γ2, δ
(G(ε1, ε2))‖.

(6.4.34)
Consider solutions v0, v j , and w j of the problems

−�v0 − k2v0 = f0 in G0, v0 = 0 on ∂G0,

−�v j − k2v j = f j in G j , v j = 0 on ∂G j ,

�w j = Fj in � j , w j = 0 on ∂� j ,

respectively; moreover, v j satisfies the natural radiation conditions at infinity. Owing
to Propositions 6.2.1, 6.2.2, and 6.2.3, the problems in G0, G j , and � j , j = 1, 2 are
uniquely solvable and

‖v0; V 2
γ1,γ2

(G0)‖ ≤ c̃0‖ f0; V 0
γ1,γ2

(G0)‖,
‖v j ; V 2

γ j ,δ,−(G j )‖ ≤ c̃ j‖ f j ; V 0
γ j ,δ

(G j )‖,
‖w j ; V 2

γ j
(� j )‖ ≤ C̃ j‖Fj ; V 0

γ j
(� j )‖,

(6.4.35)

where c̃0, c̃ j , and C̃ j are independent of ε1, ε2. We set

U (x; ε1, ε2) = χε1,1(x)v1(x; ε1, ε2) + ε
−γ1+1/2
1 �(r1)w1(ε

−1
1 x1; ε1, ε2)

+ χε1,ε2(x)v0(x; ε1, ε2) + ε
−γ2+1/2
2 �(r2)w2(ε

−1
2 x2; ε1, ε2)

+ χε2,2(x)v2(x; ε1, ε2).

The estimates (6.4.34) and (6.4.35) lead to

‖U ; V 2
γ1,γ2, δ,−(G(ε1, ε2))‖ ≤ c‖ f ; V 0

γ1,γ2,δ
(G(ε1, ε2))‖ (6.4.36)

with c independent of ε1, ε2.
Let us show that −(� + k2)Rε1,ε2 = I + Sε1,ε2 , where Sε1,ε2 is an operator in

V 0
γ1,γ2,δ

(G(ε1, ε2)) of small norm. We have
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(� + k2)Rε1,ε2 f (x) = (� + k2)U (x; ε1, ε2) = − f (x) + [�,χ1,ε1 ]v1(x; ε1, ε2)

+ ε
−γ1+1/2
1 [�,�]w1(ε

−1
1 x1; ε1, ε2)

+ k2ε−γ1+1/2
1 �(r1)w1(ε

−1
1 x1; ε1, ε2)

+ [�,χ0,ε1,ε2 ]v0(x; ε1, ε2)

+ ε
−γ2+1/2
2 [�,�]w2(ε

−1
2 x2; ε1, ε2)

+ k2ε−γ2+1/2
2 �(r2)w2(ε

−1
2 x2; ε1, ε2) (6.4.37)

+ [�,χ2,ε2 ]v2(x; ε1, ε2).

Let d be a positive number such that γ j − 1 > μ j1 + 1/2− d. On the support of the
function [�,χ1,ε]v1 the estimate r1 = O(ε1) holds, therefore,

‖[�, χ1,ε1 ]v1; V 0
γ1,γ2,δ

(G(ε1, ε2))‖ ≤ cεd
1‖[�, χ1,ε1 ]v1; V 0

γ1−d,δ(G1)‖ ≤ cεd
1‖v1; V 2

γ1−d,δ(G1)‖.

This and (6.4.35) lead to

‖[�,χ1,ε1 ]v1; V 0
γ1,γ2,δ

(G(ε1, ε2))‖ ≤ cεd
1‖ f1; V 0

γ1−d,δ(G1)‖.

Moreover, f1 = 0 outside the zone cεσ
1 ≤ r1 ≤ Cεσ

1 , therefore,

‖ f1; V 0
γ1−d,δ(G1)‖ ≤ cε−dσ

1 ‖ f1; V 0
γ1,δ

(G1)‖.

The two last estimates together with (6.4.34) show that

‖[�,χ1,ε1 ]v1; V 0
γ1,γ2,δ

(G(ε1, ε2))‖ ≤ cεd(1−σ)
1 ‖ f ; V 0

γ1,γ2, δ
(G(ε1, ε2))‖. (6.4.38)

In a similar way, we obtain

‖[�,χ0,ε1,ε2 ]v0; V 0
γ1,γ2,δ

(G(ε1, ε2))‖ ≤ c(εd(1−σ)
1 + ε

d(1−σ)
2 )‖ f ; V 0

γ1,γ2,δ
(G(ε1, ε2))‖,

(6.4.39)

‖[�,χ2,ε2 ]v2; V 0
γ2,δ

(G(ε1, ε2))‖ ≤ cεd(1−σ)
2 ‖ f ; V 0

γ2,δ
(G(ε1, ε2))‖. (6.4.40)

We now assume in addition that the d satisfies −μ j1 − 1/2 + d < γ j − 1. Because
the support of the function [�ξ j ,�(ε jρ j )]w j (ξ

j ; ε1, ε2), j = 1, 2, belongs to the

domain cε−1
j ≤ ρ j ≤ Cε−1

j ,

‖ξ j 
→ [�ξ j ,�(ε jρ j )]w j (ξ
j ; ε1, ε2); V 0

γ j
(� j )‖

≤ cεd
j ‖ξ j 
→ [�ξ j ,�(ε jρ j )]w j (ξ

j ; ε1, ε2); V 0
γ j +d(� j )‖ ≤ cεd

j ‖w j ; V 2
γ j +d(� j )‖.
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Now, taking into account (6.4.35), we obtain

ε
−γ j +1/2
j ‖x j 
→ [�,�(r j )]w j (ε

−1
j x j ; ε1, ε2); V 0

γ1,γ2,δ
(G(ε1, ε2))‖

≤ cεd
j ‖Fj ; V 0

γ j +d(� j )‖.

Since Fj = 0 for ρ j > cε−σ
j ,

‖Fj ; V 0
γ j +d(� j )‖ ≤ cε−dσ

j ‖Fj ; V 0
γ j

(� j )‖. (6.4.41)

Consequently,

ε
−γ j +1/2
j ‖x j 
→ [�,�(r j )]w j (ε

−1
j x j ; ε1, ε2); V 0

γ1,γ2,δ
(G(ε1, ε2))‖

≤ cεd(1−σ)
j ‖ f ; V 0

γ1,γ j , δ
(G(ε1, ε2))‖. (6.4.42)

It remains to estimate the middle terms of the two last lines in (6.4.37). We have

ε
−γ j +1/2
j ‖x j 
→ �(r j )w j (ε

−1
j x j ; ε1, ε2); V 0

γ1,γ2,δ
(G(ε1, ε2))‖

= ε2j‖ξ j 
→ �(ε jρ j )w j (ξ
j ; ε1, ε2); V 0

γ j
(� j )‖

≤ ε2j‖ξ j 
→ �(ε jρ j )w j (ξ
j ; ε1, ε2); V 2

γ j +2(� j )‖ ≤ cεd
j ‖w j ; V 2

γ j +d(� j )‖;

in the last inequality we took into account that �(ε jρ j )w j (ξ
j ; ε1, ε2) = 0 for

ρ j ≥ cε−1
j ; besides, we assume that 2 − d > 0. In view of (6.4.35), (6.4.41), and

(6.4.34), we obtain

ε
−γ j +1/2
j ‖x j 
→ �(r j )w j (ε

−1x j ; ε1, ε2); V 0
γ1,γ2,δ

(G(ε1, ε2))‖
≤ cεd(1−σ)

j ‖ f ; V 0
γ1,γ2,δ

(G(ε1, ε2))‖. (6.4.43)

Thus, (6.4.37)–(6.4.40) and (6.4.42) and (6.4.43) lead to the inequality

‖−(�+k2)Rε1,ε2 f − f ; V 0
γ1,γ2, δ

(G(ε1, ε2))‖ ≤ c(εd(1−σ)
1 + ε

d(1−σ)
2 )‖ f ; V 0

γ1,γ2, δ
(G(ε1, ε2))‖,

which means that (�+ k2)Rε1,ε2 = I + Sε1,ε2 and the norm of the operator Sε1,ε2 in
the space V 0

γ1,γ2, δ
(G(ε1, ε2)) admits the estimate ‖Sε1,ε2‖ ≤ c(εd(1−σ)

1 + ε
d(1−σ)
2 ).

Step C. Recall that the operator Sε1,ε2 is defined on the subspace V 0,⊥
γ1,γ2, δ

(G(ε1,

ε2)). We need the image of the operator Sε1,ε2 to be included in V 0,⊥
γ1,γ2, δ

(G(ε1, ε2)),

too. To this end, replace themapping Rε1, ε2 by R̃ε1, ε2 : f 
→ U ( f ) + a( f )u p, where
u p is constructed in A, a( f ) being a constant. Then −(� + k2)R̃ε1,ε2 = I + S̃ε1,ε2 ,
with S̃ε1, ε2 = Sε1,ε2 − a(·)(� + k2)u p. The condition (χεσ

1 , εσ
2

S̃ε1, ε2 f, ve)G0 = 0 as
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k = ke gives a( f ) = (χεσ
1 , εσ

2
Sε1, ε2 f, ve)G0/(χεσ

1 , εσ
2
(� + k2e )u p, ve)G0 . Prove that

‖S̃ε1, ε2‖ ≤ c‖Sε1, ε2‖, c being independent of ε1, ε2, k. We have

‖S̃ε1, ε2 f ‖ ≤ ‖Sε1, ε2 f ‖ + |a( f )| ‖(� + k2)u p‖.

The estimate (6.4.33) (with γ j > μ j1 − 1/2 and μ j2 − μ j1 > σ j ), the formula for

kp, and the condition k2 − k2e = O
(
ε
2μ11+1
1 + ε

2μ21+1
2

)
imply

‖(� + k2)u p; V 0
γ1,γ2,δ

‖ ≤ |k2 − k2p| ‖u p; V 0
γ1,γ2,δ

‖ + ‖(� + k2p)u p; V 0
γ1,γ2,δ

‖
≤ c

(
ε
2μ11+1
1 + ε

2μ21+1
2

)
.

Since the supports of the functions (� + k2p)u p and χεσ
1 , εσ

2
do not intersect, we have

|(χεσ
1 ,εσ

2
(� + k2e )u p, ve)G0 | = |(k2e − k2p)(u p, ve)G0 | ≥ c

(
ε
2μ11+1
1 + ε

2μ21+1
2

)
.

Further, γ j − 1 < μ j1 + 1/2, so

|(χεσ
1 , εσ

2
Sε1, ε2 f, ve)G0 | ≤ ‖Sε1, ε2 f ; V 0

γ1,γ2,δ
(G(ε1, ε2))‖ ‖ve; V 0−γ1,−γ2

(G0)‖
≤ c‖Sε1, ε2 f ; V 0

γ1,γ2,δ
(G(ε1, ε2))‖.

Hence,

|a( f )| ≤ c‖Sε1,ε2 f ; V 0
γ1,γ2,δ

(G(ε1, ε2))‖/
(
ε
2μ11+1
1 + ε

2μ21+1
2

)

and ‖S̃ε1,ε2 f ‖ ≤ c‖Sε1,ε2 f ‖. Thus the operator I + S̃ε1,ε2 in V 0,⊥
γ1,γ2,δ

(G(ε1, ε2)) is
invertible, which is also true for the operator of problem (6.4.30):

here denotes the space of elements of V 2
γ1,γ2,δ,−(G(ε1, ε2)) that

vanish on ∂G(ε1, ε2) and are sent by the operator −� − k2 to V 0,⊥
γ1,γ2,δ

. The inverse

operator A−1
ε1,ε2

= R̃ε1,ε2(I + S̃ε1,ε2)
−1 is bounded uniformlywith respect to ε1, ε2, k.

Hence, the inequality (6.4.32) holds with c independent of ε1, ε2, k. �

Consider the solution u1 of the homogeneous problem (6.1.1) defined by (6.1.4).
Let S11 and S12 be the entries of the scattering matrix determined by this solution.
Denote by ũ1,σ the function defined by (6.4.18) with �(r j ) replaced by �(ε−2σ

j r j ).

The S̃11, S̃12 are the same as in Sect. 6.4.2.

Theorem 6.4.4 Let the hypotheses of Propositions 6.2.2 and 6.4.3 be fulfilled and
assume that the coefficients s j in (6.3.1), (6.3.3) and the coefficients b j in (6.4.1) are
nonzero. Then
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|Sp1 − S̃p1| + |Sp2 − S̃p2|

≤ c
(ε

2μ11+1
1 + ε

2μ21+1
2 )ε

μ11
1

(
ε
μ12+1
1 + ε

γ1+3/2
1

) + ε
2μ11+1
1 ε

μ21
2

(
ε
μ22+1
2 + ε

γ2+3/2
2

)
|k2 − k2r | + ε

4μ11+2
1 + ε

4μ21+2
2

with c independent of ε1, ε2, k; p = 1, 2.

Proof Let for instance p = 1. The difference u1 − ũ1,σ is in the space V 2
γ1,γ2, δ,−

(G(ε1, ε2)), and f1 := −(� + k2)(u1 − ũ1,σ ) is in V 0,⊥
γ1,γ2, δ

(G(ε1, ε2)). By Propo-
sition 6.4.3,

|S11(ε) − S̃11(ε)| + |S12(ε) − S̃12(ε)| ≤ ‖u1 − ũ1; V 2
γ1,γ2, δ,−(G(ε1, ε2))‖

≤ c ‖ f1; V 0
γ1,γ2,δ

(G(ε1, ε2))‖.

Arguing as in the proof of Theorem 6.3.6 (cf. (6.3.33)), we obtain that

‖ f1; V 0
γ1,γ2, δ

(G(ε1, ε2))‖ ≤ c
((|a+

1 | + |b+
1 |)εμ11

1

(
ε
μ12+1−σ1
1 + ε

γ1+3/2
1

)

+ (|a+
2 | + |b+

2 |)εμ21
2

(
ε
μ22+1−σ2
2 + ε

γ2+3/2
2

))
.

where (a+
1 , b+

1 ) = (s1 + C11a1, C12c11 + C13c21) and (b+
2 , a+

2 ) = (C12c12 +
C13c22, C14 a2). From (6.4.12), (6.4.15), (6.4.26) in view of (s1, 0, 0, 0)D =
O(ε

2μ11+1
1 ), it follows that

|C1 j | ≤ cε2μ11+1
1

(
1 + ε

2μ11+1
1 + ε

2μ21+1
2

|k2 − k2p|

)
, |C12c1 j + C13c2 j | ≤ c

ε
2μ11+1
1

|k2 − k2p|
,

and

|a+
1 | + |b+

1 | ≤ c
ε
2μ11+1
1 + ε

2μ21+1
2

|k2 − k2p|
, |a+

2 | + |b+
2 | ≤ c

ε
2μ11+1
1

|k2 − k2p|
.

Combining the above inequalities we obtain the required estimate. �

We denote by k2e an eigenvalue of problem (6.2.1) in the resonator G0 and
by k2r (ε) a resonance frequency such that k2r (ε) → k2e as ε → 0. Moreover,
let b j be the constants in asymptotics (6.4.1) of an eigenfunction corresponding
to the eigenvalue k2e and s j (k) the constant in asymptotics (6.3.1) and (6.3.3) of
the special solution Vj for r j → 0, j = 1, 2. Finally, the constants α and β

are defined by (6.2.10) and (6.2.11). We set P = (b1b2β1β2|s1(ke)| |s2(ke)|)−1

and z = b1β1|s1(ke)|ε2μ11+1
1 /b2β2|s2(ke)|ε2μ21+1

2 ; these are the same values as in
(6.4.27) and (6.4.29).
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Theorem 6.4.5 For |k2 − k2r | = O(ε
2μ11+1
1 + ε

2μ21+1
2 ), the asymptotic expansions

Tp(k, ε1, ε2) = 1

1

4

(
z + 1

z

)2

+ P2

(
k2 − k2r

ε
2μ11+1
1 ε

2μ21+1
2

)2

(
1 + O(ε

τ1
1 + ε

τ2
2 )

)
,

k2r (ε1, ε2) = k2e − α1b21ε
2μ11+1
1 − α2b22ε

2μ21+1
2 + O

(
ε
2μ11+1+τ1
1 + ε

2μ21+1+τ2
2

)
,

ϒ(ε1, ε2) =
∣∣∣ z + z−1

P

∣∣∣ε2μ11+1
1 ε

2μ21+1
2

(
1 + O(ε

τ1
1 + ε

τ2
2 )

)

hold: τ j = min{μ j2 − μ j1, 2 − σ j } and σ j are small positive numbers.

Proof From Theorems 6.4.4 and (6.4.27) we obtain

|T1 − T̃1| ≤ c

∣∣∣∣ S12 − S̃12
S̃12

∣∣∣∣ T̃1 ≤ cT̃1
(
ε
τ1
1 + ε

τ2
2 + ε

τ2+2μ21+1
2 /ε

2μ11+1
1

)

with τ j = min{μ j2−μ j1, 2−σ j }, σ j = μ j1+3/2−γ j , j = 1, 2.When ε
2μ11+1
1 ≥

ε
2μ12+1
2 , we get the desired expansion for T1. Assume that ε2μ11+1

1 ≤ ε
2μ21+1
2 . In the

analogous way we can obtain

|T2 − T̃2| ≤ cT̃2
(
ε
τ1
1 + ε

τ2
2 + ε

τ1+2μ11+1
1 /ε

2μ21+1
2

)

with the same τ j . As is known, T1 = T2, and it is easy to see that T̃1 = T̃2 (indeed,
all characteristics of both narrows are interchangeably included in the formulas for
T̃p). This leads to the required expansion for T1 as ε

2μ11+1
1 ≤ ε

2μ21+1
2 . The formulas

for k2r and ϒ follow from that for T1. �



Chapter 7
Resonant Tunneling in 2D Waveguides
in Magnetic Field

The presence of a magnetic field can essentially affect the basic characteristics of
the resonant tunneling and bring new possibilities for applications in electronics. In
particular, in the presence of a magnetic field, the tunneling phenomenon is feasible
for producing spin-polarized electron flows consisting of electrons with spins of the
same direction. In Chap.11, we describe magnetic field sensors based on resonant
tunneling in magnetic field.

We consider the same 2D waveguide with two narrows as in Chap.5 and suppose
that a part of the resonator is occupied by a homogeneous magnetic field. An elec-
tron wave function satisfies the Pauli equation in the waveguide and vanishes on its
boundary. An electron energy is between the first and the second thresholds. The
asymptotics of the basic resonant tunneling characteristics are presented as the nar-
row diameter ε tends to zero. The asymptotic results are compared with numerical
ones obtained by approximate computing the scattering matrix; there is an inter-
val of ε where the asymptotic and numerical results practically coincide. Using the
approximate scattering matrix, we also observe the dependence of the tunneling
characteristics on a magnetic field position in the resonator.

7.1 Statement of the Problem

To describe the domain G(ε) in R
2 occupied by the waveguide, we first introduce

two auxiliary domains G and � in R2. The domain G is the strip

G = R × D = {(x, y) ∈ R
2 : x ∈ R; y ∈ D = (−l/2, l/2)}.

Let us define�. Denote by K a pair of opposite angles with vertex at the origin O .
Assume that K is symmetric about the origin and contains the axis x . The set K ∩ S1,
where S1 is a unit circle, consists of two simple arcs. Assume that� contains K and
a neighborhood of its vertex. Moreover, outside a sufficiently large disc the set �
coincides with K . The boundary ∂� of � is supposed to be smooth (see Fig. 5.1).
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We now turn to the waveguide G(ε). Denote by �(ε) the domain obtained from
� by contraction with center at O and coefficient ε. In other words, (x, y) ∈ �(ε)

if and only if (x/ε, y/ε) ∈ �. Let K j and � j (ε) stand for K and �(ε) shifted
by the vector r j = (x0j , 0), j = 1, 2. We assume that |x01 − x02 | is sufficiently
large so that the distance from ∂K1 ∩ ∂K2 to G is positive. We put (see Fig. 1.4)
G(ε) = G ∩ �1(ε) ∩ �2(ε). Consider the equations

(−i∇ + A)2u ± Hu − k2u = 0, (7.1.1)

which are 2D counterparts of the equations describing the motion of electrons of spin
±1/2 in a magnetic field parallel to z-axis. Here∇ = (∂x , ∂y)

T ; H = ∂x Ay −∂y Ax .
Let H depend only on ρ = ((x − x0)2 + (y − y0)2)1/2, and let H(ρ) = 0 as
ρ > R, where R is a positive constant. Then we can put A = A(ρ)eψ , where
eψ = ρ−1(−y + y0, x − x0) and

A(ρ) = 1

ρ

min{ρ,R}∫
0

t H(t) dt.

It is evident, that the equality ∂x Ay − ∂y Ax = H defines A up to a summand of the
form ∇ f .

Let (ρ, ψ) be polar coordinates in the plane xy centered at (x0, y0), the angle
ψ being measured from a ray parallel to x-axis. Introduce f (x, y) = cψ , where
c = ∫ R

0 t H(t) dt . We assume that −π/2 < ψ < 3π/2. The function f is uniquely
determined in the waveguide for |x − x0| > 0, moreover, ∇ f = A for |x − x0| > R.
Let τ(t) be a cut-off function onR+, equal to 1 as t > R + 2δ and to 0 as t < R + δ,
δ being a positive constant. Put A′(x, y) = A(x, y) − ∇(τ (|x − x0|) f (x, y)). Then
∂x A′

y − ∂y A′
x = ∂x Ay − ∂y Ax = H and A′ = 0 as |x − x0| > R + 2δ. The wave

function u′ = u exp{iτ f } satisfies (7.1.1)withA replaced byA′. As |x−x0| > R+2δ
the Eq. (7.1.1) with new potential A′ reduces to the Helmholtz equation

−
u′ − k2u′ = 0.

In what follows we omit the primes in the notations. We look for solutions to (7.1.1)
satisfying the homogeneous Dirichlet boundary condition

u = 0 on ∂G(ε). (7.1.2)

The obtained boundary value problems are self-adjoint with respect to the Green
formulas

((−i∇ + A)2u ± Hu − k2u, v)G(ε) − (u, (−i∇ + A)2v ± Hv − k2v)G(ε)

+(u, (−∂n − An)v)∂G(ε) − ((−∂n − An)u, v)∂G(ε) = 0,

http://dx.doi.org/10.1007/978-3-319-15105-2_1
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where An is a projection of A onto the outward normal to ∂G(ε); u, v ∈ C∞
0 (G(ε)).

Additionally, we require u to satisfy some radiation conditions at infinity. To formu-
late the conditions, we consider the problem

− 
v(y) − λ2v(y) = 0, y ∈ (−l/2, l/2); (7.1.3)

v(−l/2) = v(l/2) = 0.

The eigenvalues λ2q of this problem are called thresholds; they form the sequence
λ2q = (πq/ l)2, q = 1, 2, . . .. Let us consider the Eq. (7.1.1) with “+”. We suppose
that k2 in (7.1.1) satisfies (π/ l)2 < k2 < (2π/ l)2, i.e., k2 is between the first and the
second thresholds. Then, in the space of bounded wave functions, a basis is formed
by the wave functions subject to the radiation conditions

u+
1 (x, y) =

{
U1(x, y) + S+

11(k)U2(x, y) + O(eδx ), x → −∞,

S+
12(k)U1(x, y) + O(e−δx ), x → +∞; (7.1.4)

u+
2 (x, y) =

{
S+
21(k)U2(x, y) + O(eδx ), x → −∞,

U2(x, y) + S+
22(k)U1(x, y) + O(e−δx ), x → +∞.

(7.1.5)

In the strip G, the functionU1(x, y) = eiν1x
1(y) is a wave incoming from−∞ and
outgoing to +∞, while U2(x, y) = e−iν1x
1(y) is a wave going from +∞ to −∞.

Here ν1 =
√

k2 − λ21; 
1 is an eigenfunction of problem (7.1.3) that corresponds to

the eigenvalue λ21,

1(y) = √

2/ lν1 cos λ1y. (7.1.6)

The matrix
S+ = ‖S+

mj‖m, j=1,2

with elements from conditions (7.1.4) and (7.1.5) is called the scattering matrix; it
is unitary. The values

R+
1 = |S+

11|2, T +
1 = |S+

12|2

are called the reflection and transition coefficients, relatively, for the waveU1 incom-
ing to G(ε) from−∞. Similar definitions can be given for the waveU2 coming from
+∞. The scattering matrix S− and the reflection and transition coefficients R−

m , T −
m

for the Eq. (7.1.1) with “−” are introduced in the same way.
The goal is to find a “resonant” value k±

r = k±
r (ε) of the parameter k, where the

transition coefficient takes at its maximum, and to describe the behavior of T ±
m (k, ε)

in a neighborhood of k±
r (ε) as ε → 0.
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7.2 The Limit Problems

We construct the asymptotics of the wave function (i.e., the solution of (7.1.1)) as
ε → 0 by the compound asymptotics method. To this end, we introduce “limit”
boundary value problems independent of the parameter ε. We suppose the domain
occupied by the magnetic field to be localized in the resonator, the part of the
waveguide between the narrows. Furthermore, we assume that |x j − x0| > R + 2,
j = 1, 2, so the vector potential A differs from zero only on a domain inside the
resonator. Then, outside the resonator and, in particular, near the narrows, the sought
wave function satisfies the Helmholtz equation. That is why this section coincides
with Sect. 7.2 except several details. The only distinction is the discussion of the
limit problem in G0, where magnetic field presents. Nevertheless, we repeat here
the description of necessary properties of limit problems for the convenience of the
reader.

7.2.1 First Kind Limit Problems

Let G(0) = G ∩ K1 ∩ K2 (Fig. 5.3); therefore, G(0) consists of three parts, G1, G2
and G0, where G1 and G2 are infinite domains, and G0 is a bounded resonator.

The boundary value problems

−
v(x, y) − k2v(x, y) = f (x, y), (x, y) ∈ G j ,

v(x, y) = 0, (x, y) ∈ ∂G j ,
(7.2.1)

where j = 1, 2, and

(−i∇ + A(x, y))2v(x, y) ± H(ρ)v(x, y) − k2v(x, y) = f (x, y), (x, y) ∈ G0,

v(x, y) = 0, (x, y) ∈ ∂G0,

(7.2.2)

are called first kind limit problems.
We introduce function spaces for the problem (7.2.2) in G0. Let φ1 and φ2 be

smooth real functions in the closure G0 of G0 such that φ j = 1 in a neighborhood
of O j , j = 1, 2, and φ2

1 + φ2
2 = 1. For l = 0, 1, . . . and γ ∈ R the space V l

γ (G0) is
the completion in the norm

‖v; V l
γ (G0)‖ =

⎛
⎝∫

G0

l∑
|α|=0

2∑
j=1

φ2
j (x, y)r2(γ−l+|α|)

j |∂αv(x, y)|2 dx dy

⎞
⎠

1/2

(7.2.3)
of the set of smooth functions in G0 vanishing near O1 and O2; here r j is the distance
from (x, y) to the origin O j ,α = (α1, α2) is amulti-index, and ∂α = ∂ |α|/∂xα1∂yα2 .

http://dx.doi.org/10.1007/978-3-319-15105-2_5
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Proposition 7.2.1 follows from the well-known general results; e.g., see [37, Chaps. 2
and 4, Sect. 1–3] or [33, vol. 1, Chap. 1].

Proposition 7.2.1 Assume that |γ −1| < π/ω. Then, for f ∈ V 0
γ (G0) and arbitrary

k2, except the positive increasing sequence {k2p}∞p=1 of eigenvalues, k2p → ∞, there

exists a unique solution v ∈ V 2
γ (G0) to the problem (7.2.1) in G0. The estimate

‖v; V 2
γ (G0)‖ ≤ c‖ f ; V 0

γ (G0)‖ (7.2.4)

holds with a constant c independent of f . If f is a smooth function in G0 vanishing
near O1 and O2, and v is any solution in V 2

γ (G0) to the problem (7.2.2), then v is

smooth in G0 except at O1 and O2 and admits the asymptotic representation

v(x, y) =
{

b1 J̃π/ω(kr1)�(ϕ1) + O
(
r2π/ω1

)
, r1 → 0,

b2 J̃π/ω(kr2)�(π − ϕ2) + O
(
r2π/ω2

)
, r2 → 0,

near the points O1 and O2, where (r j , ϕ j ) are polar coordinates centered at O j ,
b j are some constants coefficients, J̃μ stands for the Bessel function multiplied by a
constant such that J̃μ(kr) = rμ + o(rμ), and �(ϕ) = π−1/2 cos (πϕ/ω).

Let k2 = k2e be an eigenvalue of the problem (7.2.2). Then the problem (7.2.2) in
G0 is solvable if and only if ( f, ve)G0 = 0 for any eigenfunction ve corresponding to
k2e . These conditions being fulfilled, there exists a unique solution v to the problem
(7.2.2) that is orthogonal to the eigenfunctions and satisfies (7.2.4) (i.e., the Fredholm
alternative holds).

We turn to problems (7.2.1) for j = 1, 2. Let χ0, j and χ∞, j be smooth real
functions in the closure G j of G j such that χ0, j = 1 in a neighborhood of O j ,
χ0, j = 0 outside a compact set, and χ2

0, j + χ2∞, j = 1. We also assume that the
support suppχ∞, j is located in the strip G. For γ ∈ R, δ > 0, and l = 0, 1, . . . the
space V l

γ, δ(G j ) is the completion in the norm

‖v; V l
γ, δ(G j )‖

=
⎛
⎝∫

G j

l∑
|α|=0

(
χ0, j (x, y)2r2(γ−l+|α|)

j + χ∞, j (x, y)2 exp(2δx)
)|∂αv(x, y)|2 dx dy

⎞
⎠
1/2

(7.2.5)

of the set of smooth functions with compact supports on G j vanishing near O j .
Recall that, by assumption, k2 is between the first and the second thresholds,

therefore in each domain G j there exists only one outgoing wave. Let U−
1 = U2

be the outgoing wave in G1 and let U−
2 = U1 be the outgoing wave in G2 (the

definitions of U j and G are given in Sect. 7.1). The next proposition follows, e.g.,
from Theorem 5.3.5 in [37].
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Proposition 7.2.2 Let |γ−1| < π/ω and suppose that there is no nontrivial solution
to the homogeneous problem (7.2.1) (where f = 0) in V 2

γ, δ(G j ) with arbitrarily

small positive δ. Then, for any f ∈ V 0
γ, δ(G j ), there exists a unique solution v to

(7.2.1) that admits the representation

v = u + A jχ∞, jU
−
j ,

where A j = const, u ∈ V 2
γ, δ(G j ), and δ is sufficiently small; herewith the estimate

‖u; V 2
γ, δ(G j )‖ + |A j | ≤ c‖ f ; V 0

γ, δ(G j )‖, (7.2.6)

holds with a constant c independent of f . If f is smooth and vanishes near O j , then
the solution v to the problem in G1 satisfies

v(x, y) = a1 J̃π/ω(kr1)�(π − ϕ1) + O
(
r2π/ω1

)
, r1 → 0,

and the solution to the problem in G2 satisfies

v(x, y) = a2 J̃π/ω(kr2)�(ϕ2) + O
(
r2π/ω2

)
, r2 → 0,

where a j are some constants.

7.2.2 Second Kind Limit Problems

In the domains� j , j = 1, 2, introduced in Sect. 7.1, we consider the boundary value
problems


w(ξ j , η j ) = F(ξ j , η j ), (ξ j , η j ) ∈ � j ,

w(ξ j , η j ) = 0, (ξ j , η j ) ∈ ∂� j ,
(7.2.7)

which are called secondkind limit problems; (ξ j , η j ) stands forCartesian coordinates
with origin at O j .

Let ρ j = dist((ξ j , η j ), O j ) and let ψ0, j , ψ∞, j be smooth real functions in � j

such that ψ0, j = 1 for ρ j < N/2, ψ0, j = 0 for ρ j > N , and ψ2
0, j + ψ2∞, j = 1,

where N is a sufficiently large positive number. For γ ∈ R and l = 0, 1, . . ., the
space V l

γ (� j ) is the completion in the norm

‖v; V l
γ (� j )‖

=
⎛
⎝∫

� j

l∑
|α|=0

(
ψ0, j (ξ j , η j )

2 + ψ∞, j (ξ j , η j )
2ρ

2(γ−l+|α|)
j

)|∂αv(ξ j , η j )|2 dξ j dη j

⎞
⎠
1/2

(7.2.8)
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of the set C∞
c (� j ) of smooth functions compactly supported in� j . The next propo-

sition is a corollary of Theorem 4.3.6 in [37].

Proposition 7.2.3 Let |γ − 1| < π/ω. Then for F ∈ V 0
γ (� j ) there exists a unique

solution w ∈ V 2
γ (� j ) to (7.2.7) such that the estimate

‖w; V 2
γ (� j )‖ ≤ c‖F; V 0

γ (� j )‖, (7.2.9)

holds with a constant c independent of F. If F ∈ C∞
c (� j ), then w is smooth on � j

and admits the representation

w(ξ j , η j ) =
{

dl
jρ

−π/ω
j �(π − ϕ j ) + O

(
ρ

−3π/ω
j

)
, ξ j < 0,

dr
jρ

−π/ω
j �(ϕ j ) + O

(
ρ

−3π/ω
j

)
, ξ j > 0,

(7.2.10)

as ρ j → ∞; here (ρ j , ϕ j ) are polar coordinates in � j with center at O j , and � is
the same as in Proposition 7.2.1. The constants dl

j and dr
j are found with the formulas

dl
j = −(F, wl

j )�, dr
j = −(F, wr

j )�,

where wl
j and wr

j are the unique solutions to (7.2.7) with F = 0 satisfying

wl
j =

{(
ρ
π/ω
j + αρ

−π/ω
j

)
�(π − ϕ j ) + O

(
ρ

−3π/ω
j

)
, ξ j < 0;

βρ
−π/ω
j �(ϕ j ) + O

(
ρ

−3π/ω
j

)
, ξ j > 0; (7.2.11)

wr
j =

{
βρ

−π/ω
j �(π − ϕ j ) + O

(
ρ

−3π/ω
j

)
, ξ j < 0;(

ρ
π/ω
j + αρ

−π/ω
j

)
�(ϕ j ) + O

(
ρ

−3π/ω
j

)
, ξ j > 0; (7.2.12)

as ρ j → ∞; the coefficients α and β depend only on the geometry of � and have to
be calculated.

7.3 Special Solutions to Homogeneous First Kind Limit
Problems

In each of the domains G j , j = 0, 1, 2, we introduce special solutions to the homo-
geneous problems (7.2.1) and (7.2.2). These solutions are necessary for the construc-
tion of the wave function asymptotics in the next section. It follows from Proposi-
tions 7.2.1 and 7.2.2 that the bounded solutions to the homogeneous problems (7.2.1)
and (7.2.2) are trivial (except the eigenfunctions of the problem in the resonator).
Therefore, we consider only solutions unbounded in the neighborhood of O j .
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We now introduce special solutions to homogeneous problems (7.2.1) in G j ,
j = 0, 1, 2. In the domain G j , j = 1, 2, there exists a bounded solution Vj such
that

Vj (x, y) =
{

U+
j (x, y) + S0

j jU
−
j (x, y) + O(exp(−δx)), x → ∞,

s j J̃π/ω(kr j )� j (ϕ j ) + O
(
r2π/ω

)
, r → 0,

(7.3.1)

with arbitrary small positive δ, �1(ϕ1) = �(π − ϕ1), and �2(ϕ2) = �(ϕ2). The
scattering matrix in G j consists of the only entry S0

j , |S0
j | = 1.

Let K l be the part of the double cone K to the left of the coordinate origin,
K l = {(ξ, η) ∈ K : ξ < 0}. Let us consider the problem

−
u − k2u = 0 in K l ,

u = 0 on ∂K l .
(7.3.2)

The function
v(r, ϕ) = Ñπ/ω(kr)�(π − ϕ) (7.3.3)

satisfies (7.3.2); Ñπ/ω stands for the Neumann functionmultiplied by a constant such
that

Ñπ/ω(kr) = r−π/ω + o(r−π/ω)

and � is the same as in Proposition 7.2.1. Let t 
→ �(t) be a cut-off function on R

equal to 1 for t < δ/2 and to 0 for t > δ, δ being a small positive number. Introduce
a solution

v1(x, y) = �(r1)v(r1, ϕ1) + ṽ1(x, y) (7.3.4)

of homogeneous problem (5.2.1) in G1, where ṽ1 solves (7.2.1) with f = −[
,�]v;
the existence of ṽ1 is provided by Proposition 7.2.2. Thus,

v1(x, y) =
{(

Ñπ/ω(kr1) + a1 J̃π/ω(kr1)
)
�(π − ϕ1) + O(r3π/ω1 ), r1 → 0,

A1U−
1 (x, y) + O(eδx ), x → −∞,

(7.3.5)
where J̃π/ω is the same as in Propositions 7.2.1 and 7.2.2, and the constant A �= 0
depends only on the geometry of the domain G1 and should be calculated.

Define the solution v2 to the problem (7.2.1) in G2 by v2(x, y) = v1(d − x, y),
where d = dist(O1, O2). Then

v2(x, y) =
{(

Ñπ/ω(kr2) + a2 J̃π/ω(kr2)
)
�(ϕ2) + O(r3π/ω2 ), r2 → 0,

A2U−
2 (x, y) + O(e−δx ), x → +∞;

(7.3.6)
where obviously a2 = a1, A2 = A1e−iν1d .

http://dx.doi.org/10.1007/978-3-319-15105-2_5
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Lemma 7.3.1 The equalities |A j |2 = 2Im a j , A j = is j S0
j j hold.

Let k2e,± be a simple eigenvalue of (7.2.2) in G0 and let v±
e be a corresponding

eigenfunction normalized by
∫

G0
|v±

e |2dx dy = 1. By Proposition 7.2.1

v±
e (x) ∼

{
b±
1 J̃π/ω(ke,±r1)�(ϕ1), r1 → 0,

b±
2 J̃π/ω(ke,±r2)�(π − ϕ2), r2 → 0.

(7.3.7)

We assume that b±
j �= 0. For H = 0, it is true, e.g., for the eigenfunction cor-

responding to the least eigenvalue of the resonator. For nonzero H , this condition
may not hold. For k2 in a punctured neighborhood of k2e,± separated from the other
eigenvalues, we introduce solutions v±

0 j to the homogeneous problem (7.2.2) by

v±
0 j (x, y) = �(r j )v(r j , ϕ j ) + ṽ±

0 j (x, y), j = 1, 2, (7.3.8)

where v is defined by (7.3.3), and ṽ±
0 j is the bounded solution to the problem (7.2.2)

with
f j (x, y) = [
,�(r j )]v(r j , ϕ j ).

Lemma 7.3.2 In a neighborhood V ⊂ C of k2e,± containing no eigenvalues of the

problem (7.2.2) in G0 except k2e,±, the equalities v±
0 j = −b±

j (k
2 − k2e,±)−1v±

e + v̂±
0 j

hold with b±
j in (7.3.7) and functions v̂±

0 j analytic in k2 ∈ V .

Proof First check the equality (v±
0 j , v

±
e )G0 = −b±

j /(k
2 − k2e,±), where v±

0 j are
defined by (7.3.8). We have

(
v±
0 j + k2v±

0 j , v
±
e )Gδ − (v±

0 j ,
v±
e + k2v±

e )Gδ = −(k2 − k2e,±)(v±
0 j , v

±
e )Gδ ;

the domain Gδ is obtained from G0 by excluding discs with radius δ and centers O1
and O2. Using the Green formula, as in Lemma 5.3.1, we get the equality

−(k2 − k2e,±)(v±
0 j , v

±
e )Gδ = b±

j + o(1).

It remains to let δ tend to zero.
Since k2e,± is a simple eigenvalue, we have

ṽ±
0 j = B±

j (k
2)

k2 − k2e,±
v±
0 + v̂±

0 j , (7.3.9)

where B±
j (k

2) does not depend on (x, y), and v̂±
0 j are some functions analytic

with respect to k2 near the point k2 = k2e,±. Multiplying (7.3.8) by v±
e and tak-

ing into account (7.3.9), the obtained formula for (v±
0 j , v

±
e )G0 , and the condition

http://dx.doi.org/10.1007/978-3-319-15105-2_5
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(v±
e , v±

e )G0 = 1, we get the equality B±
j (k

2) = −b±
j + (k2 − k2e,±)B̃±

j (k
2), where

B̃±
j are some analytic functions. Together with (7.3.9) that leads to the required

statement. �

In view of Proposition 7.2.1,

v±
01(x, y) ∼

{(
Ñπ/ω(kr1) + c±

11(k) J̃π/ω(kr1)
)
�(ϕ1), r1 → 0,

c±
12(k) J̃π/ω(kr2)�(π − ϕ2), r2 → 0,

(7.3.10)

v±
02(x, y) ∼

{(
c±
21(k) J̃π/ω(kr1)

)
�(ϕ1), r1 → 0,(

Ñπ/ω(kr2) + c±
22(k) J̃π/ω(kr2)

)
�(π − ϕ2), r2 → 0.

(7.3.11)

According to Lemma 7.3.2 and relations (7.3.7),

c±
pq(k) = − b±

p b±
q

k2 − k2e,±
+ ĉ±

pq(k), (7.3.12)

where ĉ±
pq analytically depends on k2 near k2e,±.

Lemma 7.3.3 If v±
01 and v±

02 in (7.3.10) and (7.3.11) make sense for a number k,

then c±
12(k) = c±

21(k).

Proof It suffices to apply the Green formula to v±
01 and v±

02 in the same domain Gδ

as in the proof of Lemma 5.3.2, to use (7.3.10) and (7.3.11), and to let δ tend to 0. �

7.4 Asymptotic Formulas

This section is devoted to the derivation of the asymptotic formulas. In Sect. 7.4.1,
we present a formula for the wave function (see (7.4.1)), explain its structure, and
describe the solutions of the first kind limit problems involved in the formula. The
construction of formula (7.4.1) is completed in Sect. 7.4.2, where the solutions to
the second kind limit problems are given and the coefficients in the expressions
for the solutions of the first kind limit problems are calculated. In Sect. 7.4.3, we
analyze the expression for S̃12 obtained in 7.4.2 and derive formal asymptotics for
the characteristics of resonant tunneling. Notice that the remainders in the formu-
las (7.4.23) and (7.4.26) arose in the intermediate stage of considerations while sim-
plifying the principal part of the asymptotics; they are not the remainders in the final
asymptotic formulas. The “final” remainders are estimated in Sect. 7.5 (see Theo-
rem 7.5.3). For brevity, in this section we omit “±” in the notations bearing in mind
any one of the Eqs. (7.1.1) and not specifying, which is considered.

http://dx.doi.org/10.1007/978-3-319-15105-2_5
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7.4.1 Asymptotics of the Wave Function

In thewaveguideG(ε), we consider the scattering of thewaveU (x, y) = eiν1x
1(y),
incoming from −∞ (see (7.1.6)). The corresponding wave function admits the rep-
resentation

u(x, y; ε) = χ1, ε(x, y)v1(x, y; ε) + �(r1)w1(ε
−1x1, ε

−1y1; ε)
+ χ0, ε(x, y)v0(x, y; ε) + �(r2)w2(ε

−1x2, ε
−1y2; ε) (7.4.1)

+ χ2, ε(x, y)v2(x, y; ε) + R(x, y; ε).

Let us explain the notation and the structure of this formula. When composing the
formula, we first describe the behavior of the wave function u outside of the nar-
rows, where the solutions v j to the homogeneous problems (7.2.1) in G j serve as
approximations to u. The function v j is a linear combination of the special solu-
tions introduced in the previous section; v1 and v2 are subject to the same radiation
conditions as u:

v1(x, y; ε) = V1(x, y) + C11v1(x, y) ∼ U+
1 (x, y)

+ S̃11(ε)U
−
1 (x, y), x → −∞; (7.4.2)

v0(x, y; ε) = C12(ε)v01(x, y) + C13(ε)v02(x, y); (7.4.3)

v2(x, y; ε) = C14v2(x, y) ∼ S̃12(ε)U
−
2 (x, y), x → +∞; (7.4.4)

the approximations S̃11(ε), S̃12(ε) to the scattering matrix entries S11(ε), S12(ε) and
the coefficients C11(ε), . . . ,C14(ε) are yet unknown. By χ j,ε we denote the cut-off
functions defined by

χ1, ε(x, y) = (1 − �(r1/ε)) 1G1(x, y),

χ2, ε(x, y) = (1 − �(r2/ε)) 1G2(x, y),

χ0, ε(x, y) = (1 − �(r1/ε) − �(r2/ε)) 1G0(x, y),

where r j =
√

x2j + y2j , and (x j , y j ) are the coordinates of a point (x, y) in the system

obtained by shifting the origin to the point O j ; 1G j is the indicator of G j (equal to 1
in G j and to 0 outside G j ); �(ρ) is the same cut-off function as in (7.3.4) (equal
to 1 for 0 � ρ � δ/2 and to 0 for ρ � δ, δ being a fixed positive number). Thus, χ j, ε

are defined on the whole waveguide G(ε) as well as the functions χ j, εv j in (7.4.1).
Being substituted to (7.1.1), the sum

∑2
j=0 χ j, εv j gives a discrepancy in the right-

hand side of the Helmholtz equation supported near the narrows. We compensate
the principal part of the discrepancy by means of the second kind limit problems.
Namely, the discrepancy supported near O j is rewritten into coordinates (ξ j , η j ) =
(ε−1x j , ε

−1y j ) in the domain � j and is taken as a right-hand side for the Laplace
equation. The solution w j of the corresponding problem (6.2.6) is rewritten into
coordinates (x j , y j ) and multiplied by a cut-off function. As a result, the terms
�(r j )w j (ε

−1x j , ε
−1y j ; ε) arise in (7.4.1).

http://dx.doi.org/10.1007/978-3-319-15105-2_6
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Proposition 7.2.3 provides the existence of solutions w j decaying at infinity as

O(ρ
−π/ω
j ) (see (7.2.10)). But those solutions will not lead us to the goal, because

substitution of (7.4.1) into (7.1.1) gives a discrepancy of high order, which has to be
compensated again. Therefore, we require the rate w j = O(ρ

−3π/ω
j ) as ρ j → ∞.

By Proposition 7.2.3, such a solution exists if the right-hand side of the problem
(7.2.7) satisfies the additional conditions

(F, wl
j )� j = 0, (F, wr

j )� j = 0.

These conditions (two in each narrow) uniquely determine the coefficients S̃11(ε),
S̃12(ε), C11(ε), . . . ,C14(ε). The remainder R(x, y; ε) is small in comparison with
the principal part of (7.4.1) as ε → 0.

7.4.2 Formulas for ˜S11, ˜S12, and C1 j

Now let us specify the right-hand sides Fj of the problems (7.2.7) and find S̃11(ε),
S̃12(ε), and C1 j (ε). Substituting χ1, εv1 into (7.1.1), we get the discrepancy

−(
 + k2)χ1, εv1 = −[
,χε,1]v1 − χε,1(
 + k2)v1 = −[
, 1 − �(ε−1r1)]v1,

which is non-zero in the neighborhood of the point O1, where v1 can be replaced
by asymptotics; the boundary condition (7.1.2) is fulfilled. According to (7.4.2)
and (7.3.1), (7.3.5)

v1(x, y; ε) = (
a−
1 (ε)Ñπ/ω(kr1)+a+

1 (ε) J̃π/ω(kr1)
)
�(π −ϕ1)+ O(r3π/ω1 ), r1 → 0,

where
a−
1 (ε) = C11, a+

1 = s1 + C11a1. (7.4.5)

We select the leading term in each summand, take ρ1 = r1/ε, and obtain

−(
 + k2)χε,1v1 ∼ −[
, 1 − �(ε−1r1)]
(

a−
1 r−π/ω

1 + a+
1 rπ/ω

1

)
�(π − ϕ1)

= −ε−2[
(ρ1,ϕ1), 1 − �(ρ1)]
(

a−
1 ε−π/ωρ

−π/ω
1 + a+

1 επ/ωρ
π/ω
1

)
�(π − ϕ1).

(7.4.6)

In the sameway, taking account of (7.4.3), (7.3.10) and (7.3.11), we write the leading
discrepancy of χε,2v2 supported in a neighborhood of O1:

(
 + k2)χε,1v1 ∼ ε−2[
(ρ1,ϕ1), 1 − �(ρ1)]
(

b−
1 ε−π/ωρ

−π/ω
1 + b+

1 επ/ωρ
π/ω
1

)
�(ϕ1),

(7.4.7)
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where
b−
1 = C12(ε), b+

1 = C12(ε)c11 + C13(ε)c21. (7.4.8)

As a right-hand side F1 of problem (7.2.7) in �1, we take the function

F1(ξ1, η1) = − [
, ζ−]
(

a−
1 ε−π/ωρ

−π/ω
1 + a+

1 επ/ωρ
π/ω
1

)
�(π − ϕ1)

− [
, ζ+]
(

b−
1 ε−π/ωρ

−π/ω
1 + b+

1 επ/ωρ
π/ω
1

)
�(ϕ1), (7.4.9)

where ζ+ (respectively ζ−) denotes the function 1−�, first restricted to the domain
ξ1 > 0 (respectively ξ1 < 0) and then extended by zero to the whole domain �1.
Let w1 be the corresponding solution; then the term �(r1)w1(ε

−1x1, ε−1y1; ε) in
(7.4.1), being substituted in (7.1.1), compensates discrepancies (7.4.6) and (7.4.7).

Now, we use (7.4.3) and (7.4.4), (7.3.10) and (7.3.11), and (7.3.6) to find the
right-hand side of problem (7.2.7) for j = 2:

F2(ξ2, η2) = − [
, ζ−]
(

a−
2 ε−π/ωρ

−π/ω
2 + a+

2 επ/ωρ
π/ω
2

)
�(π − ϕ2)

− [
, ζ+]
(

b−
2 ε−π/ωρ

−π/ω
2 + b+

2 επ/ωρ
π/ω
2

)
�(ϕ2),

where
a−
2 (ε) = C13(ε), a+

2 (ε) = C12(ε)c12 + C13(ε)c22,

b−
2 (ε) = C14(ε), b+

2 (ε) = C14(ε)a2.
(7.4.10)

Lemma 7.4.1 Let the solution wj to problem (7.2.7) with right-hand side

Fj (ξ j , η j ) = − [
, ζ−]
(

a−
j ε

−π/ωρ
−π/ω
j + a+

j ε
π/ωρ

π/ω
j

)
�(π − ϕ j )

− [
, ζ+]
(

b−
j ε

−π/ωρ
−π/ω
j + b+

j ε
π/ωρ

π/ω
j

)
�(ϕ j ),

j = 1, 2, be majorized by O(ρ
−3π/ω
j ) as ρ j → ∞. Then the relations

a−
j ε

−π/ω − αa+
j ε

π/ω − βb+
j ε

π/ω = 0, b−
j ε

−π/ω − αb+
j ε

π/ω − βa+
j ε

π/ω = 0,
(7.4.11)

hold with α and β in (7.2.11) and (7.2.12).

Remark 7.4.2 The solutions w j mentioned in Lemma 7.4.1 can be represented as
linear combinations of functions independent of ε. Let wl

j and wr
j be the solutions

of problem (7.2.7) specified by conditions (7.2.11) and (7.2.12), and let ζ+ and ζ−
be the same cut-off functions as in (7.4.9). Put

wl
j = wl

j − ζ− (
ρ
π/ω
j + αρ

−π/ω
j

)
�(π − ϕ j ) − ζ+βρ

−π/ω
j �(ϕ j ),

wr
j = wr

j − ζ−βρ
−π/ω
j �(π − ϕ j ) − ζ+ (

ρ
π/ω
j + αρ

−π/ω
j

)
�(ϕ j ).
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A straightforward verification shows that

w j = a+
j ε

π/ωwl
j + b+

j ε
π/ωwr

j . (7.4.12)

It is convenient to write (7.4.11) in the form

(a−
j , b−

j ) = (a+
j , b+

j )� ε2π/ω, � =
(
α β

β α

)
. (7.4.13)

We use (7.4.5) and (7.4.8) to transform (7.4.13) with j = 1 to the equality

(C11,C12) = (s1 + C11a1,C12c11 + C13c21)� ε2π/ω. (7.4.14)

For j = 2, taking (7.4.10) into account, we reduce (7.4.13) to

(C13,C14) = (C12c12 + C13c22,C14 a2)� ε2π/ω. (7.4.15)

Setting � = diag {�,�},

a =

⎛
⎜⎜⎝

a1 0 0 0
0 c11 c12 0
0 c21 c22 0
0 0 0 a2

⎞
⎟⎟⎠ , (7.4.16)

and combining the above relations for C1 j , we obtain

(C11,C12,C13,C14) = (s1, 0, 0, 0)� ε2π/ω + (C11,C12,C13,C14) a �ε2π/ω,

hence

(C11,C12,C13,C14)(I − a �ε2π/ω) = (s1, 0, 0, 0)� ε2π/ω. (7.4.17)

Let us calculate the inverse matrix for I − a�ε2π/ω, assuming ε to be sufficiently
small. From (7.3.12) it follows that

a(k) = − b∗b
k2 − k2e

+ â(k),

where b = (0, b1, b2, 0) and the matrix â is analytic near k = ke and defined by
(7.4.16), whereas cpq is replaced for ĉpq . We have

I − a �ε2π/ω = I − â �ε2π/ω + b∗b�ε2π/ω

k2 − k2e

=
(

I + b∗b�ε2π/ω(I − â �ε2π/ω)−1

k2 − k2e

)
(I − â �ε2π/ω);
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it is evident that (I − â �ε2π/ω)−1 exists for small ε. Straightforward calculation
shows that (

I + b∗c
k2 − k2e

)−1

= I − b∗c
k2 − k2e − 〈c,b〉

for c = b�ε2π/ω(I−â �ε2π/ω)−1,where 〈·, ·〉 is the inner product inC4. Therefore,

(I − a�ε2π/ω)−1 = (I − â �ε2π/ω)−1
(

I − b∗b�ε2π/ω(I − â �ε2π/ω)−1

k2 − k2e + 〈b�ε2π/ω(I − â �ε2π/ω)−1,b〉
)
.

This leads to

(C11,C12,C13,C14) = (s1, 0, 0, 0)� ε2π/ω(I − a �ε2π/ω)−1

= (s1, 0, 0, 0)

(
D − D b∗b D

k2 − k2e + 〈bD,b〉
)
, (7.4.18)

where b = (0, b1, b2, 0), D = �ε2π/ω(I − â �ε2π/ω)−1, and the matrix â is
analytic in k near ke and defined by (7.4.16) with cpq replaced by ĉpq (see (7.3.12)).

We now seek an approximation to the entries of the first row (S11, S12) of the
scattering matrix. By virtue of (7.4.2) and (7.4.4),

(S̃11, S̃12) = (S0
11 + C11A1,C14A2). (7.4.19)

We set

A =

⎛
⎜⎜⎝

A1 0
0 0
0 0
0 A2

⎞
⎟⎟⎠ , s =

(
s1 0 0 0
0 0 0 s2

)
;

S0 = diag (S0
11, S0

22); then, by Lemma 7.3.1, A = is∗S0. In view of (7.4.19) and
(7.4.18), we obtain

(S̃11, S̃12) = (S0
11, 0) + (C11,C12,C13,C14)A

= (S0
11, 0) + i(s1, 0, 0, 0)

(
D − D b∗b D

k2 − k2e + 〈bD,b〉
)

s∗S0. (7.4.20)

An approximation to the second row of the scattering matrix is of the form

(S̃21, S̃22) = (0, S0
22) + i(0, 0, 0, s2)

(
D − D b∗b D

k2 − k2e + 〈bD,b〉
)

s∗S0. (7.4.21)

Lemma 7.4.3 The matrix S̃(ε) is unitary.
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7.4.3 Formulas for Resonant Tunneling Characteristics

The solutions of the first kind limit problems involved in (7.4.1) are defined for
complex k as well. Expressions (7.4.20) and (7.4.21) for S̃ have a pole kp in the
lower complex half-plane. To find k2p we equate k2 − k2e +〈bD,b〉 to zero and solve
the equation for k2 − k2e :

k2 − k2e = −〈bD,b〉 = −ε2π/ω〈b�(I − â �ε2π/ω)−1,b〉. (7.4.22)

Since the right-hand side of the last equation behaves like O(ε2π/ω) as ε → 0, it
may be solved by the successive approximation method. Considering the formulas
Im a j = |s j |2/2, which follow from the waveguide symmetry and Lemma 7.3.1, and
discarding the lower order terms, we get k2p = k2r − ik2i , where

k2r = k2e − α(|b1|2 + |b2|2)ε2π/ω + O(ε4π/ω), (7.4.23)

k2i = 1

2
β2(|b1|2 + |b2|2)|s1(k2e )|2ε4π/ω + O(ε6π/ω).

From (7.4.20) and (7.4.21), we obtain

S̃(k, ε) = S0(k) + is(k)� s∗(k)S0(k)ε2π/ω − i
s(k)� b∗b� s∗(k)S0(k)

k2 − k2p
ε4π/ω + O

(
ε6π/ω

k2 − k2p

)

=
(

S0
11(k) 0
0 S0

22(k)

)
+ i

(|s1(k)|2α1S0
11(k) 0

0 |s2(k)|2α2S0
22(k)

)
ε2π/ω

− i

k2 − k2p

( |s1(k)|2|b1|2β2S0
11(k) s1(k)s2(k) b1b2β2S0

22(k)
s2(k)s1(k)b1b2β2S0

11(k) |s2(k)|2|b2|2β2S0
22(k)

)
ε4π/ω

+ O

(
ε6π/ω

k2 − k2p

)
.

Let k2 − k2e = O(ε2π/ω), then cε4π/ω ≤ |k2 − k2p| ≤ cε2π/ω, s j (k) = s j (ke) +
O(ε2π/ω), S0

j j (k) = S0
j j (ke) + O(ε2π/ω), and

S̃12(k, ε) = −iε4π/ω
s1(k)s2(k) b1b2β2S0

22(k)

k2 − k2p

(
1 + O(ε2π/ω)

)

= −
s1(ke)

|s1(ke)|
s2(ke)

|s2(ke)|
b1
|b1|

b2
|b2| S0

22(ke)

1

2

( |b1|
|b2| + |b2|

|b1|
)

− i P
k2 − k2r
ε4π/ω

(
1 + O(ε2π/ω)

)
, (7.4.24)
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S̃21(k, ε) = −iε4π/ω
s1(k)s2(k)b1b2β2S0

11(k)

k2 − k2p

(
1 + O(ε2π/ω)

)

= −
s1(ke)

|s1(ke)|
s2(ke)

|s2(ke)|
b2
|b2|

b2
|b2| S0

11(ke)

1

2

( |b1|
|b2| + |b2|

|b1|
)

− i P
k2 − k2r
ε4π/ω

(
1 + O(ε2π/ω)

)
,

where P = (|b1||b2|β2|s1(ke)|2
)−1

. Thus,

T̃1(k, ε) = T̃2(k, ε) = |S̃12|2 = 1

1

4

( |b1|
|b2| + |b2|

|b1|
)2

+ P2

(
k2 − k2r
ε4π/ω

)2 (1 + O(ε2π/ω)).

(7.4.25)
The obtained approximation T̃ j to the transition coefficient Tj has a peak at k2 = k2r
whose width at its half-height is

ϒ̃(ε) =
( |b1|

|b2| + |b2|
|b1|

)
1

P
ε4π/ω. (7.4.26)

7.5 Justification of the Asymptotics

As in the previous section, here we omit “±” the notations and do not specify which
equation of (7.1.1) is considered. We return to the full notations in Theorem 7.5.3.

We now introduce functional spaces for the problem

(−i∇ + A)2u ± Hu − k2u = f in G(ε), u = 0 on ∂G(ε). (7.5.1)

Recall that the functions A and H are compactly supported, and, besides, they are
nonzero only in the resonator at some distance from the narrows. Let � be the same
function as in (7.3.4) and let the cut-off functions η j , j = 0, 1, 2, be nonzero in G j
and satisfy the relation η1(x, y)+�(r1)+η0(x, y)+�(r2)+η2(x, y) = 1 in G(ε).
For γ ∈ R, δ > 0, and l = 0, 1, . . ., the space V l

γ,δ(G(ε)) is the completion in the
norm

‖u; V l
γ,δ(G(ε))‖

=
(∫

G(ε)

l∑
|α|=0

( 2∑
j=1

�2(r j ) (r
2
j + ε2j )

γ−l+|α| + η21e2δ|x | + η0 + η22e2δ|x |
)

|∂αv|2 dx dy

)1/2

(7.5.2)
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of the set of smooth functions compactly supported on G(ε). Denote by V 0,⊥
γ,δ the

space of function f , analytic in k2, with values in V 0
γ,δ(G(ε)) that satisfy, at k2 = k2e ,

the condition (χ0,εσ f, ve)G0 = 0 with a small σ > 0.

Proposition 7.5.1 Let k2r be a resonance, k2r → k2e as ε → 0, and let |k2 − k2r | =
O(ε2π/ω). Let γ satisfy the condition π/ω − 2 < γ − 1 < π/ω, f ∈ V 0,⊥

γ,δ (G(ε)),
and let u be a solution to problem (7.5.1) that admits the representation

u = ũ + η1A−
1 U−

1 + η2A−
2 U−

2 ;

here A−
j = const and ũ ∈ V 2

γ,δ(G(ε)) for small δ > 0. Then

‖ũ; V 2
γ,δ(G(ε))‖ + |A−

1 | + |A−
2 | ≤ c‖ f ; V 0

γ,δ(G(ε))‖, (7.5.3)

where c is a constant independent of f and ε.

Proof Step A. First we construct an auxiliary function u p. As mentioned above, S̃
has a pole k2p = k2r − ik2i (see (7.4.23)). Let us multiply the solutions to the limit
problems, involved in (7.4.1), by g := −(k2 − k2e +〈bD(k),b〉)/〈(s1, 0, 0, 0)D,b〉,
put k = kp, and denote the resulting functions by adding the subscript p. In view of
(7.4.18) and the equality (s1, 0, 0, 0)Db∗ = 〈(s1, 0, 0, 0)D,b〉, we get

g (C11,C12,C13,C14)|k=kp = bD(kp) = (b1β, b1α, b2α, b2β)ε
2π/ω + O(ε4π/ω).

(7.5.4)
This and (7.4.2), (7.4.4) lead to

v1p(x, y; ε) = g C11|k=kp v1(x, y; kp) = ε2π/ω
(

b1β + O
(
ε2π/ω

))
v1(x, y; kp),

(7.5.5)

v2p(x, y; ε) = g C14|k=kp v2(x, y; kp) = ε2π/ω
(

b2β + O
(
ε2π/ω

))
v2(x, y; kp);

the dependence of kp on ε is not shown. According to (7.4.3) and Lemma 7.3.2,

v0p(x, y; ε) = − (g C12b1 + g C13b2)|k=kp

k2p − k2e
ve(x, y)

+ g C12|k=kp v̂01(x, y) + g C13|k=kp v̂02(x, y).

Taking into account (7.4.18), we obtain

C12b1 + C13b2 = (C11,C12,C13,C14)b∗ =
(s1, 0, 0, 0)Db∗

(
1 − 〈bD,b〉

k2 − k2e + 〈bD,b〉
)

= (k2 − k2e )
〈(s1, 0, 0, 0)D,b〉
k2 − k2e + 〈bD,b〉 .

(7.5.6)
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Hence,

v0p(x, y; ε) = ve(x, y) + ε2π/ω(b1α + O(ε2π/ω))̂v01(x, y)

+ ε2π/ω(b2α + O(ε2π/ω))̂v02(x, y).

Finally, using (7.4.12) and formulas (7.4.5), (7.4.8), (7.4.10) for a+
j and b+

j , we find

w1p(ξ1, η1; ε) = (gC11)|k=kp a1ε
π/ωwl

1(ξ1, η1)

+ (gC12c11 + gC13c21)|k=kpε
π/ωwr

1(ξ1, η1),

w2p(ξ2, η2; ε) = (gC22c11 + gC23c21)|k=kpε
π/ωwl

2(ξ2, η2)

+ (gC14)|k=kp a2ε
π/ωwr

2(ξ2, η2).

Compare the equalities (7.3.12), (7.5.4) and (7.5.6), then

(gC12c1 j + gC j3c2 j )|k=kp = −b j
(g C12b1 + g C13b2)|k=kp

k2p − k2e

+ (gC12ĉ1 j + gC j3ĉ2 j )|k=kp = b j + O(ε2π/ω),

where j = 1, 2. Thus

w1p(ξ1, η1; ε) = ε3π/ω(a1b1β + O(ε2π/ω))wl
1(ξ1, η1) (7.5.7)

+ επ/ω(b1 + O(ε2π/ω))wr
1(ξ1, η1),

w2p(ξ2, η2; ε) = επ/ω(b2 + O(ε2π/ω))wl
2(ξ2, η2) (7.5.8)

+ ε3π/ω(a2b2β + O(ε2π/ω))wr
2(ξ2, η2).

We set

u p(x, y; ε) = �(x, y)
[
χ1,ε(x, y)v1p(x, y; ε) + �(ε−2σ r1)w1p(ε

−1x1, ε
−1y1; ε)

+ χ0,ε(x, y)v0p(x, y; ε) + �(ε−2σ r2)w2p(ε
−1x2, ε

−1y2; k, ε)
(7.5.9)

+χ2,ε(x, y)v2p(x, y; k, ε)
]
,

where � is a cut-off function in G(ε) that is equal to 1 on the set G(ε) ∩ {|x | < R}
and to 0 on G(ε) ∩ {|x | > R + 1} for a large R > 0; σ is such that 2σ < 1. The
principal part of the norm of u p is given by χ0,εv0p. Considering the definitions of
v0p and v̂0 j (see Sect. 7.2) and Lemma 7.3.2, we obtain ‖χ0,εv0p‖ = ‖ve‖ + o(1).

Step B. Let us show that

‖((−i∇ + A)2 ± H − k2p)u p; V 0
γ, δ(G(ε))‖ ≤ cεπ/ω+κ , (7.5.10)

where κ = min{π/ω, 3π/ω−σ1, γ +1}, σ1 = 2σ(3π/ω−γ +1). If π/ω < γ +1
and σ is small so that 2π/ω > σ1, we have κ = π/ω.
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In view of (7.5.9),

((−i∇ + A)2 ± H − k2p)u p(x, y; ε)
= −[
,χ1,ε]

(
v1p(x, y; ε) − b1βε

2π/ω(r−π/ω
1 + a(kp)r

π/ω
1 )�(π − ϕ1)

)

− [
,�]w1p(ε
−1x1, ε

−1y1; ε) − k2p�(ε−2σ r1)w1p(ε
−1x1, ε

−1y1; ε)
− [
,χ0,ε]

(
v0p(x, y; ε) − �(r1)

(
b−
1p(ε)r

−π/ω
1 + b+

1p(ε)r
π/ω
1

)
�(π − ϕ1)

− �(r2)
(
a−
2p(ε)r

−π/ω
2 + a+

2p(ε)r
π/ω
2

)
�(ϕ2)

)

− [
,�]w2p(ε
−1x2, ε

−1y2; ε) − k2p�(ε−2σ r2)w2p(ε
−1x2, ε

−1y2; ε)
− [
,χ2,ε]

(
v2p(x, y; ε) − b2βε

2π/ω(r−π/ω
2 + a(kp)r

π/ω
2 )�(ϕ2)

)
− [
,�]v1p(x, y; ε) − [
,�]v2p(x, y; ε),

where b−
1p = O(ε2π/ω), b+

1p = b1 + O(ε2π/ω), a−
2p = O(ε2π/ω), and a+

2p =
b2 + O(ε2π/ω). Taking into account the asymptotics of v1 as r1 → 0 and passing to
the variables (ξ1, η1) = (ε−1x1, ε−1y1), we obtain

∥∥∥(x, y) 
→ [
,χ1,ε]
(

v1(x, y) − (r−π/ω
1 + a(kp)r

π/ω
1 )�(π − ϕ1)

)
; V 0

γ,δ(G(ε))

∥∥∥2

≤ c
∫

G(ε)

(r21 + ε2)γ
∣∣∣[
,χ1,ε]r−π/ω+2

1 �(π − ϕ1)

∣∣∣2 dxdy ≤ cε2(γ−π/ω+1).

This and (7.5.5) imply the estimate

∥∥∥(x, y) 
→ [
,χ1,ε]
(
v1p(x, y) − (r−π/ω

1 + a(kp)r
π/ω
1 )�(π − ϕ1)

)
; V 0

γ,δ(G(ε))

∥∥∥
≤ cεγ+π/ω+1.

Likewise,

∥∥∥(x, y) 
→ [
,χ0,ε]
(
v0p(x, y) − �(r1)

(
b−
1p(ε)r

−π/ω
1 + b+

1p(ε)r
π/ω
1

)
�(π − ϕ1)

− �(r2)
(
a−
2p(ε)r

−π/ω
2 + a+

2p(ε)r
π/ω
2

)
�(ϕ2)

)∥∥∥ ≤ cεγ+π/ω+1,∥∥∥(x, y) 
→ [
,χ2,ε]
(
v2p(x, y) − (r−π/ω

2 + a(k p)r
π/ω
2 )�(ϕ2)

)
; V 0

γ,δ(G(ε))

∥∥∥
≤ cεγ+π/ω+1.

It is evident, that

∥∥∥[
,�]v j p; V 0
γ,δ(G(ε))

∥∥∥ ≤ cε2π/ω, j = 1, 2.
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Further, since wl
j behaves like O(ρ

−3π/ω
j ) at infinity,

∫
G(ε)

(r2j + ε2)γ
∣∣∣[
,�]wl

j (ε
−1x j , ε

−1y j )

∣∣∣2 dx j dy j

≤ c
∫

K j

(r2j + ε2)γ
∣∣∣[
,�](ε−1r j )

−3π/ω�2(ϕ j )

∣∣∣2 dx j dy j ≤ cε2(3π/ω−σ1),

where σ1 = 2σ(3π/ω− γ + 1). A similar inequality holds with wl
j replaced by wr

j .
Considering (7.5.7) and (7.5.8), we obtain

∥∥∥[
,�]w j p; V 0
γ,δ(G(ε))

∥∥∥ ≤ cε4π/ω−σ1 .

Finally, using (7.5.7) and (7.5.8) once again, taking into account the estimate

∫
G(ε)

(r2j + ε2)γ
∣∣∣�(ε−2σ r j )wl

j (ε
−1x j , ε

−1y j )

∣∣∣2 dx j dy j

= ε2γ+2
∫
�

(ρ2
j + 1)γ

∣∣∣�(ε1−2σ ρ j )wl
j (ξ j , η j )

∣∣∣2 dξ j dη j ≤ cε2γ+2,

and a similar estimate for wr
j , we derive

∥∥∥(x, y) 
→ �(ε−2σ r j )w j p(ε
−1x j , ε

−1y j ); V 0
γ,δ(G(ε))

∥∥∥ ≤ cεπ/ω+γ+1.

Combining the obtained estimates, we arrive at (7.5.10).
Step C. This part contains somewhat modified arguments from the proof of Theo-

rem 5.1.1 in [33]. Let us write the right-hand side of problem (7.5.1) in the form

f (x, y) = f1(x, y; ε) + f0(x, y; ε) + f2(x, y; ε)
− ε−γ−1F1(ε

−1x1, ε
−1y1; ε1) − ε−γ−1F2(ε

−1x2, ε
−1y2; ε),

where

fl(x, y; ε) = χl,εσ (x, y) f (x, y),

Fj (ξ j , η j ; ε) = −εγ+1�(ε1−σ ρ j ) f (xO j + εξ j , yO j + εη j ),

(x, y) are arbitrary Cartesian coordinates, (xO j , yO j ) stand for the coordinates of O j
in the system (x, y), and x j , y j were introduced in Sect. 7.4. From the definition of
the norms, it follows that

‖ f1; V 0
γ, δ(G1)‖ + ‖ f0; V 0

γ (G0)‖ + ‖ f2; V 0
γ, δ(G2)‖ + ‖Fj ; V 0

γ (� j )‖ ≤ c‖ f ; V 0
γ, δ(G(ε))‖.

(7.5.11)
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We consider solutions vl and w j to the limit problems

(−i∇ + A)2v0 ± Hv0 − k2v0 = f0 in G0, v0 = 0 on ∂G0,

−
vl − k2vl = fl in Gl , vl = 0 on ∂Gl ,


w j = Fj in � j , w j = 0 on ∂� j ,

respectively; moreover, the vl with l = 1, 2 satisfy the intrinsic radiation conditions
at infinity, and the v0 is subject to the condition (v0, ve)G0 = 0. According to
Propositions 7.2.1, 7.2.2 and 7.2.3, the problems in Gl and� j are uniquely solvable
and

‖v0; V 2
γ (G0)‖ ≤ c0‖ f0; V 0

γ (G0)‖,
‖vl; V 2

γ,δ,−(Gl)‖ ≤ cl‖ fl; V 0
γ,δ(Gl)‖, l = 1, 2,

‖w j ; V 2
γ (� j )‖ ≤ C j‖Fj ; V 0

γ (� j )‖, j = 1, 2,

(7.5.12)

where cl and C j are independent of ε. We set

U (x, y; ε) = χ1,ε(x, y)v1(x, y; ε) + ε−γ+1�(r1)w1(ε
−1x1, ε

−1y1; ε)
+ χ0,ε(x, y)v0(x, y; ε) + ε−γ+1�(r2)w2(ε

−1x2, ε
−1y2; ε)

+ χ2,ε(x, y)v2(x, y; ε).

Estimates (7.5.11) and (7.5.12) lead to

‖U ; V 2
γ, δ,−(G(ε))‖ ≤ c‖ f ; V 0

γ,δ(G(ε))‖ (7.5.13)

with c independent of ε. Let Rε denote the mapping f 
→ U .
Let us show that ((−i∇ + A)2 ± H − k2)Rε = I + Sε, where Sε is an operator

in V 0
γ,δ(G(ε)) of small norm. We have

((−i∇ + A)2 ± H − k2)Rε f (x, y)

= f (x, y) − [
,χ1,ε]v1(x, y; ε) − ε−γ+1[
,�]w1(ε
−1x1, ε

−1y1; ε)
− k2ε−γ+1�(r1)w1(ε

−1x1, ε
−1y1; ε) − [
,χ0,ε]v0(x, y; ε)

− ε−γ+1[
,�]w2(ε
−1x2, ε

−1y2; ε)
− k2ε−γ+1�(r2)w2(ε

−1x2, ε
−1y2; ε) − [
,χ2,ε]v2(x, y; ε). (7.5.14)

Let d be a positive number such that γ − d + π/ω − 1 > 0. On the support of the
function [
,χ1,ε]v1 the estimate (x21 + y21 )

1/2 = O(ε) holds, therefore,

‖[
,χ1,ε]v1; V 0
γ,δ(G(ε))‖ ≤ cεd‖[
,χ1,ε]v1; V 0

γ−d,δ(G1)‖ ≤ cεd‖v1; V 2
γ−d,δ(G1)‖.
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This and (7.5.12) lead to

‖[
,χ1,ε]v1; V 0
γ,δ(G(ε))‖ ≤ cεd‖ f1; V 0

γ−d,δ(G1)‖.

Moreover, f1 = 0 outside the zone cεσ ≤ (x21 + y21 )
1/2 ≤ Cεσ , therefore,

‖ f1; V 0
γ−d,δ(G1)‖ ≤ cε−dσ ‖ f1; V 0

γ,δ(G1)‖.

The two last estimates together with (7.5.11) show that

‖[
,χ1,ε]v1; V 0
γ,δ(G(ε))‖ ≤ cεd(1−σ)‖ f ; V 0

γ, δ(G(ε))‖. (7.5.15)

In a similar way, we obtain

‖[
,χl,ε]vl; V 0
γ,δ(G(ε))‖ ≤ cεd(1−σ)‖ f ; V 0

γ, δ(G(ε))‖, l = 0, 2. (7.5.16)

We now assume in addition that the d satisfies γ + d − π/ω − 1 < 0. Because
the support of the function [
(ξ j ,η j ),�(ερ j )]w j (ξ j , η j ; ε), j = 1, 2, belongs to the
domain cε−1 ≤ (ξ2j + η2j )

1/2 ≤ Cε−1,

‖(ξ j , η j ) 
→ [
ξ j ,η j ,�(ερ j )]w j (ξ j , η j ; ε); V 0
γ (� j )‖

≤ cεd‖(ξ j , η j ) 
→ [
ξ j ,η j ,�(ερ j )]w j (ξ j , η j ; ε); V 0
γ+d (� j )‖ ≤ cεd‖w j ; V 2

γ+d (� j )‖.

Now, taking into account (7.5.12), we obtain

ε−γ+1‖(x j , y j ) 
→ [
,�(r j )]w j (ε
−1x j , ε

−1y j ; ε); V 0
γ,δ(G(ε))‖ ≤ cεd‖Fj ; V 0

γ+d (� j )‖.

Since Fj = 0 for (ξ2j + η2j )
1/2 > cε−σ ,

‖Fj ; V 0
γ+d(� j )‖ ≤ cε−dσ ‖Fj ; V 0

γ (� j )‖. (7.5.17)

Consequently,

ε−γ+1‖(x j , y j ) 
→ [
,�(r j )]w j (ε
−1x j , ε

−1y j ; ε); V 0
γ,δ(G(ε))‖ ≤ cεd(1−σ)‖ f ; V 0

γ, δ(G(ε))‖.
(7.5.18)

It remains to estimate the middle terms of the two last lines in (7.5.14). We have

ε−γ+1‖(x j , y j ) 
→ �(r j )w j (ε
−1x j , ε

−1y j ; ε); V 0
γ,δ(G(ε))‖

= ε2‖(ξ j , η j ) 
→ �(ερ j )w j (ξ j , η j ; ε); V 0
γ (� j )‖

≤ ε2‖(ξ j , η j ) 
→ �(ερ j )w j (ξ j , η j ; ε); V 2
γ+2(� j )‖ ≤ cεd‖w j ; V 2

γ+d(� j )‖;
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in the last inequality, we took into account that �(ερ j )w j (ξ j , η j ; ε) = 0 for ρ j ≥
cε−1; besides, we assume that 2− d > 0. In view of (7.5.12), (7.5.17), and (7.5.11),
we obtain

ε−γ+1‖(x j , y j ) 
→ �(r j )w j (ε
−1x j , ε

−1y j ; ε); V 0
γ,δ(G(ε))‖ ≤ cεd(1−σ)‖ f ; V 0

γ, δ(G(ε))‖.
(7.5.19)

Thus, (7.5.14)–(7.5.16), (7.5.18) and (7.5.19) lead to the inequality

‖((−i∇ + A)2 ± H − k2)Rε f − f ; V 0
γ, δ(G(ε))‖ ≤ cεd(1−σ)‖ f ; V 0

γ, δ(G(ε))‖,

which means that ((−i∇ + A)2 ± H − k2)Rε = I + Sε and the norm of the operator
Sε in the space V 0

γ, δ(G(ε)) admits the estimate ‖Sε‖ ≤ cεd(1−σ).

Step D. Let us recall that the operator Sε is defined on the subspace V 0,⊥
γ, δ (G(ε)).

We also need the range of the operator Sε be included in V 0,⊥
γ, δ (G(ε)). To this end,

we replace the mapping Rε by R̃ε : f 
→ U ( f )+a( f )u p, the u p was constructed in
Step A, and a( f ) is a constant. Then ((−i∇ +A)2 ± H −k2)R̃ε = I + S̃ε with S̃ε =
Sε +a(·)((−i∇ + A)2 ± H − k2)u p. As k = ke, the condition (χ0,εσ S̃ε f, ve)G0 = 0
implies

a( f ) = −(χ0,εσ Sε f, ve)G0/(χ0,εσ ((−i∇ + A)2 ± H − k2e )u p, ve)G0 .

Now we prove that ‖S̃ε‖ ≤ c‖Sε‖, where c is independent of ε and k. We have

‖S̃ε f ‖ ≤ ‖Sε f ‖ + |a( f )| ‖((−i∇ + A)2 ± H + k2)u p‖.

Estimate (7.5.10) (with γ > π/ω − 1 and 2π/ω > σ1), the formula for kp, and the
condition k2 − k2e = O

(
ε2π/ω

)
imply the inequalities

‖((−i∇ + A)2 ± H − k2)u p;V 0
γ,δ‖ ≤ |k2 − k2p| ‖u p; V 0

γ,δ‖
+ ‖((−i∇ + A)2 ± H − k2p)u p; V 0

γ,δ‖ ≤ cε2π/ω.

Since the supports of the functions ((−i∇ +A)2 ± H −k2p)u p and χ0,εσ are disjoint,
we obtain

|(χ0,εσ ((−i∇ + A)2 ± H − k2e )u p, ve)G0 | = |(k2e − k2p)(u p, ve)G0 | ≥ cε2π/ω.

Moreover, γ − 1 < π/ω and, consequently,

|(χ0,εσ Sε f, ve)G0 | ≤ ‖Sε f ; V 0
γ,δ(G(ε))‖ ‖ve; V 0−γ (G0)‖ ≤ c‖Sε f ; V 0

γ,δ(G(ε))‖.

Hence,
|a( f )| ≤ cε−2π/ω‖Sε f ; V 0

γ,δ(G(ε))‖
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and ‖S̃ε f ‖ ≤ c‖Sε f ‖. Thus, the operator I + S̃ε in V 0,⊥
γ,δ (G(ε)) is invertible, which

is also true for the operator of problem (7.5.1):

the consists of the elements in V 2
γ,δ,−(G(ε)) that vanish on ∂G(ε),

and the operator (−i∇ + A)2 ± H − k2 takes to

V 0,⊥
γ,δ (G(ε)). The inverse operator A−1

ε = R̃ε(I + S̃ε)
−1 is bounded uniformly with

respect to ε and k. Therefore, the inequality (7.5.3) holds with c independent of ε
and k. �

We consider solution u1 and u2 to the homogeneous problem (7.1.1) and (7.1.2)
defined by

u1(x, y) =
{

U+
1 (x, y) + S11 U−

1 (x, y) + O(exp (δx)), x → −∞,

S12 U−
2 (x, y) + O(exp (−δx)), x → +∞;

u2(x, y) =
{

S21 U−
1 (x, y) + O(exp (δx)), x → −∞,

U+
2 (x, y) + S22 U−

2 (x, y) + O(exp (−δx)), x → +∞.

Let Slm be the elements of the scattering matrix determined by these solutions; S̃11,
S̃12 are the same as in (7.4.20) and (7.4.21).

Theorem 7.5.2 Let the hypotheses of Proposition7.5.1be fulfilled. Then the inequal-
ities

|S11 − S̃11| + |S12 − S̃12| ≤ c|S̃12|ε2−δ,

|S21 − S̃21| + |S22 − S̃22| ≤ c|S̃22|ε2−δ

hold with a constant c, independent of ε and k, δ being an arbitrarily small positive
number.

Now we return to the detailed notations introduced in the first three sections.
We denote by k2e,± an eigenvalue of problem (7.2.1) in the resonator G0 and by
k2r,±(ε) a resonance frequency such that k2r,±(ε) → k2e,± as ε → 0. Moreover, let
b±

j be the constants in asymptotics (7.3.7) of an eigenfunction corresponding to the

eigenvalue k2e,± and s j (k) the constant in asymptotics (7.3.1) of the special solution
Vj for r j → 0, j = 1, 2. Finally, the constants α and β are defined by (7.2.11)
and (7.2.12). We set P± = (|b1||b2|β2|s1(ke)|2)−1; this is the same constant as in
(7.4.24)–(7.4.26). Theorem 7.5.2 and formulas (7.4.25) and (7.4.26) lead to the next
statement.

Theorem 7.5.3 For |k2 − k2r,±| = O(ε2π/ω), the asymptotic expansions
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T ±(k, ε) = 1

1

4

(
|b±

1 |
|b±

2 | + |b±
2 |

|b±
1 |

)2

+ P2±

(
k2 − k2r,±
ε4π/ω

)2 (1 + O(ε2−δ)),

k2r,± = k20,± − α(|b±
1 |2 + |b±

2 |2)ε2π/ω + O
(
ε2π/ω+2−δ

)
,

ϒ±(ε) =
(

|b±
1 |

|b±
2 | + |b±

2 |
|b±

1 |

)
P−1± ε4π/ω

(
1 + O(ε2−δ)

)
,

hold, ϒ±(ε) is the width of the resonant peak at its half-height, and δ is an arbitrarily
small positive number.

7.6 Comparison of Asymptotic and Numerical Approaches

The principal parts of the asymptotic formulas in Theorem 7.5.3 contain the con-
stants b±

j , |s1|, α, β. To find them one has to solve numerically several boundary
value problems. In this section, we state the problems and describe a way to solve
them. We also outline a method for computing the waveguide scattering matrix S
taken from Chap.4. Then we compare the asymptotics, having calculated constants
and the numerically found scattering matrix.

7.6.1 Problems and Methods for Numerical Analysis

7.6.1.1 Calculation of b±j

To find b±
j , we solve the spectral problem

(−i∇ + A(x, y))2v(x, y) ± H(ρ)v(x, y) − k2v(x, y) = 0 in G0,

v(x, y) = 0 on ∂G0,
(7.6.1)

by FEM, as usual. Let ve be an eigenfunction corresponding to k2e and normalized
by ∫

G0

|ve(x, y)|2 dxdy = 1.

We have

ve(x, y) ∼
{

b±
1 rπ/ω

1 �(ϕ1) as r1 → 0,
b±
2 rπ/ω

2 �(π − ϕ2) as r2 → 0,
(7.6.2)

http://dx.doi.org/10.1007/978-3-319-15105-2_4
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where (ρ j , ϕ j ) are polar coordinates centered in O j , and�(θ) = π−1/2 cos(πθ/ω).
Then b±

1 and b±
2 in (7.6.2) can be defined by

b±
1 = ε−π/ω ve(ε, 0)

�(0)
= √

πε−π/ωve(ε, 0), b±
2 = √

πε−π/ωve(d − ε, 0),

where ε is a small positive number.

7.6.1.2 Calculation of |s1|

To calculate |s1|, we must solve numerically the problem

−
v(x, y) − k2v(x, y) = 0 in G1,

v(x, y) = 0 on ∂G1,
(7.6.3)

with conditions

v(x, y) ∼ s1ρπ/ω�(π − ϕ) as ρ → 0,
v(x, y) = (

eiν1x + S0
11e−iν1x

)

1(y) + O(e−γ |x |) as x → −∞,

(7.6.4)

where (ρ, ϕ) are polar coordinates centered in O1. We denote the truncated domain

G1 ∩ {(x, y) : x > −D}

by G D
1 and the artificial part of the boundary ∂G D

1 ∩ {(x, y) : x = −D} by !D .
Consider the following problem

−
vD(x, y) − k2vD(x, y) = 0 in G D
1 ,

vD(x, y) = 0 on ∂G D
1 \!D,

(∂n + iν1) vD(x, y) = f (x, y) on !D.

(7.6.5)

If ν1 ∈ R\0 and f ∈ L2(!
D), the problem has a unique solution vD , and vD satisfies

the inequality
‖vD‖G D

1
� C1‖ f ‖!D ,

where ‖vD‖G D
1

:= ‖vD‖L2(G D
1 ); similar notation is used for the norms and the inner

products below.
Let v be a solution to the problem (7.6.3), (7.6.4) and let V be a solution to the

problem (7.6.5) with f = 2iν1eiν1D
1(y). Then u = v − V satisfies (7.6.5) with
f = O(e−γ D). Hence, ‖v − V ‖G D

1
� C0e−γ D .

We find V with FEM and put

s1 = √
πε−π/ωV (−ε, 0).
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7.6.1.3 Calculation of α and β

To calculate α and β, we consider the boundary value problem


w(ξ, η) = 0 in �,

w(ξ, η) = 0 on ∂�,
(7.6.6)

with the following conditions at infinity

w(ξ, η) =
{
(ρπ/ω + αρ−π/ω)�(ϕ) + O(ρ−3π/ω) as ρ → ∞, ξ > 0,

βρ−π/ω�(π − ϕ) + O(ρ−3π/ω) as ρ → ∞, ξ < 0,
(7.6.7)

where (ρ, ϕ) are polar coordinates centered in O1. Introduce the notations

�D = � ∩ {(ρ, ϕ) : ρ < D},
!D = ∂�D ∩ {(ρ, ϕ) : ρ = D}.

Consider the problem


wD(ξ, η) = 0 in �D,

wD(ξ, η) = 0 on ∂�D\!D,

(∂n + ζ )wD(ξ, η) = g(ξ, η) on !D.

(7.6.8)

If wD is a solution and ζ > 0, then

‖wD‖!D � ζ−1‖g‖!D . (7.6.9)

Denote the left-hand part of !D by !D− and the right-hand part of !D by !D+ .
Let W satisfy (7.6.8) with ζ = π/ωD, g|!D− = 0, g|!D+ = (2π/ω)D(π/ω)−1�(ϕ).
Since the conditions (7.6.7) can be differentiated, w − W satisfies (7.6.8) with g =
O(D−(3π/ω)−1). According to (7.6.9),

‖w − W‖!D � c
ωD

π
D−(3π/ω)−1 = c′ D−3π/ω

as D → +∞. We find W with FEM and take

β = W (−D, 0)

�(0)
Dπ/ω = √

πW (−D, 0)Dπ/ω.

Obviously,‖(w−Dπ/ω�(ϕ))−(W−Dπ/ω�(ϕ))‖!D � c′ D−3π/ω; therefore,weput

α = W (D, 0) − Dπ/ω�(0)

�(0)
Dπ/ω = √

πW (D, 0)Dπ/ω − D2π/ω.
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Now that the coefficients in the asymptotic formulas have been calculated, we
can find the asymptotics for a quantitative description of the polarization process.
However, the formulas are designed for sufficiently small narrows’ diameters. Thus,
it remains to estimate the range of ε where asymptotics works. To this end, we
calculate the scattering matrix by employing the method suggested in Chap. 4. Here
we present the needed description of the method. First, we introduce

G(ε, D) = G(ε) ∩ {(x, y) : −D < x < d + D},
!D
1 = ∂G(ε, D) ∩ {(x, y) : x = −D},

!D
2 = ∂G(ε, D) ∩ {(x, y) : x = d + D}

for large D. As an approximation to the row (S11, S12) of the scattering matrix S(k),
we take the minimizer of a quadratic functional. To construct such a functional, we
consider the problem

(−i∇ + A)2X D± ± HX D± − k2X D± = 0 in G(ε, D),

X D± = 0 on ∂G(ε, D) \ (!D
1 ∪ !D

2 ),
(7.6.10)

(∂n + iζ )X D± = i(−ν1 + ζ )e−iν1D
1(y) + a1 i(ν1 + ζ )eiν1D
1(y) on !D
1 ,

(∂n + iζ )X D± = a2 i(ν1 + ζ )eiν1(d+D)
1(y) on !D
2 ,

(7.6.11)

where ζ ∈ R \ {0} is an arbitrary fixed number, and a1, a2 are complex numbers. As
approximation to the row (S11, S12),we take theminimizera0(D) = (a0

1(D), a0
2(D))

of the functional

J D(a1, a2) =
∥∥∥X D± − e−iν1D
1 − a1eiν1D
1

∥∥∥2
!D
1

+
∥∥∥X D± − a2 eiν1(d+D)
1

∥∥∥2
!D
2

,

(7.6.12)

where X D± is a solution to problem (7.6.10). From the results of Chap.4, it follows
that a0

j (D, k) → S1 j (k) with exponential rate as D → ∞. More precisely, there
exist positive constants � and C such that

|a0
j (D, k) − S1 j (k)| � Ce−�D, j = 1, 2,

for all k2 ∈ [μ1, μ2] and sufficiently large D; the interval [μ1, μ2] of continuous
spectrum of the problem (7.1.1) lies between the first and the second thresholds and
does not contain the thresholds. (Note that application of the method is not hindered
by possible presence on the interval [μ1, μ2] of eigenvalues of the problem (7.1.1)
corresponding to eigenfunctions exponentially decaying at infinity.) To express X D±
by means of a1, a2, we consider the problems

http://dx.doi.org/10.1007/978-3-319-15105-2_4
http://dx.doi.org/10.1007/978-3-319-15105-2_4
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(−i∇ + A)v±
±,1 ± Hv±

±,1 − k2v±
±,1 = 0 in G(ε, D),

v±
±,1 = 0 on ∂G(ε, D) \ (!D

1 ∪ !D
2 ),

(∂n + iζ )v±
±,1 = i(∓ν1 + ζ )e∓iν1D
1 on !D

1 ,

(∂n + iζ )v±
±,1 = 0 on !D

2

(7.6.13)

and

(−i∇ + A)v±
±,2 ± Hv±

±,2 − k2v±
±,2 = 0 in G(ε, D),

v±
±,2 = 0 on ∂G(ε, D) \ (!D

1 ∪ !D
2 ),

(∂n + iζ )v±
±,2 = 0 on !D

1 ,

(∂n + iζ )v±
±,2 = i(∓ν1 + ζ )e∓iν1(d+D)
1 on !D

2 .

(7.6.14)

In v±
±, j , the upper and lower± correspond to∓ in the condition on!D

1 ∪!D
2 and to the

sign in the Pauli equation, respectively. Let us expressX D±,m bymeans of the solutions
v±
±, j to problems (7.6.13) and (7.6.14). We have X D± = v+± + a1v

−
±,1 + a2v

−
±,2. The

functional (7.6.12) can be rewritten in the form

J D(a, k) = 〈aED(k), a〉 + 2Re
(
〈FD

1 (k), a〉
)

+ GD
1 (k),

where 〈·, ·〉 is the inner product on C
2, and ED stands for the 2 × 2–matrix with

entries

ED
11 =

(
(v−

±,1 − eiν1D
1), (v
−
±,1 − eiν1D
1)

)
!D
1

+
(
v−
±,1, v

−
±,1

)
!D
2

,

ED
1,2 =

(
(v−

±,1 − eiν1D
1), v
−
±,2

)
!D
1

+
(
v−
±,1, (v

−
±,2 − eiν1(d+D)
1)

)
!D
2

,

ED
2,1 =

(
v−
±,2, (v

−
±,1 − eiν1D
1)

)
!D
1

+
(
(v−

±,2 − eiν1(d+D)
1), v
−
±,1

)
!D
2

,

ED
2,2 =

(
v−
±,2, v

−
±,2

)
!D
1

+
(
(v−

±,2 − eiν1(d+D)
1), (v
−
±,2 − eiν1(d+D)
1)

)
!D
2

;

FD
1 (k) is the row (FD

11(k),FD
12(k)) and GD

1 (k) is the number defined by

FD
11 =

(
(v+

±,1 − e−iν1D
1), (v
−
±,1 − eiν1D
1)

)
!D
1

+
(
v+
±,1, v

−
±,1

)
!D
2

,

FD
12 =

(
(v+

±,1 − e−iν1D
1), v
−
±,2

)
!D
1

+
(
v+
±,1, (v

−
±,2 − eiν1(d+D)
1)

)
!D
2

,

GD
1 =

(
(v+

±,1 − e−iν1D
1), (v
+
±,1 − e−iν1D
1)

)
!D
1

+
(
v+
±,1, v

+
±,1

)
!D
2

,
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The minimizer a0 = (a0
1(D, k), a0

2(D, k)) satisfies a0ED + FD
1 = 0. The solution

to this equation serves as an approximation to the first row of the scattering matrix.
In the same way, one can show that the approximation to the scattering matrix S(k)
is the solution SD = SD(k) to the matrix equation of the form SDED + FD = 0. If
one chooses ζ = −ν1, then v−

±,1 = v−
±,2 = 0, ED = (1/ν1)Id, and SD = −ν1FD .

7.6.2 Comparison of Asymptotic and Numerical Results

Let us compare the asymptotics k2res,a(ε) of resonant energy k2res(ε) and the approx-
imate value k2res,n(ε) obtained by the numerical method.

The ‘numerical’ and ‘asymptotic’ resonant energies are shown in Fig. 7.1. The
discrepancy between the curves depends on the magnetic field H0 and the narrows’
openingω. Numerical resonance is calculated by the iteration process, the asymptotic
resonant energy is taken for the initial value.

The shapes of “asymptotic” and “numerical” resonant peaks are almost the same
(see Fig. 7.2). The difference between the peaks is quantitatively depicted in Fig.7.3
(note the logarithmic scale on the axes). Moreover, it turns out that the ratio of
the width 
n(h, ε) of the numerical peak at height h to the width 
a(h, ε) of the
asymptotic peak is independent of h. The ratio as function of ε is displayed in Fig. 7.4.

The obtained data show that asymptotic and numerical methods give equivalent
results at the band of the narrows’ diameters 0.1 < ε < 0.5 (see Figs. 7.1 and 7.3).
The numericalmethod becomes ill-conditioned as ε < 0.1.However, the asymptotics
remains reliable at such a condition. On the other hand, the asymptotics gives way
to the numerical method as the diameter increases.

Fig. 7.1 Asymptotic
description k2res,a(ε) (solid
curve) and numerical
description k2res,n(ε) (dashed
curve) for resonant energy
k2res(ε)

0 0.1 0.2 0.3 0.4 0.5
15

15.5
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18

ε

k2 re
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Fig. 7.2 Transition
coefficient for ε = 0.2,
asymptotic description
Ta(k2 − k2res,a) (solid curve)
and numerical description
Tn(k2 − k2res,n) (dashed
curve). The width of the
resonant peak at height h:
asymptotic 
a(h, ε) = AA;
numerical 
n(h, ε) = B B
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Fig. 7.3 The width 
(ε) of
the resonant peak at
half-height of the peak
(dashed line for numerical
description, solid line for
asymptotic description)
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7.6.3 Dependence of Resonant Tunneling on the Magnetic
Field Location in the Resonator

In the above numerical simulation results, the center of the magnetic field domain
coincides with the resonator center.Wewill illustrate, by the Aharonov-Bohm effect,
the dependence of resonant tunneling on the position of a magnetic patch in the
resonator. Let T (k2res) denote the maximal value of the transmission coefficients T
(at k2 = k2res). Figure7.5 depicts T (k2res) versus the magnetic flux of the patch for
four values of themagnetic patch shift in the direction perpendicular to thewaveguide
axis. If the patch center belongs to thewaveguide axis, the T (k2res) vanishes for certain
values of the patch magnetic flux. The reason is that the electron waves streaming
around the magnetic patch have the same amplitudes and the phases differing by
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Fig. 7.4 Ratio
n(h, ε)/
a(h, ε) as function in ε. The ratio is independent of h within the accuracy
of the analysis
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Fig. 7.5 T (k2res) versus the magnetic flux of the patch for four values of the magnetic patch shift in
the direction perpendicular to the waveguide axis. The legend shows the coordinates of themagnetic
patch center

(2q +1)π . When the patch is shifted in the direction perpendicular to the waveguide
axis, such a cancellation does not occur and the transmission probability does not
vanish. We assume that the waveguide width is equal to 1 and the patch radius is
equal to 0.2. Then Fig. 7.5 shows, in particular, that for the patch center shifted by
0.1, the Aharonov-Bohm effect is practically absent.



Chapter 8
Effect of Magnetic Field on Resonant
Tunneling in 3D Waveguides of Variable
Cross-Section

8.1 Introduction

In this chapter, we consider a three-dimensional waveguide that, far from the coor-
dinate origin, coincides with a cylinder G containing the axis x . The cross-section
of G is a two-dimensional domain (of an arbitrary form) with smooth boundary.
The waveguide has two narrows of small diameter ε. The waveguide part between
the narrows plays the role of a resonator and there can arise conditions for electron
resonant tunneling. This phenomenon consists of the fact that, for an electron with
energy E , the probability T (E) to pass from one part of the waveguide to the other
through the resonator has a sharp peak at E = Eres , where Eres denotes the “reso-
nant” energy. To analyse the operation of devices based on resonant tunneling, it is
important to know Eres , the behavior of T (E) for E close to Eres , the height of the
resonant peak, etc.

The presence of a magnetic field can essentially affect the basic characteristics of
the resonant tunneling and bring new possibilities for applications in electronics. In
particular, in the presence of a magnetic field, the tunneling phenomenon is feasible
for producing spin-polarized electron flows consisting of electrons with spins of the
same direction. We suppose that a part of the resonator has been occupied by the
magnetic field generated by an infinite solenoid with axis orthogonal to the axis x .
Electron wave function satisfies the Pauli equation in the waveguide and vanishes
at its boundary (the work function of the waveguide is supposed to be sufficiently
large, so such a boundary condition has been justified). Moreover, we assume that
only one incoming wave and one outgoing wave can propagate in each cylindrical
outlet of the waveguide. In other words, we do not discuss the multichannel electron
scattering and consider only electrons with energy between the first and the second
thresholds. We take ε as small parameter and obtain asymptotic formulas for the
aforementioned characteristics of the resonant tunneling as ε → 0. It turns out that
such formulas depend on the limiting form of the narrows. We suppose that, in a
neighborhood of each narrow, the limiting waveguide coincides with a double cone
symmetric about the vertex.

© Springer International Publishing Switzerland 2015
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Section8.2 contains the statement of the problem. In Sect. 8.3, we introduce so-
called “limit” boundary value problems, which are independent of the parameter ε.
Some model solutions to the problems are studied in Sect. 8.4. The solutions will
be used in Sect. 8.5 to construct asymptotic formulas for appropriate wave func-
tions. In the same section, we investigate the asymptotics of the wave functions and
derive asymptotic formulas for the main characteristics of the resonant tunneling.
The remainders in the asymptotic formulas are estimated in Sect. 8.6.

8.2 Statement of the Problem

To describe the domain G(ε) in R
3 occupied by the waveguide, we first introduce

domains G and � in R
3 independent of ε. The domain G is the cylinder

G = R × D = {(x, y, z) ∈ R
3 : x ∈ R = (−∞,+∞); (y, z) ∈ D ⊂ R

2}

whose cross-section D is a bounded two-dimensional domainwith smooth boundary.
Let us define �. Denote by K a double cone with vertex at the coordinate origin O
that contains the axis x and is symmetric about the origin. The set K ∩ S2 with S2

standing for the unit sphere consists of two non-overlapping one-connected domains
symmetric about the center of sphere. Assume that the domain � contains the cone
K together with a neighborhood of its vertex. Moreover, � coincides with K outside
a sufficiently large ball centered at the origin. The boundary ∂� of � is supposed to
be smooth.

Let us turn to thewaveguideG(ε).Wedenote by�(ε) the domain obtained from�

by the contractionwith center at O and coefficient ε. In other words, (x, y, z) ∈ �(ε)

if and only if (x/ε, y/ε, z/ε) ∈ �. Let K j and� j (ε) stand for K and�(ε) shifted by
the vector r j = (x0j , 0, 0), j = 1, 2. The value |x01 − x02 | is assumed to be sufficiently
large so that the distance between ∂K1 ∩ ∂K2 and G is positive. We set

G(ε) = G ∩ �1(ε) ∩ �2(ε).

The wave function � = (�+, �−)T of an electron with energy E = k2�2/2m in
a magnetic field H0 satisfies the Pauli equation

(−i∇ + A)2� + (̂σ , H)� = k2� in G(ε), (8.2.1)

where σ̂ = (σ1, σ2, σ3) with the Pauli matrices

σ1 =
(
1 0
0 1

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

and H = −(e/c�H0) = rotA. If the magnetic field is directed along the axis z that
is H = Hk, H being a scalar function, then (8.2.1) decomposes into two scalar
equations
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(−i∇ + A)2�± ± H�± = k2�±. (8.2.2)

Let the function H depend only on ρ = ((x − x0)2 + (y − y0)2)1/2 with H(ρ) = 0
for ρ > R, R being a fixed positive number. Such a field is generated by an infinite
solenoid with radius R and axis parallel to the axis z. Then A = Aeψ , where eψ =
ρ−1(−y + y0, x − x0, 0) and

A(ρ) = 1

ρ

{∫ ρ

0 t H(t) dt, ρ < R;∫ R
0 t H(t) dt, ρ > R.

The equality rotA = H determines A up to a term of the form ∇ f . We neglect
the waveguide boundary permeability to the electrons and consider the Eq. (8.2.2)
supplemented by the homogeneous boundary condition

�± = 0 on ∂G(ε). (8.2.3)

The obtained boundary value problems are self-adjoint with respect to the Green
formulas

((−i∇ + A)2u ± Hu − k2u, v)G(ε) − (u, (−i∇ + A)2v ± Hv − k2v)G(ε)

+ (u, (−∂n − An)v)∂G(ε) − ((−∂n − An)u, v)∂G(ε) = 0,

where An is the projection of A onto the outward normal to ∂G(ε) and u, v ∈
C∞

c (G(ε)) (which means that u and v are smooth functions vanishing outside a
bounded set). Besides, �± must satisfy some radiation conditions at infinity. To for-
mulate such conditions, we have to introduce incoming and outgoing waves. From
the requirements on H and the choice of A, it can be seen that the coefficients of Eq.
(8.2.2) stabilize at infinitywith a power rate. Such a slow stabilization creates difficul-
ties in defining these waves. Therefore, we will modify A by a gauge transformation
so that the coefficients in (8.2.2) become constant for large |x |.

Let (ρ, ψ) be polar coordinate on the plane xy centered at (x0, y0) and ψ = 0
on the ray of the same direction as the axis x . We introduce f (x, y, z) = cψ , where
c = ∫ R

0 t H(t) dt . For definiteness, assume that −π/2 < ψ < 3π/2. The function
f is uniquely determined in the waveguide for |x − x0| > 0, moreover, ∇ f = A
for |x − x0| > R. Let τ be a cut-off function on R+ equal to 1 for t > R + 2
and 0 for t < R + 1. We set A′(x, y, z) = A(x, y, z) − ∇(τ (|x − x0|) f (x, y, z)).
Then rotA′ = rotA = H while A′ = 0 for |x − x0| > R + 2. The wave functions
� ′± = �± exp{iτ f } satisfy (8.2.2) with A replaced by A′. For |x − x0| > R + 2,
the coefficients of the Eq. (8.2.2) with new vector potential A′ coincide with the
coefficients of the Helmholtz equation

−�� ′± = k2� ′±.
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In order to formulate the radiation conditions, we consider the problem

− �v(y, z) − λ2v(y, z) = 0, (y, z) ∈ D, (8.2.4)

v(y, z) = 0, (y, z) ∈ ∂ D.

The values of parameter λ2 that correspond to the nontrivial solutions of this problem
form the sequence λ21 < λ22 < . . . with λ21 > 0. These numbers are called the
thresholds. Assume that k2 in (8.2.2) coincides with none of the thresholds and take
up the equation in (8.2.2) with �+. For a fixed k2 > λ21, there exist finitely many
bounded solutions (wave functions) linearly independent modulo L2(G(ε)); in other
words, a linear combination of such solutions belongs to L2(G(ε)) if and only if all
coefficients are equal to zero. The number of wave functions with such properties
remains constant for k2 ∈ (λ2q , λ2q+1), q = 1, 2, . . . and step-wise increases at the
thresholds.

In the present paper, we discuss only the situation where k2 ∈ (λ21, λ
2
2). In such

a case, there exist two independent wave functions. A basis in the space spanned
by such functions can be composed of the wave functions u+

1 and u+
2 satisfying the

radiation conditions

u+
1 (x, y, z) =

{
eiν1x�1(y, z) + S+

11(k) e−iν1x�1(y, z) + O(eδx ), x → −∞,

S+
12(k) eiν1x�1(y, z) + O(e−δx ), x → +∞;

u+
2 (x, y, z) =

{
S+
21(k) e−iν1x�1(y, z) + O(eδx ), x → −∞,

e−iν1x�1(y, z) + S+
22(k) eiν1x�1(y, z) + O(e−δx ), x → +∞;

(8.2.5)

here ν1 =
√

k2 − λ21 and �1 stands for an eigenfunction of problem (5.1.2) corre-

sponding to λ21 and normalized by the equality

2ν1

∫
D

|�1(y, z)|2 dy dz = 1. (8.2.6)

The function U1(x, y, z) = eiν1x�1(y, z) in the cylinder G is a wave incoming from
−∞ and outgoing to+∞, while U2(x, y, z) = e−iν1x�1(y, z) is a wave going from
+∞ to −∞. The matrix

S+ = ‖S+
mj‖m, j=1,2

with entries determined by (8.2.5) is called the scattering matrix; it is unitary. The
quantities

R+
1 := |S+

11|2, T +
1 := |S+

12|2

are called the reflection coefficient and the transition coefficient for the wave U1
coming in G(ε) from −∞. (Similar definitions can be given for the wave U2,

http://dx.doi.org/10.1007/978-3-319-15105-2_5
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incoming from +∞.) In the same manner, we introduce the scattering matrix
S− and the reflection and transition coefficients R−

1 and T −
1 for the equation in

(8.2.2) with �−.
We consider only the scattering of the wave going from −∞ and denote the

reflection and transition coefficients by

R± = R±(k, ε) = |S±
11(k, ε)|2, T ± = T ±(k, ε) = |S±

12(k, ε)|2. (8.2.7)

We intend to find a “resonant” value k±
r = k±

r (ε) of the parameter k which corre-
sponds to the maximum of the transition coefficient and to describe the behavior of
T ±(k, ε) near k±

r (ε) as ε → 0.

8.3 Limit Problems

To derive the asymptotics of a wave function (i.e., a solution to problem (8.2.2))
as ε → 0, we make use of the compound asymptotics method. To this end, we
introduce the “limit” problems independent of ε. Let the vector potential A′ and,
in particular, the magnetic field H differ from zero only in the resonator, which is
the part of waveguide between the narrows. Then, outside the resonator and in a
neighborhood of the narrows, the wave function under consideration satisfies the
Helmholtz equation.

8.3.1 First Kind Limit Problems

We set G(0) = G ∩ K1 ∩ K2 (Fig. 5.3), so G(0) consists of three parts: G0, G1, and
G2. The boundary value problems

− �v(x, y, z) − k2v(x, y, z) = f (x, y, z), (x, y, z) ∈ G j , (8.3.1)

v(x, y, z) = 0, (x, y, z) ∈ ∂G j ,

where j = 1, 2, and

(−i∇ + A′)2v(x, y, z) ± H(ρ)v(x, y, z) − k2v(x, y, z) = f (x, y, z), (x, y, z) ∈ G0,

(8.3.2)

v(x, y, z) = 0, (x, y, z) ∈ ∂G0,

are called the first kind limit problems.
We introduce function spaces for the problem (8.3.2) in G0. Denote by O1 and O2

the conical points of the boundary ∂G0 and by φ1 and φ2 smooth real functions on
the closure G0 of G0 such that φ j = 1 in a neighborhood of O j while φ2

1 + φ2
2 = 1.

For l = 0, 1, 2 and γ ∈ R, we denote by V l
γ (G0) the completion in the norm

http://dx.doi.org/10.1007/978-3-319-15105-2_5
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‖v; V l
γ (G0)‖ =

⎛
⎝∫

G0

l∑
|α|=0

2∑
j=1

φ2
j (x, y, z)r2(γ−l+|α|)

j |∂αv(x, y, z)|2 dx dy dz

⎞
⎠

1/2

(8.3.3)

of the set of smooth functions on G0 vanishing near O1 and O2; here r j is the
distance between the points (x, y, z) and O j , α = (α1, α2, α3) is the multi-index,
and ∂α = ∂ |α|/∂xα1∂yα2∂zα3 .

Let K j be the tangent cone to ∂G0 at O j and S(K j ) the domain that K j cuts
out on the unit sphere centered at O j . We denote by μ1(μ1 + 1) and μ2(μ2 + 1)
the first and second eigenvalues of the Dirichlet problem for the Laplace-Beltrami
operator in S(K1), 0 < μ1(μ1 + 1) < μ2(μ2 + 1). Moreover, we let �1 stand for
an eigenfunction corresponding to μ1(μ1 + 1) and normalized by

(2μ1 + 1)
∫

S(K1)

|�1(ϕ)|2dϕ = 1.

The next proposition follows from the general results, e.g., see [37, Chaps. 2 and 4,
Sects. 1–3] or [33, Vol. 1,Chap. 1] .

Proposition 8.3.1 Assume that |γ −1| < μ1+1/2. Then, for f ∈ V 0
γ (G0) and any

k2 except the positive increasing sequence {k2p}∞p=1 of eigenvalues k2p → ∞, there

exists a unique solution v ∈ V 2
γ (G0) to the problem (8.3.2) in G0. The estimate

‖v; V 2
γ (G0)‖ ≤ c‖ f ; V 0

γ (G0)‖ (8.3.4)

holds with a constant c independent of f . If f vanishes in a neighborhood of O1 and
O2, then v admits the asymptotics

v(x, y, z) =
{

b1r−1/2
1 J̃μ1+1/2(kr1)�1(ϕ1) + O

(
rμ2+1/2
1

)
, r1 → 0;

b2r−1/2
2 J̃μ1+1/2(kr2)�1(−ϕ2) + O

(
rμ2+1/2
2

)
, r2 → 0

near O1 and O2, where (r j , ϕ j ) are “polar coordinates” centered at O j , r j > 0
and ϕ j ∈ S(K j ); b j are certain constants; J̃μ denotes the Bessel function multiplied
by a constant such that J̃μ(kr) = rμ + o(rμ).

Let k2 = k2e be an eigenvalue of problem (8.3.2); then the problem (8.3.2) is
solvable if and only if ( f, ve)G0 = 0 for any eigenfunction ve corresponding to k2e .
Under such conditions, there exists a unique solution v to problem (8.3.2) that is
orthogonal to all these eigenfunctions and satisfies (8.3.4).

We turn to problems (8.3.1) for j = 1, 2. Let χ0, j and χ∞, j be smooth real functions
on the closureG j ofG j such thatχ0, j = 1 in a neighborhood of O j ,χ0, j = 0 outside
a compact set, and χ2

0, j + χ2∞, j = 1. We also assume that the support suppχ∞, j is

in the cylindrical part of G j . For γ ∈ R, δ > 0, and l = 0, 1, 2, the space V l
γ, δ(G j )
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is the completion in the norm

‖v; V l
γ, δ(G j )‖ =

⎛
⎝∫

G j

l∑
|α|=0

(
χ2
0, j r

2(γ−l+|α|)
j + χ2∞, j exp(2δx)

)|∂αv|2 dx dy dz

⎞
⎠
1/2

(8.3.5)

of the set of functions with compact support smooth on G j and equal to zero in a
neighborhood of O j .

By assumption, k2 is between the first and second thresholds, so in every domain
G j there is only one outgoing wave; let U−

1 = U2 be the outgoing wave in G1 and
U−
2 = U1 that in G2 (the definition of the waves U j in G see in Sect. 8.2). The next

proposition follows from Theorem 5.3.5 in [37].

Proposition 8.3.2 Let |γ −1| < μ1+1/2 and let the homogeneous problem (8.3.1)
(with f = 0) have no nontrivial solutions in V 2

γ, 0(G j ). Then, for any right-hand side

f ∈ V 0
γ, δ(G j ) there exists a unique solution v to the problem (6.2.1), that admits

the representation
v = u + A jχ∞, jU

−
j ,

where A j = const, u ∈ V 2
γ, δ(G j ) and δ is sufficiently small. Moreover the estimate

‖u; V 2
γ, δ(G j )‖ + |A j | ≤ c‖ f ; V 0

γ, δ(G j )‖ (8.3.6)

holds with a constant c independent of f . If the function f vanishes in a neighborhood
of O j , then the solution v in G1 admits the decomposition

v(x, y, z) = a1r−1/2
1 J̃μ1+1/2(kr1)�1(−ϕ1) + O

(
rμ2+1/2
1

)
, r1 → 0,

and for the solution in G2 there holds

v(x, y) = a2r−1/2
2 J̃μ1+1/2(kr2)�1(ϕ2) + O

(
rμ2+1/2
2

)
, r2 → 0,

where a j are certain constants and μl are the same as in the preceding proposition.

8.3.2 Second Kind Limit Problems

In the domains� j , j = 1, 2, introduced in Sect. 8.2, we consider the boundary value
problems

−�w(ξ j , η j , ζ j ) = F(ξ j , η j , ζ j ), (ξ j , η j , ζ j ) ∈ � j ; (8.3.7)

w(ξ j , η j , ζ j ) = 0, (ξ j , η j , ζ j ) ∈ ∂� j ,

http://dx.doi.org/10.1007/978-3-319-15105-2_6
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which are called second kind limit problems; here (ξ j , η j , ζ j ) denote Cartesian coor-
dinates with origin at O j .

Let ρ j = dist((ξ j , η j , ζ j ), O j ) and let ψ0, j , ψ∞, j be smooth real functions on
� j such that ψ0, j = 1 for ρ j < N/2, ψ0, j = 0 for ρ j > N , and ψ2

0, j + ψ2∞, j = 1

with sufficiently large positive N . For γ ∈ R and l = 0, 1, 2, the space V l
γ (� j ) is

the completion in the norm

‖v; V l
γ (� j )‖ =

⎛
⎝∫

� j

l∑
|α|=0

(
ψ2
0, j + ψ2∞, jρ

2(γ−l+|α|)
j

)|∂αv|2 dξ j dη j dζ j

⎞
⎠

1/2

(8.3.8)
of the set C∞

c (� j ) of smooth functions with compact support in� j . The next propo-
sition is a corollary of Theorem 4.3.6 in [37].

Proposition 8.3.3 Assume that |γ − 1| < μ1 + 1/2. Then, for F ∈ V 0
γ (� j ), there

exists a unique solution w ∈ V 2
γ (� j ) of the problem (8.3.7) such that

‖w; V 2
γ (� j )‖ ≤ c‖F; V 0

γ (� j )‖, (8.3.9)

with a constant c independent of F. If F ∈ C∞
c (� j ), then the function w is smooth

on � j and admits the representation

w(ξ j , η j , ζ j ) =
{

dl
jρ

−μ1−1
j �1(−ϕ j ) + O

(
ρ

−μ2−1
j

)
, ξ j < 0,

dr
j ρ

−μ1−1
j �1(ϕ j ) + O

(
ρ

−μ2−1
j

)
, ξ j > 0,

(8.3.10)

with ρ j → ∞; here (ρ j , ϕ j ) are polar coordinates on � j centered at O j while μl

and �1 are the same as in Proposition 8.3.1. The constants α j and β j are given by

dl
j = −(F, wl

j )�, dr
j = −(F, wr

j )�,

where wl
j and wr

j are unique solutions to the homogeneous problem (8.3.7) that
satisfy, for ρ j → ∞, the conditions

wl
j =

{(
ρ

μ1
j + αρ

−μ1−1
j

)
�1(−ϕ j ) + O

(
ρ

−μ2−1
j

)
, ξ j < 0;

βρ
−μ1−1
j �1(ϕ j ) + O

(
ρ

−μ2−1
j

)
, ξ j > 0; (8.3.11)

wr
j =

{
βρ

−μ1−1
j �1(−ϕ j ) + O

(
ρ

−μ2−1
j

)
, ξ j < 0;(

ρ
μ1
j + αρ

−μ1−1
j

)
�1(ϕ j ) + O

(
ρ

−μ2−1
j

)
, ξ j > 0.

(8.3.12)

The coefficients α and β depend only on the domain �.
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8.4 Special Solutions of Limit Problems

In each domain G j , j = 0, 1, 2, we introduce special solutions to the homogeneous
problems (6.2.1). Such solutions will be needed in the next section for constructing
the asymptotics of a wave function. The special solutions Vj , v j of the limit problems
inG j , j = 1, 2,were introduced and studied inChap.6. Remember that the following
expansions are valid:

V1(x, y, z) =
{

U+
1 (x, y, z) + S011(k)U−

1 (x, y, z) + O(exp(δx)), x → −∞,

s1(k)r−1/2
1 J̃μ1+1/2(kr1)�1(−ϕ1), r1 → 0; (8.4.1)

V2(x, y, z) =
{

U+
2 (x, y, z) + S022(k)U−

2 (x, y, z) + O(exp(−δx)), x → +∞,

s2(k)r−1/2
2 J̃μ1+1/2(kr2)�1(ϕ1), r2 → 0.

(8.4.2)

and

v1(x, y, z) =
{

r−1/2
1

(
Ñμ1+1/2(kr1) + a1 J̃μ1+1/2(kr1)

)
�1(−ϕ1) + O(rμ2

1 ), r1 → 0,

A1U−
1 (x, y, z) + O(eδx ), x → −∞,

(8.4.3)

v2(x, y, z) =
{

r−1/2
2

(
Ñμ1+1/2(kr2) + a2 J̃μ1+1/2(kr2)

)
�1(ϕ2) + O(rμ2

2 ), r2 → 0,

A2U−
2 (x, y, z) + O(e−δx ), x → +∞,

(8.4.4)

where J̃μ is the same function as in Propositions 8.3.1 and 8.3.2 and the constant
A j depends only on the domain G j .

Lemma 8.4.1 The equalities |A j |2 = 2 Im a j , A j = is j S0
j j hold.

Let k2e,± be a simple eigenvalue of the problem (8.3.2) in the resonator G0;
v±

e is an eigenfunction corresponding to k2e,± and normalized by the condition∫
G0

|v±
e |2dx dy dz = 1. By virtue of Proposition 8.3.1

v±
e (x, y, z) ∼

{
b±
1 r−1/2

1 J̃μ1+1/2(k0,±r1)�1(ϕ1), r1 → 0,

b±
2 r−1/2

2 J̃μ1+1/2(k0,±r2)�1(−ϕ2), r2 → 0.
(8.4.5)

We consider that b±
j 
= 0. If H = 0, then it is true, for instance, for the eigenfunc-

tions corresponding to the minimal eigenvalue of the resonator. For nonzero H , this
condition can be violated. For k2 in a punctured neighborhood of k2e,± separated from
the other eigenvalues, we introduce the solutions v±

0 j to the homogeneous problem
(8.3.2) by the relations

v±
0 j (x, y, z) = �(r j )v j (r j , ϕ j ) + ṽ±

0 j (x, y, z), j = 1, 2, (8.4.6)

http://dx.doi.org/10.1007/978-3-319-15105-2_6
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where t �→ �(t) is a cut-off function on R equal to 1 for t < δ/2 and to 0 for t > δ
with a small positive δ, v j are defined by

v1(r1, ϕ1) = r−1/2
1 Ñμ1+1/2(kr1)�1(ϕ1), v2(r2, ϕ2) = r−1/2

2 Ñμ1+1/2(kr2)�1(−ϕ2),

Ñμ is the Neumann function multiplied by such a constant that

Ñμ(kr) = r−μ + o(r−μ),

and ṽ±
0 j is a bounded solution to the problem (8.3.2) with f j (x, y, z) = −[�,�(r j )]

v j (r j , ϕ j ).

Lemma 8.4.2 In a neighborhood V ⊂ C of k2e,± containing no eigenvalues of the

problem (8.3.2) in G0 distinct from k2e,±, the equalities v±
0 j = −b±

j (k2−k2e,±)−1v±
e +

v̂±
0 j hold, where b±

j are the same as in (8.4.5) and the functions v̂±
0 j are analytic in

k2 ∈ V .

Proof We first verify that (v±
0 j , v

±
e )G0 = −b±

j /(k2 − k2e,±), where v±
0 j are defined

by (8.4.6). We have

(�v±
0 j + k2v±

0 j , v
±
e )Gδ − (v±

0 j ,�v±
e + k2v±

e )Gδ = −(k2 − k2e,±)(v±
0 j , v

±
e )Gδ ;

the domain Gδ is obtained from G0 by cutting out the balls of radius δ with centers at
O1 and O2. Applying the Green formula in the same way as in the proof of Lemma

6.3.1, we arrive at −(k2 − k2e,±)(v±
0 j , v

±
e )Gδ = b±

j + o(1). It remains to let δ → 0.

Since k2e,± is a simple eigenvalue, we have

ṽ±
0 j = B±

j (k2)

k2 − k2e,±
v±
0 + v̂±

0 j , (8.4.7)

where B±
j (k2) does not depend on (x, y, z), and v̂±

0 j are some functions analytic

with respect to k2 near the point k2 = k2e,±. Multiplying (8.4.6) by v±
e and tak-

ing into account (8.4.7), the obtained formula for (v±
0 j , v

±
e )G0 , and the condition

(v±
e , v±

e )G0 = 1, we get the equality B±
j (k2) = −b±

j + (k2 − k2e,±)B̃±
j (k2), where

B̃±
j are some analytic functions. Together with (8.4.7) that leads to the required

statement. �

In view of Proposition 8.3.1,

v±
01(x, y) ∼

{
r−1/2
1

(
Ñμ1+1/2(kr1) + c±

11(k) J̃μ1+1/2(kr1)
)
�(ϕ1), r1 → 0,

c±
12(k)r−1/2

2 J̃μ1+1/2(kr2)�(−ϕ2), r2 → 0,

(8.4.8)

http://dx.doi.org/10.1007/978-3-319-15105-2_6
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v±
02(x, y) ∼

{
c±
21(k)r−1/2

1 J̃μ1+1/2(kr1)�(ϕ1), r1 → 0,

r−1/2
2

(
Ñμ1+1/2(kr2) + c±

22(k) J̃μ1+1/2(kr2)
)
�(−ϕ2), r2 → 0.

(8.4.9)

According to Lemma 8.4.2 and relations (8.4.5),

c±
pq(k) = − b±

p b±
q

k2 − k2e,±
+ ĉ±

pq(k), (8.4.10)

where ĉ±
pq analytically depends on k2 nearby k2e,±.

Lemma 8.4.3 If v±
01 and v±

02 in (8.4.8) and (8.4.9) make sense for a number k, then

c±
12(k) = c±

21(k).

Proof It suffices to apply the Green formula to v±
01 and v±

02 in the same domain Gδ

as in the proof of Lemma 6.4.1, to use (8.4.8) and (8.4.9), and to let δ tend to 0. �

8.5 Asymptotic Formulas

In Sect. 8.5.1, we present an asymptotic formula for a wave function (see (8.5.1)),
explain its structure, and describe the solutions of the first kind limit problems
involved in the formula. We complete deriving the formula (8.5.1) in Sect. 8.5.2,
where we describe the involved solutions of the second kind limit problems and
calculate some coefficients in the expressions for the solutions of the first kind prob-
lems. In Sect. 8.5.3, when analysing the expression for S̃12 obtained in Sect. 8.5.2,
we derive formal asymptotics of the resonant tunneling characteristics. Note that the
remainders in (8.5.24)–(8.5.27) have arisen at the intermediate stage of considera-
tion during simplification of the principal part of the asymptotics; they are not the
remainders in the final asymptotic formulas. The “final” remainders are estimated
in Sect. 8.6 (see Theorem 8.6.3). For ease of notation, we drop the symbol “±” in
this section, meaning that we will deal with any one of the Eq. (8.2.2).

8.5.1 The Asymptotics of a Wave Function

In the waveguide G(ε), we consider the scattering of the wave U (x, y, z) =
eiν1x�1(y, z) incoming from −∞ (see (5.1.5)). The corresponding wave function
admits the representation

u(x, y, z; ε) = χ1, ε(x, y, z)v1(x, y, z; ε)

+�(r1)w1(ε
−1x1, ε

−1y1, ε
−1z1; ε) + χ0, ε(x, y, z)v0(x, y, z; ε) (8.5.1)

+�(r2)w2(ε
−1x2, ε

−1y2, ε
−1z2; ε) + χ2, ε(x, y, z)v2(x, y, z; ε) + R(x, y, z; ε).

http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_5
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Let us explain the notation and structure of this formula. When constructing the
asymptotics,wefirst describe the behavior of thewave functionuoutside the narrows,
approximatingu by the solutions v j of the homogeneous problems (6.2.1) and (8.3.2)
in G j . As v j , we take certain linear combinations of the special solutions introduced
in the preceding section; in doing so, we subject v1 and v2 to the same radiation
conditions at infinity as u:

v1(x, y, z; ε) = V1(x, y, z) + C̃11v1(x, y, z)

∼ U+
1 (x, y, z) + S̃11(ε)U

−
1 (x, y, z), x → −∞; (8.5.2)

v0(x, y, z; ε) = C12(ε)v01(x, y, z) + C13(ε)v02(x, y, z); (8.5.3)

v2(x, y, z; ε) = C14v2(x, y, z) ∼ S̃12(ε)U
−
2 (x, y, z), x → +∞; (8.5.4)

for the time being the approximations S̃11(ε), S̃12(ε) for the entries S11(ε), S12(ε) of
the scattering matrix and the coefficients C1 j (ε) are unknown. Here χ j,ε stand for
the cut-off functions defined by the equalities

χ1, ε(x, y, z) = (1 − �(r1/ε)) 1G1 (x, y, z), χ2, ε(x, y, z) = (1 − �(r2/ε)) 1G2 (x, y, z),

χ0, ε(x, y, z) = (1 − �(r1/ε) − �(r2/ε)) 1G0 (x, y, z), (8.5.5)

where r j =
√

x2j + y2j + z2j and (x j , y j , z j ) are the coordinates of a point (x, y, z)

in the systemwith the origin shifted to O j ; 1G j is the indicator of the set G j (equal to
1 in G j and 0 outside G j ); �(ρ) is the a cut-off function equal to 1 for 0 � ρ � δ/2
and 0 for ρ � δ with a fixed sufficiently small positive δ. Thus χ j, ε are defined on
the whole waveguide G(ε) as well as the functions χ j, εv j in (8.5.1).

When substituting
∑2

j=0 χ j, εv j in (8.2.2), we obtain a discrepancy in the right-
hand side of the Helmholtz equation supported near the narrows. We compensate the
principal part of the discrepancy by making use of the second kind limit problems.
In more detail, we rewrite the discrepancy supported near O j in the coordinates
(ξ j , η j , ζ j ) = (ε−1x j , ε

−1y j , ε
−1z j ) in the domain � j and take it as right-hand

side for the Laplace equation. Then we rewrite the solution w j of the corresponding
problem (8.3.7) in the coordinates (x2, y2, z2) and multiply it by the cut-off function.
As a result, there arises the term �(r j )w j (ε

−1x j , ε
−1y j , ε

−1z j ; ε) in (8.5.1).

The existence of solutions w j vanishing as O(ρ
−μ1−1
j ) at infinity follows from

Proposition 8.3.3 (see (8.3.10)). However, choosing such solutions and then sub-
stituting (8.5.1) in (8.2.2), we obtain a discrepancy of high order that has to be
compensated again. Therefore, we require w j = O(ρ

−μ2−1
j ) as ρ j → ∞. Accord-

ing to Proposition 8.3.3, such a solution exists if the right-hand side of the problem
(8.3.7) satisfies the additional conditions

(F, wl
j )� j = 0, (F, wr

j )� j = 0.

http://dx.doi.org/10.1007/978-3-319-15105-2_6
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Such conditions (two at each narrow) uniquely define the coefficients S̃11(ε), S̃12(ε),
andC11(ε), . . . , C14(ε). The remainder R(x, y, z; ε) is small in comparison with the
principal part of (8.5.1) as ε → 0.

8.5.2 Formulas for ˜S11, ˜S12, and C11, . . . , C14

We are now going to define the right-hand side Fj of problem (8.3.7) and to find
S̃11(ε), S̃12(ε), and C11(ε), . . . , C14(ε). We substitute χ1, εv1 in (8.2.2) and obtain
the discrepancy

(−� − k2)χ1, εv1 = −[�,χε,1]v1 + χε,1(−� − k2)v1 = −[�, 1 − �(ε−1r1)]v1,

distinct from zero only near the point O1, where v1 can be replaced by the asymp-
totics; the boundary condition (8.2.3) is fulfilled. According to (8.5.2) and (8.4.3),

v1(x, y, z; ε) = r−1/2
1

(
a−
1 (ε)Ñμ1+1/2(kr1) + a+

1 (ε) J̃μ1+1/2(kr1)
)

× �1(−ϕ1) + O(rμ2
1 ), r1 → 0,

with
a−
1 (ε) = C11, a+

1 = s1 + C11a1. (8.5.6)

We single out the principal part of each term and put ρ1 = r1/ε, then

(−� − k2)χε,1v1 ∼ −[�, 1 − �(ε−1r1)]
(

a−
1 r−μ1−1

1 + a+
1 rμ1

1

)
�1(−ϕ1)

= −ε−2[�(ρ1,ϕ1), 1 − �(ρ1)]
(

a−
1 ε−μ1−1ρ

−μ1−1
1 + a+

1 εμ1ρ
μ1
1

)
�1(−ϕ1).

(8.5.7)

In the same way, using (8.5.3) and (8.4.8)–(8.4.9), we obtain the principal part of the
discrepancy given by χε,2v2 supported near O1:

(−� − k2)χε,1v1 ∼ −ε−2[�(ρ1,ϕ1), 1 − �(ρ1)]
(

b−
1 ε−μ1−1ρ

−μ1−1
1 + b+

1 εμ1ρ
μ1
1

)
�1(ϕ1),

(8.5.8)
where

b−
1 = C12(ε), b+

1 = C12(ε)c11 + C13(ε)c21. (8.5.9)

As right-hand side F1 of the problem (6.2.6) in �1, we take the function

F1(ξ1, η1, ζ1) = [�, θ−]
(

a−
1 ε−μ1−1ρ

−μ1−1
1 + a+

1 εμ1ρ
μ1
1

)
�1(−ϕ1)

+ [�, θ+]
(

b−
1 ε−μ1−1ρ

−μ1−1
1 + b+

1 εμ1ρ
μ1
1

)
�1(ϕ1), (8.5.10)

http://dx.doi.org/10.1007/978-3-319-15105-2_6
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where θ+ (respectively θ−) stands for the function 1−� first restricted to the domain
ξ1 > 0 (respectively ξ1 < 0) and then extended by zero to the whole domain �1. Let
w1 be the corresponding solution; then the term �(r1)w1(ε

−1x1, ε−1y1, ε−1z1; ε)

in (8.5.1) being substituted in (8.2.2) compensates the discrepancies (8.5.7)–(8.5.8).
In a similar manner, making use of (8.5.3)–(8.5.4), (8.4.8)–(8.4.9), and (8.4.4),

we find the right-hand side of the problem (8.3.7) for j = 2:

F2(ξ2, η2, ζ2) = [�, θ−]
(

a−
2 ε−μ1−1ρ

−μ1−1
2 + a+

2 εμ1ρ
μ1
2

)
�1(−ϕ2)

+ [�, θ+]
(

b−
2 ε−μ1−1ρ

−μ1−1
2 + b+

2 εμ1ρ
μ1
2

)
�1(ϕ2);

a−
2 (ε) = C13(ε), a+

2 (ε) = C12(ε)c12 + C13(ε)c22,

b−
2 (ε) = C14(ε), b+

2 (ε) = C14(ε)a2.
(8.5.11)

Lemma 8.5.1 If the solution w j of the problem (8.3.7) with right-hand side

Fj (ξ j , η j , ζ j ) = [�, θ−]
(

a−
j ε−μ1−1ρ

−μ1−1
j + a+

j εμ1ρ
μ1
j

)
�1(−ϕ j )

+ [�, θ+]
(

b−
j ε−μ1−1ρ

−μ1−1
j + b+

j εμ1ρ
μ1
j

)
�1(ϕ j ),

j = 1, 2, admits the estimate O(ρ
−μ2−1
j ) as ρ j → ∞, then

a−
j ε−μ1−1 − αa+

j εμ1 − βb+
j εμ1 = 0, b−

j ε−μ1−1 − αb+
j εμ1 − βa+

j εμ1 = 0,
(8.5.12)

where α and β are the coefficients in (8.3.11)–(8.3.12).

Remark 8.5.2 The solutions w j mentioned in Lemma 8.5.1 can be written as linear
combinations of certain model functions independent of ε. We present the corre-
sponding expressions, which will be needed in the next section for estimating the
remainders of asymptotic formulas. Letwl

j andwr
j be the solutions to problem (8.3.7)

defined by (8.3.11)–(8.3.12) and θ+, θ− the same cut-off functions as in (8.5.10).
We set

wl
j = wl

j − θ− (
ρ

μ1
j + αρ

−μ1−1
j

)
�1(−ϕ j ) − θ+βρ

−μ1−1
j �1(ϕ j ),

wr
j = wr

j − θ−βρ
−μ1−1
j �1(−ϕ j ) − ζ+ (

ρ
μ1
j + αρ

−μ1−1
j

)
�1(ϕ j ).

A straightforward verification shows that

w j = a+
j εμ1wl

j + b+
j εμ1wr

j . (8.5.13)

It is convenient to write (8.5.12) in the form
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(a−
j , b−

j ) = (a+
j , b+

j )� ε2μ1+1, � =
(

α β

β α

)
. (8.5.14)

We use (8.5.6) and (8.5.9) to transform (8.5.14) with j = 1 to the equality

(C11, C12) = (s1 + C11a1, C12c11 + C13c21)� ε2μ1+1. (8.5.15)

For j = 2, taking (8.5.11) into account, we reduce (8.5.14) to

(C13, C14) = (C12c12 + C13c22, C14 a2)� ε2μ1+1. (8.5.16)

Setting � = diag {�,�},

a =

⎛
⎜⎜⎝

a1 0 0 0
0 c11 c12 0
0 c21 c22 0
0 0 0 a2

⎞
⎟⎟⎠ , (8.5.17)

and combining the above relations for C1 j , we obtain

(C11, C12, C13, C14) = (s1, 0, 0, 0)� ε2μ1+1 + (C11, C12, C13, C14) a � ε2μ1+1,

hence

(C11, C12, C13, C14)(I − a � ε2μ1+1) = (s1, 0, 0, 0)� ε2μ1+1. (8.5.18)

Let us calculate the inverse matrix for I − a�ε2μ1+1, assuming ε to be sufficiently
small. From (8.4.10) it follows that

a(k) = − b∗b
k2 − k2e

+ â(k),

where b = (0, b1, b2, 0) and the matrix â is analytic near k = ke and defined by
(8.5.17), whereas cpq is replaced for ĉpq . We have

(I − a� ε2μ1+1)−1

= (I − â � ε2μ1+1)−1
(

I − b∗b � ε2μ1+1(I − â � ε2μ1+1)−1

k2 − k2e + 〈b � ε2μ1+1(I − â � ε2μ1+1)−1, b〉
)

.

This leads to

(C11, C12, C13, C14) = (s1, 0, 0, 0)� ε2μ1+1(I − a � ε2μ1+1)−1

= (s1, 0, 0, 0)

(
D − D b∗b D

k2 − k2e + 〈bD, b〉
)

, (8.5.19)
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where b = (0, b1, b2, 0), D = � ε2μ1+1(I − â � ε2μ1+1)−1.
We now seek an approximation to the entries of the first row (S11, S12) of the

scattering matrix. By virtue of (8.5.2) and (8.5.4),

(S̃11, S̃12) = (S0
11 + C11A1, C14A2). (8.5.20)

We set

A =

⎛
⎜⎜⎝

A1 0
0 0
0 0
0 A2

⎞
⎟⎟⎠ , s =

(
s1 0 0 0
0 0 0 s2

)
;

S0 = diag (S0
11, S0

22); then, by Lemma 8.4.1, A = is ∗S0. In view of (8.5.20) and
(8.5.19), we obtain

(S̃11, S̃12) = (S0
11, 0) + (C11, C12, C13, C14)A

= (S0
11, 0) + i(s1, 0, 0, 0)

(
D − D b∗b D

k2 − k2e + 〈bD, b〉
)

s∗S0. (8.5.21)

An approximation to the second row of the scattering matrix is of the form

(S̃21, S̃22) = (0, S0
22) + i(0, 0, 0, s2)

(
D − D b∗b D

k2 − k2e + 〈bD, b〉
)

s∗S0. (8.5.22)

Lemma 8.5.3 The matrix S̃(ε) is unitary.

8.5.3 Asymptotics for Resonant Tunneling Characteristics

The solutions of thefirst limit problems involved in (8.5.1) are defined for the complex
k2 as well. The expressions (8.5.21)–(8.5.22) obtained for S̃(ε) have a pole at k2p in
the lower half-plane. To find k2p, we equate k2 − k2e + 〈bD, b〉 to zero and solve the
equation for k2 − k2e :

k2 − k2e = −〈bD, b〉 = −ε2π/ω〈b� (I − â � ε2π/ω)−1, b〉. (8.5.23)

Since the right-hand side of this equation behaves as O(ε2μ1+1) for ε → 0, its solu-
tion can be found by the successive approximationmethod. Considering the formulas
Im a j = |s j |2/2, which follow from the waveguide symmetry and Lemma 8.4.1, and
discarding the lower order terms, we get k2p = k2r − ik2i , where

k2r = k2e − α(|b1|2 + |b2|2)ε2μ1+1 + O(ε4μ1+2), (8.5.24)



8.5 Asymptotic Formulas 213

k2i = 1

2
β2(|b1|2 + |b2|2)|s1(k2e )|2ε4μ1+2 + O(ε6μ1+3).

From (8.5.21) and (8.5.22), we obtain

S̃(k, ε) = S0(k) + is(k)� s∗(k)S0(k)ε2μ1+1

− i
s(k)� b∗b � s∗(k)S0(k)

k2 − k2p
ε4μ1+2 + O

(
ε6μ1+3

k2 − k2p

)

=
(

S0
11(k) 0
0 S0

22(k)

)
+ i

(|s1(k)|2α1S0
11(k) 0

0 |s2(k)|2α2S0
22(k)

)
ε2μ1+1

− i

k2 − k2p

( |s1(k)|2|b1|2β2S0
11(k) s1(k)s2(k) b1b2β2S0

22(k)

s2(k)s1(k)b1b2β2S0
11(k) |s2(k)|2|b2|2β2S0

22(k)

)
ε4μ1+2

+ O

(
ε6μ1+3

k2 − k2p

)
.

Let k2 − k2e = O(ε2μ1+1), then cε4μ1+2 ≤ |k2 − k2p| ≤ cε2μ1+1, s j (k) = s j (ke) +
O(ε2μ1+1), S0

j j (k) = S0
j j (ke) + O(ε2μ1+1), and

S̃12(k, ε) = −iε4μ1+2 s1(k)s2(k) b1b2β2S0
22(k)

k2 − k2p

(
1 + O(ε2μ1+1)

)

= −
s1(ke)

|s1(ke)|
s2(ke)

|s2(ke)|
b1
|b1|

b2
|b2| S0

22(ke)

1

2

( |b1|
|b2| + |b2|

|b1|
)

− i P
k2 − k2r
ε4μ1+2

(
1 + O(ε2μ1+1)

)
, (8.5.25)

S̃21(k, ε) = −iε4μ1+2 s1(k)s2(k)b1b2β2S0
11(k)

k2 − k2p

(
1 + O(ε2μ1+1)

)

= −
s1(ke)

|s1(ke)|
s2(ke)

|s2(ke)|
b2
|b2|

b2
|b2| S0

11(ke)

1

2

( |b1|
|b2| + |b2|

|b1|
)

− i P
k2 − k2r
ε4μ1+2

(
1 + O(ε2μ1+1)

)
,

where P = (|b1||b2|β2|s1(ke)|2
)−1

. Thus,

T̃1(k, ε) = T̃2(k, ε) = |S̃12|2 = 1

1

4

( |b1|
|b2| + |b2|

|b1|
)2

+ P2

(
k2 − k2r
ε4μ1+2

)2 (1 + O(ε2μ1+1)).

(8.5.26)
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The obtained approximation T̃ j to the transition coefficient Tj has a peak at k2 = k2r
whose width at its half-height is

ϒ̃(ε) =
( |b1|

|b2| + |b2|
|b1|

)
1

P
ε4μ1+2. (8.5.27)

8.6 Justification of the Asymtotics

As in the previous section, herewe omit “±” in the notations and do not specifywhich
equation of (8.2.2) is considered. We return to the full notations in Theorem 8.6.3.

Let us introduce functional spaces for the problem

(−i∇ + A)2u ± Hu − k2u = f in G(ε), u = 0 on ∂G(ε). (8.6.1)

Recall that the functions A and H are compactly supported, and, besides, they are
nonzero only in the resonator at some distance from the narrows. Let � be the same
function as in (8.5.5) and let the cut-off functions η j , j = 0, 1, 2, be nonzero in G j

and satisfy the relation η1(x, y)+�(r1)+η0(x, y)+�(r2)+η2(x, y) = 1 in G(ε).
For γ ∈ R, δ > 0, and l = 0, 1, . . . , the space V l

γ,δ(G(ε)) is the completion in the
norm

‖u; V l
γ,δ(G(ε))‖

=
(∫

G(ε)

l∑
|α|=0

( 2∑
j=1

�2(r j ) (r2j + ε2j )
γ−l+|α| + η21e2δ|x |

+ η0 + η22e2δ|x |
)

|∂αv|2 dx dy dz

)1/2

(8.6.2)

of the set of smooth functions compactly supported on G(ε). Denote by V 0,⊥
γ,δ the

space of function f , analytic in k2, with values in V 0
γ,δ(G(ε)) that satisfy, at k2 = k2e ,

the condition (χ0,εσ f, ve)G0 = 0 with a small σ > 0.

Proposition 8.6.1 Let k2r be a resonance, k2r → k2e as ε → 0, and let |k2 − k2r | =
O(ε2μ1+1). Let γ satisfy the condition μ1 − 3/2 < γ − 1 < μ1 + 1/2, f ∈
V 0,⊥

γ,δ (G(ε)), and let u be a solution to problem (8.6.1) that admits the representation

u = ũ + η1A−
1 U−

1 + η2A−
2 U−

2 ;

here A−
j = const and ũ ∈ V 2

γ,δ(G(ε)) for small δ > 0. Then

‖ũ; V 2
γ,δ(G(ε))‖ + |A−

1 | + |A−
2 | ≤ c‖ f ; V 0

γ,δ(G(ε))‖, (8.6.3)

where c is a constant independent of f and ε.
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Proof Step A. First we construct an auxiliary function up. As mentioned above, S̃
has a pole k2p = k2r − ik2i (see (8.5.24)). Let us multiply the solutions to the limit
problems, involved in (8.5.1), by g := −(k2 − k2e +〈bD(k), b〉)/〈(s1, 0, 0, 0)D, b〉,
put k = kp, and denote the resulting functions by adding the subscript p. In view of
(8.5.19) and the equality (s1, 0, 0, 0)Db∗ = 〈(s1, 0, 0, 0)D, b〉, we get

g (C11, C12, C13, C14)|k=kp = bD(kp) = (b1β, b1α, b2α, b2β)ε2μ1+1+O(ε4μ1+2).

(8.6.4)
This and (8.5.2), (8.5.4) lead to

v1p(x, y, z; ε) = g C11|k=kp v1(x, y, z; kp) = ε2μ1+1
(

b1β + O
(
ε2μ1+1

))
v1(x, y, z; kp),

(8.6.5)

v2p(x, y, z; ε) = g C14|k=kp v2(x, y, z; kp) = ε2μ1+1
(

b2β + O
(
ε2μ1+1

))
v2(x, y, z; kp);

the dependence of kp on ε is not shown. According to (8.5.3) and Lemma 8.4.2,

v0p(x, y, z; ε) = − (g C12b1 + g C13b2)|k=kp

k2p − k2e
ve(x, y, z) + g C12|k=kp v̂01(x, y, z)

+g C13|k=kp v̂02(x, y, z).

Taking into account (8.5.19), we obtain

C12b1 + C13b2 = (C11, C12, C13, C14)b∗

= (s1, 0, 0, 0)Db∗
(
1 − 〈bD, b〉

k2 − k2e + 〈bD, b〉
)

= (k2 − k2e )
〈(s1, 0, 0, 0)D, b〉
k2 − k2e + 〈bD, b〉 . (8.6.6)

Hence,

v0p(x, y, z; ε) = ve(x, y, z) + ε2μ1+1(b1α + O(ε2μ1+1))̂v01(x, y, z)

+ ε2μ1+1(b2α + O(ε2μ1+1))̂v02(x, y, z).

Finally, using (8.5.13) and formulas (8.5.6), (8.5.9) and (8.5.11) for a+
j and b+

j , we
find

w1p(ξ1, η1, ζ1; ε) = (gC11)|k=kp a1ε
μ1wl

1(ξ1, η1, ζ1) + (gC12c11

+ gC13c21)|k=kpε
μ1wr

1(ξ1, η1, ζ1),

w2p(ξ2, η2, ζ2; ε) = (gC22c11 + gC23c21)|k=kpε
μ1wl

2(ξ2, η2, ζ2)

+ (gC14)|k=kp a2ε
μ1wr

2(ξ2, η2, ζ2).

Compare the equalities (8.4.10), (8.6.6) and (8.6.4), then



216 8 Effect of Magnetic Field on Resonant Tunneling in 3D …

(gC12c1 j + gC j3c2 j )|k=kp = − b j
(g C12b1 + g C13b2)|k=kp

k2p − k2e

+ (gC12ĉ1 j + gC j3ĉ2 j )|k=kp = b j + O(ε2μ1+1),

where j = 1, 2. Thus

w1p(ξ1, η1, ζ1; ε) = ε3μ1+1(a1b1β + O(ε2μ1+1))wl
1(ξ1, η1, ζ1)

+ εμ1(b1 + O(ε2μ1+1))wr
1(ξ1, η1, ζ1), (8.6.7)

w2p(ξ2, η2, ζ2; ε) = εμ1(b2 + O(ε2μ1+1))wl
2(ξ2, η2, ζ2)

+ ε3μ1+1(a2b2β + O(ε2μ1+1))wr
2(ξ2, η2, ζ2). (8.6.8)

We set

up(x, y, z; ε) = �(x, y, z)
[
χ1,ε(x, y, z)v1p(x, y, z; ε)

+ �(ε−2σ r1)w1p(ε
−1x1, ε

−1y1, ε
−1z1; ε)

+ χ0,ε(x, y, z)v0p(x, y, z; ε)

+ �(ε−2σ r2)w2p(ε
−1x2, ε

−1y2, ε
−1z2; k, ε)

+ χ2,ε(x, y, z)v2p(x, y, z; k, ε)
]
, (8.6.9)

where � is a cut-off function in G(ε) that is equal to 1 on the set G(ε) ∩ {|x | < R}
and to 0 on G(ε) ∩ {|x | > R + 1} for a large R > 0; σ is such that 2σ < 1. The
principal part of the norm of up is given by χ0,εv0p. Considering the definitions of
v0p and v̂0 j (see Sect. 8.3) and Lemma 8.4.2, we obtain ‖χ0,εv0p‖ = ‖ve‖ + o(1).

Step B. We show that

‖((−i∇ + A)2 ± H − k2p)up; V 0
γ, δ(G(ε))‖ ≤ cεμ1+κ , (8.6.10)

where κ = min{μ1 + 1, μ2 + 1 − σ1, γ + 3/2}, σ1 = 2σ(μ2 − γ + 3/2). If
μ1−3/2 < γ −1 and σ is sufficiently small so thatμ2−μ1 > σ1, then κ = μ1+1.

By virtue of (8.6.9)

((−i∇ + A)2 ± H − k2p)up(x, y, z; ε)

= [�, χ1,ε]
(
v1(x, y, z; ε) − b1βε2μ1+1(r−μ1−1

1 + a(kp)r
μ1
1 )�1(−ϕ1)

)

+ [�,�]w1p(ε
−1x1, ε

−1y1, ε
−1z1; ε) − k2�(ε−2σ r1)w1p(ε

−1x1, ε
−1y1, ε

−1z1; ε)

+ [�, χ0,ε]
(
v0(x, y, z; ε) − �(r1)

(
b−
1p(ε)r

−μ1−1
1 + b+

1p(ε)r
μ1
1

)
�1(−ϕ1)

− �(r2)
(
a−
2p(ε)r

−μ1−1
2 + a+

2p(ε)r
μ1
2

)
�1(ϕ2)

)

+ [�,�]w2p(ε
−1x2, ε

−1y2, ε
−1z2; ε) − k2�(ε−2σ r2)w2p(ε

−1x2, ε
−1y2, ε

−1z2; ε)

+ [�, χ2,ε]
(
v2(x, y, z; ε) − b2βε2μ1+1(r−μ1−1

2 + a(kp)r
μ1
2 )�1(ϕ2)

)

+ [�, �]v1(x, y, z; ε) + [�, �]v3(x, y, z; ε),
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where b−
1p = O(ε2μ1+1), b+

1p = b1 + O(ε2μ1+1), a−
2p = O(ε2μ1+1), a+

2p = b2 +
O(ε2μ1+1). Taking account of the asymptoticsv1 as r1 → 0 andgoing to the variables
(ξ1, η1, ζ1) = (ε−1x1, ε−1y1, ε−1z1), we arrive at

∥∥∥(x, y, z) �→ [�, χ1,ε]
(

v1(x, y, z) − (r−μ1−1
1 + a(kp)r

μ1
1 )�1(−ϕ1)

)
; V 0

γ,δ(G(ε))

∥∥∥2

≤ c
∫

G(ε)

(r21 + ε2)γ
∣∣∣[�, χ1,ε]r−μ1+1

1 �(−ϕ1)

∣∣∣2 dx dy dz ≤ cε2(γ−μ1+1/2).

This and (8.5.2) imply that

∥∥∥(x, y, z) �→ [�, χ1,ε]
(
v1(x, y, z) − (r−μ1−1

1 + a(kp)r
μ1
1 )�(−ϕ1)

)
; V 0

γ,δ(G(ε))

∥∥∥
≤ cεγ+μ1+3/2.

Similarly,

∥∥∥(x, y, z) �→ [�, χ0,ε]
(
v0(x, y, z) − �(r1)

(
b−
1p(ε)r

−μ1−1
1 + b+

1p(ε)r
μ1
1

)
�1(−ϕ1)

− �(r2)
(
a−
2p(ε)r

−μ1−1
2 + a+

2p(ε)r
μ1
2

)
�1(ϕ2)

)∥∥∥ ≤ cεγ+μ1+3/2,∥∥∥(x, y, z) �→ [�, χ2,ε]
(
v2(x, y, z) − (r−μ1−1

2 + a(kp)r
μ1
2 )�1(ϕ2)

)
; V 0

γ,δ(G(ε))

∥∥∥
≤ cεγ+μ1+3/2.

It is clear that ∥∥∥[�, �]vl; V 0
γ,δ(G(ε))

∥∥∥ ≤ cε2μ1+1, l = 1, 3.

Further, since wl
j behaves as O(ρ

−μ2−1
j ) at infinity, we have

∫
G(ε)

(r2j + ε2)γ
∣∣∣[�, �]wl

j (ε
−1x j , ε

−1y j , ε
−1z j )

∣∣∣2 dx j dy j dz j

≤ c
∫

K j

(r2j + ε2)γ
∣∣[�, �](ε−1r j )

−μ2−1�2(ϕ j )
∣∣2 dx j dy j dz j ≤ cε2(μ2+1−σ1),

where σ1 = 2σ(μ2 − γ + 3/2). A similar inequality holds with wl
j changed for wr

j .
In view of (8.6.7) and (8.6.8), we obtain

∥∥∥[�,�]w j p; V 0
γ,δ(G(ε))

∥∥∥ ≤ cεμ1+μ2+1−σ1 .

Finally, using (8.6.7) and (8.6.8) once more and taking into account the estimate
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∫
G(ε)

(r2j + ε2)γ
∣∣∣�(ε−2σ r j )wl

j (ε
−1x j , ε

−1y j , ε
−1z j )

∣∣∣2 dx j dy j dz j

= ε2γ+3
∫

�

(ρ2
j + 1)γ

∣∣∣�(ε1−2σ ρ j )wl
j (ξ j , η j , ζ j )

∣∣∣2 dξ j dη j dζ j ≤ cε2γ+3,

and a similar estimate for wr
j , we derive

∥∥∥(x, y, z) �→ �(ε−2σ r j )w j p(ε
−1x j , ε

−1y j , ε
−1z j ); V 0

γ,δ(G(ε))

∥∥∥ ≤ cεμ1+γ+3/2.

Combining the obtained inequalities, we arrive at (8.6.10).
Step C. Let us write the right-hand side of problem (8.6.1) in the form

f (x, y, z) = f1(x, y, z; ε) + f0(x, y, z; ε) + f2(x, y, z; ε)

+ ε−γ−3/2F1(ε
−1x1, ε

−1y1, ε
−1z1; ε1)

+ ε−γ−3/2F2(ε
−1x2, ε

−1y2, ε
−1z2; ε),

where

fl(x, y, z; ε) = χl,εσ (x, y, z) f (x, y, z),

Fj (ξ j , η j , ζ j ; ε) = εγ+3/2�(ε1−σ ρ j ) f (xO j + εξ j , yO j + εη j , zO j + εζ j );
(x, y, z) are arbitrary Cartesian coordinates; (xO j , yO j , zO j ) denote the coordinates
of the point O j in the system (x, y, z); x j , y j , z j were introduced in Sect. 8.2. From
the definition of the norms, it follows that

‖ f1; V 0
γ, δ(G1)‖ + ‖ f0; V 0

γ (G0)‖ + ‖ f2; V 0
γ, δ(G2)‖ + ‖Fj ; V 0

γ (� j )‖ ≤ c‖ f ; V 0
γ, δ(G(ε))‖.

(8.6.11)

We consider solutions vl and w j to the limit problems

(−i∇ + A)2v0 ± Hv0 − k2v0 = f0 in G0, v0 = 0 on ∂G0,

�vl + k2vl = fl in Gl , vl = 0 on ∂Gl ,

�w j = Fj in � j , w j = 0 on ∂� j ,

respectively; moreover, the vl with l = 1, 2 satisfy the intrinsic radiation conditions
at infinity, and the v0 is subject to the condition (v0, ve)G0 = 0. According to
Propositions 8.3.1, 8.3.2, and 8.3.3, the problems in Gl and� j are uniquely solvable
and

‖v0; V 2
γ (G0)‖ ≤ c0‖ f0; V 0

γ (G0)‖,
‖vl; V 2

γ,δ,−(Gl)‖ ≤ cl‖ fl; V 0
γ,δ(Gl)‖, l = 1, 2,

‖w j ; V 2
γ (� j )‖ ≤ C j‖Fj ; V 0

γ (� j )‖, j = 1, 2,

(8.6.12)
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where cl and C j are independent of ε. We set

U (x, y, z; ε) = χ1,ε(x, y, z)v1(x, y, z; ε) + ε−γ+3/2�(r1)w1(ε
−1x1, ε

−1y1, ε
−1z1; ε)

+ χ0,ε(x, y, z)v0(x, y, z; ε) + ε−γ+3/2�(r2)w2(ε
−1x2, ε

−1y2, ε
−1z2; ε)

+ χ2,ε(x, y, z)v2(x, y, z; ε).

Estimates (8.6.11) and (8.6.12) lead to

‖U ; V 2
γ, δ,−(G(ε))‖ ≤ c‖ f ; V 0

γ,δ(G(ε))‖ (8.6.13)

with c independent of ε. Let Rε denote the mapping f �→ U .
Let us show that ((−i∇ + A)2 ± H − k2)Rε = I + Sε, where Sε is an operator

in V 0
γ,δ(G(ε)) of small norm. We have

((− i∇ + A)2 ± H − k2)Rε f (x, y, z)

= f (x, y, z) + [�,χ1,ε]v1(x, y, z; ε) + [�,χ0,ε]v0(x, y, z; ε) + [�,χ2,ε]v2(x, y, z; ε)

+ ε−γ+1/2[�,�]w1(ε
−1x1, ε

−1y1, ε
−1z1; ε) + k2ε−γ+1/2�(r1)w1(ε

−1x1, ε
−1y1, ε

−1z1; ε)

+ ε−γ+1/2[�,�]w2(ε
−1x2, ε

−1y2, ε
−1z2; ε) + k2ε−γ+1/2�(r2)w2(ε

−1x2, ε
−1y2, ε

−1z2; ε).

(8.6.14)

Let d be a positive number such that γ − 1 > μ1 + 1/2 − d. On the support of the
function [�,χ1,ε]v1 the estimate r1 = O(ε) holds, therefore,

‖[�,χ1,ε]v1; V 0
γ,δ(G(ε))‖ ≤ cεd‖[�,χ1,ε]v1; V 0

γ−d,δ(G1)‖ ≤ cεd‖v1; V 2
γ−d,δ(G1)‖.

This and (8.6.12) lead to

‖[�,χ1,ε]v1; V 0
γ,δ(G(ε))‖ ≤ cεd

1‖ f1; V 0
γ−d,δ(G1)‖.

Moreover, f1 = 0 outside the zone cεσ ≤ r1 ≤ Cεσ , therefore,

‖ f1; V 0
γ−d,δ(G1)‖ ≤ cε−dσ ‖ f1; V 0

γ,δ(G1)‖.

The two last estimates together with (8.6.11) show that

‖[�,χ1,ε]v1; V 0
γ,δ(G(ε))‖ ≤ cεd(1−σ)‖ f ; V 0

γ, δ(G(ε))‖. (8.6.15)

In a similar way, we obtain

‖[�,χ0,ε]v0; V 0
γ,δ(G(ε))‖ ≤ cεd(1−σ)‖ f ; V 0

γ,δ(G(ε))‖, (8.6.16)

‖[�,χ2,ε]v2; V 0
γ,δ(G(ε))‖ ≤ cεd(1−σ)‖ f ; V 0

γ,δ(G(ε))‖. (8.6.17)
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We now assume in addition that the d satisfies −μ1 − 1/2 + d < γ − 1. Because
the support of the function [�,�(ερ j )]w j (ξ j , η j , ζ j ; ε), j = 1, 2, belongs to the
domain cε−1 ≤ ρ j ≤ Cε−1,

‖(ξ j , η j , ζ j ) �→ [�ξ j ,η j ,ζ j ,�(ε jρ j )]w j (ξ j , η j , ζ j ; ε); V 0
γ (� j )‖

≤ cεd‖(ξ j , η j , ζ j ) �→ [�ξ j ,η j ,ζ j ,�(ε jρ j )]w j (ξ j , η j , ζ j ; ε); V 0
γ+d(� j )‖

≤ cεd‖w j ; V 2
γ+d(� j )‖.

Now, taking into account (8.6.12), we obtain

ε−γ+1/2‖(x j , y j , z j ) �→ [�,�(r j )]w j (ε
−1x j , ε

−1y j , ε
−1z j ; ε); V 0

γ,δ(G(ε))‖
≤ cεd‖Fj ; V 0

γ+d(� j )‖.

Since Fj = 0 for ρ j > cε−σ ,

‖Fj ; V 0
γ+d(� j )‖ ≤ cε−dσ ‖Fj ; V 0

γ (� j )‖. (8.6.18)

Consequently,

ε−γ+1/2‖(x j , y j , z j ) �→ [�,�(r j )]w j (ε
−1x j , ε

−1y j , ε
−1z j ; ε); V 0

γ, δ(G(ε))‖
≤ cεd(1−σ)‖ f ; V 0

γ, δ(G(ε))‖. (8.6.19)

It remains to estimate the middle terms of the two last lines in (8.6.14). We have

ε−γ+1/2‖(x j , y j , z j ) �→ �(r j )w j (ε
−1x j , ε

−1y j , ε
−1z j ; ε); V 0

γ,δ(G(ε))‖
= ε2‖(ξ j , η j , ζ j ) �→ �(ερ j )w j (ξ j , η j , ζ j ; ε); V 0

γ (� j )‖
≤ ε2‖(ξ j , η j , ζ j ) �→ �(ερ j )w j (ξ j , η j , ζ j ; ε); V 2

γ+2(� j )‖ ≤ cεd‖w j ; V 2
γ+d(� j )‖;

in the last inequality, we took into account that �(ερ j )w j (ξ j , η j , ζ j ; ε) = 0 for
ρ j ≥ cε−1; besides, we assume that 2 − d > 0. In view of (8.6.12), (8.6.18), and
(8.6.11), we obtain

ε−γ+1/2‖(x j , y j , z j ) �→ �(r j )w j (ε
−1x j , ε

−1y j , ε
−1z j ; ε); V 0

γ,δ(G(ε))‖
≤ cεd(1−σ)‖ f ; V 0

γ,δ(G(ε))‖. (8.6.20)

Thus, (8.6.14)–(8.6.17) and (8.6.19)–(8.6.20) lead to the inequality

‖((−i∇ + A)2 ± H − k2)Rε f − f ; V 0
γ,δ(G(ε))‖ ≤ cεd(1−σ)‖ f ; V 0

γ, δ(G(ε))‖,

which means that ((−i∇ + A)2 ± H − k2)Rε = I + Sε and the norm of the operator
Sε in the space V 0

γ, δ(G(ε)) admits the estimate ‖Sε‖ ≤ cεd(1−σ).
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Step D. Let us recall that the operator Sε is defined on the subspace V 0,⊥
γ, δ (G(ε)).

We also need the range of the operator Sε be included in V 0,⊥
γ, δ (G(ε)). To this end,

we replace the mapping Rε by R̃ε : f �→ U ( f )+a( f )up, the up was constructed in
Step A, and a( f ) is a constant. Then ((−i∇ +A)2 ± H −k2)R̃ε = I + S̃ε with S̃ε =
Sε +a(·)((−i∇ +A)2 ± H − k2)up. As k = ke, the condition (χ0,εσ S̃ε f, ve)G0 = 0
implies

a( f ) = −(χ0,εσ Sε f, ve)G0/(χ0,εσ ((−i∇ + A)2 ± H − k2e )up, ve)G0 .

Now, we prove that ‖S̃ε‖ ≤ c‖Sε‖, where c is independent of ε and k. We have

‖S̃ε f ‖ ≤ ‖Sε f ‖ + |a( f )| ‖((−i∇ + A)2 ± H − k2)up‖.
Estimate (7.5.10) (with γ > μ1 − 1/2 and μ2 − μ1 > σ1), the formula for kp, and
the condition k2 − k2e = O

(
ε2μ1+1

)
imply the inequalities

‖((−i∇ + A)2 ± H − k2)up; V 0
γ,δ‖ ≤ |k2 − k2p| ‖up; V 0

γ,δ‖
+ ‖((−i∇ + A)2 ± H − k2p)up; V 0

γ,δ‖ ≤ cε2μ1+1.

Since the supports of the functions ((−i∇ +A)2± H −k2p)up and χ0,εσ are disjoint,
we obtain

|(χ0,εσ ((−i∇ + A)2 ± H − k2e )up, ve)G0 | = |(k2e − k2p)(up, ve)G0 | ≥ cε2μ1+1.

Further, γ − 1 < μ1 + 1/2, therefore,

|(χ0,εσ Sε f, ve)G0 | ≤ ‖Sε f ; V 0
γ,δ(G(ε))‖ ‖ve; V 0−γ (G0)‖ ≤ c‖Sε f ; V 0

γ,δ(G(ε))‖.

Hence,
|a( f )| ≤ cε−2μ1−1‖Sε f ; V 0

γ,δ(G(ε))‖

and ‖S̃ε f ‖ ≤ c‖Sε f ‖. Thus, the operator I + S̃ε in V 0,⊥
γ,δ (G(ε)) is invertible, which

is also true for the operator of problem (8.6.1):

the consists of the elements in V 2
γ,δ,−(G(ε)) that vanish on ∂G(ε), and

the operator (−i∇+A)2± H −k2 takes to V 0,⊥
γ,δ (G(ε)).

The inverse operator A−1
ε = R̃ε(I + S̃ε)

−1 is bounded uniformly with respect to ε

and k. Therefore, the inequality (8.6.3) holds with c independent of ε and k. �
We consider solution u1 and u2 to the homogeneous problem (8.2.2)–(8.2.3)

defined by

http://dx.doi.org/10.1007/978-3-319-15105-2_7
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u1(x, y, z) =
{

U+
1 (x, y, z) + S11 U−

1 (x, y, z) + O(exp (δx)), x → −∞,

S12 U−
2 (x, y, z) + O(exp (−δx)), x → +∞;

u2(x, y, z) =
{

S21 U−
1 (x, y, z) + O(exp (δx)), x → −∞,

U+
2 (x, y, z) + S22 U−

2 (x, y, z) + O(exp (−δx)), x → +∞.

Let Slm be the elements of the scattering matrix determined by these solutions; S̃11,
S̃12 are the same as in (8.5.21)–(8.5.22).

Theorem 8.6.2 Let the hypotheses of Proposition8.6.1be fulfilled. Then the inequal-
ities

|S11 − S̃11| + |S12 − S̃12| ≤ c|S̃12|ε2−δ,

|S21 − S̃21| + |S22 − S̃22| ≤ c|S̃22|ε2−δ

hold with a constant c, independent of ε and k, δ being an arbitrarily small positive
number.

Now we return to the detailed notations introduced in the first three sections.
We denote by k2e,± an eigenvalue of problem (8.3.1) in the resonator G0 and by
k2r,±(ε) a resonance frequency such that k2r,±(ε) → k2e,± as ε → 0. Moreover, let
b±

j be the constants in asymptotics (8.4.5) of an eigenfunction corresponding to the

eigenvalue k2e,± and s j (k) the constant in asymptotics (8.4.1) of the special solution
Vj for r j → 0, j = 1, 2. Finally, the constants α and β are defined by (8.3.11)
and (8.3.12). We set P± = (|b1||b2|β2|s1(ke)|2)−1; this is the same constant as in
(8.5.25)–(8.5.27). Theorem 8.6.2 and formulas (8.5.26)–(8.5.27) lead to the next
statement.

Theorem 8.6.3 For |k2 − k2r,±| = O(ε2μ1+1) the asymptotic expansions

T ±(k, ε) = 1

1

4

(
|b±

1 |
|b±

2 | + |b±
2 |

|b±
1 |

)2

+ P2±

(
k2 − k2r,±
ε4μ1+2

)2 (1 + O(ε2−δ)),

k2r,± = k20,± − α(|b±
1 |2 + |b±

2 |2)ε2μ1+1 + O
(
ε2μ1+1+2−δ

)
,

ϒ±(ε) =
(

|b±
1 |

|b±
2 | + |b±

2 |
|b±

1 |

)
P−1± ε4μ1+2(1 + O(ε2−δ)

)
,

hold, where ϒ±(ε) is the width of the resonant peak at its half-height and δ is an
arbitrarily small positive number.



Chapter 9
Numerical Simulation of High Energy
Electron Transport

The chapter is devoted to the numerical simulation of resonant tunneling for electrons
with energy E between the first and the fifth thresholds. We approximately calculate
the electron transmission probability Tnk(E) = |Snk(E)|2, where Snk(E) is the
entry of the scattering matrix S(E). Generally, the dependence E → Tnk(E) turns
out to be rather complicated. Let us denote by ReE1,ReE2, . . . all the waveguide
resonant energies. To interpret E → Tnk(E), we introduce the probability amplitude
Ansk(E) of the electron resonant tunnelingwith resonant energy ReEs ; thus, we have
Snk(E) = ∑

s Ansk(E). We consider the function E → |∑s Ansk(E)|2 in a small
neighborhood of ReEr and obtain an approximate relation

Tnk(E) ≈ |
∑

s

Ansk(E)|2,

where Tnk is a sufficiently simple function containing several unknown parameters
of the tunneling with resonant energy ReEr . Comparing the functions E → Tnk(E)

and E → Tnk(E), we find the mentioned parameters by the method of the least
squares.

9.1 Numerical Simulation of Multichannel Resonant
Tunneling

9.1.1 Closed Resonator

A necessary condition of electron resonant tunneling consists in proximity of the
incident electron energy E to one of the eigenenergies k2ev of the closed resonator
(Fig. 9.1). Table9.1 shows the calculated values of k2ev and the figures of the corre-
sponding eigenfunctions.
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Fig. 9.1 The resonator
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Table 9.1 Eigenvalues and eigenfunctions for the closed resonator

n
m

1 2 3 4 5 6 7

1

k2ev = 14.5765 k2ev = 28.6845 k2ev = 52.1479 k2ev = 84.8217 k2ev = 125.6741 k2ev = 180.1483 k2ev = 240.3497

2

k2ev = 44.3978 k2ev = 59.1481 k2ev = 83.7015 k2ev = 117.9935 k2ev = 161.2690 k2ev = 214.9305 k2ev = 273.2698

3

k2ev = 93.7270 k2ev = 108.5681 k2ev = 134.3437 k2ev = 165.5023 k2ev = 209.7926 k2ev = 261.8551 k2ev = 326.4400

4

k2ev = 163.4579 k2ev = 177.5804 k2ev = 202.4174 k2ev = 237.7302 k2ev = 287.1038 k2ev = 330.8411

k2ev > 370

For the rectangular resonator with unit width (i.e., D = 1) and length L ,

k2ev = π2n2 + π2m2/L2, (9.1.1)

where n and m are transversal and longitudinal quantum numbers. Since the shape
of the resonator is close to rectangular, the eigenvalues are well approximated by the
expression (9.1.1) with L replaced by Leff. For the resonator with angle ω = 0.9π
at the vertex and with length L = 1.5, the value of Leff is approximately equal to
1.45 for n = 1 and to 1.42 for n > 1.

The disparity between the calculated eigenvalues and approximations by for-
mula (9.1.1) is less than 0.5%. Note that such an accuracy is achieved in spite of
the significant difference between the considered eigenfunctions and those for the
rectangular resonator (see the figures in Table9.1).

9.1.2 The Method for Computing Scattering Matrix

We now describe a calculation scheme for a scattering matrix based on the method
presented in Chap.4. The energy E of an electron moving in a cylindrical waveguide
can be represented in the form E = E⊥ + E‖, where E⊥ and E‖ are transversal

http://dx.doi.org/10.1007/978-3-319-15105-2_4
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and longitudinal components, respectively. The values of E⊥ are quantized. In the
simplest two-dimensional case, where the waveguide is a strip of width D, we have
E = k2, E⊥(n) = π2n2/D2, and E‖(n) = k2 − π2n2/D2. We consider scattering
of electrons incident on the resonator from −∞ with energy k2 between the first and
the fifth thresholds, that is, π2 < k2 < 52π@. Thus, we consider solutions of the
form

un(x, y) = U in
n (x, y) +

2nmax∑
j=1

SnjU
out
j (x, y) + O(eδ|x |), |x | → ∞,

where

U in
n (x, y) := 1lefte

i
√

E||(n)xχn(y), n = 1, 2, . . . , nmax,

Uout
j (x, y) := 1lefte

−i
√

E||( j)xχ j (y), j = 1, 2, . . . , nmax,

Uout
j (x, y) := 1righte

i
√

E||( j−nmax)xχ j−nmaxx (y), j = nmax + 1, nmax + 2, . . . , 2nmax,

E||( j) = E − E⊥( j), 1left and 1right are the indicators of the left and the right outlets
of the waveguide, and

χn(y) = (1 − (−1)n)

2
cos

πny

D
+ (1 + (−1)n)

2
sin

πny

D
.

The matrix S = {Snj }, n = 1, 2, . . . , nmax, j = 1, 2, . . . , 2nmax, is the upper half of
the waveguide scattering matrix. We denote the domain occupied by the waveguide
by G and introduce the notations:

G R := G ∩ {(x, y) : |x − L/2| < L/2 + R},
�R := ∂G R ∩ {(x, y) : |x − L/2| = L/2 + R},

where R is a sufficiently large positive constant (see Fig. 9.2).
As an approximation for thenth rowof the scatteringmatrix,we take theminimizer

a0
n = (a0

n1, a0
n2, . . . , a0

n,2nmax
) of the functional

J R
n = ‖X R

n − U in
n −

2nmax∑
j=1

anjU
out
j ‖2L2(�R)

.

Fig. 9.2 The truncated
domain G R

ΓR ΓR
GR

L0−R L+R

−0.5D

0

0.5D
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Here X R
n is a solution to the problem

−(� + E)X R
n = 0 in G R,

X R
n = 0 on ∂G R \ �R,

(∂ν + iζ )X R
n = (∂ν + iζ )

(
U in

n +
2nmax∑
j=1

anjU out
j

)
on �R,

where ζ ∈ R \ {0} is an arbitrary fixed number and ν is the outward normal. From
the results of Chap.4, it follows that a0

nj (R, k) → Snj (k) with exponential rate as
R → ∞. More precisely, there exist positive constants � and C such that

|a0
nj (R, k) − Snj (k)| � C exp(−�R), j = 1, 2, . . . , 2nmax,

for all k2 ∈ [μ1, μ2] and sufficiently large R; the interval [μ1, μ2] of the continuous
spectrum lies between two neighboring thresholds and does not contain the thresh-
olds. (Note that application of the method is not hindered by possible presence, on
the interval [μ1, μ2], of eigenvalues of the problem).

We can put X R
n = vinn + ∑2nmax

j=1 anjv
out
j , where vinn , voutn are solutions to the

problems

−(� + E)vinn = 0 in G R,

vinn = 0 on ∂G R \ �R,

(∂ν + iζ )vinn = (∂ν + iζ )U in
n on �R

and

(� + E)voutj = 0 in G R,

voutj = 0 on ∂G R \ �R,

(∂ν + iζ )voutj = (∂ν + iζ )U out
j on �R, j = 1, 2, . . . , 2nmax.

Now we can rewrite the functional J R
n in the form

J R
n = 〈anE R, an〉 + 2Re 〈F R

n , an〉 + GR
n ,

where 〈·, ·〉 is the inner product on C
2nmax , E R denotes the matrix with entries

E R
pq =

(
voutp − U out

p , voutq − U out
q

)
L2(�R)

, p , q = 1, 2, . . . , 2nmax,

the row F R
n consists of the elements

F R
nq =

(
vinn − U in

n , voutq − U out
q

)
L2(�R)

, q = 1, 2, . . . , 2nmax,

http://dx.doi.org/10.1007/978-3-319-15105-2_4
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and the number GR
n is defined by

GR
n =

∥∥∥vinn − U in
n

∥∥∥2
L2(�R)

.

The minimizer of J R
n satisfies anE R +F R

n = 0. We take the solution of this equation
as an approximation to the nth row of the scattering matrix.

9.1.3 Discussion of Numerical Results

If the resonator is symmetric about the x-axis, then only scattering with preserved
transverse quantum number evenness is possible (the incident and scattered waves
have the same evenness). Let us explain the fact in more detail. The original problem
reads

−�un − k2un = 0 in G,

un = 0 on ∂G,
(9.1.2)

un = U in
n +

2nmax∑
j=1

SnjU
out
j + O(e−δ|x |) as |x | → ∞.

Let vn(x, y) = un(x,−y) and n ≤ nmax (we consider only the upper half of the
scattering matrix). The function vn satisfies

−�vn − k2vn = 0 in G,

vn = 0 on ∂G,
(9.1.3)

and

vn = (−1)n+1U in
n +

nmax∑
j=1

Snj (−1) j+1Uout
j +

2nmax∑
j=nmax+1

Snj (−1) j−nmax+1Uout
j + O(e−δ|x |)

as |x | → ∞. Let us assume that n is even. Then wn = (un + vn)/2 satisfies

−�wn − k2wn = 0 in G,

wn = 0 on ∂G,
(9.1.4)

and

wn =
nmax∑
j=1

SnjU
out
j +

2nmax∑
j=nmax+1

SnjU
out
j + O(e−δ|x |) as |x | → ∞,
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Fig. 9.3 Transmission probability for the wave Uin
1 (nmax = 1, the transversal quantum number

n = 1 for the scattered wave)

where the sums do not contain the terms with even j and j − nmax, respectively. The
problem has the trivial solutionwn = 0 only, therefore, Snj with odd j (for j ≤ nmax)
and j − nmax (for j > nmax) are zero. If n is odd, we consider wn = (un − vn)/2
and conclude that Snj with even j (for j ≤ nmax) and j − nmax (for j > nmax) are
zero.

For example, if the electron energy is between the second and the third thresh-
olds (4π2 < E < 9π2), we have S12 = S14 = 0. This means that there are no
transmissions between the transverse states.

The energies E ≈ 14.58 and E ≈ 28.68 are resonant and correspond to n = 1
and m = 1, 2 (Fig. 9.3). For 4π2 < E < 9π2 (the electron energy between the
second and the third thresholds), there are no changes of the transverse states, due
to the evenness invariance. For the incident wave with n = 1, the resonant tunneling
occurs at E ≈ 48 and E ≈ 76 (Fig. 9.4), which correspond to the closed resonator
eigenvalues E ≈ 52.15 and E ≈ 84.8 with n = 1, m = 3, 4.
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Fig. 9.4 Transmission probability for the wave Uin
1 (nmax = 2, the transversal quantum number

n = 1 for the scattered wave)
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Fig. 9.5 Transmission probability for the wave Uin
2 (nmax = 2, the transversal quantum number

n = 2 for the scattered wave)

For incident wave U in
2 , resonant tunneling occurs at energies E ≈ 44.4, 59.1,

and 83.7 (Fig. 9.5), which correspond to n = 2, m = 1, 2, 3. The width of the
resonant peaks for this case is significantly less than that for the wave U in

1 .
The explanation is that the height of the effective potential barrier created by a

narrow is proportional to n2/d2, where n is the transversal quantum number of an
incident wave and d is the narrow diameter; therefore, the barrier for U in

2 is four
times greater than that for U in

1 . This also explains the smaller distance between the
resonant peaks and the corresponding eigenvalues of the closed resonator.

For awaveguide symmetric about x-axis, transmissions between channels become
possible only when 9π2 < E < 16π2, i.e., when the electron energy is between
the third and the fourth thresholds. We denote by Ecr,n (where “cr” means “crit-
ical”) the height of an effective potential barrier for an electron with transversal
quantum number n. Since for the wave U in

1 the longitudinal energy E|| is large
(it is above the barrier height for E > Ecr,1 = 109, 7), the probability of elec-
tron transmission without change of a transversal quantum number is fairly high
(Fig. 9.6). The probability of electron transmission with change of transversal state
(n = 1) → (n = 3) is high as well (Fig. 9.7). Both |S14|2 and |S16|2 have sharp
resonance at E ≈ 93, which corresponds to the eigenenergy of the closed resonator
with n = 3, m = 1. For |S16|2, the peak is natural, since, for the longitudinal compo-
nent, the resonance conditions hold. But, for |S14|2, the resonance is caused by the
transmission (n = 1) → (n = 3), the resonant amplification of the wave, and the
transmission to the initial state (n = 3) → (n = 1). The waveU in

3 behaves similarly:
with strong direct (n = 3) → (n = 1) and reverse (n = 1) → (n = 3) transmissions
with a change of the transversal quantum number and with the resonance at E ≈ 93.

For incident electrons with n = 2, no change of transverse state is possible and
there is a sharp resonance of unit height at E ≈ 117 (Fig. 9.8). For an incident
electron with energy 16π2 < E < 25π2 the situation is even more complicated,
since transitions with change of transverse quantum number become possible for
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Fig. 9.6 Transmission probability for the wave Uin
1 (nmax = 3, the transversal quantum number

n = 1 for the scattered wave)
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Fig. 9.7 Transmission probability for the wave Uin
1 (nmax = 3, the transversal quantum number

n = 3 for the scattered wave)
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Fig. 9.8 Transmission probability for the wave Uin
2 (nmax = 3, the transversal quantum number

n = 2 for the scattered wave)
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n = 2, too. We do not analyze the obtained results here, because qualitatively the
effects are similar to those for 9π2 < E < 16π2.

The waveUin
3 with energy greater than Ecr,1 approaches the narrows and partially

goes in the state with n = 1, so the probability to pass through the resonator is large
even for non-resonant energies (due to passing over the barrier) (see Fig. 9.11). The
critical energy Ecr,3 for the original mode is greater than the electron energy, and the
transmission probability without changing the state has peaks at the energies which
are resonant for the state with n = 3. An electron with n = 1 whose energy exceeds
the third threshold partially goes in the state with n = 3, having resonances at the
same energies as an electron in the state with n = 3.

Figures9.9, 9.10, 9.11 and 9.12 show the E-dependence of T1–T4; here Tn stands
for the full transmission probability of Uin

n . The numbers (n, m) are the transversal
and longitudinal quantum numbers of the respective eigenvalues of the closed res-
onator. Similarly to Uin

3 , the wave Uin
4 partially changes its transversal state (goes

in the state with n = 2) and has resonances corresponding to the states n = 4 and
n = 2. However, the fourth threshold is less than Ecr,2 and, a fortiori, than Ecr,4 (the
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Fig. 9.9 Total transition probability for Uin
1
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Fig. 9.10 Total transition probability for Uin
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Fig. 9.11 Total transition probability for Uin
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barriers are very high), so the free path through the resonator is impossible for n = 2
and n = 4. Therefore, the peaks in Figs. 9.10 and 9.12 are very narrow regardless of
the interference of the modes with n = 2 and n = 4 (causing the slight asymmetry
of the peaks).

The peaks in Fig. 9.12 corresponding to the resonant energies for n = 2 (E ≈ 160
and E ≈ 212) are wider than the nearest peaks with n = 4 because the barrier height
for the state with n = 2 is notably lower than with n = 4.

Evidently, the sharp resonances with transmission probability T close to unit exist
only below the third threshold. Therefore, in designing electronic devices basedon the
resonant tunneling in quantum waveguides of variable cross-section, the parameters
of the system (the cross-section area, the waveguide material, the operation voltage)
should be chosen so that the energy of an electron in the system would not exceed
the third threshold.
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9.2 Fano Resonances

We are now going to interpret the above numerical results from another point of
view. We consider the entry Snk(E) of the scattering matrix S(E) as the probability
amplitude of electron transmission from n-state before the resonator to k-state after
passing through the resonator. The amplitude Snk(E) can be represented as the sum
Snk(E) = ∑

s Ansk(E), where Ansk(E) is the probability amplitude of electron
transmission from n to k through an intermediate state s.

Let us explain the origination of Ansk . As before, we denote by G0 the bounded
part of the limit resonator G(0, 0) and let k21 ≤ k22 ≤ . . . be the eigenvalues of the
problem

−�v(x, y) − k2v(x, y) = 0, (x, y) ∈ G0,

v(x, y) = 0, (x, y) ∈ ∂G0,

numbered according to their multiplicities. The resonant energies of the waveguide
G(ε, ε) form the sequence ReE1,ReE2, . . . , where E1, E2, . . . can be viewed as
the “perturbed” k21, k22, . . . , while ImE j < 0 for all j = 1, 2, . . . . The amplitude
Ansk admits the representation

Ansk(E) = H (s)
nk (E) + R(s)

nk (E)

E − Es

with continuous functions E → H (s)
nk (E) and E → R(s)

nk (E). Thus, Ansk(E) is the
probability amplitude of electron transmission from n-state to k-state with resonant
energy ReEs . The transmission probability Tnk(E) from the n-state on the left of
the resonator to the k-state on the right of the resonator is equal to |Snk(E)|2. When
considering Tnk in a small energy interval, we ignore the weak dependence of the
H (s)

nk and R(s)
nk on the electron energy E . Then

Tnk(E) ≈ Tnk(E) ≡ |Hnk + R(1)
nk

E − E1
+ · · · + R(q)

nk

E − Eq
|2, (9.2.1)

while ReE1, . . . ,ReEq are all resonant energies in the mentioned small interval and

Hnk , R(1)
nk , …, R(q)

nk are some constants.
Let us consider Tnk(E) of the form

Tnk(E) = |Hnk + R(r)
nk

E − Er
|2, (9.2.2)
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where Hnk = ∑
s H (s)

nk . Since the values Hnk , R(r)
nk , and Er are complex, the expres-

sion (9.2.2) contains the five independent parameters |Hnk |, |R(r)
nk |, |Er |,ψ = argEr ,

and ϕ = arg(Hnk − R(r)
nk ):

Tnk(E) = |eiϕ |Hnk | + |R(r)
nk |

E − |Er |eiψ
|2.

This equality can be rearranged to

Tnk(E) = |Hnk |2
(
1 + 2Q

E cosϕ − |Er | cos(ϕ + ψ)

E2 − 2E |Er | cosψ + |Er |2 + Q2 1

E2 − 2E |Er | cosψ + |Er |2
)

,

(9.2.3)
where Q = |R(r)

nk /|Hnk |. The expression in brackets depends on the four parameters
Q, |Er |, ϕ, and ψ .

If Hnk = 0, we obtain

Tnk(E) = |R(r)
nk |2

E2 − 2E |Er | cosψ + |Er |2 = |R(r)
nk |2

(E − |Er | cosψ)2 + (|Er | sinψ)2
.

Thus, in such a case, the resonant curve takes the form of a standard Breit-Wigner’s
resonant curve with frequency |Er | cosψ and with half-width of the resonant peak
equal to |Er | sinψ at the peak half-height.

Figures9.13 and 9.14 show typical dependences of Tnk on E for Hnk �= 0. The
values of Hnk have been chosen to provide max Tnk = 1.

Figure9.13 depicts a resonant curve resulting from the interference of a resonant
mode and a non-resonant mode. Such a situation is typical for Fano resonances (e.g.,
see [36]). In what follows, any resonant curve of the form (9.2.1) with Hnk �= 0 is
called a Fano resonant curve.

Fig. 9.13 E-dependence of
Tnk for |Er | = 30, Q = 10,
ϕ = 0.2 and ψ = 0.001
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Fig. 9.14 E-dependence of
Tnk for |Er | = 30, Q = 10,
ϕ = 2.5 and ψ = 0.001

The extrema of function (9.2.3) coincide with the roots of the quadratic equation

E2 cosϕ + (Q − 2|Er | cos(ϕ + ψ))E + |Er |(|Er | − Q cosψ) = 0.

The roots are given by

1

2
(secϕ)

(
−Q + 2|Er | cos(ϕ + ψ) ± (Q2 + 4Q|Er | sin ϕ sinψ + 4|Er |2 sin2 ψ)1/2

)
;

one of the roots relates to the maximum of function (9.2.3) and the other one corre-
sponds to its minimum.

Let us assume that we know the calculated Tnk obtained, for instance, by com-
puting the scattering matrix. Then we can employ the method of the least squares
to approximate the obtained Tnk by expression (9.2.1); in doing this, we find the
unknown parameters Er , |Hnk | etc., in (9.2.1). Figure9.15 shows the results of such
kind for a wave incident on the resonator in the transverse state n = 1 and scattered
into various states in the resonator that arises from the resonator in the state k = 1
(see Fig. 9.6); the resonance occurred for the mode in the state r = 3 inside the
resonator. Thus, the approximating curve is of the form

T11(E) = |H11 + R(3)
11

E − E3
|2.

Figure9.16 depicts the approximating

T13(E) = |H13 + R(3)
13

E − E3
|2.

for the calculated T13(E) (see Fig. 9.7).
Figure9.17 relates to the passage n = 3 → k = 3. The |H33| = 0.1921 and

|R(3)
33 | = 0.0005673 are significantly less than those for the passages n = 1 → k = 1
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Fig. 9.15 The calculated curve T11 obtained by computing the scattering matrix (solid line) and
the approximating curve T11 obtained by the method of the least squares (dashed line) practically
coincide; |H11| = 0.5827; |R(3)

11 | = 0.00194; ReE3 = 134.309; ImE3 = 0.00252. Inset the domain
of rapid varying of T11(E); minimum at 134.311, maximum at 134.37
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Fig. 9.16 The calculated curve T13 obtained by computing the scattering matrix (solid line) and
the approximating curve T13 obtained by the method of the least squares (dashed line) practically
coincide; |H13| = 0.3345; |R(3)

13 | = 0.00111; ReE3 = 134.309; ImE3 = 0.00252
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Fig. 9.17 Transmission n = 3 → k = 3, |H33| = 0.1921 and |R3
33| = 0.0005673
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Fig. 9.18 Approximating function (9.2.4) with ReE1 = 107.79, ReE2 = 108.83, ImE1 = 0.394,
and ImE2 = 6.83

and n = 1 → k = 3. However, the ReE3 and ImE3 are the same for all the passages
shown by Figs. 9.15, 9.16 and 9.17. Note that the ReE3 is about 0.001 less than the
corresponding eigenvalue of the closed resonator (see Table9.1 in Sect. 9.1.1).
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Fig. 9.19 Approximation
shows two resonances
ReE1 = 188.26 and
ReE2 = 225.35 with
ImE1 = 6.04 and
ImE2 = 24.38. Due to the
interference of waves, the
second resonance energy is
close not to the maximum of
the transmission coefficient
but to its minimum
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When considering the resonances near E = 110 (see Fig. 9.6), we use instead of
(9.2.1) an approximating function of the form

Tnk(E) = |Hnk + R(1)
nk

E − E1
+ R(2)

nk

E − E2
|2 (9.2.4)

Figure9.18 it turns out that, near E = 110, there are two resonances of a low quality
factor and the approximation (9.2.1) is not proper. In analogousway, one can consider
the resonance near E = 220, see Figs. 9.9 and 9.19.



Chapter 10
Asymptotic Analysis of Multichannel
Resonant Tunneling

In the chapter, we generalize, for electrons of high energy, the asymptotic theory
exposed in Chap.6. We present and justify the asymptotics of tunneling characteris-
tics as the narrow diameters tend to zero.

10.1 Statement of the Problem and Limit Problems

Let a waveguide G(ε1, ε2) be the same as in Chap.6. Outside a large ball, it coincides
with the union of two semicylinders C1 and C2 and has two narrows of small diameters
ε1 and ε2. The wave function of a free electron of energy E = �

2k2/2m satisfies the
boundary value problem

− �u − k2u = 0 in G(ε1, ε2), u = 0 on ∂G(ε1, ε2). (10.1.1)

To formulate radiation conditions, we need the boundary value problem on the cross-
section Dj of the semicylinder Cj , j = 1, 2:

− �v − λ2v = 0 in Dj , v = 0 on ∂ D j . (10.1.2)

The eigenvalues λ2jm of this problem, where m = 1, 2, . . . , are called the thresholds;
they forman increasing sequence of positive numbers tending to+∞.We assume that
k2 is not a threshold and denote by Mj the number of thresholds satisfying λ2jm < k2.

For such an eigenvalue λ2jm, let �jm be an eigenfunction of problem (10.1.2) that

corresponds to λ2jm and is normalized by

2νjm

∫
D j

|�jm(x2, x3)|2dx2 dx3 = 1 (10.1.3)
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with ν j m =
√

k2 − λ2j m . The function U+
m , m = 1, . . . , M1, defined in the

semicylinder C1 by U+
m (x1) = exp (−iν1m x11)�1m(x12 , x13), is a wave coming in

C1 from infinity (the positive half-axis x11 lies in C1). The function U+
M1+m(x2) =

exp (−iν2m x21 )�2m(x22 , x23 ), m = 1, . . . , M2, is a wave coming from infinity in C2.
The outgoing waves U−

m , m = 1, . . . , M1 + M2, are obtained from the incoming

ones by complex conjugation: U−
m = U+

m .
There exist (smooth) solutions um , m = 1, . . . , M1 + M2, to problem (10.1.1)

satisfying the radiation conditions

um(x) =
⎧⎨
⎩

U+
m (x1) + ∑M1

p=1 Smp U−
p (x1) + O(e−δx11 )), x11 → +∞,

∑M2
p=1 Sm,M1+p U−

M1+p(x2) + O(e−δx21 ), x21 → +∞,

m = 1, . . . , M1;

(10.1.4)

uM1+m(x) =

⎧⎪⎪⎨
⎪⎪⎩

∑M1
p=1 SM1+m,p U−

p (x1) + O(e−δx11 ), x11 → +∞,

U+
M1+m(x2)

+ ∑M2
p=1 SM1+m,M1+p U−

M1+p(x2) + O(e−δx21 ), x21 → +∞,

m = 1, . . . , M2.

(10.1.5)

with sufficiently small positive δ. The scattering matrix S = ‖Sp q‖p, q=1,...,M1+M2

is unitary. The value

Rm =
M1∑
p=1

|Smp|2, m = 1, . . . , M1, (10.1.6)

is called the reflection coefficient for the wave Um coming to G(ε1, ε2) from C1. The
transition coefficient for this wave is defined by

Tm =
M2∑
p=1

|Sm,M1+p|2. (10.1.7)

One can give similar definitions for the wave UM1+m coming from C2.
We seek the resonant values kr = kr (ε1, ε2) of the parameter k, where the

transition coefficient Tm = Tm(k, ε1, ε2) takes the maximal values. Moreover, we
are interested in the behavior of kr (ε1, ε2), Tm(k, ε1, ε2) and that of the reflection
coefficient Rm = Rm(k, ε1, ε2) as ε1 and ε2 tend to 0.

To derive an asymptotics of a wave function (i.e., a solution to problem (10.1.1))
as ε1, ε2 → 0, we use the method of compound asymptotic expansions. To this end,
we introduce “limit” boundary value problems independent of the parameters ε1
and ε2. Recall that the limit domain G(0, 0) consists of the unbounded parts G1, G2,
and the bounded resonator G0. The domain G j , j = 1, 2, has a conical point O j

and a cylindrical end C j , and the resonator G0 has two conical points O1 and O2.
The problems
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− �v(x) − k2v(x) = f, x ∈ G j ; v(x) = 0, x ∈ ∂G j , (10.1.8)

are called first kind limit problems, where j = 0, 1, 2. In the domains 	 j , j = 1, 2,
introduced in Sect. 6.1, we consider the boundary value problems

�w(ξ j ) = F(ξ j ) in 	 j , w(ξ j ) = 0 on ∂	 j , (10.1.9)

which are called secondkind limit problems; by ξ j = (ξ
j
1 , ξ

j
2 , ξ

j
3 )wemeanCartesian

coordinates with origin at O j . The limit problems in G0 and 	 j are the same as in
Chap.6; in particular, Propositions 6.2.1 and 6.2.3 remain valid. Now, problems in
G1 and G2 have some new features in comparison with those in Chap. 6, because
we consider multichannel scattering. The next proposition has to replace Proposition
6.2.2. For γ ∈ R, δ > 0, and l = 0, 1, . . . , the space V l

γ, δ(G j ) is the completion,

in the norm defined by (6.2.7), of the set C∞
c (	 j ) of compactly supported smooth

functions in 	 j . Let the cut-off functions χ∞, j be the same as in (6.2.7).

Proposition 10.1.1 Assume that |γ − 1| < μ j1 + 1/2 and, moreover, there is no
nontrivial solution to the homogeneous problem (10.1.8) (where f = 0) in V 2

γ, δ(G j )

with arbitrary small positive δ. Then, for any f j ∈ V 0
γ, δ(G j ), there exists a unique

solution v j to problem (10.1.8) such that the representations

v1 = u1 +
M1∑

m=1

Amχ∞,1U−
m in G1,

v2 = u2 +
M2∑

m=1

AM1+mχ∞,2U−
M1+m in G2

are valid; Am = const, u j ∈ V 2
γ, δ(G j ) with a sufficiently small δ, and the estimates

‖u1; V 2
γ, δ(G1)‖ +

M1∑
m=1

|Am | ≤ c‖ f1; V 0
γ, δ(G1)‖, (10.1.10)

‖u2; V 2
γ, δ(G2)‖ +

M2∑
m=1

|AM1+m | ≤ c‖ f2; V 0
γ, δ(G2)‖ (10.1.11)

hold with constants c independent of f j . If, in addition, f j is smooth and vanishes
near O j , the solution v j satisfies

v j (x j ) = a j
1√
r j

J̃μ j1+1/2(kr j )

K
j 1(ϕ j ) + O

(
r
μ j 2
j

)
, r j → 0,

http://dx.doi.org/10.1007/978-3-319-15105-2_6
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http://dx.doi.org/10.1007/978-3-319-15105-2_6
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http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
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where a j is a constant and 
K
j1 denotes an eigenfunction to the Beltrami operator

corresponding to μ j1(μ j1 + 1) and normalized by

(2μ j1 + 1)
∫

S(K j )

|
K
j1(ϕ)|2dϕ = 1.

10.2 Tunneling in a Waveguide with One Narrow

In this section, we consider the electronmotion in awaveguide G(ε)with one narrow.
To describe G(ε), we assume that G = D × R, where D is a bounded domain in R

2

and ∂ D is a smooth simple contour. A double cone K ∪ L with vertex O ∈ G and
domains 	 and 	(ε) are defined like K1 ∪ L1, 	1, and 	1(ε) in Sect. 6.1. We set
G(ε) = G ∩ 	(ε). The limit waveguide G(0) consists of two components; either
of them has one conical point and one cylindrical end at infinity. We denote the
components by G1 and G2.

10.2.1 Special Solutions to the First Kind Homogeneous
Problems

In the domainG1, a basis in the space of bounded solutions is formed by Vm satisfying
the radiation condition

Vm(x) = U+
m (x) +

M∑
p=1

S0
mpU−

p (x) + O(exp(−δx1)), x1 → +∞, (10.2.1)

with arbitrary small positive δ, where m = 1, . . . , M . The S0
1 = ‖S0

mp‖M
m,p=1 is

the scattering matrix in G1, and it is unitary. In a neighborhood of O , there is the
asymptotics

Vm(x) = sm1
1√
r

J̃μ1+1/2(kr)
K
1 (ϕ) + O

(
rμ2

)
, r → 0. (10.2.2)

In G2, we consider analogous solutions admitting the expansions

VM+m(x) =

⎧⎪⎨
⎪⎩

U−
M+m(x) + ∑M

p=1 S0
M+m,M+pU−

M+p(x) + O(eδx1), x1 → −∞,

sM+m,2
1√
r

J̃μ1+1/2(kr)
)

L

1 (ϕ) + O(rμ2), r → 0,

(10.2.3)

http://dx.doi.org/10.1007/978-3-319-15105-2_6
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m = 1, . . . , M . The scattering matrix S0
2 = ‖S0

M+m,M+p‖M
m,p=1 in G2 is unitary.

In either of the domains G1 and G2, we assume that the homogeneous problem
(10.1.8) (with f = 0) has no nontrivial bounded solutions exponentially decaying
at infinity. In what follows, to construct an asymptotics of a wave function, we will
use special solutions to the problem unbounded near the point O .

Let vK
1 be the function defined by (6.3.5) and introduce a solution

v1(x) = �(r)vK
1 (x) + ṽ1(x) (10.2.4)

of homogeneous problem (10.1.8) in G1, where ṽ1 is the solution provided by
Proposition 10.1.1 for problem (10.1.8) with f = −[�,�]vK

1 . Thus,

v1(x) =

⎧⎪⎨
⎪⎩

1√
r

(
Ñμ1+1/2(kr) + a1 J̃μ1+1/2(kr)

)

K

1 (ϕ) + O(rμ2), r → 0,

∑M
m=1 A1mU−

m (x) + O(e−δx1), x1 → +∞,

(10.2.5)
where J̃μ is the same as in Propositions 6.2.1 and 10.1.1. In G2, a similar solution
v2 admits the representation

v2(x) =

⎧⎪⎨
⎪⎩

1√
r

(
Ñμ1+1/2(kr) + a2 J̃μ1+1/2(kr)

)

L

1 (ϕ) + O(rμ2), r → 0,

∑M
m=1 A2,M+mU−

M+m(x) + O(eδx1), x1 → −∞.

(10.2.6)
We define (M × 1)-matrices s1, s2 and (1 × M)-matrices A1, A2 by

s1 = ‖sm1‖M
m=1, s2 = ‖sM+m,2‖M

m=1, A1 = ‖A1m‖M
m=1, A2 = ‖A2,M+m‖M

m=1.

Lemma 10.2.1 The equalities A j A∗
j = 2 Im a j and A j = is∗

j S0
j hold.

Proof We restrict ourselves to considering j = 1; the case j = 2 can be treated in a
similar way. Let (u, v)Q denote the integral

∫
Q u(x)v(x) dx and let G N , δ stand for

the truncated domain G1 ∩ {x1 < N } ∩ {r > δ}. By the Green formula,

0 = (�v1 + k2v1, v1)G N , δ
− (v1,�v1 + k2v1)G N , δ

= (∂v1/∂n, v1)∂G N , δ

− (v1, ∂v1/∂n)∂G N , δ
= 2i Im (∂v1/∂n, v1)E

with E = (∂G N , δ ∩ {x1 = N }) ∪ (∂G N , δ ∩ {r = δ}). Taking into account (10.2.5)
as x1 → +∞ and (10.1.3), we have

Im (∂v1/∂n, v1)∂G N , δ∩{x1=N } = Im
M∑

m=1

∫
D1

A1m
∂U−

m

∂x1
(x)A1mU−

m (x)

∣∣∣
x1=N

dx2 dx3 + o(1)

= A1A∗
1ν1

∫
D1

|�1(x2, x3)|2dx2 dx3 + o(1) = A1A∗
1/2 + o(1).

http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6


244 10 Asymptotic Analysis of Multichannel Resonant Tunneling

Using (10.2.5) as r → 0 and the normalization of 
K
1 (see Proposition 10.1.1), we

obtain

Im (∂v1/∂n, v1)∂G N , δ∩{r=δ} = Im
∫

S(K )

[
− ∂

∂r

1√
r

(
Ñμ1+1/2(kr) + a1 J̃μ1+1/2(kr)

)]

× 1√
r

(
Ñμ1+1/2(kr) + a1 J̃μ1+1/2(kr)

)|
K
1 (ϕ)|2r2

∣∣∣
r=δ

dϕ + o(1)

= − (Im a1)(2μ1 + 1)
∫

G N ,δ

|
K
1 (ϕ)|2dϕ + o(1) = −Im a1 + o(1).

Thus, A1A∗
1/2 − Im a1 + o(1) = 0 as N → ∞ and δ → 0, which implies the

first equality of this lemma. To obtain the second one, we apply the Green formula
in the domain G N ,δ to the functions v1 and Vm and arrive at i

∑M
p=1 A1p S0

mp +
sm1 + o(1) = 0 with N → ∞ and δ → 0. It remains to take into account that S0

1 is
unitary. �

10.2.2 Asymptotic Formulas

Here we obtain the asymptotics of the amplitudes of the reflected and transited
waves as ε → 0. Let the wave function um , defined by asymptotics (10.1.4), be
approximated in G1 by the solution v1 = Vm + Cm1v1 and in G2 by the solution
v2 = Cm2v2 of the homogeneous limit problem. The special solutions Vm , v1, and v2
were defined in 10.2.1. For the time being, the constants Cm1 and Cm2 are unknown;
we will find them when compensating the discrepancy principle terms. According
to (10.2.2) and (10.2.5), we have, as r → 0,

v1 = 1√
r

(
Cm1 Ñμ1+1/2(kr) + (sm1 + Cm1a1) J̃μ1+1/2(kr)

)

K

1 (ϕ) + O(rμ2), r → 0,

v2 = 1√
r

(
Cm2 Ñμ1+1/2(kr) + Cm2 a2 J̃μ1+1/2(kr)

)

L

1 (ϕ) + O(rμ2), r → 0,

that is, v1 and v2 admit expansions (6.3.9) and (6.3.10) with the constants

(a−
1 , a−

2 ) = (Cm1, Cm2), (a+
1 , a+

2 ) = (sm1 + Cm1a1, Cm2 a2). (10.2.7)

As was shown in 6.3.2, the constants must satisfy the relation

(Cm1, Cm2) = (sm1 + Cm1a1, Cm2 a2)� ε2μ1+1.

We introduce the matrix a = diag (a1, a2) and obtain

(Cm1(ε), Cm2(ε)) = (sm1, 0)(I − � a ε2μ1+1)−1�ε2μ1+1. (10.2.8)

http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
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By virtue of (10.2.1) and (10.2.5) for x11 → +∞,

v1(x1) = U+
m (x1) +

M∑
p=1

(S0
mp + Cm1(ε)A1p)U

−
p (x1) + O(exp(−δx11 )), x11 → +∞,

v2(x2) =
M∑

p=1

Cm2(ε)A2pU−
M+p(x2) + O(exp(−δx21 )), x21 → +∞.

This provides an approximation (S̃m1, . . . , S̃m,2M ) to the m-th line of the scattering
matrix:

S̃mp(ε) = S0
mp +Cm1(ε)A1p, S̃m,M+p(ε) = Cm2(ε)A2,M+p, m, p = 1, . . . , M.

We introduce the (M × M)-matrices S̃11 = ‖S̃mp‖M
m,p=1, S̃12 = ‖S̃m,M+p‖M

m,p=1,

and temporarily denote the columns ‖Cmq‖M
m=1 by Cq , q = 1, 2, then

(S̃11(ε), S̃12(ε)) = (S0
1 + C1(ε)A1, C2(ε)A2) = (S0

1 , 0M×M ) + (C1(ε), C2(ε))A,

where A = diag (A1, A2). We set s = diag (s1, s2) and S0 = diag (S0
1 , S0

2 ), then by
Lemma 10.2.1

A = is∗S0. (10.2.9)

In view of (10.2.8) and (10.2.9), we obtain

(S̃11(ε), S̃12(ε)) = (S0
1 , 0M×M ) + i(s1, 0M×1)(I − � a ε2μ1+1)−1� s∗S0ε2μ1+1.

(10.2.10)

An approximation to the wave function is of the form

ũm(x; ε) = χε,1(x)v1(x; ε) + �(r)w(ε−1x; ε) + χε,2(x)v2(x; ε), (10.2.11)

where, owing to (6.3.14),

v1(x; ε) = Vm(x) + Cm1(ε)v1(x), (10.2.12)

w(ξ ; ε) = a+
1 (ε)εμ1wK (ξ) + a+

2 (ε)εμ1wL(ξ), (10.2.13)

v2(x; ε) = Cm2(ε)v2(x). (10.2.14)

From (10.2.7) and (10.2.8) it follows that

(a+
1 (ε), a+

2 (ε)) = (s1, 0M×1) + (s1, 0M×1)(I − � a ε2μ1+1)−1� a ε2μ1+1

= (s1, 0M×1) (I − � a ε2μ1+1)−1. (10.2.15)

http://dx.doi.org/10.1007/978-3-319-15105-2_6


246 10 Asymptotic Analysis of Multichannel Resonant Tunneling

An approximation ũM+m to wave function (10.1.5) is derived in the same way.
It takes the form of (10.2.11), where

v1(x; ε) = CM+m,1(ε)v1(x),

w(ξ ; ε) = a+
1 (ε)εμ1wK (ξ) + a+

2 (ε)εμ1wL(ξ),

v2(x; ε) = VM+m(x) + CM+m,2(ε)v2(x).

The functions v1 and v2 admit, near the point O , expansions of the form (6.3.9) and
(6.3.10) with constants

(a−
1 , a−

2 ) = (CM+m,1, CM+m,2), (a+
1 , a+

2 ) = (CM+m,1a1, sM+m,2 + CM+m,2 a2),

related by the equality

(CM+m,1, CM+m,2) = (CM+m,1a1, sM+m,2 + CM+m,2 a2)� ε2μ1+1,

see (6.3.15). It follows that

(CM+m,1(ε), CM+m,2(ε)) = (0, sM+m,2)(I − � a ε2μ1+1)−1 �ε2μ1+1,

(a+
1 (ε), a+

2 (ε)) = (0, sM+m,2) (I − � a ε2μ1+1)−1.

Using expansions (10.2.1) and (10.2.5) for x11 → +∞ and the formulas for CM+m,1
and CM+m,2, we obtain an approximation to the remaining lines of the scattering
matrix. Put S̃21 = ‖S̃M+m,p‖M

m,p=1 and S̃22 = ‖S̃M+m,M+p‖M
m,p=1, then

(S̃21(ε), S̃22(ε)) = (0M×M , S0
2 ) + i(0M×1, s2)(I − � a ε2μ1+1)−1�s∗S0ε2μ1+1.

(10.2.16)

We set S̃ = ‖S̃pq‖p,q=1,2 and unite (10.2.10) and (10.2.16) into the matrix equality

S̃(ε) = S0 + is(I − � a ε2μ1+1)−1�s∗S0ε2μ1+1. (10.2.17)

The next lemma can be proved along the same way as Lemma 6.3.4 with the use of
Lemma 10.2.1 instead of 6.3.1.

Lemma 10.2.2 The matrix S̃(ε) is unitary.

We set T̃m(ε) = ∑M
p=1 |S̃m,M+p(ε)|2 and T̃M+m(ε) = ∑M

p=1 |S̃M+m,p(ε)|2 for
m = 1, . . . , M . According to (10.2.17),

S̃(ε) = S0 + is�s∗S0ε2μ1+1 + O(ε4μ1+2)

=
(

S0
1 0

0 S0
2

)
+

(
αs1s∗

1 S0
1 βs1s∗

2 S0
2

βs2s∗
1 S0

1 αs2s∗
2 S0

2

)
ε2μ1+1 + O(ε4μ1+2).

http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
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Therefore,

T̃m(ε) = |sm1|2
M∑

p=1

|sM+p,2|2β2ε4μ1+2 + O(ε6μ1+3), (10.2.18)

T̃M+m(ε) =
M∑

p=1

|sp1|2|sM+m,2|2β2ε4μ1+2 + O(ε6μ1+3). (10.2.19)

By Lemma 10.2.2, R̃q(ε) + T̃q(ε) = 1, q = 1, . . . , 2M , with R̃m(ε) = ∑M
p=1

|S̃0
mp(ε)|2 and R̃M+m(ε) = ∑M

p=1 |S̃0
M+m,M+p(ε)|2, m = 1, . . . , M . Hence,

R̃m(ε) = 1 − |sm1|2
M∑

p=1

|sM+p,2|2β2ε4μ1+2 + O(ε6μ1+3),

R̃M+m(ε) = 1 −
M∑

p=1

|sp1|2|sM+m,2|2β2ε4μ1+2 + O(ε6μ1+3).

Consider the problem

�u + k2u = f in G(ε), u = 0 on ∂G(ε). (10.2.20)

For γ ∈ R, δ > 0, and l = 0, 1, . . . , the space V l
γ, δ(G(ε)) is the completion in the

norm (6.3.29) of the set of smooth functions in G(ε) having compact supports. The
cut-off functions η j are the same as in (6.3.29).

Proposition 10.2.3 Let |γ −1| < μ1+1/2, f ∈ V 0
γ, δ(G(ε)), and let u be a solution

to (10.2.20) that admits the representation

u = ũ + η1

M∑
m=1

A−
mU−

m + η2

M∑
m=1

A−
M+mU−

M+m,

where A−
q = const and ũ ∈ V 2

γ, δ(G(ε)), δ being a small positive number. Then

‖ũ; V 2
γ, δ(G(ε))‖ +

2M∑
q=1

|A−
q | ≤ c‖ f ; V 0

γ, δ(G(ε))‖

holds with a constant c independent of f and ε.

Theorem 10.2.4 Under the hypotheses of Proposition 10.1.1, the inequality

2M∑
q=1

|Smq(ε) − S̃mq(ε)| ≤ c(εμ2+1 + εγ+3/2)εμ1 (10.2.21)

http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
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holds, where m = 1, . . . , 2M, γ > 0, |γ − 1| < μ1 + 1/2, and the constant c is
independent of ε.

Corollary 10.2.5 The asymptotic formulas

T̃m(ε) = |sm1|2
M∑

p=1

|sM+p,2|2β2ε4μ1+2 + O
(
ε4μ1+2+τ

)
,

T̃M+m(ε) =
M∑

p=1

|sp1|2|sM+m,2|2β2ε4μ1+2 + O
(
ε4μ1+2+τ

)
,

R̃m(ε) = 1 − |sm1|2
M∑

p=1

|sM+p,2|2β2ε4μ1+2 + O
(
ε4μ1+2+τ

)
,

R̃M+m(ε) = 1 −
M∑

p=1

|sp1|2|sM+m,2|2β2ε4μ1+2 + O
(
ε4μ1+2+τ

)
.

hold with m = 1, . . . , M, and τ = min{μ2 −μ1, 2−σ }, where σ is a small positive
number.

10.3 Tunneling in a Waveguide with Two Narrows

We turn to the waveguide G(ε1, ε2) with two narrows. The limit domain G(0, 0)
consists of the infinite domains G1, G2, and the bounded “resonator” G0.We assume
that k2 varies in a neighborhood of an eigenvalue k2e of limit problem (10.1.8) in G0.
For the sake of simplicity, the eigenvalue is assumed to be simple.

10.3.1 Formal Asymptotics

Let us consider the wave function um in G(ε1, ε2) satisfying

um(x; k, ε1, ε2) ∼
⎧⎨
⎩

U+
m (x1; k) + ∑M

p=1 Smp(k, ε1, ε2) U−
p (x1; k), x11 → +∞,

∑M
p=1 Sm,M+p(k, ε1, ε2) U−

M+p(x2; k), x21 → +∞.

In G j , j = 0, 1, 2, u1 is approximated by the solutions v j to (6.2.1) such that

v1 = Vm + Cm1v1, v0 = Cm2v01 + Cm3v02, v2 = Cm4v2, (10.3.1)

http://dx.doi.org/10.1007/978-3-319-15105-2_6
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the Vm and v1 are defined in 10.2.1, the v0 j is defined in 6.4.1, and the v2 is an analog
of the v1 in the domain G2. The constants C1 j depend on ε1, ε2 and k. According to
(10.2.2), (6.4.4), (6.4.5), and (10.2.5) for r → 0,

v1 = 1√
r1

(
Cm1 Ñμ11+1/2(kr1) + (sm1 + Cm1a1) J̃μ11+1/2(kr1)

)

K

11(ϕ) + O(rμ12
1 ), r1 → 0,

v0 =

⎧⎪⎪⎨
⎪⎪⎩

1√
r1

(
Cm2 Ñμ11+1/2(kr1) + (Cm2c11 + Cm3c21) J̃μ11+1/2(kr1)

)

L

11(ϕ1) + O(rμ12
1 ), r1 → 0,

1√
r2

(
Cm3 Ñμ21+1/2(kr2) + (Cm2c12 + Cm3c22) J̃μ21+1/2(kr2)

)

L

21(ϕ2) + O(rμ22
2 ), r2 → 0.

v2 = 1√
r2

(
Cm4 Ñμ1+1/2(kr2) + Cm4 a2 J̃μ1+1/2(kr2)

)

L

21(ϕ) + O(rμ22
2 ), r2 → 0.

For every narrow, we introduce a matrix� j (like the matrix� in (6.3.15)). Applying
Lemma 6.3.2, we obtain

(Cm1, Cm2) = (sm1 + Cm1a1, Cm2c11 + Cm3c21)�1 ε
2μ11+1
1

for the first narrow and

(Cm3, Cm4) = (Cm2c12 + Cm3c22, Cm4 a2)�2 ε
2μ21+1
2

for the second narrow. The corresponding solutions of the second kind limit problems
are of the form (see (6.3.14))

w1(ξ
1) = (sm1 + Cm1a1)ε

μ11
1 wK

1 (ξ1) + (Cm2c11 + Cm3c21)ε
μ11
1 wL

1 (ξ1),

(10.3.2)

w2(ξ
2) = Cm4a2ε

μ21
2 wK

2 (ξ2) + (Cm2c12 + Cm3c22)ε
μ21
2 wL

2 (ξ2), (10.3.3)

where wK
j and wL

j are analogs for the domains	 j , j = 1, 2, of the functions defined

in Remark 6.3.3. We set � = diag {�1,�2}, E = diag {ε2μ11+1
1 , ε

2μ11+1
1 , ε

2μ21+1
2 ,

ε
2μ21+1
2 }, and

a =

⎛
⎜⎜⎝

a1 0 0 0
0 c11 c12 0
0 c21 c22 0
0 0 0 a2

⎞
⎟⎟⎠ , (10.3.4)

and, combining the relations obtained for Cmj , we arrive at the equality

(Cm1, Cm2, Cm3, Cm4) = (sm1, 0, 0, 0)� E + (Cm1, Cm2, Cm3, Cm4) a � E .

Thus,
(Cm1, Cm2, Cm3, Cm4)(I − a � E) = (sm1, 0, 0, 0)� E . (10.3.5)

http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
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Aswas shown in Sect. 6.4.2, there exists the inversematrix of I −a�E for sufficiently
small ε1, ε2 and

(I − a�E)−1 = (I − â � E)−1
(

I − b∗b � E(I − â � E)−1

k2 − k2e + 〈b � E(I − â � E)−1, b〉
)

,

where b = (0, b1, b2, 0) and the matrix â is analytic near k = ke and is defined by
(10.3.4) with cpq changed for ĉpq (cf. (6.4.6)). Using this equality and (10.3.5), we
find the constants Cmj :

(Cm1, Cm2, Cm3, Cm4) = (sm1, 0, 0, 0)� E(I − a � E)−1

= (sm1, 0, 0, 0)

(
D − D b∗b D

k2 − k2e + 〈bD, b〉
)

, (10.3.6)

where D = � E(I − â � E)−1; thereby, we have constructed an approximation to
the wave function u1. Arguing as in Sect. 6.4.2, one can see, that the solution v0
of the limit problem in the resonator and the solutions w j of the second kind limit
problems do not have a pole at k2 = k2e . The following formulas are valid:

v0(x) = Cm2v̂01(x) + Cm3v̂02(x) − (sm1, 0, 0, 0)D b∗
k2 − k2e + 〈bD, b〉ve(x). (10.3.7)

w1(ξ
1) = (sm1 + Cm1a1)ε

μ11
1 wK

1 (ξ1) +
(

Cm2ĉ11 + Cm3ĉ21 − b1(sm1, 0, 0, 0)D b∗
k2 − k2e + 〈bD, b〉

)

× ε
μ11
1 wL

1 (ξ1), (10.3.8)

w2(ξ
2) = Cm4a2ε

μ21
2 wK

2 (ξ2) +
(

Cm2ĉ12 + Cm3ĉ22 − b2(sm1, 0, 0, 0)D b∗
k2 − k2e + 〈bD, b〉

)

× ε
μ21
2 wL

2 (ξ2). (10.3.9)

Finally, we present the asymptotics of the wave function. Let t �→ �(t) be a cut-off
function on R equal to 1 for t < δ/2 and to 0 for t > δ with a small positive δ. We
introduce x �→ χε1,ε2(x) = 1G0(x) (1−�(r1/ε1)) (1−�(r2/ε2)), where 1G0 is the
characteristic function of G0. The principal term ũ1 of the asymptotics of the wave
function u1 is of the form

ũ1(x; k, ε1, ε2) = χ1,ε1(x1)v1(x1; k, ε1, ε2) + �(r1)w1(ε
−1
1 x1; k, ε1, ε2)

+ χε1,ε2(x)v0(x; k, ε1, ε2) + �(r2)w2(ε
−1
2 x2; k, ε1, ε2)

+ χ2,ε2(x2)v2(x2; k, ε1, ε2), (10.3.10)

where the solutions v1 and v2 of the first kind limit problems are defined by relations
(6.4.7), v0 is given by (10.3.7), and the solutions w1 and w2 of the second kind limit
problems are defined by (10.3.8) and (10.3.9).

http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
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We now find an approximation S̃i j to the entries of the scattering matrix S =
(Si j )

M1+M2
i, j=1 . By S̃rr , r = 1, 2, we denote (Mr × Mr )-matrices such that

S̃ =
(

S̃11 S̃12
S̃21 S̃22

)
.

By virtue of (10.2.1) and (6.3.7) for x11 → +∞,

v1(x1) = U+
m (x1) +

M1∑
p=1

(S0
mp + Cm1(ε)A1p)U

−
p (x1) + O(exp(−δx11 )), x11 → +∞,

v2(x2) = Cm4(ε)

M2∑
p=1

A2,M1+pU−
M1+p(x2) + O(exp(−δx21 )), x21 → +∞,

whence
(S̃11, S̃12) = (S0

1 + C1A1, C4A2), (10.3.11)

where, as in the previous subsection,

C j = (C1 j , . . . , CM1 j )
T , A1 = (A11, . . . , A1M1), A2 = (A2,M1+1, . . . , A2,M1+M2).

We set

A =

⎛
⎜⎜⎝

A1 01×M2

01×M1 01×M2

01×M1 01×M2

01×M1 A2

⎞
⎟⎟⎠ , s =

(
s1 0M1×1 0M1×1 0M1×1

0M2×1 0M2×1 0M2×1 s2

)
;

as before, let S0 = diag (S0
1 , S0

2 ); then, by Lemma 10.2.1, equality (10.2.9) remains
valid. Taking into account (10.3.11), (10.3.6), and (10.2.9), we obtain

(S̃11, S̃12) = (S0
1 , 0M1×M2 ) + (C1, C2, C3, C4)A

= (S0
1 , 0M1×M2 ) + i(s1, 0M1×1, 0M1×1, 0M1×1)

(
D − D b∗b D

k2 − k2e + 〈bD, b〉
)

s∗S0,

(10.3.12)

where D = � E(I − â � E)−1. The approximation

(S̃21, S̃22) = (0M2×M1 , S0
2 )

+ i(0M2×1, 0M2×1, 0M2×1, s2)

(
D − D b∗b D

k2 − k2e + 〈bD, b〉
)

s∗S0.

(10.3.13)

http://dx.doi.org/10.1007/978-3-319-15105-2_6
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to the remaining rows of the scattering matrix S is derived from the asymptotics of
the wave functions uM1+m ,

uM1+m(x; k, ε1, ε2) ∼
⎧⎨
⎩

∑M1
p=1 SM1+m,p(k, ε1, ε2) U−

p (x1; k), x11 → +∞,

U+
M1+m(x1; k) + ∑M2

p=1 SM1+m,M1+p(k, ε1, ε2) U−
M1+p(x2; k), x21 → +∞.

The principal term ũM1+m of the asymptotics takes the form of (10.3.10), where

v1(x1) = CM1+m,1v1(x1),

w1(ξ
1) = CM1+m,1a1ε

μ11
1 wK

1 (ξ1)

+
(

CM1+m,2ĉ11 + CM1+m,3ĉM1+m,1 − b1(0, 0, 0, sM1+m,2)D b∗

k2 − k2e + 〈bD, b〉
)

ε
μ11
1 wL

1 (ξ1),

v0(x) = CM1+m,2v̂01(x) + CM1+m,3̂v02(x) − (0, 0, 0, sM1+m,2)D b∗

k2 − k2e + 〈bD, b〉 ve(x),

w2(ξ
2) = (sM1+m,2 + CM1+m,4a2)ε

μ21
2 wK

2 (ξ2)

+
(

CM1+m,2ĉ12 + CM1+m,3ĉ22 − b2(0, 0, 0, sM1+m,2)D b∗

k2 − k2e + 〈bD, b〉
)

ε
μ21
2 wL

2 (ξ2),

v2(x2) = V2(x2) + CM1+m,4v2(x2),

the constants CM1+m, j are given by

(CM1+m,1, CM1+m,2, CM1+m,3, CM1+m,4) = (0, 0, 0, sM1+m,2)

(
D − D b∗b D

k2 − k2e + 〈bD, b〉
)

.

Combining relations (10.3.12) and (10.3.13), we obtain the approximation S̃ to the
scattering matrix S:

S̃(k, ε1, ε2) = S0(k) + is(k)

(
D − D b∗b D

k2 − k2e + 〈bD, b〉
)

s∗(k)S0(k), (10.3.14)

where D = D(k, ε1, ε2) = � E(ε1, ε2)(I − â(k)� E(ε1, ε2))
−1; the k2e and b are

independent of k, ε1, ε2. Arguing as in the proof of Lemma 6.3.4 and taking into
account (� E)∗ = � E and a − a∗ = is∗s (Lemma 10.2.1), one can verify that the
matrix S̃ is unitary.

We denote by kp the pole of the matrix S̃, that is, kp satisfies the equation k2 −
k2e + 〈bD, b〉 = 0. We substitute the expression for D and obtain

k2 − k2e = 〈b� E(I − â(k)� E)−1, b〉; (10.3.15)

here E = diag (ε
2μ11+1
1 , ε

2μ11+1
1 , ε

2μ21+1
2 , ε

2μ21+1
2 ) and � = diag (�1,�2) with

� j =
(

α j β j

β j α j

)
, j = 1, 2.

http://dx.doi.org/10.1007/978-3-319-15105-2_6
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Since ε1 and ε2 are small, a solution to equation (10.3.15) can be found by the
successive approximation method. We have k2p = k2r − ik2i , where

k2r = k2e − 〈b � E, b〉 + O
(
ε
4μ11+2
1 + ε

4μ21+2
2

)

= k2e − α1b21ε
2μ11+1
1 − α2b22ε

2μ21+1
2 + O

(
ε
4μ11+2
1 + ε

4μ21+2
2

)
, (10.3.16)

k2i = Im 〈b � E â(ke)� E, b〉 + O
(
ε
6μ11+3
1 + ε

6μ21+3
2

)

= 1

2
s1(ke)

∗s1(ke)b
2
1β

2
1ε

4μ11+2
1 + 1

2
s2(ke)

∗s2(ke)b
2
2β

2
2ε

4μ21+2
2

+O
(
ε
6μ11+3
1 + ε

6μ21+3
2

)
; (10.3.17)

in the last equality, we used the relation Im a j = s∗
j s j/2, j = 1, 2, which follows

from Lemma 10.2.1. We suppose the constants b j and the columns s j to be distinct

from zero. Then, by virtue of (10.3.17), |k2 − k2p| � c(ε4μ11+2
1 + ε

4μ21+2
2 ) for all

real k.
Let us find the principal terms of the power series in ε1 and ε2 for the matrix S̃.

As was proved in Chap.6 (cf. (6.4.26)),

1

k2 − k2e + 〈bD(k), b〉 = 1 + O(ε
4μ11+2
1 + ε

4μ21+2
2 )

k2 − k2p
(10.3.18)

uniformly with respect to k in any interval that contains no thresholds and no eigen-
values of the resonator except ke. We substitute (10.3.18) into (10.3.14) and take into
account that D = � E + O(ε

4μ11+2
1 + ε

4μ21+2
2 ). Then

S̃(k, ε1, ε2) ∼ S0(k) + is(k)�Es∗(k)S0(k) − i
s(k)�E b∗b �Es∗(k)S0(k)

k2 − k2p

=
(

S0
11(k) 0

0 S0
22(k)

)
+ i

⎛
⎝s1(k)∗s1(k)α1S0

1 (k)ε
2μ11+1
1 0

0 s2(k)∗s2(k)α2S0
2 (k)ε

2μ21+1
2

⎞
⎠

− i

k2 − k2p

⎛
⎝ s1(k)∗s1(k)b21β

2
1 S0

1 (k)ε
4μ11+2
1 s2(k)∗s1(k)b1b2β1β2S0

2 (k)ε
2μ11+1
1 ε

2μ21+1
2

s1(k)∗s2(k)b1b2β1β2S0
1 (k)ε

2μ11+1
1 ε

2μ21+1
2 s2(k)∗s2(k)b22β

2
2 S0

2 (k)ε
4μ21+2
2

⎞
⎠ ,

where we dropped the terms that admit the estimate O(ε
2μ11+1
1 +ε

2μ21+1
2 ) uniformly

with respect to k. For (k2 − k2p)
−1 = O(1), the third term can be neglected as well;

however, it must be taken into account for small k2 − k2p.

Let us choose a more narrow interval for k2, assuming k2 − k2r = O
(
ε
2μ11+1
1 +

ε
2μ21+1
2

)
. Using relations (10.3.16) and (10.3.17), S0

j (k) = S0
j (ke) + O(k2 − k2e ),

and s j (k) = s j (ke) + O(k2 − k2e ), we obtain

http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
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S̃12(k, ε1, ε2) =
i

s1(ke)

(s1(ke)∗s1(ke))1/2

s2(ke)
∗

(s2(ke)∗s2(ke))1/2

i

2

(
z + 1

z

)
+ P

k2 − k2r
ε
2μ11+1
1 ε

2μ21+1
2

×(
1 + O(ε

2μ11+1
1 + ε

2μ21+1
2 )

)
, (10.3.19)

S̃21(k, ε1, ε2) =
i

s2(ke)

(s2(ke)∗s2(ke))1/2

s1(ke)
∗

(s1(ke)∗s1(ke))1/2

i

2

(
z + 1

z

)
+ P

k2 − k2r
ε
2μ11+1
1 ε

2μ21+1
2

×(
1 + O(ε

2μ11+1
1 + ε

2μ21+1
2 )

)
, (10.3.20)

where

z = b1β1(s1(ke)
∗s1(ke))

1/2ε
2μ11+1
1

b2β2(s2(ke)∗s2(ke))1/2ε
2μ21+1
2

, P = 1

b1b2β1β2(s1(ke)∗s1(ke))1/2(s2(ke)∗s2(ke))1/2
.

Now, we find approximations to the transmission coefficients:

T̃m(k, ε1, ε2) =
|sm1|2

(s1(ke)∗s1(ke))1/2

1

4

(
z + 1

z

)2

+ P2

(
k2 − k2r

ε
2μ11+1
1 ε

2μ21+1
2

)2

(
1 + O(ε

2μ11+1
1 + ε

2μ21+1
2 )

)
,

T̃M+m(k, ε1, ε2) =
|sM+m,2|2

(s2(ke)∗s2(ke))1/2

1

4

(
z + 1

z

)2

+ P2

(
k2 − k2r

ε
2μ11+1
1 ε

2μ21+1
2

)2

(
1 + O(ε

2μ11+1
1 + ε

2μ21+1
2 )

)
.

It is easy to see that T̃ j has a peak at k2 = k2r , and the width of that peak at its
half-height is

ϒ̃(ε1, ε2) = |(z + z−1)/P|ε2μ11+1
1 ε

2μ21+1
2 . (10.3.21)

10.3.2 The Estimate of the Remainder

We consider the problem

�u + k2u = f in G(ε1, ε2), u = 0 on ∂G(ε1, ε2). (10.3.22)
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For γ1, γ2 ∈ R, δ > 0, and l = 0, 1, . . . , the space V l
γ1,γ2,δ

(G(ε1, ε2)) is the com-

pletion in the norm (6.4.31) of the set of smooth functions in G(ε1, ε2)with compact
supports. As before, we denote by V 0,⊥

γ1,γ2,δ
the space of functions f that are analytic in

k2, take values in V 0
γ1,γ2,δ

(G(ε1, ε2)), and, for k2 = k2e , satisfy (χεσ
1 ,εσ

2
f, ve)G0 = 0

with small σ > 0.

Proposition 10.3.1 Let k2r be a resonance, k2r → k2e as ε1, ε2 → 0, and let

|k2 −k2r | = O(ε
2μ11+1
1 +ε

2μ21+1
2 ). Assume that γ1, γ2 satisfy μ j1−3/2 < γ j −1 <

μ j1 + 1/2, f ∈ V 0,⊥
γ1,γ2,δ

(G(ε1, ε2)), and u is a solution to (10.3.22) that admits the
representation

u = ũ + η1

M1∑
m=1

A−
mU−

m + η2

M2∑
m=1

A−
M1+mU−

M1+m;

here A−
j = const and ũ ∈ V 2

γ1,γ2,δ
(G(ε1, ε2)) with small δ > 0. Then

‖ũ; V 2
γ1,γ2,δ

(G(ε1, ε2))‖ +
M1+M2∑

q=1

|A−
q | ≤ c‖ f ; V 0

γ1,γ2,δ
(G(ε1, ε2))‖,

where c is a constant independent of f and ε1, ε2.

Consider the solution um of the homogeneous problem (6.1.1) defined by (10.1.4).
Let Sm1, . . . , Sm,M1+M2 be the entries of the scattering matrix determined by this
solution. Denote by ũm,σ the function defined by (10.3.10) with �(r j ) replaced by
�(ε−2σ

j r j ). The S̃m1, . . . , S̃m,M1+M2 are the same as in the previous subsection.

Theorem 10.3.2 Let the hypotheses of Propositions 10.1.1 and 10.3.1 be fulfilled
and assume that the coefficients sq j in (10.2.2), (10.2.3) and the coefficients b j in
(6.4.1) are nonzero. Then

M1+M2∑
q=1

|Smq − S̃mq |

≤ c
(ε

2μ11+1
1 + ε

2μ21+1
2 )ε

μ11
1

(
ε
μ12+1
1 + ε

γ1+3/2
1

) + ε
2μ11+1
1 ε

μ21
2

(
ε
μ22+1
2 + ε

γ2+3/2
2

)
|k2 − k2r | + ε

4μ11+2
1 + ε

4μ21+2
2

with c independent of ε1, ε2, k; p = 1, 2.

We denote by k2e an eigenvalue of problem (6.2.1) in the resonator G0 and by
k2r (ε) a resonance frequency such that k2r (ε) → k2e as ε → 0. Moreover, let b j be the
constants in asymptotics (6.4.1) of an eigenfunction corresponding to the eigenvalue
k2e and sq j (k) the constant in asymptotics (10.2.2) and (10.2.3) of the special solution
Vj for r j → 0, j = 1, 2. Finally, the constants α and β are defined by (6.2.10) and
(6.2.11). We set

http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
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z = b1β1(
∑M1

p=1 |sp1(ke)|2)1/2ε2μ11+1
1

b2β2(
∑M2

p=1 |sM1+p,2(ke)|2)1/2ε2μ21+1
2

,

P = 1

b1b2β1β2(
∑M1

p=1 |sp1(ke)|2)1/2(∑M2
p=1 |sM1+p,2(ke)|2)1/2

;

these are the same values as in (10.3.19) and (10.3.21).

Theorem 10.3.3 For |k2 −k2r | = O(ε
2μ11+1
1 +ε

2μ21+1
2 ), the asymptotic expansions

Tm(k, ε1, ε2) =

|sm1|2
(
∑M1

p=1 |sp1(ke)|2)1/2
1

4

(
z + 1

z

)2
+ P2

(
k2 − k2r

ε
2μ11+1
1 ε

2μ21+1
2

)2

(
1 + O(ε

τ1
1 + ε

τ2
2 )

)
,

m = 1, . . . , M1,

TM1+m(k, ε1, ε2) =

|sM1+m,21|2
(
∑M1

p=1 |sM1+p,1(ke)|2)1/2
1

4

(
z + 1

z

)2
+ P2

(
k2 − k2r

ε
2μ11+1
1 ε

2μ21+1
2

)2

(
1 + O(ε

τ1
1 + ε

τ2
2 )

)
,

m = 1, . . . , M2,

k2r (ε1, ε2) = k2e − α1b21ε
2μ11+1
1 − α2b22ε

2μ21+1
2 + O

(
ε
2μ11+1+τ1
1 + ε

2μ21+1+τ2
2

)
,

ϒ(ε1, ε2) =
∣∣∣ z + z−1

P

∣∣∣ε2μ11+1
1 ε

2μ21+1
2

(
1 + O(ε

τ1
1 + ε

τ2
2 )

)

hold, where τ j = min{μ j2 − μ j1, 2 − σ j } and σ j are small positive numbers.

Proof From Theorem 10.3.2 and (10.3.19) we obtain

||Smp|2 − |S̃mp|2| ≤ c

∣∣∣∣∣
Smp − S̃mp

S̃mp

∣∣∣∣∣ |S̃mp|2 ≤ c|S̃mp|2(ετ1
1 + ε

τ2
2 + ε

τ2+2μ21+1
2 /ε

2μ11+1
1

)

with τ j = min{μ j2 − μ j1, 2 − σ j }, σ j = μ j1 + 3/2 − γ j , j = 1, 2. Hence,

|Tm − T̃m | ≤ cT̃m
(
ε
τ1
1 + ε

τ2
2 + ε

τ2+2μ21+1
2 /ε

2μ11+1
1

)
.

When ε
2μ11+1
1 ≥ ε

2μ12+1
2 , we get the desired expansion for Tm . Assume that

ε
2μ11+1
1 ≤ ε

2μ21+1
2 . Similarly, we can obtain

||SM1+m,p|2 − |S̃M1+m,p|2| ≤ c|S̃M1+m,p|2
(
ε
τ1
1 + ε

τ2
2 + ε

τ1+2μ11+1
1 /ε

2μ21+1
2

)
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with the same τ j . As is known, |SM1+m,p| = |SM1+p,m |, and it is easy to see that
|S̃M1+m,p| = |S̃M1+p,m | (indeed, all characteristics of both narrows are interchange-
ably included in the formulas for S̃mp). This leads to the required expansion for Tm

as ε
2μ11+1
1 ≤ ε

2μ21+1
2 . The formulas for k2r and ϒ follow from that for Tp. �



Chapter 11
Electronics Devices Based on Resonant
Tunneling

Devices based on the phenomenon of electron resonant tunneling are widely used
in electronics. Most of these devices are multilayer planar structures having large
transverse and small longitudinal sizes. In classic two-barrier resonant tunneling
diodes, the electrodes and thewell aremade ofGaAs and the barriers of GaAlAs. Due
to the structure sizes, there is no electron energy quantization along the layers and,
therefore, the process of one-dimensional resonant tunneling is implemented there.
Resonant tunneling diodes enable the creation of solid-state microwave generators
and transistor amplifier devices.

Theoretically, the limit of the ideal diode operation speed is about 0.1 ps. Resonant
tunneling phenomenon allows the building of diodes with extremely high switching
speed close to the theoretical limit, that is, in the frequency range up to several THz
(1012 Hz), [15, 16, 44].

Oneof the advantages of the planar resonant structure is a highworking current due
to the large transverse size of the structure and a large current density. To reach a high
working current density, it is necessary that the barriers be thin (several monoatomic
layers) and the interfaces between the well and the barriers and those between the
barriers and the electrodes flat and distinct (to avoid incoherent electron scattering by
the interfaces). However, as is experimentally shown, the interfaces are not flat and
sharp. For instance, the transition from GaAs to GaAlAs involves 1–4 monoatomic
layers, and the potential barrier is vague. As to the resonant quantum dot systems,
their properties also heavily depend on inhomogeneities of the interfaces between
the electrodes and vacuum and those between the quantum dot and vacuum.

In the aforementioned resonant systems, one can change the barrier thickness only.
In the planarmultilayer systems, there is noway to adjust a resonance frequency once
the system is produced because there is no possibility to change the barrier thickness.

Resonant electronics devices can be based on quantum waveguides of variable
cross-section. In these, the potential barriers are formed without phase boundaries,
therefore, incoherent electron scattering does not occur. Changing the narrow forms,
one can change not only the effective barrier thickness but also the barrier form. It
is possible to adjust a resonance frequency by cutting out small fragments of the
resonator (for example, with a focus electron beam). Due to the smallness of the

© Springer International Publishing Switzerland 2015
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waveguide cross-section diameter, it is easy to apply external electric and magnetic
fields localized in the resonator. This enables the creation of devices controlled by
an external electric potentials and magnetic fields alike. Small sizes of such systems
lead to their small capacity, which increases their operation speed. However, let us
emphasize that, because of a small waveguide cross-section, the devices based on
a quantum waveguide are designed in principle for small currents (<10−6 A) and
sufficiently small working voltages (<1V).

In this chapter, we present examples of electronics devices based on quantum
waveguides with narrows: transistors controlled by external electric field and mag-
netic field sensors controlled by external magnetic field. Moreover, we also consider
an electron flow switch for quantum nets. Unlike the transistors and the sensors,
the switch has no relation to the phenomenon of resonant tunneling. However, the
scattering matrix needed for analyzing the switch operation has been calculated by
the method presenteded in Chap.4.

11.1 Magnetic Field Sensors Based on Quantum Waveguides

Let us consider resonance structures like those in Chaps. 7 and 8. Being supplied in
the resonator, a magnetic field B, orthogonal to the resonator axis, splits any resonant
energy level into two levels. We make use of this phenomenon to detect magnetic
fields localized in domains of about 1 nm in diameter. Detection of the vector B in
the classical resonance systems is onerous because of large transverse sizes of such
systems. We will describe one-resonator and two-resonator magnetic field sensors;
first we discuss the one with a single resonator (Fig. 11.1).

The system consists of a quantum waveguide (1) with metallic contacts at its ends
(a source (2) and a drain (3)). The sizes of the waveguide and its material are chosen
to provide ballistic (collisionless) electron transport from the source to the drain.
Between the contacts, an accelerating voltage U is supplied. Therefore, the Fermi
level at the drain is eU below that at the source. The waveguide has two narrows (4)
and (5); the domain (6) between the narrows is a quantum resonator. Such narrows
can be produced by electron lithography or X-ray lithography, for example. The
waveguide cross-section has been chosen so that E − EF � kBT for all the energies

Fig. 11.1 Scheme of one-resonator device for registering magnetic fields: 1 quantum waveguide;
2 and 3 source and drain; 4 and 5 waveguide’s narrows forming the resonator 6; 7 magnetic field
domain

http://dx.doi.org/10.1007/978-3-319-15105-2_4
http://dx.doi.org/10.1007/978-3-319-15105-2_7
http://dx.doi.org/10.1007/978-3-319-15105-2_8


11.1 Magnetic Field Sensors Based on Quantum Waveguides 261

Fig. 11.2 Energy diagram of a one-resonator device for registering magnetic fields: In the absence
of magnetic field the resonant level over the Fermi level at the source; a B = 0; b B �= 0

E of electrons with transverse quantum number greater than 1 and for the Fermi
levels EF at the source and the drain, the kB being Bolzmann constant and T a
temperature. Therefore, the electrons with energy exceeding the second threshold
practically do not occur in the waveguide.

The current density J through the system is defined by

J =
∫

E
g(E)ν(E)T (E) fS(E)(1 − fD(E − eU )) d E,

the integration over the electronsmoving from the source, g(E)being the state density
in the non-deformedwaveguide, ν(E) the electron velocity along thewaveguide axis,
T (E) the probability for an electron with energy E to pass through the resonator.
Finally, fS(E) is the Fermi function for the electrons of the source (that is, the filling
probability of the level E with electrons), and fD(E) is that for the electrons of the
drain. Therefore, there is a current in the systems only if the resonant level is below
the Fermi level at the source and above that at the drain.

A resonant level is determined by the resonator length. We choose the latter, so
that the resonant level Eres would satisfy Eres − EF1 > kBT (Fig. 11.2a). Since
fS(E) is quite small for E > EF1 + kBT , there is no current, practically, in the
system because the incident flow contains few electrons that could pass through the
resonator.

When a magnetic field is supplied in the resonator, the resonant level Eres splits
into two levels E+

res and E−
res so that E−

res < Eres < E+
res . The E+

res corresponds to
the electrons whose spin direction coincides with the direction of the magnetic field
vector B and E−

res corresponds to the electrons whose spin in direction is opposite
to B. For a certain magnetic field strength, the resonant level E−

res gets to the energy
interval E < EF1 + kBT and a current through the resonator arises (Fig. 11.2b).
When themagnetic field strength B further increases, the resonant level E−

res becomes
lower than the Fermi level EF2 at the drain and the current sharply decreases at
E−

res = EF2 − kBT because the final electron states in the drain turn out to be
occupied. Thus, a current through the resonator exists only on the conditions

EF2 − kBT < E−
res < EF1 + kBT .

The B-dependence of the current through the system is depicted by Fig. 11.3.
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Fig. 11.3 B-dependence of the current through the resonance system: T = 0 (dashed line); T > 0
(solid line)

Fig. 11.4 Energy diagram of one-resonator device for registering magnetic fields: In the absence
of magnetic field the resonant level below the Fermi level at the drain; a B = 0; b B �= 0

A one-resonator device can be implemented also in a slightly different way. If
the resonator length has been chosen so that EF2 − Eres > kBT , there is no current
because all finite electron states of the drain have been occupied (Figs. 11.4 and 11.5).

When amagnetic field is supplied in the resonator and increases, the E+
res increases

as well. A current through the resonator exists under the conditions

EF2 − kBT < E+
res < EF1 + kBT .

The one-resonator sensors based on the above schemes possess several disadvan-
tages. Devices of this kind are of high thermal sensitivity, that is, the magnetic field
strength, needed for a through current, depends on temperature. The strength to ini-
tiate such a current is sufficiently large: for T ≈ 10K, the E+

res and E−
res must satisfy

|E+
res − E−

res | ≥ kBT ≈ 10−3 eV. Thus, the devices are of comparatively low sensi-
tivity to magnetic field.

Fig. 11.5 The scheme of a two-resonator device for registering magnetic fields: 1 quantum
waveguide; 2 and 3 source and drain; 4, 5, and 7 waveguide narrows forming the resonators 6
and 8; B magnetic field domain
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Fig. 11.6 Energy diagram of a two-resonator device for registering magnetic fields (type 1): a In
the absence of magnetic field, there is current through both resonators; b no current in the presence
of magnetic field

The two-resonator systems have none of the disadvantages described above. Such
devices are similar to those of the first type; however, thewaveguide has three narrows
forming two quantum resonators in series. A magnetic field is located in one of the
resonators.

The resonators lengths have been chosen so that the resonant levels Eres1 and
Eres2 of the first and the second resonators coincide being below the Fermi level
EF1 at the source and above the Fermi level EF2 at the drain. Then, in the absence
of magnetic field, there is a through current in the system (Fig. 11.6a).

After turning on a magnetic field, the resonant level Eres2 splits into the levels
E−

res2 and E+
res2. If the distance between the E−

res2 and E+
res2 is greater than the res-

onance width (that is, the resonant peak width) corresponding to Eres1, the through
current vanishes. A decrease in the narrow diameter leads to a decrease in the res-
onance width, which raises the device sensitivity to magnetic field. However, let us
note that an effective narrow diameter cannot be made arbitrary small because of the
impact of the waveguide work function (see Sect. 5.7). This confines the possibility
to improve the resonator quality factor by diminishing a narrow diameter. On the
other hand, a too strong decrease in the resonance width (or, equivalently, increas-
ing the resonator quality factor) will worsen the device operation speed (the time,
a tunneling electron spends in the resonator, is proportional to the resonator quality
factor).

Now, we consider another two-resonator device; unlike the first device, there is
no through electron current in the absence of magnetic field (Fig. 11.7).

The resonator lengths have been chosen so that the distance between the resonant
levels Eres1 and Eres2 is greater than the width of the corresponding resonances;
moreover,

EF2 < Eres J < EF1, J = 1, 2.

Fig. 11.7 Energy diagram of a two-resonator device for registering magnetic fields (type 2): a In
the presence of magnetic field, there is current through both resonators; b through current arises for
a certain value of magnetic field

http://dx.doi.org/10.1007/978-3-319-15105-2_5
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Then, in the absence of magnetic field, there is no current in the system. When
a magnetic field is turned on, the Eres2 splits into E−

res2 and E+
res2. For a certain

magnetic field strength, one of the E±
res2 coincides with Eres1 and a through current

arises.On further increasingmagnetic field strength, the resonant levels again become
different and the current vanishes. By choosing the geometry of the two resonators,
one could tune the system to turning on for a given magnetic flow value.

11.2 Transistors Based on Quantum Waveguides

Here we describe one- and two-resonator transistors schemes. Let us begin with
one-resonator devices (Fig. 11.8).

A transistor with one resonator comprises a quantum wire of a high-ohmic semi-
conductor with two narrows and injection contacts at its opposite ends (a source and
a drain). The sizes of the waveguide and its material are chosen to provide ballistic
(collisionless) electron transport from the source to the drain. The domain between
the narrows is a quantum resonator. Near the resonator, there is a metallic electrode
with control voltage UC . The diameter of the waveguide cross-section has to be less
than the Debye length of the semiconductor; then a change in UC causes a change
in the resonant level. Between the source and the drain, there is a small voltage U
providing a current along the wire. Therefore, the Fermi level EF1 at the source is
eU above the Fermi level EF2 at the drain. The resonator has been chosen so that the
minimal resonant level is greater than EF1 + kBT , which is the maximal electron
energy at the contacts.

If UC = 0, the current is negligible because the incident electron flow contains
few electrons of energy close to the resonant level (Fig. 11.9a). On increasing UC ,
the resonant level diminishes and, finally, reaches EF1 , where the current sharply
increases (Fig. 11.9b).

On further increasing UC , the current intensity practically remains constant
because, in the conductivity, electrons of the same energy interval determined by the
resonancewidth act as participants there.When the resonant level closely approaches

Fig. 11.8 Scheme of
one-resonator transistor
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Fig. 11.9 Energy diagram
of one-resonator transistor
(type 1)

Fig. 11.10 Current JW
versus control voltage UC in
a waveguide with one
resonator

the Fermi level EF2 at the drain, the current intensity reduces because all final electron
states at the drain have been occupied. TheUC -dependence of the current Jw through
the quantum waveguide is shown by Fig. 11.10.

The “steepness” of the curve (that is, d JW /dUC ) is determined by the value
max{�Er , kBT }, where �Er denotes the resonance width with respect to electron
energy and kBT is the spread of electron energy around a Fermi level. The system is of
high thermal sensitivity: on increasing temperature, the curve steepness diminishes.

Let us consider also another version of the one-resonator transistor. We suppose
that the resonator has been chosen so that the resonant level is below the Fermi
level EF2 at the drain (Fig. 11.11). Then there is no current for UC = 0 because the
final electron states at the drain have been occupied. On supplying a control voltage
Uc < 0, the resonant level increases. For a certain strength of UC , there appear
free states at the drain and a through current arises. On further increasing |UC |, the
resonant level turns out to be above the occupied states at the source and the current
sharply decreases. The UC -dependence of the current Jw through the waveguide is
similar to that in Fig. 11.10 (up to a sign of UC ).

Let us consider two-resonator transistors that have no disadvantage of thermal
sensitivity.

The waveguide has three narrows that form the two resonators in series. The
lengths of the resonators are different so that their resonant levels Eres1 and Eres2
are distinct. Moreover,

EF2 < Eres J < EF1, J = 1, 2.
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Fig. 11.11 Energy diagram
of one-resonator transistor
(type 2)

Fig. 11.12 A transistor
scheme with two resonators

Fig. 11.13 Energy diagram
of two-resonator transistor

A small voltage U is supplied between the source and the drain. A metallic electrode
with control voltage UC is located near one of the resonators (Fig. 11.12).

Figure11.13 shows the energy diagram for the case where the resonant level of
the resonator with control electrode is below the one of the other resonator. In the
absence of the control voltage, the current in the system is negligible because the
Eres1 and Eres2 are different. On supplying control voltage UC , one of the levels
shifts. When the levels coincide, the through current sharply increases. The needed
variation of the control voltage is independent of temperature and determined by the
resonance width only (Fig. 11.14).

We obtain another implementation of the two-resonator transistor by choosing
Eres1 = Eres2. A through current exists for UC = 0. On supplying control voltage
(of any sign), the current sharply decreases.

If the resonator quality factors are too large, theUC -operation band turns out to be
too narrow. Therefore, it is reasonable to choose resonators with a minimal quality
factor. This improves the device operation speed because the current stabilization
time is proportional to the system quality factor.
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Fig. 11.14 Current JW
versus control voltage UC in
a waveguide with two
resonators

11.3 Electron Flow Switch for Quantum Nets

We now consider a quantum net consisting of quantum waveguides and electron
flow switches at the nodes of a net. An electron flow comes in a node through one
of the attached waveguides, and a switch controlled by an electric field chooses a
waveguide for the flow to go out (Fig. 11.15).

If the switch size were macroscopic and the electron motion were classic, then
a control electric field could be chosen to direct all electron trajectories from an
inlet waveguide to any given outlet. However, we deal with a switch whose size is
comparable to the electron wavelength. Therefore, only probability makes sense for
an electron to pass from an inlet to a given outlet. Figure11.16 shows the scheme of
a device where the electron probability to get in a given outlet is greater than 0.99.

Let us consider a two-dimensional model of a quantum control system compris-
ing a cylindrical resonator and three attached waveguides. An electron flow, in the
collisionless regime, is supplied to the resonator through one of the waveguides. The
two other waveguides are outlets. The waveguide’s and the resonator’s walls are of a
sufficiently large work function so that the electron penetration through the surface
potential barrier is negligible. Three control electrodes are adjacent to the resonator
that is separated from the electrodes by a thin dielectric film. Constant voltages V1,
V2, and V3, whose values can be independently varied are applied to the electrodes.
The sizes of the system are small (10 ÷ 100nm), therefore, it’s capacity is low

Fig. 11.15 A quantum net
example. The nodes with
switches are shown by gray
color
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Fig. 11.16 The scheme of a device with one inlet waveguide (1) and two outlet waveguides (2)
and (3). The three control electrodes are marked out by dark color

enough to provide a high operation speed. Such a device can be used as a switch and
a signal generator of millimeter-wavelength range.

We now describe a mathematical model of the system [4]. Let G be a two-
dimensional domain consisting of a resonator (a disk of radius ρ) and three attached
waveguides (half-strips of the same width). We assume that the waveguide width is
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Fig. 11.17 The resonator diameter is equal to 3. a The loss probability |S11|2 + |S13|2 (solid line)
and the electron transmission probability |S12|2 (dashed line) in relation to electron energy E for
control voltage V = (1.5π)2 ≈ 22.2. b The loss probability |S11|2 + |S13|2 in relation to control
voltage V for energy E = (1.9π)2 (solid line); E = (1.5π)2 (dashed line); E = (1.1π)2 (thick
solid line, only for V < 10). c The distribution of probability density |�|2, � being an electron
wave function, inside the resonator for E = 17.26 and V = (1.5π)2 ≈ 22.2, which corresponds to
the first minimum of |S11|2 + |S13|2
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equal to 1 and the angles between the waveguide axes are equal to 2π/3. An electron
wave function satisfies the boundary value problem

− ��(x) + U (x)�(x) − E�(x) = 0, x ∈ G, (11.3.1)

�(x) = 0, x ∈ ∂G.

Control voltages V1, V2, and V3 produce the potential U in equation (11.3.1).
Wenext consider electrons of energy E between thefirst and the second thresholds,

which means that π2 < E < (2π)2; here the length unit is the waveguide width
d and the energy unit is �

2/(2m∗d2), m∗ being an effective electron mass. Scattering
an electron wave coming in the resonator through waveguide 1 is described by the
row (S11, S12, S13) of the scattering matrix. Choosing V1, V2, V3, and E , we would
like to provide |S12|2 close to 1. (Recall that |S12|2 is the probability of an electron
passing from inlet 1 to outlet 2.) The electron flow switching from outlet 2 to outlet
3 can be performed by interchanging the V1 and V3.
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Fig. 11.18 The resonator diameter is equal to 6. a The loss probability |S11|2 + |S13|2 (solid line)
and the electron transmission probability |S12|2 (dashed line)in relation to electron energy E for
control voltage V = (1.5π)2 ≈ 22.2. b The loss probability |S11|2 + |S13|2 in relation to control
voltage V for energy E = (1.9π)2 (solid line); E = (1.5π)2 (dashed line); E = (1.1π)2 (thick
solid line, only for V < 10). c The distribution of probability density |�|2, � being the electron
wave function, inside the resonator for E = 22.09 and V = (1.5π)2 ≈ 22.2, which corresponds to
the fourth minimum of |S11|2 + |S13|2
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We assume thatV1 = 0 because only the voltage differences play a role.Moreover,
test calculations show that the impact of V2−V3 on the results is comparatively small.
Therefore, in what follows we set V2 = V3 ≡ V . The entries (S11, S12, S13) of the
scattering matrix have been approximately calculated by the method introduced in
Chap.4. Some results are presented in Figs. 11.17 and 11.18.

For small electron energy (10<E<15), the loss probability is close to 1. For large
energy, this probability can be reduced below 10−3 by varying one of the parameter
E and V ; small losses occur if E and V are comparable. On increasing the resonator
diameter, the number of loss minima increases (compare Figs. 11.17 and 11.18). For
the loss probability close to 10−3, the range of control voltage is quite narrow; on
varying V within 0.01, the probability sharply increases. However, the probability of
around 10−2 is muchmore stable relative to control voltage. It is seen from Fig. 11.17
that the loss probability remains below 10−2 for E = (1.9π)2 and 30 < V < 35.
Thus, by varying potentials Vj , we could direct an electron flow to a given outlet
waveguide with probability greater than 0.99 and low requirements to the control
voltage stability.

http://dx.doi.org/10.1007/978-3-319-15105-2_4


Bibliographical Sketch

In the book we use known results of the theory of elliptic boundary value problems
in domains with piece-wise smooth boundary exposed in [25, 28, 31, 37]. Wemainly
refer [37].

Chapter2 in essence presents a special version, for the Helmholtz equation, of the
theory developed in [37] (Chap.5) for the general self-adjoint elliptic boundary value
problem in domains with cylindrical outlets to infinity (the statement and solvability
of the problem with intrinsic radiation conditions at infinity, the definition of the
scattering matrix).

Chapter3 is based on Plamenevskii et al. [41]. Augmented scattering matrices
were considered in various geometric situations in Nazarov and Plamenevskii [37,
38], and Kamotskii and Nazarov [27] for general elliptic problems self-adjoint with
respect to the Green formula. The use of “stable bases” is quite traditional in asymp-
totics studies. In this connection we mention Costabel and Dauge [17] and Maz’ya
and Rossmann [34] dealing with asymptotics of solutions to elliptic boundary value
problems near a corner point at the boundary. In Nazarov and Kamotskii [26], the
asymptotics of the scattering matrix near a threshold for a two-dimensional diffrac-
tion grating was justified, in essence, by using a stable basis of waves.

The method for computing scattering matrices, presented in Chap. 4, was sug-
gested for a close situation in Grikurov et al. [24]. The justification of the method
in [24] was based on Proposition 3 (given without proof) valid only under an addi-
tional condition not presented in Proposition 3. The condition requires that the value
of spectral parameter µ, for which the method is applying, is not an eigenvalue of
the original boundary value problem. The method was justified for two-dimensional
waveguides without the aforementioned additional condition in Plamenevskii and
Sarafanov [39]. Chapter4 exposes a new proof of the method, which is much sim-
pler than that in [39]; in this connection wemention also Plamenevskii and Sarafanov
[40] and Plamenevskii et al. [42].

Chapter 5 (Sects. 5.1–5.6) contains results from Baskin et al. [9]. The results of
Sect. 5.7 are published for the first time.

Chapter6 is based on Baskin et al. [6].
Chapter7 exposes the results of Baskin et al. [12].
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Chapter8 is based on Baskin, Plamenevskii, and Sarafanov [11].
The results of Chapter9 are obtained by L.M. Baskin, M.M. Kabardov, and N.M.

Sharkova and taken from their forthcoming paper. In this connection wemention also
Racec et al. [43], where electron transport in awaveguidewas studied by approximate
computing the waveguide R-matrix.

Chapter10 presents results obtained by O.V. Sarafanov; they are published for the
first time.

Chapter11 contains Sect. 11.1 based on Baskin et al. [10]; Sect. 11.2 based on
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