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Preface

Devices based on the phenomenon of electron resonant tunneling are widely used in
electronics. Efforts are directed toward refining properties of resonance structures.
There are prospects for building new nanosize electronics elements based on
quantum dot systems. However, the role of resonance structure can also be given to
a quantum wire of variable cross-section. Instead of an “electrode—quantum dot—
electrode” system, one can use a quantum wire with two narrows. A waveguide
narrow is an effective potential barrier for longitudinal electron motion along a
waveguide. The part of the waveguide between two narrows becomes a “resonator”,
where electron resonant tunneling can occur. This phenomenon consists of the fact
that, for an electron with energy E, the probability T(E) to pass from one part of the
waveguide to the other part through the resonator has a sharp peak at E = E,;,
where E,,; denotes a “resonant” energy. Such quantum resonators can find appli-
cations as elements of nanoelectronics devices and provide some advantages in
regard to operation properties and production technology.

In the book, we study electron resonant tunneling in two- and three-dimensional
quantum waveguides of variable cross-sections in the time-independent approach.
We suggest mathematical models for resonant tunneling and develop asymptotic
and numerical approaches for investigating the models. We also present schemes
for several electronics devices based on the phenomenon of resonant tunneling. The
book is addressed to mathematicians, physicists, and engineers interested in
waveguide theory and its applications in electronics.
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Chapter 1
Introduction

1.1 Resonance Structures

As a preliminary, we consider a brief example of resonant tunneling. A resonance
structure where resonant tunneling can occur consists of a potential well bordered by
two potential barriers, an electron source, and a drain. A “one-dimensional” model
of such a structure is exemplified by the Schrédinger equation

2
— zﬁ—m\ll”(x) + U)WV (x) = EV(x), —00 < x < 400, (1.1.1)

where U (x) = Uj for x € [x1, x2], U(x) = U for [x3, x4], Uy and U, are positive
constants, and x; < xp < x3 < x4; moreover, U(x) = 0 for the rest x. The parts
of U over [x1, x2] and [x3, x4] are called potential barriers and [x3, x3] is a potential
well; the barriers and the well comprise a resonator. An electron wave function W
satisfies Eq. (1.1.1), where E is the electron energy, m is the electron mass, and U is
the electron energy. Besides, W can be chosen to satisfy the equalities (see, e.g., [3,
13, 18])
ek 4 remikY a5y < xy,

V) = [te““ asx > xa,
where k = (2mE /h?)'/?. For x < x1, functions ¢'** and re~"** are considered as an
incoming wave and a reflected wave, respectively, and, for x > x4, te'** is a transmit-
ted wave. The values 7 (E) = |t (E)|* and R(E) = |r(E)|? are called a transmission
coefficient and a reflection coefficient. It turns out that 7(E) + R(E) = 1; the
T (E) (R(E)) is interpreted as a probability for the electron to transmit through the
resonator (to be reflected from the resonator). Under certain conditions, there exists
a “resonance” E,.5, 0 < E o5 < min{U;, Up}, such that for E = E, . the transmis-
sion coefficient T takes a maximal value (in particular, T (E,.;) = 1 can be the case).
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2 1 Introduction

Then with probability close to 1 the electron transmission can take place, under the
barriers, through the resonator. This phenomenon is called resonant tunneling.

There is a variety of electronics devices (transistors, key devices, energy mono-
chromators) based on resonant tunneling. Classic two-barrier resonant devices use the
process of one-dimensional resonant tunneling. Efforts are directed towards refining
production technology and operation properties of resonance structures. At present,
electron tunneling is being studied intensively in the “metallic electrode-quantum
dot-metallic electrode” systems (e.g., see [2, 45]). A quantum dot is a conductive
domain of about 10nm size and is separated from electrodes by “tunnel” intervals
(vacuum gaps or dielectric layers). Owing to resonant tunneling, the conductivity
of such a system can abruptly vary with voltage between the electrodes. There are
prospects for building new nanosize electronics elements that are based on the afore-
mentioned quantum dot systems and have a frequency-operating range of around
10'2 Hz. However, the properties of such systems heavily depend on inevitable inho-
mogeneities of the electrode-vacuum and quantum dot-vacuum interfaces. Therefore,
the production of the systems must satisfy not easily accessible accuracy conditions.

The role of resonant structures can be given to quantum wires. Resonant tun-
neling occurs as an electron propagates in a quantum waveguide (wire) of variable
cross-section. Instead of an “electrode-quantum dot-electrode” system, one can use
a quantum wire with two narrows. This can be explained heuristically by the fol-
lowing reasons. For simplicity, let us consider a waveguide whose cross-section is
a disk. If the waveguide is a cylinder, the full energy of an electron is the sum
E = E| + E|, E being the (quantized) transverse motion energy and E| the lon-
gitudinal motion energy; E is inversely proportional to the cross-section square.
When a waveguide cross-section varies along the axis, the narrows of the waveguide
play the role of effective barriers for the longitudinal motion. Indeed, the full energy
E remains constant. One can consider E = E| + E| as an approximate relation.
In a narrow, E | is increasing, so E|| is decreasing. For E| > E, the electron wave
function is exponentially decaying in the narrow just as it does in electron tunneling
under a potential barrier. The part of the waveguide between two narrows becomes a
“resonator,” and conditions for electron resonant tunneling can occur. The tunneling
consists of the fact that, for an electron with energy E, the probability 7 (E) to pass
from one part of the waveguide to the other through the resonator has a sharp peak at
E = E,.s, where E,.; denotes a “resonant” energy. That resonant tunneling happens
in deformed waveguides was confirmed by numerical experiments in [5, 32].

To analyze the operation of devices based on this phenomenon, it is important
to know E,.s, the behavior of T (E) for E close to E,., the height of the resonant
peak, and its width at the half-height (which is inversely proportional to the so-called
resonator quality factor). Approximate numerical calculations are effective only if the
narrows of a waveguide are “not too narrow” so that the resonant peak is sufficiently
wide. That is why, to obtain a detailed picture of the phenomenon, it is of value to
use both numerical and asymptotics methods which complement each other.

We consider electron propagation in a waveguide with two cylindrical outlets to
infinity and two narrows of small diameters ¢ and ¢, (Fig. 1.1). The boundary of
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Fig. 1.1 The waveguide
with narrows

G(e1, 82)

the waveguide is assumed to be smooth. The electron motion is described by the
Helmbholtz equation (or the Pauli system for the electron motion in magnetic field).
In particular, we obtain asymptotic formulas for the aforementioned characteristics
of the resonant tunneling as | and &, tend to zero.

Resonant devices based on quantum wires can provide advantages in regard to
both operation properties and production technology. Such a device is homogeneous,
i.e., itis made of one material only. When tunneling, an electron crosses no interfaces
of dielectrics, electrodes, or vacuums. Therefore, the operation of the device is more
stable under small perturbations of its geometry.

1.2 Scattering Matrix

The basic characteristics of electron resonant tunneling can be expressed in terms of a
waveguide scattering matrix. Therefore, when studying tunneling, we mainly analyze
the scattering matrix behavior. Chapters 2—4 define scattering matrices, describe their
properties, and present a method for approximate computing of such matrices.

In these chapters, we consider waveguides of somewhat more complicated struc-
ture (with finitely many cylindrical outlets to infinity) than those in the studies of
electron resonant tunneling in the subsequent chapters. In fact, this does not make the
discussion more complicated, rather, it provides possibilities for introducing other
applications (e.g., see the description of an electron flow switch for quantum nets in
Chap. 10).

Chapter 2 presents a radiation principle for the Helmholtz equation in waveguides,
that is the solvability of a boundary value problem with radiation conditions, the
asymptotics of solutions at infinity, and the scattering matrix definition. In essence,
there is given a version (for the Helmholtz equation) of the theory exposed in [37]
for the general elliptic self-adjoint elliptic systems in domains with cylindrical ends.
(Detailed references are given in the Bibliographical sketch; as a rule, in the body of
the book, we restrict ourselves to technical references.)


http://dx.doi.org/10.1007/978-3-319-15105_2
http://dx.doi.org/10.1007/978-3-319-15105_4
http://dx.doi.org/10.1007/978-3-319-15105_10
http://dx.doi.org/10.1007/978-3-319-15105_2

4 1 Introduction

We are now going to define a scattering matrix, and to this end we need to consider
certain issues. Let G be a domain in R"t!, n = 1, 2, with smooth boundary G
coinciding, outside a large ball, with the union I1 L u---u HZ of finitely many
non-overlapping semi-cylinders

I, ={0".t):y e, t" >0}

where (y", ¢") are local coordinates in B IT, and Q" is a bounded domain in R"
(Fig. 1.2). We consider the boundary value problem

—AV(x)—u¥x)=0, xedG, (1.2.1)
U(x)=0, xe€adG,

with A = Z;‘:} 32/ 8xj2.. We suppose that, under certain conditions, electron wave

functions satisfy (1.2.1); moreover, the functions are bounded and do not vanish at
infinity. To describe the wave function behavior at infinity, we will use solutions to
the problem in the cylinder

— Ay +u(y,t) =0, (y,1) e QxR =TI,
u(y,t) =0, (y,1)€dll, (1.2.2)

where Q2 is a domain in R" and
Ayr=Ay+32, Ay=082+07, 3, =0/dy;.
Straightforward calculation shows that the nonzero functions

1/2

QxR>(y, 1) exp(Fi(n—1)""Dp(y)

Fig. 1.2 The waveguide
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satisfy (1.2.2) if and only if

—(Ay+1D)e(y) =0, yeQ, (1.2.3)
e(y) =0, yed,

thatis, ¢ has to be an eigenfunction of problem (1.2.3), whereas 7 is the corresponding
eigenvalue. The eigenvalues of problem (1.2.3) form an increasing positive sequence
T] < T3 < --- that tends to +o00. Let us assume, for the time being, that 7] <
1 < 1 (recall that 71 is a simple eigenvalue). We denote by ¢; an eigenfunction
corresponding to 71, normalized by the condition

/ lo1(M*dy = 1,
Q
and set
ut(y, 1) = QINFD T2 expirf e () (1.2.4)

with )»f = +(u — 11)"/2. Functions (1.2.4) are bounded, satisfy (1.2.2), and do not
decay at infinity. We will call the ufr (u;) a wave incoming from +o0 (outgoing
to +00).

For u € (13, 13), besides uf in (1.2.4), we have waves of the form

Wy, 1) = QTN exprI Ny (), (12.5)
where Azi =+(u—1)"/?and ¢ is an eigenfunction of problem (1.2.3) correspond-
ing to 7. The number of pairs of the form (1.2.5) is equal to the multiplicity »(72)
of the eigenvalue 72; as an eigenfunction v/, the elements 1, ..., ¥, of a basis
in the eigenspace of problem (1.2.3) have to be chosen, subject to the orthogonality
and normalization conditions

/Qvfp(y)xlfq(y)dy=8p,q, p.g=1,...,%().

In general, for u € (77, 7741), the number of the wave pairs in the cylinder IT is equal
to (1) + - - - + 2(77).

Let u be different from the eigenvalues of problems (1.2.3) in 21, ..., Q7. Given
W, we enumerate all wave pairs in the cylinders Iy, ..., [17 by the same index
j = 1,2,..., M. Among electron functions in G, there exist Wy, ..., Wy that

admit the representations

M
W) = uf () + D Syju; () + Ofexp (—elx))) (12.6)
j=1
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for |x| — oo, sufficiently small positive ¢, and [/ = 1, ..., M. The matrix

NIES RO (1.2.7)

is called the scattering matrix.

Let us discuss the definition in more detail. The eigenvalues of problems (1.2.3)
for @ = Qp, ..., Q7 are called the thresholds (of the waveguide G). Let 71 denote
the minimal threshold; 71 > 0. We have defined the scattering matrix S = S(u) for
w > 11 except the thresholds; later, in Chap. 3, it will be defined at the thresholds as
well. The set [t], +00) is called the waveguide continuous spectrum. Thus, the S is
a matrix-valued function on the continuous spectrum. The size M = M (u) of S(w)
depends on u, remains constant between two neighboring thresholds, and jumps at
the thresholds increasing to 400 as p tends to +oo. It will be shown that, at any
threshold 7, there exist both one-sided limits of S(u) as 4 — 7 4 0 and, moreover,
the S is continuous from the right at the threshold 7.

The scattering matrix S(u) is unitary for every u € [t1, +00). Given u, we
consider a wave pair uj, u;,j=1,..., M(u),asascattering channel. The |.S;; (u) |2
is interpreted as the probability of an electron, incoming through the /th channel, to
go out through the jth channel.

Remark 1.2.1 For the one-dimensional resonance structure (1.1.1) there are two
related scattering channels: uT, u, and u;, u, , where u;r(x) = ek (u; (x) =
e~ %) isan incoming (outgoing) wave to the left of the resonator, and u;r (x) = e~ ikx
(uy (x) = k%) is an incoming (outgoing) wave to the right of the resonator. Thus,
the scattering matrix is of size 2 x 2.

1.3 Method for Approximate Computation
of Scattering Matrices

Next we are going to state the method employed for numerical simulation of resonant

tunneling. In the introduction, we restrict ourselves to considering the scattering

matrix on a finite interval of the continuous spectrum containing no thresholds. In

Chap. 4, we modify the method to calculate the scattering matrix also in vicinity of

thresholds and present a justification for the method in both of these situations.
Introduce the notation

R =(y.MHen >R}, GR=c\U¥, kX

for large R. Then dGR \ G = TR = U, TR, where "R = {(/,1") e TI" :
t" = R}. We seek the row (81, ..., S;p) of the scattering matrix S = S(u). As
approximation to the row, we take the minimizer of a quadratic functional. To con-
struct such a functional, we consider the problem


http://dx.doi.org/10.1007/978-3-319-15105_3
http://dx.doi.org/10.1007/978-3-319-15105_4
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—(A—i—u)/\flR:O, x € GR;
AR =0, xedGR\TK;

@ +i0XR = @ + i) + Zjil ajuy), x € rk, (1.3.1)

where ¢ € R\{0}is anarbitrary fixed number, v is an outward normal, and ay, . .., ay
are complex numbers.

Let us explain the origin of the problem. Being a solution to problem (1.2.1), the
electron wave function W, satisfies the first two equations (1.3.1). The asymptotics
(1.2.6) can be differentiated, so

M
@y + i)W = @y + i) + > aju;) + 07
j=1

for aj = Sj;. Thus, ¥ satisfies the last equation in (1.3.1) up to an exponentially

small discrepancy. As an approximation for the row (51, ..., S;y), we take the
minimizer a®(R) = (a{(R), ..., al;(R)) of the functional
M
IR@ ) = 1R~ =D LI 132)
j=1

where XIR is a solution to problem (1.3.1). One can expect that a?(R, w) — Sij()
at exponential rate as R — ooand j =1,..., M.

Let [i/, 1”] be an interval of the continuous spectrum without thresholds. In
Chap. 4, we prove, in particular, that for all R > Ry and u € [u/, 1] there exists
a unique minimizer a(R, u) = (a1(R, n), ..., ap (R, n)) of functional (1.3.2) and
the estimates

laj(R, ) = S| < c(Mye ™8, j=1,.... M, (1.3.3)

hold with some positive constants A and c¢(A) independent of R and p.

1.4 Asymptotic and Numerical Studies of Resonant
Tunneling in 2D Waveguides for Electrons
of Small Energy

Chapter 5 begins an asymptotic and numerical study of resonant tunneling. Electrons
propagate in a 2D waveguide that coincides with an infinite strip in a plane having
two identical narrows of the diameter ¢ and symmetric about the waveguide axis.
Electron wave functions satisfy the Helmholtz equation in the strip and vanish at its
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boundary. The electron energy is supposed to be between the first and the second
thresholds, so only one scattering channel relates to each of the waveguide outlets to
infinity. The purpose is to obtain, as ¢ — 0, the asymptotics for the resonant energy
E, s, the transmission 7 (E) and reflection R(E) coefficients, and for the resonator
quality factor.

It turns out that such asymptotic formulas depend on the limiting shape of the
narrows. We assume that the limiting waveguide in a neighborhood of each narrow
coincides with two cones intersecting only at their common vertex. We first con-
struct an asymptotics of the corresponding electron wave function by the method of
“compound” asymptotic expansions (the general theory of the method was exposed,
e.g., in [30, 33]). The expansions contain terms of two kinds: the first kind terms
depend on the “slow” variables x and approximate the wave function “far” from
the narrows; the second kind terms depend on the “fast” variables x /¢ and serve
as an approximation in a neighborhood of the narrows. The terms are obtained by
solving the so-called first and second kind limit problems, respectively. The analysis
of the obtained expansions enables us to get asymptotic formulas for the mentioned
characteristics of resonant tunneling.

Let us discuss the situation in more detail. To describe the domain G (¢) in R?
occupied by the waveguide, we first introduce two auxiliary domains G and €2 in
RR2. The domain G is the strip

G=RxD={x,y)eR:xeR=(—00,+00);y € D = (~1/2,1/2)}.

We denote by K a double cone with vertex at the origin O that contains the x-axis
and is symmetric about the coordinate axes. The set K NS I where S! is a unit circle,
consists of two simple arcs. Assume that 2 contains the cone K and a neighborhood
of its vertex; moreover, outside a large disk (centered at the origin) €2 coincides with
K. The boundary 92 of €2 is supposed to be smooth (see Fig. 1.3).

Denote by €2 (¢) the domain obtained from €2 by the contraction with center at O
and coefficient ¢. In other words, (x, y) € Q(¢) if and only if (x/e, y/¢) € Q. Let
K; and Q;(¢) stand for K and 2 (¢) shifted by the vector r; = (x?, 0),j =12
We assume that |x? - xg | is sufficiently large so the distance from 0 K1 N dK; to G
is positive. We put G(¢) = G N 21(e) N L (¢e) (Fig. 1.4).

The wave function of a free electron of energy k? satisfies the boundary value
problem

—Au(x,y) — Ku(x,y) =0, (x,y) € G(e),
ulx,y) =0, (x,y)e€aG(e).

Moreover, u is subject to certain radiation conditions at infinity (that correspond, for
example, to an electron wave incoming from —o0).

We set G(0) = G N K| N K> (Fig. 1.5); thus, G(0) consists of three parts G, G1,
and G,, where G| and G are infinite domains, while G is a bounded resonator.
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Fig. 1.3 Domain Q

Fig. 1.4 Waveguide G (¢)

Fig. 1.5 The “limit waveguide” G (0)

The problems

— Av(x,y) — kv, y) = £, (x,y) €Gj,
v(x,y) =0, (x,y) €3G/, (1.4.1)
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where j = 0, 1,2, are called the first kind limit problems. In the domains €},
Jj = 1,2, we consider the boundary value problems

Aw(j,n))=F(&j.n5), (&j.nj) € Qj,
w(§j,nj) =0, &j.nj) € 0R;,

which are called the second kind limit problems; (&;, n;) are Cartesian coordinates
with origin at O;.

We denote by kf a simple eigenvalue of problem (1.4.1) in the resonator Go and
by k,z(s) a resonance frequency such that krz(e) — kf as ¢ — 0. For |k? — kr2| =
O (¢*™/*) the asymptotic representations hold:

T(k,e) = ! (14 0(77%),

k2_k2
2 r
1+ P ( gin /o )

kZ(e) = k2 + Qe™™/® 4 O (27 /0F279),

T(e) = %84”/0)(1 + 0(*™Y)),

where T (k, €) is the electron transmission coefficient and Y (¢) is the width of the
resonant peak at its half-height (which is inversely proportional to the resonator
quality factor), § being an arbitrarily small positive number; the P and Q are the
products of several constants in the asymptotics of limit problem solutions near
corners or at infinity.

Without numerical values of the constants, the asymptotic formulas provide only a
qualitative picture. To find the constants, one has to solve numerically several bound-
ary value problems. We state the problems and describe a way to solve them. When
the constants are found, the asymptotics can be used as an approximate solution.
However, it remains uncertain for what band of parameters the approximation is reli-
able. On the other hand, one should expect numerical approach to be efficient only
if the waveguide narrows are not too small in diameter and if the resonant peak of
the transition coefficient is sufficiently wide. Therefore a detailed picture of resonant
tunneling can be achieved when the asymptotic and numerical approaches are com-
bined. Independently of asymptotic approach, an approximation to the waveguide
scattering matrix is calculated. For that purpose, we employ the method from Chap. 4.
Then we can compare the asymptotics with calculated constants and the scattering
matrix (the transition and reflection coefficients). It turns out, that there is an interval
for &, where the asymptotic and numerical results practically coincide. To the right
of the interval, the asymptotics vanishes but the numerical method for calculation of
the scattering matrix is effective; to the left of the interval, the numerical method is
ill-conditioned while the asymptotics is reliable.
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1.5 The Impact of a Finite Waveguide Work Function
on Resonant Tunneling

This subject concludes Chap. 5. When considering electron transport in a waveguide,
we assume that the electron wave functions vanish at the waveguide boundary. This
means that an electron can not get out of the waveguide because of the infinite
potential barrier at the boundary. In reality, the assumption has never been fulfilled:
the surface potential barrier is always of a finite height and some electrons can
penetrate through the waveguide boundary and go away some distance from the
waveguide. In other words, in reality we deal with a waveguide of a finite work
function. Due to this phenomenon, the effective widths of a waveguide and waveguide
narrows are greater than their geometric widths. Therefore, to draw a conclusion
about the adequacy of the boundary condition used in the mathematical model,
we have to clarify the impact of a finite waveguide work function on the resonant
tunneling.

To this end, we present some physics preliminaries concerning work functions,
introduce a boundary value problem with regard to a finite work function, and ana-
lyze the problem numerically. The results show the need, when employing resonant
tunneling in a waveguide with narrows, to restrict somewhat the range of narrow para-
meters and that of electron energy. In particular, by decreasing the narrow diameter
at a resonator, one can not diminish the effective narrow diameter beyond a certain
critical value. This restricts the possibility to improve the resonator quality factor by
diminishing the narrow diameter. The angle of a wedge-like narrow should not be too
small. However, increasing the angle causes an increase in the effective width of the
potential barrier and a decrease in the width of the resonant peak. This increases the
resonant tunneling time and affects the frequency properties of the system. Optimal
angles for wedge-like narrows range between 20° and 35°.

1.6 Asymptotic Study of Resonant Tunneling in 3D
Waveguides for Electrons of Small Energy

In Chap. 6, we consider 3D waveguide with two non-overlapping cylindrical outlets
C1 and C; to infinity; the axes of the outlets may be of any directions. There are two
waveguide narrows, one narrow in C; and the other one in C;. Generally, the narrow
diameters ¢ and &, are different. The resonator (that is, the waveguide part between
the narrows) can be of arbitrary form. The boundary of the waveguide is supposed
to be smooth. We denote the waveguide by G (¢1, €2). The limit set G (0, 0) consists
of unbounded parts G1, G2, and a bounded resonator Gg. In a neighborhood of the
point O; = GoN G_j, the set G (0, 0) coincides with a double cone K, j = 1, 2.

A wave function of a free electron of energy E = h2k?/2m satisfies the boundary
value problem

—Au—ku=0inG(e1, &), u=00ndG(e,e2),
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and certain radiation conditions at infinity. We consider the scattering of a wave
coming from C; and seek the resonant values k, = k. (g1, &2) of the parameter «,
where the transition coefficient T = T (k, €1, &) takes maximal values.

Let kg be a simple eigenvalue (between the first and second thresholds) of the
boundary value problem in the resonator,

—Av(x) —k*v(x) = f, x€Gp; v(x)=0, xe€dGo.
Near such an eigenvalue there is a resonant value &, (1, €2) satisfying
k (e1,82) = k + Dle —i—ng + 0( vitT 8v2+r2)

as &1, &2 — 0. The coefficients D; and D; are constant, v; and 7; are some positive

numbers, j = 1, 2. Under the condition |k — k2| = O(E%HIH_H_H + 85“2‘““2)
the transition coefficient 77 (k, €1, £2) admits the asymptotics

1
L N L R
Titk,er,e2) =\ ; o) FF 2HTTH 2021
€] 2

x (14 0" + %)),

)

where 7; are the same as in (6.1.6), z = ngf‘”“/ §M2|+1, while P and O are
constant. The width of the resonant peak at its half-height (calculated for the principal
part in the asymptotics of T') is

T, 82)—|—(Z+ )|82"“+1 P2 O] + eR)).

1.7 Electron Resonant Tunneling in the Presence
of Magnetic Fields

The presence of a magnetic field can essentially affect the basic characteristics of
the resonant tunneling and bring new possibilities for applications in electronics. In
particular, in the presence of a magnetic field, the tunneling phenomenon is feasible
for producing spin-polarized electron flows consisting of electrons with spins of the
same direction. In Chaps. 7 and 8 we consider the same 2D and 3D waveguides with
narrows as in Chaps.5 and 6, respectively. A part of the resonator is occupied by a
homogeneous magnetic field. An electron wave function satisfies the Pauli equation
in a waveguide and vanishes on its boundary. An electron energy is in between
the first and the second thresholds. The asymptotics of basic resonant tunneling
characteristics are presented as the narrow diameters tend to zero. Moreover, in
Chap. 7, the asymptotic results for 2D waveguides are compared with numerical
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ones obtained by approximate computing the scattering matrix; there is an interval
of ¢ (the narrow diameter) where the asymptotic and numerical results practically
coincide. Using the approximate scattering matrix, we also observe the dependence
of the tunneling characteristics on a magnetic field position in the resonator.

1.8 Numerical Simulation of High Energy Electron
Resonant Tunneling, the Fano Resonances

Chapter 9 is devoted to the numerical simulation of high energy electron scatter-
ing. We consider multi-channel resonant tunneling. An electron wave of energy E
incident on a resonator with transverse quantum number 7 passes through the res-
onator and arises with transverse number k; shortly, the wave passes from state n
to state k. We denote by T, (E) the transmission coefficient of the wave, calculate
the dependence E — T, (E) by computing the scattering matrix S(E), and obtain
T (E) = |Snk(E)|2, where S,x(E) is the entry of S(E). The curve E — T, (E)
can be sufficiently complicated and not always easily interpreted. To explain the
curve, we consider S, (E) as a probability amplitude and represent it in the form
Snk(E) = > Ansk(E), where A,5x (E) is the probability amplitude of the transmis-
sion from n to k through an intermediate state s; the summation is over all intermediate
states (cf. [19]).

As before, we denote by G (g1, &2) be a waveguide with two narrows and let G
be the closed resonator, that is, the bounded part of the limit waveguide G (0, 0)(see
Fig. 1.5); generally, the resonator form may be arbitrary. We denote by k12 < k% <-...
the eigenvalues of problem (1.4.1) with j = 0 numbered according to their multi-
plicities. Then the resonant energies of the waveguide G (g1, £2) form the sequence

ReEq, ReEy, ..., where Eq, E3, ... can be viewed as the “perturbed” k%, k%, .
andImE; < Oforall j =1,2,.... The amplitude A, admits the representation
()
3 R (E)
(s) nk
Ausk(E) =H ), (E -
nsk (E) nk( )+E—Es

with continuous functions £ — Hé‘,i) (E)and E — Rr([;c) (E).Inasmall neighborhood
of ReE,,

Rnk(Er)

5| = Tu(E),

1Suk(E)* =D Ak (E)* ~ | Hui (Er) +
N

where H,;(E,) and R, (E,) are constant. We take the function 7,,x (E) as an approx-
imation to the calculated |S,;(E )|2 and find the constants H,;(E,), R, (E,), and
E, by the method of least squares.
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1.9 Asymptotic Analysis of Multichannel Resonant
Tunneling

In Chap. 10, for electrons of high energy, we generalize the asymptotic theory exposed
in Chap. 6. We present and justify the asymptotics of tunneling characteristics as the
narrow diameters tend to zero.

1.10 Electronics Devices Based on Resonant Tunneling
in Waveguides of Variable Cross-Sections

Chapter 11 presents electronics devices based on a quantum waveguide with narrows:
transistors controlled by external electric field and magnetic field sensors controlled
by external magnetic field. Besides, we describe an electron flow switch for quantum
nets. The switch is not related to resonant tunneling, however, the description is based
on analyzing the corresponding scattering matrix calculated by the method of Chap. 4.
We present the switch to demonstrate the method.
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Chapter 2
Waveguides. Radiation Principle. Scattering
Matrices

First, we briefly outline the chapter content. Section?2.1 is devoted to the boundary
value problem

(=A —u(y,t) = f(y,0), (y,1) €ll,

u(y,t) =0, (y,1) €all, (2.0.1)
in the cylinder IT = {(y,#) : y = (¥1, ..., yn) € Q,t € R}, where €2 is a bounded
domain in R"” with smooth boundary and . € R. The Fourier transform

+00
) = 2r)” 2 / exp (—iAr)v(t) dt (2.0.2)
—00

reduces the problem to the family of problems depending on the parameter A:

(A, + 27— iy, ) = f(y. ).,  yeQ,
a(y,\) =0, yedQ. (2.0.3)

If the inverse operator (X, ,u)’l of problem (2.0.3) exists for all A € R, the u being
fixed, we obtain a solution u to problem (2.0.1) of the form

+o0
u(-, 1) = (2n)—1/2/ exp (ADAR, 1)~ F (L 1) da. (2.0.4)

—00

However, the spectrum of the pencil A — 2A(A, u), that is, the set of numbers A such
that the operator 2((A, ) is not invertible, consists of an imaginary number sequence
accumulating at infinity and, for sufficiently large ., additionally contains finitely
many real numbers. Therefore, formula (2.0.4) can fail and we will use the complex
Fourier transform

6(/\):(271)‘1/2/ exp (—irv(r)dt, A eR+iB,
R
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where R + i = {A € C: ImA = B}; there are the inversion formula

v(t) = )~ 12 / exp (iA)D(L)dA
R+iB

and the Parseval equality

/exp(2ﬁt)|v(z)|2dt=/ [O(L) |2 d.
R R+if

Let us assume that the line R + i8 is free from the spectrum of 2((-, i) and the f in
(2.0.1) satisfies the condition

/H exp 2801 f (v, O)|* dydt = / |7 (v, W) dydr < oo.

R+iB
Then, according to Theorem 2.1.4, there exists a unique solution u to problem (2.0.1)
such that
u(, 1) = (271)_1/2/ exp GADA, )~ F (L 1) da (2.0.5)
R+iB

and the inequality

> / exp (280995 u(y, NI dydt < C /H exp 280 f (v, DI* dydt

Jo|+k<2

holds with a constant C independent of f.
These considerations motivate the statement of the boundary value problem in the
domain G with cylindrical ends

— Au(x) — pulx) = f(x), x€QqG, (2.0.6)
ux) =0, xeaG,

in function spaces with weighted norms (see Fig. 1.2 and the definition of G just after
the figure). For integer / > 0, we denote by H'!(G) the Sobolev space with norm

lv: H'(G) | = Z/ > 1D%ue) P dx)

loe|=j

For real 8, we denote by pg a smooth positive function on G given by the equality
pp(x) = exp(Blx]|) for large |x|. We also introduce the space Hé(G) with norm

lu; Hy (Gl = llppus H'(G)]|. Let H3(G) denote the closure in HZ(G) of the set

of smooth functions in G that have compact supports in G and vanish on dG. The
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operator u +— (—A — p)u of problem (2.0.6) implements a continuous mapping
Ap(w) : H3(G) — Hg(G).

We denote by ker.Ag (1) the kernel of Ag(u), i.e. the space {u € Hé (G) : Ag(Wu =
0}, and we denote by ImAg () the range of Ag(u),

ImAg () = {f € HE(G) : [ = Ap(uu.u € H;(G)).

The operator Ag (i) is called Fredholm if Im.Ag(u) is closed, and ker.Ag(u) and
cokerAg(n) = Hg(G) /ImAg(u) are finite-dimensional, where Hg(G) /ImAg (1)

is the factor space Hg(G) modulo Im.Ag (). From Theorem 2.2.2 it follows that
Ag(u) is Fredholm for all 8 € R except a certain sequence accumulated at infinity.
Moreover, dim(Hg (G)/ImAg(n)) = dimkerA_g(n) and the index Ind.Ag(u) of
Apg () can be defined by

IndAg(p) = dimkerAg(u) — dimkerA_g(u).

We describe the asymptotics at infinity of solutions to problem (2.0.6) and calculate
the difference IndAg(n) — Ind.A, (). Then we make use of these results when
defining the scattering matrix and proving the existence of a unique solution to
problem (2.0.6) subject to radiation conditions at infinity (the radiation principle).

2.1 Boundary Value Problem in a Cylinder

2.1.1 Statement of the Problem. Operator Pencil

Let 2 be a bounded domain in R” with smooth boundary 9<2. In the cylinder IT =
{bv,):y=01,-.., ) € Q,t € R}, we consider the problem

(=A —u(y,t) = f(y,0), (y,t) €I, (2.1.1)
u(y,t) =0, (y,t)€oll,

where

n
A=Ay+037, Ay=D07 9;=10/dy;.
j=1

We apply to problem (2.1.1) the Fourier transform

+00
) = Q)2 / exp (—irt)v(r) dt (2.1.2)

—00
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and obtain the family of boundary value problems depending on the parameter A:

(—Ay + 22— Wiy, 2) = F,2),  yeQ, (2.1.3)
u(y,A\)=0, yeoQ.

Now, we introduce an operator-valued function C 3 A +— (A, n) defined by the
equality
AR, v(y) = (—Ay + 22 — Wo(y).  yeQ, (2.1.4)

for the functions v, smooth in € and equal to zero on 9<2; for the time being, the
parameter u is fixed. The function 2A(-, 1) is called an operator pencil. A number
Ao € Cis said to be an eigenvalue of 2((-, ) if there exists a nontrivial solution @°
(an eigenvector) to the equation A(rg, w)v = 0, that is, the Ao and ¢° satisfy the
boundary value problem

(=Ay + 25— we’(») =0, yeQ,
() =0, yeoIq.

We also consider the problem

(=Ay —wv(y) =0, yeQ, 2.1.5)
v(y) =0, yeaQ,

with spectral parameter p. The eigenvalues of problem (2.1.5) are called the thresh-
olds of problem (2.1.1). The thresholds form a positive sequence 71 < 73 < ...,
which strictly increases to infinity. Any eigenvalue 7; is of finite multiplicity, that
is, there exist at most finitely many linearly independent eigenvectors correspond-
ing to 7;. Let us introduce the non-decreasing sequence {yx};2 ; of the eigenvalues
of problem (2.1.5) counted according to their multiplicity. Generally speaking, the
numbering of t; and that of u; are different; every wu, coincides with one of the
thresholds 7;.

For any u, the eigenvalues of the pencil A — 2((), i) are defined by the equality
A,:—L(u) = +(u — ux)'’?; more precisely, we set AE(w) = +i(ur — p)'/? for
we > powith (ue — )72 > 0 and A*(w) = +i(w — ui)'/? for px < p with
(w— V% > 0.If & = pug, we have k,j(u) = A, (1) = 05 in such a case we will
sometimes write Ag (w) instead of )\,f (). Moreover, we sometimes write simply )»,f
instead of )»,:f(u). For ur—1 < m < g, the Af(u), )LkiH(u), ... are imaginary and
the )»}—L (w, ..., )»,f_l () are real. To the eigenvalues AIQ—L there corresponds the same
eigenvector ¢y, which is also an eigenvector of problem (2.1.5) corresponding to
the eigenvalue 1. Any eigenvalue of the pencil (-, u) coincides with one of the
eigenvalues mentioned in this paragraph.

We denote by H!(2) the Sobolev function space in € with norm
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= ([ 3 taguenPay) ", 216

| =l

where [ = 0, 1, ...; in particular, HO(Q) = Ly(Q). Bfﬁides, we denote by HZ(Q)
the closure in H2(2) of the set of smooth functions in € that vanish on 9.
Let us consider the problem

(—Ay + 22— o) = f(3), yeQ, (2.1.7)
v(y) =0, y € 0Q.

Proposition 2.1.1 (e.g., see [1]) (i) Assume that ) is not an eigenvalue of the pencil
(-, ), the p being fixed. Then for any f € L() there exists a unique solution
ve H2Q) o problem (2.1.7) and the inequality

2
D vl < CIfIIG (2.1.8)
J=0

holds with a constant C independent of f.

(ii) Let F be a closed subset in C that belongs to a strip {» € C : |ImA| <
h < +oo} and contains no eigenvalues of the pencil (-, ). Then, for any A € F,
estimate (2.1.8) holds with a constant C = C(F) that depends on F and remains
independent of A and f.

Let Ao be an eigenvalue of 2(-, 1), and let ¢° be an eigenvector corresponding to

Xo. Smooth functions (pl, R (p’"’] on Q2 which vanish on 92 and satisfy
Lol
Zﬁafm(xo,u)go’*k =0, [=1,....m—1, (2.1.9)
k=0 "
are called generalized eigenvectors. The ordered collection 0% ol 9" Vissaid

to be a Jordan chain corresponding to Ag. Clearly, in view of (2.1.4), the relations
(2.1.9) take the form

Ao, we° =0,
A(ho, ' + 2109 = 0, (2.1.10)
Ao, e + 2000 " +2¢/2 =0, 1=2,....m—1.

There are no generalized eigenvectors for k,ﬂf # 0. Indeed, assuming, for example,
that a Jordan chain go,?, go,l exists for )\,j # 0, we obtain the equations

AR, wep =0,
A, Wer + 20 ) =0,
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which can be written in the form

(—Ay — g =0, (2.1.11)
(—Ay — mO@ + 24 ¢ = 0.

The boundary value problem

(Ay —pv(y) = f(y), ye v(y) =0, yedx, (2.1.12)

has a solution, if and only if (f, ¥)q = 0 for each eigenvector v of this problem that
corresponds to the eigenvalue 1 ; the (f, ¥)q denotes the inner product in L (£2).
Therefore, there is no solution (p,l to the equation (2.1.11) with k,j = 0. In the case
of © = ug, we have )\2' = A, = 0 and a Jordan chain (p,?, (p,l. Both of these vectors
satisfy the same homogeneous boundary value problem (2.1.12) with f = 0; the (p]?
must be nonzero, and the cp,l may equal 0. It is easy to see from the equation (2.1.10)
with / = 0 and Ao = O that there is no generalized eigenvector gog.

The operator function A — A, u)~ ' : Ly(Q) — HZ(Q) except the poles at
the eigenvalues of the pencil A — 2A(A, u) is holomorphic everywhere. To describe
the behavior of 2A(A, «)~! in a neighborhood of the poles, we specify the general
Keldysh’s theorem for our problem. Let t be an eigenvalue of problem (2.1.5) and
let J be the geometric multiplicity of 7. We introduce a basis @D, ... ¢©7) of
the eigenspace corresponding to 7. For u > 7, we denote by A* = A% (u) the
eigenvalues +(u — )12 of the pencil (-, ©). The multiplicity of each of the 2*
is equal to J, and the eigenspace is spanned by @1, ... ¢© /) According to the
Keldysh theorem, in a neighborhood of AT there holds the representation

J
Ak, W~ =0 =2D Y YO 4T, 2.1.13)
j=I

where (u, v)q denotes the inner product in L,(€2), I'(A) : L2(R2) — H2(Q) is
a holomorphic function, and the ¥ @V, ... (/) are eigenvectors of the pencil
(-, w) that correspond to A™ (and, simultaneously, to A ™) and satisfy the conditions

02A0.T, eI YOy g = 5.
Since 3, 2A(LT, ) = 21T, we have 2a* (), yOR)o5 = §;; and, assuming

o@D = 1, obtain @) = 211)"1p©®-) Therefore, representation (2.1.13)
takes the form

J
Ao )~ = =27 @) 9O 1 TG). 2114
j=I1
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To obtain a representation for (X, ;) ~! in a neighborhood of the pole 1™, it suffices
to change A for A~ in (2.1.14).

For n < 7, we set Ai(u) = i(t — n)’*, where (v — ,u)l/2 > 0, and denote
by o@D @) an orthonormal basis in the eigenspace corresponding to AT
(recall that A1 (1) and A~ () have the same eigenspace). We arrive at the following
assertion.

1/2

Proposition 2.1.2 For any real © # t, the operator function » +— A(h, )~
admits the representation

J
A0, W~ =0 =257 D@ 9O 1Ty (2115)
j=1

in aneighborhood of A* = A* (1) with holomorphic function A +— T'(X) : L2(2) —
H2(Q).

Now, we suppose that = 7. Then A’ = 0 is an eigenvalue of the pencil
A = (%, p); the geometric multiplicity of A? is equal to J. Let 9@V, ... ¢©)
be a basis in the eigenspace corresponding to A? and ¢/ ¢(1'7) a Jordan chain,
where j = 1, ..., J. By the Keldysh theorem, in a neighborhood of the eigenvalue
19 there holds the representation

J 2—k

A, )t = ZZ(A WTED @ )gpt Rl £ T (), (2.1.16)
j=1k=1 q=0

where 1/f(0'j), w(l’j), j =1,...,J,1s a collection of Jordan chains of the pencil

2(-, i) that correspond to the A° and satisfy the conditions

1
> S@EMARS, we' ) Yy PG = 86 0,0, 2.1.17)
pragtr=2+v =’

witho,¢ = 1,...,J and v = 0, 1; the operator function A +— I'(A) : L2(2) —
H?(2) is holomorphic in a neighborhood of A?. Let the basis @V, ... ¢©/)
be orthonormal and let every generalized eigenvector ¢!/ be zero. Then (2.1.17)
reduces to the relations

@Oy ONg =850, @O YN+ (17 Y O)g =0,
The equalities (¢p*), @) = §,  imply that  *9) = O foro = 1,..., J.

Since %) = 0, we have (¢ 1//(1 )q = 0, which leads to (18 = () for
c=1,....J.
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Proposition 2.1.3 For i = t, in a neighborhood of \.° = 0 the operator function
A= AR, u)_l admits the representation

J
AR W~ = =202 e + TG (2.1.18)
j=1

with holomorphic function > +— T'(A) : L2(2) — H2(§2).

2.1.2 The Solvability of the Problem in a Cylinder

LetC (TT) denote the set of smooth functions with compact supports in IT; as before,
M={y,1):yeQteR})Forl=0,1,... and B € R, we introduce the space
Hé(l'[) as the completion of C2°(IT) in the norm

12
lu; HY (D) :( > /Hexp(2,6t)|8,k8;‘u(y,t)|2dydt) . (2.1.19)

loe|+k<l

We denote by H 5(1’[) the closure in H é(l’[) of the set of smooth functions in TI

that have compact supports in IT and vanish on dI1. The operator of problem (2.1.1)
implements a continuous mapping

Ap(w) « Hi(T) 3 u > (—A — pyu € HY(TD). (2.1.20)
We will use the complex Fourier transform
L) = (2n)*1/2/Rexp(—i,\r)v(t)dz, reR+ip, (2.1.21)
where R + i = {A» € C: ImA = B}, the inversion formula

v(t) = 2n)~ 12 / exp (iA)V(L)dA, (2.1.22)
R+ip

and the Parseval equality

/exp(2ﬂ1)|v(t)|2dt:/ D)% dA. (2.1.23)
R R+if
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Theorem 2.1.4 Let the line R + i be free from the eigenvalues of the pencil 1 —
A(A, w). Then, for any f € Hg(l'[) there exists a unique solution u € Hé(l’l) to
problem (2.1.1). The estimate

lu; H3(ID|| < C|| £+ HY(D)|| (2.1.24)

holds with a constant C independent of f.

Proof The Fourier transform (2.1.21) reduces problem (2.1.1) to the family of prob-
lems

(—Ay + 27— Wiy, 2) = f(r. 2,  yeQ, (2.1.25)
ﬁ()"y)ZO’ yeaQ,

with A € R +iB. This line contains no eigenvalues of the pencil (-, u). Therefore,

by Proposition 2.1.1, for any A € R + iB there exists a unique solution u(,A) =
AN, u)_l f (-, A) to problem (2.1.25), which subject to the inequality

2
Do Ml < CIFC I (2.1.26)
Jj=0

and the constant C is independent of A and f(k, -). Consequently,

2
[ Swbiaenp asc | iFesiidn
R+if R

o0 +if

By virtue of (2.1.23), the left-hand side is equivalent to ||u; H ;(l’[) |1 and the right-
hand side is equal to C|| f; Hg(l'[)llz. Thus, the function

u-, 1) = (2n)—‘/2/ exp AOAN, )~ F 1) dr (2.1.27)
R+if
satisfies problem (2.1.1) and admits estimate (2.1.24). O

2.1.3 Asymptotics of Solutions

Let us assume that f is a smooth function with compact support in T1. Then the
function A +— f(-, A) is analytic on C and rapidly decaying in anystrip {» € C :
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IImA| < h < oo} as A — oo. The function @(-, 1) = A, ) f(-, A) is analytic
everywhere except at the poles of the function A — 2((A, ). Moreover, in view of
inequality (2.1.26), u(-, 1) is also rapidly decaying in the aforementioned strip as
A — 00. Let B and y be real numbers such that the lines {A € C : ImA = B} and
{» € C: Imi = y} contain no poles of (-, u). Then, in a representation of the
form (2.1.27), we can, using the residue theorem, change 8 for y.

We now calculate the residues of the function

A FO = Qm) Y2 exp GADAM, )~ F(, A). (2.1.28)
By Proposition 2.1.2,
J _— .
resF(M)xmpx = 2m) 2 exp (1251 D (227! / F. 290N (y)dy 9 ;
, Q
j=1
as before, AT = AT (w), where A*(n) = +£(u — 1)V/2 for © > 7 and AT (n) =
+i(t — )72 for 1 < 7. For the real A*, we have
/ [, 350Dy dy = @m) 712 / / exp (—i2Ts) f (v, )9O (y) dyds
Q RJQ

= @0 2(f. 2D,

where ‘
Z7 (v, 5) = exp (i259)9 ") (y) (2.1.29)

and (-, -)y is the inner product in L, (IT). Thus, for the real AE,

J
resF(M) |z = @m) ' D@57 (f, z;—“)nz;.—“. (2.1.30)
j=1

For the imaginary A*, we obtain

J
resF(W) s = Q) 7' D @) 2Dz, (2.1.31)
j=1

where Zf (y, s) is defined by equality (2.1.29). By Proposition 2.1.3, for 1° = 0 we
have
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J
resF (W), = 2m) 12 D" 90D / (i1 £ (3,00 + 0, F (3, 0)) 9@ (y) dy
j=1 ¢
(2.1.32)

= Qm)' D ) / / (it —is)f(y, )0 (y)dyds
RJQ

=0 Y (£ Z)nZ) + (£, Zhn 7))

J
1
-
J
1
-
with

295, 0 =9 (). Zj(y.0) =ite® D (y). (2.1.33)

Lemma 2.1.5 Let A* be an eigenvalue of A(-, ), ImA* # 0, and B < Imrt <
y (B <ImA™ < y). Then, forany Z = Z; (Z= ZT) in (2.1.29), the estimate

|(f, Zynl < CAIf; HYD| + [1f: Hy (M)

holds for f € Hg(l'[) N H)(,)(H) with constant C independent of f. If B < 0 < y and
At is a real eigenvalue, this estimate is also valid for any th in (2.1.29), Z = Z?,
and Z = Zj in (2.1.33).

Proof We choose 11, n2 € C®°(R) such that 0 < n(¢) < 1, mp(t) = 1 for¢t > 1,

n2(t) = 0 fort < —1, and 1 + o = 1. For instance, we assume that ImA™ #0
and B < ImAT < y. Then, for Z = Zj_, we have

(f. 2l < € /H 1/ (v 5)|exp (—sTmi") dyds
< /H M. 9| exp (Bs) exp (—s(mA~ + B) dyds

+/n m )| f(y,s)lexp (ys)exp (—s(AImA™ + y)) dyds.

Since ImA* = —ImA~, we obtain ImA~ + y > 0 and ImA~ + 8 < 0. Therefore,

-0 1/2
(/. Z)nl < Cligi £3 HYD)|| ( / exp (—2s(ImA” + ) ds)

+o0 1/2
+ Cllnaf; Hy (M) | ( /0 exp (=2s(ImA~ + ) ds)

< C(If: HYM + | f5 H) (D). O

The next theorem describes the asymptotics of a solution to problem (2.1.1) at infinity.
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Theorem 2.1.6 Let the lines {A € C : ImA = B} and {A € C : Imr = y} be free
from the eigenvalues of the pencil (-, 1) and f € Hg(l'[) N HS(H). Then

ug = u, +27iS (B, y), (2.1.34)

where ug and u,, are solutions to problem (2.1.1) in I-'Ig(l"[) and I-'I)%(I'I) respectively,
B < y, and &(B, y) is the sum of the residues of function (2.1.28) in the strip
{, € C: B <Imx < y). All functions Z].i in (2.1.29), z?, and Zjl. in (2.1.33) satisfy
homogeneous problem (2.1.1). Equality (2.1.34) can be taken as an asymptotics of
ug(y,t) fort — 400 and as an asymptotics of uy, (y, t) fort — —oo; the u,, (ug)
plays the role of a remainder as t tends to 4+ 0o (to — 00) .

Proof For f in the set C2°(TT) of smooth functions with compact support in II,
equality (2.1.34) was discussed at the beginning of Sect.2.1.3. By Lemma 2.1.5, the
functionals f + (f, Z)fin &(B, y) are continuous on HE(H) N H)(/)(I'I). Therefore,
we can obtain (2.1.34) for f € Hg(l'[) N H)(/)(H) by closing Cé’o(ﬁ) in the norm
L1l == 11Lfs HY(I + || £ Hy (T)]| of the space Hg(IT) N Hy (TT).
Straightforward calculation shows that the functions Z ?E, Z(}, and Z} satisfy homo-
geneous problem (2.1.1) (it also follows from (2.1.34) and the fact that the difference
uy — uy satisfies this problem). O

We now rewrite (2.1.34) using a more detailed notation. Let A,f = /\,f(,u) be
the eigenvalue notation defined in the paragraph before formula (2.1.6). Besides,
we assume that ZkjE corresponds to )\f(u), ie., Zki(y, 1) = exp (i)»ki(u)t)gok(y),

where ¢y is an eigenvector corresponding to Xf () etc. [see (2.1.29), (2.1.32), and
(2.1.33)]. Then (2.1.34) takes the form

up —u, = Z i) N Zz0nz (2.1.35)
max{O,ﬂ}<ImA,:r<y
+ > i@ N Zhnz
0>ImA; >min{0, 8}
+ D i@ Oz
A,feR

+ > i (¢ Zhnzh+ (. ZbnZ))
Ag=0

and the two last sums (corresponding to the real eigenvalues) are absent if Sy > 0.

The right-hand side of (2.1.35) is a linear combination of the solutions zZr,
Z, , and so on, to homogeneous problem (2.1.1) (where f= 0). The coefficients
i(2k,:r)’1(f, Z ), i(2k;)’1(f, Z,j)n, and so on, of this linear combination are
continuous functionals on the space H g(l’[) N H)(/)(l'[).
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The following simplifications of equality (2.1.35) for some special cases are evi-
dent. For 0 < 8 < y, (2.1.35) reduces to the form

ug —uy = > AN ZOnZy
ﬂ<lm)uzr<y

Inthecaseof B8 <y <0,

up —u, = Z i) N ZDnz,
B<Imi, <y

If the strip 8 < ImA < y contains no eigenvalues of the pencil 2((-, ), except the
real ones, we have

up—uy = > i@ ZPnzE+ 3 i (£ 200zl + (f ZbnZd)
rfeR 20=0

if, in addition, the p is not a threshold, this equality takes the form

ug —uy = > i) ZOnZE,
A,{*GR

which is the most important situation in the subsequent chapters.

2.2 Problem in a Domain G with Cylindrical Ends

2.2.1 Statement and Fredholm Property of the Problem

Let G be a domain in R"*! with smooth boundary dG coinciding, outside a large
ball, with the union HL_ Uu..-u HI of finitely many non-overlapping semicylinders

M, ={(, ")y eQ, 1" >0},

where (y", t") are local coordinates in 1, and " is a bounded domain in R". We
consider the problem

— Au(x) — pu(x) = f(x), x €G,
u(x) =0, x € 9G. 2.2.1)
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For integer [ > 0, we denote by H'(G) the Sobolev space with norm

12
1
lv; H'(G)|| = Z/ > ID¢v(x)* dx
j=0"% al=j
Weassumethat = (B!, ..., ,BT) withreal 8" and denote by pg a smooth positive on

G function given on IT', by the equality pg(y", t") = exp(B"t"). We also introduce
the space Hé(G) with norm ||u; ng(c)n = llpgu; H'(G)||. Let Hg(G) denote the
closure in H é(G) of the set of smooth functions in G that have compact supports in

G and vanish on 9G. The operator u — (—A — p)u of problem (2.2.1) implements
a continuous mapping )
Ap(w) : H3(G) — Hg(G). (22.2)

We denote by ker Ag () the kernel of Ag (1), i.e. the space {u € HE(G) s Ag(u =
0}, and denote by ImAg (1) the range of Ag(u),

ImAg () = {f € HJ(G) : [ = Ag(u)u, u € Hy(G)}.

Definition 2.2.1 The operator Ag () is called Fredholm if Im.Ag (1) is closed and
kerAg(n) and cokerAg(u) = H g(G) /ImAg () are finite-dimensional, where

Hg(G)/Im.Aﬁ (w) is the factor space HE(G) modulo ImAg(u).

Let us introduce an operator pencil A — 2A"(A, u) defined by (2.1.4) for the
domain Q",r=1,...,7.

Theorem 2.2.2 (i) Operator (2.2.2) is Fredholm if and only if the line {A € C :
ImA = B} is free from the eigenvalues of the pencil A" (-, w) foreveryr = 1,...,7T.
(ii) dim(Hg(G)/Im.Aﬁ (1)) = dimkerA_g(u).
(iii) f € ImAg(w) if and only if (f,v)g = 0 for all v € kerA_g(u); here
(-, -)G means the extension of the inner product in L,(G) by continuity to the pair
HR(G), HY4(G).

2.2.2 Asymptotics of Solutions

Theorem 2.2.3 Let u be a solution to problem (2.2.1) such that u € Hé(G) with
= ....,BT). Let n, f € H)(/),(H:_ N G) for a certain r, where B < y", n,
denotes a smooth function with support in ﬁ; NG, andn,(y' ,t") = 1fort" > T

with a large T. We assume the lines {, € C : ImA = "} and {A € C : ImA = p"}
to be free from the eigenvalues of the pencil A" (-, ).
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Then in T1', fort” > T there holds the equality

u= > aZh+ > Zi (2.2.3)
max{0, 8" }<Imi;l <y” 0>ImA; >min{0, 4"}
+ D FLE+ D @z + Rz + v,
rfeR =0

where the functions Z,j', Z, , and so on, are defined in T1 := I1" = Q" x R like those
in (2.1.35), the c,j, Cr s and so on, are some constant coefficients and n,v € H]%, (I1").
(The two last sums (corresponding to the real eigenvalues) are absent if "y" > 0.)

Proof We have

(A =w@u)(x) =gx), xell, (2.2.4)
(mruw)(x) =0,  x €9,

where ¢ = 1, f — 2Vn,Vu — uAn,. Because V7, and An, have compact supports,
the g belongs to Hgl (Imn ng (IT"). Applying Theorems 2.1.4 and 2.1.6, we obtain
(2.1.35) with f = g, u1 = n,u, and v = u;. This leads to equality (2.2.3), where

o =iH @z o =i@v) @ ZDHnr. ... & =i, Zhnr. (2.2.5)
U

Note that, in the proof, the function g depends on f, u, and .. Therefore, formulas
(2.2.5) do not present explicit expressions of the coefficients in (2.2.3) as functionals
defined immediately for f in (2.2.1). Such expressions are given in Sect.2.2.4.

2.2.3 Properties of the Index Ind Ag () and of the Spaces
ker. Ag (i) and coker.Ag ()

Let Ag(u) be Fredholm (see Definition 2.2.1). The difference dimker.Ag(p) —
dim coker.Ag () is called the index of Ag () and denoted by Ind Ag (). Assuming
both of the operators Ag () and A, (1) to be Fredholm, we calculate, in particular,
the difference Ind Ag (1) —Ind A, (1) in terms of the spectrum of the pencils A" (-, ).

Recall that, for any non-zero eigenvalue Ao of a pencil 2" (-, i), there are no
generalized eigenvectors and, consequently, the full multiplicity of Ag is equal to its
geometric multiplicity, i.e., the full multiplicity coincides with dim ker2(" (Xg, 1).
If Xo = O turns out to be an eigenvalue of a certain " (-, u), for any eigenvector
@° € ker2l" (Ao, ) there exists a generalized eigenvector and the full multiplicity of
Ao equals its doubled geometric multiplicity.
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Theorem 2.2.4 Let B = (B, ....p0 . 82, ... Ty and vy = (y',...,y 7],

ﬂTZ, ceey ,BT), where B < y" forr = 1,..., 7Ty, and let the lines R + if" and

R + iy” be free from the eigenvalues of the pencil A" (-, u) forr = 1,...,7T. We

denote by " the sum of the full multiplicities of the eigenvalues of the pencil A" (-, jv)

inthe strip{(» € C: B" <Imi < y"}withr = 1,...,Ti andset sc = 3" +- - 43711,
Then

dim (ker.Aﬁ () /ker A, (,u)) + dim (kerA_,, (1) /kerA_g (/L)) =, (2.2.6)
IndAg(pn) =Ind A, (1) + 5. (2.2.7)

Proof We number all functions of the form », Z,ic, Ny Z,?, and n, Z,l that correspond
to the eigenvalues of the pencil 2" (-, u) in the strip {A € C : 7 < ImA < y"},
r =1,...,7], by the same index and obtain the collection Zi, ..., Z,.. According
to Theorem 2.2.3, any function u in ker.Ag (1) admits the asymptotics

u=c1Z1+---+cZ,,+v, (2.2.8)

with constant coefficients ¢; and v in H}%(G). Therefore, there exist at most ¢
vectors in the space kerAg(u) linearly independent modulo kerA, (i); we set
d := dim (kerA,g (n)/ker A, (u)) and have 0 < d < . Without loss of generality,
we assume that there exist vectors U; in ker.Ag(u) such that

a1
Ui=Zj+ Y cipZe+vj, j=1.....d. (2.2.9)
k=d+1
where cj; =constandv; € HJ% (G).Clearly, the Uy, . . ., Uy are linearly independent
modulo kerA, (1).
Let D denote dim (ker.A,y (1) /kerA_g (,u)); we will now verify that D = »—d.
We first assume that D < »r —d and denote by ¢y, . .., ¢p a collection of vectors

in kerA_,, (1) linearly independent modulo ker.A_g (). Then there exists a non-
trivial linear combination Z = c2+1 Za+1+ -+ C()){Z% such that [ := Ag(n)Z €
H)(/)(G) and, moreover, (f, ¢;j)c = Ofor j =1, ..., D. This and Theorem 2.2.2(iii)
imply the existence of a function V satisfying A, (1)V = f. Therefore, we have
Up :=V — Z € kerAg(w) and the vectors Up, Uy, ..., Uy are linearly independent
modulo kerA, (i), which contradicts d = dim (ker.Ag(w)/ker A, (i)). Thus, we
obtained the inequality D > s —d.

Now, we suppose that D > s — d. Let ¢1, ..., ¢p be a collection of elements
in ker A_, (u) linearly independent modulo ker.A_g(u). We choose a collection
@y, ..., Pp in H)(G) such that

(®j,90)6 =8jk, Jj.k=1,...,D,
(®j,¥)g =0 forall ¢ €kerA_g(n).
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Then there exists x; that satisfies .A,g (Wyxj = ®j,where j =1,..., D. If needed,
we can subtract from the x; a linear combination of Uy, ..., Uy in (2.2.9) to provide
the inclusions

e
Xi— D, dnZn€ H)(G), j=1,....D. (2.2.10)
h=d+1

No nontrivial linear combination of xi, ..., xp belongs to H)%; otherwise there is a
linear combination of A, (1) x; = ®; orthogonal to all of the vectors ¢, ..., ¢p,
which is impossible in view of the choice of the ®1,..., ®p. This and (2.2.10)
imply that D < s — D. Therefore, we obtain the equality D = s and, consequently,
equality (2.2.6).

Let us verify formula (2.2.7). According to Theorem 2.2.2(ii), dim coker Ag (1) =
dimkerA_g(u), hence IndAg(u) = dimkerAg(n) — dimkerA_g(u), and the
same with g replaced by y. From (2.2.6) it follows that

dimkerAg(n) = dimkerA, (1) +d,
dimkerA_g(n) = dimkerA_, (n) +d — x,

and therefore Ind Ag (1) = Ind A, (1) + »2. O

2.2.4 Calculation of the Coelfficients in the Asymptotics

Now, we are in a position to obtain explicit expressions for the coefficients in (2.2.3).
We will use the notation Z; with j =1, ..., 5, defined at the beginning of the proof
of Theorem 2.2.4, and introduce also
Z;f = (ZAf)_ln,Z;‘: for Zj=nZF and )»2: ¢ R;
Z5 = @) "' zy for Zj=nZg and A eR\O;  (22.11)
Zi = n,Z,? for Z;= anll and )\2 =0;
Zi = nZi for Zj= nZ) and 1) =0;
the connection between Z; and Z;f has been stated in (2.1.35).

We assume the hypotheses of Theorem 2.2.3 to be fulfilled and write the asymp-
totics of a solution u € Hé in the form (2.2.8).
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Proposition 2.2.5 Let V = Z;f + nyv, where Z;f is a function in (2.2.11) with a
certain r and v € H? 8 (G). We suppose the V satisfies the equations

(A —pw)Vix) =0, x=0",t"Yell', t" > T,
V(x) =0, xedll, NdG, t" > T.

Then, for the coefficient c in (2.2.8) there holds the equality
cj =i(Ag(uwnu, V)g. (2.2.12)
Proof Weset n,.(y",t") := n,(y", et”) with small positive ¢ and obtain

(Ag(nyu, Vi = (Ag(nreu, V) + (Ag(w)(y — nrelu, V)g.

The function (1, — 1, ¢)u vanishes on infinity, so we can integrate the second term
on the right by parts :

(Aﬁ(/")(nr - nr,g)u, V)G = ((_A _ M)(nr _ nr,s)ug V)l_[Cr
= ((ﬂr - Ur,s)”a (_A - M)V)H'Jr =0.

Therefore,

(Ap(wnru, Vg = (Ag(nreu, Vg = (Ag(Wnreu, Z7)c (2.2.13)
+ (Ag(wnreu, V= Z7)G.

According to Theorem 2.2.3,
cj = i(Ap(W)reu. Z5)g. (2.2.14)
Moreover,
* . g2 . g0
|(Ag(Inreu, V — Z7) gl = Clinreus Hg(G)llllv; HZgll (2.2.15)

with a constant C independent of . Since ||, ¢u; Hé(G) | = 0as e — 0, relations
(2.2.13), (2.2.14), and (2.2.15) lead to (2.2.12). (]

Proposition 2.2.6 Let the hypotheses of Theorem 2.2.4 be fulfilled and let
Ui, ..., Uq be vectors in kerAg(u) that satisfy (2.2.9), where d = dim
(ker.Aﬁ (n)/ker A, (M))- Then there exist vectors Uy, ..., U} inker A_, () such
that
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d
Uf=2;f = cpZi+vf, k=d+1.... x (2.2.16)
j=1
and v € I-'IEﬁ(G).
Proof By virtue of Theorem 2.2.4, there exist vectors Vg1, ..., V,cinkerA_, (n)

linearly independent modulo ker.A_g(u). According to Theorem 2.2.3, V) admits
the representation

e
Vi= D biZi+v. weHHG), k=d+1,... > (2217

j=1
We have
T 7T
0= (Ag(WUn. VoG = (Ap() D 1 Un. Vg + (Ag(w)(1 = > n)Un. Vg (2.2.18)
r=1 r=1

The function (1 — ZVTL 1 1)Up belongs to I-'I)%(G) hence

T T
Ag() (=D U = Ay ()1 = D" 1)U
r=1 r=1

Taking into account this equality, the relation V; € ker/A_,(u), and Theorem
2.2.2(iii), we obtain A, (1)(1 — 1 n,)Uj, = 0 and

71
0= (Ag(WUn, Vi) = (Ag() D 1-Un. Vi

r=1

To calculate the right-hand side, we employ Proposition 2.2.5 and, in view of (2.2.9),
arrive at

>
b+ D by =0, h=1....d k=d+1,... 5 (2219
j=d+1

Therefore, the first d columns of the (sx — d) x d-matrix b = ||b,|| are linear
combinations of the rest s« — d columns. The rank of the matrix b is equal to »z — d
because V41, ..., V,. are linearly independent modulo ker. 4 _ g (). It follows that
the matrix ||by; ||1J<{,j=d+1 is nonsingular. This allows us to assume in (2.2.17) that
brj = éj fork, j =d +1,..., s Then, by virtue (2.2.19), we obtain

Ekhz—chk, h=1,....d, k=d+1,...,:,
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which completes the proof. (]

We now pass on to the basic theorem of this section. As before, we suppose
that B = (B, ..., BT, B, ... . BTyandy = (y!,...,yT1, BT2, ..., BT), where
B < y"forr =1,...,7,and the lines R+iB" and R+iy" contain no eigenvalues
of the pencil 2" (-, u) for r = 1,...,7. We denote by »" the sum of the full
multiplicities of the eigenvalues of the pencil 21" (-, ) in the strip {A € C : 8" <
Imi < y"}withr = 1,...,7] and set »x = sl + oo+ T We also keep the
notation d := dim (ker.Ag(n)/ker A, (1)).

Theorem 2.2.7 Let f € H](/)(G) and let problem (2.2.1) have a solution in Hé(G).

Then, for any constant c1, ..., cq, there exists a solution u € H é (G) to problem
(2.2.1) such that

d P22
MZZCij—i- Z brZi + v,
=1 k=d+1

where v € I-.I}%(G) and Z1, ..., Z,. are the same as in (2.2.8). The constant by with
k=d+1,...,sis defined by

d

be =i(f. UG + D cncn
h=1

where U}| belongs to ker A_, () and satisfies (2.2.16), k =d + 1, ..., ».

Proof Letw € H E(G) be an arbitrary solution to problem (2.2.1) and let Uy, ..., Uy
be the vectors in ker.Ag (1) defined by (2.2.9). We choose a linear combination £ of
Ui, ..., Uy such that v := w 4+ £ admits the representation

s
v= > ajZj+p. peHG)
j=d+1

with constant coefficients a;. Let us calculate the ay. The function v(1 — Z;’T]:I nr)
belongs to Hf(G), which follows (Ag(n)v(1— ZZL nr), Uf)G = 0 (compare with
the proof of Proposition 2.2.6). Therefore,

T
i(f, UG = i(Ag(wv, UHg = D i(Ag(umev, Uf)g.

r=1

From Proposition 2.2.5, it follows that the right-hand side is equal to aj. The solution
u in the statement of this theorem is defined by the equality u = v 4+ c1U; + - -- +
cqUyg. O
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2.3 Waves and Scattering Matrices

2.3.1 Waves

We start with the boundary value problem

(A —wuly, 1) =0, (y,1) €ll,
u(y, 1) =0, (y, 1) €dll, (2.3.1)

in the cylinder IT = {(y,#) : y = (1, ..., yn) € Q,t € R} and with the operator
pencil

A, Wu(y) = (—Ay + 27— v(y), yeQ vl =0. (2.3.2)
Let {14172, be the non-decreasing sequence of the eigenvalues of the problem

(=Ay —wv(y) =0, yeQ,

v(y) =0, yeadQ. (2.3.3)
counted according to their multiplicity (see 2.1.1). We fix a real © # ug, k =
1,2, ..., thatis, the  is not a threshold, and introduce the functions

up (v, 15 1) = QITD T2 explnf e (y) (23.4)

with real AIQ—L = (v — ux)'/? in the cylinder IT; these functions satisfy problem
(2.3.3). The u,‘: (1)) will be called a wave incoming from +00 (outgoing to +00).
The number of the waves is equal to twice the number of u; (counted according to
their multiplicities) such that p; < w. Recall that )»,:—L are eigenvalues of the pencil
(-, u) with the same eigenvector ¢y, which is also an eigenvector of problem (2.3.3)
corresponding to the eigenvalue 1. The eigenvectors are orthogonal and normalized
by the condition

(@), o) = 8k (2.3.5)

Let G be a domain in R"*! introduced at the beginning of Sect.2.2.1; we consider
problem (2.2.1). With every IT’, , we associate a problem of the form (2.3.1) in the
cylinder IT" = {(y",¢") : y" € Q",t" € R}. A number 7 is called a threshold
for problem (2.2.1) if the 7 is a threshold for at least one of the problems in the
cylinders IT". In this section, we consider problem (2.2.1) for a real u different from
the thresholds.

Let x € C®(R) be a cut-off function, x(#) = 0 for ¢t < 0 and x(¢) = 1 for
¢t > 1. We multiply each wave in T1" by the function # > x (#" — ¢;) with a certain
(sufficiently large) #; > O and then extend the product by zero to the domain G.
We denote the obtained functions by vy, ..., vay, where 2M is the number of all
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real eigenvalues of the pencils ! (7)) R QlT(~, ) counted according to their
(geometric) multiplicity.

For | = 0,1,... and § € R, we introduce the space H;(G) with norm
lu; H(é (G|l = llpsu; H(G)||, where ps denotes a smooth positive on G function
given on IT’, N G by the equality ps(y", t") = exp (6¢"); unlike a similar definition
in 2.2.1, from now on we choose the weight index § to be the same in all cylindrical
ends. Let H 82(6) denote the closure in H 52(6) of the set of smooth functions in G
that have compact supports in G and vanish on dG. We now assume that the 8 is
positive and small so that the strip {A € C : |[ImXA| < §} contains no eigenvalues of
the pencils A" (-, u), r = 1, ..., 7T, except the real ones.

We denote by I the linear space spanned by the functions vy, ..., vyy and
introduce the quotient space W(u, G) := (M + I-'Iaz(G))/I-'Ig(G). The elements in
W(u, G) are called waves in G. We will often write W instead of W(u, G).

Proposition 2.3.1 The bilinear form
qu,v) = (A — u,v)g — (U, (A — w)v)g (2.3.6)

makes sense for u and v in M + H2(G) Moreover, if one of the elements u and
v belongs to H 2(G) the q(u, v) vanishes. Therefore, the form q(, ) is defined on
W x W. For any waves U and V in W, there holds the equality q(U,V) =
—q(V, U).

Proof Any function in 90t 4+ Ha (G) is of the form cjvy + - - - + coprv2 + w, where
c1,...,Copy are some constants and w € HZ(G) The support of (—A — p)v; is
compact and (—A — u)w belongs to H. 0(G) so the right-hand side in (2.3.6) makes
sense. Let us assume that u or v belongs to H 2(G) then, integrating by parts, we
obtain the equality

(A = wu, v)g = (u, (=A — Pv)g.

Therefore, we can set
q(u,v) :=qu,v), (2.3.7)

for any u and vinu € MM + I-'I(SZ(G), where # and v denote the classes of u and
v in W. The equality g(U, V) = —q(V, U) follows immediately from (2.3.6) and
2.3.7). O

The number ¢(U, U) is imaginary for any U € W. We call wave U outgoing
(incoming) if ig (U, U) is a positive (negative) number. Let u™ be a wave of the form
(2.3.4) in a cylinder I1”, . We extend the function (y", t") > x (" — t6)ui(y’, t", )
by zero to G and denote by U? the class in W of the obtained function in G.
In this way, we define the waves Uli, AU UAjf,; as before, 2M = 2M (1) is equal
to the number of all real eigenvalues of the pencils ! (CW7) R QLT(-, ) counted
according to their multiplicity. Integrating by parts in expressions of the form ¢ (u, v),
where u and v are representatives of the waves Uji, we arrive at the following
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Proposition 2.3.2 The U;r ( U;), j =1,..., M, are incoming (outgoing) waves.

The collection U1+, e, UA"’,'I, U, ..., U, forms a basis in the space VWV subject to
the orthogonality and normalization conditions

qUj, Uy) =0 for j#k, iq(U*,Uj):-l,
iqU;, U;) =1 for j=1,... M. (2.3.8)

2.3.2 Continuous Spectrum Eigenfunctions. The Scattering
Matrix

In this section, we consider the parameter . in an interval [w’, «”] that contains no
thresholds of problem (2.2.1), where i’ > 7] and 77 is the first threshold. Therefore,
there exists such a positive § that, for all u € [u’, u”’1, the strip {A € C : [ImA| < 8}
is free from the eigenvalues of the pencils 24" (-, u), r = 1,..., 7, except the real
ones.

Now, we introduce several definitions. If u € kerA_s(uo) and u ¢ Ly(G), the u
is called a continuous spectrum eigenfunction of the problem

— Au(x) —pu(x) =0, x € G,
u(x)=0, x €90G, 2.3.9)

at the point wo. If u € kerA_s(no), u # 0, and u € Lp(G), the u is said to
be an eigenfunction and pg is an eigenvalue of problem (2.3.9) embedded in the
continuous spectrum; in fact, any such eigenfunction belongs to ker.4; (1£¢) (this can
be derived from Theorem 2.2.3). For problem (2.3.9), it is known that the eigenvalues
do not accumulate at finite distance. Therefore, the interval [/, '] contains finitely
many eigenvalues at most. The number dim (kerA_s(u)/kerAs(i)) is called the
continuous spectrum multiplicity at u. Equality (2.2.6) for 8 = —§ and y = § takes
the form

dim (kerA_s(u)/kerAs () = M(u) (2.3.10)

because, in this case, > = 2M (w). The interval [u’, 1] contains no thresholds and
therefore the continuous spectrum multiplicity is constant on this interval.

Any element v € ker.A_s(u) defines a certain class v in the wave space W; we
let R denote the image of ker. A_s(w) in W. The R is a subspace in W.

Theorem 2.3.3 Let U1+(/L), R UE (W), Uy (), ..., Uy () be the same basis of
W(u, G) as in Proposition 2.3.2. Then there exist bases {1 (i), ..., v (1) and
M), ..., nm(p) in K(w) such that
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M
i) = U () + > S Uy (), (23.11)
k=1
M
R = Us (0 + D T Ut (). (2.3.12)
k=1

The matrix S(i) = ||Sjx(w)|| is unitary and S(u)~" = T () = I Tjx ().

Proof Let vy, ..., vy be linear independent elements in ker.A_s () /ker.As(n) and
U1, ..., Uy their classes in YW. We have

M M
U= mR U+ > mpUs, j=1,. M.
k=1 k=1

The matrices MT = ||m;rk|| and M~ = ||m]7k|| are nonsingular. Indeed, if, for
instance, det M ™ =0, there exists a nonzero v € W with v € ker.A_s(u) such that

M
v = Zakuk + w,
k=1

where ay is a constant, ity = U, , and w € I-'I(SZ(G). From (2.3.6) it follows that
q (v, v) = 0. On the other hand,

M M M M
g, 0) =g (3 m, > ma) = D laPg Ui, U =i > lail® #0,
k=1 k=1 k=1

k=1

which is a contradiction. Therefore, there exist linear combinations E ; and 7; of the
U1, ..., Uy that satisfy (2.3.11) and (2.3.12), respectively.

We now pass to verifying the second part of this theorem. For ¢; and 7, in (2.3.11)
and (2.3.12), we choose representatives ¢; and 7, inker.A_s (). Then ¢ (¢, 1) = 0
and, moreover,

M M

g = (U + 35,07 Uy + 3 T}
j=1 k=1

M M
=q(> 85U, Uy) +a(UF DTkl ) = iSim — T,
j=1 k=1
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hence S(u) = T*(u). Let us consider

M M M
U= ZSljnj ZSIJ Zz lj ijlj_'
j=1 = Ph=1

The coefficients of the v and E.,' are the same at Uj_, j = 1,..., M. Therefore,

the coefficients also coincide at U,j ,k = 1,..., M; otherwise, for the v — Z s
we obtain a contradiction like that in the first part of the proof. Thus, we have

S~ =Tw. O

Definition 2.3.4 The matrix S(u) = [|S;x (1) ||§!’f'k=1 with entries in (2.3.11) is called
the scattering matrix.

2.3.3 The Intrinsic Radiation Principle

Let U (), ..., Uy (W), Uy (), ..., Uy, (1) be the same basis of W(u, G) as in
Proposition 2.3.2 and in Theorem 2.3.3. We choose any representatives u; of U i
J =1,..., M and denote by N the linear hull of u ", ..., u,,. We define the norm
of u = Zc./u; +veN+ I-'I52(G) withc; € Candv € HSZ(G) by

lull = D" lejl + llv; HE (G)]).

Let A(u) be the restriction of the operator A_s(u) to the space 9 + H. 52(G). The
map )
A(w) : M+ HF(G) — HY(G)

is continuous. The following theorem provides the statement of problem (2.2.1) with
intrinsic radiation conditions at infinity (the numbers © and § are supposed to satisfy
the requirements given at the beginning of 2.3.2.

Theorem 2.3.5 Let 71, ..., zq be a basis in the space ker As(u), f € H(?(G) and
(f,z))¢6 =0,j=1,...,d. Then:
1. There exists a solutlon ueMN+ HZ(G) of the equation A(n)u = f determined
up to an arbitrary term in ker As(1).
2. The inclusion

v=u—ciuy — - —cyiy, € HH(G) (2.3.13)
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holds with ¢cj = i(f, 1;)G.
3. The inequality

lv: HEG)I +ler] + -+ leur| = const (11/: HY(G)]| + [[v; L2(G) (23.14)

holdswithvandc, ..., cy in(2.3.13), while G is a compact subset of G. A solution
ug that is subject to the additional conditions (uop,zj)¢ = O for j =1,...,d is
unique and satisfies (2.3.14) with right-hand side changed for const|| f; HSO(G) II.

Proof Let us outline the proof. The operator A_s(u) is Fredholm. Therefore, the
orthogonality ponditions (f.zj)¢ =0, j =1,...,d, provide the existence of a
solution u € Hza(G) to the equation A_s(u)u = f.Since 21, ...,2d, N1, ---» MM
form a basis in ker.A_s (), the general solution is of the form

M d
u=u0+zajnj+2bkzk (2.3.15)
j=I k=1

with a particular solution u® € H? 5(G) and arbitrary constants ay and bi. According
to Theorem 2.3.3, we have det || Tj|| # 0. Therefore, in view of (2.3.12), we can
obtain (2.3.13) by choosing the coefficients ax. The equality c; = i(f, ;)G now
follows from Theorem 2.2.7 and the relations q(Uj_, mw) = —idji, j,k=1,..., M.
In connections with estimate (2.3.14) see Theorems 5.3.5 and 5.1.4 in [37]. O
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Chapter 3
Properties of Scattering Matrices
in a Vicinity of Thresholds

We assume 7/ < 1” to be thresholds of problem (3.1.16) such that the interval
(t/, ©”’) contains the only threshold . We also suppose that the three thresholds
relate to the same cylindrical end. On the interval (z, "), one can choose a basis of
incoming wfr(-, W), ..., wh(-, n) and outgoing wy (5 1), ..., wi (-, 1) waves with
analytic functions (7, 7”) > u — w;—L(o, ) that admit the analytic continuation to
(7', "); here s = (") (recall that »(u) = const for i € [, T”/)). Such a basis is
called stable at the threshold 7. For i« € (t/, 7), some incoming waves and the same
number of outgoing waves turn out to be exponentially growing as x — co. On the
interval (z, t”/), in the space of continuous spectrum eigenfunctions, there exists a
basis Vi (-, i), ..., Vs (-, ) satisfying the conditions

M

Ve, ) =whx, ) = D" Sipwg (x, 1) + 0 (e, (3.0.1)
k=1

The functions p — Y;(-, u) and u — S;jr(n) are analytic and admit the analytic
continuation to (z’, t”). Unlike S(u), the new matrix S(u) = ||S;r ()| keeps its
size on this interval; the matrix is unitary forall u € (z/, ©”7). The entries of () can
be expressed in terms related only to the matrix S(u). In particular, this enables us to
prove the existence of finite limits of S(u) as u — 7 %0, to calculate the limits, and,
in essence, to reduce (in Chap.4) the approximate calculation of the matrix S(u)
with € [/, "] to that of the augmented matrix S(u).
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3.1 Augmented Space of Waves

3.1.1 Waves in a Cylinder

We start with the boundary value problem

(A —wuly, 1) =0, (y,1) €ll,
u(y, 1) =0, (y, 1) €dll, (3.1.1)

in the cylinder IT = {(y,#) : y = (1, ..., yn) € Q,t € R} and with the operator
pencil

A, Wu(y) = (—Ay + 27— v(y), yeQ vl =0. (3.1.2)
Let {14172, be the non-decreasing sequence of the eigenvalues of the problem

(=Ay —wv(y) =0, yeQ,
v(y) =0, yeadQ 3.1.3)

counted according to their multiplicity (see Chap.2). We fix areal © # uy, k =
1,2, ..., thatis, the u is not a threshold, and introduce a linear complex space W (1)
spanned by the functions

u (v, 15 ) = QIAFH ™2 explaf Hgr(y) (3.1.4)
with real A,:—L = +(u — pp) /2. We will call W () the space of waves. Its dimension
is equal to twice the number of y; (counted according to their multiplicities) such
that ux < . Recall that )\,f are eigenvalues of the pencil 2A(-, x) with the same
eigenvector ¢y, which is also an eigenvector of problem (3.1.3) corresponding to the
eigenvalue . The eigenvectors are orthogonal and normalized by the condition

(0j, o) = Sjk. (3.1.5)

Assume now that © = 7 is a threshold and, consequently, u is an eigenvalue of
(3.1.3) with multiplicity sc > 1. Then s numbers y; satisfy p; = t. For each [, the
functions exp(i)»;’t)wl (y) and exp(iA; t)gi(y) coincide. Therefore, the number of
linearly independent functions of the form (y, t) — exp(i )L,ft)gok (y)foru =rtis s
less than the number of such functions for u satisfying t < u < v + 8 with small
B > 0. However, for a more general notion of the waves, the dimension of the space
W () is continuous from the right at the threshold. In such a case the definition of
incoming and outgoing waves is based on reasons of energy, as in the Sommerfeld
and Mandelstamm principles.
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For the definition, we introduce the form

gy, v) :=((—A — u, v)nw) + U, =3, V)yri(v)Nam
— (W, (=A — wWv)nw) — (=, V)ar(v)ns, (3.1.6)

where [T(N) = {(y,t) € I1 : t < N}, the number ;1 € R is for the time being not
a threshold, u = xf and v = xg, while f and g are any of the functions (3.1.4)
corresponding to real )»,f(,u) (possibly, with distinct indices); x denotes a smooth
cut-off function, x(#) = Ofort < T —1and x(¢t) = 1fort > T with T < N.
Integrating by parts, we see that

ign(xul, xuif) =0 forallk, 1, (3.1.7)
ign (xuf, xui) = Fou, (3.1.8)

so the result is independent of N and yx; in what follows we drop N but keep x. We
name the wave u,j'(uk_) incoming (outgoing) for —(+) on the right in (3.1.8) and
obtain the definition of incoming (outgoing) waves equivalent to the old definition.

We are going to construct a basis in the (augmented) space of waves “stable at a
threshold”. Let u € R be a regular value of the spectral parameter of problem (3.1.3)
and u,, the eigenvalue with the greatest number satisfying u,,, < u. We also assume
that .ty < py+1 = -+- = . Then the numbers /1= w;, T := Wiy1 = -+ = Um,
and t” := w41 turn out to be three successive thresholds T/ < T < t” of problem
(3.1.1) in cylinder IT. (We discuss the general situation; the cases [+ 1 = m,m = 1,
and so on, can be considered with evident simplifications.)

We set

B el =i + e~ =1t el I— 1k _ o=t =
wE(y, 15 ) = 2 1/2( o),

:F
2 21— i
(3.1.9)
wi(y, 11 ) = wE(y. 15 ), (3.1.10)

wherek =1[+1,...,m,p=1,...,[,and uf are defined in (3.1.4).

Proposition 3.1.1 The functions p +— w;c(y, tyu),k =14+1,...,m, admit the
analytic continuation to the whole complex plane. These analytic functions smoothly
depend on the parameters y € Q and t € R (i.e., any derivatives in y and t are
analytic functions as well).

The functions (. +— wlj,[( v, t; u) are analytic on the complex plane with cut along
theray {u € R: —oo < u < up}, p=1,...,1; they smoothly depend on y and t.

All the functions W, k =1,...,m, are solutions to problem (3.1.1). For every
win (t/ < p < +00) the functions (3.1.9), (3.1.10) satisfy the orthogonality and
normalization conditions
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iq(xw;JE(~ T, wa(~ yw) =0 forall r,s=1,...,m, (3.1.11)
iq(XwEC ), xwEC ) = Foyy. (3.1.12)

Proof The first and second fractions in the parentheses in (3.1.9) can be decomposed
in the series

)l 21 )l 21

(ke — 't (i —
ZW and i1 e EET (3.1.13)

=0 =0

which are absolutely and uniformly convergent on any compact K C {(u,1) : pn €
C, t € R}. Thisimplies the analyticity properties of wki(y, t;u)fork =14+1,...,m
The corresponding assertions about wff(y, t; w)with p =1, ..., [ are evident.

It remains to verify the orthogonality and normalization conditions. We first
assume that © > t and consider, for instance, (3.1.12). If » and s are distinct,
then the equalities (3.1.12) follow from the orthogonality of ¢, and ¢, (as well as
(3.1.7) and (3.1.8)). In the case r = s < [, relation (3.1.8) contains the needed
formula. Finally, assume that » = s > [ and substitute the expressions (3.1.9) into

q(xwfc, sti). Setting A := /u — 7, we obtain

igirwE, xwH) =22 DG F Digm + O F D) (% Dig™"

+ FDXigtt+ 0+ D2ig), (3.1.14)
where, for example, g7~ = 273¢(x e @5, xe " ¢,), and so on. Taking account of
(3.1.4), (3.1.7), and (3.1.8), we arrive at (3.1.12).

‘We now consider the function

Copur gy, v;p) :=(=A = wu, vy + @, —0,v)snv)nsm

— (W, (A — Wv)nw) — (=0, V)yr(N)NIII
(3.1.15)

where IT(N), N, and x are the same as in (3.1.6), u = wac(-;,u), and v =
xwd(-; ). Since u and v are analytic, the function p +— gy (u, v; 1) is ana-
Iytic as well. Therefore, the equalities (3.1.12) (with r = s > [) are valid for all
u e C. O

It follows from (3.1.9) that wi (y, ; 7) = 27 2(1 F i)k (), k =1+ 1,...,m,
and, in the case u < t, the amplitudes of the waves exponentially grow as r — 0.
The space spanned by waves (3.1.9) and (3.1.10) is called the augmented space of
waves for T/ < u < t and denoted by W, (). We let W(u) denote the linear hull
of functions (3.1.9) and (3.1.10) for T < u < 7" and the linear hull of functions
(3.1.10) for T/ < u < 7. The lineal W () is called the space of waves. An element
w € Wy(w) (or W(w)) is called a wave incoming from +oco (outgoing to +00), if
ig(xw, xw) < 0@{g(xw, xw) > 0).
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The collection of waves {wi}}f:1 defined by (3.1.9) and (3.1.10) is called a basis of
waves stable in a neighborhood of the threshold t. A basis of waves of the form (3.1.4)
is by definition stable on (i, ) if the interval [, 1”'] contains no thresholds.

3.1.2 Waves in Domain G

Let G be a domain in R"*! with smooth boundary 3G coinciding, outside a large
ball, with the union H}r U..-u HI of finitely many non-overlapping semicylinders

I, ={0" 1)y €@, 1" >0},

where (y", ") are local coordinates in BT, and 2" is a bounded domain in R". We
consider the problem

— Au(x) — pu(x) =0, x € G,
u(x) =0, x € 9G. (3.1.16)

With every IT', we associate a problem of the form (3.1.1) in the cylinder IT" =
{1y e Q1" € R}. Let x € C*®(R) be a cut-off function, x(t) = 0
fort < 0 and x(tr) = 1 for t > 1. We multiply each wave in I1" by the function
t — x(t" — t5) with a certain #; > 0 and then extend it by zero to the domain G.
All functions (for all IT") obtained in such a way are called waves in G. A number
7 is called a threshold for problem (3.1.16) if the 7 is a threshold at least for one
of problems of the form (3.1.1) in IT", r = 1,...,7.Let t/ < t < 7" be three
successive thresholds for problem (3.1.16); then the intervals (z/, 7) and (t, t7) are
free from the thresholds.

For 1 € (t/, 7), we introduce the augmented space W, (u, G) of waves in G as
the union of the waves in G corresponding to those in W, () for 1", r =1, ..., 7;
if a space W, (u) is not introduced on the interval " < pu < t for a certain IT"
(which means that the t is not a threshold for problem (3.1.1) in such a cylinder),
then, from this cylinder, we include into the space W, (i, G) the waves generated by
the elements of the corresponding W (1). By definition, for u € (z/, "), the space
W(u, G) of waves in G is the union of the waves in G that correspond to the waves
in W(w) forT1",r =1,...,7.

The bases {ujt(~, w)}and {wjt(~, )} of waves in W(u, G) and W, (i, G) consist
of the waves obtained in G from the basis wavesinI1",r = 1, ..., 7. The basis waves
in the spaces W(u, G) and W, (i, G) are subject to orthogonality and normalization
conditions like (3.1.7) and (3.1.8) or (3.1.11) and (3.1.12) with the form q in a cylinder
replaced by the form g in G:

96 (u, v) = ((=A — u, v)G + (u, —dyv)sc
— (U, (=A = v)g — (=dhu, v)jG- (3.L.17)
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An element w in W, (i, G) (or in W(u, G)) is called a wave incoming from oo
(outgoing to 00), if igg(xw, xw) < 0 (igg(xw, xw) > 0).

A basis of waves in G is called stable near a value v of the spectral parameter if
the basis consists of bases in the cylinders mn,..., M7 stable near v.

3.2 Continuous Spectrum Eigenfunctions. Scattering
Matrices

Let v/ < © < t” be three successive thresholds for problem (3.1.16). For the sake of
simplicity, we assume that these three numbers are thresholds for a problem of the
form (3.1.1) only in one of the cylinders ..., I"IT, for instance in TT! = Q! x R.
Moreover, we suppose that T’ = p;, T = ujy1 = -+ = iy, and 7 = @41, where
w are eigenvalues of problem (3.1.3) in Q!. Thus for IT = IT! we deal with the
situation considered in 3.1.1.

3.2.1 Intrinsic and Expanded Radiation Principles

We consider the boundary value problem

— Au(x) —pulx) = f(x), x € G,
u(x) =g(x), x €9aG, 3.2.1)

and recall two correct statements of the problem with radiation conditions at infinity:
the intrinsic and expanded radiation principles. In the first principle, the intrinsic
radiation conditions contain only outgoing waves in the space WW(u, G). The second
(expanded) principle includes the outgoing waves in the augmented space W, (i, G).
We will apply the intrinsic principle with spectral parameter outside a neighborhood
of the thresholds. In the vicinity of a threshold, we make use of the expanded principle
employing the stable basis of waves in W, (i, G) constructed in Sect. 3.1.

We first define the needed function spaces. For integer [ > 0, we denote by H'(G)
the Sobolev space with norm

1/2

l
lv; H'(G)|| = Z/Gstv(x)Fdx ,

J=0""" lal=j

and let H/=1/ 2(3 G) with [ > 1 stand for the space (i traces on dG of the functions
in H'(G). Assume that Py is a smooth positive on G function given on IT', by the
equality p,, (y", t") = exp(yt") withy € R. We also introduce the spaces H)l, (G) and
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1-1/2 . 1—1/2

H, / (0G) with norms ||u; H)l,(G)|| = |lpyu; H!(G)|| and ||v; H, / @G)| =

oy v; H'=12(3G)||. The operator of problem (3.2.1) implements the continuous

mapping

Ay (w) : H)(G) — H)(G) x H}*(3G). (3.2.2)

As is known, operator (3.2.2) is Fredholm if and only if the line {» € C : ImA = y}
is free of the eigenvalues of the pencils A — A" (A, ), r = 1,...,7, where A" is a
pencil of the form (3.1.2) for problem (3.1.1) in the cylinder IT". (An operator is called
Fredholm if its range is closed and the kernel and cokernel are finite dimensional.)

We now proceed to the intrinsic radiation principle. Assume that p© does not
coincide with a threshold, u € (z/, t”/), and u # 7. Let § denote a small positive
number such that the strip {A € C : |ImX| < §} contains only real eigenvalues of the
pencils 2" (-, w), r = 1, ..., 7; we denote the number of such eigenvalues (counted
with their multiplicities) by 2M = 2M (). There exist collections of elements
Yo mw, .. Y Gowdand {Y] (), ..., Yy, )} in the kernel ker A_s () of
A_s (i) such that

M
(Yf(-, W —ul G = D Siug ¢ u)) € H{ (G), (32.3)

k=1

M
(Y;(-, W —uj o) = > TG G, u)) € H}G),  (324)

k=1

where S(u) = [|Sjx(w)l is a unitary scattering matrix and S =T =
I Tjx (w). For future needs, we rewrite (3.2.3)—~(3.2.4) in the form

M
VG =uf o)+ D Sin(wug () + 0@,
k=1
M
YiGow =u;Cop+ ; Tic(uy (- ) + o ICLDY (3.2.5)

Every collection {YfL(~, w, ..., Y;,;(-, w)}and (Y (-, w), ..., Yy, (-, w)} is a basis
modulo kerAs(u) in ker A_s(w). This means that any v € ker A_s(u) is a linear
combination of the functions Y 1+ (G R Y;I(-, W) up to a term in kerAs(u); the
same is true also for Y| (-, w), ..., Y,,(-, w). If p is not an eigenvalue of opera-
tor (3.2.2), that is, kerAs(u) = 0, every collection {Y;’} and {Yj_} is a basis of
kerA_s(w) in the usual sense.

Theelements Y (-, u) inker.A_g(u)\ker As (1) are called the continuous spectrum
eigenfunctions of problem (3.1.16) corresponding to .
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Denote by N the linearhull £(u |, ..., u,,). We define the norm of u = > cjujf—i—
v €N+ HZ(G) withc; € Cand v € HZ(G) by

lull = D" lejl + llv; HE(G)]).
Let A (1) be the restriction of the operator A_s (i) to the space Mt + H, 32 (G). The map

A(u) : N+ HH(G) — HY(G) x H>(3G) =: H5(G) (3.2.6)

is continuous. The following theorem provides the statement of problem (3.2.1) with
intrinsic radiation conditions at infinity (the numbers © and § are supposed to satisfy
the requirements given above (3.2.3)).

Theorem 3.2.1 Let z1, ..., zq be a basis in the space ker As(1), {f, g} € Hs(G)
and (f,zj)c + (9, —0vzj)ac =0, j =1,...,d. Then:

1. There exists a solution u € N + H52(G) of the equation A(w)u = {f, g}
determined up to an arbitrary term in KerAs(u).

2. The inclusion

v=u—ciuy — - —cyiy, € HH(G) (3.2.7)

holds with c; = i(f, Y;)G +i(g, —8UY;)3(;.
3. The inequality '

lo; HY (G)I + le1] 4+« - + lem| < const (1 £, g}: Hs(G)| + [l psvi L2(G)])) -

(3.2.8)
holds withv and cy, . .., cy in (3.2.7). A solution ug that is subject to the additional
conditions (ug, zj)¢ = 0for j =1, ..., d is unique and satisfies (3.2.8) with right-

hand side changed for const||{ f, g}; Hs(G)]|.

4. If {f, g} € Hs(G) N 'Hy (G) and the strip {,» € C : min{§,8’} < ImAr <
max{8, 8'}} contains no eigenvalues of the pencils A" (-, w), r = 1, ..., 7, then the
solutions u € N+ H52(G) andu’ € M+ Haz, (G) coincide, while the choice between
8 and &', in essence, affects only the constant in (3.2.8).

Remark 3.2.2 In Theorem 3.2.1, one can take the numbers & and “const” in (3.2.8)
invariant for all v in [/, u”1 C (z, t”) (in [/, n”] C (z/, ©)). If u” approaches t”
(1), the § must tend to zero: an admissible interval for § has to be narrowed because
the imaginary eigenvalues of the pencils move closer to the real axis; the constant
in (3.2.8) increases. From the proof of Theorem 3.2.1 in [37] one can see that the
constant also increases when p’ approaches t (or t’).

We now turn to the expanded radiation principle in a neighgborhood of 7. To
this end, for problem (3.1.16), we construct a basis of waves stable at the threshold
7. We make up such a basis from the waves generated by functions (3.1.9) and
(3.1.10), and from the waves corresponding to the real eigenvalues of the pencils
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A", w), r = 2,...,7. According to our assumption at the beginning of 3.2, the
interval [t’, "] contains no threshold for problems of the form (3.1.1) in the cylinders
1'[2, e, n7. Therefore, the number of real eigenvalues for each one of the pencils
Rox— A, w),r=2,...,7, remains invariant for u € [t’, ”]. Thus, when
passing from the cylinder IT! to the domain G, the dimension of wave space increases
by the same number for all u € (t/, ). We set 2L = dim W(u, G) for u € (t/, 1)
and 2M = dim W(u, G) for u € (r,t”);then M — L = m — [, where m and [ are
the same as in (3.1.9) and (3.1.10), while dim W, (i, G) = 2M for 1 € (7, 7).

We choose the number y for the operators A+, (1) to be proper for all u in
a neighborhood of the threshold T = p,,. Let us explain such a choice. We have
AE() = £ — w2 g = = s 50 A (D) = Owithk =1+ 1,...,m.
The interval of the imaginary axis with ends —i (t,+1 — ,um)l/z, (U1 — ,bLm)l/z
punctured at the coordinate origin is free of the spectra of the pencils A9 (-, w;,), g =
1,...,7.1f p moves a little along R, the eigenvalues of the pencils 24 (-, u) slightly
shift along the coordinate axes. Therefore, for a small « > 0, there exists § > 0 such
that, for & € (m — B, m + B), the intervals i Iy = Fi (@, (ms1 — pm)/* — )
are free of the spectra of the pencils 29 (-, i). So the lines {A € C : ImA = £y} with
y € I, do not intersect the spectra of A7 (-, w), while the strip { € C : |ImA| < y}
contains only the real eigenvalues of the pencils and the numbers )\,f (m) = x(u —
w2 =+ —pu)?in 319,k =1+1,...,m.

Letue(t—B,t+8),y € Iy, and let {w,:f(~, w)} be the stable basis of waves in
G described in 3.1.1 and 3.1.2. In the kernel ker A_,, (1) of A_,, (), there exist col-
lections of elements {yj(-, w,..., y;(-, w)} and (Y, (-, ), ...,V (-, W)} such
that

M
(yj(~, W = wi o) = D Skwy (- u)) €HG). (329

k=1

M
(y;<~, W = wi G — > Ta(wwp (., u)) € HX(G),  (32.10)

k=1

where S(u) = ||Sjx ()|l is the unitary and S =T = 17k (i) || Every col-
lection {))f'(-, 75 R y;(-, w)}and {Y[ (-, ), ..., YV, (-, w)} is a basis (modulo
kerA, (1)) inkerA_, (u).

The elements Y(-, u) in kerA_,, (u) \ ker A, (n) are called the continuous spec-
trum eigenfunctions of problem (3.1.16) corresponding to the number w. The matrix
S(w) (with u € (v — B, 1)) is referred to as the augmented scattering matrix.

Let R denote the linear hull £(w; , ..., w,,). Wedefineanormof w = > ¢; wj_ +

ve R+ H}%(G), where c; € Cand v € Hf(G), by the equality

lwl =" lejl + llv: H}(G)]l.
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Let A(1) be the restriction of A_,, (1) to the space £ 4 Hf(G); then the mapping
A : R+ HJ(G) > H)(G) x H)*(3G) =: H, (G). (3.2.11)

is continuous.

Theorem 3.2.3 Letiu € (t—B,t+p), y € Iy, and let {wki(~, W)} be the aforemen-
tioned basis of waves in G. Assume 71, . . ., Zq to be a basis in the space ker.Ay (W),
{f. g9} € Hy(G) and (f,zj)G + (9, —dvzj)ac =0, j =1,...,d. Then:

(1) There exists a solution w € & + H)E(G) to the equation A(w)w = {f, g}
determined up to an arbitrary term in the lineal L(z, ..., zq).

(2) The inclusion

va—clwl_—---—cMw;,,EHf(G) (3.2.12)

holds with c; = i(f, yj‘)G +i(g, —vaj_)g;(;.
(3) Such a solution w satisfies the inequality

lv; HXG)| + le1| + -+ ler| < const (I, 9% Hy (G| + oy v; La(G)])) -
(3.2.13)
A solution wy that is subject to the conditions (wo,zj)g = Ofor j =1,...,dis
unique, and estimate (3.2.13) holds with the right-hand side changed for const||{ f, g};
Hy (G)].

@ If{f, g} € Hy(G) N'Hy(G) and the strip {A € C : min{y, y'} < Imi <
max{y, y'}} contains no eigenvalues of the pencils A" (-, n), r = 1,...,7, the
solutions w(-, 1) € ﬁ—i—H)%(G) andw'(-, ) € R—i—Hf,(G) of the equation A()w =
{f, g} coincide, while the choice between y and y', in essence, affects only the
constant in (3.2.13).

We would like to extend relations of the form (3.2.9) and (3.2.10) to the interval
(t/, ©”) with analytic functions u yji (). Unlike the situation in Remark 3.2.2,
it is not possible, generally speaking, to extend (3.2.9) and (3.2.10) to any interval
[u', w1 C (r/, ") with the same index y. However, to that purpose, one can use
a finite collection of indices for various parts of [u’, u”]. The following lemma
explains how to compile such a collection.

Lemma 3.2.4 For any interval (1, u"] C (', ©"), there exists a finite covering
{U ,,}2’20 consisting of open intervals and a collection of indices {y? }[];’:0 subject to
the following conditions (with a certain nonnegative number N ):

(Hu €Uy, n" €Un; UoNU, =0, p=2,....,.N;UvnNU, =0, p =
0,..., N —2; moreover, Up overlaps only Up_1 and Upy1, 1 < p < N — 1.

(2) The line {» € C : ImA = yP} is free of the spectra of the pencils A" (-, ),
r=1,....7, forallpe U,N[w, " Tand p =0,..., N.

(3) The strip {» € C : y? < Imxr < yPt1} is free of the spectra of the pencils
A(C,w),r=1,....,7, forallpe UyNUpyrand p=0,...,N — 1.
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(4) The inequality [Im(u — ©)'/?| < y? holds for . € U, N[, w1 (recall that

+(u — )2 are eigenvalues onll(-, Ww)yand T = Q41 = -+ = W), there are
no other eigenvalues of the pencils A" (-, w), r = 1,...,7, in the strip {A € C :
[ImA| < y?}, except the real ones, p =0, ..., N.

Proof Let us outline the proof. We consider an interval [u’, «”] and assume that
T € (1, 1. Just before formulas (3.2.9) and (3.2.10), we have defined the interval
(t — B, T + B) that can be taken as an element of the desired covering. It was
earlier shown that as an index y for such an element one can choose any number in
Iy = (o, (Wm+1 — ,um)l/2 — o) with small positive «; the number 8 depends on «.

Let us take some v € (t, T + B). The eigenvalue A, (1) = (1t — m)'/? of the
pencil AL (., ) is real for © > v, the eigenvalue A, +1() = i(Um+1 — M)l/z of
the pencil tends to zero when p increases from v to T/ = 41, and the interval
(z€eC:z=1it,0 <t < (my1 — 1)'/?} of the imaginary axis remains free
of the spectra of the pencils 2"(-, u), ' < u < u’,r = 1,...,7. Therefore,
the interval (v, D) with u” < U < t” can serve as an element of the covering, and
any number y € (0, (ums1 — #”)/?) can be an index for the element. Finally,
we choose the elements U, to the left of the threshold T so that the graphs of the
functions U, 5 u +— y? = const are located between the graphs of the functions
(', 1) > p > Imig(p) = (uk — )"/, k = m, m + 1, and the indices form a
decreasing sequence Y0 > p! > .. .. [

3.2.2 Analyticity of Scattering Matrices with Respect
to Spectral Parameter

Let us consider the bases {7} and {y;} in the spaces of continuous spectrum eigen-
functions (CSE) defined near the threshold 7 (see (3.2.9) and (3.2.10)). We first show
that the functions p yjﬁ(-, w) admit analytic extension to the interval (z/, ”). In
what follows, by the analyticity of a function on an interval we mean the possibility
of analytic continuation of the function in a complex neighborhood of every point
in the interval. Then we prove the analyticity of the scattering matrix u — S(u) on
(t/, 7”). The analyticity does not exclude the existence of eigenvalues of problem
(3.1.16) embedded into the continuous spectrum; however, the analyticity eliminates
the arbitrariness in the choice of CSE. Moreover, we establish the analyticity of
the elements u +— in(~, w) in (3.2.3) and (3.2.4) as well as the analyticity of the
corresponding scattering matrix u — S(u) on (z’, ) and (z, t”).

In a neighborhood of any point of the interval (z/, t”’), one can define an operator
A, (1), which is needed for relations like (3.2.9) and (3.2.10). The index y has been
provided by Lemma 3.2.4: the same number y ? can serve for all u € U),. Therefore,
for u € U, there exist the families {ij(-, w)} C kerA_,»(u) satisfying relations
like (3.2.9) and (3.2.10) with unitary matrix S(u), so Theorem 3.2.3 holds with
w € Up. Thus, it suffices to prove the analyticity of the “local families” {ij(., nw}
and that of the matrix S(u) on U, and to verify the compatibility of such families
on the intersections of neighborhoods.
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We first obtain a representation of the operator A (1)1, where A(u) is operator
(3.2.6) or (3.2.11), in a neighborhood of an eigenvalue of problem (3.1.16). To this
end we recall some facts in the theory of holomorphic operator-valued functions
(e.g., see [22, 23, 29]). Let D be a domain in a complex plane, B and B, Banach
spaces, and A a holomorphic operator-valued function D > pu +— A(w) : By — Bs.
The spectrum of the function A(-) is the set of points & € D such that A(u) is a
noninvertible operator. A number p is called an eigenvalue of A if there exists a
nonzero vector ¢y € By such that A(ug)@o = 0; then ¢y is called an eigenvector. Let
1o and o be an eigenvalue and an eigenvector. Elements ¢y, ..., ¢,_1 are called
generalized eigenvectors, if

n

1
> 21 OAA) 0y = 0.
q=0 "’

wheren = 1, ..., m. A holomorphic function A is said to be Fredholm if the operator
A(u) : By — B» is Fredholm for all u© € D and is invertible at least for one .
The spectrum of a Fredholm function A consists of isolated eigenvalues of finite
algebraic multiplicity. The holomorphic function A* adjoint to A is defined on the
set {u : ;i € D} by the equality A*(n) = (A(i))* : Bf — Bj. If one of the
functions A and A* is Fredholm, then the other one is also Fredholm. A number i
is an eigenvalue of A if and only if i is an eigenvalue of A*; the algebraic and
geometric multiplicities of fi¢ coincide with those of .

Letus consider the operator-valued function u +— A(u)in(3.2.6)or(3.2.11) onan
interval [/, 1] that belongs to one of the intervals (t/, t) or (z, T”). Taking account
of Remark 3.2.2, we choose the same index § in (3.2.6) and in Theorem 3.2.1 for all
w € [p', 1”’]. When considering the function  — A(w) in (3.2.11) on an interval
[w, ] C (z, ©"), we suppose the interval to be so small that Lemma 3.2.4 enables
us to take the same y in (3.2.11) and in Theorem 3.2.3 forall € [/, ”']. According
to Proposition 3.1.1, the waves in the definitions of operators (3.2.6) and (3.2.11)
are holomorphic in a complex neighborhood of the corresponding interval [/, 1]
Therefore, the functions i +— A(w) in Theorems 3.2.1 and 3.2.3 are holomorphic
in the same neighborhood.

Proposition 3.2.5 (i) Let u — A(u) be the operator-valued function in Theorem
3.2.3, o an eigenvalue of operator (3.2.2), and (21, . . . , Zq) a basis of ker A, (o).
Then, in a punctured neighborhood of o, there holds the representation

AT gy = (1 — 10)"PLf, g} + RGOLS g), (3.2.14)

where { f, g} € H, (G),

d
Pif.gtb=—> ((f 26 + (9. —02))aG) 2. (3.2.15)
j=1
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and the function R(n) : H)(G) — & + H;(G) is holomorphic in a neighborhood
of 1o

(ii) Let 1 — A () be the operator-valued function in Theorem 3.2.1, o an eigen-
value of operator (3.2.2) in (', 7) or (t, t"), and (z1, . . . , z4) a basis of ker As (o).
Then, in a punctured neighborhood of (Lo, there holds representation (3.2.14), where
P{f, g} is defined by (3.2.15) and the function R(n) : Hs(G) — M + H(SZ(G) is
holomorphic in a neighborhood of .

Proof (i) By Theorem 3.2.3, (1), the operator A () is Fredholm at any u € [u/, n”].
We may consider A(u) as Fredholm in a neighborhood U (the Fredholm property is
stable with respect to perturbations that are small in the operator norm). Moreover, the
operator A (i) is invertible for all i € [u/, "] except the eigenvalues of the operator
(3.2), which are real and isolated. Hence the function u — A(uw) is Fredholm in
a neighborhood of 1 in the complex plane. From Theorem 3.2.3, (4), it follows
that the eigenspaces of operators (3.2.11) and (3.2.2) coincide, that is, kerA(ug) =
ker A, (o) C H)%(G). It is easy to verify that the operator-valued function A has
no generalized eigenvectors at (o. Then the Keldysh theorem on the resolvent of
holomorphic operator-valued function (see [23, 29]) provides the equality

AT LS 9 = (1 — o) ' TS g} + RIS, g); (3.2.16)

here T{f, g} = Z?zl({f, g}, {¥;, xj})zj, the duality (-,-) on the pair H, (G),
Hy(G)* is defined by ({f, g}, {¥, x}) = (f,¥)e + (g, X)sc, and (-, )G and
(-, )ac are the extensions of the inner products on L>(G) and L;(dG) to the
pairs H)(,)(G), H}(,)(G)* and Hf/z(aG), H;/Z(BG)*, respectively. The elements {1/},
xj} € kerA(up)* C W(G; y)* are subject to the orthogonality and normalization
conditions

((OuA)Y(0)zjs (Vks xk}) = Sjk, Jok=1,....,d. (3.2.17)

Furthermore, (9,A)(10)z; = {—z;,0} € W(G; y). The elements {, xx} can be
interpreted in terms of the Green formula and, in view of (3.2.17), rewritten in the
form {Y, xx} = {—zk, dvzi} (e.g., see [37]). Now, T{f, g} coincides with P{ f, g}
in (3.2.15), and (3.2.16) takes the form (3.2.14).

(i1) One can repeat, with evident modifications, the argument in (i). U

We are now ready to discuss the analyticity of bases in the space of the continuous
spectrum eigenfunctions. For instance, we proceed to the basis {y;.“} in (3.2.9).

From the definition of the wave wj' in G (see 3.1.2), it follows that the function

G3x+— w;“ (x, ) is supported by one of the cylindrical ends of G,

_Aw;_(xa M)_I’ij—(-xa H“):f](-xvl’b)s X GG,
wj(x, w) =0, xedG,
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and the support of the function x +— f;(x, u) is compact. Let us consider the
equation

A(ww(, ) ={f;(, ), 0} (3.2.18)

on an interval [/, u”'1 C (¢/, t”"). We first assume that the interval [u’, 1] is free
of the eigenvalues of the operator-valued function & — A(u). In view of Theorem
3.2.3, forall u € [u/, "], there exists a unique solution w = v + cjw; + --- +
cmyw,y, to Eq.(3.2.18),

w(, w) ={er(w),...,em(u), v(-, W} € K+ Hyz(G). (3.2.19)

Since the functions & — A(u) ! and u — fj (-, ) are holomorphic in a complex
neighborhood of the interval [/, "], the components of the vector-valued function
u +— w(-, u) are holomorphic as well. Therefore, the analyticity of the function
= y;'(-, w) in the same neighborhood follows from the equality

y;? = wj —w. (3.2.20)

Assume now that the interval [i/, 1] contains an eigenvalue o of the operator-
valued function ¢ +— A(u). We find the residue P{ f, g} in (3.2.14) for {f, g} =
{fj, 0} in the right-hand side of (3.2.18). For z € ker A, (10), we have

(fs 26 + (9, =D = (fj, D6 = (—Aw;r - Mw;r, 26 = (wf, —Az —uz)g =0.

Hence P{f;, 0} = 0 and, by virtue of (3.2.14),

w(-, 1) =A@ {f;, 0} = R(w){f;, 0},

which means that the function u +— w(-, i) is analytic in a neighborhood of .
This implies the analyticity of the function y +— yj(., Ww.

The analyticity of the functions u +— y/.—(-, () can be proved in the same way.
When verifying the analyticity of functions of the form u +— Y;‘(-, w) and p —
Y7 (-, ) in (3.2.3) and (3.2.4) in a complex neighborhood of the interval -
(t/,7) or [u, u"] C (z,t”), one has to make only an evident modification of the
above argument.

Lemma 3.2.4 and Theorem 3.2.3, (4) enable us to extend formulas (3.2.9) and
(3.2.10) to the whole interval (z/, ") for the analytic families u ij(., nw;
however, one index y has to be replaced by a collection of indices. Nonetheless, in a
neighborhood of any given point i« € (t’, ), one can do with one index y. Remark
3.2.2 and Theorem 3.2.1, (4) allow to extend (3.2.3) and (3.2.4) to the intervals (7', T)
and (z, t”’) for the analytic families u — Y le(-, .
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Theorem 3.2.6 Let v/ and ©” be thresholds of problem (3.1.16) such that t/ < t”
and the interval (t', t'’) contains the only threshold . We also suppose that the three
thresholds relate to the same cylindrical end. Then:

(i) On the intervals (t/, t) and (t, T"), there exist analytic bases {i — in(~, )}
in the spaces of continuous spectrum eigenfunctions of problem (3.1.16) satisfying
(3.2.3) and (3.2.4) with the scattering matrix u +— S(u) analytic on the mentioned
intervals.

(ii) On the interval (', t"), there exist analytic bases {jt yj.ﬁ(-, )} in the
spaces of continuous spectrum eigenfunctions of problem (3.1.16) satisfying (3.2.9)
and (3.2.10) with the scattering matrix p — S(u) analytic on (t/, t").

Proof In view of the argument in 3.2.2, it suffices to verify the analyticity of the
scattering matrices. For example, let us consider the matrix © +— S(u). Equality
(3.2.20), the representation w = v + ciw; + - -+ + cpyw,,, and inclusion (3.2.19)
lead to

M
ViCow =whe,w) = a(ww ¢, p) € Hy(G).
k=1

Therefore, Sjx(n) = —ck (), k = 1,..., M. It remains to take into account that
the functions u — ¢ (u) are analytic on (z/, t”). O

For the basis {yf(., u)}?”z | (see Theorem 3.2.6, (ii)), we introduce the columns
yg) = (yf, R y{)f and y(g) = ()JL++1, R y,;)' and write down the scattering
matrix in the form

S(u) = (S“])(“) S<12)(M)) ’

Sen () Sa2)(w)

where S(11)(1) is a block of size L x L and S22 () is a block of size (M — L) x
(M — L), while u € (t/, 7). We also set

D=(p—0)"?+1)/(n—-0"* 1)

1/2

with (u — V2 =ik - M)l/z for uw < 7 and (r — @)'/* > 0. The next assertion

will be of use in Sect. 3.3.

Lemma 3.2.7 Assume that u € (t/, t] and S(10) is the scattering matrix in Theorem
3.2.6, (ii). Then

ker(D + S22y (1)) C kerSq2) (1), (3.2.21)
Im(D + S22y (1)) D ImS21y (). (3.2.22)

Therefore, the operator S12)(11) (D + S22y (1))~ is defined on Tm(D + S(2)(w)).
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Proof Let us consider (3.2.21). We assume that /2 € ker(D + S22y (1)) and (0, h)' e

CM . Then
(5(11)(/0 5(12)(#)) (0) _ (5(12)(M)h)
Sen(n) Seay(n) ) \ h —Dh ]~
Since the matrix S(u) is unitary and | D| = 1, we have [|A[|> = [|Sq12) ()hl>+ |14,
s0 S¢12y(u)h = 0 and (3.2.21) is valid. Inclusion (3.2.22) is equivalent to
ker(D + S2) ()" C kerSpny (1)*. (3.2.23)

Moreover,

« _ [ Sanw* 5(21)(#)*)
S = (5(12)(M)* S2)(1W)*

and the matrix S(w)* is unitary; therefore (3.2.23) may be proven by the same
argument as (3.2.21). O

3.3 Other Properties of the Scattering Matrices

Here we clarify the connection between the matrices S(r) and S(u) on the interval
7’ < u < t, prove the existence of the one-side finite limits of S(u) as u — 7 +0,
and describe the transformation of the scattering matrix under changes of basis in
the space of waves W(u, G) for u € (z, /).

3.3.1 The Connection Between S(u) and S(p) fort’ < pu <t

Let us recall the description of the stable basis chosen for the definition of S(u). In
the semicylinder 1! , we introduce the functions

ML 5 (3, 0) > e (v, 15 ) == X (1) exp (it /i — )i (y), (3.3.1)
where k = [ + 1, ..., m (the notation is the same as in (3.1.9); as before, y;11 =

-+ = W, = 7). We extend the functions by zero to the whole domain G and set

Py ef  Cim e Ciw) el Cim —e ;G
PLajio = 2 N
(33.2)
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forj=1,...,m—1 = M— L (theequality m — = M — L was explained just after
Remark 3.2.2). All the rest of the waves with supports in IT _ll_ obtained from functions

(3.1.10) and the waves of the same type with supports in T2, .. HT we number
by one index j = 1,..., L and denote by w1 ( W, ..., w L( ,u) The obtained
collection {wf, W M} is a basis of waves in G stable ina nelghborhood of the
threshold 7. Finally, we introduce the columns w (1) = (wl S, W L)‘ (2) =
(wirl, s wjf[)t, and (w(ji), w(jé)) = (w?c, e wM)’, where ¢ stands for matrix
transposing.

The components of the vector w(il) are bounded, while the components of w(iz)
exponentially grow at infinity in HL. Setting eﬁ) = (eli, ...,ezc)' and eé) =
(efﬂ, o e,jf,l)’, we arrive at

+ _ + + -
Wi = Der(z) + D¥e,, (3.3.3)
with

= (-0 £ 1)/2vV2(n — 0V

The following assertion is, in essence, contained in [38] and in [37], Ch. 12.
Proposition 3.3.1 Let u € (t/, t) and let S(i) and S(1) be the scattering matrices
in Theorem 3.2.6. Then

S = San(w) — Saz (WD + Sa2y (W) ' Sy (), (3.3.4)
with
D=D*/D” = (-0 +D/((n-0"*=1.
Proof We verify (3.3.4). Let us write (3.2.9) in the form

Vi —why — Sanywg, — Sunwg, € Hy (G),
Vi) = Wy — Senwa) — Saa W, € H(G). (3.3.5)

Recall that the ¥y > 0 has been chosen according to Lemma 3.2.4, so the strip
{» € C: |ImA| < y} contains the eigenvalues &(;u —7)'/? of the pencil A (-, ;). We
take § > 0 such that the strip {A € C : |ImA| < §} contains only the real eigenvalues
of the pencils A" (-, u), r =1,...,7;then§ < y and H)%(G) - H52(G). Instead of
wé), we substitute into (3.3.5) their expressions in (3.3.3); for the aforementioned

8, the vector-valued function eE;) belongs to H. 32(G). As a result we obtain

Vi, =W, + Sanwy, + SunyD7eg) + R, (3.3.6)
y("z') = S(z])W(_l) + (D + 8(22))D_e(_2) + N2, (3.3.7)
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where N1y, N € H (SZ(G). We now introduce the orthogonal projector
P:CYE o Im(D + Spa) ().
Taking account of (3.2.22) and (3.3.7), we arrive at
PYS = Sanwg, + (D + S@2) D™ ey + Phe). (33.8)

We apply the operator S(12) (1) (D 4+ S22) (1)) ~" to both sides of (3.3.8) and subtract
the resulting equality from (3.3.6). We then have

Z= Wa) + (San () = Saz) (WD + Sa2) (M))_IS(zl)(M))W(_I) +R, (339

where

Z =Y~ Sun(w(D + Sep (1)~ PV, (33.10)
R =Ry — Sy () (D + S (1) "' Phz). (3.3.11)

The components of the vectors y:;) and y;g) satisfy problem (3.1.16); in view
of (3.3.10), the same is true for the components of the vector Z. Moreover, from
Ray, Ney € HF(G), and (3.3.11) it follows that R € H7(G). Hence the formula
(3.3.9) describes the scattering of the vector wa) of incoming waves in the basis

wa), wa) as well as (3.2.3), so we obtain (3.3.4). U

3.3.2 The Connection Between S(jv) and S(u)
Jort <p<t”

We consider two bases in the wave space W(u, G) for T < u < t”. One of the
bases consists of the waves in G corresponding to functions of the form u;t(-, ®)in
(3.1.4), while the other one comprises the waves generated by the functions wfit (-, 1)
(see (3.1.9), (3.1.10)). As before, the scattering matrices, defined in these bases, are
denoted by S(w) and S(u) (see Theorem 3.2.6); this time, that is, for u € (z, t”),
the matrices are of the same size M x M.

The scattering matrices are independent of the choice of the cut-off function x in
the definition of the space WW(u, G). Identifying “equivalent” waves, one can omit
such a cut-off function from consideration. To this end, we introduce the quotien
space

Wi, G) := W(n, G)+Hy(G))/Hy(G).

Let v stand for the class in W(u, G) with representative v € W(u, G). In what
follows, waves of the form Xu;t(~, w) and Xw;t(-, @) in G are denoted by u;lt(-, 7))
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and wqi(-, ). The collections {ﬁ;:(~, u)}?”zl and{wki(~, pc)},f”zl are bases in the space

W(u, G), so dim W(u, G) = 2M. The form gg (u, v) in (3.1.}7) is indepe;ndent of
the choice of representatives in # and v; hence it is defined on W(u, G) x W(u, G).
From (3.1.7) and (3.1.8) it follows that

iqo (-5 pw), af (5 w) =0 forallk,l=1,..., M, (3.3.12)
iqG i (5 W), 15 (5 1) = Fou, (3.3.13)

and equalities (3.1.11) and (3.1.12) lead to

igqo(wE(¢; ), wF(¢;w) =0 forallr,s=1,...,M, (3.3.14)

g (W (-3 ), Wi G5 ) = Fors. (3.3.15)

Thus W(u, G) turns out to be a 2 M -dimensional complex space with indefinite inner
product < u, v >:= —iqgg(u, v). The projection

7 W, G)+H(G) - W(u, G) (3.3.16)

maps the space of continuous spectrum eigenfunctions onto a subspace in W, G)
of dimension M; we denote the subspace by £(u).

Let Vi, ..., Vou be abasis in W(,u, G) subject to the orthogonality and normal-
ization conditions

<Vi,Vi>=96j1, <Vjiu,Viem >= =S for j,l=1,...,M. (3.3.17)

The elements V7, ..., V) are called incoming waves, and the elements Va1, ...,
Vau are called outgoing waves. Assume that X, ..., X/ is a basis of £(u) that
defines, in the basis of waves V1, ..., Vo, the scattering matrix S (u) of size M x M
(compare with (3.2.3)). We represent the vectors X ; as coordinate rows and form the
M x2M-matrix X = (X1, ..., X»)" (whichis a column of the letters X1, ..., X ).
Finally, let I denote the unit matrix of size M x M. Then a relation of the form (3.2.3)
leads to

=, &)V, (3.3.18)

where V is the 2M x 2M-matrix (V1, ..., Vop)! consisting of the coordinate rows
of the vectors V; and (1, &(u)) is a matr1x of size M x 2M.

Assume that V1, .. V2M is another basis of waves subject to conditions of the
form (3.3.17), X1, .. XM is a basis of £(u), and G(M) is the corresponding scat-
tering matrix such that ~

X =(,Sw)Vv. (3.3.19)

We suppose that V = TV and write down the 2M x 2M-matrix T as T = Fkn ),%’ =1
with blocks €y of size M x M.
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Lemma 3.3.2 The matrices T(1 1) + é(u)T(z nand¥2) + é(u)T(z 2) are invert-
ible and

S(u)=Ean+6wW3Ien) ' Eay + 6% a). (3.3.20)

Proof For the bases ~Xl, ..., Xy and )~(1, el XM there exists a nonsingular M x M-
matrix B such that X = B X. Therefore, by virtue of (3.3.19), we have

BX = (I, S(n)IV.
Taking account of (3.3.18), we obtain B(I, S(n))V = (I, é(u))‘ZV, SO

B(I,6(w)) = (I, &()%.

Let us write this equality in the form

(B, B&(w) = ZTan+6wWIan, Tay +SGTa).
Now, the assertions of lemma are evident. O

We intend to make use of (3.3.20) taking as V the image, under canonical pro-
jection (3.3.16), of the stable basis of W(u, G) in (3.2.9) and as V the image of the
wave basis in (3.2.3). As é(u) and &(u), we choose S(u) and S(w), respectively.
Let us proceed to computing the matrix ¥ in the equality V =%V.In doing so,
instead of V and V we can consider their just-mentioned pre-images in W(u, G).
We set

uj = uj wpgm =uy, j=1,..., M, (3.3.21)

where ujc are the waves in W(u, G) generated by functions of the form (3.1.4). We
also introduce

Wjtp = wj_zu;, j=1...,L, (3.3.22)
y Wpaym = w[j, p=L+1,....,M,
[jf are the waves in WW(u, G) generated by functions (3.1.9). For the matrix
%, the equality w = Tu holds with the columns w = (wy, ..., wyy)" and u =
(ui, ..., uzm)!. For convenience, we will here denote functions (3.1.9) in the same
way as the waves w,jf; let us write down these functions in the form

where w

wy () = 272(( e 2) F (€ = e 20) 9y,
where A = ./ — 7 and 7 is a threshold; we also write functions (3.1.4) in the form

uy () = 2072,
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Then we have
wy = /)@ W £ +u, WP EATV) p=L4 1 M

here by w]f and uf one can mean the functions in the cylinder and the corresponding
waves in the domain G alike. Together with (3.3.21) and (3.3.22), this leads to the
following description of the blocks ; ;) of the matrix .

Lemma 3.3.3 Each of the matrices X;jy consists of four blocks and is block-
diagonal. The equalities

Tan(w) = Tao(w) = diag(ly, 27 G2 +272) 1), (33.23)
Ton() = FTazy(w) = diag(Or, 272 =27V 1y} (3.3.24)

hold; Ik is the unit matrix of size K x K, Oy is the zero matrix of size L x L, and

A= —twithp e (t,7").

We return to (3.3.20) with S and S instead of S and &. Let us divide the matrix S
into four blocks with S(11y of size L x L and S(22) of size (M — L) x (M — L). We
also set d* = 271 (A1/2 £ A~1/2). Then

(3.3.25)

1 Sand~
Tan + STon = ( L 12) )

O Sppd™ + Iyg—pd™

According to Lemma 3.3.2, the matrix T(j1y + ST (21 is invertible, so the matrix
Sond™ + Iu-1d * is invertible as well, therefore

(3.3.26)

(3:(1]) + 85(2]))_1 — (IL _S(IZ)d_(S(zz)d_ + IM_Ld+)_1) .

o (Spnd™ + Iy—rd*H)~!

In view of (3.3.20), we now obtain

Proposition 3.3.4 For nu € (1, t”), the blocks S(;jy of the scattering matrix

S(w) = Ean +SWTan) ' (Fay + Sw)Z22)

admit the representations

San = San — Sazd~ (Send™ + In—1d") " 'Say, (3.3.27)

Sa2) = Sand™ — Sund ™ (Sand™ + Iy—1d ™)~ (Spadt + Iy—_rd"),
(3.3.28)

Son = (Sepd™ + In-1dM) ' Sai), (3.3.29)

S22 = (Spd™ + [M_Ld+)_l(5(22)d+ + Iy—rd™). (3.3.30)
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3.3.3 The Limits of S(w)as p > t £ 0

To calculate the one-sided limits of S(u), we make use of (3.3.4)as u — 7 —0
and apply (3.3.27)—(3.3.30) as u — 1 + 0. The computation procedure depends on
whether the number 1 is an eigenvalue of the matrix S$>; (7).

3.3.3.1 The Limits of S(u) as 4 — 7 £ 0, Provided 1 Is Not an
Eigenvalue of S(22)(7)

Recall that the functions & +— Sy (p) are analytic in a neighborhood of u = 7.
Therefore, from (3.3.4) it immediately follows that

Mlirrn—o S() = San () — Sa2)(t)(Se2)(r) — 1) S (7). (3.3.31)

Letus proceed to compute lim S(u) as © — t+0. By virtue of (3.3.27) and (3.3.31),

lim San() = lim (San () — Saz) (W) (Sazy (1) +d () /d~ (1)) Sa1y (1)
n—t+0 u—t+0

(3.3.32)

=S (t) — S12) () (S22 (T) — 1)_15(21)(1) = Mli)rrn_o S(w).

According to (3.3.30),
MEI?JFO Sy () = MEITJFI+O(S(22) +dt/dT) N (Spndt/dm +1) (3.3.33)
= (S = DT (=Sen(@®) + 1) = —Iy_L.
It follows from (3.3.29) that
San(w) = (Sao +d*/d™) ' Saiy/d.
Since d™ () = 2_1((,u —plz_ )/(n— )1/4, we arrive at
Son(w) = 0((u—1)Y*) =0 for u— 740. (3.3.34)
Finally, consider S(2)(u). We write (3.3.28) in the form

Saz) = Sand T (1 — (Saa +dt/d ) (Saz) +d™/dT))
= 8(12)d+(5(22) + d+/d_)_1(d+/d_ — d_/d+).
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In view of

drgu@t/d” —d=/dh) =2 -0 /(-0 = 1),
we obtain

Saay () = 0((u — )% - 0 for u— 740. (3.3.35)

3.3.3.2 The Limits of S(x) as 4 — 7 £ 0, Provided 1 Is an Eigenvalue
of S22) (1)

We set A = /it —t with u = t + A% and consider the function A +— ®(X) :
(CM_L — (CM_L

(1) = Sy (1) +dT () /d™ () = Sy (t +27) + (L + 1)/(h — 1). (3.3.36)

The number A = 0 is an eigenvalue of the function A - ®(A) if and only if 1 is
an eigenvalue of the matrix S(22)(7); in such a case ker (S22)(7) — 1) = ker ®(0).
To calculate the limits of S(u) as © — © £ 0, we need knowledge of the resolvent
A — ®(1)~! in a neighborhood of A = 0. Propositions 3.3.5 and 3.3.6 provide the
required information.

Proposition 3.3.5 There holds the equality
ker (8(22) (‘L’) - l) = ker (8(22) (‘L')* - 1). (3.3.37)

Proof Assumethath € ker (S(22)(t)—1). Then, as was shown in the proof of Lemma
3.2.7, the vector (0, h)! € C™ belongs toker (S(t)—1) and Sa2)(t)h = 0. The same
argument with S(t)* instead of S(r) shows that the inclusion g € ker (S(22)(7)*—1)
implies (0, g)" € ker (S(7)* — 1) and Si21y(1)*g = 0. Since S(7)* = S(t)~ !, we
have

ker (S(7) — 1) = ker (S(7)* — 1). (3.3.38)

Let hy, ..., h, be abasis of ker (S(22)(t) — 1) and gy, .. ., g, a basis of ker (S22
(t)* —1). We set h~j = (0,h;)" and gj = (0, g;)". From (3.3.38) it follows that

hj,gj €eker(S(t) —1) =ker(S(t)" —1), j=1,..., 5

Therefore, any vector of the collection hy, ..., &, is a linear combination of the
vectors g1, . . ., g5, and vice versa. O

Proposition 3.3.6 Let @ be the matrix function in (3.3.36) and dim ker ® (0) = s >
0. Then, in a punctured neighborhood of . = 0, the resolvent A — ® (1)~ admits
the representation
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() = =@ D bk 4+ TO); (33.39)
j=1

here hy, ..., h, is an orthonormal basis of ker (Sp22)(t) — 1), {u, v} is the inner
product on the space CM=L and » — T (A) : CM~L — CM~L is a matrix function
holomorphic in a neighborhood of » = 0.

Proof 1t is known (e.g., see [22, 23]) that, under certain conditions, the resolvent
2A(1)~! of a holomorphic operator function A > 2A(1) in a punctured neighborhood
of an isolated eigenvalue A( admits the representation

AW = =207 D YNG + T, (3.3.40)

j=1

where ¢1, ..., ¢, and ¥y, ..., ¥, are bases of the spaces ker2l(Ag) and ker2((Ao)*
satisfying the orthogonality and normalization conditions

(AP, Yu) =8jk, j.k=1,...,, (3.3.41)

and T is an operator function holomorphic in a neighborhood of Ag. The formula
(3.3.40) is related to the case where the operator function A — 2((}) has no gener-
alized eigenvectors at the point Ag. To justify (3.3.39), we have to show that there
are no generalized eigenvectors of the function A — @ (1) at the point A = 0 and to
verify agreement between (3.3.39) and (3.3.40).

We first take up the generalized eigenvectors. Assume that 0 # h° € ker ®(0).
The equation Cb(O)h] + (0y, CD)(O)hO = 0 for a generalized eigenvector k! is of the
form

(Sa2)(x) — ' = 21",

The orthogonality of 4° to the lineal ker (S@22)(1)* — 1) = ker (Sp2)(r) — 1) is nec-
essary for the solvability of this equation (see (3.3.37)). Since 0 # h° € ker ®(0) =
ker (S(22)(7) — 1), the solvability condition is not fulfilled, so the generalized eigen-
vectors do not exist.

Let us compare (3.3.39) and (3.3.40). We have (9, ®)(0) = —21y,_1. Moreover,
in view of (3.3.37), the bases ¢1, . .., ¢,cand ¥y, ..., ¥,.in (3.3.40) can be chosen to
satisfy ¢p; = —vj = hj/ V2 and, as hy, ..., h,., there can be taken an orthonormal
basis of ker (S»>(t) — 1). Then

{(a)\CD)(O)d)]’ Wk}ZBjk’ J7k= L...,

and the representation (3.3.40) takes the form of (3.3.39). O
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Let us calculate lim S(u) as u — 7 — 0. According to Lemma 3.2.7,
Im(S(zz) (r)—-1)D ImS(zl)(‘E).

Therefore, Proposition 3.3.5 leads to the equalities {Sp1)(7) f, hj} = 0 for any
fe Clandhy, ..., h, in (3.3.39). Because the function ;. — S1)(w) is analytic,
we have Sp1)() = Sp1)(t) + Ol — t|); recall that |u — 7| = |A|%. Applying
(3.3.39), we obtain

(Sa2y() + D) ™' San(w) = T(WSan () + O(A). (3.3.42)

Now, from (3.3.4) it follows that

MEITH_O S(w) = San () — Sz (DT (0)S21)(1); (3.3.43)

Lemma 3.2.7 allows to treat the right-hand side as the operator S(11)(t) — S(12)(7)
(S (1) — 1)_15(21)(1) (see (3.3.31)). For u — t — 0, there holds the estimate

S(1) — (San () — Saa (T 0)Sa1) (1) = Ol — 7|1?). (3.3.44)

Letus proceed to calculating the limits as 4 — 7 4 0. We compute lim,_, ;1.0 S11) (1)
in the same way as lim,_, ;o S(u) and obtain

lim S(ll) (/,L) = lim S(/L) (3.3.45)
u—>t+0 n—>1—0
In view of (3.3.30),

S (1) = (S (n) + ﬁlJr/d*)_1 (S () +d~/d*)d*/d~
=dt/d + (S () + d+/d—)‘l (d/dt —dtjd~)d*/d".

Applying resolvent representation (3.3.39), we write the last equality in the form

A+1 2 & 4
Sy (1) = - I+ e Z(-, hjYhj — mr(x) ) (3.3.46)
j=1

Hence

k2
lim § =2 whp)hj—1=P—0, 3.3.47
Jim Sy () Z‘( Phj 0 (3:347)
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where P = Zf;] (-, hj)h j is the orthogonal projector CM-L onto ker (Se(t)—1)
and Q = I — P. Moreover, for u — 7 + 0, it follows from (3.3.46) that

Se2 () = P+ Q= 0(n—7|'?). (3.3.48)
In accordance with (3.3.29),
Sen () = (Sn() + Iy-1d™/d™) " San/d™.
Taking account of (3.3.42) and of d~ = (A — 1)/2«/1 we obtain
Sen() = (TWSen (W) + O(IA)) 2v/4/0. = 1).
Consequently,
San(w) = O(lu —t|"* = 0 for pu— ©+0. (3.3.49)

It remains to find the limit of S¢j2)(u). By virtue of (3.3.28),

St (1) = Sz (wd™ (1= San ) +d* /) Sea () +d /b))
Since

(Sany() +d/d™ ) (Spay(w) +d~/dT) =1 — (San () +d*r/dH)71,

A2 —1
we arrive at

2V

1
Saz () = ms(n)(u) (—5 Z(" hj)hj+ 1"(?»)) .

Recall that 1 € ker(Sx(7) — 1) C kerSi12(7) (see (3.2.21)), Sy (1) = Sy (v) +
O(lp — t|), and u — v = A2. Therefore, as & — 7 + 0 we have

Sazy(w) = 0(lu — 7| — 0. (3.3.50)



Chapter 4
Method for Computing Scattering Matrices

Section4.1 is independent of Chap.3. Section4.2 is devoted to computing the
scattering matrices in a neighborhood of a threshold and uses the results of Chap. 3.
In fact, the scheme of the method in Sect. 4.2 is similar to that in Sect. 4.1; however,
near a threshold we first calculate the augmented scattering matrix defined in a basis
of waves stable at the threshold and then take into account its connection with the
usual (not augmented) S-matrix.

4.1 A Method for Computing Scattering Matrices Outside
Thresholds

4.1.1 Statement of the Method

We introduce the notation
R =(y " en " >R}, GF=c\U¥,

for large R. Then GR \ G = 'R = U, IR where I'""R = {(y/,1") € II" :
t" = R}. We seek the row (81, ..., S;y) of the scattering matrix S = S(u). As an
approximation to the row we take a minimizer of a quadratic functional. To construct
such a functional, we consider the problem

(—A—wX* =0, xeGf
AR =0, xedGR\Tk;

@, +in)xf = (8v+i§)(ul++2jilaju;), x eIk, 4.1.1)

where ¢ € R\ {0} is an arbitrary fixed number, v is the outward normal, and
ai, ...,ay are complex numbers.
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Let us explain the origin of the problem. The solution Y; to the homogeneous
problem (3.1.16) satisfies the first two Equation in (4.1.1). The asymptotics (3.2.5)
can be differentiated, hence

M
@ + i)Y = @y +iO @ + D aju7) + 0@k
j=1

for a; = §;;. Thus, ¥; gives an exponentially small discrepancy in the last equation

(4.1.1). As an approximation to the row (S;1, . . ., Sjpr), we take a minimizer a®(R) =
(@)(R), ...,a%(R)) of the functional
M
J@. . an) = 18— =D ajur LAOIP @12)
j=1

where XIR is a solution to problem (5.6.4). One can expect that a?(R, w) — S (w)
at exponential rate as R — oo for j = 1, ..., M. To find the dependence of XIR on

ai,...,apy, we consider the problems
(—A — /,L)U;I: =0, xeGk;
v;—“ =0, xedGR\TkK, (4.1.3)
(9, +i¢)ujﬂ = (9, +ig)qu, xel® j=1,..., M.

s R + — + + .
Itis evident that ;" = v'R —i—zj ajv; g where vy = v pare solutions to problems

(4.1.3). Let us introduce the M x M—matrices with entries

El-]; = ((v; —u;), (v; — u;))

e’ (4.1.4)
#

(0f a0y —up) .

and set
G = (o — ). (F =)
The functional (4.1.2) can be written in the form
I @, ) = (@R (). a) + 2Re (F* (), a) + G (1),

where FR is the /th row of the matrix 7 ¥ and (-, -) is the inner product in C*. The
minimum is attained at a° = a°(R, 1) (a row) satisfying the system a®(R, &R +
.7-'1R = 0. Thus, as an approximation SR (w) to the scattering matrix S(u), we take a
solution of the equation SRER 4+ FR = 0.
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To justify the algorithm, we have to show that problems (4.1.3) are uniquely
solvable for ¢ € R\ {0} and large R, the matrix £X is nonsingular, and the minimizer
a’(R, ) of JIR(-, w) tends to the row (S;1(w), . .., Sim(w)) of the scattering matrix
as R — ooand i € [y, u2l.

In the following theorem, the number ¢ € R \ {0} participating in the definition
of the functional JlR(-, W) is any (fixed) and the interval [1¢1, u2] of the continuous
spectrum of problem (3.1.16) is free of the thresholds and may contain eigenvalues
whose eigenfunctions exponentially decay at infinity.

Theorem 4.1.1 Forall u € [y, u2] and R > Rg, where Ry is a sufficiently large
number; there exists a unique minimizer a(R, u) = (a1(R, n), ..., apy(R, 1)) of
the functional JIR (a, n) in (4.1.2). The estimates

laj(R, 1) — Spj(u)| < Ce R j=1,..., M,

hold with the same § as in (3.2.5) and the constant C is independent of R and 1.

4.1.2 The Problem in GX

Let us consider the problem

(—A —wux) =0, xeGFk
u(x) =0, xeaGRk\rk, (4.1.5)
@ +i0u(x) =h(x), xelk,

where ¢ € R\ {0}, x € R, and h € Lo(I'®). We introduce a generalized solution of
the problem. We set

H={uecH (G :uecC*GR\ar®):; u@x) =0, xeaGR\Irk)

as usual, H'(G®) denotes the Sobolev space in GX with norm

gl Ry — o 2, 1/2.
lu; H' (G (/GRZw u(@) dx)

o<1
A function u € H is a solution to problem (4.1.5) if and only if

(A — wu, v)gr + (u, va)gGR\l-R + (Opu +icu,v)pr = (h,v)pr  (4.1.6)


http://dx.doi.org/10.1007/978-3-319-15105-2_3
http://dx.doi.org/10.1007/978-3-319-15105-2_3

70 4 Method for Computing Scattering Matrices

for all v € H. Integrating by parts and taking into account that ¥ and v vanish on
aGR \ 'R, we can write (4.1.6) in the form

(Vu, Vo)gr — (U, v)gr + 15, v)pr = (h, v)rr. 4.1.7)

Each term in (4.1.7) makes sense for « and v in H'(G®). Let H denote the closure
of H in the norm of H!(GX).

A function u € H is called a generalized solution to problem (4.1.5) if equality
(4.1.7) holds for all v € H.

Let T : H(G®) — Lo(GR)and T : H'/2(I'®) — L,(T'R) be the embedding
operators. It is known that these operators are compact. Besides, let j : H(GF) —
H'/2(I'R) be the restriction operator. Then

(u,vV)gr = (Tu, Tv)gr = [T*Tu, v],

where [+, -] is an inner product in H'(G®) (or, what is the same, in H(G*®)) defined
by the relation

[w,v] = (Vw, Vv)gr + (w, v)gr.
We also have
(u, v)pr = (Tju, Tjv)pr = [j*T*T ju, v].
Now, equality (4.1.7) means that
[, v] + [Vu, vl =[f, v] (4.1.8)
for any v € ﬁ; here
V=—(u+O)T*T+i¢j*T*Tj

and f = j*T*h. Therefore,
u+Vu=f (4.1.9)

Since the operator V is compact in H, the Fredholm alternative is valid for equation
(4.1.9). Thus, to prove the unique solvability of this equation, it suffices to show that
ker(I +V) =0.

Proposition 4.1.2 Forallp € R, € R\ 0, and h € Lo (T'R), problem (4.1.5) has
a unique generalized solution u € 'H.

Proof Letusassumethatu € ker(/+V). Settingv = uand h = Oinrelation (4.1.7),
we obtain ¢ (u, u)pr = 0, thatis, u = O on 'R, Problem (4.1.5) is elliptic; according
to known properties of solutions to elliptic problems, the generalized solution is a
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smooth function on GF \ ar'R. From the third equation of problem (4.1.5) with

h = 0, it follows that d,u = —i¢u = 0 on 'R, Thus, u has zero Cauchy data on
'R, Therefore, u = 0 in GR by the unique continuation theorem (see [14], Part II,
Sect. 1.4). O

Proposition 4.1.3 Let u be a generalized solution to problem (4.1.5) with right-hand
side h € Ly(I'R). Then there holds the estimate

1
lu; La(TR)|| < mllh D Lay(TR)]. (4.1.10)

Proof Relation (4.1.7) for v = u takes the form
(Vu, Vu)gr — p(u, u)gr + i, u)pr = (h, u)pr. (4.1.11)

It follows that ¢ (u, u)pr = Im(h, u)r. Hence

1
llu; Lo(DF))1% < E“h : Ly(D®Y [ lus Lo(T R 0

Proposition 4.1.4 Let u be a generalized solution to problem (4.1.5), where h is a
smooth function on TR and h € L,(I'®). Then

(Opu, u)pr — (u, dyu)pr = 0. 4.1.12)

Proof From the assumptions of the proposition it follows that the u is a smooth
function on GR \ TR Therefore, the boundary condition on 'R can be understood
in the classical sense. Setting & = d,u + i{u in (4.1.11), we obtain

C(u, u)rr =Im@yu +icu, u)pr = Im(yu, u)pr + & (u, u)rr

and Im(d,u, u)pr = 0. O

4.1.3 Justification of the Method for Computing
the Scattering Matrix

To justify the method, we have to verify that the matrix £¥ with entries (4.1.4) is
nonsingular and the minimizer a®(R) of functional (4.1.2) tends to the /th row of the
scattering matrix as R — oo.

Proposition 4.1.5 The matrix ER with entries (4.1.4) is nonsingular for all R > R,
where Ry is a sufficiently large number.
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Proof Suppose that the required assertion is false. Then, for any R, there exists a
number R > RY such that the matrix £® is singular and the functionsif = >_ jCin;

andV =3 ;c;v; are related by

U(x) =V(x), xeTlk, (4.1.13)

where vj_ is a solution to problem (4.1.3) and 7 = (c1,...,cpy) is a vector with

T =1. According to the equation on 'R in (4.1.3), we have
Ux) = 9,V(x), x eIk, (4.1.14)
In view of Proposition 4.1.4,
0V, V)rr — (V, 0,V)rr = 0.
Now, (4.1.13) and (4.1.14) lead to the equality
U, U)prr — U, 0,U)rr = 0. (4.1.15)

For the waves uj.t in G [see (2.3.4) and (2.3.5)], the relations

@, ug)re — (U7, e = Fidjk, (4.1.16)

(avujﬁ, u) e — (qu, douf)rr = 0. (4.1.17)

hold. From (4.1.15), (4.1.16), and (4.1.17), it follows that

0= Zc,-zk((avu;, wrr — (5, du )pe) =i Z le;1* =1,
J

J.k
a contradiction. O
Proposition 4.1.6 Suppose that a vector a(R) = (a;(R), ..., apy(R)) minimizes

the functional JIR in (4.1.2). Then
JR (@(R)) = 0(e ) as R — oo, (4.1.18)

where § is the same number as in (3.2.5). For all R > Ry, the components of a(R)
are uniformly bounded, that is,

laj(R)| <const <oo, j=1,..., M. (4.1.19)
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Proof Denote by YIR the solution to problem (4.1.1), where fora;, j = 1, ..., M, the
elements §j; of the scattering matrix S of problem (3.1.16) are taken. The asymptotics
(3.2.5) can be differentiated; hence

@ + iR = ¥)lpr = 0(e™0F).

Since Y, lR — Y] satisfies the first two equations of problem (4.1.5) with f = 0 and
g = 0, it follows that estimate (4.1.10) holds for u = Y* — ¥;:

IYR —¥i; Lo < 1217110y + i) (Y = v Loy(DF)| < ce™®F.

This inequality, together with (3.2.5), provides the estimate

M
TR =1V = @ + D7 Siju7); Ly P < ce™F
j=1

with constant ¢ independent of R. To obtain (4.1.18), it remains to note that
IR @(R) < IR S

We proceed to estimating the minimizer a(R). Let Z IR denote the solution to prob-
lem (4.1.1) corresponding to the vectora(R) = (a1 (R), ..., apy(R)). By Proposition
4.1.4,

WzZF, 2By — (2R, 0,28 = 0. (4.1.20)
In view of (4.1.18),
M
1ZR — @ + Zaj(R)u;); LyT®| =0 *®), R— . (4.1.21)
j=1
Since
M
@y +i0Zf e = @y +i0) @ + D a;(R)u))Irx,
j=1

from (4.1.21) it follows that

M
100(Z = (i + D aj(Ryup)): Lo = 0 ™). R — o0, (4.1.22)
j=1
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From (4.1.21) and (4.1.22) we derive that Z® = ¢; + TR, where ¢; = u;" +
> aj(Ryu; and [TR; LyTR)| = 0(™*F) and |19, T%; Lo(TF) || = O(e7F). We
substitute the expression of Z IR into (4.1.20) and obtain

v, o)rr — (@1, @) rr
= (@1, BTV — @ TR, @)pr + (TR, 800 pr — Do, T®) e (4.1.23)
+ (1R, 0, TR — B, TR, TR k.

In view of (4.1.16) and (4.1.17), the left-hand side of (4.1.23) is calculated straight-
forwardly:

Bver, )& — (1, B e = —i (1 — a(R)[?).
This and equality (4.1.23) lead to the estimate
11— 1a(R)| = (lgr; La@®) |+ 118,015 La(TRY ) O (e7%F).

Moreover, taking into account the inequality (|l¢;; Lo(DR)|| + 18,¢1; Lo(TR)|| <
C(1 + |a(R)|), we obtain

11— Ja(R)*| = (1 + |a(R)|O(e™°F)

and |[a(R)| =14+ o(1) as R — oo. U

Proof of Theorem 4.1.1 Let Y}, ZIR and (a;(R),...,ay(R)) be the same as in
Proposition 4.1.6. We substitute u = U; :=Y; — Z IR into (4.1.12) and obtain

(U, Upyrr — (U, 3,Up)pr = 0. (4.1.24)
We set
M M
o :u;r—i—Zaj(R)u;, Wy =u1++ZSlju; (4.1.25)
j=1 j=1

and write U; as

Ui=Y -2 = =¥+ @ — o) + (@ = Z[).
By virtue of (3.2.5), (Y — ¥1)Ipr = O (e R); the waves u]jE are bounded as well

as the minimizer [see (4.1.19)], hence ¥; — ¢; = O(1). Taking into account also
(4.1.21) and (4.1.22), we pass from (4.1.24) to the relation

B (W1 — @), Vi — @) pr — (Y1 — @1, 3 (Y1 — @))pr = 0(e°F). (4.1.26)
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Here the left-hand side is calculated straightforwardly (by means of (4.1.25), (4.1.16),
and (4.1.17)) and equals i z]}/lzl laj(R) — S |2 . Finally, we obtain

M
> 1aj(R) — 817 = 0(e*F). 4.1.27)
j=1

We now prove that the estimate

M
> 1aj(R) — 8;I* = O(exp—26(1 —27V)R), (4.1.28)
j=1

which coincides with (4.1.27) for N = 1, is valid for any positive integer. It suffices
to show that N in (4.1.28) can be replaced by N + 1. Using (4.1.28), we obtain

M
Vi — =D (S —aj(R)u; = O(exp—8(1—2"")R).
j=1

Let us employ this estimate instead of ¥; — ¢; = O(1) and pass from (4.1.24)
to (4.1.26) with right-hand side changed for O (exp (—&(1 — 27N)R — §R)). Once
again, calculating the left-hand side of (4.1.26), we have

laj(R) — SijI* = O(exp—28(1 —27N"HR). (4.1.29)

M=

1

J

Let us notice that, instead of §, we could from the outset take a slightly greater number
8. Choosing now a sufficiently large N, we obtain 28'(1 —2~N=1) > 25. (I

4.2 A Method for Computing Scattering Matrices
in Vicinity of Thresholds

We now proceed to calculating the matrix S(u) in Theorem 3.2.6, (ii) with u €
[w', ] C (t/,1”). The interval [p’, u”] contains the threshold 7 and, possibly,
some eigenvalues of operator (3.2.11). For the sake of simplicity, we suppose that the
interval [14/, 1" is narrow enough to be contained in an open interval U, provided by
Lemma 3.2.4. Then the index y in asymptotics (3.2.9) is independent of i € [u/, "]
and satisfies /T — u’ < y < /p” — t”. We introduce the boundary value problem
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—AXf —pxf =0 xec®
xXF=0 xeac®\rk
O +iOXF = @0y + i) (w] + ZL agwy), x e TR @2.1)
where wf is stable basis (3.1.9), (3.1.10) in the space of waves, { € R\ {0}, and

ar € C. As an approximation to the row (51, ..., Sju), we suggest a minimizer
a®(R) = @¥(R), ..., a};(R)) of the functional

T oap) = 1] —wl = > apws Ly, 4.22)
k=1

where X jR is a solution of problem (4.2.1). Let us consider the problems
—Az; —pz; =0, xeGf
zji=0, xeBGR\FR;

Oy +i0)77 = @u+iOwT, xeT’ j=1,....M,

set

—w;, g — w,:)FR ) (4.2.3)

and rewrite functional (4.2.2) in the form
TR(a) = (a&, a) + 2Re (Ff, a) + GF,

where F ]R is the jth row of the matrix F R Thus the minimizer a®(R) is a solution
to the system a(R)ER + ff =0.

The justification of the method is similar to that in the previous section. The next
proposition can be verified in the same way as Proposition 4.1.5.

Proposition 4.2.1 The matrix EX (1) with entries (4.2.3) is non-singular for all
w € [, u"land R > Ry, where Ry is sufficiently large number.

Proposition 4.2.2 Leta(R, 1) = (a?(R, w, ..., ag,[(R, W) be a minimizer of the
functional JR in (4.2.2). Then

TR (aO(R, u)) <Ce PR for R = oo, (4.2.4)
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where the constant C is independent of R > Ry, u € [/, 1], and y is the same
number as in (3.2.9). Forall R > Ry and i € [/, (1], the components of the vector
a®(R, 1) are uniformly bounded,

la)(R, w)| < const < 00, j=1,..., M.

Proof Relation (4.2.4) has been obtained in the same manner as 4.1.18. Let us verify
the uniform boundedness of the minimizer aO(R, w). Denote by Z IR the solution of

problem (4.2.1) corresponding to a*(R, n) = (a(l)(R, w, ..., aR,I(R, w)). Setting
Uu=v= ZIR in the Green formula, we obtain

BZR, ZBrr — (28, 0,28 ) pr = 0. (4.2.5)

By virtue of (4.2.4),

M
1ZF = w4+ D aj(R, wyw)); LaT ] = 0e), R— o0,  (4.2.6)
j=l1

uniformly with respect to w. Since

M
@ +iOZf pr = @y + i) + D" af(Rw))Irs,
j=1

from (4.2.5) it follows that

M
19, (Zf = (wf + D ad(Ryw)); LR = 0(eF), R—o0. (427
j=1

Recall that, for u > t, the waves wldE are bounded functions; for u < t, the waves
wljE with L < | < M defined by (3.3.2) grow at infinity as O (evV*—**I) and, for

w=1,as O(|x|). Moreover, /T — ' < y.
We use (4.2.6) and (4.2.7) to reduce (4.2.5) to the form

Bver, )rr — (1, B rr = (llgrs La(TR) I+ [18ugr; Lo(T®))
% O(e*(V*«/T*M*E)R)’

where ¢; = wl+ + Za?(R)wj_; as before, /T — u =i/ — v for u > 7, € being
an arbitrary small positive number. In view of (3.1.11) and (3.1.12), the left-hand
side is equal to —i (1 — > |a9(R)|2). Therefore,
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11— la(R)P] = (1 + [a(R)]) O (e~ VT1=9),

which leads to |a®(R)| = 1 + o(1). O

Theorem 4.2.3 Forall R > Ry, where Ry is a sufficiently large number, and for all
we ', W' c ("), there exists aunique minimizer a®(R, u) = (a(l)(R, 175 PR
aR/I(R, W) of the functional ._71R in (4.1.2). The estimates

M
D 1Sk — al(R, )] < Ce MF (4.2.8)
k=1

holdforall R > Ry, u € [/, ], and0 < A <y — /T — i/, where y is the same
as in (3.2.9) and the constant C = C(A) is independent of R and .

Proof Let YIR be a solution to problem (4.2.1), where a;, j = 1, ..., M, are taken to
be the entries S of the scattering matrix S, and let ZZR and (a? (R, ), ..., a?w (R, )
be the same as in Proposition 4.2.2. We substitute u = v = U; := )| — ZlR into the
Green formula. Since Uj satisfies the first two equations in (4.2.1), we have

@,U;, UDpr — Uy, 3,Up)pr = 0. (4.2.9)
Setting
M M
g =w+ D dfR ww;, Y =w+ D Siwwy, (4.2.10)
j=1 j=1

we write down U; in the form
U=Y—Zf = —v)+ W —e)+ (o — 2.

Note that (V; — ¥1)|pr = O (e~ 7Ry by virtue (3.2.9). Moreover, by Proposition
4.2.2, the components of the minimizer a; (R, 1) are uniformly bounded. In view of
(4.2.6) and (4.2.7), this leads from (4.2.9) to the relation

@y (Y1 — @), (W1 — @))rr — (W1 = @1), 3 (Y1 — @1))pr = O(e™ ¥ —VT7H=OR)

(4.2.11)
where ¢ is an arbitrary small positive number. Straightforward calculation shows that
the left-hand side is equal to i Z;VI:] |a(/.)(R, w) — S (w)|? (it suffices to use (4.2.9),
(3.1.11), and (3.1.12)) and we arrive at

M
D YR, @) = Sij ()P = 0e Y VTHmIR), (4.2.12)
j=1
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We now prove the inequality

M
S laj(R, ) = Sy = 0(e 20 —VTAmO0=27k) (4.2.13)
=1

which coincides with (4.2.12) as N = 1. It suffices to show that N in (4.2.13) can
be replaced by N + 1. Using (4.2.13), we obtain

M
Vi— o= (S —aj(Ryu; = Oexp{—(y —vT—p—e)(1 —27")R).

j=1

Let us employ this estimate instead of y; — ¢y = O (VT =#9 ¥y and pass from
(4.2.9) to (4.2.11) with right-hand side changed for O (exp (—8(1 —2~¥)R — §R))
as § = y — /T — i — €. Once again calculating the left-hand side of (4.2.11), we
have

M
Z laj(R) — Sij1* = O(exp{—2(y — /T —p—e)(1 —27V"HR})). (4.2.14)

j=1

Let us notice that, instead of y, we could from the outset take a slightly greater
number Y’ such that y’ — & > y. Choosing now a sufficiently large N, we obtain
2y = JT = —e)(1 =271 > 2(y — /T — 11). It remains to replace /T — i

by max,ep,. ) /T — =T — 1. O

In a neighborhood of the threshold 7, the matrix S(u) can be calculated by the
presented method. Since the limits of S(u) as u — t &£ 0 are finite, the connection
between S(u) and S(u) allows us to calculate S(u) for w in vicinity of 7.



Chapter 5

Asymptotic and Numerical Studies

of Resonant Tunneling in 2D-Waveguides
for Electrons of Small Energy

In this chapter, we consider a 2 D-waveguide that coincides with a strip having two
narrows of the same width ¢ symmetric about the waveguide axis. The resonant
tunneling is discussed for electrons with energy between the first and the second
thresholds, so only one incoming wave and one outgoing wave can propagate in
every outlet of the waveguide; in other words, we deal with electrons of small energy.
There are no external fields. We derive asymptotics for the resonant energy, for the
transmission coefficient, and for the width of the resonant peak at its half-height
as ¢ tends to zero. Then we compare the asymptotic results with those obtained by
numerical calculation of the scattering matrix. Finally, we discuss the impact of a
finite waveguide work function on the resonant tunneling and assess the mathematical
model adequacy for the tunneling in quantum waveguides with narrows.

The scheme of the asymptotic analysis developed in the chapter will be general-
ized and implemented for 3 D-waveguides with resonator of arbitrary form and two
narrows of width €] and &> (Chap. 6) and for the resonant tunneling in the presence
of a magnetic field in the resonator (Chaps. 7 and 8).

5.1 Statement of the Problem

To describe the domain G(e) in R? occupied by the waveguide, we first introduce
two auxiliary domains G and € in R?. The domain G is the strip

G=RxD={(x,y) eR¥:x eR = (—00, +00); y € D = (—1/2,1/2)}.

Let us define 2. Denote by K a double cone with vertex at the origin O that contains
the x-axis and is symmetric about the coordinate axes. The set K N S, where S! is
a unit circle, consists of two simple arcs. Assume that €2 contains the cone K and a
neighborhood of its vertex; moreover, outside a large disk (centered at the origin) 2
coincides with K. The boundary 92 of 2 is supposed to be smooth (see Fig.5.1).
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Fig. 5.1 Domain Q

Fig. 5.2 Waveguide G(¢)

We now turn to the waveguide G (¢). Denote by €2 (¢) the domain obtained from 2
by the contraction with center at O and coefficient . In other words, (x, y) € Q(¢)
if and only if (x/e, y/e) € Q. Let K; and Q(¢) stand for K and 2 (¢) shifted by
the vectorr; = (x?, 0), j = 1, 2. We assume that |x? — xgl is sufficiently large, so
the distance from 0 K1 N d K> to G is positive. We put (see Fig.5.2)

G(e) =G NQe) N ().

The wave function of a free electron of energy k> satisfies the boundary value
problem

— Au(x,y) —Ku(x,y) =0, (x,y) € G(e), (5.1.1)
ulx,y) =0, (x,y) €aG(e).
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Moreover, u is subject to radiation conditions at infinity. To formulate the conditions
we need the problem

— Av(y) = A%v(y) =0, yeD, (5.1.2)
v(—=1/2) = v(l/2) = 0.

The eigenvalues Afl of this problem, where g = 1, 2, ... are called the thresholds; they
form the sequence AZ = (mq/D? g =1,2,....Wesuppose thatk? in (5.1.1) satisfies

(r/D? < k? < 27/ 1)2,1.e., k? is between the first and the second thresholds. Then,
in the space of bounded wave functions, a basis is formed by the wave functions
subject to the radiation conditions

Ui (x,y) + Si1(k) Ua(x, y) + O(e%*), x — —oo0,
up(x,y) = 7 (5.1.3)
S12(k) Uy (x, y) + O(e™), x — +0o0;
5x
(. y) = S21(k) Uz (x, y) + O(e™), ) X — —00, (5.1.4)
Us(x,y) + Sn(k) Ui (x, y) + O(e™%%), x — +o0.

In the strip G, the function Uj (x, y) = gzi”lxllll (y) is a wave incoming from —oo and
outgoing to +o00, while Uz (x, y) = e ""1* W (y) is a wave going from 400 to —o0.

Here v; = ,/k? — k%; W is an eigenfunction of problem (5.1.2) that corresponds to

the eigenvalue 22,

Wi (y) =+/2/lvicosiry. (5.1.5)

The matrix

S = 11Smjllm, j=1.2

with elements from conditions (5.1.3) and (5.1.4) is called the scattering matrix; it
is unitary. The values

Ry =Snl>. Ty =|Sn)?

are called the reflection and transition coefficients, relatively, for the wave U} incom-
ing to G (&) from —oo. (Similar definitions can be given for the wave U, coming
from +o00.) The goal is to find a “resonant” value k, = k,(¢) of the parameter k cor-
responding to the maximum of the transition coefficient and to describe the behavior
of Ty, (k, &), m =1, 2, for k in a neighborhood of &, (¢) as ¢ — 0.
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5.2 Limit Problems

We derive the asymptotics of a wave function (i.e., the solution of problem (5.1.1)
as ¢ — 0) by use of the method of compound asymptotic expansions. To this end,
we introduce “limit” boundary value problems independent of the parameter ¢.

5.2.1 First Kind Limit Problems

Put G(0) = G N K1 N K3 (Fig.5.3); thus, G(0) consists of three parts, Gg, G1, and
G, where G| and G, are infinite domains, while G is a bounded resonator.
The problems

— Av(x,y) — kv, y) = f, (x,y) € Gj, (5.2.1)
U(x,)’):(), (xvY)Gan,

where j = 0, 1, 2, are called the first kind limit problems.

Now we introduce function spaces for problem (5.2.1) in Gy. Let ¢; and ¢» be
smooth real functions in the closure G of G such that ¢; = 1 in a neighborhood
of 0j,j=1,2, andqbl2 +¢% =1.For/ =0,1,...and y € R, the space V}f(Go) is
the completion in the norm

1/2

I 2
I Gl = ([ 3 3 g ot P drdy

0 |a|=0 j=1

of the set of smooth functions in Go which vanish near O; and Oy; here r j is the dis-
tance between (x, y) and O, = («y, o2) isamulti-index, and % = 8‘“'/8x"” 0y“*2.
Proposition 5.2.1 follows from well-known general results, e.g., see [37, Chaps.2
and 4, Sect. 1-3] or [33, Vol. 1, Chap. 1].

Fig. 5.3 The “limit waveguide” G (0)
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Proposition 5.2.1 Assume that |y — 1| < w/w. Then, for every [ € V}E) (Go) and

any k* except the positive increasing sequence {k?] bl

of eigenvalues, k?, — 00,

there exists a unique solution v € VVZ(GO) to problem (5.2.1) in Gg. The estimate
lv; V2 (Go)ll < el f: VY (Go)l (5.22)

holds with a constant ¢ independent of f. If f is a smooth function in Go vanishing
near O1 and Oy and v is any solution in Vyz(Go) of problem (5.2.1), then v is smooth

in G except at O and Oy and admits the asymptotic representation

o) [blln/w(krl)GD(wl) +0(r™Y), =0
’ by T jo(kr2)@(r — 92) + O (r;™/). r2 = 0

near the points Oy and O, where (rj, ¢;) are polar coordinates with center at O j,
bj are some constant coefficients, J stands for the Bessel function multiplied by a
constant so that J (kr)y =r* + o(r/‘) and ® (@) = w12 cos (mg/w).

Ifk? = k2 is an eigenvalue of problem (5.2.1), then problem (5.2.1) will be
solvable in Go ifand only if (f, ve)G, = 0 for any eigenfunction v, corresponding to
kg. The condition being fulfilled, there exists a unique solution v to problem (5.2.1),
which is orthogonal to the eigenfunctions and satisfies (5.2.2)(i.e., the Fredholm
alternative holds).

We turn to problems (5.2.1) for j = 1,2. Let xo,; and x~,; be smooth real
functions in the closure E] of G; such that X0, £ = 1 in a neighborhood of O,
x0,j = 0 outside of a compact set, and Xo + X% = = 1. We also assume that the
Support supp xoo, j is located in the cyhndrlcal part of G;. Fory € R, § > 0, and

1=0,1,...,the space V. V. s(G ;) is the completion in the norm
1/2
L2t
v V! 3Gl = / S (x 201D |2 exp(26x)) [0 dx dy
G lal=0

of the set of smooth functions in G ;j having compact supports and vanishing near O;.

Recall that, according to our assumption, k2 lies between the first and the second
thresholds, so that in every G ; there is only one outgoing wave. Let U;” = U be the
outgoing wave in G1,and U, = Uy be the outgoing wave in G (for the definition of
U; in G see Sect.5.1). The next proposition follows, e.g., from [37, Theorem 5.3.5].

Proposition 5.2.2 Let |y —1| < m/w and suppose that there is no nontrivial solution
to homogeneous problem (5.2.1) (where f = 0) in VVZ’S(GJ-) with arbitrary small

positive 8. Then, for any f € V)E)’ 5(G ), there exists a unique solution v to problem
(5.2.1) that admits the representation

v=u+Aono,jU7,



86 5 Asymptotic and Numerical Studies of Resonant Tunneling ...

where Aj = const, u € Vf‘a(Gj), and § is sufficiently small. Furthermore, the
inequality

lu: V) (G + 1A < e f: V) s(G L

holds with a constant c independent of f. If the function f is smooth and vanishes
near O, then the solution v in G1 admits the representation

e 2
v(x,y) = a1 (k)@ — @) + 0(177/?), 1 =0,
and the solution in G admits the representation
7 2
v(x, y) = a2 ) (kr)®(2) + O (r37), r2 =0,

where a; are some constants.

5.2.2 Second Kind Limit Problems

In the domains €2, j = 1, 2 (introduced in Sect. 5.1) we consider the boundary value
problems

Aw(j,nj) = Fj,n5), (&5, nj) € Qj,

(5.2.3)
w(j,nj) =0, ¢j,nj) € 022,

which are called the second kind limit problems; (&}, ;) are Cartesian coordinates
with origin at O;.

Let p; = dist((§j, n;), O;) and let ¥, j, Yo, be smooth real functions in §j
such that ¥ ; = 1 for p; < N/2, ¥ ; = 0 for p; > N, and 1//&]. + wgo,j =1,
N being a sufficiently large positive number. For y €e Rand/ =0, 1, ..., the space
V]f (£2;) is the completion in the norm

. 172
llv; Vf,(Qj)II = (/Q Z (vo, (&} 77j)2 + VYoo, (&), Uj)zp_?(yilﬂa‘))\aav(%‘j, nj)lzdéjdnj)
J Ja|=0

of the set C2° (ﬁj) of smooth functions with compact supports in 5./. The next
proposition is a corollary of [37, Theorem 4.3.6].

Proposition 5.2.3 Let |y — 1| < w/w. Then, for every F € V;) (82}), there exists a
unique solution w € Vyz(Qj) to problem (5.2.3), and

lw: V@I < cllF; V()|
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holds with a constant c independent of F. If F € CZ° (Q i), the w is smooth in Q j
and admits the representation

djp;”/“@(n -9+ O(pf”/“’), £ <0,

d;p; v +0(p ). g >0,

w(j,nj) = (5.2.4)

as pj — oo, here (pj, ;) are polar coordinates in Q2 with center at Oj, and
function ® is the same as in Proposition 5.2.1. The constant coefficients dﬁ- and d;
are defined by

dy = —(F,w)a, dj=—(F,w)a,

where wé and w; are unique solutions to homogeneous problem (5.2.3) such that,
as pj — 0o,

/ -/ —3n/ .
ol — ’(ﬂf “tap; ") S o)+ O(p;™"). &5<0: oo
;@) + 0(p; ), g > 0;
(B —op k0G0
wh = _ _ 2.
! (p}r/“’+ozpj”/w) P(g)) + O (p; Ty g > 0;

the coefficients o and B depend only on the geometry of the set Q and should be
calculated.

5.3 Special Solutions to the First Kind Homogeneous
Problems

Here we introduce special solutions to homogeneous problems (5.2.1) in G, j =
0, 1, 2. In the domain G, j = 1, 2, there exists a bounded solution V; such that

Ui (x,y) + 85U (x,y) + Ofexp(=8x)),  x — 00

. 2/ " (5.3.1)
stn/w(krj)CDj(q)j)+O(r ), r— 0,

Vj(x1 )’) =

with arbitrary small positive &, ®1(¢;) = ® (7 — ¢1), and P1(¢2) = P (¢2). The
scattering matrix in G consists of the only entry S;.), |S(/)| =1.

Let K! be the part of the double cone K to the left of the coordinate origin,
K' = {(¢,1) € K : &€ < 0}. Let us consider the problem

—Au—k*u=0 in K!,

u=0 ondkK. (53.2)
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The function
v(r, ¢) = Najo(kr)®(mr — @) (5.3.3)

satisfies (5.3.2); ]\7,, /o stands for the Neumann function multiplied by a constant such
that

Nojolkr) = r=7/¢ 4 o(r=7/)

and @ is the same as in Proposition 5.2.1. Let # +— ©(¢) be a cut-off function on R
equal to 1 fort < §/2 and to O for ¢ > §, § being a small positive number. Introduce
a solution

vi(x, y) = ©@)v(r, @) + vi(x, y) (5.3.4)

of homogeneous problem (5.2.1) in G, where v solves (5.2.1) with f = —[A, O]v;
the existence of v} is provided by Proposition 5.2.2. Thus,
- (N jo (k1) + a1 T oo (krD) @ (r = @1) + 0G7™), ri> 0,
vilx,y) =
AU (x,y) + 0(e?), ¥ —00,
B (5.3.5)

where Jy, is the same as in Propositions 5.2.1 and 5.2.2. The constant A # 0
depends only on the geometry of the domain G| and should be calculated.

Define the solution v, to the problem (5.2.1) in G, by va(x, y) = vi(d — x, y),
where d = dist(Oy, O;). Then

(N jor(kr2) + a2 T oo (kr2)) @ (@2) + O (3 ), 12> 0,

(5.3.6)
AUy (x,y) + 0(e™), X— +00;

va(x,y) = [

where obviously ay = ay, Ay = Aje~ivid,

Lemma 5.3.1 The equalities |Aj|* = 2Imaj, Aj = i5;S}; hold.

Proof Let (u, v)o denote the integral f 0 u(x)v(x)dx and let Gy, s stand for the
truncated domain G| N {x > —N} N {r; > §}. By the Green formula,

0= (Av +k2V1,V1)GN,,3 — (v1, Avy +k2V1)GN,,;
= (0v1/0n,V1)aGy s — (V1,0V1/0n)aGy , = 2i Im (V1 /0n, V1) E,

where E = (0Gn, sN{x = —=N})U(AGn,sN{r1 = 8}). Taking into account (5.3.5)
as x — +oo and (5.1.5), we have
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2 us —
, - _ 1 -
Im (8v1/0n,Vv1)yGy snfx=—N} = —Im /4/2A1 i (x, AU (x,y) xz_Ndero(l)

_ 2 72 2 _ 2
= 1Al [ 0)Pdy o) = 1411+ ().

Using (5.3.5) as r; — 0 and the definition of & (see Proposition 5.2.1), we obtain

T4w/2 [

9 - _
Im (0v1/0n, V1)aGy sniri=6) =Im/ —— (N jo(kry) +a1Jn/w(kr1))]
JIT

) ary

x (Wajo k) + 1T k) |06 = e Pra|  der+o(1)

r
T+w/2

2.
_ (Imal)—”/ 1@ — gn)Pdey + o(1)
O Jg—w/2

=—1Ima; +o(1).

Thus |A{]?> — Ima; + o(1) =0as N — oo and § — 0. The relation for j = 2 can
be verified in a similar way. To obtain A; = i5; S? ;» it suffices in the same manner
to apply the Green formula to the functions V; and v;. [

Let kg be a simple eigenvalue for — A with Dirichlet boundary condition in G, and
let v, be an eigenfunction corresponding to kf and normalized by |, Go |ve|2dx = 1.
By Proposition 5.2.1,

b1 Iz s (ker1) @ (1), 0,
De(x) ~ lj/w( 1) P(p1) ry — (53.7)
by Jrjw(ker2) @ (T — ¢2), 12 — 0.

We assume that b; # 0; it is true, e.g., for the eigenfunction corresponding to the
least eigenvalue of the resonator. Since the resonator is symmetric with respect to
the mapping (x, y) > (d — x, y), we have ¢ = by /b, = 1. For k? in a punctured
neighborhood of kg separated from the other eigenvalues, we introduce solutions vy
to homogeneous problem (5.2.1) in Gg by

voi(x,y) =O@)Hv(rj, ) +vo(x,y), j=1,2, (5.3.8)

where v is defined by (5.3.3) and vy is the bounded solution to problem (5.2.1) in
Go with fj(x,y) =[A, Q@) ]v(r;, ;).

Lemma 5.3.2 InaneighborhoodV C Cof kf containing no eigenvalues of problem
(5.2.1) in G except kf, the equalities Voj = —b; (k% — kg)_lve + Vo, hold with b
from (5.3.7) and functions Vo ; analytic in kK> evV.

Proof Let us first prove that (vo;, ve)g, = —b;/ (k* — kg), with vg; defined by
(5.3.8). We have

(AVoj + k*V0j, ve)Gs — (Voj, Ave + k2 0e) Gy = — (k> — k2)(Vo;, Ve) Gy
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in the domain G obtained from G by cutting out the balls of radius § centered at
O1 and O». Applying the Green formula as in the proof of Lemma 5.3.1, we arrive
at —(k2 — kf)(voj, Ve)Gs = bj + o(1). It remains to let § go to zero.

Since kg is a simple eigenvalue, we have

(2)

vO/ (x) = 2

ve(x) + 7 (x), (5.3.9)

where B; (k?) is independent of x and v; are some functions analytic in k? near the
point k% = k2 Multiplying (5.3.8) by v, and taking into account (5.3.9), the proved
formula for (vo;, ve)G,» and the normalization condition (Ve, Ve)Gy = 1, we find that
Bj (k%) = —b; + (k% — kz)B (k?) with analytic function B Together with (5.3.9),
thls leads to the required statement. ([

In view of Proposition 5.2.1,

Ny /o (k k)T o (k1)) ® 0
Vo1 (x. y) ~ ( 7/ k1) + 11 (k) Jx /ol r))® (g1, r1— 0, (5.3.10)
c12(k) o k) @ (T — ¢2), rp — 0,
k)T o (k1)) ® 0
Vor(x, y) ~ (C~21( ) jo(kry)) (@0, rp — 0, 5.3.11)
(Nzjo(kra) 4+ c22(k) Jr jo (kr2)) @ (T — @2), r2 — 0.
According to Lemma 5.3.2 and relations (5.3.7),
Cpq (k) = + Ty (), (5.3.12)

k

where ¢, analytically depends on k? nearby kz.

Lemma 5.3.3 If vo; and vop in (5.3.10) and (5.3.11) make sense for a number k,
then c1p(k) = cp1 (k).

Proof 1t suffices to apply the Green formula to vp; and vpy in the same domain
G as in the proof of Lemma 5.3.2, to use (5.3.10) and (5.3.11), and to let § tend
to 0. (]

5.4 Asymptotic Formulas

This section is devoted to derivation of the asymptotic formulas. In Sect.5.4.1, we
present the formula for the wave function (see (5.4.1)), explain its structure, and
describe the solutions of the first kind limit problems involved in the formula. Con-
struction of formula (5.4.1) is completed in Sect.5.4.2, where the solutions to the
second kind limit problems are given and the coefficients in the expressions for the
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solutions of the first kind limit problems are calculated. In Sect.5.4.3, we analyze
the expression for 51, obtained in 5.4.2 and derive formal asymptotics for the char-
acteristics of resonant tunneling. Notice, that the remainders in (5.4.24)—(5.4.27)
arose at the intermediate stage of considerations on simplifying the principal part of
the asymptotics; they are not the remainders in the final asymptotic formulas. The
“final” remainders are estimated in Sect.5.5 (see Theorem 5.5.3). First, we derive
the integral estimate (5.5.21) for the remainder in the formula (5.4.1), which proves
to be sufficient to obtain more simplified estimates of the remainders in the formulas
for the characteristics of resonant tunneling. The formula (5.4.1) and the estimate
(5.5.21) are auxiliary and are investigated only to that extent which is necessary for
deriving the asymptotic expressions for the characteristics of resonant tunneling.

5.4.1 Asymptotics of the Wave Function

In the waveguide G(eg), we consider the scattering of the wave U1+ (x,y) =
' (y) incoming from —oo. The wave function admits the representation

u(x, y; €) = x1,e(x, y)vi(x, y; €)
+OrDwie x1, 67 13 8) 4 x0,¢ (8, Vo (x, y; 6) (5.4.1)
+O(rwale” x2, 67 2 8) + x2 e (8, VX, yi 8) + R(x, v 8).
Let us explain the notation and the structure of this formula. When composing the
formula, we first describe the behavior of the wave function u outside of the narrows,
where the solutions v; to homogeneous problems (5.2.1) in G ; serve as approxima-

tions to u. The function v; is a linear combination of the special solutions introduced
in the previous section; vy and v3 are subject to the same radiation conditions as u:

vi(x, yse) = Vi(x, y) + Crivi(x, y) ~ U (x, y)

+ §11(€)U]_(x, y), X — —0oQ; (5.4.2)
vo(x, y; &) = Cra(&)vor(x, y) + Ci13(e)voa(x, y); (5.4.3)
v2(x, y; ) = C1ava(x, y) ~ §12(€)U{(x, ), X — 400; (5.4.4)

the approximations E]](S), §12(5) to the elements Si1(¢), S12(¢) of the scattering
matrix and the coefficients Cy1(¢), ..., C14(¢) are yet unknown. By x; . we denote
cut-off functions defined by

Xl,e(xv y) = (1 - ®(r1/8)) lGl(-x9 )’)7 XZ,S(-xv Y) = (1 - @(1’2/8)) le(xv )’),
x0,6(x, y) = (1 = 0O(ri/e) — O(r2/e)) 1, (x, y),
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wherer; = /sz. + yjz., and (x;, y;) are the coordinates of a point (x, y) in the system
obtained by shifting the origin to the point O;; 1¢; is the indicator of G ; (equal to 1
in G and to 0 outside G ;); ©(p) is the same cut-off function as in (5.3.4) (equal to
1for0 < p <é§/2andto 0 for p > §, § being a fixed positive number). Thus, x; .
are defined on the whole waveguide G (¢) as well as the functions x; cv; in (5.4.1).

Being substituted to (5.1.1), the sum Z?:o Xj, ¢V gives adiscrepancy in the right-
hand side of the Helmholtz equation supported near the narrows. We compensate
the principal part of the discrepancy by means of the second kind limit problems.
Namely, the discrepancy supported in the neighborhood of the point O; is rewritten
into coordinates (§;, ;) = (e_lxj, g1 y;) in the domain €2; and is taken as a right-
hand side for the Laplace equation. The solutions w; of the corresponding problem
(5.2.3) are rewritten into coordinates (x;, y;) and multiplied by a cut-off function.
As aresult, the terms O (r;)w; (8_1)6‘/', 8_1y‘,~; ) arise in (5.4.1).

Proposition 5.2.3 provides the existence of solutions w; decaying at infinity as
O(pj_”/ “) (see (5.2.4)). But those solutions will not lead us to the goal, because
substitution of (5.4.1) into (5.1.1) gives a high-order discrepancy, which has to be
compensated again. Therefore, we require the rate w; = 0(p; ™) as p i — 00.
By Proposition 5.2.3, such a solution exists if the right-hand side of problem (5.2.3)
satisfies the additional conditions

(F.w))e, =0, (F.w)e, =0.
These conditions (two at each narrow) uniquely determine the coefficients §11(8),

§12(8), and Cyy(¢), ..., Cra(e). The remainder R(x, y; ¢) is small in comparison
with the principal part of (5.4.1) as e — 0.

5.4.2 Formulas for §11, §12, and Cy;

Now, let us specify the right-hand sides F; of the problems (5.2.3) and find §1 1(8),
S12(¢), and Cy;(¢). Substituting x1, cv1 into (5.1.1), we get the discrepancy

—(A+ K1, ev1 = —[A, xe1lv1 = Xe 1 (A + KDvi = —[A, 1= O 'rD ]y,
which is non-zero in the neighborhood of the point O, where vy can be replaced

by asymptotics; the boundary condition in (5.1.1) is fulfilled. According to (5.4.2)
and (5.3.1), (5.3.5)

vi(x, y; &) = (ay (&) Najwlkry) + aj () Jrjw(kr1)) (7 — @1)
+ 00", r -0,
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where

a;(e) =Cu, a =s1+Cnai. (5.4.5)
We select the leading term in each summand, take p; = rq /¢, and obtain

—(A+ R v1 ~ =[A, 1 =0 )] (a7 7 4 a T o - 1)

_ _8_2[A(qu¢1)’ 1— 0] (al—g—n/w —7/w +a+ /W n/w) O — ).
(5.4.6)

In the same way, taking account of (5.4.3), (5.3.10), and (5.3.11), we write the leading
discrepancy of x. ovo supported in a neighborhood of O;:

— (A X000 ~ —& 2 [A(py.p1): 1=O (0] (bl—e—”/wpf”/‘“ + bfs”/wpf/‘“) (1),
(5.4.7)
where

by = Cia(e), bf = Cra(e)err + Ciz(e)ear. (5.4.8)

As aright-hand side F; of problem (5.2.3) in 21, we take the function

Fi&.m) =—[A,¢7] (are—”/wp;”/“’ + arsﬂ/wpf/w) (T — @)

— 1A T (b e 7+ b7 ) Do), (549)

where ¢ (respectively ¢ ~) denotes the function 1 — ©, first restricted to the domain
&1 > 0 (respectively £; < 0) and then extended by zero to the whole domain ;.
Let w be the corresponding solution; then the term @(rl)wl(s’lxl, 8’1y1; £) in
(5.4.1), being substituted in (5.1.1), compensates discrepancies (5.4.6) and (5.4.7).

Now, we use (5.4.3) and (5.4.4), (5.3.10) and (5.3.11), and (5.3.6) to find the
right-hand side of problem (5.2.3) for j = 2:

Fag,m) = —[A,¢7) (a7 e py ™ af e pf /) o — )

—[A,§+] (b— —ﬂ/wp 7/w +b+ ﬂ/wpg/w) O (),
where

ay (e) = Ci3(e), aj (e) = Cra(e)ciz + Cr3(e)ea,

. > (5.4.10)
by () = Ci4(8), b, (¢) = Cra(&)az.
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Lemma 5.4.1 Let the solution w; to problem (5.2.3) with right-hand side
Fion) == 18, ¢71 (a7e7™/2 ;™ 4 afe™/p]/") bz — )
—[A, §+] (bj gfﬂ/w —n/w + b+ T/w zr/w) D (p)),

Jj = 1,2, be majorized by O(,o T/

) as pj — 00. Then the relations
a7 e/ aafe”/‘” ﬂb}'e”/w =0, b;e_”/“’ — otb}Le”/"’ — BaTe™® =0,

! (5.4.11)
hold with o and B in (5.2.5) and (5.2.6).

Proof In view of Proposition 5.2.3, we have w; = O(p; 3/

right-hand side of the problem (5.2.3) satisfies the conditions

) as p; — oo iff the

(Fj,whe, =0, (Fj,whe, =0, (5.4.12)

where w’. and w’; are solutions to the homogeneous problem (5.2.3), for which the
expansions (5.2.5)—(5.2.6) hold. We introduce the functions f+ on Q; by equalities

fe(pj @) = ,oi”/wcb(cpj). To derive (5.4.11) from (5.4.12), it suffices to check
that

(A, ¢ 1/ wha, = (A, ¢TI whe, =

(A ¢ 1 whe, = (A, ¢F1fr whe, = o,
(A, c* 11 wha, = (A, 71— whe, =0,
(A, e M1 whe, = (A, ¢ 1f whe, = B.

Let us prove the first equality; the rest are treated analogously. Since [A, 7] f-
is compactly supported, in the calculation of ([A, 7] f_, u)l/.)g ; one may replace

Q; by Qf = Q; N{p; < R} with sufficiently large R. Let E denote the set
agf N{p; = R} N {&; > 0}. By the Green formula

(1A, 71/~ whe, = (AL [ wigr = (€™ [~ Awj)gr
= (3f-/on, w))E — (f-, 0w’ /dn)E.

Considering (5.2.5) for §; < 0 and the definition of ® from Proposition 5.2.1, we
arrive at
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— ! 3p_”/w T/w —/w T/w —/w
(A £ 1wy = | ——— ;" +ap; ) = p, (p +ap; ") | p)
Oj pj=R
T+w/2 )
X / O(m — ¢j)°depj +o(l)
T—w/2
2T T4w/2
=-= Ot — ;) 2de; +o(1) = =1+ o(1).
O Jr—w/2
It remains to pass to the limit as R — oo. (I

Remark 5.4.2 The solutions w; mentioned in Lemma 5.4.1 can be represented as
linear combinations of functions independent of ¢. Let wlj and w; be the solutions

of problem (5.2.3) specified by conditions (5.2.5) and (5.2.6) and let ¢ T and ¢~ be
the same cut-off functions as in (5.4.9). Put

wh=wh = (07 4+ ap, ) @ — g)) = o @),
Wi =l — ¢ ;v — ) — ¢t (p”/‘" +ap; ”/“’) D(p;).
A straightforward verification shows that

wj =ale"/w), w +ble™ W, (5.4.13)

It is convenient to write (5.4.11) in the form

— — T/w aﬂ
(a; ,bj)=(aj+,bj)Aa2 o A= (ﬁ a). (5.4.14)

We use (5.4.5) and (5.4.8) to transform (5.4.14) with j = 1 to the equality
(C11, Ci2) = (s1+ Cniar, Cacin + Craean) A&7/ (5.4.15)
For j = 2, taking (5.4.10) into account, we reduce (5.4.14) to
(C13, C14) = (Ciac1z + Cizcnn, Craar) A 27/ (5.4.16)
Setting A = diag {A, A},

apr 0 00
| Ociiec20
a=1, a1 0] (5.4.17)

00 0 a
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and combining the above relations for Cy ;, we obtain
(C11, C12, C13, C1a) = (51,0,0,0) A e*™/® + (Cyy, Cya, Cu3, C1a) a A 77/,
hence
(C11, C12, C13, Cra)(I —a A e¥/?) = (51,0,0,0) A e¥/*. (5.4.18)

Let us calculate the inverse matrix for I — aAe>/®, assuming ¢ to be sufficiently
small. From (5.3.12) it follows that

*

b*b .
a(k) = —m +a(k),

where b = (0, by, by, 0) and the matrix @ is analytic near k = k. and defined by
(5.4.17), whereas ¢, is replaced for ¢,,,. We have

27/
[_aASZH/w:[_aAEZH/w+M
kz—kg
b*b A rjor — g A g27/wy—1 .
:(1+ £ k(2 kaz i) )(I—aAsZ”/“’);
— Re

it is evident that (/ — @ A £27/©)~1 exists for small . Straightforward calculation
shows that

(I n b*c )_1 _ b*c
k% — k2 k* — k2 + (¢, b)
forc = b A £27/°(]—G A ¢27/®)~! where (-, -) isthe inner product in C*. Therefore,

(I _ aASZﬂ/w)_l — (I —aA 827‘[/0})—1
b*b A 8271/@(] —GA 8271/a))71
x I — — .
( K2 —kZ+ (bAe2m/o(] —a A e2r/o)— T, b))

This leads to

(C11, C12, C13, C14) = (51,0,0,0) A e¥/(I —a A £¥7/?)~!

Db*b D
= (51,0,0,0) (D— — ) (5.4.19)
k2 — k2 + (bD, b)

where b = (0, by, ba, 0), D = Ae?/*(] — G A e*/®)~! and the matrix @ is
analytic in k near k. and defined by (5.4.17) with ¢4 replaced by ¢4 (see (5.3.12)).
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We now seek an approximation to the entries of the first row (S, S12) of the
scattering matrix. By virtue of (5.4.2) and (5.4.4),

(S11, S12) = (Y} + C11A1, ClaAr). (5.4.20)

We set

—_

0
0 (51000,
ol *“\ooos)’

2

co o>

B

50 = diag (5Y|, S%,); then, by Lemma 5.3.1, A = is*S°. In view of (5.4.20) and
(5.4.19), we obtain

(11, S12) = (89,,0) + (C11, C12, C13, C14) A

(891, 0) +i(s51,0,0,0) | D bbb D *s0
= ) ACIPRURYS - N .
1 ! k2= k2 + (bD,b)
(5.4.21)
An approximation to the second row of the scattering matrix is of the form
-~ - Db*b D
a1, §22) = (0, %) +i(0,0,0,5) | D — *s0
(821, §22) = (0, $3) +i( Sz)( k2—k§+(bD,b))s
(5.4.22)

Lemma 5.4.3 The matrix E(e) is unitary.

Proof Let B temporarily denote the matrix (I — aAe?™/®)~1Ae27/®_Since (§°)*
SO0 =/, the equalities

S(e)S(e)* = S(e)(S9)*S°S(e)* = (I +isBs™)(I — isB*s™)
=1+is(B— B* —iBs*"sB*)s*

hold. We have to show that B — B* — i Bs*s B* = 0. By Lemma 5.3.1,
a—a*=iAA* = i(is*S?)(is*S*)* = is*s
and, consequently,

B — B*—iBs*sB*=B — B* — B(a —a™)B*
— B(I +a*B*) — (I + Ba)B*.
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Moreover,

I+Ba=1+ - Aa82“‘+1)_1Aa82“1+1 = - Aaaz“lH)_l,
I+a*B* = (I + Ba)* = (I —a*Ae?1tH~1

whence

B(I +a*B*) — (I + Ba)B* = 0.

5.4.3 Formulas for Resonant Tunneling Characteristics

The solutions of the first kind limit problems involved in (5.4.1) are defined for
complex k as well. Expressions (5.4.21) and (5.4.22) for § have a pole k, in the
lower complex half-plane. To find klz, we equate k> — ke2 + (bD, b) to zero and solve

the equation for k% — k2:
k* — k> = —(bD,b) = =2/ (bA (I —a A ¥/)~! b). (5.4.23)

Since the right-hand side of the last equation behaves like O (¢27/¢) as ¢ — 0, it
may be solved by the successive approximation method. Considering the formulas
by = £by, Ima; = Imay = |5y |2 /2, which follow from the waveguide symmetry
and Lemma 5.3.1, and discarding the lower order terms, we get kf, = k,2 — ikiz, where

kP =k —2abie®™ + 0(Y/), k= BbiIs1 ()P + 0().
(5.4.24)
From (5.4.21) and (5.4.22), we obtain

* * 0
Sk, &) =5°0) + is () A 5* () S kye27/o — SOADDASOT®E) g

2 _ 2
k= — ks
( g7/ )
+ 0\ >—
k> — k2
_ (S(l)l(k) 0 )—H (|S1(k)|20115?1(k) 0 )8271/w
0 2 0
0 SY(k) 0 |52 (k)| “a2.85, (k)

o 51 (K)PBB2SY (k) s1(K)s2(K)b1b2 B85, (K)Y La o
k2 — k2 \s2(k)s1 (k)b1b2 2 ST, (k) |s2(k) b3 B2 S, (k)

(86n/w)
+0\ —1).
2 2
k= — ks,
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Let k& — kg = O(*7/), then ce¥™/ < |k* — kj| < ce®™/, 5;(k) = sj(ke) +
0(8271/(0), S?j (k) = S?j (ko) + 0(,9271/0)), and

o 51 (R)52(00b1b2 B 55, (k)
ie e

s1(ke) sa(ke)

q —ng(ke)
—_ Is1(ke)| |s2(ke)| (1 + 0(82”/“))) , (5.4.25)

k2 _ k2
. r
1-— lp—e“”/“’
/051 00)52(K)b1b2 87 ST, (K)
—lE k2 — kl%

s1(ke) s2(ke)
“Lrel 22l 60 (k)

q
k k
= — |S1( €)| |s2]§2€1|k2 (1 + 0(8271'/0))) ,
1-— lP—£4n/w

Siath. &) = (14 0c)

So1(k, &) = (1 + 0(52”/w))

where g = by /by and P = (b} B%|s1(ko)|*)~". Thus,

Ti(k, &) = Ta(k, &) = |Sia|* = (1+ 0@E¥?).  (5.4.26)

L (-2
I+Pp gdn/w

The obtained approximation Tj to the transition coefficient 7; has a peak at k? = k,2
whose width at its half-height is

_ 2
Y(e) = Fs“”/w. (5.4.27)

5.5 Justification of the Asymptotics

Introduce functional spaces for the problem
—Au—Ku=f inG(), u=0 ondGe). (5.5.1)

Let ® be the same function as in (5.3.4) and let the cut-off functions n;, j =0, 1, 2,
be nonzero in G; and satisfy the relation n;(x, y) + O(r1) + no(x, y) + O(r2) +
mx,y)=1inG(e). Fory e R,§ > 0,and/ =0, 1, ..., the space V;’S(G(s)) is
the completion in the norm
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llus V3, 5(G (o))

l

2 1/2
= ( > (Z O%(r)) (2 + e2yr Il 4 201 4 g +n%626\x\)|3av|2dxdy)
G®) j1=0 \j=1

of the set of smooth functions compactly supported on G(¢g). Denote by V)?,’;‘ the
space of function f, analytic in k2, with values in V)f)’ 5(G(e)) that satisfy, at k2 = kgz,

the condition (xg,¢v f, ve)G, = O with a small 0 > 0; here ke2 is a simple eigenvalue
of problem (5.2.1) in Gy, and v, is an eigenfunction corresponding to kf.

Proposition 5.5.1 Let k> be a resonance, k> — k2> as ¢ — 0, and let |k* — k?| =
O(2™/?). Let y satisfy the condition wjw —2 <y — 1 < w/w, f € Vi (G(e)),
and let u be a solution to problem (5.5.1) that admits the representation

u=1u-+ mATU; +mAy Uy
here A; = const and u € V)/Z’S(G(a))for small § > 0. Then

llut; V},z,g(G(E))II +IAT I+ 1Ay =cllfs Vf,a(G(S))II, (5.5.2)
where c is a constant independent of f and ¢.

Proof Step A. First we construct an auxiliary function u,. As mentioned above, S
has a pole klz7 = kf — iki2 (see (5.4.24)). Let us multiply the solutions to the limit
problems, involved in (5.4.1), by g := —(k* — k2 4+ (bD(k), b))/{(s1, 0,0, 0) D, b),
put k = kj, and denote the resulting functions by adding the subscript p. In view of
(5.4.19) and the equality (s, 0, 0, 0) Db* = ((s1, 0,0, 0) D, b), we get

g(Ci1. Cr2. C13, C1a)|k=k, = bD(kp) = (b1 B, biat, byat, ba)e™™/ 4+ O (/).
(5.5.3)
This and (5.4.2), (5.4.4) lead to

v1p(x. vi ) = g Crilict, Vi 6, v kp) = &2/ (b1 4+ 0 (27/7) ) wix, vi k),
(5.5.4)

v2p(x, y5 &) = g Cralimi, V2 (x, y; kp) = &2™/® (bzﬂ +0 (82”/w)) va(x, yikp)s
the dependence of k), on ¢ is not shown. According to (5.4.3) and Lemma 5.3.2,

(9 C12b1 + g Cr13b2) lk=k,
k2 — k2

vop (X, y; ) = — ve(x, ¥) + g Cr2lk=k, Vo1 (x, y)

+ 9 C13lk=k, Vo2 (x, ).
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Taking into account (5.4.19), we obtain
Ci2b1 + Ci3by = (Ci1, Ci2, Ci3, C14)b* = (51, 0, 0, 0) Db*
(bD, b)
x{1-—
k* —kZ + (bD,b)

((s1,0,0,0)D, b)
k2 —kZ+ (bD,b)’

— (k2 _ k2)

e

(5.5.5)

Hence,

V0, (X, V3 €) = ve(x, ¥) + €7/ (bra + O (X)) Vo1 (x, y)

+ &2/ (bya + O (¥/)Voa (x, ¥).

Finally, using (5.4.13) and formulas (5.4.5), (5.4.8), (5.4.10) for aj+ and bj+, we find

wip &) = (9C1) lk=k,a16™ Wy (E1. )
+ (gCnac11 + gCr3can) lk=k, ™ W] (51, n1).
w2p (&2, M2; €) = (9Cmc11 + gCa3¢21) k=k, €™/ Wh (&2, 12)
+ (9C14) lk=k, a26™ /W5 (E2. 12).
Compare the equalities (5.3.12), (5.5.5), and (5.5.3); then

(g Cr2b1 + g C13b2) =k
(gCrac1j + 9Cj3c2j) lk=k, = —b; 22 £
p e

+ (9Cn2c1j + 9Cj32)) lk=k,
=bj + 0(e*?),
where j = 1, 2. Thus
wipEr,ni; 8) = & (arb1 B+ OE™™/)Wy (&1, 1)
+ &by + 0N W (&1L ), (5.5.6)
wap (€2, 12 &) = €™/ (by + O (7)) Wh (€2, 12)

+ 7% (abr B+ 0>/ ?))Wh(&2, m2). (5.5.7)
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We set

up(x, vie) = B, y) [x1.6 (x, 9)vip0x yi ) + O 2 rpwi e w6 iz e)

+ %0,6(x, Y)vop (x, y1 €) + O 2 r)wap (e g, e yni k)

2.6 V)02 (5, ¥ K 0)] (5.5.8)

where E is a cut-off function in G(¢) that is equal to 1 on the set G(¢) N {|x| < R}

and to O on G(¢) N {|x| > R + 1} for alarge R > 0; o is such that 20 < 1. The

principal part of the norm of u, is given by x¢ vo,. Considering the definitions of

vo, and Vo (see Sect.5.2) and Lemma 5.3.2, we obtain || xo,cvop |l = [lvell + o(1).
Step B. Let us show that

I(A + kpups Vy) (G @) < ce™ ™, (5.5.9)

where k = min{r/w, 37r/w—o01,y +1},01 =20 Bn/wo—y+ 1. lIfn/o <y +1
and o is small so that 277 /w > o7, we have k = 7 /w. One can take o < 1/4, since,
duvetor/w—y <land 1 < 7/w,

01=20@3n/w—y+1) <20@2n/w+2) <8or/w <21 /w.

In view of (5.5.8),

A+ kDup(e, vi0) =4, x1e] (vip . v ) = b1 82207/ + allepy /)0 = g1))

1A, OJwipe xy. e yie) H K30 rpwy e e e
+ 18, x0.61 (v0p (5, v: ) = OGD by, @r; ™ + b, @) b — 1)
— 002 (a5, @, ™ + af @17 ) (g2)
+1A, Olwzp(e ™ xo e i e) + k2O rwap (e g eyt
+ 18, 10,61 (v2p (5, v ) = b2BeX /25 ™/ 4 atkyp)r ] )0 (02) )
+[A, Eluip(x, yi &) +[A, Elugp(x, v 8),
where by, = 0(@*/®), b{, = b1 + 0(¥/?), a;, = 0(7"/*), and a;, =

by + O (£¥/®). Taking into account the asymptotics of v; as r; — 0 and passing to
the variables (1, n1) = (5_1x1, s_lyl), we obtain

o) o 18006 (M) = 077 4 alprf 0 —on) V2G|

2
sc [ otV o — g drdy < 20T,
G(e)
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This and (5.5.4) imply the estimate
[ 18, (v ) = 07+ aleprT )06 — 1)
V5G| = cer ot
Likewise,

H (x,y) = [A, x0,e] (vop(x, y) — ®(r])(bfp(8)rfn/w + bfp(e)rir/w)@(ﬂ — o)
— 0 (az, @y ™ + g @) @) | < cer I,

[ = 18 el (12069 = 057 4 a3 )@ g2)) s VEs(Gen|

< C8y+n/w+1’
It is evident, that
H[A, Elvjp: VJE)’S(G(E))H <ce?lo j=1,2.

—3r/w

Further, since wlj behaves like O (p ; ) at infinity,

2 2 lo.—1 —1 2
/ 03+ A, 01wy e y))| iy
G(e)
< 2 2\y -1, \-37/w . 2 . .
e | O+ |ia, ol ) e dxjdy;
J
2(371/50—01),

<ce

where 01 = 20 3w /w — y + 1). A similar inequality holds with le replaced by W;..
Considering (5.5.6)—(5.5.7), we obtain

18, ©1wjp; V25(Gen]| = cetnro-a.
Finally, using (5.5.6)—(5.5.7) once again, taking into account the estimate
2, .2 2 I oa—1 NE
/ (r; +&%)” ‘@(8_ Trpwi(e” xj, 6" yj)‘ dxjdy;
G(e)

2
=1+ /Q (02 + 1Y 0727 )W) (&j, 0| dijdn; < e+,
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and a similar estimate for w;., we derive

H (x,y) — @(8_2"rj)wj,,(s_1xj, s_lyj); VS’S(G(E))” < ce™/otrHL

Combining the obtained estimates, we arrive at (5.5.9).
Step C. This part contains somewhat modified arguments from the proof of The-
orem 5.1.1 in [33]. Let us write the right-hand side of problem (5.5.1) in the form

fx,y) = filx,y;8) + folx,y;8) + fo(x, y; €)
— e R I ey e — e TV T R (e, e s ),
where
ﬁ(x7 y’ 8) = X],EU(.X, y)f(xv )7)7
Fi&j.nj;8) = —e" 10" "7 p)) f(x0, + €&}, o, + enj).

(x, y) are arbitrary Cartesian coordinates, (xoj , yoj) stand for the coordinates of O
in the system (x, y), and x;, y; were introduced in Sect. 5.4. From the definition of
the norms, it follows that

1f1: Ve s(GDI + [ fo: VGl + 11 f2: V) 5(G)
+IFj V@I < cllf: V) s(Gel. (5.5.10)
We consider solutions v; and w; to the limit problems
—Av; — kzvl = f;in Gy, vy =0o0n 9Gy,
Awj = F;inQ;, w; =0on 08},

respectively; moreover, the v; with [ = 1, 2 satisfy the intrinsic radiation conditions
at infinity, and the vg is subject to the condition (vg, ve)G, = 0. According to
Propositions 5.2.1, 5.2.2, and 5.2.3, the problems in G; and £2; are uniquely solvable
and

llvo: V2 (Go)l < coll fo: V(Go)ll,
loi: Vs (Gl < il fis Vi s (Gl 1= 1,2, (5.5.11)

lwjs V2@ < CHIE; VI@IL j = 1,2,
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where ¢; and C; are independent of &. We set

Ux,yie) = x1.e0c, or(x, y8) + e " Orpwi(e ' xp, e ypse)
+ x0.0 (X, Vvo(x, y: &) + e YO wa (e x0, e yos 6)
+ x2.6(x, y)va(x, y; ).

Estimates (5.5.10) and (5.5.11) lead to
1U: V) 5 (Gl < cllf: Vi s(Ge)l (5.5.12)
with ¢ independent of €. Let R, denote the mapping f +— U.

Let us show that —(A + k2R, = I + S,, where S; is an operator in V)(/)Y(S(G(S))
of small norm. We have

(A+IDR f(x,y) =(A+ kU (x, yi8) = —f(x,y) + [A, x1.6]v1(x, y; &)
+e 7 THA, Olwi (e 'xy, e Ty e) + 2V O ()
x wi(e  x1, ey e) + (A, xo.lvo(x, y; &)
+ e 7 TA, Olwy(e ' xa, e M ys ) + k27 O ()
x wa(e a2, e yas8) + [A, xaelva(x, yie).  (5.5.13)

Let d be a positive number such that y —d 4+ 7/ — 1 > 0. On the support of the
function [A, x1.¢]v; the estimate ()cl2 + ylz)l/ 2 = O(e) holds, therefore,

LA, x1.elvr: Vi s(G@) < ce 1A, x1.elvi: Vi) g 5G|

< cellvis Vg 5(GDI.-
This and (5.5.11) lead to
A, x1.elvis Vi s(G@Dl < ce?ll fiz V) g 5(GDI-
Moreover, fi = 0 outside the zone ce? < (xf + yf)l/ 2 < Cg%, therefore,
1f1: Vy_g s (GDIl < ce™ | fi: V) 5(GDII.
The two last estimates together with (5.5.10) show that
A, x1elvis Vi s (G < ce® P f1 V) (G (@) (5.5.14)
In a similar way, we obtain

LA, x1.elvs Vi) s (G @)l < ce DN £ V) 5(Ge)ll, 1=0,2.  (55.15)
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We now assume in addition that the d satisfies y +d — n/w — 1 < 0. Because
the support of the function [A(gj‘,]j), OCpj)lw;&j,nj;e), j = 1,2, belongs to the
domain ce~! < (512 + n?)l/z < Ce |

I&j. n)) > [Ag, . Op)w; (&) njs ) V(@)
< ce? (&), nj) > [Agj ;. Olep)Iw (& nji €): Vo 4 ()]

< ce¥wj; Vg (@)
Now, taking into account (5.5.11), we obtain
e (xj. yp) A, O (e xj ey e): Vi (G @)l
< ce? | Fj: V), g (@]
Since F; = 0 for (Elz + n%)l/2 >ce 7,
.0 , —do .. 0O .
1 Vg (@) < ce™ ||z V@)l (5.5.16)

Consequently,

e G y) AL O w; e xj. e i) V) 5(G (o)
<N £V 5G], (5.5.17)

It remains to estimate the middle terms of the two last lines in (5.5.13). We have

eV Gy P O pwie xj, e yjie): V(G (@)
= 82||($j, nj) > Opjw;j, nj; &); V)S)(Qj)”
<&, nj) > Oep)wj(Ej,nj: ) Vy o (2))l
< cellwyi Vi (@)
in the last inequality we took into account that @ (epj)w;(§;, nj; €) = 0 for p; >

ce~L: besides, we assume that 2 — d > 0. In view of (5.5.11), (5.5.16), and (5.5.10),
we obtain

e y) PO w e xj ey e): V) 5(G )|
< e’ £ V) (Gl (5.5.18)

Thus, (5.5.13)—(5.5.15) and (5.5.17)—(5.5.18) lead to the inequality

I = (A+ kR f = f: V) 5(G@)l < ce? PN f1 V) 5(G o).
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which means that —(A + k?)R, = I + S, and the norm of the operator S, in the
space VS,S(G(S)) admits the estimate || S¢|| < ced1=0),

Step D. Let us recall that the operator S, is defined on the subspace V0 J‘(G(s))
We also need the range of the operator S, be included in Vo’j(G(s)). To this end,

we replace the mapping R, by R. e Uf) +a(f)up, the up, was constructed
in Step A, and a(f) is a constant. Then —(A + kz)R(9 =1+ S,s with Sg =8 —
a(:)(A + kz)up As k = k., the condition (xp o sz Ve)G, = 0 implies a(f) =
(X0.67 Se £+ Ve)Go/ (X0.67 (A+k2) p. Ve) G- Now, we prove that || S | < ¢|[Se ||, where
c is independent of ¢ and k. We have

ISe fIl < USe £+ la(HTIA + K|l

Estimate (5.5.9) (with y > n/w — 1 and 27 /w > o71), the formula for k,, and the
condition k* — k2 = O (e*"/) imply the inequalities

1A + KDy Vsl < 12 = k3] llup: Vsl + (A + kDup; Vsl < e
Since the supports of the functions (A + k,zj)u p and xo co are disjoint, we obtain
|(X0.65 (A + kD, v)Go| = 10k = k3) (1, v)Gy| = €87/
Moreover, y — 1 < 7 /w and, consequently,
(X0, Se.f V) Gol < 1Se £5 Vi) 5(G @ v VO, (Go)l < cllSe £ Vy 5 (G ()]
Hence,
la(f)] < ce S f1 VY 5(G (o)

and ||§gf|| < c||Ss f||. Thus, the operator I + Sg in V b (G(e)) is invertible, which
is also true for the operator of problem (5.5.1):

Actus —Au—Eu: V25 (G(e) = V5 (G(e)),

the IO/,QY?_ (G(s)) consists of the elements in VV — (G(e)) that vanishon G (¢g),

and the operator —A — k? takes V,y’@_(G(&)) to V%’;‘(G(e)) to Vf”al(G(s)).

The inverse operator A;l = ﬁs I+ Eg)_l is bounded uniformly with respect to &
and k. Therefore, the inequality (5.5.2) holds with ¢ independent of ¢ and k. (]
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Consider a solution 1 to the homogeneous problem (5.1.1) defined by

Ui (x,y) + S11 Uy (x,y) + O(exp (8x)), x — —o0,
up(x,y) = B
S12 U, (x, y) + O(exp (—8x)), X — 4o00.

Let S11 and S72 be the elements of the scattering matrix determined by this solution.
Denote by i1, the function defined by (5.4.1) with ®(r;) replaced by @(sj_z” rj)

and remainder R removed; §1 1 §12 are the same as in (5.4.21).

Theorem 5.5.2 Let the hypotheses of Proposition 5.5.1 be fulfilled. Then the
inequalities

1S11 — S11] + S12 — Si2] < ¢[Siale? 79, (5.5.19)

1521 — Sa1] + S22 — S| < ¢[Sn|e?? (5.5.20)

hold with a constant c, independent of € and k, § being an arbitrarily small positive
number.

Proof For example, we verify (5.5.19). The difference R = u; — uj, is in the
space V25 _(G(e)) and fi := —(A + k*)(u1 — ii1,0) belongs to V"5 (G(z)). By
Proposition 5.5.1,
IR: V) 5 (G < cll fiz Vy s(GEI. (5.5.21)
Let us show that
If1: Vy (G @)l < c|Sial (g7 /0t 4 g2m/oom), (5.5.22)
where 01 = 20 3m/w — y + 1). (Then estimate (5.5.19) follows from (5.5.21) and
(5.5.22) withy = w/w+ 1 —§ and o1 = §.) Arguing, as in the proof of Proposition

5.5.1, Step B, we obtain the estimate

I f1; V}E)’,;(G(S))” < c(gV‘H + 8371/60—:71)

x max (la; (e)|e ™/ + |at ()€™ + |b7 (e)]e™™/®
j=1.2 J J J
+1b7 (e)|e™/*).
From (5.4.11) it follows that

a7 @) + b} (@)] < ce™/“(la] @] + b (©))).
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Using (5.4.5) and (5.4.10) for afr, 192+ and taking account of relations (5.4.19) and
(5.4.25) and of the fact that k> — kf, = 0(£?"/®), we obtain

21 /w

" @)1 + 163 )] < e < ce TS (e)].
| - I)|

Analogously, using (5.4.5) and (5.4.8) for a;', bf“ and the relations (5.3.12), (5.5.5),
we get

((s1,0,0,0)D, b)

+ o~ o~
lai (e)| + 163 (e)| < max ;=12 |—b; K=K+ (bD,b) + Ci2c1j + Ci3¢2;
_ 6\271/51) _ 72n/w|§ |
c——— <ct ).
=pgg = 12

Combining the above inequalities, we arrive at (5.5.22) and, consequently,
at (5.5.19). (]

Let us recall some notations. We denote by kg a simple eigenvalue of problem
(5.2.1) in the resonator G and by k,2 (¢) aresonance frequency such that k,2 (&) —> kf
as & — 0.Moreover, let b; be the constants in asymptotics (5.3.7) of an eigenfunction
corresponding to the eigenvalue kf and s j (k) the constantin asymptotics (5.3.1) of the
special solution V; for r; — 0, j = 1, 2. Finally, the constants « and 8 are defined
by (5.2.5) and (5.2.6). We set P = (b3 p2|s1(k,)|*)~"; this is the same constant as in
(6.4.27) and (6.4.29).

Theorem 5.5.3 For |k — kr2 | = 0(£¥/?), the asymptotic expansions

Ti(k, &) = Th(k,e) = 1 S(1+ 0(8275))’

k2_k2
2 r
1+P(84n/w)

kr2(8) = k? + Zb%(xgh/w + 0(82”/‘”“"2_5),

T(e) = ‘%‘84”/“)(1 +0(e27%)

hold: Y (g) is the width of the resonant peak at its half-height (the so-called resonant
quality factor), § being an arbitrarily small positive number.

Proof Theorem 5.5.2 leads to Sy, — §p2| < c|§pz|£2_‘S with a positive §. Therefore

1T, — Tyl < c|Spal|Spa — Spa| < cTpe®™?


http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
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and, in view of (5.4.26),

Ty(k, &) = Ty(1 + 0(*7%)) = (14 0(2)).

k2 — k2
2 r
I+P ( gin/o )

This leads to formulas for kr2 (¢) and Y (g). O

5.6 Comparison of Asymptotic and Numerical Results

The principal parts of the asymptotic formulas in Theorem 5.5.3 contain the constants
b1, |s1(ke)l|, o, and B. To find them, one has to solve numerically several boundary
value problems. We state the problems and describe a way to solve them. Then the
asymptotics with calculated constants and the numerically found scattering matrix
are compared.

5.6.1 Problems and Methods for Numerical Analysis

5.6.1.1 Calculation of by
To find b1 in (5.3.7), we solve the spectral problem
—Av—Kk*v=0 in Go, v=0 ondGy,

by FEM, as usual. Let v, be an eigenfunction corresponding to kf and normalized by

/ |ve(x, y)|* dxdy = 1.
Go

Then b; can be determined (approximately) by

(6,0 B
by = 8"””% = VT, (e, 0).

5.6.1.2 Calculation of |sq|

The constant 51 # 0 has arisen in the asymptotics (5.3.1) of the solution V; to
homogeneous problem (5.2.1) in G 1. Denote the truncated domain G N {(x1, y1) :
x1 > —R} by Gf and put rk.= E)G{e N {(x1, y1) : x1 = —R}. Now we introduce
the problem
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—AV(x1, y1) — K2V (x1, y1) = 0, (x1, y1) € GE;
V(x1,y1) =0, (x1, y1) € IGR\I'R;  (5.6.1)
3,V (x1, y1) +iviV(xy, y1) = 2ivie Ry (1), (x1, y1) € TK;

the function W is defined in (5.1.5). The solution V is found by FEM. One may put

51 = /e TPV (—8, 0).

5.6.1.3 Calculation of « and 8

Let us introduce the boundary value problem for calculation of « and 8 in (5.2.6).
Denote the truncated domain QN {(r, ) : r < R} by QR andput I'¥ := aQN{(r, ¢) :
r = R}. Consider the problem

Aw(, n) =0, &, € @
w(&, n) =0, (&, m) € 3R\, (5.6.2)

w(E, m) +cwE, m = gE, m, Enelk
If w is a solution and ¢ > 0, then
lws Lo < &7 Hgs La@ o). (5.6.3)
Indeed, substitute # = v = w to the Green formula

(Au,v)gr = (Oput, v)yqr — (Vu, VU)qr
= (0,u, U)BQR\FR 4+ (Oqu + Cu, v)pr — ¢(u, v)rr — (Vu, Vo)qr,

and get
0= (g, wre = ¢llw; La(T®)* = [[Vw; Lo(@")|%.
From this and the obvious chain of inequalities

¢llw; La(@®Y12 < ¢llws Lo(TR) 12 + 1| Vw; La@B))12 = (9, wrk

lw; La(T®) | llgs Lo(TH))]

NN

we obtain (5.6.3). Denote the left (right) part of I' R by kR (Ff). Let W be the
solution of (5.6.2) as { = w/wR, g|rr = 0, and g|r§ = 2n/w)RT/?=1d(p). Let,
in addition, w" be a solution to homogeneous problem (5.2.3) in the domain 2 with
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asymptotics of the form (5.2.6). Since the asymptotics can be differentiated, w, — W
satisfies (5.6.2) with g = O (R~C™/®~1) According to (5.6.3),

R
lwy — W: Ly(CR)| < L R-Gr/@=1 — v p=37/w
b4

as R — +o00. We find W with FEM and determine § by the equality

_WERO)

Jo __ _ T/w
B = o0 = J/TW(—R,0)R"?.

Obviously, || (w, —R™/®® (¢)) —(W —R™°®(¢)); Lr(I'R)|| < ¢/ R737/¢, therefore
we put

_ W(R.,0) — R"/*®(0)
“= ®(0)

R™® = /T W(R,0)R™/® — R¥/®

5.6.1.4 Calculation of the Scattering Matrix

Let us describe the method for calculation of the scattering matrix, considering
electrons of energy between the first and the second thresholds only. Then in (5.1.5)
we have M = 1. We put

G, R)=G(Ee)N{(x,y): —R <x <d+ R},
'R =03G@E, R N{(x,y):x=—R}, TR=0G(@E R N{(x,y):x=d+ R}

for large R. As an approximation to the row (S1, S12) of the scattering matrix
S = S(k), we take the minimizer of a quadratic functional. To construct such a
functional, we consider the problem

—AXR_K’XR =0 inG(, R),
AR =0 ondG(e, R)\ (TRuUTE),
O +iDXR = i(—v + e ™ RW (y) +ari(vy + e W (y) TF,
O +i0)X" = ayi( + )M TROU () TF, (5.6.4)

where ¢ € R\ {0} is an arbitrary fixed number, and aj, a; are complex numbers. As an
approximation to the row (S11, S12), we take the minimizer a®(R) = (a?(R), ag(R))
of the functional

TR, @) = | X% — e MRY —qre Ry Lyr P2 (5.6.5)

+ AR — ay M @R Ly (0F|2,
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where X® is a solution to problem (5.6.4). From Theorem 4.1.1 it follows that
a?(R, k) — s1;j(k) with exponential rate as R — o0. More precisely, there exist

constants A and C, such that |a?(R, k) — S1; (k)] < Cexp(=AR), j = 1,2, for

all k% ¢ [1e1, o] and sufficiently large R; the interval [u1, 2] of the continuous
spectrum of problem (5.1.1) lies between the first and the second thresholds and
does not contain the thresholds. To express X R by means of ay, a>, we consider the
problems

— AV =k =0 in G(e R), vy =0 on 3G, R\TFUTH,
@ +iOvy = i(Fvr + e Ry onl'F, (3, +if)Hvi =0 onl'],
(5.6.6)

and

—AvE—kE=0 in G R), vE=0 on 3G(s, R\TFUTH),
(O +i0)vy =0 onTR, (3, +iOHvF = i(Fva + )T 2@ Rw, onTk.
(5.6.7)

Let vjt = vij be solutions to problems (5.6.6), (5.6.1); then X* = vffR +

> jaj vj_ - Now, functional (5.6.5) can be written in the form

JR(a; k) = (aER(k), a) + 2Re (FR(k), a) + GR (k).

where (-, -) is the inner product on C? and ER denotes the 2 x 2-matrix with entries

ER = ((vf — VIR, (vy — ei”‘R\I—’l))FR + (v7, UT)FQR ,

1

(vl_ o eile\Ill), UZ_)FR + (Ul_v (vz— _ eivl(d+R)\I/l))

R’
1 FZ

= (v;’ 1 - ein\yl))rR + ((U5 — ey, vf)m :
! 2

ER = (vy, v;)FIR + ((v; — M@y (v — ei”1<d+R>w1))F§ ,
FR(k)is the row (F (k), R (k)), and G (k) is the number defined by the equalities
FR = ((vfr —e MRy, (] — e""'R\Ill))rfe + (vf, vl_)rf ,

flg = ((v?‘ _ e_iUlR\IJ]), vz—))FR + (U?—, (Uz_ _ eiul(d-‘rR)\Ijj))

R’
1 FZ

gf = ((vfr —e MRy, (vf - efivmqll))r{e + Ur)rf '


http://dx.doi.org/10.1007/978-3-319-15105-2_4
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curve) for resonant energy k2, ()

The minimizer a® = (a{ (R, k), a3 (R, k)) satisfies a®€R + F} = 0. A solution to
this equation serves as an approximation to the first row of the scattering matrix. As
an approximation to the scattering matrix S(k), one can take a solution S¥ = ¥ (k)
to a matrix equation of the form SRER + FR = 0. Choosing ¢ = —vy, we obtain
vy =v; =0,88 = (1/v)Id, and S¥ = —v FR.

5.6.2 Comparison of Asymptotic and Numerical Results

Let us compare the asymptotics krzes,a (&) and the approx-

imate value k,zes’ . (¢) obtained by a numerical method. Figure 5.4 shows good agree-

ment of the values for 0.1 < & < 0.5. We have

2

(¢) of resonant energy k.,

k7es.a(6) = Kpes n )1/ Koy () < 1073
for 0.1 < ¢ < 0.3, and only for ¢ = 0.5 the ratio approaches 2 x 1072, For e < 0.1
the numerical method is ill-conditioned. This is caused by the fact that the waveguide
tends to the‘limit’ (see Fig.5.3), on which the problems for calculation of the scat-
tering matrix are incorrect (ill-posed). This means that the round-off errors cause
the larger deviations in the solution, and at some ¢ we get a random vector instead
of the sought-for vector of coefficients of the piecewise polynomial function. The
asymptotics moves this ‘incorrectness’ out of the numerical part (i.e., the problems
for the constants that have to be solved numerically) and thus remains efficient at
e — 0.



5.6 Comparison of Asymptotic and Numerical Results 115

Fig. 5.5 The shape of the T
resonant peak for ¢ = 0.2:
asymptotic description

T, (k* — k%, ) (solid curve)

res,a
and numerical description

T, (k% — k2, ) (dashed

res.n
curve) for transition
coefficient T'(k? — k2,,). The
width of the resonant peak at
height A: asymptotic
Ay (h, ) = AA; numerical

A,(h,e) = BB
-6*107% -4*107%-2*107® 24107® 4*107® 6*107°
K2-k2
res
Fig. 5.6 The dependence of 107"
the width A (A, ¢) of resonant o

peak on ¢ for various heights
h (dashed line for numerical
description, solid line for
asymptotic description): the
upper pair of lines for

h = 0.2; the middle lines for
h = 0.5; the bottom lines
forh =0.7

The difference between the asymptotic and numerical values becomes more sig-
nificant as ¢ increases going out of the interval; the asymptotics becomes unreliable.
The numerical method shows that for ¢ > 0.5 the resonant peak turns out to be
so wide that the resonant tunneling phenomenon dies out by itself. The forms of
“asymptotic” and “numerical” resonant peaks are almost the same (see Fig.5.5).
The difference between the peaks is quantitatively depicted in Fig.5.6. Moreover, it
turns out that the ratio of the width A, (4, ) of the numerical peak at height & to
A, (h, e) of the asymptotic peak is independent of /. The ratio as a function in ¢ is
displayed in Fig.5.7.

Note that for ¢ = 0.1 (i.e., at the left end of the band where the numerical and
asymptotic results can be compared) the disparity of the results is more significant
for the width of the resonant peak than that for the resonant energy.
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Fig. 5.7 Ratio 3Ff
Ay(h,e)/Ag(h, ) asa
function of ¢. The ratio is o5l
independent of / within the ’
accuracy of the analysis
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5.7 The Impact of a Finite Waveguide Work Function
on Resonant Tunneling

To describe electron transport in a waveguide, we assumed in Sects. 5.1-5.6 that the
electron wave functions vanish at the waveguide boundary. This means that, being
in the waveguide, an electron can not cross the waveguide boundary because of the
infinite potential barrier. In reality, the assumption has never been fulfilled: generally,
electrons can penetrate through the waveguide boundary and go some distance away
from the waveguide. Therefore, we have to clarify how this phenomenon affects the
resonant tunneling.

5.7.1 Preliminaries

In a crystal, the electric field of positive ions of the lattice impedes electrons from
escaping through the crystal surface. This field acts in a narrow layer near the surface;
the layer is called the surface potential barrier. Thus, being in the crystal, an electron
is in a potential well. Some energy is required to remove such an electron from the
well.

Considering a moving electron of the minimal kinetic energy in a large crystal,
the electron is at the bottom of the potential well. To withdraw the electron from the
crystal, the energy required is equal to the height of the surface potential barrier. This
energy is called the full work function W, of the crystal.

Let us describe the structure of the surface potential barrier in more detail. Within a
small distance x( from the crystal surface, an electron is subject to the almost constant
force of interaction with a surface layer of positive ions of the lattice. At a distance
x from the surface, xo < x < [, the mirror interaction force acts on the electron,
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Fig. 5.8 The dependence of w

the electron potential energy wl
outside a crystal on the ”
distance to the cristal
surface. The electron
potential energy inside the
crystal is assumed to be zero

Table 5.1 Total work functions of some metals
Metal Cs Ba Mo w Pt Ag Zn Ni
Wa, eV 34 49 10.0 10.4 11.3 ~ 14 15.5 ~ 16

that is, the force of interaction with a surface positive charge induced by inter-
electron repulsion. The mirror interaction force is proportional to x ~2. Qualitatively,
the x-dependence of the electron potential energy is shown in Fig. (5.8). The xq is
considerably less than the lattice period and usually ranges between 0.03 and 0.1 nm.
The width [ of the transition zone is in the range 0.3-0.5 nm.

Experimental values of the full work function for some metals are presented in
Table 5.1 ([21]).

Now, we consider an electron of the maximal kinetic energy in a metal at temper-
ature T = 0. The minimal energy required to withdraw the electron from a solid and
to place it just beyond the surface potential barrier (that is, at the distance / from the
surface) is called the effective work function of the solid and denoted by e¢, where
—e is the electron charge.

The effective work function eg plays an important role in the description of an
electron withdrawing from a solid. In what follows, the effective work function is
frequently called the work function.

At T = 0, the maximal electron kinetic energy is called the Fermi energy (the
Fermi level) and is denoted by Wr. Figure (5.9) shows the structure of the potential
barrier near a metallic surface, the conductivity band and the effective work function
ep = W, — Wr. (The potential energy of an electron is defined up to a constant
term; in vacuum, the energy is assumed to be zero.)

In the semiconductors, the electrons are located in the conductivity band (above
the Fermi level) and in the valence band (below the Fermi level) Fig. (5.10). In this
figure, the energy difference x of the vacuum level and the conductivity band bottom
level is called the electron affinity. For an electron at the conductivity band bottom,
the x is equal to the minimal energy required to withdraw the electron from the solid.

The work function of various materials ranges between 1 and 5 eV. However, for
the most part of the materials used in nanotechnology, this range is 3-5 eV. Table 5.2
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Fig. 5.9 The surface potential barrier and the conductivity band of a metal
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Fig. 5.10 The work function and the electron affinity of a semiconductor
Table 5.2 The work function of some metals
Metal Cs Ba Nb Au Ag Cu w Pt
ep, eV 1.81 2.49 4.0 4.3 4.3 4.4 4.54 5.35

shows the work function for some metals, and Table 5.3 depicts the effective work
function and the electron affinity for the most-used semiconductors.

In spite of the complicated structure of the surface potential barrier, the “rec-
tangular” barriers are in common use; for all practical purposes, this is a feasible

approximation.
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Table 5.3 The work function and the electron affinity of some semiconductors

Semiconductors Si Ge GaAs
ep, eV 4.5 4.3 4.7
x,eV 4.05 4.0 4.07
Fig. 5.11 The increase in — re—

the waveguide effective
width caused by electron
penetration under the surface
potential barrier

eff

5.7.2 A Qualitative Analysis of a Finite Work Function Impact
on Electron Transport

We first consider a waveguide that coincides with an infinite strip IT = {(x, y) €
R? : —00 < x < 400,—d/2 < y < d/2}. In the case of a finite work func-
tion, electrons can penetrate through the surface potential barrier; this leads to an
increase in the effective diameter of the waveguide cross-section (Fig.5.11) and to a
decrease in the threshold energies. We will take account of the change in thresholds
to estimate the work function impact. We assume that the electron potential energy
is zero inside the waveguide IT and equal to U = constant > 0 outside I1. For the
semiconductors, the U is the electron affinity x and, for the metals, the U equals the
effective work function.
Let us introduce the problem

ﬁZ
- 2—*1ﬂ”(y) =E ¥y, Iyl <d/2,
m
h2
—%I//”()’) + UV () =E Yy (y), Iyl>d/2, (5.7.1)

where E is a spectral parameter, m is the electron mass, and m* is the effective
electron mass. The function v and its derivative v/ are supposed to be continuous
at y = +d/2 and, moreover, ¥ (y) — 0 as |y| — 4o00. The interval (0, U) may
contain only isolated eigenvalues of problem (5.7.1). These eigenvalues represent
the waveguide threshold energies not exceeding the U and calculated with regard to
the finite work function (see [20, 35]).
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Setting A> = 2m*/h*)E| and u?> = 2m/h*)(U — E), we write equations
(5.7.1) in the form

' () + A2 =0, |yl <d/2,
V() = 1Y (y) =0, |yl >d/2.

The A and p satisfy the transcendental equation
tan(Ad) = 2au(Z> — u?) 7L (5.7.2)

Therefore, to obtain approximate values of the mentioned threshold energies, it suf-
fices to solve approximately this equation.

Typically, the U comprises several eV and for lower thresholds E | (n) =~
72h*n?/2m*d?>. For m = m* and d = 10 nm, we even have E| (6) ~ 0.2 eV,
which is, roughly, 20 times less than the work function. Thus, U > E (n) for lower
thresholds, i > A, and we can restrict ourselves to considering the first approxima-
tion only. For several lower thresholds, w? ~ (2m/h*)U. From Eq. (5.7.2) it follows
that

tan(Cm*h2E)?d) ~ —2(E, JU)'/?. (5.7.3)
The right-hand side is small, therefore,
Cm*h2EN?d =n7 +68, § < 1.

In view of (5.7.3), 8 ~ —2(E /U)"/? hence

2322 2 -2
w-hn 2R 1/2
ELmy~ (1+ (md2U) ) '

The factor
(2 -
- (1+ ()
0 ( md2U )
shows the work function impact on E | (n). Assuming the impact to be small, we can
take it into account by changing the real waveguide width d for the effective width

s =41+ () )

Ford = 10 nm and U = 4 eV, we obtain n = 0.96. This justifies our assumption
that the work function impact on £ (n) is small. However, for very thin waveguides,
especially with small work functions, this assumption is less reliable. For d = 3 nm
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Fig. 5.12 The increase in the waveguide effective width caused by an electron wave function
penetration under the surface potential barrier. The waveguide widening is much more significant
at the waveguide narrows

(a) (b) (c)
Fig. 5.13 Qualitative picture of a wave function outside a waveguide in the vicinity of narrows

and U = 2 eV, we obtain n = 0.84. For large n, the relation U > E | (n) is false
and the work function impact is much more significant.

Let us now turn to a waveguide of variable cross-section. It is clear that the most
notable impact of the waveguide work function should be expected at the waveguide
narrows (Fig. 5.12). The effective diameter of a narrow remains greater than a certain
positive value, even though the real diameter tends to zero. A finite work function
essentially restricts a choice of narrow forms. Indeed, for a wedge-like narrow, the
parts of an electron wave function, corresponding to different sides of the wedge,
overlap (Fig. 5.13); therefore, for a wedge with a small angle, the narrow practically
vanishes. These qualitative considerations are confirmed by the results of numerical
simulations in Sect.5.7.3.

5.7.3 Numerical Simulation of Resonant Tunneling
with Regard to the Waveguide Work Function

Now, we pass on to numerical simulation of electron resonant tunneling in waveguides
with finite work function. The waveguide geometry is the same as in Sect.5.6. To
take into account the electron penetration under the potential barrier, we embed
the waveguide Gy in the strip G of a sufficiently large width; in our calculations,
the strip width is equal to 5 times the waveguide width d. Outside the waveguide,
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Fig. 5.14 The geometry of a system used for numerical simulation of a work function impact on
resonant tunneling

the wave function of an electron decays exponentially with characteristic penetration
depth § = h/+/mU, the U is the electron potential energy, and U > 0 outside the
waveguide; for the semiconductors, U is equal to the electron affinity . Therefore,
the wave function at the strip boundary is by factor exp (—d+/mU /h) less than that
at the waveguide boundary. Even for small work functions and thin waveguides, the
inequality d+/mU /h > 10 holds, so we assume the electron wave function to be
zero at the strip boundary. Inside the waveguide, the electron potential energy equals
zero. Between the boundaries of the waveguide and the strip, to the left of plane A
(Fig.5.14), the electron potential energy is chosen to be infinite, while to the right of
plane A the energy is equal to the material work function. Inside the waveguide, an
incident wave is of the same form as in Sect.5.6 . We consider the scattering of the
incident wave in the waveguide shown in Fig. 5.14. The width of the narrow is equal
to 0.2 times the width of the waveguide; the angle at the narrow is 0.1s. In such a
waveguide, the impact of the finite work function is clearly recognizable.
The wave function satisfies the boundary value problem

—AU — k*U =0 in Gy,
—AU — (k* = D*>U =0inG \ Gy,
U =00ndG,

where D = d /26, and the radiation conditions

Nmax
U, y) =™ ®p(y) + D Suje 7@ (y) + 0e™H)  asx — —o0,
j=1
Nmax
UG y) =D Smjtnmme 7 @) + 0 M) as x — +00,

j=1
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Fig. 5.15 D-dependence of the resonant center k.5

where ¢ > 0, A, > 0, and ®,, are solutions to the problem

—@"(y) — (K> = 2D (y) =0, |y| <d/2,
—@"(y) — (k> = D* =21 D(y) =0, y € (=5d/2, —d/2) U (d/2,5d/2),
®(y) =0, y =+5d/2,

and the functions ® and @’ are supposed to be continuous at y = +d /2. In addition,
®,, are normalized by

5d)2 ) 1
[ PmI7dy = -—.
/Sd/z " 2hm

We study the D-dependence of the basic characteristics of resonant tunneling. The D
ranges between 10 and 100. The minimal value of D corresponds to the waveguide
widthd =3nmand U = 2 eV, whiled = 20 nm and U = 5 eV for the maximal D.
The range 20 < D < 50 of the greatest practical utility corresponds to d & 10 nm
and U in the range 2-5 eV. Figure 5.15 shows k., and Fig. 5.16 depicts the width A
of the resonant peak. For sufficiently small D, the impact of the finite work function
manifests itself in a certain shift of the resonant level and, mainly, in a sharp widening
of the resonant peak. A choice of too small diameters of the waveguide narrows at
the resonator causes a significant increase in the effective narrow diameters and in
the resonator volume, which notably affects the resonator quality factor.
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Fig. 5.17 Distribution of |y (-, kres)|? (Where ¥ (x, y,k) is an electron wave function) at the
waveguide cross-section outside the resonator

The above results lead to the following conclusions:

1. Far from narrows, a wave function penetrates through waveguide walls in a dis-
tance significantly smaller than the diameter of the waveguide (Fig.5.17). In a
neighborhood of narrows, the situation changes (Fig. 5.18), that’s why, decreasing
the narrow diameter at the resonator, one can not diminish the effective narrow
diameter beyond a certain critical value. This restricts the possibility to improve
the resonator quality factor by diminishing the narrow diameter.



5.7 The Impact of a Finite Waveguide Work Function on Resonant Tunneling 125

]

|[wix=0y)|"

0 - :
-1 -08&8 -06 -04 -02 0 02 04 06 08 1
¥

Fig.5.18 Distribution of | (-, kyes) |2 (where ¥ (x, y, k) is an electron wave function) at the narrow
cross-section

2. The distance between the vertical sides of a rectangular waveguide narrow should

3.

be significant (say, more than 1 nm), see Fig.5.13a.

The angle of a wedge-like narrow should be sufficiently large. However, increas-
ing the angle causes an increase in the effective width of the potential barrier
(Fig.5.13b) and a decrease in the width of the resonant peak. This increases
the resonant tunneling time and affects the frequency properties of the system.
Optimal angles for wedge-like narrows range between 20° and 35° (Fig.5.13c).
When choosing a waveguide material, one should prefer that of maximal work
function. For instance, for a waveguide of the cross-section diameter ~ 10 nm, a
wedge-like narrow of diameter >3 nm and angle ~30°, made of a material with
electron affinity ~4 eV (e.g., Si), the finite work function impact manifests itself
as a negligible shift in the resonant levels and a small decrease in the resonator
quality factor.



Chapter 6
Asymptotics of Resonant Tunneling in 3D
Waveguides for Electrons of Small Energy

In this chapter, we consider electron propagation in a waveguide with two cylindric
outlets to infinity and two narrows of small diameters €1 and ¢;. The boundary of
the waveguide is assumed to be smooth. The electron motion is described by the
Helmbholtz equation. The electron energy is supposed to be between the first and the
second thresholds. We generalize and implement the asymptotic approach developed
in Chap. 5. The basic results are presented by Theorem 6.4.5.

6.1 Statement of the Problem and Outline of the Results

To describe the waveguide, we first introduce three domains G, 21, and 27 in R3
independent of the parameters &1 and 5. Let G be a domain in R3 that, outside a large
ball, coincides with the union of two nonoverlapping half-cylinders C; and C; with
bounded cross-sections D and D», respectively. The boundary dG of G is smooth,
and 0 D1 and d D are simple contours. Let us consider the domain 2 (Fig.5.1). We
denote by K and L open cones in R? that are symmetric to each other about their
common vertex, that is, K1 U Ly is a double cone. The cone K (resp., L) cuts out
on the unit sphere centered at the vertex a domain S(Kp) (resp., S(L1)) bounded
by a smooth contour. We suppose that €21 contains both cones K; and L; as well
as a neighborhood of their vertex; moreover, outside a large ball (with center at the
vertex), €21 coincides with K1 U L1; the boundary of €1 is smooth. The domain €2,
is described like ©2; with cones K and L.

We now consider the waveguide G (g1, €2) (Fig. 1.1). For the time being, we let
O and O; be arbitrary (interior) points of the domain G placed (for the sake of
simplicity) in the half-cylinders C; and C,, respectively. We now introduce orthogonal
coordinates x/ = (x{, x3, x§) with origin O; and axis x{ parallel to the generatrices
of the half-cylinder C;, j = 1, 2; the positive half-axis x{ lies inside C;. The domain
2; is located so that the vertex of K; and L; coincides with O; and the positive

half-axis xlj lies inside K ;. From now on, we assume that the points O; and O>
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are disposed far enough from the “noncylindrical” part of G so that the connected
component of the set G N d L ; nearest to O coincides with dC; N L ;. We denote
by € (g;) the domain obtained from 2; by the contraction with center at O; and
coefficient ¢; > 0. In other words, x/ € Q;(g;) if and only if (x//e;) € ;. Let
G (g1, &2) be the domain obtained from G by changing C; and C, for C; N Q2 (e1)
and Cy N Q(ey), respectively.

A wave function of a free electron of energy E = h’k?/2m satisfies the boundary
value problem

—Au—k*u=0inG(e1, &2), u=0ondG(el, &) 6.1.1)

Before formulating radiation conditions at infinity, let us make some comments
on the boundary condition. The waveguide boundary is a potential barrier for an
electron. The electron wave function exponentially decays outside the waveguide.
The characteristic depth of electron penetration under the barrier is about 0.1 nm for
the typical electron work function of 4-5 eV. The width of realistic waveguides (even
at the narrows) is a few nanometers. Therefore, we neglect the electron penetration
under the barrier and assume that u = 0 on dG (¢, &2).

To formulate the radiation conditions, we need the boundary value problem on
the cross-section D of the semicylinder C;, j = 1, 2:

—Av—3*v=0inD;, v=00ndD;. (6.1.2)

The eigenvalues )\3 m of this problem, where m = 1, 2, .. ., are called the thresholds;
they form an increasing sequence of positive numbers tending to +o00. We denote
by W, an eigenfunction of the problem (6.1.2) that corresponds to the eigenvalue
)\3 ,» and is normalized by

Zij/ W (X2, x3)|Pdxy dxs = 1 (6.1.3)

Dj

with vj, = [k? — )\3 - In this chapter, we discuss only the situation where the

parameter k? is “between the first and second thresholds” or, more precisely, in the
interval (A%] , A%z) N (A%] , )‘%2) (supposed to be nonempty). The function U 1+ defined
in the semicylinder C; by U1+(x1) = exp (—ivux]l)\ll“(xé, x31) is a wave coming
in C; from infinity (recall that the positive half-axis x 11 lies in C1). The function
U2+ (xz) = exp (—ivzlez)lllzl(xg, x32) is a wave coming from infinity in C;. The
outgoing waves U, , m = 1,2, are obtained from the incoming ones by complex
conjugation: U, = Uy.

There exist (smooth) solutions u,,, m = 1, 2, to problem (6.1.1) satisfying the
radiation conditions
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U (el + S1 U (1) + O(exp (—8x])), x{ — o0,

ui(x) = _ ) 5 6.1.4)
S12 Uy (x7) + O(exp (—6x7), xi{ — +oo,
S U (xY) + O(exp (—é8x1)), x> 4o,

up(x) = {7171 PO . 1 6.1.5)
Uy (x%) + S Uy (x7) + O(exp (=6x7), xi{ — +00,

with sufficiently small positive §. The scattering matrix S = ||Sp ¢ Il p, g=1,2 is unitary.

We consider the scattering of the wave coming from C; and seek the resonant
values k. = k,(e1, &2) of the parameter k, where the transition coefficient 77 =
Ti(k,e1,8) = |S12|2 takes the maximal values. Moreover, we are interested in
the behavior of &, (g1, &2), T1(k, €1, &7) and that of the reflection coefficient R; =
Ri(k,e1,8) = |S11]%, as €1, &2 — 0.

To outline the results, we present some formulas obtained in the chapter. The limit
domain G (0, 0) consists of the unbounded parts G, G and the bounded resonator
Go. Let S(L ) be the domain that the cone L ; cuts out on the unit sphere centered at
OjandletO < pj1 < ujp < --- stand for the numbers such that 14, (1 jm + 1)
are the eigenvalues of the Dirichlet problem for the Beltrami operator in S(L ),
(m=1,2,...). Assume that kZ is any eigenvalue (lying between the first and second
thresholds) of the boundary value problem in the resonator,

—Av(x) —k*v(x) = f, x€Go: v(x)=0, xe€dGo.
Near such an eigenvalue, there is a resonant value k, (¢1, &3) satisfying
K2(e1, £2) = k2 4+ Dy £ Dy T 4 0 (7T MR (6.1.6)

aseq, &2 — 0. The coefficients D and D; are constant, 7; = min{u j2—uj1,2—0},
and o; are small positive numbers; for more detail, see Theorem 6.4.5.

Under the condition |k> — k2| = 0(8%’“'““1 + 8;”2]+1+Q), the transition
coefficient Tj (k, €1, &) satisfies

-1
| N2 L K=k O\ S
Ti(k,e1,82) = Z Z+E + P W (1+0(€1 +82)),
1

2
where 7; are the same as in (6.1.6), 7 = Qg1 ! /g2 F!
(For further detail, we again refer to Theorem 6.4.5.)
Finally, the width of the resonant peak at its half-height (calculated for the principal
part in the asymptotics of T1) is Y(e1, &) = |(z + z_l)/Plsfu“Hsguﬂﬂ(l +
O] +&3%)).

,and P and Q are constant.
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6.2 Limit Problems

To derive an asymptotics of a wave function (i.e., a solution to problem (6.1.1)) as
€1, &2 — 0, we use the method of compound asymptotic expansions. To this end,
we introduce “limit” boundary value problems independent of the parameters & and
€. Actually, the reader could skip every mention of function spaces in the section;
this will not prevent the reader from understanding the rest of the text apart from
Sects.4.4 and 5.3.

6.2.1 First Kind Limit Problems

Recall that the limit domain G (0, 0) consists of the unbounded parts G, G» and the
bounded resonator G¢. The problems

— Av(x) —k2v(x) =f, x€Gj; vix)=0, x€dGy, (6.2.1)

are called the first kind limit problems, where j = 0, 1, 2.

We introduce function spaces for the problem (6.2.1) in Go. Let ¢ and ¢, be
smooth real functions in the closure G of G such that ¢; = 1 in aneighborhood of
0j,j=1,2,and ¢ +¢3 = 1. Forl =0,1,... and y; € R, the space V,, ., (Go)
is the completion in the norm

1/2
l 2
llv; V), , (Go)ll = DD i 0r 0> gy (x) 2 dx

G0 |=0 j=1
(6.2.2)
of the set of smooth functions in Gy vanishing near O1 and O3; here r;(x) =
dist(x, 0;),a = (a1, o2, o3) is a multi-index, and % = 91%!/3x{" 9x529x3>. Propo-
sition 6.2.1 follows from the well-known general results; e.g., see [37, Chapters 2
and 4, Sections 1-3] or [33, v.1, Chapter 1].

Proposition 6.2.1 (i) Assume that |y; — 1| < w1+ 1/2, where pj (j = 1,2)
is the same as in (6.1.6). Then, for every f € V}f)]’yz (Go) and any k?, except the

ST . 2100 . 2 . .
positive increasing sequence {k;, el of eigenvalues, k;, — 00, there exists a unique

solution v € V,,ZI,W(GO) to problem (6.2.1) in Gg. The estimate

Iv: V2, (GOl < ¢l f: V3 ,, (GOl (6.2.3)

holds with a constant c independent of f.

(i) Let f be a smooth function in Go vanishing near Oy and O> and let v be any
solution in VVZ] » (Go) of problem (6.2.1). Then v is smooth in Go except at O and
O, and admits the asymptotic representations
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1 M]Z ;o
v(x) =bj— M,1+1/2(kr,)d>,1(<ﬂ]) +0(r;”), rj—>0,j=12

VT

near the points Oy and Oz, where (pj, @) are polar coordinates with center at O j,
bj are some constant coefficients, and J,, denotes the Bessel function multiplied by
a constant such that r ~1/2 Juji+1/2(kr) = riit 4+ o(rtiv); the d>L1 is an eigenfunc-
tion of the Beltrami operator corresponding to the eigenvalue wji(uj1 + 1) and
normalized by the condition

Quji + 1)/ |4 () |*de = 1.
S(L

(iii) Assume that k> = kf is an eigenvalue of problem (6.2.1). Then problem (6.2.1)
in G is solvable if and only if (f, ve)g, = 0 for any eigenfunction v, corresponding
to kg. Under such conditions, there exists for problem (6.2.1) a unique solution v that

is orthogonal to the eigenfunctions and satisfies (6.2.3) (i.e., the Fredholm alternative
holds).

We turn to problems (6.2.1) for j = 1,2. Let xo,; and x~,; be smooth real
functions in the closure G; of G such that X0, j = = 1 in a neighborhood of O,
Xo,; vanishes outside a compact set and Xo + Xoo = = 1. We also assume that the
support SuppXoo, j is located in the cyhndncal part C of Gj.Fory € R,§ > 0, and

[ =0,]1,..., the space Vy, 5(G ) is the completion in the norm
1/2
2 —l j i
v V! 5(G Il = / Z GV Ly 2 exp(2sx))) 0%l dx?
Gj Ja|=0
(6.2.4)

of the set of smooth functions in G ;j vanishing near O; and having compact supports.

Let S(K;) be the domain that the cone K; cuts out on the unit sphere centered
at O;. Since the domains S(K ;) and S(L;) are symmetric, the eigenvalues of the
Dirichlet problem for the Beltrami operator in S(K ;) coincide with it (i j m + 1),
m = 1,2, ....Recall that, according to our assumption, k2 lies between the first and
the second thresholds, so in every G there is the only outgoing wave U;. The next
proposition follows, e.g., from [37, Theorem 5.3.5].

Proposition 6.2.2 Assume that |y — 1| < pj1 + 1/2 and, moreover, there is no
nontrivial solution to the homogeneous problem (6.2.1) (where f = 0) in VVZ’ s(Gj)

with arbitrary small positive 8. Then, for any f € V)E)’ 5(G ), there exists a unique
solution v to problem (6.2.1) that admits the representation

V=1~ AjXoo,jU;
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where Aj = const, u € Vy2 s(G ;) with a sufficiently small 8, and the estimate

lus V2 (G Il + 14,1 < cllf: V0 5G| (6.2.5)

holds with a constant ¢ independent of f. If, in addition, f is smooth and vanishes
near Oj, the solution v satisfies

. 1 ~ .
v(x)) = ajfjwﬁl/z(kr,-)cbfl((pj) +0(r”?
J

where a; is a constant and bel denotes an eigenfunction to the Beltrami operator
corresponding to |1 j1(j1 + 1) and normalized by

), rj—>0,

Quj1 + 1)/ |25 () Pde = 1.
S(K;)

6.2.2 Second Kind Limit Problems

In the domains 2, j = 1, 2, introduced in Sect. 6.1, we consider the boundary value
problems _ _ '
Aw(E))=F(&) inQj, w(’/)=00n0dQ;, (6.2.6)

which are called the second kind limit problems; by &/ = (é}lj , §2j , §3j ) we mean
Cartesian coordinates with origin at O;.

Let pj(§/) = dist(§/, O;) and let ¥, j, Yoo, j be smooth real functions in €2;
such that ¥, ; equals 1 for p; < N/2, vanishes for p; > N, and vfg’j + wgo’j =1,
the N being a sufficiently large positive number. For y € Rand/ =0, 1, ..., the
space V}f (£2) is the completion in the norm

172

J Jor|=0

1
lv; V;(Q_,‘)II = (/Q Z (dfo,_,‘(éf)2 + 1lfoo,j(Ef)zpj(éf)Z(y—Hlal))|3av(§j)|2 dg’

(6.2.7)
of the set C2° Q ;) of compactly supported smooth functions in Q j- The next propo-
sition follows from [37, Theorem 4.3.6].

Proposition 6.2.3 Let |y — 1| < 1 + 1/2. Then, for every F € V}E)(Qj), there
exists a unique solution w € V),Z(Qj) to problem (6.2.6), and

lws V(@I < el F; V@)l (6.2.8)
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holds with a constant ¢ independent of F. For F € cx (ﬁj), the w is infinitely
differentiable in Q2 ; and admits the representation

wE) =d¥p " T oK )+ 0(0; "), pj - 00 (6.2.9)
in the cone K ;; here (pj, ;) are polar coordinates in Q2; with center at Oj, the
wjpand CDfl are the same as in Proposition 6.2.2, and d JK is a constant coefficient.
In the cone L j, a similar expansion holds with djL and <I>]L<1 instead ofd]K and del.
The de and djl-‘ are defined by

K _ K L _ L
dl _—(F,w/ )Qj’ d/ —_(F,wI)Q/’

where w ]K and wJL are unique solutions to homogeneous problem (6.2.6) such that,
as pj — 0o,

: -1 -1y .
k7 e ef e+ 0(p ") in K, 6.2.10)
;= i1 —pja—1 . 2.
’ ﬁjpj o q)(;l((pj)+0(0l/ fo ) inLj,
-1 a1 .
Wb 1Bip @R + 00" mKj,  6a11)
i — . — . _1 — . _1 . ke
T e )@ 0 + 0 () in Ly,

the coefficients aj, B being constant.

6.3 Tunneling in a Waveguide with One Narrow

The purpose of this section is to carry out preliminary constructions which will be
of use in further steps but not related to the phenomenon of resonance. We thereby
lighten the exposition of the next section and, in so doing, demonstrate the compound
asymptotics method in a more simpler situation. We consider the electron motion in
a waveguide G (¢) with one narrow. To describe G (¢), we assume that G = D x R,
where D is a bounded domain in R? and 9D is a smooth simple contour. A double
cone K U L with vertex O € G, domains 2 and €2 (¢) are defined like K1 U L1, 1,
and Q1 (¢) in Sect. 6.1. We set G(¢) = G N2 (¢). The limit waveguide G (0) consists
of two components; either of them has one conical point and one cylindrical end at
infinity. We denote the components by G| and G».
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6.3.1 Special Solutions to the First Kind Homogeneous
Problems

In the domain G, there exists a bounded solution V; satisfying the radiation condi-
tion

Vi) = U (x) 4 SY, U7 (x) + O(exp(=8x1)), x1 — 400,  (6.3.1)

with arbitrary small positive §. The scattering matrix in G consists of the only entry
S?l, |S‘1)1| = 1. The solution Vj serves as a first approximation to the wave function
11 determined by radiation conditions (6.1.4). In a neighborhood of O, there is the
asymptotics

1 ~
Vi(x) = slﬁJHIH/z(kr)CD{((go) +0(r*2), r—0. (6.3.2)

In G2, we consider analogous solution admitting the expansions

Uy (x) + S%U; (x) + 0(e), x| = —00,

V- — 1 ~
2(x) w2 pn) ot @) + 0, r 0.

(6.3.3)

In either of the domains G| and G», we assume that the homogeneous problem
(6.2.1) (with f = 0) has no nontrivial bounded solutions exponentially decaying at
infinity. In what follows, to construct an asymptotics of a wave function, we will use
special solutions to the problem unbounded near the point O.

Let us consider the problem

—Au—kKu=0inK, u=0ondk. (6.3.4)
The function
oK (@) = = R 12 k) 0K () (63.5)
Jr

satisfies (6.3.4); N 1 stands for the Neumann function multiplied by a constant such
that

1 ~
—=Nyy+1/20kr) = pii—l + 0(,,—#1—1)7

\/7

1 and <I>{( are the same as in Proposition 6.2.2. Let t — ®(t) be a cut-off function
on R equalto 1 for ¢ < /2 and to O for ¢ > § with a small positive §. We introduce
a solution
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Vi) = O vf () + U1 (x) (6.3.6)

of homogeneous problem (6.2.1) in G, where v is the solution provided by Propo-
sition 6.2.2 for problem (6.2.1) with f = [A, @]vl’(. Thus,

NG

AU (x) + 0(e™®1),  x1 — +o0,

1~ -
vi(x) = '(Nu1+1/2(kr) + arJu 1126n) @ (9) + 0 *2), r— 0, 637)

where J~u is the same as in Propositions 6.2.1 and 6.2.2. In G,, analogous solution
v, admits

\/;

AUy (x) + O(e?),  x; — —oo0.

1~ ,,
Va(x) = l(Nu1+1/2(kr) + axJyy112(kr)) @ (@) + O(r#2), r — 0, 63.8)

Lemma 6.3.1 The equalities |A ;1> = 2Imaj, A; = i5;S); hold.

Proof We prove the Lemma as j = 1; the case j = 2 can be treated in a similar way.
Let (u, v) ¢ denote the integral f 0 u(x)v(x)dx and let G y_ s stand for the truncated
domain G1 N {x; < N} N {r > &}. By the Green formula,

0= (AVI +k*vi, Vi)gy 5 — (Vi, AV + K*V)Gy 5
= (dv1/0n,V1)aGy s — (V1,0V1/0n)gGy s = 2i Im (3v1/0n, Vi) E

with E = (0Gy, s N{x; = N}) U(@OGn, s N{r = 8}). Taking into account (6.3.7) as
x1 — +oo and (6.1.3), we have

au, ——
Im @v1/3n. VDsGysnt=n) = Im | A1 @AUT @) dxadxs +o(D)
=

Dy X
= A1y / |1 (x2, x3)|2dx2 dxz + o(1)
Dy

= [A1?/2 + o(1).

Using (6.3.7) as r — 0 and the normalization of CD{( (see Proposition 6.2.2), we
obtain

il

1 -~ ~
Im (dv;/0n, v —s51 =Im —— — (N, k J k
(Ov1/0n, V1)aGy, snir=s} S(’O{ 8rﬁ< wi+1/2kr) +arJy +1/2( r))]

1~ s
% e (i) + @ T ap @) @f )P do+ o)

= — (man@u + 1>/ (0K () dg + o(1) = ~Imar + o(1).
JGNs
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Thus, |A1]?/2 — Imaj 4+ o(1) = 0as N — oo and § — 0, which implies the first
equality of this lemma. To obtain the second one, we apply the Green formula in the

domain G y s for the functions vy and V; and arrive at i A S?l + 51+ 0(1) = 0 with

N — oo and § — 0. It remains to take into account that S?l =1/ S?l. ]

6.3.2 Passing Through the Narrow

Let vy and v; satisfy the homogeneous first kind limit problems in G; and Go,
respectively, and let

v = —=(a; Nuys12kr) +a Ty 11 2k) @K (0) + 0G*2), r— 0, (6.3.9)

v = (a2 Nys12(kr) + af Ty, 11 20kr)) @5 (@) + OG12),  r — 0.

s~s|~

(6.3.10)

We assume that a wave function in G (¢) is approximated, outside of a neighborhood
of the narrow, by v; in G| and by v, in G». To find a relation between a]ﬂE and af,
we construct the principal term of the wave function asymptotics as & — 0.

Let us employ to this end the compound asymptotics method. We introduce a
cut-off function x. 1(x) = (1 - @(8_1}‘)) 15, (x), where © is the same as in (6.3.6)
and 1, is the indicator of G (equal to one in G and to zero outside G1). Extend
Xe.1v1 by zero to the whole G (¢) and substitute to problem (6.1.1) with G(eq, €2)
changed for G (¢). We obtain the discrepancy

—(A+ K xev1 = —[A, xealvr — xe 1 (A + KDvy = —[A, 1 — O~ Py,

while the boundary condition is fulfilled. The discrepancy differs from O only near

the narrow, where v can be replaced by its asymptotics. Then, with p = &~ 'r,

—(A+ k) geavi ~ —[A, 1= O 'N] (a7 +afr) of ()
= [A(p(p) Z (,0)]( g~ lpfm 1+a gh m) 1(()0)
¢X denotes the function 1 — © first restricted to the cone K and then extended

by zero to the whole 2. Similarly, we introduce the cut-off function x.2(x) =
(l - @(8‘1r)) 15, (x) and extend x; 2v2 by zeroto G(¢). Then, by virtue of (6.3.10),

—(A k) Ko 202 ~ =€ LAy CE ()] (ay e T p T e pM) D (9),

where ¢L = 1 — ® — ¢ K. We also introduce the solution w of problem (6.2.6) in
with right-hand side
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F(p.9) == A, ¢5 (are ™o 7" afertpf) oF (o)

— 1A, b (age T e ) ob () (631

and substitute x. 1(x)vi(x) + OrwEx) + Xe.2(X)v2(x) into (6.1.1)(for the
waveguide G (¢)):

(A + K (Xe2000200) + OO E"2) + X2 (D12())
=18, xea ) (1@ = (a7~ 4 afr) of ()
+ [8, 00w x) + O )we " x)
+ 18 2@ (2200 = (a7 af ) @)

Thus, the principal terms of the discrepancies, originated from the terms y. jv;,
are compensated. It will be shown in the proof of Theorem 6.3.6 that the term
k*>@w is small. For [A, ©(r)]w to be small, the w must rapidly decay at infinity.
Proposition 6.2.3 provides a solution w satisfying the estimate w = O(p~*1~1) as
p — +oo. However, in this case, [A, ® (r)]w is of the same order as the terms already
compensated. Therefore, we require the estimate w = O (o *2~1) as p — +o0.

Lemma 6.3.2 Let the solution w of problem (6.2.6) with right-hand side

F@© =185 (are™ o 4 af e 0M) of (0)
— 1A, 8 (a e T T afet o) @t ()
admit the estimate O(p~"2~1) as p — o0o. Then
ay e M~ l—aal gt — ﬂa e =0, a,e M~ l—aazs‘” ,Ba e" =0,

(6.3.12)
where a and B are the coefficients in (6.2.10) and (6.2.11).

Proof By Proposition 6.2.3, w = O(p~*>~1) as p — oo, if and only if the right-
hand side of problem (6.2.6) satisfies the conditions

(F,wK)g =0, (F,wl)q=0, (6.3.13)

where wX and w’ are the solutions to homogeneous problem (6.2.6) with expansions
(6.2.10) and (6.2.11). In 2, we introduce the functions

[E @, @) = pT TR0k (), fl(p, p) = pTHTRTI 20 (g).

To derive (6.3.12) from (6.3.13), it suffices to verify that
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A, X155 whe = qa, ¢M1rt whe = -1,

1A, X185 whe = a, chiff whe =a

(A, B 5w = (A, K15 whe =0,

(A, Mk we = qa, ¢K1rf whe = 8.
Let us check the first equality; the other ones can be considered in a similar way. The
support of [A, ¢ K]ff is compact, so when calculating ([A, {K]fﬁ, 'LUK)Q, one can

replace Q by QF = QN {p < R} with sufficiently large R. Let E denote the set
aQk N {p = R} N K. By the Green formula,

([A, ZK]ffs wK)Q = (ACKff, U)K)QR — (CKff, AwK)QR
= @fKjon, w g — (fX, 0w Jon)E.

Taking into account (6.2.10) in K and the definition CDf in Proposition 6.2.2, we
obtain

(A, 51K wB)g
3,0_’“_1
[ ap

5
(0" +ap~1h) — p"“”%(p’“ + ap‘““l)} o’

p=R

x / dK () ?dp 4+ 0(1) = =21 + 1)/ dK(@)2dy +o(1) = =1+ 0(1).
S(K) S(K)

It remains to let R — oo. O

Remark 6.3.3 The solution w mentioned in Lemma 6.3.2 can be written as a linear
combination of certain model functions independent of &. We present the correspond-
ing expression, which will be needed in the next section for estimating the remainders
of asymptotic formulas. Let wX and w’ be the solutions to problem (6.2.6) defined
by (6.2.10) and (6.2.11) and let X, ¢ be the same cut-off functions as in (6.3.11).
We set

wh = wk — K (o1 - ap7 1) o (p) - o 0k (o),
wh=wh — K pp=m1=1of (p) — ¢L (p’“ + ap_’“_l) @ ().
A straightforward verification shows that
w = af e wk +afetiwh. (6.3.14)

O
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It is convenient to write (6.3.12) in the form

(ay,ay) = (at,a) AP, A= (Z g) . (6.3.15)

6.3.3 Formal Asymptotics

Here we obtain the asymptotics of the amplitudes of the reflected and transited waves
as & — 0. Let the wave function u1, defined by asymptotics (6.1.4), be approximated
in G by the solution vi = V| + C11v] and in G by the solution v» = Ciavs of
the homogeneous limit problem. The special solutions Vi, vi, and v, were defined
in 6.3.1. For the time being, the constants C1; and Ci, are unknown; we will find
them when compensating the principle terms of discrepancy. According to (6.3.2)
and (6.3.7), we have, as r — 0,

1

v = ﬁ(cllﬁu1+1/2(kr) + (S] + Cllal)jul+1/2(kr))¢{<((p) + 0(,-#2)’ r— O,
1 . -
v2 = ﬁ(clzNum/z(kr) + CroarJy, +12(kr)) @ (@) + O(™), 1 — 0,

that is, v and v, admit expansions (6.3.9) and (6.3.10) with the constants
(ay.ay) = (Ci1,Cr), (af,a)) = (s1+ Crar, Crzaz). (6.3.16)
As was shown in Sect. 6.3.2, the constants must satisfy the relation
(Ci1, C12) = (s1 + Criar, Crpap) A e t1,

We introduce the matrix ¢ = diag (aj, a2) and, taking into account that A (I —
AN T=UT —-AA) 1A for A = ae?1t] obtain

(Cr1(e), C12(8)) = (51, 0)(I — Aa et~ TAg2itl, (6.3.17)
By virtue of (6.3.1) and (6.3.7) for xll — +00,

vite!) = U (eh) + (S7) + Cri@) ADU; (1) + O(exp(—8x])), x| — 400,
(%) = Cia(e)A2Uy (x%) + O(exp(—8x])), xf — +o0.

This provides an approximation (§1 1, §12) to the first line of the scattering matrix:

(S11(e), S12(e)) = (SY, + C11(8) A1, C12(e)A2) = (89, 0) + (C11(e), Cra(e)) A,
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where A = diag (A1, A2). We set s = diag (s, 52) and S° = diag (59, S,), then
by Lemma 6.3.1

A=is*sP. (6.3.18)
In view of (6.3.17) and (6.3.18), we obtain
(S11(8), S12(6)) = (871, 0) +i (51, 0)(I — Aa g1 TH T A s* %1+ (6.3.19)
An approximation to the wave function is of the form
H1(x:€) = Xe 1 (v1(x: €) + O)w(e ' x18) + xe2(Nva(xs 8),  (6.3.20)

where, owing to (6.3.14),

v1(x; ) = Vi(x) + Cr1(e)vi(x), (6.3.21)
w(E; e) = aj (e)e" Wk (&) + af ()" wh (&), (6.3.22)
v2(x; &) = Cra(e)va(x). (6.3.23)

From (6.3.16) and (6.3.17) it follows that
(@] (e),ai (&) = (51,0) + (51, 00(I — Aa e THTIAae?MT (6.324)

Taking account of the equality / + (I — B)"'B = (I — B)~! for B = a A e2171,
we have

(@] (&), ai (&) = (51,0) (I — Aae*1 T~

An approximation u, to wave function (6.1.5) is derived in the same way. It takes
the form of (6.3.20), where

vi(x; &) = Car(e)vi(x),
w(€; ) = aj (e)e™wX (&) + af ()" wh (&),
va(x; &) = Vao(x) + Cra(e)va(x).

The functions vy and v, admit, near the point O, expansions of the form (6.3.9) and
(6.3.10) with constants

(a7 .ay) = (C21,C), (af.ay) = (Caiar, s2+ Crnaz),
related by the equality

(Ca1, C2) = (Ca1ay, 52 + Cop az) A 217!
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(see (6.3.15)). It follows that

(C21(e), Caa(e)) = (0, 52)(I — Aag*1Th)=h A g2mitl

(@ (e),af (e)) = (0,50) (I — Aag?1 ™)~

Using expansions (6.3.1) and (6.3.7) for x} — —+o00 and the formulas for C,; and
C»>, we obtain an approximation to the second line of the scattering matrix:

($21(2), $22(8)) = (0, $3,) +i(0, s2)(I — Aa e 1) "I As*S0e21 ¥ (6.3.25)
We set S = ||§pq | p,g=1,2 and unite (6.3.19) and (6.3.25) into the matrix equality

S(e) = 8" +is(I — Aag =T At g0zt (6.3.26)

Lemma 6.3.4 The matrix g(s) is unitary.

Proof Let us temporarily denote the matrix (I — a A e +t1)~1A by B. Since
(89)*S% = I, we obtain

E(s)g(s)* = §(8)(SO)*50§(5)* — (1 + iSBS*82M1+1)(I _ iSB*S*82“1+1)
=1 +is(B— B* —iBs*sB*e?1 g2t

We have to verify that B — B* — i Bs*s B*¢2*1T1 = (. By Lemma 6.3.1,
a—a* =iAA* = i(is*S")(is* )" = is*s
and, consequently,

B — B* — iBs*sB*¢*"*tl = B — B* — B(a — a*)B*&*1 1!
= B(I +a*B*e*"1t!) — (I + Bag®™ ) B*.

We have

I+ Bag® ' =14+ (I — Aae™ )" Aae® 1T = (I — Aae?1TH~1,

I +a*B*82M1+1 _ (I + Banul—l—l)* — (I _ a*ASZMl_H)_l,

whence B(I 4+ a*B*e?*1 1y — (I + Bag?1+t1)B* = 0. O
We set T (¢) = |S12()|? and T»(g) = |S»;(¢)|2. According to (6.3.26),

S(e) = SO+ isAs*SO2tl L o(gMt?)

_ S?l 0 |Sl|2°‘S?1 515/3582)52;”“ 1 O(g*t2y,

B ( 0 ng) (523135?1 |52|20‘ng
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Therefore,
Ti(e) = Ta(e) = Is1Pls2* B2 + 0 (71 77). (6.3.27)

By Lemma 6.3.4, R, (e) + T (e) = 1 with R, (e) = [S9,(e)]%, p = 1,2, and
Ri(e) = Ra(e) = 1 — |s1 P22 B2 + 0 (86“1+3) )

We emphasize that the remainders in the above formulas denote the summands which
were omitted in the explicit expressions for approximations and do not show the
distinction between the kept terms and the real values of the coefficients we are
interested in. We estimate this distinction in the next section (cf. Corollary 6.3.7).

6.3.4 The Estimate of the Remainder

‘We now introduce function spaces for the problem
— Au—k*u = finG(e), u=0o0nadG(e). (6.3.28)
Let © be the same as was introduced before (6.3.6), and let 5;, j = 1, 2, be supported

by G; and satisfy n1(x) + @) + n2(x) = 1in G(¢). Fory € R, § > 0, and
[ =0,1,...,the space Vaf, 5(G(&)) is the completion in the norm

1/2
! 2 .
lv: Vy s(G (el = (/G() > <®2 (r? 4 g2y i +Zn§eml’> |8"‘v|2dx)
&) |a|=0

j=1
(6.3.29)
of the set of smooth functions in G (¢) having compact supports. The next proposition
can be proved by a somewhat simplified argument from the proof of Proposition 6.4.3
below (which, in turn, is a modification of the proof of [33, Theorem 5.1.1]).

Proposition 6.3.5 Let|y —1| < u1+1/2, f € V;E), 5(G (&), and let u be a solution
to (6.3.28) that admits the representation

u=u+mA U +mA;U;,
where A; = const and u € Vyz’ 5(G (&), & being a small positive number. Then
i, V2 5(GEDI + AT + A7 ] < cll f3 VY 5(G@))] (6.3.30)

holds with a constant c independent of f and ¢.
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Theorem 6.3.6 Under the hypotheses of Proposition 6.2.2, the inequality
1Sp1(8) = Sp1 ()] + 1Sp2(e) — Spa(e)] < e 467 F et (6.3.31)

holds, where p = 1,2,y > 0, |y — 1| < w1+ 1/2, and the constant c is independent
of e.

Proof Let us verify, for instance, the inequality for p = 1. The difference u; — u
satisfies (6.3.28), where, in view of (6.3.20),

e =[a, xel (v ) = @ @r !t af @rmof o)

18, el (12 0) = (@5 @7 - af ) 0t ()
+ [A, Olw(e ™ 'x; 6) + k2O we ™ x; o). (6.3.32)

Moreover, the asymptotics of u — u contains only outgoing waves. To apply Proposi-
tion 6.3.5, we estimate || f; V)%(G(s)) ||I. In view of the asymptotics of v; asr — 0,
we have

I > 18, o] (v16:.8) = (a7 @r 7! 4 af @) Of () 1 VY 5(Gen 2

2
sc [ @) fiaalar @ 4 af @ el e d.
G(e)
Passing to the variables £ = ¢~ !x and taking into account (6.3.15), we obtain

I > 18, el (1) = (@7 @~ 4 af @r) e () : VI GE)

= ce? ™2 (lap @le ™~ +laf @le™) < claf (@)l 2,

Analogously,

I > 18, xe2] (120 ) = (@5 @7 4 af @) @) : V5G]

< C|a;(5)|8y+’“+3/2.

In view of (6.3.22) and of the fact that w* behaves as 0(,0_“2_1) at infinity, we get
the estimate

/ 2 + &2y ‘[A, Olw(e ' x: s)‘zdx < e (laf ()| + laf (@)])
G(e)

x (/ 2 + &2y ‘[A, @](s_lr)_"z_l@f((p)‘zdx
K
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+ /L(V2 + 82)V ‘[A, 6](8_1r)_uz_lq)£‘((p)‘2dx)
=c (lar(8)| + |a;_(g)|)2 82M1+2u2+2.

Finally, again due to (6.3.22), we see that

2
/ 2+ [0 x o) dr = 213 / (0% + 1Y 10 (ep)w(E; 6) > d&
G(e) Q
< ¢ (laf @] + laf (o)) 2172743,
Combining the obtained estimates, we arrive at
1f5 Vy s(G Nl < e(lay @] + lay (@)]) ("2 +e7F2)ei1. (6.3.33)

Now, let us apply Proposition 6.3.5 to the function u1 — u1. In (6.3.30), the # and
Alf must be replaced by u; — %1 and S1; — S1;. From (6.3.33) and the estimates

al = 0?1 and af = O(1) (cf. (6.3.24)), we obtain
1S11(8) = S11(&) |+ [S12(8) = Si2(e)| < llu—1&: Vy 5 _(G@)]| < c(e2 T 427 T32)eh,
O
Corollay 6.3.7 The asymptotic formulas
Ty(e) = 1512152128212 + 0 (84u1+2+r) ’

Rp(e) = 1 = |51 Plsa 2642 4 O (1247)

hold with p = 1,2 and t = min{ur — w1, 2 — o}, where o is a small positive
number.

Proof Theorem 6.3.6 leads to |Syn — Spo| < ce?+197 with © = min{ua — 1,
2 —oc}and o = pu1 + 3/2 — y. Therefore,

1T, — Tyl < cISpallSp2 — Spo| < ce*1+2+7,

To obtain the formula for 7, it remains to take account of (6.3.27). The expansion
for R, follows now from the equality R, + T, = 1. (]
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6.4 Tunneling in a Waveguide with Two Narrows

We turn to the waveguide G(e1, €2) with two narrows. The limit domain G (0, 0)
consists of the infinite domains G, G», and the bounded “resonator” G(. We assume
that k> varies in a neighborhood of an eigenvalue kg of limit problem (6.2.1) in Gy.
For the sake of simplicity, the eigenvalue is supposed to be simple.

6.4.1 Special Solutions to the Problem in the Resonator

Let kZ be a simple eigenvalue for the operator —A with Dirichlet boundary condi-
tion in G and let v, be an eigenfunction corresponding to kg and normalized by
fGo |ve|>dx = 1. By Proposition 6.2.1,

125 L

biry " Jup+1/2(ker) @1 (@1) near Oy,

velx) ~ § UL e (6.4.1)
bary "Iy +1/2(ker2) @5 (92) mear O2,

where (7}, ¢;) are polar coordinates centered at O}, u ;1 (11 + 1), and <I>’/.‘l are the
first eigenvalue and eigenfunction of the Laplace—Beltrami operator on the base of L
normalized by (21 + 1) f |<I>§.‘1 |>dg = 1. For k?, in a punctured neighborhood of
kg separated from the other eigenvalues of the problem in the resonator, we introduce
solutions vo; to the homogeneous problem (6.2.1) in G by

vo;j(x) = @(rj)vfl (rj, 9j) +v0;(x), j=12, (6.4.2)

where ¢ — ©(¢) is a cut-off function on R equal to 1 for# < §/2 andto O forz > §
with a small positive §, v]Ll are defined by (6.3.5) with L instead of K, and vy is

the bounded solution to the problem (6.2.1) in G for f = [A, ®]v/41.

Lemma 6.4.1 naneighborhoodV C Cof kf containing no eigenvalues of problem
(6.2.1) in G except kg, the relations vy (x) = —b; (k% — kg)_lve(x) + Vo (x) hold
with b; in (6.4.1) and functions Vo analytic in kK> evV.

Proof Let us first prove that (vo;, ve)g, = —b;/ (k% — kf) with vo; defined by
(6.4.2). We have

(AV0j +K*V0j, )Gy — (Vo) Ave + K2v) G, = —(K> = k) (Vo5 ve) G,
in the domain G obtained from G by cutting out the balls of radius § centered at

01 and O,. Applying the Green formula as in the proof of Lemma 6.3.1, we arrive
at — (k2 — kf)(voj, Ve)G, = bj + o(1). It remains to let § go to zero.
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Since kg is a simple eigenvalue, we have

- Bj(k 2)
voj(x) = 2 ve(x) + v] (x), (6.4.3)

where B; (k%) is independent of x and v; are some functions analytic in k? near the
point k> = k2. Multiplying (6.4.2) by v, and taking into account (6.4.3), the proved
formula for (V() j» Ve)Gy» and the normalization condition (ve, Ve)G, = 1, we find that
B; (k )=—b; + (k2 kz)B (kz) with analytic function B Together with (6.4.3),
thls leads to the required statement. (]

Owing to Proposition 6.2.1,

voi (x) ~ [ 71/2(ﬁun+1/2(kr1) + e (k) Ty 412k DF (01), 11— 0,

c12 (k)Vz uzl+1/2(krz)<1>21(</)2) rp; — 0,

(6.4.4)
—-1/2 T L

Vor () ~ ry e (k) g 412(kr) @7 (1), rr — 0,

”2_1/2(Nu21+1/2(k72) + 22 (k) gy +1/2(kr2)) @5 (92), 12 — 0.
(6.4.5)

In view of Lemma 6.4.1 and asymptotics (6.4.1), we obtain

Cpgk) = +Cpq (k), (6.4.6)

k2

where ¢, analytically depends on k? in a neighborhood of kf.

Lemma 6.4.2 If voi and v in (6.4.4) and (6.4.5) make sense for a number k, then
ci2(k) = ca1(k).

Proof 1t suffices to apply the Green formula to vg; and v(; in the same domain G
as in the proof of Lemma 6.4.1, to use (6.4.4) and (6.4.5), and to let § tend to 0. [

6.4.2 Formal Asymptotics

Let us consider the wave function u#1 in G (g1, &2) satisfying

Ul (x5 k) + Siik, e1, ) Uy (x5 k), x] — +o0,

uy(x; k, &1, &) ~ _
ke e2) [Su(k,sl,ezwz(xz;k), X2 — 400,
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InGj, j =0,1,2, u; is approximated by the solutions v; to (6.2.1) such that

vi = Vi +Cuivy, vo=Ciavo1 + Ci3vp2, v2 = Ciavy, (6.4.7)

the Vi and vy are defined in 6.3.1, the vy is defined in 6.4.1, and the v; is an analog
of the vy in the domain G». The constants C1; depend on €1, €2 and k. According to
(6.3.2), (6.4.4), (6.4.5), and (6.3.7) for r — 0,

vy = (CttNwy +1/2Kkr) + (51 + Crian Ty 4126kr)) @5 (0) + 001 12), 11 — 0,

f
1
T(CIZN;/.11+1/2(1”’1) + (Cractt + C13020) Ty +1/26kr)) L (1) + 0¢}'12), 11 — 0,
v = 1
\/>(C13N/421+1/2(k”2) + (Cracr2 + C13622)J;421+1/2(kr2))<1>21(wz) +00h?), rn—o.
1
v = T(C14N/L]+1/2(kr2) + Cra azdy +1/2(kr2) @5 (9) + 0G4), 1y — 0.

For every narrow, we introduce a matrix A ; (like the matrix A in (6.3.15)). Applying
Lemma 6.3.2, we obtain

2u114+1
(C11, C12) = (51 + Cr1a1, Crac11 + Crzeon) A 81“”+

for the first narrow and
2uz1+1
(Ci3, C14) = (Crac12 + Ci3cn2, Craaz) Az &)

for the second narrow. The corresponding solutions of the second kind limit problems
are of the form (see (6.3.14))

wiEY = (51 + Cria)ef w1 + (Cracry + Crzeanet M wh "),  (6.4.8)
wa (&%) = C14028M21W2 () + (Cracin + C13622)8M21W2 Go) (6.4.9)

where wf and WIT are analogs for the domains 2}, j = 1, 2, of the functions defined

in Remark 6.3.3. We set A = diag {A1, A}, £ = diag {82Ml+1, %’”'H %’mﬂ,
§M21+1}’ and

a 0 0 O
0ciic2 0
0 caen 0
00 0 ap

a =

(6.4.10)

and, combining the relations obtained for C;, we arrive at the equality

(C11,C12,C13,C1a) = (51,0,0,00) AE 4+ (C11, C12,C13, Cla)a A €.
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Thus,
(C11,C12,C13,C1a) —a A &) = (51,0,0,0) A €. (6.4.11)

Let us calculate the inverse matrix of I —a A€, assuming ¢ and &; to be sufficiently
small. It follows from (6.4.6) that

*

b*b N
a(k) = —m + a(k),

where b = (0, by, by, 0) and the matrix @ is analytic near k = k, and is defined by
equality (6.4.10) with ¢, changed for ¢,,. We have

1 AE=1 AAE—}-b*bAg I+
—da = —da —_—
K2 — k2

b*bAEUL —TAE)™!
k2 — k2

)U—EA&;

it is evident that the matrix (I —a A £)~! exists for small &1 and ¢,. Straightforward
calculation shows that

I+ b*c _1_1 b*c
k2 — k2 n k2 — k2 — (c, b)

forc=bAEU —aA &), where (-, -) is the inner product in the space C*. Thus,

*DAEUL —aAE)!
U—aA&”=41—aA&”(1_k b'HAEU —aAé) )‘

224+ (AEUI —TAE) D)

Using this equality and (6.4.11), we find the constants Cy;:

(C11,Ci12, C13, C1a) = (51,0,0,00 AE(I —a A E) ™!

Db*b D
:mﬂam@—z .
k2 — k2 + (bD, b)

),mAu)

where D = A E(I —a A E£)7!; thereby, we have constructed an approximation to
the wave function u|. However, before presenting this approximation, we modify the
solution v of the limit problem in the resonator and the solutions w; of the second
kind limit problems; we show that these solutions do not have a pole at k> = k2. In
view of Lemma 6.4.1,

Ci2b1 + Ci3ba

vo(x) = Crzvo1 () + C13Vo2(x) = CiaVo1 (¥) + C13Vor (1) = — 57—
e

Ve (X).
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By virtue of (6.4.12),

D b*b Db*
Ci2b1+Ci3by = (C11, C12, C13, C14)b* = (51, 0, 0, 0) (Db* - ) .

k2 — k2 + (bD, b)

Since D b*b Db* = D b*(bD, b), we have

k2 _ k2
Ci2b Ci3by = (51,0,0,0)D b* £ 6.4.13
12b1 + Ci13b2 = (51 ) K2+ (bD.b) ( )
and
~ — (s1,0,0,0)Db*
vo(x) = C12Vo1(x) + C13vp2(x) — z ! Ve (X). (6.4.14)

2_k2+ (bD,b)

Let us modify (6.4.8) and (6.4.9) for w;. Taking into account (6.4.6) and (6.4.13),
we obtain

bj(Ci2by + Ci13b2)
K212
bj(sl, O, O, O)D b*

Ciac1j + Cizcaj = Crpcyj + Craczj —

= Cppc1j + Cizczj — , (6.4.15)
! ! k2 — k2 + (bD,b)
whence
~ ~ bi(s1,0,0,0)D b*
wiED = (51 + CrianelMwl &) + (C126’11 + Ci3¢21 — k;(il?(b)Db)) elMwh(gh),
(6.4.16)
~ — by(s1,0,0,0)D b*
w(€%) = Craazehy™ wi (%) + (Clzclz + Ci3cn — m) ey wy (&%)
(6.4.17)

Finally, we present the asymptotics of the wave function. Let the cut-off functions
t > O@)and x/ — ng,j(xj), Jj = 1,2, be the same as in Sects.3.2 and 3.3. We
introduce x = Xz 6, (X) = 16,(x) (1 =O(r1/e1)) (1 —O(r2/¢2)), where 1, is the
characteristic function of Gg. The principal term | of the asymptotics of the wave
function u is of the form

w1(xsk, e1, €2) = x1.6, (xHur(x's k, 61, £2) + ®(”1)w1(51_1x1§ k,e1,€2)
+ Xer.eo (0 (x5 k, €1, 82) + O(r)wale; ' x% k, €1, £2)
+ X2.6, (D023 K, 81, £2), (6.4.18)


http://dx.doi.org/10.1007/978-3-319-15105-2_3
http://dx.doi.org/10.1007/978-3-319-15105-2_3
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where the solutions v and v; of the first kind limit problems are defined by relations
(6.4.7), vo is given by (6.4.14), and the solutions w; and w; of the second kind limit
problems are defined by (6.4.16) and (6.4.17).
We now find an approximation S;; to the entries of the scattering matrix § =
(Sl-j)ﬁj:l. By virtue of (6.3.1) and (6.3.7) for x| — +o0,
vi(x') = Ui () + (8P + Cri(@) AUy (¢1) + O(exp(—8x)). xf — +o0,
v2(x%) = Cia(e)A2U; (x%) + O(exp(—8x7)),  x] — 400,

whence
(S11, S12) = (89; + C11A1, ClaAy). (6.4.19)

We set

—_

A1 0
oo _(51000Y.
4=10 0| s_(O()()sz)’
0 As

as before, let SO = diag (S?] , ng); then, by Lemma 6.3.1, equality (6.3.18) remains
valid. Taking into account (6.4.19), (6.4.12), and (6.3.18), we obtain

(811, S12) = (8%, 0) + (C11, C12, C13, C14) A
Db*b D

= ($%,0) +i(51,0,0,0) (D — 5—F5———
(S11, 0) +iGsy )( K —k2+ (bD,b)

) 550, (6.4.20)
where D = A (I —a A £)~'. The approximation

(@hgn):(QS&)+i®JLQsﬁ(D—— Db’ D >)ﬁs@ (6.4.21)

k2 —kZ+ (bD,b

to the second row of the scattering matrix S is derived from the asymptotics of the
wave function u;,

S21(k781a 82) Ul_(xl,k), xll — +OO,

ur(x; k, €1, &) ~ ,
2( 1, €2) {U;(xl; k) + Sk, e1,8) Uy (x% k), x} — +o0.

The principal term u, of the asymptotics takes the form of (6.4.18), where

vi(xh = Cyvixh,

—~ —~ bi(s1,0,0,0)Db*
wiE") = Coare)"'w (") + (C12C11 +C136yy — AL T ) gan

L/s1
k21 bD,wy )T MTED:



6.4 Tunneling in a Waveguide with Two Narrows 151

(0,0,0, 52)Db*

K2 — kg 1 (bD, b) Ve (x),

vo(x) = C2Vo1(x) + C23Vo (x) —

—~ ~ by(s1,0,0,0)D b*
wa(E2) = (52 + Coaa)eb™ wh (£%) + (C12612 + C13¢0 — h

L2
k21 bD,m )2 W2 ED:
v (x?) = Va(x?) + Caava(x?),

the constants C5; are given by

D b*b D
(C21,C22,Cr3,C24) = (0,0,0,52) | D

k2 —k2+ (bD,b)

Combining relations (6.4.20) and (6.4.21), we obtain the approximation S =
1S pq ”thzl to the scattering matrix S:

Db*b D
k2 — k2 + (bD, b)

S(k, &1, &2) = SO(k) + is(k) (D ) s*(k)S° k),  (6.4.22)

where D = D(k, e1,82) = AE(er, e2)(I —a(k) A E(er, €2))~ " the k2 and b are
independent of k, 1, £2. Arguing as in the proof of Lemma 6.3.4 and taking into
account (A £)* = A€ and a* — a = is*™s (Lemma 6.3.1), one can verify that the
matrix S is unitary.

We denote by k), the pole of the matrix S, that is, k, satisfies the equation k> —
kf + (bD, b) = 0. We substitute the expression for D and obtain

K2 —k2 (bAEUI —a(k) AE)™L, b); (6.4.23)

here £ = diag (8%“1|+], 5%“”“, 8§MZI+1 , 8§M2|+]) and A = diag (A1, Ap) with

aJ:BJ -

Since €1 and g3 are small, a solution to Eq.(6.4.23) can be found by the successive
approximaton method. We have k%, = kr2 —1i kl.z, where

r

2 dpii42 | dum42
k —(bAE, b)+0( HIt2 | g )
_ kZ —u b%S%MH—l bz 2#21+1 L0 ( dpnt2 8‘211121+2) 7 (6.4.24)

k2 (bAEa(k )Ag b) + 0( 61143 +86M2|+3)

1

= §|Sl(ke)|2b ﬂZ un+2 |52(k )|2b2,32 dua2 4 (8?u11+3 n 82“2]+3) ;
(6.4.25)
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in the last equality, we used the relation Ima; = |s; |2 /2, j = 1,2, which follows
from Lemma 6.3.1. We suppose the constants b; and s; to be distinct from zero.

Then, by virtue of (6.4.25), k% — k2| = c(e"""™ + &5 2) for all real .

Let us find the principal terms of the power series in ¢; and &7 for the matrix S.
To this end we verify that

1 B 1+ 0(8‘1”11]4’2_’_8‘2”‘«214“2)

_ 6.4.26
k2 — k2 + (bD(k), b) K212 ( )

uniformly with respect to k in any interval that is placed between the first and second
thresholds and contains no eigenvalues of the resonator except k.. Indeed, since
k% —kz = (bD(kp), b), we have

1 1 k2 — (bD (k). b) — k2

K2—k2+ (bD(k),b) k2 —k2 (k2 — k2 + (bD(k), b)) (k2 — k2)
_ (b(D(k) — D(kp)),b)
(k2 = k2 + (bD(k), b)) (K2 — k3)”

Applying the Hilbert identity
I-AD"'"—u-B'=u-a"'A-BU-B"!
for A =a(k) A€ and B =a(k,) A £, we obtain

D(k) — D(k,) Ag(l —ak)AE) = —atk,) AE)!

K-k k2 — k2
_AEU —ak) AE) @) —akp))AEU —alk,) AE)!
- k> — k2
ak) —a(k
_ D(k)a(k%ﬁ;ép)p(kp).

2 1 2 1, .
1’“1+ +82M21+ ), it follows

From the last two equalities and the estimate D = O (e
that dun+2 | Auo 2
1 1 0(8]M11+ + €2M21+ )

k2 —k2+ (bD(k).b) k2 —k2 ~ k2 —k2+ (bD(k).b)’

which leads to (6.4.26). We substitute (6.4.26) into (6.4.22) and take into account
that D = A € + O(e}"" % 4 £3"21%2). Then
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s(k)A Eb*b A Es* (k) SO (k)
k2 — k2

_(S?l(k) 0 )H 151k Por 89 (ke 1! 0 i
0 8%k 0 ls2(k) Paa 8% (e | k2 = k2

( Is1 () 2B B2SY, (ke i+ 51(6)52()b1b21 2.8 (k)11 H 62 2”2‘“)

S(k, e1,€2) ~ SOk) + is(k)A Es* (k) SO (k) —

52(k)s1(K)b1b2B1 B2 Y, (k)sz"““ gt Is2 (k)23 8289, (k)ey" 2 2

2u11+1 2u21+1

where we dropped the terms that admit the estimate O (&) +& ) uniformly
with respect to k. For (k2 kz) - = O(1), the third term can be neglected as well;
however, it must be taken into account for small k2 — k[2,.

Let us choose a more narrow interval for k2, assuming k2 — k,2 = 0(8%“ 11+1+
&5"1*1). Using relations (6.4.24), (6.4.25), 8% (k) = 8% (ke) + O(K? — k2), and
sj(k) = s (ke) + O(k* — k2), we obtain

; s1(ke)  s2(ke)
Siak, £1, £2) = — s1(ke)| Is2(ke)l (1+ 0(82u11+1 +8§u21+1))’

i N, s k? — k?
AT A T 2

(6.4.27)
; s2(ke)  s1(ke)
~ k k
So1(k, €1, 82) = 1|s2( 2l |S1(k§)|_ 2 (1+ 0(82”11+1 + 8%“21“)),
E(Z + ) + P82M11+182M21+1
1 2
(6.4.28)

where

_ hBilsikole" 1
bzﬁzlsz(k )|ez“21+l — bibaBiBalsi(ke)lIs2 (k)|

Now, we find approximations to the transmission and reflection coefficients:

= 1

Tj(k, £1,8) = ] " 2(1+ 0(82M11+1 +8§“21+1)),
_ _ 2
4(Z+z) +P ( M|1+1 2#21+1)
1 2
_ _ 2

- 4 (Z ) +r ( 2,u11+l 2u21+1)

Rj(k,¢e1,8) = 2(1+0(82M11+1+8§u21+1))'
1 1 )
4(Z+z) tP ( 2,U-ll+1 2#21+1)
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It is easy to see that Tj has a peak at k> = k,2 whose width at its half-height is

T(e1, 62) = [z +2 1)/ Plep i Hlggrat! (6.4.29)

6.4.3 The Estimate of the Remainder

We introduce function spaces for the problem
—Au—Ku=f inG(er,e), u=0 ondGel,er). (6.4.30)

Let ® be the same as in (6.3.6), and let n;, j = 0, 1, 2, be supported by G; and
satisfy n1(x) + ©(r1) + no(x) + O(r2) + n2(x) = 1in G(ey, &2). For y1, y» € R,

8>0,and!/ =0,1,...,the space Vlil,yz,é(G(gl’ £2)) is the completion in the norm

lu; Vi, ) 5(Ger, e2)l
I 2 2 _ 1/2
= (/ > (Z O2(rj) (2 + e2yri el 13" 2200 né) 0%v|? dx)
GE1e2) =0 Nj=1 j=1
(6.4.31)

0,1
VVI’VZJS
the space of functions f that are analytic in k2, take values in ij)l " 5(G(e1, €2)),

of the set of smooth functions in G (g1, £2) with compact supports. Denote by

and, for k* = kZ, satisfy (xeo o7 f, ve)G, = O with small o > 0.

Proposition 6.4.3 Let k> be a resonance, k2 — k? as €1, ey — 0, and let |k*> —
k2| = 0(8%““rl + 8§MZI+1). Assume that yy, y» satisfy wj1 —3/2 < yj —1 <

w1 +1/2, f € V;)l’jz’é(G(el, £2)) and u is a solution to (6.4.30) that admits the
representation

u=u-+ mA; U +mA, Uy,
here A]T = const and u € Vyzl,n,a(G(el, £2)) with small § > 0. Then

1@ V2, 5(Ger, el + AT+ AT < el f; VO s(Gler el (6.4.32)

where c is a constant independent of f and ¢, €;.

Proof Step A. First, we construct an auxiliary function u,. The solutions of the
first kind limit problems involved in (6.4.18) are defined for complex k2 as well.
Multiply the limit problem solutions involved in #; by g := —(k* — kg +
(bD(k),b))/{(s1,0,0,0)D,b), put k = k,, and denote the resulting functions by
adding the subscript p. Then
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g(Ci1, Ci2, C13, C1a) |k=k, =bD(kp)
= (1B 82M11+ ba 21/-11+  bya 2M2|+ . bafo 82M21+1)

A2 | A2
+ O(EIM]] +€2M21 )

and, in view of (6.4.7) and (6.4.14)-(6.4.17),

vip(rier e2) =&, (b B+ 0( 2+l +s§“21+1))vj(x;k,,),
vop (X1 €1, £2) = v (x) + &1+ (b1a1 + 02t +ez“2'“))vm(x;kp)
+ ! (bzolz + 0(g gt +8§“21+1))V02(x; kp),
wj,,(éj; €1, €2) ijgj%jl[siwlﬂ ( p)B; + O( 21141 +s§”21+1)) wf-{(éj)

+ (1 + o7t 4 8%“21+1)) wf(éj)],
where j = 1, 2; the dependence of k), on €1, &7 is not shown. We set

= 2 -1
up(x; €1, &) = B(x) [X1,61(x1)vlp(x1§81782)+®(81 Trwip(e; ' x! e, e2)
F Xere (0V0p (x5 €1, 2) + O(e; T r)waley ' x% k, €1, £2)

+ x2.0 X2 (X% K, €1, 82)] ,

where E is a cut-off function in G (¢1, &) that equals 1 on the set G(e1, &2) N {|x] <
R} and O on G (g1, &2) N{|x| > R + 1} for a large R > 0. The principal part of the
norm of u, is given by x¢, ¢, v0p. Taking into account the definitions of vg, and of
Vo, (see Sect.6.4.1), we obtain || ¢, ¢, vop || = [lvell + o(1). Note that (A +k2)up is
nonzero only in the region {r; < clsl"} Uf{r < czsz"} Arguing as in the proof of
Theorem 6.3.6, we obtain

1A+ KDup Vi) 5(Gler, el < e (7 4e572) 0 (6433)

where k; = min{u ;1 +1, ujo+1—0j, yj+3/2}, 05 = 20 (nj2 —y; +3/2). When
mj1—3/2 < yj—1ando issmall suchthat jo —pj1 > oj, wehavex; = 1 +1.

Step B. This part contains somewhat modified arguments from the proof of Theo-
rem 5.1.11in [33]. Let ||v; V2 5.-(Gj D|I? and [|v; V. }/1 . 8, _(G(e1, £2))|1? denote the
left-hand side of (6.2.5) (w1th y = y;) and (6.4.32). Rewrite the right-hand side of
(6.4.30) in the form

fx) = filx;en) + folx; er,e2) + falx; e2)

e PR e e + 6,7 TP Fatey X 62),
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where
foxs €1, €2) = Xeg o3 () F (), fi(x8) = xeo (0 F (),
Fieliep) =706 0) f(xo, +e87):

x are arbitrary Cartesian coordinates; x; denotes the coordinates of O in the system
x; x/ are introduced in Sect. 6.1. From the definition of the norms it follows that

1fo: Viy o (GOl + 11 £ Vy 5(G A NEj; V@I < cllfs Vi, 5(Ger, ).

(6.4.34)
Consider solutions vg, v;, and w; of the problems
—Avg — k*vg = foin Go, vo = 0 on 9Gy,
—Avj—kzvj:fjinGj, v; =00n0dGy,

Aw; = Fjin Qj, w; = 0on 3£},

respectively; moreover, v; satisfies the natural radiation conditions at infinity. Owing
to Propositions 6.2.1, 6.2.2, and 6.2.3, the problems in Go, G, and 2;, j = 1, 2 are
uniquely solvable and

llvo; Vi, (Gl < %ol for V, v, yZ(Go)II
lvjs yj,a,,(Gj)H <cilfi yj,(s(Gj)II, (6.4.35)
lwjs Vy (@I < CIIF); Vy @),

where ¢p, ¢, and C ; are independent of &1, £2. We set
. . —y1+1/2 —1.1.
Ux;er,62) = xep 1 (v (x; 61, 2) + ¢, "' 7O Dwi(e] x'; €1, €2)

— 1/2 _
F Xepey (O0(x; €1, £2) + 8, P TPO () wa (e 152 €1, £2)
+ Xepr,2(X)V2(x; €1, £2).

The estimates (6.4.34) and (6.4.35) lead to
U5 V2 5 _(Ger el < cll f: VS, s(Gler. e (6.4.36)
with ¢ independent of €1, &;.

Let us show that —(A + kZ)RgL52 =1+ S ¢, where S, ¢, 1S an operator in

V)?],yz,B(G(El’ &7)) of small norm. We have
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(A+ KRy e, f(X) = (A + KU (x5 81, 82) = — F(x) + [A, x1.6, 101 (x5 €1, €2)

+ e, T2, Olwi (67 s 61, £2)

— 2 _

+ K220 w e ks 1, 62)

+ [A, X0,61,60Iv0(x; €1, £2)

+ e, P A, Olun(ey 152 61, 2)
+ K26, T 20w ey X% 61, 62) (6.4.37)
+ [A, x2,6,]02(x; €1, €2).

Let d be a positive number such that y; — 1 > w1 +1/2 — d. On the support of the
function [A, x1.¢]v; the estimate 11 = O(e1) holds, therefore,

ITA, X1, 1v15 Vy, ns(G(m el < cel [A, x1.6 1013 V, dg(G1HI<<w1Hv1 dﬁ(GINL
This and (6.4.35) lead to
IA. x1.e0Tv1s V) 5 (Gler, el < cef Il fi: Vi _y 5 (G-

Moreover, fi = 0 outside the zone ce{ < r| < Ce{, therefore,

Lf1: Vi) _g s(GDI < e [l f1: V) s(GDII-

The two last estimates together with (6.4.34) show that

A, X1e 101 VY, s(Gler el < ce{ "N £ VS ) 5(Gler. el (6.4.38)

In a similar way, we obtain

ITA. X0.01.e0100: Vi 1y 5(Ger, el < ce] ™7 + 5 )£V 5(Ger. e,
(6.4.39)

LA, x2.e5102: VO 5(Gler, )| < ey~ £ VY 5(Ger. e (6.4.40)

We now assume in addition that the d satisfies —uj; — 1/2 +d < y; — 1. Because

the support of the function [Ag_/, Ojpj)]w; (?;f; €1, ¢€2), j = 1,2, belongs to the

. —1 —1
domamcsj <pj §Csj s

157 > [Ags, Oejp)Iw;Es e1,62); V) (Q))]
< cefllgl > [Ag), O p)Iwj (€75 81, 82); Vi g < el lwjs Vi (@)
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Now, taking into account (6.4.35), we obtain

—yj+1/2

; Ix/ = [A, O )Iw;(e; ' x7s 1, 82); V), 5(Gler, £2))l

d . 0
=< c&flIFj; Vyj+d(9j)||-

Since Fj =0 for pj > ce 7,

J
I VI a(@PI < ce7 % 11 Fj; VD (@) (6.4.41)
Consequently,
e nd s [A Or)Iw;(e; ' xl 61, 62): VY, 5(Gler. e2)]
<cefNE VY L s(Ger el (6.4.42)

It remains to estimate the middle terms of the two last lines in (6.4.37). We have

2,
AR

; = O(rpw;(e; ' x5 1, 82); V) L, 5(Gler, 62))]

= e3)E > Oejppwi(E!; e1, £2); V) (2))]
in the last inequality we took into account that ®(s;p;)w; (gj; €1,8) = 0 for

pj = cslfl; besides, we assume that 2 — d > 0. In view of (6.4.35), (6.4.41), and
(6.4.34), we obtain

—yj+1/2
e Vi /

,- X/ > ©@pwje™ " x/s e1,82): V), 5(Gler, )

<cedNf VYL, 5(Gler el (6.4.43)
Thus, (6.4.37)—(6.4.40) and (6.4.42) and (6.4.43) lead to the inequality
= A+, Rey ey f— £3 V) 5 (Gler el < el + &5 £ VS 5(Ger, el

which means that (A + kz)Rgl ¢s = I 4+ S¢, ¢, and the norm of the operator Sg, ¢, in
d(1—c) + d(l a))

yl n 5(G(81,
€2)). We need the image of the operator S, ., to be included in V. J); 5(G(er, €2)),

the space V 5(G(a;l , £2)) admits the estimate || S, ¢, || < c(g]
Step C. Recall that the operator Sg, ¢, is defined on the subspace V.

too. To this end, replace the mapping Ry, ¢, by Rs] e f U(f) +a(f)up, where
u is constructed in A, a( f) being a constant. Then —(A + k2 )REl e =1+ 8¢ 655
with Se, ey = Sey.e, — a()(A + k?)u . The condition (Xe9, 69 Ser, 62 f, Ve) Gy = 0 as
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k = ke gives a(f) = (Xeg.eg Ser, e2.fs V) Go/ (Xeq . eg (A + k2)up, ve)G,- Prove that
1Se;, eIl < cllSey, ¢, I, ¢ being independent of &1, &2, k. We have

ISer,en f1 < USer, en £l 4+ 1a(OI A + Kupl.

The estimate (6.4.33) (with y; > ;1 —1/2 and wj2 — puj1 > o;), the formula for

k. and the condition k* — k2 = O (&) Zentl 82“2'+1) imply
1A + E2)up: Vi oy sl < K2 = K2 s Vi sl 4 1A + k)up: Vi sl
< C( lellJrl +82/l.2|+1)

Since the supports of the functions (A + k[%)u p and Xe9, &g do not intersect, we have

2 1 2 1
|(Xeg o9 (A + kD), V) Gyl = (K2 — k2) (U, v)Gol = (e + 25",

Further, y; — 1 < uj1 +1/2,s0

|(X£1 &g Se| €2f Ue)G0| = ||Se| szf lyza(G(glv &)l lve; V. 77,] yz(GO)”
< S f3 VO, 5(Gler, e,

Hence,
a()] < cllSer.e f3 VS, 5(Gler eI/ (7 + 65"

and ||§81,82f|| < ¢||S¢;,e, f1I. Thus the operator I + Esl,gz in V i, 5(G(81 £2)) is
invertible, which is also true for the operator of problem (6.4.30):

Ay ey tu— —Au— K V%w(S (G(e1,€9)) — Vot s(Gler,e2));

V15725

here Vi lﬁ 5 (G(e1,e2)) denotes the space of elements of V. Vl 15— (G(er, £2)) that

vanish on dG (g1, &2) and are sent by the operator —A — k% to V;)l J);z s- The inverse

operator AgI o = = Re, ¢, (I+Se, )~ " is bounded uniformly with respect to 1, €2, k.
Hence, the inequality (6.4.32) holds with ¢ independent of €1, &2, k. U

Consider the solution u of the homogeneous problem (6.1.1) defined by (6.1.4).
Let S11 and S1> be the entries of the scattering matrix determined by this solution.
Denote by i, the function defined by (6.4.18) with ®(r;) replaced by ® (8]._2‘7 rj).

The §11, Elz are the same as in Sect. 6.4.2.

Theorem 6.4.4 Let the hypotheses of Propositions 6.2.2 and 6.4.3 be fulfilled and
assume that the coefficients s; in (6.3.1), (6.3.3) and the coefficients b; in (6.4.1) are
nonzero. Then
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|Spl - p1|+|Sp2_Sp2|
2M|1+1 21121+1 i1 12+l y1+3/2 2M|1+1 gh 2+l 72+3/2
( & et (e + & )+e &5 (e +& )

4y +2 4#21 +2

k> — k2| + €| + &,
with ¢ independent of €1, €2, k; p = 1, 2.

Proof Let for instance p = 1. The difference u; — |, is in the space V2

Y1,¥2,8,—
(G(e1,¢€2)),and f1 := —(A + k) (uy — Ul ) isin VV1 ”, 5(G(e1, €2)). By Propo-
sition 6.4.3,

1S11(8) = S11(&)] + [S12(e) = Sia(e)| < lluy —it1: Vi, ) 5. (Gler, &2))]
<clfi: Vy ,,5(Ger el

Arguing as in the proof of Theorem 6.3.6 (cf. (6.3.33)), we obtain that

3/2
11 V8 1. 5(Gler el = e ((laf 1+ b 1)ef (612177 4 2]+
(|a2 | + |b2 |) gh2t (szxzzﬂ 02 4 812/2+3/2)) )
where (a;", b)) = (s1 + Criar, Ciacii + Cizea1) and (b5, a) = (Ciacin +

C13cz2,C14a2) From (6.4.12), (6.4.15), (6.4.26) in view of (s51,0,0,0)D =
O(EZMH_ ), it follows that

— 82M11+1 +e 2p21+1 2#11+1
1 )
IC1j] < ™™ 1+ 3 . ICractj + Cizepj| < 2—
k2 — k2| k2 — k2|
and
2#11+1 2uz1+1 2pg1+l
laf |+ 1bf1 = S5 jaf |+ 163 | < et —
‘ ol TR
Combining the above inequalities we obtain the required estimate. ([

We denote by kg an eigenvalue of problem (6.2.1) in the resonator Gy and
by krz(s) a resonance frequency such that krz(s) — kg as ¢ — 0. Moreover,
let b; be the constants in asymptotics (6.4.1) of an eigenfunction corresponding
to the eigenvalue kg and s (k) the constant in asymptotics (6.3.1) and (6.3.3) of
the special solution V; for r; — 0, j = 1,2. Finally, the constants o and S
are defined by (6.2.10) and (6.2.11). We set P = (b1b2f1B21s1(ke)| |sz(ke)|)’1
and z = by By]s1 (ke )|51“”+1/b2,32|sz(k )|£2’“'Jrl these are the same values as in
(6.4.27) and (6.4.29).
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Theorem 6.4.5 For |k* — k2| = 0(8%“ n+l 85“ 2 the asymptotic expansions
1
o
—z+-= T
4 z 8%#11+18§M21+1

2 2 2 2u+1 2 2u1+1 2pi1+141 22141412
ki (e1, &2) = k; — arbie” —onbyey™ T + O ()" + 8" ),

_ ’z+z_1
P

Tp(k7 £1,8) = 3 (1 + 0(8;1 +8§2)),

Y(e1. £2) ‘sf“”“sg“z‘“(l + O +62))

hold: t; = min{uj» — uj1, 2 — o} and o are small positive numbers.

Proof From Theorems 6.4.4 and (6.4.27) we obtain

S12 — Si2

T —Ti| <c
Si2

T T (Tl ) ©+2u21+1 , 2p11+1
Ty <cTi(e]' + e + &5 /€] )

with 7; = min{pjo— 1, 2— 0}, 0j = wj1+3/2 =y, j = 1,2 When g7 1 >

a1 . . i+l 2um
82“‘2+ , we get the desired expansion for 7. Assume that 81““+ < 82M21+ . In the

analogous way we can obtain
T — To| < cTa(e] +ef + e 2t jediaith)
2= 2l =2l 2 1 2

with the same 7;. As is known, T = T3, and it is easy to see that Tl = Tz (indeed,

all characteristics of both narrows are interchangeably included in the formulas for

T,). This leads to the required expansion for 7} as sf” n+l o S?L 2! The formulas

for k2 and Y follow from that for T7. g



Chapter 7
Resonant Tunneling in 2D Waveguides
in Magnetic Field

The presence of a magnetic field can essentially affect the basic characteristics of
the resonant tunneling and bring new possibilities for applications in electronics. In
particular, in the presence of a magnetic field, the tunneling phenomenon is feasible
for producing spin-polarized electron flows consisting of electrons with spins of the
same direction. In Chap. 11, we describe magnetic field sensors based on resonant
tunneling in magnetic field.

We consider the same 2D waveguide with two narrows as in Chap. 5 and suppose
that a part of the resonator is occupied by a homogeneous magnetic field. An elec-
tron wave function satisfies the Pauli equation in the waveguide and vanishes on its
boundary. An electron energy is between the first and the second thresholds. The
asymptotics of the basic resonant tunneling characteristics are presented as the nar-
row diameter ¢ tends to zero. The asymptotic results are compared with numerical
ones obtained by approximate computing the scattering matrix; there is an inter-
val of ¢ where the asymptotic and numerical results practically coincide. Using the
approximate scattering matrix, we also observe the dependence of the tunneling
characteristics on a magnetic field position in the resonator.

7.1 Statement of the Problem

To describe the domain G(e) in R? occupied by the waveguide, we first introduce
two auxiliary domains G and €2 in R?. The domain G is the strip

G=RxD={x,y)eR>: xeR; ye D= (=1/2,1/2)}.

Let us define 2. Denote by K a pair of opposite angles with vertex at the origin O.
Assume that K is symmetric about the origin and contains the axis x. The set K N S!,
where S' is a unit circle, consists of two simple arcs. Assume that  contains K and
a neighborhood of its vertex. Moreover, outside a sufficiently large disc the set 2
coincides with K. The boundary 9€2 of 2 is supposed to be smooth (see Fig.5.1).
© Springer International Publishing Switzerland 2015 163
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We now turn to the waveguide G (¢). Denote by 2(¢) the domain obtained from
2 by contraction with center at O and coefficient €. In other words, (x, y) € 2(¢)
if and only if (x/e,y/e) € Q. Let K; and Q;(e) stand for K and (e) shifted
by the vector r; = (x?, 0), j = 1,2. We assume that |x? — xg | is sufficiently
large so that the distance from dK1 N dK; to G is positive. We put (see Fig.1.4)
G(e) = GNQ(e) N Qa(e). Consider the equations

(—iV+A)2u+tHu—ku=0, (7.1.1)

which are 2D counterparts of the equations describing the motion of electrons of spin
41/2 in a magnetic field parallel to z-axis. Here V = (9, 8),)T; H =0,Ay,—0,A,.
Let H depend only on p = ((x — x0)% + (y — yo)z)l/z, and let H(p) = O as
p > R, where R is a positive constant. Then we can put A = A(p)ey, where
ey = p~'(—y + yo. x — xo) and

min{p, R}
1
A(p) = — / tH(t)dt.
1Y
0

It is evident, that the equality d; A, — 0y Ay = H defines A up to a summand of the
form V f.

Let (p, ¥) be polar coordinates in the plane xy centered at (xo, yo), the angle
Y being measured from a ray parallel to x-axis. Introduce f(x,y) = cyr, where
c= fOR tH(t) dt. We assume that —/2 < ¢ < 3w /2. The function f is uniquely
determined in the waveguide for |[x — x¢| > 0, moreover, V f = A for |x — xo| > R.
Let t(#) be a cut-off functionon R, equalto 1 as# > R+25andtoOast < R+,
8 being a positive constant. Put A’(x, y) = A(x, y) — V(z(]x — x0|) f (x, y)). Then
I Ay — dyA, = 9 Ay — dyAy = Hand A" = 0as |x — x| > R + 28. The wave
functionu’ = u exp{itf} satisfies (7.1.1) with A replaced by A’. As |x —xo| > R+28
the Eq. (7.1.1) with new potential A’ reduces to the Helmholtz equation

—Au — kK = 0.

In what follows we omit the primes in the notations. We look for solutions to (7.1.1)
satisfying the homogeneous Dirichlet boundary condition

u=0 ondG(e). (7.1.2)

The obtained boundary value problems are self-adjoint with respect to the Green
formulas

(—=iV +A)%u+ Hu — K*u, v)ge) — W, (=iV + A)*v + Hv — k)G e)
+@, (=0, — AV)ace) — (=0 — Apu, V)36 =0,
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where A, is a projection of A onto the outward normal to G (¢); u, v € Cgo (G(e)).
Additionally, we require u to satisfy some radiation conditions at infinity. To formu-
late the conditions, we consider the problem

—Av(y) —2Pu(y) =0,  ye(=1/2,1/2); (7.1.3)
w(=1/2) = v(l/2) = 0.

The eigenvalues )»3 of this problem are called thresholds; they form the sequence
kg = (mq/1)?,q = 1,2, .... Let us consider the Eq. (7.1.1) with “+”. We suppose
that k% in (7.1.1) satisfies (/1) < k? < (27/1)?, 1i.e., k? is between the first and the
second thresholds. Then, in the space of bounded wave functions, a basis is formed
by the wave functions subject to the radiation conditions

) = Ui(x, y) + S} (k) Ua(x. ) + 0(™), x - —oo, 714
SHK) Ui (x,y) + O(e™™), X = +00;
+ Sx _
u;(x, y) = 851 (k) Ua(x, z) + 0 (), y X — —00, (7.1.5)
Us(x,y) + S5,k Ui (x,y) + O(e™%), x — +oo.

In the strip G, the function Uj (x, y) = e/V'* W (y) is a wave incoming from —oc and
outgoing to 400, while Uz (x, y) = e™'V1* W (y) is a wave going from +o00 to —o0.

Here v| = ,/k% — k%; W is an eigenfunction of problem (7.1.3) that corresponds to

the eigenvalue k%,

Wi (y) =+/2/1lvicosiry. (7.1.6)

The matrix
+
st = 1S, llm. j=1.2

with elements from conditions (7.1.4) and (7.1.5) is called the scattering matrix; it
is unitary. The values
RY =ISH1% T =IShP

are called the reflection and transition coefficients, relatively, for the wave U} incom-
ing to G (&) from —oo. Similar definitions can be given for the wave U, coming from
+00. The scattering matrix S~ and the reflection and transition coefficients R,,, T,
for the Eq. (7.1.1) with “—" are introduced in the same way.

The goal is to find a “resonant” value k¥ = kX (¢) of the parameter k, where the
transition coefficient takes at its maximum, and to describe the behavior of Tmi (k, &)
in a neighborhood of k* (¢) as & — 0.
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7.2 The Limit Problems

We construct the asymptotics of the wave function (i.e., the solution of (7.1.1)) as
& — 0 by the compound asymptotics method. To this end, we introduce “limit”
boundary value problems independent of the parameter . We suppose the domain
occupied by the magnetic field to be localized in the resonator, the part of the
waveguide between the narrows. Furthermore, we assume that |x; — xo| > R + 2,
Jj =1, 2, so the vector potential A differs from zero only on a domain inside the
resonator. Then, outside the resonator and, in particular, near the narrows, the sought
wave function satisfies the Helmholtz equation. That is why this section coincides
with Sect.7.2 except several details. The only distinction is the discussion of the
limit problem in G, where magnetic field presents. Nevertheless, we repeat here
the description of necessary properties of limit problems for the convenience of the
reader.

7.2.1 First Kind Limit Problems

Let G(0) = G N K1 N K, (Fig.5.3); therefore, G (0) consists of three parts, G, G2
and G, where G| and G, are infinite domains, and G is a bounded resonator.
The boundary value problems

—AU(X,)’)—/CZU(LY)=f(x»)’), (X’Y)GGj, (721)
v(x,y) =0, (x,y) € 9G}, -

where j =1, 2, and

(—iV 4+ Alx, y)?o(x, y) £ H(p)v(x, y) = ko(x, y) = f(x, ), (x,¥) € Go,
v(x,y) =0, (x,y) € 9Go,

(7.2.2)

are called first kind limit problems.

We introduce function spaces for the problem (7.2.2) in Ggo. Let ¢ and ¢, be
smooth real functions in the closure G of Gg such that ¢; = 1 in a neighborhood
of 0j,j=1,2,and ¢ +¢3 = 1.For/ =0, 1,...and y € R the space V! (Go) is
the completion in the norm

172

I 2
lv: V2(Go)ll = / >3 @t T v 2 dx dy
G0 |g=0 j=1
(7.2.3)
of the set of smooth functions in G vanishing near O and O3; here r; is the distance
from (x, y) to the origin O, a = (a1, a2) is amulti-index, and 3% = 91%!/3dx*19y*2.
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Proposition 7.2.1 follows from the well-known general results; e.g., see [37, Chaps. 2
and 4, Sect. 1-3] or [33, vol. 1, Chap. 1].

Proposition 7.2.1 Assume that |y —1| < w/w. Then, for f € V}9 (Go) and arbitrary
k2, except the positive increasing sequence {klz, ;O=1 of eigenvalues, k[% — 00, there

exists a unique solution v € Vyz(Go) to the problem (7.2.1) in G. The estimate
Ilv: V2(Go)ll < el f: VOGo)ll (7.2.4)

holds with a constant ¢ independent of f. If f is a smooth function in Go vanishing
near O1 and O, and v is any solution in VVZ(GO) to the problem (7.2.2), then v is

smooth in G except at Oy and O, and admits the asymptotic representation

ey — [ PEatlr0000 £ 00T, o
| b2J /o (kr) @ = 92) + 0(’2 “), r2 =0,

near the points Oy and Oy, where (rj, ¢;) are polar coordinates centered at O,
b are some constants coefficients, J stands for the Bessel function multiplied by a
constant such that J (kr) =r#* + o(r“) and ®(¢) = w2 cos (mg/w).

Let k* = k2 be an eigenvalue of the problem (7.2.2). Then the problem (7.2.2) in
Go is solvable ifand only if (f, ve)G, = 0 for any eigenfunction v, corresponding to
kg. These conditions being fulfilled, there exists a unique solution v to the problem
(7.2.2) that is orthogonal to the eigenfunctions and satisfies (7.2.4) (i.e., the Fredholm
alternative holds).

We turn to problems (7.2.1) for j = 1,2. Let xo,; and x~,; be smooth real
functions in the closure G; of G such that xo; = 1 in a neighborhood of O,
xo0,; = 0 outside a compact set, and x& it xgo, i = 1. We also assume that the
support Supp Xoo, j is located in the strip G. For y € R, 6 > 0,and/ =0, 1, ... the
space V)fy 5(G ) is the completion in the norm

llv; V), 5(G

1/2
( /G Z (0. G, y2r3 VD e i 2 exp@8)) 0% (x, )] dxdy)

I Ja|=0

(7.2.5)

of the set of smooth functions with compact supports on G ;j vanishing near O;.

Recall that, by assumption, k2 is between the first and the second thresholds,
therefore in each domain G there exists only one outgoing wave. Let U, = Us
be the outgoing wave in G and let U, = U be the outgoing wave in G (the
definitions of U; and G are given in Sect.7.1). The next proposition follows, e.g.,
from Theorem 5.3.5 in [37].
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Proposition 7.2.2 Let |y —1| < m/w and suppose that there is no nontrivial solution
to the homogeneous problem (7.2.1) (where f = 0) in VVZ’ s(G ) with arbitrarily

small positive 8. Then, for any f € V)9, s(G ), there exists a unique solution v to
(7.2.1) that admits the representation

v = u—i—ijoo,jU;,
where A; = const, u € Vyz’ s(G ), and § is sufficiently small; herewith the estimate

lus V) (G I+ 14,1 < cll f3 Vi) 5GP, (7.2.6)

holds with a constant c independent of f. If f is smooth and vanishes near O j, then
the solution v to the problem in G| satisfies

v(x, y) = a1 Jrjukr)® @ — ) + 0(r7), i =0,

and the solution to the problem in G satisfies

2 /w

V(x,y) = a2 Jr/0kr)®(@2) + O (r;"?), 2 — 0,

where a;j are some constants.

7.2.2 Second Kind Limit Problems

In the domains j»J = 1,2, introduced in Sect. 7.1, we consider the boundary value
problems
Aw(Ej,nj) = F(&j.nj), (§j,n;) € Qj, 127
w(&j,n;) =0, (&, mj) € 0%, -

which are called second kind limit problems; (& ;, 1 ;) stands for Cartesian coordinates
with origin at O;.

Let p; = dist((§j, n;), O;) and let ¥, j, Yo, be smooth real functions in ﬁj
such that vy, ; = 1 for p; < N/2, Yo, = O for p; > N, and ¥, + V%, ; =
where N is a sufficiently large positive number. For y € Rand/ = 0, 1, ..., the
space V}f (£2) is the completion in the norm

llv; VL@l
1 12
- (/Q > (Vo5 Vo &g )0y a0 ) P dg

785 =0

(7.2.8)
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of the set C° (Q ;) of smooth functions compactly supported in Q ;- The next propo-
sition is a corollary of Theorem 4.3.6 in [37].

Proposition 7.2.3 Let |y — 1| < w/w. Then for F € V]E) (82)) there exists a unique
solution w € VVZ(QJ-) to (7.2.77) such that the estimate

lw; V2@ < cllF; V@I (7.2.9)

holds with a constant ¢ independent of F. If F € C2° (Q i), then w is smooth on Q j
and admits the representation

dp " — g+ 0(p; 7). & <0,

_ 7.2.10
dr n/w®(¢1) + 0( Sn/w)’ éj >0, ( )

as pj — 0o, here (pj, ¢;) are polar coordinates in Q; with center at O, and ® is
the same as in Proposition7.2.1. The constants dl and d " are found with the formulas

=—(F,wha, dj=—(F,w)ae,

where wé. and w; are the unique solutions to (7.2.7) with F = 0 satisfying

n/w _ —3n/w . .
wl/ = [( n/cj_ ap] ) cp(n%n/w s 0( ) 5 =0 (7.2.11)
‘ Bo; @) +0(p; ), £ > 0;
n/a)q) _ +0 —3r/w 7 )
w;’ = [ﬂpﬂ/a} " ﬂ/(f)]) ( )—3ﬂ/a} %-J - (7212)
( +ap; )<I>(<pj)+0( ). & >0;

as pj — oo, the coefficients a and B depend only on the geometry of 2 and have to
be calculated.

7.3 Special Solutions to Homogeneous First Kind Limit
Problems

In each of the domains G, j = 0, 1, 2, we introduce special solutions to the homo-
geneous problems (7.2.1) and (7.2.2). These solutions are necessary for the construc-
tion of the wave function asymptotics in the next section. It follows from Proposi-
tions 7.2.1 and 7.2.2 that the bounded solutions to the homogeneous problems (7.2.1)
and (7.2.2) are trivial (except the eigenfunctions of the problem in the resonator).
Therefore, we consider only solutions unbounded in the neighborhood of O;.
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We now introduce special solutions to homogeneous problems (7.2.1) in G},
J = 0,1,2. In the domain G}, j = 1, 2, there exists a bounded solution V; such
that

+ 07— _
Uj~(x, y) + SjjUj (x,y) ‘;n?agexp( 8x)), x — oo, (7.3.1)
SjJﬂ/w(krj)(Dj((pj)-FO(V ), r—0,

Vix,y) =
with arbitrary small positive §, ®1(p1) = ®(r — ¢1), and P2(p2) = P(¢2). The
scattering matrix in G consists of the only entry S9, 9| = 1.

Let K! be the part of the double cone K to the left of the coordinate origin,
K' = {(£,n) € K : £ < 0}. Let us consider the problem

—Au—k*u=0 in K,
u=0 ondkK. (7.3.2)
The function B
v(r, @) = Nujo(kr)®(mr — @) (7.3.3)

satisfies (7.3.2); ﬁn /o stands for the Neumann function multiplied by a constant such
that B
Nijo(kr) = r=1¢ 4 o(r=7/®)

and @ is the same as in Proposition 7.2.1. Let t +— ©(¢) be a cut-off function on R
equal to 1 fort < §/2 and to O for # > §, § being a small positive number. Introduce
a solution

vi(x, y) = O@)v(r, ¢1) +vix, y) (7.3.4)

of homogeneous problem (5.2.1) in G|, where v solves (7.2.1) with f = —[A, O]v;
the existence of v; is provided by Proposition 7.2.2. Thus,

(Najotkr1) + a1 T jo(krp) @ (e — @1) + 0077), 1y — 0,
AU (x,y) + 0(e™), X — —00,
(7.3.5)
where J~n /o 18 the same as in Propositions 7.2.1 and 7.2.2, and the constant A # 0
depends only on the geometry of the domain G| and should be calculated.
Define the solution v; to the problem (7.2.1) in G, by va(x, y) = vi(d — x, y),
where d = dist(Oq, O3). Then

vi(x,y) =[

(Nojoo(kr2) + a2 T oo (kr2)) @ (02) + O3 ), 12 — 0,

AUy (x,y) + O (e™%), x — +o0;
(7.3.6)

V2(-x’ J’) == [

where obviously a; = aj, Ay = Ale*ivld.
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Lemma 7.3.1 The equalities |Aj|* = 2Imaj, Aj = i5;S}; hold.

Let kii be a simple eigenvalue of (7.2.2) in G and let vei be a corresponding
eigenfunction normalized by |, Go Ivei|2dx dy = 1. By Proposition 7.2.1

bE T e (k (1), 0,
vE(x) N[ | /o ke£11) @ (@1) ry— 73.7)

b3 T jw (ke 412) @ (T — @2), 12— 0.

We assume that b;—L # 0. For H = 0, it is true, e.g., for the eigenfunction cor-
responding to the least eigenvalue of the resonator. For nonzero H, this condition
may not hold. For k2 in a punctured neighborhood of kgi separated from the other
eigenvalues, we introduce solutions voij to the homogeneous problem (7.2.2) by

Vo (%, ) = O vy, 0) +Tp;(x, ), j=1,2, (7.3.8)
where v is defined by (7.3.3), and D'S—L/. is the bounded solution to the problem (7.2.2)
with ‘

fix, y) =[A,00F)v(r;, ;).

Lemma 7.3.2 In a neighborhood V C C of k?,:l: containing no eigenvalues of the
problem (7.2.2) in G except kz’i, the equalities ng = —bf (k* — kii)_l vjt —|—"73Ej
hold with b;—L in (7.3.7) and functions VE)—LJ analytic in k> € V.

Proof First check the equality (V(j)tj, v;,'ﬁ)(;0 = —E/ (k% — kgi), where V§j are
defined by (7.3.8). We have

(AVG; + K253, 06,y — (v AV + K 0)) 6, = —( — k2 ) (V5 V)65

the domain G is obtained from G by excluding discs with radius § and centers O
and O;. Using the Green formula, as in Lemma 5.3.1, we get the equality

—( =k D (Vg0 v)Gy = b +o(l).

It remains to let § tend to zero.
Since kii is a simple eigenvalue, we have

BE(k?)
~t+ _ J + | ~t
vOj = mvo vOj’ (739)

where B]j.t(k2) does not depend on (x, y), and i)\gtj are some functions analytic
with respect to k> near the point k> = k?,j:- Multiplying (7.3.8) by vejE and tak-
ing into account (7.3.9), the obtained formula for (v(jfj, vf)GO, and the condition
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(v;t, vf)go = 1, we get the equality Bjj.c(kz) = —E + (k> — kg’i)gf (k%), where
Eji are some analytic functions. Together with (7.3.9) that leads to the required
statement. (]

In view of Proposition 7.2.1,

Ny ok ) T oo (k1)) D (1), 0,
V(:)tl(x, y) ~ (in/wgrl) + C]]( ) ﬂ/a)( rl)) (p1), 11— (7.3.10)
(K)o (k)@ (T — ¢2), ry —> 0,
L~
k)Jr o (kry)) @ , 0,
Vo, y) ~ (c21 () T/ r‘i) (1) ne (7.3.11)
(Nn/a)(kFZ) + sz(k)Jn/w(er))q)(T[ — @), r»— 0.
According to Lemma 7.3.2 and relations (7.3.7),
i
Cpg (k) = =—=—5— 4T, (k), (7.3.12)
k= —k; 4
where Eﬁq analytically depends on k% near kg’i.

Lemma 7.3.3 If v(ﬁ and ng in (7.3.10) and (7.3.11) make sense for a number k,
then ¢ (k) = ¢35, (k).

Proof It suffices to apply the Green formula to VSE] and Voi2 in the same domain G
as in the proof of Lemma 5.3.2, to use (7.3.10) and (7.3.11), and to let § tend to 0. [

7.4 Asymptotic Formulas

This section is devoted to the derivation of the asymptotic formulas. In Sect.7.4.1,
we present a formula for the wave function (see (7.4.1)), explain its structure, and
describe the solutions of the first kind limit problems involved in the formula. The
construction of formula (7.4.1) is completed in Sect.7.4.2, where the solutions to
the second kind limit problems are given and the coefficients in the expressions
for the solutions of the first kind limit problems are calculated. In Sect.7.4.3, we
analyze the expression for S15 obtained in 7.4.2 and derive formal asymptotics for
the characteristics of resonant tunneling. Notice that the remainders in the formu-
las (7.4.23) and (7.4.26) arose in the intermediate stage of considerations while sim-
plifying the principal part of the asymptotics; they are not the remainders in the final
asymptotic formulas. The “final” remainders are estimated in Sect.7.5 (see Theo-
rem 7.5.3). For brevity, in this section we omit “+£” in the notations bearing in mind
any one of the Eqgs. (7.1.1) and not specifying, which is considered.
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7.4.1 Asymptotics of the Wave Function

In the waveguide G (¢), we consider the scattering of the wave U (x, y) = eIy, ),
incoming from —oo (see (7.1.6)). The corresponding wave function admits the rep-
resentation

u(x, y;6) = x1.e(c, Yor(x, y; &) + ODwi (e xy, e lyr; 8)
+ 0. (x, V)vo(x, y; &) + O(r)wa (e xa, ey e) (7.4.1)
+ x2,(x, Y)va(x, y; €) + R(x, y: &).

Let us explain the notation and the structure of this formula. When composing the
formula, we first describe the behavior of the wave function u outside of the nar-
rows, where the solutions v; to the homogeneous problems (7.2.1) in G serve as
approximations to u. The function v; is a linear combination of the special solu-
tions introduced in the previous section; vy and v; are subject to the same radiation
conditions as u:

vi(x, y;e) = Vi(x, y) + Crvi(x, y) ~ U (x, y)

+ 811U (x,y), x — —00; (7.4.2)
vo(x, y; €) = Cra(&)vor(x, y) + Ci3(e)voa (x, y); (7.4.3)
va(x, y; &) = Clava(x, y) ~ Spa(e)Us (x,y), x — 400 (7.4.4)

the approximations §11(8), §12(s) to the scattering matrix entries S11(¢), S12(¢) and
the coefficients C11(¢), ..., C14(¢) are yet unknown. By x; . we denote the cut-off
functions defined by

xte(x,y) = (1 =0(r1/¢e)) 1g, (x, y),
x2,6(x,y) = (I = 0O(r2/¢)) 16, (x, y),
X0.6(x,y) = (1 = O(r1/e) — O(r2/e)) 16, (x, y),

wherer; = /sz. + yjz., and (x;, y;) are the coordinates of a point (x, y) in the system
obtained by shifting the origin to the point O;; 1¢; is the indicator of G ; (equal to 1
in G; and to 0 outside G;); ©(p) is the same cut-off function as in (7.3.4) (equal
to 1 for0 < p < §/2andto0for p > 6, § being a fixed positive number). Thus, x ;. .
are defined on the whole waveguide G (¢) as well as the functions x; cv; in (7.4.1).

Being substituted to (7.1.1), the sum Z?:O Xj, ¢V gives adiscrepancy in the right-
hand side of the Helmholtz equation supported near the narrows. We compensate
the principal part of the discrepancy by means of the second kind limit problems.
Namely, the discrepancy supported near O is rewritten into coordinates (§;, n;) =
(¢ 'x;,e71y;) in the domain Q; and is taken as a right-hand side for the Laplace
equation. The solution w; of the corresponding problem (6.2.6) is rewritten into
coordinates (x;, y;) and multiplied by a cut-off function. As a result, the terms
O(rj)w; (8_1)Cj, e_lyj; ) arise in (7.4.1).
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Proposition 7.2.3 provides the existence of solutions w; decaying at infinity as

O(p/._”/w) (see (7.2.10)). But those solutions will not lead us to the goal, because

substitution of (7.4.1) into (7.1.1) gives a discrepancy of high order, which has to be

compensated again. Therefore, we require the rate w; = 0(,0}371/ “)as p j —> 00.

By Proposition 7.2.3, such a solution exists if the right-hand side of the problem
(7.2.7) satisfies the additional conditions

(F.wpe, =0,  (F,w)e, =0.
These conditions (two in each narrow) uniquely determine the coefficients §11(8),

§12(s), C11(€), ..., Cya(e). The remainder R(x, y; €) is small in comparison with
the principal part of (7.4.1) as ¢ — O.

7.4.2 Formulas for §11, §12, and Cy;

Now let us specify the right-hand sides F; of the problems (7.2.7) and find Si1(e),
S12(¢), and Cy(g). Substituting x1, cv; into (7.1.1), we get the discrepancy

—(A+ K100 = —[A, xe 1101 = Xe 1 (A +KP)v = —[A, 1 = O )]y,
which is non-zero in the neighborhood of the point O, where v; can be replaced

by asymptotics; the boundary condition (7.1.2) is fulfilled. According to (7.4.2)
and (7.3.1), (7.3.5)

Vi (x, y; 8) = (a7 (&) Nojoo (k1) + a5 (6) T o (kr)) @ (x — 1) + O (/). 11 = 0,

where
a;(e) =Cn, af =s1+Cna. (7.4.5)

We select the leading term in each summand, take p; = rq /€, and obtain

—(A+ K eavn ~ =[A,1 = OE )] (a7 7+ af i) o — o)

= = [ A s 1 = OG0 (a7 70 ™ af e/ pT) i — 1),
(7.4.6)

In the same way, taking account of (7.4.3), (7.3.10) and (7.3.11), we write the leading
discrepancy of x. vz supported in a neighborhood of O;:

(A + D) xe 101 ~ e 2 (A0, 1 = O] (b7 e ™™ py ™1 4+ b e pT ) (1),
(7.4.7)
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where
b =Cia(e), by =Cia(e)c + Ciz(e)ear. (7.4.8)

As aright-hand side F of problem (7.2.7) in €1, we take the function

Fig.m) =—[A,¢7] (ars—”/wp;”/‘“ + ars”/wpf/w) (7 — ¢1)

—IA, ] (bfg—n/wp;n/w + beﬂ/wPf/w) D (¢1), (7.4.9)

where ¢ (respectively ¢ ~) denotes the function 1 — ©, first restricted to the domain
&1 > 0 (respectively &1 < 0) and then extended by zero to the whole domain ;.
Let w; be the corresponding solution; then the term (H)(rl)wl(e*]xl, Sflyl; £) in
(7.4.1), being substituted in (7.1.1), compensates discrepancies (7.4.6) and (7.4.7).

Now, we use (7.4.3) and (7.4.4), (7.3.10) and (7.3.11), and (7.3.6) to find the
right-hand side of problem (7.2.7) for j = 2:

P, m) =—[A,¢7] (a; e o T +a+s”/wpg/w) (7 — ¢2)

— 18,1 (by e 4 bFe™ 0] ) (o),

where
a, (&) = C3(e), ay (e) = Cia(e)ciz + Cra(e)cn,

. - (7.4.10)
by (e) = Ci4(s), by (¢) = Cia(8)a;.

Lemma 7.4.1 Let the solution wj to problem (7.2.7) with right-hand side

Fi&.np) =—[8,¢71(a; 70,7 +afe™p7) 0 — )

+ - —/w + /o
—[A ¢ ](bje ”/“’pj —I—bjs”/“’pj )<I>(§0j),

Jj = 1,2, be majorized by O(pj._3”/w) as pj — o0. Then the relations

a_*g—f[/a)

; aa; Fem/o _ ,Bb;re”/‘” =0, b;g_”/“’ — ab;re”/“’ — ,Ba;re”/“’ =0,

(7.4.11)
hold with « and B in (7.2.11) and (7.2.12).

Remark 7.4.2 The solutions w; mentioned in Lemma 7.4.1 can be represented as
linear combinations of functions independent of ¢. Let wé. and w;. be the solutions

of problem (7.2.7) specified by conditions (7.2.11) and (7.2.12), and let ¢+ and ¢~
be the same cut-off functions as in (7.4.9). Put

wll/. = w§ —g“_( 7T/w+ol,0] /e )‘D(JT ) =t Bp; D (p)),

Wi =w) — ¢ pp; " 00 — ) — ¢ (o7 + ap, ) Do),
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A straightforward verification shows that
wj = a;Le”/“’ wh +ble ow” (7.4.12)

It is convenient to write (7.4.11) in the form

(aj,b;) = (af,b]) A, A:(Zf) (7.4.13)

We use (7.4.5) and (7.4.8) to transform (7.4.13) with j = 1 to the equality
(C11, C12) = (51 + Criar, Crocry + Cizear) A g™/, (7.4.14)

For j = 2, taking (7.4.10) into account, we reduce (7.4.13) to

(C13, C14) = (Crac12 + Cizcn, Craaz) A ¥/, (7.4.15)
Setting A = diag {A, A},
a 0 0 O
| Ociiec20
a={oaer il (7.4.16)
0 0 0 a

and combining the above relations for C ;, we obtain
(C11, C12, C13, C1g) = (51,0,0,0) A e/ + (Cy1, C1a, Ci13, Cra) a A 77/,
hence

(C11, C12, C13, C1a)(I — a A e¥/?) = (51,0, 0,0) A >/ (7.4.17)

Let us calculate the inverse matrix for I — a Ag2™/®

small. From (7.3.12) it follows that

, assuming ¢ to be sufficiently

*

=~

+a(k),

where b = (0, by, b, 0) and the matrix a is analytic near k = k, and defined by
(7.4.16), whereas ¢, is replaced for ¢,,,. We have

b*b A 27/
k* — k2
LT e —q A e¥m/@)!
k* — k2

I —aAe?™® =] _GA¥/® 4

) (I —a A ¥/,
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it is evident that (I — @ A e27/®)~! exists for small . Straightforward calculation

shows that
I+ b*e \ ! _ b*c
k2 — k2 o k? — k2 — (c, b)

forc = b A 2/ (1—G A ¢¥/®)~! where (-, -) is the inner product in C*. Therefore,

27/ _ oA 21wy
(I —ah &™)~ = (1 —a A e?™/")! (1 - b*b A &2/ (1 —a A e*"/) )

2 —I2 + (b Ae2/o(I —a A 27/@)=1 b)

This leads to

(C11, C12, C13, C1a) = (51,0,0,0) A e¥/(I —a A e¥/)~!

Db*b D
= (51,0,0,0){ D — , (7.4.18
(51 )( H—@+mam)( )

where b = (0, by, b, 0), D = A&e¥/*(] —a A &2/®)~! and the matrix @ is
analytic in k near k. and defined by (7.4.16) with ¢, replaced by ?pq (see (7.3.12)).

We now seek an approximation to the entries of the first row (S11, S12) of the
scattering matrix. By virtue of (7.4.2) and (7.4.4),

(S11, S12) = (89, + C11A1, C1447). (7.4.19)

We set
1

0
B 0 _ (51000
A= ol s‘(ooon)

R diag (S?l, ng); then, by Lemma 7.3.1, A = is*SY. In view of (7.4.19) and
(7.4.18), we obtain

A
0
0
0

(S11, S12) = (89}, 0) + (C11, C12, C13, C1a) A
Db*b D
2— k24 (bD,b

=@&m+wwqam(0—k Jﬁﬂ.aAm)

An approximation to the second row of the scattering matrix is of the form

Db*b D
k2 —kZ+ (bD.b

(@hgﬁ)z(QS%)+imALst<D—— ))ﬁﬁ@ (7.4.21)

Lemma 7.4.3 The matrix E(s) is unitary.
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7.4.3 Formulas for Resonant Tunneling Characteristics

The solutions of the first kind limit problems involved in (7.4.1) are defined for
complex k as well. Expressions (7.4.20) and (7.4.21) for § have a pole k, in the
lower complex half-plane. To find klzj we equate k> — kg + (bD, b) to zero and solve

the equation for k% — k2:
k> — k2> = —(bD,b) = —e?"/“(bA (I —a A *™/*)~! b). (7.4.22)

Since the right-hand side of the last equation behaves like O (¢27/¢) as ¢ — 0, it
may be solved by the successive approximation method. Considering the formulas
Ima; = |s; 2 /2, which follow from the waveguide symmetry and Lemma 7.3.1, and
discarding the lower order terms, we get k% = kr2 —1i kl.z, where

K2 = k2 — a(|bi)? + |b2|)e¥™/@ + 0¥/, (7.4.23)

1
= §ﬂ2(|b1|2 + b2 D) s1(k2) 2642 + 0 (57/).

From (7.4.20) and (7.4.21), we obtain

Sk, &) = SU(k) + is(k)A s* (k) SO (k)e¥™/® —

s(k)A b*b A s*(k)S° (k) o 4 o gom/w
k2 —k2 K — k2

_((Sh 0 ) (IS ) 0 g2/
L0 S0 0 I52(k) P53, (k)

i (|s1(k>| b2 S}, (k) Sl(k)sz(k)blbzﬁzsz(k)) g/
12— k2 \s2(k)s1()b1b2 B2 SP, (k) Is2(k) | |b2|* B2 59, (k)

67t/w
+0 ) k2

Let k* — k; = O(e*™/®), then ce*™/® < [k* — k7| < ce™™/*, 5;(k) = s,(k.) +
0(e2™/), 8%;(k) = 8%, (ke) + O(&27/), and

/0310052 K) b1b2B 55, (k)
k2 — k2

s1(ke) s2(ke) bl bz k)

|s1<ke>| Is2(ke)| 1b1] |ba] S (ke

b 2 2
Ll ) KR
2 \|b2| |1l ghr/w

Sk, &) = (1 + 0(82”/‘“))

(1 n 0(82”/‘”)) . (1424
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o S1Rs2(0)b1 62 B2 S, (K)
k2 — k2

sitke) sa(ke) by bo
— 87 (k.
|s1<k )| Is2(ke)| 1b2] b2 1 (ke)

72
|b1] L] D2 iPk k;
1ba| b1l g/

where P = (|b1||b2|B2]s1(k.)1?) . Thus,

So1(k, &) =

(1 + 0(32”/"’))

(1 + 0(82”/‘”)) ,

Tik.e) = ok, e) = Sl = ; (14 07/,
(B ()
4 \|b2| ~ [b1] ghm/e
(7.4.25)
The obtained approximation fj to the transition coefficient 7; has a peak at k* = k?
whose width at its half-height is

Y(e) = (— + — ) —=¢ . (7.4.26)
|ba|  |b1]) P

7.5 Justification of the Asymptotics

As in the previous section, here we omit “+£” the notations and do not specify which
equation of (7.1.1) is considered. We return to the full notations in Theorem 7.5.3.
We now introduce functional spaces for the problem

(—iV+A2ut+tHu—kKu=f inGE), u=0 ondG(e). (7.5.1)

Recall that the functions A and H are compactly supported, and, besides, they are
nonzero only in the resonator at some distance from the narrows. Let ® be the same
function as in (7.3.4) and let the cut-off functions n;, j =0, 1, 2, be nonzero in G
and satisfy the relation 1 (x, y) + O (1) +no(x, y) + O () +n2(x, y) = 1in G(¢).
Fory e R,§ > 0,and =0, 1, ..., the space V}f’a(G(s)) is the completion in the
norm

llus V), 5(G (@)l

172
(/ Z (292@0 +e3) ’+‘“'+n262“"“+no+n262’m‘)\3“v| dxdy)
G

) |g)=0 \j=1
(7.5.2)
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of the set of smooth functions compactly supported on G(¢). Denote by V}?,‘(SL the

space of function f, analytic in k2, with values in Vf’ 5(G (o)) that satisfy, at k2 = kZ,
the condition (xo,sv f, ve)G, = 0 with a small o > 0.

Proposition 7.5.1 Let k> be a resonance, k> — k> as ¢ — 0, and let |k* — k?| =
O (27, Let y satisfy the condition m/w —2 <y —1 < wjw, f € V;”SJ_(G(E)),
and let u be a solution to problem (7.5.1) that admits the representation

u=u+mA U +mA5;U;;
here A]T = const and u € V)/Z’S(G(s))for small § > 0. Then

llu; V},z,g(G(S))II +IAT I+ 1Ay =cllfs V)f),a(G(S))II, (7.5.3)
where c is a constant independent of f and ¢.

Proof Step A. First we construct an auxiliary function u,. As mentioned above, S
has a pole klz7 = kf — iki2 (see (7.4.23)). Let us multiply the solutions to the limit
problems, involved in (7.4.1), by g := —(k*> — k2 + (bD(k), b))/{(s1,0,0,0)D, b),
put k = kj, and denote the resulting functions by adding the subscript p. In view of
(7.4.18) and the equality (s1, 0, 0, 0) Db* = ((s1, 0,0, 0) D, b), we get

g(Ci1. C12, C13, C1a)|k=k, = bD(kp) = (b1 B, biat, byat, baf)e™™/” 4+ O (/).
(7.5.4)
This and (7.4.2), (7.4.4) lead to

Vip(x, y; &) = g Cril=k,Vi(x, y; kp) = g2/ (bl.B +0 (Szjr/w)) vi(x, yikp),
(1.5.5)

02 (¥, 33 8) = g Cralemk, Va(x, v kp) = 627/ (B2 + O (£271) ) valx, v k)
the dependence of k), on ¢ is not shown. According to (7.4.3) and Lemma 7.3.2,

(9 Ciab1 + g C13b2) =,
k2 — k2

Vop (X, y;€) = — Ve (X, y)
+ g Ci2lk=k, Vo1 (x, ¥) + g C13li=k, Vo2 (x, ¥).

Taking into account (7.4.18), we obtain

Ci2bi + Ci3by = (Ci1, Ci2, C13, C1a)b* =
(bD, b)
k2 — k2 + (bD, b)

((s1,0,0,0)D, b)
k2 — k2 + (bD,b)’
(7.5.6)

= (k> —k2)

(s1,0,0,0)Db* (1 —
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Hence,
V0, (X, ¥; &) = ve(x, ¥) + ¥ (b1 + O (¥ ))Voi (x, y)
+ &2 (hya 4+ 0 (¥ ?))Voa (x, ).

Finally, using (7.4.12) and formulas (7.4.5), (7.4.8), (7.4.10) for a}" and b;‘, we find

wip &) = (9C1) lk=k,a16™ Wy (E1. )
+ (gCracn1 + gC13¢21) lk=k, ™ W (51, n1),
wap (€2, 123 €) = (9Caac11 + gCa3ca1)|k=k, ™ “Wh (€2, 12)

+ (9C14) lk=k, a26™ /W5 (&2, 12).
Compare the equalities (7.3.12), (7.5.4) and (7.5.6), then

(9 C12b1 + g C13b2) =k
(9Ciac1j + 9Cj3caj)le=k, = —b; Ry .
)4 e

+ (9C12¢1; + 9Cj3¢2)lk=k, = bj + O(™/?),

where j = 1, 2. Thus

wip(ErL s €) = 37 (a1b1 B+ 0¥ )W (&1, m) (7.5.7)
+ ™ (by + 0¥ )W (&1, m),
wap (&2, 2; &) = €™/ (by + 0¥/ ?))Wh (&2, n2) (7.5.8)

+ &3 (ayby B + O (¥ /)W (&2, m2).
We set

up(x, yie) = B(x, y) [x1.0x, Mviplx, yie) + O 2 rpwipex ey e)
+ %0, (6, Vvop(x, ¥3 8) + O(e ™ r)wap (e xa, e s k)
(7.5.9)

x2.6 (X, V2, (x, yi k, )],

where E is a cut-off function in G (¢) that is equal to 1 on the set G(¢) N {|x| < R}

and to 0 on G(¢) N {|x| > R + 1} for alarge R > 0; o is such that 20 < 1. The

principal part of the norm of u, is given by x¢ vop. Considering the definitions of

vop, and Vo (see Sect.7.2) and Lemma 7.3.2, we obtain || xo,cvop || = [lvell + o(1).
Step B. Let us show that

I(=iV +A) & H — kup: V) 5(Ge)|| < ce™“H, (7.5.10)

where x = min{7/w, 37/w—o01,y +1},01 =20@n/wo—y+1).lfr/ow <y +1
and o is small so that 27 /@ > o1, we have k = m/w.
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In view of (7.5.9),
(=iV + A2+ H — k2)up(x, yi )
= 18161 (v1p (e, vi ) = b1B? 0T - alle)r T )0 — 1)
—[A, Owiy(e ™ x1 ey e) — kO rpwiye xi e iz e)
— 18, x0.61 (v0p(x. 5 8) = O (b, ), ™ + b, (@) @ — 1)
— 00 (az,©)r; ™ + i )5 b (g))
—[A, Olway(e ™ xa, e7 yai8) — kO > r)wap(e ™ x2, 67 yas )
— 1A, 121 (v2p(x, v5 €) = b2Be?™ (™ a1} ) (02)

—[A, E]vip(x, y; 6) — [A, E]vap(x, y; &),

where bl_p = 0¥/, bfrp = by + O(e¥/®), a, = 0 (?/®), and a;rp =
by + O (e27/@), Taking into account the asymptotics of v as r; — 0 and passing to
the variables (&1, n1) = (5_1x1 s 8_1y1), we obtain

[ o 18 1) (Vi) = 077 4 @t 0 — ) VO, G|

2
sc [ ot e 1o P oe — g drdy < e,
G(e)

This and (7.5.5) imply the estimate

[ = 180060 (0106 ) = 0777+ atkp )00 = 00)) s V5(Gen)|
< ceV /bl
Likewise,

T/w

o3 = 18 061 (0,03 = 0D (b, @7/ + b @) 0 — 1)
— ®(r2)(“2_p (s)rz_”/w + “fp(e)rg/w)d)(wz)) H < ce¥ /o]

[0 o 180,61 (v2p 0030 = 0377+ athkp) )@ 42)) 1 V0 5G|
< CSV—HT/‘O—H.

It is evident, that

lia. @1ujp: V0G| < e, =12
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—3r/w

Further, since wlj behaves like O (p ; ) at infinity,

2
/G(g)(r]? +e) 1A, O, e v dxjay;

2
<c / (r} + &%) \[A, @](e—lrj>—3”/w<1>z(¢j>\ dxjdy; < cg?OT/@=0,
K;j

where o1 = 20 (37 /w — y + 1). A similar inequality holds with le replaced by W;..
Considering (7.5.7) and (7.5.8), we obtain

H[A’ Olwjp; V;E),s(G(S))H < ceg¥rlo—on,
Finally, using (7.5.7) and (7.5.8) once again, taking into account the estimate
24 2y 20 I 2
” )(rj + &%) ‘@(e rpwi(e" x;j, € yj)‘ dx;dy;
&

2
=82V+2/Q(p,2~+1)y ®(81_2"pj)wlj($j,nj)’ dgjdn; < ce™*?,

and a similar estimate for W;-, we derive

H (. 3) > O rpwipe xj. 67 y)); Vf,a(G(s))H < ee™rL

Combining the obtained estimates, we arrive at (7.5.10).
Step C. This part contains somewhat modified arguments from the proof of Theo-
rem 5.1.1 in [33]. Let us write the right-hand side of problem (7.5.1) in the form

fO,y) = fitx,y;e) + folx,y; )+ falx, y; €)

—y—1 -1 -1, . —y—1 -1 -1 .
—e VT F(eT Xy, e yse) —e VT (e T xa, e s 8),
where

SiGx, yi8) = xie0 (X, y) f(x, y),
Fij.njie) = —e" 0" p)) f(xo, + €&, yo, + enj).

(x, y) are arbitrary Cartesian coordinates, (xo;, yo,) stand for the coordinates of O
. . il ..

in the system (x, y), and x, y; were introduced in Sect.7.4. From the definition of
the norms, it follows that

1f1: Vi) 5(G I + [Lfo; Vi (Golll + I1f23 Vi) 5(G)Il + 1Fj; V(@I < cll f3 V) 5(G(eNI.
(7.5.11)
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We consider solutions v; and w; to the limit problems

(—iV + A)*vy £+ Hvyg — k*vo = fo in Go, vo = 0 on 4Gy,
—Av[—kzv[ = f;in Gy, vy =0o0ndGy,
Aw; = F; ian, w;j =0o0ndR;,
respectively; moreover, the v; with [ = 1, 2 satisfy the intrinsic radiation conditions
at infinity, and the v is subject to the condition (vg, ve)G, = 0. According to

Propositions 7.2.1,7.2.2 and 7.2.3, the problems in G; and €2 are uniquely solvable
and

lvo: V2 (Go)ll < coll fo: V2 (Goll.
loi: Vi s (Gl < il fis Vi s (GOl 1= 1.2, (7.5.12)
lwj: V@I < CiIFj: V@I j = 1.2,

where ¢; and C; are independent of &. We set

U(x,y;e) = x1.e, oi(x, y; ) + e 7 oepwie ™ x, ey e)
+ %0.6 (0, Mo(x, yi &) + e O wae  xa, g7 yas 6)
+ x2.6(x, Yva(x, y; €).

Estimates (7.5.11) and (7.5.12) lead to

1U: V) 5 (Gl < cllf: Vi s(GE) (7.5.13)

with ¢ independent of €. Let R, denote the mapping f +— U.
Let us show that ((—iV 4+ A)2 + H — k2)R, = I + S,, where S; is an operator
in V]f)‘ 5(G(&)) of small norm. We have

(—iV4+A?+H—k)R f(x,y)
= fx, ) = [A, x1elvi(x, yse) — e 7 THA, ©wi (e xy, e yrs e)
— e O(rpwi (e x1, e yise) — [AL xo.elvo(x, y; )
— e VA, Olwa(e a2, e yns 6)
— ke "M O wae 2, ey 8) — [A, xaelvax, yie).  (7.5.14)

Let d be a positive number such that y —d 4+ w/w — 1 > 0. On the support of the
function [A, x1.¢]v; the estimate (x1 + ylz)l/ 2 = 0(e) holds, therefore,

LA, x1,e]v1: V sG@E)I < ced|[A, xielvr: V. V —a.5(GDI < ce?vy; V —a.sGDI.
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This and (7.5.12) lead to
IEA, X1elvis VY s(G@l < ce?ll f15 Vy g (G-
Moreover, fi = 0 outside the zone cg? < (xl2 + ylz)l/ 2 < Cg”, therefore,
1f1: Vy_g s (GDIl < ce™ | fi: V) 5(GDII.
The two last estimates together with (7.5.11) show that
LA, x1.elor: V5 (G @) < e £ V) 5(Gell. (7.5.15)

In a similar way, we obtain

A xrelor Vs GeNll < ee?D £ V) 5(GeDll. 1=0.2. (7.5.16)
We now assume in addition that the d satisfies y +d — m/w — 1 < 0. Because

the support of the function [A(Sj»’?j)’ Oepj)lw;&j,nj;e), j = 1,2, belongs to the
domain ce~! < (Sj2 + 77?)1/2 < Ce™ !,

(& n) = [Ag;n;. Oep)w;Ej.nj3 £): V(@)
< ce?GGj.n) = [Ag; ;. Op Wi Ejymj 60 Vi) g (@)1 < eellwjs V) (@)
Now, taking into account (7.5.12), we obtain
e g, y) = 1A, O )Tw; (e xj 67 yj5 60 V(G < ce?lFj; V) g (@)1

Since F; = 0 for (5]2 + n§)1/2 > e,

1Fj: Vi g @I < ce || Fjs V(@I (7.5.17)
Consequently,

e, y)) > (A, O )T (e xj, e yjie): VY 5G| < ce® £ V) 5(G@l.
(7.5.18)

It remains to estimate the middle terms of the two last lines in (7.5.14). We have

e "Gy v B O pwie xj. e 7y e): V(G o))
= &2, 1)) > Olepj)w; (&) nj: ) V(Q))]
< &), nj) = Oep)w;(Ej. 01 €): ViE (@) < ce?llwy; V2, (@):
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in the last inequality, we took into account that © (¢p;j)w; (&, n;; ) = 0 for p; >

ce~ ! besides, we assume that 2 — d > 0. In view of (7.5.12), (7.5.17), and (7.5.11),
we obtain

ey yj) = O pw; e xj ey e): V) s(Ge) | < ce? 7N £ V) s(Ge))ll.
(7.5.19)

Thus, (7.5.14)—(7.5.16), (7.5.18) and (7.5.19) lead to the inequality
I((=iV + A £ H—k*)Re f — [ V) 5G] < ce’ T £ V) 5(G @),

which means that ((—iV +A)%2 4+ H —k?)R, = I + S, and the norm of the operator
S, in the space VS’ 5(G(g)) admits the estimate || Se || < ced1=0),

5 (G(e)).

We also need the range of the operator S, be included in V}(,)”é(G(s)). To this end,
we replace the mapping R, by Re: f— U+ a(f)up, the u, was constructed in
Step A, and a(f) is a constant. Then ((—iV +A)?+ H —k*)R; = I + S, with §; =
Se +a()(=iV+A? £ H—k*u,. Ask = ke, the condition (0 ¢ Se f, ve)G, = 0
implies

Step D. Let us recall that the operator S is defined on the subspace Vf”

a(f) = —(x0.67 Se [, ve)Go/ (X0.e5 (—iV + A)* £ H — k) p, 0e)Gy-
Now we prove that || §8 I < cl|Sell, where ¢ is independent of ¢ and k. We have
IS £Il < ISe fIl + 1a(HI I((—iV + A)? £ H + k)uy .

Estimate (7.5.10) (with y > 7 /w — 1 and 27 /w > o1), the formula for k,, and the
condition k* — k2 = O (e*"/) imply the inequalities

1(=iV + A £ H — kP)up: Vo sl < K2 = kol llups Vsl
F =iV + A £ H = kD)up: V5| < ce?™/.

Since the supports of the functions ((—iV +A)%>+ H — kl%)u p and xo o are disjoint,
we obtain

(0,60 (—iV + AV £ H — kDup. ve)Gol = [k — k) (up. ve) G| = ca™™/®.
Moreover, y — 1 < 7 /w and, consequently,
|(X0.69 S £ ) Gol < I15e.f3 VE5(G(Nl ves VO, (Gl < el Se f1 VO3 (G )]

Hence,
la(f)] < ce™|Se f1 V) 5(G (o))
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and ||S; £l < c||Se £ 1. Thus, the operator I + S in V)5 (G (¢)) is invertible, which
is also true for the operator of problem (7.5.1):

A ius (—iV + A)*u £ Hu — Ku V,Qyif(G(e)) — V%L(G(g)),

the 173’?_ (G(&)) consists of the elements in Vyz’s,_(G(e)) that vanish on aG(¢g),
and the operator (—iV + A)? + H — k? takes 10/3’35'_ (G(E)) to VWOL;'(G(g)) to

Vf”él(G(s)). The inverse operator A;l = ES(I + §8)’1 is bounded uniformly with
respect to ¢ and k. Therefore, the inequality (7.5.3) holds with ¢ independent of ¢
and k. O

We consider solution #; and u5 to the homogeneous problem (7.1.1) and (7.1.2)
defined by

U (x,y) + S11 Uy (x,y) + O(exp (8x)), x — —o0,

u1tx, y) = [512 Us (x. y) + O(exp (—5x)), X — oo

o (x. y) = S21 Uy (x,y) + O(exp (6x)), x — —00,
P U @)+ S Uy () + O(exp (=81)), x — +oo.

Let Sim be the elements of the scattering matrix determined by these solutions; §1 1
S12 are the same as in (7.4.20) and (7.4.21).

Theorem 7.5.2 Letthe hypotheses of Proposition7.5.1 be fulfilled. Then the inequal-
ities

1S11 = S11] 4 |S12 — Si2| < ¢|S12]e2 72,
1S21 — Sa1] 4 1822 — Saa| < ¢|Saa]e? ™

hold with a constant c, independent of € and k, § being an arbitrarily small positive
number.

Now we return to the detailed notations introduced in the first three sections.
We denote by kg’ 4 an eigenvalue of problem (7.2.1) in the resonator G and by
k%i(e) a resonance frequency such that k%i(s) — kez’jE as ¢ — 0. Moreover, let
bf be the constants in asymptotics (7.3.7) of an eigenfunction corresponding to the
eigenvalue kfi and s (k) the constant in asymptotics (7.3.1) of the special solution
Vi forr; — 0, j = 1,2. Finally, the constants « and B are defined by (7.2.11)
and (7.2.12). We set P+ = (|b1||b2|B?|s1(k.)|?)~"; this is the same constant as in
(7.4.24)—(7.4.26). Theorem 7.5.2 and formulas (7.4.25) and (7.4.26) lead to the next
statement.

Theorem 7.5.3 For |k* — k% 1| = 0(e*¥™/®), the asymptotic expansions
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1
2
L B NP %
ANy ) T\ et
kg’i — k&:}: _ a(lbi‘:|2 + Ibil:lz)ngr/a) + 0(8271/0)4“273),

Ti _ |b1i| |béc| P—l 47r/w 1 0 2—§
((;‘) = |b_i| + ﬁ 4+ € ( + (8 )),
2 1

T*(k, &) = S+ 0(*7),

hold, Y (¢) is the width of the resonant peak at its half-height, and 8 is an arbitrarily
small positive number.

7.6 Comparison of Asymptotic and Numerical Approaches

The principal parts of the asymptotic formulas in Theorem 7.5.3 contain the con-
stants bf, Is1], &, B. To find them one has to solve numerically several boundary
value problems. In this section, we state the problems and describe a way to solve
them. We also outline a method for computing the waveguide scattering matrix S
taken from Chap.4. Then we compare the asymptotics, having calculated constants
and the numerically found scattering matrix.

7.6.1 Problems and Methods for Numerical Analysis
7.6.1.1 Calculation of b7
To find bjE, we solve the spectral problem

(—iV +A(x, y)?v(x, y) £ H(p)v(x, y) —k*v(x,y) =0 in G, 76.1)
v(x,y) =0 on dGy, o

by FEM, as usual. Let v, be an eigenfunction corresponding to ke2 and normalized
by

/ [ve (x, y)|2dxdy =1.
Go

We have
bfrf/wd)(tpl) asr; — 0,

7.6.2
bzirg/wcb(n —@p)asr — 0, (7.62)

Ve(x,y) ~[


http://dx.doi.org/10.1007/978-3-319-15105-2_4

7.6 Comparison of Asymptotic and Numerical Approaches 189

where (p;, ¢;) are polar coordinates centered in O, and ®(0) = x~ 12

Then b7 and b3 in (7.6.2) can be defined by

cos(ml/w).

0
bE = e_”/w% = VT 0 (e.0),  bE = Jme v,(d —€,0),

where € is a small positive number.

7.6.1.2 Calculation of |sq|
To calculate |s1|, we must solve numerically the problem

Av(x,y) —k*v(x,y) =0in Gy, (7.6.3)
v(x,y) =0o0n aGy,
with conditions

v(x, y) ~ 510D (T — @) as p—0,
v(x,y) = (e + SYe 1Y) Wi (y) + O (e ) as x — —oo0,

(7.6.4)
where (p, @) are polar coordinates centered in O1. We denote the truncated domain

GiN{(x,y):x > —D}

by GID and the artificial part of the boundary 8G1D N{(x,y):x=—-D}byI'P.
Consider the following problem

—AvP(x, y) — k2P (x,y) =0 in GP,
vP(x,y) =0 on dGP\TP, (7.6.5)
(O +ivD) vP(x,y) = f(x,y) on ro.

Ifvy e R\Oand f € Lg(FD ), the problem has a unique solution vP, and v satisfies
the inequality
WP llge < Cill fliro,

where ||v? | Gh = o2 Ly(GP)} similar notation is used for the norms and the inner
products below.

Let v be a solution to the problem (7.6.3), (7.6.4) and let V be a solution to the
problem (7.6.5) with f = 2iviel 1Py, (). Then u = v — V satisfies (7.6.5) with
f = 0(e77P). Hence, ||v — Viigp < Coe~ VP,

We find V with FEM and put

51 = /T TV (=€, 0).
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7.6.1.3 Calculation of « and 8
To calculate o and S, we consider the boundary value problem

AwE,n) =0in £,

w(&,n) =0 on L2, (7.6.6)
with the following conditions at infinity
_ [ @ +apT D (p) + O(p7I/?) as p — o0, £ >0,
WEM =T gpnloair —g)+ 0(p7 ) as p > 00, £ <0, T
where (p, ¢) are polar coordinates centered in O1. Introduce the notations
QP =Qn{(p.¢):p <D},
r? =92 n{(p,¢): p = D).
Consider the problem
AwP(E, ) =0 in QP,
wP(E, ) =0 on dQP\I'P, (7.6.8)
(O + ) wP(E, n) =g(& m) on ro.
If w? is a solution and ¢ > 0, then
D —1
lw™llrp < ¢ ligllpp. (7.6.9)

Denote the left-hand part of I'? by I'? and the right-hand part of I'? by I’ _l: .
Let W satisfy (7.6.8) with ¢ = 7/wD. glrp = 0. glpp = Qr Jw) DT/~ ().
Since the conditions (7.6.7) can be differentiated, w — W satisfies (7.6.8) with g =
O(D~G7/®)=1) According to (7.6.9),

wD
”w - W”FD g c_D—(3JT/a))_1 _ C/D_37[/w
T

as D — +4o00. We find W with FEM and take

_ W(=D,0)

T/w __ _ w/w
B= ) D™® = /T W(-D, 0)D™"/?.

Obviously, || (w—D™/*® () — (W — D"/ d(¢)) lrp < ¢’ D737/ ; therefore, we put

w00 - D™/ ®(0)

D™® = /aW (D, 0)D™/® — D*>"/*.
o(0) VTW(D,0)
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Now that the coefficients in the asymptotic formulas have been calculated, we
can find the asymptotics for a quantitative description of the polarization process.
However, the formulas are designed for sufficiently small narrows’ diameters. Thus,
it remains to estimate the range of ¢ where asymptotics works. To this end, we
calculate the scattering matrix by employing the method suggested in Chap. 4. Here
we present the needed description of the method. First, we introduce

G, D)y=G(Ee)N{(x,y): —D <x <d+ D},
P =9G(e, D) N{(x,y) : x = =D},
r? =dGeE, D)N{(x,y): x =d+ D}
for large D. As an approximation to the row (S11, S12) of the scattering matrix S(k),

we take the minimizer of a quadratic functional. To construct such a functional, we
consider the problem

(—iV+A2XP + HXP —k?xP = 0in G(e, D),
YD —o Dop. (1.6.10)
£ =00ndG(, D)\ (' UL,
O +iOXL =i (=1 + e P () +api(vy + O™ PW () on TP g 0y

(O +i0)XP = ari(vy + e @+D) g (y) on TP

where ¢ € R\ {0} is an arbitrary fixed number, and a1, a» are complex numbers. As
approximation to the row (Sy1, S12), we take the minimizer a’(D) = (a(l)(D), ag(D))
of the functional

2

2
D _ivi(d+D)
P + ”‘Xi a) e Uy

JD(al, a)) = ”Xf — e_wlDllJl — alewlDllJl‘

D’
FZ

(7.6.12)

where X'P is a solution to problem (7.6.10). From the results of Chap. 4, it follows
that a?(D, k) — S81;(k) with exponential rate as D — o00. More precisely, there
exist positive constants A and C such that

aY(D, k) — S1;(k)| < Ce™™P, j=1,2,

for all k2 € [, n2] and sufficiently large D; the interval [jt1, 2] of continuous
spectrum of the problem (7.1.1) lies between the first and the second thresholds and
does not contain the thresholds. (Note that application of the method is not hindered
by possible presence on the interval [, 2] of eigenvalues of the problem (7.1.1)
corresponding to eigenfunctions exponentially decaying at infinity.) To express X
by means of aj, ap, we consider the problems
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(—iV+ AT | £ HuE | — kv =0 in G(e, D),
vi: 1 =0 on 3G (e, D)\ (TP UTP),
(O +l§)vi | =i(Fv +0)eFViDy; on l"lD,
(Bn+t§)vi] =0 on I‘é)
(7.6.13)
and
(=iV + AW 5+ Huy , — kv, =0 in G(e, D).
viz =0 on 3G (e, D)\ (TP urd),
(8n+z§)vi2 =0 on rp,
(9 +z§)vi2 = i(Fv] + )eFTV1UEHD) g, on 1"%).
(7.6.14)

In vi j the upper and lower =+ correspond to F in the condition on I 1D U FZD and to the

sign in the Pauli equation, respectively. Let us express Xi by means of the solutions
to problems (7.6.13) and (7.6.14). We have Xi = vi + alvjE 1+ azvi - The
functlonal (7.6.12) can be rewritten in the form

TP, k) = (@€P k), a) + 2 Re ((le(k), a)) +GP k),

where (-, -) is the inner product on C?, and P stands for the 2 x 2-matrix with
entries

(Vg — P, (g, — M Pwn) L+ (v vk)
1 2
&P, = (( =P ) (v e =P )
2
52 1= (Ui 2 (V) — Py )) ((U;,z — M@y, Ud_:,l)rp )
l 2
521?2 — (v;’z’ U:E,Z)Ff) + <(U£2 _ eivl(d+D)\IJ]), (v;’ wl(d+D)qjl))rD

2
FP (k) is the row (F[ (k), FB(k)) and GP (k) is the number defined by
FR = (0L, —e™Pwn, 0L, — e Pen) o+ (v100%0)
1 2
Fh=(f =™ Pwg,) ,+ (v @i, — e )
1

2

D —iviD —iviD
9" = ((”I,l S SONCHEE I q’l))ru T (UIJ’UIJ)FD’
1 2
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The minimizer a® = (a)(D, k), ad(D, k)) satisfies a®€P + FP = 0. The solution
to this equation serves as an approximation to the first row of the scattering matrix.
In the same way, one can show that the approximation to the scattering matrix S (k)
is the solution S? = S (k) to the matrix equation of the form SPEP 4+ FP = 0. 1If
one chooses ¢ = —vi, then vy | = vy, =0, EP = (1/vpId, and SP = —v FP.

7.6.2 Comparison of Asymptotic and Numerical Results

2

res,a

2

Let us compare the asymptotics k os

(e) of resonant energy k-, (¢) and the approx-

imate value krzes, ,,(¢) obtained by the numerical method.

The ‘numerical’ and ‘asymptotic’ resonant energies are shown in Fig.7.1. The
discrepancy between the curves depends on the magnetic field Hy and the narrows’
opening w. Numerical resonance is calculated by the iteration process, the asymptotic
resonant energy is taken for the initial value.

The shapes of “asymptotic” and “numerical” resonant peaks are almost the same
(see Fig.7.2). The difference between the peaks is quantitatively depicted in Fig.7.3
(note the logarithmic scale on the axes). Moreover, it turns out that the ratio of
the width A, (h, €) of the numerical peak at height & to the width A, (%, €) of the
asymptotic peak is independent of /. The ratio as function of ¢ is displayed in Fig. 7.4.

The obtained data show that asymptotic and numerical methods give equivalent
results at the band of the narrows’ diameters 0.1 < ¢ < 0.5 (see Figs.7.1 and 7.3).
The numerical method becomes ill-conditioned as ¢ < 0.1. However, the asymptotics
remains reliable at such a condition. On the other hand, the asymptotics gives way
to the numerical method as the diameter increases.

Fig. 7.1 Asymptotic 18
description k2, , (¢) (solid
curve) and numerical 175
description krzel‘,vn(s) (dashed
curve) for resonant energy
ks (6) r
8
N2 1651
16
15.5
15

0 0.1 0.2 0.3 0.4 0.5
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Fig. 7.2 Transition
coefficient for ¢ = 0.2, 1t
asymptotic description

T, (k* — k%, ) (solid curve)

res,a
and numerical description 0.8}
T, (k* — k2,4 ,,) (dashed

curve). The width of the

. 0.6

resonant peak at height &: -
asymptotic A, (h, &) = AA; h
numerical A, (h, &) = BB 04k

0.2}

o L L L L L
-0.02 -0.01 0 0.01 0.02
2 2
k _kres
Fig. 7.3 The width A(e) of 10°
the resonant peak at ,
half-height of the peak L7
(dashed line for numerical . s
description, solid line for 10 L7
asymptotic description) by
7
W 42 o 2
3 10 y
L
1 074 1 0
10 10
€

7.6.3 Dependence of Resonant Tunneling on the Magnetic
Field Location in the Resonator

In the above numerical simulation results, the center of the magnetic field domain
coincides with the resonator center. We will illustrate, by the Aharonov-Bohm effect,
the dependence of resonant tunneling on the position of a magnetic patch in the
resonator. Let T (k2,;) denote the maximal value of the transmission coefficients T
(at k? = k2,,). Figure 7.5 depicts T (k%) versus the magnetic flux of the patch for
four values of the magnetic patch shift in the direction perpendicular to the waveguide
axis. If the patch center belongs to the waveguide axis, the T (k2,,) vanishes for certain
values of the patch magnetic flux. The reason is that the electron waves streaming

around the magnetic patch have the same amplitudes and the phases differing by
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A IA

0.8f

0.6

0.4

0.2}

€

Fig.7.4 Ratio A, (h, €)/A4(h, ¢) as function in €. The ratio is independent of / within the accuracy
of the analysis

1

09F  N\W

0.8 |

0.7 |

0.6

res

05

T2 )

04t
03f T
02t S S T

0.1

0

10
THR?

0

Fig.7.5 T(krze ) versus the magnetic flux of the patch for four values of the magnetic patch shift in
the direction perpendicular to the waveguide axis. The legend shows the coordinates of the magnetic
patch center

(2g + 1)m. When the patch is shifted in the direction perpendicular to the waveguide
axis, such a cancellation does not occur and the transmission probability does not
vanish. We assume that the waveguide width is equal to 1 and the patch radius is
equal to 0.2. Then Fig.7.5 shows, in particular, that for the patch center shifted by
0.1, the Aharonov-Bohm effect is practically absent.



Chapter 8

Effect of Magnetic Field on Resonant
Tunneling in 3D Waveguides of Variable
Cross-Section

8.1 Introduction

In this chapter, we consider a three-dimensional waveguide that, far from the coor-
dinate origin, coincides with a cylinder G containing the axis x. The cross-section
of G is a two-dimensional domain (of an arbitrary form) with smooth boundary.
The waveguide has two narrows of small diameter ¢. The waveguide part between
the narrows plays the role of a resonator and there can arise conditions for electron
resonant tunneling. This phenomenon consists of the fact that, for an electron with
energy E, the probability 7 (E) to pass from one part of the waveguide to the other
through the resonator has a sharp peak at E = E,.;, where E,.; denotes the “reso-
nant” energy. To analyse the operation of devices based on resonant tunneling, it is
important to know E,., the behavior of T (E) for E close to E,., the height of the
resonant peak, etc.

The presence of a magnetic field can essentially affect the basic characteristics of
the resonant tunneling and bring new possibilities for applications in electronics. In
particular, in the presence of a magnetic field, the tunneling phenomenon is feasible
for producing spin-polarized electron flows consisting of electrons with spins of the
same direction. We suppose that a part of the resonator has been occupied by the
magnetic field generated by an infinite solenoid with axis orthogonal to the axis x.
Electron wave function satisfies the Pauli equation in the waveguide and vanishes
at its boundary (the work function of the waveguide is supposed to be sufficiently
large, so such a boundary condition has been justified). Moreover, we assume that
only one incoming wave and one outgoing wave can propagate in each cylindrical
outlet of the waveguide. In other words, we do not discuss the multichannel electron
scattering and consider only electrons with energy between the first and the second
thresholds. We take ¢ as small parameter and obtain asymptotic formulas for the
aforementioned characteristics of the resonant tunneling as ¢ — 0. It turns out that
such formulas depend on the limiting form of the narrows. We suppose that, in a
neighborhood of each narrow, the limiting waveguide coincides with a double cone
symmetric about the vertex.

© Springer International Publishing Switzerland 2015 197
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Section 8.2 contains the statement of the problem. In Sect. 8.3, we introduce so-
called “limit” boundary value problems, which are independent of the parameter ¢.
Some model solutions to the problems are studied in Sect.8.4. The solutions will
be used in Sect.8.5 to construct asymptotic formulas for appropriate wave func-
tions. In the same section, we investigate the asymptotics of the wave functions and
derive asymptotic formulas for the main characteristics of the resonant tunneling.
The remainders in the asymptotic formulas are estimated in Sect. 8.6.

8.2 Statement of the Problem

To describe the domain G (¢) in R? occupied by the waveguide, we first introduce
domains G and € in R? independent of &. The domain G is the cylinder

G=RxD={x,y,2 eR:x e R=(—00,+00); (y,2) € D C R?}

whose cross-section D is a bounded two-dimensional domain with smooth boundary.
Let us define 2. Denote by K a double cone with vertex at the coordinate origin O
that contains the axis x and is symmetric about the origin. The set K N % with 2
standing for the unit sphere consists of two non-overlapping one-connected domains
symmetric about the center of sphere. Assume that the domain €2 contains the cone
K together with a neighborhood of its vertex. Moreover, €2 coincides with K outside
a sufficiently large ball centered at the origin. The boundary 9€2 of €2 is supposed to
be smooth.

Let us turn to the waveguide G (¢). We denote by €2 (¢) the domain obtained from €2
by the contraction with center at O and coefficient €. In other words, (x, y, z) € Q2(¢)
ifand only if (x/¢, y/e, z/¢) € Q.Let K; and 2 (¢) stand for K and €2 (¢) shifted by
the vectorr; = (x?, 0,0), j = 1, 2. The value |x? — xg | is assumed to be sufficiently
large so that the distance between d K| N d K3 and G is positive. We set

G(e) =GN NQ(e).

The wave function ¥ = (W, W_)T of an electron with energy E = k2/2/2m in
a magnetic field Hy satisfies the Pauli equation

(—iV+ AW + G, H)W¥ = k¥ in G(e), (8.2.1)

where o = (01, 02, 03) with the Pauli matrices

(10 (0 —i (1 0
T=\o1) 2=\i o) “T\o-1)

and H = —(e/chHg) = rot A. If the magnetic field is directed along the axis z that
is H = HKk, H being a scalar function, then (8.2.1) decomposes into two scalar
equations
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(—iV+A)>W, + HUy = k>, (8.2.2)

Let the function H depend only on p = ((x — x0)2 4+ (v — yo)H) /2 with H(p) =0

for p > R, R being a fixed positive number. Such a field is generated by an infinite

solenoid with radius R and axis parallel to the axis z. Then A = Aey,, where ey, =
p~ (=¥ + yo.x — x0, 0) and

o .

Alp) = 1 { fORtH(t) dt, p <R,

o | fy tH(t)dt, p > R.

The equality rot A = H determines A up to a term of the form V f. We neglect
the waveguide boundary permeability to the electrons and consider the Eq. (8.2.2)
supplemented by the homogeneous boundary condition

Y, =0 ondG(e). (8.2.3)

The obtained boundary value problems are self-adjoint with respect to the Green
formulas

(—iV + A)u+ Hu — k*u, v)Ge) — (u, (—iV 4+ A)?v + Hv — K*0) 6
+ (U, (=0 — Ap)V)aGe) — (0 — An)u, V)aGE) =0,

where A, is the projection of A onto the outward normal to dG(¢e) and u, v €
C°(G(e)) (which means that v and v are smooth functions vanishing outside a
bounded set). Besides, W+ must satisfy some radiation conditions at infinity. To for-
mulate such conditions, we have to introduce incoming and outgoing waves. From
the requirements on H and the choice of A, it can be seen that the coefficients of Eq.
(8.2.2) stabilize at infinity with a power rate. Such a slow stabilization creates difficul-
ties in defining these waves. Therefore, we will modify A by a gauge transformation
so that the coefficients in (8.2.2) become constant for large |x|.

Let (p, ) be polar coordinate on the plane xy centered at (xg, yp) and ¢ = 0
on the ray of the same direction as the axis x. We introduce f(x, y, z) = c{r, where
c= fOR tH(t) dt. For definiteness, assume that —m /2 < ¥ < 37 /2. The function
f is uniquely determined in the waveguide for [x — xg| > 0, moreover, Vf = A
for |x — xo| > R. Let 7 be a cut-off function on Ry equal to 1 for r > R + 2
and O fort < R+ 1. Weset A'(x,y,2) = A(x,y,2) — V(r(]x — x0]) f(x, v, 2)).
Then rot A’ = rot A = H while A’ = 0 for |[x — xo| > R + 2. The wave functions
W) = Wy exp{itf} satisfy (8.2.2) with A replaced by A’. For [x — x| > R + 2,
the coefficients of the Eq. (8.2.2) with new vector potential A’ coincide with the
coefficients of the Helmholtz equation

—AV, =PV,
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In order to formulate the radiation conditions, we consider the problem

—Av(y,2) —220(y,2) =0,  (y.2) € D, (8.2.4)
v(y,2) =0, (y,2) €dD.

The values of parameter A that correspond to the nontrivial solutions of this problem
form the sequence )L% < k% < ... with )L% > 0. These numbers are called the
thresholds. Assume that k2 in (8.2.2) coincides with none of the thresholds and take
up the equation in (8.2.2) with .. For a fixed k? > A2, there exist finitely many
bounded solutions (wave functions) linearly independent modulo L, (G (¢)); in other
words, a linear combination of such solutions belongs to L, (G (¢)) if and only if all
coefficients are equal to zero. The number of wave functions with such properties
remains constant for k2 € (Az, A; " 1)»q = 1,2,... and step-wise increases at the
thresholds.

In the present paper, we discuss only the situation where k> € (A2, A%). In such
a case, there exist two independent wave functions. A basis in the space spanned
by such functions can be composed of the wave functions uT and u; satisfying the
radiation conditions

Wy 2) = VW (y, 2) + S (k) e TR (v, 2) + 0(e¥), x — —o0,
R SHK) eV Wiy, 2) + 0 (e, x — +00;
Wy D) = St (k) e IEW (y, 7) + 0(eP), X — —o00,
2 eI (y, 2) + Sy (k) €W (y, 2) + O(e7%Y), x — +o00;
(8.2.5)

here vi = ,/k? — A% and W, stands for an eigenfunction of problem (5.1.2) corre-
sponding to A% and normalized by the equality

o, / W0y, P dydz = 1. (82.6)
D

The function Uy (x, y, z) = €!"1*W|(y, z) in the cylinder G is a wave incoming from
—oo and outgoing to +oo, while Uz (x, y, z) = e~ ixy, (y, z) is a wave going from
400 to —oo. The matrix

st = ”S,:j“m,j=1,2

with entries determined by (8.2.5) is called the scattering matrix; it is unitary. The
quantities
+._ ¢t 2 +._ ¢t 2
R = |8|1%, T;" =I5}

are called the reflection coefficient and the transition coefficient for the wave U;
coming in G(g) from —oo. (Similar definitions can be given for the wave U,
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incoming from +oc.) In the same manner, we introduce the scattering matrix
S~ and the reflection and transition coefficients R;” and T, for the equation in
(8.2.2) with W_.

We consider only the scattering of the wave going from —oo and denote the
reflection and transition coefficients by

R = RE(k, &) = |ST,(k, )%, T = T4k, e) = IS5k, 01> (82.7)

We intend to find a “resonant” value k = k*(e) of the parameter k which corre-
sponds to the maximum of the transition coefficient and to describe the behavior of
T*(k, &) near k- (g) as ¢ — 0.

8.3 Limit Problems

To derive the asymptotics of a wave function (i.e., a solution to problem (8.2.2))
as ¢ — 0, we make use of the compound asymptotics method. To this end, we
introduce the “limit” problems independent of ¢. Let the vector potential A" and,
in particular, the magnetic field H differ from zero only in the resonator, which is
the part of waveguide between the narrows. Then, outside the resonator and in a
neighborhood of the narrows, the wave function under consideration satisfies the
Helmbholtz equation.

8.3.1 First Kind Limit Problems

We set G(0) = G N K1 N K> (Fig.5.3), so G(0) consists of three parts: G, G1, and
G». The boundary value problems

—Av(x,y,2) — Ko, y,2) = f(x, 9,2, (3,2 €Gj, (83.1)
v(x,y,2) =0, (x,y,2) €3Gy,

where j =1, 2, and

(=iV + AN (x, y,2) £ H(p)v(x, y,2) — k*v(x, y,2) = f(x,y,2), (x,,2) € Go,
(8.3.2)
v(x,y,z) =0, (x,y,z) € 3Gy,

are called the first kind limit problems.

We introduce function spaces for the problem (8.3.2) in G. Denote by O and O,
the conical points of the boundary dG( and by ¢ and ¢» smooth real functions on
the closure G of G such that ¢ ; = 1 in a neighborhood of O; while ¢12 + ¢% =1
For!/ =0,1,2 and y € R, we denote by V)f (Gy) the completion in the norm


http://dx.doi.org/10.1007/978-3-319-15105-2_5

202 8 Effect of Magnetic Field on Resonant Tunneling in 3D ...
1/2

llv; V. (Go)ll = / Z qu @y, 7"y e,y )P dx dy de
O\ocl 0 j=1
(83.3)

of the set of smooth functions on G vanishing near O; and O»; here r; is the
distance between the points (x, y, z) and Oj, @ = (a1, a2, a3) is the multi-index,
and 9% = 9l*l /gx*1 9y*297%3.

Let K; be the tangent cone to dGg at O; and S(K;) the domain that K; cuts
out on the unit sphere centered at O;. We denote by (w1 + 1) and pa(u2 + 1)
the first and second eigenvalues of the Dirichlet problem for the Laplace-Beltrami
operator in S(K1),0 < (1 + 1) < ua(uz + 1). Moreover, we let ®; stand for
an eigenfunction corresponding to w1 (@1 + 1) and normalized by

Qui+ 1)/ 1®1(0)2dp = 1.
S(K1)

The next proposition follows from the general results, e.g., see [37, Chaps.2 and 4,
Sects. 1-3] or [33, Vol. 1,Chap. 1] .

Proposition 8.3.1 Assume that |y — 1| < w1+ 1/2. Then, for f € VO(GO) and any

k?* except the positive increasing sequence {k2 | of eigenvalues k2 — 00, there

exists a unique solution v € V},Z(Go) to the problem (8.3.2) in Gy. The estimate

lv; V2(Go)ll < cll f: VI(Go)ll (8.3.4)

holds with a constant c independent of f. If f vanishes in a neighborhood of O and
O3, then v admits the asymptotics

_ o PR p ) ®@ien + 012 2), - 0
U(X, Y, Z) - 1/2 ua+1/2

bory " Ju12(kr) @1 (—g2) + O(r) ), r2—>0

near Oy and Oz, where (rj, ;) are “polclr coordinates” centered at Oj, rj > 0
and p; € S(Kj); bj are certain constants; J,, denotes the Bessel function multiplied
by a constant such that J, (kr) = r* 4 o(r*).

Let k? = ke2 be an eigenvalue of problem (8.3.2); then the problem (8.3.2) is
solvable if and only if (f, ve)g, = O for any eigenfunction v, corresponding to kZ.
Under such conditions, there exists a unique solution v to problem (8.3.2) that is
orthogonal to all these eigenfunctions and satisfies (8.3.4).

We turn to problems (8.3.1) for j = 1, 2. Let xo,; and xoo, j be smooth real functions
onthe closure G ; of G such that o ; = 1inaneighborhood of O}, xo.; = 0 outside
a compact set, and ng i+ Xgo, = 1. We also assume that the support suppxoo, j is
in the cylindrical part of G;. For y € R, 8 > 0,and/ = 0, 1, 2, the space ij, s(Gj)
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is the completion in the norm

172
!

2y =1+
s V2 5G Il = (/G > Y la)+xgo’jexp(26x))|8“v|2dxdydz>

J Ja|=0

(8.3.5)

of the set of functions with compact support smooth on G ;j and equal to zero in a
neighborhood of O;.

By assumption, k? is between the first and second thresholds, so in every domain
G there is only one outgoing wave; let U, = U» be the outgoing wave in G| and
U, = U thatin G (the definition of the waves U; in G see in Sect. 8.2). The next
proposition follows from Theorem 5.3.5 in [37].

Proposition 8.3.2 Let |y —1| < w1+ 1/2 and let the homogeneous problem (8.3.1)
(with f = 0) have no nontrivial solutions in Vy% o(G j). Then, for any right-hand side

f e V}E) s(Gj) there exists a unique solution v to the problem (6.2.1), that admits
the representation

v=u+AjXoo, iU,
where A = const, u € Vy2’ s(G ) and § is sufficiently small. Moreover the estimate

llus V2 5(G I+ 14,1 < cllf3 V) 5(G )l (8.3.0)

holds with a constant c independent of f. If the function f vanishes in a neighborhood
of Oj, then the solution v in Gy admits the decomposition

—1/2% 1/2
v(x,y,2) =ar, 1/ Sy +172kr) @1 (—1) + O(F]M2+ / ), r1—0,
and for the solution in G there holds
125 12
v(x, y) = axry I 1 p k) @1(e2) + 0 (152 ) - 0,

where aj are certain constants and (v are the same as in the preceding proposition.

8.3.2 Second Kind Limit Problems

In the domains 2, j = 1, 2, introduced in Sect. 8.2, we consider the boundary value
problems

—Aw(Ejnj. ) = FEjanj. 8). Ejanj.gj) € Qs (83.7)
w(%-]’n]’é‘])z()’ (EJ,T)],CJ)EBSZJ,
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which are called second kind limit problems; here (§;, 1, ¢;) denote Cartesian coor-
dinates with origin at O;.
_ Let pj = dist((§, nj, £j), Oj) and let Y, j, Yoo, j be smooth real functions on
Q2 such that g j = 1 for p; < N/2, Y9 j = Ofor p; > N, andwoj —l—w =1
W1th sufficiently large positive N. For y € Rand / = 0, 1, 2, the space V)f (Q i) is
the completion in the norm

1/2
2(y—1
v VE@))Il = / Z U+ v T 0 agddg;

2 jal=0
(8.3.8)
of the set CZ° (Q ;) of smooth functions with compact support in Q j- The next propo-
sition is a corollary of Theorem 4.3.6 in [37].

Proposition 8.3.3 Assume that |y — 1| < w1 + 1/2. Then, for F € V)S)(Qj): there
exists a unique solution w € Vy2(§2‘,~) of the problem (8.3.7) such that

lw; V(@I < el F; V@), (8.3.9)

with a constant c independent of F. If F € C2° Q i), then the function w is smooth
on 2 and admits the representation

Lo~ pa—1 .
w(%'j,nj,gj)z{dj'oj '@y (- 90/)+0(:0, ), & <0,

A (8.3.10)
d7p T oy + 007, & >0,

with pj — oo, here (pj, ;) are polar coordinates on Q2 centered at O while
and @1 are the same as in Proposition 8.3.1. The constants aj and B; are given by

=—(F.wha, dj=—(F.,w)ae,

where w'. and w’; are unique solutions to the homogeneous problem (8.3.7) that
satisfy, for pj — oo, the conditions

w,:[(p71+ap; Do +0( ), & <0 S0
ﬁp;“'*‘d>1<<p,)+0(p, el £ > 0;
_— 1— q) _I_O —MH2— 1’ A 0;

= ’EpL 10 +0(p; ") e 5 < (8.3.12)
P +ap M )¢1(¢J)+0( ). & >0.

The coefficients a and B depend only on the domain 2.
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8.4 Special Solutions of Limit Problems

In each domain G, j =0, 1, 2, we introduce special solutions to the homogeneous
problems (6.2.1). Such solutions will be needed in the next section for constructing
the asymptotics of a wave function. The special solutions V;, v; of the limit problems
inGj, j = 1, 2, were introduced and studied in Chap. 6. Remember that the following
expansions are valid:

Vi y.2) = Ul'"(x,_yl,/g)j— S?l (KU, (x,y,2) + O(exp(dx)), x — —o0, (8.4.1)
sy(yry Ty 1pkr) @1 (—e1),  rp— 0
V(e 3.2) = U;(x;y{/?f S%(k)U; (x.y.2) + O(exp(—8x)), x — +00,
s2(k)ry T Ty 41/2kr) @1 (p1), 2 —> 0.
(8.4.2)
and
vy ) = Y (N2 + a1 T 1 jprD) @1 (—p1) + OG12), 1y — 0,
e AU (x,y,2) + 0(e%), x — —o0,
(8.4.3)
—1/2 /= ~
Vax, y. 2) = Ty Y (Nuy1/2kr2) + axd 12 (kr2)) @1 (92) + OG5, 2 — 0,
AU (x,9,2) + 0(e™%), x — +oo,

(8.4.4)

where .7# is the same function as in Propositions 8.3.1 and 8.3.2 and the constant
A j depends only on the domain G ;.

Lemma 8.4.1 The equalities |A;|* = 2Imaj, A; = i5;S); hold.

Let kii be a simple eigenvalue of the problem (8.3.2) in the resonator Go;

+

Ve

is an eigenfunction corresponding to kg’i and normalized by the condition
fGo |v;t|2dx dy dz = 1. By virtue of Proposition 8.3.1

12~
bir / Jui12ko£rD)®@1(p1),  r1— 0,

—-1/25 (8.4.5)
bzirz 1/21u1+1/2(k0,ir2)¢1(—§02), ry — 0.

vf(x,y,z) ~ [

‘We consider that b;—L # 0. If H = 0, then it is true, for instance, for the eigenfunc-
tions corresponding to the minimal eigenvalue of the resonator. For nonzero H, this
condition can be violated. For k2 in a punctured neighborhood of kii separated from
the other eigenvalues, we introduce the solutions vatj to the homogeneous problem
(8.3.2) by the relations

Vo; (6 ¥, 2) = @i (rj, ) + Tp;(x, 3,2, j=1,2, (8.4.6)
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where ¢t — ©(¢) is a cut-off function on R equal to 1 forz < §/2 andto O for ¢ > §
with a small positive 8, v; are defined by

—125 —1/2
v1(ry, @1) =71 / Nyy+12kr)@1(p1),  va(r2, ¢2) =1, / Nyy+1/2kr) @1 (—¢2),
ﬁu is the Neumann function multiplied by such a constant that

Ny(kr) =r~" 4 o(r "),

and T)'(;—Lj is a bounded solution to the problem (8.3.2) with f;(x, y,z) = —[A, ©(rj)]
vj(rj, ej).
Lemma 8.4.2 In a neighborhood V C C of k2 + containing no eigenvalues of the
problem (8.3.2) in G distinct from ke 1, the equalities VOJ —bi (k*>—k? i)_l vi+

V0 y hold, where b are the same as in (8.4.5) and the functions Vgtj are analytic in
k> eV.

Proof We first verify that (V(:)t/, vzc)go = —E/ (k% — kz’i), where V(:)t/ are defined
by (8.4.6). We have ‘ ‘ '
(AVg; + K255, v Gy — (%, Avg + K206, = — (0 = kg D) (Vg v2) Gy

the domain G is obtained from G by cutting out the balls of radius § with centers at
01 and O;. Applying the Green formula in the same way as in the proof of Lemma

6.3.1, we arrive at —(k* — k2 ) (vg;, v)g, = E + o(1). It remains to let § — 0.
Since kii is a simple eigenvalue, we have

BE (k)
~ 7 + | ~+
Voj = —k2 kg N v U (8.4.7)

where Bji (kz) does not depend on (x, y, z), and ﬁ()ij are some functions analytic
with respect to k2 near the point k> = kg,i' Multiplying (8.4.6) by vejE and tak-
ing into account (8.4.7), the obtained formula for (v(jfj, v;t)GO, and the condition
(vE v, v )G0 = 1, we get the equality Bi(kZ) = bjE + (k% — ’i)Ejj.E(kz), where

Eji are some analytic functions. Together with (8.4.7) that leads to the required
statement. (]

In view of Proposition 8.3.1,

Vm(x y) ~ ”_1/2(~m+1/2(kr1) + Cﬁ(k)nlﬂ/z(k"l))q)((m), r — 0,
et 0ry 2 T g1 pr) @(—@2), = 0,

(8.4.8)
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4 Q] T p k)@ (o), =0,
V02(x,y)~ 2125 + ~
ry (Npys1720kr2) 4+ 5 (k) Iy 4172 (kr2) ) @ (—¢2), 2 — 0.
(8.4.9)

According to Lemma 8.4.2 and relations (8.4.5),
i
q ~+
S5 T k), (8.4.10)
e,

+
et (k) = —
Pq kz—ki

where E[fq analytically depends on k> nearby kf’i.

Lemma 8.4.3 If v(i and ng in (8.4.8) and (8.4.9) make sense for a number k, then
¢ (k) = ¢35, (k).

Proof 1t suffices to apply the Green formula to V(j):l and v(i in the same domain G
as in the proof of Lemma 6.4.1, to use (8.4.8) and (8.4.9), and to let § tend to 0. [

8.5 Asymptotic Formulas

In Sect.8.5.1, we present an asymptotic formula for a wave function (see (8.5.1)),
explain its structure, and describe the solutions of the first kind limit problems
involved in the formula. We complete deriving the formula (8.5.1) in Sect.8.5.2,
where we describe the involved solutions of the second kind limit problems and
calculate some coefficients in the expressions for the solutions of the first kind prob-
lems. In Sect.8.5.3, when analysing the expression for Sj; obtained in Sect.8.5.2,
we derive formal asymptotics of the resonant tunneling characteristics. Note that the
remainders in (8.5.24)—(8.5.27) have arisen at the intermediate stage of considera-
tion during simplification of the principal part of the asymptotics; they are not the
remainders in the final asymptotic formulas. The “final” remainders are estimated
in Sect. 8.6 (see Theorem 8.6.3). For ease of notation, we drop the symbol “+” in
this section, meaning that we will deal with any one of the Eq. (8.2.2).

8.5.1 The Asymptotics of a Wave Function

In the waveguide G(g), we consider the scattering of the wave U(x,y,z) =

eVI* Wy (y, z) incoming from —oo (see (5.1.5)). The corresponding wave function
admits the representation

u(x,y,z;€) = x1,¢(x, ¥, 2)v1(x,y,2;€)
+ODwie X1, ey, ez ) + x0,(x, ¥, Dvo(x, ¥, 7€) (8.5.1)
+ O wae xa, e o e s e) + xo (1, ¥, D2 x, ¥, 23 &) + R(x, ¥, 5 ).
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Let us explain the notation and structure of this formula. When constructing the
asymptotics, we first describe the behavior of the wave function v outside the narrows,
approximating u by the solutions v; of the homogeneous problems (6.2.1) and (8.3.2)
in G;. As v;, we take certain linear combinations of the special solutions introduced
in the preceding section; in doing so, we subject v; and v, to the same radiation
conditions at infinity as u:

vi(x, y,z;€) = Vi(x, y,2) + Crivi(x, y, 2)

~ Uy, 2+ 511(8)U1_(x,y, ), X —> —o0; (8.5.2)
vo(x, y,z;6) =Cra(e)vor(x, y, 2) + C13(e)voa(x, y, 2); (8.5.3)
v(x,y, 2 8) =Cuava(x, y,2) ~ Sa(e)Uy (x, y,2), X — +00; (8.5.4)

for the time being the approximations Si (2), §12(8) for the entries S11(¢), S12(¢) of
the scattering matrix and the coefficients Cy(¢) are unknown. Here y; . stand for
the cut-off functions defined by the equalities

X1.e(x,y,2) = (1 =0@1/e) 16, (x,y,2),  x2.:(x,y,2) = (1 = O@2/e)) 1g,(x, y, 2),
X0,e(x, ¥, 2) = (1 = O(r1/e) — O(r2/8)) 16, (x, y, 2), (8.5.5)

where r; = /sz. + yjz + z? and (x;, yj, z;) are the coordinates of a point (x, y, z)
in the system with the origin shifted to O;; 1 is the indicator of the set G j (equal to
1in G and O outside G ;); ©(p) is the a cut-off function equal to 1 for 0 < p < §/2
and O for p > § with a fixed sufficiently small positive §. Thus y; . are defined on
the whole waveguide G (¢) as well as the functions x; cv; in (8.5.1).

When substituting Z?:o Xj,ev;j in (8.2.2), we obtain a discrepancy in the right-
hand side of the Helmholtz equation supported near the narrows. We compensate the
principal part of the discrepancy by making use of the second kind limit problems.
In more detail, we rewrite the discrepancy supported near O; in the coordinates
(j,nj,¢)) = (e 'x;,e7y;, e71z;) in the domain ; and take it as right-hand
side for the Laplace equation. Then we rewrite the solution w; of the corresponding
problem (8.3.7) in the coordinates (x2, y2, z2) and multiply it by the cut-off function.
As aresult, there arises the term O (r;)w (e_lxj, 8_1yj, £_lz/~; g)in (8.5.1).

The existence of solutions w; vanishing as O(p;” ’71) at infinity follows from
Proposition 8.3.3 (see (8.3.10)). However, choosing such solutions and then sub-
stituting (8.5.1) in (8.2.2), we obtain a discrepancy of high order that has to be
compensated again. Therefore, we require w; = O(,o;“ 271) as pj — 00. Accord-
ing to Proposition 8.3.3, such a solution exists if the right-hand side of the problem
(8.3.7) satisfies the additional conditions

(F.wle, =0, (F,w)ea, =0.
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Such conditions (two at each narrow) uniquely define the coefficients §1 1(e), §12(s),
and C11(¢), ..., C14(¢). The remainder R(x, y, z; ) is small in comparison with the
principal part of (8.5.1) as e — 0.

8.5.2 Formulas for §11, §12, and C11y...,C14

We are now going to define the right-hand side F; of problem (8.3.7) and to find
Sll(s) 512(8) and Cqi(g), ..., Cia(e). We substltute X1,¢V1 in (8.2.2) and obtain
the discrepancy

(—A =KD x1,ev1 = —[A, xe 1101 + Xe1 (—A = kP)vp = —[A, 1 — O~ r]uy,

distinct from zero only near the point O, where v| can be replaced by the asymp-
totics; the boundary condition (8.2.3) is fulfilled. According to (8.5.2) and (8.4.3),

—-1/2, — =~ -~
vi(x, v, z38) = rp P (ay @ Ny 412k + ait () Ty 41/2(kr)
x ®1(—¢1) + 0, r —0,

with
a, (¢) =Cn, a{" =51+ Cria;. (8.5.6)

We single out the principal part of each term and put p; = ry /¢, then

(=8 =) xevr ~ =[A 1= 06 )] (ar 7! a ) @1 ()

= =2 AGrens 1 = O] (a7 e ™17 o aet pf ) By (— ).
(8.5.7)

In the same way, using (8.5.3) and (8.4.8)—(8.4.9), we obtain the principal part of the
discrepancy given by x. 2v2 supported near Oj:

(=8 = ) e, 01 ~ =& (A : 1= O] (bre ™~ o b e plh) @1 o),
(8.5.8)
where
by =Cn(e), bl =Cnecn + Ci3e)ea. (8.5.9)

As right-hand side F7 of the problem (6.2.6) in 21, we take the function

Furom a0 = 18,671 (e~ ae ol ) @1(—g)

1A, 9+]( gHilpots l+b+8“1p1')<l>1(<p1), (8.5.10)
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where O (respectively # ™) stands for the function 1 — © first restricted to the domain
&1 > 0 (respectively & < 0) and then extended by zero to the whole domain €2;. Let
wi be the corresponding solution; then the term ®(r1)w1(8_1x1, 8_1y1, etz €)
in (8.5.1) being substituted in (8.2.2) compensates the discrepancies (8.5.7)—(8.5.8).

In a similar manner, making use of (8.5.3)—(8.5.4), (8.4.8)—(8.4.9), and (8.4.4),
we find the right-hand side of the problem (8.3.7) for j = 2:

Fy(&,m,0) =[A,07] (112_8_”1_1;02_”'_1 +a§“8’“P§“) D1 (—¢2)
18,671 (bye 1y b e ol ) 1 o)

a; (e) = Ci3(e),  aj () = Cra(e)cin + Ci3(e)ear,

2 2 (8.5.11)
by (¢) = Cia(e), by (e) = Cra(e)as.

Lemma 8.5.1 If the solution w; of the problem (8.3.7) with right-hand side

= =1 —p—1
Fionys ¢ =18,071 (a5e 77 p 7 s at e plit) @y (—g))

+[A, 9+] (bj—gfulflpj*lllfl + b;f-gli]ij) q)l(gol)’

Jj = 1,2, admits the estimate O(p;m*l) as pj — oo, then

—e—m—l _ oo o gptom —o—i—l _ o ptolt _ gaTel —

aje 1 aajsl ﬂbjsl—O, bje 1 otbjs1 BaTe" =0,
(8.5.12)

where a and B are the coefficients in (8.3.11)—(8.3.12).

Remark 8.5.2 The solutions w; mentioned in Lemma 8.5.1 can be written as linear
combinations of certain model functions independent of ¢. We present the corre-
sponding expressions, which will be needed in the next section for estimating the
remainders of asymptotic formulas. Let wi. and w;. be the solutions to problem (8.3.7)

defined by (8.3.11)—(8.3.12) and A7, 6~ the same cut-off functions as in (8.5.10).
We set

wh=wl =07 (o +ap; 1) 1= — 67 B 01 (o)),
Wi =wi =07 Bp; T 0y (—pp) — ¢ T (pj“ +apj_“‘_1) D1 ().
A straightforward verification shows that
wj = afe" W+ bl W (8.5.13)

It is convenient to write (8.5.12) in the form
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(a;.b7) = (af . b APt A= (Z ﬁ) (8.5.14)

We use (8.5.6) and (8.5.9) to transform (8.5.14) with j = 1 to the equality
(C11, C12) = (s1 + Criar, Craciy + Cizear) A e21+1, (8.5.15)

For j = 2, taking (8.5.11) into account, we reduce (8.5.14) to

(C13, C14) = (Crac12 + Ci3ca, Craaz) A 211 (8.5.16)
Setting A = diag {A, A},
a 0 0 O
| Oci1ec2 0
a = 0 cap e 0 | (8.5.17)
0 0 0 a

and combining the above relations for C ;, we obtain
(C11.C12. C13, C14) = (51.0,0,0) A ™1+ (Cyy1, Crp. C13. Cra)a A ™11,
hence
(C11, C12, C13, C1)(I —a A e*1F1) = (51,0,0,0) A g2+, (8.5.18)

Let us calculate the inverse matrix for I — aAe?*1+1 assuming ¢ to be sufficiently
small. From (8.4.10) it follows that

*

bbb
atl) = gz +ab),

where b = (0, by, b, 0) and the matrix a is analytic near k = k, and defined by
(8.5.17), whereas ¢, is replaced for ?pq. We have

(I _ aA82u1+1)—1

_ (I _aA&‘Z;“Jrl)fl (I B b*bA82/t1+1(1 _aA82/L1+1)71 ) .

k2 — kg + (bAgZmtl(] —g A g2mtly—1 p)
This leads to

(C11, C12, C13, C14) = (51,0,0,0) A e (1 —a A 21T =1

Db*b D
= (51,0,0,0) (D— — ) (8.5.19)
k2 — k2 + (bD, b)
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where b = (0, by, by, 0), D = A2 H(1 — @ A 21+~
We now seek an approximation to the entries of the first row (S11, S12) of the
scattering matrix. By virtue of (8.5.2) and (8.5.4),

(11, S12) = (89, + C11A1, C14A7). (8.5.20)

We set
1

0
B 0 (51000
A= ol s‘(ooon)

SO = diag (S, S9,); then, by Lemma 8.4.1, A = is *S°. In view of (8.5.20) and
(8.5.19), we obtain

A
0
0
0

(S11, S12) = (89}, 0) + (C11, C12, C13, C14) A
Db*b D
k* —kZ+ (bD,b

=mﬂm+mmaam(0— Jﬁﬂ.@jm)

An approximation to the second row of the scattering matrix is of the form

Db*b D
k2 —kZ+ (bD.b

(5L52)=(QS%)+i®ALst<D- ))ﬁs@ (8.5.22)

Lemma 8.5.3 The matrix S(¢) is unitary.

8.5.3 Asymptotics for Resonant Tunneling Characteristics

The solutions of the first limit problems involved in (8.5.1) are defined for the complex
k% as well. The expressions (8.5.21)—(8.5.22) obtained for S(e) have a pole at k12, in

the lower half-plane. To find k2, we equate k2 — ke2 + (bD, b) to zero and solve the
equation for k> — kf:

k* — k2> = —(bD,b) = —eZ/“(bA (I —a A ?™/*)~1 b). (8.5.23)

Since the right-hand side of this equation behaves as O (e21+1) for e — 0, its solu-
tion can be found by the successive approximation method. Considering the formulas
Ima; = |s; |? /2, which follow from the waveguide symmetry and Lemma 8.4.1, and
discarding the lower order terms, we get k%, = kr2 —1 kl.2, where

k2 = k2 — a (b1 + |ba|H)e T 012y, (8.5.24)

r
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ﬁ (b1 17 + b2 P51 (kD) [Pe™1 72 + O (91753,

From (8.5.21) and (8.5.22), we obtain

Stk, &) = SO (k) 4 is(k)A s* (k) SO (k)21 +1
SEOADDAS 1) SOK) 4,142 + 0( = )

k2 k2 kz—kf,
Z(S?l(k) 0 ) +l.(|s1(k)|2als?l(k> 0 )82u1+1
0 8%k 0 |s2(k) > 029, (k)

i (|s1<k>|2|b1|2_ﬁs?l(k> $1052(k) b152 B, (k)Y _apui+2
k2 — k2 \s20)51(K)b1b2 B2 S7, (k) [s2(k) P12 |* B> 53, (k)

Let k> — k2 = O(e2M17+1), then ce*1+2 < [k? — k%,| < ce?Hl si(k) = s;(ke) +
O(EwH), $%;(k) = 8% (ke) + O(e*#1*1), and

2
4M1+251(k)52(k) b1b2ﬂ Szz(k) 201+1
ey (1 + 0 ))

s1(ke) Sz(k) b1 by ng(k)
Y ip— "
(lbzl * |b1|) T
51(K)s2(k)b1b2 B2 S0, (k
jetmt2 1 (k) Z(k; 1;3 1) (1+ 0(82u1+1))
si(ke)  sa(ke) by bz ko)
siko)l Is2(ke)| 1521 1b2] St (ke 2+l
2 (140 ),

bl b2\ . KR
(=t P
2(|b2|+|b1| BT

where P = (| ||ba| 8211 (ke)[?) . Thus,

Sialk, &) =

Sok, &) =

Titk,e) = Ta(k,e) = |Sio)* = S(1+ 0 (2,

b1l b2l k% — k2
P2 "
(|b2| * |b1|) * (54“'+2

(8.5.26)
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The obtained approximation fj to the transition coefficient 7; has a peak at k* = k?
whose width at its half-height is

oy |b1| |b2| 1 4 2
T = — + =) —gtmt2, 8.5.27
(®) (|b2| * |b1|) P’ (8327

8.6 Justification of the Asymtotics

As in the previous section, here we omit “+" in the notations and do not specify which
equation of (8.2.2) is considered. We return to the full notations in Theorem 8.6.3.
Let us introduce functional spaces for the problem

(—iV+Au+Hu—kKu=f inG@), u=0 ondGe). (8.6.1)

Recall that the functions A and H are compactly supported, and, besides, they are
nonzero only in the resonator at some distance from the narrows. Let ® be the same
function as in (8.5.5) and let the cut-off functions 7;, j = 0, 1, 2, be nonzero in G ;
and satisfy the relation n1(x, y) + ®(r1) +no(x, y) + O (r2) + n2(x, y) = 1in G(¢).
Fory e R,§ > 0,and! =0, 1, ..., the space V;’S(G(e)) is the completion in the
norm

lus V, 5(G ()l
1 2

B (/ z (Z ®%(r)) (ij- + 8?))’_1+|0‘| + e
G ja1=0

j=1
1/2
+no + n%e”'X) 19%v|* dx dy dz) (8.6.2)

of the set of smooth functions compactly supported on G(¢g). Denote by V)?,’;‘ the

space of function f, analytic in k2, with values in V)f)’ 5(G (o)) that satisfy, at k2 = kez,
the condition (xo ¢ f, ve)G, = 0 with a small o > 0.

Proposition 8.6.1 Let k> be a resonance, k> — k> as & — 0, and let |k*> — k?| =
O (e *1). Let y satisfy the condition uy —3/2 <y —1 < u1 +1/2, f €
Vfﬁ’;‘ (G (¢)), and let u be a solution to problem (8.6.1) that admits the representation

u=u+nmA U +mA, U, ;
here A]T = const and u € VVZ’S(G(S))for small § > 0. Then
1@ V25 (G + AT+ 145 | <l f: VO 5(Ge)l. (8.6.3)

where c is a constant independent of f and ¢.
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Proof Step A. First we construct an auxiliary function u,. As mentioned above, S
has a pole k[27 = kf — ikl.2 (see (8.5.24)). Let us multiply the solutions to the limit
problems, involved in (8.5.1), by g := —(k* — k2 + (bD(k), b))/((s1, 0,0, 0) D, b),
put k = kp, and denote the resulting functions by adding the subscript p. In view of
(8.5.19) and the equality (s1, 0, 0, 0) Db* = ((s1, 0, 0,0)D, b), we get

9(Ci1. C12, C13, C1a) k=i, = bD(kp) = (b1B. brer, brat, bap)e* 1T +0 (e172).
(8.6.4)
This and (8.5.2), (8.5.4) lead to

vip(x, ¥, 2; ) = g Crilg=k, Vi (x, ¥, 2 kp) = gl (blﬂ +0 (52‘““)) vi(x, ¥,z kp),
(8.6.5)

vop(x, ¥, 2:€) = g Cralkmk, V2 (x, y, 23 kp) = g1 (b2,3 +0 (82’““)) va(x, y, 2 kp);
the dependence of k), on ¢ is not shown. According to (8.5.3) and Lemma 8.4.2,

(9 Ciaby + g C13b2) k=,
k2 — k2

vop(X,y,2;8) = — Ve(x, ¥, 2) + g Cralk=k, Vo1 (x, ¥, 2)
+9 C13lk=k, Vo2 (x, ¥, 2).

Taking into account (8.5.19), we obtain

Ci2bi + C13by = (Ci1, Ci2, Ci3, C14)b*

= (s1, 0,0, 0)Db* (1 _ (bD, b) )

k2 — k2 + (bD, b)
((s1,0,0,0)D, b)

= k> —k? .
( )W—@+mam

e

(8.6.6)

Hence,

vop (X, ¥, 23 €) = Ve(x, y, 2) + &1 (b + 0 T)Voi(x, y, 2)
+ e by + O (™1 )V (x, y, 2).
Finally, using (8.5.13) and formulas (8.5.6), (8.5.9) and (8.5.11) for af and b;“, we
find
wip &, 15 8) = (9C1D) ek, @1" Wh (€1, 1, £1) + (9C1aeny
+ gCizcan) lk=k, &' Wi (&1, mi, £1),
w2p (&2, M2, $25 €) = (gCx2c11 +9C23021)|k=k,,8mW12(§2: 02, £2)
+ (9C14) lk=k, a2e" ' W5 (&2, M2, £2)-

Compare the equalities (8.4.10), (8.6.6) and (8.6.4), then
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(9 Ci2b1 + g C13b2) k=,
(9Cr2c1j + 9Cj3caj)lk=k, = — bj 2 12 :
14 e

+ (gClZZ‘\l./ + 9Cj32’\2j)|k:k,, = bJ + 0(82M1+1)’

where j = 1, 2. Thus
wip (&L, 815 e) =M @by B+ 02 T Y)W &L i, &)
+ M (b1 + O™ TY)YW (&1, 1, 1), (8.6.7)

wap (&2, m, £2; €) =& (by + O™ 1T )Wh(E2, ma, )
+ M @by + O W62, m. ). (8.6.8)
We set
up(x,y,2;8) = B(x,y,2) [x1,:(x, y, Dvip(x, y, 2: €)
+ O rpwiy(ex, ey e zis )
+ x0,e(x, ¥, Dvop(x, y, 7; &)
+ OE P rwp(e ey, e 20k, 6)
+ x2,6(x, ¥, Dvap(x, y, 23k, )], (8.6.9)
where E is a cut-off function in G (¢) that is equal to 1 on the set G(¢) N {|x| < R}
and to O on G(¢) N {|x| > R + 1} for a large R > 0; o is such that 20 < 1. The
principal part of the norm of u,, is given by x¢ vop. Considering the definitions of

Vop and’\?oj (see Sect. 8.3) and Lemma 8.4.2, we obtain || xo,cvop |l = [[vell + o(1).
Step B. We show that

=iV +A)? £ H —kp)ups Vi) 5(G()] < e, (8.6.10)

where k = min{u; + 1, uo +1—o01, y +3/2}, 01 = 20(u2 — y + 3/2). If
u1—3/2 < y —1ando is sufficiently small so that g — 1 > o, thenk = g+ 1.
By virtue of (8.6.9)

(—iV+A? £ H—kup(x, y. z:8)

= (8] (w10 vz 0) = b e T 4 al)r D @1 (=)
+ [A, @]wlp(s_lxl, ey ez e) — kz@)(s_z"rl)wlp(g_lxl, ey e
+18, 30,61 (1006, v, 23 ) = O (b7, @r ™ ™ + b @rl) 01 (1)

— 002 (a3, " + af )rf ) @1 (02)

+ 1A, Olwap(e ™ a2, 67y, 67 225 8) — k2O ) wap (e a0 ey, e z0s 6)
+ 18026 (120, 23 0) = o (! k) )01 (92)
+[A, Elui(x, y,z; €) + [A, E]vs(x, y, z; €),

“lz158)
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where by = O(¥17), b = by + O(?111), a4y, = O (™)), a), = by +

O (2*1+1) Taking account of the asymptotics v; asr; — 0and going to the variables
&1, &) = (67 xr, ey, 67 zy), we arrive at

N 2
H (6,3, 2) > 18, 21.6] (Vl(x’ y.o) = "+ a(kp)rf“)%(—wl)) ; V}E),a(G(S))H
2
= C/ (r]Z + 52)7/ ‘[A, Xl,g]rl_u“l'f‘](b(—q)l)’ dxdydz < CSZ()/—MI_;,_]/Q)'
G(e)
This and (8.5.2) imply that

[y 18,6l (v v 2 = 077+ atkp)r B (=) s VE5(Ge)|

< 68y+u1+3/2'
Similarly,

[y 180060 (w0 v, = 0 (b7, @+ b @) @1 (=)
= 02 (a3, @r; " + af @rh ) 1) | = cer I,

[y 180000 (07,0 = 057 +ale)rk ) @102) VO (G|
< cgVtmit3/2,

It is clear that
18, 810 V5G| = e, 1=1.3.

Further, since wlj behaves as O(p;“ 27]) at infinity, we have

2
/G( )(r} + &%) ‘[A, oW, (e 'xj, e y;, e_lzj)‘ dx;dy;dz;
&

= c/ (r/2' +e2)7 (2, ®](e*1rj)*uzflq>2((pj)|2dxjdyjdzj < celluatl-on
K

J

where o1 = 20 (4 — ¥ + 3/2). A similar inequality holds with wlj changed for W;.
In view of (8.6.7) and (8.6.8), we obtain

H [A, Olwjp; VS’S(G(S))H < cghituatl-or

Finally, using (8.6.7) and (8.6.8) once more and taking into account the estimate
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2 2 —20 | -1 -1 2
/ (7 +e7 |0 2w w6y e )| dxjdy;dz
G(e)
2
2y 43 2 1-2 I 2y+3

=gt /Q(p,- + DY )6(8 "pj)wj(éj,nj,cj)‘ djdn;dg; < e,

and a similar estimate for w? , we derive

H(x, v,2) > @(8720}’]')11)]'1,(871)6]', sflyj, sflzj); V}%(G(e))H < cet v 32,

Combining the obtained inequalities, we arrive at (8.6.10).
Step C. Let us write the right-hand side of problem (8.6.1) in the form

fey, 2= filx,y,z:8) + folx,y,z:8) + falx,y, 25 €)
+e 73R (e g, ey, ez )

+e 7P R (e g, ey, e 205 6),
where

Ji(x,y,2,8) = Xie0(x, ¥, 2) f(x, ¥, 2),
Fi&j.nj. ¢j:8) =" P20 p)) f(xo, + €&, yo, + &nj. 20, + €5));
(x, y, z) are arbitrary Cartesian coordinates; (xoj, Yo;, sz) denote the coordinates

of the point O in the system (x, y, z); x;, ¥, z; were introduced in Sect. 8.2. From
the definition of the norms, it follows that

L1 Vi (GO + [ fo: Vi (Go)ll + 1 f2: Vi (Gl + 1Fj: V@I < ell £ V) 5(G el
(8.6.11)

We consider solutions v; and w; to the limit problems

(—iV + A)?vy + Hug — k*vo = fo in Go, vo = 0 on 9Gy,
Avl+k21)1 = f;in Gy, v; = 0 on 4Gy,
Aw; = Fjin Q;, w; = 0ondR;,
respectively; moreover, the v; with [ = 1, 2 satisfy the intrinsic radiation conditions
at infinity, and the v is subject to the condition (vo, ve)G, = 0. According to

Propositions 8.3.1, 8.3.2, and 8.3.3, the problems in G; and £2; are uniquely solvable

and 5 0
llvo: Vy (Go)ll < coll fo; V), (Go)ll,

li; V5 _(GDIl < il fis Vs (Gl 1= 1,2, (8.6.12)
lwj; V@I < CiIF;: V@I, j =12,
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where ¢; and C; are independent of &. We set

Ux,y,2:6) = x1.606, 3, D1 (x, y, z:8) + £ V3200w (¢ a6y e 7z e)
+ 20,6 ( v D0, v,z 8) + e Y TI2O0)wa (e g, ey e T ns )
+ x2,e(x, y, D)va(x, y, z; 8).

Estimates (8.6.11) and (8.6.12) lead to
U3 Vi 5 (Gl < cll f: V) 5G] (8.6.13)
with ¢ independent of €. Let R, denote the mapping f +— U.

Let us show that ((—iV + A)2 + H — k*)R, = I + S,, where S is an operator
in V]f)‘ 5(G(&)) of small norm. We have

(—iV+A? £ H— k)R, f(x.y.2)
= f(x,y,2) +[A, x1elvi(x, ¥,z 6) +[A, xo.elvo(x, ¥, z; €) + [A, x2.e]v2(x, y, 25 €)
+e 7 HA Olwi (e xr ey e 2 e) + K2 VT 2O wi e xy ey e zise)

+e V2N, Olun (e ey e zas ) + K2 VT PO wa (e X 67 o, e 20z ).

(8.6.14)

Let d be a positive number such that y — 1 > 1 + 1/2 — d. On the support of the
function [A, x1.¢]v1 the estimate r; = O(¢) holds, therefore,

ITA, x1.elvi; Vi) s(G @l < ce? 1A, x1.eTvi; Vi) g s(GDI < ce?llor; Vg 5(G DI
This and (8.6.12) lead to
LA, x1.elvi: Vi) s(G@)l < el Il f1: Vi g 5(GDl.
Moreover, f; = 0 outside the zone ce? < r; < Ce?, therefore,
1f1: Vy)_g s (GDIl < ce™ | fiz V) 5(GDII.

The two last estimates together with (8.6.11) show that

LA, x1.elor: Vs (G @) < e £V 5(Gell. (8.6.15)
In a similar way, we obtain

ITA. xo.e1v0: Vi 5G| < ce® || f1 V) (G (@), (8.6.16)
LA, x2.e1v2: Vi) s (G| < ce® || £1 VY (G (@) (8.6.17)
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We now assume in addition that the d satisfies —u; — 1/2 +d < y — 1. Because
the support of the function [A, ®(gp;)w; (&), n;j. ¢j; €), j = 1,2, belongs to the
domain ce~! < pj =< Ce 1,

I . 8i) > [Ag; ;0 Oejp)Iw; (€ mj. 8z o) V()]

<C8 ;. nj, &) — [ASI nj, {1’6(3]/0])]1”](5] nj.¢js €); V+d(9 )i

<ce ||wj; y+d(52j)||~

Now, taking into account (8.6.12), we obtain

e VT2 (g v z)) = (AL O Iwj (e xj e yj e i e): VY 5(Gle)) |

< csdlle; V)9+d(9j)||~

Since F; =0 for pj > ce™?,
IFj: Vi ea @I < ce™ || Fz V(@) (8.6.18)
Consequently,
e V2 (), yj. ) e (A, OG)Tw (e xj ey ez e) V)?,S(G(s))n

< e £ V) (G @) (8.6.19)

It remains to estimate the middle terms of the two last lines in (8.6.14). We have

e v z) e O pw e g ey e T 2 0); V)5 (G @)l

=&/, nj, &) > Oeppwi(Ej,nj, §js e)s V ]
=¢ ”(E/’ Njs é-j) = ®(5p1)w (g} nj,&js £); y+2(Qj)|| = ng”wj; Vszrd(Qj)”;
in the last inequality, we took into account that ®(gp;)w;(&;, n;j, ¢j;e) = 0 for

pj = ce~!; besides, we assume that 2 — d > 0. In view of (8.6.12), (8.6.18), and
(8.6.11), we obtain

eI v ) o O pw e g ey e 2 e) V(G
< eV £V (G (8.6.20)
Thus, (8.6.14)—(8.6.17) and (8.6.19)—(8.6.20) lead to the inequality
I(=iV + A £ H = k)R f — [ V)5 (G < ce” 7 f1 V) 5G],

which means that ((—iV +A)2+ H —k?)R, = I + S, and the norm of the operator
S¢ in the space V)9’ 5(G(¢)) admits the estimate ||S;| < ced1-0),
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Step D. Let us recall that the operator S is defined on the subspace Vf” 8L (G(e)).
We also need the range of the operator S, be included in V;,)j(G(s)). To this end,
we replace the mapping R, by Re: f— U(Sf) +a(f)up, the u, was constructed in

Step A, and a( f) is a constant. Then ((—iV +A2+H —kz)ﬁg =1+ §g with §g =
Se +a()(=iV+A)? £ H —k*)u,. Ask = ke, the condition (0 e Se f, ve)G, = 0
implies

a(f) = —(X0.60 Se f ve)Go/ (X0.c0 (=i V + AV £ H — kD)up, ve) G-
Now, we prove that || §5 I < cllSe|l, where c is independent of ¢ and k. We have

IS £1l < 1Se £ + 1aCHII(=iV + A)? = H — kP,
Estimate (7.5.10) (with y > u; — 1/2 and u2 — 1 > o1), the formula for &, and
the condition k? — k2 = O (e?*1*1) imply the inequalities
=iV + A & H = kP yup; VO 51l <1k = kg lups VD]
=iV + A £ H = kp)up; VY sl < ce? 11

Since the supports of the functions ((—iV+A)?>+ H — klz,)u p and xo .o are disjoint,
we obtain

| (oo (=iV + AP £ H = kDyup, v)Gol = (k7 = kp)(p. ve)Go| = ce™ 171,
Further, y — 1 < p1 + 1/2, therefore,

(X0, Se.f V) Gol < N1Se £5 Vi) 5(G @ llve; V2, (Go)ll < clISe f5 Vy 5 (G ()]

Hence,
la(f)] < ce™ NS £ VY (Gl

and I|§gf|| < c||Ss f||. Thus, the operator I + §8 in VS;;(G(S)) is invertible, which
is also true for the operator of problem (8.6.1):

A ius (—iV + A)*u+ Hu — Ku Viﬁf(G(s)) — VA%L(G(s));

the I?i’gi(G(g)) consists of the elements in Vyz)sﬁ(G(s)) that vanish on dG (¢), and
the operator (—i V+A)% 4+ H — k? takes V3§7 (G(e)) to I/A%L(G(g)) to V)?”SJ_(G(S)).

The inverse operator A, ! = R:(I + S;)~! is bounded uniformly with respect to &
and k. Therefore, the inequality (8.6.3) holds with ¢ independent of ¢ and k. ]

We consider solution u; and u» to the homogeneous problem (8.2.2)—(8.2.3)
defined by
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w9, 2) = Ui (x, y,2) + S11 U (x, y, 2) + O(exp (6x)), x — —o0,
e e S12U, (x,y,2) + O(exp (=6x)), x — 400
ur(x, y,2) = $21 Uy (x, y,2) + O(exp (8x)), X — —00,
S U (x, y,2) + S Uy (x,y,2) + O(exp (—8x)), x — +00.

Let Sim be the elements of the scattering matrix determined by these solutions; §11,
S12 are the same as in (8.5.21)—(8.5.22).

Theorem 8.6.2 Letthe hypotheses of Proposition 8.6.1 be fulfilled. Then the inequal-
ities

1S11 = S11] + 812 — S12| < ¢|S12]e272,
1S21 — So1| + |S22 — Saa| < ¢[Sap]e®™?

hold with a constant c, independent of € and k, § being an arbitrarily small positive
number.

Now we return to the detailed notations introduced in the first three sections.
We denote by kfyi an eigenvalue of problem (8.3.1) in the resonator Go and by
k%i(s) a resonance frequency such that krz,i(a) — kf)i as ¢ — 0. Moreover, let
bf be the constants in asymptotics (8.4.5) of an eigenfunction corresponding to the
eigenvalue kii and s (k) the constant in asymptotics (8.4.1) of the special solution
Vj forrj — 0, j = 1,2. Finally, the constants « and 8 are defined by (8.3.11)
and (8.3.12). We set P = (|b1||b2|,32|s1 (ke)|2)_1; this is the same constant as in
(8.5.25)—(8.5.27). Theorem 8.6.2 and formulas (8.5.26)—(8.5.27) lead to the next
statement.

Theorem 8.6.3 For |k — kii| = 0211 the asymptotic expansions

1

p)
L WY Ct et
4 |b2i| |b1i| + ghui+2

kiy = kg4 —a(by)? + by et 4 O (P HH270),

N 6] 1031 ot a2 s
T = 4 + = | PL'e (14 0(™7),

Tk, ) =

S(L+ 0™,

s

hold, where Y% (&) is the width of the resonant peak at its half-height and § is an
arbitrarily small positive number.



Chapter 9
Numerical Simulation of High Energy
Electron Transport

The chapter is devoted to the numerical simulation of resonant tunneling for electrons
with energy E between the first and the fifth thresholds. We approximately calculate
the electron transmission probability T,x(E) = 1Sk (E)|?, where Sp(E) is the
entry of the scattering matrix S(E). Generally, the dependence £ — T, (E) turns
out to be rather complicated. Let us denote by ReE |, ReE», ... all the waveguide
resonant energies. To interpret E — T,k (E), we introduce the probability amplitude
Ak (E) of the electron resonant tunneling with resonant energy Re E; thus, we have
Snk(E) = D Ansk (E). We consider the function £ — | > Ansk(E)|? in a small
neighborhood of Re E, and obtain an approximate relation

T (E) ~ | D Ansk(E)I7,

where 7, is a sufficiently simple function containing several unknown parameters
of the tunneling with resonant energy Re E,. Comparing the functions £ — T,x(E)
and E — 7, (E), we find the mentioned parameters by the method of the least
squares.

9.1 Numerical Simulation of Multichannel Resonant
Tunneling

9.1.1 Closed Resonator

A necessary condition of electron resonant tunneling consists in proximity of the
incident electron energy E to one of the eigenenergies k2, of the closed resonator
(Fig.9.1). Table9.1 shows the calculated values of k2, and the figures of the corre-
sponding eigenfunctions.
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Fig. 9.1 The resonator
eff

Table 9.1 Eigenvalues and eigenfunctions for the closed resonator

m
n 1 2 3 4 5 6 7

k2, = 14.5765 | k2, = 28.6845 | k2, = 52.1479 | k2, = 84.8217 |k2, = 125.6741 | k2, = 180.1483 | k2, = 240.3497

g | @ | @

0
S
2

k2, =44.3978 | k2, = 59.1481 | k2, = 83.7015 |k2, = 117.9935 | k2, = 161.2690 | k2, = 214.9305 | k2, = 273.2698
2 o 000 0000 6%a%a 600000 AN
(o]e) 000, 0000, 7a%9 000000, VLY
k2, = 93.7270 k2, = 108.5681| k2, = 134.3437 | k2, = 165.5023 | k2, = 209.7926| k2, = 261.8551 | k2, = 326.4400
(=X =1 - a ] ago0D T 8400080
3 % a8 550 252 oasieed
=1+ D w0 g00bn 00000, ou00Y 0000000
k2, = 163.4579 | k2, = 177.5804 | k2, = 202.4174 [ k2, = 237.7302 | k2, = 287.1038 | k2, = 330.8411
4 == SSs A k2, > 370
oo F:
Cr=v) =t=1 SSS SE55 L (2 [/5a05N]

For the rectangular resonator with unit width (i.e., D = 1) and length L,
k2, = n*n® + 7?m? /L2, (9.1.1)

where n and m are transversal and longitudinal quantum numbers. Since the shape
of the resonator is close to rectangular, the eigenvalues are well approximated by the
expression (9.1.1) with L replaced by Lefr. For the resonator with angle w = 0.9
at the vertex and with length L = 1.5, the value of L.f is approximately equal to
1.45forn = 1 and to 1.42 forn > 1.

The disparity between the calculated eigenvalues and approximations by for-
mula (9.1.1) is less than 0.5 %. Note that such an accuracy is achieved in spite of
the significant difference between the considered eigenfunctions and those for the
rectangular resonator (see the figures in Table9.1).

9.1.2 The Method for Computing Scattering Matrix

We now describe a calculation scheme for a scattering matrix based on the method
presented in Chap. 4. The energy E of an electron moving in a cylindrical waveguide
can be represented in the form £ = E, + E), where E| and E| are transversal
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and longitudinal components, respectively. The values of E| are quantized. In the
simplest two-dimensional case, where the waveguide is a strip of width D, we have
E = k% E|(n) = n%n%/D?, and Ey(n) = k* — 2n2/D?. We consider scattering
of electrons incident on the resonator from —oo with energy k> between the first and
the fifth thresholds, that is, 72 < k? < 527 @. Thus, we consider solutions of the
form

2N max
un(x,y) = UG, y) + D SyUP™(x, ) + 0™, x| — oo,
j=1
where
Uriln(xy y) = lleftei v E”(n)x)(n()’)v n=12,..., nmax,
U, y) = Diere™ "V EI x5 (), J=12 e Mmax,

U;.’ut(x, y) = lrightei \ E”(j_”ma’()x)(j—nmaxx (), J =nmax + 1, imax + 2, ..., 2nmax,

E\(j) = E— E1(j), Liefc and 1;4gp, are the indicators of the left and the right outlets
of the waveguide, and

( )— wcosw+wsinw

XnlY) =" D 2 '

The matrix S = {S,;},n = 1,2, ..., nmax, j = 1,2, ..., 2nmax, is the upper half of
the waveguide scattering matrix. We denote the domain occupied by the waveguide
by G and introduce the notations:

GR:=Gn{x,y):|x—=L/2| <L/2+ R},
'R .=aGRN{(x,y):|x—L/2|=L/2+ R},

where R is a sufficiently large positive constant (see Fig.9.2).
As an approximation for the nth row of the scattering matrix, we take the minimizer

0 0 0 0 :
a, = (a,;,a,,, ..., an’anax) of the functional

2nmax

R __ R in _yrout) 2
LE =128 =00 = D7 an UM I, rowy-
j=1

Fig. 9.2 The truncated 0.5D
domain GF o
01 |rR I
-0.5D

-R 0 L L+R
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Here AR is a solution to the problem

—(A+E)xk =0 in GR,
xRk =0 on dGR\ TR,
2N max
@ +iHXF = @, +io) (U + ]; anU§™) on I,

where ¢ € R\ {0} is an arbitrary fixed number and v is the outward normal. From
the results of Chap.4, it follows that a,(,) j(R, k) — S, (k) with exponential rate as
R — o0. More precisely, there exist positive constants A and C such that

|a (R, k) — Spj(k)] < Cexp(=AR), j=1,2,...,2nmax,

forall k% € [1e1, o] and sufficiently large R; the interval [1¢1, p2] of the continuous
spectrum lies between two neighboring thresholds and does not contain the thresh-
olds. (Note that application of the method is not hindered by possible presence, on
the interval [, 3], of eigenvalues of the problem).

We can put XX = vin > j”"i“x anjv™, where vin, O are solutions to the

problems

—(A+Epi"=0 in GR,

v =0 ~ondGR\ Tk,

(@ + Qv = 8y +iHHUM on TR

and
(A+Epg =0 in GR,
v;’“t—O on dGR\ TR,

@ + iV = @ +iHOUM onTF, j=1,2,..., 2nmax.
Now we can rewrite the functional JF in the form
JnR = (ang ,an) +2Re (]: ,ap) + g,f,

where (-, -) is the inner product on C?*max £R denotes the matrix with entries

gzlfq — ( out Uout out Uout p.g= 1’ 2’ o znmam

q )LZ(FR)’

the row FX consists of the elements

]—'rﬁiz( — Ui, pout — gyout qg=12,..., 2nna,

n>’ (1 q )Lz(FR),


http://dx.doi.org/10.1007/978-3-319-15105-2_4

9.1 Numerical Simulation of Multichannel Resonant Tunneling 227

and the number GX is defined by

2

LyTR)

The minimizer of JX satisfies a,EX + FF = 0. We take the solution of this equation
as an approximation to the nth row of the scattering matrix.

9.1.3 Discussion of Numerical Results

If the resonator is symmetric about the x-axis, then only scattering with preserved
transverse quantum number evenness is possible (the incident and scattered waves
have the same evenness). Let us explain the fact in more detail. The original problem
reads

—Au, — kzu,, =0 in G,

9.1.2
u, =0 on 090G, ( )

2R max
un = UM+ D" 8§08+ 0@ ) as x| — oo
j=1

Let v,(x,y) = u,(x, —y) and n < nmax (We consider only the upper half of the
scattering matrix). The function v,, satisfies

—Av, —k*v, =0 in G,

(9.1.3)
v, =0 on 0G,
and
. Mmax . 2nmax .
vy = (_l)n_HUran"' z Snj(_1)1+lU;_)ut+ Z Snj(_l)j—nmax+lquut+O(e—Slx\)
j=1 J=Nmax+1
as |x| — oo. Let us assume that n is even. Then w,, = (u4,, + v,,)/2 satisfies
—Aw, — kzwn =0 in G,
9.1.4)

w, =0 on 0JG,
and

Nmax 2N max
wy, = z S,U-U;?‘lt + z S,U-U;?llt + 0@y as |x| > oo,
j=1 jznmax+1
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Fig. 9.3 Transmission probability for the wave U f” (npmax = 1, the transversal quantum number
n = 1 for the scattered wave)

where the sums do not contain the terms with even j and j — npax, respectively. The
problem has the trivial solution w, = 0 only, therefore, S,;; withodd j (for j < npax)
and j — nmax (for j > npax) are zero. If n is odd, we consider w, = (u; — v,)/2
and conclude that S,,; with even j (for j < nmax) and j — nmax (for j > nmax) are
zero.

For example, if the electron energy is between the second and the third thresh-
olds (47% < E < 97?%), we have S;2 = Si4 = 0. This means that there are no
transmissions between the transverse states.

The energies £ ~ 14.58 and E ~ 28.68 are resonant and correspond ton = 1
and m = 1,2 (Fig.9.3). For 47> < E < 972 (the electron energy between the
second and the third thresholds), there are no changes of the transverse states, due
to the evenness invariance. For the incident wave with n = 1, the resonant tunneling
occurs at E &~ 48 and E ~ 76 (Fig.9.4), which correspond to the closed resonator
eigenvalues £ &~ 52.15and E ~ 84.8 withn = 1, m = 3, 4.

09}
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.

30 40 50 60 70 80 90
E

Fig. 9.4 Transmission probability for the wave U {” (Npmax = 2, the transversal quantum number
n = 1 for the scattered wave)
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Fig. 9.5 Transmission probability for the wave Ué“ (Mmax = 2, the transversal quantum number
n = 2 for the scattered wave)

For incident wave UM, resonant tunneling occurs at energies £ ~ 44.4, 59.1,
and 83.7 (Fig.9.5), which correspond to n = 2, m = 1,2, 3. The width of the
resonant peaks for this case is significantly less than that for the wave U {“.

The explanation is that the height of the effective potential barrier created by a
narrow is proportional to n%/d?, where n is the transversal quantum number of an
incident wave and d is the narrow diameter; therefore, the barrier for U;“ is four
times greater than that for U}". This also explains the smaller distance between the
resonant peaks and the corresponding eigenvalues of the closed resonator.

For a waveguide symmetric about x-axis, transmissions between channels become
possible only when 972 < E < 1672, i.e., when the electron energy is between
the third and the fourth thresholds. We denote by E¢;, (where “cr” means “crit-
ical”) the height of an effective potential barrier for an electron with transversal
quantum number n. Since for the wave U}“ the longitudinal energy E|| is large
(it is above the barrier height for E > E.; = 109, 7), the probability of elec-
tron transmission without change of a transversal quantum number is fairly high
(Fig.9.6). The probability of electron transmission with change of transversal state
(n = 1) = (n = 3) is high as well (Fig.9.7). Both |S14|> and |S16|> have sharp
resonance at E &~ 93, which corresponds to the eigenenergy of the closed resonator
withn = 3, m = 1. For | S|, the peak is natural, since, for the longitudinal compo-
nent, the resonance conditions hold. But, for |S 14|2, the resonance is caused by the
transmission (n = 1) — (n = 3), the resonant amplification of the wave, and the
transmission to the initial state (n = 3) — (n = 1). The wave U3in behaves similarly:
with strong direct (n = 3) — (n = 1) andreverse (n = 1) — (n = 3) transmissions
with a change of the transversal quantum number and with the resonance at E = 93.

For incident electrons with n = 2, no change of transverse state is possible and
there is a sharp resonance of unit height at E ~ 117 (Fig.9.8). For an incident
electron with energy 1672 < E < 2572 the situation is even more complicated,
since transitions with change of transverse quantum number become possible for
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Fig. 9.6 Transmission probability for the wave U f" (Npmax = 3, the transversal quantum number
n = 1 for the scattered wave)

0.2
0.18 |- R
0.16 - R
0.14
0.12

0.1
0.08 -
0.06 -
0.04
0.02 |

O ! ! ! ! ! !
80 90 100 110 120 130 140 150 160

E

2
IS¢l

Fig. 9.7 Transmission probability for the wave U f” (Npmax = 3, the transversal quantum number
n = 3 for the scattered wave)
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Fig. 9.8 Transmission probability for the wave Ué” (Npmax = 3, the transversal quantum number
n = 2 for the scattered wave)
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n = 2, too. We do not analyze the obtained results here, because qualitatively the
effects are similar to those for 972 < E < 1672.

The wave U g” with energy greater than E, | approaches the narrows and partially
goes in the state with n = 1, so the probability to pass through the resonator is large
even for non-resonant energies (due to passing over the barrier) (see Fig.9.11). The
critical energy E, 3 for the original mode is greater than the electron energy, and the
transmission probability without changing the state has peaks at the energies which
are resonant for the state with n = 3. An electron with n = 1 whose energy exceeds
the third threshold partially goes in the state with n = 3, having resonances at the
same energies as an electron in the state with n = 3.

Figures9.9,9.10, 9.11 and 9.12 show the E-dependence of T1—T4; here T,, stands
for the full transmission probability of U,’;”. The numbers (n, m) are the transversal
and longitudinal quantum numbers of the respective eigenvalues of the closed res-
onator. Similarly to Ué", the wave U i” partially changes its transversal state (goes
in the state with n = 2) and has resonances corresponding to the states n = 4 and
n = 2. However, the fourth threshold is less than E., > and, a fortiori, than E, 4 (the
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barriers are very high), so the free path through the resonator is impossible for n = 2
and n = 4. Therefore, the peaks in Figs.9.10 and 9.12 are very narrow regardless of
the interference of the modes with n = 2 and n = 4 (causing the slight asymmetry
of the peaks).

The peaks in Fig. 9.12 corresponding to the resonant energies forn = 2 (E ~ 160
and E =~ 212) are wider than the nearest peaks with n = 4 because the barrier height
for the state with n = 2 is notably lower than with n = 4.

Evidently, the sharp resonances with transmission probability 7" close to unit exist
only below the third threshold. Therefore, in designing electronic devices based on the
resonant tunneling in quantum waveguides of variable cross-section, the parameters
of the system (the cross-section area, the waveguide material, the operation voltage)
should be chosen so that the energy of an electron in the system would not exceed
the third threshold.
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9.2 Fano Resonances

We are now going to interpret the above numerical results from another point of
view. We consider the entry S,z (E) of the scattering matrix S(E) as the probability
amplitude of electron transmission from n-state before the resonator to k-state after
passing through the resonator. The amplitude S,k (E) can be represented as the sum
Su(E) = zs Apsk (E), where A1 (E) is the probability amplitude of electron
transmission from »n to k through an intermediate state s.

Let us explain the origination of A,sx. As before, we denote by G the bounded
part of the limit resonator G (0, 0) and let k]2 < k% < ... be the eigenvalues of the
problem

—Av(x,y) — kzv(x, y) =0, (x,y) € Gy,
v(x,y) =0, (x,y) €9Go,

numbered according to their multiplicities. The resonant energies of the waveguide
G (¢, ¢) form the sequence ReE1, ReE, ..., where Eq, E>, ... can be viewed as
the “perturbed” k7, k3, ..., while InE; < 0 forall j = 1,2,.... The amplitude
Ajsk admits the representation

(s)
, RY(E)

(s) nk
Ausk(E) =H [ (E) + ————
nsk(E) nk (E) E—E,

with continuous functions £ — Hrf‘,i)(E) and £ — R;SZ)(E) Thus, A,k (E) is the
probability amplitude of electron transmission from n-state to k-state with resonant
energy ReEs. The transmission probability 7, (E) from the n-state on the left of
the resonator to the k-state on the right of the resonator is equal to |S,x (E)|>. When
considering Ty, in a small energy interval, we ignore the weak dependence of the
Hn(‘;() and ng‘;() on the electron energy E. Then

R(}{) R(%) )

T (E) ~ T, (E) = |H, L oo —2E )7, 9.2.1

nk() nk() | nk+E_El+ +E—Eq| ( )

while ReE1, ..., ReE, are all resonant energies in the mentioned small interval and
H,, Rr(L}C), . R’(f,]{) are some constants.
Let us consider 7, (E) of the form

R(”)
Tok(E) = |Hup + —"5— 2, 9.2.2)

E—E,
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where H,; = ZS Hrfz). Since the values H,y, R,(Z;(), and E, are complex, the expres-

sion (9.2.2) contains the five independent parameters | Hyx|, |Rr(5<) |, |Ex], ¥ = argE,,
and ¢ = arg(H,x — R,(Z;()):

Tuk(E) = || Hut| + iﬁ

n n E _ |Er|el.(// .

This equality can be rearranged to

Ecosg — |Ey|cos(ep + ¥) 5 1

T(E) = |Hue)? (142 ,

nk(E) = [ Hy] ( + QE2—2E|E,|cosw+|E,\2+Q E2 _2E|E,|cos ¥ + |E, |2
92.

where Q = |R,(l;() /|Hpyx|. The expression in brackets depends on the four parameters

0, |E/|, ¢, and .
If H,; = 0, we obtain

R(”)Z R(r)2
" E2 —2E|E.|cos ¢ + |E,|2  (E — |E;|cos )2 + (|E,|sin )2’

Thus, in such a case, the resonant curve takes the form of a standard Breit-Wigner’s
resonant curve with frequency |E,| cos ¢ and with half-width of the resonant peak
equal to | E| sin ¢ at the peak half-height.

Figures9.13 and 9.14 show typical dependences of 7, on E for H,; # 0. The
values of H, have been chosen to provide max 7,; = 1.

Figure9.13 depicts a resonant curve resulting from the interference of a resonant
mode and a non-resonant mode. Such a situation is typical for Fano resonances (e.g.,
see [36]). In what follows, any resonant curve of the form (9.2.1) with H,; # 0 is
called a Fano resonant curve.

Fig. 9.13 E-dependence of 10
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Fig. 9.14 E-dependence of 10
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The extrema of function (9.2.3) coincide with the roots of the quadratic equation

E*cos ¢ +(Q —2|E/| cos(p + Y)E + |E-|(IE;| — Qcosy) = 0.

The roots are given by

%(secw) (—Q +2|Er| cos(p + ¥) £ (0% + 4Q|Ey| sin g sinyr + 4|Ey | sin’ w)‘/z) ;

one of the roots relates to the maximum of function (9.2.3) and the other one corre-
sponds to its minimum.

Let us assume that we know the calculated T;,; obtained, for instance, by com-
puting the scattering matrix. Then we can employ the method of the least squares
to approximate the obtained 7, by expression (9.2.1); in doing this, we find the
unknown parameters E,, | Hyx| etc., in (9.2.1). Figure 9.15 shows the results of such
kind for a wave incident on the resonator in the transverse state n = 1 and scattered
into various states in the resonator that arises from the resonator in the state k = 1
(see Fig.9.6); the resonance occurred for the mode in the state r = 3 inside the
resonator. Thus, the approximating curve is of the form

R(3)
Th(E) = |Hp + —1L 2.

E—Ej
Figure 9.16 depicts the approximating
RO
Ti3(E) = |Hi3 + E+3E3|2-

for the calculated T3(E) (see Fig.9.7).
Figure9.17 relates to the passage n = 3 — k = 3. The |H33| = 0.1921 and
|R§33)| = 0.0005673 are significantly less than those for the passagesn =1 — k =1
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Fig. 9.15 The calculated curve 77; obtained by computing the scattering matrix (solid line) and
the approximating curve 7;; obtained by the method of the least squares (dashed line) practically

coincide; | Hyj| = 0.5827; [R\}| = 0.00194; Re E3 = 134.309; Im E5 = 0.00252. Inset the domain
of rapid varying of 71 (E); minimum at 134.311, maximum at 134.37
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Fig. 9.16 The calculated curve 773 obtained by computing the scattering matrix (solid line) and
the approximating curve 773 obtained by the method of the least squares (dashed line) practically

coincide; |Hys| = 0.3345; |RY) | = 0.00111; ReE3 = 134.309; ImE3 = 0.00252
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Fig. 9.17 Transmissionn =3 — k = 3, |H33| = 0.1921 and |R§’3| = 0.0005673
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Fig. 9.18 Approximating function (9.2.4) with ReE| = 107.79, ReE; = 108.83, ImE| = 0.394,
and ImE,; = 6.83

andn = 1 — k = 3. However, the Re E3 and Im E3 are the same for all the passages
shown by Figs.9.15, 9.16 and 9.17. Note that the Re E3 is about 0.001 less than the
corresponding eigenvalue of the closed resonator (see Table9.1 in Sect.9.1.1).
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Fig. 9.19 Approximation 0.8
shows two resonances
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When considering the resonances near E = 110 (see Fig.9.6), we use instead of
(9.2.1) an approximating function of the form

R RY
T (E) = |H, a i 9.24
nk( ) | nk+E—E1+E—E2| ( )

Figure9.18 it turns out that, near £ = 110, there are two resonances of a low quality
factor and the approximation (9.2.1) is not proper. In analogous way, one can consider
the resonance near E = 220, see Figs.9.9 and 9.19.



Chapter 10
Asymptotic Analysis of Multichannel
Resonant Tunneling

In the chapter, we generalize, for electrons of high energy, the asymptotic theory
exposed in Chap. 6. We present and justify the asymptotics of tunneling characteris-
tics as the narrow diameters tend to zero.

10.1 Statement of the Problem and Limit Problems

Let a waveguide G (g1, &2) be the same as in Chap. 6. Outside a large ball, it coincides
with the union of two semicylinders C; and C; and has two narrows of small diameters
e1 and &. The wave function of a free electron of energy E = h*k>/2m satisfies the
boundary value problem

— Au—k*u=0in G(er,8), u=0o0ndG(e,&r). (10.1.1)

To formulate radiation conditions, we need the boundary value problem on the cross-
section D; of the semicylinder C;, j = 1,2:

—Av—3*v=0inD;, v=00ndD;. (10.1.2)

The eigenvalues )»jzm of this problem, where m = 1, 2, ..., are called the thresholds;
they form an increasing sequence of positive numbers tending to +00. We assume that
k? is not a threshold and denote by M; the number of thresholds satisfying )\fm < k2.

For such an eigenvalue k]?m, let W;, be an eigenfunction of problem (10.1.2) that
corresponds to )‘sz and is normalized by

2 / | W (x2, x3)|2dxz dxs = 1 (10.1.3)

J
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with v, = /kz—)%m. The function U}, m = 1,..., My, defined in the

semicylinder C; by U;{(xl) = exp(—ivlmxll)\lflm(le,x;), is a wave coming in
C from infinity (the positive half-axis xl1 lies in Cy). The function U}, , (x?) =

My+m
exp (—iv2mxf)\ll2m (x%, x32), m=1,..., M, is a wave coming from infinity in C».
The outgoing waves U,/, m = 1,..., M| + M, are obtained from the incoming

ones by complex conjugation: U,, = U_,',f
There exist (smooth) solutions u,,, m = 1, ..., M1 + M, to problem (10.1.1)
satisfying the radiation conditions

UJ(X1)+Z;‘,4:'1 Smp Up_(xl)+0(€78xll)), x] = 4o,
Uy (x) = y s m=1,...,My;
Zpil Sm,Ml+I’ Uﬂjl1+p(xz) + 0(678):1)7 XIZ — +o00,
(10.1.4)
1
S Suymp Uy () + 0(e70), xl — oo,
UMy +m (X) = UAJ711+m(x2) m=1,..., M.
_ 5.2
+ 30 ity maap Uy, oy 06) 4+ 0(e7), 2 — o0,

(10.1.5)

with sufficiently small positive 8. The scattering matrix S = [|Sp 4l p, g=1,.... M1+ M>
is unitary. The value

M,
Ry = |Supl?. m=1,.... M, (10.1.6)
p=1

is called the reflection coefficient for the wave U,, coming to G (¢, &2) from C;. The
transition coefficient for this wave is defined by

M>
T =D [Smarpl* (10.1.7)
p=1

One can give similar definitions for the wave Uy, 4, coming from C,.

We seek the resonant values k, = k,(¢1, &2) of the parameter k, where the
transition coefficient 7,, = T,,(k, €1, €7) takes the maximal values. Moreover, we
are interested in the behavior of &, (g1, €2), T, (k, €1, €2) and that of the reflection
coefficient R, = R, (k, &1, &2) as &1 and &; tend to 0.

To derive an asymptotics of a wave function (i.e., a solution to problem (10.1.1))
as €1, &g — 0, we use the method of compound asymptotic expansions. To this end,
we introduce “limit” boundary value problems independent of the parameters &
and &;. Recall that the limit domain G (0, 0) consists of the unbounded parts G, G2,
and the bounded resonator Gg. The domain G, j = 1,2, has a conical point O;
and a cylindrical end C;, and the resonator G¢ has two conical points O1 and O,.
The problems
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— Av(x) — kzv(x) =f x€Gj; v(ix)=0, x€dGy, (10.1.8)

are called first kind limit problems, where j = 0, 1, 2. In the domains Q;, j = 1, 2,
introduced in Sect. 6.1, we consider the boundary value problems

AwE) = F(E) inQ;, w(E’/)=0o0ndQ;, (10.1.9)

which are called second kind limit problems; by €/ = (£, &, £]) we mean Cartesian
coordinates with origin at O;. The limit problems in G¢ and €2 are the same as in
Chap. 6; in particular, Propositions 6.2.1 and 6.2.3 remain valid. Now, problems in
G1 and G, have some new features in comparison with those in Chap. 6, because
we consider multichannel scattering. The next proposition has to replace Proposition
6.22.Fory e R,§ > 0,and/ =0, 1, ..., the space V}f, 5(G ;) is the completion,
in the norm defined by (6.2.7), of the set C2° (Q j) of compactly supported smooth
functions in ;- Let the cut-off functions x, ; be the same as in (6.2.7).

Proposition 10.1.1 Assume that |y — 1| < uj1 + 1/2 and, moreover, there is no
nontrivial solution to the homogeneous problem (10.1.8) (where f = 0)in Vyz’ 5(Gj)

with arbitrary small positive 8. Then, for any f; € VJ9’ 5(G ), there exists a unique
solution v; to problem (10.1.8) such that the representations

M;
U1=M1+ZAmXoo,lUn; in G,

m=1
M,

vi=ur+ D Amyimxoo2Upy, 4 in Ga

m=1

arevalid; Ay, = const, uj € Vyz’ s(Gj) with a sufficiently small §, and the estimates

M,

lr: V7 5(GDI+ D 14wl < cll fi: Vi) 5(G DI, (10.1.10)
m=1
M

luz: V2 5G4 D 1Au4m| < cll f2: VO 5(G)I (10.1.11)
m=1

hold with constants c independent of f;. If, in addition, f; is smooth and vanishes
near Oj, the solution v; satisfies

. 1 ~ .
vj(xj)=aj\/?-]p,j]+l/2(krj)q>§(1(¢j)+O(r;‘ljz)’ rj_>0’
J
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where aj is a constant and CDfl denotes an eigenfunction to the Beltrami operator
corresponding to pj1 (i j1 + 1) and normalized by

<2u,1+1>/ 10K (p)2dg = 1.

10.2 Tunneling in a Waveguide with One Narrow

In this section, we consider the electron motion in a waveguide G (¢) with one narrow.
To describe G (¢), we assume that G = D x R, where D is a bounded domain in R2
and 9D is a smooth simple contour. A double cone K U L with vertex O € G and
domains €2 and Q2(¢) are defined like K| U Ly, €21, and Q1(¢e) in Sect.6.1. We set
G(e) = G N Q(¢e). The limit waveguide G (0) consists of two components; either
of them has one conical point and one cylindrical end at infinity. We denote the
components by G and G».

10.2.1 Special Solutions to the First Kind Homogeneous
Problems

In the domain G, a basis in the space of bounded solutions is formed by V,, satisfying
the radiation condition

Vi (x) = U (x) + Z So,U, (1) + O(exp(—bx1)), x1 — +00, (10.2.1)

with arbitrary small positive §, where m = 1,..., M. The S? = || ||Mp 1 is
the scattering matrix in G1, and it is unitary. In a neighborhood of O, there is the

asymptotics
1 - K L
Vm(x) = Smlﬁ M]+1/2(kr)q)1 ((ﬂ) + O(I’/ 2), r — 0. (1022)

In G», we consider analogous solutions admitting the expansions

Uptom ) + Z S¥i-m, 4pUsip () + 0@, x1 — —o0,
V =
wym (%) s s (kr))ch( )+ 0(rH2) F—0
M+m,2ﬁ n1+1/2 1@ ) )

(10.2.3)
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m = 1, ..., M. The scattering matrix 52 = ||SM+m A,{ernm’p:1 in G is unitary.
In either of the domains G and G», we assume that the homogeneous problem
(10.1.8) (with f = 0) has no nontrivial bounded solutions exponentially decaying
at infinity. In what follows, to construct an asymptotics of a wave function, we will
use special solutions to the problem unbounded near the point O.

Let vf be the function defined by (6.3.5) and introduce a solution

vi(x) = O (x) + 1 (x) (10.2.4)

of homogeneous problem (10.1.8) in G, where v] is the solution provided by
Proposition 10.1.1 for problem (10.1.8) with f = —[A, @]v] Thus,

1 ,~ -
— (Npy412(kr) + arJy, +12kr) @K (@) + OG#2), r — 0,
vi(x) = «/7( u1+1/ H1+1/ ) 1

S AUy (1) + 0(e751), x1 — +o0,
(10.2.5)
where ];L is the same as in Propositions 6.2.1 and 10.1.1. In G, a similar solution
v admits the representation

1 ~ -
— (N +12(kr) + a2 Jy 412kr)) @ (@) + O (#2), 1 — 0,
Va(x) = \/7( ni+1/ ni+1/ ) 1

S AmimUpy s, () + 0, x1 > —c0.
(10.2.6)
We define (M x 1)-matrices s1, s2 and (1 x M)-matrices A1, A> by

= lsm1 Iy, 52 = lsmmal By, Ar=1AWIN_ As = Ao mm 2.
Lemma 10.2.1 The equalities AjA;f =2Imajand A; = is;‘S? hold.

Proof We restrict ourselves to considering j = 1; the case j = 2 can be treated in a
similar way. Let (4, v) 9 denote the integral f 0 u(x)v(x) dx and let Gy, s stand for
the truncated domain G| N {x; < N} N {r > &}. By the Green formula,

0= (AVI +k*VI,V)Gy s — (VI, AV +k*VD)Gy 5 = (@V1/3n, VD)aGy s
— (V1,0v1/0n)sGy s = 2i Im (3vy/dn, Vi) E

with E = (0Gn,s N{x1 = N}) U(dGn,s N {r = §}). Taking into account (10.2.5)
as x| — 4o0 and (10.1.3), we have

Im (8v1/0n, v1)aGy snix =N} = Im Z/ Alm (X)AlmUm (x) v dxzdx3+0(1)

= AlAa*vl/ W1 (x2. x3) Py dxs + o(1) = A A]/2 + o(1).
Dy


http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6

244 10 Asymptotic Analysis of Multichannel Resonant Tunneling

Using (10.2.5) as r — 0 and the normalization of CI>{( (see Proposition 10.1.1), we
obtain

0 1 (
ar \Jr
1 ~ o~
x —= (Npy1/2kr) + a1 Jy 412 (k) | 9K ()21

N
=—(Imap)Cu + 1)/ |®f (@)[*dg + o(1) = —Ima; + o(1).
Gn,s

Im (3v1/0n, v1)yGy snir=6) = Im [ Nyy+12(kr) +6411~m+1/2(kr))}
S(K)

do +o(1)
r=§

Thus, AjA}/2 —Ima; +o(l) = 0as N — oo and § — 0, which implies the
first equality of this lemma. To obtain the second one, we apply the Green formula
in the domain Gy s to the functions v; and V,, and arrive at i Zﬁ‘le Ay p% +
Sm1 + o(1) =0with N — oo and § — 0. It remains to take into account that S(l) is
unitary. O

10.2.2 Asymptotic Formulas

Here we obtain the asymptotics of the amplitudes of the reflected and transited
waves as ¢ — 0. Let the wave function u,,, defined by asymptotics (10.1.4), be
approximated in G by the solution v; = V,, + Cy,1v] and in G, by the solution
vy = Cypv2 of the homogeneous limit problem. The special solutions V,,,, vi, and v,
were defined in 10.2.1. For the time being, the constants C,, and C,,» are unknown;
we will find them when compensating the discrepancy principle terms. According
to (10.2.2) and (10.2.5), we have, as r — 0,

1 ~ -
Vi = —=(Ci Nyy4172kr) + (sm1 + Cm1a1)1m+1/2(kr))¢f<(<p) +0@0"™), r—0,

-4

vy = ﬁ(cm2ﬁu1+l/2(kr) + Cn2 612~7;41+1/2(kr))q>1L((/7) +0@0"), r—0,

that is, v and v, admit expansions (6.3.9) and (6.3.10) with the constants
(a;,ay) = (Cm1, Cm2), (@), al) = (sm1 + Cmiar, Cmz @2). (10.2.7)
As was shown in 6.3.2, the constants must satisfy the relation
(Cits Ci2) = (Sm1 + Cmiar, Cpp az) A 217
We introduce the matrix ¢ = diag (a1, a») and obtain

(Cn1 (&), Cn2()) = (sm1, 0)(I — A a g THy~IAg2mitl (10.2.8)
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By virtue of (10.2.1) and (10.2.5) for x} — +oo,
M
v = UF D) + D80, + Cui(©)A1)U, (x') + O(exp(—8x])). x| — +oo,
p=1

M
12 = D" Coa(e) Az Uy, (X)) + O(exp(=8x7)),  x] — +o0.
p=1

This provides an approximation (§m1, R §m,2M) to the m-th line of the scattering
matrix:

Sup(€) = Sp, +Cn1 () A1y, Sumsp(e) = Coa(©)Aapyp, m,p=1,...., M.

We introduce the (M x M)-matrices Si = ||§mp||n"fp:1, S = ||§m,M+p||£;’p:1,

and temporarily denote the columns || Cy,4 ||f::1 by C;,q = 1,2, then

(S11(e), S12(e)) = (S + C1(e) A1, Ca(e)A2) = (SY, Oprxar) + (Ci(e), Ca(e))A,

where A = diag (A1, A2). We set s = diag (s, s2) and §0 = diag (SY, SS), then by
Lemma 10.2.1

A=is*sP. (10.2.9)
In view of (10.2.8) and (10.2.9), we obtain

(S11(8), S12(8)) = (82, Oprsemr) +i(s1, Opre1) (I — A a 21 ~IA g 020+
(10.2.10)

An approximation to the wave function is of the form
U (X3 8) = Xe,1 (V)1 (x5 8) + O(Mw(e ™ x5 8) + xep(va(x;8),  (10.2.11)

where, owing to (6.3.14),

v1(x; &) = Vip(x) + Cu1 (€)V1(x), (10.2.12)
w(g; ) = aj (e)e"wX (&) + af ()" wh (&), (10.2.13)
v2(x; &) = Cipa(e)va(x). (10.2.14)

From (10.2.7) and (10.2.8) it follows that

(af (e), ay (&) = (51, 0px1) + (51, 0 1) (I — Aa g FH~IA g g1+

= (51, Opx1) (I — Aag?th=1, (10.2.15)


http://dx.doi.org/10.1007/978-3-319-15105-2_6

246 10 Asymptotic Analysis of Multichannel Resonant Tunneling

An approximation u s+, to wave function (10.1.5) is derived in the same way.
It takes the form of (10.2.11), where

vi(x;€) = Cpqm1(e)vi(x),
w(g; ) = aj (e)e™wX (&) + af ()" wh (&),

v2(x;€) = Vygm(x) + Cpqm,2()va(x).

The functions v and v, admit, near the point O, expansions of the form (6.3.9) and
(6.3.10) with constants

(@y.ay) = (Cyusm1, Cram2). (@), a)) = (Crysmaar, Svsm2 + Crigm2a2),
related by the equality

2141
(Cr4m1s Corm.2) = (Crgm, 101, SM4m.2 + Craym2 az) A g7,

see (6.3.15). It follows that

(Co+m1(8), Craim2(€)) = (0, spppm2) (I — Aa g1 h=h A g2t

(af (&), ar () = (0, sp+m2) (I — Aag?1th=1,

Using expansions (10.2.1) and (10.2.5) for xll — 4-00 and the formulas for Cpy, 1
and Cps4m,2, We obtain an approximation to the remaining lines of the scattering

matrix. Put S1 = | Sarmp 12 ,_; and 520 = |Syrsmsapll} . then

(S21(8), $22(8)) = Oprsent» SY) + i (Opr1, 52)(I — A a g ~IAg g0g2m+L
(10.2.16)

We set S = ||Spql p.g=1.2 and unite (10.2.10) and (10.2.16) into the matrix equality
S(e) =S+ is(I — Aa et~ Ag*g02m+1 (10.2.17)

The next lemma can be proved along the same way as Lemma 6.3.4 with the use of
Lemma 10.2.1 instead of 6.3.1.

Lemma 10.2.2 The matrix §(8) is unitary.

We set T(e) = D001 1Sumip(@)l? and Thrm(e) = 3501 [Suim,p(e)|* for
m=1,..., M. According to (10.2.17),

S(e) = SO +isAs* ST 4 O (e*172)

0 0 0
— Sl 0 + aslsiksl :3515;52 82;“+l + 0(€4M1+2).
0 Sg ,BSZSTS? ocszs;Sg
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Therefore,

T (&) = Isml Z|5M+p2| BRIt L 0O (10.2.18)
p=1

Trsm(e) = Z|sp1| IsMm 2| B2 4 0% F). (102.19)
p=1

By Lemma 102.2, Ry(e) + Ty(e) = 1, q = 1,...,2M, with R, (e) = > ).,

159, (&)|> and Rysm(e) = zp 1SS mip®Fm=1,..., M. Hence,

Ru(e) =1 lsm Z Ispp 22 BreH T2 4+ O (5113),

p=1
M
Rursm(@) =1 IspiPlsmm o B2 + 0113,
p=1
Consider the problem
Au+ k*u = finG(e), u=0o0nadG(e). (10.2.20)

Fory e R,6 > 0,and! =0, 1, ..., the space V;f,a(G(g)) is the completion in the

norm (6.3.29) of the set of smooth functions in G (¢) having compact supports. The
cut-off functions 7n; are the same as in (6.3.29).

Proposition 10.2.3 Let |y —1| < u1+1/2, f € V)?) 5(G (&), and let u be a solution
to (10.2.20) that admits the representation

M
u=1u +m ZAm m T2 ZAITl+n1UA_4+m’

m=1

where A = const and u € V2 5(G(8)) 8 being a small positive number. Then

2M
1@ V) (Gl + D 1A < cllfs V) 5(G el

g=1
holds with a constant c independent of f and ¢.

Theorem 10.2.4 Under the hypotheses of Proposition 10.1.1, the inequality

D 1Smg(€) = Smg(e)] < c(e2 ! 4 g7 T32)gm (10.2.21)
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holds, wherem = 1,...,2M, y > 0, |y — 1| < w1 + 1/2, and the constant c is
independent of ¢.

Corollary 10.2.5 The asymptotic formulas

M
T 2 202 4 2 4 2
To(e) = lsmi 2 Y lsarapalP 2672 4 0 (404247)

p=1
M
= 2 202 Ap+2 dp+2
Turim(e) = D lspiPlswrmaPB2H042 4 0 (417247
p=1
M
= 2 202 Aui+2 Ap142
Rn(e) = 1= lsm [P D IompoPB2e172 4 0 (e407257)
p=l1
M
= 2 202 Apui+2 dp+2
Rutem(e) = 1= 3 sy Plsarsm o B2 4172 4 0 (s30T
p=1
holdwithm =1, ..., M, and t = min{uy — w1, 2 — o}, where o is a small positive

number.

10.3 Tunneling in a Waveguide with Two Narrows

We turn to the waveguide G (g1, €2) with two narrows. The limit domain G (0, 0)
consists of the infinite domains G, G», and the bounded “resonator” G(. We assume
that k2 varies in a neighborhood of an eigenvalue kg of limit problem (10.1.8) in Gy.
For the sake of simplicity, the eigenvalue is assumed to be simple.

10.3.1 Formal Asymptotics

Let us consider the wave function u,, in G(¢g1, &2) satisfying

Ut k) +Z§4=1 Smp(k, €1, 82) U, (x5 k), x{ — Fo0,
um(x; k,e1,82) ~ — 2 2

2 p=1 Smmtp(k, €1, €2) Uy (X7 K), x{ = oo.
InGj, j =0,1,2,u; is approximated by the solutions v; to (6.2.1) such that

v =V +Cpivi, v = Cpavor + Cpavoz, V2 = Cpava, (10.3.1)


http://dx.doi.org/10.1007/978-3-319-15105-2_6
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the V), and vy are defined in 10.2.1, the vy is defined in 6.4.1, and the v; is an analog
of the v; in the domain G». The constants C1; depend on €1, £ and k. According to
(10.2.2), (6.4.4), (6.4.5), and (10.2.5) for r — 0,

—_

v = 71(C1111NM11+1/2(kr1) + (Sm1 + Cl:llal)‘;;lll+1/2(kr1))cb{<l (@) + 0(}’{112)’ r =0,

3

T(szﬁun-#lﬂ(krl) + (Cmactt + Cmzca) Ty 412 krD)) @ (@) + 0G1™2), 1 — 0,
vy = 1

ﬁ

(CnaNpu 11/2(kr2) + g a2 T, 1172 (kr2)) D5y (9) + O(r42), 1y — 0.

(Con3 Ny, +1/2(k12) + (Coze1z + C3enn) Jus +12(kr2)) %, (92) + 0 43), 12 — 0.

S}

v =
rn

For every narrow, we introduce a matrix A ; (like the matrix A in (6.3.15)). Applying
Lemma 6.3.2, we obtain

2u11+1
(Cim1s Cm2) = (Sm1 + Cmiar, Cmacii + Czear) Ag 81“”+

for the first narrow and
2u21+1
(Cin3, Cna) = (Cmaciz + Cuzena, Cng az) Az &5

for the second narrow. The corresponding solutions of the second kind limit problems
are of the form (see (6.3.14))

w1 E) = (51 + Cran) el wl (&Y + (Cuaerr + Crzean)elwh D),
(10.3.2)

w2 (€2) = Caazel® wX (€2) + (Cpacia + Cracn)eb wh(g2),  (103.3)

K
J
in Remark 6.3.3. We set A = diag {A, A3}, £ = diag {e%“““, S%HHJFI, 8%“21+1,

2u21+1
&5 }, and

where w’ and WJL» are analogs for the domains 2;, j = 1, 2, of the functions defined

ap 0 0 0
_ 0 Cl11 C12 0
a=\, a1 e 0 | (10.3.4)

00 0 a
and, combining the relations obtained for C,;,;, we arrive at the equality
(Cin1, Cn2y Ciiz, Cua) = (511, 0,0,0) AE + (Cin1, Cin2, Ciuzy Cia) a A E.

Thus,
(Cin1, Cn2y Cp3, Ca) —a A E) = (5121, 0,0,0) A E. (10.3.5)


http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6

250 10 Asymptotic Analysis of Multichannel Resonant Tunneling

As was shown in Sect. 6.4.2, there exists the inverse matrix of I —a A€ for sufficiently
small &1, &> and

*DAET —aAE)™!
(I—aAE)_1=(1_aAg)—l([_ b*bAE( —a &) )

k2—kZ+ bOAET —aAE), D)
where b = (0, by, by, 0) and the matrix @ is analytic near k = k. and is defined by

(10.3.4) with ¢, changed for ¢, (cf. (6.4.6)). Using this equality and (10.3.5), we
find the constants C,;:

(Cm1s Cm2s C3y Cna) = (511,0,0,00 AEU —a AE)™!

Db*b D
=(Sm1705070) (D_ 2 2
K2— k2 + (bD, b)

) ,  (10.3.6)

where D = A E(I —a A £)™'; thereby, we have constructed an approximation to
the wave function u. Arguing as in Sect.6.4.2, one can see, that the solution vy
of the limit problem in the resonator and the solutions w; of the second kind limit
problems do not have a pole at k> = kf. The following formulas are valid:

(Sm1,0,0,0)D b*

v (x) = CmaVo1 (X) + Cp3Voa (x) —

b1 (spm1.0,0,0)Db*

k2 —kZ + (bD,b) )

X slf“wlL(él), (10.3.8)
by (spm1. 0,0, 0)D b*

k2 — k% + (bD, b) )

x eh 2wl (&), (10.3.9)

wiE") = (1 + Corapel M wl @) + (cmzal + Cp3ta1 —

wy(£2) = Caazeh? wk &+ (sz?lz + Cu3c —

Finally, we present the asymptotics of the wave function. Let # — ®(¢) be a cut-off
function on R equal to 1 for ¢t < §/2 and to O for ¢+ > § with a small positive §. We
introduce x = Xz 6, (X) = 16,(x) (1 =O(r1/e1)) (1 —O(r2/¢2)), where 1, is the
characteristic function of Gg. The principal term | of the asymptotics of the wave
function u is of the form

(s ke, 62) = x1e, (Do k er, 82) + OrDwi(e] ' x &, 61, £2)
+ Xerer (V00 ks £1, 82) + O(r)wn(ey 'x75 &, 61, €2)
+ X2, 6P02(x%5 k, 81, 82), (10.3.10)
where the solutions vj and v; of the first kind limit problems are defined by relations

(6.4.7), vg is given by (10.3.7), and the solutions w; and w; of the second kind limit
problems are defined by (10.3.8) and (10.3.9).
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http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6
http://dx.doi.org/10.1007/978-3-319-15105-2_6

10.3 Tunneling in a Waveguide with Two Narrows 251

We now find an approximation S; ;j to the entries of the scattering matrix § =
(St

Q=1 - By 3‘,,, r = 1,2, we denote (M, x M, )-matrices such that

5 Si1 Sia
S=1< =7).
(521 522)
By virtue of (10.2.1) and (6.3.7) for xll — 400,

M,
v = UFG) + D80, + Cui(©)A1)U, (x1) + O(exp(—8x])). x| — +oo,
p=1

M
v2(x?) = Cale) ZAz,M1+,,UA}1+p(x2) + O(exp(—8x7)), xi — +00,
p=1

whence o
(S11, S12) = (Y 4 C1 A1, C4Ay), (10.3.11)

where, as in the previous subsection,

Ci=(Cij,.- . Cu, DTy Al=(A11, .o, Aiy)s Az = (Ao Myt1s - Aoy y)-
We set

A1 O1xm,
A O1xmy; O1xm, St Opryx1 Onyx1 Opgyxn ) .
= N S = N
O1xny O1xcm, Orsrx1 Oyt Omyx1 $2
Orxpy, A2

as before, let SO = diag (SO, Sg); then, by Lemma 10.2.1, equality (10.2.9) remains
valid. Taking into account (10.3.11), (10.3.6), and (10.2.9), we obtain

(811, S12) = (8V, 041, xa1,) + (Cy, Ca, C3, C)A

o . __ _DbbD .0
= (87, Opyxarn) +0C51, Opry 1, Oy <15 Oy 1) | D ) N

k* —k2+ (bD,b
(10.3.12)
where D = A £(I —a A £)~'. The approximation

(521, $22) = Opty iy )

. Db*b D % a0
+iOmyx1, Orty <1, Opga x1, 52) | D — ) 5§

k2 —kZ+ (bD.b
(10.3.13)
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to the remaining rows of the scattering matrix S is derived from the asymptotics of
the wave functions u ps,m,

S Sy p (k. £1,62) Uy (25 K, xf = +o0,
MM1+m(x;ky £1,82) ~ u
Unty g @5 K+ 32021 Shtysmmnr4p (ks €1, 62) Uy (75 K), 2§ — oo,

The principal term # s, ,,, of the asymptotics takes the form of (10.3.10), where

v (xh = Crpmavi (61,

wi(E") = Cuptypmarel M wh (gh

- - b1(0,0,0, sy, 4m,2) D b*
+ (CM1+m,2CII + Cuy4m,3CM +m,1 — e +1(bni), by it wiEh),
_ _ (0, 0,0, 53, 1m.2) D b*
V0(x) = Caty4m,2V01 (%) + Cty+m,3¥02.(x) — i i ve (%),

k> — k2 + (bD, b)

wa(E%) = (SMy+m,2 + Chty4m aa2)eb wh (£2)

- - b2(0,0,0, sps,4m,2) D b*
+ (CM1+n1,ZCl2 + Cmy+m,3C22 — K2 — k2 + (bD, b)

) £y? w5 (67),
0 (%) =Va(x?) + Cptypmava (x2),

the constants Cyy, 4.4, are given by

Db*b D
(CM|+m,1, CM1+m,2, CM1+m,37 CM|+m,4) = (0, 0,0, SM1+m,2) D — m .

Combining relations (10.3.12) and (10.3.13), we obtain the approximation S to the
scattering matrix S:

Db*b D
k* — k2 + (bD,b)

S(k, &1, &2) = SO(k) + is(k) (D - ) s*(k)SOk), (10.3.14)

where D = D(k, e1,62) = AE(er, e2)(I —a(k) A E(er, £2))~ L the k2 and b are
independent of k, €1, £2. Arguing as in the proof of Lemma 6.3.4 and taking into
account (A £)* = A€ and a — a* = is*s (Lemma 10.2.1), one can verify that the
matrix S is unitary. _

We denote by k), the pole of the matrix S, that is, k), satisfies the equation k* —
kf + (bD, b) = 0. We substitute the expression for D and obtain

k? — k2= (bAEU —atk) AE)™, b); (10.3.15)

. 2up+1 0 2pn+1 2p01+1 2p01+1 . .
here & = diag (7", e7"""T, &, 5" ) and A = diag (Ay, Az) with

(o B .


http://dx.doi.org/10.1007/978-3-319-15105-2_6

10.3 Tunneling in a Waveguide with Two Narrows 253

Since ¢1 and & are small, a solution to equation (10.3.15) can be found by the
successive approximation method. We have k[% = kr2 —1i kl.z, where

k2= k2= (b AED) +0 ()17 4 g0 12)

K2 —alb%ef“““ bl it 4 0( 4"””+s§“2l+2), (10.3.16)

k? =Im(bAEak,) AE, b)+0( 6#11+3+86M21+3)
= —n(k) si(ke)bi e + Sz(ke)*sz(k b2 pRedieit?

+0 ( 611143 + 83#21“‘3) : (10317)

in the last equality, we used the relation Ima; = s;fs i/2, j = 1,2, which follows
from Lemma 10.2.1. We suppose the constants b; and the columns s; to be distinct
from zero. Then, by virtue of (10.3.17), |k> — k127| > c(84““Jr2 + eg“”“) for all
real k. ~

Let us find the principal terms of the power series in €1 and ¢; for the matrix S.
As was proved in Chap. 6 (cf. (6.4.26)),

1 _ 1+ 0(8?’M11+2+8‘2"ﬂ21+2)
k> — k2 + (bD(k),b) k2 — k2

(10.3.18)

uniformly with respect to k in any interval that contains no thresholds and no eigen-
values of the resonator except k.. We substitute (10.3.18) into (10.3.14) and take into
account that D = A € + 0(84#11+2 + 83“2'+2). Then

s(k)A Eb*b A Es*(k)SO (k)
K-k

LS 0 [s0ms®eshde 0
o osw) 0 s2(k)* s (k)op 89 (ke3> !

; s1 (k) s1 (B3B8 (kyey 1+ 52(k)*51(k)b1b2 1 Ba SY (ke 1 H g3 H!
K2 — k2

51(6)*52(k)b1 b2 1 o SO (hye 11+ g3+ 52(k)* 52 (l)b2 B2 9 (ke3>

S(k, e1, &2) ~ SO(k) + is(k)A Es* (k) SO (k) —

2pn+1 2up1+1

where we dropped the terms that admit the estimate O (¢} +&; ) uniformly
with respect to k. For (k% — kz) I'—= 0(1), the third term can be neglected as well;
however, it must be taken into account for small k2 — kf,.

Let us choose a more narrow interval for k2, assuming k2 — k2 = 0( 2+l +
e5"*1*1). Using relations (10.3.16) and (10.3.17), S%(k) = S%(k,) + O(k2 — k2),
and s; (k) = s; (ko) + O (k* — k2), we obtain
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; s1(ke) 52(ke)*
(s1(ke)*s1(ke)) /2 (s2(ke)*s2(ke))'/?

i 1 k? — k2
= Z+z + P

Sialk, &1, 82) =

2 82M11+182M21+1
1 2
x(1+ 0@ T 4 ggrarthy), (10.3.19)
52 (ke) s1(ke)™

52k s2(ke ) (51(ke)*s1 (ke)) /2

i N, s k? — k?
S\t o)+ RSN TR

Soi(k, e1,82) =

2 Z
2pu11+1 2p21+1
x (14 O(e; ) ))s (10.3.20)
where
L _ biprsi o) si ) 2ef 1

, P= :
b2 (52 (ke)*s2.(ke)) /262921 F bib2Br B2 (51 (ke) 51 (ko)) V2 (s2(ke)s2.(ke)) 12

Now, we find approximations to the transmission coefficients:

Ism1]?
Ttk o1, 62) = ——— (i‘(ket“(kez;/z_ g oEr v ),
Z(Z + ;) +P (W)
Isarm. 2|
Totom (k. £1,82) = (52(ke)*s2(ke)) /2 (14 0(5%;“14—1 " 8%#214—1)).

1 Y, oo K-k
i G B 2 2T

It is easy to see that f/ has a peak at k> = krz, and the width of that peak at its
half-height is

T(e1, 62) = [(z +2 1)/ Plef it gorat! (10.3.21)

10.3.2 The Estimate of the Remainder

We consider the problem

Au+ k*u = f inG(er,e), u=0 ondG(ey,er). (10.3.22)
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For y1,y» € R,6 > 0,and/ = 0, 1, ..., the space V}fl ”, 5(G(e1, £2)) is the com-

pletion in the norm (6.4.31) of the set of smooth functions in G (¢1, &) with compact

supports. As before, we denote by Vy1 1.8 the space of functions f that are analytic in

k2, take values in VVI ", 5(G(e1, £2)), and, for k= kg, satisfy (Xs?,gg five)go =0

with small o > 0.

Proposition 10.3.1 Let k2 be a resonance, k2 — k2 as €1, — 0, and let
k2 — k2| = 0(82“”+1+ 2MZ'H) Assume that yy, yy satisfy uj1 —3/2 < yj—1 <

w1 +1/2, f € 01 ”, 5(G(e1, £2)), and u is a solution to (10.3.22) that admits the
representation

M
u=1u-+ m Z Am m n 12 z A]T/Il+mU1l711+m’

m=1

here A = const and i € V2

i 5(G(e1, €2)) with small § > 0. Then

Mi+M;

175 V2, 5(Glen el + > A1 <cllf: VS, 5(Gler el
g=1

where c is a constant independent of f and €1, €.

Consider the solution u,, of the homogeneous problem (6.1.1) defined by (10.1.4).

Let Spts -y Smmy +M) be the entries of the scattering matrix determined by this
solution. Denote by Um,o the function defined by (10.3.10) with ®(r;) replaced by
@( —20, 7). The Sm], .. Sm,M,JrM2 are the same as in the previous subsection.

Theorem 10.3.2 Let the hypotheses of Propositions 10.1.1 and 10.3.1 be fulfilled
and assume that the coefficients sq; in (10.2.2), (10.2.3) and the coefficients b; in
(6.4.1) are nonzero. Then

My+M;
Z |qu - qu|
g=1
2uy1+1 2u21+1 +1 +3/2 2u11+1 22+1 +3/2
(e putl y 2u )gull( pitl | on / )+8 i+l ol (8‘ ntl o7 / )
< 1 2 1 1 1 2 2 2
=c Int2 | Apait2
| k2| +8 M1l +82 1

with ¢ independent of €1, €2, k; p = 1, 2.

We denote by k? an eigenvalue of problem (6.2.1) in the resonator G and by
k,2 (¢) aresonance frequency such that kr2 () —> kf as ¢ — 0. Moreover, let b; be the
constants in asymptotics (6.4.1) of an eigenfunction corresponding to the eigenvalue
kf and sy (k) the constant in asymptotics (10.2.2) and (10.2.3) of the special solution
Vjforr; — 0, j = 1, 2. Finally, the constants « and 8 are defined by (6.2.10) and
(6.2.11). We set
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2 1
BB I k)2

Z - 2 1 9
baBa (302, Ismypathe) )1 265"
1

P = ;
bibafrBa(E 0L Isp1 (k) Y2 (D2, (a1 p 2 ko) )12

these are the same values as in (10.3.19) and (10.3.21).

Theorem 10.3.3 For |k*> — k2| = 0(€%ﬂ]1+1 +€§“21+1), the asymptotic expansions

s>
ML Isp1 o)D)/

L(o 0 2+P2 k2 — k2
4 ‘ z 8]2M11+18§M21+1

2
Is vy +m.,21]
M,
(L1 1My 4p,1(ke) D)1/

1 N o KR
4 Z+E + 8%M1|+18§M21+1

m=1,..., My,

2 2 2 2pun+1 2 2pu01+1 2uyi+1+7 2u21+1+12
ky(e1,€2) =k, —otlblsl“ - a2b282“ + 0(81“ + 82” ),

Tm (ks 817 82) =

5 (1+ 07" +¢30)),

Toty +m (k. €1, €2) = 5 (1+ 0 +¢3)),

—1
z+z
T(é‘l,é‘z) — ‘T"E\%M”+1£§ﬂ21+l (1 + 0(8‘1” _{_8'2[2))

hold, where t; = min{uj2 — i1, 2 — 0} and o are small positive numbers.

Proof From Theorem 10.3.2 and (10.3.19) we obtain

©+2u21+1

Smp — S, ~ ~ 2 1
mp mp |Smp|2 < CISmp|2(€fl +e§2 +e; /81M11+ )

mp

2 R
ISmpl™ = [Smpl7l < ¢

with 7; = min{u 2 — ;1,2 — o0}, 0; = uj1 +3/2 —y;, j =1, 2. Hence,
= = 2 1,2 1
|Tm _ Tml < CTm(é‘f] +8§2 +8;2+ M21+ /El,ull+ )

21141 1o+l . )
When &} S &5 2*1 we get the desired expansion for T),. Assume that

2 1 2 1 .. .
81M”+ < 82“21+ . Similarly, we can obtain

2_ % 2 < 2 T 4+2u114+1 , 2up+1
||SM1+m,p| _|SM1+m,p| |§C|SM1+m,p| (81T1+8§2+511 i /SZMI )
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with the same 7;. As is known, [Sp,4m.p| = [Sm,+p.ml, and it is easy to see that
|S My+m,pl = |SM,+p,m| (indeed, all characteristics of both narrows are interchange-
ably included in the formulas for S p)- This leads to the required expansion for 7},

as E%M n+l <eg ;“ 2+ The formulas for kr2 and Y follow from that for 7),. O



Chapter 11
Electronics Devices Based on Resonant
Tunneling

Devices based on the phenomenon of electron resonant tunneling are widely used
in electronics. Most of these devices are multilayer planar structures having large
transverse and small longitudinal sizes. In classic two-barrier resonant tunneling
diodes, the electrodes and the well are made of GaAs and the barriers of GaAlAs. Due
to the structure sizes, there is no electron energy quantization along the layers and,
therefore, the process of one-dimensional resonant tunneling is implemented there.
Resonant tunneling diodes enable the creation of solid-state microwave generators
and transistor amplifier devices.

Theoretically, the limit of the ideal diode operation speed is about 0.1 ps. Resonant
tunneling phenomenon allows the building of diodes with extremely high switching
speed close to the theoretical limit, that is, in the frequency range up to several THz
(102 Hz), [15, 16, 44].

One of the advantages of the planar resonant structure is a high working current due
to the large transverse size of the structure and a large current density. To reach a high
working current density, it is necessary that the barriers be thin (several monoatomic
layers) and the interfaces between the well and the barriers and those between the
barriers and the electrodes flat and distinct (to avoid incoherent electron scattering by
the interfaces). However, as is experimentally shown, the interfaces are not flat and
sharp. For instance, the transition from GaAs to GaAlAs involves 1-4 monoatomic
layers, and the potential barrier is vague. As to the resonant quantum dot systems,
their properties also heavily depend on inhomogeneities of the interfaces between
the electrodes and vacuum and those between the quantum dot and vacuum.

In the aforementioned resonant systems, one can change the barrier thickness only.
In the planar multilayer systems, there is no way to adjust a resonance frequency once
the system is produced because there is no possibility to change the barrier thickness.

Resonant electronics devices can be based on quantum waveguides of variable
cross-section. In these, the potential barriers are formed without phase boundaries,
therefore, incoherent electron scattering does not occur. Changing the narrow forms,
one can change not only the effective barrier thickness but also the barrier form. It
is possible to adjust a resonance frequency by cutting out small fragments of the
resonator (for example, with a focus electron beam). Due to the smallness of the

© Springer International Publishing Switzerland 2015 259
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waveguide cross-section diameter, it is easy to apply external electric and magnetic
fields localized in the resonator. This enables the creation of devices controlled by
an external electric potentials and magnetic fields alike. Small sizes of such systems
lead to their small capacity, which increases their operation speed. However, let us
emphasize that, because of a small waveguide cross-section, the devices based on
a quantum waveguide are designed in principle for small currents (<10~°A) and
sufficiently small working voltages (<1 V).

In this chapter, we present examples of electronics devices based on quantum
waveguides with narrows: transistors controlled by external electric field and mag-
netic field sensors controlled by external magnetic field. Moreover, we also consider
an electron flow switch for quantum nets. Unlike the transistors and the sensors,
the switch has no relation to the phenomenon of resonant tunneling. However, the
scattering matrix needed for analyzing the switch operation has been calculated by
the method presenteded in Chap. 4.

11.1 Magnetic Field Sensors Based on Quantum Waveguides

Let us consider resonance structures like those in Chaps.7 and 8. Being supplied in
the resonator, a magnetic field B, orthogonal to the resonator axis, splits any resonant
energy level into two levels. We make use of this phenomenon to detect magnetic
fields localized in domains of about 1 nm in diameter. Detection of the vector B in
the classical resonance systems is onerous because of large transverse sizes of such
systems. We will describe one-resonator and two-resonator magnetic field sensors;
first we discuss the one with a single resonator (Fig. 11.1).

The system consists of a quantum waveguide (1) with metallic contacts at its ends
(a source (2) and a drain (3)). The sizes of the waveguide and its material are chosen
to provide ballistic (collisionless) electron transport from the source to the drain.
Between the contacts, an accelerating voltage U is supplied. Therefore, the Fermi
level at the drain is eU below that at the source. The waveguide has two narrows (4)
and (5); the domain (6) between the narrows is a quantum resonator. Such narrows
can be produced by electron lithography or X-ray lithography, for example. The
waveguide cross-section has been chosen so that E — Er > kgT for all the energies

B
i~ 57 o
R
: —f‘t\" ' 5
7 3

Fig. 11.1 Scheme of one-resonator device for registering magnetic fields: / quantum waveguide;
2 and 3 source and drain; 4 and 5 waveguide’s narrows forming the resonator 6; 7 magnetic field
domain
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Fig. 11.2 Energy diagram of a one-resonator device for registering magnetic fields: In the absence
of magnetic field the resonant level over the Fermi level at the source;a B =0;b B # 0

E of electrons with transverse quantum number greater than 1 and for the Fermi
levels Ef at the source and the drain, the kg being Bolzmann constant and T a
temperature. Therefore, the electrons with energy exceeding the second threshold
practically do not occur in the waveguide.

The current density J through the system is defined by

J = /EQ(E)V(E)T(E)fs(E)(l — fp(E —el))dE,

the integration over the electrons moving from the source, g(E) being the state density
in the non-deformed waveguide, v(E) the electron velocity along the waveguide axis,
T (E) the probability for an electron with energy E to pass through the resonator.
Finally, fs(E) is the Fermi function for the electrons of the source (that is, the filling
probability of the level E with electrons), and fp(E) is that for the electrons of the
drain. Therefore, there is a current in the systems only if the resonant level is below
the Fermi level at the source and above that at the drain.

A resonant level is determined by the resonator length. We choose the latter, so
that the resonant level E,.; would satisfy E,., — Ep, > kT (Fig.11.2a). Since
fs(E) is quite small for E > Ef, + kgT, there is no current, practically, in the
system because the incident flow contains few electrons that could pass through the
resonator.

When a magnetic field is supplied in the resonator, the resonant level E, . splits
into two levels E}b, and E;, so that E,,. < E,.s < E}}. The E}}; corresponds to
the electrons whose spin direction coincides with the direction of the magnetic field
vector B and E; corresponds to the electrons whose spin in direction is opposite
to B. For a certain magnetic field strength, the resonant level E;; gets to the energy
interval E < Ef, + kT and a current through the resonator arises (Fig.11.2b).
‘When the magnetic field strength B further increases, the resonant level £, becomes
lower than the Fermi level Ef, at the drain and the current sharply decreases at
E ., = Ep, — kgT because the final electron states in the drain turn out to be
occupied. Thus, a current through the resonator exists only on the conditions

Ep, —kpT < E,,, < Ep, +kpT.

S

The B-dependence of the current through the system is depicted by Fig. 11.3.
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B

Fig. 11.3 B-dependence of the current through the resonance system: 7' = 0 (dashed line); T > 0
(solid line)

@, 7 (b)
B
Efﬂ E,, Efﬂ ----- Eress

Ef,

3

Fig. 11.4 Energy diagram of one-resonator device for registering magnetic fields: In the absence
of magnetic field the resonant level below the Fermi level at the drain;a B =0;b B # 0

A one-resonator device can be implemented also in a slightly different way. If
the resonator length has been chosen so that Er, — E,.; > kgT, there is no current
because all finite electron states of the drain have been occupied (Figs. 11.4 and 11.5).

When a magnetic field is supplied in the resonator and increases, the E,', increases
as well. A current through the resonator exists under the conditions

Ep, —kpT < Ef, < Ep, +kpT.
The one-resonator sensors based on the above schemes possess several disadvan-
tages. Devices of this kind are of high thermal sensitivity, that is, the magnetic field
strength, needed for a through current, depends on temperature. The strength to ini-
tiate such a current is sufficiently large: for 7 &~ 10K, the E;; and E;,; must satisfy

res

|Ef, — E; | > kpT ~ 1073 eV. Thus, the devices are of comparatively low sensi-

tivity to magnetic field.

!
3

—
2

Fig. 11.5 The scheme of a two-resonator device for registering magnetic fields: / quantum
waveguide; 2 and 3 source and drain; 4, 5, and 7 waveguide narrows forming the resonators 6
and 8; B magnetic field domain
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(a) (b)

resl sl
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Fig. 11.6 Energy diagram of a two-resonator device for registering magnetic fields (type 1): a In
the absence of magnetic field, there is current through both resonators; b no current in the presence
of magnetic field

The two-resonator systems have none of the disadvantages described above. Such
devices are similar to those of the first type; however, the waveguide has three narrows
forming two quantum resonators in series. A magnetic field is located in one of the
resonators.

The resonators lengths have been chosen so that the resonant levels E,.s; and
E,¢52 of the first and the second resonators coincide being below the Fermi level
EF, at the source and above the Fermi level Ef, at the drain. Then, in the absence
of magnetic field, there is a through current in the system (Fig. 11.6a).

After turning on a magnetic field, the resonant level E,.s splits into the levels
E_,and E ;t,sz. If the distance between the E, and E;: ¢ is greater than the res-
onance width (that is, the resonant peak width) corresponding to E,.1, the through
current vanishes. A decrease in the narrow diameter leads to a decrease in the res-
onance width, which raises the device sensitivity to magnetic field. However, let us
note that an effective narrow diameter cannot be made arbitrary small because of the
impact of the waveguide work function (see Sect.5.7). This confines the possibility
to improve the resonator quality factor by diminishing a narrow diameter. On the
other hand, a too strong decrease in the resonance width (or, equivalently, increas-
ing the resonator quality factor) will worsen the device operation speed (the time,
a tunneling electron spends in the resonator, is proportional to the resonator quality
factor).

Now, we consider another two-resonator device; unlike the first device, there is
no through electron current in the absence of magnetic field (Fig. 11.7).

The resonator lengths have been chosen so that the distance between the resonant
levels E .51 and E,.; is greater than the width of the corresponding resonances;
moreover,

EF2 < Eresj < EFI, J = 1,2.

(ax}r (b)

B ,t.ﬂr

i E,— E s Em) ='_..EF £m| _'Eu::__

——— il - - -EF: —_— e e— E.; ____Ep}
— E —

Fig. 11.7 Energy diagram of a two-resonator device for registering magnetic fields (type 2): a In
the presence of magnetic field, there is current through both resonators; b through current arises for
a certain value of magnetic field
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Then, in the absence of magnetic field, there is no current in the system. When
a magnetic field is turned on, the E,. > splits into £, and E;’;Sz. For a certain
magnetic field strength, one of the Erie 2 coincides with E;..1 and a through current
arises. On further increasing magnetic field strength, the resonant levels again become
different and the current vanishes. By choosing the geometry of the two resonators,
one could tune the system to turning on for a given magnetic flow value.

11.2 Transistors Based on Quantum Waveguides

Here we describe one- and two-resonator transistors schemes. Let us begin with
one-resonator devices (Fig. 11.8).

A transistor with one resonator comprises a quantum wire of a high-ohmic semi-
conductor with two narrows and injection contacts at its opposite ends (a source and
a drain). The sizes of the waveguide and its material are chosen to provide ballistic
(collisionless) electron transport from the source to the drain. The domain between
the narrows is a quantum resonator. Near the resonator, there is a metallic electrode
with control voltage Uc. The diameter of the waveguide cross-section has to be less
than the Debye length of the semiconductor; then a change in U¢ causes a change
in the resonant level. Between the source and the drain, there is a small voltage U
providing a current along the wire. Therefore, the Fermi level Ef, at the source is
eU above the Fermi level EF, at the drain. The resonator has been chosen so that the
minimal resonant level is greater than Er, + kg7, which is the maximal electron
energy at the contacts.

If Uc = 0, the current is negligible because the incident electron flow contains
few electrons of energy close to the resonant level (Fig. 11.9a). On increasing Uc,
the resonant level diminishes and, finally, reaches Er,, where the current sharply
increases (Fig. 11.9b).

On further increasing Uc, the current intensity practically remains constant
because, in the conductivity, electrons of the same energy interval determined by the
resonance width act as participants there. When the resonant level closely approaches

Fig. 11.8 Scheme of Quantum wire
one-resonator transistor \ / (high-resistivity semiconductor) /’
—
"+  — ) S +
Resonator —_ ], DN
Y

N \
N\
Cathode Control gate Anode

contact U(. (metal) contact
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Fig. 11.9 Energy diagram (a) Resonance level
of one-resonator transistor .
(type 1) b!".. —_— U( =0 :EF,
(b)
Resonance level
E 7,
—FE F
U >0 — 2
.
Fig. 11.10 Current Jy Ty
versus control voltage Uc in
a waveguide with one
resonator ~max(AE, kpT)

the Fermi level E , at the drain, the current intensity reduces because all final electron
states at the drain have been occupied. The Uc-dependence of the current J,, through
the quantum waveguide is shown by Fig. 11.10.

The “steepness” of the curve (that is, dJw/dUc) is determined by the value
max{AE,, kgT}, where AE, denotes the resonance width with respect to electron
energy and kg T is the spread of electron energy around a Fermi level. The system is of
high thermal sensitivity: on increasing temperature, the curve steepness diminishes.

Let us consider also another version of the one-resonator transistor. We suppose
that the resonator has been chosen so that the resonant level is below the Fermi
level Er, at the drain (Fig. 11.11). Then there is no current for Uc = 0 because the
final electron states at the drain have been occupied. On supplying a control voltage
U, < 0, the resonant level increases. For a certain strength of Uc, there appear
free states at the drain and a through current arises. On further increasing |Uc|, the
resonant level turns out to be above the occupied states at the source and the current
sharply decreases. The Uc-dependence of the current J,, through the waveguide is
similar to that in Fig. 11.10 (up to a sign of U¢).

Let us consider two-resonator transistors that have no disadvantage of thermal
sensitivity.

The waveguide has three narrows that form the two resonators in series. The
lengths of the resonators are different so that their resonant levels E,qs1 and Eyeg2
are distinct. Moreover,

EFz < Eresy < EF]: J =12
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Fig. 11.11 Energy diagram (a)
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A small voltage U is supplied between the source and the drain. A metallic electrode
with control voltage Uc is located near one of the resonators (Fig. 11.12).

Figure 11.13 shows the energy diagram for the case where the resonant level of
the resonator with control electrode is below the one of the other resonator. In the
absence of the control voltage, the current in the system is negligible because the
Eres1 and E,.5 are different. On supplying control voltage Uc, one of the levels
shifts. When the levels coincide, the through current sharply increases. The needed
variation of the control voltage is independent of temperature and determined by the
resonance width only (Fig. 11.14).

We obtain another implementation of the two-resonator transistor by choosing
Eres1 = Eres2. A through current exists for Uc = 0. On supplying control voltage
(of any sign), the current sharply decreases.

If the resonator quality factors are too large, the Uc-operation band turns out to be
too narrow. Therefore, it is reasonable to choose resonators with a minimal quality
factor. This improves the device operation speed because the current stabilization
time is proportional to the system quality factor.
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Fig. 11.14 Current Jy Ty
versus control voltage Uc in
a waveguide with two
resonators

AE,

Ue

11.3 Electron Flow Switch for Quantum Nets

We now consider a quantum net consisting of quantum waveguides and electron
flow switches at the nodes of a net. An electron flow comes in a node through one
of the attached waveguides, and a switch controlled by an electric field chooses a
waveguide for the flow to go out (Fig. 11.15).

If the switch size were macroscopic and the electron motion were classic, then
a control electric field could be chosen to direct all electron trajectories from an
inlet waveguide to any given outlet. However, we deal with a switch whose size is
comparable to the electron wavelength. Therefore, only probability makes sense for
an electron to pass from an inlet to a given outlet. Figure 11.16 shows the scheme of
a device where the electron probability to get in a given outlet is greater than 0.99.

Let us consider a two-dimensional model of a quantum control system compris-
ing a cylindrical resonator and three attached waveguides. An electron flow, in the
collisionless regime, is supplied to the resonator through one of the waveguides. The
two other waveguides are outlets. The waveguide’s and the resonator’s walls are of a
sufficiently large work function so that the electron penetration through the surface
potential barrier is negligible. Three control electrodes are adjacent to the resonator
that is separated from the electrodes by a thin dielectric film. Constant voltages V1,
V», and V3, whose values can be independently varied are applied to the electrodes.
The sizes of the system are small (10 = 100nm), therefore, it’s capacity is low

Fig. 11.15 A quantum net
example. The nodes with
switches are shown by gray
color
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2
Control electrode
#./;,;
Control electrode
4
I
3
S~ ~—
1 Control electrode
]

Fig. 11.16 The scheme of a device with one inlet waveguide (/) and two outlet waveguides (2)
and (3). The three control electrodes are marked out by dark color

enough to provide a high operation speed. Such a device can be used as a switch and
a signal generator of millimeter-wavelength range.

We now describe a mathematical model of the system [4]. Let G be a two-
dimensional domain consisting of a resonator (a disk of radius p) and three attached
waveguides (half-strips of the same width). We assume that the waveguide width is

10 — 10—

: 100 r__,\‘{_.... ._‘.-\:.\

101 Lo

0 5 10 15 20 25 30 35
\

Fig. 11.17 The resonator diameter is equal to 3. a The loss probability |S1; \2 + |S13 |2 (solid line)
and the electron transmission probability |Si2|? (dashed line) in relation to electron energy E for
control voltage V = (1.57)% & 22.2. b The loss probability |S1;|> + |S13|? in relation to control
voltage V for energy £ = (1.97)2 (solid line); E = (1.57m)? (dashed line); E = (1.17)? (thick
solid line, only for V < 10). ¢ The distribution of probability density |¥|?, ¥ being an electron
wave function, inside the resonator for E = 17.26 and V = (1.57)? ~ 22.2, which corresponds to
the first minimum of |S11|2 + |S13/2
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equal to 1 and the angles between the waveguide axes are equal to 27t /3. An electron
wave function satisfies the boundary value problem

—AVxX)+Ux)¥(x) — E¥(x) =0, xegG, (11.3.1)
Y(x) =0, xe€0G.

Control voltages V1, V», and V3 produce the potential U in equation (11.3.1).

‘We next consider electrons of energy E between the first and the second thresholds,
which means that 7> < E < (27)?; here the length unit is the waveguide width
d and the energy unit is 42 /(2m*d?), m* being an effective electron mass. Scattering
an electron wave coming in the resonator through waveguide 1 is described by the
row (S11, S12, S13) of the scattering matrix. Choosing V1, Va2, V3, and E, we would
like to provide |S12|? close to 1. (Recall that |S2|? is the probability of an electron
passing from inlet 1 to outlet 2.) The electron flow switching from outlet 2 to outlet
3 can be performed by interchanging the V; and V3.

107 e ; 101
(a) : (b
100 o] 100 b
101 1 R avh
i
P )
iahy
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Y
LN
A 1
108 Lk o) B S S S £ 1 A O I
18 20 22 24 26 28 30 32 34 36 38 40 0 5 10 15 20 25 30 35 40 45 50

E \

(c)

3

Fig. 11.18 The resonator diameter is equal to 6. a The loss probability | S 12 4 |S13|? (solid line)
and the electron transmission probability |S12|? (dashed line)in relation to electron energy E for
control voltage V = (1.57)% ~ 22.2. b The loss probability |Sy; |2 + |S13/? in relation to control
voltage V for energy E = (1.97)? (solid line); E = (1.57)? (dashed line); E = (1.1)? (thick
solid line, only for V < 10). ¢ The distribution of probability density |W|?, ¥ being the electron
wave function, inside the resonator for £ = 22.09 and V = (1.571)2 ~ 22.2, which corresponds to
the fourth minimum of |S11| + |S13/?
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We assume that Vi = 0 because only the voltage differences play arole. Moreover,
test calculations show that the impact of V, — V3 on the results is comparatively small.
Therefore, in what follows we set V, = V3 = V. The entries (S;1, S12, S13) of the
scattering matrix have been approximately calculated by the method introduced in
Chap. 4. Some results are presented in Figs. 11.17 and 11.18.

For small electron energy (10 < E < 15), the loss probability is close to 1. For large
energy, this probability can be reduced below 10~3 by varying one of the parameter
E and V; small losses occur if E and V are comparable. On increasing the resonator
diameter, the number of loss minima increases (compare Figs. 11.17 and 11.18). For
the loss probability close to 1073, the range of control voltage is quite narrow; on
varying V within 0.01, the probability sharply increases. However, the probability of
around 1072 is much more stable relative to control voltage. It is seen from Fig. 11.17
that the loss probability remains below 10~2 for £ = (1.97)? and 30 < V < 35.
Thus, by varying potentials V;, we could direct an electron flow to a given outlet
waveguide with probability greater than 0.99 and low requirements to the control
voltage stability.
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Bibliographical Sketch

In the book we use known results of the theory of elliptic boundary value problems
in domains with piece-wise smooth boundary exposed in [25, 28, 31, 37]. We mainly
refer [37].

Chapter 2 in essence presents a special version, for the Helmholtz equation, of the
theory developed in [37] (Chap. 5) for the general self-adjoint elliptic boundary value
problem in domains with cylindrical outlets to infinity (the statement and solvability
of the problem with intrinsic radiation conditions at infinity, the definition of the
scattering matrix).

Chapter 3 is based on Plamenevskii et al. [41]. Augmented scattering matrices
were considered in various geometric situations in Nazarov and Plamenevskii [37,
38], and Kamotskii and Nazarov [27] for general elliptic problems self-adjoint with
respect to the Green formula. The use of “stable bases” is quite traditional in asymp-
totics studies. In this connection we mention Costabel and Dauge [17] and Maz’ya
and Rossmann [34] dealing with asymptotics of solutions to elliptic boundary value
problems near a corner point at the boundary. In Nazarov and Kamotskii [26], the
asymptotics of the scattering matrix near a threshold for a two-dimensional diffrac-
tion grating was justified, in essence, by using a stable basis of waves.

The method for computing scattering matrices, presented in Chap.4, was sug-
gested for a close situation in Grikurov et al. [24]. The justification of the method
in [24] was based on Proposition 3 (given without proof) valid only under an addi-
tional condition not presented in Proposition 3. The condition requires that the value
of spectral parameter p, for which the method is applying, is not an eigenvalue of
the original boundary value problem. The method was justified for two-dimensional
waveguides without the aforementioned additional condition in Plamenevskii and
Sarafanov [39]. Chapter4 exposes a new proof of the method, which is much sim-
pler than that in [39]; in this connection we mention also Plamenevskii and Sarafanov
[40] and Plamenevskii et al. [42].

Chapter 5 (Sects.5.1-5.6) contains results from Baskin et al. [9]. The results of
Sect.5.7 are published for the first time.

Chapter 6 is based on Baskin et al. [6].

Chapter 7 exposes the results of Baskin et al. [12].
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Chapter 8 is based on Baskin, Plamenevskii, and Sarafanov [11].

The results of Chapter9 are obtained by L.M. Baskin, M.M. Kabardov, and N.M.
Sharkova and taken from their forthcoming paper. In this connection we mention also
Racec etal. [43], where electron transport in a waveguide was studied by approximate
computing the waveguide R-matrix.

Chapter 10 presents results obtained by O.V. Sarafanov; they are published for the
first time.

Chapter 11 contains Sect. 11.1 based on Baskin et al. [10]; Sect.11.2 based on
Baskin et al. [7]; Sect. 11.3 based on Grikurov et al. [4].
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