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Supervisor’s Foreword

The theme of Dr. Chapman’s Ph.D. dissertation is a foundational approach to the
design and analysis of control and estimation algorithms for coordinated networked
platforms, as well as an effective means of interacting with such complex networked
systems. Such multi-platform systems have been identified as the next important
milestone for future space, defense, and civilian aerospace and robotic missions,
for example, next generation spacecraft architectures collectively referred to as
“distributed spacecraft,” multiple unmanned aerial systems for search and rescue
missions, delivery of medicine in remote areas, and tracking and classification in
hazardous and complex environments using multiple ground robots. Specifically,
this dissertation aims to present, at a mathematically rigorous level, how one can
interface with these networked systems, how secure they are with respect to external
influence, how to reason about networks composed of smaller factor networks, and
how the network of information exchange between autonomous robots/vehicles can
adaptively reconfigure itself such that the ensemble as a whole is more secure and
optimally managed.

The dissertation addresses various facets of these issues and much more.
For example, Part I clarifies how the mathematical machinery for developing
cooperative behavior in linear networks can be extended to nonlinear scenarios, a
topic that is of great relevance to areas such as density control, coverage, and air
traffic management. Another research area addressed by the dissertation exemplified
in Part II is the notion of adaptation in dynamic networks and how it can be
implemented using only local information such that the network as a whole resists
or promotes an externally injected signal to the network. This work has opened
up a new research direction in the field, including how one can reason about
self-organization in distributed networked systems: large-scale dynamic systems
where local interactions among its subsystems lead to system-wide behaviors and
properties. Yet in Part III of the dissertation, a mathematically elegant approach to
compose large-scale networks from smaller “atomic” networks such that the system
theoretic properties of the composite network can be inferred from those of the
atomic ones has been proposed. Such a contribution has far-reaching consequences
as it allows systems and control engineers to utilize modularity and scalability in the
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viii Supervisor’s Foreword

design and analysis of large-scale dynamic networks, not only in aerospace robotics,
but also in completely different contexts such as energy networks and networks-
of-networks. Part IV of the dissertation, on the other hand, delves into the notion
of structural controllability of networks and important implications for security of
networks—once again, a topic of great current technological interest.

The dissertation is a testimony to the creativity of a rising star in control
and system theory who, once motivated by a relevant engineering problem, is
able to masterfully abstract its essential features and then proceed to address the
fundamental issues with mathematical rigor and elegance.

Seattle, WA, USA Mehran Mesbahi
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Abstract

The control and design of multiple autonomous agents for distributed tasks has
become a thriving area of aerospace research. An autonomous multi-agent net-
worked system, or just autonomous network, is composed of many autonomous
vehicles that interact and make local decisions to achieve a common global goal
without a centralized body. Advantages of the distributed approach are robustness
to individual vehicle failures, improved scalability, and reduced computational
load when modeling multi-vehicle systems. A natural extension is to consider
autonomous networks that can be influenced or controlled by external agents. We
call these systems semi-autonomous networked dynamics systems, or just semi-
autonomous networks, and they are the focus of this work.

In this dissertation, components of a semi-autonomous network are abstracted
away to reason about the effective control of such systems. Specifically, the agent
dynamics unique to the vehicles of the network is separated from the interaction
network dynamics, or simply network dynamics, between agents. It is on the
network dynamics that we explore effective protocols, design, and modeling for
the control of semi-autonomous networks.

Consider a case study of our work: a human operator (controller) directing a
cooperative unmanned aerial vehicle (UAV) swarm. The human–UAV and intra-
swarm interactions form a UAV interaction network and consist of, for example,
inter-UAV wireless communications or relative sensor measurements. Factors such
as UAV swarm size and dispersion make it infeasible for human operators to
interface directly with every UAV. An approach for creating effective interfaces to
the controller is to have only a subset of the UAVs directly controlled. The remaining
UAVs are then allowed to be indirectly controlled via the UAV interaction network,
depicted in Fig. 1. This setup results in a highly coupled high-order nonlinear control
model that proves to be difficult for human operators to manage and to reason
about in general. The approach we advocate to simplify and create an effective
human–swarm interaction is via a two-component hierarchical model consisting of
the UAV dynamics component building on the UAV interaction network dynamics
component.

xv
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Fig. 1 A UAV swarming concept where only a subset of the UAVs are directly controlled by
human operators. These operators influence the remaining UAVs through an interaction network
between the vehicles

The UAV interaction network dynamics can be improved from three directions.
Firstly, the interaction network dynamics can be exploited through the adoption
of alternative protocols governing how the UAVs use each other’s information.
Secondly, through the design or redesign of the interaction topology, the propagation
of information can be biased towards certain UAVs in the network. Finally, novel
network modeling approaches can reduce the complexity of a large-scale UAV
swarm, improving one’s ability to perform analysis and design.

These three directions, protocols, design, and modeling, provide one or more of
the building blocks behind the four structured parts of the dissertation. These four
parts are addressed separately, together with related publications.

Part I: Beyond Linear Consensus—Protocols

A common objective of autonomous networks is to reach agreement on one or more
of their states. For example, agreement on agent position in a UAV swarm leads to
rendezvous. If agreeing on a virtual position, formation flight can be acquired given
offsets from the virtual position. Velocity agreement is another attractive property
for formation flight. For distributed surveillance, bearing agreement is often desired.

If agreement is required over a network without all-to-all communications,
a distributed approach is necessary. A protocol which is particularly adept at
distributed agreement is discretized version of the heat diffusion dynamics, known
as the consensus protocol, and runs within the network dynamics. Consensus is a
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popular linear protocol for the network dynamics, and consequently it is a rich area
of research. This part introduces a new protocol that can be considered “a cousin”
of consensus, termed the advection protocol.

Advection is the process where a distribution is actively transported by a flow
field. A simple example of advection is oil dropped into a body of water. If the
water is still, the oil will tend to remain concentrated, but if the water is flowing, for
example in a river, the flow will cause a change in concentration. By defining the
interactions between agents by a flow field, the advection protocol can be formed.

The advection protocol is shown to share many features of consensus, facilitating
the extension of many of the consensus results to advection. Specifically, we
compare invariance properties, equilibrium, and flow and stochastic interpretations
of the protocols. The key tool in this analysis is the use of graph theory to
describe the network interaction topology which underlies the network dynamics.
One property distinct from the consensus protocol of particular significance is the
conservation of state within the protocol. We illustrate the utility of this property in
such applications as sensor coverage and load balancing.

Part I also explores the generalization of the consensus protocol to a family of
nonlinear protocols. As coupling nonlinear systems typically generate high-order
nonlinear dynamics which are difficult to analyze, nonlinear network dynamics is
a largely unexplored research area. The Laplacian matrix, the system matrix at the
heart of consensus, lives in the family of M-matrices. We define a class of nonlinear
network protocols generalized using M-matrix theory.

We characterize the equilibria of these models as well as their invariant prop-
erties. Exploiting these properties, we present and analyze a nonlinear sensor
surveillance task, a social networking opinion dynamics, and a neural networking
task.

Publications per Chapter

Chapter 1. Advection on Graphs

• Airlie Chapman, Eric Schoof and Mehran Mesbahi (2012) Advection on Net-
works with an Application to Decentralized Load Balancing, 2680–2681. In
Proc. IEEE Conference on Intelligent Robots and Systems.

• Airlie Chapman and Mehran Mesbahi (2011) Advection on Graphs, 1461–1466.
In Proc. 50th IEEE Conference on Decision and Control.

Chapter 2. Beyond Linear Protocols

• Airlie Chapman and Mehran Mesbahi (2012) Stability Analysis of Nonlinear
Networks via M-matrix Theory: Beyond Linear Consensus, 6626–6631. In Proc.
American Control Conference.
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Part II: Network Measures and Adaptive Topology—Design

One of the appeals of the consensus protocol is its ability to operate distributively
and autonomously over simple trusting agents. This has the added benefit that
controller agents, perceived as native agents, can seamlessly attach to the network
and steer it in particular directions. When the controller agents are unfriendly,
however, this presents an unfavorable perturbation of the dynamics.

This part investigates network measures to quantify the effectiveness of the
controller’s interfaces with respect to the network dynamics. The performance is
measured in terms of the subsequent variation in the mean and variance of the
network’s agents, termed the mean tracking measure (average quadratic error) and
variance damping measure (open loop H2 norm). Both measures provide a means of
relating topological features of the interaction network structure which promote or
deter controllability of the swarm, providing a method to reason about the effective
design of network topologies.

Control theory presents many mechanisms to reject or dampen disturbances
or promote the propagation of a control signal in a dynamic system. In general,
they fall in two categories: active control such as dynamic feedback, and passive
control such as structural damping. Typically in networked dynamics systems, the
network structure is considered a passive element. If feedback is unavailable or
global network knowledge is insufficient to apply feedback, we propose the novel
idea of considering the network topology itself as an active system via dynamic
selection of interconnection (edge) links and weights.

In situations where the interaction network topology is wireless, it becomes
feasible to dynamically redesign the network. We developed distributed protocols
that can be employed to dynamically rewire the interaction network topology
improving the effectiveness of the controllers’ interface with the network. These
protocols each locally rewire the network topology, using edge trades between
neighboring agents, to favorably increase or decrease each measure. The protocol’s
effectiveness is qualified using the game theoretic construct of the price of anarchy
by considering the protocol as a non-cooperative game.

Applying online learning techniques, an algorithm was proposed for the agent to
locally learn the effect of its interconnection on the various performance measures.
Paired with an online optimization method, the edges of the network can be
reweighted to reduce the propagation of mis-information from the environment
without any global information. This presents a first foray into distributed online
learning to optimize the topology in network dynamics.

UAV swarms affected by wind gusts present an attractive and novel application
of these rewiring protocols. The wind gust can be considered as a security threat
(malicious controller) to the stability of the UAV swarm while humans (friendly
controllers) attempt to stabilize the swarm. We have demonstrated that the com-
munication rewiring protocol that allows UAVs to exchange communication links
with each other dramatically dampens the wind gust perturbations and amplifies the
effectiveness of the human controllers.
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Publications per Chapter

Chapter 3. Measures and Rewiring

• Airlie Chapman and Mehran Mesbahi (2013) Semi-Autonomous Consensus:
Network Measures and Adaptive Trees, 19–31. In IEEE Transactions on Auto-
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Influenced Consensus: Single Input Case, 1505–1511. In IEEE Transactions on
Automatic Control 57 (6).
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work Resilience and Adaptive Trees, 7473–7478. In Proc. 49th IEEE Conference
on Decision and Control.

• Airlie Chapman, Eric Schoof and Mehran Mesbahi (2010) Semi-Autonomous
Networks: Theory and Decentralized Protocols, 1958–1963. In Proc. IEEE
International Conference on Robotics and Automation.

• Airlie Chapman, Marzieh Nabi-Abdolyousefi and Mehran Mesbahi (2009) Iden-
tification and Infiltration in Consensus-type Networks, 84–89. In 1st IFAC
Workshop on Estimation and Control of Networked Systems.

Chapter 4. Distributed Online Topology Design for Distributed Rejection

• Airlie Chapman, Eric Schoof and Mehran Mesbahi (2013) Distributed Online
Topology Design for Disturbance Rejection, 817–821. In Proc. 52nd IEEE
Conference on Decision and Control.

Chapter 5. Network Topology Design for UAV Swarming with Wind Gusts

• Airlie Chapman and Mehran Mesbahi (2015) UAV Swarms: Models and Effec-
tive Interfaces. In Handbook of Unmanned Aerial Vehicles, Springer.

• Airlie Chapman, Ran Dai and Mehran Mesbahi (2011) Network Topology
Design for UAV Flocking with Wind Gusts. In Proc. AIAA Guidance, Navigation
and Control Conference.

• Airlie Chapman and Mehran Mesbahi (2011) UAV Flocking with Wind Gusts:
Adaptive Topology and Model Reduction, 1045–1050. In Proc. American Con-
trol Conference.

Part III: Cartesian Product Networks—Modeling

Scalability is a common challenge when modeling large networks. There are many
graph-based tools that can be exploited to factorize the network interaction topology,
but the network dynamics can rarely be decomposed in the same manner. This
part investigates the Cartesian product of a graph and demonstrates it to be a
special operator that decomposes both the network topology and network dynamics.
Moreover, this task can be performed efficiently.
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Cartesian products form layered structures, often termed networks-of-networks.
These types of systems are induced by, or eventuate through, many processes.
Reasoning about the control of Cartesian networks can be applied to a broad range
of topics. Man-made structures, for instance, are commonly fabricated with such a
layered form, with applications including fault detection in infrastructure networks,
piezoelectric sensor and actuator placement in smart structures, and efficient control
of quantum computing networks. Layered structures are often a by-product of the
problem formulation itself such as the uniform discretization of PDEs, and as such
our theory has application to the control and monitoring of fluid and heat flow.
Cartesian products also appear as a result of the analysis of the network, for example
through the classification of entities in a network. This occurs in the analysis and
influence of opinion dynamics on social networks with agents representing people
with common interest groups.

The Cartesian decomposition of these networks is applied to present large semi-
autonomous networks as smaller semi-autonomous factor networks. New tools for
network trajectory factorization, controllability, and observability follow from the
Cartesian product factorization. These tools provide a new computationally efficient
method to analyze and design for large-scale networks.

Publications per Chapter

Chapter 6. Cartesian Products of Z-matrix Networks: Factorization and Interval
Analysis

• Airlie Chapman, Marzieh Nabi-Abdolyousefi and Mehran Mesbahi (2014) Con-
trollability and observability of networks-of-networks via Cartesian products,
2668–2679. In IEEE Transactions on Automatic Control 59 (10).

Chapter 7. Controllability and Observability of Cartesian Product Networks

• Airlie Chapman, Marzieh Nabi-Abdolyousefi and Mehran Mesbahi (2012) Con-
trollability and Observability of Cartesian Product Networks, 80–85. In Proc.
51st IEEE Conference on Decision and Control.

• Airlie Chapman and Mehran Mesbahi (2012) Cartesian products of Z-Matrix
networks: Factorization and interval analysis. In Proc. 20th International Sym-
posium on Mathematical Theory of Networks and Systems.

Part IV: Structural Controllability—Modeling and Design

The concept of controllability is a cornerstone to much of control theory and
captures a controller’s ability to guide a system towards a desired configuration.
Strong structural controllability is a generalized form of controllability and can
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be applied to establish guaranteed conditions for the controllability of network
dynamics. These conditions are based solely on the network topology, i.e., who in
the network is connected to whom, and is irrespective of the detailed characteristics
of these couplings.

Research into structural controllability has a rich history, and by its very nature
exposes the role of structure in network control. Structural controllability is based
solely on the zero structure of the underlying dynamics, for network dynamics this
equates to a relationship on the direct coupling between agents. This is irrespective
of the magnitude of these couplings.

This part develops an O.n2/ algorithm to validate if a set of inputs leads to
a strongly structurally controllable network. The research further establishes that
finding a strongly controllable minimum cardinality controller set is NP-complete
and develops an algorithm that efficiently finds a not necessarily minimal set. This
work involves establishing necessary and sufficient conditions for strong structural
controllability over different network structures.

These structural controllability results are exploited to reason about the security
of networked systems. Vulnerable nodes and critical edges of a network are
identified to aid in the design of secure network topologies.

Publications per Chapter

Chapter 8. Strong Structural Controllability of Networked Dynamics

• Airlie Chapman and Mehran Mesbahi (2013) Strong Structural Controllability of
Networked Dynamics, 6141–6146. In Proc. American Control Conference.

Chapter 9. Security and Infiltration of Networks: A Structural Controllability and
Observability Perspective

• Airlie Chapman and Mehran Mesbahi (2013) Security and Infiltration of Net-
works: A Structural Controllability and Observability Perspective, 143–160. In
Control of Cyber-Physical Systems: Lecture Notes on Control and Information
Sciences 449, Springer.

Final Remarks

Chapter 10 concludes the dissertation with some remarks and directions for future
work.





Nomenclature

Linear Algebra
bcc largest integer lower bound of scalar c
ŒM�ij entry of matrix M on its i th row and j th column
Œv�i i th element of vector v
� approximately equal to
kxk2 2-norm of vector x; kxk D .xT x/1=2 unless indicated otherwise; also

denoted as kxk
kxk1 1-norm of vector x; kxk D maxi .jxi j/ unless indicated otherwise
E.x/ expected value of the random variable x
sgn.�/ signum function
j � j cardinality of a set; also denotes the absolute value of a scalar
�i .M/ i th eigenvalue ofM ;M is symmetric and its eigenvalue are ordered from

least to greatest value
kMk2 2-norm of matrix M
rank.M/ rank of matrix M
tr.M/ trace of M
eM matrix exponential of M
M > 0 matrix M is positive
M > N matrix M �N is positive
M � N matrix M �N is nonnegative
M ˚N Kronecker sum of M and N
M ˝N Kronecker product of M and N
M.˛ j ˇ/ submatrix of matrix M 2 R

m�n formed by removing rows with indices
˛ � f1; : : : ; mg and columns with indices ˇ � f1; : : : ; ng

M � 0 matrix M is nonnegative
M � 0 matrix M is positive definite
M � 0 matrix M is positive semidefinite
M�1 inverse of matrix M
MT transpose of matrix M
0n vector of all zeros of length n; also denoted as 0
1n vector of all ones of length n; also denoted as 1
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xxiv Nomenclature

1? subspace orthogonal to span f1g
ei column vector with 1 in the i th row and 0 otherwise
In�n n 	 n identity matrix; also denoted as In and I

Graphs
G weighted undirected graph or undirected graph; also referred to as a

graph
Cn n node cycle graph, also denoted as C
D weighted digraph
G C e graph G with edge e added; also denoted as G

S
e

G � e graph G with edge e removed; also denoted as G n e
H bipartite graph
Kn n node complete graph, also denoted as K
Pn n node path graph, also denoted as P
R external agent graph
Sn n node star graph, also denoted as S
Tn n node tree graph, also denoted as T
D1�D2 Cartesian product of D1 and D2

Dn D�D� : : :�D (n-times)
A .D/ adjacency matrix of D
A .G/ adjacency matrix of G
D.G/ degree matrix of G
Din.D/ in-degree matrix of D
Dout.D/ out-degree matrix of D
Ds.D/ self-loop matrix of D
L .D/ in-degree graph Laplacian or Laplacian matrix of D; also denoted as

Lin.D/
L .G/ Laplacian matrix of G
Lout.D/ out-degree graph Laplacian or Laplacian matrix of D
W .G/ weight matrix of G
Qıi out-degree of node vi
ıi in-degree of node vi ; also denotes the degree of node vi for undirected

graphs
ıri number of leaders adjacent to vi
ıvi number of followers adjacent to ri
I.vi / set of all neighbors of vi closer to agents in R than vi
N .vi / set of nodes adjacent to i
Nout.vi / out-degree neighborhood set of vi
Nin.vi / in-degree neighborhood set of vi
� .�/ edge set index mapping function; l D � .ij / if edge l connects nodes i

and j
�.vi / closest agent to vi in M
al edge column of edge l D �.ij /, also denoted as aij
c .vi ;G/ closeness centrality of node vi in graph G
d.vi ; vj / minimum path length between vi and vj
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Eeff.vi / effective resistance at node vi
vi vertex i ; also used to denote the i th entry of vector v
�i .G/ shorthand for �i .L .G//
ER external agent edge set
M main path agent set
Ri external agent graph with a single input agent attached at node vi
Rc common external agent set
Rd distinct external agent set
Aut.D/ set of automorphisms of graph D
det.D/ determining number of digraph D
stab.S/ stabilizing set of S
�.ER/ set of native agents that directly connect to external agents
� permutation set
E edge set
R external agent set
V node set; also referred to as vertex set
Vs set of nodes with self-loops

Other
A.G;R/ influenced state matrix of graph G and external agent graph R
B.R/ influenced input matrix of external agent graph R
Bn.S/ input matrix of the input set S for a n node digraph; also referred to as

B.S/

Cn.S/ output matrix of the output set S for a n node digraph; also referred to as
C.S/

J� .G;R/ mean tracking measure of graph G and external agent graph R
J� .G;R/ variance damping measure of graph G and external agent graph R
P.G;R/ controllability gramian of the influenced dynamics with graph G and

external agent graph R; also denoted as P.A.G;R/; B.R//
xi .t/ state of agent i at time t
A.D/ pattern matrix of digraph D
A˚ family of symmetry preserving, Cartesian invariant matrix representa-

tions
A� pattern matrix formed by placing stars along the diagonal of A
Bn.S/ pattern matrix of input matrix Bn.S/; also referred to as B.S/
C n.S/ pattern matrix of output matrix Cn.S/; also referred to as C .S/
~ zero or star elements of a pattern matrix�
M;M

�
interval matrix with lower bound M and upper bound M

	 star elements of a pattern matrix





Background

The first step to investigating autonomous networked dynamics systems is to
characterize the underlying network topology and network dynamics. To this end,
we introduce notation and a graph theoretic presentation of the network topology
and a popular network dynamics protocol—the consensus protocol.

Notation

This section introduces notation used throughout this thesis.
For a column vector v 2 R

p , vi or Œv�i denotes the i th element. The ij th element
of matrix M is ŒM �ij . The term ei denotes the column vector which contains all
zero entries except Œei �i D 1. For matrices M;N 2 R

n�n, N 
 M denotes that
M � N is positive semidefinite. We form the submatrix A.˛jˇ/ from A 2 R

m�n,
where ˛ � f1; : : : ; mg and ˇ � f1; : : : ; ng, by removing rows with indices ˛ and
columns with indices ˇ.

The notation k�k and k�k1 denotes the 2-norm and infinity norm, respectively;
tr.�/ denote the trace of a matrix; j�j denotes the cardinality of a set; 1 and 0 denotes
the column vector of ones and zeros, respectively; I denotes the identity matrix.

A matrix M is nonnegative (positive), denoted M � 0 (M > 0) if all entries of
M are nonnegative (positive). Further,M � N (M > N/ is equivalent toM �N �
0 (M � N > 0). We write M � 0 (M � 0) if M is positive definite (semidefinite)
matrix.

The Kronecker product of matrices A and B is denoted by A ˝ B , and the
Kronecker sum of square matrices C 2 R

n�n and D 2 R
m�m defined and denoted

as C ˚D WD Im ˝ C CD ˝ In: The matrix exponential of a Kronecker sum has
the attractive distributive property that eC˚D D eC ˝ eD . The Hadamard product
of two matrices is denoted by ı where ŒM ıN�ij D ŒM �ij � ŒN �ij .
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Network Topology

To represent the network topology, the communication points in the network are
denoted as nodes, and edges represent communication links between points. For
UAV swarms, the nodes represent UAVs and the edges correspond to inter-UAVs
links, such as wireless communications or relative sensors. It is assumed that all
communication links are bi-directional. These nodes and edges can be considered
as forming an undirected graph.

Abstractly, a weighted undirected graph G D .V;E;W / is defined by a node
set V with cardinality n, the number of nodes in the graph, and an edge set E and
a weight set W . The edge set is comprised of pairs of nodes, where nodes vi and
vj are adjacent if

˚
vi ; vj

� 2 E � ŒV �2, the set of two-element subsets of V with
each edge having weight wij 2 W . If wij D 1 for all edges, then G D .V;E/ is
a unweighted undirected graph or simply an undirected graph. The ordering of the
edge set is encoded through the index mapping � .�/ such that l D � .ij / if and only
if edge l connects nodes i and j . If clear, vectors pertaining to the edges such as the
edge weights will be denoted as wij and wl , interchangeably.

One special family of undirected graphs are tree graphs, denoted by the set T ,
where all two node pairs are connected by exactly one simple path, i.e., a connected
graph without cycles. A spanning tree of a graph is a tree subgraph that connects all
vertices in the graph. Special undirected graphs are the n node complete graph Kn

which has an edge between every node, the n node path graph Pn where .i; j / 2 E
if and only if ji � j j D 1, the n node cycle graph Cn which is formed by adding edge
.1; n/ to Pn and the star graph Sn where .1; j / 2 E if and only if j D 2; : : : ; n.

The neighborhood set N .vi / is composed of the set of nodes adjacent to vi . The
scalar d

�
vi ; vj

�
is the minimum path length, induced by the graph G, between nodes

vi and vj . The degree ıi of node vi is the number of its adjacent nodes. The degree
matrix D.G/ 2 R

n�n is a diagonal matrix with ıi at entry .i; i/. The weight matrix
W .G/ is an m 	m diagonal matrix with the weight of edge l at position ŒW .G/�l l .

There are many matrix representations of a graph; the two most popular are the
adjacency matrix and graph Laplacian matrix that each fully characterizes the graph
[1, 2]. The adjacency matrix is an n 	 n symmetric matrix with ŒA .G/�ij D wij
when

˚
vi ; vj

� 2 E and ŒA .G/�ij D 0 otherwise. The incidence matrix E .G/ is
an n 	 m composed of edge columns al which encodes the edge l D �.ij / with
Œal �i D 1 and Œal �j D �1, and zero otherwise.1 The graph Laplacian matrix (or
just Laplacian) is defined as L .G/ D E .G/W .G/E .G/T 2 R

n�n, or equivalently
for unweighted graphs L .G/ D D.G/ � A .G/. Figure 2 shows an example of
unweighted undirected graph with its corresponding graph matrices.

The graph Laplacian matrix plays an important role in the dynamics of the
network. An important feature of this matrix is that it is a (symmetric) positive semi-
definite matrix. The spectrum is ordered as 0 D �1.G/ � �2.G/ � � � � � �n.G/;

1The assignment where Œal �j D 1 and Œal �i D �1 can also be applied.
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Fig. 2 A sample network graph G D .V;E/ where V D fv1; v2; v3; v4g and E D
ffv1; v2g ; fv1; v3g ; fv2; v3g ; fv3; v4gg. The adjacency matrix A .G/, degree matrix D.G/, and
Laplacian matrix L .G/ of the graph are provided

where, for brevity, �i .G/ is used instead of �i .L .G//. The spectrum of the graph
Laplacian matrix displays many features of the network. For example, the number
of zero eigenvalues is equal to the number of connected components. Features that
couple the network topology and dynamics are explored in the following subsection.

A generalization of a graph is a weighted digraph. A weighted digraph D D
.V;E;W / is characterized by a node set V with cardinality n, an edge set E
comprised of ordered pairs of nodes with cardinality m, and a weight set W with
cardinality m. The adjacency matrix is an n 	 n matrix with ŒA .D/�ij D wij 2 W
when .j; i/ 2 E and ŒA .D/�ij D 0 otherwise. The self-loop matrix Ds.D/ 2 R

n�n
is a diagonal matrix with wi i at position .i; i/ and the set of nodes with self-loops
is Vs . The in-degree matrix Din.D/ 2 R

n�n is a diagonal matrix with the number of
edges incident to node i , its in-degree ıi D P

.j;i/2E wij , at position .i; i/. The out-

degree matrix Dout.D/ is similarly defined, using the out-degree Qıi D P
.i;k/2E wki .

The in-degree graph Laplacian (or Laplacian) matrix Lin.D/ (or L .D/) is defined
as ŒL .D/�ij D �ŒA .D/�ij for i ¤ j and ŒL .D/�i i D ŒDin.D/�i i . The out-
degree graph Laplacian Lout.D/ is similarly defined. The in-degree neighborhood
set Nin.vi / is composed of the set of nodes attached to in-degree edges of vi .
Similarly, Nout.vi / is defined in terms of the out-degree edges of vi .

A special family of digraphs is the strongly connected graphs, where a digraph is
strongly connected if between every pair of distinct nodes there exists a directed path
of edges. A graph is called balanced if Din.D/ D Dout.D/. The node set V1 � V is
a rooted node set for V2 � V if every node in V2 can be reached from at least one
node in V1 along a directed path. Further, if V1 is (not) a rooted node set for V , then
D is input (in)accessible from V1. A rooted directed tree graphs is a subgraph where
m D n � 1, and there exists a node i such that fig is input accessible.
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Consensus Dynamics

A common objective of autonomous networks is to reach agreement on one or
more of their states. For example, agreement on UAV position in a UAV swarm
achieves rendezvous. If agreeing on a virtual position, formation flight can be
acquired with known position offsets from the virtual position. Velocity agreement is
another attractive property for formation flight. For distributed surveillance, bearing
agreement is often desired.

If agreement is required over a network without all-to-all communications,
a distributed approach is necessary. A protocol which is particularly adept at
distributed agreement is the consensus protocol, which is detailed below, and runs
within the network dynamics.

Consider xi .t/ 2 R to be the i th node’s state at time t on which agreement is
required for all nodes. The continuous-time consensus dynamics is defined over the
undirected graph G D .V;E;W / as

Pxi .t/ D
X

fvi ;vj g2E
wij

�
xj .t/ � xi .t/

�
: (1)

Thus, to update the i th node’s state, only the relative state of node i ’s neighbor’s
state is required. In a compact form with x.t/ 2 R

n, the collective dynamics is
represented as

Px.t/ D �L .G/x.t/: (2)

From the definition of the graph Laplacian all rows of L .G/ sum to zero and
�1.G/ D 0 with the corresponding eigenvector 1n. Subsequently, for a connected
graph G the network dynamics will converge to an agreement on the state, i.e.,
x1.t/ D x2.t/ D � � � D xn.t/ D ˛, for some constant ˛, for all initial conditions [3].
Further, the slowest convergence of the dynamics is determined by �2.G/ which is
a measure of graph connectivity.

For digraph D D .V;E;W /, the consensus dynamics takes the form

Pxi .t/ D
X

.vj ;vi /2E
wij

�
xj .t/ � xi .t/

�
;

and collectively

Px.t/ D �Lin.D/x.t/:

Features of consensus over digraphs are discussed in detail in Chap. 1.
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Part I
Beyond Linear Consensus



Chapter 1
Advection on Graphs

Abstract This chapter examines the dynamics of a networked, multi-agent system
operating with an advection-based coordination algorithm. Flow advection is a close
relative of diffusion whose discretized version forms the basis of the popular con-
sensus dynamics. We endeavor to demonstrate in this chapter that discretizing the
continuous advection equation also forms an attractive set of system dynamics for
coordinated control. The key advantage of advection-based algorithms over directed
consensus is that the sum of the states is always conserved. This chapter includes
a formulation of the advection dynamics on directed graphs and a presentation of
some of its characteristics, which are compared to the consensus dynamics. We also
provide examples of the versatility of the advection dynamics: a formation control
and sensor coverage example.

1.1 Introduction

Advection is the process where a distribution is actively transported by a flow field.
A simple example of advection is oil dropped into a body of water. If the water
is still, the oil will tend to remain concentrated, but if the water is flowing, for
example in a river, the flow will cause a change in concentration. This chapter
introduces a discrete form of the advection process for application in networked,
multi-agent systems. Here a flow field defines interactions between agents, and inter-
agent dynamics are based on the advection process.

Advection shares many similarities to diffusion and may be interpreted as diffu-
sion in a flow field. A discretized form of diffusion is the framework for consensus
problems. Consensus provides an effective model for distributed information-
sharing and control of networked, multi-agent systems in settings such as multi-
vehicle control, formation control, swarming, and distributed estimation; see, for
example, [1–4]. An appeal of the consensus framework is that locally-based interac-
tion dynamics can produce global network characteristics. Further, the performance
characteristics are coupled to the underlying network structure. Advection dynamics
are similarly coupled to the network, and in certain classes of networks, share
identical dynamics with consensus.

At the heart of consensus problems is the diffusion model [5]. For undirected con-
sensus, where the underlying agent interactions are Euclidean-based, the governing

© Springer International Publishing Switzerland 2015
A. Chapman, Semi-Autonomous Networks, Springer Theses,
DOI 10.1007/978-3-319-15010-9_1
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4 1 Advection on Graphs

dynamics are precisely the discrete version of diffusion. The two core properties and
attractions of discrete diffusion are (a) the interpretation of a directed edge existing
from agent i to j is that agent i can “influence” agent j and (b) the state sum is
always conserved. For directed graphs (digraphs), where every edge from i to j
does not necessarily have a corresponding edge from j to i , generally one of these
properties has to be sacrificed. Traditionally, graph literature [1, 6] preferentially
chooses the “influence” property and the sum conservation property only holds
true for balanced digraphs, which corresponds to the “perfect” discretization of
diffusion with both conditions. In this chapter, we will instead preferentially choose
the second conservation property and sacrifice at times the “influence” property and
formulate our model accordingly. The sum conservation property has the effect of
inducing a flow through the directed edges in the digraph and in turn corresponds
to the discrete version of the advection model. Advection has been used to model
the spread of diseases [6], population migration [7], and supply and demand in
economic systems [8].

The organization of the chapter is as follows. We begin by defining advection
dynamics and characterize its state matrix, dynamics and equilibrium, with a
particular focus on the underlying digraph structure. We then compare and contrast
the advection features with traditional consensus dynamics and illustrate the strong
link between them. Finally, we examine two advection problems.

The advection equation, also known as the transport equation, involves a scalar
concentration u of a material affected by a flow field Ev and is conventionally [5]
given by

@u

@t
D �r � �Evu

�
:

Here r is the divergence operator defined on a continuously differentiable vector
field F D Pk

iD1 Uiai with basis vectors ai and coordinate frame fx1; x2; : : : ; xkg
in R

k , and defined as r � F D Pk
iD1

@Ui
@xi

. The flux of the advection process is
subsequently F D Evu.

In a discrete calculus analogue of the advection equation, we first define an
interaction digraph (directed and weighted) over nodes based on the flow Ev. The flow
vector Ev dictates the interactions between nodes by defining directed edges and edge
weights. We then adopt a discretized view of the flux Evu through an edge i ! j as
consisting of the flow wji prescribed by Ev at the edge modified by the concentration
xi prescribed by u at node i . The flow along edge i ! j is consequently wijxi .t/.
The concentration at node i at time t is denoted xi .t/. The rate of change of the
concentration of node i is then the flow into the node minus the flow out of the
node, i.e.,

Pxi .t/ D �
X

f8j ji!kg
wkixi .t/C

X

f8j jj!ig
wijxj .t/: (1.1)

This problem is well suited to a graph theoretic analysis.
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We can now rewrite our dynamics (1.1) using these digraph concepts with the
flow Ev generating the digraph D

�Ev� D .V;E
�Ev� ;W �Ev�/ as

Pxi .t/ D �Qıixi .t/C
X

.j;i/2E
wijxj .t/: (1.2)

For brevity, we will denote the digraph as D D .V;E;W /. The advection dynamics
can therefore be written as

Px.t/ D �Lout.D/x.t/: (1.3)

We now proceed to examine system characteristics of the advection dynamics
and compare them with consensus dynamics. Specifically, we compare invariance
properties, equilibrium, and flow and stochastic interpretations of the dynamics
where D contains a rooted branching. A road map of these features are depicted
in Fig. 1.1.

1.2 Advection Properties

We will now proceed to examine some of the characteristics of advection and
compare them with the more familiar consensus dynamics. As described in the
Introduction chapter, the node dynamics for consensus can be written as

Pxi .t/ D
X

.j;i/2E
wij
�
xj .t/ � xi .t/

�

D �ıixi .t/C
X

.j;i/2E
wijxj .t/: (1.4)

Fig. 1.1 Relationship between rooted out-branching consensus, rooted in-branching advection
and rooted in/out-branching balanced consensus (in the discretization sense—“perfect” diffusion—
exhibiting properties of both consensus and advection)
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in compact form, the consensus dynamics are

Px.t/ D �Lin.D/x.t/: (1.5)

The first significant difference between the advection and consensus dynamics
is the sum conservation property of advection, stated in the following proposition,
which is generally not a property of directed consensus.

Proposition 1.1. The advection dynamics (1.3) are (state) sum conservative, i.e.,Pn
iD1 xi .t/ D Pn

iD1 xi .0/ for all time t .

Proof. Directly from (1.2),

nX

iD1
Pxi .t/ D

nX

iD1

0

@�
X

.i;k/2E
wkixi .t/C

X

.j;i/2E
wijxj .t/

1

A

D
X

.j;i/2E

��wijxi .t/C wijxi .t/
� D 0:

Therefore,
Pn

iD1 x.t/ is always conserved. ut
An alternate interpretation of the sum conservation property is that the mean of the
states is always constant. Consensus also conserves a weighted sum of the initial
states. This feature will be stated later in Proposition 1.10.

Another difference between these dynamics is that for consensus the interaction
mechanics between neighboring agents where the dynamics of agent i can only
“influence” agent j directly if there is an edge .i; j / in the digraph D. This is
generally not the case for advection. The advantage of this “influence” property
means that the consensus dynamics are only based on relative states between
neighboring agents as represented in (1.4); an absolute reference frame is not
required. Consequently, the consensus dynamics can be driven by sensors that can
only measure relative states, e.g., if xi is the position of agent i , distance sensors
mounted on agent i can measure the relative position to agent j as xj � xi . For
advection, unless ıi D Qıi , the dynamics of agent i can not be represented as purely
a sum of relative states and so agent i must have knowledge of its state in a global
frame.

We hope to demonstrate that for some applications the cost of maintaining an
absolute frame is minimal and worth the benefits of conservation exhibited by the
advection dynamics. The first noteworthy application is for information networks
where an agent’s information state is communicated between agents, e.g., a wireless
sensor network where xi is the i th sensor’s state and agent j transmits its state
to agent i if .i; j / 2 E. Provided agent i knows its weighted “influence” on its
neighbors Qıi , no further information is required for the advection dynamics. The
advection dynamics also has an extension to heterogeneous networks with more
complex agents, able to sense their own state, selecting arbitrary out-degree edge
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weights, and simpler agents without global state and/or Qıi knowledge, selecting
weights such that ıi D Qıi . It will be shown in the following proposition that if the
digraph is balanced, then advection dynamics is the same as consensus dynamics.
For unbalanced digraphs, there can be as many as n � 2 agents in the network with
advection dynamics identical to consensus dynamics requiring only relative state
measurements, with only the remaining two agents with non-identical advection
dynamics requiring knowledge of their state in a global frame.

Proposition 1.2. The advection dynamics (1.3) and consensus dynamics (1.5) are
identical for all initial x.0/ if and only if the underlying digraph D is balanced.

Proof. The dynamics are identical for all initial x.0/ if and only if Lin.D/ D
Lout.D/, if and only if Din.D/ � A .D/ D Dout.G/ � A .D/, if and only if
Din.D/ D Dout.D/, if and only if ıi D Qıi for all i; j 2 V , i.e., D is balanced. ut
An interpretation of advection over balanced digraphs is that the flow divergence at
each node is always zero which reduces the dynamics to diffusion. A consequence
of Proposition 1.2 is that one can consider balanced digraphs as the “perfect”
discretization of the diffusion dynamics with both the sum conservation and the
“influence” property.

1.2.1 Out-Degree Laplacian

Many of the properties of consensus dynamics (1.5) are well understood and it
is useful to relate them to advection dynamics (1.3) using their respective state
matrices Lin.G/ and Lout.G/. We proceed to accomplish this by using the notion
of a reverse digraph Dr D .V;Er ;W r/ formed by reversing the edges of a digraph
D D .V;E;W /, i.e., .i; j / 2 E with wji 2 W ” .j; i/ 2 Er with wij 2 W r .
We then have the following proposition:

Proposition 1.3. For a digraph D and corresponding reverse digraph Dr ,
Lout.D/ D Lin.Dr /T .

Proof. Directly from the definition of the reverse digraph, we note that the out-
degree of node i in D is the in-degree of node i in Dr , consequently Din.D/ D
Dout.Dr /. Further, ŒA .D/�ij D wij D ŒA .Dr /�ji, so A .D/ D A .Dr /T . Therefore,
noting that Din.D/ is a symmetric matrix, Lout.D/ D Dout.D/�A .D/ D Din.Dr /�
A .Dr /T D .Din.Dr / � A .Dr //T D Lin.Dr /T . ut
Using Proposition 1.3, we adapt existing properties of Lin.D/ to properties of
Lin .D/. Let us define a classifications of digraphs which we use in subsequent
propositions.

Definition 1.4. A digraph D is a rooted branching if

(1) it does not contain a directed cycle and
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(2) it has a node vr (root) such that

(a) for every other node v 2 D there is a directed path from vr to v, in which
case it is called a rooted out-branching or

(b) for every other node v 2 D there is a directed path from v to vr , in which
case it is a rooted in-branching.

We now state some known properties of Lin.D/ and equivalent properties of
Lout.D/ for the cases where D contains a rooted out-branching, rooted in branching,
and/or when D is balanced. Let Lin.G/ D PinJin .ƒin/ P

�1
in be the Jordan

decomposition of Lin.D/, Pin a nonsingular matrix with normalized columns, and
ƒin the eigenvalues of Lin.D/. Similarly, Lout.D/ D PoutJout .ƒout/ P

�1
out .

Proposition 1.5 ([6, 9]). The matrix Lin.D/ exhibits the following properties
relating to D:

(a) if D contains a rooted out-branching then

(i) rankLin.D/ D n � 1 with Lin.D/1 D 0 and

(ii) Jin .ƒ/ D

2

6
6
6
6
4

0 � � � 0
::: Jin .�2/

:::
: : : 0

0 � � � 0 Jin .�m/

3

7
7
7
7
5

, where Re .�i / > 0, and Jin .�i / is

the Jordan block associated with eigenvalues �i , i D 2; : : : ; m and �1 D 0.

(b) if G is balanced then

(i) 1TLin.D/ D 0T and
(ii) Lin.D/C Lin.D/T is positive semidefinite.

Corollary 1.6. The matrix Lout.D/ exhibits the following properties relating
to D:

(a) if D contains a rooted in-branching then

(i) rankLout.D/ D n � 1 with 1TLout .D/ D 0T and

(ii) Jout .ƒ/ D

2

6
6
6
6
4

0 � � � 0
::: Jout .�2/

:::
: : : 0

0 � � � 0 Jout .�m/

3

7
7
7
7
5

, where Re .�i / > 0, and Jout .�i / is

the Jordan block associated with eigenvalues �i , i D 2; : : : ; m and �1 D 0.

(b) if D is balanced then

(i) Lout.D/1 D 0 and
(ii) Lout.D/C Lout.D/T is positive semidefinite.

Proof. If D has a rooted out-branching, then Dr has a rooted in-branching.
Applying Proposition 1.3, rankLin.D/ D rankLin.D/T D rankLout.Dr / and
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Lin.D/1 D Lout .Dr /T 1 D .1TLout .Dr //T . Using Proposition 1.5(a.i), then (a.i)
follows. Now, Lin.D/T D .PinJin .ƒ/P

�1
in /

T D .P�1in /
T Jin .ƒ/

T P T
in . Applying

Proposition 1.3, Lout.Dr / D PoutJout .ƒ/P
�1
out has the properties Pout D .P�1in /

T

and Jin .�2/ D Jout .�2/
T and so Re .�i / of Jin .�i / and Jout .�i / for all i D

1; : : : ; m are equal. Using Proposition 1.5(a.ii), (a.ii) follows. If D is balanced, from
Proposition 1.2 Lout.D/ D Lin.D/, thus using Proposition 1.5(b.i) and (b.ii), (b.i)
and (b.ii) follows. ut

1.2.2 Dynamics and Agreement

We now examine the dynamics of (1.3). The equilibrium Qxi for all i 2 V satisfies

Qıi Qxi D
X

.j;i/2E
wij Qxj : (1.6)

The flow interpretation of this equilibrium is that the divergence of flow at every
node goes to zero.

One significant feature of this equilibrium can be found when we define wij D
1

jNout.vi /j for each i 2 V . Therefore, Qıi D 1 and the equilibrium condition is xi D
P

.j;i/2E 1

jNout.vj /jxj for all i 2 V . This equilibrium is exactly the rank metric used

in the PageRank algorithm underlying the Google search engine [10]. The premise
of the ranking is that a node i should be high ranked if (a) the rank metric of nodes
linking to node i are high and (b) should be low if node i has few incoming edges
or if the nodes linking to node i have a low rank metric.

The dynamics of consensus and advection can be represented in closed form
as x.t/ D e�Lin.D/t x.0/ and x.t/ D e�Lout.D/t x.0/, respectively. Many features
of these dynamics are a direct consequence of the characteristics of the matrices
e�Lin.D/t and e�Lout.D/t . These features are later exploited in the following propo-
sition to reason about invariance and convergence properties of these dynamics.

Proposition 1.7 ([6]). For  in .G/ D e�Lin.D/� , where � > 0,

(i)  in .D/ � 0,  in .D/ is a right stochastic matrix, i.e., Œ in .D/�ij � 0 and
 in .D/ 1 D 1, and

(ii) Œ in .D/�ij > 0 ” i D j or there is a directed path from j to i in D.

Corollary 1.8. For  out .D/ D e�Lout.D/ı , where � > 0,

(i)  out .D/ � 0,  out .G/ is a left stochastic matrix, i.e., Œ out .G/�ij � 0 and

1T  out .D/ D 1T , and
(ii) Œ out .D/�ij > 0 ” i D j or there is a directed path from i to j in D.
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Proof. Applying Proposition 1.3,  in .Dr / D e�Lin.Dr /� D e�Lout.D/T � D
�
e�Lout.D/�

�T D  T
out .D/. Using Proposition 1.7, the Corollary follows. ut

The familiar property that a balanced digraph D exhibits a doubly stochastic  in

is a consequence of Proposition 1.7, the related Corollary 1.8, and for balanced D,
Lin.D/ D Lout.D/ (Proposition 1.2). A result of this property is that, for consensus
dynamics over a balanced digraph, the state of the nodes, at any instant in time, is a
convex combination of the values of all the nodes at a previous instant in time.

Proposition 1.9. The advection dynamics are positively invariant over xi � 0 for
all i 2 V , i.e., if xi .0/ � 0 for all i 2 V then xi .t/ � 0 for all i 2 N for all t > 0.

Proof. From Corollary 1.8, e�Lout.D/t is a nonnegative matrix so x.t/ D
e�Lout.D/t x.0/ is nonnegative for xi .0/ � 0 for all i 2 N and all t > 0. ut
The following Proposition 1.10 for the consensus dynamics characterizes the equi-
librium where D contains a rooted out-branching. Equivalently, Proposition 1.11
for the advection dynamics characterizes the equilibrium where D contains a rooted
in-branching.

Proposition 1.10 ([6]). For a digraph D containing a rooted out-branching, the
consensus dynamics (1.5), initialized from x .0/ D x0, satisfies

lim
t!1 x.t/ D 1p

n

�
uT x0

�
1;

where u D Nu= kNuk and NuTLin.D/ D 0. Further, the quantity uT x0 is conserved and
ui > 0 for all i 2 V if and only if D is strongly connected.

Proposition 1.11. For a digraph D containing a rooted in-branching, the advection
dynamics (1.3), initialized from x .0/ D x0, satisfies

lim
t!1 x.t/ D 1p

n

�
1T x0

�
v;

where v D Nv= k Nvk and Lout.D/ Nv D 0: Further, vi > 0 for all i 2 V if and only if
D is strongly connected.

Proof. Noting that x.t/ D e�Lout.D/t x0 and limt!1 e�Lout.D/t D vwT , from the
rank condition and Jordan decomposition in Corollary 1.6, where the first column
of Pout and first row of P�1out are v and wT respectively (i.e., the normalized right and
left eigenvectors associated with the zero eigenvalue). Choosing w D 1p

n
1 from

Corollary 1.6 one has

lim
t!1 x.t/ D

�
1p
n
v1T

�

x0 D 1p
n

�
1T x0

�
v:
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Since D is strongly connected, for every node pair i and j there exists a directed
path in D, and so for every node pair j and i there exists a reverse directed path.
Consequently, Dr is also strongly connected. From Proposition 1.10, the left null
space u of Lin .Dr / has all positive elements, therefore, from Proposition 1.3, since
Lout.D/ D Lin .Dr /T the right null space v of Lout.D/ has all positive elements.ut
The following proposition relating to the equilibrium state of the consensus
dynamics over a balanced, rooted in-branching D is a consequence of Proposi-
tions 1.10 and 1.11, the fact that the consensus and advection dynamics are identical
(Proposition 1.2), and that if a digraph is balanced and has a rooted in-branching
then it also has a rooted out-branching.

Proposition 1.12 ([6]). The consensus dynamics (and hence advection dynamics)
over a digraph D reaches x.t/ D 1

n
11T x0 for every initial condition if and only if D

is balanced and contains a rooted in-branching (and hence a rooted out-branching).

The results of this section are summarized in Fig. 1.1 which is structured to highlight
the differences between the two sets of dynamics over rooted in/out-branching
digraphs and the culmination of these features in balanced digraphs.

1.3 Examples

Next we showcase two applications of advection dynamics to networked, multi-
agent systems. We focus on two examples that of formation control and a sensor
coverage problem.

1.3.1 Example 1: Formation Control

The formation control problem where multi-agent teams form geometric patterns is
a popular application for consensus [6]. With consensus, the formation is acquired
by reaching a consensus on an origin in space and then each agent is coded with
a reference position relative to this origin. We now proceed to perform the same
task using advection where the geometry of the configuration is controlled by the
weights of the edges.

We consider a swarm of n vehicles moving along the x-axis with velocity 	 2 R.
The objective is for the swarm to move in formation with a predefined shape. We
assume each vehicle is aware of its global position and that each vehicle is able to
measure the relative position to one other predesignated vehicle, thus acquiring its
global position.

Let Nx.t/ 2 R
n and Ny.t/ 2 R

n be the position of vehicles at time t along the x
and y axes, respectively. The origin of the coordinate system is selected such that
1T Nxi .0/ ¤ 0 and 1T Nyi .0/ ¤ 0. The advection-based dynamics of the vehicles are
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Px.t/ D �Lout.Dx/x.t/

Py.t/ D �Lout.Dy/y.t/; (1.7)

where x.t/ WD Nx.t/ � 	t1 and y.t/ WD Ny.t/. The digraphs Dx D .V;E;Wx/

and Dy D �
V;E;Wy

�
are directed cycle digraphs1 with positive weights

n
wxi;j

o
2

Wx and
n
wyi;j

o
2 Wy , respectively. The edge set E corresponds to the inter-agent

sensing where if vehicle i can measure the position of vehicle j then there is an
edge fi; j g 2 E. From (1.6), for the advection dynamics with underlying digraph
Dx the equilibrium .x; y/ D . Qx; Qy/ is Qxi D ˛x=wxi;iC1 for all i D 1; : : : ; n � 1 and

Qxn D ˛x=wxn;1 where ˛x D 1T x0=
P
fj;ig2E

	
1=wxi;j



. As all weights are positive

and xi .0/ > 0 then ˛x > 0. Similarly, for equilibrium Qy , constant ˛y > 0 and
corresponding to digraph Dy . Therefore, the weight selection completely dictates
the shape of the equilibrium with the scaling of the shape is dictated by ˛x and ˛y .
From Proposition 1.1, the sum of states is always constant and so the centroid of the
formation is

�
1
n
1T x.0/C vt; 1

n
1T y.0/

�
.

We apply this advection formation technique to 6 vehicles moving along
the x axis with velocity 	 D 2m/s and a required constellation with shape
defined in an arbitrary reference frame as xs D .1; 2; 1; 3; 2; 1/T and ys D
.1; 2; 0; 0;�2;�1/T =p2; see Fig. 1.2 for shape. Let

�
wx12 wx23 wx34 wx45 wx56 wx61

� D �
1 1
2
1 1
3
1
2
1
�

and

�
wy12 wy23 wy34 wy45 wy56 wy61

� D p
2
�
1 1=2 0 0 �1=2 �1 �C 2;

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

1
2

3 4
5

6

Fig. 1.2 Advection formation control with initial random condition and position after 8 s marked
with circles

1A directed cycle digraph D D .V;E;W / is an n node digraph with fi C 1; ig 2 E and edge
weight wi;iC1 2 W for i D 1; : : : ; n� 1 as well as f1; ng 2 E with edge weight wn;1 2 W .
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where this weight selection was chosen for ease of demonstration and is not the
only selection that will satisfy a certain formation geometry. The vehicle trajectory
initialized randomly in the first quadrant is displayed in Fig. 1.2 with the desired
final formation achieved.

1.3.2 Example 2: Sensor Network

We consider a sensor surveillance task, operating in a land corridor of length dw,
where the sensors are directional with a narrow cone of observation. A set of n
sensors are randomly placed pointing west in the corridor, which is oriented east
to west. The objective is to acquire good coverage of the corridor while satisfying
a total sensor power constraint by trading power between neighboring sensors. Let
xi .t/ � 0 be the fraction of total network power and zi .t / � 0 be the coverage
of sensor i at time t . We utilize a coverage model of the form zi .t / D ˇxi .t/

(single-ray range sensor or wedge-shaped sensor with fixed arc-length) for some
ˇ > 02. We subsequently require that the total power of the sensor network is
constant, i.e.,

P
xi .t/ D 1 for all t , while maintaining good coverage. We will now

discuss our measure of “good coverage,” which aims to minimize gaps between
sensor observation areas along the east–west axis.

Assuming the minimal power is available to guarantee no gaps between sensors
areas, the corresponding optimal power for each sensor i would be x�i D 
i

dw
, where


i is the distance to the closest sensor to the east of sensor i . Consider a local area
around a point p 2 R

2 in the corridor, with a set uC of ıCi sensors west of p,
and a set u� of ı�i sensors east of p. Our local coverage cost function is ci .p/ Dˇ
ˇP

k2uC zk �P
k2u� zk

ˇ
ˇ. The cost function penalizes nonuniform coverage east and

west of point p. For an infinite corridor, x� D argminx
´ dw

0
ci .�; 0/ d�. If the

coverage for all k 2 u� is approximately equal to z�, ci D ˇ
ˇ
P

k2uC zk � ı�i z�
ˇ
ˇ.

Ideally then,

z� D 1

ı�i

X

k2uC
zk; (1.8)

and so if we were to place a sensor i at location p then we assume for “good
coverage” zi � z�. An interpretation of this equilibrium is that coverage of an area
west of the sensor i which is

P
k2uC Qzk should be maintained in an equal area east

of sensor i where there are already located ı�i sensors, so sensor i is responsible for
approximately 1

ı�
i

of the area east of p, i.e., 1
ı�
i

P
k2uC Qzk .

Let the position of sensor i be .pi ; qi / 2 R
2 (where the x axis points east

and the y axis north). We assume, since the sensors are in a land corridor, that

2This work has also been extended to zi .t / D ˇxi .t/
p for p > 0.
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maxi2N .qi / � mini2N .qi / is small, and subsequently, if the communication range
on sensors is dc > 0; dc 2 R, that sensor i is in communication range of sensor
j if

ˇ
ˇpi � pj

ˇ
ˇ � dc . Additionally we assume that if sensors are sufficiently close

to the east or west end of the corridor, communications can be relayed between
them via some infrastructure at the ends of the corridor. A communication digraph
D D .V;E;W / is defined such that if sensor j is within communication range of
sensor i and pj > pi then .i; j / 2 E with the exception of the sensors at the ends of
the corridor where if pj �pi � dw �dc then .j; i/ 2 E. The digraph is unweighted
with wij D 1 for all .j; i/ 2 E.

Assuming dc is large enough to form a rooted in-branching, and Qıi > 0 for all
i 2 V , then D will be strongly connected. Applying the advection dynamics (1.3),
our equilibrium power Qx will satisfy

Qxi D 1

Qıi
X

.k;i/2E
Qxk;

and Qxi > 0 for all i 2 V if
P
xi .0/ D 1T x.0/ > 0 (Proposition 1.11). The

corresponding equilibrium coverage Qz is Qzi D 1
ıi

P
.k;i/2E Qzk for all i 2 V . As

previously discussed, this is our condition (1.8) for “good coverage” whereby the
coverage of the area dc west of the sensor maintained dc east of sensor i . An
interesting aspect of this formulation is that the unweighted network topology
is being exploited to infer inter-sensor distance information and hence coverage
density characteristics.

We assume that all sensors are initialized with a feasible power, i.e.,Pn
iD1 xi .0/ D 1 and xi .0/ � 0 for all i 2 V . From Proposition 1.1, the total power

of the sensor network will be conserved, i.e.,
Pn

iD1 xi .t/ D 1 for all time t . As
advection is positively invariant over the nonnegative xi .t/, from Proposition 1.9,
the power will always be nonnegative, i.e., xi .t/ � 0, for all i 2 V .

We apply this approach to a dw D 40m long land corridor containing 40
randomly placed sensors. The initial power fraction was assigned randomly and
dc D 1:75m dictates the topology of the flow digraph. The final equilibrium
power Qx.t/ overlayed on the digraph D is displayed in Fig. 1.3. Figure 1.4 depicts
the observation cones for (a) the optimal power usage from all sensors, (b) the
equilibrium power usage obtained using an arc-length fixed to that of the corridor’s
width, and (c) a uniform power usage for all sensors. We find that the minimum
power requirement by the advection power distribution is within 1.25 times of the
optimal power. This is compared to a uniform sensor power which required 2.5
times the optimal power.
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Fig. 1.3 Sensor digraph with gray scale gradations corresponding to equilibrium power x.t/.
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Fig. 1.4 Optimal, advection dynamics and uniform sensor coverage of the land corridor. The
shaded bands indicate areas not covered by the sensors

1.4 Remarks

This chapter presents an advection-based approach to multi-agent cooperative
control. We compare the advection dynamics to the popular consensus dynamics
but also make comments on novel properties that are only held by advection. One
property of particular significance is the conservation of the sum of the states. We
demonstrate the utility of this property in such applications as sensor coverage
where power can be traded through the network to optimize coverage. Because
of the parallels with consensus dynamics, there is a large area of future advection



16 1 Advection on Graphs

research involving the application of advection to problems traditionally solved by
consensus. One application of particular interest is the introduction of control nodes,
which do not conform to advection, into an advection-based network.
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Chapter 2
Beyond Linear Protocols

Abstract This chapter examines the set of equilibria and asymptotic stability of
a large class of dynamical networks with non-identical nonlinear node dynamics.
The interconnection dynamics are defined by M-matrices. An example of such a
class of systems include nonlinear consensus protocols as well as other distributed
protocols of interest in cooperative control and distributed decision-making. We
discuss the model’s relationship to the network topology, investigate the properties
of its equilibria, and provide conditions for convergence to the set of equilibria. We
also provide examples of the versatility of this model in the context of a sensor
coverage problem. The model is extended to incorporate additional nonlinearities;
an application for this latter model is also provided in the realm of neural networks.

2.1 Introduction

Stability is an important requirement for networked systems, as it is for dynamic
systems in general. Examining stability for nonlinear non-networked systems is
generally a challenging task with Lyapunov stability theory used as a common tool.
A further challenge is that the connection of stable, isolated dynamics does not
guarantee network stability with node interactions able to introduce instabilities.
The consequence of these challenges is that proving stability of networked systems
often involves searching for Lyapunov candidate by trial-and-error. In this chapter,
we provide a class of nonlinear networks with interconnection dynamics defined by
M-matrices that exhibit asymptotic stability.

M-matrices are used to model synchronization in networks [1], population
migration [2], Markov processes, and supply and demand in economic systems [3].
M-matrices also appear in the discretization of differential operators. An example
is the discretization of diffusion [1] and advection [4] dynamics which generate
the in-degree and out-degree Laplacian matrix, respectively, and both of which are
M-matrices. The in-degree Laplacian matrix forms the basis of consensus models
which are effective for distributed information-sharing and control of networked,
multi-agent systems in settings such as multi-vehicle control, formation control,
swarming, and distributed estimation; see, for example, [5, 6].

The novelty of our work in the field of nonlinear networks lies in its gener-
ality. Nonlinear dynamics over networks has been a largely unexplored research
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18 2 Beyond Linear Protocols

area; [7] provides a good summary of the field. Many nonlinear network results are
quite conservative such as assuming uniform node dynamics, undirected network
structure, and restrictive classes of nonlinear dynamics. Our results are over non-
identical nodes, strongly connected directed network topologies, and have mild
assumptions on the nonlinear dynamics. We believe that these generalizations are
of special interest to the area of nonlinear consensus models. Not surprisingly,
there is a great focus in nonlinear network research on globally asymptotically
stable equilibrium. However, in many applications, asymptotic convergence to an
equilibria is of interest, such as Laplacian dynamics [5]. It is with this in mind that
we examine this more general type of convergence.

Araki and Kondo [8] decomposed networks into subnetworks obtaining Lya-
punov functions for these subsystems, and under DC gain conditions, showed
asymptotic stability of the nonlinear system. In [7], the authors provide sufficient
conditions for asymptotic convergence over a large class of nonlinear systems but
the application of the chapter’s results does require the construction of Lyapunov
functions. Xiang and Chen [9] provide a passivity measure indicating the amount of
effort required to stabilize a node. The measure is used to form a network stability
condition that guarantees asymptotic stability.

Recently, there has been interest in nonlinear consensus, a subclass of nonlinear
dynamics over networks. Cortes [10] proposed nonlinear distributed algorithms over
smooth functions that achieve consensus, with many results assuming balanced
digraphs. In [11], the authors examined convergence to equilibria, referred to as
semistability, for nonlinear consensus over balanced digraphs. Convergence of
nonlinear consensus algorithms to a single point was examined in [12] using a
contracting property. Yu et al. [13] examined linear consensus with an additional
nonlinear term solely dependent on the agent’s state and identical over all agents.
We examine a similar model, in the extension component of this chapter, but with
nonlinear consensus and the addition of non-identical nonlinear terms.

The organization of the chapter is as follows. We begin by defining the class
of nonlinear network models and related background. We provide digraph related
features of the network dynamics. The left and right null-spaces of M-matrices are
used to characterize the equilibria of the model as well as an invariance property
of the system. An asymptotic convergence result is then presented and justified
by exploiting properties of M-matrices. Two examples of the network model are
investigated: a social networking example based on opinion dynamics inspired by
a similar example in [1] with nonlinear non-differentiable dynamics, followed by a
sensor network problem based on the model in [4]. Finally, the model is extended
to incorporate individual node dynamics independent of the network structure. An
illuminating neural network example [8] is provided which demonstrates the utility
of this extended model.
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2.2 Model

We consider a multi-agent network of n coupled nodes with each nodes’ state
xi .t/ 2 R at time t . The system is described by the differential equations

Pxi .t/ D �aiifi .xi .t//C
X

j¤i
aijfj

�
xj .t/

�
; i D 1; : : : ; n;

where fi W R ! R is a scalar-valued function representing the i th node dynamics,
and aij 2 R is nonnegative for all i; j 2 f1; : : : ; ng. In a more compact form, the
dynamics can be written as

Px D �Af .x/; (2.1)

where x D Œx1; : : : ; xn�
T 2 R

n; f .x/ D Œf1.x1/; : : : ; fn .xn/�
T 2 R

n and the
matrix A is defined as

A D

2

6
6
6
6
4

a11 �a12 � � � �a1n
�a21 a22 �a23

:::
:::

: : : �an�1;n
�an1 � � � �an;n�1 ann

3

7
7
7
7
5
:

In this way, the A matrix codifies the nodes’ interconnections. We define the class
of matrices of this form as Zn D ˚

A D �
aij
� 2 R

n�n W aii � 0; aij � 0; i ¤ j
�
.

We make the assumption that f .x/ is continuous and
´ xi
0
fi .y/ dy is radially

unbounded, i.e., (
´ xi
0
fi .y/ dy ! 1 as jxi j ! 1), for i D 1; : : : ; n. The class

of functions that satisfies this requirement we denote by F0. Further, we assume that
A is a member of the subclass of matrices known as irreducible M-matrices denoted
by M0. These terms are defined as follows:

Definition 2.1 ([3]). A matrix A 2 Zn is called a nonsingular (singular) M-matrix
if the real part of every eigenvalue of A is positive (nonnegative).

Definition 2.2 ([14]). A matrix A 2 R
n�n is reducible if and only if, for some

permutation matrix P , the matrix PTAP is block upper triangular. A matrix that is
not reducible is irreducible.

M-matrices appear in a myriad of problems including biological, physical, and
social sciences; for example, see [15, 16]. One of the famous matrices is the in-
degree Laplacian matrix used in consensus (or synchronization) dynamics. An
attraction of the Laplacian-based dynamics is the structure of the networks can be
coded into the in-degree Laplacian matrix, which will be defined presently, and
consequently graph-theoretic results can be applied to the dynamic models. As for
the in-degree Laplacian matrix, the underlying coupling network between agents in
the network is encoded in the M-matrix A.
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The network topology of model (2.1) can be formed using a digraph realization of
A. The corresponding digraph realization of matrix A is a digraph D where fi; j g 2
E if aji > 0 and i ¤ j with corresponding weight aji D wji 2 W . Because of the
link between the off-diagonals of matrix A and its digraph realization D, we will
often denote the matrix A as A .D/ to emphasize the underlying digraph.

As the diagonal of the M-matrix is ignored in the digraph realization there is
more than one M-matrix for any given digraph. Consequently, when provided with
the digraph G and the diagonal of A .D/ the M-matrix A .D/ is fully defined.
The in-degree Laplacian matrix Lin .D/ and out-degree Laplacian matrix Lout .D/
have the same digraph realization D but differ in their diagonals defined with
ŒLin .D/�ii D P

j¤i aij and ŒLout .D/�ii D P
j¤i aji for all i D 1; : : : ; n. These

M-matrices exhibit the special conditions Lin .D/ 1 D 0 and 1TLout .D/ D 0T .
The related digraph D of an M-matrix A .D/ can be used to extract matrix

properties of A .D/, even though there is not a one-to-one correspondence between
A .D/ and D. If the digraph D is undirected, then A .D/ is symmetric. The
irreducibility of a matrix A can be established using the digraph realization of A.
This result is summarized in the following proposition.

Proposition 2.3 ([16]). A matrix A .D/ is irreducible if and only if D, the digraph
realization of A, is strongly connected. A digraph is strongly connected if between
every pair of distinct nodes there exists a directed path.

We give a brief note that the property AC AT < 0, which is useful for proving
asymptotic convergence using Lyapunov theory, is in general not exhibited by the
family of irreducible M-matrices. One of the attractions of irreducible M-matrices
is that they fit into a special class of diagonally semi-stable matrices that will be
exploited in the core result of this chapter (Lemma 2.11). This property is formally
stated in the following.

Proposition 2.4 ([3]). If A is a irreducible M-matrix, then there exists a positive
diagonal matrix D 2 R

n�n such that

DA C ATD < 0:

Further, if A is nonsingular DA C ATD � 0:

We will not include a repetition of the proof by [3] in this chapter but we will
re-derive this proposition for the special case where the M-matrix is the in-degree
Laplacian matrix. We will deviate from the traditional derivation and use a graph-
based proof to illustrate the utility of the digraph realization of M-matrices.

Proposition 2.5. For a strongly connected digraph D and vTLin .D/ D 0,
DLin .D/ D Lin. QD/ for some balanced digraph QD where D is a positive diagonal
matrix with ŒD�ii D vi for i D 1; : : : ; n and DLin .D/C Lin .D/T D � 0.
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Proof. It has previously been shown in [17] that the eigenvector v D
Œv1; v2; : : : ; vn�

T can be found by examining the digraph D D .V;E;W /

specifically

vi D
X

T2Ti

Y

ekj2T
wjk; i D 1; : : : ; n

where Ti is the family of rooted directed spanning trees over D with node i as the
root, and eij is an edge in a given tree T with weight wji. As D is strongly connected,
Ti is nonempty and so vi > 0, for all i .

Consider a new digraph formed from the old with QD D �
V;E; QW �

where QW D
˚ Qwjk

�
and Qwjk D vjwjk then Lin

� QD� D DLin .D/. Further, for the left eigenvector
Qv corresponding to the zero eigenvalue has

Qvi D
X

T2Ti

Y

ekj2T
Qwjk

D
X

T2Ti

Y

ekj2T
vjwjk

D
0

@
X

T2Ti

Y

ekj2T
wjk

1

A
Y

j¤i
vj

D vi
Y

j¤i
vj

D
nY

iD1
vj :

Here, Qvi D Qvj for all i; j 2 f1; : : : ; ng, thus Qv D �Qn
iD1 vj

�
1, or normalized

Qv D 1
n
1. Therefore, as the left eigenvector corresponding to the zero eigenvalue is

1 and similarly the right eigenvector is 1 (as Lin .D/ is an in-degree Laplacian),
then QD is a balanced digraph [1]. A property of balanced digraphs is that Lin. QD/C
Lin. QD/T � 0, hence DLin.D/C Lin.D/TD � 0. ut
A corollary of Proposition 2.5 which is implicit within the Proposition’s proof is as
follows:

Corollary 2.6. The edges of a strongly connected digraph can always be re-
weighted to achieve a balanced digraph.

The right and left null-spaces of an irreducible M-matrix play an important role in
the dynamics of model (2.1) in particular in relation to the model’s equilibria. The
following proposition will be exploited shortly:
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Proposition 2.7 ([3]). For A 2 M0, A is invertible or, the rank of A is n � 1, in
which case every element in the right and left eigenvector corresponding to the zero
eigenvalue are nonzero, and share the same sign.

We will now investigate the equilibria and an invariant property of model (2.1),
present the main convergence proof of the chapter, and provide examples.

2.3 Equilibria and Convergence

Model (2.1), under the assumptions f .�/ 2 F0 and A 2 M0, has in general many
equilibria which we define by the set

A D fx 2 R
njAf .x/ D 0g :

Consequently, the set A is completely defined by the properties of A and f .�/. If A
is composed of isolated equilibria and x.t/ ! A, then x.t/ will converge to some
xe 2 A.

From Proposition 2.7, A is nonsingular, or singular with rank n � 1, we will
proceed to investigate A for each of these cases.

For the case where A is nonsingular then this set becomes A D fx 2 R
nj

f .x/ D 0g : As f .x/ is continuous, this implies that an equilibrium xe 2 A
is isolated if and only if, for some ball around Œxe�i , fi .xi / D 0 implies that
xi D Œxe�i . If f .x/ is differentiable at xe , then if d

dxi
fi .Œxe�i / ¤ 0 for i D 1; : : : ; n,

there exists the aforementioned ball around xi for i D 1; : : : ; n,. Therefore the
equilibrium is isolated.

WhenA is singular there exists a right and left eigenvector corresponding to zero,
v and w, respectively, such that wT A D 0T and Av D 0. Using this fact, we can
define a conserved quantity for the model as follows:

Proposition 2.8. Let w be the left eigenvector of singularA 2 M0 corresponding to
the zero eigenvalue. Then the quantity wT x.t/ remain invariant under model (2.1).

Proof. Since wT A D 0; one has

d

dt

˚
wT x.t/

� D �wTAf .x/ D 0:

ut
For special matrices like the out-degree Laplacian matrix Lout .D/, this is a familiar
property with 1TLout .D/ D 0, the conserved quantity is

Pn
iD1 xi .t/.

The eigenvector v provides an alternate definition of the set of equilibria,
specifically

A D fx 2 R
njf .x/ D ˇv; ˇ 2 Rg : (2.2)
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Proposition 2.9. The equilibrium xe 2 A, corresponding to a singular A, is
isolated if f .x/ is differentiable at xe ,

d
dxi
fi .Œxe�i / ¤ 0 for all i D 1; : : : ; n, and

nX

iD1

viwi
d

dxi
fi .Œxe�i /

¤ 0;

where v and w are the right and left eigenvectors of A corresponding to the zero
eigenvalue.

Proof. Consider the function

g .x; ˇ/ D Œg1 .x1; ˇ/ ; : : : ; gn .xn; ˇ/ ; gnC1 .x/�T ;

gi .xi ; ˇ/ D fi .xi / � viˇ; i D 1; : : : ; n

and

gnC1 .x/ D wT .x � x0/ ;

where ˇ 2 R, and x0 is the initial condition. If xe is an equilibrium, then for some
ˇe , g .xe; ˇe/ D 0.

As f .x/ is differentiable at xe then g .xe; ˇe/ is differentiable at .xe; ˇe/.
Calculating the Jacobian of g .�/ about .xe; ˇe/,

rg .x; ˇ/ D

2

6
6
6
6
4

d
dx1
g1 .x1; ˇ/ 0 0 d

dˇ
g1 .x1; ˇ/

0
: : : 0

:::

0 0 d
dxn
gn .xn; ˇ/

d
dˇ
gn .xn; ˇ/

d
dx1
gnC1 .x/ � � � d

dxn
gnC1 .x/ 0

3

7
7
7
7
5

D

2

6
6
6
6
4

d
dx1
f1 .x1/ 0 0 v1

0
: : : 0

:::

0 0 d
dxn
fn .xn/ vn

w1 � � � wn 0

3

7
7
7
7
5
:

The determinant of the Jacobian is

det .rg .x; ˇ// D �
nX

iD1
viwi

0

@
Y

j¤i

d

dxj
fj
�
xj
�
1

A :
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From the condition d
dxi
fi .Œxe�i / ¤ 0 for all i D 1; : : : ; n,

det .rg .xe; ˇe// D �
 

nY

iD1

d

dxi
fi .Œxe�i /

!
nX

iD1

viwi
d

dxi
fi .Œxe�i /

:

Consequently, if
Pn

iD1 viwi = d
dxi
fi .Œxe�i / ¤ 0, then det .rg .xe; ˇe// ¤ 0 . By the

Inverse Mapping Theorem [18], when det .rg .xe; ˇe// ¤ 0 then there exists a
ball around .xe; ˇe/ such that g .x; ˇ/ is one-to-one. In other words, there exists a
region about .xe; ˇe/ such that there are no other points satisfying g .x; ˇ/ D 0, i.e.,
no other equilibrium points.

Hence, xe is an isolated equilibrium. ut
From Proposition 2.9 and the fact that viwi is nonzero and has the same sign for all
i D 1; : : : ; n (Proposition 2.7), we have the following:

Corollary 2.10. The equilibrium xe 2 A, corresponding to a singularA, is isolated
if f .x/ is differentiable at xe and d

dxi
fi .Œxe�i / > 0 for all i D 1; : : : ; n.

We now provide the main result of the chapter which describes the asymptotic
convergence of the model.

Lemma 2.11. Under the assumption that fi .x/ 2 F0 and A 2 M0, model (2.1) has
x.t/ ! A for all initial conditions. If A is composed of isolated equilibria, then
x.t/ ! xe for some xe 2 A.

Proof. As A 2 M0 then from Proposition 2.4 there exists a positive diagonal matrix
D with DACATD � 0. Consider the Lyapunov function V.x/ W Rn ! R defined by

V.x/ D
nX

iD1
ŒD�ii

ˆ xi

0

fi .y/ dy;

which is continuous, differentiable, and radially unbounded.
Taking the derivative of V.x/,

PV .x/ D
nX

iD1
ŒD�ii fi .xi / Pxi

D f .x/TD Px
D �f .x/TDAf .x/

D �1
2
f .x/TDAf .x/ � 1

2
f .x/T ATDf .x/

D �1
2
f .x/T

�
DA C ATD

�
f .x/:
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Now, from the property DA C ATD � 0 , PV .x/ � 0 where PV .x/ D 0 for the
set A. Since V.x/ is radially unbounded and PV .x/ � 0 for all x, the set � D
.x 2 R

njV.x/ � c/ is a compact, positively invariant set. From LaSalle’s theorem
[19], we conclude that every trajectory starting in � asymptotically converges to
the set A as t ! 1. Moreover since V.x/ is radially unbounded, the conclusion is
global, as for every x.0/ there exists a c such that x.0/ 2 �. Further, if all equilibria
are isolated, then the trajectory must approach one of these equilibria. ut
Next we showcase two examples of networked, multi-agent systems which fit under
the umbrella of model (2.1). We focus on two examples: an opinion consensus
problem and a sensor coverage problem.

2.3.1 Example 1: Opinion Consensus Dynamics

Consider a dynamical social model over a network, similar to the model in [1].
The i th member’s private belief of an issue at time t is represented by xi .t/ 2 R

with xi .t/ � 0 (xi .t/ < 0) corresponding to a positive (negative) opinion on the
issue. The conviction of the members’ opinion is represented by the deviation of
his/her social belief from zero, i.e.,jxi .t/j. The member will cast a public binary
vote fi .xi / 2 f�1; 1g on a ballot based on how supportive the ballot is of their
private belief and a bias term represented through the finite variable �i 2 R. We
define this function as

fi .xi / D
(
1 if xi .t/ � ��i
�1 otherwise:

Member beliefs are influenced by observing the votes of other members. The n
members of the group are represented by nodes in an interaction digraph D D
.V;E;W / where an edge fj; ig 2 E with weighting wij 2 W corresponds to the
impact of member j ’s vote on member i . The interaction dynamics are defined by

Pxi D
X

fj;ig2E
wij
�
fj .xj / � fi .xi /

�
; i D 1; : : : ; n;

or in matrix form,

Px D �Lin .D/ f .x/ (2.3)

where f .x/ D Œf1 .x1/ ; : : : ; fn .xn/�
T : As f .x/ is not continuous Lemma 2.11

can not directly be used. We consequently consider an approximation of fi .xi /
defined as

hi .xi / D

8
ˆ̂
<

ˆ̂
:

1 if xi � ��i
xi=
 C �i=
 C 1 if � �i � 
=2 < xi < ��i
�1 otherwise:
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Fig. 2.1 Member interaction
digraph with an arrow from i

to j representing an edge
.i; j / and corresponding edge
weights wji marked on each
edge
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We observe that as 
 ! 0 then hi .xi / ! fi .xi /. Further, h .x/ D
Œh1 .x1/ ; : : : ; hn .xn/�

T is continuous and

ˆ xi

0

hi .y/ dy D

8
ˆ̂
<

ˆ̂
:

xi if xi � ��i
x2i =2
 C �ixi=
 C xi if � �i � 
=2 < xi < ��i
�xi otherwise;

so h .�/ 2 F0 as
´ xi
0
hi .y/ dy is radially unbounded. As 
 ! 0, the equilibria

set is A D fx 2 R
njf .x/ D f�1; 1gg D fx � ��gS fx < ��g ; where � D

f�1; : : : ; �ngT : The equilibria A corresponds to all members displaying the same
voting preference. Therefore, from Lemma 2.11, if D is strongly connected then,
as 
 ! 0, the social model (2.3) has x.t/ ! A for all initial conditions. In other
words, the members will eventually reach a consensus on public voting preference.

We consider a ten member, strongly connected interaction digraph D, depicted
in Fig. 2.1, and apply model (2.3) with randomly chosen variables x.0/ 2 .�1; 1/,
� 2 .�1; 1/, and wij 2 .0; 1� for all fj; ig 2 E. The resulting x � � and f .x/
trajectories are displayed in Fig. 2.2. We observe initially the vote was split with six
members for and four members against the ballot. Eventually all members converge
to a consensus against the ballot.

2.3.2 Example 2: Sensor Network

We revisit the sensor surveillance task of Sect. 1.3.2 and consider a new coverage
model of the form zi .t / D ˇ

p
xi .t/ (wedge-shaped sensor) for some ˇ > 0. Using
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Fig. 2.2 Private belief without bias dynamics x � � and public ballot votes f .x/ over time

the same measure of “good coverage”, which aims to minimize gaps between sensor
observation areas along the east–west axis and state the derived requirement as

Qzi D 1

ıi

X

.k;i/2E
Qzk; for i D 1; : : : ; n; (2.4)

where ıi > 0 in the number of in-degree neighbors of i and E is the edges of some
digraph G. Using the digraph G defined in Sect. 1.3.2, the selected dynamic model
is the out-degree Laplacian dynamics (or advection dynamics)

Px D �Lout .D/ f .x/; (2.5)

where f .x/ D Œf1.x1/; : : : ; fn.xn/�
T ; fi .xi / D p

xi for xi � 0 and fi .xi / D
0 otherwise. The choice of this dynamics model is justified by the dynamics’
equilibrium satisfying

p
xi D 1

ıi

X

.k;i/2E

p
xk; for i D 1; : : : ; n; (2.6)

which is equivalent to (2.4). From Proposition 2.7 and the fact 1T Lout .G/ D 0T ,
then

P
xi .0/ D 1T x.0/. There is exactly one equilibrium satisfying condition (2.6)

when 1T x.0/ > 0, specifically xe where Œxe�i D 1
n
1T x.0/v2i and v is the normalized

right eigenvector of Lout .D/ corresponding to the zero eigenvalue. As f .x/ 2 F0
and Lout .D/ 2 M0 then by Lemma 2.11, the dynamics (2.5) will converge to xe .
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Fig. 2.4 Optimal, advection dynamics and uniform sensor coverage of the land corridor. The dark
(red) shaded bands indicate areas not covered by any sensors, and light (blue) shaded bands indicate
areas redundantly covered by multiple sensors

The same initial conditions were applied as in Sect. 1.3.2. The final equilibrium
power xe overlaid on the digraph G is displayed in Fig. 2.3. Figure 2.4 depicts the
observation cones and uncovered and redundantly covered sensor areas for (a) the
optimal power usage from all sensors (providing sensor coverage sufficient to cover
the east–west axis without redundant coverage), (b) the equilibrium power usage
obtained using the advection protocol, and (c) a uniform power usage for all sensors.
We find that the minimum power requirement by the advection equilibrium power
to cover the corridor is within 1.25 times of the optimal power.

We now extend model (2.1) to incorporate additional terms pertaining to the
individual node’s dynamics separate from the network dynamics.
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2.4 Extension

Consider a modification of model (2.1) via the addition of a nonlinear term to each
agent that is only dependent on that agent’s state. This term represents the node’s
dynamics independent of network interactions. The model then becomes

Px D �g.x/ � Af .x/; (2.7)

where g.x/ D Œg1.x1/; : : : ; gn .xn/�
T 2 R

n and gi W R ! R is a scalar-valued
function. We assume that fi .xi /gi .xi / � 0. The class of functions that satisfy this
requirement we denote by g .�/ 2 G0 .f .�//. The equilibria set for model (2.1) is

B D fx 2 R
njg.x/C Af .x/ D 0g :

We now provide an equivalent asymptotic convergence property to Lemma 2.11.

Lemma 2.12. Under the assumption that f .x/ 2 F0 , g.x/ 2 G0 .f .�// and A 2
M0, model (2.1) has x.t/ ! B for all initial conditions. If B is composed of isolated
equilibria, then x.t/ ! xe for some xe 2 B.

Proof. Using the same Lyapunov function V.x/ as in the proof of Lemma 2.11 and
taking the derivative of V.x/ we have

PV .x/ D
nX

iD1
ŒD�ii fi .xi / Pxi

D f .x/TD Px
D �f .x/TD .Af .x/C g.x//

D �f .x/TDAf .x/ � f .x/TDg.x/

D �1
2
f .x/T

�
DA C ATD

�
f .x/ �

nX

iD1
ŒD�ii fi .xi /gi .xi /

Now, from the property DA C ATD � 0 and fi .xi /gi .xi / � 0 which impliesPn
iD1 ŒD�ii fi .xi /gi .xi / � 0, PV .x/ � 0 where PV .x/ D 0 for the set B. As in the

proof for Lemma 2.11, the set � D .x 2 R
njV.x/ � c/ is compact and positively

invariant. From LaSalle’s theorem [19], we conclude that every trajectory starting in
� asymptotically converges to the set B as t ! 1. Moreover since V.x/ is radially
unbounded, the conclusion is global, as for every x.0/ there exists a c such that
x.0/ 2 �. Further, if all equilibria are isolated, then the trajectory must approaches
one of these equilibria. ut
The additive neural network is an example of the model relevant to Lemma 2.12 and
will be described in the following section.
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2.4.1 Example 3: Neural Network

We consider a neural network described by the model

Px D �Bx � Af .x/; (2.8)

where B 2 R
n�n is a positive diagonal matrix, A 2 M0, f .x/ is a differential

function with fi .0/ D 0, 0 < d
dxi
fi .xi / � ˇ. Consequently, as f .x/ is an

increasing function f .x/ 2 F0. If we let g.x/ D Bx where gi .xi / D ŒB�ii xi ,
then as xi � 0 (xi � 0) implies fi .xi / � 0 and gi .xi / � 0 ( fi .xi / � 0 and
gi .xi / � 0), then gi .xi / f .xi / � 0. Hence, g .x/ 2 G0 .f .�//. Model (2.8)
corresponds to an additive neural network [20]. Here, xi .t/ is the state of a neuron,
� ŒB�ii xi is a dampening term, fi .xi / is its output state which effects the dynamics
of other neurons in the network via the weighting matrix A. There is a great interest
establishing the global asymptotic stability of such systems with application to
optimization and cognitive problems [20–22].

It was shown in [20] that x D 0 is a unique equilibrium. As model (2.8) satisfies
the assumptions of Lemma 2.12, then x D 0 is globally asymptotically stable.

2.5 Remarks

This chapter presents an analysis of a class of nonlinear dynamic networks
involving M-matrices, of which nonlinear consensus is a member. Properties of
the model’s M-matrix were related to its underlying network interaction topology.
We explored the equilibria of the network and derived sufficient conditions for an
isolated equilibrium. Asymptotic stability of the model with non-identical nodes and
strongly directed network topology was proven under continuity and boundedness
assumption on the nonlinear dynamics. The model was also extended with an
additive nonlinear term and a similar convergence condition was provided. Three
applications that are examples of M-matrix models were presented. Future work of
particular interest involves the introduction of control terms into the dynamics and
the subsequent examination of the model’s stability.

References

1. M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent Networks. Princeton:
Princeton University Press, 2010.

2. R. A. Horn and C. R. Johnson, Matrix Analysis. New York: Cambridge University Press, 1990.
3. A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences.

Academic Press, 1979.



References 31

4. A. Chapman and M. Mesbahi, “Advection on graphs,” in Proc. 50th IEEE Conference on
Decision and Control, 2011, pp. 1461–1466.

5. R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in networked multi-
agent systems,” Proc. IEEE, vol. 95, no. 1, pp. 215–233, Jan. 2007.

6. H. G. Tanner, G. J. Pappas, and V. Kumar, “Leader-to-formation stability,” IEEE Transactions
on Robotics and Automation, vol. 20, no. 3, pp. 443–455, 2004.

7. T. Liu, D. Hill, and J. Zhao, “Asymptotic stability of dynamical networks,” in 30th Chinese
Control Conference (CCC), vol. 0, 2011, pp. 928–933.

8. M. Araki and B. Kondo, “Stability and transient behavior of composite nonlinear systems,”
IEEE Transactions on Automatic Control, vol. 17, no. 4, pp. 537–541, 1972.

9. J. Xiang and G. Chen, “On the V-stability of complex dynamical networks,” Automatica,
vol. 43, no. 6, pp. 1049–1057, Jun. 2007.

10. J. Cortés, “Distributed algorithms for reaching consensus on general functions,” Automatica,
vol. 44, no. 3, pp. 726–737, Mar. 2008.

11. Q. Hui, W. M. Haddad, and S. P. Bhat, “Finite-Time Semistability and Consensus for
Nonlinear Dynamical Networks,” IEEE Transactions on Automatic Control, vol. 53, no. 8,
pp. 1887–1900, Sep. 2008.

12. A. Ajorlou and A. Momeni, “Convergence analysis for a class of nonlinear consensus
algorithms,” in Proc. American Control Conference, 2010, pp. 6318–6323.

13. W. Yu and G. Chen, “Consensus in Directed Networks of Agents with Nonlinear Dynamics,”
IEEE Transactions on Automatic Control, vol. 56, no. 6, pp. 1436–1441, 2011.

14. R. Varga, Matrix Iterative Analysis. Upper Saddle River: Prentice Hall, 1962.
15. R. J. Plemmons, A survey of the theory and applications of M-Matrices. Knoxville, Tenn.

University of Tennessee, Computer Science Dept., 1976.
16. A. Berman, R. Varga, and R. Ward, “Matrices with nonpositive off-diagonal entries,” Linear

Algebra and its Applications, vol. 21, no. 3, pp. 233–244, 1978.
17. H. Guo, M. Y. Li, and Z. Shuai, “A graph-theoretic approach to the method of global

Lyapunov functions,” Proceedings of the American Mathematical Society, vol. 136, no. 08,
pp. 2793–2802, Mar. 2008.

18. T. M. Apostol, Mathematical Analysis. Reading: Addison-Wesley, 1974.
19. H. K. Khalil, Nonlinear Systems. Upper Saddle River: Prentice Hall, 1996.
20. M. Forti, A. Liberatore, S. Manetti, and M. Marini, “On absolute stability of neural networks,”

in 1994 IEEE International Symposium on Circuits and Systems, vol. 6, 1994, pp. 241–244.
21. S. Arik and V. Tavsanoglu, “A sufficient condition for absolute stability of a larger class

of dynamical neural networks,” IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, vol. 47, no. 5, pp. 758–760, 2000.

22. H. Qiao, J. Peng, and Z. Xu, “A reference model approach to stability analysis of neural
networks,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 33,
no. 6, pp. 925–36, Jan. 2003.



Part II
Network Measures and Adaptive

Topologies



Chapter 3
Measures and Rewiring

Abstract Examining the effectiveness of control in networked systems is a thriving
research area. If the semi-autonomous agents’ interaction dynamics are consensus-
based, we dub this subclass as semi-autonomous consensus, which is the focus
of the chapter. Within such a subclass, we consider the dynamics of networked
agents in the context of performance (friendly influence) and security (unfriendly
influence). Our approach to appraise a semi-autonomous consensus network is to
expose the network to fundamental test signals, namely white noise and an impulse,
and use the resultant system response to quantify network performance and security.
Traditionally, input–output properties are varied by altering the dynamics of the
network agents. We instead adopt topological methods for this task, designing five
protocols for tree graphs that rewire the network topology, leaving the network
agents’ dynamics untouched. In pursuit of this objective, four adaptive protocols are
introduced to either increase or decrease the mean tracking and variance damping
measures, respectively. Finally, a proposed fifth hybrid protocol is shown to have a
guaranteed performance for both measures using a game-theoretic formalism.

3.1 Introduction

Consensus-based systems provide effective means of distributed information-
sharing and control for networked, multi-agent systems in settings such as
multi-vehicle control, formation control, swarming, and distributed estimation;
see, for example, [2–6]. One of the appeals of consensus algorithms is their
ability to operate distributively and autonomously over simple trusting agents.
This has the added benefit that external (control) agents, perceived as native agents,
can seamlessly attach to the network and steer it in particular directions. These
additional agents, ignoring consensus rules, will influence the system dynamics
compared to the unforced networked system resulting in scenarios such as leader–
follower [3, 6] and drift correction [8]. The detriment is that this same approach can
be adopted by malicious infiltrating agents. We refer to consensus-based systems,
with friendly and/or unfriendly attached nodes, as semi-autonomous consensus
networks. Although the convergence properties of consensus algorithms have been

© Springer International Publishing Switzerland 2015
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extensively studied, examining the network input–output properties in a controlled
setting, and their interpretation, is in its infancy—studied in such recent works as
[9, 10, 29].

For a semi-autonomous consensus network exposed to either (or both) friendly
and unfriendly agents, it is necessary to reason about either (or both) performance
and security. Performance (friendly external agents) in the traditional undirected
consensus is a well-researched problem in consensus-type algorithms with a general
favoritism for the second smallest eigenvalue of the graph Laplacian as a metric to
quantify the convergence rate [4, 11], though interest has been shown with other
network measures as well, for example the largest eigenvalue of the graph Laplacian
[12]. These metrics prove less attractive in a semi-autonomous consensus setting
where convergence rates can vary dramatically based on where in the network
external agents attach. An alternative is to examine worst, best, or average case
convergence of the directed network formed by treating external agents as native
agents [6, 30]. Network design to improve some of these measure is explored in
[12–14].

In regard to security (unfriendly external agents), most modern day semi-
autonomous networks rely on access security to the network which is unsuited to
a trusting semi-autonomous consensus setting. An alternative to generate a secure
network is intrusion detection1 coupled with either inter-agent security through
each agent’s dynamics or intra-agent security via the network topology. The former
includes implementation of disturbance rejection or agent disabling techniques, e.g.,
noise canceling systems and power grid “brown outs”. The latter involves global
or local network rewiring, e.g., TCP network re-routing. This adaptive topology
approach for security as well as performance is the main focus of the present work.

Network performance and security via adaptive topology (intra-agent security) is
a largely unexplored area within a semi-autonomous consensus setting. In addition,
this is the only security response available in the case where the agent dynamics and
interaction protocol are assumed to be fixed or expensive to alter. Examples of such
systems include networks with hardwired dynamics and interactions, for example
due to safety and the required performance guarantees, and systems with physically
and biologically motivated dynamics and interactions, e.g., diffusion across self-
assembly units and bio-inspired networks.

Furthermore, in the case where the intent of external agents may only be known
probabilistically, network rewiring presents a security option that is less dramatic
than altering agent dynamics and interactions. Characteristics such as the consensus
value of a diffusion network are maintained under network rewiring which is not
generally the case when the agents dynamics and interactions are altered due to
a security and performance criteria—an attractive property in the event that one
misdiagnoses the intent of the external agent.

1Techniques for intrusion or fault detection on consensus-type networks include those based on
reachability analysis [15], and the more popular unknown-input observers [10, 16, 18].
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The main difficulty for analyzing networks where both friendly and unfriendly
agents can attach is that features that are conducive to security are not generally
favorable for performance. Our work provides metrics for both performance and
security and discusses associated topological features that can be used to design
performant and secure networks. We also propose protocols that rewire the network
topology in order to exploit these topological features.

In this chapter we examine the performance and security of a network in response
to an external agent injecting a test signal, namely a white Gaussian signal or
an impulse, into the network. The performance and security of the network is
measured in terms of the subsequent mean and variance of the agents’ state; we
refer to these metrics as the mean tracking measure and variance damping measure.
Both measures are used to propose five decentralized protocols for tree graphs that
adaptively aim to improve or degrade either the performance or the security of
the network by undertaking local edge swaps. Figure 3.1 illustrates these concepts
where the graph topology is used to vary the output characteristics of the network.

Two motivating applications for the present work and the utility of the metrics as
they relate to each are:

• State estimation—where xi is the estimate of the node i ’s state, through
consensus, can be globally estimated via relative node state exchanges between
neighboring agents, e.g., drift correction and time synchronization [17, 19].
Consider external agents that do not accept information exchanges from other
agents and deliver instead a Gaussian white noise with unit intensity. The external
agents’ disregard of the consensus dynamics may be due to superior sensing

Edge Swaps

State Output

State Output

White Noise Input

Fig. 3.1 Illustration of the problem setup: External agents (squares) inject white noise into the
network manipulating the state output of the native agents (circles). A protocol performs edge
swaps to alter the state output, specifically the network’s mean tracking and variance damping
measure
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compared to native agents, malfunctions, or malicious intent. Viewing the
difference between a states’ value and the external agents’ as the state error, the
mean tracking measure is the expected quadratic performance of this state error.
The variance damping measure, on the other hand, is the expected nodes’ error
variance. The intent of an external agent can only be known probabilistically
as such security in the system is left to the less intrusive adaptive topological
methods leaving the agent and interaction dynamics unchanged.

• Flocking—where xi 2 R
m (e.g., m D 2; 3) is the velocity of agent i , Pxi D

ui , and ui is dependent on the relative velocities of neighboring agents, e.g.,
UAV flocking and fish swarming [6, 11]. A node can then be considered as
an external agent guiding the flock by ignoring consensus with either friendly
or malicious intent. The ease with which the flock tracks this agent while
the agent holds its velocity constant can be gauged using the mean tracking
measure. If the agent undertakes a sudden impulse-like maneuver the damping
of its state’s propagation through the network can be quantified by the variance
damping measure. The underlying interaction dynamics are fixed due to the
nature of the onboard relative sensors. The agent dynamics are fixed to guarantee
predesignated performance characteristics such as control rate and interagent
distance bounds. Subsequently, performance and security methods can rely only
on adaptive topology methods.

To clarify the contributions of this chapter, it is worthwhile to compare our results
and approach with similar works in literature. Designing topologies to optimize for
certain metrics has previously been addressed; by Ghosh et al. [13] for maximizing
the second smallest eigenvalue of the graph Laplacian, by Zelazo and Mesbahi [12]
for optimizing the network H2 performance, and by Wan et al. [14] for maximizing
the largest eigenvalue of the graph Laplacian, each using optimization techniques
over weighted graphs. Our problem of edge swaps, considered in this chapter in an
optimization setting would require NP-hard mixed-integer programming. We have
thus opted for a game-theoretic formalization to quantify network performance and
security. The protocol’s effectiveness is qualified using the suboptimality properties
of the Nash equilibria by modeling the external-native agent dynamics as a non-
cooperate game [8, 20]. The simplest form of adaptive network security is the
removal of those nodes in the network connected to infiltrators [15, 21]. Using
percolation theory, Callaway et al. [22] illustrated this to be a potentially disruptive
remedy as it can cause the network to become disconnected even for highly dense
graphs which subsequently presents an attack vector that an infiltrator could exploit,
e.g., by falsely tagging trustworthy agents as untrustworthy. Tyson et al. [23]
have discussed intuitive methods of network reconfiguration to improve resilience,
specifically using thresholding methods to decide when to alter the topology.
Security techniques that involve adapting the agent dynamics to compensate for
k infiltrators have been addressed for 2k C 1 connected graphs for Byzantine faults
and k C 1 connected graphs for general faults [18, 24].

The main contributions of this chapter are threefold. First, a pair of network
measures are proposed. The mean tracking measure is the average quadratic
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performance measure of the error in response to the test signal and is linked to
the network structure via an electrical network analogy. The variance damping
measure, on the other hand, is the expected mean square error of the states, which
can be calculated using the controllability gramian and can also be related to the
network structure using an electrical analogy. Second, four protocols are developed
to optimize the network topology with respect to the proposed measures. These
protocols each locally rewires the network topology, using edge swaps between
neighboring nodes, to favorably increase or decrease each measure respectively,
but not concurrently, thus improving global performance with respect to friendly
or unfriendly attached agents. Finally, we formulate the metrics in terms of the
effective resistance of an electrical network and, in so doing, illustrate the coupling
between mean tracking and variance damping measures. This has motivated the
development of a hybrid protocol using a game-theoretic formalism that provides a
guaranteed balance between input rejection with respect to the mean and variance
measures, particularly useful in security scenarios. All protocols perform edge
swaps (rewiring) which can be executed in parallel, asynchronously, and require
only local agent information of the network structure. The protocols are applied to
two motivating applications, namely time synchronization and UAV flocking.

The chapter is organized as follows. Section 3.2 contains the problem formula-
tion and relevant background. The mean tracking measure is examined in Sect. 3.3
and its relationship to the effective resistance is established and subsequently used
to design two protocols for increasing and decreasing the mean tracking measure. A
similar treatment of the variance damping measure is presented in Sect. 3.4. Section
3.5 presents a more versatile protocol that provides guarantees on both measures
analyzed using game-theoretic techniques. We conclude the chapter with a few
remarks in Sect. 3.6.

3.2 Leader–Follower Consensus Dynamics

We next introduce a model of multi-input influenced consensus over an undirected
graph G D .V;E/ associated with a pair R D .R; ER/, where R is the cardinality
r external agent set and ER � R 	 V is the set of edges used by the external
agents to inject signals into the network. It is assumed that each external agent rj 2
R is attached to exactly one node vi 2 V along one of the r edges

˚
rj ; vi

� 2
ER and subsequently delivers a signal uj .t/ 2 R. Figure 3.2 provides a graphical
representation of this notation and setup.

The resulting influenced system, popularly known as leader–follower consensus
dynamics [6], now assumes the form,

Pxi .t/ D
X

fvi ;vj g2E
�
xj .t/ � xi .t/

�C
X

fvi ;rj g2ER

�
uj .t/ � xi .t/

�
(3.1)
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Fig. 3.2 Example of
influence notation

R
rm
rp
rq

vi
vj

vk

eR

with the full dynamics

Px.t/ D A.G;R/x.t/C B.R/u.t/; (3.2)

where B.R/ 2 R
n�r with ŒB.R/�ij D 1 when

˚
rj ; vi

� 2 ER and ŒB.R/�ij D 0

otherwise, and

A.G;R/ D � .L .G/CM .R// 2 R
n�n; (3.3)

where M .R/ WD B.R/B.R/T 2 R
n�n. We also introduce a special type of single-

agent control as Ri where R D fr1g and ER D fr1; vi g. Further the set of agents
vi such that

˚
rj ; vi

� 2 ER for some rj will be denoted by �.ER/; this is the set of
native agents that directly connect to external agents.

We recognize A .G;R/ in (3.3) as the Dirichlet matrix, or grounded Laplacian
[19, 25]. The spectrum of A .G;R/ relates closely to the spectrum of L .G/. In this
way, the structure of the underlying graph is related to the dynamics of model (3.2).

The following result highlights this connection.

Proposition 3.1. The eigenvalues of the matrix �A.G;R/ in (3.3) satisfy the
following inequalities:

(a) �j .G/ � �j .�A.G;R//,
(b) �j .�A.G;R// � �j .G/C 1, and
(c) for j > 1, �j�1.�A.G;R// � �j .G/.
Proof. The matrix �A.G;Ri / is the sum of two positive semidefinite matrices
L .G/ and M .R/. As such, the matrix �A.G;R/ is positive semidefinite. By the
eigenvalue interlacing theorem [7, Corollary 4.3.3 and Theorem 4.3.6], bounds (a)
and (c) follow. Moreover, Weyl’s Theorem [7, Theorem 4.3.1] implies that

�j .�A.G;Ri // D �j .L .G/CM .R// � �j .G/C �n.M .R// D �j .G/C 1:

ut
An auxiliary observation on the Dirichlet matrix, to be used subsequently, is the
following.

Proposition 3.2 ([30]). The matrixA.G;R/ of model (3.2) is negative definite (and
so invertible) if the original graph is connected.
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Proof. If the graph G is connected, then the span of the null space of L .G/ is 1 and
1 is not in the null space of M.R/. Thus xTL .G/x > 0 for x ¤ ˛1 for ˛ 2 R and
1TM.G/1 > 0. Moreover, for x ¤ 0,

xT .�A.G;R// x D xT .L .G/CM.R// xT D xTL .G/x C xTM.R/x > 0;

and the statement of the proposition follows. ut
Remark 3.3. A popular model for network intrusion or faults is to consider native
agents as those ignoring consensus instead of attaching external agents [9, 10, 18].
This model can be adapted by considering the subgraph of behaving agents as G and
each edge between the misbehaving agents and G as

˚
rj ; vi

� 2 ER corresponding,
in our model, to a behaving agent vi at one end and an external agent rj 2 R at the
other. The presented analysis is therefore applicable to both models. As this chapter
has a particular focus on tree graphs it is worthwhile mentioning that if the original
graph is a tree then G in (3.2) will be the union of tree graphs. The converse is not
true; the original graph need not be a tree if G in (3.2) is a tree.

We approach the network performance and security problem from two fronts; first
via the cost to the network for its agents to track a constant signal—dubbed mean
tracking measure (discussed in Sect. 3.3), and second as the cost to the network
to dampen a noisy external agent’s signal—dubbed variance damping measure
(discussed in Sect. 3.4). The following two sections will focus on these measures.

3.3 Mean Tracking Measure

The mean tracking measure is a metric for the effectiveness of a network, via its
topology, to track a grounded shared constant external agents’ signal uc 2 R. This
metric is equally applicable to the network’s performance in regard to tracking the
mean uc of external agents’ signal, e.g., Gaussian noise about uc , hence the metric’s
name mean tracking. We derive the mean tracking measure as the cost incurred
by external agents to steer the mean state of the entire network to uc , over an
infinite horizon. In order to quantify the performance and security of the network to
resist the influence of external agents injecting random signals, the following two
observations are in order: (1) the dynamics of the mean of agents’ state is captured
by model (3.2) where Œu�i is replaced by the mean of external agents’ signal uc , (2)
when the underlying graph is connected, all agents’ state converge in the mean to
uc . The last statement is a direct consequence of Proposition 3.2. More specifically,
noting that u.t/ � 1nuc and A.G;R/�1B1r D �1n, the quadratic performance cost
of the mean, with coordinate change Qx.t/ D E .x.t// � uc1n, where ŒE.x.t//�i is
the expected value of the variable xi .t/ at time t , can be derived as2

2The scaling by 2 is cosmetic.
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2

ˆ tf

0

Qx.t/T Qx.t/dt D
ˆ tf

0

Qx.t/T x.t/C x.t/T Qx.t/ � Qx.t/T 1nuc � uc1
T
n Qx.t/dt

D
ˆ tf

0

Qx.t/T x.t/C x.t/T Qx.t/C Qx.t/T A�1B1ruc C uc1
T
r B

T A�1 Qx.t/dt

D
ˆ tf

0

.Ax.t/C B1ruc/
T A�1 Qx.t/C Qx.t/T A�1 .Ax.t/C B1ruc/ dt

D
ˆ tf

0

Px.t/T A�1 Qx.t/C Qx.t/T A�1 Px.t/dt

D
ˆ tf

0

d

dt
Qx.t/T A�1 Qx.t/dt

D Qx.tf /T A�1 Qx.tf / � Qx.0/T A�1 Qx.0/:

In order to parametrize the performance and security of the network for a specific
set R, let us define the accumulative state mean over the length of time the input is
applied tf as

J�
�
G;R; tf

� D EkQx.0/kD1
�

2

ˆ tf

0

Qx.t/T Qx.t/dt

�

D EkQx.0/kD1
� Qx.tf /T A�1 Qx.tf / � Qx.0/T A�1 Qx.0/�

D EkQx.0/kD1tr
	

Qx.0/ Qx.0/T
	�
eAtf

�T
A�1eAtf � A�1





D EkQx.0/k2Dntr
�
1p
n

Qx.0/ 1p
n

Qx.0/T .eAtf A�1eAtf � A�1/
�

D 1

n
tr
		

EkQx.0/k2Dn Qx.0/ Qx.0/T

 �
eAtf A�1eAtf � A�1�




D 1

n
tr
�
I
�
e2Atf � I �A�1�

D 1

n

nX

iD1

1

�i .�A/
	
1 � e�2�i .�A/tf



;

where EkQx.0/kD1 .�/ denotes the expected value over all initial conditions satisfying
k Qx.0/k D 1.

It is assumed that the native agents in the network do not know the value of tf ; as
such in the remaining parts of our chapter we assume that tf is large, justifying
the use of J� .G;R;1/ as the mean tracking measure. For brevity, we denote
J� .G;R;1/ as J� .G;R/. Metrics similar to J� .G;R;1/, based on the minimum
and maximum value of 2

´1
0

Qx.t/T Qx.t/dt over initial conditions lying on the unit
ball. Bounds pertaining for a single input case have been relegated to the Appendix.

We now formally define our J� .G;R/ metric.
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Definition 3.4. The mean tracking measure of a network is the average quadratic
performance cost incurred by external agents to steer the mean state of the entire
network to their respective mean value, over an infinite horizon, and is equal to

J� .G;R/ D 1

n
tr
��A.G;R/�1� : (3.4)

Remark 3.5. We briefly note the connection between the more familiar best case
convergence rate of the grounded dynamics, the average convergence rate of the
grounded dynamics and the mean tracking measure, i.e., the minimum nonzero
eigenvalue of the Laplacian, the average of the eigenvalues of the Laplacian and the
measure J� .G;R/ (3.4). Consider fusing all external agents to form a node vnC1
and adding it to our graph G, connecting vnC1 to the network through “directed”
edges from vnC1 to each node in � .ER/; we call this new “directed” graph QG.3 Then
G and QG have the property �2. QG/ � J� .G;R/�1 � 1

n

PnC1
iD1 �i . QG/.4

The following section will provide more insights into the mean tracking measure.

3.3.1 Analysis of Mean Tracking Measure

It has previously been established that the diagonal of the matrix �A.G;R/�1,
where A.G;R/ is the Dirichlet matrix in (3.2), has a resistive electrical network
interpretation [19]. In this setup, the agents V and R, defined in Sect. 2.2, represent
respectively, connection points between resistors corresponding to the edges E and
ER. In addition, all connection points corresponding to the set R are electrically
shorted. The effective resistance between two connection points in an electrical
network is defined as the voltage drop between the two points, when a 1 Amp
current source is connected across the two points. Then, the i -th diagonal element
of �A.G;R/�1 is the effective resistance Eeff.vi / between the common shorted
external agents R and vi . An example of the equivalent electrical network is
displayed in Fig. 3.3. The implication is that

J� .G;R/ D 1

n

nX

iD1
Eeff .vi / : (3.5)

Tree graphs are often adopted for agent-to-agent communication topologies
as they minimize edge (communication) costs while maintaining connectivity.
Using (3.5), we introduce some properties of J� .G;R/ (3.4) specific to trees.

3For a survey of directed graphs, we refer the reader to [6].
4All eigenvalues of L . QG/ are real, �1. QG/ D 0 and �iC1. QG/ D �i .A.G;R// for i D 1; : : : ; n.
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a
r1 r1

r2 r2

v1 v1
v2 v2

v3 v3

v4 v4

b

1 Amp

A(G,R) =

⎡
⎢⎢⎣

−3 1 1 0
1 −2 1 0
1 1 −3 1
0 0 1 −2

⎤
⎥⎥⎦, B(R) =

⎡
⎢⎢⎣

1 0
0 0
0 0
0 1

⎤
⎥⎥⎦

Fig. 3.3 (a) Network graph with external (control) agents r1 and r2 attached to agents v1 and v4
respectively, leading to an altered Laplacian A.G;R/ and input matrix B.R/ of model (3.2). (b)
Equivalent electrical network. The potential difference Vv3�VR is the effective resistance between
v3 and common resistor node fr1; r2g

Let us first define the special set of agents that lie on any of the shortest paths
between agents in R as the main path agents, designated by the set M: This is a
unique set for a given pair .G;R/. Moreover for all vi … M, there exists a unique
vj 2 M that has a shorter minimum path to vi than any other agent in M; we define
this agent as �.vi /, i.e., � .vi / is the closest agent to vi that is a member of the main
path. Therefore for tree graphs we can state the following.

Lemma 3.6 (Mean Tracking Measure for Trees). For the n-agent connected tree
T , the mean tracking measure is

J�.T ;R/ D 1

n

0

@
X

vi2M
Eeff .vi /C

X

vi…M
ŒEeff .� .vi //C d .vi ; � .vi //�

1

A :

Proof. If vi … M, then the equivalent electrical network involving vi can be simpli-
fied into a resistor representing Eeff .� .vi // ohms in series with d .vi ; � .vi // 	 1
ohm resistors. The result then follows from (3.5). ut
There is an intuitive link between the centrality of an agent in a network and its
influence on the network’s dynamics. This correlation becomes apparent for tree
graphs in the following.

Corollary 3.7 (Single-External Mean Tracking Measure). For the n-agent con-
nected tree T the mean tracking measure of the network to a single external agent
attached to any agent vi 2 V is

J�.T ;Ri / D 1

n

0

@
nX

jD1
d
�
vi ; vj

�C n

1

A :
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Proof. The proof follows from Lemma 3.6 with fvig D M and Eeff .vi / D 1. ut
Corollary 3.7 has a few immediate ramifications. Consider the single external agent
as a native node vnC1 of the graph T forming the new graph QT with nC1 nodes. The
mean tracking measure J�

�
T ;Ri

�
is then equal to the closeness centrality measure5

of node vnC1, i.e.,

J�
�
T ;Ri

� D 1

n

nX

jD1
d
�
vnC1; vj

� D c
�
vnC1; QT � :

Further as

J�.T ;Ri / D n � 1
n

c .vi ; T /C 1;

the most influential node to attach in a tree graph under the measure J� (3.4) is the
one with the largest closeness centrality measure.

Corollary 3.8 (Single-External Mean Tracking Measure Bounds). For the
n-agent connected tree T the mean tracking measure of the network to a single
external agent attached to any agent vi 2 V is bounded as 2 � 1

n
� J�.T ;Ri / �

1
2
.nC 1/ :

Proof. Over all trees, the central node of the star graph has the smallest accumu-
lative distance of n � 1 to all other nodes and an end node of the path graph has
the largest accumulative distance of

Pn�1
iD1 i to all other nodes. The statement of the

corollary follows from these two observations. ut
Proposition 3.9 (Multi-External Mean Tracking Measure Bounds). For the
n-agent connected tree T the mean tracking measure of r external agents attached
to any set of agents in V is bounded above by a tree graph with all main path nodes
satisfying vi 2 � .ER/, in which case,

J�.T ;R/ � 1

2n

�

.n � r/2 C 3 .n � r/C r C 2

r C 1

�

:

Proof. From the effective resistance interpretation of J�.T ;R/ in (3.5), we note
that adding resistors in series generates a higher resistance than adding them in
parallel. Therefore, argmax.T ;R/J� .T ;R/ is a tree T and the influence set R where
M D � .ER/, as adding an agent to the main path places resistors in parallel rather
than the alternative which is in series. This family of graphs with M D � .ER/, we
define as the set H. Furthermore from Lemma 3.6, the largest accumulative distance
of these nodes vi will correspond to a path connected to the highest effective

5Closeness centrality c .vi ;G/ is the mean of the shortest path lengths between node vi and other
nodes in the graph G.
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resistance node of the main path subgraph. Now, the main path subgraph, of a tree
in H with the largest effective resistance sum, is the star graph as the equivalent
electrical network has the least number of parallel resistors. Applying resistor rules,
we thus obtain

max
.T ;R/�H

X

vi2M
Eeff .vi / D r2 C r C 2

2.r C 1/
: (3.6)

Similarly, the largest Eeff
�
vj
�

for any single node vj 2 M of a tree in H,
corresponds to the main path subgraph which is a path and specifically one end
node v� which leads to

max
.T ;R/�H;vj2M

Eeff
�
vj
� D F2r�1

F2r
D �2r�1 � .�1=�/2r�1

�2r � .�1=�/2r � 1;

where Fi is the i -th Fibonacci number and ' is the golden ratio.6 The largest
effective resistance sum over trees in H of a non-main path subgraph can now be
formed from a path attached to node v�, i.e.,

max
.T ;R/�H

X

vi…M
Eeff .vi / D

n�rX

iD1

�

max
.T ;R/�H;vj2M

Eeff
�
vj
�C 1

�

�
n�rX

iD1
.1C i/ D .n � r/2 C 3 .n � r/ : (3.7)

Using bounds (3.6) and (3.7) combined with (3.5) we have

J�.T ;R/ � 1

n

0

@ max
.T ;R/�H

X

vi2M
Eeff .vi /C max

.T ;R/�H
X

vi…M
Eeff .vi /

1

A

D 1

2n

�

.n � r/2 C 3 .n � r/C r C 2

r C 1

�

:

ut

6The derivation follows from that of the infinite connected resistor network and the recursive
definition of the golden ratio � D 1

2

	
1Cp5



. One has Fi D 1p

5

�
�i � .�1=�/i �.
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3.3.2 Adaptive Protocols to Improve or Degrade the Mean
Tracking Measure for Trees

We now propose a pair of protocols applicable to tree graphs that locally trade edges,
e.g., communication links, between adjacent agents with the objective of deterring
or encouraging the influence of external agents attached to the network, feeding in
a constant mean signal. We consider a scenario where agents in �.ER/ broadcast
acknowledgment signals informing the network that they are being favorably or
unfavorably influenced. Consequently all agents within the graph are aware of the
“local” directions of the external agents, and more specifically, their neighboring
agents that are closer to these external agents. We denote by I.vi / the set of all
agents that are neighbors of vi and lie on the shortest path between vi and any
rj 2 R. We emphasize that we assume that the external agents in set R are solely
composed of friendly or unfriendly agents and agents are able to distinguish between
the external agents’ intent.7

The following lemma describes Protocol 1 which can be executed on any
arbitrary agent vi and requires the knowledge of I .vi / and N .vi /; hence, the
protocol operates on “local” information. In the following, we denote edge removal
and addition by the set notation “�=C.”

Lemma 3.10 (Edge Swap for Improved Mean Tracking Measure). Under Pro-
tocol 1, J� .T ;R/ (3.4) is strictly increasing.

Proof. If vm 2 M, then for all vl 2 N .vm/ we have vm 2 I .vl /. Therefore in
the context of Protocol 1, vj ; vk … M: Then from Lemma 3.6, before the edge
swap, we have Eeff

�
vj
� D Eeff .vk/ D Eeff .vi / C 1, and after the edge swap

Eeff
�
vj
� D Eeff .vi /C2. Any agent vp such that vj lies on the shortest path between

vp and any agent in M will increase its effective resistance by 1 after the edge
swap. Since the effective resistance strictly increases or stays the same for all agents
following the edge swap, J� .T ;R/ increases. ut
Some attractions of Protocol 1 is that it can be executed concurrently or in a random
agent order, guarantees that J� .T ;R/ increases, and maintains a connected tree
at each iteration. This is attained without the knowledge of the global network
topology.

When all agents adopt Protocol 1, all trees with a single external agent attached
to the graph will eventually evolve to a graph with the greatest J�

�
T ;R1

� D nC1
2

,
namely a path graph with the external agent at one end. Trees with multiple external
agents will acquire a path-like appearance with the main path unaffected by the
protocol’s edge swaps.

Protocol 1 was applied to a random tree graph on 40-agents with a single external
agent connected to v1. The path graph with the external agent attached to the
end was achieved after 100 edge swaps. A sample of the intermediate graphs, the

7For unfavorable detection an algorithm such as those proposed in [10, 15, 16, 18] can be used.
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Protocol 1 Increased mean tracking measure edge swap
foreach Agent vi do

if 9vj ; vk 2 N .vi /, vj ¤ vk and vj ; vk … I.vi / then
E ! E � fvi ; vj g C fvj ; vkg

end
end

Protocol 2 Decreased mean tracking measure edge swap
foreach Agent vi do

if vk D I.vi /, 9vj 2 N .vi / and vj ¤ vk then
E ! E � fvi ; vj g C fvj ; vkg

end
end

−−−−−−−> −−−−−−−> −−−−−−−> −−−−−−−> −−−−−−−> Edge Flip 100Edge Flip 80Edge Flip 60Edge Flip 0 Edge Flip 20 Edge Flip 40

Fig. 3.4 Selected iterations of an adaptive tree graph running Protocol 1 with an external agent
attached (square)

mean tracking measure over all iterations, and the evolution of the state mean are
displayed in Figs. 3.4 and 3.5. The network measure J�

�
T ;R1

�
increased for each

edge swap and no more edge swaps were possible when the tree became a path
graph with J�

�
T ;R1

� D 20:5.
A complementary Protocol 2 that aims to decrease J� .T ;R/ can also be

obtained from Lemma 3.10. Under this protocol the graph converges to a star-like
graph, while preserving the structure of the main path. The protocol was run on a
40-agent random tree graph with three external agents. The original and final graphs,
achieved after 21 edge swaps, are displayed in Fig. 3.6.

Remark 3.11. For agent vi with access to the “local” information provided by I .vi /
and N .vi /, Lemma 3.10 describes the only edge swap protocol that guarantees
J� .T ;R/ increases and a connected tree is maintained. Let us illustrate this by
examining edge swap protocols not covered by Lemma 3.10; for these edge swap
cases vj and/or vk can be main path agents, i.e., swaps involving vj 2 I .vi / and/or
vk 2 I .vi /. Consider the tree graph T1 D .V;E1/ displayed in Fig. 3.7a. We note
that

J�.T1;R1;5/ D 1

n

�
35

6
C 5

6
p C 8

6
q C p

2
.p C 1/C q

2
.q C 1/

�

;

where p and q are the lengths of the paths connected to agent v1 and v2, respectively.



3.3 Mean Tracking Measure 49

0 50 100

ba

0

5

10

15

20

25

Number of Edge Swaps

J
μ
(T

,R
1 )

0 50 100
0

0.2

0.4

0.6

0.8

1

Time (s)

S
ta

te
 M

ea
n

Fixed
Adaptive

Fig. 3.5 (a) Mean tracking measure and (b) state mean for the fixed and adaptive tree graphs over
time for the 40-agent random tree graph in Fig. 3.4 running Protocol 1

Fig. 3.6 (a) Original and (b)
final tree graphs with three
external agents attached
(squares) after applying
Protocol 2

a b

Let us consider the potential edge swaps available to agent v2 2 M. Locally,
agent v2 is aware that N .v2/ D fz1; v1; v3g and I.v2/ D fv1; v3g. The potential
edge swaps cases available are:

1. One neighbor on and one off the main path, e.g., swap E2 D E1 � fv2; z1g C
fz1; v1g, forming T2 D .V;E2/ and E3 D E1 � fv2; z1g C fz1; v3g forming T3 D
.V;E3/.

2. Both neighbors on the main path, e.g., swap E4 D E1 � fv2; v3g C fv3; v1g
forming T4 D .V;E4/.

Under Case 1, we have

J�.T2;R1;5/ D 1

n

�
35

6
C 5

6
p C 9

6
q C p

2
.p C 1/C q

2
.q C 1/

�

J�.T3;R1;5/ D 1

n

�
35

6
C 5

6
p C 5

6
q C p

2
.p C 1/C q

2
.q C 1/

�

J�.T3;R1;5/ < J�.T1;R1;5/ < J�.T2;R1;5/:
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Fig. 3.7 Tree graphs, (a) T1
and (b) T4, with two attached
external agents fr1; r2g. The
effective resistance Eeff.vi /

appears adjacent to each
agent. The variables p and q
are the lengths of the paths
connected to agent v1 and v2,
respectively

a

b

5 / 6+ p
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5 / 6+1

9 / 5+1
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9 / 5+ q

wp
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z1
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v3 v4 v5 r2
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zq

zq
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9 / 5

8 / 6

4 / 56 / 54 / 5 6 / 5

T4,R1,5T1,R1,5

As under “local” information v1 and v3 are indiscernible, Case 1 does not
guarantee that J� .T ;R/ is increasing or decreasing.

In the meantime, under Case 2, we are led to graph T4 as displayed in Fig. 3.7b,
with

J�.T4;R1;5/ D 1

n

�
29

5
C 4

5
p C 9

5
q C p

2
.p C 1/C q

2
.q C 1/

�

J�.T1;R1;5/ � J�.T4;R1;5/ D 1

30n
.1C p � 14q/ :

Thus,

J�.T1;R1;5/ > J�.T4;R1;5/ if p > 14q � 1
� J�.T4;R1;5/ otherwise.

Under only “local” information, the relative magnitudes of p and q cannot be
discerned so no monotonicity guarantees may be assumed.

A by-product of this remark is that a strictly increasing local-knowledge protocol
cannot guarantee the tree graph with the largest J� .T ;R/ (3.4) for r > 1 external
agents.
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3.3.3 Example: Clock Synchronization

Clock synchronization is often necessary in many distributed systems—improving
the consistency of data and the correctness of algorithms. Precise time synchroniza-
tion is needed for distributed applications such as sensor data fusion, scheduling,
localization, coordinated actuation, and power-saving duty cycling. Motivated by
the work of [8] we assembled the following experiment.

Consensus on clock time was run on 100 decentralized computer terminals (our
agents) communicating over a tree network. Because time consensus can only
correct for differential errors between terminals and not absolute errors without a
reference, friendly external agents periodically connect to the network and deliver
the constant correction for the absolute bias in the system. Upon connection, the
friendly external agents initiate a friendly flag which is passed through the network,
providing the local direction of the friendly agents and initiating Protocol 2. The
network adapts under this protocol to promote convergence to the correct absolute
clock time. On disconnection, the agents initiate a disconnect flag.

Similarly, we introduce a malicious external agent that attempts to drive the
system to a false absolute time. Upon connection, the neighbors of the external
agents send out a distress signal triggering the network to initiate Protocol 1 so as
to deter the false convergence of the network. It is assumed that the friendly agents
on discovery of a malicious external agent will clear the network of these foreign
agents and trigger the termination of Protocol 1 before commencing delivery of the
correction signal again. In other words, we assume friendly and malicious agents
would not be concurrently connected to the network.

To examine the performance of the protocols, equal time was provided for both
friendly and malicious external agents, specifically alternating 100 s intervals for
5,000 s. This switching interval is long enough for transients to settle and so is
appropriate for the application of these protocols. The network was initialized as
a random tree with all agents at the time offset of 0 s (the correct offset is �1 s).
The set �.ER/ of agents connected to three external agents is randomly selected
at each new 10 s interval. The friendly and unfriendly external agents deliver time
offsets of �1 s and 1 s, respectively. The average of the constant values, i.e., 0 s,
would be expected for the mean offset without the application of the protocols. In
the meantime, the protocols are able to favor the friendly agent, bringing the average
offset to �0:26 s. Clock offset means are displayed for the first 1,000 s for the fixed
and adaptive trees in Fig. 3.8.

3.4 Variance Damping Measure

It can be the case that the mean is not of central interest and that adjustment of
the variance of the states may be more desirable. Further, motivated by devious
intrusion type techniques that may employ pulse-like control to avoid triangulation,
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Fig. 3.8 Clock offset mean of the fixed and adaptive tree graphs (running Protocols 1 and 2) and
the corresponding mean state

the energy of the states from a unit impulse input is another potentially desirable
indicator for network performance and security. With this in mind, the control-
lability gramian, defined as P DW ´1

0
eA�BBT eA

T �d� for the system Px.t/ D
Ax.t/ C Bu.t/, proves to be particularly suitable for such an analysis. We will
focus on, tr.P / as

(a) the average variance of the agents’ state in the network is

1

n

nX

iD1
E
�
z2i .t/

� D 1

n
tr
�
E
�
z.t/zT .t/

�� D 1

n
tr.P /;

as t ! 1, where z.t/ D x.t/ � u.t/ and u is a zero mean Gaussian with
covariance I .

(b) the energy of the states at the output from a unit impulse input u when x.0/ D 0

is
ˆ 1

0

x.t/T x.t/dt D tr.P /:

We note that P will be dependent on G and R and so henceforth is denoted
by P.G;R/. The variance damping measure is a metric quantifying the network’s
susceptibility to white noise from external agents.

Definition 3.12. The variance damping measure of a network is defined as8

J� .G;R/ D 2

n
tr.P.G;R//: (3.8)

8The scaling by 2
n

is cosmetic.



3.4 Variance Damping Measure 53

The following section will provide more insights into the variance damping
measure (3.8).

3.4.1 Analysis of Variance Damping Measure

Directly from the definition of the controllability gramian one has

J� .G;R/ D 2

n
tr.P.G;R//

D 2

n
tr
�ˆ 1

0

eA.G;R/�B .R/ B .R/T eA.G;R/T �d�
�

D 2

n
tr
�

M .R/
ˆ 1

0

e2A.G;R/�d�

�

D �1
n

tr
�
M .R/ A.G;R/�1

�
: (3.9)

Lemma 3.13 (General Variance Damping Measure). For a connected graph G,
the variance damping measure is

J� .G;R/ D 1

n

X

vi2�.ER/
Eeff .vi / : (3.10)

Proof. We note that M .R/ is a diagonal matrix with ŒM .R/�ii D 1 if vi 2 � .ER/
and ŒM .R/�ii D 0, otherwise. Therefore

�
M .R/ A.G;R/�1

�
ii D

( �
A.G;R/�1

�
ii if vi 2 � .ER/

0 otherwise:

The statement of the lemma now follows. ut
Corollary 3.14 (Single-External Variance Damping Measure). For a connected
graph and the influence model (3.2) with one external agent,

J�
�
G;Ri

� D 1

n
:

Proof. The equivalent effective resistance between vi and r1 with fvig D �.ER/ is
Eeff.vi / D 1 as there is only one resistor link between vi and r1. The statement of
the corollary now follows. ut
Remark 3.15. The implication of Corollary 3.14 is that on average, a single-external
agent attached to an n-agent connected graph has the same reduction in average
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variance to white noise and energy dissipation from an impulse input regardless of
the structure of the network and where the external agent is attached.

Proposition 3.16 (Multiple-External Variance Damping Measure). For con-
nected graphs and the influence model (3.2) with r external agents, the variance
damping measure is bounded below by a graph with all main path nodes satisfying
vi 2 � .ER/ in which case

J� .G;R/ � rp
5n
:

Proof. By Rayleigh’s Monotonicity Principle9 the minimum effective resistance
will occur when the main path is only composed of the r agents � .ER/. Of these r
agent graphs, the path graph with the most resistors in parallel will have the smallest
effective resistance and therefore the smallest value of J� .G;R/. The eigenvalues of
the Laplacian of a r-node path graph are �rC1�i .P/ D 2C2 cos �i

r
, for i D 1; : : : ; r

[26]. For QR corresponding to an external agent attached to every agent in P ,
from (3.3) and M. QR/ D I it follows that �rC1�i .�A.P; QR// D �rC1�i .P/ C 1.
Hence from (3.9), we conclude that

J� .G;R/ � 1

n
tr
��A.P; QR/�1� D 1

n

rX

iD1

1

3C 2 cos �i
r

� rp
5n
:

ut

3.4.2 Adaptive Protocols to Improve or Degrade the Variance
Damping Measure for Trees

We now propose another protocol for tree graphs with the objective of reducing the
state variance due to external agents attached to the network and feeding in Gaussian
white noise with covariance I , i.e., decreasing the variance damping measure (3.8).
Again the protocol involves local edge trades executed concurrently and/or in
a random agent order, guarantees that tr.P.T ;R// decreases, and maintains a
connected tree at each iteration. A complementary protocol to increase the variance
damping measure is also proposed.

We note that for a connected tree graph T , J� .T ;R/ is only dependent on
d
�
ri ; rj

�
for all

˚
ri ; rj

�
pairs in set R (as defined in Sect. 2.2), and so only

dependent on the main path with agent set M (as defined in Sect. 3.3.1).

9Rayleigh’s Monotonicity Law states that if the edge resistance in an electrical network is
decreased, then the effective resistance between any two agents in the network can only
decrease [1].
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Protocol 3 Decreased variance damping measure edge swap
foreach Agent vi … �.ER/ do

if 9vj ; vk 2 N .vi /, vj ¤ vk and vj ; vk D I.vi / then
E ! E � fvi ; vj g C fvj ; vkg

end
end

Fig. 3.9 (a) Original and (b)
final tree graphs with three
external agents attached
(squares) after applying
Protocol 3

ba

Lemma 3.17 (Edge Swap for Decreased Variance Damping Measure). Under
Protocol 3, J� .T ;R/ (3.8) monotonically decreases.

Proof. Firstly, when jI .vi /j D 2, vi 2 M. As vj and vk are closer to an external
agent than the main path agent vi , one has vj ; vk 2 M. The edge swap involves
removing vi from M, so the effect is to reduce the resistance of an edge within the
electrical network representing this subgraph. By Rayleigh’s Monotonicity Law, the
sum

P
fvi ;rj g2ER Eeff .vi / will not increase and the lemma follows. ut

Single-external agent trees will remain unaffected by Protocol 3. For double-
external agent trees, the main path will degenerate to

˚
vi ; vj

� D M where˚fvi ; r1g ;
˚
vj ; r2

�� D ER.
Protocol 3 was run on a 40-agent random tree with three external agents injecting

zero mean white noise to the network. The original and final graphs, the variance
damping measure and a sample output comparison between the fixed and adaptive
networks (running Protocol 3) are displayed in Figs. 3.9 and 3.10.

A complementary energy amplification Protocol 4, that aims to increase
tr.P.T ;R//, can also be obtained from Lemma 3.10. This protocol is suitable
for impulse detection as larger J� .T ;R/ produces higher output energy´1
0
x.t/T x.t/dt.

Remark 3.18. For the case where jI .vi /j > 2, an edge swap has the effect of reduc-
ing vi ’s degree and elongates the main path subgraph. Rayleigh’s Monotonicity Law
cannot be applied in this scenario as no “resistance” is being removed from the
main path. Similar to Remark 3.11, these edge swaps do not guarantee J�.T ;R/
(3.8) is monotonically decreasing. Therefore, the proposed protocols are the best
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Fig. 3.10 (a) Variance damping measure and (b) one of the state node’s output for the fixed and
adaptive tree graphs over time for the 40-agent random tree graph in Fig. 3.9 exposed to three
external agents running Protocol 3

Protocol 4 Increased variance damping measure edge swap
foreach Agent vi do

if jI.vi /j > 1 and 9vj ; vk 2 N .vi /, vj 2 I.vi / and vk … I.vi / then
E ! E � fvi ; vj g C fvj ; vkg

end
end

“local” information edge swapping protocols and no guarantees can be made that
the “local” information protocol will converge to the best “global” information edge
swap solution.

3.4.3 Measure Comparison

We previously remarked that Protocols 1 and 2 do not alter the main path.
Consequently, by Lemma 3.13, the quantity J�.T ;R/ is conserved throughout
these protocols so that, although the mean tracking measure is altered, the variance
damping measure remains the same. The converse is not true as Protocols 3 and 4
involve manipulations of the main path and, as mentioned in Remark 3.11, this can
arbitrarily vary J� .T ;R/ (3.4). Generally speaking as J�.T ;R/ increases under
Protocol 4 the graph elongates and so J� .T ;R/ tends to increase. Similarly, as
J�.T ;R/ decreases under Protocol 3 the graph compresses and so J� .T ;R/ tends
to decrease. This trend is starkly apparent when the two metrics are requoted in
terms of the effective resistance, i.e., by rearranging (3.5) and (3.10), we note that

J� .G;R/ D J� .G;R/C 1

n

X

vi…�.ER/
Eeff .vi / : (3.11)
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We can requote the two metrics in terms of the error signal z.t/ D x.t/ � u.t/
and using the stochastic interpretation of J� .G;R/ [27] as

J� .G;R/ D EkQx.0/kD1
�

2

ˆ 1

0

E .z.t//T E .z.t// dt

�

; and

J� .G;R/ D E

�

lim
T!1

1

nT

ˆ T

�T
z.t/T z.t/dt

�

:

The two metrics can also be interpreted to characterize different components of the
output signal. The metric J� .G;R/ with respect to the mean is mainly influenced
by the initial deviations of z.t/, or in other words, the transient response. On the
other hand, J� .G;R/ with respect to the variance is more sensitive to long-term
fluctuations or steady state response.

The adaptive Protocols 1–4 and a subset of our results are specific to tree
graphs. A preliminary extension to more general connected graphs can be made
by considering an arbitrary spanning tree T of a connected graph G. In terms of
our electrical resistance analogy, the resistor network T is formed by removing
resistors from G. Applying Rayleigh’s Monotonicity Principle leads to J� .G;R/ �
J� .T ;R/ and J� .G;R/ � J� .T ;R/, i.e., both metrics on the graph are bounded
above by the corresponding measures on its spanning trees.

3.5 Fusing Adaptive Protocols

Protocols 1–4 in Sects. 3.3 and 3.4 possess guarantees on increasing (or decreasing)
either the mean tracking or variance damping measures of the network. The
weakness of these protocols is that they tend to converge to graphs associated
with a local minimum (or maximum) of either J� .T ;R/ or J� .T ;R/, with
potentially sub-optimal performance. Furthermore the protocols cannot be applied
concurrently, e.g., for security applications where poor tracking of the mean
(high J� .T ;R/) and good noise damping (low J� .T ;R/) is favorable. We now
present a protocol that exhibits these attributes, i.e., the final graphs are within
guaranteed bounds of the optimal network over all graphs for maximizing J� .T ;R/
and minimizing J� .T ;R/, but the protocol no longer possess strictly increasing
J� .T ;R/ and decreasing J� .T ;R/. We will present the protocol and use a game-
theoretic formalism to bound the protocol’s performance.

In the following, our game-theoretic objective is to increase J� .T ;R/ and
decrease J� .T ;R/; in terms of effective resistance, the aim is to increase the final
term in (3.11) while keeping J� .G;R/ small. This produces a graph that both damps
the external agents’ effect on the system’s state mean and variance.

The proposed Protocol 5 concurrently applies Protocols 1 and 3 with a slight
adaption to the latter, specifically, relaxing the condition

˚
vj ; vk

� D I .vi / to
vj ,vk 2 I .vi /. This adaption guarantees that the main path subgraph will converge
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Protocol 5 Increased mean resilience and decreased variance resilience edge swap
foreach Agent vi do

if 9vj ; vk 2 N .vi / and vj ¤ vk , and (vj ; vk … I.vi /) or (vi … �2.ER/ and vj ; vk 2 I.vi /)
then

E ! E � fvi ; vj g C fvj ; vkg
end

end

to a graph of only native agents where the external agents directly attach, i.e.,
vi 2 � .ER/. The remaining nodes in the graph, in the meantime, will form paths
connected to an agent in � .ER/. There are many graphs and external agents pairs
.T ;R/ that satisfy these properties; we call the set of such pairs the acquirable
set A. In fact, the specific “equilibrium” that Protocol 5 converges to will depend
on the initial graph structure and the sequence of edge swaps prescribed by the
protocol. It turns out that the convergence of the protocol falls under a special class
of repeated games called potential games [28], and as such, exhibits certain sub-
optimality guarantees that will be explored further.

3.5.1 Game-Theoretic Analysis

Game theory supplies tools to assess the optimality properties of equilibria reached
following local decisions. Two metrics are generally used for this purpose; the price
of stability which is the ratio between the “best” equilibria obtained from local
decisions and the global optimum, and the price of anarchy which is the ratio of
the “worst” equilibria obtained from local decisions and the global optimum. For
our case these metrics will capture the success of our local protocol with respect to
the mean tracking and variance damping measures.

First we need to establish that the protocol indeed converges to some equilibrium;
for this task, we use the concept of a potential game. A potential function ˆ is
a function that maps a strategy vector (a vector of each agent’s edge swap) S D
.S1; S2; : : : ; Sn/ to some real valued number. The implementation of a strategy on
graph T will alter it to produce a graph T .S/. If a protocol is a potential game then:
if S 0i ¤ Si is an alternate strategy (edge swap) for agent i , then the local cost benefit
to the agent ui .S 0/ � ui .S/ will mirror the change in the potential, i.e., condition10

sgn.ˆ.S/ �ˆ.S 0// D sgn.ui .S
0/ � ui .S//: (3.12)

10The signum function is represented by sgn.�/.
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Consider the potential function

ˆ.T .S/;R/ D �
nX

iD1
d .vi ; � .vi // ;

where � .vi / is defined in Sect. 3.3.1. Therefore if the local cost of agent vi is

ui .T .S/;R/ D d .vi ; � .vi // ; (3.13)

then (3.12) is met. Since Protocol 5 satisfies (3.13), it can be considered as a
potential game.11 An important consequence of this observation is that Protocol 5
will always converge to an equilibrium [28].

We can now find the price of stability and anarchy with respect to the maximiza-
tion of measures J� .T ;R/ and 1=J� .T ;R/ under Protocol 5.

Proposition 3.19. Under Protocol 5, for J� .T ;R/ the price of stability is equal to
1 and the price of anarchy is less than or equal to r .

Proof. As the graph corresponding to the smallest J� .T ;R/ (3.4) is in the
acquirable set A (by Proposition 3.9), the price of stability is equal to 1.

From Proposition 3.9 the maximum J� .T ;R/ is bounded as

max
.T ;R/

J� .T ;R/ � 1

2n

�

.n � r/2 C 3 .n � r/C r C 2

r C 1

�

:

An acquirable graph with the smallest J� .T ;R/ corresponds to a network with the
main path subgraph as a path P (by Proposition 3.16) with

min
.T ;R/;vj2M

Eeff
�
vj
� � 1p

5
:

The equilibrium graph in A corresponding to the smallest J� .T ;R/ compared to
the tree from argmax.T ;R/J� .T ;R/ will have



n�r
r

˘ D n�r
r

agents attached as a
path to each of the main path agents.12 Applying Lemma 3.6 leads to the inequality

min
.T ;R/�A

J� .T ;R/ � 1

n

2

4 rp
5

C r

.n�r/=rX

iD1

�
1p
5

C i

�
3

5

D 1

2nr

�

.n � r/2 C
�
2p
5

C 1

�

r .n � r/C 2p
5
r2
�

:

11This approach is similar to other network game problems [6, 28].
12bxc is defined as the ‘floor’ of x.
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For r D 1, the protocol always acquires the optimal equilibrium of a path graph
with an external agent connected to one end node so for this case the price of anarchy
is equal to 1. For 1 < r � n, on the other hand, the

Price of anarchy D max.T ;R/ J� .T ;R/
min.T ;R/�A J� .T ;R/

� r
.n � r/2 C 3 .n � r/C r C 2

rC1
.n � r/2 C

	
2p
5

C 1


r .n � r/C 2p

5
r2
< r;

thus proving the proposition. ut
Proposition 3.20. Under Protocol 5, for J� .T ;R/ (3.8) the price of stability is

equal to 1 and the price of anarchy is less than 11
p
5

20
� 1:23.

Proof. As the graph corresponding to the maximum J� .T ;R/ is in A (by Proposi-
tion 3.16), the price of stability is equal to 1.

From Proposition 3.16, the optimal J� .T ;R/ equilibrium corresponds to a
network with the main path subgraph as a path P with

min
.T ;R/

J� .T ;R/ � rp
5n
:

From (3.6), the largest J� .T ;R/ equilibrium graph in A is associated with main
path subgraph as a star S with

max
.T ;R/�A

J� .T ;R/ D r2 C r C 2

2n.r C 1/
:

For r D 1; 2; 3, the protocol always acquires the optimal equilibrium corresponding
to main path subgraph as a path P so for this case the price of anarchy is equal to 1.
For 3 < r � n, on the other hand, the

Price of anarchy D max.T ;R/�A J� .T ;R/
min.T ;R/ J� .T ;R/

<

p
5

2

r2 C r C 2

r2 C r
<
11

p
5

20
;

thus proving the proposition statement. ut
Protocol 5 was applied to a 40-node tree graph with seven external agents attached.
For comparison, Protocol 1 (increasing mean tracking measure) and Protocol 3
(decreasing variance damping measure) were applied to the same graph. The
original and final graphs for each protocol appear in Fig. 3.11 while the metrics
J� .T ;R/ and J� .T ;R/ for each as compared with the optimal tree graphs for
J� .T ;R/ and J� .T ;R/ are displayed in Fig. 3.12.
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Fig. 3.11 Original and final tree graphs with seven external agents attached (squares) after
applying Protocols 1, 3, and 5
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Fig. 3.12 (a) J� .T ;R/ and (b) J� .T ;R/ after each edge swap from Protocols 1, 3, and 5 applied
to the original graph in Fig. 3.11 as well as the optimal tree graphs with 40 nodes and seven external
agents

We note that Protocol 5 outperformed Protocols 1 and 3. The ratio of the
optimal to the final equilibrium under Protocol 5 was less than 1.51 for J� .T ;R/
and 1.08 for 1=J� .T ;R/, agreeing with the game-theoretic bounds stated in
Propositions 3.19 and 3.20.
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3.6 Remarks

The main aim of the present work is to propose a system-theoretic approach to
examine the notion of semi-autonomy. In particular, the chapter presents a class
of consensus-type networks under the influence of external agents. Metrics were
introduced to quantify the network’s ability, via its topology, to promote or resist
the influence of external agents. Four decentralized protocols were proposed for
tree graphs to vary the mean tracking and variance damping measures within the
network. The protocols were applied to time synchronization and UAV flocking
applications.

The proposed metrics were then analyzed and an effective resistance analogy was
established by modeling the interconnection as a resistive network. The resistance
interpretation provided a method to compare the two metrics and illustrated their
relationship. The challenge of presenting a protocol that increased one metric while
decreasing the other was addressed for tree graphs with a hybrid protocol and
analyzed using a game-theoretic approach. The extension of these protocols to
more general networks will be discussed in a subsequent chapter. Finally, an area
for future research is the performance and security of networks exploiting both
topological and agent dynamic features of the network.

References

1. B. Bollobás, Modern Graph Theory. New York: Springer, 1998.
2. R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in networked multi-

agent systems,” Proc. IEEE, vol. 95, no. 1, pp. 215–233, Jan. 2007.
3. H. G. Tanner, G. J. Pappas, and V. Kumar, “Leader-to-formation stability,” IEEE Transactions

on Robotics and Automation, vol. 20, no. 3, pp. 443–455, 2004.
4. A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile autonomous

agents using nearest neighbor rules,” IEEE Transactions on Automatic Control, vol. 48, no. 6,
pp. 988–1001, 2003.

5. Y. Hatano and M. Mesbahi, “Agreement over random networks,” IEEE Transactions on
Automatic Control, vol. 50, no. 11, pp. 1867–1872, 2005.

6. M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent Networks. Princeton:
Princeton University Press, 2010.

7. R. A. Horn and C. R. Johnson, Matrix Analysis. New York: Cambridge University Press, 1990.
8. S. Graham and P. R. Kumar, “Time in general-purpose control systems: the control time

protocol and an experimental evaluation,” in Proc. 43rd IEEE Conference on Decision and
Control, 2004, pp. 4004–4009.

9. A. Rahmani, M. Ji, M. Mesbahi, and M. Egerstedt, “Controllability of multi-agent systems
from a graph-theoretic perspective,” SIAM Journal on Control and Optimization, vol. 48, no. 1,
pp. 162–186, 2009.

10. S. Sundaram and C. N. Hadjicostis, “Distributed function calculation via linear iterations in
the presence of malicious agents - part I: attacking the network,” in Proc. American Control
Conference, 2008, pp. 1350–1355.

11. R. Olfati-Saber, “Flocking for multi-agent dynamic systems: algorithms and theory,” IEEE
Transactions on Automatic Control, vol. 51, no. 3, pp. 401–420, 2006.



References 63

12. D. Zelazo and M. Mesbahi, “Edge agreement: graph-theoretic performance bounds and
passivity analysis,” IEEE Transactions on Automatic Control, vol. 56, no. 3, pp. 544–555, Mar.
2011.

13. A. Ghosh and S. Boyd, “Growing well-connected graphs,” in Proc. 45th IEEE Conference on
Decision and Control. IEEE, 2006, pp. 6605–6611.

14. Y. Wan, S. Roy, and A. Saberi, “Network design problems for controlling virus spread,” in
Proc. 46th IEEE Conference on Decision and Control, 2007, pp. 3925–3932.

15. A. Fagiolini, G. Valenti, L. Pallottino, G. Dini, and A. Bicchi, “Decentralized intrusion
detection for secure cooperative multi-agent systems,” in Proc. 46th IEEE Conference on
Decision and Control, 2007, pp. 1553–1558.

16. F. Pasqualetti, A. Bicchi, and F. Bullo, “Distributed intrusion detection for secure consensus
computations,” in Proc. 46th IEEE Conference on Decision and Control, 2007, pp. 5594–5599.

17. A. Giridhar and P. R. Kumar, “Distributed clock synchronization over wireless networks:
algorithms and analysis,” in Proc. 45th IEEE Conference on Decision and Control, 2006,
pp. 4915–4920.

18. F. Pasqualetti, A. Bicchi, and F. Bullo, “On the security of linear consensus networks,” in Proc.
48th IEEE Conference on Decision and Control, 2009, pp. 4894–4901.

19. P. Barooah and J. P. Hespanha, “Graph effective resistance and distributed control: spectral
properties and applications,” in Proc. 45th IEEE Conference on Decision and Control, 2006,
pp. 3479–3485.

20. M. Mavronicolas, V. G. Papadopoulou, A. Philippou, and P. G. Spirakis, “A graph-theoretic
network security game,” International Journal of Autonomous and Adaptive Communications
Systems, vol. 1, no. 4, p. 390, 2008.

21. S. D. Antonio, S. P. Romano, S. Simpson, and P. Smith, “A semi-autonomic framework for
intrusion tolerance in heterogeneous networks,” in Proc. 3rd International Workshop on Self-
Organizing Systems, 2008, pp. 230–241.

22. D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J. Watts, “Network robustness and
fragility: percolation on random graphs,” Phys. Rev. Lett., vol. 85, no. 25, p. 4, Jul. 2000.

23. G. Tyson, A. T. Lindsay, S. Simpson, and D. Hutchison, “Improving wireless sensor network
resilience with the INTERSECTION framework,” in Proc. 2nd International Conference on
Mobile Lightweight Wireless Systems, Critical Information Infrastructure Protection, 2010.

24. S. Sundaram and C. N. Hadjicostis, “Distributed function calculation via linear iterations in
thepresence of malicious agents - part II: overcoming malicious behavior,” in Proc. American
Control Conference, 2008, pp. 1356–1361.

25. S. Salsa, Partial Differential Equations in Action: From Modelling to Theory. New York:
Springer, 2008.

26. M. Petrovic and I. Gutman, “The path is the tree with smallest greatest Laplacian eigenvalue,”
Kragujevac Journal of Mathematics, vol. 24, pp. 67–70, 2002.

27. S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design. West
Sussex: Wiley, 2005.

28. N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani, Algorithmic Game Theory. New York:
Cambridge University Press, 2007.

29. A. Chapman, E. Schoof, and M. Mesbahi, “Semi-autonomous networks: theory and decentral-
ized protocols,” in Proc. of the IEEE International Conference on Robotics and Automation,
2010, pp. 1958–1963.

30. A. Chapman, M. Nabi-Abdolyousefi, and M. Mesbahi, “Identification and infiltration in
consensus-type networks,” in 1st IFAC Workshop on Estimation and Control of Networked
Systems, 2009, pp. 84–89.



Chapter 4
Distributed Online Topology Design
for Disturbance Rejection

Abstract In this chapter, we examine a networked multi-agent system running
consensus susceptible to mis-information from its environment. The influenced
dynamics are modeled with leader–follower dynamics and the impact of the foreign
input is measures through the open loop H2 norm of the network dynamics. To
dampen the external disturbances a novel decentralized edge reweighting method
is proposed. The method is composed of a decentralized conjugate gradient method
coupled with a decentralized online optimization algorithm. The uncertainties of the
effect of local rewiring and unknown environmental influences are demonstrated
to be well-suited to the online regret framework. A simulation of the reweighting
method is discussed and shown to have small regret.

4.1 Introduction

Control theory presents many mechanisms to reject or dampen disturbances in
a dynamic system. In general they fall in two categories: active control such as
dynamic feedback, and passive control such as structural damping. Typically in
networked dynamics systems the network structure is considered a passive element.
If feedback is unavailable or global network knowledge is insufficient to apply
feedback, adapting the topology may in fact act as an active system via dynamic
selection of interconnection (edge) weights. Further this is often a favorable solution
when global information is limited and decisions are tentative. Edge reweighting
is a conservative response with algorithms like consensus able to perform in the
presence of variations in edge weight.

We consider a scenario where an agent i can communicate with any other nearby
agents j ¤ i . This communication does not implicitly involve knowing the location
of the peer agents. In the course of a mission, the agent might mistake an object in
the environment for a peer agent. The agent would know there is a discrepancy in
the data since it knows how many peers it has, and how many objects it can see. It
might want to limit the spread of misinformation via network reweighting since its
removal might render the network unconnected, especially if other agents are also
making the same decisions.

To model such a scenario we consider the agent’s false positives as foreign input
signals and use the leader–follower dynamics [2] to model the system. The main
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A. Chapman, Semi-Autonomous Networks, Springer Theses,
DOI 10.1007/978-3-319-15010-9_4

65



66 4 Distributed Online Topology Design for Disturbance Rejection

tool for investigating the susceptibility of these influenced subset of agents is the
open loop H2 norm of these leader–follower dynamics. In particular, the open loop
H2 norm for the network can be employed as a measure to dynamically reweight
the interaction topology, reducing the effect of the foreign inputs into the network.
Increasing the open loop H2 norm tends to increase the receptiveness of the system
to control.

Unique to the aforementioned methods we propose a fully distributed reweight-
ing method composed of two stages.

The first stage is the distributed estimation of the local effect of the foreign
signals, achieved via the formulation of a distributed conjugate gradient method. In
the 1950s, Hestens and Stiefel [5] formulated the linear conjugate gradient method
as an iterative method to solve A�1b. An attraction of this method is theoretical
guaranteed convergence in less than n iterations, and with typical performance even
faster. In addition, it boasts small storage requirements. In fact, only samples of
the range space of A are required rather than knowledge of the complete A. We
show that, if A encodes the network structure, this feature makes it possible to form
a distributed version of the algorithm with the aid of two consensus updates per
timestep.

The second stage is the implementation of a distributed online algorithm to
reweight the network. The attraction of the online method is that, irrespective of the
changing in the network unseen by a single agent, certain performance guarantees
can still be made. The proposed online regret algorithm is a distributed version of
a centralized algorithm proposed by Hazan et al. [6]. The algorithm is similar to
gradient decent or incremental gradient methods surveyed by Bertsekas [7]. The
attraction of the proposed algorithm is it displaysO.log.T // regret, meaning that on
average the algorithm performs as well as the best fixed case solution in hindsight.
Related online distributed optimization is the work by Yan et al. [8] examining a
strongly convex cost function decomposable into smaller convex functions. Sundhar
et al. [9] explored a stochastic subgradient showing convergence to an optimal
solution with probability 1. Recently, Raginsky et al. [10] focused on a network
of agents performing a subgradient-based sequential convex optimization scheme
robust to the network structure.

The novelty of our distributed online formulation is that, unlike the aforemen-
tioned distributed algorithms, our cost function is not decomposable. We derive a
method to instead decompose the gradient of the H2 norm with respect to the edges.
Consequently, it is this formulation that allows our algorithm to be decentralized.

The chapter is organized as follows. Section 4.2 contains the relevant background
pertaining to online optimization. Weighted consensus-based, leader–follower
dynamics is described for the network dynamics in Sect. 4.3 as well as the
main dynamics performance measure the open loop H2 norm. The distributed
conjugate gradient method is then presented in Sect. 4.4 as well as its counterpart
the distributed online gradient descent method. The proposed method is applied and
the performance of the algorithm is examined in the regret framework. The chapter
is concluded with a few remarks in Sect. 4.5.
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4.2 Online Convex Optimization

Online convex optimization is formulated as a game where, at each time t , a
player selects a point xt in a convex set P , referred to as an action. After the
player has committed to the action a convex function ft .�/ is revealed to the
player at which point a penalty of ft .xt / is paid by the player. The objective of
this game is to minimize the accumulative penalty. Regret is a common measure
for the performance of this highly uncertain online system. Regret is defined
as the difference between the cost of the sequence of actions taken by the player
and the performance of the best single action x� taken at every time step if the
sequence fft .�/g is known a priori. Hence, the regret of an algorithm with action
sequence fxtg is

RT D
TX

tD1

�
ft .xt / � ft .x�/

�
:

The objective of a good online algorithm is to achieve a guaranteed low regret.
Specifically, one that guarantees sublinear RT or RT =T ! 0. The reasoning is that
when RT =T ! 0, “on average” the algorithm performs as well as the best fixed
action in hindsight.

4.3 Model and Measure

4.3.1 Weighted Leader–Follower Consensus Dynamics

As discussed in the last chapter, one of the advantages of the consensus dynamics is
that the additional agents can seamlessly integrate into the dynamics by entering the
communication range of the network. The detriment is that incorrect identification
of an agent adds an unwanted signal into the network. Subsequently, an agent
incorrectly “follows” this unwanted signal. The dynamics governing this foreign
signal takes the form of the popular leader–follower consensus dynamics [2], where
the incorrectly identified agent plays the role of a leader, and the native agents in the
network as followers.

To form the weighted leader–follower consensus dynamics, the network graph
G D .V;E;W / is extended to incorporate the foreign agents/signals into the graph
similarly to the unweighted case of Chap. 3. This is accomplished by considering
the foreign agent pair R D .R; ER/, where R is the r element foreign node set and
ER � R 	 V is the set of false edges attached to the network. It is assumed that
a foreign agent rj 2 R is mis-observed at position uj .t/ 2 R by only one native
agent, and one native agent mistakes at most one foreign agent at a time. Thus, there
is exactly one edge ER for each agent in R and no more than one ER for each V .
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The resulting weighted leader–follower consensus system now assumes the form,

Pxi .t/ D
X

fvi ;vj g2E
wij
�
xj .t/ � xi .t/

�C
X

fvi ;rj g2ER

�
uj .t/ � xi .t/

�
(4.1)

with the full dynamics

Px.t/ D A.G;R/x.t/C B.R/u.t/; (4.2)

where, as before, B.R/ 2 R
n�r with ŒB.R/�ij D 1 when

˚
rj ; vi

� 2 ER and
ŒB.R/�ij D 0 otherwise, and

A.G;R/ D �
 

L .G/C
X

i2R
eie

T
i

!

2 R
n�n: (4.3)

4.3.2 Disturbance Rejection Using the Open Loop H2 Norm

A measure of the effect that an input, represented by the matrix B , on a state
dynamics Px.t/ D Ax.t/ C Bu.t/ is the open loop H2 norm of the system kG.s/k2
where the full-state output state-space realization is G.s/ D .sI � A/�1 B . The
metric represents the amplification of the mapping of inputs to the full-state outputs,
i.e., y.s/ D x.s/ D G.s/u.s/. More precisely, y .s/ is the energy of the system at
the states from a unit impulse input u.t/ when x.0/ D 0. Consequently, in general,
decreasing kG.s/k2 has the effect of dampening disturbances in the system inputs
though the matrix B .

A convenient method of representing the kG.s/k2 is using the trace of the
controllability gramian defined as P.A;B/ WD ´1

0
eA�BBT eA

T �d�: From this
relationship, when A is invertible and symmetric,

kG.s/k22 D tr .P .A;B//

D tr
�ˆ 1

0

eA�BBT eA
T �d�

�

D tr
�ˆ 1

0

BBT eA
T �eA�d�

�

D tr
�

BBT
ˆ 1

0

e2A�d�

�

D �1
2

tr
�
BTA�1B

�
:
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From these observations, in general, inputs perturb the outputs more effectively
as kG.s/k2 increases. In other words, systems with a larger open loop H2 norm
are more easily perturbed. With this in mind, the focus of this work is to minimize
kG.s/k22.

The H2 norm of the system also has attractive graph-theoretic properties linked
through the concept of the effective resistance of the graph discussed in Chap. 3.
A consequence of this connection is that the weights on the edges can be considered
as conductance in an equivalent electrical network realization of the graph [4]. Since
the effective resistance always decreases with increasing conductance, kG.s/k22 will
decrease or remain constant with any increase in edge weights. This useful property
leads to the following section on the reweighting of edges to decrease kG.s/k2.

4.4 Distributed Online Topology Design Algorithm

As many networked systems, such as UAV swarms, require only non-physical
interconnections for their coordinated behavior, they have the advantage that their
inter-vehicle coordination graph can be reweighted. This observation leads to
an online method for improving network manageability, namely via a judicious
topology reweighting. The goal is to adapt the network topology distributively and
with only minimum local knowledge of the network topology so as to improve
disturbance rejection. The metric for “good rejection” used in the following analysis
is the open loop H2 norm of the network dynamics, described in Sect. 4.3.2.

The challenge of dynamic distributed reweighting is that agents are unable to
coordinate with non-neighboring agents. Consequently, local edge reweightings in
light of other agent’s reweights can be detrimental. Furthermore, by the time infor-
mation pertaining to the topological effects of a foreign agent has been received,
the foreign agent may no longer be present. Therefore, the online regret framework
is ideal to address this problem. The changing dynamic structure manifests itself
as a time-varying graph Gt with a corresponding time varying L .Gt /. In turn,
varying foreign agents appear as a changing foreign agent pair Rt . Therefore the
state model (3.2) is

Px.t/ D Atx.t/C Btu.t/;

where At D A.Gt ;Rt / and Bt D B.Rt /. The weights At can be represented as

At D �
X

.i;j /2E
wijaija

T
ij �

X

i2R
eie

T
i ; (4.4)

which is invertible for all positive weights so long as R is nonempty and
G D .V;E; I / is connected.
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Thus, our metric of interest becomes kG.s/k22 D � 1
2
tr
�
BT
t A
�1
t Bt

�
. The

unconstrained minimization of kG.s/k2 will increase the weights on the network
arbitrarily. In addition, large edge weights can have adverse effects on the network
responsiveness. Consequently, we consider the following minimization so as to
balance good rejection with the penalization of overly large weights,

ft .W / D �1
2

tr
�
BT
t A
�1
t Bt

�C 1

2
h1TW TW 1;

where constant h > 0. The arbitrary removal of weights is also unwanted as the
graph can be rendered disconnected. Therefore no edges can be reduced below
some positive vector q�.ij/, i.e., wij � q�.ij/. Additional constraints relating to
maximum edge deviations and node degree constraints can also be considered.
These constraints are specified via vectors u�.ij / 2 R

m and s 2 R
n such that

wij � u�.ij/ and
P

j2N.i/ wij � si .

minft .W /

s.t. q�.ij / � wij � u�.ij/
X

j2N.i/
wij � si : (4.5)

A convex constraint set denoted by P is defined via these linear constraints. The
analysis of the derivative and hessian of the metric kG.s/k22 with respect to the
edge weights is described in Proposition 4.1 proving its convexity via a positive
semi-definite hessian. Hence noting that 1TW TW 1 D P

w2ij D 0 if and only if
wij D 0 for all .i; j / 2 E, then ft .W / is a strictly convex function with hessian
r2ft .W / � hI.

Proposition 4.1. The derivative w.r.t. wij and hessian of kG.s/k22 are

@ kG.s/k22
@wij

D �1
2

X

p2R

	�
A�1t ep

�
i
� �
A�1t ep

�
j


2

and

r2 kG.s/k22 D �E .G/T A�1t BtBT
t A
�T
t E .G/ ı E .G/T A�1t E .G/:

Further, r2 kG.s/k22 is positive semidefinite.
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Proof. The H2 norm squared is

kG.s/k22 D �1
2

tr
�
BTA�1t B

�

D �1
2

X

p2R
eTp A

�1
t ep

D �1
2

X

p2R
gp.G/;

where gp.G/ D eTp A
�1
t ep . Further,

@gp.At .wij //

@wij
D tr

"�
@gp.At /

@At

�T
@At

@w ij

#

: (4.6)

The relevant derivatives are

@gp.At /

@At
D
@
	
eTp A

�1
t ep




@At

D �A�Tt epe
T
p A
�T
t (4.7)

and from (4.4)

@At

@w ij
D
@
	
�P.i;j /2E wijaija

T
ij �P

i2R eieTi



@wij

D �aija
T
ij : (4.8)

Substituting (4.7) and (4.8) into (4.6), we have

@gp
�
At
�
wij
��

@wij
D tr

�	
�A�Tt epe

T
p A
�T
t


T
aija

T
ij

�

D tr
h
A�1t epeTp A�1t aija

T
ij

i

D tr
h	
aTijA

�1
t ep


 	
eTp A

�1
t aij


i

D �
aTijA

�1
t ep

�2

D
	�
A�1t ep

�
i
� �
A�1t ep

�
j


2
:
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Hence,

@ kG.s/k22
@wij

D �1
2

X

p2R

	�
A�1t ep

�
i
� �
A�1t ep

�
j


2
:

Examining the hessian of gp ,

@g2p
�
At
�
wij
��

@w2ij
D @

@wij

�
aTijA

�1
t ep

�2

D tr

2

6
6
6
4

0

B
B
@

@

�	
aTijA

�1
t ep


2
�

@At

1

C
C
A

T

@At

@wij

3

7
7
7
5
: (4.9)

The relevant derivatives are

@

�	
aTijA

�1
t ep


2
�

@At
D 2aTijA

�1
t ep

	
�A�Tt aije

T
p A
�T
t



: (4.10)

Substituting (4.8) and (4.10) then (4.9) becomes

@g2p
�
At
�
wij
��

@w2ij
D tr

�	
2aTij A

�1
t ep

	
A�Tt aije

T
p A
�T
t



T
aija

T
ij

�

D 2aTij A
�1
t eptr

h
A�1t epa

T
ij A
�1
t aija

T
ij

i

D 2
	
aTij A

�1
t ep


 	
aTij A

�1
t ep


 	
aTij A

�1
t aij




D 2
	
aTij A

�1
t epe

T
p A
�T
t aij


 	
aTij A

�1
t aij




D 2
h
E .G/T A�1t epe

T
p A
�T
t E .G/

i

.�.ij/;�.ij//
�
h
E .G/T A�1t E .G/

i

.�.ij/;�.ij//
;

as well as

@g2p
�
At
�
wij
��

@wijwkl
D tr

�	
2aTij A

�1
t ep

	
A�Tt aije

T
p A
�T
t



T
akla

T
kl

�

D 2aTij A
�1
t eptr

h
A�1t epa

T
ij A
�1
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T
kl

i

D 2
	
aTij A

�1
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�1
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�1
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D 2
	
aTij A

�1
t epe

T
p U
�1akl


 	
aTij A

�1
t akl




D 2
h
E .G/T A�1t epe

T
p A
�T
t E .G/

i

.�.ij/;�.kl//
�
h
E .G/T A�1t E .G/

i

.�.ij/;�.kl//
:

Consequently,

r2gp D 2E .G/T A�1t epeTp A�Tt E .G/ ı E .G/T A�1t E .G;

and so

r2 kG.s/k22 D �E .G/T A�1t BtBT
t A
�T
t E .G/ ı E .G/T A�1t E .G/:

Now, E .G/T A�1t BtBT
t A
�T
t E .G/ D �

BT
t A
�T
t E .G/

�T �
BT
t A
�T
t E .G/

�
< 0 and as

A is negative definite then �E .G/T A�1t E .G/ < 0. Finally, the Hadamard product
boasts the property that the Hadamard product of two positive semi-definite matrices
is positive semi-definite [3] and so the result follows. ut
We proceed to provide a decentralized version of the conjugate gradient method
to form r kG.s/k22 distributively. The gradient is then applied to a distributed
formulation of online gradient descent leading to a logarithmic regret bound for
problem (4.5).

4.4.1 Local Gradient via Distributed Conjugate Gradient

Necessary to the distributed gradient descent algorithm is the local evaluation of the
gradient of ft .W / with respect to a weight wij . Examining the derivative result in
Proposition 4.1 for ys WD A.G;R/�1es for all s 2 R then

@ kG.s/k22
@wij

D �1
2

X

s2R

	
ysi � ysj


2
:

Consequently, if every agent i has access to ysi for all s 2 R, then neighboring
agents i and j can negotiate and calculate the gradient with respect to the edge
connecting them.

To this end we propose a distributed form of the linear conjugate gradient method
that for each run s, provides ˇsi to each agent i . The centralized version of the
conjugate gradient method solves A�1b, where A 2 R

n�n and b 2 R
n. For A D

A.G/ and b D ep , the method can be used to find ˇs . An attraction of the algorithm
is that updates only require b and the evaluation of Ay for a given y 2 R

n: For
the case where A is encoded in the graph structure, this is ideal whereby if each
agent i only has knowledge of yi then ŒAy�i can be calculated by agent i simply by
querying its neighbors. Specifically, ŒA.G;R/y�i D P

j2N.i/ wijyj .
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Protocol 6 Distributed Conjugate Gradient Method
Given yi Œ0� for each node i 2 V
Initialize:
k D 0

ri Œ0� DP
j2N.i/ aij xj Œ0�� bi

pi Œ0� D �ri Œ0�
Qri Œ0� Consensus on r2i � 1

n
rTi ri

while jQri Œk�j > � do
bi Œk� DP

j2N.i/ aij pj Œk�

Qpi Œk� Consensus on pibi � 1
n
pTi Api

˛i D Qri Œk�

Qpi Œk�

yi Œk C 1� D yi Œk�C ˛ipi Œk�
ri Œk C 1� D ri Œk�C ˛ibi Œk�
Qri Œk C 1� Consensus on .ri /2 � 1

n
rTi ri

ˇi D Qri ŒkC1�

Qri Œk�

pi Œk C 1� D ˇipi Œk�� ri Œk C 1�
k D kC 1

end

Our distributed conjugate gradient is featured in Algorithm 6, with timesteps
indicated by k. The estimate y, residues r , and conjugate p are the main components
of the algorithm updates in lines 11, 12, and 15 respectively. Our method takes the
same form as the traditional conjugate gradient with the exception of two agreement
variables Qp and Qr required per timestep, shown in lines 9 and 13, respectively. These
are of the form 1

n

P
i2V r2i and 1

n

P
pibi , respectively, and so can be calculated

distributively using a traditional unweighted information-based consensus model (1)
with W D I . Termination occurs when the average residue Qr falls below a small
threshold value �, which for our application � D 1e � 6. Convergence is typically
fast with theoretical guarantees to converge in less than n steps.

Interestingly, the convergence rates are strongly tied to the spectrum of A, and
for our application the eigenvalues of G. If the eigenvalues are clustered, then the
algorithm tends to be more performant. Networks that exhibit this trait are regular
graphs and, in general, graphs with many symmetries [1]. In practice the n step
guarantee is not always met due to rounding errors and for our case errors in the
consensus updates. There are a myriad of techniques to combat this, we found a
restart criteria when Qr increased significantly to be effective and easy to coordinate
through the network. For more details on the intricacies of the conjugate gradient
method, we invite the reader to examine the text [11] by Nocedal and Wright.

Figure 4.1 shows the residue for a sample run of the distributed conjugate
gradient method run on a 20-node graph with four foreign agents. The restart
condition was triggered at k D 7 due to the increase in Qr . The algorithm converged
to � D 1e � 10 in only ten timesteps, much less than the theoretical n D 20.
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Fig. 4.1 Average residue per timestep of the conjugate gradient method on a 20-node graph

Protocol 7 Distributed Online Gradient Descent
Given convex set P � R

n and some wijŒ1� 2 P , 8 ˚vi ; vj � 2 E
Initialize:
k D 1

foreach
˚
vi ; vj

� 2 E do

gij Œk� D � 1
2

P
s2R

	
ysi Œk�� ysj Œk�


2 C hwijŒk�

wijŒk C 1� DQ
P
�
wijŒk�� �Œk�gijŒk�

�

k D kC 1
Here,

Q
P .z/ D arg minx2P kx � zk1.

end

4.4.2 Online Algorithm

Given the online nature of problem (4.5) whereby a member of the arbitrary
sequence of strictly convex functions fft .W /g arrives at each timestep, an online
convex algorithm is a natural choice. We present a distributed version of the online
gradient descent algorithm formulated by Hazan et al. [6]. The algorithm is a
variation of the traditional gradient descent algorithm and has run time O.n/ per
iteration. The distributed version of the algorithm is presented for our cost function
ft .W / in Algorithm 7. At each time step k C 1 the local gradient gijŒk� (line 4) of
edge wij at time step k is revealed to agents i; j which perform a gradient descent
step in line 5. As the step may be infeasible, a projection

Q
P.�/ corrects the step

by projecting to the closest point on the constraint set P under the 1-norm. For
the linear constraints in problem (4.5) this can be accomplished distributively and
cheaply using the 1-norm. An attraction of this algorithm is that Hazan et al. [6]
proved that if step size �Œk� D 1

hk the regret is RT � O .log.T //, i.e., “on average”
the algorithm performs as well as the best fixed strategy in hindsight.
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Fig. 4.2 Distributed reweighting with a fixed leader set

The distributed gradient descent algorithm coupled with the distributed conjugate
gradient method was applied to a random 50-node graph depicted in Fig. 4.2. Four
fixed foreign agents were detected by the agents marked with large circles. The edge
weights were initialized uniformly as 0:25 and constrained such that ql D 0:05 and
ul D 1 for all edges in E, and si D 4 for all nodes i 2 V . The first few iterations
are displayed in Fig. 4.2. The notable characteristic is the increasing of edge weight
on those edges close to the foreign agents. This aligns with the conductance analog
mentioned in Sect. 4.3.2, where additional conductance is added to edges in the
neighborhood of the foreign agents. These edges are those most likely to dampen
the effect of the foreign agents’ signal.

Sub-figures in Fig. 4.3 denote the algorithm’s evolution for varying foreign agent
locations over time. The time evolution provides insight into the inner working of
the online regret framework. Once a foreign agent location is revealed the algorithm
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Fig. 4.3 Distributed reweighting with a variable leader set
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Fig. 4.4 Regret over time of
Algorithm 7

is penalized for the absence of heavily weighted edges in its vicinity, for example,
at timesteps t D 0 and 5. The algorithm recovers by timesteps t D 4 and 9. This
process provides the algorithm with a ‘memory’ of the foreign agent’s location
notable from the residue edge weights from previous heavily weighted edges.

The best static graph for this foreign agent evolution was calculated over 1,000
iterations. The resultant regret is depicted in Fig. 4.4 emphasizing the performance
agreement with the O.log.T // bound found by Hazan et al. [6].

4.5 Remarks

The chapter presents a distributed method for the reweighting of network edges so
as to dampen the inputs of external signals. The open loop H2 norm was presented
as a metric to quantify the network’s susceptibility to such signals. The reweighting
algorithm involved the formulation of a distributed conjugate gradient method and
a distributed online gradient descent method. The work presents a first foray into
the realm of online topology design approaches with proven small regret. The
online approach forms an attractive framework to highly uncertain optimization
problems. Our future research aims to explore the application of the distributed
online approach to the myriad of highly uncertain networked problem.
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Chapter 5
Network Topology Design for UAV Swarming
with Wind Gusts

Abstract The cornerstone of effective topology design for networked systems
is the appreciation of the interplay between system performance and network
structure. In this chapter, we examine the problem of unmanned aerial vehicle
(UAV) swarming in the presence of wind gusts. Firstly, we model an altitude
consensus-based leader–follower model exposed to gust disturbances. We then
proceed to examine system-theoretic and topological features that promote network
disturbance rejection. Specifically the open loop H2 norm of the system is selected
as a performance metric. Its topological features are highlighted via a realization of
the open loop H2 norm in terms of the effective resistance of the corresponding elec-
trical network. We subsequently utilize mixed-integer semidefinite programming
(MISDP) to generate the optimal unweighed network to minimize this metric. This
is then followed by exploiting the open loop H2 norm related topological features to
design a network rewiring protocol to maximize this metric. Finally, these topology
design tools are applied to wind gust rejection in disturbed swarming scenarios,
demonstrating the viability of topology-assisted design for improved performance.

5.1 Introduction

Manageability of unmanned aerial vehicle (UAV) swarms presents new challenges
at the intersection of interdisciplinary fields. The first challenge pertains to advances
in designing small UAVs and micro aerial vehicles (MAVs) involved in complex
mission scenarios [13–16]. The reduced physical scale of such vehicles limits their
sensing and actuation capabilities, often requiring their cooperative operation for
successful missions. The second challenge relates to the improved autonomy of
individual and multiple UAVs, removing the need of a single operator for each UAV
[17–21].

The effect of wind gusts on aircraft is a well-researched area [22, 23]. The
single and collective response of micro aerial vehicle (MAV) swarms to wind
gusts [24], on the other hand, is an emerging research field. [25] has investigated
a bio-inspired MAV design to combat environmental disturbances. A myriad of
controllers have been proposed for such a task; for example, H2 and H1 controllers
have been proposed in [26] and [27]. One of the few chapters that has studied a gust-
exposed network-based UAV swarm is [28] who proposed a hybrid fault-detection
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and isolation approach involving thresholding between small tolerable and large
disturbances in the system, without explicit attention to the coordination topology
of the UAV swarm. The approach in this chapter aims instead to maintain the
underlying consensus dynamics and favorably alter the coordination topology.

One of the challenges in reducing the size of a UAV is its increased susceptibility
to external disturbances, such as wind gusts. An example is provided that examines
the wind-gust swarming scenario which involves a swarm of UAVs with the
objective of maintaining a constant altitude aided by relative sensing between
neighboring UAVs. An H2 controller is implemented by operators to reject the
effect of wind gust disturbance on the overall network. As the swarm is cooperative,
favorable controller disturbance corrections can be inadvertently dampened via
coordination between UAVs. This chapter presents techniques to manipulate the
UAV coordination network topology to improve the swarm’s resilience to wind
gusts.

Unmanned aerial vehicle (UAV) swarming, the focus of this chapter, is an
example of a leader–follower model and involves distributing tasks over many
small vehicles which can be coordinated by leader UAVs. One of the costs of the
decentralized architecture is increased susceptibility of the small vehicles to external
disturbances, such as wind gusts. As the swarm is cooperative, disturbances can
be inadvertently amplified via coordination between UAVs. Similarly, favorable
disturbance correction can be inadvertently dampened. This chapter manipulates
the UAV coordination network topology to improve the swarm’s resilience to wind
gusts.

We model the UAV swarming with leader–follower dynamics running a
consensus-based protocol with the objective of reaching agreement on altitude.
Consensus provides a framework for simple, but effective, distributed information-
sharing and control for networked, multi-agent systems in settings such as
multi-vehicle control, formation control, swarming, and distributed estimation.
See, for example, Olfati-Saber et al. [2] and Mesbahi and Egerstedt [5]. One of
the popular adaptions of traditional consensus is leader–follower dynamics [3, 4]
in which leader agents, that do not conform to traditional consensus, can impact
the network by exploiting the other agents’ consensus dynamics. This can be done
intentionally by knowledgeable controllers, for example leader UAVs correcting
for wind disturbances, or unintentionally by powerless agents, for example a UAV
affected by a wind gust skews the consensus results. In the former case this impact
is favorable and in the latter case is detrimental. We investigate the relationship
between the network topology and the impact of the leaders’ input in a leader–
follower system. Topological features are investigated which vary the leaders’
impact, measured in terms of the open loop H2 norm of the system. Favorable
network topologies are then designed optimally using a mixed-integer semidefinite
programming (MISDP) framework and suboptimally via a decentralized rewiring
protocol, exploiting the aforementioned topological features.

Two specialized cases of wind-gust swarming are considered. The first case is
when the UAVs are spread over a large area, for example for sparse surveillance of
a region, and as such localized wind gusts act on a subset of the UAVs in the swarm.
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The UAVs are assumed to be equipped with sensors and controllers to perform
simple dampening of their measured wind gusts. In the second case, we consider a
dense swarm formation, for example high-precision ground sensing. A consequence
of the UAV’s proximity within a dense swarm is that single wind gusts affect all
agents in the swarm. For this second case, full state monitoring of all UAVs can be
performed by a subset of agents due to the graph’s compactness. An H2 controller
(Linear Quadratic Gaussian (LQG) controller) is implemented on leader agents to
reject the wind gust disturbance. These motivating examples are dubbed sparse and
dense swarming, respectively.

Aircraft being exposed to wind gusts is a well-researched area [22, 23]. Gust-
exposed MAV [24], on the other hand, is an emerging research field and is highly
relevant to this chapter since the agents used in large-scale swarming are often
MAVs. Shyy et al. [25] have investigated biology-inspired MAV design to combat
environmental disturbances. A myriad of controllers have been proposed for such a
task including H1 controllers [27] and H2 controllers [26]. One of the few chapters
that has studied a network-based gust-exposed UAV swarm is Meskin et al. [28] who
proposed a hybrid fault-detection and isolation approach involving thresholding
between tolerable and large disturbances in the system, ignoring the coordination
topology of the UAV swarm. Our approach aims to instead maintain the underlying
consensus dynamics and favorably alter the coordination topology.

One of the attractions of networked systems is that system performance is
strongly coupled to the underlying network structure. For traditional consensus,
system performance and its ties to network structure is a well-researched problem
where the second smallest eigenvalue of the graph Laplacian is a favored metric
to quantify the convergence rate [4, 6]. Interest has also been shown with other
network measures, for example the largest eigenvalue of the graph Laplacian [29].
However, these metrics prove less attractive in leader–follower consensus where
convergence rates can vary dramatically depending on where the leaders are located
within the network. For the leader–follower consensus, our selected performance
metric is the open loop H2 norm. The system-theoretic interpretation of this metric
provides a more tangible link to system performance in the presence of disturbances
and leaders. Further, the equivalent circuit representation of the network provides
the presentation of the open loop H2 norm as the total effective resistance of the
graph agents.

The open loop H2 norm is studied when the network system is subjected to
disturbances or unknown noise, or when the controllability of the system is a
concern. Under such circumstances, reducing the open loop H2 norm, where the
input is from the gust-affected UAVs, will decrease the susceptibility of the system
to the gust, and increasing the open loop H2 norm, where the input is from the
leaders, tends to increase the receptiveness of the system to control. Work in this
area focuses on allocating the weights on the coordination links between UAVs
(the edges of the coordination topology) [8]. We examine the coordination graph
topologies that achieve the minimum and maximum open loop H2 norm, given
a set of leader UAVs. If the existence or absence of a coordination link between
two random UAVs is represented by a Boolean value, the off-diagonal entries of
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the adjacency matrix can all be expressed by the binary variables one or zero. Our
objective is to determine these binary values in order to optimize the performance
index.

We address the optimization of the open loop H2 norm on two fronts. The first
uses MISDP [31] to minimize the metric under network connectivity constraints to
produce the optimal graph. Unfortunately, maximizing the metric in an optimization
setting is NP-hard (a provably intractable problem) and we propose a suboptimal
decentralized protocol to improve this metric. Our approach is to perform edge
trades among neighboring agents within the network that tend to increase the total
effective resistance of the graph and consequently the open loop H2 norm.

The general area of designing topologies to optimize for certain metrics has been
addressed by many authors: Ghosh and Boyd [30] maximized the second smallest
eigenvalue of the graph Laplacian, Zelazo and Mesbahi [7] optimized the network
H2 performance where the graph is not in the closed loop of the dynamics, Wan et
al. [9] maximized the largest eigenvalue of the graph Laplacian. All aforementioned
authors used optimization techniques over weighted graphs. Kim and Mesbahi [32]
used power functions to approximately represent the on/off linkage relationship
when searching for the maximum second-smallest eigenvalue of the Laplacian to
increase convergence speeds of the network dynamics. Wu and Wang [33] have
approached the same problem using genetic-algorithms. Intuitive based methods
of network reconfiguration have been designed to improve network resilience, for
example using thresholding methods to decide when to alter the topology [11].

The chapter is organized as follows. Section 5.2 contains the problem formu-
lation and relevant background. Two models for a UAV swarm exposed to wind
gusts are also introduced in Sect. 5.2. An analysis of the open loop H2 norm is
presented in Sect. 5.3 and its relationship to system performance and the effective
resistance of the network is established. In Sect. 5.4, two methods are proposed to
design network topologies optimized for the open loop H2 norm and conducive to
wind-gust disturbance rejection.

5.2 Model

Now consider xi .t/ 2 R to be the i -th node’s (or for our case agent’s) state at
time t . The continuous-time consensus protocol is in Eq. (1) with compact form
Px.t/ D �L .G/x.t/.

We next introduce a model for leader–follower consensus which extends the
model (3.3) from Chap. 3 allowing more than one input to influence any one node
in the graph.

The model is defined over a graph MG D . MV ; ME/ associated with a pair R D
.R; ER/, where R 2 MV is the cardinality r leader agents set and ER � ME is the set
of edges used by the leader agents to inject signals into the network. It is assumed
that for a leader agent rj 2 R the same signal uj .t/ 2 R is delivered along every
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Fig. 5.1 Example of leader–follower notation. The leaders in set R are connected to the followers
in V via the edges ER. The followers V with coordination edges E form a graph G (some of which
is depicted in the image with agents vi ; vj ; vk and solid edges). Edges between leaders (dotted)
can be ignored and followers. The complete leader and follower graph containing all agents MV and
edges ME is denoted as MG

edge adjacent to it. The remaining edges and agents of MG form the subgraph G, with
the exception of those edges between leaders which are removed. This assumption is
justified as we assume leaders are working cooperatively and do not require coupled
dynamics of the other leaders’ states. Figure 5.1 provides a graphical representation
of this notation and setup.

The resulting leader–follower system now assumes the form,

Pxi .t/ D
X

fvi ;vj g2E
�
xj .t/ � xi .t/

�C
X

fvi ;rj g2ER

�
uj .t/ � xi .t/

� W (5.1)

with full dynamics

Px.t/ D A.G;R/x.t/C B.R/u.t/; (5.2)

where B.R/ 2 R
n�r with ŒB.R/�ij D 1 when

˚
rj ; vi

� 2 ER and ŒB.R/�ij D 0

otherwise, and

A.G;R/ D � .L .G/CD .R// 2 R
n�n; (5.3)

where D .R/ 2 R
n�n with ŒD .R/�ii D ıri where ıri is the number of leaders

adjacent to vi and ŒD.R/�ij D 0 otherwise. We define ıvj as the number of follower
agents adjacent to rj . We distinguish two special cases of this setup: one in which
there is exactly one leader for each edge ER and so a distinct control signal is
delivered through each edge, denoted with the leader pair Rd , and one where there
exists only one leader node so a common signal is delivered through each edge of ER,
denoted with pair Rc . A sample model and its system matrices as well as the special
cases of Rd and Rc are depicted in Fig. 5.2. We also denote the set of agents vi such
that

˚
rj ; vi

� 2 ER by � .ER/. In other words, � .ER/ is simply the set of agents that
directly connect to leader agents.

We recognize A .G;R/ in Eq. (5.3) as the Dirichlet matrix, or grounded
Laplacian [10, 12]. The spectrum of A .G;R/ relates closely to the spectrum of
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a

c

r1 r1

r2 r2

v1 v1
v2 v2

v3 v3

v4 v4

b

1 Amp

A(G,R) =

⎡
⎢⎢⎣

−3 1 1 0
1 −2 1 0
1 1 −3 1
0 0 1 −3

⎤
⎥⎥⎦, B(R) =

⎡
⎢⎢⎣

1 0
0 0
0 0
1 1

⎤
⎥⎥⎦

B(Rd) =

⎡
⎢⎢⎣

1 0 0
0 0 0
0 0 0
0 1 1

⎤
⎥⎥⎦, B(Rc) =

⎡
⎢⎢⎣

1
0
0
2

⎤
⎥⎥⎦

Fig. 5.2 (a) Network graph with leader (control) agents r1 and r2 attached to agents v1 and v4,
leading to an altered Laplacian A.G;R/ and input matrix B.R/ of model (5.2). (b) Equivalent
electrical network. The potential difference Vv3 � VR is the effective resistance between v3 and
common resistor node fr1; r2g. (c) The control matrices relating to the special cases of distinct and
common control

L .G/. In this way, the structure of the underlying graph is related to the dynamics
of model (5.2). In the next section we proceed to disturb the leader–follower system
with a wind gust. Before this an auxiliary observation about the Dirichlet matrix, to
be used subsequently, is the following.

Proposition 5.1 ([35]). The matrixA.G;R/ of model (5.2) is negative definite (and
so invertible) if the original graph is connected.

The following is the characterization of the wind gust in state space form which will
be subsequently used in the swarming models.

5.2.1 Wind Model

A vertical wind gust wg is not white, but has a power spectral density given in
Dryden form [23] as

ˆw.!/ D 2L�2
1C 3L2!2

.1C L2!2/
2
; (5.4)

with w the frequency in rad/s, � the turbulence intensity, and L the turbulence scale
length divided by true airspeed.
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The power spectral density (5.4) can be factored[23] as,

ˆw.s/ D Hw.s/Hw.�s/;

where

Hw.s/ D �

r
6

L

s C 1=L
p
3

s2 C 2s=LC 1=L2
:

Now a realization of Hw.s/ corresponding to w, a white noise input with zero mean
and unit variance W , is given by

Pz.t/ D
�
0 1

� 1
L2

� 2
L

�

z.t/C
�
0

1

�

w.t/;

D Awz.t/C Bww.t/ (5.5)

where z.t/ 2 R
2 are the internal states of the wind gust and

wg.t/ D 

h

1

L
p
3
1
i

z.t/

D Cwz.t/ (5.6)

where 
 D �
p
6=L.

We can now proceed to formulate the full UAV swarming scenarios and
incorporate the wind model dynamics.

5.2.2 Swarming Models

We present two swarming models with the objective of reaching and maintaining
a common altitude among a network (swarm) of UAVs by using the consensus
protocol (5.3). In the first model we consider the swarm being spread over a large
area. Due to the large separation of vehicles, different wind gusts affect agents in
isolation. Basic gust correction is present on each UAV which has the effect of
dampening their wind gust. This model is dubbed sparse swarming. The second
model examines a swarm grouped together over a small area. Wind gusts no longer
act on agents in isolation but affect all agents in the swarm simultaneously. A set
of control UAVs (leaders) that can monitor all follower UAVs are introduced and
integrated into the consensus dynamics. These control UAVs have onboard altitude
maintenance and vary their altitudes so as to correct for such disturbances in the
swarm through the consensus dynamics. This model is dubbed dense swarming.

For both models, the swarm of UAVs contains a subset of follower UAVs.
Each follower examines the relative altitude of vehicles in their neighborhood,
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via onboard relative altitude sensors, and applies the consensus protocol. The
remaining UAVs are considered leader agents which do not obey the consensus
protocol, the reason for which distinguishes our two models. For sparse swarming,
the gust-affected agents, which are the leaders in this case, inadvertently disobey
the consensus protocol as each are instead dampening their individual wind gusts.
In dense swarming, the leaders are special controller UAVs that are actively
ignoring the protocol with the objective to correct for wind gusts that are perturbing
the velocities of the followers in the network. We subsequently model, for both
swarming scenarios, each follower agent as a single integrator with dynamics
dictated by the consensus algorithm for altitude alignment. The follower altitude
states are x.t/ and the leader states are q.t/ and u.t/ for the sparse and dense
swarming models, respectively. The zero altitude (x.t/ D 0, q.t/ D 0 and u.t/ D 0)
can be selected arbitrarily, which for simplicity can be set such that x.0/ D 0,
q.t/ D 0 and u.0/ D 0. We now proceed to present our two swarming models for
sparse and dense swarming.

5.2.2.1 Sparse Swarming

In sparse swarming, we assume distinct gusts act upon r UAVs of the network.
Each UAV has the same capability to perform basic gust correction. They are each
equipped with sensors and actuators that can measure and dampen the local wind
gust. The subsequent altitude dynamics q.t/ 2 R

r of the gust are modeled by

q.t/ D Nh!g.t/C Nx.0/

where Nh 2 R is the dampening effect (common to all UAVs) of the wind gusts
!g.t/ 2 R

r and Nx.0/ 2 R
r is the altitudes of the affected UAVs before the gusts hit.

Incorporating the filter dynamics of Eq. (5.5) with filter state zi .t / 2
R
2 and white noise wi .t / 2 R corresponding to gust

�
!g.t/

�
i
, 
.t/ D

�
z1.t/T ; : : : ; zr .t/T

�T 2 R
2r and �.t/ D Œw1.t/; : : : ;wr .t/�

T 2 R
r then

� Px.t/
P
.t/

�

D
�
A.G;R/x.t/C B.R/q.t/

P
.t/
�

D
�
A.G;R/x.t/C B.R/

� Nh!g.t/C Nx.0/�
P
.t/

�

D
�
A.G;R/x.t/

P
.t/
�

C
� NhB.R/

0

�

.Ir�r ˝ Cw/ 
.t/C
�
B.R/ Nx.0/

0

�

D
�

A.G;R/x.t/
.Ir�r ˝ Aw/ 
.t/C .Ir�r ˝ Bw/ �.t/

�
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C
� NhB.R/ .Ir�r ˝ Cw/

0

�


.t/C
�
B.R/ Nx.0/

0

�

D
�
A.G;R/ NhB.R/ .Ir�r ˝ Cw/

0 .Ir�r ˝ Aw/

� �
x.t/


.t/

�

C
�

0

.Ir�r ˝ Bw/

�

�.t/

C
�
B.R/ Nx.0/

0

�

: (5.7)

We now make the simplifying assumption for modeling that q.t/ are arbitrary. For
simulation results, we will use the full dynamics in Eq. (5.7).

Noting that all the non-gust-affected UAVs (followers) states x.t/ are of interest,
the dynamics can be represented as

Px.t/ D A.G;R/x.t/C B.R/q.t/ WD ASx.t/C BSq.t/ (5.8)

y.t/ D CSx.t/;

where y.t/ 2 R
n is the controller observations, CS D In�n, and AS and BS are

apparent from Eq. (5.8)
The objective of the chapter is to adapt the coordination topology G and R to

reduce the network amplification of the locally dampened wind gust q.t/ on the
altitude of the non-gust affected vehicles y.t/. In other words, for a fixed Nx.0/, to
dampen the input to output mapping of q.t/ to y.t/.

5.2.2.2 Dense Swarming

The assumptions for the dense swarming model are that a controller corresponding
to the leader’s states u.t/ 2 R

r is present and that the same gust wg.t/ 2 R acts
upon all agents in the network. Then the full dynamics are

� Px.t/
Pz.t/

�

D
�
A.G;R/x.t/C B.R/u.t/

Pz.t/
�

C
�
H

0

�

wg.t/

D
�

A.G;R/x.t/
Awz.t/C Bww.t/

�

C
�
B.R/
0

�

u.t/C
�
H

0

�

Cwz.t/

D
�

A.G;R/x.t/
Awz.t/C Bww.t/

�

C
�
B.R/
0

�

u.t/C
�
Az

0

�

z.t/

D
�
A.G;R/ HCw

0 Aw

� �
x.t/

z.t/

�

C
�
B.R/
0

�

u.t/C
�
0

Bw

�

w.t/ (5.9)

where H D Œh1; : : : ; hn�
T and hi 2 R is a scaling factor specific to UAV i ’s gust–

vehicle interaction.
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We assume that the agent states of the system can all be sensed with some
measurement noise v.t/ 2 R

n which is a white noise vector with correlation matrix
V 2 R

n�n. Restating Eq. (5.9) in compact form, we have

� Px.t/
Pz.t/

�

D AD

�
x.t/

z.t/

�

C BDu.t/CGDw.t/ (5.10)

y.t/ D CD
�
x.t/

z.t/

�

C v.t/;

where AD , BD , and GD are apparent from Eq. (5.9), y.t/ 2 R
n is the controller

observations of which we assume the leaders can observe all the followers’
velocities and so CD D �

In�n 0n�2
�
.

The objective of the chapter, explored further in the next section, is to adapt the
coordination topology G and R to increase the amplification of the control input
u.t/ on the altitude of all UAVs y.t/. In other words, to amplify the input to output
mapping of u.t/ to y.t/. To quantify the amplification of u.t/ to y.t/ as well as the
dampening of q.t/ to y.t/ we use the open loop H2 norm of the system, which will
be discussed in the following section.

5.3 Open Loop H2 Norm

As a group of networked UAVs do not require physical interconnections for their
coordinated behavior, they have the advantage that their inter-vehicle coordination
graph can be rewired. This observation leads us into our next form of gust correction,
namely via topology design. We present a system-theoretic metric that can be
exploited to adapt the network topology with the objective of improving the nominal
H2 performance. The open loop H2 norm of the system proves to be particularly
suitable for such an analysis. For a system of the form

Px.t/ D Ax.t/C Bu.t/

y.t/ D Cx.t/C Du.t/;

the open loop H2 norm can be defined in terms of the controllability gramian,
PT .A;B/ WD ´ T

0
eA�BBT eA

T �d� for the system. The square of open loop H2

norm is

kG.s/k22 D tr
�
CP1 .A;B/CT

�
; (5.11)

where the state-space realization is G.s/ D C .sI � A/�1 B . For C D I , this
is a scaled version of the previous chapter’s variance damping measure (3.8),
specifically, kG.s/k22 D n

2
J� .G;R/.
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b) The energy of the states at the output from a unit impulse input u when
x.0/ D 0 is

ˆ 1

0

x.t/T x.t/dt D kG.s/k22 :

From these observations we can state that inputs perturb the outputs more
as kG.s/k2 increases. With this in mind we are motivated to generate network
topologies that increase this scalar metric when the leader inputs u.t/ are favorable
as in model (5.10) where the leaders correcting for wind disturbances in the network
and decrease this metric for unfavorable gust related inputs q.t/ as in model (5.8)
where the leaders are delivering adverse wind gusts into the network. Before
proceeding with the network generation we examine some properties of kG.s/k2
with respect to our specific models (5.8) and (5.10). For esthetics, we will present
results and optimize for the square of the open loop H2 norm kG.s/k22 but make the
observation that maximizing or minimizing kG.s/k22 inadvertently maximizes and
minimizes kG.s/k2.

In our sparse swarming model (5.8), if we consider the wind gust effect is
analogous to a control input we can formulate the system’s controllability gramian
and corresponding kG.s/k2. The related gramian and kG.s/k2 for the sparse and
dense swarming models are presented in the following proposition.

Proposition 5.2. The controllability gramian as t ! 1 corresponding to
model (5.8) from input q.t/ to output y.t/ is

P1 .AS ;BS / D P1.A.G;R/; B.R//;

and corresponding to model (5.10) from input u.t/ to output y.t/ is

P1 .AD;BD/ D
�
P1.A.G;R/; B.R// 0

0 0

�

;

consequently the wind gust related states are uncontrollable. Thus for, GS.s/ D
CS .sI � AS /

�1 BS and GD.s/ D CD .sI � AD/
�1 BD then kGS.s/k22 D

kGD.s/k22 D tr.P1.A.G;R/; B.R///.
Proof. The sparse models results follow directly from the definition of the con-
trollability gramian and Eq. (5.11). The matrix P1 .AD;BD/ is the controllability
gramian and therefore ADP1 .AD;BD/C P1 .AD;BD/AT

D D �BDBTD , and so

AD

�
P1.A.G;R/; B.R// 0

0 0

�

C
�
P1.A.G;R/; B.R// 0

0 0

�

AT
D

D
�
A.G;R/ Az

0 Aw

� �
P1.A.G;R/; B.R// 0

0 0

�
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C
�
P1.A.G;R/; B.R// 0

0 0

� �
A.G;R/T 0

ATz ATw

�

D
�
A.G;R/P1.A.G;R/; B.R//C P1.A.G;R/; B.R//A.G;R/T 0

0 0

�

D
��B.R/B.R/T 0

0 0

�

D �
�
B.R/
0

�
�
B.R/T 0

�

D �BDBTD:

Applying Eq. (5.11) the proposition follows. ut
From Proposition 5.2, the open loop H2 norm is common to both sparse and dense
swarming models. The distinct difference is that the H2 norm of interest for the
sparse model is mapping the dampened wind gust q.t/ to the output y.t/ and for
the dense model the leader control u.t/ to the output y.t/. We will henceforth refer
to this metric as kGG;R.s/k2 as it is solely dependent on G and R. Similarly, we will
denote P1.A.G;R/; B.R// as P.G;R/.

Directly from the definition of the controllability gramian, one has

kGG;R.s/k22 D tr
�ˆ 1

0

eA.G;R/�B .R/ B .R/T eA.G;R/T �d�
�

(5.12)

D tr
�

B .R/ B .R/T
ˆ 1

0

e2A.G;R/�d�

�

D �1
2

tr
�
M .R/ A.G;R/�1

�
; (5.13)

where M .R/ D B .R/ B .R/T .
In the previous chapter a resistive electrical network interpretation was provided

for the diagonal of the matrix �A.G;R/�1. An example of the equivalent electrical
network is displayed in Fig. 3.3.

We proceed to analyze this metric for our two special leader-agent cases; with
jRj D jERj and jRj D 1 corresponding to Rd and Rc (defined in Sect. 2.2),
respectively.

Proposition 5.3. For a connected graph G, if each leader agent has exactly one
edge and so each edge in Rd can have an independent signal then,

kGG;Rd
.s/k22 D 1

2

X

vi2�.ER/
Eeff .vi / : (5.14)
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Proof. This result follows directly from Lemma 3.13. ut
Proposition 5.4. For a connected graph G, and all agents apply the same signal
then

kGG;Rc .s/k22 D 1

2
jERj :

Proof. We have B.Rc/ D B.Rd /1u and A.G;R/�1B.Rc/ D A.G;R/�1B.Rd /

1u D �1x hence

tr
�

M .R/
ˆ 1

0

e2A.G;R/�d�

�

D tr
�
B.Rc/

T A.G;R/�1B.Rc/
�

D tr
�
1Tu B.Rd /

T 1x
� D jERj :

From (5.13), the statement of the lemma now follows. ut
Corollary 5.5. For a graph MG and model (3.2) with one leader,

kGG;R.s/k22 D 1

2
ı.r1/;

where ı.r1/ is the degree of the leader in the graph MG.

Proof. The statement of the corollary follows directly from Proposition 5.4. ut
Remark 5.6. The implication of Corollary 5.5 is that for the case of a single leader,
selecting the agent within the network with the highest degree will maximize the
open loop H2 norm of the system, regardless of the structure of the network.

We now relate the controllability gramian of a generic R with the controllability
gramians of special cases of QRd and QRc . We design these special leader sets cases
such that: a control uc of system QRc maps to a control u of system R so that
B. QRc/uc D B.R/u when H1uc D u and so that kuck2 D 1 H) kuk2 D 1,
for some H1. Similarly, B.R/u D B. QRd /ud when H2u D ud and so that
kuk2 D 1 H) kudk2 D 1, for someH2. This corresponds to B .R/ D B. QRd /H2,
B. QRc/ D B.R/H1, where H1 D 1pjRj1 2 R

jRj�1, H2 2 R
jRd j�jRj and

ŒH2�ij D
8
<

:

1p
ıvj

if
�
rj ; vi

� 2 ER

0 otherwise:

Therefore,

�
B. QRc/

�
i

D
(

nipjRj if
�
rj ; vi

� 2 ER
0 otherwise;
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and

�
B. QRd /

�
ij D

8
<

:

q
ıvj if

�
rj ; vi

� 2 ER
0 otherwise:

Proposition 5.7. For a graph G and the leader sets defined above for QRc and QRd ,

P.G; QRc/ 
 P.G;R/ 
 P.G; QRd /:

Proof. We note that by design for every kuck2 D 1 there exists a kuk2 D 1 such thatˇ
ˇB. QRc/uc

ˇ
ˇ
2

� jB.R/uj2 and similarly for every kuk2 D 1 there exists a kudk2 D 1

such that jB.R/uc j2 � ˇ
ˇB. QRd /u

ˇ
ˇ
2
. The statement of the proposition follows. ut

Lemma 5.8. For a graph G and leader set R,

1

2 jRj jERj � kGG;R.s/k22 � 1

2

X

vi2�.ER/
˛iEeff .vi / ;

where

˛i D
X

.rj ;vi /2ER
ıvj ;

i.e., ˛i is the sum of the non-leader degrees for each leader attached to vi .

Proof. From Proposition 5.7,

�
�GG; QRc

.s/
�
�2
2

� kGG;R.s/k22 �
�
�
�GG; QRd

.s/
�
�
�
2

2
;

and

tr
�
P.G; QRc/

� D tr
�
B. QRc/

T A.G;R/�1B. QRc/
�

D 1

jRj tr
�
B.Rc/

T A.G;R/�1B.Rc/
�

D 1

jRj tr .P.G;Rc// :

We note that M .Rd / is a diagonal matrix with ŒM .Rd /�i i D ıvj if
�
rj ; vi

� 2 ER
and ŒM .Rd /�i i D 0, otherwise, and so

�
M .Rd / A.G;Rd /

�1�
i i

D
(
˛i
�
A.G;Rf /

�1�
i i

if vi 2 � .ER/
0 otherwise:
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The proof of the lemma follows. ut

Remark 5.9. An in-depth analysis of
�
�
�GG; QRd

.s/
�
�
�
2

2
was undertaken for the spe-

cialized class of graphs, namely trees T [34]. To apply some of these results
to more generalized connected graphs we consider any spanning tree T of a
connected graph G. In terms of our electrical resistance analogy, the resistor
network corresponding to T is formed by removing resistors from the resistor
network corresponding to G. Applying Rayleigh’s Monotonicity Principle1 leads

to
�
�
�GG; QRd

.s/
�
�
�
2

2
�
�
�
�GT ; QRd

.s/
�
�
�
2

2
, i.e., the open loop H2 norm of the system with the

coordination graph G is bounded above by the open loop H2 norm system with the
coordination graph T corresponding to any of the spanning trees of G.

5.4 Topology Design

We now consider the design of network topologies that exhibit favorable gust rejec-
tion characteristics for sparse and dense swarming. We will proceed to introduce two
methods to generate these networks using the open loop H2 norm as the optimizing
metric.

Before continuing we will introduce constraints on the underlying graph structure
that are products of the swarming application. Firstly, for all UAVs in the network
to reach a common consensus there must be some path connecting each and every
UAV along some subset of graph edges, i.e., the graph must be connected. The graph
nodes represent UAVs. As the number of UAVs is constant in time, the number
of nodes n is fixed. An edge fvi ; vj g 2 E in the graph indicates that UAV i is
sensing the relative altitude of UAV j and vice versa. The total sensing load on
the network is subsequently 2 jEj and applying an upper bound on 2 jEj equates
to limiting this load. UAV i ’s sensors can also be limited to a certain quantity of
concurrently relative altitude measurements of neighboring UAVs. From a graph-
theoretic perspective, this is represented as an upper bound on node i ’s degree
ıi . Finally, the ability of UAV i to perform accurate relative sensing of UAV j is
limited by the Euclidean separation of the two UAVs. A Euclidean based constraint
graph can be formed where edges exist between UAVs when they lie in each
other’s sensing range. For topology design, only a subgraph of this constraint graph
can be selected. We assume that inter-UAVs distances in the horizontal plane are
roughly constant and much greater than the vertical inter-UAV distance, as such the
constraint graph is fixed as perturbations in the vertical position do not alter the
constraint graph.

1Rayleigh’s Monotonicity Law states that if the edge resistance in an electrical network is
decreased, then the effective resistance between any two agents in the network can only
decrease [1].
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Fig. 5.3 Agent graph with leader agents (squares). (a) A Euclidean constraint graph (b) A
connected subgraph of (a) meeting the global and local edge constraints, jEj 	 51 and ıi 	 7 for
all vi 2 V

Figure 5.3a depicts a Euclidean based constraint graph on 20-nodes. Further,
we provide a graph in Fig. 5.3b that satisfies the connected Euclidean subgraph
constraint with the added global and local load sensing constraints such that jEj �
51 and ıi � 7 for all vi 2 V .

We now have the necessary framework to formulate our methods for network
topology design which are MISDP and distributed adaptive network design suitable
for sparse and dense swarming, respectively.

5.4.1 MISDP Design and Sparse Swarming

According to the symmetric property of the adjacent matrix A .G/, a graph with
n nodes can use a set of binary variables comprised of n.n � 1/=2 elements to
determine off-diagonal entries of the A .G/ while the diagonals are simply zeros.
Using such a framework, we assign binary variable aij to represent the element
ŒA .G/�ij in A .G/ such that

A .G/ D

0

B
B
B
B
@

0 a12 � � � a1n
a21

: : : aij
:::

::: aji
: : :

:::

an1 : : : : : : 0

1

C
C
C
C
A
; aij D aji; .i ¤ j /: (5.15)

If the cost of constructing a graph with adjacency expressed in Eq. (5.15) is
estimated by the number of edge set E, then we can scale the cost by

CE D
X

fvi ;vj g2V
aij=2I aij D aji; .i ¤ j /: (5.16)
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The degree matrix D.G/ of the graph can also be expressed in terms of the binary
variables aij as

D.G/ D

0

B
@

P
a1j 0

: : :

0
P
anj

1

C
A :

Therefore the Laplacian L .G/ D D.G/ � A .G/ is completely determined by the
binary variables aij. We quote the following well-known Lemma [5] which can be
used to determine the connectivity of the graph.

Lemma 5.10. The graph G is connected if and only if �2.G/ > 0.

When the network is injected with noise, our goal is to design the topology of
the graph by determining the coordination linkages between nodes such that the
effective resistance is minimized. At the same time, we want to constrain the
construction cost CE , i.e, the number of edges in the graph. Moreover, the sensing
capacity of each node vi 2 V is constrained by the maximum degrees �maxi .
Finally, the necessary and sufficient condition for a connected graph requires that
�2.G/ > 0. In summary, we can formulate the optimal graph design problem as

min
A.G;R/

tr.B.R/B.R/T A.G;R/�1/ (5.17)

s:t: aij D aji; 8 vi ; vj 2 V; i ¤ j (5.18)

aij 2 f0; 1g (5.19)

nX

i;jD1;i¤j
aij=2 � CE (5.20)

nX

jD1
aij � �maxi ; vi 2 V (5.21)

�2.G/ > 0 (5.22)

The next step is to transform the objective and constraint functions into linear matrix
equalities or inequalities as an MISDP problem. Equations (5.18)–(5.21) are already
expressed in linear form. Our concern therefore is with Eqs. (5.17) and (5.22). We
first present a linear inequality constraint to ensure the second smallest eigenvalue
of graph Laplacian is positive via the following proposition and corollary.

Proposition 5.11. For a graph Laplacian L .G/ the eigenvalues of L .G/ are
equivalent to the eigenvalues of PTL .G/P , where P D Œp1; p2; : : : ; pn�1; 1n1�
and the unit vector are chosen such that

pTi 1 D 0; i D 1; 2; : : : ; n � 1 (5.23)
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and

pTi pj D 0; i ¤ j: (5.24)

Proof. It is well known the Laplacian L .G/ is positive semidefinite matrix and
has one eigenvalue equal to zero with related eigenvector 1. The eigenvector x
associated with the nonzero eigenvalue � satisfies the following condition

xTL .G/ D �x; for all nonzero x 2 1? (5.25)

where eigenvector x corresponds to a nonzero eigenvalue and is contained in the set
of all vectors orthogonal to 1, denoted by 1?. However, without loss of generality,
vector x could be the linear combination

x D ˛1p1 C ˛2p2 C � � � C ˛npn;

such that x D Py and y D Œ˛1; ˛2; � � � ; ˛n� has nonzero elements. Substituting x in
Eq. (5.25) one has

.Py/TL .G/ D �Py ” yT .P TL .G/ � �P /y D 0 (5.26)

Obviously, Eq. (5.26) exists if and only if PTL .G/ D �P . ut
Corollary 5.12. For a graph Laplacian L .G/ the constraint �2.G/ > 0 is
equivalent to L .G/C 11T =n � 0.

Proof. It is easy to confirm that the matrix 11T =n has one eigenvalue equal to 1
with corresponding eigenvector of 1 and the remaining eigenvalue are all equal
to zero. We assume the eigenvectors of matrix 11T =n are denoted by P D
Œp1; p2; : : : ; pn�1; 1� where all elements of P satisfies exact the same condition as
stated in Eqs. (5.23) and (5.24). From Proposition 5.11, one has

PTL .G/ D

0

B
@

�1.G/ 0 0

0
: : : 0

0 0 �n.G/

1

C
AP;

where �1 D 0 with eigenvector 1. We proceed with calculating the eigenvalues of
matrix L .G/C 11T =n,

PT .L .G/C 11T =n/ D

0

B
B
B
@

�1.G/C 1 0 0 0

0 �2.G/ 0 0

0 0
: : : 0

0 0 0 �n.G/

1

C
C
C
A
P:
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As we assigned 0 D �1.G/ � �2.G/ � � � � � �n.G/, �2.G/ > 0 is satisfied if and
only if L .G/C 11T =n � 0. ut
Next, we introduce a slack symmetric matrix Sn�n such that

�
S In�n
In�n A.G;R/

�

� 0 ” S � A.G;R/�1:

By minimizing the trace of upper bounds of A.G;R/�1, which we relabel matrix
S , we simultaneously reach the minima of the desired tr.A.G;R/�1/ without
performing the nonlinear inverse calculation of A.G;R/. The optimization problem
proposed from Eqs. (5.17)–(5.22) is now transformed into an MISDP problem
summarized in the following formulation:

min
A.G;R/

tr.B.R/B.R/T S/

s:t: aij D aji; 8 vi ; vj 2 V; i ¤ j

aij 2 f0; 1g
nX

i;jD1;i¤j
aij=2 � CE

nX

jD1
aij � �maxi ; vi 2 V

L .G/C 11T =n � 0

�
S In�n
In�n A.G;R/

�

� 0

We now apply the above MISDP formulation to the sparse swarming model (5.7)
with 10 UAVs, two of which are acted on by wind gusts. The open loop H2 norm

of the mapping from q.t/ to y.t/ is kGG;R.s/k22 D � 1
2
tr
	
M.R/A .G;R/�1




(Eq. 5.13). Further, to limit the relative sensing demands on the network, we make
the following constraints on the network; that jEj � 25, jGj must be subgraph of
the Euclidean-based constraint graph in Fig. 5.4, and each node has a maximum
degree constraints also indicated in Fig. 5.4.

Applying these constraints to the MISDP formulation we acquire the graph in
Fig. 5.5 and for comparison a random original graph that meets these constraints is
also indicated. The metric kGG;R.s/k22 for the optimized and comparative graphs are
1.89 and 2.07, respectively. The output of the UAV marked in Fig. 5.4 was compared
in Fig. 5.6 with the constants of model (5.7) set as L D 3:49, � D 10, Nh D 1, and
initial altitudes x.0/ D 0 and Nx.0/ D 0.



100 5 Network Topology Design for UAV Swarming with Wind Gusts

Fig. 5.4 Edge constraint
graph with maximum degree
constraints indicated. The
leader agents (those agents
affected by wind gusts) are
indicated with squares and
the unique degree label
corresponds to the agent
whose dynamics are
displayed in Fig. 5.6
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Fig. 5.5 (a) Original graph and (b) Optimized (adapted) graph both satisfying the edge and degree
constraints from Fig. 5.4 with leader agents (squares)
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Fig. 5.6 The altitude state of the uniquely marked agent in Fig. 5.4 for the graphs in Fig. 5.5
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5.4.2 Adaptive Network Design and Dense Swarming

It has previously been demonstrated that leader agents applying a grounded signal
(all leaders apply a common constant signal) are able to control the mean consensus
value of a wind gust disturbed system [34]. We now investigate controlling the
consensus value of a wind gust disturbed system using a H2 control framework
assuming a nominal G in (5.9).

A consequence of Proposition 3.2 is that A.G;R/ has only negative eigenvalues.
ExaminingAw, �i .Aw/ D � 1

L
for i D 1; 2 and asL > 0, it follows thatAw has only

negative eigenvalues. Therefore the state matrix AD is stabilizable and detectable so
a stabilizing compensator can be formed.

Hence given a performance measure

J D lim
t!1E

˚
x.t/TQx.t/C u.t/TRu.t/

�
;

a compensator that minimizes J can be solved of the form

POx.t/ D �
AD � BDKc �Kf CD

� Ox.t/CKf y.t/

u.t/ D Kc Ox.t/;

where Ox.t/ is an estimate of
�
x.t/T z.t/T

�T
, Kc 2 R

r�n is the compensator gain
and Kf 2 R

n�n is the filter gain. The compensator and filter gains satisfy Kc D
R�1BTDP and Kf D SCTDV �1 and P and S are the solutions of the algebraic
Riccati Equations,

0 D AT
DP C PAD CQ � PBDR�1BTDP

0 D ADS C SAT
D CGDWGT

D � SCTDV �1CDS:

The corresponding optimal performance cost is then

J � D tr.PKf VKT
f /C tr.SQ/: (5.27)

For the dense swarming model (5.10), the stabilizing compensator was applied
to a 40-agent UAV network exposed to wind gusts composed of three leaders and
37 followers with parameters; Q D I37�37, R D 10I3�3, V D 0:1I37�37, H D 1,
W D 1, L D 3:49, � D 10, and initial altitude set as x.0/ D 0. The network
topology is depicted in Fig. 5.7. The performance with respect to the average state
and control with a desired altitude hover command (x.t/ D 0) are compared to the
grounded signal control in Fig. 5.8.

We now present a network design protocol to improve the H2 controller
performance. We note that the previous formulation using mixed-integer design is
no longer feasible as it equates to maximizing a convex function which is NP-hard.
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Fig. 5.7 Original agent
graph with leader agents
(squares)
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Fig. 5.8 Average state and control over time for the compensated (closed loop H2 controller) and
grounded constant (open loop) control for the wind perturbed graph in Fig. 5.7

It is with this in mind that we propose an edge trading (rewiring), adaptive topology
controller to improve the nominal H2 performance.

The protocol runs over the spanning trees of G with the objective of increasing
kGG;R.s/k22 via increasing jERj and Eeff .vi / for all vi 2 � .ER/ as illustrated
through Lemma 5.8. The protocol involves edge trades between neighboring agents
executed concurrently and/or in a random agent order while maintaining a connected
tree at each iteration. The general procedure is to randomly select a spanning tree T
of G and apply Protocol 8 for some finite number of edge trades and then repeat with
a new spanning tree. Within the protocol, we denote edge removal and addition by
the set notation “�=C”, and denote by I .vi /, the set of all agents that are neighbors
of vi and lie on the shortest path between vi and any rj 2 R. In this direction, let
us first define the special set of agents that lie on any of the shortest paths between
agents in R as main path agents, i.e., those agents such that are leader or with
I .vi / > 1. The protocol involves two conditions: one to increase the degree of
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Protocol 8 Increasing t rP.T ;R/ edge swap
foreach Agent vi do

if vk D I.vi /, 9vj 2 N .vi / and vj ¤ vk then
E ! E � fvi ; vj g C fvj ; vkg

end
if jI.vi /j > 1, 9vj ; vk 2 N .vi /, vj 2 I.vi / and vk … I.vi / then

E ! E � fvi ; vj g C fvj ; vkg
end

end

ba

Fig. 5.9 (a) Edge constraint graph and (b) Resultant leader–follower network after applying
Protocol 8 to 50 spanning trees of the graph in Fig. 5.7. The leader agents are marked with squares

agents inR, thus increasing jERj and
�
�GG; QRc

.s/
�
�2
2
, the other to increase the effective

resistance for agents in set � .ER/ and thus increasing
�
�
�GT ; QRd

.s/
�
�
�
2

2
. The following

results are consequences of Lemma 3.17 and direct observation of the Protocol 8.

Lemma 5.13. Under both conditions of Protocol 8, jERj only increases and the
graph remains connected.

Lemma 5.14. For a tree T , under the second conditions of Protocol 8, Eeff .vi / for
vi 2 � .ER/, monotonically increases.

Lemma 5.13 has the effect of compressing the network about the main path agents.
On the other hand, Lemma 5.14 adds agents to the main path of T and in doing so
elongates the main path.

We now apply the protocol to the dense swarming graph. We restrict the protocol
to only edges within the constraint graph displayed in Fig. 5.9a and limit the
maximum degree of the followers agents at 8. Running the protocol on the graph
in Fig. 5.7 over 50 spanning trees, involving 289 edge trades, we produced the
final graph displayed in Fig. 5.9b. The resultant leader–follower model has a
kGG;R.s/k22 D 11:3 compared to the original system with 4.6. The resultant graph
and its response to wind gusts are displayed in Figs. 5.9 and 5.10. The optimal
performance cost J � as defined in Eq. (5.27) decreased from 14,815 to 3,265.
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Fig. 5.10 Average state and control over time for the wind perturbed system corresponding to
Fig. 5.7 before and after applying Protocol 8

5.5 Remarks

The main objective of the present chapter is to propose a network-theoretic approach
for the efficient network topology design of leader–follower systems, specifically
UAV swarming in the presence of wind gusts. The open loop H2 norm was analyzed
as a metric to effectively quantify the performance of the underlying network.
An MISDP design procedure was formulated accounting for sensing constraints
relevant for a sparse swarming application. Similarly, an adaptive rewiring protocol
based on the spanning trees of the graph was described for the use in the design
of networks for dense swarming with UAV controllers. Both design methods were
applied to UAV swarms with notable wind gust rejection improvements.
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Chapter 6
Cartesian Products of Z-matrix Networks:
Factorization and Interval Analysis

Abstract This chapter examines the relationship between the dynamics of large
networks and of their smaller factor networks (factors) obtained through the factor-
ization of the network’s digraph representation. We specifically examine dynamics
of networks which have Z-matrix state matrices. We perform a Cartesian product
decomposition on its network structure producing factors which also have Z-matrix
dynamics. A factorization lemma is presented that represents the trajectories of
the large network in terms of the factors’ trajectories. An interval matrix lemma
provides families of network dynamics whose trajectories are bounded by the
interval bounds’ factors’ trajectories.

6.1 Introduction

Complex dynamic networks are an integral part of the technological world with
examples including the Internet, power grids, and communication networks, as well
as in the world at large such as biological and chemical systems and social networks.
An explosion of research in the area of network systems has eventuated [6–8]. In
parallel, Z-matrices are used to model synchronization in networks [3], population
migration [4], Markov processes, and supply and demand in economic systems [5].

Z-matrices also appear in the discretization of differential operators. An example
is the discretization of diffusion [3] and advection [16] dynamics which generate
the in-degree and out-degree Laplacian matrix respectively, and both of which are
Z-matrices. The in-degree Laplacian matrix forms the basis of consensus models.
These models are effective for both distributed information-sharing and control of
networked, multi-agent systems in settings such as multi-vehicle control, formation
control, swarming, and distributed estimation; see, for example, [1, 2].

In this work we examine large networks which are Cartesian products of smaller
factor networks (factors). We present a factorization lemma which represents the
larger network trajectories in terms of the factors’ trajectories, provided certain
initial conditions are met. This result is an extension of the related results on
Cartesian products over Laplacian-based simple networks for a constrained set of
initial conditions by Nguyen and Mesbahi [9]. We extend the factorization lemma
to both non-decomposable networks and arbitrary nonnegative initial conditions,
bounding the large network trajectories with the factors’ trajectories.

© Springer International Publishing Switzerland 2015
A. Chapman, Semi-Autonomous Networks, Springer Theses,
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The organization of the chapter is as follows. We begin by introducing relevant
background material pertaining to Cartesian products and Kronecker products. We
introduce the Z-matrix state dynamics. Interval matrices are used to introduce
families of Z-matrices with similar trajectories. The Cartesian product over Z-
matrices is introduced as a method to decompose large Z-matrix dynamics to
smaller Z-matrix factor dynamics. The chapter culminates in the presentation of two
factorization lemmas. The first lemma allows perfect characterization of the larger
network trajectories in terms of the factors’ unforced and forced trajectories. The
second lemma presents a family of larger network trajectories which are bounded
by factors’ trajectories.

6.2 Cartesian Product

There is an abundance of effective methods via which large-scale networks
(digraphs) can be synthesized from a set of smaller digraphs [10]. The Cartesian
product is one such method and is defined for a pair of factor digraphs
D1 D .V1; E1;W1/ and D2 D .V2; E2;W2/ and denoted by D D D1�D2: The
product digraph D has the vertex set V1 	 V2 and there is an edge from vertex .i; p/
to .j; q/ in V1 	 V2 if and only if either i D j and .p; q/ is an edge of E2, or
p D q and .u; v/ is an edge of E1. The corresponding weight if an edge exists is

w..i;p/;.j;q// D w
ıpq
ij C w

ıij
pq where ıij D 1 if i D j and 0 otherwise. The Cartesian

product is commutative and associative, i.e., the products D1�D2 and D2�D1 are
isomorphic; similarly, .D1�D2/�D3 and D1�.D2�D3/ are isomorphic.

An example of the Cartesian product of two factor digraphs is displayed in
Fig. 6.1a–c.

A digraph is called prime if it cannot be decomposed into the product of non-
trivial digraphs, otherwise a digraph is referred to as composite. Sabidussi [11]
and Vizing [12] highlighted the fundamental nature of the primes, and noted that
connected digraphs decompose uniquely into primes, up to reordering, specifically
of the form Dk1

1 � � � � �Dkm
m , where Di is prime for all i and Dki

i denotes ki
Cartesian products of Di . Further, Feigenbaum [13] demonstrated that a digraph
can be factored into primes in polynomial-time.

Many features of the factors of a composite digraph transfer to the composite
digraph itself. One such example is that if factors D1 and D2 are strongly connected,
then so too is D1�D2. In this chapter we show that when the composite digraph
underlies a dynamic system that many useful features of dynamics can be revealed
by examining dynamics systems over the factor digraphs.
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Fig. 6.1 Left: Factor digraphs (a)D1 and (b)D2 and composite digraph (c)D1�D2. Edge weights
of all digraphs are 1 unless otherwise marked. Right: Trajectories of the Z-matrix dynamics over
D1, D2 and D1�D2 with unforced state dynamics x1.t/; x2.t/ and x.t/, respectively, compared to
x1.t/˝ x2.t/; for details see Lemma 6.6

6.2.1 Kronecker Sum Eigenspectrum

Of particular interest to this chapter is the eigenspectrum properties of the Kronecker
sum A ˚ B on square matrices A 2 R

n�n and B 2 R
m�m. A property of the

Kronecker sum is that given the left eigenvalue–eigenvector pairs of A and B as
.�i ; ui / for i D 1; : : : ; n and

�
�j ; vj

�
for j D 1; : : : ; m, respectively, then .�i C

�j ; ui ˝ vj / for i D 1; : : : ; n and j D 1; : : : ; m are left eigenvalue–eigenvector
pairs of A˚ B . If A and B are diagonalizable matrices, their eigenvectors span R

n

and R
m, respectively. Consequently, ui ˝ vj , for all i and j form a spanning set of

eigenvectors of A˚B as rank.U ˝V / D rank.U /rank.V /, for U D Œu1; : : : ; un�
and V D Œv1; : : : ; vm�. Thus, if �i C �j is simple, A and B are diagonalizable and
ui ˝ vj is a left eigenvector if and only if .�i ; ui / and .�i ; vj / are left eigenvalue–
eigenvectors of A and B , respectively.

We now proceed to introduce Z-matrix dynamics and their underlying digraph.

6.3 Z-matrix Dynamics

We consider a multi-agent network of n coupled nodes with the state of each node
i defined as xi .t/ 2 R at time t , and driven by a control u.t/ 2 R

m. The system is
described by the differential equations

Pxi .t/ D �wi i xi .t/C
X

j2N .i/

wij xj .t/C bTi u.t/; i D 1; : : : ; n:
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The unforced and forced components of the signal x.t/ are denoted by xu.t/ and
xf .t/, respectively. This notation will be used throughout. In a more compact form
the dynamics can be written as

Px.t/ D �A.D/x.t/C Bu.t/; (6.1)

where x.t/ D Œx1.t/; : : : ; xn.t/�
T 2 R

n, B D Œb1; : : : ; bn�
T 2 R

n�m, and the matrix
representation of G is defined as A.D/ WD 2�s.D/ � A .D/, i.e.,

A.D/ D

2

6
6
6
6
4

w11 �w12 � � � �w1n

�w21 w22 �w23
:::

:::
: : : �wn�1;n

�wn1 � � � �wn;n�1 wnn

3

7
7
7
7
5
:

In this way, the matrix A.D/, as with the adjacency matrix, codifies the intercon-
nections between nodes.

We define the class of matrices of this form as

Zn D ˚
A D �

aij
� 2 R

n�n W aii � 0; aij � 0; i ¤ j
�
:

Z-matrices are matrices with nonpositive off-diagonals, hence Zn is a subclass of
Z-Matrices, motivating the name Z-Matrix dynamics for model (6.1).

The negation of Z-matrices falls into the class of essentially nonnegative
matrices. These are matrices which have positive off-diagonals and bounded
diagonals. This connection facilitates establishing positive invariance of the positive
set SC D fx.t/jx.t/ � 0g with respect to model (6.1) when A 2 Zn. The result that
establishes positive invariance and that will be used in the subsequent chapter is as
follows.

Proposition 6.1. Let A and B be essentially nonnegative matrices with A � B;
that is AC sI � 0 and B C sI � 0 for all real s sufficiently large. For all t � 0,
etA � etB � 0.

Proof. Let s be sufficiently large such that A C sI � 0 and B C sI � 0, then
.AC sI /j � .B C sI /j � 0 for all positive integer j . Hence,

etB D et.BCsI / D e�ts
1X

jD0

.t .B C sI //j

j Š
� 0:

Further,

etA D e�ts
1X

jD0

.t .AC sI //j

j Š
� e�ts

1X

jD0

.t .B C sI //j

j Š
D etB : ut
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We will now introduce families of dynamics with similar attributes via the construct
of interval matrices.

6.4 Interval Matrices

We commence by defining interval matrices.

Definition 6.2. If A and A are two matrices in R
n�m with A � A, then the set of

matrices

A D �
A;A

� D ˚
A W A � A � A

�

is called an interval matrix, and the matrices A and A are called its bounds. Further,
this interval is referred to as symmetric if A and A are symmetric.

Hence A 2 A if Œ A �ij � Œ A �ij � Œ A �ij for all i D 1; : : : ; n and j D 1; : : : ; m.
We emphasize that each entry in A can vary arbitrarily in its interval independent
of the other entries in A. A symmetric interval matrix can also contain asymmetric
matrices.

The examination of interval matrices arises naturally in control theory in
connection with the behavior of linear time invariant systems under perturbations,
and has been extensively studied. We refer the reader to the survey chapters by
Mansour [14] and Rohn [15] for a detailed list of references.

When the matrix intervals bounds are Z-matrices, then all matrices contained in
the interval are Z-matrices. A similar result is true for our subclass of matrix Zn,
this is stated formally without proof in the following proposition:

Proposition 6.3. Consider the matrices in the class Zn, A.D/ and A.D/ with
A.D/ � A.D/ corresponding to n-node digraphs D and D. Every matrix in the
matrix interval A D �

A.D/; A.D/
�

is in the class Zn.

The motivation for using matrix interval’s is that Z-matrices exhibit many useful
additive ordering properties and A.D/ 2 �

A.D/; A.D/
�

implies that G 2 �
D;D

�
if

and only if self-loops and their weights in D, D, and D are the same. The advantage
of Z-matrix intervals is that trajectory bounds can be provided for dynamic systems
defined by matrices contained in a Z-matrix interval matrix, as shown in the
following:

Proposition 6.4. Let D1 and D2 be finite digraphs. Consider x.t/ and x.t/ to be
the respective states of the systems

Px.t/ D �A.D/x.t/C Bu.t/

Px.t/ D �A.D/x.t/C Bu.t/:
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Then, the state trajectory generated by the dynamics

Px.t/ D �Ax.t/C Bu.t/;

for A 2 A D �
A.D/; A.D/

�
, B 2 B D �

B;B
�

and 0 � u.t/ � u.t/ � u.t/ is
bounded as

x.t/ � x.t/ � x.t/;

for all t when initialized from 0 � x.0/ � x.0/ � x.0/.

Proof. For every A 2 A, A.D/ � A. From Proposition 6.1, the unforced dynamics
is bounded as

xu.t/ D e�Atx.0/ � e�A.D/t x.0/ � e�A.D/t x.0/ D xu.t/:

Similarly, xu.t/ � xu.t/. For t � � � 0, from Proposition 6.1, the forced dynamics
is bounded as

e�A.t��/Bu.�/ � e�A.D/.t��/Bu.�/

� e�A.D/.t��/Bu.�/
ˆ t

0

e�A.t��/Bu.�/d� �
ˆ t

0

e�A.D/.t��/Bu.�/d�

xf .t/ � xf .t/:

Similarly, xf .t/ � xf .t/. Noting that the dynamics are formed by the sum of its
unforced and forced dynamics, the proposition follows. ut

The following section analyzes the Z-matrix dynamics and Z-matrix intervals
dynamics formed from applying Cartesian products to digraphs.

6.5 Z-matrix Dynamics Over Cartesian Products of Digraphs

The Cartesian product over digraphs can be formulated in terms of their Z-matrix
representations using the Kronecker sum.

Proposition 6.5. Let D1 and D2 be a pair of digraphs of order n and m,
respectively. Then A.D1�D2/ D A.D1/˚ A.D2/:

Proof. The proposition follows directly from the definition of the digraph product
and the Z-matrix realization of a digraph. ut

We now present a result which we refer to as the factorization lemma for Z-matrix
dynamics.
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Lemma 6.6 (Factorization). Consider x1.t/ and x2.t/ to be the respective states
of the systems

Px1.t/ D �A.D1/x1.t/C B1u1.t/

Px2.t/ D �A.D2/x2.t/C B2u2.t/;

for all time t . Then, the unforced state trajectory generated by the dynamics

Px.t/ D �A.D1�D2/x.t/C .B1 ˝ B2/ .u1.t/˝ u2.t//

is

xu.t/ D x1u.t/˝ x2u.t/;

and the forced state trajectory is

xf .t/ D
ˆ t

0

Px1f .�/˝ Px2f .�/d�;

for all time t and with initial conditions x.0/ D x1.0/˝ x2.0/:

Proof. From Proposition 6.5, examining the unforced dynamics we have

xu.t/ D e�A.D1�D2/t x.0/

D e�A.D1/t˚�A.D2/t .x1.0/˝ x2.0//

D �
e�A.D1/t ˝ e�A.D2/t

�
.x1.0/˝ x2.0//

D e�A.D1/t x1.0/˝ e�A.D2/t x2.0/

D x1u.t/˝ x2u.t/:

Examining the forced dynamics, we have

xf .t/ D
ˆ t

0

e�A.D1�D2/.t��/.B1 ˝ B2/.u1.�/˝ u2.�//d�

D
ˆ t

0

	
e�A.D1/.t��/ ˝ e�A.D2/.t��/



.B1 ˝ B2/.u1.�/˝ u2.�//d�

D
ˆ t

0

z1.�/˝ z2.�/d�;

where z1.�/ D e�A.D1/.t��/B1u1.�/ and z2.�/ D e�A.D2/.t��/B2u2.�/. Noting that
Pxif .�/ D d

d�

´ �
0

zi .Nt /d Nt D zi .�/, for i D 1; 2; the lemma follows. ut
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Figure 6.1 displays an example the unforced trajectories in Lemma 6.6. Note
that, due to the associativity of the Cartesian product, the result extends to arbitrary
chains of Cartesian products.

Observing that if A.D1/ � A.D1/ and A.D2/ � A.D2/ then A.D1�D2/ �
A.D1�D2/, we can define a Z-matrix interval

�
A.D1�D2/; A.D1�D2/

�
with

composite interval matrix bounds. The following lemma shows that trajectories of
dynamics defined by Z-matrices in this interval are bounded above and below by
the trajectories of dynamics defined by the factor Z-matrices A.D1/, A.D2/, A.D1/

and A.D2/.

Lemma 6.7 (Interval Factorization). Consider x1.t/; x1.t/; x2.t/ and x2.t/ to be
the respective states of the systems

Px1.t/ D �A.D1/x1.t/C B1u1.t/

Px1.t/ D �A.D1/x1.t/C B1u1.t/

Px2.t/ D �A.D2/x2.t/C B2u2.t/

Px2.t/ D �A.D2/x2.t/C B2u2.t/:

Then, the unforced state trajectory generated by the dynamics

Px.t/ D �Ax.t/C Bu.t/;

for A 2 A D �
A.D1�D2/; A.D1�D2/

�
, B 2 B D �

B1 ˝ B2;B1 ˝ B2

� � 0,
u1.t/ ˝ u2.t/ � u.t/ � u1.t/ ˝ u2.t/ and 0 � ui .t / � ui .t / for i D 1; 2 is
bounded as

x1u.t/˝ x2u.t/ � xu.t/ � x1u.t/˝ x2u.t/;

and the forced state trajectory is bounded as

ˆ t

0

Px1f .�/˝ Px2f .�/d� � xf .t/ �
ˆ t

0

Px1f .�/˝ Px2f .�/d�;

for all time t with initial conditions

x1.0/˝ x2.0/ � x.0/ � x1.0/˝ x2.0/;

and 0 � xi .t/ � xi .t/ for i D 1; 2.
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Proof. Consider the dynamics

Pz.t/ D �A.D1�D2/z.t/C .B1 ˝ B2/
�
u1.t/˝ u2.t/

�

Pz.t/ D �A.D1�D2/z.t/C �
B1 ˝ B2

�
.u1.t/˝ u2.t//

Px.t/ D �Ax.t/C Bu.t/

where 0 � z.0/ � x.0/ � z.0/. From Proposition 6.4, z.t/ � x.t/ � z.t/ for
all t > 0. Further letting z.0/ D x1.0/ ˝ x2.0/ and z.0/ D x1.0/ ˝ x2.0/ using
Lemma 6.6, the lemma follows. ut

The significance of this result is that digraph-based dynamics need not be
composite to take advantage of the factorization lemma. Indeed its Z-matrix
digraph representation need only be bounded by the Z-matrix representations of
its composite digraphs. Further, the factor digraph dynamics provides bounds on
nonnegative composite dynamics independent of where the composite trajectory is
initialized, i.e., x.0/ can be chosen anywhere in .Rnm/
0 rather than R

n ˝ R
m Š

R
nCm as for Lemma 6.6.
Figure 6.2 displays sample digraphs D1, D1, D2, D2, D1�D2, D1�D2, and D

pertaining to Lemma 6.7. The related trajectories of the 16 states are in Fig. 6.3.
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�
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Fig. 6.3 Trajectories x1u.t/ ˝ x2u.t/ C ´ t
0
Px1f .�/ ˝ Px2f .�/d� (blue/dashed), x.t/ (red/solid),

x1u.t/ ˝ x2u.t/ C
´ t
0 Px1f .�/ ˝ Px2f .�/d� (green/dotted) with underlying digraph structure in

Fig. 6.2. The control matrices are B1 D B1 D e1, B2 D B2 D Œe2; e3 C e4� and B D B1 ˝ B2.
The controls are positive random signals satisfying the ordering requirement of Lemma 6.7

6.6 Remarks

This chapter presents an analysis for a class of dynamic networks involving
Z-matrices. We explored the decomposition of such networks into smaller factor-
networks. The trajectories of the composite network were generated from the
factors’ trajectories. Also, families of networks similar to the composite network
were bounded by the factors’ trajectories.
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Chapter 7
Controllability and Observability of Cartesian
Product Networks

Abstract The chapter presents an analysis framework for a class of dynamic
composite networks. These networks are formed from smaller factor networks via
graph Cartesian products. We provide a composition method for extending the
controllability and observability of the factor networks to that of the composite
network. We then delve into the effectiveness of designing control and estimation
algorithms for the composite network via symmetry in the network. Examples
and applications are provided throughout the chapter to demonstrate the results
including a distributed output feedback stabilizer and a social network application.

7.1 Introduction

Network controllability and observability arises in situations where a networked
system is influenced or observed by an external entity, such scenarios include
networked robotic systems, human–swarm interaction, and network security [1, 14],
as well as in areas such as quantum networks [3].

In this direction, Godsil [2] made an intriguing conjecture regarding the dynam-
ics driven by the adjacency matrix of a graph. The conjecture states that the ratio
of graphs that are uncontrollable, with a common input to all nodes, to the total
number of graphs of the same order tends to zero as the order of the graph increases.
On another front, extensive simulations have demonstrated that it is “unlikely” that
single leader-follower Laplacian-based consensus networks are controllable [4].
Together these observations imply that establishing network controllability is non-
trivial and may be strongly dependent on the manifestation of the graph embedded
in the dynamics.

Controllability for Laplacian networks has been established for special classes of
graphs such as paths, circulants, grids, random and distance regular graphs [1, 5–8],
but to the authors’ knowledge, no other large-scale networks have been investigated.
Liu et al. in [9] studied the structural controllability of complex networks.

In this chapter, we consider network controllability for a special class of digraphs,
namely large-scale networks which are Cartesian products of smaller factor-
networks (factors). We present two control schemes for extending controllability
of factors to the controllability of the composite network, dubbed the control
product and layered control. The schemes are relevant to dynamics driven by

© Springer International Publishing Switzerland 2015
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122 7 Controllability and Observability of Cartesian Product Networks

a large class of network based matrices, including the Laplacian and adjacency
matrices. Redundancy of the control product is addressed by exploiting the digraph
automorphisms of the network, similar to [1] and [6]. The utility of this approach is
demonstrated through a distributed scheme for output feedback stabilization and a
social network application.

The organization of the chapter is as follows. We begin by introducing relevant
background material pertaining to Kronecker sums and graph automorphisms. We
describe the network based state dynamics over a large class of matrix representa-
tions of digraphs. We then provide a control scheme that forms a controllable state
matrix for a composite digraph from the controllable state matrices of the factor
digraphs. Symmetries in the digraph provide a sufficient condition for the control
scheme to produce the minimal number of controllable input nodes. A second
control scheme extends the control of a single factor digraph to the composite
digraph by exploiting the layering structure of the Cartesian product. A layered
output feedback controller is presented pertaining to the layered control scheme.
Finally, we examine the problem of estimating the opinion dynamics of a social
influence network utilizing the observability properties of the Cartesian product.

7.2 Digraph Automorphisms

Formally, a digraph automorphism is a permutation � of the node set such that
D contains an edge .i; j / with weight if and only if it also contains an edge
.�.i/; �.j // with weight w�.j /�.i/. The set of automorphisms, which forms a group,
is denoted as Aut.D/. Every digraph automorphism can be represented uniquely as
a permutation matrix J which commutes with the adjacency matrix, i.e., JA .D/ D
A .D/J . An automorphism � fixes node i if �.i/ D i .

We now proceed to introduce the system dynamics and its relationship to the
underlying digraph.

7.3 Problem Setup

There are a number of ways to construct a matrix A.D/ 2 R
n�n from the edges and

nodes of an n node digraph D. Some examples we have already touched upon are
the adjacency, self-loop, in-degree and out-degree matrices.

One of the properties common to all of the aforementioned matrix representations
is that they preserve the symmetries in the digraph. By this we mean that for
a representations A.�/ if there exists a permutation matrix J corresponding to
some digraph automorphism of D then A.G/J D JA.G/. We refer to this matrix
representations feature as symmetry preserving.

In this chapter, we will be considering the specific family of symmetry preserving
matrix representations which also exhibit the added property that the representation
is invariant under the Cartesian product. Formally, these representations satisfy
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A.G1�G2/ D A.G1/˚ A.G2/;

for all digraphs G1 and G2. In general, any matrix representation of the form1

ŒA.G/�ij D
(
rwi i CP

j¤i f
�
wij ;wj i

�
for i D j

g
�
wij ;wj i

�
otherwise;

in where r 2 R and f .�/ and g.�/ are real-valued functions such that f .0; 0/ D
g.0; 0/ D 0, satisfies these properties.We denote this family of matrix representation
as A˚.

Well known member of A˚ is the adjacency matrix A .D/, in-degree matrix
Din.D/, out-degree matrix Dout.D/, in-degree digraph Laplacian (or Laplacian)
matrix L .D/, out-degree digraph Laplacian Lout.D/ and the M-matrix represen-
tation M.D/ where ŒM.D/�ij D �ŒA .D/�ij for i ¤ j and ŒM.D/�i i D ŒA .D/�i i
investigated in later chapters. The class A˚ of representations is by no means a
small one and other members will be featured in examples throughout the chapter.
It is easy to show that A˚ is closed under addition providing a simple mechanism
to generate new members.

In this chapter, we explore controllability and observability of systems of the
form

Px.t/ D A.D/x.t/C Bu.t/; y.t/ D Cx.t/; (7.1)

where A.�/ 2 A˚: For brevity, we refer to these dynamics by defining the matrix
triplet .A.D/; B; C /, or if only the inputs (outputs) are of interest by the matrix pair
.A.D/; B/ ..A.D/; C //.

It should be mentioned that, due to the linear system duality between control-
lability and observability, the pair .A.D/; B/ is controllable if and only if the
pair .A.D/; BT / is observable. Hence, the results throughout this chapter will
be presented in terms of controllability but are equally applicable to the network
observability problem.

A helpful tool to establish controllability is the well-known Popov–Belevitch–
Hautus (PBH) test [10]. The test states that .A;B/ is uncontrollable if and only if
there exists a left eigenvalue–eigenvector pair .�; v/ of A, such that vT B D 0.

It is often of interest where the inputs and outputs of system (7.1) are in terms
of the nodes of the digraph D. If the set of input nodes in the n node digraph is
S D ˚

i1; i2; : : : ; ip
�

for i1 < i2 < � � � < ip , the corresponding input matrix is
B D �

ei1 ; ei2 ; : : : ; eip
� 2 R

n�p . We uniquely denote the input matrices of this form
as Bn.S/. Similarly, the output matrices are defined as Cn.S/ WD Bn.S/

T . If it is
clear from the context, we remove the subscript n for brevity.

1Here we assume that if there is no edge .i; j / 2 E then wj i D 0.
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7.4 Control Product

The following theorem introduces our first method of extending control of the
factors of the composite digraph D to D itself for the case where A.D/ has simple
eigenvalues. Specifically, we examine the controllability of the pair .A.D/; B/, first
discussed in [1], where D D D1�D2 and B D B1 ˝ B2.

Theorem 7.1. Consider A.�/ 2 A˚ and digraphs D1 and D2. Assume A.D/ D
A.D1�D2/ has simple eigenvalues. Then, the pairs .A.D1/; B1/ and .A.D2/; B2/

are controllable if and only if .A.D/; B/ is controllable, where B D B1 ˝ B2.

Proof. Assuming the eigenvalues of A.D/ are simple, w is a left eigenvector of
A.D/ if and only if w D u ˝ v for some left eigenvector u and v of A.D1/ and
A.D2/, respectively (see Sect. 6.2.1). Hence, wT B D .u ˝ v/T .B1 ˝ B2/ D .uT ˝
vT /.B1 ˝ B2/ D uT B1 ˝ vT B2: Now, wT B D 0 if and only if uT B1 D 0 or
vT B2 D 0 (or both). Thus, by the PBH test, .A.D/; B/ is controllable if and only if
.A.D1/; B1/ and .A.D2/; B2/ are controllable. ut
Consider the case where B1 WD B.S1/ and B2 WD B.S2/, then for S D S1 	 S2 WD
f.i; j /ji 2 S1 and j 2 S2g we have B.S/ D B1 ˝ B2. This motivates the name
control product for the scheme.

The following example demonstrates Theorem 7.1 and the form of set S .

Example 7.2. Consider digraphs D1 and D2 in Fig. 7.1. Let the eigenvalues of
L .D1/ be �1; �2; �3 and similarly the eigenvalues for L .D2/ be �1; �2; �3; �4.
As �i C �j for i D 1; : : : ; 3 and j D 1; : : : 4 are the eigenvalues of L .D/; it is
efficient to check that the eigenvalues are distinct. For S1 D f10g and S2 D f1; 2g,
the pairs .�L .D1/; B3.S1// and .�L .D2/; B4.S2// are controllable. The nodes
corresponding to sets S1 and S2 are half shaded in Fig. 7.1. Now,B3.S1/˝B4.S2/ D
B12.S/ where S D f.10; 1/; .10; 2/g, denoted by full shaded nodes in Fig. 7.1.
Therefore from Theorem 7.1, .�L .D/; B12.S// is controllable.

We now provide an example to illustrate the requirement that the composite
digraph in Theorem 7.1 has simple eigenvalues.

Example 7.3. It is a well-known property that L .P2/ has simple eigenvalues 0 and
2 and for S D f1g, .�L .P2/; B2.S// is controllable. Further, P2 �P2 D C4 a
length four cycle graph, with non-distinct eigenvalues 0, 2, 2, and 4, and B2.S/ ˝
B2.S/ D B4.S/. But all cycle graphs are uncontrollable from one node (see [5, 6])
so .�L .C4/; B4.S// is uncontrollable.

As an aside, the distinctness of the eigenvalues of A.D/ has implication on the
structure of D, for example on its prime factor decomposition described in the
following proposition, a feature which will be applied later.

Proposition 7.4. For A.�/ 2 A˚, if the eigenvalues of A.D/ are simple, then the
prime factor decomposition of D contains no powers of prime digraphs.
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Fig. 7.1 Factor digraphs (a) D1 and (b) D2 and composite digraph (c) D1�D2. Edge weights of
all digraphs are 1 unless otherwise marked. The shading on the nodes pertains to Examples 7.2
and 7.12

Proof. Let the prime factor decomposition of the n node digraph D be D D
Dk1
1 � � � � �Dkm

m . If D is a power of a prime digraph, then there exists a ki � 2

corresponding to the m node prime factor Di . Hence, D D D2
i �Db where Db D

Dk1
1 � � � � �Dki�2

i � � � � �Dkm
m . Therefore A.D/ has pairs of eigenvalues with the

value �i C �j C �k for i; j D 1; : : : ; m, i ¤ j and k D 1; : : : ; n
m

, where �i and
�j are eigenvalues of A.Di /, and �k is an eigenvalue of A.Db/. This follows from
the eigenvalue properties of the Cartesian sum. ut

7.4.1 Breaking Symmetry

The automorphisms of a digraph describe its symmetries and have been previously
shown to play an important role in the controllability of .�L .D/; B.S// for an
undirected, unweighted graph G [1]. The following is a generalization of these
results found in [1] and so is quoted here without proof.

Proposition 7.5. A digraph D is uncontrollable from any pair .A.D/; B.S// where
A.�/ is symmetry preserving and A.D/ has spanning eigenvectors, if there exists an
automorphism of D which fixes all inputs in the set S .

We note that Proposition 7.5 is not sufficient for controllability as discussed in [1].
Further, this proposition is applicable to Theorem 7.1, as if a matrix has simple
eigenvalues then its eigenvectors are spanning.
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Proposition 7.5 highlights the requirement of selecting a set of inputs that break
the symmetry structure of D. Determining sets are a useful construct to describe this
process.

Definition 7.6. A subset S of the vertices of a digraph D is called a determining
set if whenever g; h 2 Aut.D/ so that g.s/ D h.s/ for all s 2 S , then g D h. The
determining number of a digraph D, denoted det.D/, is the smallest integer r so that
D has a determining set of size r .

Another term for a determining set S is the fixing set due to the fact that no non-
trivial automorphism of D fixes all members in S . Formally, a set S � V.D/ is a
determining set if and only if the stabilizing set stab.S/ of S , defined as stab.S/ WD
fg 2 Aut.D/j�.v/ D v;8� 2 Sg, only contains the trivial automorphism. Directly
from Proposition 7.5 and the definition of determining sets we have the following
corollary.

Corollary 7.7. A necessary condition for controllability of the pair .A.D/; B.S//
is that S is a determining set. Hence, jS j � det.D/.
The automorphism group of a composite digraph is intimately linked to the
automorphisms of its prime factors. This link translates through to the determining
set of the composite digraph summarized in the following:

Theorem 7.8 ([11]). Let D D Dk1
1 � � � � �Dkm

m be the prime factor decomposition
for a connected digraph D. Then det.D/ D maxfdet.Dki

i /g.

We now have the required ground work to state a consequence of the digraph
automorphism structure of the digraph pertaining to Theorem 7.1.

Theorem 7.9. Under the assumptions of Theorem 7.1, consider the controllable
pairs .A.D1/; B.S1// and .A.D2/; B.S2// where jS1j D det.D1/ and jS2j D 1.
Then S D S1 ˝ S2 is the smallest set such that .A.D1�D2/; B.S// is controllable.

Proof. As all eigenvalues of A.D1�D2/ are simple, from Proposition 7.4 the
prime factors of D, and subsequently D1 and D2, are relatively prime. Thus
from Theorem 7.8, det.D/ D max.det.D1/; det.D2//. Further, as .A.D2/; B.S2//

is controllable then 1 D jS2j � det.D2/ � 1, so det.D/ D det.D1/. Now
B.S1/˝ B.S2/ D B.S/ for some S � V.D1�D2/ and jS j D jS1j jS2j D jS1j. As
jS j D det.D/, the pair .A.D1�D2/; B.S// is controllable with the smallest number
of inputs. ut
We now revisit Example 7.2 with Theorem 7.9 in mind.

Example 7.10. Further examination of Example 7.2, the Aut.D2/ D fid; �; �; ��g
where id is the identity permutation, �.1; 2; 3; 4/ D .1; 4; 3; 2/ and �.1; 2; 3; 4/ D
.3; 2; 1; 4/. Hence, det.D2/ D 2 D jS2j and jS1j D 1. Applying Theorem 7.9, S is
the smallest controllable input set.
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7.5 Layered Control

The following theorem details our second method for extending control of the
factors to the composite digraph. This control scheme involves repeating the form of
control matrix B1 to every D1 layer of D, motivating the name layered control. As
the Kronecker product exhibits permutation equivalency, these results are equivalent
to extending the control matrix B2 to every D2 layer of D.

Theorem 7.11. Consider A.�/ 2 A˚ and digraphs D1 and D2 in Fig. 7.1 with n1
and n2 nodes, respectively, where the matrices A.D1/ and A.D2/ are diagonaliz-
able. The pair .A.D1/; B1/ is controllable if and only if .A.D/; B/ is controllable,
where D D D1�D2 and B D B1 ˝ In2 .

Proof. (Only If ) Assume .A.D1/; B1/ is controllable; then by the PBH test there
exists some left eigenvector u such that uT B1 D 0. From Sect. 6.2.1, u ˝ v is a
left eigenvector of .A.D/; B/, where v is some left eigenvector of .A.D2/; B2/, and
.u ˝ v/T B D .uT ˝ vT /.B1 ˝ In2/ D uT B1 ˝ vT D 0. Therefore, .A.D/; B/ is
uncontrollable.

(If ) Assume .A.D/; B/ is uncontrollable then there exists some left eigenvector
w such that wT B D 0. From Sect. 6.2.1, w is a linear combination of the set
of eigenvectors of the form ui ˝ vj , where ui and vj are left eigenvectors of
.A.D1/; B1/ and .A.D2/; B2/, respectively. Thus, w D P

˛ij .ui ˝ vj /, where the
scalars ˛ij 2 R are nonzero, and

0 D wT B D
X

˛ij .ui ˝ vj /
T .B1 ˝ In2/

D
X

˛ij .u
T
i ˝ vTj /.B1 ˝ In2/

D
X

˛ij uTi B1 ˝ vTj ;

or equivalently,
P�

˛ij uTi B1
�
k
vTj D 0, for k D 1; : : : ; n1. This occurs only if

�
˛ij uTi B1

�
k

D 0 for all k and i corresponding to some ˛ij , i.e., uTi B1 D 0,
since the set of eigenvectors vj are linearly independent. Therefore, .A.D2/; B2/

is uncontrollable. ut
The assumption of diagonalizability is, for example, satisfied for invertible, real
symmetric, and irreducible matrices, as well as matrices with simple eigenvalues.
Further, if D is undirected or strongly connected, then A.D/ is a real symmetric
or irreducible matrix, respectively—satisfying the assumption. This assumption is
removed in the extended journal version of this chapter [15].

An illustrative example of Theorem 7.11 follows.

Example 7.12. Consider digraphs D1 and D2 in Fig. 7.1. For S1 D f10g
and S2 D f1; 2g, the pairs .�L .D1/; B3.S1// and .�L .D2/; B4.S2// are
controllable, and L .D1/ and L .D2/ are diagonalizable. The nodes corresponding
to sets S1 and S2 are half shaded in Fig. 7.1. Now, B3.S1/ ˝ I D B12.Sa/
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where Sa D f.10; 1/; .10; 2/; .10; 3/; .10; 4/g, denoted by the lower half
shaded nodes in Fig. 7.1. Similarly, I ˝ B4.S2/ D B12.Sb/ and Sb D
f.10; 1/; .10; 2/; .20; 1/; .20; 2/; .30; 1/; .30; 2/g, denoted by the upper half shaded
nodes in Fig. 7.1. Therefore from Theorem 7.11, pairs .�L .D/; B12.Sa// and
.�L .D/; B12.Sb// are controllable.

Theorem 7.11 provides a useful tool of combining families of digraphs with known
controllability, such as the Laplacian of the path and cycle graphs, with digraphs
where controllability is hard to establish, such as random digraphs, or digraphs that
are difficult to control, such as the complete graph.

Further, Theorem 7.11 can be combined with Theorem 7.1 to produce
controllable digraphs. A composite digraph D can be decomposed into Da�Db

where Da is the largest factor digraph of D such that A.Da/, where A.�/ 2 A˚,
has simple eigenvalues and Db has order nb . Hence, Da can be decomposed into
its primes factors D1� : : :�Dk . Assuming controllable matrix pairs .A.Di /; Bi /

for i D 1; : : : ; k can be found, then by Theorem 7.1, .A.Da/; B1 ˝ � � � ˝ Bk/

is controllable. By Theorem 7.11, assuming A.Db/ is diagonalizable, then�
A.D/; B1 ˝ � � � ˝ Bk ˝ Inb

�
is controllable. This technique is used in the

following example to establish controllability of the grid P2 �P4 �P5.
Example 7.13. Denote the path graphs of length two, four, and five path graph as
P2;P4, and P5, respectively. Since all path graphs are controllable from either end
node, designating one of the ends as the first node, the pairs .�L .P4/; B4.S//
and .�L .P5/; B5.S// are controllable for S D f1g. Noting that L .P4 �P5/ has
distinct eigenvalues using the technique as Example 7.2, from Theorem 7.1, the pair
.�L .P4 �P5/; B20.S// is controllable. Further applying Theorem 7.11, and noting
all graphs involved are undirected which satisfies the diagonalizable assumption,
then .�L .P2 �P4 �P5/; B40.S 0// for S 0 D f.1; 1/; .2; 1/g is controllable as I2 ˝
B20.S/ D B40.S

0/. Here we have a 40-node grid controllable from two nodes.

Interestingly, L .P2 �P4 �P5/ has repeated eigenvalues and so, from the PBH
test, at least two input nodes are required to form a controllable set. Hence, the set
S 0 found in Example 7.13 is the smallest input set.

7.5.1 Layered Output Feedback

An attraction of composite networks is that they exhibit repeated layers of the
factors. Theorem 7.11 takes advantage of this by extending the controllable inputs in
one factor layer to many. The same can be done to the observable outputs. The next
proposition shows that the control signal can similarly be designed for a factor and
extended to the composite network with the effect of generating distributed output
feedback stabilization.
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Proposition 7.14. Consider A.�/ 2 A˚ and the n1 node and n2 node digraphs
D1 and D2 in Fig. 7.1, where the matrix A.D2/ is semistable. If the dynamics
.A.D1/; B1; C1/ is stabilizable with output feedback ua D Kya for inputs ua and
outputs yb , then the dynamics .A.D1�D2/; B1 ˝ In2 ; C1 ˝ In2/ is stabilizable with
the output feedback u D .K˝ In2/y for inputs u and outputs y. Further, the control
law can be realized with local layer feedback across the layers of D1.

Proof. For convenience, we present the equivalent result in terms of the layers of
G2. As K is a stabilizing feedback gain for the system described by the matrices
.A.D2/; B2; C2/ then A.D2/ C B2KC2 is stable. Consider the dynamics of the
system .A.D1�D2/; In1 ˝ B2; In1 ˝ C2/ with output feedback u D .In1 ˝ K/y.
Then,

Px.t/ D .A.D1�D2/C .In1 ˝ B2/ .In1 ˝K/ .In1 ˝ C2// x.t/

D .A.D1/˝ In2 C In1 ˝ A.D2/C In1 ˝ B2KC2/ x.t/

D .A.D1/˚ .A.D2/C B2KC2// x.t/:

As the Cartesian sum of semistable and stable matrices is stable then In1 ˝ K is
stabilizing, since each eigenvalue of the composite matrix lies in the left half plane.
Further as In1 ˝K is block diagonal the feedback loop can be broken into the inputs
and outputs of each layer of D2. Specifically distributing the inputs and outputs, we
have u D �

uT1 ; : : : ; u
T
n1

�T
and y D �

yT1 ; : : : ; y
T
n1

�T
, where ui and yi are the inputs

and outputs of the i th layer of D2, respectively. Hence, the feedback can be written
as ui D Kyi for i D 1; : : : ; n1, i.e., local layer feedback. ut
Proposition 7.14 describes a setup where we have a stabilizing distributed feedback
on each factor layer requiring only local feedback on the sensors and actuators
placed on that layer. The following is an example illustrating this layered output
feedback stabilization.

Example 7.15. Define the matrix representation

ŒA.D/�ij D
(

wij for i ¤ j
1
2
wi i �P

i¤j wij otherwise:

An equivalent form is A.D/ WD �L .D/ C 1
2
Ds , and so A.�/ 2 A˚. For

the digraphs D1 and D2 described in Fig. 7.1, A.D1/ is unstable and A.D2/

is semistable. Consider the dynamics of the system described by the matrices
.A.D1/; B.S1/; C.S2// where S1 D f10g and S2 D f20g then the output feedback
u D ky is stabilizing for k < � 1

2
. From Proposition 7.14, the output feedback

k ˝ I4 is stabilizing for the composite system, which is realized by the distributed
feedback u.10;i/ D ky.20;i/ for i D 1; : : : ; 4, where u.10;i/ is the input applied to node
.10; i / and y.20;i/ is the output measured from node .20; i /.
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7.6 Filtering on Social Product Networks

A Cartesian network structure is not uncommon in social networks due to the
layered structure of the society. For example, consider an interacting network of
nuclear families in a neighborhood. Interactions among families often involve like-
gendered parents interacting with like-gendered parents and similarly like-aged
children with like-aged children. This network can be realized through a Cartesian
product D1�D2 of the inter-family interaction digraph D1 and the family members
interaction digraph D2.

It is often unrealistic or expensive to make a census of the full population of a
social group. An alternative is to sample the network, and subsequently estimate
its state dynamics through an opinion dynamics filter. However, a requirement for
designing such an estimator is observability.

For our example, the underlying model has been adopted from [12], and is the
discrete form of the continuous dynamics .A.D/; C.S//, where A.�/ D �L.�/ 2
A˚, x.t/ is the n agents’ opinions and D D D1�D2 is the underlying influence
network and S is the set of sampled agents.

We consider the inter-family interaction digraph D1 based on the famous Floren-
tine family digraph [13], with each node representing one of the fifteen families. The
layers of D1 are denoted in Fig. 7.2 by the grey undirected, unweighted edges. The
family member interaction digraph D2 with nodes a, b, c, and d correspond to the
interaction network in a nuclear family amongst a father, mother, older child, and
younger child, respectively, with adjacency matrix A .D2/ appearing in Fig. 7.2. The
composite digraph D1�D2 corresponds to the resulting 60 members’ interaction
digraph, and is depicted in Fig. 7.2.

Assuming that all the members of one demographic in the social network can
be observed, e.g., all the mothers, then Theorem 7.11, applied to D2, provides the
necessary observability condition for the filter design.

For example, the dynamics are observable, under one demographic, forC60.S/ D
I ˝ C4.S2/, where S2 D fag and S D SF WD f1a; 2a; : : : ; 15ag, the set of fathers
of the society. This information would be attractive to an advertiser, as the opinions
of all 60 members can be divulged by surveying the fathers. If instead an advertiser
was interested in a good family to survey, then Theorem 7.11 can be applied to D1,
leading to an observability matrix C60.S/ D C15.S1/ ˝ I , where S1 D f14g and
S D S14 WD f14a; 14b; 14c; 14dg, i.e., every member of family 14 is observed
directly.

Alternatively, as A.D1�D2/ has simple eigenvalues, using Theorem 7.1, the
dynamics with the observation matrix C60.S/ D C15.S1/ ˝ C4.S2/ is observable,
where S D S1 	 S2 D SF14 WD f14ag. Therefore, in this scenario, surveying the
father of family 14 would provide the opinion of all members.

A discrete Kalman filter was applied to the described social dynamics, with
all fathers in the social network observed, i.e., S D SF . A sample opinion state
estimate over time is provided in Fig. 7.3, supporting the observability of the pair
.A.D1�D2/; C60.S//.
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Fig. 7.2 Composite digraph D1�D2. The layers of D1 are displayed with grey edges and have
edge weight 1. The layers of D2 are black with weights divulged through the definition of A .D2/.
The shading on the nodes pertains to the control inputs, SF (upper half shaded nodes), S14 (lower
half shaded nodes), and SF14 (fully shaded nodes), described in Example 7.6
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Fig. 7.3 The true and estimated state of a sample member of the society, namely the youngest
child of family 7 (node 7d), over time for the discrete Kalman filter pertaining to Example 7.6

7.7 Remarks

This chapter presents an analysis of the controllability and observability of dynamics
over composite networks formed by the graph Cartesian product of its factors.
Using the tools of graph theory, group theory, and Kronecker algebra, we explored
the composition of the controllable input sets of the factor networks to form a
controllable control set of the composite network. Future work of particular interest
involves extending these results to other types of graph products such as the direct
product.
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Part IV
Structural Controllability



Chapter 8
Strong Structural Controllability
of Networked Dynamics

Abstract This chapter examines strong structural controllability of linear-time-
invariant networked systems. We provide necessary and sufficient conditions for
strong structural controllability involving constrained matchings over the bipartite
graph representation of the network. An O.n2/ algorithm to validate if a set of
inputs leads to a strongly structurally controllable network and to find such an
input set is proposed. The problem of finding such a set with minimal cardinality is
shown to be NP-complete. Minimal cardinality results for strong and weak structural
controllability are compared.

8.1 Introduction

Of increasing importance is the manipulation and monitoring of dynamic networks.
The cornerstone of effective control and observation of networked systems is the
appreciation of the interplay between system performance and network structure.

Fruitful investigation into this interaction has occurred in the area of controllabil-
ity. In controllability, the importance of structure has appeared through investigation
of the roles of symmetries in the network [3, 6]. There has been a strong focus on
consensus-based networks with controllability established for many special families
of graphs including circulants, grids, distance regular and Cartesian products [2–4].

Research in weak and strong structural controllability (s-controllability) has
had a rich history since its inception [7, 8], and by its very nature exposes the
role of structure in network control. Structural controllability establishes generic
(weak) and complete (strong) controllability of a network based solely on the
direct coupling between nodes appearing as a distinct pattern of zeros in the
network dynamics. This is irrespective of the magnitude of these couplings. Weak
and strong s-controllability also provide lower and upper bounds, respectively, on
the cardinality of a minimum input set for controllability. Figure 8.1 illustrates
conceptually this approach to controllability.

One attraction of s-controllability is that, independent of small variations in the
coupling strength, controllability can be guaranteed. This provides network control-
lability robust to parameter uncertainty and floating point errors. Further, unlike
controllability, methods to establish s-controllability are typically numerically

© Springer International Publishing Switzerland 2015
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Fig. 8.1 An illustration of the s-controllability concept. Weak and strong s-controllability estab-
lish generic and absolute controllability and observability over all realizations of a network

stable. Weak and strong s-controllability also provide lower and upper bounds,
respectively, on the cardinality of a minimum input set for controllability.

Recently, a result by Liu et al. has appeared linking weak s-controllability to
matchings in a bipartite graph representation of the network [9]. This provides
an attractive and efficient way to form generically controllable input sets. Further,
unlike controllability, methods to establish s-controllability are typically numeri-
cally robust.

Although it is atypical that a weakly s-controllable network has a coupling
strength realization rendering it uncontrollable, there are systems that are uncon-
sciously designed with such coupling. An example with such a coupling is
unweighted undirected graphs such as the aforementioned consensus-based net-
works. Such homogeneity generates symmetry in the network which typically
renders such a system uncontrollable. For these cases, strong s-controllability
presents itself as a useful alternative to weak s-controllability.

The question addressed in the chapter is whether a similar matching-based
method can be found to efficiently check and find completely controllable input
sets. Steps in this direction were undertaken by Reinschke et al. who established
an O.n3/ method to check an input set is strongly s-controllable [10]. Reinschke
et al. conjectured a graph-theoretic method involving spanning cycles to establish
strong s-controllability which was recently refined and proven by Jarczyk et al.
[11]. We provide necessary and sufficient constrained matching conditions for
strong s-controllability in terms of constrained matching conditions. This result has
implications for both checking and finding strongly s-controllable input sets.
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Our work on this topic entails establishing computationally efficient methods to
check and find inputs sets that lead to strong s-controllability. In this direction, an
adaptation of the algorithm of Reinschke et al. is provided to check an input set is
strongly s-controllable in O.n2/. It is established that finding a minimum cardinality
input set is NP-complete. A greedy O.n2/ version of our algorithm is supplied to
provide a strongly s-controllable input set which has been shown through simulation
to perform well.

The organization of the chapter is as follows. We commence with the introduction
of pattern matrices and bipartite matching. We describe the linear-time-invariant
model that we are examining and present some of the existing results in strong
s-controllability. The problem of finding a strongly s-controllable input set is
investigated. Finally, we propose an algorithm to validate strong s-controllability
and find a strongly s-controllable input set.

8.2 Pattern Matrices

A pattern matrix A (or Boolean structure matrix) is a matrix with each element
either a zero or a star, denoted throughout by a 	. A numerical matrix A is called
a realization of the pattern A if A can be obtained by assigning nonzero numerical
values to the star entries of A, in short A 2 A. A square pattern matrix has a unique
digraph D. The adjacency matrix A .D/ of D can be formed by replacing the star
entries of A with ones. In turn, the pattern matrix A.D/ of a digraph D can be
formed by replacing the nonzero entries of A .D/ with stars.

An example of a pattern matrix of a digraph is presented in Example 8.1.

Example 8.1. Consider the digraph D in Fig. 8.2. The corresponding pattern
matrix is

A.D/ D
2

4
	 0 	
	 0 	
0 	 0

3

5 ;

with 	-elements denoting stars.

Fig. 8.2 Digraph D



138 8 Strong Structural Controllability of Networked Dynamics

8.3 Model

Commonly, for a linear-time-invariant networked system of single-integrator agents,
the digraph D characterizes the zero structure of the state matrix, and input and
output points to the network appear in the input and output matrices [1]. In other
terms, the digraph G and input node set S define pattern matrices and a specific
realization of these pattern matrices define the dynamics. Specifically, the state
matrices are realizations of the n 	 n pattern matrix A.D/. The input node set
S D fi1; i2; : : : ; img, where m � n, define the n 	m pattern matrix Bn.S/ formed
by setting the nonzero entries of Œei1 ; ei2 ; : : : ; eim � 2 R

n�m to stars. Similarly, the
output matrix forms the pattern matrix Bn.S/ D C n.S/

T . If it is clear from the
context, we remove the subscript n for brevity.

In this chapter, we are exploring structural controllability (and observability) of
such a system of the form

Px.t/ D Ax.t/C Bu.t/ (8.1)

y.t/ D Cx.t/;

where A 2 A.D/, B 2 B.S1/ and C 2 C .S2/. For succinctness, if D and S
are clear, then A,B, and C will replace A.D/, B.S1/, and C .S2/, respectively.
Henceforth, we shall focus on structural controllability of the pair .A;B/ noting
that results can be similarly applied to observability of the pair

�
A;BT

�
through

duality.

8.4 Structural Controllability

Controllability, and its dual system property observability, is often a necessary
condition for the application of control system tools, such as stabilization and
optimal control. There are many techniques for establishing controllability of linear
systems. One such approach for establishing controllability of a pair .A;B/ in (8.1)
is through the full column rank of the matrix

�
A� B

�
for every eigenvalue � of

A, where A� D A � �I [12]. Due to the duality between controllability and
observability, the pair .A;B/ is controllable if and only if the pair .A; C / is
observable, whereB D CT , and so a similar approach for establishing observability
can be performed.

Unfortunately, the above approach, like other controllability criteria, has com-
putational drawbacks, falling victim to rounding errors, and requiring an accurate
knowledge of the system dynamics [13]. A more numerically stable approach, which
relaxes the modeling precision requirements on the system, is the establishment of
s-controllability and observability.

Lin [7] defined a pair .A;B/ as weak s-controllable if it admits some controllable
numerical realization .A;B/. From a generic analysis of this setup [14], it follows
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that weak s-controllability implies that almost all numerical realizations of .A;B/
are controllable. Mayeda and Yamada [8] adapted this by defining the pair .A;B/ as
strongly s-controllable system if all numerical realizations .A;B/ are controllable.
We state that for a given A, the input set S is weakly (strongly) s-controllable if the
pair .A;B.S// is weakly (strongly) s-controllable.

It is clear that in general a smaller input set S is required to meet the conditions
for weak s-controllability as compared to strong s-controllability. This benefit comes
with the loss of guaranteed controllability that strong s-controllability provides over
all realizations. It is this reduced network attachment cost (small jS j) for a high
chance of controllability, compared to a conservative certainty of controllability that
makes weak and strong s-controllability ideal for reasoning about infiltration and
security. More specifically, an infiltrator attempting to control an unknown weighted
network will try to establish a cheap weak input set while, for security, a larger
strong input set investment is worthwhile for the guarantee, under fluctuations in
edge weights that controllability will be maintained.

Extending the aforementioned rank condition for controllability, the pattern
matrix pair .A;B/ in Model (8.1) is weakly (strongly) s-controllable if and only
if
�
A� B

�
is full rank for some (all) realizations of A and B, and � 2 C. In other

words, s-controllability can be established through a pattern matrix rank condition.
In turn pattern matrix rank conditions can be extracted by examining matchings
on an equivalent bipartite graph representation of .A;B/—a numerically robust
combinatorial property. This connection was recently explored by Liu et al. [5] for
weak s-controllability. This approach can be extended to strong s-controllability
of the pattern matrix pair .A;B/. The following Theorem 8.2 formally states this
extension.

Theorem 8.2 ([10]). The pair .A;B/ is strongly s-controllable if and only if the
matrix

�
A� B

�
is full rank for all realizations of A and B, and � 2 C.

It is with this in mind that we now discuss relevant background on bipartite graphs
and matching.

8.4.1 Bipartite Graphs and Matching

A different graph representation of the network, and in fact any n	mmatrix, can be
formed using a bipartite graph representation of the interactions. A bipartite graph
H D �

V C; V �; E
�

is an undirected graph on independent node sets V C and V �,
where the edge set E connects nodes in V C to V �. A bipartite graph representation
of a matrix M 2 R

p�q can be formed by setting V C D f1; : : : ; qg and V � D
f1; : : : ; pg and having an edge fi; j g 2 E if and only if ŒM �ij ¤ 0. The bipartite
graph of a pattern matrix of an equivalent A.D/ can be formed in this way.

Let H D �
V C; V �; E

�
be a bipartite graph. A set of r edges

˚�
iC1 ; i�1

�
; : : : ;

�
iCt ; i�r

��
in H is said to be a t -matching (between IC D ˚

iC1 ; : : : ; iCr
� � V C and
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Fig. 8.3 (a, b) Unconstrained 3-matchings and (c) constrained 2-matching with corresponding
sets IC, I� and unmatched node v1 (solid red) on the bipartite graph H appearing in Example 8.3

I� D ˚
i�1 ; : : : ; i�r

� � V �/ if iC1 ; : : : ; iCr are distinct and i�1 ; : : : ; i�r are distinct.
Such a t -matching is said to be a constrained t -matching (or uniquely restricted
matching) if it is the only t -matching in H between IC and I�. Those nodes in H
that are in I� are referred to as matched, and those that are not in I� are called
unmatched. A matching is T -less if it contains no edges of the form

�
jC; j�

�
,

where j is in the set T . A T -less matching where T D ˚
1; : : : ;min

˚ˇ
ˇV C

ˇ
ˇ ; jV �j��,

is referred to as a self-less matching. A (constrained) (T -less) t1-matching in H is
maximum if there is no (constrained) (T -less) t2-matching in H with t2 > t1.

We say that a pattern matrix A has a (constrained) t -matching if the associated
bipartite graph H has a (constrained) t -matching. An example of a pattern matrix of
a graph and associated maximum t -matchings is presented in the following example.

Example 8.3. Consider again the graph D in Fig. 8.3a with the associated
bipartite graph H in Fig. 8.3b. The pattern matrix A.D/ appearing in
Example 8.3 has two maximum 3-matchings,

˚�
vC1 ; v�1

�
;
�
vC2 ; v�3

�
;
�
vC3 ; v�2

��

and
˚�
vC1 ; v�2

�
;
�
vC2 ; v�3

�
;
�
vC3 ; v�1

��
and four maximum constrained 2-matchings

˚�
vC1 ; v�1

�
;
�
vC2 ; v�3

��
,
˚�
vC1 ; v�2

�
;
�
vC2 ; v�3

��
,
˚�
vC2 ; v�3

�
;
�
vC3 ; v�1

��
and

˚�
vC2 ; v�3

�
;

�
vC3 ; v�2

��
. A selection of these is shown in Fig. 8.3.

There is an intimate relationship between the matrix rank of realizations of A
and the (constrained) t -matchings of A. The following theorem summarizes some
of these links and will be subsequently used in this chapter.

Theorem 8.4 ([15]). Let A be an m 	 n pattern matrix, and let t be a nonnegative
integer, 1 � t � min fm; ng.

(1) If A has a t -matching, then there exists a matrix A 2 A with rank.A/ � t .
(2) If A has a constrained t -matching, then every matrix A 2 A has rank.A/ � t .

Specifically, conditions (1) and (2) provide a mechanism to establish weak s-
controllability and strong s-controllability, respectively. For an in-depth study of the
pattern matrix rank and matching relationship we refer the reader to Hershkowitz
and Schneider [16] and Golumbic et al. [17].
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Reinschke et al. [10] provided, without proof, an algebraic result equivalent to
Theorem 8.2. The following is a definition necessary for this result.

Definition 8.5. A structured pair .A;B/ is said to be in form III if there exist two
permutation matrices P1 and P2 such that

P1 ŒA;B� P2 D

2

6
6
6
6
4

~ � � � ~ 	 0 � � � 0
:::

:::
: : : 	 : : :

:::
: : :

: : : 0

~ � � � ~ � � � � � � ~ 	

3

7
7
7
7
5
;

where the 	-elements denote the location of star elements and the ~-elements
denote the location of either zero or star elements.

Before stating Theorem 8.6, we define A� as the pattern matrix formed by
placing stars along the diagonal of A. The aforementioned theorem follows.

Theorem 8.6 ([10]). The structured pair .A;B/ is strongly s-controllable if and
only if

1. the pair .A;B/ is of form III,
2. and the matrix .A�;B/ can be transformed into form III in such a way that the

	-elements do not correspond to diagonal elements that were stars in A.

8.5 Testing Inputs for Strong S-Controllability

The connection of Theorem 8.6 is through the following constrained matching
property.

Theorem 8.7 ([17]). Let H D �
V C; V �; E

�
be a bipartite graph. A t -matchingM

is constrained if and only if we can order the nodes of V C D ˚
vC1 ; : : : ; vCn

�
, and

V � D ˚
v�1 ; : : : ; v�m

�
, such that

�
vCi ; v�i

� 2 M , 1 � i � t , and
	
vCi ; v�j



… E for

1 � j < i � t .

The following theorem presents the promised equivalent constrained matching
result to Theorem 8.6.

Theorem 8.8. Let S be an input set with cardinality m � n. The pair .A;B.S//
is strongly s-controllable if and only if A.S j�/ has a constrained .n �m/-matching
and A�.S j�/ has a constrained Vs-less .n �m/-matching.

Proof. From Theorem 8.7, a pair .A;B.S// is of Form III (the first condition
in Theorem 8.6) if and only if A.S j�/ has a constrained .n �m/-matching. The
second condition in Theorem 8.6 is equivalent to the existence of a constrained
Vs-less .n �m/-matching in A�.S j�/. This is apparent by isolating the associated
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constrained matchings codified in the nonzero diagonal of P1 ŒA;B� P2. The ele-

ments on this diagonal will be of the form
n
a
i
C
1 j

�
1
; : : : a

i
C
n�m
aj�

n�m
; b1k1 ; : : : ; bmkm

o
,

where S D fk1; : : : ; kmg and correspond to a constrained .n �m/-matching˚
iC1 ; j�1

�
; : : : ;

˚
iCn�m; j�n�m

�
. Similarly, for P1 ŒA�;B� P2 the elements correspond-

ing to Vs appear below the diagonal and so do not appear in the constrained .n �m/
matching, making it Vs-less. ut
Consequently, a check that an input set S is strongly s-controllable reduces to the
problem of finding constrained .n �m/-matchings. The conditions in Theorem 8.8
require a validation that there exists a constrained n-matching. A maximum bipartite
matching can be found deterministically in O.

p
n jEj/ [18], and testing whether a

given bipartite matching is constrained can be checked in O .nC jEj/ [17].
Reinschke et al. [10] provided a O.n3/ algorithm to check the conditions in

Theorem 8.6. We have used a similar approach in Algorithm 9 but performed
the check in O.n2/, reducing computation by tracking the column sums through
the vectors � and �~. Due to its similarity to [10] we present the algorithm here
without proof. This algorithm is further developed in the following section, and
so if only validation of strong s-controllability is required then the process can be
terminated at the lines marked with asterisks, in which case the set S is not strongly
s-controllable. For the case where S is strongly s-controllable, this will be validated
once the algorithm has run its course.

8.5.1 Minimum Cardinality Input Sets

In this section we explore the smallest strongly s-controllable input set for a special
class of networks. First, a general result.

Proposition 8.9. There exists no graph that is strongly s-controllable from all
single inputs sets S D fig, for i D 1; : : : ; n.

Proof. Assume otherwise, by Theorem 8.8, A�.fig j�/ has a constrained Vs-less
.n � 1/-matching for every i 2 f1; : : : ; ng. Using the property that anm	 n pattern
matrix M is full rank if and only if it contains a constrained min .m; n/-matching
[16, Theorem 3.9], then every realization A 2 A� has a rank n � 1 submatrix
when an arbitrary row is removed. Therefore, every such A has rank n and so A�
has a constrained n-matching from the same property. By Theorem 8.7, there exists
permutation matrices P1 and P2 such that P1A�P2 is lower triangular with nonzero
diagonal, i.e., the elements corresponding to Vs must lie below the diagonal. As there
must be exactly one term of the form aii in every row and column of P1A�P2, then
the diagonal of P1A�P2 are the elements a11; : : : ; ann of A�. Therefore Vs is empty
otherwise one of its elements would lie on the diagonal. Similar to the argument
for A�, the pattern matrix A must also be triangularizable with nonzero diagonal
elements corresponding to a11; : : : ; ann, but if Vs is empty, then aii D 0 for all i and
contradiction the fact that A has nonzero diagonal elements. ut
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Proposition 8.9 is in stark contrast to the weakly s-controllable where there are many
networks which exhibit single input controllability from an arbitrary node. One such
class of networks that falls in this category for weak s-controllability is the family
of self-damped connected networks. These are networks where every node’s state
directly damps itself, i.e., for every node i , Pxi D ˛ixi CP

j¤i ˛j xj , where ˛i ¤ 0.
The popular consensus (Laplacian) dynamics fall into this class for connected
undirected graphs.

The following two propositions pertain to self-damped undirected networks.
Proposition 8.10 illustrates the rarity of single strongly s-controllable inputs.

Proposition 8.10. The only connected self-damped undirected network strongly
s-controllable from a single input is the path graph, controllable from either end
node.

Proof. If A is self-damped and S D fig, then .A;B.S// is strongly s-controllable
if and only if there exists a permutation matrix P such that PAPT is unreduced
upper-Hessenberg1 and PB.S/ D B.S/ [19, Theorem 2.4]. The first condition is
equivalent to the graph bandwidth2 of realizations of A being 2. The only undirected
graph with bandwidth 2 is the path graph. In bandwidth form (i.e., with a bandwidth
labeling) PB.S/ D B.S/ if and only if i is either end node. ut
On the other extreme, the following proposition indicates that there is only one
graph s-controllable from all but one node.

Proposition 8.11. The only connected self-damped undirected network strongly
s-controllable requiring n � 1 inputs to be strongly s-controllable is the complete
graph.

Proof. If n�1 inputs are required, by Theorem 8.8, the largest constrained matching
in A is a 1-matching. If the network is not a complete graph, then there exists
some edge fi; j g … E, where because it is self-damped, i ¤ j . As the network
is connected then there exists some edge fi; pg 2 E with i ¤ p, similarly there
exists some edge fj; qg 2 E with j ¤ q. Consequently, there is a constrained Vs-

less 2-matching
nn
vCi ; v�p

o
;
n
vCq ; v�j

oo
. This satisfies Theorem 8.8, form D 2, i.e.,

the network is strongly s-controllable from n�2 inputs. Further, it can be shown that
the largest constrained matching in A for a complete graph is a Vs-less 1-matching.
From Theorem 8.8, the proposition follows. ut
Due to the importance of connected self-damped undirected networks, Algorithm 9
was exercised on every self-damped undirected network on 2–10 nodes. By testing
every permutation of inputs the cardinality of the smallest strongly s-controllable
inputs jS j were found. The results are featured in Fig. 8.4, where nD WD jS j =n.

1A matrix is unreduced upper-Hessenberg if all entries on the first superdiagonal nonzero and all
entries above this diagonal are zero.
2The bandwidth of a graph is the minimum max fji � j j j fi; j g 2 Eg over all labeling of the
nodes.
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Fig. 8.4 The variable nD for weak and strong s-controllability for all self-damped undirected
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Fig. 8.5 Directed Erdős–Rényi random graphs on 20 nodes. Each hki value denoted in the legend
was sampled 1,200 times. The black arrows indicate the direction of increasing hki values

We note on average that approximately half the nodes are required to be strongly
s-controllable.

To investigate the distribution of nD across more general graphs, we examine the
family of directed Erdős–Rényi random graphs.3 Algorithm 9 was run on 20-node
Erdős–Rényi graphs testing all input permutations, for samplings of hki from 2 to
20 with each hki sampled 1,200 times. Figure 8.5 summarizes these results.

We observe a critical threshold phenomenon as hki increases. Specifically for
hki � 6, nD decreases with increasing hki while for hki � 6, nD increases
with increasing hki. Such a thresholding phenomenon is not uncommon in random
networks [20]. This particular threshold can be attributed to the fact kc D
2 logn � 5:99 is a sharp threshold for the connectedness4 of Erdős–Rényi random

3Directed Erdős–Rényi random graphs are randomly generated graphs with an edge .i; j / 2 E
independently existing with probability p [20]. The mean degree is defined as hki D 2np.
4A directed graph is connected if its underlying undirected graph is connected.
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networks [20], i.e., for k < kc .k > kc/, the network is almost surely disconnected
(connected). Thus for disconnected networks, as connectivity increases, the network
becomes controllable from less inputs. Further, for connected graphs as the number
of edges increases nD increases as it becomes more challenging to establish a
constrained matching. From a design perspective, k D kc presents an ideal directed
Erdős–Rényi random networks for on average the minimum required number of
inputs for strong s-controllability.

An attraction of weak and strong s-controllability is that they provide lower and
upper bounds, respectively, on the minimum number of inputs required for general
controllability. Consequently, it is a fruitful exercise to compare nD for weak and
strong s-controllability on the two families of graphs presented in this section.

As there always exists an n-matching involving the self-damped edges of
the network, by Theorem 9.1, the network is weakly s-controllable from any
arbitrary single node. Figure 8.4 compares the average nD for weak and strong
s-controllability. Though the weak s-controllability result implies that almost
all graphs are controllable from a single node, we note that, from the strong
s-controllability bound, on average the worst case on some graphs can require far
more inputs.

Liu et al. [5] examined connected directed Erdős–Rényi random networks finding
as n tends to infinity that nD � e�hki=2. Figure 8.6 compares the sampled average
nD for weak and strong s-controllability. We observe for small values of hki that the
weak and strong bounds are close but as hki increases, nD for weak s-controllability
tends to 0 and nD for strong s-controllability appears to tend towards 1. This
is not surprising and fundamental to the difference between weak and strong s-
controllability, in that weak s-controllability requires the existence of t -matchings
while strong s-controllability requires constrained t -matchings. The addition of
edges in a bipartite graph, for example as hki increases, promotes t -matchings while
discourages constrained t -matchings, separating the bounds.
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0

0.2

0.4

0.6

0.8

1

<k>

Strong
Weak

n D

Fig. 8.6 The variable nD for weak and strong s-controllability for a sampling of directed Erdős–
Rényi random networks on 20 nodes. Each hki value for strong s-controllability was sampled 1,200
times
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8.6 Finding Strongly S-Controllable Inputs

Validating that a given set of inputs is controllable is computationally distinct from
searching for a minimum strongly s-controllable input set. This section focuses on
this search problem.

The following theorem provides a bipartite based approach to find strongly s-
controllable inputs.

Theorem 8.12. Given a state matrix A with the constrained .n �m1/-matching
with unmatched nodes SC1 and S�1 . Let A� contain a constrained Vs-less .n �m2/-
matching with unmatched nodes SC2 and S�2 . Then the inputs associated with
S�1

S
S�2 , namely S1

S
S2, is a strongly s-controllable input set with cardinality

m D jS1SS2j � min .m1 Cm2; n/.

Proof. First, from Proposition 8.9, both A and A� cannot have constrained n-
matchings, where the matching on A� is Vs-less. Hence, S�1

S
S�2 is nonempty.

From the first condition of the theorem, A.S1j�/ has a constrained .n �m1/-
matching. As constrained matchings are hereditary, A .S1

S
S2j�/ has a constrained

.n �m/-matching. Similarly, from the second condition of the theorem, A� .S2j�/
has a Vs-less .n �m2/-matching and consequently, A� .S1

S
S2j�/ has a con-

strained Vs-less .n �m/-matching. Thus, from Theorem 8.8 the theorem follows.
ut
The smallest cardinality strongly s-controllable input set is the smallest cardinality
set S1

S
S2 that satisfies Theorem 8.12.

For the case where A has all diagonal elements nonzero, i.e., the network is
self-damped, and the case where A has all diagonal elements zero, i.e., no node is
self-damped, only one of the conditions in Theorem 8.12 needs to be validated. This
result is summarized in the following corollary.

Corollary 8.13. Given a state matrix A with diagonal elements all nonzero or all
zero. Consider the maximum constrained self-less .n �m/-matching of A�, with
unmatched nodes SC and S�. Then the m inputs associated with S� is a minimum
cardinality strongly s-controllable input set.

Proof. When A has all diagonal elements nonzero, the pattern matrices A and A�
are equal and share a maximum constrained self-less .n �m/-matching. When A

has only zero diagonal elements then it can be formed from A� by removing its
diagonal elements. A constrained t -matching is invariant to the removal of edges
from a bipartite graph that are not members of the matching. It follows that A and
A� share the same constrained self-less .n �m/-matching. From Theorem 8.12,
the corollary follows. ut
From Theorem 8.12 and Corollary 8.13, in the best case the problem of finding
the minimum cardinality strongly s-controllable input set is equivalent to finding
a maximum constrained matching. This is computationally hard; Golumbic et al.
showed that in fact finding a maximum constrained matching in bipartite graphs is
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NP-complete [17]. Further, Mishra has recently shown that even approximating a
maximum constrained matching is hard demonstrating a bipartite graph that cannot
be approximated with a factor of 1

2
3
p
9
n
1
3�� for any � > 0, in polynomial time [21].

We provide a greedy Algorithm 9 to produce an input set that validates each
condition in Theorem 8.12. The algorithm involves adding control inputs at points
in the algorithm that would traditionally terminate the algorithm returning an
“uncontrollable” result. Applying the algorithm involves first inputting the pair
.A;B.S1// where S1 and T are empty. The algorithm will return an input set S2
which validates the first condition in Theorem 8.12. Subsequently, applying the
algorithm to the pair .A�;B.S2// and T D Vs provides a set S3 which in addition
to S2 validates the second condition in Theorem 8.12. Consequently, a strongly s-
controllable pair is .A;B.S2

S
S3//. Due to the challenges of establishing theoretic

guarantee on the cardinality of maximum constrained matching approximation, the
following section provides Monte Carlo support for the Algorithm 9’s performance.

8.6.1 Algorithm’s Performance

This section compares the cardinality of the strongly s-controllable input set
ˇ
ˇSalg

ˇ
ˇ

found by Algorithm 9 to the cardinality of the optimal strongly s-controllable inputs
set
ˇ
ˇSopt

ˇ
ˇ ; found through an exhaustive check of all input permutations.

For each of the self-damped undirected graphs up to 10 nodes, the ratio R Dˇ
ˇSalg

ˇ
ˇ =
ˇ
ˇSopt

ˇ
ˇwas calculated. All such graphs were within a factor of 2 of the optimal

cardinality. Similarly, R was calculated for each Erdős–Rényi random networks on
hki D f2; 6; 10; 14; 18g, and summarized in Table 8.1. All such graphs were within
a factor of 2.3 of the optimal cardinality. The poorest performance occurred about
the threshold value hki D 6.

Table 8.1 Fraction of hki
Erdős–Rényi random
networks on 20-nodes that
exhibit an R value less than
1:0, 1:3; 1:7, 2:0 and 2:3,
respectively

R

1.0 1.3 1.7 2.0 2.3

hki 2 0.54 0.99 1.00 1.00 1.00

6 0.18 0.61 0.90 1� 40� 1.00

10 0.26 0.90 1� 30� 1.00 1.00

14 0.34 0.97 1.00 1.00 1.00

18 0.39 1� 8� 1.00 1.00 1.00

Here, � D 0:0001
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Protocol 9 checks if given A, B.S1/ and the set T , if .A;B.S1// is of form III. If
not, inputs S2 are provided to guarantee .A;B.S1

S
S2// is of form III

Initialize:
i D n, j D nCm
Replace the elements in A corresponding to members of T with the element ~
Create the row vector � equal to the number of nonzeros, and ~’s in each column of ŒA;B�
Create the row vector �~ equal to the number of ~’s in each column of ŒA;B�
Create the empty list S
Create the n� 1 column vector p with p.i/ D i

while i > 0 do
Find the minimum positive value 	 with column index js of the 1� j submatrix of � such
that �.k/ D 1 and �~.k/ D 1

if No such value exists then
No such matching - Not strongly s-controllable.�

Add 1; : : : ; i to S
Break

end
if �~.js/ ¤ 1 then

Find the first nonzero row is of the column vector js of the i � j submatrix of ŒA;B�
else

Find the first ~ row is of the column vector js of the i � j submatrix of ŒA;B�
end
if is ¤ i then

Permute row is and i of the matrix ŒA;B�, and the column vector p
end
if js ¤ j then

Permute the column js and j of the matrix ŒA;B�, and the row vectors � and �˝

end
if 	 D 1 then

j D j � 1
else

No such matching - Not strongly s-controllable.�

Add i to S
end
foreach k D 1; : : : ; j do

if ŒA;B�ik is ~ then
�~.k/ D �~.k/� 1
�.k/ D �.k/� 1

else if ŒA;B�ik is nonzero then
�.k/ D �.k/� 1

end
end
i D i � 1

end
if S is empty then

Found such a matching.
else

Construct the set S2 D fp.S.i//ji D 1; : : : ; jS jg
end
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8.7 Remarks

This chapter presents an analysis of strong structural controllability in networked
systems. We provided an equivalent constrained matching condition for strong
structural controllability. A polynomial time algorithm to validate these conditions
and to form strong structural controllable input sets was presented. We proceeded
to show that the search for a minimum cardinality strong structural controllability
input set is NP-complete; finding a factor approximation is also shown to be difficult.
Insights were provided into the spread of minimum controllable input sets using
weak and strong structural controllability bounds. Future work of particular interest
involves establishing conditions when weak and strong structural controllability
share similar size minimum cardinality input sets.
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Chapter 9
Security and Infiltration of Networks:
A Structural Controllability and Observability
Perspective

Abstract This chapter examines the role of structural controllability
(s-controllability) in the design of secure linear-time-invariant networked systems.
We reason about secure network design in the face of two attack vectors: a “Disrupt”
attack where the infiltrator’s objective is to perturb the network to render it unusable,
and a “Highjack and eavesdrop” attack to actively control and probe the network.
For the former attack, strong s-controllable input sets are chosen to control the
network to provide robustness to these attacks. Weak s-controllable input sets are
selected by infiltrators for the “Highjack and eavesdrop” attack so as to generically
guarantee a successful attack.

9.1 Introduction

Network security and its complement, network infiltration, are of paramount impor-
tance in design and analysis of complex dynamic networks. Dynamic networks
are core to the natural world, such as biological, chemical, and social networks,
and our technological world with networks such as the Internet, power grids, and
robotic networks. In recent years, there has been a myriad of research in the area
of network systems [6–8]. Of increasing importance is securing networks from
outside manipulation and monitoring. The complementary problem is identifying
effective means to infiltrate, influence, or identify networks. At the cornerstone of
these problems is the interplay between system performance and network structure.

Most modern day technological networks rely on access security to protect the
network. An alternative method to generate a secure network is intrusion detection1

coupled with either inter-agent security through each agent’s dynamics or intra-
agent security via the network topology. The former includes implementation of
disturbance rejection or agent disabling techniques, e.g., noise canceling systems
and power grid “brown outs”. The latter involves global or local network design to

1Techniques for intrusion or fault detection on consensus-type networks include those based on
reachability analysis [3], and the more popular unknown-input observers [1, 4, 5].
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improve security, e.g., TCP network re-routing. This topology-centric approach for
security is the main focus of the present work. Specifically, the following two attack
vectors are the focus of this chapter:

• Disrupt: An infiltrator perturbs the coupling strength between nodes in the
network to disrupt the user’s ability to control and/or monitor the network.

• Highjack and eavesdrop: An infiltrator with knowledge of the inter-agent depen-
dencies, i.e., who effects whom, but not the coupling strength between nodes,
attaches to a subset of “infiltrated” nodes in the graph. The infiltrator then applies
signals and/or monitors the state of these nodes to control and/or identify the
network.

The current work is part of a more general effort that aims to identify fundamental
bounds on the security of coordination algorithms for dynamic systems when
infiltrated by an adversary. As such, our work is related to a number of other research
works such as those in computer network security [13], disease control [14, 15], and
predator/prey swarming [2]. The chapter presents the problem of network security
from both the infiltrator’s perspective complementing work on infiltration detection
such as [3].

Structural controllability (s-controllability) provides controllability results which
only require knowledge of interconnections and not the associated coupling
strengths, establishing weak and strong s-controllability removes the accurate
modeling requirement of controllability. A such, s-controllability is an attractive tool
for infiltrators to establish low cardinality s-controllable input sets to highjack and
eavesdrop on the network without accurate knowledge of the network parameters.
Typically, infiltrating more nodes in the network is difficult and exposes an infiltrator
to a higher risk of detection. Thus, weak s-controllability provides a more cost-
effective measure than strong s-controllability and for this reason will be used as
the main tool in this chapter for analysis of the “Highjack and eavesdrop” attack
scenario.

Although it is atypical that a weakly s-controllable network has a coupling
strength realization rendering it uncontrollable, there are systems that are inadver-
tently designed or maliciously altered with such a coupling. Examples with such a
coupling are unweighted undirected graphs such as the aforementioned consensus-
based networks and the “Disrupt” attack scenario. Such homogeneity generates
symmetry in the network which typically renders a system uncontrollable. For these
cases, strong s-controllability is a useful alternative to weak s-controllability, and
will be used in this chapter as a method to secure networks against “Disrupt” attacks.

In this chapter s-controllability conditions are exploited to reason about a secure
design against “Disrupt” and “Highjack and eavesdrop” attacks.
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9.2 Weak Structural Controllability: A Cautious
Lower Bound

As previously mentioned, weak s-controllability is a generic condition on control-
lability. If the family of systems in Model (8.1) is weak s-controllable, a given
realization will be controllable with high probability. For non-homogeneous net-
works with independent edge weights, if an input set satisfies weak s-controllability,
it will, in general, also satisfy general controllability. For homogenous networks,
such as unweighted networks, symmetries inherent in the network tend to break the
controllability of weak inputs. For example, from a single input node the undirected
complete graph is weak s-controllable but its unweighted realization requires n � 1
nodes to control completely.

From an infiltrator’s perspective, if the network has unknown weights, weak
s-controllability presents a useful method to isolate, with high probability, con-
trollable or observable network attachment points. The necessity of controllability
and observability for effective network identification and control makes weak
s-controllability ideal for infiltrator “Highjack and Eavesdrop” scenarios. From
a different perspective, a cautious lower bound suitable for network security is
additional protection of weak input attachment nodes to prevent such an attack. To
this end, the following theorem provides a matching method to find and check for
weak input sets [9].

Theorem 9.1. Given a pattern matrix A.D/:
(1) (check) The pair .A;B.S// is weakly s-controllable from a nonempty m-input

set S if and only if A.S j�/ has an .n �m/-matching and S is input accessible.
(2) (find) Given a maximum matching with unmatched nodes S 0: If S 0 is empty

S D fig for any i D 1; : : : ; n, otherwise S D S 0. If T is the rooted set for
those nodes in G (input) inaccessible to S , then .A;B.S

S
T // is weakly s-

controllable.

The strength of this result is that the structure of the graph can be directly linked to a
controllable input set. Further, this graph feature described in Theorem 9.1(1) can be
efficiently checked via the method of maximum matching in bipartite graphs which
can be calculated deterministically in O

�p
n jEj� time [12] and probabilistically in

O.n2:376/ time [16], coupled with a depth first search to determine input accessibility
in O .jEj/ time [17]. Theorem 9.1 is demonstrated in the following example.

Example 9.2. Referring to Example 8.1, for A .S j�/ the set S D fig is input
accessible and has a 2-matching for i D 1; 2, and 3, namely

˚�
vC2 ; v�3

�
;
�
vC3 ; v�2

��
,

˚�
vC1 ; v�1

�
;
�
vC2 ; v�3

��
and

˚�
vC1 ; v�2

�
;
�
vC3 ; v�1

��
, respectively. These matchings

appear in Fig. 9.1. As each of these input sets satisfies the condition in Theorem 9.1,
the pairs .A;B.f1g//, .A;B.f2g//, and .A;B.f3g// are weakly s-controllable.
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Fig. 9.1 Three 2-matchings relevant to Example 9.2 satisfying the matching condition in
Theorem 9.1 on the bipartite graph H appearing in Example 8.1

The following example examines a “Highjack and Eavesdrop” scenario for an
unknown realization of Model (8.1). Theorem 9.1 is applied to acquire the most
vulnerable weakly controllable attack vectors and reason about the relative node
security in the network.

Example 9.3 (Highjack and Eavesdrop). Consider the graph D in Fig. 9.2a and
network dynamics corresponding to a realization of .A.D/;B.S/;C .S// in
Model (8.1). A weakly controllable inputs set S presents a particularly attractive
attack vector for an infiltrator. The node set S almost always provides a controllable
input and observable output sets to effectively control (highjack) the network and/or
monitor (eavesdrop on) the network through system identification.

Applying Theorem 9.1 to all possible input sets the smallest cardinality attack
vectors involve the successful infiltration of two nodes. Specifically, the nine
smallest attack vectors are of the form fj; 7g and fi; 8g, where j 2 f1; 3; 4; 5g
and i 2 f1; 2; 3; 5; 6; 7g. All larger attack vectors contain one of these pairs. In
aggregate there are 821 attack vectors, the 345 attacks involving at most four nodes
are distributed as A D f38; 36; 38; 37; 38; 36; 60; 62g where the number of attacks
involving node i is A.i/.

From a network design perspective the most to least vulnerable node sets are
f8g ; f7g ; f1; 3; 5g ; f4g ; f2; 6g, providing a priority ordering for security. Figure 9.2b
indicates this ordering. Further, if nodes 7 and 8 are completely secured against
attachment, then there will be no input set that will render the system controllable
or observable.

9.3 Strong Structural Controllability: Guaranteed Security

An attractive feature of s-controllability is the provided controllability guarantees in
the face of perturbations. Specifically, as long as the interconnections in the graph
remain intact and no new ones are added controllability will be maintained. One can
consider this a type of controllability robustness—an often elusive feature of system
dynamics, with progress made in the area of controllability of interval matrices [18].
For arbitrary edge weight perturbations the benefits of weak s-controllability are
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Fig. 9.2 (a) Graph D and (b) resultant node and edge weights importance pertaining to
Examples 9.3 and 9.6

similar to that of strong s-controllability. In a malicious infiltrator scenario where
edge weights may be perturbed to actively disrupt the network then edge weights
rendering a weak input set uncontrollable may be intentionally selected. For this
“Disrupt” scenario, an input set that is strong is preferred as, up to the removal of
edges, the input set remains controllable, guaranteeing security.

Noting the similarities in the definitions for weak and strong s-controllability, it
is not surprising that structural features that are equivalent to weak s-controllability
share similarities to structural features that are equivalent to strong s-controllability.
It is with this in mind that we explore the role of t -matchings in strong
s-controllability.

Validating that a given set of inputs is controllable is computationally distinct
from searching for a minimum strongly s-controllable input set. This section focuses
on this search problem. The following theorem provides a bipartite matching
approach to find strongly s-controllable inputs.

Theorem 9.4. Given a pattern matrix A.G/.
(1) (check) The pair .A;B.S// is strongly s-controllable from a nonemptym-input

set S if and only if A.S j�/ has a constrained .n �m/-matching and A�.S j�/
has a constrained Vs-less .n �m/-matching

(2) (find) Given a constrained .n �m1/-matching on A with unmatched nodes S1
and a constrained Vs-less .n �m2/-matching on A� with unmatched nodes S2,
then .A;B.S1

S
S2// is strongly s-controllable.

Fundamentally, the “check” condition in Theorem 9.4 requires a validation that
there exists a maximum n-matching in A .S j�/ and in A� .S j�/ that is constrained.
A maximum bipartite matching can be found deterministically in O.

p
n jEj/ time

[12], and testing whether a given bipartite matching is constrained can be checked in
O .nC jEj/ time [11]. Reinschke et al. [10] provided a O.n3/ algorithm to check
the conditions in Theorem 9.4. We have presented a similar approach performing
the check in O.n2/ [19].
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Fig. 9.3 (a) Constrained 2-matching on A .f2g j�/ and (b) Vs-less constrained 2-matching on
A� .f2g j�/ relevant to Example 9.5 satisfying the conditions of Theorem 9.4 with input set
S D f2g on the bipartite graph H appearing in Example 8.1

Consequently, a check that an input set S is strongly s-controllable reduces to
a problem of finding constrained .n � m/-matchings. This is demonstrated in the
following example.

Example 9.5. Returning to Example 8.1, for i D 1 and 2 (but not 3), A .S j�/ with
input set S D fig has a constrained 2-matching, satisfying the first condition in
Theorem 9.4(1). Examining the matrix

A� D
2

4
	 0 	
	 	 	
0 	 	

3

5 ;

and setting Vs D f1g, the pattern matrix A� has three constrained Vs-less 2-
matchings,

˚�
vC1 ; v�2

�
;
�
vC2 ; v�3

��
,
˚�
vC2 ; v�3

�
;
�
vC3 ; v�1

��
and

˚�
vC2 ; v�3

�
;
�
vC3 ; v�2

��
.

Thus for i D 1 and 2 (but not 3), the input set S D fig with A� .S j�/ has a
constrained Vs-less 2-matchings satisfying the second condition in Theorem 9.4(1).
Therefore, the pairs .A;B.f1g// and .A;B.f2g// are strongly s-controllable. The
matchings associated with input set f2g appear in Fig. 9.3.

We now apply Theorem 9.4 to a “Disrupt” scenario where an infiltrator perturbs
edge weights, potentially removing them so as to reduce the effectiveness of
the control input into network running a realization of Model (8.1). Examining
the effect of edge failures on strong s-controllability of the input set one can
identify the critical edges in the network and identify the most significant security
vulnerabilities.

Example 9.6 (Disrupt). Consider the graph D in Fig. 9.2a and network dynamics
corresponding to a realization of .A.D/;B.S/;C .S// in Model (8.1), where
S D f3; 5; 7g. Applying Theorem 9.4 reveals that the system is strongly
s-controllable and observable. If an infiltrator’s objective is to disrupt the effective
control and monitoring of the network, a viable strategy is to perturb the network’s
interconnection strengths, i.e., its edge weights. As long as no interconnections are
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broken, input set S can still control and monitor the network. But, in the event that
edges can fail, it is important to establish the most critical.

Applying Theorem 9.4 to every combination of edge failures there are 241,216
successful attack combinations that cause the loss of strong s-controllability. The
most critical edges, whose individual failure removes strong s-controllability, are
edges in E1 D f4 ! 6; 5 ! 4; 6 ! 1; 7 ! 8; 8 ! 2g and E2 D f7 ! 4g. All
other successful combinations involve edges in E1

S
E2. It is important to note

that unlike Example 9.3, where if S1 is weak and S1 � S2 then S2 is weak, the same
condition does not hold for edge failure attack vectors. For example, the removal
of E2 renders the system no longer strong s-controllable but also removing 1 ! 1

returns strong s-controllability.
Examining all 1,208 successful attacks involving three edges, there were 106,

89, 67, and 60 successful attacks involving each of the nodes in E1, E2, E3, and E4,

respectively, whereE3 D En
nS3

iD1 Ei
o

andE4 D f1 ! 1; 5 ! 6g. Consequently,

the network edge sets E1; : : : ; E4 present a preferential ordering of the distribution
of security resources. Figure 9.2b depicts this ordering.

9.4 Remarks

This chapter presents an analysis of the security of networked system topologies
using weak and strong s-controllability. Focusing on “Disrupt” and “Highjack
and eavesdrop” attack scenarios, we propose controllability metrics to identify
vulnerable nodes and critical edges of a network. This was accomplished through a
computationally efficient matching condition on weak and strong s-controllability.
Future work of particular interest involves establishing conditions for output weak
and strong s-controllability and their implications for network security.
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Chapter 10
Conclusion and Future Work

Abstract This chapter provides some final remarks and explores future research
directions in the area of semi-autonomous networks.

10.1 Concluding Remarks

The objective of this dissertation has been to propose system-theoretic approaches
to examine the notion of semi-autonomy in networked systems. Core to this process
is the examination of the network’s structure and how its properties manifest itself in
the system dynamics. The dissertation has endeavored to adapt and extend existing
works as well as to make new and innovative forays into protocols, design tools, and
modeling methods.

A common thread in this research of networked systems is the appearance of
well-known graph measures. For example, in our analysis the variance damping and
mean tracking measures can be formulated as the effective resistance of nodes; the
highest closeness centrality node is also the most influential node under the mean
tracking measure for trees; and structural controllability conditions are equivalent
to establishing matchings over bipartite representations of the network. Further,
this work refines some of the existing connections to graph measures such as
the connection between symmetry and uncontrollability. Specifically, the number
of controlled nodes must be at least the determining number of a graph. These
connections allow one to draw from the rich area of graph theory for design and
reasoning over networked systems.

Consensus is considered one of the fundamental protocols of networked systems.
One of the many attractions of the consensus protocol is its fluidic origin and
intuition, convergence to agreement, and its clear encoding of the network within
the state matrix. These elements were explored in other protocols and dynamic
representations. Examples include the fluidic-motivated advection dynamics, which
can be considered the conservative dual of consensus over digraphs, and the
achievement of agreement over alternate subspaces, using nonlinear forms of
consensus. Like the consensus protocol, these protocols also have network-encoded
state matrices. In fact, key to the protocol’s analysis is that the state matrices,
encoded as strongly connected digraphs, are irreducible M-matrices. Interestingly,
because of this encoded feature, properties such as stability and controllability can
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be formulated from the network interconnections alone, with little knowledge of
the specifics of the protocol. The dissertation explored two such cases: the interval
matrix representation of the dynamics, and the pattern matrix representation.
Establishing the underlying workings of these generalized protocols provides a
myriad of new applications of network dynamic theory as well as addressing the
question: How pronounced is the role of the network?

The fruitful examination of the network draws from the distributed structure of
the protocols and their use of the network itself as the medium of information prop-
agation between agents. Consequently, this dissertation has shown that redesigning
the network topology can deter or encourage the flow of certain agents’ information.
In contrast with centralized network design approaches, this work’s protocols have
endeavored to maintain the networked system’s distributed nature via local agent
edge redesign. This work further justifies local edge rewiring to improve various
metrics using game-theoretic analysis and by exercising a monotonicity principle. In
turn, exploiting the network information flow, local edge reweighting was possible
by employing distributed online learning.

Finally, this research demonstrated that network composition and decomposition
can maintain the form of the information propagation structure using a Cartesian
product formulation and analysis. The result is an efficient way to analyze layered
controllability and the ability to perform local layered distributed output feedback
stabilization. This perspective emphasizes the valuable connections between the
local network information and the corresponding system theoretic performance.

10.2 Future Directions

Much of the research within this dissertation can be considered in its infancy with
many potential directions for future work. Each chapter was concluded with a brief
mention of future research. The following sections provide a broader perspective of
ideas and extensions for the analysis and design of semi-autonomous systems.

10.2.1 Network Design: Striking a Balance

As touched upon in the concluding remarks, one of the powerful aspects of
networked systems is the potential to vary the medium of information propagation—
the network. This was the basis for the graph redesign problem over the mean
tracking measure J�.G;R/ D

tf!1
J�.G;R; tf /, for instance. A natural question
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is: whether one does better than a static graph for a given set of dynamics? To shed
some light on this query consider the mean tracking measure for finite time,

J�
�
G;R; tf

� D 1

n

nX

iD1

1

�i .�A/
	
1 � e�2�i .�A/tf




D 1

n

 
nX

iD1

1

�i .�A/ �
nX

iD1

1

�i .�A/e
�2�i .�A/tf

!

D 1

n
tr
��A�1� � 1

n

nX

iD1

1

�i .�A/e
�2�i .�A/tf

D J�.G;R/ � 1

n

nX

iD1

1

�i .�A/e
�2�i .�A/tf :

Assuming the number of edges in G and R is constant, as for the edge swapping
protocols, then tr .�A/ is constant and so �i .�A/ is constant. If good mean tracking
is required, then one would want to solve the optimization problem

min
�1;�2;:::;�n

J�
�
G;R; tf

� D Pn
iD1 1

�i

�
1 � e�2�i tf �

s:t:
Pn

iD1 �i D c

�i > 0 for i D 1; : : : ; n:

Note that fi .�/ D 1
�i

�
1 � e�2�i tf � is a strictly decreasing convex function over the

constraint set, for all tf � 0. Consequently, with a little work and noting that the cost
function and constraints are symmetric in �i ’s, the optimal solution is �1 D �2 D
� � � D �n. To achieve repeated eigenvalues typically a compact graph with many
symmetries is required. Unfortunately, the smallest eigenvalue of A.G;R/ is only
shifted slightly from the Laplacian zero eigenvalue and much smaller than the other
eigenvalues. Consequently, for small tf ,

Pn
iD1 1

�i

�
1 � e�2�i tf � � 1

�1

�
1 � e�2�1tf � :

Hence, graphs with small �1 which are typically elongated graphs are favorable for
small tf .

Figure 10.1 provides an example of this observation comparing J�
�
G;R; tf

�

over different tf values for a ten-node path and star graph influenced from an end
and center node, respectively. Under 3.5 s the path graph is preferred after which the
star graph has the smallest J�

�
G;R; tf

�
. A natural solution would be to implement

a time dependent graph. As tf increases the optimal edge-count-preserving graph
would vary from an elongated graph with slow information propagation to a
compact graph with fast information propagation. Another option is to dynamically
vary the edge weights of a static edge graph for the same purpose.
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Fig. 10.1 Comparison of
J�
�
G;R; tf

�
for varying tf

for an end node influenced
path graph and a centrally
influenced star graph on ten
nodes

Another challenge in network design is the network’s indiscriminate transmission
of information. Hence, optimizing for one metric often degrades another. An
example is the relationship, derived in Chap. 3, between the mean tracking measure
J� .G;R/ and variance damping measure J� .G;R/, namely

J� .G;R/ D J� .G;R/C 1

n

X

vi…�.ER/
Eeff .vi / :

The equality bodes poorly for security applications where good variance damping
(low J� .G;R/) but poor mean tracking (high J� .G;R/) is required. The online
learning method, introduced in Chap. 3, can be used to adapt the network design
to address the current state and requirements of the network. One could envisage
learning the current noise or mean deviation in the network and weight each metric
accordingly then redesigning as required.

An extreme situation of conflicting network design is when both friendly and
unfriendly foreign agents attach to the network, and good mean tracking is favorable
for some agents and unfavorable for others. A promising direction is a game-
theoretic approach, as in Chap. 3, to isolate foreign network agents while grouping
native agents about friendly influence point in the network.

10.2.2 Networks-of-Networks

The dissertation’s brief excursion into Cartesian products presents only one of the
graphical methods for composing and decomposing graphs. Traditionally, a graph
product of two graphs D1 D .V1; E1/ and D2 D .V2; E2/ forms a new graph
with vertex set V1 	 V2, where an edge in the product exists between two nodes
.v;w/ and .v0;w0/ if properties v D v0, .v; v0/ 2 E1 or .v; v0/ … E1 are met (and
similarly for w and w0). Under these requirements, there are 256 different graph



10.2 Future Directions 165

Fig. 10.2 Factor digraphs D1 and D2 and composite digraph D1 ~ D2, where ~ 2 f�;�; ?g,
i.e., the direct, strong and star product, respectively. (a) D1. (b) D2. (c) D D D1 ~ D2

products formed from combination of these choices. Even more graph products can
be formed if more exotic definitions of graphs products are adopted. Examples of
some products are displayed in Fig. 10.2. Graph products have been found to exhibit
many favorable and predictable composition properties such as expander graphs,
extensive symmetry groups, and composable spectrums. Further, many networks
naturally take the form of graph products or can be efficiently approximated as such.

The main tool for the Cartesian product controllability analysis was the
eigenvector-based PBH test and the fact that eigenvectors can be composed through
the Kronecker product. In fact, many graph products can be represented as sums
of Kronecker products of the adjacency matrix of D1 and D2, implying a similar
controllability analysis technique. Some specific examples of graph products and
their Kronecker representations are:

• Direct Product: Denoted as D1 	 D2 and defined with edges when (.v; v0/ 2 E1
and .w;w0/ 2 E2). Further,

A .D1 	 D2/ D A .D1/˝ A .D2/:

• Star Product: Denotes as D1 ?D2 are defined with edges when (.v; v0/ 2 E1 and
.w;w0/ 2 E2) or (.v; v0/ 2 E1 and w D w0). Further,

A .D1 ?D2/ D I ˝ A .D2/C A .D1/˝ A .D2/:

• Strong Product: Denoted as D1 � D2 and defined with edges when (.v; v0/ 2 E1
and .w;w0/ 2 E2) or (.v; v0/ 2 E1 and w D w0) or (v D v0 and .w;w0/ 2 E2).
Further,

A .D1 � D2/ D A .D1/˝ I C I ˝ A .D2/C A .D1/˝ A .D2/:
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• Lexicographic Product: Denotes as D1 
 D2 and defined with edges when
(.v; v0/ 2 E1) or (v D v0 and .w;w0/ 2 E2). Further,

A .D1 � D2/ D A .D1/˝ 11T C I ˝ A .D2/:

• Rooted Product with root i : Denotes as D1 ı D2 and defined with edges when
(w D wi and .v; v0/ 2 E1) or (v D v0 and .w;w0/ 2 E2). Further,

A .D1 � D2/ D A .D1/˝ ei e
T
i C I ˝ A .D2/:

One could also conceive of dynamic graph products with different dynamic
interactions within layers G1 as compared to within layers of G2. In other words,
the edge dynamics within a layer are distinct from those edges between layers.
For example, consider a Cartesian product graph where agents can measure relative
positions across their layer G1 and relative velocities between layers, i.e., across the
layer G2. A physical interpretation would be that edges within G1 layers are springs
and edges within G2 layers are dampers. The subsequent dynamics for an agent ij 0
would be

� Pxij 0

Rxij 0

�

D
"

�P.i;k/2E1.xij 0 � xkj 0/

�P.j 0;k0/2E2. Pxij 0 � Pxik0/

#

I

using Kronecker products this is equivalent over all the states to

� Px
Rx
�

D
�
A .D1/˝ I 0

0 I ˝ A .D2/

� �
x

Px
�

:

Similar to the Cartesian product examination these static and dynamics graph
product variants can be analyzed for trajectory, spectrum, and controllability
composition properties as well as other system theoretic composition properties.
The vision is for a library of graph products with associated features to mirror that
of the traditional compositional technique such as cascade, parallel, and feedback
forms.

10.2.3 Degree of Controllability

A shortcoming of the classification of a system as controllable or not is that there is
no indication of the degree of controllability or uncontrollability.
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10.2.3.1 Controllability Gramian

One measure of the effective controllability is the smallest eigenvalue of the
controllability gramian P , which is the solution to the Lyapunov equation

ATP C PA D �BBT :

Consider, for instance, the controllability gramian of the layered control
.A.D1�D2/; I ˝ B2/ in Sect. 7.5. Assume A.D1/ and A.D2/ are stable and
symmetric, and V and ƒ are the unitary eigenvector and eigenvalue matrices of
A.D1/, respectively. Then,

A.D1�D2/
T P C PA.D1�D2/ D � .I ˝ B2/ .I ˝ B2/T

�
V TƒV ˝ I C I ˝ A.D2/

�
P C P �V TƒV ˝ I C I ˝ A.D2/

� D � �I ˝ B2BT
2

�

.ƒ˝ I C I ˝ A.D2// NP C NP .ƒ˝ I C I ˝ A.D2// D � �I ˝ B2BT
2

�
;

where NP D .V ˝I /P.V T ˝I /. Decomposing NP into a block diagonal matrix with
diagonal blocks NP1; : : : ; NPn1 of size n2 	 n2, the i th diagonal block of the equation
is

.�i .A.D1//I C A.D2// NPi C NPi .�i .A.D1//I C A.D2// D �B2BT
2 ;

and so NPi is the controllability gramian of .�i .A.D1//I C A.D2/; B2/. Hence, as
the eigenvalues of NP are the same as P (as V ˝ I is unitary), then the smallest
eigenvalue of P is smaller than .�n.A.D1//I C A.D2/; B2/, i.e., the composite
system is less controllable than the factor system.

This type of analysis has potential application to other graph products, providing
degree of controllability guarantees for composite graphs.

10.2.3.2 Controllability Index

It is generally difficult to preserve the graph structure in the calculation of the
controllability gramian. An alternative measure of the degree of controllability is
the controllability index which is the smallest positive integer � for which the
controllability matrix

C D �
B AB A2B : : : A��1B

�
;

is full rank. This is referred to as �-controllability. A physical interpretation of the
controllability index is the smallest number of integrators required to arbitrarily
control the dynamics. The attraction of this measure is that the graph structure is
maintained in the controllability matrix block columns, and the powers of A can
have a graph related interpretation. For example, if A is the adjacency matrix,
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then powers of
�
Ak
�
ij

are the number of paths from node i to node j of length
k. A consequence is that � must be at least the diameter of the graph and more
specifically can be no less than the smallest graph distance between native and
control nodes in the graph.

10.2.3.3 Extended Controllability Matrix

A variation of the controllability matrix is the extended controllability matrix

NC D

2

6
6
6
6
6
4

B I 0 0 0 0 0

0 �A B I 0 0 0
:::

: : :
: : :

: : :
:::

0 0 0 �A B I 0

0 0 0 0 0 �A B

3

7
7
7
7
7
5

of dimension n2 	 n .nCm � 1/ : A feature of this matrix is that the pair .A;B/
is controllable if and only if NC has rank n2. An appeal of this formulation is
for structural controllability where pattern rank conditions can be checked on the
pattern form of NC. This form would require only a single check for strong structural
controllability rather than the two conditions required in Chap. 8.

Strong and weak �-controllability can be established in a similar way by
truncating the first 2.n � �/ blocks column and n � � block rows from NC.

10.2.3.4 Output Controllability

Often, not all the states in the network need to be controlled. A measure of the degree
of uncontrollability of the system can be gauged through output controllability,
which is a weaker controllability condition and isolates the node states S � V

which are controllable. A system .A;B; C.S// is output controllable if the output
controllability matrix

Co D C
�
B AB A2B : : : An�1B

�

is full rank. Equivalently, the system is full rank if the output extended controllability
matrix

NCo D

2

6
6
6
6
6
6
6
6
4

B I 0 0 0 0 0 0

0 �A B I 0 0 0 0
:::

: : :
: : :

: : :
:::

:::

0 0 0 �A B I 0 0

0 0 � � � 0 0 �A B I

0 0 � � � � � � 0 0 �C

3

7
7
7
7
7
7
7
7
5
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of dimension .n2 C r/ 	 n .nCm � 1/ is full rank. Similar output controllability
index matrices can be constructed using the same matrix truncation techniques as
in the previous sections. Matrix Co is similarly more appropriate for establishing
traditional controllability while NCo could be used to check for output controllability.

The rank of different controllability representations provide many avenues to
explore degrees of controllability of a system. These variations promise a more fine-
grained form of controllability than the boolean controllability case.



Appendix



Single Anchor State Measures

The single anchor influence scheme adopts a naive approach for influencing the
network, justified by the lack of a prior knowledge of the network structure by the
attached node. In this case, the attached node merely attempts to steer the system to
a common state uc .1 This section is devoted to characterizing how effective such an
influence scheme for specific graphs and attachment points.

Specifically, we derive fundamental bounds for four metrics of influence. One
metric is the controllability gramian P.G;Ri /, discussed in Sect. 3.4. The other
three metrics are derived from the infinite time horizon cost from Sect. 3.3,

J.G;Ri ; Qx.0// D � Qx.0/T A.G;Ri /�1 Qx.0/:

The first of these metrics is mean tracking measure or average performance cost,
and can be derived as

EkQx.0/kD1J.G;Ri ; Qx.0// D J�.G;Ri /:

The other metrics are referred to as the minimum and maximum performance costs
in terms of the eigenvalues of the Dirichlet matrix as2

Jmin
�
G;Ri

� D inf
kQx.0/kD1

J
�
G;Ri ; Qx.0/�

D �1

	
�A �G;Ri

��1


D 1=�n
��A �G;Ri

��
;

1For example, in order to realign a formation or change its speed.
2Considered as intrusion or management costs.

© Springer International Publishing Switzerland 2015
A. Chapman, Semi-Autonomous Networks, Springer Theses,
DOI 10.1007/978-3-319-15010-9

173



174 Single Anchor State Measures

and

Jmax
�
G;Ri

� D sup
kQx.0/kD1

J
�
G;Ri ; Qx.0/�

D �n

	
�A �G;Ri

��1


D 1=�1
��A �G;Ri

��
:

The critical graphs that bound the performance costs Jmin; Jmax, and J� for a single
input anchor influence scheme over all graphs are the n-node complete graph K, the
path graph P , and the star graph S . The derivation of the four metrics and bounds
relating to these graphs follow.

Proposition A.1. For the n-node path graph P , with an influencing node attached
to an end node v1 2 P , the minimum, maximum, and average performance costs
are, respectively,

Jmin
�
P;R1

� D 1

2

�

1C cos
2�

2nC 1

��1
;

Jmax
�
P;R1

� D 1

2

�

1C cos
2�n

2nC 1

��1
;

and

J�.P;R1/ D 1

2
.nC 1/:

Proof. The Dirichlet matrix for an influencing agent attached to v1 an end node of
P is

�A �P;R1
� D

2

6
6
6
6
6
6
6
4

2 �1 0 � � � 0

�1 2
: : :

: : :
:::

0
: : :

: : :
: : : 0

:::
: : :

: : : 2 �1
0 � � � 0 �1 1

3

7
7
7
7
7
7
7
5

;

with

�i
��A �P;R1

�� D 2

�

1C cos
2�i

2nC 1

�

;



Single Anchor State Measures 175

for i D 1; : : : ; n, with the corresponding eigenvector with its j th entry sin. 2�ij
2nC1 /;

see [2]. By symmetry, the scenario where the other end of the path is influenced is
identical. ut
Proposition A.2. For the n-node path graph P , with influence node attached to an
end node v1 2 P , the controllability gramian for (3.2), defined element-wise for
each entry .p; q/, is

�
P
�
P;R1

��
pq

D 8

.1C 2n/2

nX

wD1

nX

zD1

sinpwˇ sin qzˇ sin wˇ sin zˇ

2C cos wˇ C cos zˇ
;

where ˇ D 2�=.2nC 1/.

Proof. The proof follows from verifying that the matrix satisfies the Lyapunov
equation. ut
Proposition A.3. For the n-node star graph S , with the influence node attached to
the central node v1 2 S , the minimum, maximum, and average performance costs
are, respectively,

Jmin
�
S;R1

� D 2
	
nC 1C

p
n2 C 2n � 3


�1
;

Jmax
�
S;R1

� D 2
	
nC 1 �

p
n2 C 2n � 3


�1
;

and

J�
�
S;R1

� D 2 � 1

n
:

Proof. The Dirichlet matrix for an influencing agent attached to the central node of
S , v1, is

�A �S;R1
� D

�
n �1T

�1 I

�

:

Examining the identity �A �S;R1
�
v D �v, we note that there are n�2 eigenvectors

of the form v D Œ0 ˛�T , where ˛ 2 R
n�1 and

P
˛i D 0 corresponding to � D 1,

and two eigenvectors of the form v D Œ1 � � 1T �T , where

� D 1

2

	
1C n˙

p
n2 C 2n � 3



:

ut



176 Single Anchor State Measures

Proposition A.4. For the n-node star graph S , with influencing node attached to
the central node v1 2 S , the controllability gramian of (3.2) is

P
�
S;R1

� D 1

2 .nC 1/

�
11T C e1e

T
1

�
;

with �j
�
P
�
S;R1

�� D 0, for j D 1; : : : ; n � 2 and

�j
�
P
�
S;R1

�� D 1

4

 

1˙
p
n2 � 2nC 5

nC 1

!

;

for j D n � 1; n, respectively.

Proof. The proof follows from verifying that the matrix satisfies the Lyapunov
equation with B D e1. The gramian and its corresponding eigenvalues are identical
as for the complete graph with an attached node. ut
Proposition A.5. For the n-node complete graph K, with an influencing node
attached to any node vi 2 K, the minimum, maximum, and average performance
costs are, respectively,

Jmin
�
K;R1

� D 2
	
nC 1C

p
n2 C 2n � 3


�1
;

Jmax
�
K;R1

� D 2
	
nC 1 �

p
n2 C 2n � 3


�1
;

and

J�
�
K;R1

� D
�

1C 2

n
� 2

n2

�

:

Proof. The Dirichlet matrix for an influencing agent attached to v1, an arbitrary
node of K, is

�A �K;R1
� D

�
n �1T

�1 �11T C nI

�

:

Examining the identity �A �K;R1
�
v D �v, there are n � 2 eigenvectors of the

form v D Œ0 ˛�T , where ˛ 2 R
n�1 and

P
˛i D 0 corresponding to � D n and two

eigenvalues of the form v D Œ1 � � 1T �T , where

� D 1

2

	
1C n˙

p
n2 C 2n � 3



:
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Due to the symmetry of K, the cost incurred by the attached node to steer the
network is independent of where it attaches. ut
We now proceed to apply these critical graph bounds to arbitrary graphs.

Proposition A.6. For an n-node connected graph G, the minimum and maximum
performance costs of attaching to a node vi 2 G is bounded as

inf
.G;i/

Jmin
�
G;Ri

� D 2
	
1C nC

p
n2 C 2n � 3


�1
;

and

sup
.G;i/

Jmax
�
G;Ri

� D 1

2

�

1C cos
2�n

2nC 1

��1
:

Proof. Let G be an arbitrary n-node graph with its complement graph OG, noting that
L.G/C L. OG/ D L.K/, where K is the n-node complete graph. Since

L.G/C L. OG/C ei e
T
i D L.K/C ei e

T
i ;

it follows that

�n.L.G/C ei e
T
i / � �n.L.K/C ei e

T
i /:

Therefore,

Jmin
�
K;Ri

� D .�n.L.K/C ei e
T
i //
�1

� .�n.L.G/C ei e
T
i //
�1

D Jmin
�
G;Ri

�
:

Now consider a spanning tree T of the graph G. Attaching an influencing node to T
and examining the corresponding smallest Dirichlet eigenvalue, we obtain

�1.L.T /C ei e
T
i / � �1.L.G/C ei e

T
i /:

Next, construct the new tree QT by mirroring T about the influencing node and
treating it as a native node in this new graph which has 2nC1 nodes. From Lemma 6
of [3], it follows that

�2. QT / � �1.L.T /C ei e
T
i /:



178 Single Anchor State Measures

In the meantime, as the path graph is the tree with the least second smallest
eigenvalue over all n-node connected graphs [1], it follows that �2. QP/ � �2. QT /
where QP is a path of order 2n C 1. From Proposition A.1, for a path graph P of
order n, with the influence node attached to v1 2 P , it is known that �2. QP/ D
�1.�A

�
P;R1

�
/; see also [1]. Combining these bounds, we arrive at the inequality

�2. QP/ � �1.L.T /C ei e
T
i /;

and thereby,

Jmin
�
G;Ri

� D 1

�1.L.G/C ei e
T
i /

� 1

�1 .�A .P;R1//

D Jmin
�
P;R1

�
:

Closed form solutions for Jmin
�
K;Ri

�
and Jmin

�
P;Ri

�
are found in Proposi-

tions A.1 and A.5, thus completing the proof. ut
Proposition A.7. For an n-nodem-edge graph G with largest node degree dmax .G/
and smallest node degree dmin .G/, the minimum and maximum performance costs
of attaching to any node vi 2 G are bounded as

1

2dmax .G/C 1
� Jmin

�
G;Ri

�
;

and

Jmax
�
G;Ri

� � 1

2

�
n2 C 3n � 2m � 2� :

Proof. Let the vertices in G be labeled such that the diagonal entries of the matrix
2�.G/ C ei e

T
i are ordered in a non-decreasing order; thus, �j

���A �G;Ri
��� �

2dj .G/ for all j . However, since

�n
��A �G;Ri

�� � �n .�A .G;Rn// � 2dmax .G/C 1;

it follows that

.2dmax .G/C 1/�1 � �n
��A �G;Ri

���1 D Jmin
�
G;Ri

�
:
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Consider next a spanning tree T of G. Then 0 
 L .G/�L .T / D L .G/C ei e
T
i �

.L .T / C ei e
T
i / D �A.G;Ri / � .�A.T ;Ri // and thereby �j

��A �T ;Ri
�� �

�j
��A �G;Ri

��
, for j D 1; : : : ; n. Consequently the mean tracking measure

J�
�
G;Ri

�
has the property that

nJ�.G;Ri / �
nX

jD1
�j
��A �T ;Ri

���1

� sup
T �G

nJ�
�
T ;Ri

�

D sup
T �G

nX

jD1
d
�
vi ; vj

�C n

D 1

2

�
n2 C 3n � 2m � 2� ;

where the last inequality is from examining spanning trees of all n-nodes
m-edges graphs, which in turn provides the final equality

Pn
jD1 d

�
vi ; vj

� �
1
2
.n � 1/ .nC 2/ �m. Applying this bound we also have

Jmax
�
G;Ri

� D �1
��A �G;Ri

���1

�
nX

jD1
�j
��A �G;Ri

���1

D nJ�.G;Ri /

� 1

2

�
n2 C 3n � 2m � 2� ;

thus completing the proof. ut
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