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Preface

I am a card-carrying, small-molecule spectroscopist. I like simple models and the
possibility of certainty that an analysis is correct.

When I was a graduate student in William Klemperer’s laboratory, I received
a precious gift: I became a molecular spectroscopist. In my 40 years at MIT, my
students, postdocs, and collaborators kept me focused on the crucial question: “what
makes this experiment interesting?” Often, they provided both question and answer.
I have been energized and educated by their questions, ideas, and ah-hah moments.
Always, they had me saying brilliant things I did not know that I knew. But a mirror
never knows the beauty it reflects. I dedicate this book to William Klemperer and
my special sub-group of his scientific descendants.

Frequency-domain experimentalists observe transition frequencies and intensi-
ties. Wavefunctions are not directly observable. The challenges of spectroscopy are:
(a) assign the observed transitions; (b) fit the directly sampled energy levels to a
quantum mechanical model; (c) make predictions about other spectra; and most
importantly, (d) capture the dynamics and dynamical mechanisms that are encoded
in the spectrum. The effective Hamiltonian, Heff, is an essential tool for meeting
all four of these challenges without license to take a peek at the wavefunction
(especially its nodal structure, which is tantamount to assignment, and its time
evolution, which reveals mechanism). This short book is an express user’s guide
for beginners who know neither the basics nor the elegant simplicity and intuition-
guiding power of the models that lie beyond archival molecular constants. It is not a
textbook. It is neither rigorous nor logical. My goal in writing this book is to provide
a set of ideas, tools, and challenges that will ignite the ability of beginning students
to see what is intuitive and memorable in molecular spectra.

The lecture format permits strong opinions, personal choices of topics, and
intentionally incomplete examples. My idea is to provoke my readers to explore
other examples, to create freehand figures that are qualitatively but not quantitatively
correct, and to practice using tools and concepts that are derived from my idiosyn-
cratic point of view rather than from a balanced and scholarly treatment. I have
attempted to make connections between disparate topics without being burdened
by lengthy justification. I have presented several of my favorite topics. My dream
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vi Preface

is that mastery of the main topics in these eight chapters/lectures will serve the
student as preparation for productive years as a spectroscopist, and will be at least
as enlightening as a semester-long sojourn in a course based on a carefully integrated
formal textbook.

The vast majority of citations in this book are to relevant sections of The Spectra
and Dynamics of Diatomic Molecules [1], and to a long paper devoted to my favorite
topic, effective Hamiltonians [2]. This excess of self-citation is one of the special
privileges accruing to an author of lecture notes rather than a textbook.

I thank the Alexander von Humboldt Foundation for the Humboldt Research
Award that gave me the opportunity to spend several months as a member of Gerard
Meijer’s Molecular Physics Department at the Fritz Haber Institute of the Max
Planck Society in Berlin. I especially thank Gerard Meijer for inviting me into
his laboratory while it was crackling with excitement, creativity, and experimental
virtuosity.

I am thrilled that this book will be published as the harbinger of a new Springer
book series entitled “Alexander von Humboldt Lectures,” the purpose of which is
to make the lectures presented by Humboldt Awardees and Humboldt Professors
available to students who were unable to attend them in person. Bretislav Friedrich
had the idea for this series and I thank him for talking me into putting my lectures
into book form.

This book owes its existence to Peter Giunta’s ingenuity, artistry, and efficiency.
The text for each lecture was written longhand in Berlin and FAXed to Peter at MIT
in Cambridge on the day before the lecture. Peter created a LaTeX draft, which I
would proofread, mark up, and send back to Peter. Before each lecture I was able to
hand out a set of notes to the class!

Cambridge, MA, USA Robert W. Field
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Chapter 1
Introduction

This is a book about the spectra and dynamics of small molecules in the gas phase. It
is emphatically not a textbook. Despite their size, small molecules at high excitation
are capable of behaving badly. They do not follow the simple energy level and
transition intensity patterns codified in textbooks. Sometimes the transgressions are
subtle and sometimes they are catastrophic. For me, the deviations from standard
patterns are much more beautiful and instructive than the patterns themselves.

This book is based on my belief that it should be possible to convey, to beginning
students, the excitement and vitality of the study of small molecules by focusing on
the bad behavior of molecules that one inevitably encounters when one ventures
beyond the acquisition of archival molecular constants. Any attempt to cleanse
spectra of pattern-defying behavior risks throwing the baby out with the bathwater.

In order to recognize a broken pattern, it is necessary to know something about
the nature and origin of the standard patterns.

1.1 Rotation: The Rigid Rotor

The freely rotating, rigid rotor is the starting point for representing and understand-
ing the rotation of diatomic molecules, and, by not so simple extensions, the rotation
of all molecules. The rigid rotor provides the energy level pattern that we expect will
be encoded in the spectrum,

E.J /=hc D F.J / D BJ.J C 1/

[h is Planck’s constant, c is the speed of light, F is the symbol conventionally
used to represent rotational energy (in cm�1 units), B is the rotational constant,
and J is the rotational quantum number]. The rigid rotor model also relates the

© Springer International Publishing Switzerland 2015
R.W. Field, Spectra and Dynamics of Small Molecules,
Lecture Notes in Physics 900, DOI 10.1007/978-3-319-15958-4_1
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experimentally measured quantity, B , to the geometric structure of the molecule,

B.cm�1/ D .¯2/.1=hc/.1=2�R2/ D 16:85673 Œ�.amu/ R.Å/2��1

[¯ is h=2� , � D m1m2
.m1Cm2/ is the reduced mass, and �R2 is the moment of inertia].

For a diatomic molecule, the geometric structure contained in B is the internuclear
distance, R.

For real molecules, the value of B depends weakly on the vibrational and
rotational quantum numbers and strongly on the electronic state. J can be either
integer or half-integer. The rotational constant is not really constant! The v; J ,
and isotopologue dependencies of B are dealt with by the use of additional
molecular constants, often treated merely as fitting parameters. When a molecule
has nonzero total electron spin, S , or non-zero projection of the total electron orbital
angular momentum on the internuclear axis, ƒ, the rotational structure of multiplet
electronic states, 2SC1ƒ�, is more complicated. 2S C 1 is the “spin multiplicity”,
� D ƒC† is the projection of J on the internuclear axis, and† is the projection of
S on the internuclear axis. Nevertheless, the BeffJ.J C 1/ pattern of energy levels
associated with effective rotational constants forms a foundation for assembling the
rotational levels into recognizable and interpretable patterns.

1.2 Vibration: The Harmonic Oscillator

The harmonic oscillator is the starting point for representing and understanding the
vibrations of all molecules. A diatomic molecule has only one vibrational normal
mode. The energy levels of a harmonic oscillator are

E.v/=hc D G.v/ D !e.v C 1=2/;

where G is the symbol generally used to represent vibrational energy levels, !e is
the vibrational constant (in cm�1 units), the subscript e denotes “equilibrium” and is
an inseparable part of the notation for the vibrational constant, and v is the always-
integer vibrational quantum number. The harmonic oscillator force constant, k,

E D 1

2
k.R � Re/2

is expressed in terms of !e (in cm�1 units) and � (in g �mole�1) is

k=J �m�2 D 5:89183� 10�5.!e=cm�1/2.�=g �mole�1/

or

k=cm�1 � Å�2 D 2:96602� 1018.!e=cm�1/2.�=g �mole�1/:
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[Note that k=J �m�2 D k=N �m�1.] Note that, for all v of a harmonic oscillator, the
G.vC1/�G.v/ � �G.vC1=2/ energy level spacing is independent of v. For real
molecules, the vibrational level structure is “anharmonic”, and this anharmonicity
is represented by a proliferation of molecular constants. For an N -atom, nonlinear,
polyatomic molecule, there are 3N � 6 vibrational “normal modes,” each of which
has its own harmonic vibrational frequency, !ei , and the vibrational energy levels
and state labels are, respectively,

G.v1; v2; : : : v3N�6/ D
3N�6X

iD1
!ei .vi C 1=2/:

Even when the vibrational energy level pattern is distorted by anharmonicity and
other large and local effects that arise from accidental degeneracy of two or more
harmonic oscillator vibrational energy levels, the harmonic pattern of equally spaced
vibrational levels within each normal mode is the primary basis for establishing the
quantum number assignments of the subset of all vibrational energy levels that are
observed in a spectrum.

1.3 Electronic Structure: The Particle in a Box
and the Hydrogen Atom

It is much more difficult to generalize about standard patterns of electronic states
than about the standard patterns for rotational and vibrational states. There are two
classes of electronic states, valence states and Rydberg states. A valence state of
a molecule is based on bonding, nonbonding, and antibonding Molecular Orbitals
constructed from Linear Combinations of valence Atomic Orbitals (LCAO-MO).
Valence state orbitals resemble particle in a box orbitals in two vague ways: (a)
their energies are determined by the spatial extent of the AOs from which they
are constructed, the larger the spatial extent (delocalization), the lower the energy
(stabilization by delocalization); (b) since the E.n C 1/ � E.n/ energy spacings
of particle in a box states increase as the quantum number, n, increases (n � 1
is the number of nodes), one never sees a series consisting of more than a few
orbitally-related valence states, because the higher-n orbitals (more nodes) are
either increasingly antibonding (dissociation) or their orbital energy lies above the
ionization limit. Qualitative information (energy, shape, and vibrational frequencies)
about molecular valence states is best obtained from LCAO-MO models [1–3].

The energy level structure of molecular Rydberg electronic states (the v D 0

level of each Rydberg state) is very closely related to that of the Hydrogen atom.
The energy levels of the Hydrogen atom are

En`=hc D Tn` D IE �Z2<=n2:
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(T is the symbol generally used to specify electronic energy, IE is the ionization
energy,Z is the integer charge of the bare nucleus, the zero of energy is the energy
of the lowest electronic state, the IE is located at n D 1, which is where the
Rydberg series converges), where n is the principal quantum number, n is integer, `
is the orbital angular momentum quantum number, and < is the Rydberg constant
(< D 109;737 cm�1). Uniquely for Hydrogen and hydrogenic atomic-ions (HeC,
Li2C, Be3C, . . . ), the energy levels are located at integer values of n and the energies
are independent of `. Along a molecular Rydberg series, the v D 0 energy levels
are located at

En?`�=hc D Tn?`�;0 D IE0 � <=n?2;

where IE0 is the energy of the v D 0 level of the electronic state of the molecular
ion, to which the Rydberg series converges as n!1, n? is the effective principal
quantum number, n? � n � ı`�, and ı`� is the quantum defect of the `; �-Rydberg
series. The quantum defects of molecular Rydberg series depend strongly on ` and
on the projection of ` on the molecule-fixed (near)-symmetry axis (e.g. � for a linear
molecule). Successive levels in a Rydberg series are located at n?, n? C 1, n? C 2,
. . . and are spaced as

E.n? C 0:5/� E.n? � 0:5/ � �E.n?/=hc D 2<=n?3:

These integer steps of n? define readily observable patterns that are often used to
pick out and assign series of Rydberg electronic states and, by extrapolation, to
determine the ionization energy of the molecule.

Rydberg series come in two very distinct flavors: low-` series have characteristi-
cally large and positive quantum defects because they are strongly core-penetrating;
high-` series are core-nonpenetrating and have characteristically small quantum
defects because the orbital angular momentum centrifugal barrier, `.`C1/=.mer

2/,
keeps the Rydberg electron outside of the ion-core.

1.4 Transition Selection and Propensity Rules: �J ,
Franck–Condon, and�S

One never observes energy levels directly. The energy levels are encoded in the
spectrum as transitions between pairs of energy levels governed by selection and
propensity rules. There are rigorous transition selection rules for electric dipole
allowed transitions, based on rigorously good quantum numbers, such as J and
parity: �J D 0, ˙1, parity C $ �. There are strong but approximate transition
selection rules, based on approximately good quantum numbers, such as the total
electron spin (S) and the respective projections of the orbital, spin, and total
angular momenta onto the internuclear axis in a linear molecule (ƒ;†, and �):
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� S D 0, �ƒ D �� D 0, ˙1, �† D 0. The goodness of S is broken by spin–
orbit interactions. The goodness of the projection quantum numbers is broken by
terms in the rotational Hamiltonian (S -uncoupling, �BJ˙S�, and L-uncoupling,
�BJ˙L�) and by spin–orbit. Finally, there are transition propensity rules that
are based on the size of an overlap integral, for example between initial and final
vibrational �ev.R/ (�v Danything) or Rydberg orbital 	n?`� .r/ (�n? D anything)
wavefunctions,

1Z

0

dR�e
0

v0 .R/�
e00

v00.R/ or

1Z

0

dr	n
?0

`0�0.r/	
n?00

`00�00.r/:

There is usually a simple classical mechanical reason for large versus small
values of the overlap integrals upon which transition propensity rules are based.
[Spectroscopic convention requires that the upper and lower energy states be labeled
by 0 and 00, respectively.]

The Franck–Condon factor for a transition between the v0 vibrational level of the
e0 electronic state and the v00 vibrational level of the e00 electronic state is the square
of the vibrational overlap integral,

q
e0 ;e00

v0 ;v00 D
2

4
1Z

0

dR�e
0

v0.R/�
e00

v00.R/

3

5
2

:

The classical mechanical basis for Franck–Condon factors is that, in a sudden tran-
sition between the e0 and e00 electronic states, the nuclear coordinates and momenta
cannot change. This suddenness is a consequence of the Born–Oppenheimer
approximation: electrons move much faster than nuclei. Large Franck–Condon
factors arise for vertical transitions between a turning point of the e0, v0 state and
a turning point of the e00; v00 state. Turning points are special classically, because
the nuclear velocity goes to zero at the turning point, thus considerable probability
accumulates near the turning point.

1.5 Rotational Branches, Vibrational Bands, and Electronic
Transitions

Pure rotation transitions occur in the microwave region and are made allowed by a
nonzero value of the electric dipole moment. The selection rules are �J D 0, ˙1
and parity C $ �. For a diatomic molecule, the �J D ˙1 transitions 1 $ 0,
2 $ 1, and 3 $ 2 occur respectively at 2B, 4B, and 6B. For a molecule in an
orbitally degenerate state, such as a 1… state, there can be �J D 0 transitions
(between ƒ-doublet components), which generally occur at much lower frequency
than�J D ˙1 transitions. The frequencies of J D 1$ 0 pure rotation transitions
depend weakly on vibrational level, because the B-values are weakly v-dependent.
Thus, for a molecule with significant vibrational excitation, there can be a cluster
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of pure rotation transitions in each J $ J ˙ 1 2B, 4B, 6B, . . . 2JB region, one
for each significantly populated vibrational level. However, we do not think of this
sequence of pure rotation transitions as forming a “rotational branch.” The reason
for this is technical (the limited tuning range of microwave oscillators) rather than
fundamental.

Vibration-rotation transitions occur in the infrared region and are made
allowed by the internuclear distance dependence of the electric dipole moment,�
@�

@R

�

RDRe
¤ 0. Each v0 $ v00 vibrational band has R .J 0 D J 00 C 1/ and

P .J 0 D J 00 � 1/ rotational branches (Fig. 1.1). Q branches .J 0 D J 00/ are electric

a

b

Fig. 1.1 Form of R and P rotational branches. (a) B 0 D B 00 D 1:0 cm�1, no bandhead, typical
of a vibration-rotation band. There is an easily recognized zero-gap. (b) B 0 D 0:88 cm�1, B 00 D
1:12 cm�1, �B D �0:24 cm�1, bandhead in R branch at J 0

H D B0
CB00

�2�B
D 4:17. Note that lines

from the returning part of the R branch overlap with the low-J lines of the R branch, fall into the
zero-gap, and overlap with the P branch. It becomes difficult to see the zero-gap or to assign lines
by counting lines from the R.0/ and P.1/ lines. I thank David Grimes for creating this figure
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dipole forbidden (except whenƒ ¤ 0) for vibration-rotation transitions of diatomic
molecules. The R branch lines in a v0 � v00 vibration-rotation band occur at

R.J 00/v0 ;v00 D !e.v0 � v00/C B 0.J 00 C 1/.J 00 C 2/� B 00J 00.J 00 C 1/
D !e.v0 � v00/C J 002.B 0 � B 00/C J 00.3B 0 � B 00/C 2B 0

� !e.v0 � v00/C J 002.�B/C J 00.2B/C 2B 00;

where�B � B 0 � B 00. The P branch lines occur at

P.J 00/v0 ;v00 D !e.v0 � v00/C B 0.J 00 � 1/.J 00/� B 00J 00.J 00 C 1/
D !e.v0 � v00/C J 002.B 0 � B 00/C J 00.�B 0 � B 00/
� !e.v0 � v00/C J 002.�B/� J 00.2B/:

The Q branch lines occur at

Q.J 00/v0 ;v00 D !e.v0 � v00/C J 00.J 00 C 1/�B:

The R and P branches are described by a very small quadratic-in-J 00 term, large
linear-in-J” terms of opposite signs, and a constant term. Note that the coefficient of
the quadratic-in-J 00 term is �B , which is much smaller than the coefficient of the
linear-in-J 00 term, 2B . Ignoring the quadratic term, the R branch lines are separated
by intervals of +2B, run toward higher energy (blue), and the first R line is R(0)
at !e.v0 � v00/ C 2B 0. The P branch lines are separated by intervals of �2B and
the first P line is P(1) at !e.v0 � v00/ � 2B 0. R.0/ � P.1/ D 4B is known as the
“zero-gap,” which is a distinctive feature that usually permits absolute assignment
of the rotational lines in a vibration-rotation band. When the zero-gap is obscured by
overlap with transitions from another vibrational or isotopologue band, it becomes
necessary to use rotational combination differences to establish secure absolute
rotational assignments:

lower state combination difference �2F
00.J 00/ D R.J 00 � 1/� P.J 00 C 1/

D B 00Œ4J 00 C 2�
upper state combination difference �2F

0.J 0/ D R.J 00/ � P.J 00/
D B 0Œ4J 0 C 2�:
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It is necessary to find an identical set of rotational combination differences from a
vibrationally linked pair of bands (for example 1–0 and 2–0 bands for v00 D 0 or
2–0 and 2–1 for v0 D 2) in order make secure rotational assignments.

Electronic-vibration-rotation bands occur in the Visible and Ultraviolet regions.
They are made allowed by a nonzero electric dipole electronic transition moment.
For example, N2 does not have allowed pure rotation or rotation-vibration transi-
tions, but it does have allowed electronic transitions (in the Vacuum Ultraviolet
region). Each e0 � e00 electronic transition is a band system that consists of
many v0 � v00 vibration-rotation bands. The relative intensities of a progression of
vibrational bands observed in absorption Œ.v0; v00/ for v0 D 0; 1; 2; : : : � or emission
Œ.v0; v00/ for v00 D 0; 1; 2; : : : ] are given by Franck–Condon factors. There are R,
Q, and P rotational branches. However, unlike the simple situation for rotation-
vibration bands where jB 0 � B 00j � B , the J2.B 0 � B 00/ term in R.J 00/, Q.J 00/,
and P.J 00/ cannot be ignored. A bandhead will form in either the R or P branch,
which always causes the zero-gap region to be obscured. Instead of having rotational
lines with approximately equal spacings of 2B, the lines in one branch will form an
extremum

dR

dJ
D 0 D 2J 00.B 0 � B 00/C .3B 0 � B 00/

J 00head;R D �
3B 0 � B 00
2.B 0 � B 00/

dP

dJ
D 0 D 2J 00.B 0 � B 00/� .B 0 C B 00/

J 00head;P D C
B 0 C B 00
2.B 0 � B 00/ :

If B 0 > B 00, the bandhead occurs in the P branch and the band is said to be blue
degraded. If B 0 < B 00 (the more usual situation), the bandhead occurs in the R
branch and the band is red degraded. When a bandhead occurs, it is difficult to
resolve and sequentially number the rotational lines near the head, because the zero-
gap region is filled with lines from the returning part of the head-forming branch.
It is always necessary to use vibrationally-linked rotational combination differences
to rotationally assign each vibrational band in an electronic transition. There is no
safe shortcut.

1.6 Some Sum Rules

The intensities of transitions are determined by a product of three molecule-specific
factors and a bunch of fundamental constants and transition frequency factors. These
three molecule-specific factors, electronic oscillator strength .fe0 ;e00 ), vibrational
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Franck–Condon factor
�
q
e0 ;e00

v0 ;v00

�
, and rotational linestrength factor

�
S
�0;�00

J 0;J 00

�
, are

“normalized” by intuitively satisfying sum rules. Many textbooks fail to mention
these sum rules.

The sum rule for rotational linestrength factors (known as Hönl-London factors
for diatomic molecules) may be understood by the answer to the following question.
In the absence of local effects due to the interaction between different electronic
states, would you expect the radiative lifetime for every J 0;M 0 component of an
e0; v0 excited electronic-vibration level to be equal? The answer is yes! Another
closely related question is, would you expect the sum over the intensities of all
absorption transitions, from a single J 00;M 00 component of the e00; v00 electronic-
vibration level to all J 0;M 0 components of one e0; v0 level, to be independent of
J 00;M 00? The answer is also yes! If the radiation used to excite the absorption
transition is unpolarized and isotropic (equal intensity in all propagation directions),
then one expects that the total absorption intensity is also independent ofM 00. There
are a variety of normalization conventions for rotational linestrength factors. The
unwary user is advised to evaluate sums over all transitions from a given e0; J 0 or
e00; J 00 level. This sum should be independent of J and should be a simple integer
that is related to the spin .2S C 1/, ˙ƒ orbital Œ.2 � ı0;ƒ/�, and spatial .2J C 1/
degeneracies [4–7].

The sum rule for vibrational intensity (Franck–Condon) factors is

X

v0 ;continuum

qv0 ;v00 D
X

v00 ;continuum

qv0 ;v00 D 1;

where the Franck–Condon factor, qv0 ;v00 , is the square of the vibrational overlap
integral. This sum rule arises from the fact that all bound vibrational states, plus
the vibrational continuum, form a complete set of functions in terms of which any
arbitrary function, defined over the same domain, may be expanded. This sum rule is
computationally and intuitively important. The Franck–Condon factor for the v0; v00
vibrational band tells us what fraction of the total vibrational transition intensity
from a given initial level resides in a particular band.

There is an intuitively appealing sum rule for the strengths of electronic
transitions. The oscillator strength [5, 8], fe0 ;e00 , is a measure of the strength of the
e0  e00 transition relative to that of the strongest possible one-electron transition
from the electronic ground state, which would have an oscillator strength equal to
the number of electrons that could participate in that transition. For example, the
Na 2P(2p) 2S(2s) transition has an f value slightly smaller than 1. The sum of
f -values for all transitions from the Na 2S(2s) ground state to all Na 2P(np) excited
states is 1. For Mg, which has a 1S(2s2) ground state, the oscillator strength sum to
all 1P(2snp) states is 2, because the 1S(2s2) state of Mg has two 2s electrons and
either one can be excited to an np orbital. The f value for an upward transition is
positive, and that for a downward transition is negative. This means that, starting
from the Na 2P(2p) state, the f -value sum for all upward transitions (to 2S(ns) and
2D(nd) states) is going to be slightly smaller than 2, because the oscillator strength
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sum for all upward and downward transitions out of the Na 2P(2p) state must
be 1. The oscillator strength sum rule provides insight into the maximum possible
transition strength from a given initial state and how much transition strength is left
over for all other transitions out of that state. Similar oscillator strength sum rules
apply to molecules.

For electronic-vibration-rotation transitions we have a product of three
linestrength factors, each of which follows an a priori known sum rule. These sum
rules are valuable both for building insight and for discovering the normalization
scheme implicitly built into a linestrength formula that you did not derive for
yourself.

1.7 Eigenstates are Stationary

Our instinctive classical mechanical view of a molecule is of something that embod-
ies a hierarchy of motions: electron motions are fast, vibrational motions are slower,
and rotational motions are the slowest. But this dynamical view is inconsistent with
both experimental reality (the frequency-domain spectrum prominently displays
transitions between discrete energy levels) and the computational reality of the
time-independent Schrödinger equation, H n D En n.  n is an eigenfunction of
the time independent Hamiltonian, H, where each  n is associated with an energy
eigenvalue,En. The f ng are both not moving and not directly observable!

It is very strange that what we can observe in a frequency domain experiment,
energy levels and transition intensities, tells us nothing about intramolecular
electronic-vibrational-rotational motions (what is moving, how fast, and what are
the amplitudes of motion?) and nothing about the quantum mechanical wavefunc-
tion that is supposed to tell us everything that is knowable about each non-moving
quantum mechanical state of the molecule. This quantum weirdness is part of what
makes spectroscopy beautiful and mysterious.

The energy level and intensity patterns that we observe in a spectrum encode both
dynamics and the set of wavefunctions, f ng. When we assign the energy levels in
a spectrum and fit them to an electronic-vibrational-rotational model, we determine
the numerical values of the important terms in the molecular Hamiltonian. Each term
in this Hamiltonian is the product of an abstract quantum mechanical operator and
an empirically determined molecular constant. This is not the exact Hamiltonian.
It is an effective Hamiltonian, Heff, which is merely a convenient fit model. But it
is very special because we get from it the complete set of experimentally relevant
f ng. We do not measure the f ng. We measure the molecular constants. The f ng
are determined from the combination of a model and the molecular constants.

But it is even better than this! We get the intramolecular motions demanded by
our intuition when we combine the time-dependent Schrödinger equation,

H‰ D i¯@‰
@t
;
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with physically realistic plucks of the quantum mechanical system. These plucks
create a ‰.t D 0/ state at t D 0,

‰.0/ D
X

n

cn n;

which is not a single eigenstate of the Heff. The time-evolving form of this state,
‰.t/, is a superposition of several eigenfunctions,  n, that belong to different
eigenenergies,En,

‰.t/ D
X

n

cn ne
�iEnt=¯:

The probability density, ‰?‰, that is associated with this ‰.t/ moves. It does
everything expected of a rigid rotor, a harmonic oscillator, and an electron in
planetary orbit around a positive ion. Each eigenstate is stationary, but the totality
of the energy levels encodes motion.
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Chapter 2
Hierarchy of Terms in the Effective Hamiltonian

This lecture is an introduction to effective Hamiltonians, transition selection rules,
Hund’s coupling cases, pattern-forming rotational quantum numbers, and straight
line plots. The goal is to create a fit model: Heff. This Heff must have the following
desirable characteristics: (a) the Heff gives a good fit to both frequencies and relative
intensities of measured transitions; (b) the Heff is capable of dealing with non-
textbook spectra: perturbations [1], extra lines and intensity anomalies, for which
there exist no directly applicable analytic formulas (Hund’s cases); (c) the Heff

permits reduction of spectra to “deperturbed” molecular constants, which provide
a basis for extrapolation to other spectra, explanation of other anomalies (e.g. R;P
intensity ratios in a fluorescence progression), and a compact, cause-and-effect
generator of “dynamics”. This is what I often refer to as going “Beyond Molecular
Constants”; (d) the Heff provides a framework for comparison to theoretical
calculations. Be careful, experimentalists and theorists often use the same name
for different quantities (empirical fit vs. full deperturbation); and (e) there are three
important terms in the Heff:

Heff D Helectronic.R/CHspin–orbit CHrotation:

2.1 Adiabatic and Diabatic Representations

2.1.1 Introduction

There is no such thing as a textbook spectrum. In order to be able to make sense of
a spectrum, one needs some simple ideas rather than a collection of all-purpose
algebraic formulas. These ideas include transition selection rules and expected
energy level patterns. An effective Hamiltonian, Heff, generates the energy level
patterns [2]. One should never mistake the effective Hamiltonian for the exact

© Springer International Publishing Switzerland 2015
R.W. Field, Spectra and Dynamics of Small Molecules,
Lecture Notes in Physics 900, DOI 10.1007/978-3-319-15958-4_2
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Hamiltonian. The Heff is much simpler and more useful. It forces the spectroscopist
to make decisions about the expected relative magnitudes of the distinct physical
effects represented by each of the additive terms in the Hamiltonian. The dreaded
Hund’s coupling cases [3] arise from different orderings of the magnitudes of
electronic, rotational, and spin–orbit terms. Hund’s cases are useful because they
tell you what energy level pattern you should expect to find in the spectrum. Each
Hund’s case corresponds to a different rotational pattern-forming quantum number
and an explicit identification of a term that tries to disrupt that pattern.

Where do potential energy curves come from? What makes it possible to think of
the solutions of the Schrödinger equation for a molecule as a product of an electronic
wavefunction and a vibrational wavefunction? We label molecular energy levels
with electronic and vibrational quantum numbers rather than some simple scheme
in which the electronic-vibration eigenstates are numbered in energy order. The goal
of this separation of molecular structure into electronic and vibrational parts is to
enable insight, intuition, and simplification.

2.1.2 Adiabatic vs. Diabatic Representations

There are two quite different approaches to the electronic-vibrational structure of
molecules: adiabatic and diabatic [4]. The former is mathematically rigorous and
the latter is often more intuitively appealing. The one that a spectroscopist chooses
to use to understand and represent a spectrum depends on the nature of the pathology
expressed in the spectrum. When there is no pathology (the mythical textbook
spectrum), the choice of adiabatic vs. diabatic approach is purely a matter of taste.

Because electrons “move much faster” than nuclei, it is reasonable to use
the “clamped nuclei” D Born–Oppenheimer D adiabatic representation. At each
nuclear geometry, we solve the electronic Schrödinger equation

Helectronic.R/ D Hel.0/.R/C
X

i

X

i<j

e2

4�"0rij.R/
;

where geometry, R, is a parameter rather than a variable. The 1=rij term is seg-
regated outside of Hel.0/ because it contains, among many other important effects,
the interactions between same-symmetry electronic states that are responsible for
avoided crossings. This equation is solved on a grid of values of R. The solutions,
 el
k .r IR/, Ek.R/, are electronic wavefunctions that are functions of electron frig

coordinates and parametrically dependent on nuclear coordinates fRI g. We think of
the Ek.R/ as a potential energy curve (diatomic molecules) or surface (polyatomic
molecules) for the k-th electronic state. The vibrational wavefunctions, �kv.R/, and
energy levels Evk are obtained by solving a nuclear motion Schrödinger equation
for motion on the k-th potential energy surface, completely neglecting effects due
to all other potential energy surfaces. This is a crucial approximation: the Born–
Oppenheimer approximation [4].
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For a diatomic molecule, adiabatic potential energy curves for electronic states of
the same symmetry cannot cross [5]. They must avoid crossing. As a result, adiabatic
curves often have peculiar shapes. This is a sign of something pathological. At an
avoided crossing, the electronic wavefunction can change rapidly with internuclear
distance, R. As a result, derivatives with respect to nuclear coordinates, R, of the
 el
k .r IR/�kv.R/ electronic-nuclear product wavefunction give rise to non-zero off-

diagonal k; v; k0; v0 matrix elements between different electronic-vibrational states.
These inter-electronic state interactions, often called “kinetic energy couplings”,
are caused by the neglected @

@RI
and @

@RI

@
@RJ

terms operating on the electronic
wavefunctions.

The idea that the electronic wavefunction might be strongly dependent on nuclear
geometry offends intuition. A state is a state, or is it? The idea that electronic
structure is roughly independent of nuclear geometry is embodied in the diabatic
representation. Diabatic potential curves cross. They have “normal looking” shapes.

In the diabatic picture only part of Hel is diagonalized. The part that is excluded
is the part that causes avoided crossings. The big computational problem is that it is
not possible to identify and isolate a particular term in Hel that causes interactions
between adiabatic electronic states of the same symmetry. The diabatic represen-
tation is intuitively appealing (a state is a state) but mathematically troublesome.
If we had diabatic electronic states, f el; diab

k g, it would be possible to compute
the set of vibrational wavefunctions and energy levels of each diabatic electronic
state. But now inter-electronic interactions are neglected. It is necessary to add these
interactions, in the form of factored interaction terms

H el
ivi ;jvk

D ˝
 i ; vi jHelj j ; vj

˛

Drh i jHelj j
˛
r R
hvi jvj

˛
R

D H el
ij

˝
vi jvj

˛
:

It turns out, to a very good approximation, that

H el
ij D

min
h
V ad
i .R/ � V ad

j .R/
i

2

(one-half the energy of closest approach of the two adiabatic curves) and theH el
ij .R/

function is sampled at the R-value of this closest approach.
Whether the adiabatic or diabatic repesentation is more computationally conve-

nient depends on the size of the would-be neglected interaction terms relative to the
vibrational level spacings in the adiabatic or diabatic potential energy curves.

Whether one works in the adiabatic or diabatic representation, the key to getting
started in modeling the energy levels observed in a spectrum is to obtain a complete
electronic-vibrational basis set. In principle, we need

˚
 el
i .R/

�
;
˚
Eel
i .R/

�
; f�vi .R/g ;

˚
Evib
vi

�
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but in practice we need only a few  el
i .R/ over a small range of R and only the

�vi ; E
vib
vi

that are relevant to the region of the observed spectrum.
The selection rules for Helectronic are:

• �(all angular momentum and symmetry quantum numbers)D 0
•

D
 el
i jHelectronicj el

j

E
D 0 if  i and  j differ by more than two spin–orbitals.

A spin–orbital is a one-electron wavefunction that is labeled by body-frame
orbital (�) and spin (
) quantum numbers: e.g. a p .` D 1/ orbital gives six spin–
orbitals: 1˛; 1ˇ;�1˛;�1ˇ; 0˛; 0ˇ.

For eachƒ�S electronic state (i ) we get a potential energy curve, Vei .R/, either
from theory or derived, via Rydberg-Klein-Rees (RKR-LeRoy), from experimental
molecular constants [1, 6]. [See http://leroy.uwaterloo.ca/programs.html for RKR1
and LEVEL [7].] Every spectroscopist should know how to use these programs.

Input to RKR: two “dumb” power series:

G.v/ and B.v/ describe the v-dependence of vibrational energy levels

and rotational constants as power series in v C 1=2; where the coefficients

of each .v C 1=2/mŒJ.J C 1/�n term are “Dunham constants.”

G.v/ D
mmaxX

mD0
YmnD0.v C 1=2/m fY00; !e; !exe; !eye; : : : g

B.v/ D
m0

maxX

mD0
YmnD1.v C 1=2/m fBe; ˛e; �e; : : : g

EvJ D
X

m;n

Ymn.v C 1=2/mŒJ.J C 1/�n Dunham expansion [8, 9].

These are insight-free (dumb) representations of experimental data.
The Ymn are dumb because they are a one-size-fits-all representation of experi-

mental measurements. There is no intuitive or insightful model behind the Ymn.

2.2 Hspin–orbit [10]

The spin–orbit term in Heff is widely misunderstood. Part of the mystery surround-
ing Hspin–orbit is due to its unnecessarily mysterious association with “relativistic”
effects.

Hspin–orbit D
X

i;electrons

a.ri /`i � si Š AL � S (a one-electron operator)

http://leroy.uwaterloo.ca/programs.html
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a.ri / is a radial function,� 1=r3i , heavily weighted in the near-nucleus region. The
angular momentum operators, `i and si , are atomic one-electron operators, and are
the primary reason for the simplicity and usefulness of the spin–orbit operator.

Matrix elements of HSO follow the rigorous selection rules:

�ƒ D 0;˙1
�S D 0;˙1
�† D ��ƒ
�� D 0

�parity D 0
†C $ †�

�.spin–orbitals/ D 0;˙1 (change in occupied spin–orbitals)�

ƒ is the projection of electronic orbital angular momentum on the internuclear
axis. S is the total electron spin. † is the projection of S on the internuclear axis.
� D † C ƒ is the projection of the total electron angular momentum (orbital
and spin) onto the internuclear axis. Since the rotational angular momentum, R, of
a diatomic molecule is, by definition, perpendicular to the internuclear axis, � is
also the projection of J on the internuclear axis. The †C; †� symmetry species
expresses the effect of reflection .� v/ of the electronic wavefunction for a †-state
through a plane containing the inter-nuclear axis.

Note that the selection rules for the frequently used AL�S operator replacement
for HSO are (misleadingly) more restrictive than those for the a`i � si form of HSO.

The molecular spin–orbit interaction constant is closely related to atomic spin–
orbit constants. It gets large for heavy atoms. It gets small as n?�3, where n? is the
effective principal quantum number for Rydberg states.
ŒIP �En? � <=n?2� where < is the Rydberg constant, 109,737 cm�1.

2.3 HROT, the Rotational Operator [11]

HROT contains the rotational angular momentum, R, and an integral over the
internuclear distance, R,

HROT D BijR2 D BijŒJ � L � S�2;

�

If spin–orbitals are labeled 1, 2, 3, 4, . . . then 1234 differs by one spin–orbital from  1235 or 1534.
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where Bij is an integral of the “rotational constant” operator, B.R/, over the
vibrational wavefunctions of the vi and vj states,

Bij � ¯
2

2�

˝
vi jR�2jvj

˛
:

If the units of HROT are energy (Joules), the units of Bij are cm�1, the angular
momentum operator, R2=¯2, is converted into a unitless function of quantum
numbers, then

Bij=cm�1 D 16:85762908

�=g �mol�1
D
vi jR�2=Å

�2jvj
E
:

It is possible to arrange the angular momenta in several convenient ways. The one
that I prefer is most appropriate for the Hund’s case (a) basis set,

ˇ̌
2SC1ƒ�

˛ D
jnƒS†i j�JM i where� D ƒC†.

R2 D ŒJ � L � S�2 D ŒJ2 C L2 C S2 C 2L � S� 2J � L � 2J � S�
D ŒJ2 � J2z �C ŒL2 � L2z �C ŒS2 � S2z �

� ŒJCS� C J�SC� � ŒJCL� C J�LC�C ŒLCS� C L�SC�

S-uncoupling L-uncoupling orbit-spin�

The top line of the expression for R2 consists exclusively of terms that have diagonal
matrix elements

¯2 ˚
ŒJ.J C 1/��2�C L2? C ŒS.S C 1/�†2�

�
:

Because matrix elements of EL cannot be universally expressed for a non-spherical
object, we replace the expectation value of L2 � L2z by the usually ignored fit-
parameter, L2?.

The second line of the expression for R2 consists of terms that have non-zero off-
diagonal matrix elements between Hund’s case (a) basis functions. The

ˇ̌
2SC1ƒ�

˛

basis-functions are eigenfunctions of all of the operators in the first line.

2.4 Hund’s Cases[3]

Everyone except spectroscopists hates them. Spectroscopists need them because
they tell what kind of patterns will be found among the energy levels. This enables
spectra to be “assigned”. We are assured of being able to assign rigorously good

�

Orbit-spin is not the same as spin–orbit.



2.4 Hund’s Cases 19

quantum numbers (operators that commute with the exact H), but the really difficult
and important task is assignment of non-rigorously good quantum numbers. These
non-rigorous quantum numbers are the basis for patterns in the spectrum that aid
assignment of eigenstates and understanding of the dynamics encoded in these
eigenstates.

There are three important terms in the molecular Heff.

1. Hel (lifts the degeneracy of the states that arise from a single electronic
configuration)

2. The spin–orbit term, HSO (diagonal in �), (lifts the degeneracy of the �-
components of one ƒ� S state and mixes differentƒ� S states). For example,
3… is split into � D 0; 1; 2 components and 3…1 can interact with 1…1.

ESO D ˝
nƒS†jHSOjnƒS†˛

� D ƒC†
and
˝
nƒ D 1; S D 0;† D 0jHSOjn0ƒ D 1; S D 1;† D 0˛ ¤ 0

3. HROT (destroys� via the BJ˙S� and BJ˙L� spin- and L-uncoupling terms)

These three terms in the Heff are at war [12]. The relative orders of magnitude
of differences between their expectation values guide us in the application of
perturbation theory to this problem (see the discussion of perturbation theory in
Chap. 3.1). They determine what we put into H.0/ and what acts as a perturbation
and must be put into H.1/. We will see that this choice of how to partition Heff terms
into H.0/ vs. H.1/ amounts to a choice of basis set.

• H.el/ > H.SO/ > H.ROT/ case (a)
J is pattern-forming: E.J / D B�J.J C 1/ [the pattern is J.J C 1/]
� is good B� D B C .B2=A/

2.��ƒ/
ƒ

• H.SO/ > H.el/ > H.ROT/ case (c)
J is rotational pattern forming,
� is good. The atom-in-molecule quantum numbers Ja D La C Sa might

also be good. Ja is the total atomic angular momentum of one open-shell atom,
appropriate for ligand field theory.

For example, in Ce2CO2� the Ce2Cf s configuration gives rise to 14�2 D 28
components: 3ˆ, 1ˆ, 3�, 1�, 3…, 1…, 3†C, 1†C.

Theseƒ-S state labels are the conventional but stupid way to look at the states
and energy levels. Instead, f

�
j D 7

2
and 5

2

�
couples to s

�
j D 1

2

�
to make Ja D

4; 3; 3; 2 components with the same energy level pattern as in a free Ce2C atom
[13] (see Fig. 2.1).

These four Ja atomic-ion components see the O2� ligand as a point charge
that splits each of them into 2JaC 1 components according to�a, the projection
of Ja on the internuclear axis. As a result, the pattern of four levels is replicated
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Fig. 2.1 The energy level pattern of four Ja atomic-ion components is replicated as Ja goes from
parallel to the internuclear axis .�a D Ja/ toward perpendicular to the internuclear axis .�a D 0/

Fig. 2.2 The energy levels of a 3†C state. N is pattern-forming ŒBN.N C 1/� and the three J
components of each N value exhibit a splitting pattern much smaller than 2BN

and each replica is displaced by an energy related to the strength of the ligand
field. This is an example of an unconventional energy level pattern that can be
understood by choosing the physically appropriate basis set.

• H.el/ > H.rot/ > H.SO/ case (b)

N
�

is rotational pattern-forming E.N/ D BN.N C 1/
�, † are not good. J is good.
†-states are almost always in case (b) because their spin–orbit splitting is

necessarily zero. The energy levels of a 3†C state are easy to understand when
N is regarded as rotationally pattern forming (Fig. 2.2).

�

N is the total angular momentum exclusive of spin, N D J� S:
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Consider N D 2. There are three spin components: J D 1.F3/, J D 2.F2/,
and J D 3.F1/. J can be rigorously determined via selection rules. If N is
“good”, we can replace N in BN.N C 1/ by the appropriate value of J .

Rotational Energy

F1 N D J � 1 B.J � 1/.J / D BŒJ.J C 1/� 2J �
F2 N D J BJ.J C 1/ D BJ.J C 1/
F3 N D J C 1 B.J C 1/.J C 2/ D BŒJ.J C 1/C 2.J C 1/�

So if we make “reduced term value” plots of all rotational energy levels as
E.J / � BJ.J C 1/ vs. J , we obtain three curves from which F1; F2; F3
assignments, hence N assignments can be established by inspection.

• H.rot/ > H.el/ > H.SO/ case (d)
R D N � L is rotational pattern-forming,
E.R/ D BR.RC 1/ D BŒN.N C 1/� 2LN C L2 � L�.
In the case (d) limit, a reduced term value plot of E.N/ � BN.N C 1/ vs. N

may be used to determine L. L is the projection of ` on R.

Rydberg States. The Rydberg electron can be weakly coupled to the ion-core.
When this occurs, the rotation-vibration levels of the ion-core form the dominant
case (d) patterns that guide assignment of the spectra [14].
` is good. L, the projection of ` on R (not on the z-axis!), is good.

• H.SO/ > H.ROT/ > H.el/ case (e)

Rydberg States

8
ˆ̂<

ˆ̂:

j is good (the total angular momentum

of the Rydberg electron)

JC is good (the total angular momentum of the ion-core)

JC is rotational pattern-forming .JC D J�j /. The pattern isBCJC.JCC1/.
Usually a large H.SO/ is associated with the ion-core, not with the Rydberg

electron (the expectation value of HSO for the Rydberg electron scales as n?�3,
where n? is the effective principal quantum number).

• H.ROT/ > H.SO/ > H.el/ is usually ignored because it is impossible to make H.el/

small while maintaining H.SO/ as larger (except for Rydberg states built on an
ion-core with a large, n?-independent spin–orbit splitting), because both scale as
n?�3.

(Hund’s coupling cases correspond to these three terms arranged in 3Š D 6

orders.)
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2.4.1 H.0/ vs. H.1/

Recall perturbation theory [15]: the energy of the n-th level is given by

En D E.0/
n CE.1/

n CE.2/
n D H.0/

nn CH.1/
nn C

X

m

0

ˇ̌
ˇH.1/

nm

ˇ̌
ˇ
2

E
.0/
n � E.0/

m

.0 means n ¤ m/

Note that a large energy denominator keeps the basis set “good” but a large value ofˇ̌
ˇH.1/

nm

ˇ̌
ˇ makes the basis “bad”.

If H.rot/ and H.SO/ are at war, one choice of basis gives large energy denominators
from H.SO/ and small off-diagonal matrix elements as numerators from H.ROT/.
The other choice of basis gives large energy denominators from H.ROT/ and small
numerators from H.SO/. One is free to chose either basis set, but the one for which

the
n
E
.0/
n

o
more closely resembles the observed pattern of eigen-energies is more

convenient to use.

2.5 Two Basis Sets for the 2 � 2 “Two-Level” Problem

This example illustrates how the good and evil roles of opposing factors can be
interchanged. Normally we think of zero-order energy level differences that appear
along the diagonal of an Heff, such as the spin–orbit Aƒ† term, as good because
they preserve the simple case (a) level pattern. The non-diagonal �BJ˙L� L-
uncoupling term is evil because, at sufficiently high-J

�
J > Aƒ

B

�
it vanquishes

Aƒ† and forces the level pattern to follow case (d). In case (d), what remains of
the influence of HSO resides off-diagonal between same-J , same-parity, different-N
basis states. The simplest illustration of this role-reversal between HSO and HROT is
the two-level problem.

The H.eff/ for the 2 � 2 problem is usually expressed as

E
.0/
1 D E C�=2 E D E

.0/
1 C E.0/

2

2

E
.0/
2 D E ��=2 � D E.0/

1 � E.0/
2

H.1/
12 D

˝
1jH.1/j2˛ D V12

H D
	
E 0

0 E



C

	
�=2 V12
V12 ��=2



:

The � term tries to keep the basis “good” and the V12 term opposes �. The
eigenvalues are E˙ D E ˙ Œ.�=2/2C V 2

12�
1=2. This basis is more convenient when
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j�j 	 jV12j. Now consider a change of basis set:

jai D 2�1=2Œj1i C j2i�
jbi D 2�1=2Œj1i � j2i�

hajHjai D 1

2
ŒH11 CH22 C 2V12� D E C V12

hbjHjbi D 1

2
ŒH11 CH22 � 2V12� D E � V12

hajHjbi D hbjHjai D 1

2
ŒH11 �H22 C V12 � V12� D �=2

The transformed H.eff/ is

QH D
	
E 0

0 E



C

	
V12 �=2

�=2 �V12



The V12 term tries to keep the basis good while the � term opposes V12. This basis
is more convenient when jV12j 	 j�j. Notice that �=2 and V12 have exchanged
roles [16]!

2.6 Some Reasons for Patterns

It is usually clear in advance which Hund’s case will be most appropriate (because
we know how H.SO/ and H.el/ scale with n?�3).
†-states are always case (b) except at lowest N . Why? [The spin–spin term

lifts the degeneracy of same-J , different-� states.] There is no force that tells S
the location of the body axis. Each N is 2S C 1 degenerate: the fine structure
components J D N � S .F2SC1/ to N C S .F1/ and all 2S C 1 spin-components
have the same total parity, which is .�1/N for†C states and .�1/NC1 for†� states.
(Fi is a special notation for the labeling of spin components [17].) J and parity are
always good.

Rydberg states generally have two flavors:

1. core-non-penetrating, ` is good because the Rydberg electron is a passive
passenger, thus ion-core quantum numbers are pattern-forming;

2. core-penetrating, ` is bad, ` and s couple to the ion-core quantum numbers to
make N and J . For example Rydberg states of the HfF molecule have half-
integer rotational pattern-forming quantum numbers (even though ion-core is
1†C) [18]. The half-integer quantum numbers imply that the Rydberg electron
still has strong enough H.SO/ that H.SO/ > H.rot/.
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2.7 Straight Line Plots

Consider a 2… state. It is really four states .2…3=2e , 2…3=2f , 2…1=2e , 2…1=2f ),
treated as one. Will the pattern-forming rotational quantum number be integer or
half integer?

The consecutive level spacing pattern 3B; 5B; : : : (energy levels linear in
J.J C 1/) is easily distinguished from 2B; 4B; 6B; : : : (energy levels linear in
N.N C 1/).

Consider a case (b) 3†C State (no spin–orbit)
parity .�1/N
J is rigorously good (revealed by selection rules) but N is pattern-forming

(revealed by pattern).

J D N C 1 goes as B.J � 1/J F1
J D N goes as BJ.J C 1/ F2

J D N � 1 goes as B.J C 1/.J C 2/ F3
From a “stacked plot” of spectra recorded by excitation from consecutive J 00 values
[14], we know J . So we can make a reduced term value plot that displays the correct
value of N . The reduced term value is [19]

E.J /� BJ.J C 1/ D �2BJ D �2B.N C 1/ F1

E.J / � BJ.J C 1/ D 0 F2

E.J / � BJ.J C 1/ D 2B.J C 1/ D 2BN: F3

When we plot the reduced term values of a 3†C state vs. J [not J.J C1/ norN nor
N.N C 1/Š], we get three straight-line plots with slopes �2B , 0, and C2B . These
patterns enable assignment of N (Fig. 2.3).
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Fig. 2.3 A reduced term value plot of E.J / � BJ.J C 1/ vs. J for a 3†C state in case (b). J
is always a rigorously good quantum number, so J can always be determined from the spectrum.
The reduced term value plot is based on known quantities E.J / and J and is used to determine a
non-rigorously good but pattern-forming quantum number, N

2.8 Stacked Plots

What is the difference between rigorous and pattern-forming quantum numbers?
A rigorous quantum number is related to the eigenvalue of an operator that
commutes with the exact molecular Hamiltonian, for example J (J2) and parity
˙ are rigorously good quantum numbers for an isolated molecule at zero external
magnetic and electric fields. It is always possible (but not always trivial) to
determine the rigorously good quantum numbers of every eigenstate. Methods
include Optical Optical Double Resonance (OODR) via a J- and parity-assigned
intermediate state. From each J;C intermediate state, the second transition can
only terminate in .J � 1/-, J -, and .J C 1/-final states. J -assignments are secured
via lower-state rotational combination differences, as illustrated by Fig. 2.4, or by
polarization diagnostics [20].

Complete specification of an eigenstate often requires the use of approximately
good quantum numbers as labels in addition to the rigorously good quantum
numbers, as illustrated in Figs. 2.5 and 2.6.

These additional labels are often eigenvalues of an operator that does not
commute with the exact Hamiltonian, for example N D J�S. However, in the limit
that some term in the exact Hamiltonian can be neglected (e.g. the effects of HSO

can be negligible at high-J relative to the effects of the �BJ � S spin-uncoupling
term from HROT). When this occurs, N .N2/ becomes pattern-forming, and it is
possible to use the BN.N C 1/ pattern in the spectrum to determine the value of the
N quantum number. At high enough J;N becomes pattern-forming

BN.N C 1/ D B.J � S/.J � S/.J � S C 1/ D BŒJ.J C 1/� 2JS C S2 � S�

where S � J �N , S changes in steps of 1 in the interval, Œ�S 
 S 
 S ] and is the
projection of S on N.B is the approximately known rotational constant (for Rydberg
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Fig. 2.4 Term value stacked plot. A consecutive-N 0 series of optical–optical double resonance
spectra [Rydberg D2†C, D2†C  X2†C] of CaF is plotted vs. the absolute energy of the
upper Rydberg level. Each Rydberg D2†C spectrum is shifted by the absolutely known term
value of the intermediate N 0 level, which is the term value of the X.v00; N 00/ initial level plus
the transition frequency of the laser that pumps the D-X transition. Transitions connected by a
vertical dashed line terminate in the same upper N -level. The value of this N quantum number
is determined by the D-state rotational combination difference, R.N � 1/ � P.N C 1/ [14].
Reproduced with permission from Fig. 4 in J.J. Kay, D.S. Byun, J.O. Clevenger, V.S. Petrovic,
R. Seiler, J.R. Barchi, A.J. Merer, and R.W. Field, Can. J. Chem. 82, 791–803 (2004). Copyright
2004, Canadian Science Publishing or its licensors

states it is the rotational constant of the molecular ion-core, for triplet states it is the
effective rotational constant of the F2 .J D N/ spin-component. A reduced term
value plot of

EROT.J / � BJ.J C 1/ D BŒ�2JS C S2 � S� vs. J

has slope �2BS, from which S and then N are determined.
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Fig. 2.5 Raw spectrum stacked plot. A consecutive-N 0 series of optical–optical double resonance
spectra of CaF is plotted vs. the frequency of the Rydberg D2†C laser. There is no spectrum-
to-spectrum shift to remove the effect of different term value for each intermediate level. This sort
of stacked plot reveals the energy level pattern associated with each rotational branch. It is this
sort of information that displays the pattern-forming rotational quantum numbers rather than the
rigorously conserved rotational quantum numbers. Once a branch pattern is observed, attention
is focused on what is the difference between the absolutely known rigorous quantum number
and the approximately conserved pattern-forming quantum number. This sort of determination
need be done only once for each branch in order to make a plot of the reduced term value,
Eobs.N; parity/ � BN.N C 1/ vs. N [14]. Reproduced with permission from Fig. 5 in J.J. Kay,
D.S. Byun, J.O. Clevenger, V.S. Petrovic, R. Seiler, J.R. Barchi, A.J. Merer, and R.W. Field,
Can. J. Chem. 82, 791–803 (2004). Copyright 2004, Canadian Science Publishing or its licensors

To summarize, J is determined by a Term Value Stacked Plot (Fig. 2.4) [14] or
by R,P vs Q polarization diagnostics [21]. Then, for the organization of transitions
into branches as shown on a Raw Spectrum Stacked Plot (Figs. 2.5 and 2.6), one



28 2 Hierarchy of Terms in the Effective Hamiltonian

Fig. 2.6 Raw spectrum stacked plot for mostly core-nonpenetrating Rydberg states of CaF. The
importance of pattern-forming quantum numbers is illustrated by this three-part figure. The
spectral patterns shown in Figs. 2.4 and 2.5 are quite simple, because they involve transitions
into core-penetrating Rydberg states. Nonpenetrating states are vastly more numerous and require
assignment of two nonrigorous but pattern-forming quantum numbers, ` and NC, where ` is
the nearly good orbital angular momentum quantum number of the Rydberg electron and NC

is the nearly good rotational quantum number of the ion-core. It turns out that in CaF the F 02†C

intermediate state is prolific in providing transitions to core-nonpenetrating states. Part (a) shows
raw stacked plots, from which the observed transitions are organized into many rotational branches.
Part (b) shows the detail of the boxed part of the N 00 D 7 spectrum. Each peak is labeled by its
upper state ` and `R D N � NC quantum numbers. ` ranges from 3 (f) to 5 (h) and `R ranges
from C` to �`. Part (c) shows even finer detail for the boxed region of the spectrum in part (b)
[21]. Reproduced with permission from Fig. 1 in J.J. Kay, S.L. Coy, V.S. Petrovic, B.M. Wong, and
R.W. Field, J. Chem. Phys. 128, 194301/1–20 (2008). Copyright 2008, AIP Publishing LLC
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uses the reduced term value plot to determine N for at least one transition in each
rotational branch. This determines J �N for all of the lines in that branch.

For Rydberg states (Fig. 2.6) at effective principal quantum number n? > 10,
rotational branches from transitions into many Rydberg states are closely spaced,
perhaps even entangled. OODR is needed to simplify the spectrum and stacked plots
make most J and L (the projection of the orbital angular momentum of the Rydberg
electron, `, on the ion-core rotational angular momentum, NC or JC) assignments
automatic.

2.9 Angular Momenta: A Brief Summary

An angular momentum operator, A, is defined by the commutation rule

ŒAi ;Aj � D i¯
X

k

"ijkAk

"ijk D C1 if .i; j; k/! .x; y; z/ in cyclic order

� 1 if .i; j; k/! .x; y; z/ in anticyclic order

0 if one component is repeated

The angular momentum jA˛MAi are simultaneously eigenfunctions of A2;Az, and
AZ .

Az jA˛MAi D ¯˛ jA˛MAi
A˙ jA˛MAi D ¯ŒA.AC 1/� ˛.˛ ˙ 1/�1=2 jA˛ ˙ 1MAi�

A˙ D Ax ˙ iAy

A2 jA˛MAi D ¯2A.AC 1/ jA˛M˛i :

We are mostly concerned with body-fixed angular momentum components
(denoted by lower-case x; y; z)

.L; ƒ/; .S; †/; .J; �/; N D J � S;F D JC I:

�

There is a special complication that arises for the body-fixed components of angular momenta
that contain the rotation of the body frame (J; N D J � S, but not L or S). For these angular
momenta, the body-fixed components follow “reversed angular momentum commutation rules”,
ŒAi ;Aj �D �P

k "ijkAk , and the roles of AC and A� are exchanged.
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Lz jnƒS†i D ¯ƒ jnƒS†i
Sz jnƒS†i D ¯† jnƒS†i
Jz jnƒS†i D ¯.ƒC†/ jnƒS†i :

The Stark (electric field) and Zeeman (magnetic field) effects and electronic
transition intensities are related to laboratory-fixed components of angular momenta
(denoted by upper case X; Y;Z)

JZ j�JM i D ¯M j�JM i :

Just as all of the matrix elements of the magnitude and components of an angular
momentum operator, A, may be derived from the commutation rule definition of A,
other operators, B, may be classified relative to A by the commutation rule:

ŒAi ; Bj � D i¯
X

k


ijkBk:

This reduced form of the Wigner–Eckart Theorem guides evaluation of matrix
elements of B in the jA˛MAi basis set [22].

2.10 Where Have We Been and Where are We Going?

This lecture has been an unconventional introduction to finding the appropriate
H.eff/ model. Once we find it, all we need to do is adjust the parameters (molecular
constants) that define the H.eff/ to get a good least-squares fit to all of the energy
levels. The important trick is to build a simple but physical model that includes
all of the terms in the H.eff/ that affect the observed pattern of energy levels and
transition intensities. Once we have a spectroscopically well determined H.eff/, we
can compute a very large range of spectroscopic and dynamical effects. We have
much more than an archival table of molecular constants. This is what I mean by
going “beyond the molecular constants”.
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Chapter 3
Spectroscopic Perturbations: Homogeneous
and Heterogeneous

A spectroscopic perturbation is a local disruption of the expected “textbook” pattern
of energy levels and transition intensities. It results when degeneracy accidentally
occurs between two or more “pure” same-J , same-parity states, which are capable
of interacting with each other via some usually harmless term in the effective Hamil-
tonian. Perturbations between same-� states are called homogeneous (because the
interaction matrix element is independent of J ) and those where �� D 1 are
called heterogeneous (because the interaction matrix element is proportional to
J ) [1, 2]. Level shifts, extra lines, intensity borrowing, and interference-related
intensity anomalies occur at perturbations. Near a perturbation an enormous amount
of information becomes available about “dark states,” which are normally excluded
from direct observation by transition selection rules. When a dark state becomes
observable via perturbation by a “bright state”, which Franck–Condon factors are
relevant, those of the bright state or the dark state? Interference effects can provide
a unique signature of the presence of an unexpected perturber as well as reveal the
relative signs of two off-diagonal matrix elements.

3.1 What Is a Perturbation? [3]

Sometimes nature appears to be unkind. The regular patterns of spectra seem to
be capriciously disrupted. These disruptions, called perturbations (the German
word, Störungen, seems more appropriate), actually contain crucial information
about both structure (otherwise unobservable states) and dynamics (rate and
mechanism of energy flow between the normally static and therefore boring isolated
states).

A perturbation is a disruption of the regular frequency and intensity patterns one
expects to find in a spectrum.

© Springer International Publishing Switzerland 2015
R.W. Field, Spectra and Dynamics of Small Molecules,
Lecture Notes in Physics 900, DOI 10.1007/978-3-319-15958-4_3
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only a good guess

J(J+1)

a non-degenerate
state (1Σ+)

Λ doubling

a 2-fold degenerate
state (1Π)

a 6-fold degenerate
state (3Π)

3Π2

3Π1

3Π0 six for the price
of one

J(J+1)

J(J+1)

EJ  − BJ(J+1)
–

EJ  − BJ(J+1)
–

EJ  − BJ(J+1)
–

Fig. 3.1 “Reduced term-value” plots. B is a best guess for the actual B-value. By subtracting
BJ.J C 1/ from the observed term value, EJ , one is able to display the term energy curves on an
expanded energy axis. This subtraction does not distort the energy differences between potentially
interacting states because the same energy is subtracted from same-J levels

The frequency pattern is best viewed in a “reduced term-value” plot [4]. This
reduction permits magnification of the energy scale (vertical axis) in order to see
small stuff (Fig. 3.1).

A Rydberg complex can be even more complicated: nd consists of 2�, 2…, and
2†C states, ten components altogether.

A perturbation looks like this (Fig. 3.2):
The regular series of strong lines at low-J belongs to the bright state, but near

Jx , one regular series of lines ends abruptly and a new one starts, as if out of
nowhere.
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J(J+1)

2H
12

Level shifts and Extra Levels

Jx

“Dark”

“Bright”

Bright

Dark

unperturbed levels

actual energy levels

EJ  − BJ(J+1)
–

Fig. 3.2 A perturbation diagram. This reduced term value plot shows a bright state (Ebright
0 <

Edark
0 , Bbright > Bdark) being crossed from below by a dark state. The J-value of exact degeneracy

is Jx . The interaction matrix element is H12 and, at Jx , the two interacting states differ in energy
by 2H12. The selection rule for perturbations is �J D 0, so all that matters is the vertical energy
difference between the unperturbed (dark curve) and the resultant actual (light curve) energy levels

We understand a perturbation using perturbation theory [5–7]. Perturbation
theory is essential for a spectroscopist. The equations of non-degenerate pertur-
bation theory are:

H D H.0/ CH.1/

En D E.0/
n CH.1/

nn C
X

m¤n

0
ˇ̌
ˇH.1/

nm

ˇ̌
ˇ
2

E
.0/
n �E.0/

m

. the 0 impliesm ¤ n/

jni D jni.0/ C
X

m

0 H
.1/
mn

E
.0/
n �E.0/

m

jmi.0/ :

You need degenerate perturbation theory when

ˇ̌
ˇ̌
ˇ

H
.1/
nm

E
.0/
n �E.0/

m

ˇ̌
ˇ̌
ˇ > 1 for some values of m:
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Consider two unperturbed electronic-vibrational energy levels, je1; ve1i and
je2; ve2i.

E.0/
e1;ve1

.J / D Ee1;ve1 C Be1;ve1 J.J C 1/
E.0/
e2;ve2

.J / D Ee2;ve2 C Be2;ve2 J.J C 1/

�12 � Ee1;ve1 �Ee2;ve2 ; E12 D 1

2

�
Ee1;ve1 C Ee2;ve2

�

ıB12 D Be1;ve1 � Be2;ve2 ; B D
1

2

�
Be1;ve1 C Be2;ve2

�

and the rigorous selection rule, �J D 0.
The 2 � 2 Heff for these two states is

H.J / D
	
E12 CB12J.J C 1/ 0

0 E12 C B12J.J C 1/



C
	
�12
2
C ıB12

2
J.J C 1/ V12

V12 ��12
2
� ıB12

2
J.J C 1/



:

V12 is the interaction term that makes life interesting. The eigenvalues and eigen-
vectors are, by perturbation theory:

E
˙
.J / D �

E12 C BJ.J C 1/
�˙

�
�12

2
C ıB12

2
J.J C 1/

�
˙ V 2

12

�12 C ıB12J.J C 1/

jCi D je1; ve1 i C
V12

�C ıB12J.J C 1/ je2; ve2i

j�i D je2; ve2 i �
V12

�C ıB12J.J C 1/ je1; ve1i

or, by exact solution of the secular equation:

0 D
ˇ̌
ˇ̌
�12
2
C ıB12

2
J.J C 1/� E V12

V12 ��12
2
� ıB12

2
J.J C 1/�E

ˇ̌
ˇ̌

E˙.J / D
�
E12 C BJ.J C 1/

�˙
�
�12

2
C ıB12

2
J.J C 1/

�

˙
"	

�12

2
C ıB12

2
J.J C 1/


2
C V 2

12

#1=2
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j˙i D 2�1=2
"	
1˙ �12 C ıB12J.J C 1/

EC.J /� E�.J /

1=2
je1; ve1i

˙
	
1� �12 C ıB12J.J C 1/

EC.J /� E�.J /

1=2

je2; ve2i
#
:

Note that these formulas for the eigenvectors are obviously correct in the two limits,
V12 D 0 and V12 D1.

If �12 > 0 and ıB12 < 0, then the zero-order states will cross at Jx when

�12 C ıB12Jx.Jx C 1/ D 0
Jx.Jx C 1/ D ��12= ıB12

Jx D Œ��12= ıB12�
1=2 � 1

2
:

At Jx , the two perturbed energy levels are separated by 2V12 and the two states are
50:50 mixed

EC.Jx/ �E�.Jx/ D 2V12
j˙i D 2�1=2 Œje1ve1i ˙ je2ve2i� :

Let’s step back from the equations for a moment.
When there are more than two simultaneously interacting states, we can deal with

this by defining a larger than 2 � 2 effective Hamiltonian matrix [8]. We use a non-
linear least squares fit (because there are no analytic formulas) of the parametersn
E
.0/
i ; B

.0/
i ; H

.1/
i;j ; etc.

o
that define the Heff so that the observed energy levels are

fitted to measurement accuracy. The molecular constants we obtain are said to be
“deperturbed”. All effects of the perturbation are accounted for. The energy levels
(and the associated eigenvectors) describe what is seen (and an extrapolation to what
could in principle be seen) in the spectrum.

Figure 3.3 shows the spectrum of a perturbation-free v D 0 level and a massively
perturbed v D 1 level. These two spectra look profoundly different, even though the
v D 0 and 1 levels belong to the same electronic state (SiO H1†C).

If E.0/
1 > E

.0/
2 : Level Shifts. This kind of up-shift followed by down-shift (or

vice-versa) discontinuity in the energy level patterns is the unmistakeable signature
of a perturbation (Fig. 3.4).
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Fig. 3.3 A comparison of the SiO H1† .0; 0/ (top) and (1,0) (bottom) bands. The .0; 0/ band
at 1,435 Å is perturbation-free, but perturbations in the v D 1 level of the H1† state cause the
.1; 0/ band at 1,413 Å to be shattered. (Courtesy I. Renhorn [9].) Reproduced with permission of
Ingmar Renhorn. Reproduced from Fig. 2.1 in H. Lefebvre-Brion and R.W. Field, The Spectra and
Dynamics of Diatomic Molecules, Elsevier (2004)

Reduced term
Energy

E+(J ) − E1
(0)

(J)

E−(J ) − E1
(0)

(J)

0 Jx

unperturbed extra level

unperturbed
main level

J(J + 1)

Fig. 3.4 The E.0/
1 “main” level is crossed from below by the E.0/

2 level as J increases. The

intersection between E.0/
1 .J / and E.0/

2 .J / occurs at Jx . The dashed line is the reduced energy of

the “extra” level, E.0/
2 .J /� E.0/

1 .J /, the horizontal solid line is the reduced energy of the “main”

level, E.0/
1 .J / � E.0/

1 .J /, and the two curved solid lines are the reduced energy of the perturbed

main level at J � Jx , EC.J /� E.0/
1 .J /, and at J � Jx , E�.J /� E.0/

1 .J /. The dots on the two
solid curves suggest that two transitions (main and extra line) are observed at each J near Jx . The
level shifts shown in this figure are accompanied by intensity borrowing illustrated in Fig. 3.5
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I2 Intensity Borrowing

I2

2

0
Jx

Fig. 3.5 Intensity borrowing. When two zero-order states cross through degeneracy at J D Jx ,
one zero-order state is said to be “bright” and the other “dark”. Brightness and darkness are not
absolute terms, they apply to the specific energy level from which the two states are observed. For
example, if the initial state is e0; v0, then the zero-order state 1 is dark if�e1v1;e0v0 D 0 and state 2 is
bright if �e2v2;e0v0 ¤ 0. The intensities of transitions into the predominantly bright .I.J / > I2=2/
and dark .I.J / < I2=2/ states are shown as heavy and light lines, respectively. Note that the
transitions into the predominantly bright state form two series of lines separated by a large energy
gap .2H12/ at Jx

The three part Fig. 3.6 below illustrates various cases of level shift and intensity
borrowing in the presence of intensity interference:

top state 2 is bright, state 1 is dark
middle �10 D �20 (node in I at Jx)
bottom 2�10 D �20 (node shifted from Jx)

What can you say about the effect of the sign of the quantity V12�10�20? This
is an important question because it seems to violate the expectation that you can
never determine the sign of an off-diagonal matrix element because the sign has
no observable consequences. However, the sign of a product of two or more off-
diagonal matrix elements is observable. Why? How? Notice that the intensity node
occurs in the E� rather than the EC series of levels in the middle section of
Fig. 3.6.
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Fig. 3.6 Schematic illustration of intensity interference effects, which can be counter-intuitive.
The straight lines are the basis function (i.e., deperturbed) reduced term values, E0

1 �BJ.J C 1/,
where B D �

B0
1 C B0

2

�ı
2. The level crossing occurs at J D 15 .B0

1 D 0:9 cm�1, B02 D
1:1 cm�1, H12 D 10 cm�1). The inner edges and widths of the solid curves depict, respectively,
the energies of the perturbed levels,EC andE� [reduced by BJ.JC1/], and the intensities of the
transitions into EC and E�. The top frame illustrates simple intensity borrowing, �010 D 0. The
middle frame shows the vanishing of intensity at the crossing point .J D 15/; E0

1 D E0
2 , when

�010 D �020. The bottom frame exemplifies the general case, �010 ¤ �020 ¤ 0 (here 2�010 D �020),
where the intensity vanishing point is at .J ' 17:3). [From Dressler (1970) [10].] Reproduced with
permission of Kurt Dressler (October 8, 2014). Reproduced from Fig. 6.7 in H. Lefebvre-Brion and
R.W. Field, The Spectra and Dynamics of Diatomic Molecules, Elsevier (2004)



3.2 Level Shifts and Intensity Borrowing 41

3.2 Level Shifts and Intensity Borrowing [11]

It is evident from the formulas for the perturbed energy levels and eigenvectors
that there will be two prominent phenomena at J -values near Jx , level shifts and
intensity borrowing.

Level Shifts. If E.0/
1 .J / > E

.0/
2 .J /

Using degenerate perturbation theory, we obtain

EC �E.0/
1 D C

"	
�12=2C ıB12

2
J.J C 1/


2
C V 2

12

#1=2

or, simplified to non-degenerate perturbation theory, we obtain

� V 2
12

�12 C ıB12J.J C 1/

E� �E.0/
2 D �

"	
�12=2C ıB12

2
J.J C 1/


2
C V 2

12

#1=2
:

Intensity Borrowing. Suppose that basis state j1i is bright and basis state j2i is
dark in the particular experiment under consideration.

This means, in transitions from state j0i

�10 D h1j�j0i ¤ 0 bright

�20 D h2j�j0i D 0 dark

[Brightness/darkness is not absolute. It depends on the nature of state j0i. For
example, j0i and j1i are singlet states and j2i is a triplet state.]

IC � I1
�
1 � V 2

12

.�12 C ıB12J.J C 1//2
�

small loss of intensity from “main”
line

I� � I1
�

V 2
12

.�12 C ıBJ.J C 1//2
�

borrowing of intensity in “extra” line

There are two intuitive and useful rules for perturbations:

1. Level shifts are equal in magnitude and opposite in direction;
2. Intensity is conserved, I1 D ICCI� (when states 1 and 2 are both bright I1.J /C
I2.J / D IC.J /C I�.J /);

3. Minimum of EC.J / �E�.J / occurs at J D Jx and is equal to 2V12.
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There is a special situation at Jx :

E
.0/
1 .Jx/ D E.0/

2 .Jx/

IC.Jx/ D I�.Jx/ (not true if states 1 and 2 are both bright),

which means that it is possible to know, at the center of a perturbation (i.e. at Jx),
based on extrapolation of the energy and intensity of the bright state from J D 0 to
Jx , what is the energy and intensity of the transition into the extra level.

3.3 Two Qualitatively Distinct Classes of Perturbation:
Homogeneous and Heterogeneous [1, 2]

Homogeneous Heterogeneous

(Spin–orbit, inter-electronic) .BJ
˙
L� and BJ

˙
S�/

�� D 0 �� D ˙1
V12 is independent of J V12 / ŒJ.J C 1/��.�˙ 1/�1=2 � .J C 1=2/
(� is eigenvalue of Jz)

The analytic formulas for heterogeneous perturbations are slightly different from
those for homogeneous perturbations. One key difference is that, at J 	 Jx ,
the effects of the perturbation on the energy levels and transition intensities never
vanish because both the matrix element squared (numerator) and energy difference
(denominator) are both / J.J C 1/. Consider this a fine point.

3.4 Franck–Condon Factors [12, 13]

The intensities for transitions between the vibrational levels of two electronic states
are governed by Franck–Condon factors

Ie1;ve1 ;e2;ve2 / qve1 ;ve2 � hve1 jve2i2

Franck–Condon factors (always positive) are the square of a vibrational overlap
integral (which can be either positive or negative). They are calculated using
Robert LeRoy’s “Level” program, based on RKR potential curves calculated from
experimentally measured vibrational G.v/ and rotational B.v/ functions, using
Robert LeRoy’s “RKR1” program [12].
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3.5 Which Franck–Condon Factors Should I Use?

What Franck–Condon factor must be used to calculate the intensity of a perturbed
vibrational band?

The perturbed states are mixtures of two (or more) vibration-electronic states. So
how do we think of the vibrational wavefunction: mixed or schizophrenic?

mixed: jevmixedi D ˛ jve1i C ˇ jve2i
schizophrenic: jevmixedi D ˛ je1i jve1i C ˇ je2i jve2i

where ˛ and ˇ D Œ1�˛2�1=2 are the mixing coefficients for the jei i jvei i basis states
in the eigenstates.

The correct choice, schizophrenic, is based on the fact that ve1 vibrational
character is always associated with e1 electronic character. This is a consequence of
the Born–Oppenheimer approximation [14, 15], from which we obtain the concept
of electronic potential energy surfaces and wavefunctions written as a product of an
electronic times a vibrational factor,

jeivei i D jei i jvei i :

There is no perturbation term that is capable of mixing the vibrational levels
belonging to the ei and ej electronic states, in the manner

jevmixedi D jeii Œ˛ jvei i C ˇ
ˇ̌
vej

˛
�:

It is a very common and tempting error to think of mixed vibrational states without
their essential electronic cofactor. Schizophrenic is an appropriate metaphor because
the jvei i vibrational wavefunction carries its jei i electronic character whereas theˇ̌
vej

˛
wavefunction is inseparable from its

ˇ̌
ej

˛
electronic character.

The intensity of a transition into a mixed state (including the possibility that both
e1 and e2 are “bright”) is [16]

Ievmixed ;e0;ve0
/ j˛ he0ve0 j�je1ve1i C ˇ he0ve0 j�je2ve2ij2

D j˛�e0;e1 hve0 jve1i C ˇ�e0;e2 hve0 jve2ij2

D ˛2�2e0;e1qve0 ;ve1 C ˇ2�2e0;e2qve0 ;ve2
C 2˛ˇ�e0;e1�e0;e2 hve0 jve1i hve0 jve2i

˛2 D 1 � ˇ2:

Notice that the first two terms (the ˛2 and ˇ2 terms) are always positive, but the third
term (the ˛ˇ term) can be either positive or negative, resulting in either constructive
or destructive interference [17]. (Be sure you can prove that the third term can
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never be so large and negative that it causes Ievmixed ;e0ve0
< 0. A negative transition

probability would be silly. Why? It would be a reliable indicator that error has
crept in!) The third term is a quantum mechanical interference effect that is of great
diagnostic importance in the spectroscopy of perturbed states.

3.6 Intensity Borrowed from a Nearby Bright State

Suppose we have a dark electronic state, e2, that borrows its intensity from one
nearby vibrational level, ve1 , of the bright electronic state, e1. What is the Franck–
Condon factor for emission to the ve0 vibrational levels?
e2 is dark, ˇ2 is the fractional bright state character in the dark state, ˇ2 < 1=2

(the e2ve2 state has a small amount of e1ve1 bright character)

3.7 Intensity Borrowed from an Energetically Remote
Bright State

Now suppose that the dark state borrows all of its intensity from all of the vibrational
levels of one energetically remote bright perturbing electronic state.

Completeness tells us how to express the dark vibrational state, jve2i, as a
superposition of bright vibrational states, jve1i

jve2i D
X

ve1

jve1i hve1 jve2i :

The mixing coefficient of every bright vibrational state in the dark vibrational state
is included here, based on the usually good approximation that the interaction matrix
element may always be expressed as the product of a constant electronic factor and
a vibrational overlap integral

he1; ve1 jHje2; ve2i D He1;e2 hve1 jve2i :

For the dark, predominantly je2i jve2i state, interacting with a bright remote
perturber

jmixedi D je2i jve2i CHe1;e2 je1i
X

ve1

"
jve1i

hve1 jve2i
E
.0/
ve2
�E.0/

ve1

#
;
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which is useful for calculating the intensity of the transition to je0ve0i D je0i jve0i

Here is the key trick: if the remote state is so remote that E.0/
ve2
� E.0/

ve1
does not

depend significantly on ve1 , then we replace the energy denominator by the constant
term �E

.0/
21 .

he0j hve0 j�jmixedi D He1;e2

�E
.0/
21

�e0;e1

X

ve1

hve0 jve1i hve1 jve2i :

Next, we use completeness in reverse

X

ve1

hve0 jve1i hve1 jve2i D hve0 jve2i Š

Thus

Even though all of the transition strength is borrowed from the remote bright
perturber, e1, the Franck–Condon factor is that of the dark state, e2! This is the
opposite of what happens for a single, locally perturbing vibrational level of a bright
state.

3.8 Intensity Interference Effects [17]

Consider a state that consists of a mixture of two bright electronic-vibrational states,
je1; ve1i and je2; ve2i. The intensity distribution along a vibrational progression of
fluorescence transitions into the e0, ve0 levels is not simply described by a weighted
sum of Franck–Condon factors.

˛2�2e0;e1qve0 ;ve1 C ˇ2�2e0;e2qve0 ;ve2 :

There is also an interference term

2˛ˇ�e0;e1�e0;e2 hve0 jve1i hve0 jve2i :
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This term can make the observed intensity either larger or smaller than expected
based on the naive weighted sum of Franck–Condon factors. There are many
kinds of interference effects, and they are always of diagnostic value. One of my
favorites, the anomalous ratio of R.J � 1/ W P.J C 1/ rotational line intensities
for fluorescence out of one member of a pair of states mixed by a heterogeneous
.�� D ˙1/ interaction, is beyond the scope of the present lecture. So think about
this on your own!
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Chapter 4
The Effective Hamiltonian for Diatomic
Molecules

The Heff is not the exact Hamiltonian [1]. It is a fit-model that is constructed so
that it captures all of the appropriate quantum number dependences. It is necessary
to convert an infinite dimension and internuclear distance-dependent Hamiltonian
into a finite dimension matrix model in which the R-dependence is encoded in the
v; J dependence of the observed energy levels and transition intensities [2]. The
Van Vleck transformation [3] folds effects of all remote perturbers into the finite
dimension fit model. Examples treated include: transition moments, centrifugal
distortion in 1†C states, vibration-rotation interaction (˛e), centrifugal distortion
in 3… states, and ƒ-doubling. Spectroscopists need a fit model to account for
all details of their spectrum, which include (a) transition frequencies, (b) relative
intensities of transitions, (c) ability to extrapolate beyond the observed region of
the spectrum, (d) elimination of assignment ambiguities, (e) provide an explanation
of surprising v; J dependences of certain molecular constants, (f) revealing hidden
inter-relationships between observed quantities, (g) extraction of information from
intensity interference effects [4], (h) determination of internuclear distance, R,
dependences when only v; J -dependences can be measured [2], (i) evaluation of
statistically rigorous sensitivities of the fit parameters to the actually observed data
set, and (j) provide a basis for a decision about whether an outlier line is due to a
blunder or a perturbation.

4.1 Introduction

The exact H is an infinite dimension matrix because the molecule possesses an
infinite number of rotation-vibration-electronic states. It is impossible to find the
exact eigenvalues and eigenvectors of an infinite dimension secular determinant.
So we must somehow reduce the dimension of H to include only the tiny fraction
of state space directly sampled by our experiment. The method by which this

© Springer International Publishing Switzerland 2015
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is done is called the “Van Vleck Transformation” (also known as the “Contact
Transformation”) [3]. It is a souped-up version of second order non-degenerate
perturbation theory. It is more beautiful than it appears at first sight. It can have
the flexibility to deal with any situation that nature provides. Most importantly, our
Heff is expressed in terms of the absolute minimum number of adjustable parameters
[1].

We observe transitions between energy levels. We do not observe all energy
levels. And we do not directly observe the internuclear distance dependence of any
property. Information about other electronic states and R-dependences is encoded
in the v; J dependence of energy levels (and the relative intensities of transitions).
How do we obtain this missing information?

Alternatively, we want to build a fit model that is capable of fitting our
observations to measurement accuracy. This is an effective Hamiltonian, Heff. It
is not the exact Hamiltonian. And, once the data is fitted, it is far more accurate than
anything our ab initio theorist friends can compute (Fig. 4.1).

Fig. 4.1 The upper left panel shows the exact block-diagonalization of Hexact according to a set
of operators that commute with the exact Hamiltonian. The lower right panel shows an expanded
view of the lower right symmetry block. Non-zero matrix elements are indicated with dots, sized
according to magnitude. Zero order energies (on-diagonal matrix elements) are marked with open
circles, and are scaled differently than the off-diagonal elements [1]. Reproduced with permission
from Fig. 1 in R.W. Field, J.H. Baraban, S.H. Lipoff, and A.H. Beck, “Effective Hamiltonians,” in
Handbook of High-resolution Spectroscopy, M. Quack and F. Merkt (editors), John Wiley & Sons
(2011). Copyright 2011, John Wiley & Sons, Inc.



4.2 Main Topics of This Lecture 49

4.2 Main Topics of This Lecture

This lecture is based on three important ideas.

4.2.1 R-Dependence [2]

All terms in the molecular Hamiltonian are either explicitly (e.g. theB.R/ rotational
“constant” operator) or implicitly (via the Born–Oppenheimer approximation, the
electronic Schrödinger equation is solved at each point on a grid of nuclear
coordinates) dependent on internuclear distance, R. These R-dependences are
encoded in the vibration-rotation energy levels.

The first step is to do a power series expansion of each term in the Hamiltonian
(keeping only the first two terms)

H.R/ D H.R0/C @H
@R

ˇ̌
ˇ̌
RDR0

.R � R0/

whereR0 is a conveniently chosen reference geometry (usuallyRe for the electronic
state under consideration) and recognize that .R � Re/ is the displacement from
equilibrium. If we make a harmonic oscillator approximation, we know both selec-
tion rules .R1 $ �v D ˙1/ and explicit values of all non-zero hvj.R �Re/jv ˙ 1i
matrix elements.

R �Re � Q D
� ¯
2�c�!

�1=2
OQ D

� ¯
4�c�!

�1=2
.aC a�/

hv � 1jajvi D v1=2
˝
v C 1ja�jv˛ D .v C 1/1=2

where ! is in cm�1 units, OQ is the dimensionless displacement coordinate, and a
and a� are annihilation and creation operators (more on these in later lectures).

4.2.2 How Do We Account for Interactions with Energetically
Remote States?

We try to use second-order non-degenerate perturbation theory[5, 6] to account
for the neglect of interactions with all energetically remote states. These include
different vibrational levels of the same electronic state (this is where the
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R-dependence is taken into account) and the rotation-vibration levels of all other
energetically remote electronic states. The second-order energy shifts are

E
.2/
e1;ve1 ;J

D
X

en;ven

ˇ̌
ˇH.1/

e1;ve1 ;J Ien;ven ;J
ˇ̌
ˇ
2

E
.0/
e1;ve1 ;J

�E.0/
en;ven ;J

:

We also have the first order (diagonal in H.1/) energy terms

E
.1/
e1;ve1 ;J

D H.1/
e1;ve1 ;J Ie1;ve1 ;J

and first order corrections to the wavefunctions

je1; ve1 ; J i D je1; ve1 ; J i.0/ C
X

en;ven

H
.1/
e1;ve1 ;J Ien;ven ;J

E
.0/
e1;ve1 ;J

� E.0/
en;ven ;J

jen; ven ; J i.0/ :

This approach does not work when there are a few quasi-degenerate “perturber”
levels for which the convergence criterion for second-order perturbation theory

ˇ̌
ˇ̌
ˇ

H.1/
ij

�E
.0/
ij

ˇ̌
ˇ̌
ˇ & 1

is not met. These quasi-degenerate perturber levels must be included in an enlarged
Heff matrix [1].

Heff D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

E
.0/
e1;ve1 ;J

He1;ve1 ;J Ie2;ve2 ;J : : :

E
.0/
e2;ve2 ;J

: : :

E
.0/
en;ven ;J

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
:

But non-degenerate perturbation theory also fails to work when the state of interest
consists of several fine-structure levels, such as the six (�, parity: � D 2; 1; 0,
parityD ˙) components of a 3… state or the .2`C1/.2sC1/ components of an n`
Rydberg complex. We need a special modification of 2nd order perturbation theory.
This is called the “Van Vleck transformation”, or the “Contact Transformation.”

4.2.3 Van Vleck Transformation [3]

The Van Vleck transformation has the effect of folding interactions with all remote
rovibronic states (denoted by 	, S , ƒ, �0, vS;ƒ) into the effective Hamiltonian for
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the electronic state of interest, ˛, which has 2S C 1 �-components,

H eff�˛
�v;�00v D

X

	;S;ƒ;�0 ;vS;ƒ

H˛�vI	;�0 ;vS;ƒH	�0vS;ƒI˛�00v

1
2

h
E
.0/
˛�v C E.0/

˛�00v

i
� E.0/

	�0vS;ƒ

:

Note that, unlike second-order perturbation theory, the Van Vleck transformation
adds corrections to both diagonal and off-diagonal elements of Heff. This looks
horrible, but it is the spectroscopist’s best friend. One crucial point: each of these
corrections to each element of the finite dimension Heff is formally an infinite
sum over all remote states [1]. But actually, you need only a sum over all of the
symmetries of remote electronic states that are allowed to interact with the ˛-
type state. A relatively small number of second-order parameters (one for each
symmetry) provides full flexibility in the Heff. Of course, one seldom evaluates these
infinite sums ab initio; one determines their values by fitting the observed spectrum.

4.3 R-Dependence Is Encoded in v; J Dependence [2]

Replace R-dependent terms in the internuclear dependence of the operators that
correspond to observable properties by the v,J dependence of the actually observed
quantities.

4.3.1 Transition Moments: �.R/ ! Mv0;v00

According to the Born–Oppenheimer approximation [7, 8], the eivei ; ej vej matrix
elements of anyR-dependent operator may be evaluated in two steps. First, at fixed-
R, integrate over the electronic coordinates. For the�.R/ example, integration over
the electronic coordinates (denoted by r adjacent to each bra and ket)

r

˝
eivei j�.R/jej vej

˛
r
D ˝
vei jMei ;ej .R/jvej

˛

where Mei ;ej .R/ is an electronic transition moment function. Integration over the
nuclear coordinates (denoted by R adjacent to each bra and ket)

R

˝
vei jMei ;ej .R/jvej

˛
R
DMei ;ej

vei ;vej
:

The set of M
ei ;ej
vei ;vej

encodes all R-dependence of �.R/ in the ei ; ej electronic
subspace.
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4.3.2 Centrifugal Distortion,De [9]

Centrifugal distortion comes from the R-dependence of the rotational “constant”
operator. We want to expandB.R/, in cm�1 units, as a power series in Q � R�Re ,
B.R/ D ¯2

4�c�
R�2

1

R2
D 1

.QCRe/2 D
1

R2e

	
Q

Re
C 1


�2

D 1

R2e

"
1 � 2

	
Q

Re



C 3

	
Q

Re


2
� 4

	
Q

Re


3
C : : :

#

B.R/ D Be
"
1 � 2

	
Q

Re



C 3

	
Q

Re


2
� : : :

#

Be D ¯
4�c�

R�2e H) Re D
�
4�c�

¯ Be

��1=2

Q D
� ¯
4�c�!

�1=2
.aC a�/

Q

Re
D

� ¯
4�c�!

�1=2 �
4�c�Be

¯
�1=2

.aC a�/ D
�
Be

!e

�1=2
.aC a�/:[10]

HROT D hcBe

"
1 � 2

	
Be

!e


1=2
.aC a�/C 3

	
Be

!e



.aC a�/2 : : :

#
J.J C 1/

Be=!e � 10�3 is a good order-sorting parameter.

H.0/ D hcBeJ.J C 1/

H.1/ D hcBe

"
�2

	
Be

!e


1=2
.aC a�/C 3

	
Be

!e



.aC a�/2

#
J.J C 1/

EJ D E.0/
J C E.1/

J C E.2/
J

E
.0/
J D hcBeJ.J C 1/:

For E.1/
v;J we are only looking for diagonal elements of H.1/

E
.1/
J;v D 3hc.B2

e

ı
!e/J.J C 1/

˝
vj.aa� C a�a/jv˛

D 3hc.B2
e

ı
!e/J.J C 1/2.vC 1=2/

D 6hc.B2
e

ı
!e/.v C 1=2/J.J C 1/:
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Now, from the usual (truncated) Dunham expansion for Bv ,

Bv D Be � ˛e.v C 1=2/

we obtain

˛e D �6hc.B2
e

ı
!e/ < 0:

This implies that Bv increases as v increases. We know that this is wrong! More
on this soon. The final step is to evaluate the second-order perturbation sum forE.2/

J;v .

E
.2/
J;v D

X

v0¤v

�
H
.1/

v;v0

�2

E
.0/
v �E.0/

v0

D
�
H
.1/
v;vC1

�2

E
.0/
v � E.0/

vC1
C

�
H
.1/
v;v�1

�2

E
.0/
v � E.0/

v�1

D ŒhcBeJ.J C 1/�2 4.Be=!e/
hc!e

�
v C 1
�1 C

v

1

�

D 4.hc/2B3
e

hc!2e
ŒJ.J C 1/�2.�1/:

We identify the coefficient of ŒJ.J C 1/�2 with De

E
.2/
J;v D �hcDeŒJ.J C 1/�2

thus

De � 4B3
e

!2e
(in cm�1 units).

This is the famous “Kratzer relation”, valid in the harmonic oscillator limit
(which is always appropriate at low-v) [11]. Inclusion of additional terms like

hcBe

	
3
Be

!e



.a2 C a�2/J.J C 1/

in H.1/ gives higher-order corrections to Dv , e.g. the value of ˇe in

Dv D De � ˇe.v C 1=2/:

This exercise seems to suggest that inclusion of centrifugal distortion may be
implemented simply by replacing Bv wherever it appears in HROT by

ŒBv �DvJ.J C 1/�:
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It turns out that this is not correct for non-1†C electronic states. The correct treat-
ment of centrifugal distortion will be presented when the Van Vleck transformation
is introduced.

4.3.3 Vibration-Rotation Interaction, ˛e: A Small Surprise

We found, in the harmonic oscillator limit, that ˛e has the empirically incorrect sign

˛e;harmonic D �6hc.B2
e =!e/:

Now we go back and introduce the missing anharmonic correction term, which fixes
an instructive flaw in our logic

V.Q/ D hc!e.v C 1=2/� bQ3: .b > 0/

This sign of b is correct for causing the potential energy function, V.Q/, to become
harder than harmonic at Q < 0 and softer than harmonic when Q > 0, which is
what we expect for a molecule that must dissociate at Q > 0

Q3 D
� ¯
4�c�!e

�3=2
.aC a�/3

.aC a�/3 D a3 C a�3 C a2a� C aa�aC a�a2 C a�2aC a�aa� C aa�2

N � a�a:

A little algebra

.aC a�/3 D a3 C a�3 C 3.NC 1/aC 3Na�:

Thus

H.1/ D �3b
� ¯
4�c�!e

�3=2
Œ.v C 1/a� C va� � b

� ¯
4�c�!e

�3=2
Œa�3 C a3�

keep these ignore these
�

b0 � b
� ¯
4�c�!e

�3=2
:

�

We ignore the Œa�3 C a3� terms here because they follow �v D ˙3 selection rules, thus
they cannot result in interference via cross-terms with the �v D ˙1 matrix elements from the



4.4 Van Vleck Transformation for Non-1†C States 55

We have a term from �b0Q3 in H.1/ that has �v D ˙1 selection rules. Recall
that we also had a term from HROT, hcBeJ.J C 1/Œ�2.Be=!e/1=2.aC a�/� that has
�v D ˙1 selection rules. We must add the two kinds of terms in H.1/ that have
the same selection rule before computing E.2/ by squaring the off-diagonal matrix
elements. This is a very important point!

H.1/ D �2hcB3=2
e !�1=2e J.J C 1/.aC a�/� 3b0Œ.v C 1/a� C va�

H
.1/
v;vC1 D �2hcB3=2

e !�1=2e J.J C 1/.v C 1/1=2 � 3b0.v C 1/3=2

H
.1/
v;v�1 D �2hcB3=2

e !�1=2e J.J C 1/v1=2 � 3b0v3=2
�
H
.1/
v;vC1

�2

�hc!e
D 12.hc/B3=2

e !
�1=2
e J.J C 1/b0.v C 1/2
�hc!e

C
squared terms with the
incorrect v; J
dependencefor the ˛e term

�
H
.1/
v;v�1

�2

Chc!e
D 12.hc/B3=2

e !
�1=2
e J.J C 1/b0.v2/
Chc!e

C squared terms with wrong v; J
dependence

E
.2/
v;J D �12.Be=!e/3=2b0J.J C 1/2.v C 1=2/

Note that this term is negative and usually large enough to overpower the
harmonic term

C6hc.B2
e =!e/ �24.Be=!e/3=2b0

harmonic term anharmonic term
:

This derivation illustrates the value of the a; a� operators in better displaying the
terms in H that share the same �v selection rule. These same-�v terms give rise to
interference effects in E.2/

J;v .

4.4 Van Vleck Transformation for Non-1†C States

Worked examples for 3… state. A diagrammatic method is described by which
second-order corrections to the rotational and spin–orbit parameters of a 3… state
are evaluated.

hcBeJ.J C 1/Œ�2.ˇe=!e/1=2.aC a�/� term in HROT. There are �v D ˙3 cross terms from the

�4
�
Q

Re

�3
term in the expansion ofB.R/, but the sum of these cross terms has a J.JC1/.vC1=2/2

quantum number dependence, which means that they act as a correction to the �e term in
Bv D Be � ˛e.vC 1=2/C �e.vC 1=2/2 .
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4.4.1 Centrifugal Distortion

Centrifugal distortion is not simply accounted for by “replace BJ.J C 1/ by
ŒB �DJ.J C 1/�J.J C 1/.”

When the energy level formula for a single (non-degenerate) electronic state is
corrected for effects of energetically remote perturbing states [including remote
vibrational levels of the same electronic state that are brought in by the R-
dependence of molecular “constants”, such as B.R/] it is possible to use ordinary
non-degenerate second-order perturbation theory. However, when the electronic
state in question consists of several related spin- and parity-components, the
effective Hamiltonian for that state must be treated by quasi-degenerate perturbation
theory. In simple language, a small dimension Heff must be diagonalized. For
example, for a 3… state, the Heff for rotation is

HROT D B.R/Œ.J2 � J2z /C L2? C .S2 � S2z / � .JCL� C J�LC/

� .JCS� C J�SC/C .LCS� C L�SC/�

(Matrix elements of L2 cannot be evaluated for a non-spherical object, thus L2�L2z
is replaced by L2?, which is diagonal in Hund’s case (a) and ignored.)

HSO D
X

i

ai

�
`izsiz C 1

2

�
`Ci s
�
i C `�i sCi

��
;

which may be replaced by the familiar ALzSz for �S D 0, �ƒ D 0 matrix
elements. (The full form of HSO must be used for all �S ¤ 0 matrix elements.)

H.3…/ D
3…2

3…1

3…0

0

@
E… C B…ŒJ.J C 1/� 4C 2 � 1�C A… �B…ŒJ.J C 1/� 2�1=2Œ2�1=2 0

�B…ŒJ.J C 1/� 2�1=2Œ2�1=2 E… C B…ŒJ.J C 1/� 1C 2 � 0� �B…ŒJ.J C 1/�1=2Œ2�1=2

0 �B…ŒJ.J C 1/�1=2Œ2�1=2 E… CB…ŒJ.J C 1/� 0C 2 � 1�� A…

1

A :

E…, B…, and A… are respectively the energy, rotational constant, and spin–orbit
constant for the 3… multiplet state.

It is not sufficient to correct this Heff for the effects of remote perturbing states
merely along the diagonal, as in the standard recipe of second-order non-degenerate
perturbation theory. It is also not sufficient to replace B… wherever it occurs, both
on- and off-diagonal, by ŒB… � D…J.J C 1/�. The Van Vleck transformation
provides a simple procedure for correcting the Heff to include all remote perturbers.
One particularly beautiful thing about the Van Vleck Transformation is that each
added correction term is implicitly a sum over all remote perturber electronic-
vibration levels of a specified symmetry. This gives a generally applicable fit
model without excessive flexibility (exactly the minimum number of adjustable
fit parameters). However, it does this at the cost of compromising the micro-
scopic (mechanical, Born–Oppenheimer) meaning of all of the fit parameters [12].
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Computational theorists often do not understand the contaminated meaning of
molecular parameters obtained from an Heff fit.

4.4.2 The Van Vleck Transformation [3]

The Van Vleck transformation specifies correction terms according to their location
in the Heff matrix. I find a simple “railroad diagram” helpful and instructive. The
four steps for constructing this railroad diagram follow.

4.4.2.1 List of Initial and Final States

Specify the initial and final state locations in the matrix elements of Heff, for
example

initial state final state

3…2; ˙; v 3…2; ˙; v
3…2; ˙; v 3…1; ˙; v
3…2; ˙; v 3…0; ˙; v
3…1; ˙; v 3…1; ˙; v
3…1; ˙; v 3…0; ˙; v
3…0; ˙; v 3…0; ˙; v

The˙ symbols represent the rigorously good parity quantum number. Usually Heff

is real and symmetric, so it is not necessary to evaluate both

initial final
3…2˙ 3…1˙

and
3…1˙ 3…2 ˙ :

4.4.2.2 List of Relevant Intermediate States

Once the initial and final states are listed as above, list all of the intermediate states
that can be reached from both of the specified initial and final states. For the case of
centrifugal distortion one only needs the vC1 and v�1 levels of the same electronic
state, treated implicitly as a sum over v. The intermediate states follow the C 6$ �
parity and �� D 0;˙1 selection rules.
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4.4.2.3 Railroad Diagrams [1]

Draw connecting lines between the initial and intermediate states and between the
intermediate and final states. Write, above each of the connecting lines, the value of
the non-zero matrix element (from HROT and HSO) between each connected pair of
states Œx � J.J C 1/�:

For example,

˝
3…2;˙;v jHROTj3…2;˙;v0

˛ D Bv;v0 ŒJ.J C 1/��2 C S.S C 1/�†2�
D Bv;v0 ŒJ.J C 1/� 4C 2 � 1� D Bv;v0 Œx � 3�

and

˝
3…2;˙;vjHSOj3…2;˙;v0

˛ D Av;v0ƒ† D Av;v0 .1/.1/ D Av;v0 :
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4.4.2.4 Harvest the Information in Each Railroad Diagram

The next step is to multiply the pairs of matrix elements, insert the appropriate
energy denominator, and evaluate the summation as specified by the Van Vleck
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equation in Sect. 4.2.3:

4.4.3 Example of Centrifugal Distortion in a 3… State[9]

Here are all of the centrifugal distortion contributions to the effective Hamiltonian
for a 3… state:

D
3…0;˙;vj QHj3…0;˙;v

E
D �DvŒx

2 C 4x C 1�
D
3…1;˙;vj QHj3…1;˙;v

E
D �DvŒx

2 C 6x � 3�
D
3…2;˙;vj QHj3…2;˙;v

E
D �DvŒx

2 � 4x C 5�
D
3…0;˙;vj QHj3…1;˙;v

E
D CDvŒ2.x C 1/.2x/1=2�

D
3…0;˙;vj QHj3…2;˙;v

E
D �DvŒ4x.x � 2/�1=2

D
3…1;˙;vj QHj3…2;˙;v

E
D CDvŒ2.x � 1/.2x � 4/1=2�

x D J.J C 1/:

The tilde over H is an indication that the Heff has been subjected to the Van Vleck
transformation.

Note that the centrifugal distortion contributions that correspond to �� D even
are negative and those for �� D odd are positive. �� D 0 terms are of order
J 4, �� D 1 terms are of order J 3, and �� D 2 terms are of order J 2. Even
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though Bv does not appear in the �� D 2 matrix element, Dv does appear in
the �� D 2 location. A lot of surprises! Failure to use exactly this form of the
centrifugal distortion matrix would give a poor fit and would result in a requirement
for many additional (spurious) fit parameters.

4.4.4 ƒ-Doubling [13]

ƒ-doubling is the J -dependent splitting between C and � parity components of
same-J , same-� levels of a ƒ ¤ 0 state.

4.4.4.1 Elimination of Nonsense

It is very tempting (and many have succumbed) to think of the ƒ-doubling in a 1…

state as a contribution of the electron to the moment of inertia. If the �-orbital lies
along the EJ axis, then the electron makes a negligible contribution to the B-value,
precisely because it lies close to the rotation axis. If the �-orbital lies in the plane
perpendicular to the EJ axis, then the electron in this �-orbital makes the maximum
possible contribution to the B-value. This makes lovely sense of the ƒ-doubling in
1… states:

E.J;˙/ D E… C .B… ˙ q…/J.J C 1/:

But this is nonsense!ƒ-doubling has absolutely nothing to do with electron inertial
effects. Sometimes the ƒ-doublet component that is even with respect to reflection
in a plane ? EJ lies at higher energy and sometimes it lies at lower energy than the
component that is odd with respect to a plane? EJ . Almost all ƒ-doubling terms in
the Heff arise from interaction with †-states! No, this is not “electron slippage.”

4.4.4.2 Relationship Between Parity and e/f-Symmetry [14, 15]

Parity and e=f -symmetry are two ways of dealing with the same rigorous symmetry.

Both .˙/ and
�
e
f

�
symmetry labels are used because each provides insight. The

rotational levels of a 1†C state have parity .�1/J but all J levels belong to e-
symmetry. The ƒ-doubling in a 1… state follows a J -alternating pattern, C above
� for one value of J and � above C for J C 1. The e=f -symmetry factors out
the .�1/J rotational alternation of ˙-parity. As a result, the energy order of e=f
components remains constant over a range of J -values. e=f symmetry also provides
a simplified picture for rotational branches. Since the selection rule for all electric
dipole allowed transitions is C $ �, all �J D ˙1 (R and P branch) transitions
are e $ e or f $ f , whereas all �J D 0 (Q branch) transitions are e $ f
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or f $ e. Here are some simple examples: (a) a 1
PC �1 PC transition consists

exclusively of R and P branches because there are no f -symmetry rotational levels
in a 1

PC state; (b) a 1
P� �1 PC transition [which is electric dipole forbidden

and only becomes allowed via an L-uncoupling (�BL˙J�) interaction of a 1
P

state with a 1… state] consists exclusively of Q branches, because the 1
PC state

consists exclusively of e-symmetry levels and the 1†� state consists exclusively
of f -symmetry levels; (c) each e-symmetry upper level in a 1… � 1†C transition
can be sampled via R(J-1) and P(J+1) transitions whereas each f -symmetry level
can only be sampled via one Q(J) transition, which often leads to difficulties in
assignment (without lower state combination differences) of Q branch transitions;
(d) all spectroscopic perturbations are between same-J , same-parity, same-e=f
symmetry levels.

4.4.4.3 The Central Role of†-States

The reason that †-states are the sole source of ƒ-doubling is easy to understand
for odd-multiplicity molecules (odd-multiplicity = even number of electrons). Odd-
multiplicity †-states have only one �-component with � D 0. All J -levels of this
component have e-symmetry for 1†C, 3†�, and 5†C states and f -symmetry for
1†�, 3†C, and 5†� states [14, 15]. As a result, only one e=f component of a non-
sigma state uniquely interacts with the only � D 0 e=f -symmetry component of
the sigma state, resulting in an energy difference between the e- and f -symmetry
� D 0 components of the non-† state. The situation is more complicated for even-
multiplicity systems. In that case, the †-state (ƒ D 0) acts to connect � > 0 and
� < 0 components of † and … states. For example, the matrix elements between
a 2…1=2 and a 2†C state have the unique � D 0-crossing property (i.e. there are
matrix elements between � D C1=2 and � D �1=2 basis states)

ˇ̌
ˇ̌2…1=2

e

f



D 2�1=2 �ˇ̌

2…C1=2
˛˙ ˇ̌

2…�1=2
˛�

ˇ̌
ˇ̌2†C e

f



D 2�1=2

hˇ̌
ˇ2†CC1=2

E
˙

ˇ̌
ˇ2†C�1=2

Ei

H D 1

2

X

i

ai
�
`Ci s
�
i C `�i sCi

� � B �
JCL� C J�LC

�

�
2…1=2

e

f
jHj 2†C e

f



D 1

2

hD
2…C1=2jHj2†CC1=2

E
C

D
2…�1=2jHj2†C�1=2

E

˙
D
2…C1=2jHj2†C�1=2

E
˙

D
2…�1=2jHj2†CC1=2

Ei

D 1

2
Œ˛ C ˛ � ˇx1=2 � ˇx1=2� D ˛ � ˇx1=2
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(note that the � D 1=2;�1=2 and � D �1=2; 1=2 matrix elements have opposite
signs) where

˛ D ˝C�ˇja`Cs�j
˛˛ D ˝
�ja`Cj
 ˛

ˇ D hv…jB.R/jv†i
˝
�jLCj
 ˛

:

This unique�=0-crossing property is possessed exclusively by j�j D 1=2 even-
multiplicity… states in interaction with even-multiplicity†-states.

4.4.4.4 Generalƒ-Doubling Hamiltonian, HLD [16]

A definitive treatment ofƒ-doubling in… states is given by Brown and Merer [16].
For 2SC1…-states in the e=f basis set

ˇ̌
ˇ̌2SC1…; J;� e

f



D 2�1=2 Œjƒ D 1; S;†; J;�i ˙ jƒ D �1; S;�†; J;��i�

The (parity-dependent) Lambda-Doubling part of Heff is

˝
ƒ D �1;†˙ 2; J;�jHLDjƒ D ˙1;†; J;�˛ D 1

2
.oC p C q/x

ŒfS.S C 1/�†.†˙ 1/gfS.S C 1/� .†˙ 1/.†˙ 2/g�1=2
˝
ƒ D �1;†˙ 1; J;�� 1jHLDjƒ D ˙1;†; J;�˛ � 1

2
.p C 2q/x

ŒfS.S C 1/�†.†˙ 1/gfJ.J C 1/��.�� 1/g�1=2
˝
ƒ D �1;†; J;�� 2jHLDjƒ D ˙1;†; J;�˛ D 1

2
qx

ŒfJ.J C 1/��.�� 1/gfJ.J C 1/� .�� 1/.�� 2/g�1=2;

where x D J.J C 1/.
The ƒ-doubling is described by the o, p, q parameters, which respectively arise

from ŒHSOCB.LCS�CL�SC/�2, ŒHSOCB.LCS�CL�SC�˝Œ�B.JCL�CJ�LC�
and Œ�B.JCL� C J�LC�2 matrix element product terms in E.2/. Brown and Merer
derive and discuss HLD matrices for 2…, 3…, 4…, and 5… states.
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4.4.4.5 Worked Examples

D
3…1

e

f
jHj3…1

e

f

E
, a Diagonal Contribution

Insert the definitions of e=f basis states:

ˇ̌
ˇ̌2SC1…; J;�

e

f



D 2�1=2 Œjƒ D C1; S D 1;† D 0; J;� D C1i

˙ j�1; 1; 0; J;�1i�
�
3…1

e

f
jHLDj3…1

e

f



D 1

2

�˝C1; 1; 0; J;C1 ˇ̌
HLD

ˇ̌C 1; 1; 0; J;C1˛

C ˝�1; 1; 0; J;�1 ˇ̌
HLD

ˇ̌ � 1; 1; 0; J;�1˛

˙2 ˝C1; 1; 0; J;C1 ˇ̌
HLD

ˇ̌� 1; 1; 0; J;�1˛�

D 1

2

�
0C 0˙ 2 ˝�1; 1; 0; J;�1jHLDj ˙ 1; 1; 0; J;˙1˛�

D ˙1
2
q

�fJ.J C 1/� 0g1=2fJ.J C 1/� 0g1=2�

D ˙1
2
qJ.J C 1/

D
3…1

e

f
jHj3…0

e

f

E
, an Off-Diagonal Contribution

This term contributes to the ƒ-doubling in 3…1 with the same J -dependence as the

direct diagonal
D
3…1

e
f
jHLDj3…1

e
f

E
term.

�
3…1

e

f
jHLDj3…0

e

f



D 1

2

�˝C1; 1; 0; J;C1jHLDj C 1; 1;�1; J; 0˛

C ˝�1; 1; 0; J;�1jHLDj � 1; 1; 1; J; 0˛

˙ ˝C1; 1; 0; J;C1jHLDj � 1; 1; 1; J; 0˛

˙ ˝�1; 1; 0; J;�1jHLDj C 1; 1;�1; J; 0˛�

D 1

2

�
0C 0˙ 2 ˝C1; 1; 0; J;C1jHLDj � 1; 1; 1; J; 0˛�

D �1
2
.p C 2q/Œf2� 0gfJ.J C 1/� 0g�1=2

D �2�1=2.p C 2q/ŒJ.J C 1/�1=2
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For a 3… state, E.0/
�
3…1

� �E.0/
�
3…0

� D A,

˝
3…1; J jHj3…0; J

˛ D �BŒ2J.J C 1/�1=2;

thus the contribution to ƒ-doubling in 3…1 via the
D
3…1;

e
f
jHLDj3…0;

e
f

E
term is

E
�
3…1e

� �E �
3…1f

� D
��B C 1

2
.p C 2q/�2 .2x/
A

�
��B � 1

2
.p C 2q/�2 .2x/
A

D �2B.p C 2q/.2x/
A

x D J.J C 1/

ƒ-Doubling in a 1… State Due to an Energetically Remote 3†C State

This situation is not discussed in the Brown and Merer paper [16] because it arises
from a higher than second-order interaction path

1…
HSO
������! 3†C1

HROT
�������! 3†C0�

HROT
�������! 3†C1

HSO
������! 1…:

However, the two HROT steps in the interaction path cause the 3†C state to reach
case (b) limiting behavior, where N is the rotational pattern-forming quantum
number. The rotational energy levels go as BN.N C 1/, even though J (and not
N ) is a rigorously good quantum number. To an excellent approximation, the e-
symmetry levels are pure 3†C1 states, which have energies BJ.J C1/ whereN D J
(the F2 spin-component) and the two f -symmetry components for each value of
J are 50:50 mixtures of 3†C1 and 3†C0 characters (the F1 and F3 spin-components
have, respectively,N D J C 1 and N D J � 1 characters)

ˇ̌
ˇ̌3†C; J; F1

F3
; f



D 1

2

�ˇ̌
3†C1

˛C ˇ̌
3†C�1

˛�˙ 2�1=2 ˇ̌
3†C0�

˛

with

E
.0/
† .J; f; F1/ D E.0/

† CB†ŒJ.J C 1/� 2J �
E
.0/
† .J; f; F3/ D E.0/

† CB†ŒJ.J C 1/C 2.J C 1/�
E
.0/
† .J; e; F2/ D E.0/

† CB†J.J C 1/
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and

E
.0/
…

	
J;
e

f



D E.0/

… C B…J.J C 1/

�…† � E.0/
… � E.0/

† :

If one treats the spin–orbit .�� D 0/ interaction between the 1… and 3†C states
by second-order non-degenerate perturbation theory, the level shift of the 1… f -
symmetry component caused by the 3†C state is larger than that for the e-symmetry
component (Fig. 4.2).

ELD
… D E…e �E…f D

�
HSO

�2

�…†

�
1
2

�
HSO

�2

�…† � 2B†.J C 1/ �
1
2

�
HSO

�2

�…† C 2B†.J /

D 1

2

�
HSO

�2
��

1

�…†

� 1

�…†� 2B†.J C 1/
�
C

�
1

�…†

� 1

�…†C 2B†.J /
��

Fig. 4.2 ƒ-doubling in a 1… state caused by a lower-lying 3†C state. The energy separation
between the 1… and 3†C states is�…†.J /
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D 1

2

�
HSO

�2
�
�…† � .2B†.J C 1/ ��…†/

�…†Œ�…† � 2B†.J C 1/� C
�…† C 2B†J ��…†

�…†Œ�…† � 2B†.J /�
�

D B†
�
HSO

�2

�…†

� �.J C 1/
�…† � 2B.J C 1/ C

J

�…† C 2B.J /
�

D B†
�
HSO

�2

�…†

� �4B†J.J C 1/��…†

�2
…† � 4B2

†J.J C 1/� 2B†�…†

�

� B†
�
HSO

�2

�3
…†

Œ4B†J.J C 1/C�…†�

4.5 Summary

The infinite dimension exact H is reduced to a finite dimension Heff fit model.
The Heff is a parametrically parsimonious replacement for the exact H [1]. It is
designed to reproduce all spectroscopic measurements to experimental accuracy. It
is usually capable of extrapolation to energy levels and molecular properties that are
not directly experimentally sampled in the data set that is actually fitted. One caution
is that the parameters in the experimentally determined Heff are not necessarily
physically or numerically equivalent to the parameters of the same name that are
determined by a high-level ab initio computation.

Three main topics are discussed:

(a) The internuclear distance dependences of molecular properties are indirectly
determined from the v; J dependence of energy levels in combination with a
power series expansion of R-dependent operators, where R D Q C Re [2]. Q
is the displacement from equilibrium and is the natural variable of harmonic
oscillator basis functions. All matrix elements and vibrational selection rules
of integer powers of Q are trivially obtained by replacing Q by the creation-
annihilation operators, a and a� [10].

(b) Interactions of the states of interest with energetically remote states are dealt
with by non-degenerate perturbation theory [5, 6], second-order for the energies
ŒEvJ D E.0/

vJ C E.1/
vJ C E.2/

vJ � and first-order for the wavefunctions

2

4jvJ i D jvJ i.0/ C
X

en;ven ;J

aen;ven ;J jen; ven ; J i.0/
3

5 :

This procedure cannot work when the states of interest are quasi-degenerate
and the effects of energetically remote states must involve corrections to the
off-diagonal matrix elements among the quasi-degenerate states of interest.

(c) The Van Vleck Transformation [3] provides the needed corrections to the Heff.
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Examples treated include effects that arise from the R-dependence of the
“rotational constant” operator, B.R/. These include centrifugal distortion, De ,
and the value of the vibration-rotation interaction parameter, ˛e [2]. A key point
is that matrix elements between the v and v0 basis states that correspond to
the same value of �v must be summed first and then squared. The interference
between the�v D ˙1matrix elements of the Q1 term in the expansion ofB.R/
and the bQ3 anharmonic term give a value of ˛e with the correct (empirically
observed) sign. ƒ-doubling arises from spin–orbit and �BJ˙L� C BL˙S�
interactions between jƒj > 0 states and †-states [13, 16]. The o; p; q ƒ-
doubling parameters are defined and briefly discussed. The information in
this lecture sets the stage for treatment of centrifugal distortion and rotation-
vibration interactions in polyatomic molecules, where the A, B , C rotational
constant operators are expressed as a power-series expansion of displacements
from equilibrium for all 3N � 6 vibrational normal modes (N is the number of
atoms).
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Chapter 5
Rotation of Polyatomic Molecules

The effective Hamiltonian, rotational energies, transition selection rules, and
notation for the rotational energy levels of an asymmetric top are derived and
discussed [1, 2]. The effective Hamiltonian is factored into four sub-blocks by
the Wang transformation. Depending on whether the transition moment lies along
the body-fixed a, b, or c axis, one obtains easily-remembered transition selection
rules. A diatomic molecule has one rotational constant, B, whereas a nonlinear
polyatomic molecule has three rotational constants, A, B, and C, each of which is
proportional to the reciprocal of one of the three principal axis moments of inertia,
IA, IB, and IC. Derivatives of each of these reciprocal moments of inertia with
respect to each of the 3N-6 normal mode displacements, give vibration-rotation
interaction and centrifugal distortion constants analogously to their perturbation
theoretic derivation for a diatomic molecule.

5.1 Introduction

Rotation is the common feature of all gas phase molecular spectra:

• Pure Rotation: Microwave
• Rotation-Vibration: Infrared
• Rotation-Vibration-Electronic: Visible and UV

We need to know how to go from spectrum to quantum number assignment to
parameters in a fit model to symmetry information about properties of the molecule
beyond rotation (for example, what is the body frame orientation of the permanent
electric dipole moment? What are the vibrational or vibration-electronic symmetry
species of the initial and final states?).

© Springer International Publishing Switzerland 2015
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The notation used to label rotational energy levels, JKa;Kc , and transitions
between rotational levels, e.g. pQ.625/b means J 00 D 6, K 00a D 2, K 00c D 5, J 0 D 6,
K 0a D 1, and K 0c D 6 (b-type transition, transition moment along the body frame
b-axis).

The information covered in this lecture is treated more rigorously and completely
in Chap. 6 of Spectra of Atoms and Molecules by Peter F. Bernath, Oxford, 1995.
Videos of my lectures #22–#24 appear on MIT’s Open CourseWare (OCW) web
site:

http://ocw.mit.edu/courses/chemistry/5-80-small-molecule-spectroscopy-and-
dynamics-fall-2008/

It all begins with the Hamiltonian

H D TC V

for a free rotor, the potential energy V .	; �/ D 0
kinetic energy: T D 1

2
mv2

For rotation of a mass point in a plane (Fig. 5.1)

v D !r
p � mv D mr! linear momentum

` � I! angular momentum, I is moment of inertia (�r2
for diatomic molecules)

T D 1

2
mv2 D p2

2m
D `2

2I
what is the algebraic form of I ‹

.mr!/2

2m
D .I!/2

2I

mr2!2

2
D I!2

2
I D mr2 :

Fig. 5.1 Rotation of a mass
point in a plane at constant
distance, r , from the
coordinate origin

http://ocw.mit.edu/courses/chemistry/5-80-small-molecule-spectroscopy-and-dynamics-fall-2008/
http://ocw.mit.edu/courses/chemistry/5-80-small-molecule-spectroscopy-and-dynamics-fall-2008/
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Now we need to generalize this to a rigid body consisting of point masses, m˛,
located at Er˛ in a coordinate system with origin at the center of mass. This is not
trivial! We need to generalize I to matrix form:

0

@
`x

`y
`z

1

A D
0

@
Ixx Ixy Ixz

Iyy

Izz

1

A

0

@
!x

!y
!z

1

A

diagonal elements of I: Ixx D
X

˛

m˛.y˛ C z˛/
2 “moments of inertia”

off-diagonal elements of I: Ixy � �
X

˛

m˛x˛y˛ “products of inertia”

(all of this is derived in Bernath’s book) [1]

Trot D 1

2
E!�I E! D 1

2
.!x!y!z/

0

@ I

1

A

0

@
!x

!y
!z

1

A ;

which is a scalar quantity.
Now this form of Trot is not very useful. We want to put it into the form

Trot D È� 1
I
È

because we know how to handle quantum mechanical angular momentum matrix
elements: `2, `˙ D `x ˙ i`y , and `z.

But how do we think about the reciprocal of a matrix? Or any function of a
matrix?

I is real and symmetric. It can be diagonalized by a unitary transformation,
T�1 D T� (� means conjugate transpose)

QI D TIT� D
0

@
Ia 0 0

0 Ib 0

0 0 Ic

1

A

where Ia, Ib , and Ic are eigenvalues of I and a; b; c are orthogonal components of
the “principal axis system”. The labels a, b, c are assigned so that

Ia 
 Ib 
 Ic:
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It is usually possible to diagonalize I by inspection or (if there is a rotation
symmetry axis, Cn) by solving a 2 � 2 (quadratic) problem. I am not going to write
anything here about how to go from the molecular geometry to I and finally to QI.

If we have the eigenvalues of a matrix, we can do whatever mathematical
operations we want on the matrix by performing that operation on the eigenvalues
of that matrix, and then applying the inverse of the diagonalizing transformation to
the diagonal matrix, f .TIT�/,

f .I/ D T�f .TIT�/T:

For example

I�1 D T�

0

@
1= Ia 0 0

0 1= Ib 0

0 0 1= Ic

1

A T:

Let’s use this result to get OHrot into the desired form, expressed in terms of Ja, Jb ,
and Jc rather than !a, !b , and !c .

OT rot D 1

2
E!�I E!

but EJ D I E!

E! D 1

I
EJ

OT rot D 1

2
EJ � 1

I
I
1

I
EJ D 1

2
EJ � 1

I
EJ

f .I/ D T�f .TIT�/T

1

I
D T�

0

@
1= Ia 0 0

0 1= Ib 0

0 0 1= Ic

1

A T

OT rot D 1

2
EJ �T�

0

@
1= Ia 0 0

0 1= Ib 0

0 0 1= Ic

1

A T EJ

T EJ D EQJ D
0

@
Ja
Jb
Jc

1

A

EJ �T� D EQJ � D �
Ja Jb Jc

�
:
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We have the desired result

QTrot D 1

2
EQJ �QI�1 EQJ D 1

2

�
Ja Jb Jc

�
0

@
1= Ia 0 0

0 1= Ib 0

0 0 1= Ic

1

A

0

@
Ja
Jb

Jc

1

A

D J 2a
2Ia
C J 2b
2Ib
C J 2c
2Ic

:

Thus, when we replace EQ! in the kinetic energy expression by EQJ , we have

T rot D J 2a
2Ia
C J 2b
2Ib
C J 2c
2Ic
D AJ2a C BJ2b C CJ2c

where A;B;C are rotational constants

A � B � C;

and we are off to the races! It does not really matter how we got to this point. This
gives us the HROT from which we derive everything we need to know about the
rotational levels of a non-linear polyatomic molecule.

We want to work out the rotational energy levels, being aware of the non-
commutation of Ja, Jb , Jc .

These Ji operators are components of an angular momentum [see Sect. 2.8] and
must follow the commutation rule definition of an angular momentum [this is for a
“reversed angular momentum”, which is a counter-intuitive situation that arises for
components of a body-frame angular momentum that generates the rotation of the
body] [3]

(the minus sign is required for

a “reversed” angular momen-

tum, which is appropriate for

body frame rotational angular

momentum components.)

"ijk D C1 ijk are abc in cyclic order

D �1 ijk are abc in anticyclic order

D 0 if any 2 indices are repeated.

This commutation rule provides the most general and powerful path to derivation
of all angular momentum matrix elements, but we will not follow that path in this
lecture.
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It is necessary to assert that J2 and any one of Ja, Jb , or Jc are members of a
complete set of mutually commuting operators and that we can define a complete,
orthonormal, angular momentum basis set that has the properties

J2 jJKaM i D ¯2J.J C 1/ jJKaM i
Ja jJKaM i D ¯Ka jJKaM i

J˙ D Jb ˙ iJc
J˙ jJKaM i D ¯ŒJ.J C 1/�Ka.Ka � 1/�1=2 jJKa � 1M i

(JC becomes a “lowering” operator despite its + subscript)

JZ jJKaM i D ¯M jJKaM i
(Capital letters are used to denote laboratory-fixed components.)

We like to use complete basis sets that are eigenfunctions of frequently encoun-
tered operators, because this allows us to evaluate matrix elements without ever
explicitly evaluating an integral. For example

j mi D
X

J;K

aJK jJKMi

J2 j mi D
X

J;K

¯2J.J C 1/aJK jJKMi

where j mi is any angular momentum state, which can be expressed as a linear
combination of jJKMi states.

5.2 Rotational Energy Levels of Rigid Polyatomic Rotors

5.2.1 Symmetric Top

H D AJ2a C BJ2b C CJ2c

prolate top: B D C (cigar)

oblate top: A D B (frisbee)
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Hprolate D AJ2a C B.J2b C J2c/ .B D C/
J2 D J2a C J2b C J2c

J2b C J2c D J2 � J2a

Hprolate D AJ2a C B.J2 � J2a/ D .A� B/J2a C BJ2

E
prolate
JKa

D ˝
J 0K 0aM

ˇ̌
Hprolate

ˇ̌
JKaM

˛ D ıJ 0J ıK0

aKa
¯2Œ.A � B/K2

a C BJ.J C 1/�

Similarly, for oblate top

Eoblate
JKc D ¯2Œ.C � B/K2

c C BJ.J C 1/�:

Notice that the coefficient ofK2
a isA�B > 0 for prolate top, and ofK2

c isC�B < 0

for oblate top. The signs of A � B and C � B are determined by the convention
A � B � C .

The lowest allowed value of J is Ka for a prolate top and Kc for an oblate top.
There is no way that the magnitude of an angular momentum can be smaller than
one of its projections.

The energy levels have the following patterns (Fig. 5.2):
Since Ka (prolate top) and Kc (oblate top) can be positive or negative, every

jKj > 0 level is doubly degenerate. The actual eigenstates have definite parity and
have the symmetrized forms

jJ jKj˙i D 2�1=2ŒjJKi ˙ jJ �Ki�:

The K-doubling is analogous to ƒ-doubling in a diatomic molecule and the
degeneracy of K > 0 levels is lifted by interactions with non-degenerate K D 0

states (by various mechanisms).
It is possible to prove that every molecule with a Cn n > 2 rotational symmetry

axis (or an S4 improper rotation axis) is a symmetric top with a permanent electric
dipole moment exclusively along the symmetry axis.

Most molecules are not symmetric tops, but we use a linear combination of the
symmetric top basis states to describe their energy levels and eigenstates.

5.2.2 Asymmetric Top

A ¤ B ¤ C

We use a clever trick to manipulate the Hrot into a convenient form:

Hrot D AJ2a CBJ2b C CJ2c:
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For a “near prolate” top we do some simple operator algebra

BJ2b C CJ2c D
.B C C/

2
.J2b C J2c/C

.B � C/
2

.J2b C J2c/

J2b C J2c D J2 � J2a

J˙ D Jb ˙ iJc
J2C D J2b � J2c C iJbJc C iJcJb
J2� D J2b � J2c � iJbJc � iJcJb

J2C C J2� D 2
�
J2b � J2c

�
:

Thus

BJ2b C CJ2c D
B C C
2

.J2 � J2a/C
B � C
4

.J2C C J2�/

Hrot�prolate D B C C
2

J2 C
	
A� B C C

2



J2a C

B � C
4

�
J2C C J2�

�

B C C
2

� B:

Notice that all of the matrix elements of the operators in this Hamiltonian are easily
evaluated in the prolate symmetric top basis set.

But there is one non-trivial problem: the selection rules for J2C and J2� are
respectively �Ka D �2 and C2. Therefore we have some non-zero off-diagonal
terms in Hrot�prolate and we are eventually going to have to diagonalize this
Hamiltonian matrix.

The form of the oblate asymmetric top Hamiltonian is similar

Hrot�oblate D AC B
2

J2 C
	
C � AC B

2



J2c C

	
A� B
4



.J2C C J2�/

AC B
2
� B:

Notice that if B D C for prolate or A D B for oblate, both asymmetric top
Hamiltonians become identical to the corresponding symmetric top Hamiltonian.

Now we are going to simplify the asymmetric top Hamiltonian by a trick,
called the Wang Transformation. This transformation “block-diagonalizes” the
Hamiltonian according to two characteristics:

• Parity is rigorously conserved.
• The only non-zero matrix elements for both Hrot�prolate and Hrot�oblate have

a �K D ˙2 selection rule. This separates the even-K and the odd-K
states into two separate non-communicating groups. Overall, there are four
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Fig. 5.2 Energy level patterns for prolate and oblate symmetric tops

non-communicating groups. These are often labeled by the even/odd-ness of Ka

and Kc : ee, eo, oe, and oo.

We start with HROT in a signed-K basis (not yet symmetrized into the parity basis)
and perform a similarity transformation by this strange-looking matrix.
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So, for J D 2

X

0

BBBBB@

jJ D 2;K D 2i D j22i
j21i
j20i
j2 �1i
j2 �2i

1

CCCCCA
D

0

BBBBB@

2�1=2Œ� j22i C j2 �2i�
2�1=2Œ� j21i C j2 �1i�

j20i
2�1=2Œj21i C j2 �1i�
2�1=2Œj22i C j2 �2i�

1

CCCCCA
:

You obtain a transformed HROT that has structure

XHX−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

:

�
��

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

��

�
��

The lines between the zeroes symbolize non-zero entries that you must calculate.
This transformed HROT can be rearranged into block diagonal form

0
BBBB@

even K even parity 0 0 0

0 odd K even parity 0 0

0 0 even K odd parity 0

0 0 0 odd K odd parity

1
CCCCA
:

This form of HROT suggests correctly that there are four symmetry species for
asymmetric top basis functions. Note that this symmetry classification of the
rotational wavefunctions has nothing at all to do with the point group of the
molecule. Even a molecule that has only the identity symmetry operation still has
rotational levels belonging to four distinct symmetry species. This will prove useful!
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It will also become a little more intuitive when we use the prolate–oblate correlation
diagram to reveal the qualitative pattern of the eigen-energies and theKpKo notation
for labeling rotational energy levels. This is the most important point in this
entire lecture!

5.3 Correlation Diagrams: WHY?

Correlation diagrams are a good way of capturing the qualitative pattern of energy
levels that would have been revealed by laborious application of second-order
perturbation theory. They combine the trivially obtainable patterns for simpler
problems (symmetric prolate and symmetric oblate tops) with rigorous symmetry
selection rules and NOTHING ELSE! (Fig. 5.3)

5.3.1 Prolate–Oblate Top Correlation Diagram

Recall that prolate tops have a term .A � B/K2
a which is large and positive while

oblate tops have a term .C � B/K2
c which is small and negative. Consider, for

example, only J D 4.
Crudely, depending on the value of A�B

A�C (0 for oblate, 1 for prolate) you can draw
a vertical line through the energy levels in Fig. 5.3 and get a good estimate of the
expected energy level pattern. Actually Ray’s asymmetry parameter

� � 2B � A� C
A� C

is better (� D �1 for prolate and � D C1 for oblate).
Some facts

• We draw the connecting lines in this particular pattern by obeying the “non-
crossing rule.” Since all of these levels belong to the same value of the rigorously
conserved quantum number, J , there can be no level crossings, only avoided
crossings. Levels of opposite parity with the same J can cross, but the pattern in
the above diagram is the only pattern of connections that leaves no orphan levels.
Every asymmetric top eigenstate must connect to a prolate top eigenstate in the
limitB D C and to an oblate top eigenstate in the limitA D B . WE USE BOTH
THE PROLATE AND OBLATE TOP K-values to label each state uniquely.

• JKa;Kc state labels are very instructive. Near the prolate limit, Ka gives the
approximate projection of J on the a-axis. For each Ka there are two possible
Kc values and they serve merely as indices. They do NOT tell anything about the
projection of J on the c-axis. Near the oblate limit, Kc gives the projection of J
on the c-axis and Ka is merely an index.
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Fig. 5.3 Prolate–Oblate correlation diagram. This figure is a simplified version of Fig. 4.1 from
Townes and Schawlow [4]

• For each value of J there are 2J C 1 energy levels. They may be divided into
four groups of definite symmetry [the number of levels in each group is given in
the two columns of the table below]: e is for even, o for odd, the first letter is for
Ka, the second letter forKc .

even J odd J
ee J=2C 1 .J � 1/=2
oo J=2 .J C 1/=2
eo J=2 .J C 1/=2
oe J=2 .J C 1/=2

• The energy separation between the two members of eachK ¤ 0 (K-doubling or
“asymmetry splitting”) is largest forK D 1. This is a simple consequence of the
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�K D ˙2 selection rule for J2C and J2�. The K-doubling in K D 1 is evaluated
as follows:

2�1=2ŒhJKa D 1j ˙ hJKa D �1j� �
ˇ̌
ˇ̌B � C

4
.J2C C J2�/

ˇ̌
ˇ̌ 2�1=2ŒjJKa D 1i

˙ jJKa D �1i�

D 1

2

B � C
4

�˝
JKa D 1jJ2�jJKa D �1

˛

˙ ˝
JKa D �1jJ2CjJKa D C1

˛�

D 1

2

B � C
4

˚
2ŒJ.J C 1/�1=2ŒJ.J C 1/�1=2�

D .B � C/J.J C 1/
4

:

• The K-doubling is largest for a given J in Ka D 1 for a near prolate top with
J1;J�1 always above J1J . TheK-doubling is also largest forKc D 1 in an oblate
top, with JJ1 always above JJ�1;1.

• There are two kinds of levels, those withKaCKc D J andKaCKc D JC1. The
sign of theK-doubling of near prolate levels is always JKa;J�Ka above JK;J�KC1
(because of the negative sign of the coefficient of J2c in the oblate limit). The sign
of the K-doubling of near oblate levels is always JJ�KcC1;Kc above JJ�Kc ;Kc
(because of the sign of the coefficient of J2a in the prolate limit).

• The asymmetry splitting is largest whenK � J .

5.3.2 Assignments of Rotational Transitions

There are many qualitative conclusions that may be drawn from the correlation
diagram. These are based on the A � B � C (or Ia 
 Ib 
 Ic) relative
magnitudes of the rotational constants. These qualitative patterns are often the basis
for symmetry assignments or for a warning that a perturbation by an accidentally
close-lying level that belongs to a different electronic-vibrational state is occurring.
But how do we determine the JKa;Kc assignments of observed energy levels? From
the selection rules for electric dipole allowed transitions! These selection rules are
very simple and are closely related to the selection rules for electronic transitions in
diatomic molecules.

Recall: A �� D 0 transition is called a parallel transition. The transition
moment is along the internuclear axis, which we call “z” or “a” (� is analogous
to K). �� D 0 transitions have weak or absentQ branches .�J D 0/.

A �� D ˙1 transition is called a perpendicular transition. The transition
moment is perpendicular to the internuclear axis.�� D ˙1 transitions have strong
Q branches.
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We generalize to asymmetric tops by making a logically simple but elegant
extension. If the permanent electric dipole moment is along one of the a, b, or c
axes, then we say that the corresponding projection quantum number changes by an
even number (zero is even) and the other projection quantum number(s) change by
an odd number (one is an odd number). So here is the magic decoder:

a-type transitions: �Ka D even,�Kc D odd (weakQ transitions in pro-
late limit, strong Q in near
oblate limit)

b-type transitions: �Ka D odd,�Kc D odd (strongQ branches)

c-type transitions: �Ka D odd,�Kc D even (weak Q in near oblate,
strongQ in near prolate)

This is easy to remember!
Sometimes the permanent dipole moment has projections on more than one of

the a, b, or c axes. Then one has “mixed-type” transitions, the relative amplitudes
of which tell us the relative magnitudes of the body-fixed permanent dipole moment
along each of the a, b, or c axes. [In special cases there can be interferences between
the transition amplitudes associated with two of the non-zero dipole moment
projections. The sign of the interference effect gives the relative signs of the two
dipole moment components.]

Examples of a, b and c-type transitions.
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For example, the 414 ! 524 transition is denoted as rR.414/c .
[Be careful. The above example violates the strict convention in molecular

spectroscopy: specify upper state (not initial state!) first. This notation for rotational
transitions is more appropriate to describe vibration-rotation or electronic-vibration-
rotation transitions. In a vibrational or an electronic-vibrational band, there is always
a large energy difference between the upper state (all vibrational and rotational
quantum numbers expressed with a single prime) and the lower state (all quantum
numbers expressed with a double prime). Regardless of whether the transition is
observed in absorption or emission, the name of the rotational transition is the same,
and the notation specifies�K D K 0�K 00,�J D J 0�J 00, the lower state rotational
quantum numbers J 00K00

a ;K
00

c
and the a, b, or c electric dipole component type of the

transition.]

5.4 Vibrational Dependence of Rotational Constants

For anN -atom molecule there are 3N �6 vibrational normal modes. For a diatomic
molecule (which can have only one normal mode) we used perturbation theory
to compute the expected values of the centrifugal distortion constant, D, and
the vibration-rotation interaction constant, ˛. We noticed that the value of ˛ is
determined by both �v D ˙1 off-diagonal matrix elements of dB.R/

dQ
OQ and the

�b OQ3 cubic anharmonicity term in the potential, V.Q/. If we neglect �b OQ3, then
we get the wrong sign for ˛e! B.R/ is very large near the (hard) inner turning point
(1=R2 blows up) and small near the (soft) outer turning point. As v increases the
wavefunction amplitude accumulates near the outer turning point. As a result, the
softer turning point wins in the vibrational average of B.R/. We want to use this
sort of insight to be able to predict the ˛ constants for a polyatomic molecule.

Bad news! For a polyatomic molecule there are three rotational constants, A, B ,
and C , and there are contributions to D and ˛ from each of the three rotational
constants for each of the 3N � 6 normal modes. That will be an enormous amount
of perturbation theory (the perturbation theory is do-able, but not by normal sane
humans!). A computer is trained to compute derivatives of 1=Ia, 1=Ib, and 1=Ic with
respect to each of the vibrational normal modes. Then the crank is turned and we get
˛Ai , ˛Bi , and ˛Ci where i specifies which normal mode. Similarly, the contributions
of each of the normal modes to the various centrifugal distortion constants can be
computed.

The classic paper is “Simplification of the Molecular Vibration-Rotation Hamil-
tonian,” by J.K.G. Watson [5].
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Chapter 6
Quantum Beats

A short pulse of radiation can excite transitions into two or more near-degenerate
eigenstates from a common initial eigenstate, provided that the pulse duration is
sufficiently short so that its uncertainty-broadened energy width “covers” several
non-degenerate eigenstates. This produces a coherent superposition of several
eigenstates, and, depending on the detection scheme, results in a sinusoidally
oscillating and exponentially decaying signal, usually fluorescence. The oscillations
are at the frequencies of the level spacings between most of the pairs of coherently
excited eigenstates [1–4]. It is pedagogically useful to make a distinction between
polarization quantum beats [5–7] and population [8–10] quantum beats. The key
concept is “bright state” and “dark state”. Brightness and darkness are not universal
qualities, they are dependent on the nature of the excitation and detection schemes.
Quantum beats provide a very high-resolution measure of the level structure, which
is obtainable with a very crude, low-resolution pulsed laser [4, 6, 9]. Stark [7] and
Zeeman [6] quantum beats are usually of the “polarization” type, whereas zero-field
[9, 10] and field-tuned [6, 7] spectroscopic perturbations usually yield quantum beats
of the “population” type.

6.1 Introduction

A short pulse of electromagnetic radiation creates a coherent superposition of
several eigenstates. These eigenstates are excited from a single common eigenstate
(Fig. 6.1).

There are two requirements for the observation of quantum beats [1]:

(a) the excitation pulse must be sufficiently short, of duration � , so that�E21 . h
��

.
Thus the uncertainty width of the pulse covers the pair of eigenstates spaced
by �E .

© Springer International Publishing Switzerland 2015
R.W. Field, Spectra and Dynamics of Small Molecules,
Lecture Notes in Physics 900, DOI 10.1007/978-3-319-15958-4_6
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Fig. 6.1 Eigenstates excited
by a short excitation pulse
from a single common
eigenstate

(b) The detection scheme must be capable of detecting a signal from both level 1
and level 2.

The coherent superposition state gives a sinusoidally oscillating and exponen-
tially decaying signal. The oscillations are called Quantum Beats.

There are two basic flavors of Quantum Beats:

• POLARIZATION BEATS [5–7]
• POPULATION BEATS [8–10]

The outline of this lecture:

(a) A reminder of the Time Dependent Schrödinger Equation (TDSE) and the
behavior of its solutions for a time-independent H [11].

(b) “Bright” and “Dark” States
‰.t/ for a 2-state coherence [1]
P.x; t/ D ‰?.x; t/‰.x; t/ probability density [12]
A.t/ D R

dx‰?.x; 0/‰.x; t/ autocorrelation function [13]
A Zewail-like wavepacket experiment [21, 23]

(c) Quantum Beats
The two-level problem: from basis states .	0; 	1/ to eigenstates . C;  �/
Two non-decaying states
Inclusion of decay [14]
Inclusion of detectability of each eigenstate
Population Quantum Beats [8]
Polarization Quantum Beats [5]

Zeeman Quantum Beats [6]
Stark Quantum Beats [7]

What can we measure?
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6.2 Time-Dependent Schrödinger Equation (TDSE)

We consider only a time-independent H [11]. The TDSE is

i¯@‰
@t
D H‰:

The following discussion is a bit of a fraud because we will imagine experiments
where a non-eigenstate is suddenly produced by some pulsed process. If we expand
‰ at t D 0 as a linear combination of eigenfunctions of H

‰.0/ D
X

j

aj j

with eigen-energiesEj , then the solution to the TDSE is

‰.t/ D
X

j

aj j e
�iEjt=¯:

The fact that this ‰.t/ satisfies the TDSE is verified by

i¯@‰
@t
D i¯

X

j

	�iEj
¯



aj j e

�iEjt=¯

D
X

j

Ej aj j e
�iEjt=¯

and

H‰.t/ D
X

j

aj e
�iEjt=¯H j D

X

j

aj e
�iEjt=¯Ej j ;

so ‰ satisfies the TDSE.
We know, if we have solved the time-independent Schrödinger equation, how

to write a solution of the TDSE. This means, if we know ‰.0/ we can trivially
get ‰.t/.

6.3 “Bright” and “Dark” States

Bright and Dark are properties of the specific experimental setup [15]. They are not
universal properties of a given  j . For example, suppose we have an experiment
where we excite, from the v00 D 0 level of the electronic ground state, g, to an
excited state, e (Fig. 6.2).
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Fig. 6.2 Bright and dark
states

If the molecular constants for the g and e states are nearly identical, then there is
a Franck–Condon propensity rule, �v D 0. State e; v0 D 0 is bright for excitation
from g; v00 D 0 with detection of fluorescence at �00 � �11. State e; v0 D 1 is dark
for excitation from g; v00 D 0, but it would be bright for excitation from g; v00 D 1.

Now for a more interesting case. The g-state and e-state have quite different
molecular constants. The Franck–Condon factors for excitation and fluorescence
are not diagonal. But suppose only g; v00 D 0 is thermally populated. Then we have
a level diagram (Fig. 6.3).

There are many vibrational levels of the e state that can be populated from
the g; v00 D 0 state. So it seems like all of the e levels are bright. But this is
not necessarily true! We can use a monochromator to select fluorescence from a
specific e, v0 level to a specific g; v00 level. If the resolution of the monochromator is
sufficient and we are lucky that there is no accidental overlap of the �ev0 ;gv00 transition
frequency with that of an emission transition from a different e; v0 level, then only
the selected e; v0 level is bright. The rest are dark, with respect to this specific
experimental setup [10].

Suppose we do an experiment where the excitation pulse is so short

�texcitation >
¯

�Eev0D1;ev0D0
;

that its Fourier transform width overlaps the energies of both the ev0 D 1 and ev0 D 0
levels. We prepare a coherent superposition state

‰.0/ D a0 e;v0D0 C a1 e;v0D1

‰.t/ D a0e�iEe;v0
D0t=¯ e;v0D0 C a1e�iEe;v0

D1t=¯ e;v0D1

D e�iEe;v0
D0t=¯Œa0 e;v0D0 C a1e�i!10t e;v0D1�
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Fig. 6.3 A level diagram for
transitions between the e and
g states, which have different
potential energy surfaces

The probability density, P.x; t/, is

P.x; t/ D ‰?.t/‰.t/ D ja0j2j ev0D0j2 C ja1j2j ev0D1j2 C a0a?1 ev0D0 ?ev0D1ei!10t

C a?0a1 ?e;v0D0 ev0D1e�i!10t :

If the wavefunctions and mixing coefficients are all real (the usual case for
vibrational states), then since

ei� C e�i� D 2 cos �

P.x; t/ D ‰?.t/‰.t/ D a20 
2
e;v0D0 C a21 2e;v0D1„ ƒ‚ …

time-independent and pos-
itive for all x

C 2a0a1 e;v0D0 e;v0D1 cos!10t„ ƒ‚ …
time-dependent oscillating
betweenC and � at each x

:
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Probabilities can never be negative, at any t or x. For a worst case

a0 D a1 D 2�1=2
� e;v0D0.xmax/ D  e;v0D1.xmax/ D c

‰?.xmax; t/‰.xmax; t/ D 1

2
.2c2/� 21

2
c2 cos!10t

D c2.1 � cos!10t/ � 0 for all t:

What will we observe in the undispersed fluorescence? This requires integration
over x, because the emission from e; v0 D 0 and e; v0 D 1 comes from all values of
the coordinate, x

Z
dx‰?.x; t/‰.x; t/ D a20 C a21:

The cross term with the interesting time-dependence vanishes because the e; v0 D 0
and e; v0 D 1 wavefunctions are orthogonal. Even if the time-dependent term could
be tricked into not vanishing, the electronic bandwidth of normal photomultipliers
used to monitor fluorescence would be far too small (time response�1 ns) to capture
oscillations at a typical vibrational frequency, ! � 1; 000 cm�1.

6.4 Dynamics

An eigenstate is a “stationary state.” There is no time evolution. If a short-pulse
excitation event creates a coherent superposition of eigenstates, ‰.Q; t/, many
properties of this non-stationary state evolve with time. This evolution can be in state
space (see Sect. 6.5 on Quantum Beats) or coordinate-momentum (Q,P) space, one
Qi; Pi pair for each vibrational normal mode. If all of the relevant time-independent
eigenstates are well represented by a time-independent effective Hamiltonian, Heff,
then all imaginable dynamics may be predictively computed from the Heff. All
dynamics is encoded in the frequency domain spectrum, as represented by the Heff.

However, there are many situations in which an experimentally achievable
frequency domain spectrum contains insufficient information to fully determine
all relevant terms in the Heff. For example, (a) when highly excited eigenstates
of a small molecule are embedded in multiple continua and (b) when the shapes
of the repulsive potential energy surfaces and the bound�free interaction matrix
elements are unknown. It is difficult but often not impossible to obtain the
information required to fully determine the Heff by frequency domain pump/probe
and “action”spectroscopies. In large molecules and in condensed phase systems
(the ultimate of a “large molecule”) the density of eigenstates is so large that one
has multiple overlapping quasi-continua. The route to a complete representation
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of dynamics by frequency-domain spectroscopy via an experimentally determined
Heff is impassable. Time-domain techniques offer exciting possibilities for direct
observation of molecular dynamics.

Ahmed Zewail was awarded the 1999 Nobel Prize in Chemistry for his Fem-
tosecond Transition State (FTS) spectroscopy experiments [16]. Using a short
duration excitation pulse to excite a coherent superposition of discrete or continuum
vibrational eigenstates, a particle-like wavepacket is produced that is initially
localized in Q, P space. This wavepacket evolves on a single potential energy
surface subject to particle-like laws of motion (Ehrenfest Theorem) [17]:

hHit D constant; hPi it D m
d

dt
hXiit ;� hrV.X/it D

d

dt
hPit :

In addition, if the particle were to cross from one potential surface to another, the
relevant transition probability integrals accumulate in the stationary phase region
(conservation of position and momentum) [18–20]. The classical mechanics of
particle-like motion and the collapse of the relevant part of the transition region
to the stationary phase region leads to localized mechanistic insights. The Zewail
FTS experiments [20–23] are appealing because they sample dynamics directly and
in a Q,P-localized sense.

The Zewail group used a subpicosecond pump/probe scheme to characterize the
dissociation mechanisms for the

ICN h������!I.2P3=2/C CN.X2†C/

and

NaI h������!Na.3 2S/C I.2P3=2/

photodissociation reactions.
The enormous impact and appeal of Zewail’s Femtosecond Transition State

(FTS) spectroscopy owes to the localized mechanistic picture it provides of
complicated and previously experimentally unviewable intramolecular dynamics
[20]. In Quantum Mechanics, we are used to calculating multidimensional integrals
(for N atoms, there are 3N-6 nuclear displacement coordinates,Q1;Q2; : : : Q3N�6,
denoted collectively as Q, and 3N-6 conjugate momenta,P1; P2; : : : P3N�6, denoted
collectively as P) to describe intramolecular dynamical processes. However, intu-
itive dynamical pictures are generally expressed as localized (reduced-dimension),
ball-and-spring, cause-and-effect mechanisms.

How do we get from delocalized multidimensional Quantum Mechanics to a sim-
ple sequence of localized events and the specific local features of potential energy
surfaces that control these localized events? The answer is that the vibrational
part of most Quantum Mechanical electronic transition integrals accumulates in
an extremely localized region of coordinate space in which the classical momentum
function is the same in both electronic states. This is the stationary phase region
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and the integrals may be evaluated based on a stationary phase approximation
[18, 19]. For a diatomic molecule in the i th electronic state, the classical momentum
function is

pi .x/ D ˙Œ2�.E � Vi .x//�1=2;

and the stationary phase point, xsp, for a transition between the i th and j th electronic
states is defined by the requirement that

pi .xsp/ D pj .xsp/:

An integral over the product of two rapidly oscillating functions accumulates in
the region of space where the two functions oscillate at the same spatial frequency
[19]. This is the basis of the “classical Franck–Condon principle” for electronic
transitions: �Q D 0 (vertical transitions) and �P D 0 (usually because P D 0

at turning points, for a turning point to turning point transition) [24]. After the
transition between electronic states occurs, the motion of the system, hQit and
hPit , away from the stationary phase point is governed by Newton’s laws (Classical
Mechanics) via Ehrenfest’s theorem [17].

The following discussions of two of the Zewail Group’s first examples of FTS
spectroscopy, (a) photodissociation of ICN [22] (Fig. 6.4) and (b) the effect of an
ionic/covalent potential energy curve crossing on photodissociation of NaI [23]
(Fig. 6.5), are framed in terms of localized pictures or “cartoons.” It is important
to remember that these are reduced-dimension, semi-quantitative pictures.

The pump pulse, with center energy hc=�1, causes a vertical transition from the
zero-point .v1 D 0; v2 D 0; v3 D 0/ vibrational level of the bound electronic
ground state (surface 0) to the unbound electronic excited state (surface 1). The
reaction coordinate is principally the I–CN bond-rupture.

The transition is represented by a vertical turning-point to turning-point arrow at
R0, not at Re . It is drawn from R0 rather than Re to indicate that selection of the
pump pulse center wavelength permits a small tuning range of the initial (t D 0)
I–CN bond length. The wavepacket is born (t D 0) at R0 on potential surface 1.

It is appropriate to call this an example of transition state spectroscopy because
the experiment samples a dynamical property in addition to the length of the
breaking bond. It samples the energy of the CN B2†C�X2†C electronic transition
as a function of the RI–CN bond length. As the CN fragment moves away from
the I atom, with increasingly positive momentum, the classical momentum of the
CN fragment increases subject to a force equal to the negative gradient of the V1
potential. As this localized motion occurs, the vertical CN B–X electronic transition
energy increases. This RI–CN dependent CN B–X transition energy is represented in
the figure as the vertical energy separation between potential surfaces 1 and 2.

The probe pulse samples the time dependence of this B–X transition energy.
Since total energy is conserved, the I–CN initial momentum at R? on V2 is the same
as that on V1. This is the reason why it is customary to draw the vertical transition
arrow (of length hc=�?2 ) from V1.R

?) to V2.R?), without cluttering the cartoon with
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Fig. 6.4 Pump/probe scheme for photodissociation of ICN (Fig. 1 of [21]). This is a reduced
dimension representation of three singlet potential energy surfaces of ICN: the bound ground
electronic state, V0 with minimum at Re , an excited unbound state, V1, which dissociates to
CN(X2†C) and I(2P3=2), and a higher energy unbound state, which dissociates to CN(B2†C) and
I(2P3=2). A t D 0 pulse from the pump laser, with center wavelength �1, excites a vertical turning-
point-to-turning-point (P0 D 0, P1 D 0) transition at R D R0 > Re to the V1 potential surface.
The wavepacket on the V1 potential surface experiences a force in the increasing RI–CN direction,
which causes the PI–CN momentum to increase monotonically with time. At t D � , a pulse from
the probe laser, with center wavelength �?2 or �1

2 probes for the arrival of the wavepacket at
RI–CN D R? or R1. The energy of the vertical (�R=0) and momentum-conserving (�P=0)
transition also increases monotonically with time as the wavepacket travels outward on V1. This
V2�V1 transition is essentially an excitation of the CN B�X electronic transition in the presence
of the departing I atom. The RD RI–CN D R? Optically Coupled Region (OCR) is interrogated by
a probe pulse with center wavelength �?2 > �

1

2 , where �1

2 is the wavelength of the free CN B�X
v0 D 0 � v00 D 0 band. The detected signal is CN B–X spontaneous fluorescence. Reproduced
with permission from Fig. 1 in M.J. Rosker, M. Dantus, and A.H. Zewail, “Femtosecond real-time
probing of reactions. I. The technique,” J. Chem. Phys. 89, 6113–6127 (1988). Copyright 1988,
AIP Publishing LLC

the identical I–CN kinetic energies (at R?) on the potential surfaces of electronic
state-1 and state-2.

The pump pulse creates a t D 0 wavepacket at RI–CN D R0 on state 1. When
the probe pulse is chosen to have center energy hc/�?2 smaller than hc/�12 , which
is the free CN B–X transition energy, it vertically transfers part of the outward-
moving wavepacket from state-1 to state-2 at RI–CN D R?. By varying the time
delay between pump and probe pulses, the probe pulse “clocks” the transit of the
wavepacket through R D R? (both arrival time and time-width of the wavepacket).
If the pump/probe time delay is too short or too long, and none of the wavepacket
is in the “Optically Coupled Region (OCR)” of the state-1 potential energy surface,
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nothing happens. Thus, at t D1, all of the CN excited to state-1 by the pump pulse
at t D 0 ends up in the X2†C state of free CN and is not detected. However, if part
of the wavepacket is in the OCR when the probe pulse arrives, some excitation via
a vertical transition to state-2 occurs. All of the ICN molecules excited to state-2
eventually decay into the B2†C state of CN by t D 1 and are detected via their
B–X spontaneous fluorescence. It does not matter that the radiative lifetime of the
B2†C state of free CN is > 10 ns, the sub-picosecond clocking of the wavepacket
motion is based on the pump/probe time delay. If the center energy of the probe pulse
is tuned to the free CN B–X transition energy, hc=�12 , then all of the ICN initially
excited by the pump pulse to state-1 will be excited by the probe pulse to state-2 at
long pump/probe time delay and detected as CN B–X spontaneous fluorescence.

More information about the photodissociation of ICN could be obtained by using,
in addition to the sub-picosecond pump and probe lasers, a nanosecond tunable
laser to monitor individual vibration-rotation populations of the CN photofragment.
Such a scheme would provide energy resolution for product state detection without
compromising the time resolution of the pump/probe scheme.

The adiabatic NaI X1†C electronic state is NaC, I� ionic for R < 6:93Å and
Na(32S), I(2P3=2) covalent for 6.93 Å< R < 1 as the result of an ionic/covalent
crossing of the diabatic potential curves.

The pump pulse creates a narrow-�R wavepacket near the inner wall of
the electronically excited state by a vertical excitation from the v D 0 level of the
X-state. The nuclear wavepacket is born at t D 0 in the covalent region of the
excited state with �zero Na–I momentum. It experiences a very strong impulsive
force in the +R direction, owing to the near-vertical inner wall and the relatively flat
bottom of the electronically excited (diabatic) potential energy curve.

As the wavepacket makes its first pass outward through the curve-crossing
region, it splits into two parts; one part moving on the�flat (unbound) lower-energy
covalent potential curve and the other part on the attractive (bound) higher-energy
ionic potential curve. The Landau-Zener model [25] determines how the wavepacket
fractionates between the ionic and covalent potentials, based on the velocity of
the wavepacket near R D 6:93Å and the size of the electronic ionic�covalent
interaction matrix element (which is equal to one-half the vertical separation of the
two adiabatic potential curves at 6.93 Å). Fast-passage and a small ionic�covalent
interaction matrix element both favor ionic$covalent interconversion. If the con-
version probability is ˛, then after the first crossing the relative amplitudes of the
ionic and covalent wavepackets are, respectively .1 � ˛) and ˛ (Figs. 6.5 and 6.6).

After the wavepacket bifurcates at its first outward passage through the curve-
crossing region, the covalent part (˛) irreversibly separates into ground state Na and
I atoms at long-t and large-R and the ionic part (1�˛) is reflected inward at the outer
wall of the ionic curve. Its return voyage takes it though the curve-crossing region,
where it can once again bifurcate, but this bifurcation gives rise to two inward-
traveling (negative momentum) wavepackets (conservation of momentum at the
curve crossing): ionic .1�˛/2, covalent ˛.1�˛/. There is no new outward-traveling
wavepacket formed on the covalent curve! The two inward-traveling wavepackets
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Fig. 6.5 Wavepacket transit through an ionic�covalent potential energy curve crossing in NaI
(Fig. 1 of [23]). The diabatic (solid lines) NaC, I� and Na, I potential energy curves cross at
Rx D 6:93Å. The avoided crossing between the adiabatic potential curves is shown as dashed
lines. At t D t0 the 310 nm pump pulse creates a wavepacket at the inner turning point of
the covalent (Na 2S; I2P3=2) potential curve at R�Re.X1†C) and PD 0. By adjusting the
center wavelength of the pump pulse, the center total-energy (electronic plus vibrational) of
the wavepacket can be adjusted between 30,000 and 34,000 cm�1. The excitation energy of the
ionic�covalent curve crossing is �26; 000 cm�1. The wavepacket is accelerated outward, passes
through the curve-crossing region at t?, and bifurcates, one part traveling on the bound ionic
potential and the other part traveling irreversibly outward on the unbound covalent potential. The
ionic part is reflected at tR at the outer turning point of the ionic potential, passes with P< 0

through the RD 6:93Å curve crossing region where it bifurcates again, and the resultant ionic and
covalent parts are reflected outward at the inner turning points of the ionic and covalent potential
curves, respectively. Each outward passage of a wavepacket through the curve crossing region
results in a wavepacket traveling irreversibly outward on the unbound covalent potential, eventually
forming free Na(2S) and I(2P3=2) atoms. The probe pulse (not shown) interrogates the dynamics
by exciting Na(2S), I(2P3=2) weakly-bound molecules to a higher energy repulsive electronic state
that dissociates to Na(2P) + I(2P3=2) atoms. Excitation at center-wavelength longer than 589 nm
samples NaI molecules en route to full dissociation. Excitation centered at 589 nm provides what
is essentially a time-integrated sample of the accumulation of the free Na(2S) atoms. Reproduced
with permission from Fig. 1 in T.S. Rose, M.J. Rosker, and A.H. Zewail, “Femtosecond real-time
observations of wave packet oscillations (resonance) in dissociation reactions,” J. Chem. Phys. 88,
6672–6673 (1988). Copyright 1988, AIP Publishing LLC
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Fig. 6.6 Clocking of the photodissociation of NaI (and NaBr) as the nuclear wavepacket
repeatedly traverses the ionic/covalent curve crossing (Fig. 2 of [23]). The wavepacket, illustrated
in Fig. 6.5, is created at t D t0 at the inner turning point on the covalent excited electronic state.
At each outward-bound traversal of the curve-crossing region, part of the wavepacket follows the
covalent adiabatic curve irreversibly outward to separated Na(2S) + I(2P3=2) atoms. If the probe
laser center-wavelength is tuned slightly to the red of the 589 nm free Na atom 2P 2S transition,
each time a wavepacket of incompletely separated Na, I molecules passes through the Optically
Coupled Region, some not quite free Na atoms are excited to the 2P state, from which spontaneous
fluorescence is detected. The series of Na atom fluorescence pulses shown in Spectrum I samples
each outward passage of a wavepacket through the curve-crossing region. The temporal spacing
of the pulses corresponds to a 36 cm�1 vibrational frequency. When the center-wavelength of the
probe laser is tuned to 589 nm, the arrivals of free Na atom wavepackets are displayed in Spectrum
II as a periodic series of upward steps. Spectrum III shows that the (upper) adiabatic potential
curve for NaBr is shallower and “leakier” than that for NaI. Reproduced with permission from
Fig. 2 in T.S. Rose, M.J. Rosker, and A.H. Zewail, “Femtosecond real-time observations of wave
packet oscillations (resonance) in dissociation reactions,” J. Chem. Phys. 88, 6672–6673 (1988).
Copyright 1988, AIP Publishing LLC
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continue until each is reflected at the inner turning point of its respective potential
energy curve.

Now there are two outward-traveling wavepackets, one .1 � ˛/2 with very
large momentum traveling on the deeply bound diabatic ionic potential and one,
˛.1 � ˛/, with much smaller momentum moving on the shallow and very non-
harmonic covalent potential curve. The outward bound ionic wavepacket reaches
the curve-crossing region first and bifurcates into ionic, .1 � ˛/3, and covalent,
˛.1 � ˛/2, parts. The outward bound covalent wavepacket, ˛.1 � ˛/, arrives at
the crossing region later and part of it, ˛.1 � ˛/2, continues on the covalent
curve after this second outward passage through the crossing region. The extreme
anharmonicity of the covalent curve causes the outward bound covalent wavepacket
to dephase, spreading into an ignorable flux of free Na 2S atoms. This naïve analysis
suggests that there will be two periodic outward traveling trains of wavepackets on
the covalent potential curve, but only the covalent wavepackets generated at each
outward passage of an ionic wavepacket through the curve-crossing region will
form a periodic train of pulses of ground state Na atoms. The period of the pulse
train should be related to the vibrational frequency of the (harmonic) diabatic ionic
potential (�27 cm�1).

Similarly to the I–CN FTS experiment, the semi-free Na atoms are detected
by Na atom 2P ! 2S spontaneous fluorescence excited by a time-delayed probe
pulse. If the center energy of the probe pulse is resonant with the 589 nm Na
2P  2S excitation transition, then the signal intensity vs. pump/probe delay
appears as a large initial step followed by a periodic sequence of smaller steps.
If the center energy of the probe pulse is tuned slightly to the red of the 589 nm
transition, then the fluorescence signal vs. probe delay is a periodic series of
increasingly broad pulses. Each pulse reflects the leakage, at the potential energy
curve-crossing, from the diabatic ionic electronic state into the diabatic covalent
state. Systematic variation of the pump pulse center energy permits systematic
variation of the velocity of the wavepacket in the curve-crossing region. Landau-
Zener theory relates the crossing velocity to the ionic!covalent transfer probability,
thereby providing a dynamical experimental measurement of the ionic�covalent
electronic interaction matrix element.

It is important to remember that the impact of these revolutionary pump/probe
Femtosecond Transition State experiments is based on the extreme simplicity
of localized, cause-and-effect models. The concept of wavepackets is central to
these experiments, because these particle-like states follow the laws of classical
mechanics. This is where localization and causality come from. A wavepacket is a
coherent superposition of the eigenstates and quasi-eigenstates that are familiar from
the standard models of frequency-domain spectroscopy. Wavepackets are quantum
beats on steroids!
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6.5 Quantum Beats

6.5.1 Simple Two-Level Quantum Beats [1, 11, 12, 15]

Suppose we have two eigenstates,  C and  �, that are orthogonal mixtures of the
same two zero-order states, 	0 and 	1,

 C D ˛	0 C .1 � ˛2/1=2	1
 � D .1 � ˛2/1=2	0 � ˛	1

and 	0 D ˛ C C .1 � ˛2/1=2 �
	1 D .1 � ˛2/1=2 C � ˛ �

note that
Z
j Cj2dx D

Z
j �j2dx D 1 (normalization)

Z
 ?C �dx D 0 (orthogonality)

Suppose 	0 is bright and 	1 is dark for the specific experimental setup. We want
to express ‰.0/ � 	0 as a linear combination of eigenstates,  C and  �:

‰.0/ � 	0 D ˛ C C .1 � ˛2/1=2 �
	1 D .1� ˛2/1=2 C � ˛ �

thus, following the usual recipe,

‰.x; t/ D ˛ Ce�iECt=¯ C .1 � ˛2/1=2 �e�iE�t=¯:

The time-dependent signal, S.t/, from this ‰.x; t/ in which only 	0 is bright, is

Signal.t/ D S0.t/ D
ˇ̌
ˇ̌
Z

dx	?0‰.t/

ˇ̌
ˇ̌
2

D
�Z

dx	?0‰.t/

� �Z
dx	0‰.t/

?

�

Z
dx	?0‰.t/ D

Z
dx

�
.˛? ?C.x/C .1 � ˛2/1=2? ?�.x//

� .˛ Ce�iECt=¯ C .1 � ˛2/1=2 �e�iE�t=¯
i

D j˛j2e�iECt=¯ C j1 � ˛2je�iE�t=¯ C 0C 0;
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where  C and  � are normalized and orthogonal. The
R

dx integrals get rid of
 ˙.x/ via orthonormality. Thus

S0.t/ D
h
j˛j2e�iECt=¯ C j1 � ˛2je�iE�t=¯

i h
j˛j2eiECt=¯ C j1� ˛2jeiE�t=¯

i

D j˛j4 C j1 � ˛2j2 C j˛j2j1 � ˛2jŒe�i.EC�E�/t=¯ C eCi.EC�E�/t=¯�

D j˛j4 C j1 � ˛2j2 C 2j˛j2j1 � ˛2j cos!C�t

D �j˛j2 C j1 � ˛2j�2 C 2j˛j2j1� ˛2jŒcos!C�t � 1�;

where !C� � EC�E�

¯ and ei!C�t C e�i!C�t D 2 cos!C�t . For compactness,
replacing j˛j2 by a and j1 � ˛2j by b, we have

S0.t/ D .aC b/2„ ƒ‚ …
C1

� 2abŒ1 � cosC� t �„ ƒ‚ …
�0 for all t

0 
 a; b 
 1;

thus the condition for S0.t/ � 0 for all t is

4ab 
 1
4j˛2j j1 � ˛2j 
 1:

The maximum value of the LHS is 1 when ˛2 D 1
2
. Note that S0.t/ � 0 for all time.

The maximum modulation depth of S0.t/ occurs when ˛ D 21=2.

S0;max.t/ D 1C 1

2
Œcos!C�t � 1� D 1

2
C 1

2
cos!C�t D 1

2
.1C cos!C�t/

which oscillates between 1 and 0.

S0.t/ D 1

4
C 1C 1

4
� 1C 1

2
cos!C�t D 1

2
Œ1C cos!C�t � Never negative!

We have considered a two-level problem that incorporates two major simplifica-
tions (Fig. 6.7):

• One basis state is perfectly dark and the other is perfectly bright. This is actually
something we want to arrange in the design of the experiment. The above
example gives a 100 % modulated bright/dark QB, which is bright at t D 0.
Sometimes we have a setup where one basis state is dark as far as excitation is
concerned and bright as far as detection is concerned and the situation is reversed
for the other basis state. Then we get a 100 % bright/dark QB, but dark at t D 0

and bright at t D .2nC 1/�=!C� [10].
• We have not considered decay rates. In the usual limit of two quasi-eigenstates,

which may be considered narrow relative to the interaction matrix element
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Fig. 6.7 A two-level quantum beating system with 100 % modulation depth. Maximum modula-
tion depth occurs when the two eigenstates,  C and  �, are 50,50 mixtures of the bright and dark
states,  0 and  1 .j˛j D 2�1=2/

between them (the “strong coupling” limit), we can simply use ordinary per-
turbation theory where the diagonal energies are treated as complex.

6.5.2 Two-Level Treatment of QB with Complex Energies [14]

Level width (FWHM) of Lorentzian, � (energy units)

� D ¯
�
:

� is the lifetime of the level.
We redefine the energy of state j to have a real and an imaginary part

Ej D "j � i�j =2

so that an eigenstate with complex Ej decays

e�iEjt=¯ D e�i"jt=¯e�i.�i�jt=2¯/

D e�i"jt=¯e��jt=2¯:

The probability of finding the system in this state is

Z
dx‰?

j .x; t/‰j .x; t/ D
�Z

dxj j j2
�
e��jt=¯ D e�t=�j

where the lifetime, �j , is

�j D ¯
�j
;
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thus the probability of finding the system in state j decays exponentially from 1 at
t D 0 toward 0 as t !1, with a “lifetime”, �j .

This addition of a time decaying factor to ‰.x; t/ is not entirely ad hoc. See [14]
for a more complete discussion of the complex-E Hamiltonian.

For the ordinary two-level problem (no decay)

H D
	
" 0

0 "



C

	
ı" V

V �ı"



" � "0 C "1
2

ı" � "0 � "1
2

:

The eigenvalues are

E˙ D "˙ Œı"2 C V 2�1=2

and the eigenstates are

 C D ˛�	0 C ˛C	1 D .1 � ˛2C/1=2	0 C ˛C	1
 � D �˛C	0 C .1 � ˛2C/1=2	1

˛˙ D ˙2�1=2
�
1˙ ı"

2jV j
�
:

Since, in order to go from ‰.0/ to ‰.t/, we are going to want to write ‰.0/ in
terms of the bright state, 	0, which in turn is expressed in the  ˙ eigenstate basis,
we have

	0 D ˛C C C ˛� �
	1 D �˛� C C ˛C �:

Now making the energies complex (and remaining in the “strong coupling” limit),
we have

where

� D �C C ��
2
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ı� D �C � ��
2

˛˙ D ˙2�1=2
	
1˙ ı" � iı�=4

2jV j



‰0.t; x/ D 	0 D ˛C Ce�i"Ct=¯e��Ct=2¯ C ˛� �e�i"�t=¯e���t=2¯:

To calculate the decay of the time-evolving state we write
�

S.t/ D ˇ̌˝ Q‰0.0/j‰0.t/
˛ˇ̌2 D

Z
dx

ˇ̌
ˇ
�
j˛2Cjj Cj2e�iECt=¯ C j˛�j2j �j2e�iE�t=¯

�

C
�
˛?2C j Cj2eCiE?

C
t=¯ C ˛?2� j �j2eCiE?

�
t=¯

�ˇ̌
ˇ ;

the integration over x causes the wavefunction terms j Cj2 and j �j2 to integrate
to 1.

Putting in the complexE˙ results in

S0.t/ D j˛Cj4e��Ct=¯ C j˛�j4e���t=¯ C ˛2C˛?2� e�i.EC�E�/t=¯

C ˛2�˛?2C e�i.E��EC/t=¯:

With a lot more algebra (in which the complex E˙ are explicitly expressed in terms
of "˙ and �˙) we have

S0.t/ D ICe��Ct=¯ C I�e���t=¯ C e��QBt=¯Œ2Re.˛2C˛?2� / cos!QBt

� 2Im.˛2C˛?2� / sin!QBt �

D ICe��Ct=¯ C I�e���t=¯ C e��QBt=¯ŒIQB cos.!QBt C 	QB/�;

where

IQB D 2j˛2C˛?2� j
!QB D "C � "�

¯

	QB D tan�1
Im.˛2C˛?2� /
Re.˛2C˛?2� /

�

The tilde on ‰0 is a consequence of biorthogonality required to maintain normalization and
orthogonality for eigenfunctions of complex-energy effective Hamiltonian systems (see p. 676 of
H. Lefebvre-Brion and R.W. Field, “The Spectra and Dynamics of Diatomic Molecules,” Elsevier,
2004).
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IC D j˛Cj4

I� D j˛�j4:

Now everything is expressed in terms of ˛C and ˛�, which in turn are expressed in
terms of

"; ı"; �; ı�; and V:

Everything in S.t/ is expressed in terms of the five above parameters! Yet S0.t/ is
expressed in terms of eight measurable properties: IC, I�, IQB, !QB, 	QB, �C, ��,
and �QB. It should be clear that we do not need to perform a least squares fit to S0.t/
in which all eight parameters are allowed to vary freely. There are only five degrees
of freedom, some of which can be accurately determined at t D 0.

This has been a long exercise designed to show that quantum beats can have a
very complicated S.t/, but that much of the complexity is gratuitous. The many
experimentally observable parameters that describe the appearance of S.t/ are
parsimoniously determined by a smaller number of physical parameters. This is
always true, even for systems that involve more than two interacting states. In fact,
the advantages of a fit based on physical parameters rather than the standard set of
empirical descriptive parameters increases when there are more than two interacting
zero-order states.

6.5.3 What Does a Quantum Beat Signal Look Like? [26]

The time-dependent fluorescence signal is

I.t/ D
X

i
eigenstates

2

664bie
�t=�i C

X

j¤i
eigenstates

cij cos.!ijt C ıij/e
�t=�ij

3

775 :

If the different emission frequencies are not spectrally resolved, we need .bi ; �i /,
the intensity and decay rate parameters for each populated excited eigenstate and
(cij, !ij, ıij, �ij), the intensity, frequency, phase, and decay rate for each quantum-
beating pair of coherently excited eigenstates. It is easy to determine (cij, !ij, ıij,
and �ij) for every quantum-beating level-pair, precisely because each pair has a
unique cos.!ijt/ signature in the fluorescence. It is quite difficult to extract all of the
.bi ; �i / pairs, because the fluorescence for each of the i eigenstates forms a multi-
exponential decay that cannot be fitted to a unique model. Each of the fit parameters
is dependent on some sort of adjustable “control” parameter in the Heff. In fact, it is
our goal to determine values of many parameters in the Heff, and information about
these physical parameters in the Heff is obtained from the observed dependence on
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the empirical parameters that determine the exact form of I.t/. This seems to be
hopelessly complicated, but it is not!

It is possible to explicitly relate all of the fit parameters (bi , �i , cij, !ij,
ıij, �ij for many i and j ) to the relatively small number of parameters in the
Heff and the explicit dependence of these parameters in the Heff on the control
parameter. This control parameter could be anything that changes the relative
energies and corresponding eigenvectors of Heff. Typical control parameters
are magnetic field strength .BZ/, electric field strength .EZ/, and rotational
quantum number .J /. BZ , EZ , and J have the effect of tuning the relative
energies of the zero-order states, systematic turning off of selection rules, and
modification of the magnitudes of off-diagonal matrix elements in Heff. For
example, the Zeeman effect modifies the diagonal matrix elements of Heff
�
Ei / BZ M�

J.JC1/ for �M D 0;�� D 0;�J D 0 diagonal matrix elements
�

or

one JM level can be tuned into degeneracy with another J 0M 0 level. The Zeeman
effect has off-diagonal matrix elements following the selection rules �J D 0;˙1,
�M D 0, and parityC 6$ �, which are especially important for interactions among
the J -components of one N value of a case (b) 3† state. The Stark effect destroys
parity and J , so it might turn on an off-diagonal interaction between two near-
degenerate opposite-parity levels (e.g., ƒ-doublet components) that cannot perturb
each other at zero field. If there are two near degenerate same-J levels that belong to
two electronic-vibration states that have different B-values, then changing J serves
to step-wise tune the levels of one vibronic state through degeneracy with those of
the other vibronic state. All of these mechanisms can give rise to a diagnostically
explicit variation of the parameters in I.t/.

6.5.4 Population Quantum Beats [8]

The favorite example is a bright singlet state perturbed by an accidentally degenerate
dark triplet state (Fig. 6.8).

As a function of J we often find that there is a level crossing of same-J singlet
and triplet levels (Fig. 6.9).

Fig. 6.8 A bright singlet
state perturbed by an
accidentally degenerate dark
triplet state
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Fig. 6.9 Reduced term value plot. A bright singlet level can be crossed, at Jx , by a dark triplet
level

B is some typical B value that provides a convenient expansion of the vertical
energy scale.

Suppose the spin–orbit interaction matrix element is so small that, at closest
approach of the two levels (at Jx), the S1.Jx/ and T1.Jx/ levels are so close together
that both higher- and lower-energy mixed eigenstates can be “covered” by a short
laser pulse. The usual intuitive picture is that the system starts out completely in
the bright .S1.Jx// state and “goes” to the dark triplet .T1.Jx// and returns. This is
dynamics in state space. The fluorescence seems to oscillate from full-on to full-off

‰Jx.t D 0/ D 	S1.Jx/:

If you look at the Quantum Beats at the exact point of smallest energy separation
between same-J eigenstates, then

‰.0/ D 	S1
	S1 D 2�1=2Œ C C  ��
E˙ D E ˙ V:

This is a 50:50 mixed state.
Each of the two states has 50 % S1 character

�C D �� D 2�.0/S1
�QB D 2�.0/S1
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EC �E� D 2V; !C� D 2V

¯
IC D I� D I

.0/
S1

.
2

IQB D I
.0/
S1

.
2

	QB D 0

S.t/ D
�
I
.0/
S1

.
2
�
e
�t=2�.0/S1 cos.2V t=¯/:

You can detect this 100 % modulation of the fluorescence by viewing unpolarized
fluorescence. The fractional oscillation is not affected by any choice of detection
propagation direction and/or polarizer orientation.

As one tunes J (or BZ or EZ) away from the exact level crossing, the mixing
is no longer 50:50. You see a quantum beat tuning toward higher frequency but
with decreased amplitude. You also see non-modulated exponentially decaying
fluorescence at �C and ��. Everything is exactly calculable from �

.0/
S0

,E , ıE , and V .
It is also possible to observe population quantum beats between near degenerate

hyperfine energy levels. The requirement that two upper-state eigenstates be
populated from a common lower-level eigenstate is normally not met because of
the strong �F D �J propensity rule. However, when the angular momentum
coupling cases for the upper and lower electronic states are not the same, then it
will often be possible to excite two F 0 levels of the upper J 0 hypermultiplet from
one J 00; F 00 hyperfine component of the lower state. Note that no quantum beats will
be observable if two J 0; F 0 hyperfine components are individually excited from two
J 00; F 00 hyperfine components. A very common case for hfs Quantum Beats is for a
transition between a case (a) …-state and a case (b)†-state.

The metaphor used to describe population quantum beats is that the excited
molecule is born in the state that the �S D 0 selection rule specifies and then it
oscillates back and forth between the singlet and triplet state spaces. This seems easy
to understand. Suppose instead we had the option of exciting from the S0 ground
state but observing fluorescence to a lower-lying triplet state (Fig. 6.10):

Fig. 6.10 Quantum beats
detected in fluorescence to a
lower-lying triplet state
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Then the QBs will start out at their minimum intensity at t D 0 and oscillate �
out-of-phase with the QBs that are observed when the fluorescence is detected into
S0 rather than into T1. This is also easy to understand.

6.5.4.1 Polarization Quantum Beats [5]

Polarization Quantum Beats seem different from Population Quantum Beats, but
they can be viewed in the same simplified way that we understand Population
Quantum Beats.

Recall that the �M selection rule for electric dipole transitions is �M D 0 for
Z-polarized excitation and fluorescence, �M D C1 and �1 for X or Y polarized
excitation and fluorescence. This focuses on quantum numbers rather than the initial
lab frame orientation of the molecule-frame electric dipole transition moment: is it
along theX or the Y axis? The molecules know the difference betweenX and Y , but
we tend to forget to think about excitation and fluorescence in this way. If you excite
with linear polarization alongX , then the molecules with their body frame transition
moment initially along labX are preferentially excited. So at t D 0, the fluorescence
is exclusively polarized along the lab-X axis. There are no excited molecules with
their transition moment along lab-Y . In the presence of an electric or magnetic field
along the Z-axis, the molecular body-fixed dipole rotates about the laboratory Z
axis. So the transition dipole rotates too, from along X at t D 0 to along Y at 1

4

of a precession period later. So if you excite X polarized and detect through a Y
polarizer, the fluorescence intensity oscillates from small to large (rather than from
large to small), as it would have if you had detected X polarized radiation. This
seems identical to population beats. The only difference is that you need to think
about optimum use of polarizers to detect polarization quantum beats.

6.5.4.2 Direction Cosine Matrix Element Based Picture of Polarization
Quantum Beats

You can use an entirely matrix element-based picture to understand polarization
quantum beats. If you look at a table of Direction Cosine Matrix elements (which
relate the body-fixed coordinates to laboratory-fixed coordinates) [27], then you see
that �M D C1 transitions correspond to X and iY and �M D �1 transitions
correspond to X and �iY

1

2
.X C iY /$ RC;

1

2
.X � iY /$ R�:

Thus

RC C R� $ X and
1

i
.RC � R�/$ Y :



108 6 Quantum Beats

SoX polarized excitation from the jJM i initial state yields jJ 0;MC1iCjJ 0M�1i
and Y -polarized excitation yields jJ 0;MC1i�jJ 0M�1i. The molecule remembers
whether it was excited along X or Y by the relative signs of the jJ 0M C 1i and
jJ 0M � 1i states. Since, in a magnetic field, these two states do not have the same
energy, their relative phase oscillates at twice the Larmor frequency, !L. So at t D
�
2!L

, the coherent superposition state initially polarized along X is now polarized
along Y and that initially polarized along Y is now polarized along �X . Several
excitation and detection cases are:

• Excite X -polarized, detect X -polarized

I XX
QB .t/ D I ı cos!Lt

• Excite X -polarized, detect Y -polarized

I XY
QB .t/ D I ı cos.!Lt � �=2/

• Excite X -polarized, detect unpolarized fluorescence propagating along X -axis

IX;YZ
QB .t/ D 1

2
I ı cos.!Lt � �=2/C 1

2
I ı

• Excite X -polarized, detect unpolarized fluorescence propagating along Z-axis

I
X;XY
QB .t/ D I ı (no modulation) [WHY?]

6.5.4.3 Zeeman vs. Stark Polarization Quantum Beats [6, 7]

The basic idea is that you must create a coherent superposition of two or more M
states in order to create a time-evolving ‰.t/ that gives rise to quantum-beating
fluorescence. The simplest case is �M D ˙2 coherence, which is accomplished
with light polarized ? to the external static field direction (Fig. 6.11).

This scheme is especially simple for the case of low-field Zeeman Quantum Beats
[6] because, for a given-J , the EJ;M�1 �EJ;MC1 energy spacing is identical for all
M (except at very high magnetic field strength). The frequency of the quantum beats
is

EQB
ı
h D 2�0.ƒC 2†/ �

J.J C 1/ ; J � 1=2

where �0 is the Bohr magneton (1,400 MHz/Gauss), the 2 is because the Quantum
Beat is �M D 2, the factor .ƒ C 2†/ assumes Hund’s case (a), which is valid at
low-J in almost all ƒ > 0 states (and gives zero Zeeman splitting for 2…1=2, 3�1

etc. states), and � is a reminder that there is no electronic (as opposed to nuclear)
Zeeman effect for 1†˙, 3…0, 5�0 states. The 1

J.JC1/ factor comes from �J D 0,
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Fig. 6.11 Polarized
excitation with linearly
polarized radiation

�M D 0 direction cosine matrix elements and implies that low-J (J ¤ 0) levels
are best for Zeeman Quantum Beat studies.

The Stark effect is different from the Zeeman effect in two very important ways
[7]. For the Zeeman effect, EJ;M � EJ;�M ¤ 0, but for the Stark effect, EJ;M D
EJ;�M . This means that the largest Stark Quantum Beat in † states is in J D
1 for odd-multiplicity S > 0 † states and in J D 3=2 for even-multiplicity †
states. The second difference between SQB and ZQB is that, for SQB, the EJ jM j �
EJ jMC1j energy differences are dependent on jM j. It is often easy to overcome this
inconvenience for SQBs. All ƒ > 0 states have small parity splittings, with the
result that, at modest electric field strength, parity is destroyed and one gets a linear
Stark effect. Such SQBs behave essentially identical to ZQBs.

For 1†˙ and 3†˙ states, the best J -level for SQB is J D 1 (especially the J D
1, N D 0 level for 3† states). However, in J D 1 there are only two energetically
distinct Stark components, M D 0 and jM j D 1. So it is necessary to use light
polarized at 45ı relative to theZ-axis. This gives 2�1=2 relative transition amplitude
forX - or Y -polarized�M D ˙1 excitation and 2�1=2 relative transition amplitude
for Z-polarized �M D 0 excitation. You create an M D 0, M D C1 and an
M D 0, M D �1 coherent superposition state. These two pairs of superposition
states have the same beat frequency, so if they begin evolution in-phase, they stay in-
phase for all t . If however, you were to choose an excitation and detection geometry
where the two coherences start out � out-of-phase, there will be no QB unless the
detection geometry is blind to either the J;M D 0;C1 or the 0;�1 coherence.

If you use light propagating along the Y axis, its linear polarization must lie in
the XZ plane. Polarization at C45ı relative to the Z axis gives equal projections
along the Z and �X axes. Detection of j�M j D 1 SQB requires collecting light
propagating in the XY plane and with polarization at ˙45ı relative to the Z-axis.
There is no choice of propagation direction that gives an SQB without use of a
linear polarizer. The sign and amplitude of the SQB signal depend on the choice
of propagation direction for the detected fluorescence and on the C45ı vs. �45ı
orientation of the linear polarizer.
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6.5.5 Level-Crossing vs. Anticrossing [2, 28]

If it is possible to cause two levels, which are excited from a common initial state, to
tune through degeneracy without interaction via any non-zero off-diagonal matrix
element of the Heff, then the detected QB is a “level-crossing” QB. For example, two
states of different J and different M will tune through degeneracy without level-
repulsion and mixing. One example is: excitation from J 00M 00 to J 0 D J 00 C 1;M 0
and J 0 D J 00 � 1;M 0. For J -tuned or Zeeman-tuned levels, any two levels of
opposite parity will tune through degeneracy without interacting, but such a pair of
levels can never be excited from a common initial level unless the parity of the initial
level is destroyed (e.g. aƒ > 0 state) by an electric field, while the opposite parities
of the final pair of crossing levels are not compromised by the electric field. What
would be observed is a very weakly avoided level crossing. Two levels of opposite
parity could be excited from a common level if one level is populated via a very
weak magnetic dipole transition moment, �m, and the other via an electric dipole
transition moment, �e . The (small) amplitude of the Quantum Beat would provide
a measure of the ratio of �m to �e .

The Quantum Beats associated with level anti-crossings are most useful for
measuring the off-diagonal matrix element in the effective H that is responsible
for the level repulsion at the anti-crossing. The strength of the interaction is directly
measured by 1=2 the minimum of the �QB vs. the control parameter. The interaction
strength is indirectly sampled by the fractional modulation depth of the QB in the
vicinity of the level crossing.
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Chapter 7
The Effective Hamiltonian for Polyatomic
Molecule Vibration

7.1 The Effective Vibrational Hamiltonian for Polyatomic
Molecules

The vibrational Hamiltonian may be expressed in a basis set consisting of products
of harmonic oscillators, one oscillator for each of the 3N � 6 normal modes,
where N is the number of atoms in the molecule. The matrix elements of integer
powers of momentum, P, and displacement Q, have very simple selection rules
and quantum number scaling properties. The simplicity of the problem is best
displayed and exploited using the properties of creation and annihilation operators,
a� and a [1, 2]. Once the matrix elements for one anharmonic oscillator have been
worked out, the rules for matrix elements and selection rules for matrix elements
of products of harmonic oscillator basis states will be presented [2]. There is a
special case where ordinary non-degenerate perturbation theory fails: when the off-
diagonal matrix element is large relative to the zero-order energy difference between
product basis states. This requires setting up and diagonalizing a small dimension
effective Hamiltonian. Usually degeneracies are systematic, not accidental. When
the harmonic oscillator frequencies for several normal modes are in near-integer
multiple ratios, one gets polyads [2–4]. Polyads describe, via quantum number
scaling rules for off-diagonal matrix elements, the fastestintramolecular dynamics
as well as the expected frequency and intensity patterns in the frequency domain
vibrational spectrum [5]. By expressing unconventional but robust patterns, polyads
provide a basis for spectral assignment, a description of the mechanisms of
Intramolecular Vibrational Redistribution (IVR) [5, 6], and characterization of the
transition state for Unimolecular Isomerization [7, 9].

© Springer International Publishing Switzerland 2015
R.W. Field, Spectra and Dynamics of Small Molecules,
Lecture Notes in Physics 900, DOI 10.1007/978-3-319-15958-4_7
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7.2 Harmonic Oscillator

For a diatomic molecule, where the atoms have masses m1 and m2

H D TC V.Q/ D P2

2�
C 1

2
kQ2

where � D m1m2
m1Cm2 is the reduced mass and k is the force constant. Eigenfunctions

are well known, but you only need to know some easily remembered facts about
them:

• largest amplitude near turning points
• odd/even symmetry
• there are v internal nodes, more closely spaced near Q D 0�

node spacing is de Broglie �.Q/=2 D h
2P.Q/

�

• Ev D .hc/
1

2�c
Œk=��1=2

„ ƒ‚ …
! in cm�1 units

.v C 1=2/

7.2.1 Matrix Elements of P and Q [1]

Real potential energy curves are not simple parabolas. They are expressed as a sum
of anharmonic terms, Qn, with integer n > 2

V.Q/ D 1

2
kQ2 C

nmaxX

nD3
anQn

In order to construct the effective Hamiltonian, we need to evaluate matrix elements
of P2, Q2, Q3, Q4, etc. We do this very often, so it is a good idea to develop shortcuts
and ways to see the universal relationships between oscillators with different values
of � and k.

7.2.2 Dimensionless Forms: OH, OQ, OP [1, 2]

The first step is to go to dimensionless Q and P operators.
You probably remember that the matrix elements of Q and P are

hv C 1jQjvi D hvjQjv C 1i D 2�1=2
� ¯
2�c�!

�1=2
.v C 1/1=2

hv C 1jPjvi D � hvjPjv C 1i D i2�1=2 Œ¯2�c�!�1=2 .v C 1/1=2;
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where c is the speed of light,� is the reduced mass, and ! is the harmonic frequency
in cm�1 units. The selection rule for nonzero matrix elements of Q and P is �v D
˙1 only. This seems simple and memorable, but I am about to make a significant
improvement on this simplicity.

If we take all molecule-specific dimensional information out of Q, P, and H, we
have reduced the problem to its most fundamental form.

OQ D
�
2�c�!

¯
�1=2

Q

OP D Œ¯2�c�!��1=2P
OH D 1

¯.2�c�!/H:

7.2.2.1 Matrix Elements and Selection Rules [1, 2]

Now we have simpler expressions for all of the non-zero matrix elements of OQ, OP,
and OH in the Harmonic Oscillator basis set,

D
v C 1j OQjv

E
D

D
vj OQjv C 1

E
D 2�1=2Œv C 1�1=2 .�v D ˙1/

D
v C 1j OPjv

E
D �

D
vj OPjv C 1

E
D i2�1=2Œv C 1�1=2 .�v D ˙1/

D
vj OHjv

E
D v C 1=2 .�v D 0/:

So we can forget about units and molecule-specific constants by factoring them out
at the beginning of a calculation and then putting them back in at the end.

But there is another extremely important simplifying step. We are going to
replace OQ and OP by a� and a “creation” and “annihilation” operators because OQ
and OP have selection rule �v D C1 AND �v D �1 whereas a� has the selection
rule �v D C1 only and a has the selection rule�v D �1 only!

a� D 2�1=2Œ OQ � i OP�
a D 2�1=2Œ OQC i OP�

OR

OQ D 2�1=2.a� C a/

OP D 2�1=2i.a� � a/:
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Then

˝
v C 1ja�jv˛ D Œv C 1�1=2

hvjajv C 1i D Œv C 1�1=2

note that the value of the non-zero matrix element is always the square root of the
larger of the two vibrational quantum numbers,

a�jvi D .v C 1/1=2jv C 1i
ajvi D .v/1=2jv � 1i:

a� is called the “creation” operator because, when a� operates on jvi it creates
.v C 1/1=2jv C 1i, which has one additional quantum of vibration.

a is called the “annihilation” operator because, when a operates on jvi it yields
v1=2jv � 1i, which has one fewer quantum of vibration.

There is also the “number operator”, N D a�a

Njvi D a�ajvi D a�v1=2jv � 1i D v1=2v1=2jvi D vjvi:

When N D a�a operates on jvi it simply tells you how many vibrational quanta
there are in jvi.

The ease of use of a�, a, and N is illustrated by the following semi-robotic
evaluation of matrix elements that involve a long string of operator products, for
example

aaaa�aa�a�aajvi:

This is done in two steps:

1. Count the number of a� factors and the number of a factors. Here we have three
a� and six a. This means that the operator product converts jvi uniquely into
jv C 3 � 6i D jv � 3i times a numerical factor to be determined next.

2. Operating in sequence outward from the operator adjacent to jvi, the effect of
each operator (or pair of operators) on what lies to its right is written by casual
inspection (parentheses added to show the presence of a�a D N factors)

The sum of exponents is always the number of a� and a factors divided by 2�
1
2
C 3

2
C 5

2
D 9

2

�
.
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7.2.2.2 Use of Commutation Rules[1]

Commutation rules are used to rearrange the order of a�; a, and N in order to yield a
convenient and compact algebraic expression. Complex matrix element expressions
may be simplified by operator algebra that exploits the following commutation rules:

Œa�; a� D a�a � aa� D �1
Œa;N� D a

Œa�;N� D �a�:

Some operator algebra yields

OQ2 D 1

2
.aC a�/2 D 1

2

�
a2 C 2

	
NC 1

2



C a�2

�

OP2 D �1
2
.a� � a/2 D �1

2

�
a2 � 2

	
NC 1

2



C a�2

�

7.2.2.3 We Use this Result to Evaluate Matrix Elements of OH.0/

OH.0/ D 1

2
. OP2 C OQ2/ D .NC 1=2/

OH.0/jvi D .v C 1=2/jvi

Note that OQ2 and OP2 have nonzero�v D ˙2 off-diagonal matrix elements but their
sum in OH does not.

7.2.2.4 Matrix Elements of Anharmonic V.Q/[2]

For an anharmonic oscillator (i.e. reality), we expand V. OQ/ as a power series in OQ.
This is the first important use of the a�, a, N artillery. The goal is to manipulate
the terms in V.Q/ into simple expressions of a�, a, and N, sorted according to
vibrational selection rule:

V.Q/ D
nmaxX

nD2

1

nŠ
fnQn

fn D @nV.Q/
@Qn

ˇ̌
ˇ̌
QD0

:
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Now absorb all of the units of Qn into the constant

This means we need to simplify terms of the form .a� C a/n for n D 3; 4, etc.

Note that the selection rules for terms in .aCa�/n go from�v D �n to�v D Cn
in steps of 2.

.a� C a/4 D a�4 C 2Œ2N� 1�a�2 C 3Œ2N2 C 2NC 1�C 2a2Œ2NC 1�C a4:

Now we are ready to begin dealing with the 3N � 6 anharmonically-coupled
anharmonic normal mode oscillators in an N -atom polyatomic molecule.

7.3 Polyatomic Molecules

7.3.1 Basis Set as Product of 3N � 6 Harmonic Oscillator
Eigenstates

For an N -atom polyatomic molecule, there are 3N � 6 vibrational degrees of
freedom. If the molecular symmetry is not too high, there will be 3N � 6 non-
degenerate individual normal modes of vibration. We treat diagonal anharmonicity
(within a normal mode) exactly as we treated the n > 2 Qn terms for diatomic
molecules. So we build on what we know. The basis functions and zero-order
energies are

 .0/v1;v2;:::v3N�6
D

3N�6Y

jD1
.normal modes/

 j;vj .Qj /

E.0/
v1;v2;:::v3N�6

D
3N�6X

jD1
.normal modes/

!j .vj C 1=2/:
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The
n
 
.0/
v1;v2;:::;v3N6

o
product functions form a complete set. Every vibrational eigen-

state may be expressed as a linear combination of these zero-order product basis
states. We find the mixing coefficients in front of each zero-order state by finding
the eigen-energies and eigenstates of the vibrational Heff. As long as there are no
near degeneracies between basis states connected by non-zero elements of Heff,
we can find the eigenstates and eigenenergies using second-order non-degenerate
perturbation theory. We know how to evaluate everything we need because we

know how to write OHeff in terms of
n
a�j ; aj ;Nj

o
, one such set of operators for each

vibrational mode (denoted by the subscript j ), we know how to evaluate matrix

elements of a�j ; aj ;Nj operators in the
n
 
.0/
v1;v2;:::;3N�6

o
basis set, and we know all of

the f!j g from which we get all of the E.0/

.v1;v2;:::;3N�6/.

7.3.2 Matrix Elements of V. OQ1; OQ2; : : : OQ3N-6/

in the  .0/
v1;v2;:::;3N�6 Basis Set [2]

The potential energy function contains anharmonic terms that operate exclusively
within each normal mode as well as anharmonic interactions between normal
modes,

intra-mode terms

inter-mode terms

where the subscripts on Fjn;km specify the Qn
jQm

k term in V.
There can be simultaneous interactions between more than two normal modes

(e.g. k3;245 Q3Q2Q4Q5 in acetylene).
You already know how to evaluate matrix elements of this V.Q1 : : :Q3N�6/

potential energy function in the
n
 
.0/
v1;v2;:::;v3N�6

o
basis set. For example,F13;22 OQ3

1
OQ2
2,

Hv1C3;v2�2Iv1v2 / F13;22Œ.v1 C 3/.v1 C 2/.v1 C 1/v2.v2 � 1/�1=2 � v3=21 v
2=2
2 :
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If you simply write down the initial and final state quantum numbers, obtained
from the �vj and �vk changes in quantum number for each mode, you know
the specific term in V that is responsible for the non-zero matrix element and the
explicit v-dependence of this matrix element. You also know the value of the energy
denominator for non-degeneracy perturbation theory

E
.0/
v1C3;v2�2 � E.0/

v1;v2
D hcŒ3!1 � 2!2�:

All is in readiness for non-degenerate perturbation theory! But, even with the
operator algebra simplifications provided by the a�j , aj , Nj operators, it is an
algebraic nightmare best performed by a computer.

However, something evil happens.

7.3.3 Breakdown of Non-Degenerate Perturbation Theory

In order to use non-degenerate perturbation theory to obtain the energy levels and
eigenstates of an effective Hamiltonian matrix, Heff, it is necessary that

ˇ̌
ˇ̌
ˇ

H eff
ij

E
.0/
i �E.0/

j

ˇ̌
ˇ̌
ˇ� 1

for all i , j pairs.
Since the off-diagonal matrix elements of Heff scale as products of half-integer

powers of vibrational quantum numbers, for example

Hv1C3;v2�2Iv1;v2 / Œ.v1 C 1/.v1 C 2/.v1 C 3/.v2/.v2 � 1/�1=2 � v3=21 v
2=2
2 :

The sizes of these off-diagonal matrix elements increase rapidly as v1 and v2
increase, leading eventually to

ˇ̌
H eff

ij

ˇ̌
>

ˇ̌
ˇE.0/

i � E.0/
j

ˇ̌
ˇ :

The condition for the applicability of non-degenerate perturbation theory is no
longer satisfied. It becomes necessary to diagonalize a large dimension Heff.
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7.3.4 Polyads

Often Heff may be factored into quasi-degenerate blocks along the diagonal [2]

H D

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBB@


1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0


2
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 
3 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 
4 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 
5 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0


6
0 0 0 0 0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Each of these blocks
1 ,
2 ,
3 , etc. is called a polyad. Each block is a square matrix
and the dimension varies from block to block, typically increasing as the number
of vibrational quanta increases. There may be small inter-block off-diagonal matrix
elements, but these are either ignored or dealt with via the Van Vleck transformation
[2]. These polyads are of exceptional importance in generating the patterns of level
splittings and relative intensities that make it possible to assign the spectrum [4, 8, 9]
and to describe all of the fastest intramolecular dynamics rates and mechanisms [6].
These polyad patterns are more instructive and robust than the simple anharmonic
progressions associated with individual normal modes.

The simplest polyad arises from an approximate 2:1 ratio between the harmonic
frequencies of two normal modes,

!1 � 2!2:
This most common form of polyad arises from what is called a Fermi resonance. If
we denote the energy levels of modes 1 and 2 as .v1; v2/,

E
.0/

.v1;v2/

.
hc D !1.v1 C 1=2/C !2.v2 C 1=2/

E
.0/

.1;0/ � E.0/

.0;2/

hc
D

	
3

2
!1 C 1

2
!2



�

	
1

2
!1 C 5

2
!2




D !1 � 2!2;



122 7 Effective Hamiltonian for Polyatomic Molecule Vibration

which is very small if !1 � 2!2. The non-zero off-diagonal matrix element between
the (1,0) and (0,2) levels is

D
v1 C 1; v2 � 2

ˇ̌
ˇk122 OQ1

OQ2
2

ˇ̌
ˇ v1; v2

E
/ Œv2.v2 � 1/.v1 C 1/�1=2:

There are near degeneracies between levels with the following .v1; v2/ pairs of
quantum numbers

P D 2v1 C v2 D2 .1; 0/; .0; 2/

3 .1; 1/; .0; 3/

4 .2; 0/; .1; 2/; .0; 4/

: : :

10 .5; 0/; .4; 2/; .3; 4/; .2; 6/; .1; 8/; .0; 10/

where P is called the “polyad number”.
Notice that the number of near degenerate states increases as P increases. This

is the membership scaling rule. For a 2:1 resonance the number of near degenerate
states is .P C 2/=2 if P is even or .P C 1/=2 if P is odd. If I told you to find all of
the states that belong to P D 50, you could do so quickly and with confidence that
you have found all of the states.

The magnitudes of the off-diagonal matrix elements (each multiplied by k122)
also increase as P increases.

For the P D 10 2:1 polyad

HPD10 /

(5,0)

(4,2)

(3,4)

(2,6)

(1,8)

(0,10)

0
BBBBBBB@

x0 .5 � 2/1=2 0 0 0 0

101=2 x1 .4 � 4 � 3/1=2 0 0 0

0 481=2 x2 .3 � 6 � 5/1=2 0 0

0 0 901=2 x3 .2 � 8 � 7/1=2 0

0 0 0 1121=2 x4 .1 � 10 � 9/1=2
0 0 0 0 901=2 x5

1
CCCCCCCA

xn D
	
P

2
� n



!1 C 2n!2 (when P is even)

HPD2 / .1; 0/
.0; 2/

	
x .1 � 2 � 1/1=2
21=2 x



:
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The remarkable feature of the polyad Heff is that if you observed and fitted the levels
that belong to the P D 2 polyad, you will be able to determine !1 � 2!2 and the
HPD2
.1;0/I.0;2/ off-diagonal matrix element. With these in hand you can expect to be able

to generate the eigenvalues and eigenvectors of all P > 2 polyads. This is a superb
antidote to evil.

7.3.5 Patterns for Spectral Assignment and Mechanisms
of Intramolecular Vibrational Redistribution (IVR)
and Unimolecular Isomerization

This polyad structure provides the basis for a very powerful form of pattern-
recognition, which is a crucial armament in the assignment of very highly excited
vibrational levels. It also enables a quantitative description of all of the fastest
intramolecular vibrational energy redistribution (IVR) dynamics (rates, flow path-
ways, and mechanisms) for very highly excited vibrational states.

Usually a laser photon “plucks” [10] the system so that it starts, at t D 0, in one
of the normal mode (“zero-order”) product states, for example a high-overtone state,
	
.0/

.n;0;0;0;::: / D ‰.t D 0/ (see Sect. 8.4). But we know how to express a zero-order
state as a linear combination of eigenstates, recall

‰.0/ D
X

j

aj j ;

then

‰.t/ D
X

j

aj e
�iEj t=¯ j ;

where we get all of the faj g mixing coefficients from the eigenvectors of HP . What
began as a simple toy model (the polyad HP ) has become a powerful tool for insight
into what might appear to be an indescribably complex spectrum and ergodic rather
than mechanistic dynamics. This could also provide a rational basis for the design
of schemes for external control over intramolecular dynamics as well as a basis
for gaining spectroscopic access to the isomerization barrier-proximal region of a
potential energy surface. The amazing thing is that, at high P , large amplitude
motion “isomerization states,” which are localized along the minimum energy
isomerization path, emerge spontaneously among the lowest-energy eigenstates
of high-P polyads [7]. The molecules, even in the numerical form of very low
energy polyads, seem to know what large amplitude dynamics they are destined
to experience at very high excitation energies.
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Some items for discussion:

– terms of the form knn;mm OQ2
n
OQ2
m, called Darling–Dennision, are responsible for

the conversion of a symmetric and antisymmetric pair of normal modes into a
pair of local modes. The emergence of local modes is always accompanied by
the appearance of near-degenerate pairs of symmetric and antisymmetric levels
[11, 12].

– HCCH S0 has normal modes with frequency ratios .!1W!2W!3W!4W!5/ D
.5; 3; 5; 1; 1/. There are many classes of polyads, and they are labeled by
three polyad quantum numbers: Nresonant D 5v1 C 3v2 C 5v3 C v4 C v5,
Nstretch D v1 C v2 C v3, and `total D `4 C `5. ` is the vibrational angular
momentum that appears for �-type vibrations of linear molecules [3, 4, 12].

– Spectral patterns associated with bent to linear [13] and trans to cis [9]
isomerization.

7.4 Polyads in the Acetylene Electronic Ground State (S0)

In its electronic ground state, HC�CH is a linear four-atom molecule with 3N �
2 D 7 vibrational degrees of freedom: five normal modes, two of which are doubly
degenerate, with frequencies in the approximate integer ratios �1.
Cg /: �2.
Cg /:
�3.


C
u /: �4.�g/: �5.�u/ D 5W3W5W1W1. Thus, nearly every vibrational level is a

member of a quasi-degenerate group of levels called a polyad [4, 11, 12]. The seven
vibrational quantum numbers (v1; v2; v3; v

`4
4 ; v

`5
5 ) are spoiled, even at low-J , by

anharmonic resonances, of which nine are known to have an important effect on
the spectrum and intramolecular dynamics of S0 acetylene [14].

The seven vibrational quantum numbers, destroyed by the anharmonic reso-
nances, are replaced by three good polyad quantum numbers. Each polyad is labeled
by the values of the three polyad quantum numbers

Nresonance D Nres D 5v1 C 3v2 C 5v3 C v4 C v5
Nstretch D Ns D v1 C v2 C v3
`total D ` D `4 C `5:

In the special case of Ns D 0,

Nres D Nbend D v4 C v5:

It is surprising that three good quantum numbers survive despite the plague of
anharmonic resonances.
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It is useful to express each of the important anharmonic resonance operators in
terms of creation and annihilation operators. For the two doubly degenerate bending
modes, each expressed in a .vi ; `i / basis set, we need a special set of four creation
and four annihilation operators, a4g , a4d , a5g, a5d , and a�4g , a�4d , a�5g, a�5d (g D
gauche, d D droite) [3]. The set of four a and four a� operators is needed because
each change in vi by C1 must be accompanied by a change of `i byC1 or �1 (for
each value of vi , the `i quantum number ranges fromCvi to �vi in steps of 2). For
mode 4 (the trans-bend)

a4g jv4; `4i D
	
v4 � `4
2


1=2
jv4 � 1; `4 C 1i

a4d jv4; `4i D
	
v4 C `4
2


1=2
jv4 � 1; `4 � 1i

a�4g jv4; `4i D
	
v4 � `4 C 2

2


1=2
jv4 C 1; `4 � 1i

a�4d jv4; `4i D
	
v4 C `4 C 2

2


1=2
jv4 C 1; `4 C 1i :

For mode 5 (the cis-bend), the a; a� operators are defined similarly. The number
operators are

N4 D a�4da4d C a�4ga4g; N4 jv4`4i D v4 jv4`4i
`4 D `4 D a�4da4d � a�4ga4g; `4 jv4`4i D `4 jv4`4i

and similarly for N5 and `5.
The nine important anharmonic resonances (sampled because of the 5W3W5W1W1

normal mode frequency ratios) are summarized in Table 7.1 [15].
The scaling of polyad matrix elements and membership illustrated here exem-

plify how measurements at low Evib determine the diagonal and off-diagonal
molecular constants. These molecular constants permit scaling of spectrum and
dynamics to higher Evib, despite the enormous increase in the dimension of the
polyad matrix and the complexity of the intramolecular dynamics. This scaling
provides a template for revealing qualitative changes, such as normal mode !
local mode, emergence of new classes of regular vibrations, emergence of ergodic
behavior that affects some or all members of a polyad, or the onset of the sampling
of a saddle point region on the potential energy surface.
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Chapter 8
Intramolecular Dynamics: Representations,
Visualizations, and Mechanisms

This lecture addresses the question: Stuff moves but eigenstates are stationary.
How is motion encoded in Quantum Mechanics? We are concerned with the
Time Dependent Schrödinger Equation for the special case of H independent
of time. In order to describe unimolecular dynamics we need: (a) a complete set
of eigen-energies and eigenvectors fEj ; j g of the time-independent H, (b) a
path via perturbation theory (both non-degenerate and degenerate) between the
zero-order fE.0/

j ;  
.0/
j g and the eigen-fEj ; j g, which is represented by a unitary

transformation

T�HT D

0
BBBBBB@

E1 0 0 0 0

0
: : : 0 0 0

0 0 Ej 0 0

0 0 0
: : : 0

0 0 0 0 EN

1
CCCCCCA
;

(c) a description of ‰.Q; t D 0/, the “pluck”, as a linear combination of
the eigen-fEj ; j g, and (d) the short and easy step from ‰.Q; t D 0/

to ‰.Q; t/. The full time-dependent ‰.Q; t/ contains so much information
that reduced-information quantities are needed. These include motion in
coordinate hQit and momentum hPit space and state space: hN1;N2; : : : it ,
h‰.t/‰.0/it , jh‰.t/‰.0/ij2, and the time-dependence of “resonance operators”.

© Springer International Publishing Switzerland 2015
R.W. Field, Spectra and Dynamics of Small Molecules,
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130 8 Intramolecular Dynamics

8.1 From the “Pluck” at t D 0 to the Time-Evolving State

The Time-Dependent Schrödinger Equation (TDSE) is

H‰ D i¯@‰
@t
:

If H is time-independent and we know all f j ;Ej g of its eigenstates and eigen-
energies, then we can always express the t D 0 state of the system as a linear
combination of eigenstates [1]:

This is a trivial step if we know ‰.Q; 0/ and the complete set of eigenstates and
eigen-energies of H, f j ;Ej g.

But the difficult and necessary work is to obtain (a) a description of the t D 0

state (the “pluck”), (b) the specific zero-order representation f .0/j ; E
.0/
j g demanded

by the pluck, and (c) the relationships (unitary transformation) between the zero-
order states and the eigenstates.

8.2 Perturbation Theory

Summary of non-degenerate Perturbation Theory (see Sect. 3.1) [2]:

H D H.0/ CH.1/

Ej D E.0/
j C E.1/

j CE.2/
j

D H0
jj CH1

jj C
X 0

k¤j

ˇ̌
ˇH1

jk

ˇ̌
ˇ
2

E
.0/
j � E.0/

k

 j D  .0/j C  .1/j

D  .0/j C
X 0

k¤j .0/k
H1

jk

E
.0/
j � E.0/

k

:
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Usually we try to choose H.0/ so that its eigenstates are closely related to the
states that are created by an experimentally realizable pluck of the system. We
embed in H.0/ an experimentally convenient factorization of the internal motions
of the molecule. For example, it is often convenient to choose normal modes of
vibration vs. bond-localized modes of vibration. More on this later.

If we define H.0/ so that we have a complete set of basis functions
n
 
.0/
j

o
and

zero-order energies
n
E
.0/
j

o
that are cleverly chosen because of their appropriateness

for a particular class of dynamical problem or initial excitation of the molecule, then
H.1/ contains everything else beyond H.0/ in the exact H. We have defined

H.0/ D

0
B@
E
.0/
1 0
: : :

0 E
.0/
n

1
CA

so that
˝
i .0/jH.0/jj .0/˛ D ıijE

.0/
j and, evaluated in the

n
 
.0/
j

o
basis set, then H.1/ is

H.1/ D

0
BBB@

H
.1/
11 H

.1/
12 : : :

H
.1/
21 H

.1/
22 : : :

: : : : : : : : :

: : : : : : H
.1/
nn

1
CCCA :

Usually all of the H.1/
ij matrix elements are given by simple equations rather

than explicit evaluations of integrals (see Sect. 7.3). H D H.0/ C H.1/ is exactly
diagonalized by the unitary transformation

T�.H.0/ CH.1//T D

0
B@
E1 0

: : :

0 En

1
CA

and the eigenstate jj i is expressed in the zero-order basis set as

A very convenient property of a unitary matrix is

T�T D 1:
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T� (the conjugate transpose of T) is the inverse of T, T� D T�1. The inverse of the
diagonalizing transformation will come in very handy whenever we want to express
‰.Q; t D 0/ in terms of the eigenstates of H.

When the crucial approximation of non-degenerate perturbation theory is
satisfied

�j;k D
ˇ̌
ˇ̌
ˇ

H
.1/
j;k

E
.0/
j �E.0/

k

ˇ̌
ˇ̌
ˇ� 1 for all j; k;

where �j;k is often called the “mixing angle”, then each element of Tk is obtained
directly via non-degenerate perturbation theory, with one small modification, the
inclusion of Nj , to ensure normalization

jj i D Nj jj i.0/ C
X

k¤j
jki.0/ H

.1/
j;k

E
.0/
j � E.0/

k„ ƒ‚ …
T
�
k;j

Nj D
2

41 �
X

k¤j

�
T
�

kj

�2
3

5
1=2

:

This Nj normalization factor is taken as unity in the usual formulas of non-
degenerate perturbation theory, which is legitimate because of the assumption that
all �jk � 1.

When the approximation of non-degeneracy is not satisfied, it is necessary to use
a computer to diagonalize the “quasi-degenerate” blocks of H (see Fig. 4.1). The
mechanics of the construction of ‰.Q; t/ are unchanged, except that the computer
provides all of the elements of T�.

8.3 Toluene: A Hindered Rotor. A Fully Worked Out
Example

A particle on a circular ring is a simple zero-order system that is ideally suited for
perturbation theory,

H.0/ D hcBJ2=¯2 C V .0/.	/

where

V .0/ D 0:
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The zero order energies and basis states are

E.0/
n D hcBn2 n D 0;˙1;˙2; : : :

 .0/n D h	jni D .2�/�1=2e	:

Reflection in the plane of the ring, � v , is a rigorous symmetry

� ve
in	 D e�in	 :

The symmetrized basis set is convenient because the symmetrized states are
eigenfunctions of � v

 
.0/

0C
D h	j0i D .2�/�1=2

 
.0/

jnj˙ D 2�1=2Œh	jni ˙ h	j � ni� D .4�/�1=2
�
ein	 ˙ e�in	

�

� v 
.0/

jnj˙ D ˙ jnj˙:

Consider the example of toluene (Figs. 8.1 and 8.2). The methyl group in toluene
(methyl benzene) is a hindered internal rotor in a sixfold symmetric potential

V.	/ D V6 cos.6	/

where V6 can be positive (minimum of V6 is at the staggered geometry) or negative
(minimum of V6 is at the eclipsed geometry). Why is the hindering potential sixfold,
and not threefold symmetric? It is convenient to write V.	/ in the exponential form

V.	/ D .V6=2/
�
ei6	 C e�i6	�

:

Fig. 8.1 Internal rotation of �CH3 in toluene. The rotor angle, 	, is defined for one of the three
equivalent H atoms (H˛) relative to the plane of the phenyl ring. There are six equivalent eclipsed
positions (	 D 0, �=3, 2�=3, � , 4�=3, and 2�) and six equivalent staggered positions (	 D �=6,
�=2, 5�=6, 7�=6, 3�=2, and 11�=6)
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Fig. 8.2 A part of a sixfold hindered rotor potential. If V6 > 0, there are six maxima corresponding
to one of the three methyl hydrogen atoms in the plane of the benzene ring (eclipsed) and six
minima corresponding to one of the hydrogens perpendicular to the plane of the benzene ring
(staggered). 	 specifies the rotation of the –CH3 group relative to the plane of the benzene ring

For toluene, where the source of the perturbation of the methyl rotor is the planar
phenyl ring, the hindered rotor potential cannot be

V.	/ D V6 sin 6	 D V6

2i

�
ei6	 � e�i6	�

;

because H must be symmetric with respect to � v .
The hindered rotor potential for an ortho- or meta-substituted halo-toluene would

have the lower-symmetry sixfold plus threefold form:

V.	/ D V3 cos 3	 C V6 cos 6	:

Why?
For toluene

H.1/ D .V6=2/
�
ei6	 C e�i6	�

:

H.1/ spoils the angular momentum quantum number, n, as will be illustrated here
using non-degenerate perturbation theory.

In the symmetrized free-rotor basis set, the non-zero matrix elements of H.1/

are

H
.1/
n;.˙/In0.˙/0 :
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These matrix elements follow the selection rules

.˙/0 $ .˙/
n0 D nC 6; jn � 6j:

The non-zero matrix elements of H.1/ are

H
.1/

n˙I.nC6/˙ D H.1/

n˙Ijn�6j˙ D V6=2

and two special cases

H
.1/
3˙I3˙ D E.1/

3˙ D ˙V6=2
H0CI6C D 2�1=2V6:

It is possible to work out a closed-form expression for E.2/

n˙:

E
.2/

n˙ D
.V6=2/

2

hcBCH3

1

2.n2 � 9/ :

Thus we have a closed-form expression for En˙:

En˙ D E.0/

n˙ C E.1/

n˙ C E.2/

n˙

En˙ D hcBCH3n
2 ˙ ın;3.V6=2/C .V6=2/

2

hcBCH3

1

2.n2 � 9/

and also for h	jn˙i

h	jn˙i D h	jn˙i.0/ C V6=hcBCH3

24

� �1
nC 3 h	jnC 6j˙i

.0/ C 1

n � 3 h	jjn � 6j˙i
.0/

�

[with special cases for 0�, 3C, 3�, 6C and 6� states].
The purpose of presenting all of this algebra is to illustrate two important

principles:

1. for an electronic transition between two electronic states with identical potential
energy surfaces, we expect correctly that the Franck–Condon principle permits
only �n D 0 (diagonal) transitions: only one final eigenstate can be reached
from each single initial eigenstate, regardless of the size of V6 relative to hcBCH3 .
There will be no dynamics. When V6 and/or BCH3 is different for the initial and
final electronic states, the F-C factors are no longer diagonal. The short Franck–
Condon pluck of the system excites several eigenstates that belong to different
eigen-energies. This satisfies the requirement for dynamics.
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2. When a transition occurs between the states that are described by different
coupling cases, many more transitions are allowed than when the coupling cases
are identical. (This is a very useful but seldom explicitly-stated general rule.)

The coupling cases are expressed by

‚ D V6

hcBCH3
:

When the upper state ‚0 is identical to the lower state ‚00, there are exclusively
�n D 0, ˙ $ ˙ transitions. In such a case, a sudden transition cannot create
a time-evolving coherent superposition of two eigenstates that belong to different

eigen-energies. There can be no dynamics even if
ˇ̌
ˇ V6

hcBCH3

ˇ̌
ˇ 	 1, which means that

the angular momentum quantum number is utterly destroyed. However, when
‚0 ¤ ‚00, some non-diagonal transitions become allowed. The transition
probability, Pn0˙;n00˙, is proportional to the square of the overlap between the
wavefunction in the upper electronic state with that in the lower electronic state.
This is the hindered rotor version of a one-dimensional Franck–Condon factor,

Pn0˙;n00˙ /
ˇ̌˝
n0 ˙ jn00˙˛ˇ̌2

:

Rather than giving the general result, consider the example of the nominally
forbidden transition between the n00 D 1C level and the n0 D 7C level:

ˇ̌
n00 D 1C˛ D �

1 � ˛2n00D5C � ˛2n00D7C
�1=2 ˇ̌

n00 D 1C˛.0/

C ˛n00D5C
ˇ̌
n00 D 5C˛.0/ C ˛n00D7C

ˇ̌
n00 D 7C˛.0/

where the mixing coefficients have the values

˛n00D5C D �
�
V 006 =hcB00CH3

� 1
48

˛n00D7C D �
�
V 006 =hcB00CH3

� 1
96
:

Similarly,

ˇ̌
n0 D 7C˛ D �

1 � ˛2n0D1C � ˛2n0D13C
�1=2 ˇ̌

n0 D 7C˛.0/

C ˛n0D1C
ˇ̌
n0 D 1C˛.0/ C ˛n0D13C

ˇ̌
n0 D 13C˛.0/

;

where
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˛n0D1C D C
�
V 06=hcB0CH3

� 1
96

˛n0D13C D �
�
V 06 =hcB0CH3

� 1

120
:

Thus

˝
n0 D 7C jn00 D 1C˛ D �

1 � ˛2n0D1C � ˛2n0D13C
�1=2

˛n00D7C

C ˛n0D1C
�
1 � ˛2n00D5C � ˛2n00D7C

�1=2

� ˛n00D7C C ˛n0D1C

D � �
V 006 =hcB00CH3

� 1
96
C �

V 06=hcB00CH3

� 1
96

D 1

96

"
V 06

hcB0CH3

� V 006
hcB00CH3

#
:

If ‚0 D ‚00, the n0 D 7C  n00 D 1C transition is forbidden, but whenever
‚0 ¤ ‚00, the transition becomes allowed. The allowedness is proportional to
Œ‚0 � ‚00�2. Note that, in the case where the electronic transition corresponds to
a staggered$eclipsed geometry change, many�n ¤ 0 transitions are observable.

For a molecule like toluene, which contains a light rotor (e.g. –CH3) attached to a
heavy framework (e.g. –phenyl), the vibrational or electronic-vibrational spectrum
will contain patterns of transitions, the frequencies and relative intensities of
which yield unambiguous assignments of the upper- and lower-state rotor quantum
numbers, n0 and n00. Once the n0; n00 assignments are secure, the global energy level
diagram may be constructed, the details of which reveal the qualitative form of the
hindered rotor potential (sixfold, sixfold plus threefold, sixfold plus twofold) and
the numerical values of the rotor-relevant molecular constants.

For example, in toluene, the internal rotor levels will exhibit energy level
spacings intermediate between the very fine level spacings of the full-molecule
rotational levels and the much coarser structure associated with the IR-active or
Franck–Condon bright normal mode vibrational fundamentals and overtones. For
toluene, based on the �n D 0, .˙/0 $ .˙/00 selection rules for transitions
between rotor basis states, the n0 D n00 C 6 and n0 D jn00 � 6j, .˙/0 $ .˙/00,
H
.1/

n0.˙/0In00.˙/00 perturbation matrix element selection rule (weak extra transitions),
and the n0 D n00C12, n0 D jn00�12j, and n0 D jn00�6jC6, .˙/0 $ .˙/00 two-step
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perturbation selection rule (very weak extra transitions), one expects the following
transitions:

n00 D 0C
n0 D 0C; 6C; 12C
n00 D 1˙
n0 D 1˙; 7˙; 11˙; 13˙
n00 D 2˙
n0 D 2˙; 4˙; 8˙; 10˙; 14˙
n00 D 3˙
n0 D 3˙; 9˙; 15˙
n00 D 4˙
n0 D 4˙; 2˙; 8˙; 10˙; 16˙
n00 D 5˙
n0 D 5˙; 1˙; 7˙; 11˙; 17˙
n00 D 6C
n0 D 6C; 0+; 12C; 18C
n00 D 6�
n0 D 6�; 12�; 18� (note that there is no 0-level of � symmetry)

etc.
In an absorption spectrum, the lower state internal rotor n00 > 0˙ levels will be

thermally populated. Thus the spectra will consist of groups of transitions (one n0
series for each populated n00˙ level) approximately spaced by

�En0˙In00˙ D �E0 C hc
�
B 0CH3n

02 � B 00CH3n
002� :

The zero-order transition pattern will be distorted by level shifts associated with
first-order and second-order effects of the V 06 .	/ and V 006 .	/ sixfold barrier terms:

En˙ D E0 C hcBCH3n
2

„ ƒ‚ …
E
.0/
n

˙ ın;3.V6=2/„ ƒ‚ …
E
.1/
n

C .V6/
2

hcBCH3

1

8.n2 � 9/„ ƒ‚ …
E
.2/
n

:

Crucial, assignment-relevant information is obtained from transitions that originate
from the n00 D 0; 3, and 6 levels (especially the 3C and 3� levels). Five parameters
are sufficient to determine all of the transition frequencies and relative intensities:
�E0 D E 00 �E 000 , B 0CH3

, B 00CH3
, V 06 , and V 006 .
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Ask an organic chemist about “resonance”-related electronic structure factors
that determine the sign and magnitude of the V6 parameter for substituted toluenes!

8.4 The Pluck: ‰.Q; t D 0/

Suppose the molecule is prepared in some non-eigenstate by a short pulse applied
at t D 0. This is “the pluck” [3]. We refer to what is prepared at t D 0 as “the bright
state”.

What is “bright” and what is “dark” is defined by the nature of the experiment.
Suppose that the vibrational wavefunction of the v D 0 state of the electronic ground
state, QX; vX D 0, is “transferred” by a short pulse to an electronically excited state,
QA. The potential energy surface of the QA electronic state is different from that of

the QX-state. As a result, the t D 0 preparation of the excited electronic state is a
coherent superposition of eigenstates of the electronically excited potential energy
surface

 QX;vXD0.Q/ D
X

vA

c QA;vA  QA;vA

where

c QA;vA D hvX D 0jvAi

is a numerically calculable vibrational overlap integral between normal mode basis
states. However, owing to intra-mode and inter-mode anharmonicity, the harmonic
oscillator  QA;vA states are not eigenstates of the V QA.Q/ potential energy surface. An
additional transformation is needed to deal with these anharmonicity (and Coriolis)
effects. The QX; vX D 0 pluck instantaneously creates amplitudes in many QA; vA
basis states that are not eigenstates. Usually, however, the pluck creates significant
amplitude in only a few vibrational states (vertical transition) exclusively with
excitation in the Franck–Condon active normal modes. These are the “bright”
modes. They are the modes that express the difference in equilibrium molecular
geometry between the QX and QA states.

Alternatively, one can imagine a “sudden” Stimulated Emission Pumping[4, 5]
process where a downward stimulated emission transition from a selected highly-
excited vibrational eigenstate (of one of the Franck–Condon active normal modes)
of the electronically excited state creates amplitudes in several zero-order highly
excited states of the Franck–Condon active normal mode in the ground state.
However, at the chosen vibrational excitation energy in the electronic ground state,
the normal modes have been replaced by local modes. The pluck is a superposition
of local mode states [6–8].

Another scheme might be sudden excitation of a high overtone of an R-H stretch
local mode vibrational level via a pure vibrational transition. The highly excited



140 8 Intramolecular Dynamics

normal mode character is distributed over many vibrational eigenstates, but the
coherent superposition excited by the pluck pulse evolves initially like a local mode
[8] (but the dephasing of the localized character can be very rapid: Intramolecular
Vibrational Redistribution (IVR) [9]). Again, it is experimentally possible to capture
the wavepacket dynamics encoded in the group of eigenstates excited by the pluck
at t D 0. Dynamics are encoded in the pattern of eigenstates and transition
amplitudes that appear in a high resolution, eigenstate-resolved spectrum, which
could in principle have been prepared as a coherent superposition state by a short
excitation pulse at t D 0. One does not have to perform an ultrafast time-domain
experiment in order to describe, completely and accurately, the dynamics that would
be observed in a time-domain experiment.

So the prescription is

1. The pluck is what could have been excited from the selected initial state by a
short t D 0 pulse centered at a specified energy.

2. What is then seen in the experiment is determined by the nature of the detection
scheme. What is made bright in a specific experiment is determined jointly by
the nature of the excitation and detection schemes.

What is “bright” and what is “dark” is determined by the initial state, the
excitation pulse, and most importantly by the detection scheme. Bright and dark
are defined by the details of the specific experiment.

8.5 ‰.Q; t/ Contains too Much Information

I have expressed ‰.Q; t D 0/ as a linear combination of time-evolving eigenstates
of H

‰.Q; t/ D
X

j

cj  j .Q/e�iEj t=¯

where
˚
 j ;Ej

�
are eigenstates and eigen-energies and some form of perturbation

theory/matrix diagonalization has been used to determine all of the mixing coeffi-
cients, fcj g. It is necessary to reduce the information in ‰.Q; t/ so that some sort
of memorable intuitive picture may be obtained from experimental observations.
The goal is “mechanism”D causality plus predictability. Alternatively, the intuitive
pictures of the pluck, its free evolution, and its detection may be used to guide the
design of the most mechanistically revealing experimental schemes.
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8.5.1 Motion in Real Space[10]

There are several classes of reduced representations. The most familiar of these refer
to the trajectory of the “center of the wavepacket” in coordinate and/or momentum
space:

hxit and hpit
or, for a polyatomic molecule

D EQ
E

t
and

DEP
E

t

where EQ and EP consist of motions of each of the internal coordinates and their linear
momenta,

EQ D
X

j

q| ; O|;

where O| is a unit vector associated with the j th mode. For a time-evolving
wavepacket in a 1-D harmonic oscillator

‰.x; t D 0/ D
1X

jD0
cvj  vj .qj /

‰.x; t/ D
1X

jD0
cvj  vj .qj /e

�i¯!j .vjC1=2/t=¯; !j D Œkj =�j �1=2:

The�v D ˙1 harmonic oscillator selection rules for matrix elements of x and p
have some interesting consequences:

(a) If only even-vj or only odd-vj ; cvj coefficients are non-zero, then

hxit D 0 and time-independent

hpit D 0

but

˝
x2

˛
t
¤ 0 and time-dependent

˝
p2

˛
t
¤ 0

˝
x2

˛
t
D .2=k/ hV.x/it

˝
p2

˛
t
D 2� hT .p/it ;
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which means that the center of the wavepacket does not move, but the width of
the wavepacket, 
x , oscillates at an angular frequency of !j ,


x.t/ D
h˝
x2

˛
t
� hxi2t

i1=2 D �˝
x2

˛
t

�1=2
:

This evolution of the wavepacket corresponds to periodic dephasing (spreading)
and perfect rephasing of the wavepacket to its t D 0 shape at all integer
multiples of the harmonic oscillator period

�j D 2�

!j
:

(b) If the set of nonzero fcvj g contain values for even and odd vj , the wavepacket
will move following Newton’s laws

�
d

dt
hxit D hpit

�
�
d

dx
V.x/




t

D �k hxit D �
d

dt
hpit :

The motion is periodic at �j D 2�
!j

regardless of the specific set of nonzero cvj ,
and the wavepacket periodically dephases and rephases. If the t D 0 “phased
up” .‰.xC; t D 0/ > 0/ wavepacket is located at one of the turning points

x˙ D ˙
	
2 hEi
k


1=2

where

hEi D ¯!j
X

j

c2vj .vj C 1=2/;

then the “phased down” .‰.x�; t D �=2/ < 0/ wavepacket will be located at
the other turning point at all odd multiples of the half period

tn D .2nC 1/ �
!j
:

(c) When the oscillator is anharmonic, its time-dependence is more complicated,
especially with respect to dephasing and partial recurrences. However, the hxit
and hpit always follow Newton’s laws (Ehrenfest’s Theorem).
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Similarly broad (but different) statements can be made about the motion
of wavepackets in an infinite box potential. Periodic dephasing and perfect
rephasing occur at a period

� D 2mL2=¯ (L is the width of the box).

(d) For a polyatomic molecule, a vibrational wavepacket has t D 0 amplitude in
each of 3N � 6 vibrational modes. This amplitude evolves within each of the
modes and also exhibits transfer between modes. This sort of evolution is most
instructively viewed as evolution in state space rather than in coordinate space.

8.5.2 Motion in State Space

In a polyatomic molecule there are 3N � 6 normal modes. Suppose the t D 0

pluck creates a very large amplitude displacement of only one of these vibrational
modes. This idea was the basis for the dream of laser-based “bond-specific” or
“mode-specific” chemistry. Energy is inserted into the molecular vibrations non-
ergodically by a short, high intensity laser pulse so that a user-selected bimolecular
chemical reaction will occur at a specified site in the molecule [7]. It doesn’t work
[8] ! The enemy is Intramolecular Vibrational Redistribution (IVR) [9]. Dynamics
in state space provides a good way to visualize IVR or to infer the early time
mechanism of IVR based on the transition frequencies and intensities observed in
frequency domain spectra.

In a polyatomic molecule, the fastest energy flow pathways are between modes
for which the frequencies are in near integer multiples [10–12]. This is called
resonance. The most common situation is near degeneracy between pairs of
symmetric and antisymmetric stretch [8] or bend [11] modes. Since the Heff can
contain only totally symmetric operators, the lowest-order near-resonant inter-
action mechanism between members of a symmetric .!s/ and antisymmetric
pair of modes is

kssaaQ2
sQ

2
a D kssaa

� ¯
2�s!s

¯
2�a!a

�

„ ƒ‚ …
this is replaced by K

�Oa2sa�2a C a�2s Oa2a
�
:

The near-degenerate interacting pairs of zero-order levels are .vs; va/ � .vs ˙
2; va � 2/ owing to the �va D ��vs D ˙2 selection rules of the

�
Oa2sa�2a C a�2s Oa2a

�

operator.
We need the following

Oa|
ˇ̌
v|

˛ D .v| /1=2
ˇ̌
v| � 1

˛

Oa�|
ˇ̌
v|

˛ D .v| C 1/1=2
ˇ̌
v| C 1

˛

ON| � Oa�j Oaj ; ON|
ˇ̌
v|

˛ D v|
ˇ̌
v|

˛
;
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where Oa| , Oa�| , and ON| are respectively annihilation, creation, and number operators
(see Sect. 7.3).

Consider the interaction between the jvs; vai.0/ D j2; 0i.0/ and j0; 2i.0/ zero-
order states. Suppose, for pedagogical simplicity, that the kssaa interaction between
these two zero-order states is sufficiently strong that the eigenstates are 50:50
mixtures of the zero-order states

j˙i D 2�1=2
h
j2; 0i.0/ ˙ j0; 2i.0/

i

EC �E� D 2K .0/
˝
2; 0

ˇ̌
a�2s Oa2a

ˇ̌
0; 2

˛.0/ D 4K:

Suppose j2; 0i.0/ is bright and j0; 2i.0/ is dark.

j2; 0i.0/ D 2�1=2ŒjCi C j�i�
‰.q1; q2; t D 0/ D j2; 0i D 2�1=2ŒjCi C j�i�

‰.q1; q2; t/ D 2�1=2
h
e�iECt=¯jCi C e�iE�t=¯j�i

i

˝
Nsym

˛
t
D ˝

a�sas
˛
t
D

Z
d�‰? ONs‰

D 1

2

hD
Cj ONsjC

E
C

D
�j ONsj�

E
C

�D
Cj ONsj�

E
ei!C�t C c:c:

�i

D 1

2

�
1

2
2C 1

2
2C 1

2
2ei!C�t C 1

2
2e�i!C�t

�

D 1C cos!C�t where !C� D 4K

¯ :

The number of quanta in the bright state
�j2; 0i.0/� oscillates cosinusoidally between

2
�

at t D 0 and t D n 2�
!C�

�
and 0

�
at t D .2nC 1/ �

!C�

�
.

At higher excitation, one has a polyad of near degenerate jvs; vai.0/ states, e.g. for
vs C va D 10, there are six near degenerate zero-order states: j10; 0i.0/, j8; 2i.0/,
j6; 4i.0/, j4; 6i.0/, j2; 8i.0/, and j0; 10i.0/. The Heff is a 6�6matrix controlled entirely
by the values ofK and ! � !sC!a

2
. The bright state is j10; 0i.0/ and jNsit exhibits a

much more complicated t-dependence than for the vsCva D 2 polyad. However, all
of the t-dependence of hNsit for all values of vs C va > 2 is accurately predictable
from the observed behavior of the vs C va D 2 polyad. This predictability concerns
both intuitive mechanism and computational fidelity.
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8.6 Mechanism

There are several other measures of dynamics that are neither real-space nor state-
space quantities, but have exceptional physical significance [13]:

(a) Autocorrelation function

A.t/ D
tZ

0

d� ‰?.Q; �/‰.Q; 0/

(b) Survival probability

P.t/ D
ˇ̌
ˇ̌
ˇ̌

tZ

0

d� ‰?.Q; �/‰.Q; 0/

ˇ̌
ˇ̌
ˇ̌

2

D jA.t/j2

(c) Transfer probability, where ‰I.Q; 0/ is the initial state formed by the pluck and
‰F.Q; 0/ is the final “target” state at which the initial wavepacket is aimed

TI!F.t/ D
ˇ̌
ˇ̌
Z
d�‰?

I .Q; t/‰F.Q; 0/

ˇ̌
ˇ̌
2

and for which we want to know the values of t at which the overlaps with the
target state reach their local-maximum or local-minimum values.

The frequency domain spectrum associated with the totality of electronic-
vibration transitions out of an initially selected eigenstate is given by the Fourier
transform of the autocorrelation function of the initial electronic-vibration state
transferred by the pluck onto the potential energy surface of the final electronic state
[14, 15]. Features in the spectrum are associated with how the‰I.Q; 0/ pluck, which
originates from a single vibrational level of the initial electronic state, explores
the final electronic state potential energy surface. The broad spectral envelope is
determined by how ‰I.Q; t/ explores the final state potential surface at early time
[16]. What ‰I.Q; t/ explores is determined by the initial state and the spectral
content of the light pulse that creates the pluck. The finer details of the frequency
domain spectrum are produced as the ‰I.Q; t/ explores an increasingly larger
region of the final potential energy surface. An especially appealing feature of the
autocorrelation function route to a spectrum is that features of the spectrum are
associated with how ‰I.Q; t/ sequentially explores specific regions of the potential
surface, especially the localized exploration that occurs at early time [14].

The survival probability reveals how rapidly the wavepacket initially created by
the pluck departs from its birthplace. It also provides a measure of when and what
fraction of the wavepacket returns. It does not specify whether the departure from
its t D 0 location is mainly in coordinate or momentum space. However, if the
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wavepacket is initially located near a turning point,
DEP

E

t
is changing much more

rapidly than
D EQ

E

t
. The survival probability conveys no information about where the

t D 0 wavepacket goes after it departs from its t D 0 location nor what term in the
Heff is principally responsible for its departure. However, the survival probability
does reveal the magnitudes of partial recurrences and the times at which these partial
returns to the birthplace occur [15].

The transfer probability is valuable for displaying how well the dynamics of a
specific pluck are aimed at (or away from) some target state that is expected to have
useful chemical properties.

The final topic discussed here is how the dominant mechanisms responsible
for intramolecular dynamics may be identified, based on the various dynamical
measures discussed so far.

Suppose one sets up an Heff that describes very well all of the frequency-domain
spectral data (intensities and transition frequencies). The Heff embodies many
anharmonic resonance interactions. Which resonance term is responsible for each
of the dynamical features prominently displayed in the survival probability, P.t/?
This is a question of why rather than what. Causality and mechanism are intrinsically
more interesting than numerical description. It is possible to get this mechanistic
information from expectation values of “resonance operators” constructed from the
various anharmonic terms in the Heff [17]. See Figs. 8.3 and 8.4.

In the absence of collisions, the energy and total angular momentum of a
gas phase molecule are conserved. There are an infinite number of ways that a
polyatomic molecule can be prepared, at t D 0, with a specified amount of energy,
hHi, and angular momentum,

˝
J2

˛
.

The most interesting of these ways are those that localize significant energy
in a single local or normal vibrational mode. Some of these t D 0 preparations
are convenient to create by a simple, well-designed pluck. We want to discover
which terms in the empirically determined time-independent Heff are responsible
for the most prominent features displayed by expectation values of the descriptive

dynamical quantities, such as
D EQ

E

t
,

DEP
E

t
, survival probability, and normal or local

mode number operators, such as
D
a�i ai

E
.

The Heff consists of diagonal, Hdiag, and off-diagonal (resonance) terms, Hres

Heff D Hdiag CHres[17]:

The partitioning of Heff between Hdiag and Hres depends on the choice of basis
set (e.g. normal modes, local modes, or basis states obtained by diagonalization
of an Heff that contains all terms in Heff except one or two presumably dominant,
dynamics-determining terms in Heff). The dynamically most important terms in
Hres are those responsible for interactions between large groups of systematically
near-degenerate basis states. These groups of strongly interacting basis states are
called polyads (see Sect. 7.3.4). The rules for basis state membership and matrix
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Fig. 8.3 Various Measures of
Intrapolyad Dynamics. Top:
Survival probability
associated with the
.0; 1; 0; 100; 00/ zero-order
state. Middle three panels:
resonance energy
contributions of three specific
anharmonic resonances.
Bottom: the total resonance
energy associated with the
wavepacket (solid line) and
that portion of it which is not
accounted for by the three
resonances depicted in the
middle panels (dotted line).
Reproduced with permission
from Fig. 1 in [17]. Copyright
2000, Elsevier B.V

element scaling in successive polyad groups are simple, based on the selection
rules and quantum member scaling rules for harmonic oscillator Qm

i Qn
jQo

k matrix
elements.
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Consider, for example, a 2:1 bend:stretch (Fermi resonance) interaction where
2!b � !s . There are two important interaction terms

� D ksbba�sa
2
b

and

� D ksbbasa
�2

b ;

which respectively follow the .�: �vs D C1, �vb D �2/ and .��: �vs D �1,
�vb D C2/ selection rules. All terms (O) in the Heff must be Hermitian, but any
Hermitian operator may be expressed as a sum of two non-Hermitian terms, �
and��,

O D �C��:

Each term in Hres may be expressed as the sum of k pairs of non-Hermitian operators

Hres D
X

k

Ok D
X

k

�
�k C��

k

�
:

Each term in this sum over k corresponds to a resonance of possible dynamical
importance [17].

It is instructive to compute the time-dependent expectation values of .�k C��

k/

and .�k���

k/ for the time-evolving form of any selected t D 0 pluck state,‰.Q; t/.
The Hermiticity of each Ok implies that the expectation values

Eres;k.t/ D hOkit
E D Ediag.t/C

X

k

hOkit

are real and that

Ik.t/ � hOkit
E

defines the time-dependent importance of the Ok term in the time-evolution of the
chosen pluck state. Each pluck state will exhibit a unique set of fIk.t/g importance
terms. It is possible to show (see Eqs. (12)–(19) of [17]) that the expectation value

of each
�
�k ���

k

�
term is pure imaginary and that it provides a measure of the

rate of energy flow between the vibrational modes coupled by�k ,

i¯ d
dt

˝
vj

˛k
t
D

X

k

�njk

D
�k ���

k

E

t
;
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vj is the number of quanta in mode j , and

�vkj .t/ D
˝
vj

˛k
t
� vj .t D 0/ D

tZ

0

�
d

d�

˝
vj

˛k
�

�
d�

where

final nj initial nj

Δnjk n jk – njk

is the number of quanta in mode j exchanged by resonance k (e.g. for�k D
�

a�j
�nj

.am/
nm , �njk D nj and �nmk D �nm). The quantity ¯!j ddt

˝
vj

˛k
t

is the pure real
rate of energy flow into or out of mode j caused by resonance k. �vkj .t/ is the
accumulated change in the number of quanta in mode j caused by resonance k.

Figures 8.3 and 8.4 illustrate the use of expectation values of �k C ��

k and

�k���

k , for three of the nine known important resonance operators, to gain a mech-
anistic understanding of the dominant dynamical mechanisms for an exemplary
acetylene S0

ˇ̌
ˇv1; v2; v3; v`44 ; v

`5
5

E
D ˇ̌

0; 1; 0; 100; 00
˛

zero-order state (v1 D symmetric CH stretch, v2 D CC stretch, v3 D antisymmetric
CH stretch, v4 D trans-bend, `4 D vibrational angular momentum of the doubly
degenerate trans-bend, v5 D cis-bend, `5 D vibrational angular momentum
of the cis-bend). Three anharmonic resonances dominate the dynamics of thisˇ̌
0; 1; 0; 100; 00

˛
zero-order state [11, 12], which could easily be created at t D 0 by

a short stimulated emission pluck pulse from any of the Franck–Condon accessibleˇ̌
v01 D 0; v02; v03; v04 D 0; v05 D 0; v06 D 0

˛
vibrational levels of the trans-bent S1 state

(in S1 v02 is the CC stretch and v03 is the trans-bend).
The three anharmonic resonance terms that dominate the unimolecular dynamics

of the chosen pluck state,
ˇ̌
0; 1; 0; 100; 00

˛
are [11, 18]:

(a) hDD1i (Darling–Dennison 1), �v4 D ��v5 D 2, �v1 D �v2 D �v3 D
�`4 D �`5 D 0.

D
v1v2v3v

`4
4 v

`5
5 jHDDIjv1v2v3.v4 � 2/`4.v5 C 2/`5

E

D 1

4
K44;55Œ.v

2
4 � `24/.v5 C `5 C 2/.v5 � `5 C 2/�1=2:
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Fig. 8.4 Contributions of Specific Resonance Terms to Intrapolyad Dynamics. Left column:
d h�4i =dt . Right column: h�4i .t / � h�4i .0/ D R t

0 d h�4i =dt . The Darling–Dennison 1 and
(3,245) resonances account for nearly all energy transfer into and out of mode 4; the dotted lines
in the bottom two panels represent the contributions from all of the other resonances. Reproduced
with permission from Fig. 2 in [17]. Copyright 2000, Elsevier B.V

(b) h3;245i (quartic anharmonicity), �v3 D ��v2 D ��v4 D ��v5 D �1,
�`4 D ��`5 D �1, �v1 D 0, �`tot D 0

D
v1v2v3v

`4
4 v

`5
5 jH3;245jv1.v2 � 1/.v3 C 1/.v4 � 1/`4˙1.v5 � 1/`5�1

E

D Œv2.v3 C 1/.v4 � `4/.v5 ˙ `5/�1=2:
(c) hvib-`i (vibrational `-resonance), �v1 D �v2 D �v3 D �v4 D �v5 D 0,

�`4 D �2, �`5 D ˙2
D
v1v2v3v

`4
4 v

`5
5 jHvib-`jv1v2v3v`4˙24 v

`5�2
5

E

D 1

4
r45 � Œ.v4 � `4/.v4 ˙ `4 C 2/.v5 ˙ `5/.v5 � `5 C 2/�1=2
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The top panel of Fig. 8.3 shows the survival probability for the‰.Q; t D 0/ Dˇ̌
01010000

˛
pluck state,

P.t/ D
ˇ̌
ˇ̌
Z t

0

d�‰?.Q; �/‰.Q; 0/

ˇ̌
ˇ̌
2

;

where the time-evolving pluck state, ‰.Q; t/, is derived from ‰.Q; 0/ using the
Heff that is expressed in terms of molecular constants that had been derived from
fits to frequency domain spectra (IR, Raman, Dispersed Fluorescence, Stimulated
Emission Pumping) [10, 11, 19, 20]. The frequency domain spectrum encodes
dynamics. Our goal here is to show how the .� C ��/ and .� � ��/ tools are
used to reveal the dominant energy flow pathways for any localized pluck state and
the terms in the Heff that are responsible for each pathway [17]. This is mechanism
plus causality, which is far more interesting and instructive than mere numerical
description.

The survival probability describes the temporal patterns of vibrational energy
flow away from and back to the t D 0 pluck state. It does not provide any
information about where the energy goes and why it goes there. The survival
probability plotted in the top panel of Fig. 8.3 contains nearly 100 % amplitude slow
dephasings/rephasings with a period of �1.2 ps. Superimposed on the large and
slow modulation are shallower and faster oscillations with a period of�0.24 ps. The
second panel of Fig. 8.3, labeled hDD1i, is the expectation value of .�DD1C��

DD1/.
It shows that the fast oscillations of the survival probability are “caused by” the
hDD1i mechanism. The third panel, labeled h3;245i, is the expectation value of
.�3;245 C ��

3;245/. It shows that the strong, slow modulations are caused by the
h3;245i mechanism. The fourth panel, labeled hvib-`i, is the expectation value of
.�vib-` C ��

vib-`/. It shows both fast and slow oscillations similar to those caused
respectively by the hDD1i and h3;245i mechanisms. However, there is a �=2
phase difference between the fast oscillations caused by the hDD1i and hvib-`i
mechanisms. The fifth (bottom) panel shows the sum of the effects caused by the
three resonance terms (discussed above) that apparently have the dominant effects
on this specific‰.Q; t D 0/ D ˇ̌

0; 1; 0; 100; 00
˛
bright state. The dotted curve shows

the negligibly small part of the dynamics of Eres that is not caused by these three
dominant resonance terms (i.e. caused by the other six known resonance terms).
Note that there is a strong resemblance between the survival probability and the
dynamics of Eres shown in the top and bottom panels. Thus we have identified the
primary causes of the dynamics but not yet described the dominant energy flow
pathways. Information about pathways is obtained from Fig. 8.4, which is based on
the expectation values of the�k ���

k terms.
The left column of Fig. 8.4 displays the rate at which resonance k causes

vibrational quanta to flow out of mode-j

d

dt

˝
vj

˛k
t
D

	
1

i¯

 X

k

�njk

D
�k ���

k

E

t
:
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Each resonance, k, can contribute to the rate that vibrational quanta depart from
mode j . The right column of Fig. 8.4 displays the accumulated change in the number
of quanta in mode-j caused by resonance k

�vkj .t/ D
˝
vj

˛k
t
� vj .t D 0/ D

Z t

0

�
d

dt

˝
vj

˛k
t

�
d�:

The top pair of panels shows the effect of hDD1i on the number of vibrational quanta
.v4/ in the trans-bend normal mode .�4/ for the

ˇ̌
0 1 0 100 00

˛
t D 0 pluck state, in

which hv4itD0 D 10. hDD1i transfers quanta from trans-bend .�4/ to cis-bend .�5/.
The transfer rate is zero at t D 0 and reaches a maximum at t � 0:24

4
ps, which is

1
4

the period of the fast oscillation of E res
hDD1i shown in the second panel of Fig. 8.3.

The maximum value of hvihDD1i
4 �hv4itD0 D �1:5. The middle pair of panels shows

the effect of h3;245i. The rate of removal of mode-4 quanta from
ˇ̌
0 1 0 100 00

˛

caused by h3;245i is � 1
5

that of hDD1i and the periodic maxima in the � hv4it due

to h3;245i are � 1
5

those due to hDD1i. � hv4ihDD1i
t and � hv4ih3;245it both display

fast and slow oscillations, with periods �0.24 ps and �1.2 ps. The bottom pair of
panels show that hDD1i and h3;245i have a dominant effect on

˝
d
dtv4

˛
t

and � hv4it ,
summed over the contributions from all nine known resonance terms. hvib-`i cannot
have any effect on hv4it owing to the �v4 D �v5 D 0 selection rule for the vib-`
resonance term in the Heff. Note the unsurprising resemblance between the bottom
panel of Fig. 8.3 and the bottom right panel of Fig. 8.4.

Every zero-order state will exhibit a different set of dynamic responses to the�
�k C��

k

�
and

�
�k ���

k

�
resonance terms for k D 1 � 9. The dynamics

will become increasingly complicated when the t D 0 pluck state contains
excitation distributed over more than two normal modes. As the total vibra-
tional energy increases, the vibrational density of states and the magnitudes of
the off-diagonal elements of Heff both increase. This causes the dynamics to
become both faster and more complex. However, since the Heff is completely
determined by the frequency domain spectra observed and fitted at low Evib and
semi-quantitatively scalable to higher Evib (based on harmonic oscillator matrix
element selection and scaling rules), the Heff description of the free-evolution
vibrational dynamics is complete, even if the harmonic oscillator basis set becomes
inappropriate at high Evib. All free evolution dynamics is quantitatively embod-
ied in Heff. There are many useful tools for extracting energy flow pathways,

rates, and causal dynamical mechanisms. The tools based on the
�
�k C��

k

�

and
�
�k ���

k

�
resonance operators are simple to implement, very powerful,

yet rarely used [17]. Intramolecular Dynamics is encoded in frequency domain
spectra, often more instructively than in time-domain spectra [21]. This might
seem surprising!
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