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Preface

The purpose of this book is to present the fundamentals of the theory of
superconductivity in a self-contained manner by developing and illustrating every
required technique of advanced equilibrium statistical mechanics. It is addressed
to graduate and undergraduate students who have finished elementary courses of
thermodynamics and quantum mechanics. No further background knowledge is
required in reading through all the chapters.

Superconductivity is one of the most spectacular phenomena in nature and
typical of broken symmetries. The Bardeen—Cooper—Schrieffer (BCS) theory that
has clarified it has had a tremendous impact on the whole field of physics, ranging
from condensed-matter physics itself to nuclear and particle physics. Hence, one
may expect that learning superconductivity enables one to reach and acquire
key concepts and techniques of modern theoretical physics. This book treats
this fascinating topic from the viewpoint of statistical mechanics to clarify both
mathematical and logical structures of the theory as transparently as possible.

Standard textbooks on the topic usually begin by describing basic experimental
results such as the Meissner effect, show subsequently that electron—phonon
interactions may establish virtual attractive forces between electrons, and proceed
to present the BCS theory for homogeneous systems. Descriptions of the phe-
nomenological London and Ginzburg—Landau theories are often inserted prior to the
microscopic BCS theory. In this way, one may see that these theories can describe
experiments exceedingly well and also acquire basic skills to use them for one’s
own purposes. However, it may not be entirely clear in this standard approach where
superfluidity (flow without dissipation) originates, what causes the Meissner effect
to expel the magnetic field from the bulk, or how phase coherence responsible
for superfluidity is established. There is also a high threshold in learning about
superconductivity for those who are not well acquainted with electromagnetism or
especially well versed in topics in solid-state physics.

With these observations, this book adopts an alternative approach based on
statistical mechanics. Specifically, it starts from statistical mechanics of quantum
ideal gases, adding one by one every new element that is required in under-
standing superconductivity together with relevant techniques of modern statistical
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mechanics. The theory of superconductivity is developed on this basis by taking full
advantage of the second-quantization method so that macroscopic condensation into
a two-particle bound state is manifest. The starting point is the BCS wave function
in real space, which is closely connected with the coherent state for lasers and Bose—
Einstein condensates. A definite advantage of this approach is that phase coherence
is quite apparent. The basic formulation is thereby performed in real space to derive
the Bogoliubov—de Gennes equations so that inhomogeneous cases and arbitrary
pairing symmetry can be studied on an equal footing. The BCS theory is presented
subsequently as an application of it to homogeneous s-wave pairing.

It would bring great pleasure to me, the author, if the book is helpful for students
full of curiosity and pioneering spirit. Finally, I would like to express my gratitude
to Professor Koh Wada for a critical and careful reading of the manuscript and
consequent useful comments.

Sapporo, Japan Takafumi Kita
February 2015
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Chapter 1
Review of Thermodynamics

Abstract We summarize the fundamentals of thermodynamics that will be indis-
pensable for describing superconductivity. Advanced readers familiar with the topic
may wish to skim through to the next chapter.

1.1 Thermodynamics and Hiking

It may be useful for those who feel thermodynamics is too abstract to imagine hiking
with a geographical map. A position on the map is specified by a two-dimensional
coordinate vector r = (x, y) with which an altitude z = z(x, y) is associated. A
contour line defines a continuous curve that connects positions of a given altitude.
As illustrated in Fig. 1.1, consider walking up to the peak P from the trailhead A by
following either trail C; or C,. The distances one has to walk along C; and C, are
generally different. However, the acquired elevation does not depend on the path; it
is expressible solely in terms of the initial and final altitudes as Az = z(xp, yp) —
Z(XA, YA)-

This altitude z = z(x,y) is given uniquely as a function of (x,y). In
thermodynamics, we call such a quantity a potential or state quantity, for which
the infinitesimal increment will be denoted with symbol d as dz. In contrast, the
distance AZ from trailhead A to peak P depends on the path. We call such a quantity
a non-potential and distinguish its infinitesimal increment with symbol d’ as d'¢.
Note that we also have to specify the direction when determining d’Z.

When we know that there is a potential, how is that potential constructed? For
altitude z = z(x, y), one may (i) combine angle 6 determining the elevation with
distance L to the target to obtain Az = L sin 8; distance L can be found fairly easily
using an instrument such as a laser rangefinder. Alternatively, one may (ii) measure

the gradient:
0z 0z
Vi=|—,— ), 1.1
¢ (ax ay) (.1)

© Springer Japan 2015 1
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Fig. 1.1 A pair of trails C; ¥
and C, that start from
trailhead A up to peak P

C
1 @
A
X
at every point and subsequently integrate the total derivative:
0 0
dz = Zdx + Zdy, (1.2)
ax ay
along a convenient path; here “=" signifies definition.

In thermodynamics, we encounter proper potentials such as internal energy and
entropy. However, we seldom have a direct method to find them as for method (i)
above. Hence, we are almost always obliged to rely on method (ii) to construct
them. The required integration of (1.2) is carried out as follows; see Problem 1.1
for a specific example. First, we integrate it along the x axis as

X9 ,
z2(x,y) =/ Z(ngly)dXI +g(»), (1.3)

where x is an arbitrary lower limit and g(y) denotes an unknown function of y. To
determine g(y), we differentiate (1.3) in terms of y to obtain an ordinary first-order
differential equation for g(y) as

dg(y) _ dz(x.y) _/" Paxry) g (1.4)

dy dy xo  0yox;
which can be integrated easily. Substituting the resulting g(y) into (1.3), we obtain
z = z(x,y). The integration constant, which may be chosen arbitrarily, becomes
irrelevant when we consider differences Az.

The right-hand side of (1.4) has a formal x dependence that is absent on the
left-hand side. Hence, we differentiate (1.4) in terms of x to obtain an integrability
condition for z,
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0%z(x, y) _ 0%z(x, y)
oxdy  dydx

(1.5)

which is known as Maxwell’s relation in thermodynamics. It is quite useful for
confirming the consistency of experimental data as well as for predicting new results
without relying on experiments.

1.2 Equation of State

Thermodynamics describes macroscopic behaviors of systems with many particles
based on state quantities. Those quantities familiar to us include volume V, pressure
P, and absolute temperature 7. It has been established experimentally that the three
variables are not independent but generally obey a constraint:

P=PT.V), (1.6)

which is called the equation of state. Quantities (7, V, P) here correspond to
(x,y,z) on the map, and one may draw a contour line based on (1.6). The
independent variables (7, P) in (1.6) are sometimes called state variables to
distinguish them from the dependent variable P called state function.

Among the well-known equations of state are the ideal gas law:

p— nRT 1.7
= )
and van der Waals’ equation of state:
nRT n?
P = —a—, 1.8
V_nb V2 (1-8)

where n is the number of moles of a substance, R = 8.31J/(mol-K) denotes the
gas constant, and a and b are some positive constants. Equation (1.8) has a definite
advantage over (1.7) in that it can describe both gas and liquid phases on an equal
footing; parameters a and b represent measures of attraction between molecules and
the finite extension of the constituent molecules, respectively. Derived in 1873, van
der Waals’ equation of state provided a theoretical guideline around the turn of the
twentieth century in realizing the condensation of various gases by cooling, thereby
stimulating the development of low-temperature physics toward the discovery of
superconductivity in mercury at 4.2 K by Kamerlingh Onnes in 1911.

Equation (1.6) may be convertedto T = T'(P, V) or V = V(T, P). For example,
(1.7) can be expressed alternatively as T = PV/nRand V = nRT/ P. However, this
change of independent variables may not always be possible analytically. In general,
the equation of state forms a constraint f(7, V, P) = 0 among (7, V, P).
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State quantities are also divided into extensive and intensive variables. To see
this, let us express (1.7) and (1.8) as P = RT/(V/n) and P = RT/(V/n — b) —
a(n/V)?. We thereby realize that the volume V for a fixed (7, P) increases in
proportion to the number of moles n. We call thermodynamic variables that are
proportional to (independent of) n extensive (intensive) variables. Therefore, V' is
extensive whereas 7' and P are intensive.

A couple of comments are in order before closing the section. First, volume V
can be defined mechanically, whereas (7, P) are not. Indeed, we shall see below
in Sect. 1.4.2 that intensive variables (7, P) are true thermodynamic variables that
define the state of equilibrium. Second, all state quantities are defined within the lim-
ited regime of thermodynamic equilibrium being connected by reversible processes,
which may be realized experimentally as quasistatic processes. Such processes
change state variables so slowly that one can define (7, P) unambiguously at every
moment.

1.3 Laws of Thermodynamics

Thermodynamics has established the existence of a couple of novel state quantities
called internal energy and entropy. We present the basic laws of thermodynamics
concerning the state quantities in their mathematical forms.

Consider a closed system that does not exchange matter with its surroundings, as
depicted in Fig. 1.2. The first law of thermodynamics states that infinitesimal heat
d’Q flowing into the system and work d'W performed on it, which are both non-
potentials, add up to an increment dU of a potential U of the system called internal
energy as

First Law of Thermodynamics

dU =d'Q +dw. (1.9
Fig. 1.2 Change in internal Heat Work
energy dU of a closed system dQ dw

due to infinitesimal heat d’Q
entering the system and work
d’'W performed on the system

Internal Energy

U—U+dU
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Historically, the first law thereby identified heat as a form of energy and established
the law of energy conservation (1.9).

The second law of thermodynamics characterizes heat in (1.9) as an inferior form
of energy in comparison with work in that it is bounded by the Clausius inequality:

Second Law of Thermodynamics
d'Q <TdS, (1.10)

where T is the temperature of the surroundings from which heat flows, and S is
a new state quantity called entropy. Equality holds in reversible processes along
which we can trace changes in entropy. The second law plays a central role in
thermodynamics. It cannot be over-emphasized that entropy is defined here with
regard to thermodynamic equilibrium.

The third law of thermodynamics, which is also referred to as Nernst’s theorem,
reads

Third Law of Thermodynamics

lim § = 0. (1.11)

It also implies that entropy in the limit 7 — 0 does not depend on other state
variables such as P and V; that is,

. 0S8 .08
Th—I}loﬁ:O’ TII—IP(JW:O'
Thermodynamics can only state that entropy at 7 = 0 is a constant that does not
depend on other state variables. Statistical mechanics reveals that the zero on the
right-hand side of (1.11) corresponds to the fact that every system at T = 0 is in
a single pure state with the lowest energy, the details of which appear around (2.8)
below.

1.4 Equilibrium Thermodynamics

We now focus on reversible processes for which d’Q = T'dS in (1.10) and discuss
the fundamentals of equilibrium thermodynamics. To be specific, we shall consider
gases as a typical example, where the work performed on the system is given by

dWw = —Pav. (1.12)
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1.4.1 Basic Equation

Substitution of (1.12) and d'Q = T'dS into (1.9) yields

dU = TdS — PdV. (1.13)

This is the basic equation of equilibrium thermodynamics for gases. It may be
expressed alternatively in terms of entropy as

1 P
dS = =dU + —=dV, 1.14
74U+ — (1.14)

from which we can identify

1 as P as
e a1 ) - = ats ) (1'15)
T v )y, T v )y
where we have used a standard notation (35S /dU), = dS(U, V)/dU in thermody-
namics.

1.4.2 Equilibrium Conditions

A system with no exchange of heat and work with its surroundings is termed an
isolated system. Substitution of its defining condition d’Q = d'W = 0 into (1.10)
yields inequality 0 < dS(U, V) for arbitrary processes, including irreversible ones
such as the free expansion into an insulated evacuated chamber. This inequality tells
us that entropy of an isolated system should increase up to its maximum value,
whereupon the variation stops. To put it another way, the equilibrium of every
isolated system is identified as the state with maximum entropy. We shall use this
statement to explain the meaning of intensive variables (7, P).

Consider the isolated system depicted in Fig. 1.3, which is partitioned into
subsystems 1 and 2 by a wall that moves smoothly and transmits heat. The total
internal energy U and volume V are extensive variables expressible in terms of
those of the subsystems:

U=U + U,, V=V 4+, (1.16)

Fig. 1.3 An isolated system
1 + 2 partitioned by a wall Subsystem 1 Subsystem 2
that moves smoothly and

transmits heat S1(Ur, V1) So(Us, Va)
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each of which remains constant for an isolated system. The total entropy S =
S(U, V) is also extensive so that we can write it as

S = S1(Ui, 1) + $2(Us, Va). (1.17)

Now, suppose that the system has reached equilibrium at (U;, V;) (j = 1,2),
the state having maximum entropy. This implies that entropy should decrease upon
a virtual variation (U;, V;) — (U; + 8U;, V; +8V;) as

2
AS =Y [S;(U; +8U;. V; +8V;) = S;(U;. V)] < 0. (1.18)

J=1

A necessary condition for this inequality is that AS remains invariant up to first
orderin (8U;,8V;); that is,

2
3S; 3S; 11 P P
0= ) . ) Vil = ——— —~_=)sv..
Z[(aU;)V,SU’+(8‘G)U,S’] (Tl T2)<<>’U1+(T1 Tz)sl

j=1
In the second equality, we have substituted (1.15) and subsequently used
sU, + 68U, = 0, oVi+61,=0

that result from (1.16). Noting that (1.19) should hold for an arbitrary pair of
(U, V1), we conclude

T, =T, P, = P, (1.20)

Thus, both temperature and pressure are the same between subsystems 1 and 2 in
equilibrium. Dividing the system into more subsystems and repeating the argument,
one may conclude that the temperature and pressure remain constant throughout the
isolated system in equilibrium. To put it another way, the temperature and pressure
are true thermodynamic variables that specify the state of equilibrium.

1.4.3 Legendre Transformation and Free Energy

In experiments, the temperature is easier to control than the internal energy or
entropy, because we only need to supply a contact with a heat bath of a known
temperature and wait until the system comes to an equilibrium. Correspondingly,
we now introduce a state quantity, called the Helmholtz free energy, which has
temperature as a natural independent variable.
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Equation (1.13) implies that temperature is a gradient of the internal energy given
by T = (0U/dS)y. Using it, we define a state function F by

U
(ﬁ)v' (1.21)

Its infinitesimal increment dFF = dU — d(T5) is rewritten using (1.13) and d(7S) =
SdT + T'dS into

Helmholtz Free Energy
F=U-TS, T

dF = —SdT — PdV. (1.22)

Given S = S(7,V) and P = P(T,V), we can integrate (1.22) to obtain F =
F(T,V). Thus, we have successfully introduced a relevant state function. Because
U and S are both extensive whereas 7 is intensive, F is classified as an extensive
quantity.

The procedure of (1.21) is mathematically called a Legendre transformation
from U(S,V) to F(T,V) with T = (dU/9dS)y. We frequently encounter this
transformation in other fields of physics. A typical example is that encountered in
classical mechanics in mapping Lagrangian L(r, v,?) to Hamiltonian H(r,p,?) =
p-v— L withp = 0L /0dv, wherer = r(¢) and v(¢) = dr(¢)/dr denote the position
and velocity, respectively, of a particle at time .

Finally, we trace the origin of the term free energy for F. Substituting (1.10) into
(1.9), imposing the isothermal condition d7" = 0, and using (1.21), we obtain

—d'W =—dU +d'Q < —dU + TdS = —d(U —TS) = —dF. (1.23)

That is, work performed by a system in contact with a heat bath has an upper bound
given by the decrease in F. Expressed another way, F' represents the maximum
energy that can be extracted freely from a system in contact with a heat bath.

1.4.4 Particle Number as a Variable

We extend the above analysis to cases where the number of particles varies. Such a
situation is realized when vapor is in equilibrium with water in a closed vessel, for
example. The associated formalism is also indispensable as a purely mathematical
tool for describing many-particle systems that obey quantum mechanics.

We extend the basic equation (1.13) to include a contribution to work due to a
change in the particle number N,

dU =TdS — PdV + udN. (1.24)
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The third term on the right-hand side denotes the new contribution that embodies
an increment of internal energy due to a change dN in the particle number. The
coefficient w is called the chemical potential, which is classified as an intensive
quantity as N is extensive. This p is kept constant throughout for a system in
equilibrium, as may be realized by repeating the argument in Sect. 1.4.2 for a
permeable wall.

Correspondingly, (1.22) for an infinitesimal increment of F is modified into

dF = —-SdT — PdV + pdN, (1.25)

where the chemical potential is given by u = (3F/9dN)r,y . It is convenient for later
purposes to define another state quantity Q2 = Q(7, V, u) by

Grand Potential

Q=F —uN, uw= (g_ZFV) . (1.26)
TV

Alternatively called the thermodynamic potential, its infinitesimal increment can be
expressed, using (1.25) and d(uN) = udN + Ndpu, as

dQ2 = —-SdT — PdV — Ndpu. (1.27)

Given (S, P, N) as a function of (7,V, ), we can integrate (1.27) to obtain
QT,V, n).

Let us express €2 in terms of quantities that are more familiar. To this end, we
notice that Q(7’, V, ) is an extensive quantity with V' as the only extensive variable.
Hence, if the volume is multiplied by A with (7, i) fixed, the grand potential should
also be increased by factor A, i.e.,

QT AV, 1) = AQUT, V, ).

Let us express AV = V) and differentiate the above equation in terms of A. We then
obtain

0QUT, Vi, ) V5,

= Q(T.V. ).
W, oA 7.V 1)

Setting A = 1 subsequently yields

(5) v-=
BV i

As (02/0V) 1, = —P according to (1.27), we obtain the desired relation:

Q=—PV. (1.28)
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1.5 Thermodynamic Construction of Entropy and Internal
Energy

We finally clarify the minimal information required for constructing entropy S and
internal energy U thermodynamically as a function of (7, V') for a system with a
fixed number of particles. This consideration also reveals how thermodynamics is
useful.

Choosing (7, V) as state variables, one can write the infinitesimal change in S
formally as

a5 EAY
dS = — dT — dv. 1.29
(aT)V * (aV)T (129

Substitution of this equation into (1.13) yields

aS aS
dU = T(ﬁ)vdT_'_ |:T (W)T—P} dav. (1.30)

It also follows from (1.10) for reversible processes that the first term in (1.30)
represents infinitesimal heat entering the system under a fixed volume. Dividing
the term by dT yields the heat required to raise the temperature by 1 K at a fixed

volume,
S U
Cy=T (ﬁ)v = (ﬁ)v (1.31)

which is called the heat capacity at constant volume. Meanwhile, Maxwell’s
relation (1.5) for (1.30) reads

d A d aS
W(Tﬁ) _ﬁ(TW_P)’

d4S oP
(W)T - (57), (132

Substitution of (1.31) and (1.32) into (1.29) and (1.30) yields

ie.,

Cy P
ds = ?dT + (B_T)V dv, (1.33)

dU = CydT + |:T (B_P) — Pi| dv. (1.34)
aT ),
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Heat capacity (1.31) in these expressions is a basic quantity that is measurable in
experiments. Further, the coefficients for dV can be calculated once the equation of
state P = P(T, V) is known accurately. Hence, apart from P = P(T, V), all that is
required experimentally to construct entropy and internal energy is Cy = Cy (T, V).
Moreover, Maxwell’s relations for (1.33) and (1.34) both read

a0C P
V) o=7r(=) . (1.35)
WV ) aT? ),
The inference is that we need only know the temperature dependence of Cy
once P = P(T,V) is measured accurately. Equation (1.35) may also be used

as a consistency check between independent experiments used to obtain Cy =
Cy(T,V)and P = P(T,V).

Thus, thermodynamics has clarified that we need not perform direct measure-
ments of (35/9V)r and (0U/dV)r. Indeed, they can be calculated alternatively
based on the equation of state by (1.32) and

U oP

As an example, consider the internal energy for n moles of an ideal gas. It follows
from the ideal gas law P = nRT/V that (0P /0T )y = nR/V = P/T. Substitution
into (1.36) yields (dU/dV)r = 0. Thus, the internal energy of an ideal gas should
be independent of volume; that is, expressible as U = U(T). This fact was found by
Joule experimentally in 1844 when thermodynamics had not yet been established. In
contrast, we can reach this statement theoretically with the help of thermodynamics
using only the ideal gas law.

Problems

1.1. Consider the case where the gradients in (1.2) are given by
a 0
—Z:2xy+1, —Z:x2+2y.
ax ay

(a) Check that the integrability condition (1.5) is satisfied.
(b) Integrate the corresponding (1.2) based on the procedure described around
(1.3) and (1.4).

1.2. Use (1.9) and (1.10) to show that it is impossible to do work outside using a
heat engine with only a single heat bath.
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1.3. Suppose that there are n moles of a gas that obey van der Waals’ equation (1.8),
for which the heat capacity Cy is known experimentally to be temperature
independent.

(a) Write expressions for the infinitesimal increments in entropy dS and
internal energy dU based on (1.33) and (1.34).

(b) Show that Cy does not depend on volume V.

(c) Obtain expressions for entropy S and internal energy U .

(d) Show that quantity T (V —nb)™/ ¢ does not change in reversible adiabatic
processes.

(e) Calculate the temperature change during an adiabatic free expansion from
volume V to volume V5.



Chapter 2
Basics of Equilibrium Statistical Mechanics

Abstract The basics of equilibrium statistical mechanics are developed. We first
derive a statistical-mechanical expression for entropy, (2.10) called the Gibbs
or von Neumann entropy, that is compatible with the laws of thermodynamics.
It is used subsequently to find the equilibrium statistical distributions, namely,
microcanonical, canonical, and grand canonical distributions as (2.12), (2.18),
and (2.26), respectively, based on the principle of maximum entropy by Jaynes.

2.1 Entropy in Statistical Mechanics

We first derive a statistical-mechanical expression for entropy in terms of probability
w, for the state v to occur as (2.10) below based on three plausible assumptions. This
forms our foundation in formulating equilibrium statistical mechanics and will be
used subsequently to obtain the equilibrium probability distributions.

Statistical mechanics aims at providing a theoretical framework that is consistent
with thermodynamics and also enables us to perform theoretical calculations of
macroscopic quantities such as the heat capacity and equation of state, which in
thermodynamics can only be obtained by experiments. Such a system contains a
large number of particles or degrees of freedom comparable with the Avogadro
constant Ny = 6.02 x 10> mol™!, for which it is practically impossible to solve
the Newtonian equations of motion or the Schrédinger equation. If it were possible,
the resulting data for the points of phase space or the wave function of N, particles
in configuration space, which accumulate at every moment, could only exhaust
computer memories without ever being accessed usefully. Instead, what we need
here is information on their average motion and position, which are closely related
to the observable quantities such as pressure and temperature. Hence, statistical
mechanics is designed to calculate average quantities concisely with the help of
statistics and probability theory.

Therefore, we begin by summarizing the basics of statistics and probability
theory. Quantum mechanics [3, 5] tells us that every microscopic state may be
specified by a set of discrete quantum numbers, which we denote by the Greek

© Springer Japan 2015 13
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symbol v. Let us assume that (i) there are v = 1,2, -+, W states and (ii) each state
occurs with probability w, > 0, which is normalized as

S =1 @.1)

Consider a quantity g, of state v; its average over the whole states, called the
expectation, is defined as

(€)= wuan. 2.2)

Sometimes (g) is denoted alternatively as g. We also introduce its standard
deviation by

0g = \/Z wi (g — (g)* = V(&%) — (g)% (23)

where the second expression is obtained using (2.1) and (2.2). The standard
deviation is also called the fluctuation in statistical mechanics.

With these preliminaries, we construct the fundamentals of statistical mechanics.
The second law of thermodynamics establishes the existence of entropy. Unlike
the internal energy or volume, it is a true thermodynamic quantity that cannot
be expressed mechanically. Thus, we start by deriving a statistical-mechanical
expression for entropy. To this end, we adopt three plausible assumptions:

(a) Entropy is an extensive quantity.
In other words, the total entropy of a composite of subsystems 1 and 2, as given
in Fig. 1.3, can be written as the sum of the entropy for each subsystem,

U = g 4 @, 2.4)

(b) Entropy is given as a functional of probability w, alone.
The statement implies that we can express entropy as

S= waf(m), (2.5)

where f(w) is an unknown function. Here we ignore all correlations like
wyw,s between different states v and v’ by assuming that each state is realized
independently.

(c) Two subsystems of a composite system are statistically independent.
This may be expressed mathematically as

1+2) __ 1 2
Wf}ls\’z) - Wffl)wffz)’

(2.6)
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where w(’ ) and wu1 Vz) denote the probabilities that subsystem j and total

system 1 + 2 are in state v; and (vq, v), respectively.

Conditions (a)—(c) determine the expression for entropy uniquely as follows. First,
let us substitute (2.5) into (2.4) and use (2.1) and (2.6). We can thereby rewrite (2.4)
as

0=S0+2 _ g __g®

_ (H'Z) (H'Z) (1) (1) (2) (2)
Z Z Y, Vz) (VlsVZ) Z Wy Z Wy

vp vy

=3 W £ (W) Zwm wih) Zwm Zw(l)zwm w?)
Vi 1%

=2 2wl L (iwi?) = £ (i) = £ (WiD)]-
vp vy

Requiring that this equality holds for an arbitrary pair of (w(vll), WUZ) ), we obtain

f(uw) = f(u)+ f(w). Its differentiation with respect to u yields wf’ (uw) = f’(u).
Setting u = 1, we then obtain f’(w) = f’(1)/w. The equation can be integrated
easily,

fw) =—kglnw + C, 2.7

where kg = — f’(1) and C are constants and In w denotes the natural logarithm of
w. Thus, f(w) has been obtained explicitly.

Let us substitute (2.7) into (2.5) and use (2.1). We thereby obtain the expression
sought for the entropy

S = —kp Zwu Inw, + C. (2.8)

We also note that —w, Inw, > 0 for 0 < w, < 1, where equality —w, Inw, = 0
holds for w, = 0, 1. Hence, the first term of (2.8) satisfies —kg ZV wy Inw, > 0,
for which the lowest value 0 corresponds to a pure state where some single state vy
is realized with probability 1. This pure state can be expressed as wy, = 8,,,, where
Sy, denotes the Kronecker delta defined by

1 tv=1

Spvy = .
o 0 :v#vy

2.9)

Combining the above with the third law of thermodynamics (1.11), we con-
clude C = 0 in (2.8). Thus, we obtain the statistical-mechanical expression for
entropy:
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Entropy in Statistical Mechanics

S = —kp Zwu Inw,. (2.10)

Further, the requirement that (2.10) be compatible with the thermodynamic entropy
enables us to identify kg with the gas constant R = 8.31J/(mol-K) divided by the
Avogadro constant Ny = 6.02 x 102 mol™!, i.e.,

kg = R/Nx = 1.38 x 1072 J/K, (2.11)

which is known as the Boltzmann constant.

Gibbs pointed out in his seminal book [1] that entropy for the canonical
distribution is given as the expectation of the logarithm of the probability. Later, von
Neumann derived (2.10) based on a quantum-mechanical consideration [7]. Thus,
(2.10) may be called the Gibbs entropy [4] or von Neumann entropy. It is essentially
equivalent to the Shannon entropy of information theory [6].

Expression (2.10) still contains unknown parameters {w, }, which will be deter-
mined appropriately below given three distinct external conditions. In this sense,
(2.10) is a form of nonequilibrium entropy. However, it cannot be used to describe
nonequilibrium time developments. Because we have no knowledge of how w,
changes in time, we usually regard w, as constant. Correspondingly, (2.10) is
invariant in time even for an isolated system [4], in contradiction with the second law
of thermodynamics. Indeed, we do not have a widely accepted general expression
of nonequilibrium entropy that develops in time. It should be remembered in this
context that entropy in thermodynamics is defined, as in (1.10), only for systems
in equilibrium. Despite this obvious defect, the great advantage of (2.10) is that
it enables a concise and transparent derivation of three representative equilibrium
probability distributions in statistical mechanics, to be described shortly below.

2.2 Deriving Equilibrium Distributions

We have seen in Sect. 1.4.2 that the thermodynamic equilibrium of an isolated
system corresponds to the state of maximum entropy. In addition, (1.23) states
that the inequality d(—U + TS) > 0 holds for a system of fixed volume (i.e.,
d’'W = 0) in contact with a heat bath of temperature T, which is equivalent to
d(S — T7'U) > 0. Thus, the state of equilibrium for this system corresponds to a
maximum of S —7~'U, where T~! may be regarded mathematically as a Lagrange
multiplier used in maximizing S subject to a fixed U'.
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On the basis of these observations, we here adopt the principle of maximum
entropy, which was proposed by Jaynes in 1957 [2], to derive equilibrium proba-
bilities for various external conditions.

2.2.1 Microcanonical Distribution

First, we consider an isolated system of fixed volume V' with no exchange of energy
or matter with its surroundings and derive its equilibrium probability distribution
{w,} as (2.12) below.

Following the principle of maximum entropy and noting that there are no
external conditions for an isolated system, we maximize (2.10) subject to (2.1).
In accordance with the method of Lagrange multipliers, this is equivalent to the
optimization problem of

SHEwy b A) = S—A(Zwv - 1) =—kp Yy _wyInw, —A(Zwv - 1),

where A is the Lagrange multiplier. Indeed, (2.1) is equivalent to 3S /01 = 0.
A necessary condition for S to take its maximum at w,, = w} is given by

S
0= = —kg(lnw;1+ 1) — 4.
aWV wu=w,e,q
Its solution immediately follows, i.e., wil = e=4/k8=1 Thus, wi! does not depend

on v but has a common value, which is determined by (2.1) as
wil = wt.

This probability distribution, called the microcanonical distribution, underscores
precisely the postulate or principle of equal a priori probabilities. Note, however,
that it has been derived here based on the principle of maximum entropy in terms
of (2.10). Substitution of wy? = W ™! into (2.10) yields the entropy for a system in
equilibrium, S = S}, as

S =kgInW,

which is known as Boltzmann’s principle.

Let us call a system that obeys the microcanonical distribution a microcanonical
ensemble. Using this terminology and removing the superscript * for simplicity, we
can summarize the above results as follows:
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Microcanonical Ensemble

1
wy = W : microcanonical distribution 2.12)
wW(U,V,N) : number of states (2.13)
S=kglnW : entropy (Boltzmann’s principle) (2.14)

Thus, a fundamental quantity for a microcanonical ensemble is the number of states
W, with which we obtain its entropy using (2.14). Subsequently, we can use the
thermodynamic relation (1.24) to calculate the temperature, pressure, and chemical
potential:

aS 1 as P aS n
- = —, — = —, — =—=. (2.15)
WwW)yy T WV)un T oN Juy T
In general, S(U, V, N) is a monotonically increasing function of U so that 7 > 0
holds. However, it should be kept in mind that this condition 77 > 0 may not hold

for some theoretical models such as a spin system where there is an upper bound in
the available energy.

2.2.2 Canonical Distribution

Next, we consider a system of fixed volume V' that is in contact with a heat bath
without any exchange of matter and obtain its equilibrium probability distribution
{wy,} as (2.18) below.

The total energy of such a system in equilibrium is expected to remain constant
in time on average, but fluctuations may occur. The condition can be written as

(&)= wé =U, (2.16)

where &), is the energy of the state v and U is a constant called internal energy.
Given the principle of maximum entropy with (2.10), the equilibrium of this
system can be found by minimizing

SEwp A Ap) =S —A(Z Wy — 1) —du Y Wb,
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in terms of {w, } under conditions dS/dA = 0,3S/dAy = —U. However, it is more
convenient to consider F = —S /A instead of S to make the correspondence with
thermodynamics transparent. Indeed, F' can be written in terms of new Lagrange
multipliers T = )Lal and Ag = A/Ay,

F=(& —TS+ g (Zwv - 1) =Y wy (& +ksTInw, + As) — As.
’ ’ 2.17)

which is exactly the Helmholtz free energy for a system in nonequilibrium, as may
be realized from a comparison with (1.21). The unknown Lagrange multipliers
(T, As) can be determined using (2.1) and (2.16), which are also expressible in terms
of FasdF/dAs = 0and F |T: =0 = U, respectively. Thus, we have transformed

the optimization problem of S into one for F.
A necessary condition that F be extremal at w, = w} is given by

oF

Wy |y, =

0=

=&, +kgT(nwli + 1) + Ag,

which yields wy! = e~(4+4s)/ksT=1 Introducing a new constant Z = e*s/*7+1,

we can write w; alternatively as
W = e_éav/kBT/Z’
which is known as the canonical distribution. We call a system obeying this

distribution a canonical ensemble. The physical condition that w,, — 0 as &, — oo
yields 7' > 0. In addition, (2.1) enables us to express Z as

7 — Ze—&/kBT’
vV

which is known as the partition function. Let us substitute the expression of wy
above into (2.17). We thereby obtain F = F[w}'] for a system in equilibrium as

&
Fed = ngq [é@ + kT (—kBT —an):| = —kgTInZ.

It follows from the condition 7 > 0 that F*! with maximum entropy corresponds
to the minimum of (2.17).

Removing superscripts ®¢ for simplicity, the above results are summarized as
follows:
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Canonical Ensemble (8 = 1/kgT)

e_ﬂgu
wy = ~ : canonical distribution (2.18)
Z(T.V.N)=>» e #%  :partition function (2.19)
v
F=-p"'lnz : Helmbholtz free energy (2.20)

Thus, the fundamental quantity in a canonical ensemble is the partition function
Z, with which we obtain the Helmholtz free energy using (2.20). Subsequently, we
can use the thermodynamic relation (1.25) to calculate the entropy, pressure, and
chemical potential from

ZAY F\ _ OF\ o
or )y~ > \av).y 0 N ), TH ‘

Moreover, substitution of (2.18) into (2.16) yields

1 ad
— —BE e —
U= Z Ev e & = 9B InZ, (2.22)

where we have used (2.19) in the second equality. Thus, one obtains the internal
energy U directly from the partition function. Regarding heat capacity (1.31), we
use /0T = —kgB%(d/3B) and the definition of the expectation in (2.2) to express
Cy = (0U/dT)y, y in two different ways:

(%) — (&) 1 9
= = — 1 Z, 2.2
Cv ke T? ksT2 962 (2.23)

Hence, we obtain the internal energy and its fluctuation by successive differentia-
tions of the logarithm of the partition function with respect to 8, the latter of which
is directly related to the heat capacity.

The internal energy U is an extensive quantity, as is the heat capacity Cy obtained
by differentiating U in terms of the intensive quantity 7. Equation (2.23) enables
us now to estimate the fluctuation in energy as AU = /(&2) — (&)2 o« N2
Hence, we conclude that AU/U o N~'/2, ie., the relative magnitude of the
energy fluctuation decreases as a function of the particle number in the system
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as N~!/2. This statement holds true generally for fluctuations in thermodynamics
and statistical mechanics. It also informs us that the microcanonical and canonical
distributions should yield identical expectations.

2.2.3 Grand Canonical Distribution

Finally, we consider a system of fixed volume V' exchanging particles as well as heat
with a reservoir and derive its equilibrium probability distribution {w,} as (2.26)
below.

Besides the internal energy, the total particle number of such a system is expected
to remain constant on average in equilibrium, although it may fluctuate. The
condition can be expressed as

(A) =D wety =N, (2.24)

where .4, is the number of particles in state v, and N is some constant, i.e., the
average particle number.

The principle of maximum entropy tells us that equilibrium occurs when (2.10)
takes its maximum in terms of {w,} subject to the conditions given by (2.1), (2.16),
and (2.24). This optimization problem can be solved by introducing a functional:

Q=(& —u(N) =TS+ s (Zwv—l)

= wo (& = uAy +ksTlnw, +As) = As, (2.25)

where T, p, and Ag are the associated Lagrange multipliers determined by
(2.1), (2.16), and (2.24). Recalling (1.26), we realize that (2.25) is the nonequi-
librium grand potential with 7" and u denoting temperature and chemical potential,
respectively.

A necessary condition that  be extremal at w, = w} is given by

s

ow, -

=w,

0

=&, — uN, + kBT(aniq + 1)+ Ag,

which is immediately solved to yield w}! = e~ (& =#4+4)/ksT=1 Introducing a
new constant by Zg = e*s/*87+1 e write w}! in the form

eq _ —(E&—puAM)/ kT
chl_e(v uA)/ ks /ZG’
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which is known as the grand canonical distribution. We call a system that obeys
this distribution a grand canonical ensemble. The physical condition that w, — 0
as &, — oo yields T > 0. In addition, the normalization condition (2.1) enables us
to express Zg as

Zo =Y e Grn kT
v
which is known as the grand partition function. Let us substitute the expression of
wi! above into (2.25). We thereby obtain Q4 = Q[wy'] in equilibrium as
Q% = —kgT In Zg.
It follows from the condition 77 > 0 that Q° with the maximum entropy
corresponds to the minimum of (2.25).

Removing superscript 4 for simplicity, the above results are summarized as
follows.

Grand Canonical Ensemble (8 = 1/kgT)

e BE—1A)

wy = — : grand canonical distribution (2.26)
G

ZG(T,V,u) = Z e PG =rM) + orand partition function (2.27)

Q=-p'Inzg : grand potential (2.28)

Thus, a fundamental quantity associated with grand canonical ensembles is the
grand partition function Zg, with which we obtain the grand potential using (2.28).
Subsequently, we can use the thermodynamic relation (1.27) to calculate entropy,
pressure, and particle number:

BQ) (39) (39)
el = -8, — = —P, — = —N. (2.29)
(BT Vi v T.u au T.V

Moreover, substitution of (2.26) into (2.16) yields

1 (e — 0
U= 7o Zvje PG (& — u Ny + uy) = ] InZg + uN, (2.30)
where we have used (2.24) and (2.27) in the second equality. In regard to the
fluctuation of the particle number inherent in the grand canonical distribution, a

calculation of the variance gives
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1 9
o’y = (N) = (N) = 7 g, n Zo- (2.31)

in exactly the same way as the energy fluctuation, (2.23).

Problems

2.1. Let p and 1 — p be the probabilities for success and failure, respectively, in
a trial. Assuming that the probability of k (< n) successes for n independent
trials obeys the binomial distribution

n!
P = k 1— n—k,
¢ = o 1P

answer the following questions.

(a) Show that kP! = npP{'~].
(b) Obtain the expectation and standard deviation for the number of successes.

2.2. Use the method of Lagrange multipliers to find the point on a unit circle of
x2 + y? = 1 that gives the maximum for the function f(x,y) = x + y.
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Chapter 3
Quantum Mechanics of Identical Particles

Abstract In general, superconductivity occurs in a system of identical particles;
specifically, the conduction electrons in metals. Being indistinguishable from each
other, swapping any two electrons leaves the system unchanged. This feature,
which is associated with invariance under permutations, has a profound implication
for every system composed of identical particles. We study a crucial connection
between the spin of a particle and permutation symmetry of many-particle wave
functions. We also develop a special technique called second quantization that
enables us to describe such a system concisely and conveniently. The results are
summarized generally in Sect. 3.7 and specifically for ideal gases in (3.61)—(3.65).

3.1 Permutation

Imagine N children sitting on N chairs that are arranged in a circle and numbered in
a clockwise manner from 1 to N. A permutation is an action by which the children
mutually exchange their seats [5]. Denoted P, the associated operator is written in
the form

ﬁ:(123---N)’ 3.1
P1 P2 p3 - PN

where 1 < p; < N with no duplication among the p;’s. Hence, the child previously
on chair i moves to chair p;. The number of distinct permutations is easily identified
tobe N!.

Among these permutations, there is a special subset called the cyclic permuta-
tions, in which the children move in a cyclic fashion, e.g.,

1234\
(4312)=(1423) (3.2)

for N = 4, where the last identity represents a shorthand notation and is to be read
‘the child on chair 1 goes to chair 4°, ‘the child on chair 4 goes to chair 2’, ‘the
child on chair 2 goes to chair 3, and ‘the child on chair 3 goes to chair 1°. A cyclic
permutation of length two is called a transposition, which is given by

© Springer Japan 2015 25
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5 12
P, = = (12). 33
12 (2 | ) (12) (3.3)
We briefly give statements of some elementary theorems (without proof) related

to permutations. See, for example, [5] for relevant proofs. First, every permutation
can be expressed as a product of cyclic permutations that are disjoint to each other
with equal or fewer elements. For example,

A 123456

= =36)(125) =(125)(306), 34

=(520035) — 6029 =256 G4
where we have omitted the identity permutation (4); the order of application is to
proceed from right to left by definition, but we can change it arbitrarily for disjoint
permutations. Second, every cyclic permutation can be composed of a product of
transpositions; for example

12---k—2k—-1k
23-- k=1 k 1

)::Uk)Uk—J)n-OSXID7

where again operations are applied from right to left. Combining the two statements,
we realize that every permutation can be expressed as a product of transpositions.
For example, (3.4) may be decomposed into

P, =(36)(15)(12).

Another example is

s _(123456) _ _
;%zz(256314)__@64)025)_(3@(3@(13(1@.

An odd (even) permutation describes a permutation that can be expressed as a
product of an odd (even) number of transpositions, as for P, (P,) above. Indeed,
every permutation is either even or odd.

3.2 Permutation Symmetry of Identical Particles

We turn our attention to a physical system of N identical particles. Quantum
mechanics tells us that every species of particle has an internal degree of freedom
called spin, whose magnitude s takes a proper value from the series 0, % 1, %, 2,
[7, 10]. Accordingly, we need an additional index to specify the spin state of the
particle besides its coordinate r. A complete set of indices follows from solving the

eigenvalue problem §,|a) = «|a), where §, denotes the z component of the spin
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operator; it yields the eigenvalue ¢ = 5,5 — 1,--- , —s. Because every spin state is
describable as a linear combination of {|« )}, index o may be used as the ‘coordinate’
for the spin degrees of freedom. On the basis of these observations, we combine r
and « to form a set of coordinates § = (r, o) to describe the complete set of states
for a single particle.

An N -particle wave function can be expressed generally in terms of this index
variable as

qDU(Elv%‘Zv"' sEN)v (35)

where v denotes a set of quantum numbers to specify the N -particle state. Operating
with permutation (3.1) on this wave function yields

ﬁq)v(élvé%"' sEN) = qu(EplsEpzs"' 7$p1v)v (36)

by definition.

A many-particle system composed of N identical particles has a special symme-
try related to permuting the particles. To see this, consider a system described by
Hamiltonian

-y

j=1

N
Z V(| —r;]) = Zh“’ +Y AP, 3.7)

j= i<j

=
i M?

where p; is the momentum operator [7, 10] and ¥ denotes a two-body potential.
The corresponding time-independent Schrodinger equation is given by

t}?qDV(SlsEZs"'7$N):(’7@Uq>v(‘§17$27"'5‘§1v)7 (38)

with &, the eigenenergy. Operating with permutation (3.1) from the left of (3.8) and
inserting the identity operator P~1P between # and ®,, we obtain

(ﬁt}?ﬁ_l)ﬁch(EleZv”' sEN) = éavﬁcDV(SlsEZs"' 7%‘1\7)' (39)

Now, operator PP generally satisfies PA#P~" = . This is exemplified
using JZ for N = 2:

B + & + 7 (Iry — I‘2|):| P12

1312%2131_21 =P |:2 .

= I:Zp_z + 2p—l + Y (ry — I‘ll)i| P12P12 = %PIZPQ = 3@

Thus, any permutation on H only changes the order of the summation, leaving H
itself invariant. Let us rewrite P77 P~! = # as

P# = #P. (3.10)
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Hence, we conclude by virtue of the Heisenberg equation of motion

dPy(r)
dr

ij?t/hﬁ e—iﬁ?r/h

it = Pu(t) 5 — A Pu(t) (3.11)

for the operator Py (t)=e that the expectation value of P does not
change in time [10]. In addition, P and # can be diagonalized simultaneously [10]
assuming P is Hermitian; this last point will be proved in the final paragraph of this
section.

Let us find the eigenvalues of the permutation operators. We start with the
simplest case of transposition (3.3). Because 13122 is the identity permutation, an
eigenvalue o of 1312 should satisfy 02 = 1. Hence, o is either 1 or —1. Next, we
consider the general permutation of (3.1) and denote its eigenvalue by %, i.e.,

PO, (£, 6, EN) = 0T D (E1, 2y L EN). (3.12)

Now, recalling earlier statements in Sect.3.1 that “every permutation can be
expressed as a product of transpositions” and “every permutation is either even or
odd,” we find the eigenvalue of P to be

P _ 1 %f}?%seven ' 3.13)
o if P isodd
It has been established that every stationary wave function for a system of
identical particles belongs to an eigenstate of the permutation operators. This
implies that, upon application of an odd permutation, a wave function either remains
invariant (c = 1) or changes sign (6 = —1). The two categories here are connected
with the spin magnitude s of the constituent individual particle, specifically

Spin-Statistics Theorem

(3.14)

A particle with an integer (a half-integer) spin is called boson (fermion) after Bose
(Fermi), who introduced the rule upon studying statistical mechanics of photons
with s = 1 (electrons with s = %) without referring to the connection with spin.
The remarkable relationship was formulated by Fiertz [3] and proved by Pauli [9]
in the context of relativistic quantum field theory. Although the statement itself has
been confirmed experimentally without doubt, a direct proof in the non-relativistic
framework seems yet to be performed. Incidentally, it is worth pointing out that the
connection, which has been known as the “spin-statistics theorem” generally, has
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nothing to do with “statistics” or “probability” in the present context. Instead, it is
relevant here to the permutation symmetry of many-particle wave functions, as we
have seen.

The electron, proton, and neutron are all fermions with s = oD whereas the
photon is a boson with s = 1. The rule applies also to every atom composed of
protons, neutrons, and electrons that moves as a whole in our condensed-matter
world. For example, the hydrogen atom consists of one electron and one proton,
so that its total spin can be either O or 1 according to the addition rule of angular
momenta [2, 7, 10]; thus, the hydrogen is a boson. In general, a neutral atom with an
equal number of protons and electrons is classified as a boson or fermion according
to whether the number of neutrons is even or odd. Thus, the *He atom with two
neutrons is a boson with total spin s = 0 in the ground state, whereas its isotope
3He with a single neutron is a fermion with total spin s = 1/2 in the ground state.

Finally, we confirm that P is Hermitian for a set of wave functions {®,}
satisfying (3.12). Let us introduce the inner product by

(B |Dy) /d& /dSN vELE, e JEN)D (6L B L6, (3.15)

where the ‘integration’ over £; signifies an integration and a summation

/dgj = Z /d3r,-. (3.16)

With this definition, (<I>V/|I3¢>V) is transformed as
(@y|PD,) = (P10 P PD,) = (P7'Dy|D,) = 6 (D] D)) = (PDy|D,),

where we have performed a change of variables corresponding to an operation of
P~ in the first equality, and subsequently used the fact that the eigenvalue of P~
is identical to that of P. Thus, P is indeed Hermitian.

3.3 Eigenspace of Permutation

Equation (3.12) implies that a wave function of identical particles should be
a permutational eigenstate that is either symmetric (bosons) or antisymmetric
(fermions). Here, we construct the eigenspace of permutations to which the many-
particle wave functions belong.

In analogy to the treatment of the harmonic oscillator in quantum mechanics
using creation and annihilation operators [10], we first introduce a pair of operators
1} and 1/A/7L that satisfy the commutation relations:
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[V &). ¥ ()], = vEVE) — o E)WE) = 8.8,
[V@®.vE)], = [¥7E). ¥ )], =0 (3.17)

witho = 1 and §(§, &) = §(r —1’)8ue . In addition, we define the ket |0) and bra
(0] via the right (left) action of the annihilation (creation) operator,

¥ (£)0) = 0, 0= (09" =[¥©10)], 00y =1.  (3.18)

These are the basic ingredients needed to construct the eigenspace of permutations.

Next, we introduce the ket |§1, &, -+ , Ex) and its Hermitian conjugate by
1.6 E) = <l €0V (@) T IO, (3.19)
(6160w vl = O 6 @)= o b G20)

The space spanned by (3.19) naturally forms the eigenspace of P. To see this, we
start with transpositions. Let us operate with P; (i < j) on (3.19) and transform
the ket by repeatedly using the operator commutation relation (3.17),

Pyler Eoy e EN) =[E e B E B B B L EN)
=o' g, E 6L G E L E e EN)
=TT ey o i 6 6 E L EN)
=o€, Eim & S 1,65, 61,0 L EN ).

Thus, the states defined by (3.19) are eigenstates of transpositions. Second, as any
P is either even or odd, we easily conclude that

Plgr 6o 6n) = o161 &2 L EN) (3.21)
holds generally.
Ket |&1,&,,- -+, En) satisfies the normalization condition:
_ Sniw

ng(g{, 5111)8(5&’ Sllz) - '5(51/\/’ va)‘
(3.22)

(E.6, - EylE1. 6.+ JEN) = N

P

To prove this, we make use of the identity:

VENTTEDTE) - T EN) =8¢ ENTT(E) - (Ew)
+ o8&, v EDTT(E) - I (Ew)
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+ oV T8GELENYTED - YT (Ev-)
+ oVt ENviE) - U ENTE),  (3.23)

to move the annihilation operator 1}(5;) in (3.22) to the left of |0) and use
&(g})w) = 0 repeatedly for j = 1,---, N’. For example, with N = N’ = 2,
(3.22) is shown to hold as

(6] 8161, &) = 5, O ETEDD €T €0
= S O E[3E, 6097 ) + o5& )9 1)
+ o EDT T EPED]I0)
= S BELEDOIEF 10) + 05 £) 019 €I E)I0)]
= %[8@1, £)8(65. &) + 08(5]. £5(6). &1)]-

Thus, we have constructed the eigenspace of P.

3.4 Bra-Kets for Many-Body Wave Functions
Let us define ket |®,,) for the wave function (3.5) by

|®,) = /d&/d&"'/d&v 161,62, L EN) Py (61, 62,0+ L EN). (3.24)

The corresponding bra is given by

(®,| E/d&/d&'“/d&v (1 Ere  EN|OT (1 Er e ) = |,

(3.25)
The ket has the following properties:

JEn|®,) = ﬁ/déﬁ---/da’v & BB EL B B, (3.26)

V(EDV(E)| D)) = \/N(N—l)/déé"'/di’fv |85, JEN) O (ErL E2, 85, -+ L EN),
(3.27)

V(EN) T (E)TED|D) = VN0 D, (61, &, -+, En). (3.28)
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Thus, the action of 1,@(5) on |®,) extracts argument ¢ from |®, ). Equations (3.26)—
(3.28) may be proved straightforwardly by substituting (3.24) on the left-hand side
and using (3.19), (3.23), (3.18), and (3.12) successively (Problem 3.1). It follows
from (3.18), (3.20), and (3.28) that

(Elv%‘Zv"'s§N|q>U>:¢\1($17$25"'7$N)' (329)
Substitution of (3.29) into (3.24) yields

1) E/d&/d&'“/d&v 61 B EN)EL Eae e En ),

which is equivalent to

[t [agee [atyign o b vl = 1. (330)
Thus, kets {|§1 6,00, §N>} form a complete set for the eigenspace of P.
Equation (3.24) can also be used to symmetrize or antisymmetrize any wave
function ® (&1, &,,--- , Ex) that is not an eigenstate of P. Indeed, we only need to
construct

) = ax [ ag [t [yl G EDBELE 8. B3

with Ay the normalization constant. Ket |&], £, --- , &)) in the integrand naturally
extracts the symmetric or antisymmetric contribution from 53(51, &, ,&y). Equa-
tion (3.31) may be regarded as projecting ® onto the eigenspace of P. The wave
function for (3.31) is obtained using (3.22) and (3.29), giving

A -
D1, 6,0, 6n) = (61,60, L EN|D) = V]\;ZUPCD(&mfm’“' Epy)-
P

(3.32)
3.5 Orthonormality and Completeness of Bra-Kets
Let us assume that wave functions {®,(&,---,&n)} satisfy orthonormality and
completeness given by
[t [aev@nen En@ui ) = (333

YOG BB ) = 1 20 BE 6 -5k Ep).

P
(3.34)
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respectively. These relations can be expressed alternatively in terms of the ket and
bra of (3.24) and (3.25) as

(@[ @) = iy, PIERICHES? (3.35)

The proof proceeds straightforwardly by substituting (3.24) and (3.25) into (3.35)
and using (3.12), (3.21), (3.22), (3.30), (3.33) and (3.34) (Problem 3.2).

3.6 Matrix Elements of Operators

Equation (3.7) tells us that every one-particle operator #'D and two-particle
operator .72’ for a system of identical particles may be written generally as

N
AV =3 "R, HD =N"hD. (3.36)

j=1 i<j

Matrix elements of these operators between ®7, and ®, are alternatively expressible
in terms of (®,/| and |®,) as

/dsl---/dsN (e E) DD (Er - Ey)
- / a1 (B |97 ENADT ()] D). (3.37)
/d§1 "'/dSNﬂD:‘/(&,--- EN)AD D (- EN)

=3 [ [as@iii@i @iRiEieie). 6

The equalities can be proved by substituting (3.26) and (3.27) into the right-hand
sides of (3.37) and (3.38), respectively, and successively using (3.22) and (3.12)
(Problem 3.3). Note that the expressions on the right-hand sides are free from the
sums over the particle indices i and (i, j); each of them is given using only a single
one-particle operator h (11) and two-particle operator hA(lzz) in (3.36), thereby enabling
us to simplify the notation considerably.

3.7 Summary of Two Equivalent Descriptions

The preceding considerations have shown that there are at least two equivalent
descriptions for many-particle systems in that they yield the same matrix elements
and hence the same probabilities for observables quantum mechanically.
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In the first description, the Hamiltonian is given for example by

R
=N L ¢+ V(|r; —1;). 3.39
;m ;};1 (Iri — ;) (3.39)

Its eigenfunctions are obtained by simultaneously solving the Schrodinger equation:

APy b2 ) = PG b ), (3.40)
and the eigenvalue problem:

Po,(Er 6o bn) = 0" D61 62 ). (3:41)
Here, we have introduced § = (r,«) to express the space coordinate r and spin
variable « = s,5 — 1,---,—s in a unified way, P®,(&;,&,,---,&y) is defined

by (3.6), and eigenvalue ol is given by (3.13) and (3.14). The orthonormality and
completeness of eigenstates {®, } are expressible as (3.33) and (3.34).

The alternative description is called second quantization, where the Hamiltonian
can be written as

A A A2 ~ ~ ~ ~ A
= [[asit @ e+ [d [aed @b @7 (n-rhi € .

(3.42)
and the Schrodinger equation is expressible as

H|®,) = 6] Py). (3.43)
The orthonormality and completeness of {|®,)} are given by (3.35).

It follows from (3.37) and (3.38) that (3.39)—(3.41) and (3.42)—(3.43) yield
the same eigenvalues {&,} and the same matrix elements for every observable of

identical many-particle systems. Ket |®, ) and wave function ®,, (&, &, -+, &y) are
connected by
0. = [dgr [ denleree En@ G b, (3.44)

where the basis kets {|&;,---,&y)} are defined by (3.19) and satisfy (3.21)
and (3.22).

3.8 Second Quantization for Ideal Gases

We now focus on non-interacting many-particle systems and express the Hamil-
tonian and eigenkets in terms of one-particle eigenstates. The eigenkets thereby
obtained also form a convenient starting point for a perturbation expansion with
respect to the interaction.
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Let us consider Hamiltonian:
A N p? N
mE/w%nb$+%mﬂwm@h (3.45)

where 7/ (r) is a one-body potential. Suppose that the following one-particle
eigenvalue problem has been solved:

p
(2L vt = vt (3.46)
where g denotes a set of quantum numbers that specifies the one-particle eigenstate
¢, = |gq) and its eigenvalue g,. We assume that ¢,(§) = (&|g) satisfies
orthonormality:
(ala'h = [ )€ Ends = by, (3.47)

and completeness:

(€18") Z(ﬂq(é)wq (¢) =68(.8). (3.48)

Next, we expand the operators (1/}, @T) in terms of ¢, (§) as

VE) =) E4p(8), Ui = Z}¢ga (3.49)
q

To obtain “coefficients” ¢, and é; , we multiply the two expansions by ¢* (§) and
@4 (§), respectively, perform integrations over &, and then use orthonormality (3.47).
Replacing ¢’ — ¢ in the resulting expression, we obtain

o= [geiee o= [aeieds (3:50)
Using (3.17) and (3.47), they are shown to obey
[enil], = b [enar], = [0, =0. G51)

Let us substitute (3.49) into (3.45) and use (3.46) and (3.47). Hamiltonian (3.45) is
thereby reduced to the diagonal form:

Hy =Y "z,6}¢,. (3.52)
q
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Next, we obtain the eigenstates of ﬁo in the same representation. To this end, we
start with the product of N one-particle eigenfunctions:

N

@y (x1. X2, xn) = [ [ (E5145)- v =(q1.q2." .qN)-
j=1

for which the eigenvalues are given by

N
&= ¢, (3.53)
j=1

Subsequently, we symmetrize or antisymmetrize the above wave function based on
(3.32) to obtain

A
q)v(g17§27"' vgN) = T]\: ZGP (§1|qm>(g2|6hlz) (§N|qPN) (354)
P

It follows from (3.10) that its eigenenergy is still given by (3.53).
Let us focus on fermions. With 0 = —1, the summation over P in (3.54) defines
a determinant of a matrix of entries (§;]q;) [1, 8]

4 (E1lq1) -+ (ilgn)
O (1 6o En) = S det | C . (3.55)

N! . .
(Enlgr) -~ Enlgn)

which is known as the Slater determinant. It follows from properties of the deter-
minant [1, 8] that CIJ(VF) vanishes when a pair of columns or rows are identical. The
statement is precisely the Pauli exclusion principle; specifically, no pairs of identical
fermions can simultaneously occupy the same one-particle state or coordinate
(including spin). Thus, the Pauli exclusion principle naturally results from the
permutation symmetry of the system of identical particles. In this context, it is not
a principle but a natural outcome of the permutation symmetry. Nevertheless, we
cannot overstate its historical importance; it provided a microscopic understanding
of the periodic table and was also a precursor of the Fermi-Dirac statistics. Indeed,
the latter may be regarded as a direct extension of the Pauli exclusion principle
proposed specifically for electrons in atoms to other electronic systems at finite
temperatures.

Noting that {g;} for 0 = —1 are different from each other and using (3.47), we
can express the normalization condition for (3.54) as

(A(F) 2
(

N
LSS 0P [Ty a0
b

1= fag- fagnio0. - gni= 0
| 11
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(F) (F) (F)\2
A A (A )

(N1)? ZZ( DFr l—[ 5”/”/ (N2 ZZ( n" 855 =

Hence, we obtain Aﬁ\l,:) as

AT = VN (3.56)

For bosons, each state ¢; can accommodate multiple particles. Consider specifi-
cally the case where there are n; particles in the state ¢; (j = 1,2,---,4; £ < N)
as for

l
]):(ql’...’ql’qz’...’qz’ ...... ’q[’...’q[)’ an:N (357)
——— N —— N—— —

ni np ny

The corresponding wave function is given by (3.54) with o = 1, where g, denotes
a permutation of v in (3.57). The normalization condition becomes

(B)
1= /dél"'/déqu)(uB)(&w” NP = N')z ZZH 4y 19p;)
(A(B) A(B))
(N‘)Z 'Zl_[ q1|q17] ”l!ﬂz!'”ng!,

where the third equality obtains by multiplying the result for P=1 by N!. Hence,
we obtain the normalization constant as

VNI
AP = (3.58)
nilny!--ny!

Now that the wave functions have been obtained, we can construct the corre-
sponding bras. First, we consider fermions. Let us substitute 0 = —1 and (3.56)
into (3.54), insert the resulting wave function and (3.19) into (3.44), and use (3.50)
and (3.51) for {¢]}. We thereby obtain |®) as (Problem 3.4)

|oF) = ¢ éf -l 10). (3.59)
This expression is much simpler than (3.55), and a transposition of 6Zi and E’; ;
corresponds to a column exchange ¢; <> ¢; in (3.55). The ground state is composed
of N-lowest one-particle states, which is sometimes called the Fermi vacuum to
emphasize the fact that there are no excitations; it is distinct from the vacuum state
|0) of (3.18) with no particles.



38 3 Quantum Mechanics of Identical Particles

For bosons, we substitute 0 = 1 and (3.58) into (3.54), insert the resulting wave
function and (3.19) into (3.44), and use (3.50) and (3.51) for {é;}. We thereby obtain
|d>f,B)) for the state v in (3.57) as

A At
|o®) = (Cq)"  (Cq)"
Y «/I’lll «/n[!

This state is identical in form to that for the harmonic oscillator with multiple
frequencies [10].

It follows from (3.51) that (cA,j )2|O) = 0 holds for fermions of 0 = —1. Noting
this fact, we realize that (3.60) for bosons also includes (3.59) for fermions. We may
also relax the condition ng, > 1(j=12,---,£)in (3.60) to n, > 0 for all ¢’s to
remove the asymmetry in the notation between occupied and unoccupied states.

With these observations in mind, the main results of this section are summarized
as follows. The non-interacting Hamiltonian (3.45) can be expressed alternatively
in terms of the eigenvalues of (3.46) and operators of (3.50) as

10). (3.60)

Hy =Y "z,6]¢,. (3.61)
q

where ¢ denotes a set of one-particle quantum numbers, and ¢, and CA(}L satisfy
[g- €100 = E4e), — el ey = 84y, 6810 = [6). 8010 =0.  (3.62)

Every eigenstate v of (3.61) is specified completely in terms of the number n, of
particles in each one-particle state g as

()™ (ah)™ (eh)™ 0. (3.63)

|®,) = |”ql,nq2,nq3,---) = 7 ~ 7 N /J _......

Via! ng! Ngs!

The possible values for n, differ between bosons (6 = 1) and fermions (o6 = —1)
as
0,1,2,-+- (o0 =+1)

= ) 3.64
" %0,1 (0 =-1) (.64

Particle number .4, and energy &, of state v are expressible as
No="ng. & = ngey. (3.65)

q q

Figure 3.1 shows a diagrammatic representation of a non-interacting eigenstate
for (a) bosons and (b) fermions. With no vertical energy scale, the one-particle
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&, &, o
g —O0—0— & o
8q2 ° 8‘]2
g, —0—0—0—0- & o
Fig. 3.1 Diagrammatic representation of a non-interacting eigenstate for (a) bosons and (b)
|felrr(r)1i(1)nls.0"l“'l?tj.>eigenstate corresponds to (a) |[®,) = [41203 ---) and (b) |®,) =

energy levels are simply represented by horizontal lines; a filled circle on a level
denotes a particle occupying the state. We remark that with degeneracies for the
one-particle energy levels, the different occupancies are often distinguished using
distinct symbols for particles occupying different states. For example, in the absence
of a magnetic field, the spin states of an electron are two-fold degenerate and are
marked using 1 foro = % and | foro = —%.

A couple of comments are in order before closing the section. First, the
second quantization is often described based on the occupancy representation of
(3.63). However, there may be cases where an expansion of a many-particle wave
function in terms of one-particle eigenstates is not appropriate. A typical example is
superconductivity with the formation of coherent two-particle bound states, which
is the main topic of this book. We shall see that (3.44) rather than (3.63) enables
us to develop a theory of superconductivity so that the phase coherence is manifest.
Second, (3.64) is sometimes called Bose statistics or Fermi statistics. As we have
seen already, the statement has little to do with “statistics” or “probability” but is
a direct consequence of the permutation symmetry inherent in systems of identical
particles.

3.9 Coherent State

Here, we introduce the coherent state in terms of the ground state of non-interacting
bosons.

Looking back at (3.63), one may express the ground state of n non-interacting
bosons (n > 1) as

AT n
|®,) = ) 0), (3.66)
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where ¢ = CA(}LI is the creation operator of the lowest-energy state g;. However,

(3.66) with a fixed number of particles turns out to yield apparently wrong
predictions for particle-number fluctuations and two-particle correlations of bosons
at low temperatures when calculated in the grand canonical ensemble [6], as we
shall see in Sect. 5.3.

To remove the difficulties, we construct a linear combination of (3.66) over the
particle number; specifically,

| D) :Aia ﬂ|0) (3.67)
n=0 ’ m , .

where a,, is an expansion coefficient. The normalization constant is easily calculated
using the orthonormality of (CAT)H |0)/~/n!,

oo -1/2
A= [Z |a,,|{| . (3.68)
n=0

One of the notable properties of (3.67) is that it yields a finite average of the
annihilation operator,

o0
(@16|®) = [A]> Y Vn+Tatan. (3.69)
n=0

Especially useful among the combinations of (3.67) is the coherent state introduced
by Sudarshan [11] and Glauber [4] in the context of laser lights as an eigenstate of
the annihilation operator:

’|®) = O|®), (3.70)

where © denotes the eigenvalue. To find its explicit expression, substitute (3.67) into
(3.70), use the commutation relation [, (¢7)"] L= n(c”f)n_l (Problem 3.5) and
¢|0) = 0 to express 5(5T)” |0) = n(c”f)n_l |0) on the left-hand side, and compare
the coefficients of (CAT)"_1 |0) on both sides. We thereby obtain the recursion relation

Jna, = Oa,_1. It yields a, = ay®"/~/n!, where ay can be chosen as a real
positive number. Substitution of this result into (3.67) gives the coherent state in the
form

|B) = e 1OP/246 ) (3.71)
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Using expansion (3.49) and noting that ¢ = ¢, is the creation operator of the
lowest-energy state, we can re-express (3.70) in terms of the field operator V()

as

V()| D) = ¥(§)|D), (3.72)

where ¥ (§) = Og,, (§) denotes the condensate wave function.

Problems

3.1. Prove (3.26).
3.2. Prove (3.35).
3.3. Prove (3.37).
3.4. Prove (3.59).

3.5. Consider field operators ¢ and ¢ that satisfy [¢, ¢] + = 1. Show that

[e.(@)"]) = n(@)"
holds. Use it to prove
[é.g@h], = g'@),

where g(x) is a function analytic at x = 0 and g’(x) = dg(x)/dx.
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Chapter 4
Statistical Mechanics of Ideal Gases

Abstract We clarify the thermodynamic properties of quantum ideal gases com-
posed of identical monoatomic bosons or fermions. Aside from the standard content
on the topic described in many textbooks, we specifically clarify the following: (i)
Thermodynamic quantities of ideal gases can be expressed universally in terms of
the single-particle density of states and either the Bose or Fermi distribution func-
tion. (ii) An appropriate choice of units enables us to study various homogeneous
systems in a unified way. The result of (ii) is summarized in Fig. 4.1 below.

4.1 Bose and Fermi Distributions

As summarized in (3.61)—(3.65) of the previous chapter, the total particle number
4, and energy &), for an ideal gas of identical particles can be written in terms of
the one-particle energy ¢, and its occupation number ng:

No="ng. & = ngey. (4.1)
q q

where ¢ distinguishes the single-particle eigenstates. A many-particle eigenstate v
of the ideal gas is specified by the set {n,} of occupation numbers for the one-
particle eigenstates and written |v) = |ng,, ng,,Ng,, -+ ). Moreover, the possible
values of n, differ between bosons and fermions in that

.= 0,1,2,--- :boso?s(ozl) ’ 4.2)
0,1 : fermions (o0 = —1)
where o is the eigenvalue of transposition (3.3). We now apply the equilibrium
statistical mechanics formulated in Sect.2.2 to describe ideal gases, derive expres-
sions for basic thermodynamic quantities of these systems, and obtain the mean
occupation number given in (4.6) below.
The most mathematically suited for this purpose is the grand canonical ensemble
given by (2.26) because it is free from the dual constraints of constant particle

© Springer Japan 2015 43
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number .4, = N and energy &, = U. A fundamental quantity in the ensemble
is the grand partition function (2.27). Its summation over v can be performed using
(4.1), giving

76 = Z e BE—1A) — Z e Brqleqg—1ng — Z l—[ e Bleg—ny
v

{nq} {nq} q

= l—[ Ze_ﬂ(fq—ll)”q = l_[ { [1 + e_ﬂ("?q—“) + e_Zﬂ(Sq_m +- ] (U = 1)
q ng

[1+ e =] (oc=-1)
=[[l1-oe ] (o ==+1). 4.3)
q
Here, we have used et0T¢+ = ee’e... in the third equality. In the fourth

equality, “the sum over possible sets of {n,} for [], e Pea=mng” is transformed
into “a product over ¢ of the sum over possible n,’s of e PEa=na » Its validity
is illustrated for a system of fermions (n,, = 0, 1) with only two quantum states
(q1,92) as

Z eTTINITHIY — | 4 eTX T2 4 o XNITR2 — (1 + e—xl)(l + e—xz)’

{n1n2}

with n; = n,; and x; = B(e;; — w). The statement holds true irrespective of the
upper limit of 7, or the number of states, as may be confirmed by changing them and
checking the equality as above. In the fifth equality based on (4.2), we performed
the summation over n, of a geometric series.

Substituting (4.3) into (2.28), we obtain the grand potential 2 = Q(7, ) as

Q= % Y In[1 —oe P (4.4)
q

This expression is effective even when the volume V' is not an appropriate variable,
as for a quantum dilute gas trapped in a harmonic potential. Next, we obtain
the mean particle number N = N(T, i) and internal energy U = U(T, 1) by
substituting (4.4) and (4.3) into (2.29) and (2.30), respectively, to obtain

N =) i, U=Y &, (4.5)
q q

with

. 1

Here 7, denotes the mean occupation number of state ¢. Indeed, a formal averaging
of (4.1) yields (4.5). Equation (4.6) for o0 = 1 (—1) is called the Bose distribution
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(Fermi distribution). In the high-temperature limit of e#©=# > 1, they both
approach the Maxwell-Boltzmann distribution ii; = e P,

The first of (4.5) may be regarded as an integral equation to determine u =
w(T, N) foragiven N. Once the latter expression is obtained, we can make a change
of variables for 2 from u to N, specifically Q(T, u(T, N)).

As forentropy S = S(T, ), we substitute (4.4) into the first expression of (2.29)

and use _387 = dﬁ = kB,Bzaﬂ and B(g; — ) = ln[(l + (mq)/nq] to obtain

S =ks Y _{-on[l—oe "]+ pleg — p)iiy}
q

=kp ) _[~iigInig + o (1 + o7ig) In(1 + o7i,)]. 4.7)
q

Heat capacity C(7, N) is also obtained by substituting S(7, u(7, N)) into the
thermodynamic relation C = T(dS/9dT) and using (4.6),

.,
CTN) = Y ey — i) 5
q

1 ou(T, N )} xe*
_k [ + L 4.8)
B Zq: ke 0T | ("= 00| impieymn
4.2 Single-Particle Density of States
Let us introduce the single-particle density of states by
D(e) = 8(e —z,). (4.9)
q
where §(x) is the Dirac delta function defined by
sy=1%° =0 /OOS(x)dx—l (4.10)
10 ix#0° oo o '

It is the corresponding continuous-variable impulse function to the Kronecker
delta (2.9) as well as being the derivative of the Heaviside step function

6’()C)E%(l) iig @.11)

that is, §(x) = 6’(x). The latter fact may be realized by noting that §(x) = 6’(x)
also satisfies (4.10).
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The thermodynamic quantities of ideal gases such as (4.4), (4.5), (4.7), and (4.8)
are all expressible in terms of the density of states (4.9) and the distribution
function (4.6). For example, (4.5) can be written as

D(e)
N = / e de. (4.12)
> D(e)e

These expressions show clearly what is necessary for the statistical-mechanical
description of ideal gases. Rather than detailed expressions for ¢, the important
information is how single-particle energies {g,} are distributed on the energy
axis.

4.3 Monoatomic Gases in Three Dimensions

We now focus on a gaseous system composed of identical monoatomic molecules
with mass m and spin s confined in a container of volume V in the absence of
external magnetic fields and potentials. We analyze the thermodynamic properties
of both Bose and Fermi gases, which will be shown to behave quite distinctly
(Fig.4.1).

4.3.1 Single-Particle Density of States

First, we obtain the single-particle density of states for free particles. Because the
boundary conditions do not affect the bulk density of states [6], we adopt the most
convenient set, that being the periodic boundary conditions. Specifically, consider
a cubic container with edge length L and impose the periodic boundary conditions
for solving the single-particle Schrodinger equation. In the absence of magnetic
fields, the spin variable ¢ = s,5 — 1,---,—s is a good quantum number of
the eigenstate as the spin operator commutes with the Hamiltonian, and hence is
simultaneously compatible with the set of eigenenergies. Indeed, the eigenfunctions
and corresponding eigenenergies are given explicitly by

1 .
Ore (rar) = (ra|ka’) = 8y ﬁelk'r, (4.14)
h2k2
& = W, (415)

where V = L3 is the volume of the system, and the wave vector k is determined by
the integers n, (n = x, y, z) from
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2
k= —ﬂ(nx,ny,nz). (4.16)
L
The corresponding density of states is obtained from (4.9) by replacing ¢ — ko.
Noting that the spacing of two adjacent quantum states in (4.16) is Ak = 2xn/L,

we can convert the sum into an integral in the limit L — oo to obtain

1
D(e) = Z 8(€ — 1) insert TViE (Ak)? and sum over o
ko
LY
=2s+1) (—) Z(Ak)35(e — &) sum — integral
2 -
L\
~(2s+1) (2—) /d3k 8(e —&x) adopt polar coordinates
7
(s + 1)L3 o 2me \/?
= (ZT"J[/(; dkk 8(6 —€k) use k = 72
Qs+ DV (2m\? [ de 5
= T o2 \#m2 A r}c/fk (€ — k)
@2s + D)V (2m)/?
= —47T2 ? 61/20(6)- (417)

In the last equality, the step function 6(¢) signifies that there is no state for € < 0.
Hence, the density of states depends on the square root of the energy, €'/2. In
general, one can show that the density of states for free particles in d dimensions
behaves as D(e) o L%e“=2/2 for ¢ > 0 (Problem 4.1). This difference in
energy dependence manifests itself in distinct physical properties among systems
of different dimensions.

4.3.2 Connection Between Internal Energy and Pressure
Using (4.17), one obtains the relation,

2
PV = §U' (4.18)

To derive this, we start from PV = —Q of (1.28), substitute (4.4) for €2, transform
the sum over states into an integral over € using the density of states (4.9), and
substitute (4.17) for the density of states, expressing it more generally as

D(€) = Ae"'0(e),
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where A and 1 > 0 are constants. Quantity PV thereby becomes

o o0
PV=-Q= —E/ D(e)In[1 —oe P ] de
0

A 00 A [ —Ble—p)
= — a_en In [1 — Ge—ﬂ(e—m] + a_/ enoﬂe—de
n o Bnlto 1—ogeflen
1 * D 1
_ _/ _DEe 4 _ 1y (4.19)
n Jo eﬁ(é_ﬂ) —0 n

where we have used (4.13) in the last equality. Setting n = 3/2, we obtain (4.18).
The above general derivation also implies that the energy dependence of the density
of states manifests itself in the proportionality constant between PV and U. To be
specific, (4.18) is replaced by PL? = (2/d)U for d dimensions.

4.3.3 Introducing Dimensionless Variables

Using a set of appropriate dimensionless variables often enables us to make physical
arguments clearer and find similarities among apparently different systems. Let us
introduce the following unit of length for an assembly of identical particles in three
dimensions,

o=V " 4.20
Q:[N/(2s+l)} ' (4.20)

The order of /g is roughly the mean interparticle spacing of particles with spin
component «. Using /o, we next define the units associated with wave number,
energy, and temperature:

h2k2
kQ = 1, €Q = Q

€Q
, To = —, 4.21
2m Q kB ( )

where 7 in kq is introduced for convenience. Each of these units represents the

scale at which quantum effects are manifest. Table 4.1 presents values of T for

Table 4.1 Estimates of T below which quantum effects manifest themselves. The valence of Cu
is taken to be 1

Systems Conduction electrons in Cu | Liquid *He Liquid *He
Magnitude of spin 172 0 12

Atomic mass (g/mol) 63.5 4.00 3.02

Density (g/cm?® at 1 atm) | 8.96 (298 K) [8] 0.125 (4.23K) [7] | 0.059 (3.19K) [7]

To (K) 5.31 x 10* 421 2.58
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three typical systems of identical particles. The temperature is of the order of 10* K
for electrons in metals, whereas it is 4.21 and 2.58 K for liquid “He (s = 0) and
3He (s = 1/2), respectively. Thus, values of Ty differ considerably among systems.
However, it is possible to find close similarities in different ensembles of the same
species with integer or half-integer spins, e.g., between electrons and liquid *He with
s = 1/2. For this reason, we make a change of variables for energy, temperature,
chemical potential, internal energy, and heat capacity in units of (4.21) by defining
‘tilde’ quantities

€ =egé, kT =e¢qT, 1= gQfL, U = Negu, C = Nkgc.

(4.22)
Using (4.17) and (4.20)—(4.22), we can transform (4.12) into a dimensionless form:

@2s + )V [(2meq\/? /°° el &
= - Y = 6
42N h? o eC-/T _ g

g1/2
== dé, (4.23)
eE—0)/T _

which forms an integral equation for i = fi(7"). Similarly, (4.13) for the internal
energy simplifies to

e@—m)/T _

2302
== / dE. (4.24)

We also express (4.8) for the heat capacity in terms of the density of states, and
subsequently use (4.22) to write it as

5:2/0051/2 x+a—ﬂ _xe
4 0 (eY—O')

where j1/07 is obtained by differentiating (4.23) with respect to T,

o0 X
) / e dé
I _ o (& =) =iyt (4.26)

o0 X
or / g d
0 (e* —0)?

x=@—in)/T
From (4.7), entropy can also be expressed concisely in a dimensionless form.

de, (4.25)
x=@E—)/T
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Fig. 4.1 Temperature dependences of the chemical potential j, internal energy U, entropy S, and
heat capacity C. Solid lines are exact results from numerical calculations, whereas chain lines are
the classical Maxwell-Boltzmann results. Dashed lines in the heat capacity for kgT/eq > 1 show
leading-order quantum corrections to the classical result

4.3.4 Temperature Dependences of Thermodynamic Quantities

Let us survey the temperature dependences of the thermodynamic quantities to
capture their basic features. Figure 4.1 plots the chemical potential, internal energy,
and heat capacity as a function of reduced temperature 7/ T. They are obtained
by solving (4.23)—(4.26) numerically for bosons (¢ = 1) and fermions (6 = —1).
In detail, we first solve (4.23) to obtain p,(T) which is subsequently used in (4.24)
and (4.26) to calculate it and ji/9T . Finally, ji and 8j1/dT are used to plot (4.25).
Entropy has been calculated similarly.

The solid lines show the exact numerical results, whereas the chain lines are
obtained using the classical Maxwell-Boltzmann distribution; the dashed lines for
heat capacity plot the formula (4.31), which incorporates the leading quantum
corrections to the classical result. Each solid line exhibits a considerable deviation
from the classical result below around 7g. We can also see a marked difference
between bosons and fermions at low temperatures for each thermodynamic quantity.
Noting (4.18), we may regard the lines of U as the quantum equations of state. Thus,
we realize that the pressure for a system of bosons (fermions) decreases (increases)
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compared with the classical result. This implies that there is an effective attraction
(repulsion) between each pair of bosons (fermions) with the same o« due to the
permutation symmetry. Whereas classical entropy shows unphysical behavior in
falling below 0 and diverging to —oo, entropy for bosons and fermions appropriately
approaches 0 as T — 0 in accordance with the third law (1.11) of thermodynamics;
the same feature appears for heat capacity. The peak in heat capacity for bosons
marks the onset of a phase transition called Bose-Einstein condensation (BEC),
below which the chemical potential is pinned at the lowest one-particle energy
g9 = 0. We shall elaborate on these features below.

4.4 High-Temperature Expansions

We first consider the high-temperature region of T = T/Tq > 1, where
e~ (=A/T « 1 holds in (4.23). Hence, we perform an expansion of its integrand

in terms of e"“ /T and retain the leading two contributions to obtain the
approximation

o0 ~ ~ ~
| = % / 12—/ T [1 4 geEMIT 4 2=/ T ] 4z
0
T . o) . 00
~ —T3? (e"/T/ x'2e*dx +oe2"/T/ xl/ze_z""dx)
4 0 0
T32T32 eﬁ/f
— 7 GWT -
= A e 140 7 | (4.27)
Here, we have written ¢ = Tx, expressed the integrals in terms of the Gamma
function [1, 3]:
o0
I'(x) E/ e 't 1dt (x > 0), (4.28)
0

and used I'(3/2) = /7 /2. Taking the logarithm of (4.27) yields i,

o xT 2 /T
i ~-—T/|In e +1In 1+UW

5 ~ 3/2
~ 2l s (3) L (4.29)
2 4 T T1/2

where we have approximated In(1 + oe// T /23?) ~ gelt/ T /232 and subsequently
replaced e®/T with its leading-order expression e/T (4 /7 T)3/ ®. The first term



52 4 Statistical Mechanics of Ideal Gases

in the last expression is the classical chemical potential, whereas the second one
represents the leading quantum correction.
Similarly, internal energy (4.24) is estimated using (4.27),

3 3/27':'5/2 e )T 3. D)
in LT (146 & 2T o Y2 ) (4.30)
16 25/2 2 3/273/2

Differentiating with respect to 7T yields the dimensionless heat capacity,

3 o
c=—-|1+——+—). 4.31
¢ 2( + ﬂn3/2T3/2) ( )

The first term in the round brackets of (4.31) gives the classical heat capacity 3/2,
whereas the second term incorporates the leading quantum correction with opposite
signs for bosons and fermions. As shown by the dashed lines in Fig.4.1, (4.31)
reproduces precisely the behaviors of heat capacity for T >1.

4.5 Fermions at Low Temperatures

Next, we consider fermions (6 = —1) at low temperatures. The results here were
obtained by Sommerfeld in his theory of electrons in metals in 1927, which clarified
that the heat capacity of electrons should vanish as 7 — 0.

4.5.1 Fermi Energy and Fermi Wave Number

As we have already seen, solving (4.23) yields ji = i(T). We specifically consider
the case of T — 0, where the Fermi distribution function in the integrand behaves
as

1 T—0

ip(€) = = 0 —e), (4.32)

e(g_ﬁ)/f + 1

with 6 denoting the step function (4.11); see also Fig. 4.2. Its derivative with respect
to € can be expressed in the limit 7 — 0 as

G 1 eEAT 0 .
A [ 1)) 433
0€ T [eE)/T 4 1]2 S (433)

where § is the delta function (4.10).
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Fig. 4.2 Fermi distribution i
function defined by (4.32) at 1.0 T/T¢=0.0
T/To = 0.0,0.1, 0.4, and 0.1
1.0. The chemical potential s 0.4
has been calculated by L oo0sf
solving (4.23) numerically = 1.0

0.0 . -

0.0 0.5 1.0 1.5 2.0

e/eg

Substituting the limiting form of (4.32) into (4.23) and performing the inte-
gration, we obtain 1 = % ﬂ3/ 2 Hence, we find the chemical potential at zero
temperature in reduced units, fi(0) = &, and in standard units, g = €qéF, using
(4.20) and (4.21),

BT 6N 177
&r = (6/7)%? = 1.54, = —|—1 . 4.34
& = (6/m) eF 2n1[@s+—DV} (4.3

The quantity er introduced here is called the Fermi energy, which is of the same
order as eq in (4.21). The corresponding wave number kg = (2mer/h%)!/2, i.e.,

62N 17

is called the Fermi wave number, which depends only on the density of a single spin
component «. It follows from (4.32) that a Fermi gas at zero temperature realizes
the lowest-energy state where the single-particle states for g < g (k < kg) are all
occupied with no vacancies. This ground state is sometimes called the Fermi sea or
Fermi vacuum.

4.5.2 Sommerfeld Expansion

In general, the thermodynamic quantities for fermionic systems are expressible in
terms of the integral,

- i
/= / _ 8O 4 (4.36)
o e@m/T 41

For example, (4.23) for the chemical potential has this form with g(€) = %él/ 2 Let
us evaluate the above integral analytically for T <« 1.

The Fermi distribution function in (4.36) approaches the singular step function
O(jt — &) as T — 0 with a discontinuity at ¢ = fi; see also Fig. 4.2 for a graphical
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representation of this point. In contrast, function g (€) is in general smooth at € = ji.
With these observations, we express the Fermi distribution function in (4.36) as a
sum of the step function and the deviation from it:

m oo
I = /O g(®)dé + AI, Al E/o g(E)[ -0k —5)} dé.

eEm/T 4
(4.37)

Next, we divide integral A7 at € = fi into two contributions, use (e* + 1)~! — 1 =
—(e™*+1)~! for the low-energy part, and with a change of variable x = &(é—j1)/T
for € Z [i obtain

i P 00 =
AT :—/ __O dé—i—/ S (ORI
0o e Em/T 41 i eEm/T 11

L (T g — T [P (i + T
Z_T/ de”/ gat+Tx)
0 ex—}-l 0 ex+1

The integrands decrease exponentially for x >> 1 because of the factor e* in the
denominator. Also, noting fi/ T > 1atlow temperatures, we can replace the upper
limit of the integration in the first term by co to an excellent approximation. Thus,
AT becomes

Al ~T

. /°° g(fi +Tx)—g(ji — Tx) e
0

e* +1
[ 209 oy [© X
:2’~T2/ * 4 T4/ Y x4, (438
g (1) | It 3 i it (4.38)

The integrals in the second line can be evaluated exactly,

oo xn—l oo e e 00
JE E/ dx :/ X! dx = Z(—l)m_I/ X" leTmdx
0 e’ +1 0 1+4+e> 0

m=1

o0 (_1)m—1 1
=) ——Tm= (1 - F) LT (), (4.39)
m=1

where I' is defined by (4.28), and ¢ denotes the Riemann zeta function [1]:

1
{(x) = —. (4.40)
m
m=1
The relevant values are T'(2) = 1, £(2) = 72/6, I'(4) = 3!, £(4) = 7*/90; these
then yield J; = x2/12 and J§ = 77*/120 for the integral (4.39). Substituting the
values into (4.38), we obtain for the low-temperature expansion of (4.37),
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00 = ji 2 4
g(€) . /M B L Py N e PP
I = — 2 e~ dé + — T2+ — T 4.,
/0 RE S L A gE)de + ——g (WT" + 7 -7 (WT" +
(4.41)

which is known as the Sommerfeld expansion.

4.5.3 Chemical Potential and Heat Capacity

Using (4.41) with g(€) = Z&"/2 in (4.23) and retaining terms up to order 72, we
hence obtain an equation that determines the chemical potential for T <1,

T 72 (T 2
1= 1+= (=
s t3 (M)

Noting (6/7)%/3 = &g in (4.34), we obtain /i as

—2/3

22 (T 2 (T\
p=¢cp|l4+—|[—= ~NEp|l——|=— , (4.42)
8\ 12 \ &g

where the second expression has been derived by expanding (1 + x)72/3 ~ 1 — %x
in the first expression and subsequently approximating i ~ &g.
Internal energy (4.24) corresponds to g(€) = %53/ 2 in (4.41). Retaining terms

up to order 72 in the resulting expression, we obtain

N\ 2 L\ 2
2 2
N T s 57 (T T 502 5 T
A — 14+ — | = N — 1+ — | = , 4.43
1M T3 (u) 0 |t \E (4.43)

where we have substituted (4.42) into [t to obtain the second expression. Dif-
ferentiation of this expression with respect to T yields the heat capacity at low
temperatures,

3
T 1/2
5/

C:EF

2
- .

T, C =Nkgé= ?D(SF)kéT. (4.44)
Hence, the heat capacity of low-temperature fermions is proportional to 7', and the
density of states at the Fermi energy is relevant in its presence in the prefactor. See
also Fig.4.1.
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4.6 Bosons at Low Temperatures

Next, we consider bosons at low temperatures. The most peculiar feature of the Bose
distribution function (4.6) with 0 = 1 is the singularity at &, =  that causes the
function to diverge. This singularity has no physical relevance at high temperatures
where u < 0 so that &, > u for any ¢. As the temperature is lowered, however, u
increases gradually to approach the lowest eigenenergy ¢y from below. Depending
on the density of states, it may finally reach g at a certain temperature 7y where
the singularity in the Bose distribution function manifests itself as a phase transition
called Bose-Einstein condensation (BEC). This phase places a macroscopic number
of particles into the lowest energy level.

We present a preliminary survey of the BEC based on Fig. 4.1 for free bosons in
three dimensions. With decreasing temperature, the chemical potential approaches
g9 = 0 from below to eventually become zero at the temperature 7y = 0.6717q.
For T < Tp, the chemical potential stays constant at 4 = 0, while more and more
particles occupy the lowest energy level as 7 — 0. We give a detailed description
of this BEC state below.

Bose-Einstein condensation was predicted by Einstein in 1925 in his attempt
to extend the statistical-mechanical theory of photons by Bose in 1924 to massive
particles, hence his connection to BEC. It is well known that before his discovery,
Einstein not only realized the importance of Bose’s preprint sent to him, but also
showed kindness and sincerity in translating it into German and getting it published.
No BEC systems were known for a long time except for the strongly correlated
*He liquid. Finally, in 1995, systems that could be described quantitatively by the
theory of Einstein were realized using atomic gases trapped in harmonic potentials
[2, 5].

4.6.1 Critical Temperature of Condensation

The equation to determine the critical temperature T, is obtained from (4.23) with
o = 1 by setting T =Tyand i =0as

12 3 0o L1/2
_T / =T / . (4.45)
ef/T() — 1 4 0 e¥ —1

This integral can be evaluated quite generally in the same manner as (4.39) for
fermions,

o0
JnBE/
0

—1 S 00
=Y [Cetema=core). @de
- m=1"0
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where I'(n) and ¢(n) are defined by (4.28) and (4.40), respectively. The relevant
values are {(3/2) = 2.612---, T'(3/2) = /7/2, £(5/2) = 1.341--., and
r'(5/2) = 3Jn/4. Using them in (4.46) to evaluate (4.45) and noting (4 20)
and (4.21), we obtain TO and 7o = Ty To

5 4 h? 4 (N/ V)23

To=raen =0 0= G (Gs + DEGRE

(4.47)

4.6.2 Thermodynamic Quantities of T < T

For T < Tp, a macroscopic number Ny of particles occupies the lowest energy level
with &g = 0. The ratio Ny/ N can be calculated by subtracting the fraction of excited
particles with g > 0 from 1 and using (4.45),

- \3/2
N, o) 2 - [e9) 1/2 T
—°=1—£/ _ dézl—sz/ Y dx=1-(=
N 4 0 —1 4 0 er —1 TO
T /2
(=) . 4.48
(To) (5.45)

The internal energy i for T < Tj is obtained from (4.24) by setting i = 0 and
using (4.46),

&2 3/2 3/2
:_/ / i zTS/Z/OO x3/ e — 373/ 5(5/2)715/2. (4.49)
/T _ 4 y e —1 16

Using [8/753/2§(3/2)]f0_3/2 = 1 from (4.47), we can transform the heat capacity
¢ = du/dT as

3/2 3/2
= DTSR IO (L) i (1) s

€= 32 = 23/2) X

Note that value 1.93 is larger than the value 1.5 for the classical Maxwell-Boltzmann
distribution. See also Fig. 4.1 on this point.

4.6.3 Chemical Potential and Heat Capacity for T 2T

To find the explicit temperature dependence of the chemical potential for T>T,
where i < 0, we transform the integral in (4.23) to obtain
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gl/2
1=z /
e(f N)/T
1 - -
—/ —/ |: - — }el/zde
ee/T e(s M)/T 1 ec/T _ 1

expand denominators in the second term in terms of (€ — i)/ Tandé/T

oo 1/2 oo T T
fﬁ@/ al m+£/ T T age
4 o e —1 4 Jo E—[L €

use (4.45) for the first term and set € = |ft|x? in the second term

'f 3/2 oo 1
T~ .
== ——ﬂmW/ —dx
T() 2 0 x- 4+ 1

set x = tan @ in the second term

. N\3/2
T —T - /2
=1+ =" —Zvaﬂ/' do
To 2 0

3T — T
1+2—-0 il
2 T, 4

%

%

—Tolf|">.

We thereby obtain i for T > Ty as

N
. 36 (T—To @51)
b\ Th ) |
This expression tells us that both i and dfi/ ?T are continuous at T = T,

Accordingly, heat capacity is also continuous at 7" = Tj, as seen from (4.25).

4.7 Bose-Einstein Condensation and Density of States

The thermodynamic quantities of ideal gases can be expressed as integrals in terms
of the density of states D(¢) and distribution function [ef¢~=* — ¢]~!, where all
the effects of external potentials and system dimensions are contained in D(€). For
example, we have seen earlier that the density of states D(e) for free particles in
d dimensions is expressible as D(e) o« €“?72/20(¢) in terms of a d-dependent
exponent. With these observations, it is worth considering a general model with the
density of states:

D(€) = A(e — £9)"10(e — &), (4.52)
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where A > 0 is a constant, & is the lowest one-particle energy, and 6(x) is the step
function (4.11). Indeed, setting n = 3/2 (n = 1) and &9 = 0 yields the free Bose
gas in three (two) dimensions. We shall clarify how the critical temperature Ty for
the BEC transition depends on the exponent 7.

The equation to determine 7y is obtained by substituting (4.52) into (4.12) with
u = ¢goand T = Ty. The resulting equation is further transformed as

© A(e — go)! 0o -l
N = /0 ele—e0)/ksTo _ 1d6 = A(kBTo)n/O eX — ldx = A(kgTo)"¢(mT (n),

where we have used (4.46). Thus, we obtain T; as

1 N 1/n
To=—| —— . 4.53
" [Ai(n)l“(n)} *33)

Specifically, we conclude Ty — 0 as  — 1 from above, because {(n — 1) — oco.
This also implies that there is no BEC transition for n < 1. A critical case with
n = 1 is the free Bose gas in two dimensions, where the BEC transition occurs at
T =0.

As for the thermodynamic quantities, we only need to replace the results of
Sect. 4.6 with, for example, £(3/2) — £(n), £(5/2) = ((n+ 1), and (T/ Tp)*/? —
(T/Tp)" (Problem 4.3).

Problems

4.1. Consider a free particle with mass m and spin s that moves in a rectangular
area of d dimensions with edge length L. For d = 1, 2, show that the density
of states is given by

1/2
(Z.S‘;- l)L (Zh_”;’l) 6_1/29(6) cd =1
D) =1 (24 v L? (2m ' (4.54)

4.2. N identical monoatomic molecules with mass m and spin 1/2 are confined in
a two-dimensional square area with edge length L.

(a) Obtain expressions for the Fermi energy and Fermi wave number.
(b) Find the expression for 4 at low temperatures up to order T2 using (4.41).

4.3. N identical monoatomic molecules with mass m and spin O are confined in
a harmonic potential % (r) = %ma)zr2 in three dimensions without mutual

interactions. The one-particle eigenenergy is given by [4]
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3
Enenyn, =\ Nx + 1y + 0+ 2 hw,

where 1, (n = x, y, z) are non-negative integers.

(a) Evaluate (4.9) for ¢ = (ny,n,,n;) to show that the density of states is
given to an excellent approximation for 7' = hw/ kg by

(€ — &0)?

b = FGey

(e — &9)

with &9 = 3hw/2.
(b) Show that the BEC transition temperature 7y is given by

*T ks LLBTOR) 3] ke’

(c) Show that the number Ny of condensed particles for T < T is given by

No _ | TY
N To )"

(d) Show that internal energy U and heat capacity C for T < Ty are given by

B 3¢(4) TY 128 (T
U‘N[8°+ RO (To)] € =No7) (Fo)

1 |:2(ha))3N:|1/3 B [ N }1/3 ho
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Chapter 5
Density Matrices and Two-Particle Correlations

Abstract In this chapter, we first introduce two new concepts named density matrix
and reduced density matrices as (5.1) and (5.3). The reduced density matrices are
closely connected with the n-particle correlations in equilibrium (n = 1,2,---).
Next, we give a proof of the Bloch—-De Dominicis theorem, i.e., a thermodynamic
extension of Wick’s theorem, which enables us to express the n-particle correlations
of ideal gases in terms of one-particle correlations as (5.11). Finally, the theorem is
applied to obtain the two-particle correlations of homogeneous ideal Bose and Fermi
gases in three dimensions. The results are summarized in Fig. 5.1 below. It clearly
shows that there exists a special quantum-mechanical correlation between each pair
of identical particles due to the permutation symmetry, which is completely different
in nature between Bose and Fermi gases.

5.1 Density Matrices

The density matrix is defined in terms of eigenstates |®,) of the Schrodinger
equation (3.43) and its probability w,, of realization,

EDBCHIACH (5.1)

The distributions frequently used for {w,} are the microcanonical distri-
bution (2.12), the canonical distribution (2.18), and the grand canonical
distribution (2.26). Once p is obtained, we can calculate the expectation of an
arbitrary Hermitian operator &' by

(O)=Trp0 =) wi(®,]0]P,), (52)

where Tr denotes trace.
Next, we introduce reduced density matrices in terms of (5.2) for the
expectation by

PEL e B E e D) = (T ED YT EDTE) ()

© Springer Japan 2015 61
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M)
= Lo [t [ a0 60

X (EL - E B E ) (5.3)

with n = 1,2,---,.4;, where we have successively used (3.26)—(3.28), (3.22),
and (3.12) to give the concise expression in terms of the wave functions. It should
be noted that the particle number in the microcanonical and canonical ensembles is
a constant that does not depend on v as .4, = N. Quantity p is also called the
n-particle density matrix. Its physical meaning may be realized by looking at the
casen = 2 with §] = & and &) = &:

PP (1, E1,8) = (T ENDYT EDV DV (E))
= M) [ [A 06 e EOP (S

which is proportional to the probability that a pair of particles are simultaneously
at & and &,. Thus, we can clarify many-particle correlations once reduced density
matrices have been obtained. We also realize from Hamiltonian (3.42) that we can
evaluate the n-particle operators using p.

Definition (5.2) of the density matrix contains bras and kets, which are indis-
pensable for describing systems with spontaneous symmetry breaking such as
ferromagnets. To be specific, the free energy for an isotropic ferromagnet is
degenerate with respect to the direction of the macroscopic moment. However,
this rotational symmetry is broken spontaneously to realize a macroscopic moment
that is directed along some specific direction. Because a huge number of magnetic
moments are aligned cooperatively along a single direction, there is essentially no
chance for the macroscopic moment to change its direction at a time. Thus, the
direction of the magnetic moment is essentially fixed with possible fluctuations
around it, and the brackets in (5.2) should also describe this situation by excluding
those possibilities where the moment is aligned along other directions.

5.2 Bloch-De Dominicis Theorem

Equation (5.3) is given as an expectation of a product of 2n field operators. How
can we evaluate it? For the special cases of ideal gases in the grand canonical
distribution, the theorem of Bloch and De Dominicis [2] enables us to perform this
concisely. It is a thermodynamic extension of Wick’s theorem for the evaluation of
the S-matrix in relativistic field theory [7]. The present proof follows that given by
Gaudin [3], which is more elementary and easier to understand.

Consider a system without interactions described by Hamiltonian Hy in (3.45).
As we are considering a grand canonical ensemble, we subtract the product term
involving the chemical potential ;& and number operator .4~ from H, to introduce
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~ A A~ ~ ’\2 ~
A= o -nh = [ad' O | B w0 -u] i@
- Z(gq — Wélé,. (5.5)
q

Here ¢, is a single-particle eigenenergy determined by (3.46), and ¢, obeys the
commutation relation (3.51). Substituting (2.26) into (5.1) and using (3.35), we
obtain the corresponding density matrix,

p= Y 19,) G @] = 3 P10, (@,
vV vV

— oP—HA) (5.6)

As preliminaries for the theorem, let us prove the identities:

é,e P = qePe,, a, = e P, (5.7)

A 7 1 7

c;e_ﬂ'}iﬂ0 = —e_ﬂ%c;. (5.8)
aq

Equation (5.8) is the Hermitian conjugate of (5.7) so that it suffices to show the
latter. For this purpose, we introduce

2,(B) = P e P (5.9)

We differentiate this equation with respect to 8, substituting (5.5), and using (3.51)
to bring the derivative to the form

dé,(B) o[ A ap\a—BH
TR = P (e, — Eq )P
= PN ey — WI(E] oy ey — 64 Cliig)e P
q/
= b/ Z(s,,/ - u)[cA;,acA,,cA,,/ — (8qq + aé;/éq)éq/]e_ﬂ%
q/

— _eb (g — M)éqe_ﬂ‘}{%’

= _(Sq - M)éq(ﬂ)-

This first-order differential equation can be solved easily using the initial condition
¢4(0) = ¢, from (5.9) as

¢,(B) = e P, (5.10)
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Finally, we equate the right-hand sides of (5.9) and (5.10) and multiply the resulting

equation by e 770 from the left. We thereby obtain (5.7). This completes the proof.
We proceed to the main theorem, the statement of which is

Bloch—-De Dominicis Theorem
(GG Con) = TeeP @6, - G
A A A A A A
= Z UP(CplcszCpsCm)"'(szn 1 P2n> (5.11)

Here C ; represents either ¢, or 52; ;» and symbol ) 5 with the prime denotes a
restricted sum that, of the permutations given by

]3:(1 2 3---2n—12n)’ (5.12)
P1 P2 P3 -+ Pan—1 Pon

only those obeying the conditions

D1 < D2, p3 < D4+, Da—1 < P, D1 < p3<--<pyu_i, (513)

enter in the summation. The transformation (5.11) is called the Wick decomposition.
The first condition of (5.13) implies that the alignment order in each expectation
remains the same before and after the Wick decomposition; the second condition
excludes the double counting of the same decomposition. See (5.18) below for a
specific example.

To prove (5.11), it is convenient to express the commutation relations of (3.51)
in a unified way with the notation

S[j : él‘ = qu é = é;]
Ci.Cilo = (i), ) =13-08; :Ci=éb, C=¢, (5.14)
0 : otherwise

By noting that (i, j) is a constant, we move C, on the left-hand side of (5.11) to the
rightmost position,

(Ci1Cy---Cyy) = (((1,2) +Uézél]é3"'ézn)
= (1,2)(Cs--- o) + 0(6‘2[(1,3) +063él]é4”'ézn)
= (1.2)(Cs+- Co) + 0 (1.3)(C2Cy - Con) +
+022(1.2n)(C2C5 - Cout) + 02N Co - Can C).
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The last term can be transformed by noting the definition of the expectation in (5.11)
and using (5.7) and (5.8),

1 :Ci=¢y

Cr--CoCr) = al(C1Cy - Cay), = A :
(Cor-ConC) = a1 (C1Cy-+-Cop), 16 =d

Combining the two equations above, we can express the original expectation of the
2n product of operators in terms of those with a 2n — 2 product of operators,

(1,2) (1,3)

(C1Cr---Coy) = H(C3Cy-+Co) + 0 HCCy- - Cop)
Il —oa 1 —oa
1,2
Foee o2 2ﬂ(cc Con_r). (5.15)
1 —oal
In particular, the case n = 1 yields

ACA (1,2) 1 : é] =

CiCy) = , = A o 5.16

( 1 2) 1-0’(1? n _I:Cl:cl‘l ( )

Substituting this back into (5.15), we obtain

(éléz---ézn) = (éléz)(é3é4...ézn) + 0(6163)(6264...6‘2;1)
4ot azn_z(élézn)(ézéj’, . ‘éZn—l>'

This is a recursion formula that enables us to reduce the number of products in the
expectation by 2. With repeated use, we obtain (5.11). Note that condition (5.13) is
satisfied here.

Three comments on the Bloch-De Dominicis theorem are in order. First, C; in
(5.11) is originally specified as an eigenoperator corresponding to an eigenstate of
the single-particle Schrédinger equation (3.46). However, the theorem holds true
directly for an arbitrary linear combination of ¢ ; given by By = Z Ukjé 5 that s,

k

(B\B,--- Byy,) Za (B, Bp,)(BpsBp,) - (Bpy_ Bp). (5.17)

In proof, we only need to express the left-hand side of (5.17) in terms of C, use
(5.11), and finally put )", Uy; back into the appropriate pair of brackets. Note
especially that By above can be a linear combination of ¢q; and CA(L. We shall
encounter this situation when we consider superconductivity.

As a simple application of (5.17), consider the two-particle density matrix (5.4)
for a normal system without interactions. Its Wick decomposition can be performed
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concisely as follows. First, we enumerate distinct decompositions by marking each
pair of operators with a common symbol on top;

P2 (E1.6:6.6) = VT EDV @)V (E)VED)
= (W EDTT EVEVED) + W ETT EVETED).

where we used the fact that a pair of annihilation operators have null expectation
in the normal state. Next, we focus successively on a single operator from the left
in each term and move its partner to its right, multiplying by 0 = =1 upon each
exchange of operators until all the pairs are coupled. We then obtain

PP (&), E2: €1, 6)
= o2 (Y ENVENVT GV (E)) + o (i EDVE)V E)VED).

Finally, we place around each coupled pair angle brackets and simultaneously
remove common symbols on top of them,

p P (&1, £2: 61, 6)
= (YT ENTE) W EDV (&) + o (T ENVE) T &)V E))
= p V1. 80" (E2. &) + 0 (E2. £V (1. £2). (5.18)

Thus, the two-particle density matrix has been expressed successfully in terms of
one-particle density matrices pV (¢, &) = (V1 (&)9 (&)).

Second, we extend (5.11) to the BEC phases with 0 = 1, where a macroscopic
number of particles occupies the lowest-energy state (Sect.4.6). In this case, we
should express 1,@(5) in (3.49) as a sum of the condensate wave function:

W(E) = (Y () (5.19)

and the rest as

TE =@ + Y ep, &) = ¥(E) + 96). (5.20)
q

and apply the theorem only to the field ¢(£) without the lowest-energy state. Note
that the finite average (1}(&)) # 0 is possible only when we consider a superposition
over the occupation number for the lowest-energy state as (3.67), which in turn will
be shown to yield a two-particle correlation that is physically reasonable, as seen
below. See also [1] for a justification in setting (1/}(5 )} # 0. The one-particle density
matrix with this procedure is given by
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PN (&1L &) = (U E)V(E))
= W(ENY* (&) + (9T(EDPED)

= WETE) + Y vED (G, (5.21)
q

where we have used (5.20), (¢(£)) = 0, and (CAZ/ch) = 8yqiiy. As for the two-
particle density matrix, we substitute (5.20) into (5.4) and apply the theorem (5.17)
only to the field ¢, noting that (¢) = 0 and (¢¢) = 0. We thereby obtain

PP (&1, E2: 61, 62)
= ([¥*E) + o' EDI* (&) + @' @ (&) + $EDIW (E1) + (ED))
= [WEPIPE + [P EDH@T(ED9E)) + P EI (9T (EDGED)
HETE) (@ EDPE)) + Y E)PFED (@ (E)GE))
+HPTENGEDN QT EG(E)) + (6T (ENP(E)) (BT (62 P(ED))
= pW (L )PV (&2, &) + opV (&, 1V (&1, &) — W () P (£)]%,
(5.22)

where in the last equality, we have inserted the factor 0 = 1 for later convenience
and expressed p® concisely in terms of p(!), (5.21).

Third, theorem (5.11) does not apply to the canonical and microcanonical
ensembles. This may be realized by inspecting (5.16) in the proof. For the grand
canonical ensemble, this one-particle expectation (5.16) for each of ¢ i = 0y
and cA; ; adequately yields the single-particle occupation number in equilibrium as
(5;1@(12) = 8q1q2q» (6%63;2) = 8qigo (1 + 071, (€q1Cq,) = (6;163;2> = 0 with 71,
given by (4.6). The above proof may seem applicable to the canonical ensemble.
However, if we set u© — 0, (5.16) does not yield the correct one-particle expectation
for the canonical ensemble. The reason for this is that (5.11) makes use of processes
where the particle number changes. In the canonical or microcanonical ensembles,
this is not permitted.

5.3 Two-Particle Correlations of Monoatomic Ideal Gases

Expressions (5.21) and (5.22) for the reduced density matrices of ideal gases can
be used not only for the BEC phases, but also for normal states of both bosons
(0 = 1) and fermions (¢ = —1) by setting ¥ — 0. Here, we use (5.22) to clarify
the two-particle correlations of free bosons and fermions as a supplement to the
thermodynamic considerations of Sects. 4.3—4.6.

Because p(z) in (5.22) is expressed in terms of ,0(1), we first consider (5.21). Its
quantum number ¢ is specified in the present case by a combination of wave vector
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k and spin index ¢ = 5,5 — 1, -+, —s. The corresponding wave function is given
by (4.14); that is,

1
2 (E) = (o k) = 8o ——eXT . 5.23
Pxa(§') = (r'a’ |[ka) NG (5.23)

In contrast, the wave function of a homogeneous BEC carries wave vector 0 and
can be written in terms of volume V, spin s, and condensate particle number N, of

(4.48) as
N
V) = T (5.24)

where the phase of ¥ (&) has been put equal to 0 irrespective of spin element o as
it does not affect the energy at all for ideal gases. Note that integrating |¥(£)|? as
(3.16) yields No.

Substituting (5.23) and (5.24) into (5.21), we obtain the one-particle density
matrix,

eik'(rl —r2)

N 50( o /
pVE6) = ——— + 23
k

2s+ 1DV 1% eble—1 — g

NO d3k eik~(l‘1 —13)

= — o , 2
@2s+ 1)V + S (2m)3 eblex—m) — o (5.25)

where we have replaced the sum over k into an integral as in (4.17) by noting
that the point k = 0 measures zero in the integral. Let us choose r = r; —
along the z axis in (5.25) and express the wave vector in polar coordinates as
k = (ksin 6 cos ¢, k sin 0 sin ¢, k cos 8). We subsequently perform the integration
over the solid angle,

2 b4 1 .
N . k
/ d(p/ d6 sin § elkres? = Zn/ etdr = 4o 20T
0 0 -1 kr

Next, we express 47 above as an integral over the solid angle, substitute it back into
(5.25), and rewrite the resulting expression as a sum over k. We thereby obtain

N() 5a1a2 Z/ 1 sin kr

M _
PG5 (2s+ DV Ty efE—1 —g  kr

. Ny N ey /°° de D(e)  sin+/2me/h2r
- (25 =+ I)V (2S + 1)V —00 eﬁ(f_“) — 0 1/2}/)16/}512}" ’
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where we have used the first expression of (4.17) in the second equality. Using
the last expression of (4.17) and making a change of variables specified in (4.22),
we obtain

N, S N 7w [ . &Y2 sin(korél/?
p(l)(gl’i_-z) — 0 oo _/ i—* - ( Q~1/2 )
2s+1DHV  2s+ 1)V 4 )y eE—M/T — 5 kqré
N N,
= Gy iV [WO + 80 (k|1 — r2|):| , (5.26)

where k¢ is given in (4.21), and function £(x) is defined by

(5.27)

b3 /°° 1 sin(€'/2x) __
de.
0

V4 = — -
WD=7) g x

Recalling (4.23) for normal states (Ny = 0) and (4.48) for BEC phases (Ny >
0; & = 0), we can write limiting behaviors of £(x) in a unified way as

() { 1—Ny/N :x—0 ' (5.28)
0 X —> 00
Equation (5.27) can be evaluated numerically in the same way as (4.23).
It follows from (5.26) and (5.28) that
N
(1) - 5.29
p (&, 8) I (5.29)

which denotes the particle density per single spin component &. We also conclude
that, in BEC phases with Ny > 0, the one-particle density matrix remains finite even
for |r; — ;| — oo as

No

(1) v
p (1. &) — s+ OV

(Ir1 — 2| — 00). (5.30)

This property characteristic of BEC phases is named off-diagonal long-range order
[5, 6, 8].

Now, we focus on p® to clarify two-particle correlations. Let us substitute
(5.24), (5.26), and (5.29) into (5.22). We then obtain an expression for the two-
particle density matrix

N

2
@H—I)V} gares (11 = 1)), (5.31)

PP (¢ 6 61.6) = [
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Fig. 5.1 Pair distribution
function g, () for fermions
(solid lines) at

T =0, Ty, 2T, and for
bosons (chain lines) at

T = 0, 0.5T0, T(), TQ, 2TQ,
where Tq and T are given in
(4.21) and (4.47), respectively

with
2 No
8aor (1) = 1+ 800,0 § [E(kqr)]” + ZWE(er) . (5.32)

Function gg,q,(r) introduced here is called the pair distribution function, which
represents the probability that one finds a pair of particles simultaneously in states
& = rioy and & = ryop. When o # o2, gaj0,(r) = 1, independent of r,
implying that there are no correlations between a pair of particles with different spin
components. For a; = a3, the second term of (5.32) is finite; hence, in contrast, we
expect finite correlations between pairs of particles.

Figure 5.1 plots the pair distribution function gq, () for a pair of particles with
the same spin component « obtained by calculating (5.32) numerically. We observe
a clear difference between bosons (¢ = 1) and fermions (0 = —1). For fermions,
8ax (1) approaches O rapidly for kor < 1, indicating the presence of an effective
repulsive force due to the antisymmetry of the corresponding state. Therefore, the
probability is zero for a pair of particles in the same spin state to be simultaneously
at the same position, in accordance with the Pauli exclusion principle. The region
near r = 0 where gq,(r) reduces considerably from 1 is called the exchange
hole. Conversely, for normal bosons, gu,(r) approaches 2 for r — 0, implying
an effective attraction between a pair of particles due to the symmetry of the
corresponding state. The value of g, (0) starts to decrease below the BEC transition
temperature Ty and finally reaches 1 at 7" = 0. The latter fact indicates the absence
of correlations between any pair of particles at 7 = 0. Hence, each particle loses its
individual characteristics following its complete assimilation to the same quantum
state in the condensate.

Finally, it is worth mentioning what would result without the finite off-diagonal
expectation (5.19) for the BEC phase. If this were the case, the pair distribution
functionat 7 = 0 would become g, (r) = 2 irrespective of r instead of g, (r) = 1
above, implying a huge fluctuation in the particle number [4]. This suggests that the
superposition over the particle number for the condensate is an integrable part of
BEC [1].
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Problems

5.1. Perform the Wick decomposition for the three-particle density matrix of
normal ideal gases given by

P (1. 6. 63:6.65.8) = (WTEDVTEDV T E)V (E)T (E)V (E1)).

5.2. Use (4.32) and (4.34) to show that function (5.27) for ideal Fermi gases
(0 = —1) can be expressed analytically at 7 = 0 in terms of the Fermi wave
number kg = (6/7)"3kq as

7—0 3 (—kpr cos kgr + sinkgr)
kqr) — a (k;)3 a

Show also that near r = 0 this function behaves as

(ker)?

r—0
Lk 1-—
(kor) — 10
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Chapter 6
Hartree-Fock Equations and Landau’s
Fermi-Liquid Theory

Abstract In the previous two chapters, we have considered only non-interacting
quantum many-particle systems in obtaining exact results for basic thermodynamic
quantities and two-particle correlations. However, in real systems, particles interact,
making exact statistical-mechanical calculations impossible except for some low-
dimensional solvable models. Thus, we are almost always obliged to introduce some
approximation when studying interacting systems. Here, we derive the Hartree—
Fock equations, i.e., one of the simplest approximation schemes for studying
interaction effects at finite temperatures, based on a variational principle for the
grand potential. They are most effective when interactions are weak and repulsive
and are crucial in describing molecular-field effects, but may not be applicable
to systems with attractive potentials, as will be seen in later chapters. Next, we
apply the Hartree—Fock equations to fermions at low temperatures to clarify how
the interaction affects thermodynamic properties along the lines of Landau’s Fermi-
liquid theory.

6.1 Variational Principle in Statistical Mechanics

The thermodynamic equilibrium of a system exchanging heat and particles with
a reservoir is given by the grand canonical distribution (2.26), which has been
obtained by minimizing functional (2.25). Thus, (2.25) forms a variational principle
in statistical mechanics. Here, we express it in terms of the density matrix of (5.1)
to make it convenient for subsequent discussions.

First, we transform (2.25) into a functional of density matrix p. Noting w,, > 0
and ) w, = 1, we may state the definition of p in (5.1) alternatively as follows:
The density matrix p is a Hermitian operator that is positive semidefinite (i.e., all
eigenvalues are nonnegative) and satisfies

Trp = 1. 6.1)

Using p, we can express (2.25) as
Q| = Trp (S + B np). H=H—pA. (6.2)
© Springer Japan 2015 73
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This may be confirmed by substituting (5.1) and Inp = > |®,) Inw,(®,]| into
(6.2) and then using (3.35), (3.43), and </1;|<I>\,) = M,|D,). A A

The density matrix in equilibrium is given by (5.6) with replacement 4 — 5.
Thus, operator

Iéeq = eﬂ(Qeq_ﬁ&)
with Q¢q = =B ' InTr e~ minimizes Q[p], i.e., inequality

Q) = 2] 63)

holds. The variational principle (6.3) also enables us to obtain p approximately.
To be specific, one may construct an approximate p by incorporating variational
parameters in it and choosing them to minimize 2[p]. The smaller the value, the
closer we expect p is to the real density matrix.

6.2 Hartree-Fock Equations

We consider a system of normal bosons or fermions described by the Hamiltonian':

= /d&w(&)[ U @) — }v}@o

45 [0 [ a2y (n - i@ @I Eie. 64

which has an additional interaction term in comparison with (5.5) of the previous
chapter. We derive the Hartree—Fock equations for this system using two different
methods. One is based on the variational principle (6.3), whereas the other relies
on a self-consistent Wick decomposition technique. Both will be shown to give an
identical set of equations, (6.12) and (6.13), below.

6.2.1 Derivation Based on the Variational Principle

To incorporate interaction effects approximately, we make use of (6.3) and choose
p in an ideal-gas form given by (4.4), (5.5), and (5.6) as

'We use symbol M to denote S = H — uj from now on, which is distinct from those in
Chap. 3 like one in (3.39).
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p = exp

B |:90 - Z(Sq - H)égéq]
q

, Qo= %Zln [1- oe_ﬂ(g‘?_")],
q

(6.5)
where cA; and ¢, are supposed to obey the commutation relation (3.51). A key
point here is that g, is a variational parameter, to be determined appropriately
below, which has the physical meaning of a renormalized one-particle energy with
interaction effects. Thus, we no longer use (3.46) for the one-particle eigenstate ¢,
and eigenenergy &,, but derive new equations for them in such a form as to include
interaction effects.

Let us substitute (6.4) and (6.5) into (6.2) and evaluate the grand potential
by noting the following: (i) The Bloch-De Dominicis theorem holds true for the
variational density matrix so that the interaction term in (6.4) can be evaluated with
the Wick decomposition of (5.18); (ii) Entropy S = —kgTr o1n p for (6.5) can be
expressed in terms of the mean occupation number:

1
7= (ATA Y —
n’{ - (chq) - eﬂ(aq_“) _07 (66)
as
S = —kgf [QO > (e - M)ﬁq]
q
= ks Y [~iiyIniiy + o (1 + 0iig) In(1 + oiy)]. (6.7)

q

Thus, it is identical in form to (4.7) for ideal gases. Using (i) and (ii) above, we can
express Q[p] as

n2

Qlp] = / déy [& +U () - u} PV EL 6y, + % / a6 / a2

2m

x V(e —ra]) [0V 1. 8DV (&2.6) + 00V (62. D)0V (€1, &) |

- % Z[_ﬁq Iniiy +o(l + oig)In(l + oiy)]. (6.8)
q

The one-particle density matrix pV (¢, &) = (VT (&)Y (&) is transformed by
expanding the field operators formally as (3.49) and using (cj, Cq) = 8q4ii4 into

pVE1LE) =) ogEDe; (E)iy. (6.9)
q
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In addition, (6.2) tells us that we obtain the expectation (Ji; ) = N for the particle

number from N = —9Q[p]/du. This differentiation can be performed easily for
(6.8),

N = [pVEnds = Y. (6.10)
q

Next, we minimize Q[p] in terms of variational parameters {g,} in (6.5). A
necessary condition for this is that (6.8) is stationary with respect to ¢, [4]. Noting
(6.6) and (6.9), however, we realize that (6.8) depends on ¢, only through 71,,. Thus,
condition 6Q2[p]/de;, = 0 is equivalent to §2[p]/éi1, = 0, which is expanded to
give

o 8905
Sng

/d&qu(él)[ + U (ry) — :|<Pq(§1)+2>< —/d§1/d§27/(|1'1 —r12)

1
x [0 (€0 ENp" (62, £2) + 007 (£ (€0 (E1L &)] - 31 Lt ong

fi

/d&fﬂq (1) { [— + %(rl)} 9q(51) + /d& &Z/HF(&,&)%(&)}

—Sq—u[/ d&lwq(&)lz—l] (6.11)

where Zur(€1, &) denotes the Hartree—Fock potential:

Uar(£1,6) = 8(&1, 52)/ d&; 7 (Ir1 —r3)p MV (&5, &) + 0¥ (|r1 — 12])pV (1, £2).

(6.12)
The last equality in (6.11) may be confirmed by substituting (6.12) and g, — . =
B~ In[(1 + o7y)/0,] into the final expression. Condition (6.11) can be satisfied by
solving the eigenvalue problem:

p;
2w oo+ [as v @ —an6). 613
This is seen as follows. First, symmetry %j(€1, &) = Zur(£2,§1) of (6.12) tells
us that (6.13) is a Hermitian eigenvalue problem. Hence, &, is real and {¢, }, can be
constructed to form a complete orthonormal set that satisfies (3.47) and (3.48). Next,
we can use (6.13) and (3.47) to show that the last expression of (6.11) is certainly
Zero.
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Equations (6.12) and (6.13) are called the Hartree—Fock equations, which form
a closed set of self-consistency equations. To be specific, (6.13) can be interpreted
as an eigenvalue equation for &, and @, (x) for a given Zur(§1, &), However, as
seen from (6.9) and (6.12), Zur(§1, &) itself includes ¢, and ¢, (x) that are to be
determined. Hence, (6.12) and (6.13) form a set of self-consistency (i.e., nonlinear)
equations for g, and ¢,(x). In this circumstance, we need to make an appropriate
guess about the solutions to start solving the nonlinear equations, as they may have
multiple solutions including unphysical ones. For the Hartree—Fock equations, one
may initially adopt the eigenvalues and eigenfunctions for % = 0 and improve on
them iteratively using (6.12) and (6.13) until a convergence is reached.

Let us denote the minimum of (6.8) by Qpr. Its concise expression is obtained
from (6.8) using (6.7), (6.9), (6.12) and (6.13) and finally substituting €2 of (6.5).
This gives

Sur = Z(gq_ﬂ)ﬁq_%/d%'l/dgz%HF(élsEZ)/O(I)(ELEI)“FQO_ Z(sq—,u)ﬁq

q q

= %Xq:ln[l —ge ] %/d&/d& Uar (61, 6)pV(E2.£1).  (6.14)

The second term in the last expression is an additional term from the interaction,
which removes the double counting of the interaction energy in &, obtained by (6.12)
and (6.13).

6.2.2 Derivation Based on Wick Decomposition

There is an alternative concise method for deriving the Hartree—Fock equations,
which proceeds as follows: (i) Consider all the possible Wick decompositions for
the interaction in (6.4); (ii) Express each pair for the decomposition as a sum of
their average and the deviation from it; and (iii) Neglect terms that are second order
in the deviations. Following this procedure and using abbreviations 1}(&) — 1/},-,
the product of four field operators in the interaction transforms to

ARTARTSYA
— (0 01) + ¥ — () (9
)
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= Pl (30) + ({00030 + o [ (Fn) + (5] ) 99 |
— (W) (I392) — o (1) (9. (6.15)

The Hamiltonian (6.4) is thereby replaced by an expression given in terms
of (6.12) as

A A A2 A A
S = / dslw*@l){[z"—l U u}p(sl) + / 0> Yhns 61, szw(sz)}
m
-3 / at, / 46 e (61, £)p (2, £1). 6.16)

The second term on the right-hzind side Ais a constant, whereas the first term has a
quadratic form with respect to ¥ and 1. Expanding them formally as (3.49) and
determining eigenstate ¢, (§) by (6.13), we can put the first term into a diagonal
form,

g = Z(gq - M)CA';CAq - %/d&/d& U (€1, £)p" (&2, £1).
q

Let us use this expression and (6.7) to estimate Qup = (jﬁﬂ:) — TS. We thereby
reproduce (6.14) for the grand potential. Thus, the Hartree—Fock formalism has been
derived also by the Wick decomposition procedure.

6.2.3 Homogeneous Cases

We apply the Hartree—Fock formalism to homogeneous systems to derive a simpli-
fied equation. This helps in understanding clearly how the one-particle energy is
determined self-consistently while accounting for interaction effects. Linearization
of the equation with respect to external perturbations gives the basic equation of
Landau’s Fermi-liquid theory with molecular-field effects, as will be seen shortly.

With no external potential (Z = 0), the eigenfunctions of (6.12) and (6.13)
are plane waves given by (5.23). This is shown self-consistently as follows. Let
us assume that (5.23) is indeed an eigenfunction and substitute it into (6.9) with
q — ko. We then obtain

80{ o 1 . — -
PV b)) = = Y e, (6.17)
k

Accordingly, we expand the delta function and the interaction potential of (6.12) as

80{0{ ik-(r1—r 1 ik-(r;—r
5(51,52)=%Zek(‘ 2, 7/(|I'1—l'2|):vz7/kek(l 2. (6.18)
k k
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Using (6.17) and (6.18), we can express the Hartree—Fock potential (6.12) in the
form

80‘ o ik-(r;—r 1 =
%HF(gl ) 52) = # Z € (e Z)V Z (7/0 + 0-80/0(1 7/|k—k’|) NK/q’- (619)
k Ko’

Substitution of (6.19) into (6.13) with % = 0 confirms that (5.23) is certainly an
eigenfunction of the Hartree—Fock equations with eigenvalue

1 _
ke = &f + v ;(7/0 + 0800 Vk—k'| ) iK'a (6.20)
where
h2k?
&) = P (6.21)

denotes the one-particle energy assuming no interaction. Note that 7rg/,y on the
right-hand side of (6.20) is a function of ey/,s. Hence, (6.20) forms a set of self-
consistency (or nonlinear) equations for {exq}.

Equation (6.20) also determines changes of e, when external perturbations are
applied. The corresponding first-order variations {Sek,} obey coupled equations
obtained by linearizing (6.20),

1 on g
_ 0
851(0{ = Sgka + V E faa’(k, k/)ESSk’a" (6.22)

Ko/

Here, we have replaced the subscript of €%, k — ka, by considering the possibility
of some ko dependence because of perturbations; function f,, (K, k') is defined by

fao/ (k, k’) =Y+ O—Saa’/y/\k—k’\' (6.23)

Further, we have replaced the derivative of the mean occupation number by an
isotropic term without perturbations as justified in the first-order approximation. The
second term on the right-hand side of (6.22) represents molecular-field (or mean-
field) effects. It indicates that a perturbation to the system causes a change in the
molecular field originating from the interaction, which then produces a feedback
effect on the one-particle energy.

Equation (6.22) for low-temperature identical fermions (0 = —1) forms the
starting point of Landau’s Fermi-liquid theory [5], and function (6.23) may be
regarded as the Hartree—Fock approximation to the Landau f function. This Landau
theory describes how low-temperature fermions respond to external perturbations;
details will be given below.
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6.3 Application to Low-Temperature Fermions

Among systems of identical fermions are those with spin 1/2 particles, which
include typical targets of statistical mechanics such as electrons in metals and liquid
3He. Thus, we apply (6.22) to low-temperature fermions (0 = —1) with spin 1/2 to
clarify how the interaction affects their thermodynamic properties.

6.3.1 Fermi Wave Number and Fermi Energy

First, we focus on the zero-temperature case in the absence of a magnetic field to
clarify how the Fermi wave number and Fermi energy are affected by the interaction.
As the system under consideration is isotropic, the energies gk, for the zero
magnetic field will depend only on the wave number k. Thus, we may set ex, — &
in (6.20). To determine the chemical potential 1£(0) = e, we substitute (6.6) into
(6.10), set ¢ — ko and T — 0, and use (4.32). The resulting equation is given by

N=> 0(er—e) =) 0(ke —k), (6.24)
ka ka

where we have transformed the condition for g into that for k. The latter expression
is identical to that for the non-interacting case in terms of the wave vector (4.16).
Hence, we conclude that the Fermi wave number kp is still given by (4.35) with
s = 1/2, that is,

) 1/3
ke = (3”VN ) . (6.25)

Thus, kr does not depend on the interaction. This is because the interaction does
not change the density of particles confined in a fixed volume. The theorem, which
is known as the Fermi-surface sum rule, also holds true for electrons in anisotropic
metals where the volume enclosed by the surface ¢y = ep remains invariant as a
function of the interaction strength [6]. In contrast, the first expression of (6.24),
given in terms of &g, is affected by the interaction. Hence, the value of the Fermi
energy er changes because of the interaction.

6.3.2 Effective Mass, Density of States, and Heat Capacity

We now introduce the concept of effective mass m™*, which will be shown to describe
how the density of states at the Fermi energy and low-temperature heat capacity are
modified by the interaction.
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The one-particle energy ¢ of isotropic systems depends only on k = |Kk| and
may be expanded for k ~ kg as

d W2k
e~ er+ | (k —kp) = er + —2 (k — kp), (6.26)
dk [ e m*

where m* denotes the effective mass defined by

der

1
m* kg dk (627

k=kp

It follows from (6.21) that m™ is identical to m for ideal gases.
The effective mass manifests itself in the single-particle density of states defined
by

D(e) = > 8(e —&x). (6.28)
ko

Indeed, D(¢) at the Fermi energy € = ¢f can be transformed in the same way as
@.17) fors =1/2as

2V 00 Ve dey
D(ef) = 4 dkk28(ep — &) = — K28 (sn —
@) = Gyt || kS0 = 15 [ s e
vk Vkpm*
=5k -7 (6.29)
b4 dek/dk|k=kF w2h

where we have used (6.27) in the last equality. Noting that kg does not depend on
the interaction, we realize that the density of states at the Fermi energy is modified
by factor m* /m because of the interaction.

This change in the density of states is observable in the low-temperature heat
capacity. To see this, we start from (6.7) for entropy in the Hartree—Fock approxi-
mation. It has the same expression as (4.7) for ideal gases with the difference being
only in the one-particle energy in 7i1,. Hence, the heat capacity C = 7'(dS5/d7T) in
the Hartree—Fock approximation is identical in form to (4.8) for ideal gases; in terms
of the density of states (6.28), we have

csz/OOD(e)(x+ ! a“)i

x=p(e—p)

In particular, near 7 = 0, we may approximate D(¢) ~ D(er) and make a change
of variables, x = (e — er). Consequently, the term with du/07 in the integrand
becomes odd in x to yield a null contribution. Let us transform the remaining
integral over —oo < x < oo into that over 0 < x < oo with a change of variables
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for x < 0 and perform an integration by parts to evaluate it with (4.39). We thereby

obtain
e 2] (e’
+2 / Y dx)
0 0 ex —+ 1

= %D(sF)kgT. (6.31)

2

e¥ +1

~ 2D(ep)kiT / (x dx 2D(ep)kaT (

The last result is identical in form to (4.44) for ideal gases, but D(ep) is modified
by factor m* /m.

6.3.3 Effective Mass and Landau Parameter

In the present homogeneous case, because the mass change m — m™* is caused
solely by the interaction, it is reasonable to expect that ratio m™* / m is expressible by
the Landau f function on the Fermi surface. We show that this is indeed the case
and write m*/m in terms of the Landau parameters.

First, let us adopt a coordinate system that moves with velocity u (u < v)
relative to the original system, where vg = hkg/m™ denotes the Fermi velocity. The
Hamiltonian in the new coordinate system is given by (6.4) with p; — p; —mu and
% = 0. Thus, it is only the kinetic-energy operator that is affected by the change in
coordinate system. The corresponding Hartree—Fock equation for the homogeneous
system is obtained from (6.20) by replacing every wave vector with k — k—mu/#.
Thus, the wave vector is modified by

5k = —mu/h

from the change in coordinate system. Accordingly, the one-particle energy near the
Fermi surface is shifted to first order in §k by

= %8k sk = Bk 0K sk &
Son = g Ok = g ok KN e

ek de, 0k W2k k ( mu
k

where we have used (6.26), k = (k2 + k2 4+ k2)'/?, and k ~ kg. Similarly, (6.21)
is also changed by §&) = —#k - u. In contrast, function f,. (k,k’) given by (6.23)
remains invariant as it depends only on k — K’. Let us substitute these expressions
into (6.22) with k — kg and note that u can be chosen arbitrarily. We thereby obtain

ke =ket o me (kr. k') 8’”"k’

*
k’o/ m
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Further, we form the scalar product of the equation with kg/ k2, set T — 0, and use
(4.33). This yields

Fk/

m*

—1—_ Z Joor (kg K)S (e — ep) —5—

k/o/

Subsequently, we transform the sum over k' into an integral as (4.17), adopt polar
coordinates k' = (k’sin 0’ cos ¢’, k" sin 6 sin ¢’, k’ cos 6”), and express the angular

integrations as
b4 2
/ d@’sin@’/ de’ = /dQ’, (6.32)
0 0

to obtain

m o0 d / 2 , kF k/
— 1_2/ ) ’S(Ek/—sF)/dQ Joo (K, Kg) e

D dQ’ k k’
= (8F)Z / S (e ) =5 (6.33)

3

where D(eF) is the density of states at the Fermi energy given by (6.29).

It follows from (6.23) that function fy4 (Kg, k{:) on the Fermi surface depends
only on the scalar product kr - ki/k2 = cos6’. Let us multiply fyo (kr, Kf) by
D(eg)/2V and expand it in terms of Legendre polynomials { P;(cos 6')},

D — ( F} — F}
(SF) Suar (ke ki) = (% + 8aa/F;‘) Py(cos6'), (6.34)
=0

where F;} and F}' are dimensionless parameters called Landau parameters. Specifi-
cally, P;(x) is defined by [1, 2]

Py(x) = ( 21, (6.35)

1
2‘36'd ¢

and satisfies

1
2
/_l P[(X)P{/(X)dx = mgu{/. (636)

The first few low-order polynomials are Py(x) = 1, Pi(x) = x, Po(x) = %
(3x2 — 1). Let us substitute (6.34) into (6.33), write kg - ki./ k2 = Pj(cos6’), and
use (6.36). Equation (6.33) thereby becomes
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S*

m ad F}— F? , ds’ m
A 1_2 Z (% —l—é’w/Fg‘)/EP@(COSQ’)Pl(COSQ’)W

£=0 0/=:|:%
S 1 ’ S
S dx , Nm F/ ' m
==k [ 5 rehmen e =1-5
That is, ratio m™*/m is given solely in terms of F; as

m* F?
— =1+ (6.37)
m 3

6.3.4 Spin Susceptibility

Next, we study the spin susceptibility y at 7 = 0. We shall see that it is also
modified from the ideal-gas value by a couple of factors, which are expressible in
terms of Landau parameters.

Suppose that there is a weak magnetic flux density of magnitude B along the z
axis. In this situation, the non-interacting one-particle energy is shifted because of
the spin degrees of freedom by

ey, = —ul aB. (6.38)
This energy splitting between & = +1/2 is the Zeeman effect. The quantity 9

denotes the magnetic moment whose magnitude varies from particle to particle; for
electrons, for example, it is given in terms of the Bohr magneton

elh
Up = lelh _ 927 x 10724y. 17! (6.39)
2m
as ,uom = —2up. We also expect that the one-particle energy with interactions is
expressible as
Seke = —Um@B, (6.40)

where [y, is an unknown constant having the physical meaning of an effective
magnetic moment.

Let us substitute (6.38) and (6.40) into (6.22), set k = kg, divide both sides by
— B, and take the limit 7 — 0. We thereby obtain

1
MUm& = /“L?na - V Z Joor (KF, k/)g(SF - Sk/)ﬂma/-

Ko’
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Subsequently, we express the sum over K’ into an integral over K’ as (6.33), substitute
(6.34), and use (6.36) and Py(x) = 1. The above equation thereby becomes

D(e dQ’
Ml = L@ — (F) Z / Soar (Ke, Kg) m@’

1
Ol— Z Hm& Z( +5aa’Fg) I/IPK(X/)PO(X/)d-x/

o = :I:I
_ ,0., F?
= U@ — UmQ L.

Hence, we obtain p,, in terms of u2 as

_ M
1+ F

(6.41)

The total moment M due to spin is expressible generally in terms of the spin
magnetic moment u% o and one-particle density matrix as

M= [ dubap e, (6.42)

where d¢ is defined by (3.16). Let us substitute (6.17) into the above expression,
expand i, & fy + (0fig /0&) )€y With 0ny /e = —08(er — € ), and successively
use (6.40), (6.28), and (6.41) to arrange it in the form

M = Z,umomka A Z“m O 5£ka ,umumBZ Z o8(ep — &)

k o= :I:1
0/2)’D(e
_ (I"Lm/ ) (er) (6.43)
1+ F¢
Hence, the spin susceptibility is obtained from y = dM /9B, giving
0 7\2
(1m/2)" D(er)
= 6.44
* I+ Fp (049

The numerator (10, / 2)2D(8F) is identical to that for ideal gases, but the density
of states here is modified from that for the non-interacting system by the factor
m*/m = 1+ F}/3, as seen from (6.29) and (6.37). Moreover, there is another
factor (1 + F{)~! that originates from the spin-dependent part of the interaction,
(6.34).
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6.3.5 Compressibility
Compressibility « is defined in terms of volume V' and pressure P by

K= ———. (6.45)

For T = 0, we clarify how this is affected by the interaction.

To begin, we transform « at 7 = 0 into an alternative convenient expression. An
infinitesimal variation of the grand potential €2 can be expressed as in (1.27). It also
follows from (1.28) that d2 = —PdV — VdP holds. Equating the two expressions
yields the Gibbs-Duhem relation:

S N
dP = —dT + —dyu, 6.46
v + T (6.46)

variables (P,T,u) of which are all intensive as well as the coefficients
(S/V,N/V). Using (6.46) with dT = 0 at T = 0 and noting that yu depends
on extensive variables (V, N) only through ratio V/N, we write the inverse of
(6.45) as

oP N op o 1 dp  _ N’ap

—=—V— =V —— = —

k 9V vVav  aV/N) Val/N) V N’

(6.47)

Thus, compressibility at 7 = 0 takes the alternative form with dN/dpu.

To find IN/du at T = 0, we start from (6.10) with ¢ — ko and rearrange its
small variation due to du, which should accompany no spin polarizations, using
(4.33) and (6.6) to obtain

_ i i
SN = Sine=Y (3_:8“ + a—g’;(sgk) = bex —er) (S —Ber).  (6.48)
ko ko ko

The contribution proportional to ek determines an indirect effect that i brings
about through the interaction. Noting (6.22), we may express this ey as

1 _
Sex = D foa (k. K) il

Ko’

As 8 is infinitesimal and 7 = 0, we only need to consider those k and k’ that lie
on the Fermi surface in the above expression. In addition, §7ix’ due to §u should be
isotropic. Keeping these points in mind, we transform the sum over k’ above into an
integral in the same way as in (6.33), and then use Py(x) = 1, (6.34), and (6.36) to
obtain
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o0 dk/
Sex = / k™8 / dQ’ fyo (K, K)
@y kgl

©  dk’
:/0 (27r)3 D(SF)Z 2 ( +8”‘“’&)

(O/il

1
X271 / Py(x") Py(x")dx’
-1

LA, 2V
_/0 (2n)*k S D) Den) ™ Fo D(s)Z D(F)SN

k//

Substituting this expression into (6.48) and using (6.28), we obtain 6N =
D(ep)[6p — F§SN/D(er)], ie.,

oN D(er)
— = . (6.49)
o 14+ F§
A further substitution into (6.47) yields the compressibility at 7 = 0 as
V' D(er)
=— . 6.50
N21+ F§ (6.30)

Thus, « is also affected by the interaction.

6.3.6 Landau Parameters

We have considered low-temperature fermions with s = 1/2 based on the Hartree—
Fock approximation to clarify how the interaction affects thermodynamic properties.
The main results are (6.25), (6.29), (6.31), (6.37), (6.44), and (6.50), which are
all given in terms of the Landau parameters F| ; . Here, we derive microscopic
expressions of the parameters within the Hartree—Fock theory, and discuss a possible
extension of the theory to systems with strong interactions where the Hartree—Fock
formalism is no longer effective.

First, let us derive microscopic expressions for the Landau parameters within the
Hartree—Fock theory. To this end, we note that #|x_y| in (6.23) depends only on |k—
K| = (k? + k> — 2kk' cos O )'/?, where Oiqe denotes the angle between k and k'
Thus, we can expand #{x—/| generally in terms of Legendre polynomials (6.35) as

Pt = )20+ DYk k') Pe(cos fiuc). (6.51)
=0
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Table 6.1 Laqdag , P (bar) | F} F; Fe
parameters of liquid “He [7]
0 9.30 | 5.39 | —0.695
3 15.99 | 6.49 | —0.723
6 2249 | 7.45 | —0.733
Let us substitute (6.51) into (6.23) with ¢ = —1, choose k and k’ on the Fermi

surface, and compare the resulting expression with (6.34). We thereby obtain F;
and F},

. D ) D
77 = 20 sy — e 1 sithe kel Fp = =2 g 1y itk k).
(6.52)

These expressions indicate that, for a repulsive interaction with %, > 0, we may
expect Fy > 0 and F§ < O generally (Problem 6.1). In particular, inequality
F§ < 0in (6.34) indicates that the repulsive interaction favors a pair of particles
with the same spin alignment («; = «») rather than the opposing alignment
(o1 # ay); the state associated with the former can naturally suppress the repulsive
force because of the Pauli exclusion principle. Thus, the Hartree—Fock equations
enable an explanation of how the interaction affects thermodynamic properties
qualitatively. However, because they have been derived based on the variational
density matrix (6.5) of an ideal-gas form, (6.52) cannot be used quantitatively for
describing strongly interacting systems.

In contrast, Landau’s Fermi-liquid theory [5] starts from (6.22) and (6.34) and
treats F} and F;' as phenomenological parameters. It is also applicable to strongly
interacting systems so that (6.25), (6.29), (6.31), (6.37), (6.44), and (6.50) can be
used as they are. This is because scatterings between quasiparticles (i.e., renormal-
ized entities with interaction effects that work like “particles”) are suppressed at low
temperatures because of the Fermi degeneracy so that they behave like real particles
with an infinite lifetime to form an ideal gas [3, 5].

Landau’s Fermi-liquid theory has been quite successful in describing liquid
SHe (s = 1/2) at low temperatures. Table 4.1 shows that quantum effects in *He
should be substantial below around 7y = 2.58K, and Landau’s Fermi-liquid theory
is applicable for extremely low temperatures of T < Tq. Table 6.1 presents values
of Landau parameters extracted from various experiments. Both F{j and F} are
large and positive, indicating that the interaction between particles in *He is mainly
repulsive and strong. Thus, according to (6.50) and (6.37), its compressibility is
small and the effective mass is enhanced substantially, making particle motion
difficult. In addition, F{ is negative and close to —1 to give a large spin susceptibility
according to (6.44). This enhancement of y indicates that the system is close to the
instability of the ferromagnetic transition for Fj — —1.
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Problems

6.1. Suppose that the interaction potential in (6.4) is given by

Y (r) = Upe /™, (6.53)

where o > 0 and U are constants.

(a) Show that coefficient ¥; of the Fourier expansion in (6.18) is given by

SnUorg

Vo= — 0
T+ k)

(6.54)

(b) Replace k& with |k — K| in (6.54) and expand it as in (6.51). Show that
Vo(k, k') is given by

SnUorg

Voltk k') = ) .
(1 + rgk? + r3k?)” — drgk2k”

(6.55)

(c) The Landau parameters in the Hartree—Fock approximation can be written
generally as in (6.52). Express Fj and F{j of the present model in terms of
Uy, ro, and the density of states D(ep) at the Fermi energy.
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Chapter 7
Attractive Interaction and Bound States

Abstract Struggling to find a way to theoretically explain the phenomenon of
superconductivity, in 1956 Cooper eventually reached a simplified version of the
problem of two particles on the Fermi surface under a mutual attraction. Cooper’s
problem, which represented a breakthrough in constructing a microscopic theory of
superconductivity, is essentially identical to a one-particle problem with an attrac-
tive potential in two dimensions. In this chapter, we consider attractive potentials
to clarify under what conditions a bound state is formed. First, we consider one-
particle problems with an attractive potential in two and three dimensions to show
that an infinitesimal attraction suffices in two dimensions to form a bound state
whereas a finite threshold is requisite in three dimensions. Next, we shall see that
this qualitative difference between two and three dimensions is caused by whether
the one-particle density of states is finite at zero energy. Finally, the presence of the
Fermi surface in Cooper’s problem will be shown to make the density of states at
the excitation threshold finite even in three dimensions, resulting in the formation
of a bound state from only an infinitesimal attraction.

7.1 Attractive Potential in Two and Three Dimensions

We consider a particle in a central potential 7#'(r) that obeys the Schrodinger
equation:

52
p
2o o = epin a.n
2m
where p = —ihV is the momentum operator, m is the particle mass, ¢ (r) denotes

the wave function, and € is the eigenenergy. Here, we adopt a square-well potential
given by (see also Fig.7.1)

Uy :r<a

7.2
0 r>a (7.2)

V() = {

to clarify under what conditions a bound state is formed in two and three dimensions.

© Springer Japan 2015 91
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Fig. 7.1 A square-well
potential

7.1.1 Bound State in Three Dimensions

First, we consider the three-dimensional case to show that there is a finite threshold
for Uy that determines whether a bound state can form; see (7.9) below.

The lowest-energy eigenstate is expected to have an isotropic s-wave symmetry.
Its wave function may be written in terms of the spherical harmonic function [2, 5]
Yoo(8, @) = (4m) "% as ¢(r) = R(r)Yoo(8, ¢) (0<r <o00,0<0 <, 0<¢ <2m).
Substituting it into (7.1) and restating the resulting equation in polar coordinates
[2, 7], we thereby obtain the radial Schrodinger equation,

2 —
;%rRm n MR(H =0. (7.3)

By noting (7.2), setting —Uy < € < 0, and imposing boundary conditions | R(0)| <
oo and R(oco) = 0, we can easily solve (7.3) separately for r < a@ and r > a in
terms of rR(r) as

Asinkr T <
ROY=130 T zZ : (7.4)
where A and B are constants, and k and « are defined by
k = w, K= # (7.5)
Subsequently, we match these solutions so that [rR(r)]'/rR(r) is continuous at
r = a. The condition can be expressed concisely in terms of the dimensionless
quantities:
§=ka>0, n=«ka>0 (7.6)
as
n = —§coté. (1.7)

Also, from (7.5) and (7.6), variables (£, n) satisfy
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Fig. 7.% A'plot of the three n nKo(n) _ §J5(&)
icznsgrzmit; in zthjz(%)rn) plane, b 4= Ko(n) — Jo()
r = 1,2’ n= —%‘COt%—, and
nKo(m)/Ko(n) =
EJ5(6)/Jo(§) 1.5}
L&+ =1
[T n=—&coté
0.5}
0 &
2 2
£+’ = 25U, (7.8)

In Fig.7.2, plots of (7.7) and (7.8) are drawn by which we can see graphically
whether a solution of the coupled equations exists. An intersection point is present
in the first quadrant of the (£, 7) plane if [(2}7%12/7512)U0]1/2 > /2 is met. This
condition is expressed more concisely as

Us > %(%)2 (1.9)

That is, no bound state exists in three dimensions unless Uy exceeds a finite value.

7.1.2 Bound State in Two Dimensions

Next, we consider the two-dimensional case to show that an infinitesimal attraction
suffices in forming a bound state, as revealed in (7.14) below.

The isotropic wave function in two dimensions is similarly expressed in polar
coordinates r = (rcosg,rsing) as ¢(r) = R(r)/~/27. Substitution into (7.1)
and a change to the two-dimensional polar coordinates [2, 7] yields the radial
Schrodinger equation

liriR(r)+2m[e—7/(r)]

rdr dr #2 R(r) = 0. (7.10)

Substituting (7.2), we find that (7.10) reduces to Bessel’s (modified Bessel’s)
differential equation of zeroth order for r < a (r > a) [1, 2]. Imposing the same
boundary conditions |R(0)| < oo and R(co) = 0, we obtain the solution
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_ | AJo(kr) r<a

R(r) = BKo(kr) :r>a’

(7.11)

where A and B are constants, Jy(kr) is the Bessel function of zeroth order, K(xr)
denotes the modified Bessel function of zeroth order [1, 2], and k and « are defined
by (7.5). The matching criterion, i.e. R’(r)/R(r) is continuous at r = a, yields

nKy(m) _ §15()
Ko Jo§)

where 7 and £ are defined by (7.6).

The pair of coupled equations (7.8) and (7.12) may be solved qualitatively by
drawing their graphs in the (£, n) plane, as in Fig. 7.2. The two curves intersect in
the first quadrant for any 1 > 0. This fact can be stated quantitatively by expanding
Jo(§) ~ 1 —£2/4 + O(£*) and Ko(n) = —In(ne?/2) + O(n*Inn) in the weak-
coupling region of 0 < £, <« 1 [1, 2], where y = 0.57721 --- is Euler’s constant.
Substitution of both into (7.12) yields [In(ne” /2)] ' = —£2/2, i.e.,

- 2 _ h?
n =2e""exp —? ~ 2e 7V exp| — . (7.13)

ma?U

(7.12)

In the second approximation, we have used £2 ~ 2ma?U,/h? as obtained from (7.8)
by noting £ > e 2/§" ~ p for 0 < £ < 1. It also follows from (7.5) and (7.6) that
n = ka = ~/—2ma?e/h. Substituting back into (7.13), we obtain the bound-state

energy for Uy — 0 as
R (277 Y 25> .14
€=—— exp| ——— ). .
2m\ a P maU,

Hence, a bound state is formed for any Uy > 0. We also realize from « =
V—2me/h, (7.11), and Ko(x) ~ (7r/2x)"/?e™ for x — oo [1, 2] that the radius ro
of the bound state for € — 0 is quite large as ro ~ k' = #/~/—2me.

7.2 Consideration in Wave Vector Domain

Regarding bound-state formation, we now study the one-particle problem of
Sect. 7.1 once more, to trace in the wave vector domain the origin of the qualitative
difference between the two- and three-dimensional cases. We shall see that it
depends on whether the one-particle density of states is finite at zero energy.

Let us expand the wave function and potential of (7.1) as plane waves,'

"Factor V~'/2 in (7.15) originates from the normalization condition (¢|¢) = 1, whereas V™! in
(7.16) is so chosen to ensure that the coefficient ¥; is independent of V' in the thermodynamic
limit.
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1 o

=— Y *Tgy, 7.15

) = ;e P (7.15)
1 .

Y (r) = - zk:elk'%. (7.16)

It should be noted that ¢(r) and ¢ above are different functions distinguished
by their arguments, as are ¥ (r) and ¥;. Because 7' (r) is isotropic, its Fourier
transform 7% is also isotropic depending only on k = |K|. Let us substitute (7.15)
and (7.16) into (7.1), multiply the equation by V~'/2¢=¥"T and integrate it over r.
Exchanging k and K’, we obtain the Fourier-transformed Schrédinger equation

1
ecdn + kZ Viw | = €, (7.17)

where e, = #%k?/2m is the kinetic energy. Rearranging this equation gives

Cx
ep —€

S

1
Gk = v Z M-k | P -
k/
Further, we substitute the first into the second to obtain an integral equation for C,

I ¢ Y|
=—— ——Cy. 7.1
Ci V;Ek,_eck (7.18)

Next, we expand #{x_y| as in (6.51) and retain only the £ = 0 term,

Vi—x'| = Yok, k"), (7.19)

which is justified in solely studying the s-wave bound states. Substitution of this
equation into (7.18) yields an equation for C that depends only on k,

Yok, k'
ok, )Ck’
Ekr — €

o
C, = —/ deyr N (exr) , (7.20)
0

where we have transformed the sum over kK’ into an integral over &,/ by using the
density of states per unit volume and spin component defined by

N(e) = % > " 8(e — ). (7.21)
k

Apart from the factor (2s 4+ 1)V, this N(¢) is identical to D(€) in (4.17).

Equation (7.20) is suitable for clarifying the origins for the difference between
two- and three-dimensional bound-state formation. In general, the s-wave compo-
nent ¥ (k, k') of an attractive potential takes a finite negative value for k,k’ — 0,
whereas it vanishes for k, k' — oo; see (6.55) with Uy < 0 for example. As a
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simple model that contains these features and is also tractable analytically in the
wave vector domain, we adopt the model potential

Yok, k') = =T 0(ec — ex)0(ec — &), (7.22)

where [y > 0 is a constant, & > 0 denotes a cutoff energy, and 6(x) is the step
function defined in (4.11). Substituting (7.22) into (7.20), we find that Cj can also
be written as

Ck = C()@(&‘C — Ek). (7.23)

Moreover, we have already obtained the density of states in both three and two
dimensions as given in (4.17) and (4.54), respectively. Thus, (7.21) per unit volume
and spin component vanishes for € < 0 whereas for € > 0 it is expressible as

Ael/? . three dimensions

7.24
N(0) : two dimensions ( )

Ve |
where A and N(0) are constants.
First, focusing on the two-dimensional case and substituting (7.22)—(7.24) into
(7.20), we obtain an equation that determines the bound-state energy € < 0,

! /% L ey == (7.25)
= Err = In . .
NIy 0 &k —€ k —€

When the attractive potential is weak, N(0)[y < 1, the left-hand side of the
equation takes a large positive value that diverges as N(0)['y — 0. Meanwhile,
the right-hand side as a function of € also diverges logarithmically as ¢ — 0. Hence,
(7.25) always has a solution of € < 0 as long as N(0)I'y is finite. The eigenenergy
in the limit of N(0)['y — 0 may be found analytically by approximating . —€ = &
in (7.25),

1
€ = —& exp[— N(O)F0:| . (7.26)

Thus, we confirm that in two dimensions a bound state is formed when there is an
infinitesimal attraction.

The same consideration in three dimensions yields an analogous equation that
determines the bound-state energy € < 0,

1/2

1—/%%’@ (727)
AFO_ 0o &k —E€ K '

The left-hand side diverges in the limit Iy — 0, whereas the right-hand side as a
function of € remains finite in the limit € — 0 because the density of states N (ex)
s}c/ 2 vanishes as &r — 0. Hence, there is no bound-state solution for I'y — 0 in three

dimensions.
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Thus, the present analysis has clarified unambiguously that the bound-state
formation in two dimensions by an infinitesimal attractive potential is attributable
to a finite density of states at zero energy.

7.3 Cooper’s Problem

Besides the repulsive Coulomb force from other electrons, an electron in a metal
interacts with quantized lattice vibrations called phonons. These phonons may bring
a net attraction between each pair of electrons near the Fermi energy, as shown by
Frohrich [6] and Pines and Bardeen [3] before 1956. With this realization, Cooper
was able to construct a relatively simple model of two electrons on the Fermi surface
attracting each other [4]. Here, we study this Cooper’s problem to see that they form
a bound state by an infinitesimal attraction.

We seek the simplest possibility allowing a pair of electrons on the Fermi surface
under a mutual attraction to form an s-wave bound state without a center-of-mass
motion. Accordingly, the Schrédinger equation for their orbital motion can be
written in terms of their relative coordinates r; — r, as

) )

[ﬁ + 2 - I'2|):| Bt —ra) = (e + 2em)p(ry —ma)). (7.28)
2m  2m

where m is the electron mass, ¥ is the interaction potential, ep denotes the Fermi

energy, and € is the energy of the two electrons measured from their total kinetic

energy 2¢g. A solution with ¢ < 0 corresponds to a bound state. Let us expand the

two-particle wave function ¢ (|r; — r;|) as plane waves,’

1 .
(It —ral) = 7 3 g, (7.29)
k

Substitution of (7.16) and (7.29) into (7.28) gives the Fourier-transformed
Schrodinger equation as

1
2ex — er)i + 1 kZ Vi | P = €, (7.30)

where g, = h%k?/2m is the kinetic energy of a single electron. Equation (7.30) has
the same form as (7.17). Hence, we repeat the procedure from (7.17) through (7.20)
for (7.30) to obtain an integral equation for Cy = [2(&x — €F) — €]k,

o0 Yok, k'
Cr = — / dek,N(sk/)Lck,. (7.31)
EF 2(‘9/(/ - SF) —€

2Factor V™! in (7.29) results from a product of two ¥ ~!/2 for each of r; and r».
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It differs from (7.20) in only a couple of points, specifically: (i) the denominator is
replaced by 2(exs — ep) — € and (ii) the lower limit of the integral is er. The latter
change reflects the fact that filled one-particle states inside the Fermi sphere cannot
be used for forming a bound state because of the Pauli exclusion principle. We also
adapt the model potential of (7.22) to the present situation,

Yok, k") = =T 0(ec — |ex — er|)0(ec — |ex — €5l), (7.32)

with e. < ¢ep. Substituting (7.32) into (7.31) enables Cj to be written as C, =
Cob(ec. — |lex — er|). Let us put this expression and (7.32) back into (7.31),
approximate N(ex’) ~ N(erp) based on & < ¢f, and make a change of variables as
& = ej — ep. We thereby obtain an equation to determine the bound-state energy as

1 /EC 1 d 11 2. — € (7.33)
I} —_— = —In , .
N(ep)To 0o 28—¢€ 2 —€

which is essentially equivalent to (7.25) with a replacement of N(0) by N(eg). Thus,
the presence of the Fermi sphere in Cooper’s problem has made: (i) the density
of states at the excitation threshold ¢ = e&f finite, and (ii) the formation with an
infinitesimal attractive potential of a two-particle bound state on the Fermi surface
possible. The bound-state energy for I'y — 0 is easily obtained,

2
€ 2. exp|: N(EF)F0:| . (7.34)
The formation of this two-particle bound state is now referred to as Cooper pairing.

It is worth pointing out that prior to the BCS theory, the idea of pair condensation
as the mechanism underlying superconductivity was presented by Schafroth [8]
based on the analogy to superfluidity in the charged Bose-gas model [9]. Around
1957, however, it had not established Cooper’s finding described above or the BCS
wave function (8.6) given below, thereby failing to produce quantitative results
testable by experiments.

Problems

7.1. Consider the one-dimensional Schrodinger equation:

2mdx?

h? d?
[ + 70 o) = o)
with the attractive potential

-Uy Dx] < a

Uy > 0).
0 D x| > a o >0)

Y(x) = {
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Show that there always exists a bound state of —Up < € < 0 for an arbitrary
U, > 0. Obtain an analytic expression of the bound-state energy for Uy — 0.
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Chapter 8
Mean-Field Equations of Superconductivity

Abstract Cooper’s analysis clarified that an ideal gas of identical fermions
becomes unstable in the presence of a mutual attractive potential, however small it
may be. What is the new ground state, and how is it related to superconductivity?
A breakthrough for this fundamental issue was achieved by Schrieffer, then a
graduate student of Bardeen. Motivated by Cooper’s finding, he finally had the
idea of applying Tomonaga’s intermediate coupling theory for mesons (Tomonaga,
Prog Theor Phys 2:6, 1947) to describe the new ground state (Cooper LN, Feldman
D (eds), BCS: 50 years. World Scientific, Hackensack, 2011). In this chapter,
we construct this BCS wave function in the coordinate space in such a way that
both the pair condensation and phase coherence are manifest. We then derive the
Bogoliubov-Valatin operator that describes excitations based on the BCS wave
function. These two ingredients are subsequently used to obtain the basic mean-
field equations of superconductivity, called the Bogoliubov—-de Gennes (BdG)
equations, using the same methods as in Chap. 6 for the Hartree—Fock equations.
Besides the Hartree—Fock potential, the BdG equations are characterized by a novel
self-consistent potential we call the pair potential.

8.1 BCS Wave Function for Cooper-Pair Condensation

Superconductivity may be regarded as a kind of BEC in terms of electrons. However,
from the Pauli exclusion principle, it is certainly impossible for electrons with s =
1/2 to occupy the same one-particle state macroscopically. Nevertheless, it does
not prohibit them from condensing to form identical two-particle bound states. The
variational wave function Schrieffer wrote down can be regarded as a mathematical
expression of this Cooper-pair condensation. First, we present a variational wave
function for the macroscopic Cooper-pair condensation, (8.6) below.

The BEC of an ideal Bose gas is characterized by a macroscopic number of
particles occupying the one-particle state with the lowest energy, as we have seen in
Sect.4.6. A system of identical fermions may also be able to condense into a two-
particle bound state with no fundamental conflicts with the Pauli exclusion principle.

© Springer Japan 2015 101
T. Kita, Statistical Mechanics of Superconductivity, Graduate Texts in Physics,
DOI 10.1007/978-4-431-55405-9_8
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Without any consideration, one may write down the wave function
immediately as

dM(E), £, En) X P(Er, E)P(E3,E4) - P(En—1, EN), (8.1)

where

¢ (€1.6) = —p(52.61) (8.2)

is the Cooper-pair wave function that incorporates the transposition symmetry (o =
—1) required at the two-particle level. Here we have chosen N (~ 10%%) as an even
integer for convenience.

However, (8.1) still fails to obey the required permutation symmetry of (3.12) for
fermions (o0 = —1). The method to incorporate it has already been given in (3.31).
To perform the antisymmetrization concisely for the present case, we introduce the
Cooper-pair creation operator:

=2 / at, / 462 (61, E2)7 (€T (&), 8.3)

where IﬁT is the field operator for fermions that obeys (3.17) with 0 = —1. Using
it, we can easily modify (8.1) to incorporate the required permutation symmetry as
[1, 13]

~\N/2
M) = Ay (07) " 10). (8.4)

Here Ay is a normalization constant and |0) is defined by (3.18). Indeed, the
corresponding wave function is obtained using (3.20) and (3.22),

WM&, 6, EN) = (E1.6, -+ En|OW))

=S J_Z( DG EprEp) b Epms Epn)- (8.5)

which is appropriately antisymmetrized.

Further, we consider a linear combination of (8.4) in terms of the number of
Cooper pairs to make it more convenient for statistical-mechanical calculations in
the grand canonical ensemble. The most convenient among various combinations
may be the exponential form, called the BCS wave function given by [13, 14]

o (O1)
o) =4 @m) = Aexp (QT) 10), (8.6)
n=0

where A is the normalization constant and QAT is defined by (8.3).
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Equation (8.6) represents an extension of Schrieffer’s homogeneous variational
wave function with isotropic s-wave symmetry to inhomogeneous cases with
arbitrary pairing symmetry (Problem 8.1). It has the advantages of (i) being able
to describe inhomogeneous superconductors and (ii) the phase coherence of the pair
condensation seen manifestly in the wave function. Moreover, (8.6) also includes
the coherent state (3.71) for BECs and laser beams [10, 15] as the limit where the
pair radius is smaller than the mean interparticle spacing (Problem 8.2). Thus, (8.6)
enables us to study the BEC and Cooper-pair condensation in a unified way.

8.2 Quasiparticle Field for Excitations

Suppose that the ground state is given by (8.6). What kind of excitations may
be possible then? Here, we derive the Bogoliubov—Valatin operators that describe
excitations and clarify their properties. They are given by (8.13) and (8.14) below
and satisfy (i) (8.12) that specifies BCS wave function |®) as the vacuum of the
excitations and (ii) fermionic commutation relation (8.18). Fields such as p of
(8.13), which have properties similar to 1/A/ for real particles, are generally called
quasiparticle fields.

Let us begin with mathematical preliminaries. First, the annihilation operator
1}(&) satisfies the following commutation relations with (8.3):

[9©.0'], = [ ders(e. 603" @) = 9.8 . 8.7)
[[¥®.0],.07], =o, (8.8)
[V(©).2(0N], = [¥(®). 0], g(ON. (8.9)

where [/f, é]a = AB —oBA (0 = %), and g(x) is a function that is analytic at
x = 0. To simplify the notation, we shall sometimes express an integration over a
variable by an overbar, as in (8.7). Those readers who are familiar with the Einstein
summation convention may ignore those bars when reading them. Equations (8.7)—
(8.9) can be easily proved as follows. First, (8.7) follows using (3.17) as

[06).0"], = 30 BT, 3! EW' @,
= 290G B {[F .01 E] I E) — I I E). I 6] )

_ ¢EVIE) -9 HVIE)
2

= ¢(£, &)V (&)

Here the second equality is easily seen to hold by expanding the anticommutator
in the curly brackets. The last expression is obtained from the preceding one by
changing integration variables as £ — &, and using (8.2). Second, (8.8) is seen to
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hold by noting that the right-hand side of (8.7) is given in terms of IﬁT alone and so
is Q. Third, we can prove (8.9) using (8.8) by

[§(6).2(0N)], Zg "O i@, 0h.

"0 Z(Q*) J(©). 0], 0Ty

[e'9)
n=1

= [4(6).0'] Zg Oty = [©). 0], (O,

where the second equality may be confirmed by writing the expression after the
equality sign without commutators forn = 2, 3.

Next, we consider §; and & in ¢ (£1, &) as row and column indices to introduce
a matrix ¢ = (¢ (&1, &,)); its Hermitian conjugate is given by qu (p* (&2, 61)).
Accordingly, we define the unit matrix by 1 = (§(£,&)). With this notation,
(8.2) implies that the matrix ¢ is antisymmetric as ¢T = —¢, where T denotes
the transpose. Using ¢ and 1, we introduce a couple of new matrices « and v by [14]

u=1+¢gH"" v=~1+¢¢"H""9. (8.10)
which satisfy

u=u' v=-", uu+vv =1, uv=vu*. (8.1

The first two identities in (8.11) result from (8.2) and (8.10). The third identity is an
extension of the identity [g(x)]> + g(x)x?g(x) = 1 for the scalar function g(x) =
(1 + x?)71/2 to the matrix argument using the Taylor expansion of g(x) at x = 0,
as also for the fourth identity. Thus, u is Hermitian, whereas v is antisymmetric.
It turns out that v may be regarded as an effective condensate wave function, as
discussed around (8.47) below.

We are now ready to derive a field operator that describes excitations. Let us
operate U (£) on (8.6) and rearrange the resulting expression using (3.18), (8.9),
and (8.7) successively as

J(E)®) = A[J(€).e0'],10) + 4e9"J(©)]0) = [(&), O], 4¢2"[0)
= ¢(£. 8V (5)|D).

Next, we multiply this equation by u(§i, &) from the left, integrate over £, and use
(8.10) to obtain u(&, &)V (£)|®) — v(&1, £)¥T(£,)|®) = 0. Thus, we have derived
a new field operator that satisfies

y(ED|®) =0, (8.12)
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in the form

PED) = uE, 8V (E) —v(EL )V (E). (8.13)

This is a direct extension of the Bogoliubov—Valatin operator for homogeneous
systems [4, 5, 18] to inhomogeneous situations [14]. According to (8.12), we may
characterize the BCS wave function (8.6) as the “vacuum of quasiparticles” in the
same terminology as used below (3.59). However, it should be noted that |®) is
occupied by particles and should be distinguished clearly from the vacuum state |0)
of (3.18) with no particles. The Hermitian conjugate of (8.13) reads

PIED) = =0 ELE)Y(E) +ut (L BV (E). (8.14)

Further, (8.13) and (8.14) may be expressed concisely in terms of matrices in (8.10),

P u v [ v
[W} B [—y* —z*} [—W] ®19

The inverse transformation is

~

KA RN A

which is confirmed by substituting (8.15) into the right-hand side of (8.16) and
subsequently using (8.11). Equation (8.16) can be written explicitly as

{ V(&) = uE, £)9E) +vELE)7 (), .17
Vi) = v E8)PE) +ut €L )P (E) '

The quasiparticle field y satisfies the commutation relations for fermions:

7). 77E)- =88, 7). 7E)]- =0, (8.18)

as shown by substituting (8.15) into (8.18) and using (3.17) and (8.11).

8.3 Bogoliubov—de Gennes Equations

For the state (8.6) to be realized, it is necessary for its free energy to be lower than
that of the normal state for a given set of independent thermodynamic variables.
It has been established for single-element superconductors like Hg and Pb that
phonons are responsible for the effective attraction that causes superconductivity.
However, thermodynamic properties of “weak-coupling” superconductors do not
depend on this source of attraction at all. Hence, we adopt Hamiltonian (6.4), i.e.,
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H = /dgﬂw(gl)%}ﬂ/}@l)

+5 [ da [ @6 (n - ndi @) @IEIE).  ©.19

with

)
H=2L L) -, (8.20)
2m

in studying superconductivity. To be more specific, we here assume that the
interaction potential ¥ (|r; —r»|) has some attractive part to derive the fundamental
mean-field equations of superconductivity; that is, the BdG equations. This will
be performed by two different methods. The first is based on the variational
principle (6.3), whereas the second relies on a self-consistent Wick decomposition
technique. Both methods yield an identical set of equations.

The main results are summarized as follows. The BdG equation is given
by (8.38), where the operators in it are defined by (8.34)—(8.36) with (8.29)
and (8.30). It forms an Hermitian eigenvalue problem, whose eigenfunctions satisfy
the orthonormality and completeness given in (8.44) and (8.45). This eigenvalue
problem has a particle-hole symmetry given by (8.43). With this fact, we only need
to calculate states with £, > 0in (8.38). Equations (8.34), (8.35), and (8.38) form a
closed set of self-consistency equations, which for v, — 0 reduces to the Hartree—
Fock equations (6.12) and (6.13).

8.3.1 Derivation Based on Variational Principle

First, we derive the BdG equations based on the variational principle (6.3), i.e.,

QA =Trp (A + B~ Inp) > Qeq, (8.21)

where Q¢ is the exact thermodynamic potential. We have already used it in
Sect. 6.2.1 to obtain the Hartree—Fock equations by choosing the density matrix as
(6.5). The same procedure is followed here, with a key difference being that the
quasiparticle field p (§) now takes the place of 1,@(5) because of (8.12).

To be specific, let us write the variational density matrix in the ideal-gas form in
terms of quasiparticles:

1
p = exp [ﬁ (90 - ZEqﬁ;)?q)} . Q= 5 (1 +e ). (822
q

q

Here E, > 0 is a variational parameter that denotes an excitation energy from the
“vacuum” (8.6), and the operator y, is defined through the formal expansion of y (£)
in terms of eigenfunctions {¢, (§)},



8.3 Bogoliubov—de Gennes Equations 107
PE) = Papa(®). (8.23)
q

Using (8.18) and assuming that {¢, ()} forms an orthonormal set, one can show
that p, obeys the commutation relations:

[7711’ 37;']— = 84q [7711 3761’]— = 0. (8.24)

We use the variational density matrix (8.22) for the system described by
Hamiltonian (8.19) to evaluate the grand potential (8.21). A couple of key points
for performing this are summarized as follows. First, it follows from (8.22) that the
entropy, S = —kgTrplnp = —kg (In p), is given in terms of the mean occupation
number 71, = (?;ﬁq) as

S = —kgP (QO -3 E,,ﬁ,,) = kg ) [—iigIniiy — (1 —iig) In(1 —fig)].
! ! (8.25)

in exactly the same form as in (6.7) for the Hartree—Fock theory. Second, the Bloch—
De Dominicis theorem (5.11) also holds true for the present density matrix (8.22).
Hence, the expectation of the four field operators in the interaction can be evaluated
by the Wick decomposition procedure into a form that extends (5.18) for the normal
state,

PP (€1, E2:61.8) = (W EDTT GV (E)T (&)
= (W ENY EVENTED) + (U EVT EVETE))
+ (T EDT T E)T E)VED)

= (YT ENTEN W EV(E)) — (U EDVEN YT (E)TED)
+ (W EDTTEN W (E)V (E)). (8.26)

The third term in the final expression is the expectation that characterizes super-
conductivity. Indeed, each of g@ and IﬁT in (8.17) is given as a linear combination
of  and $T so that the density matrix (8.22) yields finite expectations not only for
(@T(&)lﬁ(é 1)) but also for (g@(&)g@(él)). Specifically, they are expressible in terms
of averages

_ _Sw
ePEs 4 1

~

(JQqT q') = Sgq71g, (Vq?;/) = 84 (1 —11y), (8.27)

and new functions

ug(81) = u(€r. &g, (&), ve (&) = v* (1. ), (8). (8.28)
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concisely as

PV (L E) = (T E)ED) = pV* (6. &)
= [ugEDul E)ig + v EDv(E) (1 -], (8.29)
q

PV ELE) = (TEDV (&) = —p V(6. £1)
—Zuq(sl)v &) —v (sl)uq(sz)]( —nq) (8.30)

They can be derived by substituting (8.17) into the defining expressions, expanding
the quasiparticle field as in (8.23), and using (8.27) and (8.28) to express the
quasiparticle expectations in terms of 71,. For example, (8.29) obtains from

SAGIAG)
= ([u* (. E)7T(E) + v* (62, E)PEDIu(E1. )P () + v(EL E)PT(E)])
= u*(&2. EDuE1. &) (PTEDP(E)) + v* (2. E)v (€L EB)(PEDDT(E))

3 [ G Euer. E)es By (B) (9 94)

qq’
+0* (&, EDv(E1. E3) oy Ea o) (63) (P 7)) ]
=Y [ugEDu )iy + v) (EDvy(E (1 —iiy)].
q

Equation (8.30) has been derived similarly but involves an additional step that uses
the completeness of {¢,} and (8.11) to transform Zq Ug (El)v;‘ (&) as

Y ugEDvrE) = uE, E)vE &) Y e E)er )
q

q
= u(€1, E)v(E2, £4)8(53, &) = u(E1, &)v(E2, &) = —u(&1, E)v(Es, &)
= —v(E. E)u* (5. &) = —v(E1. Eu(Er, &)
= —v(&. E)ur. E)8(E. &) = —v(ELEDur. E) Y o (63, (Ea)
q

)3 ug (§1)vg (52) — vy (§)uy (52)

5 (8.31)

==Y v &) =
q

q

The resulting expression (8.30) has the advantage that antisymmetry pV(E,86) =
—p (&, &) arising from the commutation relation of w(él) and w(&z) is manifest.
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We are now ready to write down the grand potential (8.21) for Hamiltonian (8.19)
evaluated by (8.22). Indeed, we can re-express (8.21) using (8.25), (8.26), (8.29),
and (8.30),

Q[p] =/d§1e%}1p(l)(§1,§2)|&=gl + %/d§1/d§27/(|r1 —l‘2|)[,0(1)(§1,’§1)
x pV (&2, &) — pV (&2, E)p PV (E1. &) + PV (&2, 0PV (&2, &)}

- % Z[—ﬁq Iniiy — (1 —71g) In(1 — )], (8.32)
q

where we have used 5% (62.6) = (J(E)VE))* = (IT(E)YT (). Equa-
tion (8.32) contains an additional contribution 5! compared with (6.8) in the
Hartree—Fock approximation. Moreover, the expression for p") changes from that
in (6.9) into (8.29) using u, and v,.

Next, we minimize (8.32) with respect to variational parameters {£,}. To this
end, we note that (8.32) depends on E;; only through 7, as seen from (8.27), (8.29),
and (8.30). Hence, the minimization with respect to E, is equivalent to that for n,,
the necessary condition for which becomes

o 5200

5,
= [ at [z 0 iy €0 = vyt Aivg 6] + [ [agr e~ w2
x {[wq(w — 10g €I . £2) — [ g () — vy €DV )]

< pO(E B) — 5 [ (B0 6 — g Eo g )] A" . 1)

nq
n

: " 1
-3 @ —vn;en] e 0] - 510

q
= [t [u 60 A 60 = v} 60 vy )
+ [ aer [ dee {ner. o) i @) v, G} )]
A B (g () A B2 €y ()] — B (833)
In the last equality, we have performed integration by parts twice in terms of
the operator (8.20) to change v, (1) AV (E) — [£, vy (ED]vE (1), and also

simplified the expression using the Hartree—Fock potential and pair potential
defined by
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Uk (§1,62) = Ugp(62.6)

=6(£1.6) / d&s 7 (Ir) —r3))p" (63, &) — ¥ (Ir1 —r2)p (€1, &), (8.34)

A1, &) = —AE. &) = =V (It —ra2)" (61, &), (8.35)
respectively. In the latter, we have also used a change of variables & <> & and
antisymmetry A(§1,&) = —A(&, &) to express the terms with A(€1, &) and

A*(Sl P gZ) as

1 - - - - - - I - -
EA@Z’ &1) [”:(&)Uq(gl) - Uq(éZ)"‘:(él):I = A1, &)uy &)y (52).
Introducing the operator

Hr(E1, £) = He(E2, §1) = 861, 8) + Uar(E1, £2) (8.36)

in terms of (8.20) and (8.34), we can write (8.33) concisely as

* ¥ Jur(€1.6) AL &) ug(§2) | _
/ ng/ SRR [—A*@l, &) —%’;(sl,sz)} [vZ(&)} = Eo

Parameter £, and functions u, (&) and v, (&) that obey this equality can be obtained
by solving the eigenvalue problem,

Jur(§1,6) A1 5) uq(gz):|: [u,,(’g‘l)}
/ dé [—A*(&,Ez) — A, 52)} [vq@z) E, vy (€] (8.38)

with normalization,

/dé'l [luq(&)l2 + qu(&)lz] =1L (8.39)

That (8.38) with normalization (8.39) satisfies (8.37) is seen by multiplying (8.38)
by the row vector [u; E)v ;‘ (&1)] from the left and performing an integration over ;.
Equation (8.38) was derived by de Gennes by extending Bogoliubov’s quasiparticle
method developed for homogeneous systems [4, 5] to inhomogeneous systems
[6, 8], and hence are generally referred to as the Bogoliubov—de Gennes (BdG)
equations.' They form the basic mean-field equations of superconductivity.

The properties of (8.38) are summarized as follows. First, the matrix operator
on its left-hand side is Hermitian; this follows from the properties of the matrices

Hp = (HpE1, 6)) = Hlpand A = (AE, &) = —AT,

11t should be noted, however, that the same equations had been derived by Andreev [2]. In addition,
they have the same content as the Gor’kov equations derived previously in 1959 [11], which will
be discussed in Sect. 14.2.
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¥
KHF é — KITIF _AT — KHF é (840)
—A* — A fp A —A* = A ]

Hence, its eigenvalues { £, } are real. Second, one can show that the matrix operator
also satisfies

A AT H e A
LHE S =L 2 41
o [—é* —ﬁ}J % [—é* ] ®4D

where 0 |, is the x element of the Pauli matrices; for later purposes, we present it here
together with the others that form the complete orthonormal set of 2 x 2 matrices:

10 01 0 —i 10

Using the symmetry relation (8.41), one can show that the BdG equation has
a crucial property called particle-hole symmetry. To be specific, let us take the
complex conjugate of (8.38), operate o, from the left, and insert the unit matrix
o2 between the matrix operator and eigenvector,

H AT w1 u, 1
N i LN LA R

Simplifying using (8.41) yields

Hur A vy - _E Vg
—A* —lﬂF uZ q u;" )

which may be combined with (8.38) to form a single matrix equation,

K A ug v;‘ ug v;‘ E, 0
I - = . 8.43
[_é* _ZEJ |:Uq g vg ug L0 —E, (49

This equation implies that, once an eigenvalue E, > 0 and its eigenfunction
[uy vy]" are obtained, the rearranged vector [v;k u;]T naturally forms an eigenstate
that belongs to —FE,. Thus, the eigenvalues of the BdG equations are distributed
symmetrically with respect to 0, and those satisfying £, > 0 represent the excitation
energies.

Stated in this matrix form, the orthonormality and completeness of the eigen-
functions of (8.38) are

g (6) 030 (6) | g (8) vy (&) :[aq,q 0}
/ N [”Z’@) “Z/(é')}[vq(é) u;‘(&)} 0 S0 (8.44)
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uq(sl)} e v (E) . 2[8@1,@ 0 }
;{[vq@l) PERAGIE [u%(gl)][vq(%’z) q@z)]§ o s 6|
(8.45)

respectively. The off-diagonal elements in (8.44) result from the orthogonality of
the wave functions belonging to different eigenvalues & E,. Note also that the first-
row elements of (8.45) are equivalent to uu + vv’ = 1l and uv = vu* in (8.11),
respectively. For example, the first statement can be proved by noting (8.28) and
assuming completeness for {¢,}; that is,

861 8) = Y [ Euy E) + v} EDv (6|

q

= u(EL E)u* .80 Y pgE)e) E) + v(ELE)V 6 E) D 0 (Es)eg(E)
q q

u(Er, E)u* (62, 6) + v(E1L E)v* (62.6)
u(Er, E)us. &) + v(EL &) (5. 6). (8.46)

Thus, the basic properties of the BAG equations have been established. As potentials
in (8.34) and (8.35) contain the eigenstates to be obtained as seen in (8.29)
and (8.30), (8.38) should be solved self-consistently until convergence is attained.

Although the topic may be rather academic, it is worth pointing out that we can
construct matrices u = (u(&1,£;)) and v = (v(£, &)) from the eigenfunctions of
(8.38). First, one establishes equalities:

D w0l &) = uErnLEuE k). =D uE)v(E) = u. E)v(E. £).
q q

in the same way as (8.46). Thus, we obtain uu from the left-hand side of the
first equation, which is subsequently used to find u = (uu)'/?. Additionally, the
second equality enables us to construct v by multiplying u~! from the left of
- 4 Ug (El)v; (€2). Pair wave function ¢ can then be constructed based on (8.10)
by ¢ = u~'v. Matrix v may be regarded as an effective condensate wave function.
Indeed, we can express the one-particle density matrix (8.29) in a manner similar to
(8.406),

PV (1. 6) = /d&v(&, E3)v* (52, 63) + Z[”q(él)”;(&) — vy (ENvg(52)]iy,
q

(8.47)
from which the total particle number N is obtained,

N = / dEipV (6 E1). (8.48)
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Thus, we realize that, at T = 0 where 11, = 0 holds, all the particles are in the two-
particle bound state described by the effective condensate wave function v (&, &).

Finally, we can use (8.38) to simplify the expression for the grand potential (8.32)
in equilibrium,

Qpac = 1 D In(1+e M)+ Z/d&/d&[vq(&)%ﬂ:@h £)vy (6)
ﬂ q q

S EEIAGE E) — S GV (E)ATELE)

R AN SRRV LRSI &)] (8.49)

following the procedure used in deriving (6.14).

In summary, we have obtained the basic equation, (8.38), that describes super-
conductivity together with the corresponding grand potential, (8.49). In the limit
vy — 0, they reduce to (6.12)—(6.14) of the Hartree—Fock theory.

8.3.2 Derivation Based on Wick Decomposition

We now derive the BAG equations in an alternative manner based on the Wick
decomposition procedure used in deriving the Hartree—Fock equations in Sect. 6.2.2.
Indeed, this is the method de Gennes used in his derivation [8].

First, (6.15) is generalized here to include the contribution of the anomalous pair
expectations,

G030 = U () + (G100 — () (5 9)
— 9 () — (Gl dn + @) (Fln)
+ U0 W) + @D — T (W), (8.50)

Let us adopt this in (8.19) and use (8.34)—(8.36) to approximate A by the mean-
field Hamiltonian:

S = U1 E0 A G BT E) + 29T G E)AGL B
— SEN EA B — 5 2B B 6o )

+ %ﬁ“’(él, £)A*(E.6). (8.51)
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We then use the commutation relation for Iﬁ and symmetry in (8.36) to convert the
term with J#gr to

______

= Hrie(Er. £1) [8@1, &) - wsz)wwsl)]
= (€1 £)5(61. 62) — ¥ (2) k(62 60V (61)
= 5|7 @0t @ B + (B 0

DG A, éz)&*(éz)].

Equation (8.51) is then written

p _Lros e o AL g AGLE) ([vE)
A= 3 [91E) V@] [—A*(sl,&) —%};;:(sl,sz)} [w*(&)}

1 - Z . er = 1 - = - =
+ E%{F@lfz)fs(&, &) — E%HF(&, £)pM (&, &)
1, - - -
+ 506 B)ATEL ). (8.52)
The last three terms on the right-hand side are constants. In contrast, the first term

has a bilinear form with respect to 1/A/7L and 1}; its 2 x 2 matrix is Hermitian as shown
in (8.40). Hence, we can diagonalize it given the expansions

v (€) g (§) vy (€)

[W@} Z[vq@ u*(s)][ ] (®:9
ey i ] E) v )
[0 ® v©] = ; |95 7] [vq © (S)} (8.54)

and using (8.43) and (8.44),

e &) AELE) ] [ V(&) ]
—A*(&1.&) - A6 &) [V (&)

U [arEy girEL e AGHLE) } g (§2) v (52)
) Zq:[lﬁ (Sl) W(Sl)][_A*@l’ gz) —%ﬁ:(&, 52) |:Uq(§:2) u*(gz):”: :|

_ _Z[AT N ] ;,(%1)1);,(%1) ”q(él)v*(él) [ 0 i| Vq
vy (&) g (81) || vg (Er) uh (Er) P4

3 [ v@]|
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1 ~+ ~E;, O P 1 b A A A
=Xy —Eq}[?ﬂ = 5 2 (Eabjps — Eata?})
q q

a1
=Y E 97— 3 > K, (8.55)
q q

The second term in the final expression is divergent. Combining it with the second
term in (8.52) and using (8.38), (8.44), and (8.45), we obtain

P CRANCRARED 3
q
= St B Y 1@ @) + 07 G 6]
q

1 ez i HrELE)  AELE) Mq(gz)}
> ; [5G0 v; (&)][—A*@l, £) — A (B, 52)}[%(52)

3 (GRS IR NN

q
- %uq(él)A*(él,éz)v;(é)}, (8.56)

where we have used (61, §2) = Hp(€2.§1) and A*(61, ) = —A*(62,§1) and
also performed a change of variables for the last equality. Using (8.55) and (8.56),
we can expand (8.52) as

HRyr = Z[Eq?;)?q + vg(&1) A (&1, gz)vf}k@z) - %”Z(gl)A(gla £)vy(&2)

q
- %”q(gl)A*(gls 52)');(52)} - %%HF(élv £)p (&, &)
+ 0L EIA G ). 857

This expression and (8.25) are used to estimate (%QMF) — TS. We thereby reproduce
(8.49) for the grand potential. Thus, the BdG formalism has also been derived by
the Wick decomposition procedure.

8.3.3 Matrix Representation of Spin Variables

It is convenient for practical purposes to express every spin variable in (8.38)
separately as a matrix.
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Specifically, let us introduce the pair of vectors

_ [uq(rD) _ [vq(rD)
w(r) = |:uq(r¢):| , vy(r) = I:Uq(l'i):| , (8.58)
where 1 and | represent « = 1/2 and « = —1/2, respectively. Accordingly,

the one-particle density matrices (8.29) and (8.30) are transformed into the 2 x 2
matrices:

PV (rr) = [Q(l)(rz,rl)r = Z[uq(rl)uZ(rZ)ﬁq + v, (v, (r) (1 —11) ],
q
(8.59)

PO = {5 r] = Sl vy vy eule] (5 -7, ).
! (8.60)

Indeed, each term on the right are all composed of dyadics, i.e., direct products of
2 x 1 and 1 x 2 vectors forming a 2 x 2 matrix. The self-consistent potentials in
(8.34) and (8.35) are also expressible as 2 x 2 matrices,

U p(r1.12) = UL (r2.11) = 0p8(r1.12) / &rs? (Iry — 3] Tr p'V (3. 13)

— 7 (Ir1 —r2)) pV (1. 12), 8.61)
A(r1.ry) = —=AT(r2.r1) = —7(|r; —r2)) ,4_3(1)(1'1, ), (8.62)

where 0, is the 2 x 2 unit matrix, given in (8.42), and Tr denotes the trace. Similarly,
the Hartree—Fock operator (8.36) becomes
P2
K yp(ri,m) = [—l + U (r1) — M:| 8(r1,12)0) + X yp(r1, 12). (8.63)

2m

With this notation, (8.38) reads

/d3r2 [iHF(rl ’ 1'2) é(rl ’ 1'2) }I:ul] (rz)} — Eq |:uq (rl)} , (864)

—A*(ry, 1) A (1, 12) [ V4 (r2) v, (ry)

with

/[|uq(r)|2 + lvg(*]dr = 1. (8.65)
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We only need to consider states with £, > 0 in consequence of the particle-hole

T
symmetry (8.43). Indeed, the eigenstate with —E, is given by [vj, (r) uj, (r)] in
terms of u, and v, above with E,.

With (8.58)—(8.63), the grand potential (8.49) in equilibrium now becomes

1
Qpag = -3 (1 ey + ) / &’ry / di”rz[v"qf(rl)lm(rl,rz)v:;(rz)
q q

1 1
+ 3 Truy (F)V, (DA 1) + STru, (1)V () A% (12, 11)

1 1
— ETrB(l)(rl’ )% yp(ra, 1) — ETré(l)(rl, r)) A*(ry, rl)i|. (8.66)

Finally, the particle number (8.48) is rewritten given the one-particle density matrix
of (8.59),

N = / &rTrp®(r,x). (8.67)

8.3.4 BdG Equations for Homogeneous Cases

When the system is homogeneous with no external potential (% = 0), we can
simplify the BdG equations considerably.

Adopting periodic boundary conditions, a quasiparticle eigenstate ¢ can be
specified with a wave vector k and spin index @ = 1,2 as ¢ = k&, where @ is
generally some linear combination of @ =1, |. The corresponding eigenfunction
can be expressed as a plane wave,

ug() | _ 1 e [ug(k)
|:Vk&(l')i| N ﬁe |:V5(k)] (8.68)

Substituting this expression into (8.59) and (8.60), we obtain expansions of the one-
particle density matrices

1 o
PV (ry. 1) = v > p (k) e ), (8.69)
k

. 1 . k(0 —
B(l)(rl,rz) = v ZB(I)(k)ek(rl 1'2)7 (870)
k
with

P (k) = [g“)(l«)]T = 3 s ul i + vEKVE(k) (1 — )],

o

(8.71)
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#m) =[]
— Z [u&(k)vg(k) (% - ﬁk&) —v (—k)ug(—k)(% - ﬁ_k&)}. (8.72)

Next, we substitute (6.18), (8.69), and (8.70) into (8.61) and (8.62) to expand the
self-consistent potentials as

1 .

%HF(I‘I’ r;) = V ZZHF(k) e]k~(l‘l_l‘2)’ (8.73)
Kk
1 .
é(rly r2) — V Xk:é(k) elk~(r1—r2)’ (874)
with
1
L&) = L) = 7 3 [0 96Te 0V K) = Fire 00D | (875)
k/
1 -
AK) = —AT(k) = = > Sficwyp (K). (8.76)
k/

It also follows from (6.18) and (8.73) that the Hartree—Fock operator (8.63) with
% = 0 is expressible as

1 ik:(rj—r
H ye(ri, 1) = ;L{F(k)e“ 1T, (8.77)
with
h2k?
A yr(k) = (W - H) 0o + Xyr(K). (8.78)

Substituting (8.68), (8.74), and (8.77) into (8.64) and performing the integration, we
thereby obtain the BdG equation for homogeneous systems,

Hw® AR T[] . [us®)
[—ﬁ—k) —1}}(—1«)} [V&(k)} = Falk) [v&(m} ’ (79

with
luz ®)° + [va)* = 1. (8.80)

Equation (8.79) constitutes an eigenvalue problem of a 4 x 4 matrix, which may be
solved without much difficulty. However, the potentials in the 4 x 4 space are given
by (8.75) and (8.76) in terms of the one-particle density matrices (8.71) and (8.72),

which include the eigenvalues E;(k) > 0 and eigenfunctions [ug (k) vg (k)]T to be
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obtained. Thus, (8.75), (8.76), and (8.79) have to be solved self-consistently until
convergence is reached. Finally, from (8.43), the eigenvector of (8.79) belonging to
—Ez(K) is given by [vi (k) ul(—k)]".

The grand potential (8.66) is also simplified using (8.68)—(8.70), (8.73), (8.74),
and (8.77), and then performing the integration,

Qpac = Z% —% In[1 + e 5] 4 vI(—K) A 1 (k)VE(—k)
ka

+ %Tr uf(k)vi(k)A(—K) + %Tr uz (k)v, (k) A* (k)
TSRS LTINS (3.51)

It follows from (8.67) and (8.69) that the particle number N is expressible in terms
of (8.71) as

N = TrpM(K). (8.82)
k

8.4 Expansion of Pairing Interaction

8.4.1 Isotropic Cases

Equation (8.76) for homogeneous systems is called the gap equation, which for
isotropic cases can be simplified further.
First, the Fourier component #x_y/| is expanded as a harmonic series

0o 14
Vi) = Y Vil k') Y 4n Y (0)Y, (K), (8.83)

(=0 m=—{

where k = k/k is a unit vector, and Yy, (ﬁ) are the spherical harmonic functions
[3, 9]; adopting polar coordinates k = (sin 6k cos ¢k, sin by sin ¢y, cos by), they are
defined as

Yin (k) = (1-2%)" e,

(=Dt [@l+ 1)+ m)! 1 dt—m
200! (L —m)! (1 —z2)m/2dzt-—m

z=cos bk

(8.84)
They obey orthonormality conditions given with respect to an integration over solid

angle dQ2g
b4 2
/ko E/ d6bk sin@k/ de, (8.85)
0 0
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as
/ AQuY 5, (K) Yo (K) = 80r¢8mim. (8.86)

Moreover, Y, obeys a sum rule in connection with the Legendre polynomial Py (x)
defined in (6.35) as [3, 9]

Pk -K) = Z Yom (K) Y, ().

Indeed, (8.83) with this sum rule produces (6.51).
Substitution of (8.83) into (8.76) yields an expansion for A (k)

00 l
AR =) D Ay, () VarYe, ), (8.87)
=0 m=—{
with
Ay, (k) = —% > ik, k)N ar v, &)pO ). (8.88)
k/

In most cases, only a single £ is known to yield finite {A,,,(k)}. Cases £ = 0,1,2
are called s-wave, p-wave, and d-wave pairing, respectively. Making a change
of integration variables k’ — —K’ in (8.88) and using the symmetry (8.72) and
Yem(—K') = (=1)! ¥4, (K'), we realize that A, (k) satisfies

Ay, (k) = (D) TAT (k). (8.89)

The sum over k in (8.88) can be replaced by an integral as

3
LT [ [
S

where dQ2 is given by (8.85) and N (¢) is the density of states per unit volume and
spin component defined by (7.21), which is further related to (4.17) by N(¢) =
D(e)/2s + 1DV.

8.4.2 Anisotropic Cases

We discuss how the expansion (8.83) for isotropic systems may be generalized for
anisotropic systems; this part can be omitted completely for proceeding to later
chapters.
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Conduction electrons in a metal move in the lattice potential created by the
protons in the nucleus and the core electrons. Accordingly, Hamiltonian .7 for
conduction electrons now commute only with those discrete symmetry operations
{R} that keep the crystal structure invariant. They form the group G that maintain
A invariant as R#R™" = . The symmetry operations relevant here are the
coset G/ T of G by the translation subgroup 7, which coincides for simple crystal
structures with the point group [12, 16]. In many cases, the time-reversal operator
can also be added to these symmetry operations.

The one-particle energy sﬁ,a of the conduction electrons in zero magnetic field
may be specified by the wave vector k in the first Brillouin zone, “spin” index «,
and band index b. It satisfies ﬁsﬁa = &b in the wave vector domain reflecting the
symmetry of A

Similarly, the interaction potential relevant to the pairing may also be written
in terms of state labels (k,«,b) as Y for a single-band model with no spin
dependence or Yup ko for the most general situations. The first-principle cal-
culations for % are generally difficult to perform, but we may assume that it is
Hermitian 7}, = 7k and satisfies symmetry relations 1%7/“(/1%_1 = Y. With
these properties, we can expand it as

Yae =Y Ity by (K) o, (K), (8.91)

Ljy

where 71; denotes the jth eigenvalue associated with the irreducible representation
I for G/T [12, 16] and ¢r;, (k) is its yth eigenfunction, so that the transformed
basis 1§¢>pjy(k) forany R € G/ T can be expressed as a linear combination of the
bases {¢r;,/(K)},” within the same (I', j). We remark that (8.83) is included as a
special case of (8.91) under the mapping I' — £, y — m, ¢rj, — V4 Yy,,; index
J can be removed for isotropic systems because there is only a single eigenvalue for
each £. For general cases, (8.91) should be modified with the replacement k — kab.
Similarly, (8.90) for the isotropic model is now replaced by

—Z / (j;’; - /_ stkzv<ek) / dSi, (8.92)

where N, is the number of unit cells in the system,
1
N(e) = N Zk: (e — &x) (8.93)

denotes the density of states per unit cell and spin component, and dSk is the
‘volume’ element on the equal-energy surface ex = € with normalization condition
[dSk=1.
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Problems

8.1. The pair wave function ¢ in (8.3) for the homogeneous spin-singlet pairing can
be expanded in terms of the relative coordinates r; — r; as

1 ik-(ry—r;
P (rio, 1) = v Z¢k el (8d1T8a2~L - Sall(gdzT)' (8.94)
k

where 1 and | denote « = 1/2 and —1/2, respectively. It also follows from
(8.2) that ¢ = ¢p—k holds.

(a) Show that the Cooper-pair creation operator (8.3) can be written as
~ A 1 .
— AT At At ¥ ikr 43
0" = E PkCAC L1, casz (ro) —=e™"d’r.
- Kkt C—k{ K v
(b) Show that the condensate wave function (8.6) is expressible as

1) =] (uk + vkéchiN) 10), (8.95)
k

with ux = 1/4/1 + |¢k|? and vx = ¢«/+/1 + |@k|?. This is exactly the

wave function Schrieffer wrote down.
8.2. In the context of Cooper-pair condensation, answer the following questions.

(a) Show that the Cooper-pair creation operator (8.3) satisfies

A A 1 - - e = [ - A -
(0,074 = §|¢(§1, L)+ ¥ ENP &L E)* (62, EDV(ED. (8.96)
(b) The second term in (8.96) is proportional to the overlap integral

P (&1, E)* (5, E)),

so that it may be negligible when the radius of the bound state is
smaller than the mean interparticle spacing. Show that (8.6) for this case
reduces to the coherent state (3.71), where ® is now a complex number
with magnitude [|¢>(§1,§2)|2/2]1/2, and operator ¢T = Q1/© satisfies
[¢,¢y = 1.
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Chapter 9
BCS Theory

Abstract Immediately noting the correctness of Schrieffer’s variational wave func-
tion, Bardeen, with his deep knowledge of the phenomenon (Cooper LN, Feldman D
(eds) BCS: 50 years. World Scientific, Hackensack, 2011), teamed up with Cooper
and Schrieffer to construct a microscopic theory of superconductivity. The BCS
theory was thereby developed quite rapidly to bring remarkable agreement between
theory and various experiments on single-element superconductors. This is because
in these superconductors the relevant attraction in Cooper-pair condensation is
weak, making the mean-field description appropriate. In this chapter, we derive
the main thermodynamic results of the BCS theory for homogeneous s-wave
superconductors based on the formalism developed in the previous chapter.

9.1 Self-Consistency Equations

We shall derive the quasiparticle eigenenergies and eigenstates of the homogenous
s-wave pairing as (9.5) and (9.6), and the self-consistency equations for the Hartree-
Fock and pair potentials as (9.12) and (9.13).

The BCS theory considers the possibility of homogeneous s-wave pairing [2]. It
follows from (8.87), (8.89), and Yy (k) = (47)~'/? [1, 4] that the gap matrix of this
s-wave pairing is isotropic as A(K) = Ay, (k) with symmetry Ay, (k) = —Af, (k).
Hence, we can express A(K) as

0 Ag

AK) = [_ Ao

} =ig, A, ©.1)

where o, is the y component of the Pauli matrices in (8.42). Thus, Ay (k) =
—Ayp(k) = Ay whereas App(k) = Ay (k) = 0, implying that the s-wave
superconductivity is caused by Cooper pairs composed of a pair of 1-spin and | -spin
electrons in the spin-singlet state; see also Problem 8.1 on this point. In the absence
of magnetic fields, the self-consistent Hartree—Fock potential is also expected to be
diagonal and isotropic; that is, Z yr(k) = o, %HF Accordingly, we can express
(8.78) as

© Springer Japan 2015 125
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h2k?
Hyr(K) = 0 &k, & = s uH — . 9.2)

Substituting (9.1) and (9.2) into (8.79) yields the eigenvalue problem:

& 0 0 A7) Tugk?) uz(k1)
0 & —Ar 0 |fugkl)| _ . ug(k )
0 —a* & 0 | |vak1) | = E® e | ©-3)
Ar 0 0 —&] Lkl valk 1)

Diagonalization of this 4 x 4 matrix is equivalent to that for the (1,4)- and (2,3)-
submatrices. The above equation separates into two equations of the form

& EAL|| wk Uk
=F , 9.4
I::i:AZ —%‘k :l:vk k :i:vk ( )
where the upper and lower signs correspond to the (1,4)- and (2,3)-submatrices,

respectively. Here we have adopted a simplified notation for the eigenvector. The
eigenvalue equation is identical for both, (&, — Ex)(—& — Ex) — |Ax|*> = 0, which

yields a positive eigenvalue
Ep = \J& + Ak 9.5

Its eigenvector can be determined based on the second row of (9.4) and normaliza-
tion (8.80), which read

Ajug — (Ex + &)ve = 0, | + ok = 1.,

respectively. They yield

w = Ep + & _ Bt & o = Af
V(Ex + )2 + | Ak ]? 2Ex V2E (Ex + &)
9.6)

where we have chosen iy as real. The original eigenvalue problem (9.3) can now be
diagonalized in terms of the unitary matrix:

0, = 0 we vy 0 | _ | oouk —igyv,f ©.7)
k —i0,Vk  Oglk '
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as

|: gogk lgyAk] Uk — 01{ I:QOE]C Q i| , (98)

—lgyA;: —0oék 0 —oyEk

with 0 denoting the 2 x 2 zero matrix. The first two columns of Uk represent
the eigenvectors of @ = 1,2 with an identical positive eigenvalue Ey. The latter
two columns for — Ej have been obtained based on the procedure described below
(8.80).

Comparing (9.3) and (9.8), we can express the eigenvectors of @ = 1,2 in (9.3)

as
u (k) = |:"gi| , vi(k) = |:£(:| s w(k) = |:in| s va(k) = |:_(§)k:| .
9.9)

Substituting them into (8.71) and (8.72) yields the one-particle density matrices

p V&) = g, [upie + |vel*(1 = i) ], (9.10)
- 0 uvy (1 — 2iig) LY BEK
M(k) = Pk k tanh =% 9.11
P [—ukv;(l—zﬁk) 0 } "%y 3g, W O

where we have used 1 — 21, = tanh(BE)/2) and u;v; = Ay/2E} as obtained
using (9.6).

We next substitute (9.10) into (8.75). We then confirm that the Hartree—Fock
potential is indeed diagonal and isotropic as Z (k) = o %kHF with

pHF 7/0— - —Zy/k wi[u ik + e P(1 = ip)], 9.12)

where N denotes the particle number of (8.82). Also using (9.1) and (9.11) in (8.88)
for £ = m = 0 and noting Yoo(k) = (47)~'/2, we obtain the gap equation to
determine Ay as

&k’ B
Ay = K
k @y Yo(k, )ZE - —

o 9.13)

Equations (9.12) and (9.13) form a set of nonlinear equations for (%kHF, Ag).
Indeed, the quantities (uy, v, Ex) used there are expressible in terms of (%HF, Ax)
as (9.2), (9.5), and (9.6).
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By substituting (9.1), (9.2), (9.9), (9.10), and (9.11) into (8.81) and subsequently
using (9.5) and (9.6), the corresponding grand potential in equilibrium is obtained,

2
Qpag = Z% 3 In (1 4 e PEx) + 2[ve| %6 — wevr Ak — v A}
k

— Ui + vk P(1 = i) ] + wev (1 = 2i) Af

|Ak|?
2F,

= Z[—%ln(1+e_ﬂE")+§k—Ek+ (1 —2ny)
K

Ex — & + 2&ni
—r = - T 9.14
fs 2E; 9.14)
The particle number N is obtained from (8.82) and (9.10) yielding
N =2 [ugix + |ve*(1 = ip)]. (9.15)
K
9.2 Effective Pairing Interaction
Focusing on the weak-coupling regime where inequality
N h2k2
Y|l — —F = 9.16
Tl € =, =¢F (9.16)

holds, we simplify (9.13) further to obtain (9.24) below given in terms of the
effective pairing interaction (9.26) near the Fermi surface. Those who are interested
more in physics than in mathematical consistency may skip to the next section.

When (9.16) is satisfied, we can neglect the Hartree-Fock potential because
%kHF — 0 to an excellent approximation. Hence, we replace & in (9.2) by the
ideal-gas form

h2k?
R 9.17)

and consider only (9.13). The corresponding superconducting transition temperature
(or critical temperature) T. is expected to be much smaller than the Fermi
temperature T = &g/ kg. For single-element superconductors, for example, Tz &~
10* ~ 10°K (see Cu in Table 4.1 with T ~ Tgq), whereas T, ~ 1 ~ 10K (see
Table 9.3 below). On the basis of this observation, we introduce a cutoff energy &
in such a way as to satisfy
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Fig. 9.1 Decomposition of the energy domain, where “in” and “out” denote the domains with
|&x| < & near the Fermi surface and |& | > &, respectively. Inequality &, < @ ~ &r holds

Table 9.1 Debye temperatures of single-element metals and semiconductors [5]

Solid Al Cd Cr Cu Fe Ni Si
Tp (K) 428 209 630 343 467 450 640
|Ak] ~ kT, < & < e, (9.18)

and divide the energy domain into “in” for |&| < &. and “out” for |&| > &, as
depicted in Fig.9.1. The quantity e./ kg for single-element superconductors, where
phonons are responsible for the attraction between electrons, is estimated near the
Debye temperature of order 7Tp ~ 200 ~ 600K, as listed in Table 9.1. Thus, we can
choose ¢ as in (9.18) also in real systems.

At low temperatures where T < T¢ holds, we introduce two approximations into
(9.13): (i) tanh x = 1 for x > 1 and (i) Ex = (&7 + |Ax|?)/? ~ |&| for |&| > &c
based on (9.18) to transform the key factor in its integrand to

BEy  0(ec — |&x]) BEr  0(&k| —&c)

—— tanh ~ tanh + ,
Ey 2 1% 2 174

where 0(x) denotes the step function (4.11). We substitute this into (9.13) and per-
form an integration over the solid angle, as in (4.17). Furthermore, we approximate
the k' integral by a discrete sum over k’ with interval dk’ to obtain

"NI-/2 ,
de’%(kk)k [otec I g tann 22 00— 2 |.

“JEw]
9.19)
Next, we introduce a matrix M = (M) with elements
Yok, k") k"™
My = —dk' ——— 9.20
. 471G | 20
and recast (9.19) as
Ain Min,in Min,oul A in
|:A0ul:| = |:A7out,in ]F)ul,oul:| I:Aout:| ’ (921)

where A™ and A are vectors composed of elements Ay in the domain || < &
and |&;| > e, respectively, and A" is a vector with elements
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Ji = Ii-'kl—ta h& (9.22)

for |$k| = &. )
Next, we eliminate A°™ from (9.21) to derive a closed equation for A™ as
follows. The lower element of (9.21) reads

out out,in 4 in out,out A out
A = poutin gin 4 ppoutout pout

which can be solved in terms of A°" using the unit matrix 1°"*°"" = (§x4/) for
€| > ec,

Aout — (loul,oul _ Moul,oul)_l Moul,inAin. (923)
Substituting (9.23) into the upper element of (9.21), we obtain
Ain — [Min,in + Min,out(loul,oul _Mout,out)_1 MOULiH:IAin'

This equation is further modified using (9.20) and (9.22) to a form similar to (9.13),

in &>k’ eff ﬂEk/
Al :_/(2 E 9O (k, k) - tanh == (9.24)

where "//O(e“) (k, k') is an effective pairing interaction near the Fermi surface defined
by

1Yok, ki)k?

%(efﬂ(k’ Ky = Yok, k') — Z p Ldk, (10ut,0ut MO ou[) 7/0(/(2, K').
1

kika

(9.25)

Here the primed sum is over |, |, |&,| > &c with the limits dk,;, dk, — 0 implied.

In practical calculations, one may reduce the value of dk successively to confirm
convergence.

Arguments k and k’ in (9.25) lie in a thin shell near the Fermi surface satisfying
€], |&| < e < ep. Hence, to an excellent approximation, we can set
%(efﬂ (k. k') ~ %(eﬁ) (kg, kg). Alternatively, %(Efﬂ (k, k") may be expressed in terms
of constant “I/O(efﬂ = "//O(eff) (kg, kr) and cutoff energy .,

K k') = K50 e — DO (e — 160D, (9.26)

where 0(x) is the step function (4.11), and &. denotes a cutoff energy chosen subject
to (9.18). We shall see that the pair condensation does occur when %(efﬂ < 0is

satisfied.
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Table 9.2 Effective s-wave pairing interaction Vo(e“) and transition temperature 7. in units of
kg = eg = kg = 1 calculated for the interaction potential (9.27)

aj I a b Vo(kg, kg) &c Vo(efﬁ T.

—0.12 0.1 0.0 - —2.90 0.01 —8.61 1.16 x 10~
—0.13 0.1 0.0 - —3.14 0.01 —11.22 3.36 x 10~
—0.14 0.1 0.0 - —3.38 0.01 —15.17 8.40 x 10~*
—0.05 0.016 0.1 0.001 1.26 0.01 —6.14 1.83 x 102
—0.05 0.015 0.1 0.001 1.26 0.01 —8.06 8.48 x 10—
—0.05 0.014 0.1 0.001 1.26 0.01 —12.45 4.76 x 10~
—0.05 0.014 0.1 0.001 1.26 0.005 —15.94 4.76 x 1074

To see how “I/O(eff) < 0 may be realized, we consider the model interaction
potential described by a linear combination of two exponential functions given by

2 24,
Vi)=Y —=e ", 9.27
(=2 5 9:27)
j=1 J
where r; > Oand a; (j = 1,2) are parameters with units of length that specify the
range and strength of the potential, respectively. Expanding its Fourier coefficient
Y as (8.83), we obtain the s-wave component % (k, k') as (see (6.55))

2

ot iy = )3 a 035)
o = T Ut 2k 1 2k — Atk :

J=1

Using (6.25), we can transform the weak-coupling condition of (9.16) into kp|a; +
as| < 1. Table 9.2 gives “//O(eﬁ) calculated numerically for several sets of parameters
(ay,ri,a, 1) based on (9.25). The first three rows are values for pure attractive
potentials with a; < 0 and a, = 0, whereas the last four rows are for potentials
with an additional short-range repulsion (a; < 0, a; > 0). For reference, we have
also given values of T, obtained from (9.33) below. Thus, the potential (9.27) does
produce pair condensation. We also notice that the renormalized potential Vo(efﬂ can
be negative even when the original Vj(kp, kr) on the Fermi surface is repulsive. The
values of 7; obtained for the same values of parameters (a;, 1, a2, r2) in the last two
rows are seen to be identical irrespective of the cutoff energy ., as is expected. One
may also check that 7, thereby obtained coincides with the value from the original
equation (9.13) in the weak-coupling regime.

As will be seen shortly, introducing the effective pairing interaction enables us
to perform analytic calculations of thermodynamic quantities in the weak-coupling
regime using only the states of |§;| < &.. Nevertheless, we should keep in mind that
the pair correlation extends also to |&| > &, as seen from (9.23).
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9.3 Gap Equation and Its Solution

The gap equation (9.24) written in terms of the effective pairing interaction (9.26)
is equivalent to the original (9.13). Moreover, because only states of || < & are
relevant, (9.24) can be treated analytically. Indeed, this effective-interaction method
can describe not only single-element superconductors like Hg and Pb quantitatively,
but also the p-wave superfluidity in liquid *He with large spin fluctuations to the
first approximation, as we shall see in Chap. 13. Here, we solve (9.24) and clarify
basic thermodynamic properties of s-wave pair-condensed states.

Equation (9.24) with (9.26) implies that the energy gap A}{“ near the Fermi
surface also depends solely on constant A,

AP = A O(ec — & (9.29)
We substitute it together with (9.26) back into (9.24), writing the integral using the

density of states N(g) defined by (7.21), and then perform a change of variable as
(9.17). Equation (9.24) thus reduces to

°° AB(e. — & Ev
A 0(80 - |%‘k|) = _/ dgk/N(Sk’)%(eff)(k, k/) (8 |§k |) tanh ﬂ k
0 2E 2
€ fe A E 7
= _7/0( D0(e. — &) d& N (& + “)f tanh 'B—k
—ec & 2

As cutoff energy e, satisfies (9.18), we can replace N(§ + n) ~ N(u) ~ N(gg)
to an excellent approximation. Dividing the resulting equation by A and choosing k
to satisfy |&x| < ., we obtain a simplified gap equation as

1 f 1 E
— = / — tanh 'B—dé, (9.30)
8o o E 2
where E = /&2 + |A|2, and gy is a dimensionless coupling constant defined by
go = —N(ep) 7™, 9.31)

As will be seen shortly, (9.30) has a non-trivial solution when gy > 0 (i.e., "//O(efﬂ <
0) is satisfied. Alternatively stated, pair condensation is realized if there is a net
attraction near the Fermi level.

In the following, we choose the phase of A equal to zero so that A > 0. To
determine the transition temperature, we set 7 = T, and A = 0 in (9.30). The
resulting equation for 7; can be transformed as

1 Ec 1 ec/2kpTe tanh
—:/ D ianh —& dg:/ AT ix
0o & 2kgT. 0 x
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= tanh x In x

ec/2kpTe ec/2kp T, Inx
_ / '
0 cosh” x

0
& * Inx & 4e¥
2kgT. /0 cosh? x o kg T. Pa
2e¥ e,
ﬂkB TC ’

=In

(9.32)

where y = 0.57721 --- is Euler’s constant, and we have set ./2kgT, — o0 in the
upper limit of the integral by noting (9.18) and Inx/ cosh? x ~ 0 for x > 1. We
thereby obtain an expression for kg7,

2eV
kpTe = —ece™ /%0 a0 1.13e.e™ /%0, (9.33)
b

Similarly, setting 7 = 0 in (9.30) gives an equation for the zero-temperature energy
gap Ag = A(T =0) as

1 fe d b 2
— =/ e In (g+ \/g2+Ag) %1n§, (9.34)
80 o g2 4 Al 0 0
which yields
Ay = 2¢e.e” /80, (9.35)
Dividing (9.35) by one-half of (9.33) gives
280 _ ) et 353 (9.36)
kBTc = ZT7te =~ . . .

This relation without (go, &.) is an important prediction of the BCS theory that can
be directly tested in experiments (see Table 9.3 below).

To obtain the energy gap A = A(T) for 0 < T < T, we subtract (9.32) from
(9.30) to obtain

/] E 1 £ e £ £
0=/ (= tanh — _ tanh d ~( tanh — tanh d
/0 (E M e " E" ZkBT) E+/0 s(an T 0 ZkBTc) §

where we have used (9.32) and &./2kgT > 1. This equation can be expressed as

1 L. /OO 1t h § 1t h E dg (9.37)
n—= — an — — an . .
r o \£ 2kgT E 2kgT
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Fig. 9.2 Energy gap as a
function of reduced
temperature

0.0 0.5 1.0
T/T.

Similarly, subtracting (9.34) from (9.30) gives an alternative expression

n 20 2/00 L1 d¢ (9.38)
n— = — . .
A 0 EeﬁE—}—]

With a change of variable £ — x = £/kgT., one sees that these integrals depend
only on the ratios 7/ T, and A /kgT.. That is, each of (9.37) and (9.38) determines
the dimensionless energy gap A /kgT: as a function of reduced temperature 7'/ T,.
The two equations are equivalent; (9.37) is useful for T < T, whereas (9.38) may
be more convenient for T = 0.

Figure 9.2 plots energy gap A as a function of reduced temperature 7'/ 7.. We
observe that A grows rapidly for T < T¢, which is typical of second-order phase
transitions described by mean-field theories. We now solve (9.37) analytically for
T < T to study this behavior in detail. To this end, we use the series

1 e 4
X tanh 2 ’;) x2 4+ 2n + 1)2g?’

(9.39)

which may be seen to hold by noting that both sides share poles with the same
residues [1]. Using it and introducing ¢, = (2n + 1)wkgT, we expand the second
term in the integrand of (9.37) in terms of A /kgT <« 1 to obtain

1 E > Ak T 2, dkp A?
Tt h—
an 2kBT Z§2+A2+82 Z§2+€2( §2+8’21+ )

2
—4kBTZA—+---, (9.40)
%‘2+€2)

1 3
= —tanh
: anh 222

which we substitute into (9.37). Retaining only the leading term, and performing
the integration over £ by applying the residue theorem [1],

/°° d¢ _ 1/°° d¢ _ 2mi lim d 1 o
0 (@ra) 2w (@4e)’ 2 omdE e g
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we thereby simplify (9.37) for T < T to derive

T. A2 & 1 A2 1\ 1 7¢(3) A2
R 3 _ L)y L ear
T — (wkgT)? = (2n+ 1)} (wkgT)? 23 n3  8(mwkpT)?

=0 n=1
(9.41)
where £(3) = 1.202--- is the Riemann zeta function (4.40). The left-hand side
of this equation can be approximated as In(7./7T) = —In[l — (T, — T)/T] =~

(T, — T)/ T to leading order, whereas we may set kg7 = kgT, in the rightmost
expression. Hence, for the energy gap of T < T, we obtain the analytic expression

8 1/2 T.—T 1/2
AT £ T.) ~ kT [T(S)} ( T ) , (9.42)

which rapidly grows proportional to (7, — T')'/?. This temperature dependence of A
just below the transition temperature is characteristic of the mean-field second-order
phase transition; see Sect. 9.5 below on this point.

9.4 Thermodynamic Properties

Having obtained the energy gap A, we proceed to clarify the temperature depen-
dences of the heat capacity, chemical potential, and free energy.

9.4.1 Heat Capacity

First, we focus on heat capacity. Entropy in the mean-field description of supercon-
ductivity is given by (8.25), which is formally identical to (4.7) for ideal Fermi gases
with o = —1. The difference lies in the quasiparticle energy E,, as seen from (8.27).
Hence, the heat capacity C = T (3S/9T) is obtained from the first expression of
(4.8) for ideal gases by replacement &, — u — E,. Noting ¢ = k& (& = 1,2) for
homogeneous superconductors and using the density of states (4.17) with s = 1/2,
we can transform the resulting expression as

on © on © on
C = ZEka_; = /_ dSkD(Sk)Eka_; = / d& D (&, + ﬂ)Eka_;
Ké © %

, (9.43)
x=pE

*° 1 dA? e’
~ 2

where we have used (9.5) and also approximated D (¢ + ) &~ D(eF).
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Next, we focus on the temperature just below T, where E = |£| holds. Making
the change of variable § — x = B£ in (9.43), and using (9.42) to calculate
dA?/d T, we obtain the heat capacity just below T,

> 1 dAa? er
oy =penit [ (v sor S| ) e
R 23T AT |, ) & + 172
472
= Co(To) + D(ep)kpTem——. (9.44)
RLRTIE)

where C,,(7:) denotes the normal heat capacity given by (6.31). Thus, we obtain an
estimate of the magnitude of the discontinuity AC = C(T;) — Cy(T,) relative to the
normal heat capacity C,(T;) as

A _ B
Ca(Te) — 75(3)

(9.45)

This is another important prediction of the BCS theory directly testable by
experiments. Table 9.3 summarizes Tc, 2A¢/kgT,, and AC/C, at T = T, for
single-element superconductors. We observe good agreement between experiments
and theoretical predictions of (9.36) and (9.45).

Figure 9.3 presents the temperature dependence of the superconducting heat
capacity (9.43) normalized by the normal heat capacity C,, o T given explicitly
by (6.31). A jump at T = T is followed by an exponential decrease of the heat
capacity as T — 0. This is because there remain no excitations of order kg7 at low
temperatures in consequence of the widening of the energy gap A > kgT. This

Table 9.3 Properties of Al Hg
single-element
superconductors [8]

In Nb | Pb \Y
T, (K) 1.2 416 |04 |88 |7.22 |49
2Ao/ kT, |3.53 395 |3.65 |3.65 [3.95 |3.50
AC/C, 1.29-1.59 237 |1.73 |1.87 |2.71 |1.49

Fig. 9.3 Superconducting 25k
heat capacity relative to ’
normal heat capacity C, X T 20F

U 15¢
1o}
0.5}

0.0 : :
0.0 0.5 1.0

/T,
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low-temperature behavior can be understood intuitively in terms of the quasiparticle
density of states defined generally by'

D(E) = Y _[8(E — Exa) + 8(E + Exa)], (9.46)
ka

where we have extended the domain of E to negative energies for later purposes.
Using this and noting Ex; — Ej; > 0 in the present case, we can express the heat
capacity (9.43) as

i (E)
aT

C = / ” dED(E)E (9.47)
0

with i(E) = (e’ + 1)~!. Calculations show that (9.46) for the s-wave excitation
spectrum (9.5) becomes (Problem 9.1)

|E|

Dy(E) = (BT ADI2

O(|E| — A)D(ep), (9.48)

where D(ep) is the normal density of states at the Fermi energy. As plotted in
Fig.9.4 for E > 0, there are no states for 0 < E < A. Combining this fact with
i(E) ~ e P2 for E > Aand T — 0, we conclude that the low-temperature heat
capacity is proportional to e #2. A more detailed calculation yields (Problem 9.2)

wA> —A/kgT

Fig. 9.4 Quasiparticle 4
density of states for s-wave
superconductors as a function
of the excitation energy
E>0

D((E)/D(eg)
v

Variable E should be distinguished from eigenvalues Ejg.
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9.4.2 Chemical Potential

We now show that, within the approximation of D(g) & D(er), chemical potential
M in the superconducting phase is the same as u, for the normal state.

Expressing (9.15) in terms of the density of states (4.17) for s = 1/2, then
subtracting (4.12) for the normal state, we use (9.6) to transform the resulting
equation as

0= ooD(e) e |2 + i — ol ! de
N k efEx + 1 eBler—mn) 4 1 k

£ 1 1
D(EF)/ [ (1__)+feﬁ5+1_eﬂ(€—ﬂn)+l de

D(sp)/ [——t 'BTE + tanh M} dg,

2

where we have made a change of variable, ¢ — § = & — u, and also replaced the
lower limit of integration by —oo as the main contribution to the integral stems from
region |§]/pu < 1. The first term in the final integrand is odd in £ so that it gives a
null contribution. We thereby conclude that the above equality holds when

W= Hn (9.50)

is satisfied.

9.4.3 Free Energy

For the pair-condensed state to be stable, its free energy F = Q + uN must be
lower than that of the normal state, F,, = Q, + u,/N. We shall confirm this within
the approximation of D(¢) ~ D(er), where (9.50) holds so that the free-energy
difference can be expressed in terms of the grand potential 2, Fy, = F — F, = Q —
Q,. We express the grand potential (9.14) using the density of states, set %HF =0
as appropriate for the weak-coupling regime, and subtract Q2, = Qpqg \ Ao for the
normal state. We thereby obtain the free-energy difference as

D(ep) [ (_ 2 1+4efE A? ,BE) .

an(T)z HW-HSI—E-i—EtanhT

9.51)
This definite integral can be calculated analytically at 7 = 0,

o0 AZ
Fin(0) = D(SF)/O (é E + ﬁ) df = ——D(eF)Az. (9.52)
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Additionally, one can show that Fy,(T < 7.) decreases continuously from
Fo(T.) = 0 as (Problem 9.3)

Fa(T ST ~ —%&T)"B)Z(T —T.)%. (9.53)

Thus, the pair-condensed state with a finite A has been confirmed to have a lower
free energy than the normal state.

9.5 Landau Theory of Second-Order Phase Transition

Superconductivity presents a prototype of a second-order phase transition where the
symmetry changes spontaneously. It is also distinctive in that the Landau theory
of second-order phase transitions [6] can be applied even quantitatively. Hence, a
brief outline of the Landau theory for the superconducting phase transition is worth
presenting. Nevertheless, this section can be skipped without loss of continuity.
The Landau theory is relevant in describing continuous phase transitions with
spontaneous symmetry breaking without latent heat. For an isotropic ferromagnet,
for example, rotational symmetry is broken spontaneously because of the emergence
of magnetization M, i.e., the magnetic moment per unit volume, which is realized
by a cooperative alignment of electron spins. The corresponding free energy may
be written as a function of M as F' = F[M]. Landau assumed that it is expandable
near the transition temperature T in terms of the lowest-order scalar M?> = M- M
with M; hence,
F F

ag 4
=2 4+aoM*+ =M 4. 9.54
yF =y T > (9.54)
Here F, is the normal free energy, a, changes its sign at the transition temperature
T.asay = (T —T,) with o > 0, and a4 is a positive constant. This free energy as a
functional of M is plotted schematically in Fig. 9.5 by setting F;, = 0 and extending
the domain of M to the negative region. Thus, the state M # 0 may be stabilized

Fig. 9.5 Landau free energy F T>T, T<T,
for a ferromagnet as a A
functional of

magnetization M
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below T¢, but the resulting F[M] still has a large degeneracy with respect to the
direction of M. This degeneracy needs to be broken spontaneously to lower the free
energy by the emergence of M. This phenomenon is called spontaneous symmetry
breaking, with M called the order parameter that distinguishes the ferromagnetic
state from the normal state. Unfortunately, the basic assumption that “F[M] can
be expanded analytically in terms of M 2” is not correct in the strict sense because
of large spatial and temporal fluctuations near 7.. Alternatively stated, M = 0 is
a singular point of the free energy. However, this fluctuation range near T. where
(9.54) does not apply can be very narrow for some systems [6] to be unobservable
in practice.

Classic superconductors form a typical example for which an expansion of the
type (9.54) holds true even quantitatively with negligible fluctuation range. The
order parameter for this case can be identified as the energy gap A, which is
generally a complex number. The scalar of the lowest order with respect to A is | A|?.
Hence, the quantity that is broken spontaneously is the degeneracy with respect to
the phase of A, which is sometimes called spontaneously broken gauge symmetry
[7]. Now, we expand the free energy per unit volume F/V near T as

L SN TN (9.55)
AT 2 : :

choosing a; and a4 in the form

_ D(ep) T — T, e — D(er) 7£(3)
T, YT 2V 8(mksTo)?

a (9.56)

Then, the extremal condition, 0 = dF/3|A|> = a, + a4|A|?, yields (9.42) for the
equilibrium energy gap near 7¢. In addition, substitution of (9.42) into (9.55) gives

2D(ef)(kp)?
72(3)
as the equilibrium free energy near 7¢, which agrees with (9.53) for the condensation

energy. The first and second derivatives of F®! with respect to 7' yield the entropy
and heat capacity,

F =F, — (T —Tp)%, (9.57)

L dF 4D(er) (ky)?
S=—m =5+ W(T -T). (9.58)
05 4D(8F)(7tk]3)2

C = TB_T ~C+ T, (9.59)

7¢(3)
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Equation (9.59) also coincides with (9.44) from the BCS theory. Thus, the super-
conducting phase transition within the BCS theory is describable in terms of the
Landau theory of second-order phase transitions.

It follows from (9.57) and (9.58) that the free energy F and its first-order
derivative —S' are both continuous, implying no latent heat upon the transition. In
contrast, heat capacity C of (9.59), determined from the second-order derivative of
F, is discontinuous. These are general features of the second-order phase transition
predicted by the Landau theory. We shall see an inhomogeneous extension of the
Landau theory in (14.95) below.

Problems

9.1. Substitute (9.5) into E\g in (9.46) to obtain the s-wave quasiparticle density of
states (9.48).

9.2. Show (9.49).

9.3. By multiplying (9.39) by x, using tanh(x/2) = 1—2/(e* + 1), and integrating
the resulting expression over x| < x < x;, we thereby obtain

Xy —Xx1 +21In

l+e™ i x3 + @2n + 1’7’

I+e™ = x?+ (2n + 1)272’

Use this equality together with (9.39) and (9.42) to show that the condensation
energy (9.51) can be approximated for T < T as in (9.53).
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Chapter 10
Superfluidity, Meissner Effect, and Flux
Quantization

Abstract One of the most outstanding features of superconductivity is undoubtedly
the persistence of a current without dissipation. However, in obeying Ampere’s law,
the flow of charged particles necessarily produces magnetic fields, thereby compli-
cating the phenomenon. With this observation, we first consider neutral systems to
reveal the origin of superfluidity, i.e., the persistence of flow without dissipation,
caused by the phase coherence of the Cooper-pair condensate. Subsequently, we
discuss the Meissner effect concerning the flow of charged systems that expels
weak magnetic fields from the bulk of superconductors. Finally, we study flux
quantization arising from the single-valuedness of the macroscopic wave function.

10.1 Superfluid Density and Spin Susceptibility

We consider a neutral Cooper-pair condensate to clarify the origin of superfluidity.
We shall also study spin paramagnetism to obtain expressions for s-wave pairing
of the spin susceptibility and superfluid density, (10.18) and (10.22), respectively,
in terms of the Yosida function (10.16). It is also shown that molecular-field effects
modify these expressions; (10.28) and (10.29).

Let us express the pair wave function as a 2 x 2 matrix using the spin degrees of
freedom, ¢(r;, 1) = (¢> (rioq, rzaz)). Then the state in which the pair moves with
center-of-mass momentum #q is expressible by incorporating its contribution to the
expansion of (8.94) in the form

1 . . 1 . i
rLr) = — Kk e1k~(r1—r2)elq~(l‘1-i-rz)/Z —_ Kk elk+~r1—1k_~r2’
$rvx) = 390 7w

(10.1)
where k4 is defined by
_ q
ki =k+ 5 (10.2)
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ts Hermitian conjugate r,rn) = ooy, 1)) 1S given
Its Hermitian conjugate ¢ * is given by
1 . . 1 . )
T(r ) = — T(k) e ik (C2—r)—iq(ri+r2)/2 _ T(K) elk—T1—ik4 T2
¢'(r1.r2) V§k:q_>() V§k:q_>()

Let us substitute the two expansions together with that of the delta function in (6.18)
into (8.10). We then find that the 2 x 2 matrices u(ry,r;) and v(ry,r;) are also
expressible as

1 4 1 . 4

u(r;,ry) = v > uky) et ), v(ry, ) = v > k) etrmTiken,
k k

(10.3)

with u(ky) = [0, + ¢)¢T(K)]™? and v(k) = u(k;)¢(K). The rationale for
using the arguments k. and k for u and v, respectively, will become clear shortly.

Noting that ¥ and v in (10.3) are the first-row elements of the transformation
matrix in (8.15), one may also expect that the first-row elements of the BdG
matrix (8.64) are expressible as

~ 1 ~ .
ZHF(I'I’ ) = V ZZHF(k_I_) elk+-(r1—rz)’ (10.4)
k

1 . .
A(rym) = 5 ) Al elemmio, (10.5)
k

For example, the pair potential of (8.35) is given at T = 0 by

A(ry,r2) = Y (|rr — r2|)u(ry, r3)v(rs, ra),
as can be shown using (8.30) and (8.31), which is expressible as (10.5). The
expansion (10.4) may be confirmed similarly based on (8.36). Additionally, one can

show that the complex conjugates of (10.4) and (10.5) can be written with a change
k — —k of summation variables as

~ 1 ~ .
l:n:(rl» 1'2) = V Zi:n:(_k_) elk_~(rl—r2)’ (10.6)
k

1 ) .
AT(rim) = 5 DD AT (ke (10.7)
k

Equations (10.4)—(10.7) can now be combined in matrix form as

ZHF (ri, 1) AAS}'I ,12)
—A*(r1,12) =K yp(ri. 1)
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_ 1 Z |:Q0 efem 0 :| iHF k+)  AK) [g pe kT 0 :|
V X Q Qo eik,-rl _é* (—k) i:[l:(_k_) Q go e_ikf'rZ )
(10.8)

where g, and 0 are the 2 x 2 unit and zero matrices, respectively.
Substituting (10.8) into (8.64), we can choose ¢ = ka (& = 1,2) and express
the eigenfunction as

ug@®] _ 1 [gee™™ 0 ugk)
o) = 7 0 aper v (109
Vectors ug (k) and v (k) now obey the 4 x 4 eigenvalue problem:
Hppky)  Ak) uz(K) | _ oo [wa(k)
2 o ] = =00 ] (1010

and normalization condition (8.80). Equation (10.10) extends (8.79) for homoge-
neous systems to describe a uniform flow with momentum #q.

From now on we focus on s-wave Cooper pairing and consider a situation where
a weak homogeneous magnetic field of flux density B is also present along the
z direction. The resulting one-particle energy acquires an additional contribution
Sexe = —ulaB proportional to both B and & = #1/2 as in (6.38). Incorporating
this effect into (9.2) and setting %kHF — 0 as before, we can express £ yr(£Kk+)
as

B2 (+k + q/2) 0
H (k) = [(—""1/) _ ’u} oy — “_mBgZ
2m
n’k-q M
~ [ék + ™ }go— TBQZ, (10.11)

where o is given in (8.42), & is defined by (9.17), and we have neglected terms of
order ¢ based on the assumption ¢ < k ~ kg. Let us substitute (10.11) together
with (9.1) into (10.10). We then find that the matrix to be diagonalized is of the form

ég'k + Cq—CB 0 0 Ax
0 & + Cq+ Cp —Ag 0
, 10.12
0 —Af &+ Cq+Cp 0 ( )
A} 0 0 &+ Cq—Cp

with Cq = A’k - q/2m and Cg = ub B/2. The corresponding 4 x 4 eigenvalue
problem is reduced to those of the (1,4) and (2,3) submatrices given by
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Uy
= Ew .
k I::i:vk:|

Compared with (9.4), this equation contains an extra term Cq F Cp, which lies
equally on the diagonal. Hence, we only need to add Cyq F Cp to (9.5) to obtain its
eigenvalues,

Fk+cg¢cg A, }[uk}
+A; &+ Cq T Cpl|Ew

Ak - —1)7
4, D" g @=1,2). (10.13)

Ew=E
k o p fm

Moreover, the eigenvectors are still given by (9.9) as they remain invariant in adding
contribution proportional to the unit matrix. The corresponding one-particle density
matrix is obtained by substituting (10.9) and (10.13) into (8.59) with ¢ — ka,

oD (r, 1) = iz[uiﬁkl + v (1 = ix2) 0 :| ek (ri—r)
e ’ 174 — s

" 0 upiie + [ve*(1 — k)
(10.14)
where u; and v; are given by (9.6), and we have made a change of summation
variables k — —k for the v (K) terms.

10.1.1 Spin Susceptibility

First, we set ¢ = 0 and consider the limit B — 0 to obtain the spin susceptibility.
The spin magnetic moment operator along the z axis is given by (2 / 2)o..
Operating with it on the one-particle density matrix (10.14), we then take the trace,
and use the relation n_; = nyg valid for ¢ = 0 and ui + vk > = 1. We thereby
obtain the spin magnetic moment as

M = /d3rTr 'u—g‘cr pW(r,r) = M—?n Z(ﬁkl — 7).
ald 2 &

Recalling (10.13), we then approximate the mean occupation number,

- Ik (—DY -
G~ — ' B =1,2),
Tl ni + T Moy (& )

with which we obtain the moment as

0 2 o0
( a”") En) g per) / ( gg")dsk—m(m
(10.15)
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Fig. 10.1 Yosida function as 1ol
a function of temperature ’
9
< 0.5
0.0 : :
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Here, yn = (ub/ 2)2D(sp) is the normal susceptibility derivable from (6.44) by
F§ — 0 as appropriate for %" — 0, and Y(T') is the Yosida function [10] defined
by

Y(T) = /_OO (—an—") d& = /OO ! h?Y £+ [A(T)]zds. (10.16)

o AkpT € 2T

Various response functions of the pair-condensed state are expressible in terms of
the Yosida function, which describes quasiparticle excitations. Figure 10.1 plots
Y(T) as a function of temperature. This satisfies Y(7;) = 1 and Y(0) = 0, and
can be written alternatively as (Problem 10.1)

|A(T)?

Y(T) =1-2mksT Y

) (10.17)
3/2
1= [& + 1P
with e, = 2n + )wkgT.
The spin susceptibility y = M/ B is obtained from (10.15),
2(T) = 1Y (D). (10.18)

The reduction of y as T — 0 can be understood as a condensing of developing
pairs into the (1, |) singlet bound state as described below (9.1), which does not
contribute to the susceptibility.

10.1.2 Superfluid Density

Next, we set B = 0 and consider the limit ¢ — 0 to calculate the total momentum
P. We operate with momentum operator p; = —i%V, on the one-particle density
matrix (10.14) and then take the trace. We thereby obtain the total momentum as
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P= /d3r1Trf)1£(l)(l‘1,l‘2)

r2=ri]
= th+ [2ve|* + up (ks + fike) — Joe|* (imk + fi—i2)] . (10.19)
K
Recalling (10.13), we then approximate the mean occupation number by

al’lk Kk - q
IEr 2m

ﬁk& ~ N

(@=1.2),

with which we obtain the total momentum

ony h°k
P S (ot 5) 2l 20— e 20 + I —
hq ) oy . h’k-q
:721‘:[2|vk| + 2} — |vi Pt +2Z—th.
hq o, h’k-q
= —N+2 —hk—. 10.20
2 + X aEk 2m ( )

The second equality results from the fact that terms odd in k yield a null
contribution after the integration over the solid angle, and we have used (9.15) for
the total particle number N. Subsequently, we convert the second term into a three-
dimensional integral as (8.90) and perform its angular integration using

dQ k?
/ o Ky = 8y = .0 = x,y,2).

The factor 971y /E} in (10.20) implies that only the region & a 0 contributes to the
integral, so that we can approximate the density of states as D(¢) ~ D(eg), where
D(e) =2V N(¢) for s = 1/2. The n element of the second term in (10.20) thereby
reduces to

ony, nK-q ko n/
223Ek —— :/_ dskD(sk)— Z / ey =

* aﬁk k? h q,,
= dé& D —_—
/_oo §DE+wap n;wg”” 3 2m
h2k2 oy,
d -
/—oo SkaEk
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In the last equality, we have substituted (6.29) for s = 1/2 and m* = m
together with (4.35) for the Fermi wave number to express D(eg)h?k3/3m = N.
Substituting the result into (10.20), we obtain the total momentum in terms of the
Yosida function (10.16) as

P=mN [l —Y(T)]vs, (10.21)

where v¢ = #fiq/2m is the superfluid velocity. Dividing the coefficient of v, in
(10.21) by V and m defines the superfluid density':

ng = % [1—Y(T)]. (10.22)

Expression (10.21) may be understood as follows. At T = 0 where Y(0) = 0
holds, all the particles condense into the pair bound state of (10.1), and they
can move coherently without dissipation. At finite temperatures, the presence
of quasiparticle excitations causes a reduction in the superfluid density, which
eventually vanishes at T = T, where Y(7;) = 1. Thus, the present formalism
starting from (8.6) enables us to understand the superfluidity naturally. The origin of
the persistence of flow without dissipation may be attributed to the phase coherence
over quite a large number of particles (N ~ 10%%) originating from condensation
into an identical two-particle bound state, which blocks any small perturbation from
affecting the motion.

10.1.3 Leggett’s Theory of Superfluid Fermi Liquids

We now incorporate the Hartree—Fock potential % into our consideration to see
how it alters the results for the spin susceptibility and superfluid density obtained
above. This issue was considered by Larkin and Migdal at 7 = 0 [5], and studied
thoroughly by Leggett [6] at all temperatures below 7¢.. The content may be regarded
as an extension of Landau’s Fermi-liquid theory considered in Sect. 6.3 to superfluid
phases.

With the presence of superflow and external magnetic field, the quasiparticle
energy Eyg for %y — 01is given by (10.13). There is a shift in the eigenenergy,
which to first order in 7q and B is given by

k-q (1)
E). = =~ "B g =1,2). 10.2
8 ko 2m + 2 lu“m (Ol ) ) (0 3)

Similarly, we expect that the first-order variation §Exz for Z yr # 0 is also
expressible as

'Quantity p; = mn; is also called superfluid density in the literature.
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hk - —1)”
§E = 14 DY p @=1,2), (10.24)
2m* 2

where m} and u} are parameters that must be determined self-consistently. We shall
see that a solution of this form does exist and obtain expressions for /m} and 5.

The one-particle density matrix with the first-order variation (10.24) is still given
by (10.14). Substituting it together with (6.18) into (8.61), we find that 7 yp(r;, 12)
is expressible in the same way as in (10.4) with “coefficient”

1 _ - _ _
Uyr(ky) = % Z%Qo%[2|vk/|2 + i (i + fiwa) = o [P (i + fiiea) ]
k/

oy up iy + g [P(1 = fi—ira) 0
=¥l 0 up iy + e (1 — i) |)

Next, we expand the mean occupation number,

_ _ oy -
ngg = N + B—EkSEk& (@=1,2),
and use the symmetry §E_y; = —8Ey 35—y of (10.24) and equality ui +|ulP=1to
obtain a first-order expression for the Hartree—Fock potential,
onys

1 5E / O
SU yp(ky) = vz _3Ek/ {go%((gEk/l +38Exn) — 7/k—k/|: ()k 1 8Ek/2i|} .
k/

It is diagonal and expressible in terms of the Landau f function (6.23) as

1 oty
M/kl;F = % Z Jaa (K, k’)f];SEk/&’- (10.25)

Ko’

As first-order variation (10.24) is equal to the sum of (10.23) and (10.25) by
definition, we then have

onys
oE

1
§Exg = SEY + - > faw (K K)———8Eyq . (10.26)

Ko’

This is the self-consistency equation for § Eyg with the same form as (6.22) in the
normal state. Hence, to determine the unknown parameters m; and u}, we only
need to repeat the arguments of Sect.6.3.3 for B = 0 and Sect.6.3.4 for q =
0 using (10.26) as the first-order variation of the eigenenergy. In this respect, we
notice that the change from 0y /derr = —6(ex —éeF) to dny /IEy in the superfluid
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phase yields an extra factor Y(7), i.e., the Yosida function given by (10.16). This
observation implies that (6.37) and (6.44) for the normal state are now replaced by

m* 1.
— =1+ - FY(T), (10.27)
m 3
(10 19)\2 Y(T)
x = (1n/2) DD Ty FAV (D) (10.28)

respectively. Thus, we have derived the sought-after expression for the spin
susceptibility.

To derive the superfluid density n, we start once again from (10.20) by replacing
m — m, then converting its sum over k into a three-dimensional integral as in
(8.90), and expressing the density of states in (6.29) as D(eg) = (m*/m)D°(eg) =
(1+ F}/3)D°(er) in terms of D°(er) for the ideal gas. Repeating the considerations
for (10.21), we then obtain the superfluid density

1.
(1 + §F;) Y(T)

1— (10.29)

1
1+ 3 FY(T)
This coincides with N/V at T = 0 as Y(0) = 0, indicating that a coherent flow
with all particles is realized. In contrast, ns vanishes at 7 = T, because Y(7;) = 1
in accordance with our expectation. Interaction effects on ng, which are embodied
in F}, may become substantial at finite temperatures between 0 and 7.

10.2 Meissner Effect and Flux Quantization

Superconductivity is caused by condensing Cooper pairs of electrons each of which
carries charge e < 0. Their superflow necessarily obeys Maxwell’s equations for
electromagnetism. Among them is Ampere’s law for steady currents given by

V x B(r) = poj(r). (10.30)

where B denotes the microscopic magnetic flux density, o = 47 x 1077 N-A™2
is the vacuum permeability, and j(r) is the current density. This coupling between
the supercurrent and magnetic field yields a unique phenomenon called the Meissner
effect, whereby weak magnetic fields are excluded from the bulk of superconductors.
Discovered by Meissner and Ochsenfeld in 1933 [9], we discuss this effect together
with the flux quantization, using the London equation to be developed from (10.30).
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10.2.1 Ampere’s Law

To begin, we derive Ampere’s law (10.30) itself based on a variational principle to
find a microscopic expression of the current density j(r).

Let us incorporate the effects of the magnetic field into the grand potential (8.32).
First, operator (8.20) needs to embrace the vector potential A; = A(r;) as

. D, — eA|)’
A= % LU () — (10.31)

Second, the energy of the magnetic field

1
Honag = Z—Im/d3r1 (Vi xAy)? (10.32)

should be included, where V| x A; = Bj. This latter term is generally neglected
in the normal state, because in most cases the magnetic fields produced by
orbital motions of electrons or spin magnetic moments are negligibly small. In
superconductors, however, a supercurrent can produce a large magnetic field so that
this contribution must be manifest. There is also a contribution from the Zeeman

effect:

<%?Z = UB / dg”&-‘—(l‘lai) (g)aial I//}(I'IO{I) -Bl, (1033)

due to the spin magnetic moment, where g is the Bohr magneton (6.39). However,
because it is much less important in single-element superconductors than the orbital
diamagnetism due to the supercurrent, we shall omit this contribution, noting that it
may be easily incorporated when necessary.

The corresponding BAG equations can be derived in the same way as in Sect. 8.3.
Indeed, they are still given by (8.38) by replacing p; — p; — eA; in J#; of (8.36).
As for the vector potential, we require that the magnetic field actually realized in the
system minimizes Q2[p] + .. A necessary condition for this is that Q[p] + e
is stationary with respect to the variation A; — Aj 4+ §A;. As a preliminary to
calculate the relevant first-order variation §Q2[0] + 8%, We rewrite the kinetic
energy in (8.32) using integration by parts,

b — eA)’
Qkin Z/up(”(&,&) d§
2m &H=§

= [ ERR B e

. (10.34)
&5H=§

Using the latter expression, we can transform the first-order variation as

8(9[16] + <%’inag) = SQkin + S%ag
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SAs - (P1 —eAy) + (—P2 —eAy) - A
_ _e/Z 2+ (P 1) : (=Pp2 2) e £) &,
ay m bH=¢
2 3
+ — (Vl X 8A1) . (Vl X Al)d ry
210
Pp1 —eA)) + (—pr — eA
= /8A1 . [—ez L ) 3 P 2)/0(1)(51,52)
ay m &=
1
+ —V; x (Vi x Al)}di”rl, (10.35)
Mo

where we have applied the mathematical identity (V x5A)-B = V- (A xB) + A -
(V x B) [1] to the magnetic energy and subsequently removed V - (JA x B) using
Gauss’ theorem [1] and condition §A = 0 on the surface. For the equality §Q2[p] +
8 g = 0'to hold in terms of an arbitrary §A, it is necessary that the coefficient of
8A | be zero. We thereby obtain Ampere’s law (10.30) with a microscopic expression
for the current density,

b — eA —py —eA
i =y P l);( PR e )| (10.36)
ay m &=

10.2.2 London Equation

The BdG equation (8.38) and Ampere’s law (10.30) with current density (10.36)
form a set of self-consistency equations for the quasiparticle eigenstates and
magnetic field. Here, we solve them approximately to derive the London equation.
Let us generalize the argument of Sect. 10.1 by presuming that the current density
spatially changes its magnitude and direction. More specifically, we replace the
phase q-(r; +1r2)/2 in (10.1) with a function [¢(r;) + ¢(r2)]/2 that varies slowly in
space; the term “slow” is used here in comparison with the radius of the bound
wave function ¢. Accordingly, the phase factor in (10.3)—(10.9) is replaced by
q-r; = @(r;) (j = 1,2), as is the phase of the one-particle density matrix in
(10.14). Let us substitute the density matrix into (10.36) and repeat the steps for
(10.19)—(10.21). We thereby obtain an expression for the current density

J(r) = enyvy(r), (10.37)

where ng denotes the superfluid density (10.22), and v is now given by

" (v, 2 (10.38)
Vo= — ——A). .
2m ¢ h

This v, reduces to (10.21) for neutral systems by setting ¢ — q-r and e — 0.
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Substituting (10.37) into (10.30), we can express Ampere’s law as

h 2
vxB=H (g, 206, (10.39)
2m ;)

We further operate with V x on this equation and use identities Vx V xB = VV.
B — V?B and V x V¢ = 0 together with Gauss’ law V - B = 0 for magnetism. We
thereby obtain the London equation [8] in the form

1
V2B(r) = —B(r), = ——, (10.40)
AL UoHse

where Ap is called the London penetration depth. Note that this derivation of the
London equation assumes no reduction in the energy gap in the presence of an
applied magnetic field.

10.2.3 Meissner Effect

Let us solve (10.40) for a simple one-dimensional geometry to establish a theoretical
basis for the Meissner effect.

We consider the case where a uniform magnetic field of flux density By is
applied along the z axis in the vacuum occupying the domain x < 0, and a
superconductor is placed in the region x > 0. In this geometry, the magnetic flux
density in the superconductor is expressible as B(r) = (0, 0, B(x)), and the London
equation (10.40) reduces to

d’>B(x) 1
— — B(x).
dx2 A} (x)

Its general solution is expressible in the form B(x) = Cje™*/*t + Cye*/*- where
C; and C; are two constants of integration. The continuity of the flux density at
x = 0yields B(0) = C; + C; = By, whereas the physical boundary condition
|B(x — 00)| < oo gives C; = 0. We thereby obtain the solution

B(x > 0) = Bype ¥/, (10.41)

Hence, the magnetic field decreases exponentially near the surface over the length
AL and is excluded completely from the bulk of the superconductor. The correspond-
ing current density is obtained from (10.30) as j(r) = (0, B(x)/uoAL,0), which is
also confined to the surface region to depth Ap. Thus, the Meissner effect can be
understood as a response of the superconductor in preventing an energy increase in
the bulk due to the magnetic field and superflow.
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Fig. 10.2 Superconductivity
in an annulus with a trapped
magnetic field

10.2.4 Flux Quantization

Next, we consider superconductivity in an annulus with a weak magnetic field
trapped in the central vacuum region, as depicted in Fig. 10.2. We shall show that
the trapped magnetic flux is quantized in deriving (10.43) below.

If the difference between the outside diameter R, and inside diameter R, satisfies
R; — Ry > Ap, the magnetic field is excluded from the bulk. Let us perform a line
integral of (10.39) along a closed path C in the bulk region. The integral on the
left-hand side yields O because B = 0 along C. Next, the equality is transformed
using Stokes’ theorem [1] to give

2 2
0:95 (w——eA)-drzggVw.dr——e/(VxA).ds
C h C hoJr

2 2
- 27m——e/B-dS:27m——e<I>, (10.42)
n ), 7

where R denotes the region enclosed by C, and @ is the total flux confined in the
central region. Noting that (i) ¢ is the phase of the pair wave function ¢(r,r3)
in terms of the center-of-mass coordinate (r; + r;)/2 and (ii) ¢(r;,r,) must be
single-valued, we conclude that the integration constant n should be an integer. This
implies that the total flux in the central region is quantized,”

D =—-nd (n=0,£1,£2,--+), (10.43)

where

h
d) = 2] = 2.068 x 107> Wb (10.44)
e

forms the unit of magnetic flux in a superconductor called the flux quantum. Flux
quantization was predicted by London in 1948 [7, 8] prior to the idea of pair

2The minus sign in (10.43) reflects e < 0.
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condensation, where the flux quantum was predicted to be twice ®( because of
2le| — |e|. The discrepancy in the factor 2 was understood subsequently in a couple
of experiments [2, 4] by cooling Sn or Pb in weak magnetic fields from above T,
and measuring the trapped flux. The results showed clearly that the unit of magnetic
flux is given by (10.44). These experiments may also be regarded as establishing the
Cooper-pair condensation for the mechanism of superconductivity.

The quantization described above is relevant to the flux trapped mostly out-
side the superconducting material. Nevertheless, we shall see in Chap. 15 that
a quantized flux can also be trapped inside fype-II superconductors. However,
this possibility is excluded from the London equation (10.40). To incorporate it
appropriately, we replace the “identity” V x Vg = 0 with

V x Vo = 27nz8*(r — ro), (10.45)

where 7 is the unit vector along the z axis, §>(r) = §(x)8(y), and r( denotes the
singular point of ¢(r) around which ¢(r) changes by 27t upon a counterclockwise
rotation in the (x, y) plane. The validity of (10.45) is confirmed by taking its scalar
product with z, integrating the resulting equation over a region R in the (x, y)
plane that includes ry, and transforming the left-hand side using Stokes’ theorem
[1]. Noting (10.45), let us operate Vx on (10.39). We thereby find that (10.40) is
now replaced by

— AV2B(r) + B(r) = —n®y28%(r — o). (10.46)

We note that the singularity of ¢(r) at r = ry is superimposed by a zero of the pair
potential A(r) to remove the singularity, as will be studied in detail in Sects. 15.6
and 16.3. Equation (10.46) has been useful in clarifying the flux-line structures of
so-called extreme type-1I superconductors [3]; see also (15.79) on this point.

Problems

10.1. Inregard to the Yosida function Y (T'),

(a) Show that (10.16) can be written alternatively as (10.17) by using (9.39).
(b) Prove

T.—T
V(T ST) =1-2-"1— (10.47)

C

using (9.42) and (10.17).
(c) Show that Y(T — 0) is given approximately by

27A
Y(T — 0) ~ k”—T e A/keT (10.48)
B
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Chapter 11
Responses to External Perturbations

Abstract One basic experimental method to probe condensed matter is to subject
the system to small perturbing forces, using for example electromagnetic fields,
and measure responses. In this chapter, we first develop a linear-response theory
for analyzing the resulting data. We then use it to obtain theoretical formulas for
ultrasonic attenuation and nuclear-spin relaxation in s-wave superconductors. It is
thereby shown that changes in the excitation spectrum through the superconducting
transition can be captured unambiguously by these experiments.

11.1 Linear-Response Theory

We consider an arbitrary grand canonical ensemble in equilibrium at 1 = —oo
described by Hamiltonian #’, and apply a small time-dependent perturbation
H'(t) for t > —oo. We formulate a linear-response theory following Kubo [7].
Key formulas are given by (11.7) with (11.5) for the response in the time domain,
(11.13) for the response in the frequency domain, and (11.19) with (11.17) for the
energy dissipation.

11.1.1 Response in Time Domain

First, we study responses in the time domain to derive a linear-response formula,
(11.7), in terms of the operator (11.5).

Our starting point is the density-matrix operator (5.1), the ket and bra of which
now obeys the time-dependent Schrédinger equation:

 d[®,)

d(®,
" (D]

= (# + #")|D,), —ih— " = (@,](H + A"), (11.1)

© Springer Japan 2015 159
T. Kita, Statistical Mechanics of Superconductivity, Graduate Texts in Physics,
DOI 10.1007/978-4-431-55405-9_11
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instead of the time-independent equation.! Using them, we differentiate (5.1) with
respect to ¢, changing p — pp(¢) to emphasize the presence of the time-dependent
perturbation. We thereby obtain?

ih ddet(l ) _ [+ A (1), pe(1)], (11.2)

with [/f , é] = AB — BA. It is convenient to express pp(t) as

po(t) = e py(r)e1h (11.3)

Indeed, substitution of this expression into (11.2) produces a cancelation of # on
the right-hand side. Multiplying the resulting equation by ¢”*/* from the left and
e~ /" from the right, we obtain

dpu(?)

ih— = = [ 0). (). (11.4)
where %Z}{ () is defined by
A1) = A (1)em N, (11.5)

With the initial condition py(—o0) = e i7/!/ (e_ﬂ'%z / ZG)ei'%Z th — eBH )7, =
0, we integrate (11.4)

~ N i ! IT 22 (41N A 1 A i ! IT 22 A
pu) = b [ @A)~ p- g [ @A) are

where the last expression is valid up to first order in A ®).

Now, consider an observable &' with no explicit time dependence. Its expectation
at time / is given by Trpp(t) 0. Let us substitute (11.6) into (11.3) and transform
Trpp(t)0 = O(t) using the invariance of the trace under cyclic permutation of the
operators [1, 9]. We thereby obtain an expression for the expectation under the same
approximation

t

O@t) = Tr pp(t) 0 = Tr pu(t) Ou(t) ~ po — %/ At Te[ A1), p)Oult)

—0o0

= (0) — / dr'([Gu(r), 5(1))), (11.7)

—00

Sk =

!The density matrix (5.1) in equilibrium remains invariant under the change in definition of the ket
and bra, because the additional phase factor ei4t/h of |®,) in the absence of .7 is canceled by
/B of (@, ].

ZProbabilities w, are assumed to have no time dependence at all, which is justified when
considering linear responses.
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with (5’ y=Tr ﬁﬁ as defined by (5.2). Thus, we can express the linear response due
to the perturbation in terms of the expectation in equilibrium as

oV (1) = —%/ dr'([Gu(r), #51))). (11.8)

11.1.2 Response in Frequency Domain

Next, we show that (11.8) in the time domain can be Fourier-transformed into
(11.13) below in the frequency domain.
Let us express #”(¢) in a continuous Fourier series,

oo
A d . A
H (1) = / —2we_"‘”j‘faf, (11.9)
oo 2T

where 2 %” holds because of the Herm1t1c1ty of S (). Using this equation
and introducing jfw’H (1) = e* %’/hjfw’ i ’f’/h, we can rewrite (11.8) as

ﬁn)(z):——/ / e ([Ou(r), A1)

dw —iwt ! ! iw(t—t’ ,
Z/_wﬁe / dr'e"" )( h)([ﬁﬂ(t) A (h]). (11.10)

—0o0

Now, one can show (Problem 11.1)

([6u(r), #g(t)]) = ([Gult — '), 7). (11.11)

With this, and making a change of variable t' — t; = ¢ —t’, we can express 0V (¢)
above as

o0
d
6V (1) = / L emior gD, (11.12)
0 2
with
[es) i R R )
o) = / (7) ([On(n), 7))+ dry, (11.13)
0
where w4+ = o + 104 with O denoting an infinitesimal positive constant. The

additional factor e~%+"! introduced here makes the integrand vanish for #; — oo
and thereby ensures the convergence of the #; integral. It physically corresponds to
the fact that the perturbation is absent at ' = —oo.

Equation (11.12) is given as a linear combination of o that represents the
response of observable & to perturbation %” of the same frequency. In other words,
the response to each w can be calculated 1ndependent1y within the linear-response
regime.
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11.1.3 Energy Dissipation

Finally, we consider the perturbation’

%/ —iwt %/ 1a)t 1
A (1) = er =5 > et (11.14)

to obtain an expression for the energy dissipation per unit time, (11.19) below,
in terms of the retarded Green’s function (11.17). The pair of frequencies of
opposite sign are included here to make #7”’(t) Hermitian, which is indispensable
for studying dissipation.

The relevant observable is

R(t) = d'%ﬁ (t) Z g oot (11.15)
o==+1

The energy injected into the system per unit time is given by the time average
(djf "(t)/ dt), which is transformed into heat associated with random motions within
the system. It is carried to the surface by electrons or phonons to eventually disperse
into the surroundings. All these processes are beyond linear order. Hence, we can
choose & in (11.8) as 2 above for the evaluation of the energy dissipation rate,
which here denotes the energy transferred to its surroundings per unit time in the
steady state. A

With two relevant frequencies in %(¢) above, (11.12) is modified for taking the
tlme average as follows. Let us substitute (11.14) and (11.15) into (11.8) with 0 —
%. We then transform %2 similarly to (11.10)—(11.13), obtaining

i [! —i . s A n
@(l)(t) — _Z dt’ ;CU Z ge—oiwt—oint ([jfa/w,H(t)v jfo/’w,l—{(t/)])
% o,0’'==+1
—iw

: t
R e O ) T A

—iw —(0+0")iwt i * o’iwt; 22 2
= T oe —g A dtle ([%]a),H(tl)’jfi‘r’w]>‘
Subsequently, we average #V) (¢) over a single period, through which only terms

with 0 = —o’ survive,

_ w to+2n/w iw
2V = _/ 2V ()dt = —[KX(w) — KR(-w)], (11.16)
2 Jy, 4

3We adopt a normalization for Ji%u different from (11.9) for the continuous spectrum.
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where K®(w) is defined by
- o0
KR ) =~ / dty e+ ([ A (1), A]). (11.17)
0

in terms of %Zﬂ; » given in (11.14). Note that factor e 0+ has been incorporated
into the integrand once again. This is a retarded Green’s function that represents
the response of A ou(f1 = 0) due to perturbation c%%o’ at t; = 0 in the frequency
domain; it satisfies (Problem 11.2)

[KR(@)]" = KR (~w). (11.18)

Using this, we can express (11.16) as

20 = —%ImKR(a)), (11.19)

where Im denotes the imaginary part.

11.2 Ultrasonic Attenuation

We study the longitudinal ultrasonic attenuation of s-wave superconductors based
on (11.19) to derive (11.39) for the relevant energy dissipation, which is plotted in
Fig. 11.1 below.

Ultrasound is an oscillating sound wave whose frequency f = w/2m ranges
from 20 kHz up to several giga-Hertz (i.e., 10° Hz). When applied to superconduc-
tors, it perturbs the system with energy 2% f < A and wave number ¢ < kg.* The
disturbance by longitudinal waves may be modeled by the time-dependent potential

U (r,t) = % cos(q - r — wt) for electrons. The corresponding Hamiltonian is
given by
R R . <%Z/e—ia)t _'_jf?_/ elo?
A0 = [ i Owenie =TT

where .7, denotes

A=Y [ E i @ © =% Y b (1.21)
o ko

“The energy of sound in the temperature scale is of the order of AT = 2nh f/kg < 2m X 10734 x
10°/1072 ~ 0.1K, which is much smaller than T in general. The corresponding wave number ¢
is given in terms of the speed of sound s ~ 10> m/s by ¢ = 27 f/s < 27 X 10°/10° ~ 10’ m™!,
which is also much smaller than kg ~ a=! ~ 101 m~! with a ~ 107!°m denoting the lattice
spacing of metals.



164 11 Responses to External Perturbations

with k+ = k =+ q/2. In deriving the second expression, we have expanded IﬁT(é)
and ¥ (§) in plane waves,

o 1 . A 1 .
fre)= —= & e M, ) = — Y Cree®’, (11.22)
V' (ra) ﬁ% - ¥ (ra) W% -

then used orthonormality (ki|k, + q) = 8k, k,+4 to eliminate ki, and set k, =
k — q/2 to change the summation variable from k; to k.
Next, we expand ¢k, in terms of quasiparticle fields with unitary matrix (9.7),

Cip we 00 —vf || P
Cky 0 w v O Yo
O e b (11.23)
—Kt ke Uk Yk
CA’ik¢ Vk 0 0 Uy J;ikZ

Using this, we transform (11.21) into

[, P, 5 H (=D 0y P s [ Prca + (D79 5]

M~

Ay =y

k 1

153
Il

_ 1)@

A (=D
=% Z[(Mk+uk - vk,vlir))/L&Vk,& + T(MkJrU;:_ + ukfv;;)
k&

S At (—1)*
XViyaV—x_3-a t

(uk_Uk+ + Mk+vk—)),)—k+3—&j)k_&i|s (1124’)

where the second expression has been derived by (i) changing the summation
variables for the vv and uv terms as (k,&) — (—k,3 — &) and (ii) using the
anticommutation relations of field operators for q # 0.

Substituting (11.24) and f%z_/w = f%%ﬁ into (11.17), we can express the
expectation of the commutator as

(A2 w0, 2])

=%’ Z{ e = vi_vf P{[PE_aOPxya () P, g i])
ko

2 R R o
+Z iy vic— + we_ v P{[P=x_3-a(D)Pr,a (1), )/L&VL(J_,;])

2 R R R R
+Z|uk+vk_+uk_vk+|2([V.T(7&(l))’ik+3_&(l),)’—k+3—&yk_&]) . (11.25)
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it/ it/

where Py5(t) = e Vka€” , and we have retained only terms with finite
expectations. Factor 2 in the uv terms may be confirmed by choosing the summation
variables of 2 and .7 as (k, &) and (K', &), respectively, and noting that the two
combinations (k', @) = (k, &), (—k, 3 — @) yield the same average.

We now evaluate (11.25) based on the mean-field theory of superconductivity
where Hamiltonian 7 is approximated as (8.57). Specifically for the present
homogeneous s-wave pairing, it reads

H ~ Z Ekﬂ&?k& + const.,
kd

with Ej given by (9.5). Now, we have shown that (5.9) is expressible as (5.10).
Similarly, operator Py (t) = e/ e i 1/h
the above Hamiltonian can be written as

and its Hermitian conjugate with

Pra(t) = e My, Plo) = elBet/hpl (11.26)
Using them, we can perform the Wick decomposition of the first average in (11.25),

(NGO RAE I |
= e_i(Ek+ _Ekf)l‘/h [(?k+&ﬁ£+&)(?£_&)}k7&) —_ (J;:;J,_&J;kJr&)(J;kf&);L_&)]

= e P TER() g g — ik, (1 k)],

with i1y = (ePFx 4+ 1)7!. The other two expectations can be estimated similarly.
Substituting them into (11.25) and summing over &, we obtain

([, n0). 7))

o iEv. —Eu /b
- 2%22{|”k+”k—_vk—vz>:+|2(ﬂk_—nk+)e i(Exy —Ex)t/
k

|LtkJr Vi +Up_ Vi |2
2

(1—=rg —}/_lk_)[e—i(Ek+ +E /A _ ei(E"++E"*)t/h] '

(11.27)
Using this expression, we can perform the integration of (11.17) to obtain

Mj_ — Mgy
hCl)+ - (Ek+ - Ekf)

KR(Q)) = 2@/12 Z % IMkJer, — U/LUZJFI2
k

2
ke, vk + ug_vk
2
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| —fip, — i | g, — 7t
x|: By 7 _ Py — M }} . (11.28)
hwy — (EkJr + Er_) hwy + (EkJr + E;_)

Quantities u up_ — vi_ v,f and ug vi_ + wi_vi are called coherence factors,
whose magnitudes are given using (9.6) by

2= Ex, Ex_ 4+ &, & F A

2Ey, Er_ ’

E B — &, & +A°
2E;, Er_

*
|uk+uk7 F vp_ Uk+

lug v £ up_vi, |* = . (11.29)

where the lower signs are incorporated for later convenience. Let us substitute
(11.29) into (11.28) and use identity

1
x:l:i0+

1
=P— Fimd(x), (11.30)
X

with P denoting the principal value, which may be seen to hold by integrating both
sides over an arbitrary interval on the real x axis. Equation (11.19) with (11.28) is
thereby transformed into

- Ei,Ex_ + &, & — N _ _
A0 = www? { + + (i — i, )8(ho — Ex, + Ex_)
1 Zk: 2Ek+Ek7 + +

E, Ex. —& &+ A
4E;, Er_

(1 - I7lkJr - ﬁkf)[S(ha) - Ek+ - Ekf)

—8(hw + Ej. +Ek)]}. (11.31)

Noting that hw K A < Ej 4o We omit the second term in the curly brackets.
For convenience, we then shift the summation variable as k — q/2 — Kk, and
subsequently convert the sum over k into an integral using (8.90),

7 *® Vdt ExtqE — A2
2V ~ nw%leN(gF)/ dgk/ A Elk+ql Tk + Ekrq b
—00 -1 2 2E|k+q|Ek

X[(Ek) = n(Ek+q)]0(hw — Ektq) + Ek). (11.32)

where ¢t = cos 6 in the coordinate system with q || z.
We first consider the normal-state limit of A — 0 and Ey — &, where (11.32)
reduces to

_ 00 1 d
A =20t VNG [ dg [ GG = (6w B0 — G + 60,
(11.33)
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Noting ¢ < kg, we approximate £tq ~ & + h’k - q/m ~ & + (h*keq/m)1.
Then, we can express the argument of the § function in terms of the Fermi velocity
vp = hkg/m ~ 10°m/s and the speed of ultrasound s = w/q ~ 103 m/s as

h2k h2k
ho — gl + & ~ L (R [ Ay G (11.34)
m hkgq m VF

Note that s /vg ~ 1073 certainly lies in the interval [—1, 1] of the ¢ integral. Hence,
the ¢ integral in (11.33) only has the effect of setting &jx4.q) = & + hw via the delta
function §(hw — Ejxyq + &) = (m/h%*krq)8(t — s/vr). With this observation, we
can simplify (11.33),

A ~ 20UV e / delii (&) — (e + ho)]

2
- n%ZVN(sF)%, (11.35)

where we have used

I(e) = / [1(§) —n(§ + ¢)]dé = &, (11.36)

—00
as shown easily based on d/(¢)/de = 1 and 1(0) = 0.
We now proceed to (11.32); the delta function transforms as

—i
3(t — o),
(11.37)

—1 5
dE h°k

dE|i+4q]
dr

S(hw - E\k+q\ + Ek) = ‘

where 7o (|ty| < 1) denotes the value of ¢ at which Ex;q = Aw + Ej holds. With
this and noting ¢ < kg, we can rewrite (11.32) as

. © E}+E-N d&c  m
AV ~ roU?VN 2/ dé 2k — [7(Ey) — n(Ex+hw)] ——
W% VN (er) \ §k 2E? [7(Ex) —n(Ex+ w)]dEk ked

m [ d& ¥ & [ dia(Ex)

~ Tw%2VN(e —/ dE (—) 2k | hw

! (F)thFq s \dE ) B2 dE:

2

— X UPVN(er) hmkwqﬁ(A), (11.38)

F

where we have used d§;/dE, = Ei/& for & > 0, which follows from (9.5).

Hence, we obtain the energy dissipation of ultrasound in s-wave superconductors
relative to (11.35) for the normal state as (20 — %)

ZV %D = 20(A), (11.39)



168 11 Responses to External Perturbations

Fig. 11.1 Coefficient of
attenuation for ultrasound as
a function of temperature 0.8
i=1
B 06
S 04
0.2
0

1.0

0 02 04 06 08 10
/T,

which is equal to the ratio a5/, of the ultrasound attenuation rate s observed in
experiments. Figure 11.1 plots (11.39) as a function of temperature. We see a steep
decrease in the attenuation rate for 7 < T, resulting from the widening of the energy
gap. An excellent agreement between theory and experiment was reported soon after
the publication of the BCS theory [10].

11.3 Nuclear-Spin Relaxation

Next, we consider nuclear-spin relaxation in s-wave superconductors to derive an
expression for the relaxation rate, (11.57), plotted in Fig. 11.2.

We have already seen in Sect. 3.2 that every particle has an internal degree of
freedom called spin with a proper magnetic moment. We focus here on the nuclei
in a metal that are arranged periodically at lattice sites {R;} (j = 1,2,---, N,)
with electrons moving around them. Each nucleus j has a composite spin I ; of the
same magnitude /. Its magnetic moment is given in terms of the nuclear magneton
Un = 5.05 x 10727 J/T and g-factor g; of order 1 as

A = ;. (11.40)
Electrons also carry spin moments, for which the density is expressible as
~ " » "B A N —ig-
fror) = —pp Y9 ()0t (re) = =523 0 6 O wali o™,
aa’ ao’ kq
(11.41)

where up is the Bohr magneton (6.39), @ = (04,) are the Pauli matrices, (8.42),
and we have expanded the field operators as given in (11.22) with k; = k + q/2
and k, = k — q/2. The moment density ji.(r) yields a local magnetic field at each
nuclear site given by the flux density:

+

- 3R;—r)(R;—r1) - fi 1 8
b= 0 [y [ARIR, ) 0l
4 |Rj—l'| |Rj—l'| 3

ﬂe(rw(R,»—r)] ,

(11.42)
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where o = 47 x 1077 N-A~2 denotes the vacuum permeability. The first two terms
in the square brackets are the dipole magnetic field, whereas the third term denotes
the Fermi contact interaction. The corresponding molecular Zeeman energy:

Na

g =~ _ir; bR;) (11.43)
j=1

is called the hyperfine interaction.
Now, suppose that a homogeneous magnetic field with flux density B = Bz is
present initially, in which the nuclear spins are subject to the Zeeman effect:

Na
Hy == jy; B (11.44)

J=1

It splits each nuclear energy level into 27 + 1 distinct sublevels all equally spaced’:

ho = giun B, (11.45)

making the state /;; = I with the Zeeman energy —Aw/ the nuclear ground state.
Note that #w/kg ~ 1073 B K in the temperature scale, which is much smaller than
T. even for a strong field of B ~ 1 T. Next, we turn off the external magnetic field
att = —oo and let the nuclear state /;; = I relax to one of the 2/ + 1 degenerate
states. Assuming that the electronic density around each nucleus is isotropic, we can
identify the term in (11.43) that is responsible for the relaxation; this is due to the
last term in the square brackets of (11.42) and given explicitly by

No o~ . . X
o A 3 fe— (R jbrj+ + flet (R;) frj—

‘ 2
j=1
N,
28IUNMUBIO ™ _iqR; M oA p oA p
= 3—V E e ARy E (CkJr»l,Ck—T IJ+ + CkJrTCk—‘l*Ij_)’ (1146)

=1 kq

where [i flet = fex :blptey, p,lj 1+ = p,lszlzl,um, and we have used (11.40)and (11.41).
Operator I i+ = Ijx + 11” causes a change I, - £ 1(2,8, 11].

_As the orlglnal Hamiltonian is given as a sum of the electronic Hamiltonian
jfj and nuclear Hamiltonian (11.44), we need to take additional care to construct
J€(t). Indeed, the nuclear-spin operators give rise to an extra time dependence due
to (11.44),1i.e.,

SThere is also a molecular-field contribution from (11.43), which yields a correction Aw < 0.01w
called the Knight shift [4, 5].
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fa) = ei(,;?+%})r/hfjie—iu?+%’z)t/h — ooty jjieiwrl}z, (11.47)
with w defined by (11.45). To remove this, we differentiate (11.47) with respectto 7,

Al +(t - .
]dﬂt:( ) — _iwe 1a)t1] [ s I‘i]elwtlf: — q:iCUIjj:(t),

where we have used the commutation relation [I;, [;+] = i}, + I,X = 41,4 for

the angular momentum operators [2, 8, 11]. Integrating subject to / ]i(O) =1 j£
yields

[ie(t) =T ;4. (11.48)
Hence, using this, f%;ﬁ(t) = i+ h ypre—iH+0)t/h \with (11.46) becomes

N 21 A —iwt 2 Liwt N
eim/tz%e + A e it /h

%%’(z) _ ; (11.49)
where
A 4
A = gIMNMBMO Z —iqR; ch Lo T1/+ (11.50)

and %2_’,0 = ). The fraction in (11.49) thereby acquires the same expression as
that in (11.14) for electrons alone. We subsequently substitute (11.23) into (11.50)
and rewrite it as

W,
s 4EIUNUBIO TN —iqR; o . . o -
Sy == 2 Y ey Py vk Pk ) (e P — v 7l ) Tyt

Jj=1 kq
4 N
- BN § i, Z[(Muh o], )P P
Jj=1 kq
*
Wy Vg —Uk_Vg Up_Vje, — Ujy Vi_ A
—%VLZVL( 2+%V—k+ll/k 1] j+, (11.51)

where the second expression has been obtained by (i) changing the summation
variable for the vv and uv terms as k — —k, and (ii) using the commutation
relations of the field operators.

We substitute (11.51) and f%z_’w = %%T into the commutator of (11.17), take the
extra expectations with respect to the nuclear initial state as (/ |f j+f 1) =218
and (I|1;-I;14|I) = 0 to find ([57,, (), H))) = —(H,H", (1)), and use
orthogonality ijil el IR, — Nabqq - We thereby obtain the expectation for the
commutator as
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([ ). 7))
— 21N, (4gIMNMBMo

>
Y% ) Z|:|Mk+uk_ + Uk_vzzr|2()7L2)7k_1)7|11(l)?k+2(f))
kq

2 A R .
+ Uk Uk — ug_ vk |2()’L2Vik72J/—k_z(t))’k+2(f))

2 . A .
+ ik y vk — uk_vky |2(V—k+1yk1V£_1(I)V1k+1(f))}-

Factor 2 in the uv terms may be confirmed by choosing the summation variables
of A and 7, as (k,&) and (K, &), respectively, and noting that the two com-
binations (k’,&@’) = (%k, &) yield the same average. Subsequently, we substitute
(11.26) into the above expression and perform the Wick decompositions to obtain

{EGONA)

4 2 ) o
— 21N, (%) Z[|uk+uk_+vk_v;+|2nk+(1 e e =i
kq

2
|Mk Vk_ Up_ Vg | _ _ s
+ > + nk+nk_e 1(E;ch +Ex_)t/h

| ik y Vi — Uk_ Uk |?
2

(1 — i, )(1 — ﬁk_)ei(E’”rJ“E")t/h}, (11.52)

with 71y = (ePfx 4 1)~!. With this expression in the integrand, the integration of
(11.17) is easily performed, yielding

4g1IAN B IO ey, (1= 7k)
KR(w) = —2IN, (— Z g up_ + kav:+|2 +

3V ™ hwy — (Ex, — Ex_)
|ty Vi — v | gy Mg (I —np )A —ng_)
2 hot —(Ex, + Ep)  hot + (Exy + Ep_) '
(11.53)

Substituting (11.29) into (11.53) and using identity (11.30) to calculate (11.19), we
thereby obtain the average energy gain of the electrons per unit time as

- 41N LB IO Ex, Ex_ + & B + A% B
2 — _anNa(%j Z{ + o g i, (1= )
" ky Ex_

Ex, Ex_ =&k i — A2

S(how — E E
x§(hw — Ex, + Ex_) + iE;, Er

[ﬁk+ﬁk75(hw —Ep, - E; )

+(1 =it )(1 — ig_)8(hw + Ej, +Ek7)]}, (11.54)
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where the minus sign after the equality sign implies that the energy actually flows
from electrons to nuclei to compensate the negative nuclear energy —/#Aw. The
quantity

N, Thw
which is called the longitudinal magnetic relaxation time, gives the time scale over
which the nuclear-spin state /;; = I relaxes to the new equilibrium of equally
populated sublevels /;; = 1,1 —1,---,—I. Noting that ho < A < Eki, we

omit the second term within the curly brackets in (11.54). We then change the
summation variables from (k, q) to (k4+,k-) = (k;,k;) and transform the sums
over (ki, k) into integrals using (8.90). The term & & _, being odd in &, gives
a null contribution to the integration over —oo < &_ =< o0o. Subsequently, setting

Er, — —&k, for —oo < &, <0, we canrearrange T;! = %" /N, Tho as
1 4 W oo
T (Y [T s [ deNen
T1 h 3 0 0
E\Ey+ A% _ -
———a(E)[l —i(E»)]8(hw — E E
*EE n(E)[1 —n(Ey)]8(hw — Ei + E»)
27 (4 v [ E, [® E
=2 (Pt} [amven gt [T amNen g
h 3 A &1 Ja &
E\Ey+ A% _ _
%n(&)u —1(E»)|8(hw — Ey + E>), (11.56)
1£2

where we have used dé/dE = E/§ = E/~ E? — AZ. Finally, we take the limit
® — 0 based on the inequality hw < kpT¢, as noted below (11.45), and express
i(E)[1 —i(E)] = —kgT[0i(E)/IE]. We thereby obtain®

2 00 2 2 7
i:%kBT(w)/ dE[NS(E)]ZE + A [_an(E)]
0

3 E2 IE
(11.57)

This integral is different from (11.38) for ultrasound attenuation mainly because of
the extra quasiparticle density of states Ny(E) = 0(E — A)N(ep) E/v E? — A% in

®For electrons in solids, there appears another factor (|uy(0)|?)% on the right-hand side of (11.57)
[12], where |uy (0)|? is the relative density of electrons at the nuclear site with Bloch vector k, and
(- - )F denotes the Fermi-surface average.
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Fig. 11.2 Nuclear-spin 2.5
relaxation rate as a function
of temperature 2
s
Tw
& 1
0.5
0

0 02 04 06 08 1
/T,

the integrand, which originates from the sign difference in coherence factors (11.29).
The extra factor gives rise to an enhancement of the relaxation rate T1_1 forT < T,
beyond the normal-state value, as seen below.

First, we consider the normal-state limit of A — 0 and N,(E) — N(eg), where
(11.57) reduces to (77 — T1y)

1 T
= —kgT
T B °

|:4gIHNMBHON(€F)i|2. (1158)

3

This formula 77,7 = constant for the normal state is called the Korringa relation
[6, 12]. Temperature T here reflects the number of thermally excited electrons above
the Fermi surface (see Sect. 4.5) that can transfer energy to the nuclear spins.

Next, we consider (11.57), where the integral diverges because of [NS(E )]2 x
E?/(E?— A?). However, this divergence may be regarded as unphysical, because it
is removed immediately by incorporating anisotropy into the energy gap that should
be present in real materials. To describe the situation, we replace the density of states
in (11.57) with a smeared version,

5 1 E+§
Ny(E) = 5/5 ) Ny(E")dE’, (11.59)

where 0 < § < A. Figure 11.2 plots lel / T1;1 (T — Ti,) as a function of reduced
temperature calculated in this way with 6 = 0.1A(T). As seen clearly, there is
an enhancement in the relaxation rate over the normal-state value lel forT < T,
which is caused by the divergence in the quasiparticle density of states (see Fig. 9.4).
The corresponding peak in lel / T1;1 is called the Hebel-Slichter peak [3] that is
characteristic of isotropic s-wave superconductors. The peak reduces gradually as
the gap anisotropy is increased, vanishing completely for a gap structure with a line
node, for example, which may be confirmed by substituting the rightmost density of
states in Fig. 13.3 into (11.57).
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Problems

11.1. Show (11.11).

11.2. Show (11.18).
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Chapter 12
Tunneling, Density of States, and Josephson
Effect

Abstract The tunneling current through a superconducting-normal (SN) junction
or a superconducting-superconducting (SS) junction provides rich information
about the quasiparticle density of states and condensate wave function. On the
basis of the linear response theory developed in the previous chapter, we first
derive a general expression for the tunneling current applicable to both junctions as
(12.31). It is subsequently applied to SN junctions to show that the current-voltage
characteristics directly reflect the quasiparticle density of states as Fig. 12.2. Next,
we consider SS junctions to clarify that, besides extra structures caused by two kinds
of the quasiparticle density of states, there appears a new feature at zero bias due to
the Josephson effect, as seen in Fig. 12.4, that depends on the phase difference of the
two coupled superconductors. Thus, a weak contact between two superconductors
provides a unique means to detect the phase of the condensate wave function.

12.1 Formula for Tunneling Current

Consider two superconductors separated by an insulating layer, as depicted in
Fig. 12.1, with a chemical potential difference between superconductors L and R
given by

ML — MR = €V, (12.1)

where e < 0 and V are the electron charge and voltage across the barrier,
respectively. Setting |A(0)|/kg < 10 K, we can estimate the relevant voltage as
[V| ~ |A0)|/|e| ~ 10kg/|e| < 1073 V. We develop an expression for the tunneling
current, given in (12.31), where

¢ = ¢L— ¢r (12.2)

denotes the relative phase between Ap = |Ap|e!¥s and Ag = |Ag|el*R. Note that
(12.31) can also describe SN junctions by letting Ag — 0. Those who are familiar
with the microscopic derivation may skip to formula (12.31) to proceed.

© Springer Japan 2015 175
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Fig. 12.1 Two
superconductors L and R
separated by an insulating
layer

(k, @) (q,0)

We assume that the layer in Fig. 12.1 is sufficiently thin for electrons to tunnel
through but also thick enough for the tunneling process to be regarded as a small
perturbation. The whole system may be described by the Hamiltonian [6]:

Sy = IR, + S + K. (12.3)

Here %;i (%;ﬁ) is the Hamiltonian of the L (R) side without the perturbation, and
4 is the tunneling Hamiltonian given by

~

A 3 (qu@ltaa?qa + quaiqg@ka) , (12.4)
kqo

1
NS

where V. (VR) is the volume of the L (R) side, Ciq (cha) is the field operator of
L (R) with wave vector k (q) and spin o, and Tyq = Tq";( is the tunneling matrix,
independent of spin, for which we also assume the time-reversal symmetry Tiq =
qu,_k [8]. This Hamiltonian adequately describes the electron transfer from one

side to the other to the lowest order in 77"’ [4, 10].
The quantity of interest is the current between the superconductors. To derive the
relevant operator 7, we consider the charge operator on the L side:

OL=e) &l (12.5)

Ko’
Operator Q L(t) = e¥ol/h Q Le ol /h satisfies the Heisenberg equation of motion,

dOy.(t T O
Qst( ) _ it /1 # S, Q1] e ot 1 = it %[ A, O] e i/,

where we have used [%;i, QL] = [f%;iq, QL] = 0. Hence, we can identify the
current operator for L—R from dQL(t) /dt as!

! Quantity dQ L(¢)/dt denotes the gain of negative charges (i.e., the loss of positive charges) per
unit time on the L side.
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12.1 Formula for Tunneling Current
i e

o
[#7.01] = 5 N Yo

where we have used the commutation relation (3.62) foro = —1 and also set q — ¢’
Let us express (12.4) and (12.6) concisely in matrix form. To this end, we

—

Z (Tq’k’quT/a/ék’a/ - Tk/q’ék/a/d,\q’a/) , (126)

for the second expression.
(12.7)

transform the second term in the round brackets of (12.4) as
D Tadgbea = Y Tgqkd glra == Tiylrad g,
kq kq kq

where we have made a change of summation variables, (k,q) — (—k,—q), and
(12.8)

subsequently used c?jqaé_ka = —C_ka c?_Tqa and T_q—x = Tk":]. We also introduce

Crt
& = k) ot =
k = éikT s k = | %kt
CAT
—k{
A TxqO 0 N o, 0O
Tiq = =0 = , =|=0 = |, 12.9
ka |: 0 TkT; Q0:| ” [Q —Q0i| ( )
where o, and 0 are the 2 x 2 unit and zero matrices, respectively. Using (12.7)-
(12.9), we can express (12.4) concisely as
1 At A A
> & Tugb:dy. (12.10)
kq

7 =
NAAL

(12.11)

I =

S+

Similarly, (12.6) is transformed into
i e S S
d, T, 'k CK/ -
VVLVR % L

With these preliminaries, we now estimate the current through the barrier by
oo. Hence,

regarding A as a perturbation that is applied adiabatically from ¢
the current is absent at # = —oo0, and its expectation at time ¢ is given by (11.8) with
(12.12)

O — [ and (') — A#'e"+1,
. 1
10 =5 [ (a0, Ay
—0Q
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where Ty(t) = e/"/h fe=i7t/h and (1) = et/ =itk with A = A +
k. The first term in the expectation becomes, using (12.10) and (12.11),

() A0) = 5 75 22 Dl (0 Tnotie (D81 Tag:dg0)
kq k’ /
i
= F e 2 DAL OF ) T (b (080 T
kq k’ /
where ¢ (1) = l’ﬁ”‘/”cke_‘%zl’f/”, aq(t) = eiﬁ%{’f/”aqe_i‘%t/”, and &;;, = (&;,)T

are column vectors, and Tr denotes trace. In the second equality, we have used
A;BiC;D; = (A;D;)(B;C;) = (AD");(BC"); for arbitrary column vectors
A,---,D in performing the Wick decomposition. Note that the two expectations in
the second line are finite only fork’ = k and q’ = q. The other term —{.7; (¢’ ) (1))
can be expanded similarly. Substituting them into (12.12) and using the invariance of
the trace under cyclic permutations, we can express the current through the barrier as

1 ' A At Wt A 1A gt + W T
10 = 2555 X [ @ 0s e ) s @ 0d O
kq Y7
— (& (1)) TigB2(dg ()] (1)) T ]+, (12.13)

with d = (df)".

Next, we show that in the Heisenberg representation with respect to H =
A+ Hi, the field operators in (12.13) acquire extra phases because of the
potential difference (12.1). To see this, let us express ui. = ur + eV and write
Hamiltonian %% = HL — ,uLNL on the L side explicitly as a function of V,
%%(V) = c%ZL(O) VQL, where QL =eNp is given by (12.5). Then the equation
of motion for e (7) = eA0N/ha e AW/h can be written as

déxe (1) 1 ~ . eV,
el z[%(0)7cka(t)] + 17Cka(t)7 (12.14)
where we have used —ei'%zﬂ(v)’/h[QAL,éka]e_i'%zﬂ(v)’/h = elky(t). This yields

Cka(t) = €V 20 (1), where & (¢) is the solution for V = 0. Accordingly, the

Heisenberg representation of the field operators in (12.8) is expressible as
&) = PO (1), &) =& (), (12.15)

where f‘(t) is defined by

n ieVi/h
@) = [%e 62 } (12.16)
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Let us substitute (12.15) into (12.13), set &, (1) — €k (¢) to simplify the notation

in the following, and use (AB)T = BTAT on the transpose of the matrix product.
We can thereby express the current as

€ 1 ' ’ i~ A AT MWT* A NT A 1A% (AT (+/ 7
0= 5 7 2 [l O@OF ) i@ 0830 T

— D) (& ()& O) T (1) T (dg ()] (1)) T Je" ", (12.17)

where the expectations should be calculated at V' = 0. .
Next, we focus on the expectations in (12.17). Expressing (11.23) as ¢ = Uy py,

we can write them as (¢ ()¢, (1)) = Uy k(t)f/k(t/))(}kT and (& (n)eL @) =
[U*(}?T‘(t)f/k(t’))le]T = Ak(flf((t)f/k(t’))TU;. They can be reduced further
using (9.7), (11.26), (73 74a) = A(Ex), and (Pafyg) = (= Ey) into

o el — | 2o8L(=Ek. 1) —ig, /i (Ex, —11) 12.18
G [igny(Ek’tl) 0,8L(Ek, 1) :|’ (12.18)

(EO& )" = [ Zogu(Ei11) igny*(E"’_“)] (12.19)

—ig, fL(Ex. t1) 0ygL(—Ek.11)
where t; =t —t’, and g (Ex.t) and fi(Ex.t) = — fL(—Ey.t) are defined by?>

SL(Ex. 1) = i (E e B 4 o Pi(—Ey)e B/t (12.20)

SilBr 1) = wv (Bt — (= Epe Bt (12.21)

with 7i(Ex) = (e + 1)7' = 1 — it(—Ey).

As the matrices in (12.17) are mostly diagonal except those in (12.18)
and (12.19), we can calculate its trace easily. We subsequently make a change
of variable with #; = ¢ — ¢’ and set "+’ — 1 safely to obtain

Tial? . B
1(t) = Z |V1i“11/L / [elewl/hgz(Ek, Egity) +e Vg, (Ex, Egs—t1)

+eieV(2t—t1)/hf2(Ek’ Egit) + e—ieV(Zt—tl)/hfz*(Ek’ E,,;tl)] e 0+11

(12.22)

2We here regard u;, and vy as independent of Ej by definition but omit them from the arguments
of g and f, for simplicity.
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where g>(Ex, E;;t) and f2(Ex, Eg4;t) are defined in terms of (12.21) as
& (Er, Egt) = gL(— Er, t)gr(Eq.t) —gL(Ex, —1)gr(—E4, —1)

— [ﬁ(Eq) _ﬁ(Ek)][u%uée—i(Ek _Eq)t/h _ Ivk|2|vq|zei(Ek _Eq)t/h]

+[1—I’_l(Eq) _},—l(Ek)][Milvq|2€—i(Ek+Eq)t/h_|vk|2M§ei(Ek+Eq)t/h]’
(12.23)

So(Er, Egit) = f7(Ex, =) fR(Eg. 1) = fi" (Ex. 1) fR(Eq, —1)

= vy ugvg{[A(Eq) —n(Ex)] [ei(E"_E‘f)’/h — e TiCEk _E‘f)t/h]

—[1=(Ex) —ii(Ey)][e!EetEt/h e mHEFEDA — (12.24)

Integration in (12.22) can be performed easily yielding

2e |qu|2 -
I1(t) = — E., E;;
()] W %: VLVR[gz( 0 Eqs o)

+e¥ f5(Ey, Egio) + e 2 [, (Ex, Egi )], (12.25)

—evs
h

where g, is the Fourier transform of g, defined by

o0
gZ(EkvK;w)E/ g2(Ey, Eg;t)e™ dt
—00

= 21h{[ii(Eq) — il(EQ) |[13u28 (ho — Ex + Eq) — e * vy 28 (he + E — E,)]

+[1-(Ey) — 1 (E)|[ui|vg |8 (how — Ex — Eg)—|vi|*ug 8 (ho+ Ex+ Ey) |}

(12.26)
and fg denotes (w— = w —i04)
BB = [ A Egneeta
0
—ih —ih
= uv} i(E,) — ii(E =
UKV Ug Vg {[n( 2) —1(Ep)] (hw_—Ek T E,  ho_+E —E,,)

_ _ —ih —ih
—[1 = Ai(E) — i(E,)] (hw_ L e TET Eq)} .(12.27)

We first focus on the g, term in (12.25) and transform the sums over k and q
into integrals as (8.90) with Np(ex) ~ Ni(ep) and Nr(ey) ~ Nr(ep). We may
also approximate |Tkq|? by its Fermi surface average (|Txq|?)r to take it outside the
integral. We can thereby express the g, contribution in (12.25) as
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o

2 o0
Iy = h—i(|qu|2)F/ dgkNL(sF)/ d&; Nr(ep)&2(Ek, Eq:eV/h).  (12.28)

Let us substitute (12.26) into (12.28) and express ui’q = %(1 + &k y/Ergy) and

[k gl? = %(1 — &4/ Exy) based on (9.6). We then see that the odd functions
&4/ Er 4 give a null contribution to the integral so that both ui’ , and [vg¢]? in
its integrand can be replaced by 1/2. Subsequently, we set &, — —&, for
—00 < &4 < 0 to map the regions onto 0 < & , < co. We thereby obtain

2e © © 2r7ch
Iy = ﬁ(lquP)FZZ/O dEkNL(SF)/O quNR(SF)7

x{[1(Eq) — i(Ex)]|8(eV—Ex+ Eg)+[n(—Ey) — i(—Ex)|8(eV+ Ex—E,)
+[A(—Ey)—n(Er)|8(eV—Ex— Eg)+[i(Ey) — i(—Ep)|8(eV+ Ex + Ey) ]}

where we have used 71(—FE) = 1 —n(E). Next, we make a change of variable d§;, =
dE;/(dEy/d&) = dERO(E; — |AL|)Ek/,/E,f — |AL|? based on (9.5). We then
notice that the four terms in the curly brackets above can be expressed as a single
integral of the first term over —oo < Ej , < oo. Performing the E, integraion, we
find that the resulting /. (V') is expressible in terms of the superconducting density
of states,

E
Nis(E) = Ny(ep)——a e 6(E| - |AL)) (12.29)

E2—|ALl?
concisely as

4re

1o(V) = S TP /_ dE Niy(E)Nao(E — eV)[A(E — V) — i(E)].

The fz term in (12.25) can be transformed similarly by expressing u;v;u,v, =
e?|Ap| |AR|/4E E, in (12.27) based on (9.6) and (12.2). Indeed, differences from
the I, case lie only in (i) Mis(E) = Ni(E)|AL|/E in place of (12.29) and (ii)
function (11.30) instead of the delta function. The M function can also be written as
|AL[sgn(E)

with sgn(x) = x/|x|. We thereby obtain the total current through the barrier as

My (E) = Ni(ep) O(E] = AL, (12.30)

2 2
I(V.0) = I,(V) + Io(V) cos(%vt + qo) F+1(V) sin(%vt + qo) ,
(12.31)
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where I,(V), I7.(V), and I 75(V') are defined in terms of (12.29) and (12.30) by

I,(V) = 4:—6(|qu|2)1:/_ dE Ni(E)Ngs(E — eV)[a(E — eV) — (E)],
(12.32)
1) = B TP /_ AE Myy(E)Myo(E — eV)[ii(E — V) — i (E)].
(12.33)
o oo i(E') — i(E
1 (V) = ‘;—equqP)F P/_ dE/_ dE’ MLS(E)MRS(E/)%,
(12.34)

recalling that P denotes the principal value.

12.2 NN Junction

First, we consider the situation where L and R are both normal. The corresponding
current Ixn is obtained from (12.31) by setting Iy = Iy; = 0, replacing
Nisrs(E) — Npgr(ep) in (12.32), and using (11.36). We thereby obtain Ohm’s
law for the junction:

(V) = RV, (12.35)

with resistance

RNE

|:47re2

-1
; (lqu|2>FNL(8F)NR(8F)i| : (12.36)

12.3 SN Junction and Density of States

Next, we consider a superconducting L and normal R. The corresponding current
Isn is obtained from (12.31) by setting /7. = I = 0 and replacing Ngs(E) —
Nr(ep) in (12.32) as [6]

1 o0 3 i}
Isn(V) = P /_oo Niy(E)[i(E —eV) — i(E)]dE, (12.37)

where we have used (12.36). Its derivative with respect to V' is obtained using
0n(E —eV)/dV = —edn(E —eV)/0E as
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0 1
lelV/|A,(0)] lelV/|A,(0)]

Fig. 12.2 Tunneling current /sy and its derivative d/sn/dV given by (12.37) and (12.38) for
T/T. =0.0,0.25,0.5,0.75, 1

dlsa(V) 1 00 BA(E —eV) 70 Niy(eV)
4V RuNi(er) /_oo Nis(E) [ OE }dE T ReNi(en)
(12.38)

Thus, derivative dIsn(V)/dV at low temperatures directly measures the supercon-
ducting density of states, as first shown by Giaever experimentally [7].

Figure 12.2 presents graphs of (12.37) and (12.38) as functions of V' for
T/T. = 0.0,0.25,0.5,0.75, 1. The dIsn/dV curves clearly show a transition from
the normal density of states at T = T to the superconducting density of states at
T = 0. The behavior of Isy = Isn(V) at T = 0 can be realized schematically by
drawing the densities of states on both sides as in Fig. 12.3a; the current flows for
eV > |A| (eV < —|Al) where there are filled states on the left-hand (right-hand)
side that can move horizontally to the empty states on the right-hand (left-hand) side.

12.4 SS Junction and Josephson Effect

We now focus on the direct current through superconducting-superconducting (SS)
junctions.

Equation (12.31) implies that, besides the quasiparticle current I, there are extra
contributions, i.e., the second and third terms on its right-hand side, which for V' # 0
form an alternating current with frequency 2eV/ h (the AC Josephson effect). For the
special case with V' = 0, however, the contribution converts to direct current whose
magnitude depends on the phase difference (12.2); this is called the DC Josephson
effect [9]. Noting I 1. (0) = 0 from (12.33), we can express the total direct current as

Inc(V) = I,(V) = 8yol. sing, (12.39)
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Fig. 12.3 Schematics illustrating the density of states in electron tunneling for (a) an SN junction
and (b) an SS junction (e < 0). Shaded areas denote filled states at 7 = 0
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Fig. 12.4 Tunneling current Iss of SS junctions given by (12.39) for (a) |Ar(0)] = |AL(0)| and
(b) |AR(0)] = 2|AL(0)] at T/ T = 0.0,0.5,0.75,0.9, 1

where [,(V) is given by (12.32), and /. = —1,(0) denotes the maximum of the
extra direct current at V' = 0. Figure 12.4 plots Iss = Iss(V) for |Ag| = |AL| and
|Ar| = 2|AL| at five different temperatures.

We first focus on the quasiparticle current /,(V'). It develops from eV =
£(|AL| + |Ar|) at T = 0 discontinuously, which may be understood schematically
by graphing the superconducting densities of states (Fig. 12.3b). The temperature
variation of Isg for |[Ag| = |AL| is much slower at low temperatures than that
of Iy in Fig. 12.2 because the threshold 2|Ap| is larger by factor 2 than for the
SN junction. For |Agr| # |AL|, extra peaks develop at finite temperatures near
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= +(J]AL| — |Ar]), arising from thermally excited quasiparticles around the
edges of the excitation thresholds with a smaller energy gap. As the temperature
increases, these peaks near eV = +(]AL| —|Agr|) move towards the steeper sections
at eV = £(|AL| + |Ar]) and eventually merge into the latter at T = T, where
|ArL] = 0. The curve at T = T (T = 0.5T.R) is identical in form to the /sy curve
at T/T. = 0.5 in Fig. 12.2.

Next, we consider the Josephson current at V' = 0 in (12.39). Its magnitude
directly depends on the phase difference ¢ = ¢ — @r as sin¢ so that it differs
every time the SS junction is cooled during its work cycle. Thus, the phenomenon
can be regarded as an experimental manifestation of the spontaneously broken
gauge symmetry. A finite current for ¢ # @r may be regarded as a response of
the coupled system in attaining total phase coherence of ¢, = ¢gr. The critical
current /. = —1 y4(0) corresponds to gr — ¢, = /2, whose magnitude depends on
both temperature and T ratio T.g/ T.L between the two superconductors. Its precise
expression is obtained from (12.34) (see Problem 12.1),

c =

|AL||AR| 27 Z 1 (12.40)
le| Ry VE +TALP)E + [AP)

where Ry is defined by (12.36) and &, = (2n + 1)wkgT. The critical current
I, is plotted as a function of T in Fig. 12.5 for two different cases, specifically
|Ar(0)| = |AL(0)| and |Ar(0)| = 2|AL(0)|. There are two limits where the sum
over n in (12.40) can be performed analytically. One is |AL| = |Agr| = |A|, where
we can use (9.39) to obtain

r|al | BlA|
= h——, ALl = |ARr| = |A]). 12.41
= Selrs (1AL = x| = |A]) (12.41)

The otheris T = 0, where 27t,8_1 Zn reduces to the integral of ¢, over 0 < ¢, < 00
to yield (Problem 12.2)

(T = 0), (12.42)

_ 2 |AL|[AR] I% [IAL] — |AR]|
¢ le|Rn |AL| + |AR] |AL| + |AR]

Fig. 12.5 Normalized 1
critical current /.(T)asa | T
function of reduced 0.8
temperature for 0.6
|AR(0)] = |AL(0)] and
|AR(0)] = 2[AL(0)]

1A (0)[=[A, (0)

1(T)/1(0)

0.2

0 02 04 06 08 1
/T,
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Fig. 12.6 A superconducting
loop with two Josephson
junctions in a magnetic field

where K denotes the complete elliptic integral [1, 3]. Expressions (12.41)
and (12.42) are due to Ambegaokar and Baratoff [2].

Finally, we consider a superconducting loop with two Josephson junctions,
depicted in Fig. 12.6, where the width is assumed much larger than the London
penetration depth, W > Ar. We perform a line integral of (10.39) along the broken
line far inside the loop in Fig. 12.6 in the counterclockwise direction. The left-hand
side yields 0 from the Meissner effect; the contribution from the junction regions can
be neglected. Proceeding similarly with (10.42) for the right-hand side, we obtain

2e ()
0= V§0—7A 'dl‘=</)L2—</)L1+</)R1—§0R2+27t507

where ® and P are the total flux in the loop and flux quantum (10.44), respectively.
Thus, we obtain

P
02 =@ — 27—, (12.43)
o)
with ¢; = ¢r; — ¢r; (j = 1,2). We thereby obtain an expression for the DC
Josephson current in the loop,

I =—1I, sing;—I sin 2 o=l 51 cos sin
=— - —2r— - 77— | si —r—.
cl P1—1c2 ®1 Do cl Do @1 by

(12.44)

The last expression states that the critical current /. of the loop for I.; = I, varies

as a function of @,
)
cos| m— ).
Dy

The critical current can be measured easily by increasing / and identifying the
point where a finite voltage appears across the junction. The device, called the
superconducting quantum interference device (SQUID), has been used widely to
measure the magnetic field accurately [5].

I. =21, (12.45)
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Problems

12.1. Derive (12.40) from (12.34) at V = 0.
12.2. Show that (12.40) at T = 0 reduces to (12.42).
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Chapter 13
P-Wave Superfluidity

Abstract Superfluidity in liquid *He was discovered at ultra-low temperatures
below around 3 mK by Osheroff, Richardson, and Lee in 1972 (Osheroff et al., Phys
Rev Lett 28:885, 1972; Phys Rev Lett 29:920, 1972). The 3He atom is composed
of two protons, one neutron, and two electrons, each of which carries a spin of
magnitude 1/2, and hence is classified as a fermion according to the spin-statistics
theorem. Quantum effects in liquid *He is expected to emerge below T ~ 3K
according to Table 4.1, and the superfluid transition occurs at about 107374 to be
attributed to the Cooper-pair condensation. As the atom can be regarded roughly
as a rigid sphere, it is clearly impossible for a pair of *He atoms to make up an
s-wave bound state that has a high probability of occupying the same position
in space. However, they may form a bound state while being separated through a
higher (£ > 1) channel of expansion (8.83) to overcome repulsion. Among various
theoretical predictions, superfluidity was soon identified to be associated with p-
wave (£ = 1) pairing with total spin s = 1. Hence, the bound state has a total of
(2¢€ 4+ 1)(2s 4+ 1) = 9 internal degrees of freedom, which brings unique features to
the p-wave superfluidity including two distinct phases A and B observed in the bulk
(see Fig. 13.1). Here, we survey the fundamentals of this superfluidity (Leggett, Rev
Mod Phys 47:331, 1975; Vollhardt and Wolfle, The superfluid phases of helium 3.
Taylor & Francis, London, 1990, p 31).

13.1 Effective Pairing Interaction

The p-wave superfluidity exploits the £ = 1 channel of the expansion (8.83). It
follows from (8.84) that the corresponding spherical harmonic functions are linear
ink = k/|Kk|,

A 3 . . . [3.
Yir1(k) =F 8_(kx +ik,), Yio(k) = 1/ —k.. (13.1)
T 4

To understand the pairing interaction microscopically, we need a treatment beyond
the mean-field level [2] that is outside the scope of this book. Nevertheless, it has
been established that the effective interaction near the Fermi surface can also be
expressed to a first approximation as
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Fig. 13.1 Schematic 7-P 40 . . . . .
phase diagram for *He at solid
ultra-low temperatures [5, 16]
30 f L
5 20 L superfluid i
~ He-B
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T(mK)
1 1
KD e k') = 10 — |6 DO (e — [ ) (13.2)

with kg T, < &. < ¢F, in exactly the same way as (9.26) for s-wave pairing. Hence,
we retain only the £ = 1 element in (8.83), set ¥1(k, k") — V/I(Sﬁ) (k,k’), and then
substitute (13.1). We thereby obtain the p-wave pairing interaction as

1
V) = 4V Pk k) Y Vi)Y, (K) = 370k Kk K. (13.3)

m=—1

13.2 Gap Matrix

The pair potential for homogeneous systems within the mean-field theory is defined
generally by (8.76) as a 2 x 2 gap matrix. Let us express it in another way that has
been used widely especially for p-wave pairing. To this end, we notice that any 2 x2
matrix M = (Mj;) can be expanded in terms of the complete set (8.42),

(13.4)

M = [Moo, +M-glio, = [_M"‘ t o MZ} ,

—My+ M. M, +iM,

where io y has been introduced for convenience. Thus, the four matrix elements
M;; (i,j = 1,2) can be expressed alternatively in terms of the four coefficients
(My,M). The gap matrix A(Kk) is also a 2 x 2 matrix, which for p-wave ({ = 1)
pairing should obey the symmetry relation AT(k) = A(Kk) from (8.87) and (8.89).
Hence, the coefficient of g, is 0 in the expansion of A(k) as (13.4). We can also
neglect the k = |k| dependence of A(Kk) near the Fermi surface for the pairing
interaction (13.2). For |&| < &., we therefore expand the gap matrix for p-wave
pairing to within an overall constant A > 0,
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AK) = AdK)-gig,. (13.5)
Explicitly, we have
[Am(k) AN(k)} _ Al ridy) o d(l) (13.6)
Apr(k) Ay (k) d (k) d. (k) +id, (k) '

With amplitude A extracted in the expansion, vector d should obey some normal-
ization condition in terms of angular integration (8.85); we choose for convenience

/ ko|d(f<)|2 = 1. (13.7)

47

It follows from (13.6) that vector d(lA() lies in a plane perpendicular to the
quantization axis of spin. .

As the Y,,(k)’s are linear in k, we can in general expand d for p-wave pairing
as

dyk) =" Ayrky (.0 =x.y.2), (13.8)
7]/

where {A,,} are the expansion coefficients obeying constraint (13.7). To find the
equilibrium state, we need to minimize the free energy in terms of not only A but
also {A,y}.

It can be shown that the transition temperature 7 is the same for any configu-
ration of {A,,/} within the p-wave pairing (Problem 13.1). This degeneracy in the
free energy is lifted eventually for 7' < T.

13.3 Two Bulk Phases

As already mentioned, liquid *He realizes two bulk superfluid phases distinguished
as “A” and “B” in Fig. 13.1, whose gap structures have been confirmed unambigu-
ously (Fig. 13.2). We discuss each of them separately in this and following sections.

13.3.1 B Phase

Although discovered later [11, 12], the B phase has now been established as
occupying a large domain in the P-T phase diagram except for the high-pressure
region near 71, [15]. Its gap structure is identified as the Balian-Werthamer (BW)
state [4].
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k. k. k,

B phase (BW state) A phase (ABM state) polar state

Fig. 13.2 Energy gaps of the B and A phases (shaded areas) above the spherical Fermi surface,
which correspond to the lowest excitation energies given in (13.11) and (13.20), respectively. The
A-phase gap has point nodes at the north and south poles. The polar state with a line node along
the equator, which has never been observed as a bulk phase, is also plotted for later convenience in
Sect. 13.4

The d vector and gap matrix are expressible, for example, as

dk)=k <«— AK =A KL ke (13.9)
k. ki

where k) = k. + ik,, and we have used (13.6) and (13.7). Substituting (9.2)
and (13.9) into (8.79), we find the matrix to be diagonalized,

0 —AKT Ak,
0 & Ak, Ak
—Ak, Ak, —& O
Ak, AK* 0 &

e = (13.10)

The eigenvalues of this 4 x 4 matrix are easily calculated based on Laplace’s
expansion of the determinant in terms of cofactors [3, 9]. However, we obtain them
more readily here by noting that .7 is proportional to the 4 x 4 unit matrix 1,

e = EA, Ex = /E2 + A2, (13.11)

It follows from this equality and (8.43) that the eigenvalues of %%gdc are given by
4 E; with double degeneracy for each. The eigenvectors corresponding to Ej are
obtained from the first and second rows of the eigenvalue equation:

(%dG - Eki) [:?33} = [g} (@=1,2),
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by comparing them with the first and second rows of (9.8) for @ = 1, 2. We obtain

Uj 0
u (k):| 0 |:llz(k):| Uy
= .. = ", 13.12
e T (312
vkkz Ukkj_

where uy and vy are also given by (9.6) for s-wave pairing. Substitution of (13.12)
into (8.72) yields 5" (k) in terms of A(k) in (13.9),

AR k)= = [ : kJ (1 —2ii) = A(k)—ta h’B—k (13.13)

Next we substitute (13.3) and (13.13) into (8.76), transform the sum over K’ into
an integral as (8.90), approximate N(ex’) ~ N(er), make the change of variable,
ek’ — &, and perform the angular integration over kK’ using

aQ
/4—“k key = 5,,,,/— (.1 = x,v,72). (13.14)

We thereby obtain the gap equation

A(K) = —N(ep) ¥, / dgA(k)—tanh%E (13.15)

Further, we remove a common “factor” A(K) and introduce a dimensionless
coupling constant:

g1 = —N(ep) ¥, (13.16)

We then find that (13.15) is identical to (9.30) for s-wave pairing with go — g;. In
particular, the transition temperature can be expressed in terms of g, above,

2 Y
keTy = —ge /8~ 1.13ge V81, (13.17)
T

It also follows from (13.11) that the thermodynamic properties of the BW state in
terms of 7'/ T; are completely identical to those for s-wave pairing.

Finally, of note is the fact that the state Rd(k) obtained from (13.9) by a
three-dimensional rotation R is also the BW state. The degeneracy is partially
spontaneously broken by the dipole interaction between nuclear spins, which is not
included here [10, 15]. The remaining degeneracy is also lifted by other factors such
as surface effects and initial fluctuations.



194 13 P-Wave Superfluidity

13.3.2 A Phase

The superfluid phase of >He that was first discovered was the high-temperature high-
pressure phase called the A phase [11, 12], which is now identified as the Anderson-
Brinkmann-Morel (ABM) state. Having an anisotropic energy gap [10, 15], this state
was found as a theoretical candidate for the stable p-wave pairing by Anderson and
Morel in 1961 [2], and studied in more detail by Anderson and Brinkmann in regard
to its stabilization [1].

Given the normalization condition of (13.7), the d vector of the ABM state may
be written

d(k) = \/glgj_i «—s Ak = \/gA [kol kﬂ (13.18)

with ]/C\J_ = lgx + ilgy, for example. Let us substitute (9.2) and (13.18) into (8.79).
The resulting BdG equation can be solved easily by the procedure used in obtaining
(9.8) for s-wave pairing,

0 0 Ak
Sk 3 \[ + E.O0 0 0
0 ) EYN T ..
: vz Oo=0 | OB 00 (13.19)
0 SAKY & 0 0 0—-Ex 0
T 00 0 —E
3IART 0 0 —&

Here, the excitation energies are anisotropic,

3 .
=&+ EAZVCJ_P, (13.20)

for which the energy gap vanishes at the north and south poles of the Fermi surface
where k 1 = 0 (Fig. 13.2). The unitary matrix Uy takes the form

ug 00 vy I = Ex + &
A 0 u v¥ 0 2Ex
Uk = k , . 13.21
K 0 vk ug O [Ak* ( )

00 v
vk e L V2Ex(Ex + &)

Hence, the eigenvectors belonging to Ey are given by

u; (k) = [L:ﬂ vi(k) = Lﬂ w(k) = [:ﬂ va(k) = [ﬂ (13.22)
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Substitution of (13.22) into (8.72) yields 5" (k) as

~(1) _ O ukv:(l — Zﬁk) b ﬁ
(k) = [Mkv:(l 2 0 } A(k)ZEkt nh (13.23)

Thus, 5V (k) is expressible in terms of the gap matrix also for the ABM state. Let
us substitute (13.3) and (13.23) into (8.76), change the sum over k’ to an integral
as (8.90), approximate N(ex’) ~ N(er), make a change of variable ey — &/,
and perform the angular integrations over kK’ using (13.14). Gap equation (8.76) is
thereby transformed, using g; in (13.16),

,3kk’+kk/+kk k’ ,
1 = —N(sr )“//(eﬁ) dé /ko ( 2 L tanh PEx

2FEy 2
AQ 30k k? + ik k’z) BEw
= d&y tanh
=g /_EC Ek/ Ee anh —
dQ / k + lk k 2 E /
—g1/ dé&k’/ w5 DIk tanh'B i
e 2Ew 2
where we have expressed K = (sin By’ cos gy, sin Gy sin gy, cos G) in polar

coordinates and used identities:

/2” d@k/ic\/ Y _/2” d@k’]g%/ — 0 /2” d@k’lglz _/2” d</’k']€ LAk
1%z = xty — x — y .
0o 2r 0o 2 0o 2m 0o 2 2

We thereby obtain the gap equation for the ABM state as

g do glg 2 £
1:g1/ dEk/4—k2| Ll tanh&. (13.24)
0 7 Ex

2

The transition temperature T is determined by setting 7 — T and Ex — & in
(13.24). One confirms easily that it is also given by (13.17). As mentioned earlier,
all the p-wave states are thermodynamically degenerate at T = 7. (Problem 13.1).
This degeneracy is lifted as the temperature is lowered below 7.

Proceeding similarly as in (9.34) for the energy integral, the gap equation (13.24)
at T = 0 can be solved analytically by changing the order of the energy and angular
integrals,

1 _/d9k3|A lz/fcdsk
g 4 2 o Ex
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2 d de 6k 3
= / a3 / Kok sin k in2 Ok In (t = cosby)

2ec
\/g Ay sin G

3! 2 1.3 1
== &t -=AH|m=—=—--In>—=In(1—¢>
4/_ ( )[HAO iy )}

2ec 5
== ———16
"A T 2™

where the last integral over ¢ has been performed using

(x +a)"t! [

/(x+a)"ln(x+a)dx= —

In(x +a) — %}

Hence, we obtain the angular average of the energy gap for the ABM state as (Ag —
AABM)

5/6
AGBM = g e /1 H5/6-3In6 - %Agw = 0.94ABY, (13.25)

where ABY = 2¢.e71/81 is the ener ap of the BW state. The condensation ener.
0 gy gap gy

of the ABM state at T = 0 is obtained from (9.52) by changing A2 — %|A§BMkAJ_ |2
and subsequently performing the angular integral [ dQy/4m,

D dQ D
o = ~BXeE) (o [ SR, p PO (a0 gz,
(13.26)
where F3V = —%D(SF) (Agw)z is the condensation energy of the BW state. Thus,

our mean-field theory predicts that the ABM state is metastable with a higher free
energy than the BW state. It turns out that this conclusion holds for 0 < T < T,
within the mean-field theory. Indeed, the prediction agrees with the phase diagram at
low pressures in Fig. 13.1. However, the stabilization of the ABM state in the high-
pressure region cannot be explained within the mean-field theory; its explanation is
attributed to spin-fluctuation effects that are describable only by a treatment beyond
the mean-field level [1, 8, 13].

A couple of comments are in order before closing the section. First, the ABM
state also has a large degeneracy. To be specific, consider (13.18) and rotate both
Z in the spin space and k 1 in the orbital space independently around arbitrary
axes by arbitrary angles. The state thereby obtained is also an ABM state with
the same free energy. Part of the degeneracy is spontaneously broken through
dipole interactions between nuclear spins that are not included here [10, 15]. The
remaining degeneracies are also lifted by other effects such as surface effects and
initial fluctuations. Second, the complex d vector of (13.18) implicitly describes a
Cooper pair with an orbital angular momentum #, which is expected to produce a
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total angular momentum of (N/2)% at T = 0 due to the macroscopic condensation
into identical two-particle bound states [6, 7]. This effect remains to be confirmed
experimentally.

13.4 Gap Anisotropy and Quasiparticle Density of States

The gap structures are different between the A and B phases; whereas it is isotropic
for the B phase, the gap closes at a couple of points in the A phase. We now see
that this difference manifests itself in the quasiparticle density of states at low
energies, which are observable by low-temperature thermodynamic experiments.
Thus, our main purpose here is to find general means to identify this gap anisotropy
in experiments [14].

The quasiparticle density of states is defined by (9.46), which is expressible
as (9.48) for s-wave pairing. Its extension to p-wave pairing is easily performed
by incorporating the angular dependence into the energy gap as A — |Ag| and
averaging the resulting expression over the solid angle,

dQ E
Dy(E) = D(er) / =y Bl g(E| - A, (13.27)

B2 [A )7

We consider three |Ak|’s given in terms of k = (sin  cos @, sin  sin gy, cos )
as

A :BW state
|Ax| = 3 +/3/2 A sin 6 : ABM state . (13.28)
V3A cos by : polar state

Thus, besides the BW and ABM states given by (13.11) and (13.20), respectively, a
novel polar state d(K) = \/§I€Z [10, 15] is included here. Although it is not stabilized
as a bulk phase, it has a distinct gap structure in that it closes on the equator of the
Fermi surface (Fig. 13.2) to make it worth including in the present considerations.

Integral (13.27) for each gap structure can be performed easily, and we obtain
(Problem 13.2)

|E]

(EZ_AZ)]/ze(IEI_A) :BW state

DE)_ | 1E| | |IEl+Ams
D(SF) 2Amax |E |_Amax

: ABM state |,

n|E|
ZAmax

2 A
[H(Amax — |E|)+0(| E|—Amax)— arcsin I;alx} : polar state
T
(13.29)
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L E L L
-A A —V/3/2A  \/3)2A
BW state (full gap) ABM state (point nodes) polar state (line node)

Fig. 13.3 Quasiparticle density of states given by (13.29). Broken lines denote the normal density
of states

with Apax = V3/2A (Apax = \/§A) for the ABM (polar) state; each is plotted in
Fig. 13.3. At low energies of |E/Amax| < 1, D(E) can be approximated as

0 :BW state (full gap)
(|E|/ Amax)? : ABM state (point nodes) . (13.30)
7| E|/2Amax : polar state (line node)

Dy(E)
D(ep)

These relations give the general connection between the low-energy density of states
and the dimension of nodes in the gap; they are also valid for anisotropic Fermi
surfaces except for the prefactor.

The low-energy density of states manifests itself in temperature dependences
of various thermodynamic quantities. First, we consider heat capacity. Let us
substitute the latter two expressions of (13.30) into (9.47), rewrite 0ii(E)/0T =
—(E/T)on(E)/IE, perform an integration by parts, and express C in terms of
the dimensionless integral (4.39). We thereby find that the low-temperature heat
capacity behaves as

e A/keT : full gap
C(T—-0)xqT3 : point nodes , (13.31)
T2 : line nodes

where we have used (9.49) for the full gap.
Second, we consider an anisotropic extension of the Yosida function (10.16)
given by

YK, T) = _2/00 dg a’z(EE"), Ex = VE + |Al% (13.32)
0 k

Its angular average can be transformed by writing d§ = (d§/d Ex)d Ex, substituting
dé/dEx = Ex0(Ex — |Ak|)/\/ EZ — | Ax|?, exchanging the order of integrations
over dQ2x and d Ey, and using (13.27) as
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o [dQu (% D(E)di(E)
Y(T):/HY(k,T)— 2/0 dED(EF) = (13.33)

Let us substitute the latter two expressions of (13.%0) into (13.33), perform
an integration by parts in terms of E, and express Y (7) using dimensionless
integral (4.39). We thereby obtain

. e A/ksT : full gap
Y(T - 0)ox 4 T2 : point nodes |, (13.34)
T :line nodes

where we have used (10.48) for the full gap. The temperature dependence is
observable by measuring the spin susceptibility and penetration depth, as described
by (10.18) and (10.40) with (10.22).

Problems

13.1. Follow the procedure below to show that every homogeneous p-wave ({ = 1)
state has an identical transition temperature 7.

(a) Letus consider the cases where submatrix £ in the homogeneous BAG
equation (8.79) is given by £z = £ro, in terms of & in (9.17) and o,
in (8.42). Solve the BAG equation by a perturbation expansion in terms of
A(K) to show that (8.72) to lowest order becomes

- 1 Bék
(k) ~ A(k)=— tanh ===
P (k) _()2& anh =
(b) Substitute the result of (a) and (13.3) into (8.76) to show that the resulting
equation at T = T is given for any internal state as

-1 e £
— = dé—tanh (13.35)
N(ep)#," /_ g25 2kgTe

that yields (13.17) for the transition temperature.
13.2. Show (13.29) for the ABM and polar states.

References

1. PW. Anderson, W.E. Brinkman, Phys. Rev. Lett. 30, 1108 (1973)
2. PW. Anderson, P. Morel, Phys. Rev. 123, 1911 (1961)
3. G.B. Arfken, H.J. Weber, Mathematical Methods for Physicists (Academic, New York, 2012)



200 13 P-Wave Superfluidity

. R. Balian, N.R. Werthamer, Phys. Rev. 131, 1553 (1963)

. D.S. Greywall, Phys. Rev. B 33, 7520 (1986)

. M. Ishikawa, Prog. Theor. Phys. 57, 1836 (1977)

. T. Kita, J. Phys. Soc. Jpn. 67, 216 (1998)

. Y. Kuroda, Prog. Theor. Phys. 53, 349 (1975)

. S. Lang, Linear Algebra (Springer, New York, 1987)

10. AJ. Leggett, Rev. Mod. Phys. 47, 331 (1975)

11. D.D. Osheroff, W.J. Gully, R.C. Richardson, D.M. Lee, Phys. Rev. Lett. 29, 920 (1972)

12. D.D. Osheroff, R.C. Richardson, D.M. Lee, Phys. Rev. Lett. 28, 885 (1972)

13. J.W. Serene, D. Rainer, Phys. Rep. 101, 221 (1983)

14. M. Sigrist, K. Ueda, Rev. Mod. Phys. 63, 239 (1991)

15. D. Vollhardt, P. Wolfle, The Superfluid Phases of Helium 3 (Taylor & Francis, London, 1990),
p.- 31

16. J.C. Wheatley, Rev. Mod. Phys. 47, 415 (1975)

NelNecREN Bio RV, RN



Chapter 14
Gor’kov, Eilenberger, and Ginzburg-Landau
Equations

Abstract One of the most outstanding features of superconductivity is that there
can be various stable structures with quasimacroscopic inhomogeneity, such as
the flux-line lattice realized in certain superconductors under an applied magnetic
field. To describe these structures concisely, we here simplify the BdG equations
in three steps. First, we derive the Gor’kov equations (14.26) for the Matsubara
Green’s functions, which is equivalent to the BdG equations. Second, we integrate
out an independent variable from the Gor’kov equations to derive the Eilenberger
equations (14.61) and (14.62) for the quasiclassical Green’s function (14.59). Third,
we focus on the region near 7 to simplify the Eilenberger equations further into the
Ginzburg-Landau (GL) equations (14.89) and (14.94). Those who are interested
mainly in the physical phenomena rather than the microscopic derivations of the
standard equations may skip this chapter.

14.1 Matsubara Green’s Function

Introduced in 1955 [14], the Matsubara Green’s function is now regarded as one
of the most fundamental tools in equilibrium statistical mechanics. We introduce it
here and enumerate its basic properties.

Let us distinguish the creation and annihilation operators with integer subscripts

[11],
Vi(8) = ¥ (), Ve (8) = ¥ (E), (14.1)

so that 1/A/iT &) = 1}3_,- (&) holds (i = 1, 2). Next, we introduce the field operators in
the Heisenberg representation in terms of a new variable 7, € [0, ],

Di(1) = e (g)e 7 (14.2)

with 1/},-(1) = 1/},- (&1, 71). Replacing 1y — ity /% yields the standard Heisenberg
representation with respect to time #;.

© Springer Japan 2015 201
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We now define the Matsubara Green’s function using the field operators and step
function (4.11) as

Gy(1,2) = —0(t) — ) (Y (DY3—,; (2)) + 0(r2 — 11) (¥r3—; () (1))

~(T i (D)Yrs—; (2)), (14.3)

where the second expression is to be regarded as defining the T, operator. Thus,
T, rearranges field operators to its right in descending order of 7, multiplying the
result by 0 = —1 for each exchange of adjacent operators. Diagonal elements
G11(1,2) and Gyy(1,2) are composed of a pair of creation and annihilation
operators, which remain finite even for normal states. In contrast, the off-diagonal
elements are characteristic of superconductivity; for example, G,(1,2) is made
up of two annihilation operators and sometimes called the “anomalous” Green’s
function.
The Matsubara Green’s function has the following properties.

(a) Gy4(1,2)is afunction of only 7| — 1.

The proof proceeds using TrAB =TrBA and the commutativity of S

—1

and e as follows:

Gy(1,2) = —Tr TP @ (6)e ™7 27 s (£)e 7
= _Tr f}eﬁ(ﬂ_‘}?)e(”_m"@&i (Sl)e_(t‘_TZ)‘}?%—j %2)
= Gy61.6n 1 — ). (14.4)

Operator T does not affect the proof at all, as may be confirmed by performing
it separately for 7; > 1, and 77 < 1, without YA}. It follows from 0 < 7,17, < B
that —f <1 —1p < B.
®) Gy(61.6:1+ f) = —Gy(61, & 7) for T € [-B,0].
This is shown as follows. First, the right-hand side is given explicitly by

—Gy(E1, 25 7) = (T (&1, DV (£2))
= P Tre M (E)e g™

The left-hand side can be expanded as

Giy(Er, E:T + B) = =P Tre P77 ()T s (8y)
=~ Tre (E)e T e P s (6)

= P Tre P (E2)e™ i En)e ™
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Hence, we conclude Gj;(&1,6:1 + B) = —Gj(€1, & 7). It is convenient
to expand Gy in a complete set that satisfies boundary condition g(t + ) =
—g (7). With this aim, we consider the first-order differential equation:

dg(7)
dr

= —ieg(7), gt +B) =—g(1), (14.5)

where factor —i has been introduced for convenience. Its general solution is
g(t) oc e ", Imposing the boundary condition yields eigenvalues ¢ (with units
of energy)

en=Q2n+ /B (n=0,%1,£2,--+). (14.6)

The quantity &, /% is called the Matsubara frequency for fermions. The basis
functions {e~* %/ \/,E } with = € [0, 8] form a complete orthonormal set for an
arbitrary function f(t) that satisfies f(t + ) = — f (7). Their completeness
relation reads

|
§(t1— ) = 5 D et (14.7)

n=-—00
Expanding in the basis functions, the Matsubara Green’s function becomes

1

Gij(§1.60:7) = 3

> Gylkr.&en)e, (14.8)

n=—0oo

where we distinguish the Gy;’s on each side by their arguments. The inverse
transform is obtained by multiplying the equation by e*»’* and performing
integration over t € [0, 8]. The result is given with n’ — n as

B 4
Gij(&1, 65 6n) =/O Gij(&1,&; 1) " dr. (14.9)

(©) Gi(1,2) = G (1, 6112) = —G3—3-i (2, 1).
The first equality for 7 = 7 —7, > 0 can be proved using (AB)* = (B' A")
and Iﬁ;(é) =3 ; (&),
GrE & 1) = —(e™ i (E)e ™ Ysj (82))*
= —(Jj (E)e ™ i (Ee™”)

= (" (E)e ™ sy (81))
= Gji(§2, 615 7). (14.10)
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It follows from (b) above that the equality also holds for t € [—f,0]. The
second equality obtains using the anticommutation relation of the fermion field
operators under the influence of 7; and notingi =3 — (3 — i),

Gy(1.2) = (T (DP3—; (2)) = (Tea—; )y (1))
—G3—j3-i(2,1). (14.11)

The two symmetry relations are expressible in terms of the Fourier coefficients
in (14.9), specifically

G, 65 60) = Gji (52,615 —en) = —G3—j3-i (52, 615 —en). (14.12)

14.2 Gor’kov Equations

We consider a system described by the Hamiltonian:
o = [ il @A)

+ % / d& / A&7 (I, — DY &) T ETENT (E), (14.13)

to derive the Gor’kov equations within the mean-field approximation. To describe
phenomena in magnetic fields, the one-particle operator ., now contains the vector
potential A, = A(r,),

s (Pr—eAy)’ B

Ay = i, (14.14)

2m

with m and e < 0 denoting the electron mass and charge, respectively.!

14.2.1 Egquation of Motion for Field Operators

As a preliminary, we obtain an equation of motion obeyed by 1&,- (1).
Differentiation of (14.2) with respect to t; yields

81&,‘ (1) — et]J’YA’

5. [ (E1) — P (61) A7 . (14.15)

'We omit the Zeeman coupling once again. See the comment below (10.33) on this point.



14.2  Gor’kov Equations 205

Using commutation relation (3.17) for o = —1, we then move 1},- (&) in the term
FC; (&1) above successively to the left to cancel —; (§1)77. The result fori = 1
is given by?

(1 Y 1 e
B — e A+ 5 [ a6 G- @) eI E)
T 2

1 7 7 ~ I
— E / dgé“f/(lrl - rlz|)WT(§£)1//(§£)W(§1):|6_”%

The second and third terms in the square brackets yield the same contribution, as
seen easily using commutation relation ¥ (£,)y (&) = —¢ (&) (§) and &, &) —
&|. Finally, we exchange the order of 4 and e 3 insert identity operator

e 17 e"” between every pair of adjacent field operators, and express the result
in terms of the operators in (14.2). We thereby obtain

glglt(ll) =~ - [ d&[ 7 (I — £} Y1) (1) (1), (14.16)

where 7; in 1’ = (§], 71) is equal to that in 1 = (&, 7;). For i = 2, it is convenient
as a preliminary to apply integration by parts to the first term in (14.13),

[ i @i = [ a4 E)] e
and use it to calculate the commutator of (14.15). The final result is given by

(1)

o = () + / AE 7 (i — DYDY, (14.17)

The two differential equations (14.16) and (14.17) can be expressed in a unified
way as

3 (1)
81,'1

— 1y [%ﬁ'ﬂ/?,-a) + [agrn —ra|>N1&z<1’)1/>1(1’)1/>,-(1)} ,
(14.18)

2The calculation of the commutator [/ (), L%A”]+ = lﬁ(&)j{” — %@(51) is equivalent to
the functional derivative §.9 /8 T(£)) by incorporating the anticommutation relation (3.17).
Similarly, [/ (£)), 7] is equal to —8.52 /8y (£,).

3There is only a single point & = £ in (14.13) that does not commute with J(Al , its measure being
zero in the integration. Therefore, the procedure is justified.
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where Ji}l" denotes l}ll = %% and l}lz = Ji}l*, and N is the so-called
normal-ordering operator that places the creation operators to the left of the

annihilation operators, multiplying by ¢ = —1 for each exchange of field operators;
specifically,
= . . D> (1) (1), (1 i=1
Ny (1yd 1y = 2 D) . (14.19)

(=29 ()Y (1)Pn (1) i =2

The case i =2 can also be expressed as (—1)" v, (1) ¥2(1)9 (1).

14.2.2 Derivation of the Gor’kov Equations

We are now ready to derive the Gor’kov equations by differentiating G;(1,2)
with respect to t; and adopting the mean-field approximation with the Wick-
decomposition procedure.

The 7, dependence of (14.3) lies in the step function and Iﬁ,-(l). Using §(x) =
0’'(x) = —0'(—x) as noted below (4.11), we differentiate Green’s function with
respect to 7 to obtain

0G;(1,2)

5o = 3 =) (B ) + (J5 Ti(1) ]

< awl(l) dne, (2)>

The first term on the right-hand side contains expectations at 7; = 75, which do not
depend on 71, as seen in (14.4). Hence, it can be simplified with the help of (3.17)
for o = —1to —8(t1 — 1)8;8(¢1,&) = —0;6(1,2). The second term can also be
expanded by substituting (14.18). We thereby obtain

an)(fl 2) —8;6(1,2) — (=1)' [ AT (1) (2)) +/dg;«//(|rl_r/1|)

< (F () () (D1 (2>>}. (14.20)

Subsequently, we adopt the mean-field approximation as for (8.26). A couple of
key points in the process are summarized as follows: (i) The first condition in
(5.13) implies that the T, operator should be incorporated in the expectations with
different “times” after the Wick decomposition. (ii) The expectations of “equal-
time” operators do not depend on 7.

Keeping these points in mind, let us write the interaction term of (14.20) for
i = 1 without N and rearrange it using (8.29), (8.30), (8.34), and (8.35),
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[ e =rDE D21 0 (D 2)
~ / déiﬂ/un—r’l|)[(%(1/)%(1/»<ﬁ1ﬁ1(1>1ﬁ3-j(2)>
— ()P (N Td (1935 (2)) + (G ()P (DN T (1) (2))}
= [aei | =0"€1, 061,12+ 51, )Gy 12
+ (6. )62 (1,2) |
—— [asi| e 606y (1.2 + AL EDG 072)]
Substituting this result into (14.20) fori = 1 gives

0 N
(‘a_n - %) Gy (1.2) - / 0| Ui (61, €)1y (1.2) + A1 E)Gay (11.2)]
= 5,;8(1.2). (14.21)

The interaction term of (14.20) for i = 2 similarly becomes

[ Urr=rDE a0 (1) 2)
~ / dsmm—r1|>[<&2(1’)¢1(1/>><w2(1)¢3-;(2)>

— (YY1 N Td ()3 (2)) + (G (DI ()T (1) (2>>}
= / dsmm—ri|)[<¢2(1’)&1(1/)>*<M2(1)¢3-;(2)>

— ()P (P (TP (13- () — (G (DI ()Y (T (1) (2>>}
= / dsi%(nl—rn)[—p(“*(si DG (1,2) + p V" (E1.£))Go; (1. 2)

+ 6,606, (1,2)|

__ / @] [%;F(sl, E)Goy (12) + A (61, E) Gy (1, 2)}.
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Substituting into (14.20) for i = 2, we obtain

0 ~
(‘a_n“‘/l*) Gy (1.2)+ / 0| [ 2461, E)Gay (11.2) + A (51 EDG1 (1.2)]

=5,,8(1,2). (14.22)

Next, we expand §(tr; — ) and G;(1,2) as (14.7) and (14.8). The corre-
sponding coupled equations for the Fourier coefficients can be calculated easily.
Indeed, they are derivable from (14.21) and (14.22) using the three replacements,
Gi(1,2) — Gj(k1,&5e,), —0/0T1 — igy, and 6(1,2) — §(£1,&). To express
them concisely, let us introduce matrices in the particle-hole space, i.e., the Nambu

matrces4:
et =[G ] 4
O o A
$(61.62) = [5@‘0’ ? e &)} . (1425)

Using (14.23)—(14.25), we can combine all four equations into a single matrix
equation:

[18” M . N %*}G(sl,&;m— / 46 %306 (61, 6)G (6. 823 6) = 861, £2).

(14.26)
This is called the Gor’kov equations [6]. More specifically, it is an extension
of the equations that Gor’kov derived for s-wave pairing to an arbitrary pairing
symmetry expressed in the concise representational form of Nambu [17].
The Gor’kov equations in the mean-field approximation are equivalent
in content to the BdG equations. This may be seen by observing that
the matrices that operate on the Nambu Green’s function in (14.26) are
identical as a whole for ie, — 0 with the matrix in (8.38) to be diagonal-
ized.

“Like operators, we denote the Nambu matrices in the particle-hole space also by a caret ~ above
each, but they are easily distinguished from operators by context.
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14.2.3 Matrix Representation of Spin Variables

For later purposes, we shall express the spin degrees of freedom explicitly as
matrices.

Let us introduce a new notation for each of G as Gi; — G, Gjp = F, Gy —
—F, and Gy, — —G. We also separate the spin variable & =1, | from § = ra to
write the four new functions as

G151, 82:80) =Gy (11,125 8,)
Gua(61.52:8n) = Fuayoy (11,121 61)
Go1(§1.62:60) = —Fayo, (r1.12180)
Gn(€1.62:60) = =Gy, (1,125 8p)

(14.27)

Subsequently, the spin degrees of freedom is made evident by constructing the 2 x 2
matrix

GTT(Pl,I'z;gn) GN(rl,I‘2§8n)
Gl e = ] 14.28
Gilrr, 125 6a) [Gw(rl,rz;sn) Gy (X roien) e

In the matrix notation, symmetry (14.12) now reads
Gri,m;8) = Gt 113 —8,) = G (v, 71 —8), (14.29)
F(ri.ryiey) = —F (2,00 —e,) = —FT (02,11 —,). (14.30)
where T and T denote Hermitian conjugate and transpose, respectively. From
these symmetry relations, G(ry,r2;e,) = G*(ry,r2;e,) and F(ry,rye,) =

F*(r1,1p;8).
The Nambu matrix (14.23) in this notation can be expressed as a 4 x 4 matrix,

. G(ri,ra8,)  F(ri,rae)
Grire)=| & £ . 14.31
(r1, 123 60) [—E*(rl,rz;sn) —G*(ry,12;81) ( )
Expressing (14.24) and (14.25) similarly, we have
R Uyr(r1,r2)  A(ry,ra)
7 ’ — | £nF 2 , 14.32
8aG(T1,12) [—é*(rl,l‘z) U (v 12) ( )

8 — 5(r17r2)g0 Q
S(rl,rz)—[ 0 8(1.1’1.2)%] (14.33)
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where o, and 0 are the 2 x 2 unit and zero matrices, respectively. Using them, we
can rewrite (14.26) as

[(isn — A, 0

0 (i, +t%;1*)20:| G(rler;Sn)_/d3r3 UG (r1,13)G (13,125 81)

=38(r1,1). (14.34)

14.2.4 Gauge Invariance

Equation (14.34) has an important property called gauge invariance.
Let us introduce the gauge transformation in terms of a continuously differen-
tiable function y(r) by

A(ry) = A'(ry) + Viy(ry)
Yi(1) = g (Dermh (14.35)
Pa(l) = 5 (1)eerm )/t

where a prime ’ distinguishes f’ from f" as a different function. The corresponding
variations of Green’s function (14.31) and potential (14.32) are expressible in terms
of the matrix

O(r)) = I:Qoeie;()(rl)/h er—ig{(rl)/fl} (14.36)

as
G(ri,r2ie,) = O G (11,125 8,) O* (1), (14.37)
Usac(X1.12) = O(r) Uy (r1, 12)O* (r2). (14.38)

Property (14.38) follows by recalling (8.29), (8.30), (8.34), and (8.35). Moreover,
operation (FihAV, — eA)* on eXiex1/% yields

(FihV) — eA)’e®n/h = Fen/M [FihV, —e(A) — Vi)
— e:l:ie)m/h(:Fith _ eA/l)Z )

so that

— Ao, 0 A A — Ao, 0
.~ e =6 1=0 = 14.39
|: 0 g0:| (ry) (1'1)|: 0 %/*Qo] ( )
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holds for the Jf/ term of (14.34). Let us substitute (14.37) and (14.38) 1nt0 (14.34),
then use (14.39), and multiply the resulting equation by O*(rl) and O(rz) from
the left and right, respectively. We then realize that the resulting equation in terms
of A’, G'(r{,r>; ¢,), and %BdG (r, 1) is identical in form to (14.34). This is gauge
invariance, implying that there is an arbitrariness in the choice of vector potential.
Incidentally, we sometimes encounter a phrase like “spontaneously broken gauge
symmetry” in superfluids and superconductors [13]. What is meant by this is that
superconductivity is a state described by a macroscopic wave function with a fixed
phase. It should be emphasized that gauge invariance is maintained as it must.

14.2.5 Gauge-Covariant Wigner Transform

The Wigner transform was introduced by Wigner in 1932 to study quantum
corrections to classical statistical mechanics [20]. It enables us to define a quasi-
probability distribution in terms of coordinates and momenta quantum mechani-
cally. It has also been useful in formulating quantum mechanics in phase space
and elucidating its connection with classical mechanics [7, 15]. Moreover, the
transform forms a tool indispensable for deriving the quasiclassical equations of
superconductivity.

The original Wigner transform may be defined, for example, in terms of the
Nambu matrix (14.31) as follows: Let us introduce the “center-of-mass” and
“relative” coordinates as

rp = s i'12 =T —In. (1440)

The Wigner transform is defined as the Fourier transform with respect to the relative
coordinates,

G(en ko rn) = /d3" e K2 G (1,155 8,),

where the G’s on both sides are different functions distinguished by their arguments.
There is no ry, dependence for homogeneous systems. Also for inhomogeneous
systems with slow variations, we may expect that the first few terms of the gradient
expansion, i.e., the expansion of é(en, k, r},) in terms of gradients in r,, suffice to
describe them quantitatively.

However, we encounter a fundamental difficulty when the Wigner transform
is applied to charged systems. More specifically, the definition above breaks the
gauge invariance with respect to the center-of-mass coordinates. This may be
realized by noting that the gauge transformation (14.37) depends on both r; and
r, instead of (r; + ry)/2, so that the simple Fourier transform with respect to
r;—r; necessarily breaks the gauge invariance. To remove this difficulty, Stratnovich
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introduced a modified Wigner transform that may be called the gauge-invariant
Wigner transform [19]. However, the method is valid only for normal systems
with G, = G, = 0. Here, we apply an extended version for describing
superconductors [9].

Let us introduce the line integral:

I(r;,mp) = %/rl A(s) - ds, (14.41)

r

where s denotes a straight-line path from r; to r;. As may be confirmed easily, factor
e!/(r2) ig transformed under the gauge transformation (14.35) as

et (rir2) — iex(r))/h il (r1ry) g —iex(r2)/h (14.42)
Using this factor, we define the matrix:

il(ry,rp)
%o® v } , (14.43)

F(I‘l, l‘z) = |: 0 er—i_l(rl,rz)

for which the variation under the gauge transformation can be expressed in terms of
matrix (14.36),

[(ri,r2) = O (11, 12)O* (r2). (14.44)

With these preliminaries, we introduce the gauge-covariant Wigner transform
for (14.31) by

G(sn,k, rp) = /d3r g TikTI2 f‘(rlz,rl)é(rl,rz;en)f‘(rz,rlz)

G(Sn ) ks 1'12) F(sn ) ks 1'12)
=| = — , 14.45
[—E* (0. —K.T12) —G*(en. —k.T12) (1445
with inverse relation
A . T i A kT T
Griroien) = D(ri )32 30 Glen K rio)e™™ Dz, ra). (14.46)
k

Using (14.37) and (14.44), it follows easily that G(sn,k, ri») changes under the
transformation (14.35),

G(en. k. r12) = O(r12) G (60, K. T12) O*(r12). (14.47)

Thus, only the center-of-mass coordinate is of relevance to the variation of
G (&,,k,r) under the gauge transformation. Note that the diagonal elements in
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(14.47) are gauge-invariant as in Stratnovich’s transformation [19], whereas the

off-diagonal elements characteristic of superconductivity acquire extra phases
2iex(ri)

e .

Similarly, we transform the mean-field potential (14.32),
Unac (K, 112) = /d3r e %2 [ (1), 11) Zac (11, 12) (12, 712)

%HF(k7 rlz) é(k7 rlZ) i| 14 48
[—é*(—k, o) —%fp(-k )]’ (1449

whose inverse reads

. . 1 . o
Wsac(r1.12) = I'(r.r2) 7 Y Ui (k. r12)e ™ T (rip,12). (14.49)
k

Note % yr(k, 1) = %;F(k, r) and A(k,r) = —AT(—k, r) due to (8.61) and (8.62).

14.3 Eilenberger Equations

Although equivalent to the BAG equations, the Gor’kov equations for Green’s
functions with two arguments may be more difficult to resolve. However, they
provide a convenient starting point for simplifying the equations. Passing to the
Wigner representation, we shall integrate out an irrelevant variable from the Gor’kov
equations to obtain the quasiclassical Eilenberger equations [4].

14.3.1 Quasiclassical Green’s Function

We introduce the quasiclassical Green’s function by (14.59) below and obtain
(14.61) and (14.62) it obeys. Our derivation here is from Larkin and Ovchin-
nikov [12] instead of the ingenious original [4]. For clarity, we only consider the
weak-coupling case setting % . — 0 in (14.48).

First, let us simplify the kinetic-energy terms of the Gor’kov equation (14.34)
in the Wigner representation (14.46). To this end, we rewrite the kinetic-energy
operator (14.14) in terms of the center-of-mass and relative coordinates in (14.40),

.1 9 1., 0 :
Ky = o— | —ih— — Sih— —eA(rn +T12/2) | —u. (14.50)
2m 31'12 2 31'12
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Next, we approximate the vector potential as A(rj; + r12/2) &~ A(rz). As for the

phase factor f‘(rlz, r;) (j = 1,2) defined by (14.41) and (14.43), we expand A(s)
in I(ri2,r;) ats = ry» and retain only the leading term,

e . e _
I(rip, 1)) ~ £(1‘12 —r;)-A(rp) = (=1)/ STz A(ry2). (14.51)

After substituting (14.46), we can thereby expand the kinetic-energy terms in
(14.34),

- - - 1 1 0 ih 0
G (11, 15: ~ el (rLr)Fil(rizr) — i — T A
1G(ry,r58,) ~ € % Zk: | 9 T T ¢ (r12)
3l (ry, 3 (r. 1) ]? .
+h (rf ri2) + (rfz )T jg Gen K rpp)e T
or2 or2
4 4 1 1 ih 9 Y
— il(rrr)+il(rizr2) — — (k- —— ) —
¢ VXk:I:Zm( 2 arlz) M:|
x G(en, K, r12)e™12, (14.52)

. . . 1 1 ih 9 :
JAF(r1,12 80) ~ el (rir)—il(rizr2) — Z% —[hk _m oo €A(1‘12):|
k

V £ 2m 2 orn,
- u} F(en, K rpp)e™™, (14.53)
R . . 1 1 ih 0 2
* [k o) Ay @il L) FiI(r2r) L h o
HFF* (v, 1y 8,) & e m) il 7 Zk:{Zml: Ak + 2 I eA(l'lz)i|
- u} F*(en, —k, rip)e*™®, (14.54)

. . . 1 1 ih a0y
HEG* T e (rLr)=il(rir) — | Ak 4+ —— | —
FGE(ry,r8,) e % Zk: m + 2 orrs 2

x G*(&n, —k, T12)e™ 12, (14.55)

As for the interaction term in (14.34), we substitute (14.46) and (14.49), approxi-
mate ry3, sy & ryy, and perform the integration over rs. Further, we expand the
delta function in (14.34) as (6.18). Finally, we introduce the operator



14.3 Eilenberger Equations 215

\Y :on G or G*

2
VvV -— i?eA(r) :on F

9 = (14.56)

2
V+ i?eA(r) :on F*

to express (14.52)—(14.55) concisely, and neglect second and higher-order terms in
d, which is justified considering that the scale of the spatial variation is much longer
than kg !. Equation (14.34) is thereby transformed into

K2k
(ien—§k+12—-3)g0 0 A
m ) G(en, Kk, 1)
— Uac(k, 1)G (e, k, 1) = 1, (14.57)

where & is defined by (9.17), and 1 denotes the 4 x 4 unit matrix.

Next, we take Hermitian conjugate of (14.57), use symmetries %BTdG(k, r) =
022BdG(k, r) and GAT(s,,, k,r) = G(—en, k, r) that originate from (8.61), (8.62), (14.29),
and (14.30), and replace ¢, — —¢, to obtain

A2k
A (o= =150 -0) 20 0
G(en, Kk, ) m -
0 (isn+§k +iﬁ'3)go
~G(en, k1) Zhc (k1) = 1, (14.58)

where d operates on G (en. k. r). This equation may also be obtained directly from
the differential equation of (14.31) with respect to r,. We refer to (14.57) and (14.58)
as the left and right Gor’kov equations in the Wigner representation.

Now, in terms of (14.45), we introduce the quasiclassical Green’s function,

.  d& . . A
g(en,kp,¥) =P —26.iG (g,,k, 1)
T

—0o0

(14.59)

_| gnkpr)  —if(enkr1)
| =i (e, —ke, 1) —g* (80, kg, 1) |

where P denotes the principal value, &, is given in (12.9), and coefficient —i in front
of i is introduced for convenience. It follows from (14.29) and (14.30) that the
upper elements g and f satisfy

g(en.kp.x) = —g' (=&, kp.v),  f(en.kp¥) = —f(—&y.—kp.r).  (14.60)
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To derive the equation for g, we multiply (14.57) by &, from the left, (14.58) by &,
from the right, subtract the latter from the former to eliminate &, and multiply the
resulting equation by &, from the left. We thereby obtain

~ ~ 2k N ~
[isnfrz — Thac(k,1)6.,6.6 (e, K, r)] +it2 . 96.6(n k1) = 0,
m

where [/f, 1§] = AB — BA. Next, we replace k in ﬁZZBdG(k, r) and #’k/m by kg as
appropriate for the weak-coupling case and subsequently eliminate the remaining k
dependence in Green’s function by performing the principal-value integral over &.
The resulting equation can be written in terms of g of (14.59) as

[ienérz — Uiac kg, 1)8., & (60, K, r)] + ihve - 38 (e, ke, 1) = 0, (14.61)

where vp = hikg/m is the Fermi velocity and 9 is defined by (14.56). Hence, we
have derived the main part of the Eilenberger equations.

Because the source term 1 in (14.57) and (14.58) has been canceled in the left-
right subtraction trick, (14.61) has an arbitrariness about the amplitude of &, which
is removed by Eilenberger’s normalization condition,

[¢(e ke, 1)]* = 1. (14.62)

Equation (14.62) may be derived as follows. Operating i#vg - @ on g and using
(14.61), the resulting equation becomes

ihve- 98 = (ihve-88)§ + &(ihve) - 98

A

= - [ienoz — UBdGO, g] g—g [isncfz — UB4GO, g]
= _lie.6. — Thar.. 82
= 1€,0; BdGOz, & | -

From this differential equation, when g% = 1 holds at a certain point, the right-hand
side vanishes giving ifvg - 8g% = 0. Integrating ifivg - 8g% = 0 with the initial
condition §2 = 1, we conclude that 2 = 1 everywhere in the system.

Condition g*> = 1 does hold for homogeneous s-wave pairing. To see this, we
substitute (14.48) with (9.1) and % i — 0 into (14.57) and set i(h*k/2m) -3 — 0.
The resulting Gor’kov equation can be solved easily to obtain the homogeneous
Green'’s function,

ie, + & 0 0 Ag

A ~1 0 dent& —Ar 0
G, k)= ———rnr——— .

(en. k) &2 + & + | Ax? 0 —A} ig,—& 0

A;: 0 0 i&‘,, - Sk
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Note the correspondence with the eigenvalue problem (9.3). Substituting this into
(14.59) and performing the integral, we obtain the quasiclassical Green’s function
for homogenous s-wave pairing,

En 0 0 —iAk
1 0 ¢ 1A O

2+ AP | O —iAF =& O 7

iAr 00—,

&(en, k) = (14.63)

which obeys (14.62) as is easily verified. Noting that an arbitrary g(e,, kg, r) can be
produced from (14.63) through a gradual variation in space, we may conclude that
(14.62) holds true for s-wave pairing. The same argument may be applied for other
pairing symmetries to confirm (14.62).

14.3.2 Pair Potential

Next, we rewrite the self-consistency equation for the pair potential using the
quasiclassical Green’s function as (14.68) below.

Function 5V in (8.62) is defined by (8.30), which is expressible in terms of the
Matsubara Green’s function (14.3),

_ 1 &
A, (r1,12) = —G1a(£1.62:0) = 3 > Fue(riraiey),

n=—oo

where we have used (14.4), (14.8), and (14.27). Using it together with
(6.18), (14.46), (14.49), we rewrite (8.62) as

1 1 «
Ak =3 hwig ) Elenk.n). (14.64)
Kk’ n=—00

Expanding the pairing interaction as (8.83), we follow the procedure of Sect.9.2 to
replace ¥;(k, k") with the effective one,

Yk, k') = 1k, k') = 10 — |EO(ee — &) (14.65)

We also assume that a single £ is relevant, use (8.90), approximate N(gg’) ~ N (&),
and make a change of variable as g» — &. Equation (14.64) thereby becomes

14 oo
Adk.r) / /dszk/ o ] :
—_ = d& 4 Yin(K)Y) (K)— F(ey, K, 1).
N(€F) %(eff) e 47 m;[ tm 13 Z

n=oo

(14.66)
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Next, we remove both the coupling constant N (sp)“l/[(efﬂ and cutoff energy &. in
favor of the transition temperature 7, in zero magnetic field. To this end, we use the
T, equation for homogeneous £-wave pairing, which is obtained from (13.35) with
«//l(eff) N «//(Cff)

Y4 ’

—t h
N (SF)”i/(eﬁ) / PR 2kp T,

_[" £ 1 3
_/_scdé[z—gtanh T, —Etanh 2kBT:| 5 g Z $2+52’

n=—0oo

where we have inserted identity (9.39) with x = &/kgT and ¢, = 2n + 1)wkgT
in the integrand. The first term on the right-hand side can be expressed as In(7/T;)
based on (9.32). As for the second term, we may restrict the summation over n as
—n. — 1 < n < ng, taking the limit &, — oo, and evaluate the integral analytically.
The above equation thereby reduces to

-1 T 1 &
——=In—+ : (14.67)
N(er) 7, . B nz;c_l len]

Substitution of (14.67) into (14.66) yields the self-consistency equation for the pair
potential in terms of 7 in zero magnetic field,

4

A(kp, 1) ln; = ﬂnzoo[—nlA(kp,r)—}— / dszk,mzlZ Yem(K)Y: (K)

Ec
« / dEe F (e, K, r)},

—&c

where we have taken the limit n. — oo on the right-hand side, with no divergence
problems, and also replaced an argument of A as k — kg. Finally, we make
e&. — oo and express the final integral in terms of the quasiclassical Green’s
function (14.59). We thereby obtain the self-consistency equation for the pair
potential in the quasiclassical formalism as

A(Kg, / /
A(kp,l’)ln? —% ; [ (|£F|I‘) mzlym(k)/ko/Y[m(k)f(sn,kF,r)}

(14.68)

where T, denotes the transition temperature of the homogeneous case at zero
magnetic field.
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14.3.3 Current Density

Next, we express the current density (10.36) using the quasiclassical Green’s
function, i.e., (14.69) below.

The one-particle density matrix, defined by (8.29), is expressible in terms of the
Matsubara Green’s function (14.3),

1

o
Gayo, (T1, 12 €n)e_15no—’
B

n=—0o0

p V(&1L E) = Gii(&1,6:0-) =

where O_ is an infinitesimal negative constant, and we have used (14.4), (14.8),
and (14.27). Writing Green’s function above as (14.46), we substitute the resulting
expression into (10.36), and simplify the expression of j(r) in the same way as
(14.52). We thereby obtain

pi — eA —Pr—eAr) 1
j(l‘l)ze(pl eA) £ (e 2)3 Z TrG(ri,r2;€,)

2m

n=—0o r=r

:% Z %ZZ—kTrQ(sn,k,rl),

n=—oo k

where the trace represents the sum over spin components, and we have set 0 — 0
safely.’ We transform the sum over k as (8.90), then approximate N(g;) ~ N(ef)
and Ak =~ #%Kp, and express the final integral using the quasiclassical Green’s
function (14.59). We thereby obtain the expression for the current density in the
quasiclassical formalism,

j(r):-i%ﬁ 3 / %VFTrg(sn,kp,r), (14.69)

n=—0o0

where vy = Aikg/m is the Fermi velocity.

14.3.4 Summary of the Eilenberger Equations

Let us summarize the results of the quasiclassical formalism.

The quasiclassical Green’s function is defined by (14.59), which has symme-
try (14.60) and satisfies the normalization condition (14.62). The (1,1) submatrix of
(14.62) reads g> — f f* = o,. Hence, g = g(&y, kg, 1) is expressible in terms of

SFactor 0— becomes relevant only when we calculate the particle number in terms of G.
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i = i(sn,kF,r) and i* = i*(gn’ —kF,I') — _iT(_SnakF’ I') as

12 (14.70)

g(en ke 1) = sgnen)[o, — £ (en ke 1) £ (. K. )]
where the factor sgn(e,) = 0(g,) — 0(—¢,) is introduced to be compatible with
(14.63) for homogeneous s-wave pairing. Equation (14.70) tells us that we only
need to solve the (1,2)-submatrix element of the Eilenberger equation (14.61). We
write it explicitly by including effects of impurity scatterings, which are known to
affect the magnetic properties of s-wave superconductors considerably. They give
rise to an additional impurity self-energy given by (Problem 14.1)

- L ho N
YUimp(en, 1) = —1E(g(en,kp,r))paz, (14.71)

where t is the relaxation time, and (- - - ) denotes the average over the Fermi surface:

(A)FE/%A(I(F) (14.72)

Let us replace ﬁZZBdG — 022]3@[(; + GZQimp in (14.61), substitute (14.48), (14.59),
and (14.71) subsequently, and extract the (1,2)-submatrix element noting (14.56)
and setting % yr — 0. We thereby obtain

g{f)e+ (frg” — (g)ef — f{g")e
2t/h '
(14.73)
where (f *,A) denote f = f(en, kg, 1), g g*(en, —Kkg, 1), and A =
A(Kg, 1), respectively, and g = g(sn, kg, 1) is given in terms of f by (14.70). This
is the main part of the Eilenberger equations.

Next, we focus on (14.68) for the pair potential and expand

2sni+hv}:'( —1% )f Ag*+gA+

l
Alke.r) = Y A, (VAT Yo (k). (14.74)

m=—{

We then multiply the resulting equation by ~/4rY, (ﬁ), integrate over the solid
angle, and use (8.86) to obtain for A, (r),

T, > dQ
A@m(r)ln7=%n;|: (r)/ "\/_Y[m(k)f(g,,,kF,r)} (14.75)

|l

Finally, we substitute (14.69) for the current density into (10.30). We thereby
obtain Ampere’s law that determines the magnetic flux density B(r) = V x A(r),
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N > [dQ
V xB(r) = —i%(&) Z / 4—;vFTr§(e,,,kp,r). (14.76)

n=—oo

Equations (14.73)—(14.76) form a set of self-consistency (i.e. nonlinear) equa-
tions for the quasiclassical Green’s function f'(e,, kg, r), pair potential A(kg,r),
and magnetic flux density B(r) in the quasiclassical formalism. It forms an excellent
approximation to the Gor’kov equations when 7, < Tr = e/ kg holds.

Comments on the quasiclassical formalism are in order before ending this
section. First, there are several different expressions for the quasiclassical free
energies [4, 18]; they yield identical results for the bulk free energy but may
differ from one another in terms of the surface contribution. Incorporating many-
body effects beyond the mean-field theory is discussed in detail in [18]. Boundary
conditions for solving the Eilenberger equations are studied, e.g., in [16]. Finally,
the Lorentz force for the supercurrent is missing from the above quasiclassical
formalism, which can be incorporated appropriately by retaining the next-to-leading
order term in (14.51) [3, 9, 10].

14.4 Ginzburg-Landau Equations

We focus on s-wave superconductors near 7. and simplify the Eilenberger equations
further into the GL equations.

The gap matrix for the homogeneous s-wave pairing is given by (9.1). We assume
the same form for both the pair potential and the quasiclassical Green’s function:

é(r) = A(r) igy? f(sns kar) = f(gns sz I') lg ’ (1477)

to seek an inhomogeneous solution self-consistently near 7, in terms of A(r). It
follows from (14.60) that the scalar function f satisfies

f(en. ke, ¥) = f(—¢4, —Kg,1). (14.78)

Accordingly, (14.70) reduces to a multiple of the unit matrix, g = go,,, with

2(&n, ke, 1) = sgn(en)[1 = f(en. ke, ) f*(—&0, ki, 1)]/°
g*(en. kg, ). (14.79)

Substitution of these expressions into (14.73) yields a differential equation for f =

f(gnv kF7 I'),

2enf +hvE- 0 f = 2Ag+hw, (14.80)

where operator 9 is defined by (14.56).
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Now, we solve (14.80) perturbatively with respect to A = A(r) by expanding f
and g as power series,

f=3 1" g = sgn(e,) (1 + Zg(")) : (14.81)
v=1

V=2

Equality g/ = 0 may be seen from (14.79). Let us substitute these expansions into
(14.80) and regard operator vg - @ as O(A). We thereby obtain an expression for
the vth order (v = 1,2, ---),

v— V— —1 v— v—
Agh _hVF‘af( V —VX:hf( D(g®)e = (f)rg®™
&n 2e,

f(V) =

)

P 2te,
(14.82)

with f©@ =0, ¢© = sgn(e,), and gV = 0.
The first-order equation is given as fV = A/|e,| = A(f D — (fD)p)/27|e,],

which has no kg dependence. Hence, we conclude /' = ( £ (V)¢ and

f(l) — A

. (14.83)
€n]

Substituting (14.83) into (14.79) and comparing the resulting expression with the
expansion of g in (14.81), we thereby obtain g?,

AP

S
2¢;

()

g\ = —sgn(ey) (14.84)

Next, setting v = 2 in (14.82) yields

hveedf O fO - (fO)
2¢en 2‘C|£n| '

f(2) —

As the source term o vg - @ f(V is linear in vg, we conclude { f @) = 0. The
corresponding equation for f® can be solved easily using (14.83),

th'af(” _ th'aA
2e,(1 +4/2T|e,])  2en(len] + B/27)

f@=- (14.85)

To find g(3), we substitute (14.81) into (14.79), extract third-order terms, and use
(14.83) and (14.85). We thereby obtain

FW* F@ 4 p@* g A*OA — AJA*
= NVE

3) — - - ==
2 462 (Je,| + h/27)

g —sgn(e,) (14.86)
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where f* = f*(—e&,, kg, r). Finally, we set v = 3 in (14.82) and subsequently use
fO = (fM)pand g@ = (g®)g based on (14.83) and (14.84). This yields

Ag? 3 hvg-9 f@ B hf(3) —(fO)g

G _

f &n 2¢e, 2t|g,|
_1apPA (hve - 3)*A SO = ()
T 2len* T 4e2(len| +1/27) 27]e,|

Its Fermi-surface average is easily obtained using (13.14),

_1APA (hvp)20%A

Gy,
(/e 20 | 1262(|en| + h/27)

(14.87)

We are now ready to derive the GL equations. First, we consider the
equation for the pair potential. Let us set £ = m = 0 in (14.75)
with A,y — A, substitute (14.77) and YOO(R) = (47)7"2, multiply the
equation by N(ep), and substitute the expansion of f in (14.81). We thereby
obtain

T T o [ A &
N(ep)A()In— + N(ep) 7 Y =Y (e ke 1))E | = 0,
1. B e —o0 €] =1

(14.88)
where we have used the notation of (14.72). Further, we expand In(7"/ T;) near Tt
asIn(7/T.) ~ In[l + (T —T,)/T.] ~ (T — T;)/ T, retain terms of v < 3 in the
square brackets, and substitute (14.83), (14.85), and (14.87). We thereby obtain an
equation for the pair potential as

ar A(r) + as| A(M)PA(r) — b, 3*A(r) = 0, (14.89)

where a;, a4, and b, are defined by

T-T,
a) = N(&‘F) s (1490)
1.
_ T L 7£(3)
ay = N(sF)ﬁ n;oo P Ner)g——s T (14.91)
2 S 2
z(hvr) ! ~ O (14.92)

mENED g 2 el T 6
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The approximation in (14.91) has been obtained with the procedure of (9.41), and y
is defined by

1
= . 14.93
= 763) ;) (2n + 1)2Qn + 1 + h/2ncksTe) (14.93)
Whereas a4 and b, are positive, a, changes sign at 7 = T, to be negative for

T < T.. Function y decreases from 1 in the clean limit (t — o0) as t is decreased.
It should be noted that 7 is inversely proportional to the impurity concentration, as
seen in (14.103).

Next, we focus on Ampére’s law. Let us substitute g = go, into (14.76), expand
g as (14.81) and retain terms of v < 3, and use (14.84) and (14.86). The resulting
equation can be expressed in terms of coefficient b,, (14.92),

Zeﬂobz(

VxB= A*JA — AJAY). (14.94)

Equations (14.89) and (14.94) constitute the GL equations. The corresponding
free-energy functional is given by

(V x A)?

210
(14.95)

2e
FalA, A%, A] = /d3r|:a2|A|2 + %|A|4 + bzA*( iv — 7A) A +

Indeed, one sees easily, applying the transformation of (10.35) to (14.95),
that extremal conditions §F,/6A*(r) = 0 and §F,/6A(r) = 0 yield (14.89)
and (14.94), respectively. Note that functional (14.95) with coefficients (14.90)—
(14.92) forms an inhomogeneous extension of the Landau functional (9.55) with
coefficients (9.56).

The homogeneous solution of (14.89) for T < T, is given by Ay = /—az/ay,
which does not depend on the relaxation time t as seen from (14.90) and (14.91).
Hence, we conclude that the thermodynamic properties of homogeneous s-wave
superconductors are not affected by impurities [1, 2]. However, it should be pointed
out that the statement no longer holds true when gap anisotropy is present. In
contrast, the third term in the square brackets of (14.95) represents the kinetic energy
due to the spatial variation of A. It follows from (14.92), (14.93) and (14.103)
that this term strongly depends on the impurity concentration, i.e., the kinetic
energy is reduced as relaxation times t shorten because of increased impurity
concentration.

Assuming that spatial variation of the pair potential in (14.94) lies only in
its phase as A(r) = A¢e¥® = /—a,/ase*™, we reproduce the London
equation (10.39) or (10.40). The corresponding London penetration depth is given
by
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hlay m
A = = , 14.96
L=\ Bobaar)e? \/ 10N/ V)2UTe = 1)/ Tz (1490

where we have substituted (14.90)—(14.92) and used the relation 2N (ep)vi/3 =
(N/mV). Equation (14.96) in the clean limit y — 1 is identical with Ay in (10.40)
for T < T¢, as may be confirmed by using (10.22) and (10.47).

The original motivation of Ginzburg and Landau in 1950 [5] was to extend the
London theory to incorporate the superconducting order parameter A(r). To this
end, they extended the Landau theory for second-order phase transitions described
in Sect.9.5 to inhomogeneous superconductors phenomenologically in a gauge-
invariant manner based on the free-energy functional,

(—ihV —e*A)? oo (VXA?
2m* 20 |

Fo— /d% |:oz|l1/|2 + §|W|4 +w

(14.97)
Later in 1959, Gor’kov derived the functional microscopically [6] to show that their
order parameter ¥ (r) and constants (o, ) can be expressed in terms of quantities
in (14.90)—(14.92) and (14.95); that is,

2m*b B2 RN
U(r) = TZA(r), @ g = (Zm*bz) as, (14.98)

with m* = 2m and e* = 2e. Note that m* and e* in the considerations of Ginzburg
and Landau [5] were set equal to the bare electron mass m and charge e, respectively,
as was realized naturally for a period prior to the key concept of pair condensation.
They subsequently calculated the surface energy in a magnetic field to show that
superconductors can be classified into two groups according to whether the surface
energy is positive or negative [5]. We shall discuss this aspect in the next chapter.

Problem

14.1. Scatterings by N, impurity atoms of the same kind may be described by the
Hamiltonian:

Na
g = [ 46001€) D Ul = £ 60, (14.99)

a=1
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where Uiy, is the impurity potential and r, denotes
the position of impurity atom a. We incorporate effects

described by this Hamiltonian based on the self-consistent >< a
Born approximation. In general, the perturbation expan- 7N\
sion for superconducting phases can be performed in /// \\\
terms of normal-state Feynman diagrams by replacing the / \
normal Green’s function G, with the product G&; of the / \
Nambu matrices (14.31) and (12.9) [8]. We thereby obtain 7 \

the self-energy due to the double scatterings by the same
impurity as

Z:‘(rl,rz;s,,) = Z Uimp(rl—ra)ﬁzé(rl,rz;s,,)frzUimp(rz—ru). (14.100)
a

Solve the following problems.

(a) Let us transform the impurity potential as

1 .
Uimp(ri —ra) = 77 > U re ), (14.101)
k

Similarly, we expand the self-energy Y and the Green’s function G
as (14.46). Further, we assume that r, is distributed randomly so that
Y, €%t = N,8ko holds. Show that the Fourier coefficient Y(en k1)
of the self-energy (14.100) is given by

S(en. k1) = ”7 > U™, 6.6 (en. K . 1)6. (14.102)
k/

where n, = N,/ V denotes the density of impurities.

(b) Let us replace the sum over kK’ in (14.102) by an integral as (8.90)
and approximate N(gxr) ~ N(ep). We also consider s-wave impurity
scattering where U, does not depend on K, and introduce the relaxation
time 7 with

S

= 27nyN(ep)|U™ 2. (14.103)

Hence, t is inversely proportional to the impurity concentration n,
in the self-consistent Born approximation. Show that the right-hand
side of (14.102) can be written in terms of the quasiclassical Green’s
function (14.59) as (14.71).
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Chapter 15
Abrikosov’s Flux-Line Lattice

Abstract Superconductors can be classified into two types according to their
response to applied magnetic fields. Whereas type-I superconductors exclude
the magnetic field completely from the bulk due to the Meissner effect, type-II
superconductors can retain quantized magnetic fluxes in the bulk over a certain
range of magnetic field. In 1957, Abrikosov solved the Ginzburg—Landau equations
analytically for a couple of limiting cases to predict that type-1I superconductors
can form a lattice of quantized flux lines between lower critical field H.; and upper
H,, which was later confirmed by experiments. In this chapter, we elaborate on this
flux-line lattice.

15.1 Ginzburg-Landau Equations

Focusing on the region near the transition temperature, Ginzburg and Landau
produced a phenomenological version of the free energy as a functional of the
superconducting order parameter ¥ (r) and vector potential A(r) in 1950 [7]. Later,
Gor’kov derived it microscopically by extending the BCS theory to inhomogeneous
systems. The resulting free energy, measured from the normal-state free energy in
zero magnetic field at the same temperature 7, is given in terms of the s-wave pair
potential A(r), (14.95),1i.e.,
ag , 2e¢ Y (V x A)?
Fy = /d3r [azmﬁ + —|A[* + byA* (—1V — —A) A + —} ,
2 h Z,U,()

(15.1)
where pi( is the vacuum permeability and (a,, a4, b,) are constants given explicitly
by (14.90)-(14.92). Whereas a4 and b, are positive, a; is proportional to T — T,
and becomes negative for 7 < T;.. Additionally, b, is susceptible to variations in the
concentration of impurities arising in alloying, becoming smaller as the impurity
concentration increases.

As thermodynamic equilibria correspond to the minima of Fj,, the pair and
vector potentials should obey §Fs,/6A*(r) = 0 and §Fy,/5A(r) = 0. Following
the procedure of (10.35) to calculate them, we obtain a pair of equations
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2 2
arA + as|APA + bz(—iV - fA) A=0, (15.2)

2epob 2 2
VXVxA= ep;loZ[A*(—iV—%A)A—}—A(N—%A)A*] (15.3)

Equation (15.3) represents Ampere’s law (10.30). Indeed, the left-hand side can be
written in terms of the microscopic magnetic flux density:

B(r)=VxA(r) (15.4)

as VxB(r), whereas the right-hand side can be identified as superconducting current
density j(r) multiplied by p.

15.2 Microscopic Flux Density and Magnetization

We elaborate now on how the magnetic flux density (15.4) is determined.

In performing experiments on superconductors in magnetic fields, there are
essentially two distinct sources for B. The first is the external current jex that flows
far outside the sample and produces the magnetic field H that obeys Ampere’s law:

V x H(r) = jeu(r). (15.5)

In general, the experimental setup is arranged to produce a uniform field around
the sample using, e.g., a Helmholtz coil. The second is the supercurrent j that flows
inside the sample. Flux density B(r) in the sample is determined by solving (15.3)
so that it is connected smoothly to poH far outside the sample. The spatial average
of B(r) inside the sample, defined by

B

%/B(r) &r, (15.6)

is not equal to poH generally. Their difference divided by po,

B
M= _——H (15.7)
Mo

defines the magnetization due to the supercurrent. Spins may also contribute to M,
but in a first approximation their effect in single-element superconductors can be
neglected in comparison with that of the supercurrent.

In particular, when H is applied parallel to the side of a long cylindrical sample,
the field produced by the supercurrent is confined inside the sample. We shall
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consider this situation below, where H is derivable from the free energy (15.1) given
as a function of B by the thermodynamic relation (Problem 15.1):

1 0F,
=== (15.8)
V 9B
A subsequent Legendre transformation:

introduces another free energy Gg,(H) as a function of H that is controllable
experimentally.
Considering (15.6), we express the microscopic flux density inside the sample as

B(r) = B+ Vx A(r), % /[Vx A(r)]d*r = 0. (15.10)

Thus, A represents the spatially varying part of the flux density.

15.3 Dimensionless Equations

We shall rewrite the GL equations (15.2) and (15.3) in dimensionless form, as
(15.18) and (15.19). This helps us to simplify the mathematical treatment and also
capture the essence of type-II superconductors more clearly.

Let us focus on the region 7" < T, where a; < 0, and perform an appropriate
change of variable in (15.1). First, the homogeneous solution of (15.2) is easy to
obtain;

AO = v —az/a4, (1511)

which is realized in zero magnetic field. Substituting this into (15.1), we obtain
the zero-field condensation energy in equilibrium per unit volume as Flo /V =
—(as/2)A} = —a3/2ay. This result agrees with (9.53), as confirmed using (14.90),
(14.91), and N(eg) = D(eg)/2V. Second, we define thermodynamic critical field
H. by the equality Fe¥/V = —puoH?/2, which yields

H. = \/ag/,uocu. (15.12)

It is the field at which a type-I superconductor changes into the normal state via
a first-order phase transition involving latent heat. Third, focusing on the terms of
O(A) in (15.2), we note that the b, term contains a squared differential operator
compared with the a, term. Hence, the quantity
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§=by/(—a) (15.13)

has a unit of length, which is called the coherence length and represents the typical
scale of variations for amplitude |A|. Similarly, we set A(r) — Ay = /—ax/as
in (15.3), compare the terms of O(A), and obtain another length scale called the
London penetration depth:

h2a4

A=l
- 8uoba(—az)e?’

(15.14)

which represents a typical scale for variations in the flux density B(r). The ratio of
the above two lengths,

A 72
- 4 (15.15)

K — = -
§ 8110bze?

forms the important dimensionless parameter called the GL parameter. It follows
from (14.90)—(14.93) and (14.103) that « is temperature independent for 7' < T¢
but is susceptible to variations in impurity concentration n, through factor y in
b, and is enhanced as n, increases. Note that 7, may be controlled systematically
by alloying. The existence of another characteristic length &, apart from A, was
discovered by Pippard in 1953 [14].

In summary, (15.11), (15.12), and (15.14) are constants that have the units of
energy, magnetic field, and length. Using them, we perform a change of variable in
(15.1) as

r=Ar, A(r) = AgW'(r), A(r) = V2uoHALAY),  (15.16)

where factor +/2 has been introduced for convenience. The corresponding unit of
magnetic flux density is given by /2o H.. Substituting (15.16) into (15.1), using
(15.11)—~(15.15), and noting e < 0, we rewrite the free energy in the form!

1 i 2
F, = MOHfAi/d3r’|:—|lI/’|2 + 5|t1/’|4 + w (—lv’+A’) U 4+ (V' xA)? .
K

(15.17)
The corresponding dimensionless GL equations are obtained by either calculating
8F/8W™*(r') = 0 and §F,/SA'(r') = 0 or applying (15.16) to (15.2) and (15.3).
They are given by

!Ginzburg and Landau [7] and Abrikosov [2] set ¢ > 0 when transforming the free energy
functional into a dimensionless form, so that A’ — —A’ in their expressions. However, the
essential results are the same as those described here.
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i 2
(——V/+A/) -y L WP =0, (15.18)
K

| . .
V/xB =3 [w’* (—lv’ + A/)w’ + w’(lv/ + A/) uﬂ*} , (15.19)
K K

where B’ = V' x A’ denotes the microscopic magnetic flux density.

15.4 Upper Critical Field and Distinction Between Type-I
and II

First, we derive an expression for the upper critical field H., at which the
superconducting phase transition occurs.

Assuming a continuous transition in a magnetic field, we may linearize (15.18)
in terms of ¥’,

. 2
(—iv/ + A’) W = (15.20)
K

As the supercurrent is negligible at the transition point, we can also set B'(r') = B
Let us choose the 7’ axis along B’, assume a uniform solution along 7', and consider
aregion of unit length along the 7’ axis from this point on. We also adopt the Landau

gauge:
A(r) = (0, B'x',0) (15.21)

for describing B’ = V' x A’ and introduce creation and annihilation operators

at ! F Y + ik B'x’ (15.22)
= — — =1 — 1 X .
a VBl 0x dy’

satisfying aa’ — afa = 1. Equation (15.20) thereby becomes

s 1N2B

a'a+ - U=y, (15.23)
2) «

which has the same form as the Schrodinger equation for the one-dimensional

harmonic oscillator [15]. Hence, we conclude that the eigenvalues of a‘a are non-

negative integers. The maximum field B’ = B/, at which (15.23) has a solution can

be obtained by replacing aa above with the smallest eigenvalue 0 as

B, =k, He = V2K H,, (15.24)
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where the second identity in the ordinary units has been derived based on (15.16).
This H., is called the upper critical field.

For the magnetic field to penetrate into the bulk, condition H,, > H. must hold,
from which we obtain for type-II superconductors the criterion

K > (15.25)

ol

15.5 Flux-Line Lattice Near H,

Next, we consider the region H < H,, in calculating the pair potential A’(r’) and
microscopic magnetic flux density B'(r’).

Supercurrent j'(r’) also becomes finite in this region to produce a finite contribu-
tion to the average flux density (15.6). The corresponding vector potential may be
chosen to reproduce (15.10) as

A = Bxy + A, (15.26)

where §' denotes the unit vector along the y’ direction. We fix the gauge of A’ so
that

V.A =0 (15.27)

is satisfied. Let us substitute (15.26) into the third term in the square brackets of
(15.17). We then find that its operator part is expressible in terms of (15.22),

. 2 5
~ 2B’ - - ~ ~
(—lv/ + A/) ~ ho +iy| —[—(4, +id))a + (4, —id))a']. (15.28)
K K

where };0 is defined by

. 2 R/

N _ 1\2B

o = (_iv/ n B/x/y/) - (fﬁa " -) , (15.29)
K 2) «

and we have neglected a term of O(A’ 2) as appropriate near H.,.

15.5.1 Constructing Basis Functions

To find the equilibrium structure of A’(r’), we use operator (15.29) to construct
a complete set of basis functions in which to expand A’(r’). Those who are not
interested in the derivation may proceed to the next section.
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Hamiltonian (15.29) is identical to that for an electron in a uniform magnetic
field in two dimensions [13]. Its eigenvalues distinguish the Landau levels given by

1\28’'
=N+ = (N=0,1,2,--+), (15.30)
2) «

with a macroscopic degree of degeneracy for each level. Every eigenfunction ¢ (r’)
for N = 0 obeys the first-order differential equation a ¢0(r’ ) = 0. Noting that
operator (15.22) does not depend on y’, we set ¢o(r’) oce'?? @o(x’) characterized
by wavenumber ¢’, and substitute it into @ ¢o(r’) = 0. The resulting equation for
@o(x") can be solved easily, and we find the eigenfunctions take the form,

x/+ /vlcxz 2
( ayle) } (15.31)

do(r') o exp[iq;y/ Y R
where

(15.32)

- AL | h
kB’ [k(B/~2poH.) 2le|B

denotes the magnetic length for a bound pair with charge 2e, as may be realized
from the second expression given in the ordinary units. To find the number of
possible q;’s in (15.31), we consider a square region of sides L’ (>> //) and impose
the periodic boundary condition along the y’ direction [13]. We thereby obtain an
expression for q’y as q; = 2xn, /L’ in terms of integers n,. Let us substitute this
into inequality 0 < —q;lf < L’, which denotes that the central coordinate of the
wave function (15.31) along the x” axis lies within the system. We thereby obtain
the number of allowed values for n, as L'>/2r1%. Alternatively, there is a single
state per area of 2712

If we choose A’(r') o ¢o(r’) in terms of (15.31), we can describe a state where
a region of width ~ 2+/2/ around x’ = —q;léz is superconducting. However, it is
clearly more favorable to realize superconductivity over the entire system. Hence,
Abrikosov considered a linear combination of (15.31) to find that a quantized flux-
line lattice should be stable [2].

The basic issue here is how to construct extended wave functions from (15.31).
To this end, we use the magnetic translation operator in the Landau gauge [5, 10]:

A VWA v > LA Y4 R R (v — P! _R'.V/
T = e R-(V+ixB'y'¥) _ —ikB'R.(y'~R}/2) RV ’ (15.33)

where X’ denotes the unit vector along the x’ axis. For the second equality, we have

used the identity eCHD = ¢=3(C.D1eCeD that holds for a | pair of operators C and D
satisfying [C, [C,D]] [D [C D]] = 0, where [C D] CD—-DC. It follows
from the commutation relation [(V' + ik B'y'X);, (V' + ik B'x'§");] = 0 (i,j =

x', y") that Tw and };0, (15.29), commute
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Fig. 15.1 A pair of primitive y’
translation vectors (af, a}) of 4
the flux-line lattice, and the
corresponding pair of
reciprocal lattice vectors , | YD)
(b}, b%). The area of the unit b,
cell is given by

la| x a}| = 2717 a)

[Tr', ho] = 0. (15.34)

Using this relation, we transform the degenerate bases of };0 into eigenstates of
YA”R/, which will be shown to form a complete orthonormal set that is suitable
for describing the flux-line lattice [10]. First, let us introduce a set of primitive
translation vectors a| and a, as (see Fig. 15.1)

a) = (d},.a,). ay=(0.a)). aja,=2ml? (15.35)

where the areas spanned by aj and a), are set equal to 2717, i.e., the basic area for a
single quantum state. The corresponding reciprocal lattice vectors are given by
a), x 7 , 7 x a|

b, =2 | = (15.36)

T, T,
|a} x a)| |a} x a)|

satisfying a’j . b’j = 2m8; (i, j = x,y). Next, we write the translation vector R” of
f"R/ in terms of integers | and n,

R’ = nja) + njaj. (15.37)

Further, we use an even number % > 1 to impose periodic boundary conditions
T S, = 1 (j = 1,2). We can thereby distinguish the degenerate eigenstates

belonging to &’y in (15.30) by the magnetic Bloch vector:

, mi., my, N N N
=—b —b =+ 1, —— 42, — ], 15.38
1= 7% 1+JVf 2 (’"’ 2 T 2 T 2 ( )

which specifies the eigenstate of Tr'. To be specific, the eigenfunction associated
with N = 0 and ¢’ = 0 is given by [10]
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{/Vf/z / / / /7 \2
1 .na na; (x'—=nd’.)
oot) = ——— Y exp[—l o (y/— ;)— i |
Ni LA, n=—si/2+41 ¢ c

(15.39)
Further, the eigenfunction of N = 0 and ' # 0 can be obtained by a magnetic
translation from ¢ (r),

o (1) = Tipqrir poo (). (15.40)

Eigenfunctions of the higher Landau levels obey the recursion relations [15]:

1
vy () = W&T¢N_lq,(r’). (15.41)

It follows from (15.38) that the number of distinct wave vectors is equal to the
number 4; 2 of possible states in the area spanned by ./4fa} and #7a}. Also, the
eigenfunctions can be shown to satisfy orthonormality relations (¢0q{ |¢0q§ )y =
5‘11 4 Hence, the degenerate states belonging to the lowest Landau level are now
transformed into an orthonormal set of magnetic Bloch states that satisfy [10]

Trog (1) = e AR =mmm g (), (15.42)

To find the zeros of ¢go(r’), we use the following symmetry relations:
Poo(t' — RY) = I RO gy (1), (15.43)
$oo(=1') = oo (r'). (15.44)

The first equality is obtained from (15.42) by setting ' = 0 and rearranging its
left-hand side using the second expression of (15.33). The second equality obtains
by replacing r' — —r’ in (15.39) and subsequently changing n — —n in the
summation. Let us set ' = R’/2 in (15.43) and use (15.44) on the left-hand side.
We thereby obtain ¢og(R’/2) = e 7"1"2¢o (R’ /2), concluding that

$oo(n1a}/2 4+ nyas/2) = 0 when nyn, is odd. (15.45)

Therefore, the zeros of ¢gp(r’) are distributed periodically, their total number being
equal to .#; 2. One may also confirm numerically that the wave function changes its
phase by —2x for a counterclockwise rotation around every zero point. Figure 15.2
plots the amplitude of the sum in (15.39) for aj/a] = 1 and 65 = cos™'(a] -
a)/a}ay) = m/3. We can clearly observe a periodic hexagonal arrangement of
Zeros.
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Fig. 15.2 Plot of the
amplitude of the sum in
(15.39) for a5 /a} = 1 and
Bx = cos~ (a2 /ala}) =
/3 over |x'|, |y’| <5/ in
units of [/ =1

15.5.2 Minimization of the Free Energy Functional

Basis functions (15.39) and (15.40) with translational symmetry (15.42) are suitable
for describing superconductivity that extends over the whole system. Moreover,
states with different q'’s are connected by magnetic translations, as given in (15.40),
so that they are essentially the same. Hence, we choose a single magnetic Bloch
state, e.g., that of ¢’ = 0, to expand the pair potential A’(r") for H' < H/,,

AN () = covV Voo (). (15.46)
Choosing a single q' represents spontaneously broken translational symmetry of the
flux-line lattice. As ¢oo(r’) o< 1/+/V’ from the normalization condition, we have
extracted the factor +/ V'’ to make co of order 1.

Correspondingly, we assume periodicity A(r' 4+ R’) = A/(r') for the second term
of (15.26) and expand it as

Ar) =Y AK)eXT, (15.47)
K/
where K’ is a reciprocal lattice vector expressible in terms of (15.36) and integers
m; (j =1,2)as
K' = mb| + myb),. (15.48)
It follows from A{(r’) being real and (15.27) that
A¥(K') = A(-K)), K-AK) =0 (15.49)

holds.
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We now use the Ritz method [6] to obtain an approximate solution of (15.18)
and (15.19) by minimizing the free energy in terms of the variational param-
eters, i.e., expansion parameters (co,zii(/), angle 6, = cos™!(a] - a)/a}a})
between the two primitive vectors, and their ratio a5 /a/. Specifically, we substitute
(15.26), (15.28), (15.46), and (15.47) into (15.17), use (15.41), and perform the
integration. We thereby transform Fy, into

B/
F‘sn ~ MOHCZV{(? — 1) |C0|2 —+ I gl 153)00 —+ B/Z + ZK/ZIA(K/NZ
K

. |2B’
+1

> In(—K)[ A, (K') —id), (K/)]|co|2}, (15.50)
K/

where Iég,)oo and Iy, n,(K’) are defined by

8 = V" [ w16 = s
C Cc

(15.51)

\/2nlézexp|: (n3 + n3)a? ,mnzajxajy]
a

2 mnm

Iy, (K) = / D0 )P0 (r") S

1 (K} +iK})
L UMy (K — S TR & | (552
«/Vz[ Uy —1,3,-1(K) NP1 NiNp—1( )] ( )

The second expression of (15.52) has been obtained by substituting (15.41) with
N — N, and ¢ — 0, performing integration by parts in terms of a' in (15.22),
and writing @ ¢n,0 = ~/Nidn,—10. Using (15.49) and (15.52), we can express the
Iy1(—=K’) term in (15.50) as

K’ x A/(K/)] .7

= (15.53)
2k B’

Iy (K[ A, (K') —id’,(K')] = Ioo(—K’) [

Let us substitute (15.53)~ into (15.50) and calculate the extremal conditions
0F;/0|co|> = 0 and 0F;,/A(—K') = 0. They are given by

B’ @ oo ] i ;
— =141 — Ioo(—K)[K'x AK)|-Z =0, 15.54
. + Togp0lcol” + p ; 00(—K)[K'x A(K")] - 2 ( )

AK) = ——T0(K) 2 x K'|co|%. (15.55)

2k K/Z
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Further, we put (15.55) into (15.54) and use the identity (Problem 15.2):

oo = > Too(K') Tog (—K), (15.56)
K/
to obtain |co|? as

cof2 = ¥ =5 (15.57)

=
(26> — 1)1(50,)00

By substituting (15.53) and (15.54) into (15.50) and then using (15.55), (15.56),
and (15.57), the equilibrium free energy is expressed concisely as

lcol*

an = pLoHCZV |:_TI(§3,)00 + B’Z + ZK/ZlA/(K/)|2:|

K’

_ B/ 2 _
= o H2V [—("—)(4) + B’2:| . (15.58)
(262 — 1) 10700

Further, it should be minimized with respect to 153?00, which contains information

about the lattice structure. A numerical evaluation of (15.51) [12] verifies that 10(3,)00
takes its minimum for the hexagonal lattice of Fig. 15.2,

Iigho = 1.16. (15.59)

That the hexagonal lattice is stable follows naturally by recalling that it is the
densest-packing structure in two dimensions. Nevertheless, as the temperature is
lowered from T¢, the Fermi surface anisotropy changes the stability of the structure
and H,, to such an extent that the hexagonal lattice is seldom observed in certain
materials [3, 11].

Next, we calculate the magnetic field H based on (15.8) by differentiating
(15.50) in terms of B = ~/2uoHcB’. As dF/d|co)* = 0 and 9F,, /A(—K') = 0
hold in equilibrium, we only need to consider the explicit B’ dependences. Noting
that /, 53?00 and Iy, v, (K') are constants whereas K'> oc ™2 o B, the differentiation
yields

_ Hc ICOI2

"=

B Ho,—H
+ 0(|co|4)i| ~ 4 2

Ko 2k = 1) 15509

K
Comparing this expression with (15.7), we obtain the magnetization for H < H,,

H,—-H

M=
(262 = DI,

(15.60)
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Its gradient in terms of H,, — H increases as « is decreased towards 1/ V2, and
we finally have a discontinuous transition at k = 1/+/2 between the normal and
Meissner states.

The above consideration can be extended to lower fields by retaining terms of
O(A’ 2) in (15.28) and including contributions from higher Landau levels (N > 0) in
(15.46) [10]. The solid line in Fig. 15.3 plots the normalized magnetization M’ =
M/~2H, as a function of H' = H/+/2H, for k = 5, whereas the dotted line
represents the approximate curve of (15.60) near He, (H/, = k). As the magnetic
field is reduced from Hc’z, — M’ starts to deviate upwards from (15.60), indicating an
accelerating demagnetization. The upward curvature continues to increase through
H! = 1/+4/2 = 0.707 and eventually stops at a certain field H/, < H/, where
complete diamagnetism (B’ =0) is achieved because of the Meissner effect.

15.6 Lower Critical Field H

Equation (10.43) infers that the magnetic flux in superconductors should be
quantized in units of ®( in consequence of the single-valuedness of the macroscopic
wave function. In every type-II superconductor, there exists a lower critical field H,
at which a single flux starts to penetrate into the bulk. To study H.;, we here solve
the GL equations in cylindrical coordinates; see also Sect. 16.3 on this topic for a
detailed study at all temperatures.

Let us express the wave function and vector potential for a single flux quantum
using r’ = (r' cos¢’, 1’ sing’, 7),

V()= f(r)e ¥, A=A, (15.61)
Fig. 15.3 Magnetization 0.25
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where f’(r') and A’(r') are real functions and ¢’ = 2’ x ’ denotes the unit vector
along the ¢’ direction.? This ¥’ (r’) changes its phase by —27 for a counterclockwise
rotation around the z axis. Hence, f(0) = 0 should hold because of the single-
valuedness of the wave function. The corresponding microscopic flux density
B'(r') = V' xA’(x) is given in cylindrical coordinates by [4]

ol al

d

where we have introduced a new function,
! i i A 1
o'r'y=-A'(r")+ —, (15.63)
Kr

to express the derivative of r'A'(r') = —r'Q’'(r') + 1/k in terms of r’' Q'(r’).
Substituting (15.61) into (15.18) and (15.19) and performing the differentiations
in the cylindrical coordinates [4], for example k' V'¢’ = (kr’)"'@’, we thereby
obtain the GL equations for a single flux quantum,

! ( 47 )+ Q7 f = f'(1—f"), (15.64)
K2r’ dr’

df[1l d '

5 [r il Q)} o'f"”. (15.65)

Equations (15.64) and (15.65) should be solved with boundary conditions:

FO) =0, floo)y=1. rQ'(r :%, 0'(00) = 0.  (15.66)

r’'=0

Next, we derive an expression for H; in terms of f’ and B’. Let us substitute
(15.18) into (15.17) and use (15.61) and (15.62). We thereby obtain the equilibrium
free energy for a single flux quantum per unit length along the 7’ axis,

f/4
R0 = pob23) dzr’( B’Z)

Subtracting the zero-field free energy with /' =1 and B’ =0 from it and integrating
over 0 < ¢’ < 27, we obtain

— 213 (11— f/4 2.9,/
e = 2o H2AS —— +B?)rdr, (15.67)
0

2The minus sign in the phase of ¥’ (r’) originates from the negative electronic charge e < 0. From
classical mechanics, when the field is applied along the positive z direction, an electron rotates in
a clockwise manner around the z axis, and the current flows in the opposite direction.
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which represents the energy of formation for a singly quantized vortex. An assembly
of such vortices with area density o yields the flux density:

_ h wh

=0 =0—.
2le] le]

Now, the lower critical field H.; is obtained from the condition that the free
energy (15.9) as a function of H is equal to the zero-field value, i.e.,

0=

GSH(HCI) _Gsn(o) o€ = &1 wh
=2 BHy=o|t-Tp,
v A PO T Je

Hence, we obtain

© 11— 14
H. = jlr;'i = H%/ ( 2f + B’Z)r’dr’, (15.68)
0

where we have used (15.11)—(15.15) in expressing the prefactor.

Solving (15.64) and (15.65) for a given k and substituting the results into (15.68),
we obtain H,; = H.;(x). While this procedure needs numerical studies in general,
we can find analytic solutions for some limiting cases.

First,k = 1/ V2 is special in that (15.64) and (15.65) have first integrals [8]:

df/:Q’f’ B’E—ii(r’Q’)zl:/;/Z

dr’ V2 r’ dr’
Indeed, substitution of the second equality into (15.65) yields the first equality, and
that of the first equality into the left-hand side of (15.64) for xk = 1/ V2 using
(15.69) confirms the second equality. We use this B’ in (15.68) for x = 1/ﬁ and
write the resulting expression as

. (15.69)

H, % H, [* H 0
H., = —< 1— 2 /d/:_c/ B//d/: S // = H..
cl 2/0 (1= f)rdr 5 s rar [rQ]r=0 c

V2
(15.70)
Combining this result with (15.24), we conclude H,; = H., = H. atk = l/ﬁ.
Thus, we have confirmed that «k = 1 /ﬁ is the critical value that separates

superconductors into type-I and type-II.
Second, we focus on the region r’ < 1 near the vortex core, where (15.63) can
be approximated as Q'(r") &~ 1/kr’. Substituting this into (15.64) yields

% [_li(r/df/)_'_ ri/;:| ~ f/(l _ f/Z)‘ (15.71)

r’ dr’ dr’

Further, near the vortex core, we set the right-hand side to zero to obtain

f'0") ~ cor’ (r' ~0). (15.72)
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Thus, f'(r’) grows linearly for r’ ~ 0 with some gradient ¢y. We expect ¢y ~ &,
as k! is the coherence length in the dimensionless units that gives the scale of the
variation in f’(r’); see (15.15) on this point. Let us substitute (15.72) and Q'(r’) =~
1/kr’ into (15.65), integrate both sides over 0 < r’ < r{, use (15.62), and set
ri — r'’. We thereby obtain

2
B'(+') ~ B'(0) — ;—Or”. (15.73)
K

Thus, the magnetic flux density decreases quadratically from the vortex center.

Third, we can approximate f’ ~ 1 for 7’ > k™. Substitution of this into (15.65)
finds that the equation for Q' is the modified Bessel’s equation of first order [1, 4].
Thus, the solution is given by

0'(r) ~ cK (1), (15.74)
where ¢ is a constant. Using this expression in (15.62), we find the flux density,
B'(r') ~ cKo(r'). (15.75)

The asymptotic expression of Ko(r’) for r’ — oo [1, 4] implies that the flux density
for ' > 1 decreases exponentially, (77/2r")"/ 2,

Fourth, we can simplify the problem for the extreme type-II limit of ¥ > 1. In
this case, we expect that f”(r") grows rapidly over 0 < r’ < «k~! and asymptotes to
1. Hence, ' for k! < r’ < 1 should obey (15.71). Let us parameterize the solution
in this region as f'(r') &~ 1 —ar” (Ja] < 1) in terms of unknown constants a and
v, substitute it into (15.71), and use the leading terms to determine a and v. We

thereby obtaina = 1/ 2k% and v = —2, and hence
f’(’)Nl——1 15.76
r) & Y (15.76)

As for the magnetic field, we can use K;(r') ~ 1/r' for 1’ < 1 to equate the
leading terms of (15.63) and (15.74) for k! <« r’ < 1. This yields ¢ = 1/« for
the coefficient of (15.74). Substituting this into (15.75), we thereby obtain the flux
density for ' = k™,

Ko(r' In 7’
_ Ko(r)  _Inr’ (15.77)
K

B'(r))

where the second expression holds for »’ <« 1. We now estimate (15.68) for
H.; using these results. To this end, we note that the main contribution to the
integral for k¥ > 1 originates from the region k' <« r’ < 1, whereas that from
r’ 2 1 is exponentially small. Hence, we may replace the lower and upper limits of
(15.68) with k! and 1, respectively, substitute (15.76) and (15.77), and perform the
integration. The contribution from the flux density can be neglected, and we obtain
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e = 2
f/ dr' = He 2o

By solving (15.64) and (15.65) numerically, a better expression for k¥ >> 1 has been
obtained [9],

Ho— 1 Ink + 0.497 (15.78)
cl — c ﬁ/{ . .

As may be expected from (15.70) and (15.78), the ratio H.;/H, decreases from 1 at
k = 1/+/2 monotonically as « is increased.

We note that the London equation (10.46) with a singularity n = —1 atry = 0
yields (Problem 15.3)

B(r) =

q; Ko(r/AL), (15.79)

which agrees with (15.77) for the extreme type-II superconductors, as may be
confirmed by multiplying (15.77) by «/EMOHC and using (15.11)—(15.15). Thus, the
London equation can be regarded as the extreme type-II limit of the GL equations
near T¢, but also has the advantage of being applicable at lower temperatures.

Although we have not considered it here, the possibility of doubly or triply
quantized vortices may be excluded in the bulk based on the observation that
distributing singly quantized vortices homogeneously on a macroscopic scale
realizes the most homogeneous distribution of magnetic flux density.

Problems

15.1. Show that vector H defined by (15.8) satisfies (15.5).
15.2. Prove (15.56) between (15.51) and (15.52) for Ny = N, = 0.
15.3. Show that (10.46) forn = —1 and ry = 0 gives (15.79) as the solution.
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Chapter 16
Surfaces and Vortex Cores

Abstract We discuss topics concerning inhomogeneous superconducting states
of s-wave pairing that are realized near boundaries and vortex cores. First, we
consider a normal-superconducting interface to show that an electron approaching
the interface from the normal side experiences a peculiar reflection called Andreev
reflection, which backscatters a hole; the energy flow is substantially blocked
through the interface because of this reflection. Next, we study quasiparticles around
a vortex core to find that there exist localized quasiparticle states called Caroli-de
Gennes—Matricon mode below the bulk energy gap; they recover a T -linear term
in the specific heat and are also responsible for the electric resistivity when vortices
are forced to move. Finally, we use the quasiclassical Eilenberger equations to study
in detail an isolated s-wave vortex and its local density of states, Figs. 16.3—16.5.

16.1 Andreev Reflection

We consider a normal-superconducting interface as given in Fig. 16.1 to study how
a normal electron or hole incident on the boundary is scattered and transmitted.
A starting point is the BdG equations. For weak-coupling s-wave pairing, they

read
A A | Tum)] . [u()
[A*(r) —JZ*} o) = Lot (e

with # = p?/2m — . This is a direct extension of the (1, 4) elements of (9.3) to
inhomogeneous systems. Equations for the (2, 3) elements are obtained from (16.1)
by changing the signs of A and v simultaneously. Hence, they are identical to (16.1)
so that it suffices to consider only (16.1). As for the pair potential, we here adopt a
model form:

A(r) = Agf(x), (16.2)

© Springer Japan 2015 247
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a b
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A(x) g
A N
0 N q S
N S =
~—q
=
0 X Oz X

Fig. 16.1 (a) Model pair potential around a normal-superconducting (NS) interface. (b) Andreev
reflection (chain line) at an NS interface

which enables an analytic treatment. In principle, the pair potential should be
determined self-consistently and is expected to change smoothly near the interface.
However, we may capture the essence of the scattering by studying this simplified
model.

Let us express the eigenvector in (16.1) as

u®) | _ jier | #(r)
[v(r)} =k [ﬁ(r)}, (16.3)

where kp denotes a Fermi wave vector. Functions (i, ) thereby introduced are
expected to vary slowly compared with ki '. Next, we substitute (16.3) into (16.1)
and approximate the kinetic energy of the upper element as

) s 2
Hu(r) = (;—m - u) /M T(r) = /krT [% — u} iu(r)

~ e Ty (—iAV)i(r),

with vg = #kg/m. Here we have used u = h%kZ/2m and also neglected the V2
term. Equation (16.1) is thereby simplified to

—ihve- V. A@ Jam] _ g )

This is the Andreev approximation to the BdG equations [2], which is essentially

identical to the quasiclassical approximation adopted in Sect. 14.3.
Equation (16.4) on the normal side reduces to

[—ith -V 0 :| |:12(r)i| _E |:12(r)i|
0 ihve - V| |0 | T o) ]|’
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Its eigenfunctions have the general form:
a(r)] [ Ajelar
o) = L] (16

Eq=hve-q. (16.6)

with eigenvalues:

Because q is a correction to kg with ¢ < kg, we should choose the direction of q
either parallel to kg (Eq > 0) or antiparallel to kg (Eq < 0) by definition. Keeping
this particle-hole symmetry in mind, we shall focus our attention on the case q || kg
(Eq > 0) below.

Equation (16.4) far inside the superconductor is expressible generally in terms of
a plane wave as

I:l(l‘) B iq/-r
= , 16.7
)= )¢ (oD
as we have seen in Sect. 8.3.4. Substituting into (16.4) with A(r) = Ay, we obtain
¢y Ao || Bi B
= Ey , 16.8
[AS _gq/ B, 4 B, ( )

with £y = Ave - q'. This eigenvalue problem is identical to (9.4) for homogeneous
systems. Hence, we can immediately write down the positive eigenvalue and its

eigenfunction as
Ey = /5 +Aol%, (16.9)

|:Bl:| —-C [ vV (Eq’ + Eq’)/qu’ :| (16.10)
B, A/ V2Eq(Eq +E¢) ]’ ‘

where C is a constant.

We now match (16.5) and (16.7) continuously at x = 0 by setting £q = Ey =
E > 0 based on the energy conservation through the barrier.! Noting (16.10), we
can express the relevant condition as

E+ &y A}
, Ay = C ————— 16.11
E 2 ( )

V2EE + &)

A1=C

'This matching condition also makes derivatives du(r)/dx and dv(r)/dx continuous at x = 0 to
the lowest order in ¢/ kr. Homogeneity along the y and z directions implies ¢}, = ¢, and ¢/ = ¢.
between (16.5) and (16.7). '
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We shall focus on instances £y > 0 below, deferring £ < 0 to Problem 16.1. Then,
it follows from (16.9) and (16.11) that we can express |C|?>/|A;|> and |C |?/| A,|? as

ICI> 2FE ICI> 2E

AP E+ JEZ— A 1422 E— JET— AP
Hence, inequality |A;| > |A>| holds for & > 0, implying that the upper element of
(16.5) should be regarded as the incident wave in the transmission process from the
normal side.

Next, we derive a formula for the quasiparticle current to obtain the transmission
coefficient. To this end, we generalize the wave function as

u(r) R u(e, )] igiyn [u(r)
|:U(1'):| |:v(r,t):| = |:v(r):|' (16.13)

Equation (16.1) is then expressible as

(16.12)

du p>
ot (2m p,)u v=0, (16.14)
L (P v—A*u=0 (16.15)
— — u = .
ot 2m # ’

with u = u(r,t) and v = v(r, ). Let us multiply (16.14) and (16.15) by u* and v*,
respectively, add them to form a single equation, and subtract its complex conjugate.
We thereby obtain the continuity equation for pg, = |u|?+|v|? in the form dpg,/ 9t +
V - jop = 0 with

i = ﬁ(u*Vu — uVu* —v* Vo + vVo*), (16.16)

Because the extra ¢ dependence introduced in (16.13) cancels out in (16.16), we
now return to the original wave function (16.1) without time dependence.

Substituting (16.3) and (16.5) into (16.16), we find the quasiparticle current on
the normal side,

hKp

m

hKkp

(AP = =47 (1617)

w N
Jop = Z[|A1|2(kF +q) — AP (kr — @)] ~
The current on the superconducting side is found similarly using (16.3), (16.7), (16.9),

and (16.10) with £ > 0 as

qp

o hkr+4q) 2 n kg &y hkp o E?2— Ao
= ——(IBil’ = |Bs|’) » —|C|*- = —|C)P——F7—.
m m E m
(16.18)
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We are now ready to calculate the transmission coefficient for an incident wave
from the normal side. Combined with |A;| > |A;| from (16.12), we can identify
the z component of (16.17) with coefficient |A;|?> and kg, > 0O as the incident
current from the normal side. The transmission coefficient, which we denote by 7,
is defined as the ratio of the transmitted current density jg, . relative to the incident
current density. Hence, we obtain .7 using (16.12), (16.17), and (16.18),

7 — ICJ? VEz_IAOIZQ(E Ao]) = 2 E?—|Ao|?
4> E VT B+ JE AP
(16.19)

where the step function has been introduced to express that there is no transmitted
wave for E < |Agl|. Thus, the flow of quasiparticles across the SN boundary is
completely blocked for E < |Ag|. This causes a reduction in energy flow from the
normal side across the barrier at low temperatures, which explains the steep increase
in the low-temperature thermal resistance in the intermediate state with a periodic
SN arrangement [2].

It is interesting to note that wave function (16.5) is given as a linear combination
of an incident particle with wave vector q and reflected hole with wave vector —q,
as depicted in Fig. 16.1b. This reflection, called the Andreev reflection [2], is in
marked contrast to the normal-state reflection (broken line in Fig. 16.1b) in that all
three components of q are reversed simultaneously upon reflection. It should also be
emphasized that this law is relevant to the envelope functions (it, ) with ¢ < kg;
see, e.g., [4] for a more detailed treatment of the transmission and reflection at the
SN boundary without the Andreev approximation.

O(E —[Ao).

16.2 Vortex-Core States

As a second topic, we consider low-energy excitations localized around an isolated
s-wave vortex.

In the presence of the magnetic field, the BdG equations in the Andreev
approximation are given by

o = EN, (16.20)
where
. Vi - (—ihV — eA) A . [
= = 16.21
4G [ A Ve (hV — eA):| , it I:ﬁ:| (16.21)

with e < 0. This is modified from (16.4) to incorporate a vector potential A. We seek
a solution for an isolated s-wave vortex that is homogeneous along the z direction
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and isotropic in the xy plane. The corresponding pair potential and vector potential
are expressible in two-dimensional polar coordinates r = (r cos ¢, r sin @) as

A(r) = A(r)e ™, A(r) = A(r). (16.22)

where we choose the gauge so that A(r) is real and positive and ¢ = Z X T denotes
the unit vector along the ¢ direction. We note that (16.22) is identical with (15.61)
for studying an isolated vortex within the GL formalism. As discussed around
(15.72), amplitude A(r) grows linearly from r = 0 over the coherence length £.

Next, we introduce the projection of vy onto the xy plane and the corresponding
unit vector,

A A A VFL
Vil = Vg — (Z- Vp)Z, vV, = VLl (16.23)
F
Using v, , we can express r alternatively as
r=sv, +bzxvy, (16.24)

which corresponds to a rotation of the coordinate system by

A

@y = arctan liJ'y, (16.25)
Ulx

as seen in Fig.16.2. Coordinate b is called the impact parameter. In this new
coordinate system, the differential operators in (16.21) are expressible as

a b
VE - [FiAV — eA(r)@] = vy |::Fiha— + —eA(r)i| , (16.26)
N r
Fig. 16.2 Two coordinate ¥
systems of a two-dimensional

space
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where we haveused v, -@ = v -(zZxr)/r = —b/r. Next, we introduce the rotation
matrix:
ei(ﬂv/2 0 i(py/2
R= [0 | = (16.27)

where ¢, is given in (8.42).

With these prehmmarles we multiply (16.20) by R from the left and insert
the identity matrix R~ R between 4G and u. It is thereby transformed into
an eigenvalue problem for Hamiltonian ‘%%dG = R%dGR and eigenvector
o' = Ru. Using (16.21), (16.22), (16.26), and (16.27), we can express f%ZB’dG
concisely as

. a b
A (b) = vEL [—ihgzg + ;eA(r)g0i| + A(r) (gx cos¢ + o, sin (ﬁ) ,
(16.28)
with
b

r=+/s*+ b2, @ = ¢ — @y = arctan o (16.29)
We solve ‘%ZB/dG(b)ﬁ/ = Ew perturbatively from 4 = 0. First, Hamilto-

nian (16.28) for b = 0 reduces to

., . 9

Hpag(0) = —ihvpL —o, + A(s)sgn(s)o,, (16.30)

as

with sgn(s)A = =+1 for s 2 0, which has eigenvalue 0. Indeed, the differential
equation #4,;(0)0'® = 0 has the (unnormalized) eigenfunction

% (s) = [ 1} KO, KG) = o — /S A(s")sgn(s")ds". (16.31)
hoeL Jo

—1

Next, we regard jiZB"(ig = %dg b) — %dG(O) and E as a perturbation. The first-
order equation is given by

%/(1) 1(0) _}_%/ (O)U/(l) Ed©. (16.32)

Hamiltonian j‘%’c(lg above is found by extracting terms of O(b) from (16.28) with

sin@ = b//s2+ b2 ~ b/|s],

A b
A ~ sl [vueA(S)go + A(s)gy] : (16.33)
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Now, we multiply (16.32) by @@ from the left, use ' (O)Tf%ZB’dG(O) = 0f, and
integrate the resulting equation over 0 < s < co. We thereby obtain

b / AW —vrLed(s) kg,

o0
/ e 2KG)gg
0

This is the Caroli-de Gennes-Matricon mode for an isolated vortex [5], which plays
a central role in describing low-energy and dissipative properties of s-wave type-1I
superconductors in magnetic fields.

To see how Ej; grows from Ep—¢ = 0, let us adopt a model pair potential
A(r) = Agtanh(r/&)) with & = hvg) /Ay. For this pair potential, function
K(s) in (16.31) for s > 0 becomes K(s) = In[cosh(s/&.)]. Substituting this into
(16.34) and neglecting A(r), we find E, = —O.SS%AO around b = 0. Thus, the
low-energy excitations are localized in the core region; see Fig. 16.5 below for the
Caroli-de Gennes-Matricon mode, and also [6] for a fully self-consistent solution of
the BdG equations for an isolated s-wave vortex.

E)

(16.34)

16.3 Quasiclassical Study of an Isolated Vortex

As already noted, the Eilenberger equations form a useful and convenient basis for
studying inhomogeneous superconductors theoretically. We here apply them to an
isolated vortex of a clean s-wave superconductor to clarify numerically the details of
the spatial variations of the pair potential, magnetic flux density, and local density of
states near the vortex core. The equations to be solved are summarized in (16.64)—
(16.67), and results are presented in Fig. 16.3 for the pair potential and magnetic
flux density, and Fig. 16.5 for the local density of states.

16.3.1 Eilenberger Equations in Magnetic Fields

We consider a clean s-wave type-II superconductor in a weak magnetic field.
It follows from (14.80), (14.88), and (14.76) that the corresponding Eilenberger
equations are given by

2e,f +hvE- (V — izh—eA) f =2Ag, (16.35)
2 &
A = g0 > (S (en ke D), (16.36)

n=0
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V XV x A(r) = —i%@ 3 (veg(en ke D). (16.37)

n=—o0

Here ¢, = (2n + 1)mkgT is the Matsubara energy, f = f(e,,kp,r) =
f(—&,, —Kp, r) is the quasiclassical Green’s function, vg denotes the Fermi velocity,
e < 0 is the electronic charge, A and A are the vector and pair potentials,
respectively, (- - - )p is the Fermi-surface average, and g is given in terms of f by

g(gn,kF, I') = sgn(sn)[l - f(gnvkl:’ I')f*(f;‘n, _kFWr)]l/z
= g*(en, —Kr, 1) = —g* (—&4, kg, T). (16.38)

Quantity go in (16.36) denotes the dimensionless coupling constant, which from
(14.67) for £ = 0 is expressible in the form

1 T 21
—=In—=+=) — (16.39)
80 T, :3 nZ:;) En

where n. > 0 denotes a cutoff determined at each temperature in terms of a fixed
cutoff energy &, ~ 40kgT. through

@ne + kT = &.. (16.40)

Coupling constant (16.39) with a finite sum forms a convenient basis for numerical
studies of the Eilenberger equations. This is confirmed for homogeneous systems
for which the solution of (16.35) is given as

A
- SR (16.41)

Substituting this f into (16.36) and solving numerically, we can reproduce the
temperature dependence of the energy gap A(T') given in Fig. 9.2 excellently.
Let us measure the energy, length, and vector potential in units of

hUF h
A ) =, Ag = )
’ & Ao I

(16.42)

where Ay is the energy gap for the homogeneous systems at 7 = 0. We next make
a change of variables,

r = &r', en = Aogy, A(r) = AgA'(r), A(r) = A)A'(r),

kT = AoT',  f(en.ke.x) = f'(e),. ke, ¥'),  g(en.kp.1) = g' (). ke, ).
(16.43)
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The s-wave transition temperature in these units is given by 7] = e’ /mw ~ 0.567
as seen from (9.36). We also introduce the London penetration depth Aj g at 7 = 0
and dimensionless parameter «y by

dA() ALO
A= || ——————, Ko = —, (16.44)
- ole|N(er) Agur &
with d = 2,3 denoting the dimension of the isotropic Fermi surface under

consideration. Equations (16.35)—(16.37) are then expressible in terms of primed
quantities and kg as

2e 1+ V- (V +iA)) f =2A'¢, (16.45)
ne
N () =2rgT" Y (f(e).ke.T)). (16.46)
n=0
V/ V/ A/ / _ZdnT/ < A / k / * / k / 1 47
x V' xA'(r) =i P X;)(V[g(sn, ) — g (e, ke, 1) ], (16.47)
e

where v denotes the unit vector along vg. Equation (16.47) has been obtained by
mapping the sum over n < 0 in (16.37) onto n > 0, then using the symmetry
of (16.38), and finally omitting the sum over n > n. to give an excellent first
approximation. Thus, we only need to consider those Matsubara energies satisfying
0 < &, < &.. Hereafter, we remove primes from these equations.

It is worth noting that Ay in (16.44) for d = 3 is identical with that defined
in the London equation (10.40) at 7 = 0. In addition, parameter k in (16.44)
is connected with the GL parameter « defined by (15.15) with (14.90)—(14.93) as
ko = 0.5¢77,/7¢(3)/6k =~ 0.33k in the clean limit of d = 3.

16.3.2 Transformation to a Riccati-Type Equation

Two alternative methods have been developed to solve (16.45) numerically by
removing unphysical solutions that explode exponentially as we proceed with the
numerical integration. The first one is called the explosion method, which takes the
commutator of two exploding solutions to obtain a physical solution [9, 10, 16].
The other performs a transformation to a Riccati-type equation [9, 12, 15]. We here
adopt the latter approach and rearrange (16.45) to (16.51) below.

In (16.45), let us express f and g for &, > 0 alternatively as

2a _l—ac_z

S =17 §=1T¥aa

(16.48)
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with @(e,, Kp, 1) = a*(e,, —Kp. 1), so that g2 + f f = 1 is satisfied automatically.
Substituting (16.48) into (16.45), we obtain

o Vi(ad
2ena 49+ (V + i) — V9D A aa). (16.49)
1 +aa
The corresponding equation for a is given by
o V(ad
2 — ¥ (V—iA)G + VD pe () gy, (16.50)
1+aa

Let us multiply each of (16.49) and (16.50) by a and a, respectively, from the left
and subtract the latter from the former. We thereby obtain

Substitution of this expression back into (16.49) yields
V- (V+iA)a = —2¢e,a + A — A*a?. (16.51)
Taking ¢, > 0, the solution of (16.51) for homogeneous systems is obtained as

A
4=—°=-"" (16.52)
&p + 8% + |A|2

where we have chosen one of the two formal solutions by requiring that a — 0 for
A — 0 based on (16.41) and (16.48).

16.3.3 Equations for an Isolated Vortex

We seek a solution of the Eilenberger equation for an isolated s-wave vortex that is
homogeneous along the direction of the magnetic field, which is taken parallel to the
z axis. To minimize the numerical computation without losing the essential features
of an isolated vortex, we consider a superconductor with a cylindrical Fermi surface
(d = 2) whose side is arranged to lie along the magnetic field. Accordingly, we
consider its variation in the xy plane. First, we write r and V as

r = (rcosg,rsing), vV = (cos @y, sin ¢y), (16.53)

with Vv || kg for the cylindrical symmetry. See Fig. 16.2 with replacement v, — Vv
for the present model. Using v, we can express r alternatively as

S = rcos¢@

r=sv+bzxv, A
b=rsing

P=¢—gy. (16.54)
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Second, we write the pair and vector potentials for an isolated vortex with cylindrical
symmetry as

A(r) = A(r)e™, A(r) = A(r)z x T, (16.55)

where A*(r) = A(r) and r = /52 + b?; see also (15.61). Now, the differential
operator of (16.51) is expressible concisely in the new coordinates as

V- (V +iA) = a% - igA(r). (16.56)

Moreover, V x V x A is transformed into [3]

. 4B 1d
VxVxA=—ixiB? B(r) = ——rA(r). (16.57)
dr rdr
We also rewrite a as
a(en, K, r) = d(e,, s, b)e ¥, (16.58)

Substituting (16.55)—(16.58) into (16.51), we obtain

0 b . .

(— - i—A) a = —2e,d + Ae ¥ — Ae¥a’, (16.59)
as r

with A = A(r) and A = A(r), which depends only on the relative angle ¢ = ¢—¢y

between r and V. Taking the complex conjugate of (16.59), we obtain the symmetry

relation:

a*(e,,s,b) = a(e,,s,—b). (16.60)

The two results imply that we only need to solve (16.59) in the (s, b) plane for a
single direction of vand » > 0, e.g., v = x and b > 0. Next, we insert (16.58) into
(16.48) and use (16.60) and e 79— = e7i»v+7) = _e~iov We can thereby express
f and g as

f(Sn,kF,r) = f(gna s’b)e_ifﬂv’ g(gl‘l?kFar) = g(Sn,S,b), (1661)
with

2a(e,, s, b)

[ aGen s, b)aten,—s,5) ) Cns:70): (16.62)

f(sn,s,b) =

L +a(en,s,b)a(ey,—s,b)
1 —d(ey, s, b)a(e,, —s,b)

g(en,s,b) = & (en. 5. —D). (16.63)
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Now, we are ready to summarize the equations to be solved numerically. The first
is given by (16.59), i.e.,

d b 7 .N
(a_ - i—A) = —26,d + Ae ¥ — Ae'9G?, (16.64)
S

with r = «/s2 4+ b2, ¢ = arctan(b/s), A = A(r), a = a(e,,s,b), e, = 2n +
)zT, and A = A(r). Next, let us substitute (16.55) and (16.61) into (16.46) to
obtain a simplified equation for the pair potential as

A(r) =2gonT Z/ —f(sn, rcos@,rsin@)e?, (16.65)

where we have made a change of integration variables as ¢y — ¢ = ¢ — @y
in averaging over the cylindrical Fermi surface. Finally, we substitute (16.57)
and (16.61) into (16.47) for d = 2, take its scalar product with ¥ X z, and write
(t x z) - v = sin ¢ based on (16.54). We then obtain a differential equation for B(r)
as

dB(r)
dr

8nT
=—jr), jr)= T Z/ —Img(sn,rcosqo,rsmqo)sm<p,

(16.66)
where Im denotes the imaginary part. After integrating (16.66), the vector potential
is obtained based on (16.57) by

A(r) = %/Or ¥’ B(r')dr'. (16.67)

Equations (16.64)—(16.67) form a set of self-consistency equations for d(e,, s, b),
A(r), and A(r). Using the symmetry of (16.62), we can reduce the integral of
(16.65) to that of the real part of f(e,,s,b)e? over 0 < ¢ < . In addition, one
can show based on the symmetry of (16.63) that integrals over 0 < ¢ < m and
7w < ¢ < 27 in (16.66) yield an identical contribution. Hence, we need to perform
the self-consistent calculations only over b > 0.

16.3.4 Numerical Procedures

The numerical procedures to solve (16.64)—(16.67) at a given temperature T are
summarized as follows. First, we solve the ordinary differential equation (16.64)
with some trial pair and vector potentials such as

1—(1 —r/ko
A(r) = Ay tanhr, A(r) = (14 r/koe ’
r
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where A7 is the energy gap of homogeneous systems that can be obtained by the
procedure described below (16.41). To this end, we choose a rectangular region
of —r. < s <rcand 0 < b < r. with r. = 5, fix g, and b, and integrate (16.64)
numerically along the straight-line path from (s, b) = (—r¢, b) upto (s,b) = (r.,b)
[14] by imposing the initial condition:

b a0 ey, —re b
(en. —re.) = 360, 1, b) iz o [1 ~ RARY] 20 (16.68)
c Ver+ AL
with R = /r2 + b2. Here the first term is defined as
A —re—1ib
@ (e, —re.b) = d hui (16.69)

on+ Je2 + 02 K

which is obtained by setting the left-hand side of (16.64) equal to zero with
A(R;) — Ar. The second term originates from the first-order perturbation with
respect to the left-hand side of (16.64). Next, we use d(g,, s, b) obtained in this
manner on discrete points in —r, < s < r.and 0 < b < r to perform integrations of
(16.65) and (16.66) numerically with interpolations [14] for updating A(r) and j(r)
over 0 < r < r.. Current j(r) thereby obtained is used subsequently to integrate
(16.66) for B(r) with the initial condition:

B(re) = cKo(re/AL) (16.70)

given in terms of the modified Bessel function Ky(x) [1, 3] as established by
the London theory; see (15.75) on this point. As shown in Problem 16.2 below,
constants Ay, and ¢ above can be determined in terms of j(r) by solving

rCKO(rC/A'L)

[“ T 2K e/ )

:|ALer(rC) =1 —/ dr1r1/ dryj(r2), (16.71)
0 rl

ALj(re)

= — 16.72
= Ko/ (1672)

This consideration also indicates that we can write | —R.A(R.) = cAL R K 1(Re/ A1)
in (16.68). Finally, the vector potential is calculated using (16.67). Potentials A(r)
and A(r) thereby obtained are used in the iteration of (16.64)—(16.67). When
updating A(r) and A(r) at this stage, it is better to mix old and new potentials
with certain relative weights, e.g., 0.5 vs. 0.5, to avoid numerical oscillations. The
procedure should be repeated until numerical convergence in A(r) and A(r) is
reached.
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Fig. 16.3 Spatial variations of the pair potential A(r) and magnetic flux density B(r) around an
isolated vortex centered at r = 0 for kg = 5 expressed in units given in (16.42) and By = % /2|e|&}
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Fig. 16.4 Temperature dependences of & and A for k9 = 5.0 in units given in (16.42) and
By =h/2lel§;

16.3.5 Results

Figure 16.3 plots the spatial variations of the pair potential A(r) and magnetic flux
density B(r) near the vortex core calculated for kyp = 5.0. The pair potential is seen
to increase linearly from the core center, as

A(r) ~ SLAT (r20) (16.73)
1

towards the homogeneous value A7, and the core size, which may be estimated
by parameter £ = &(T), is seen to diminish substantially as the temperature is
lowered. Contrastingly, B(r) decreases quadratically from the core center, and its
behavior for r = 3£, where A(r) &~ Ar holds, is well described by the formula
B(r) ~ cKo(r/AL); see also (15.73) and (15.75) on these points. The value of B(0)
is seen to increase as the temperature is lowered partly because of the decrease in
the penetration depth Ay (7).

Figure 16.4 plots & and A as a function of temperature to show these
features more quantitatively. Most remarkably, the core size &; is seen to approach
zero as T — 0, which is known as the Kramer-Pesch effect for clean type-II
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superconductors [11, 13]. However, its shrinkage & — 0 is an artifact of the
quasiclassical approximation and actually stops at a finite value of order ki 17,111
In contrast, A decreases rapidly following the law Ay o< (1 — 7/ T.)~"/? near T,
and eventually approaches a finite value ~ ko&, around 7' ~ 0.47¢. Indeed, one
can show that (16.47) for A(r) = |A[e™) can be approximated by the London
equation’ (Problem 16.3),

VXVxA= —1K—Z(T)(V<p +A), (16.74)

0

where Y(T') is the Yosida function (10.17); the equation implies Ar(T) = ko[l —
Y(T)]_l/ 2 as seen from (10.39) and (10.40). Hence, the zero-temperature value of
AL(T) saturates at around T ~ 0.4T,. The increase of B(0) below that temperature
in Fig. 16.3 may be attributed to the core shrinkage.

Finally, Fig. 16.5 plots the normalized local density of states Ny(E,7)/N(er)
over =2 < E/Ag <2and0 <r/& <5atT = 0.5T, for kg = 5.0. It is obtained
by solving (16.64) for the self-consistent A(r) and A(r) replacing &, — —iE + 8,
where § is a small positive constant. The explicit formula is given by

Ny(E, 2 d
ME ) _ / Re 3(—iE + 8,7 cos @, r sin @) —, (16.75)
N (er) 0 27

where g is given by (16.63) and Re denotes the real part. Indeed, one confirms
that Reg(e, — —iE + §) in (16.41) with § — 04 yields the homogeneous
superconducting density of states given by (9.48) or (12.29). We have set here
8 = 0.1Ay to avoid any numerical divergence. We observe that Ny(E, r) forr ~ 5&
is almost identical with the bulk density of states (9.48) smeared by §. Near the
core center, however, there is another structure with a sharp zero-energy peak at
r = 0, which represents the Caroli-de Gennes-Matricon mode given by (16.34).
This local density of states around a vortex core was observed experimentally with
the scanning-tunneling microscope by Hess et al. [8].

Fig. 16.5 Normalized local
density of states
Ns(E,r)/N(eg) plotted over
—2 < E/Ap <2and
0<r/§ <5atT =0.5T,
for kg =5.0and § = 0.1A¢
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2Quantity ¢(r) here denotes the phase of A(r); it is not the polar angle in two dimensions.
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Problems

16.1. With &y < 0in (16.11), obtain the corresponding equation to (16.19).
16.2. Derive (16.71) and (16.72) using the condition:

9]
/ drlrlB(rl): 1, (1676)
0

which results from (10.43) for the flux quantization with » = —1 in units of
(16.42).

16.3. Derive (16.74) from (16.47) by regarding the gradient term in (16.45) as a
perturbation and setting A(r) = |Ale!¢®™.
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Chapter 17
Solutions to Problems

Problems of Chapter 1

1.1

(a) Both differentiations in (1.5) gives 2x so that the equality holds.
(b) Performing the integration of (1.3) for the gradient dz/dx = 2xy + 1, we obtain

2(x,y) =Xy +x + g(y),

where we have incorporated a constant —(xg Vo + Xo) into the definition of the
unknown function g(y). Let us differentiate the above equation with respect
to y and set dz/dy = x? + 2y. We thereby obtain g’(y) = 2y, which gives
2(y) = y? + C with C denoting a constant. Substitution of this result into the
above z(x, y) yields z(x, y) = x?y + x + y> + C.

1.2 Integrating (1.9) and (1.10) over a cycle of the heat engine in contact with a
single heat bath of temperature 7" yields

0:¢d/Q+9§d’W, ¢d’Q§¢TdS:T¢dS:O,

where we have used the fact that the internal energy and entropy are potentials.
Combining the results, we obtain an inequality for the total work —AW
performed on the exterior,

—AW = —¢d’W = 9§d/Q <0.
Hence, the statement is proved.
© Springer Japan 2015 265
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1.3
(a) It follows from (1.8) that

2
(3_P) __"R_ T(a_P) _p—alt
ar), V—nb T )y, &

holds. Substitution of them into (1.33) and (1.34) gives

as=Sar s ™ v au = cpdT +aoav
=T Vb =t A

(b) Maxwell’s relation for dU above reads

BCV 8 n2
— =——\|a—= ) =0,
av aT V2
which implies that Cy is independent of V. The same conclusion also results

from Maxwell’s relation for dsS.
(c) Noting that Cy is a constant, we integrate d.S and dU in (a) above to obtain

2
S=CyInT +nRIn(V —nb) + Sy, U = CVT_G”VJFUO,

where Sy and Uy are constants of integration.

(d) Entropy does not change in reversible adiabatic processes. Keeping this fact in
mind, we rearrange the expression for S in (c) into the form S = Cy InT'(V —
nb)"™®/Cv 4 S;. We thereby conclude T'(V — nb)"®/¢v = const in reversible
adiabatic processes.

(e) Equalities d’Q = d’W = 0 hold in adiabatic free expansions. Hence, it follows
from the first law of thermodynamics that the internal energy does not change.
Combining this fact with the expression for U obtained in (c), we obtain

n? n? an® (1 1
CvTl1—a—=Cyh—-a— «—> AT=T7,-T1=—|——-——]<0.
r aVl v aVz Ty (Vz Vl)

Problems of Chapter 2

21

(a) Can be shown elementarily.
(b) Using the equality of (a), one may calculate the expectation as

n n n—1
(k)= kP =npY P~ =npY P =np.
k=1 k=1 k’=0
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One can also show kZP]f =[kk—-1)+k]P! =n(n— 1)sz]f__22 +npP~},
which is used to rearrange (k?) as

() =D KPP =n(n—1)p* Y P +npY PP =nn—1)p* +np.
k=1 k=2 k=1

Hence, we obtain oy = /(k2) — (k)2 = /np(1 — p).

2.2 A necessary condition for g(x) = x + y + A(x> + y? — 1) being extremal is
given by dg(x,y)/dx = dg(x,y)/dy = 0,ie.,0 =1+ 2Ax = 14 2Ay.

Coupled with x2 + y? = 1, the equalities yield x = y = iﬁ. Substituting

both into x + y, we find the point to be (x, y) = (\/LE «/Li)

Problems of Chapter 3

3.1 Substitute (3.24) into the left-hand side of (3.26) and use (3.19), (3.23), (3.18),
and (3.12) successively. Denoting integration over £ by &, the demonstration of
this proof follows:

~ 1 N ANy = A = na = _ - _
V(&)Y = ﬁw(sl)w*(S{)wT(Eg)"-w*(éﬁv)|0>d>v(s&s§,--- )

1 L o _ _
_ ﬁ[w*(s;>---w*(s;v>|o><1>u(sl,s;,~' B

+o Ut EDVTED - T EVI0) DL 61,8, By + -+

+o N TYTED T EV DI E - By E)

+o NPT EDYTE) T ENT EDI0) DL (E - ,éx_l,éﬁv)}
= J#N_![v?*(é;)---W(éfv)|0>d>u<sl,§;,--- EN)
+o? P EDVTED - YT ENI0) D (51, E]LEL - LEV) + -+
+0NTUYTED T E_I0) Ry (1 ,éﬁv_l)}
N
VNI
= VN &, E)) P58, 8.

VIE) YT ENIND,ELE, - EY)
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3.2 The first equation is proved by substituting (3.24) and (3.25) and using
(3.22), (3.12), and (3.33) successively as follows

(@ur|®y) = @ EDEL - Byl BB Ev)
_ | o _ _ _
O B 1D 0 OE L Ep)  SE ) PulEr e )
P

= ZUPq) (Epl""véPN)qDV(él""’éN)

N!
P

1 z - - 1
= 3 qD*(glv"'7SN)®V(SI7“'3&V):mZSV’VZ(SV’v-
P

Similarly, the second relation is proved by substituting (3.24) and (3.25) and
applying (3.34), (3.21), and (3.30) successively as follows

D10y = 11 En)(E] st@@l, L ENREE - EY)
=|§1,~.,§N><§i,---émmZUPS(éi,ém)"-S(é;v,épN)
P
:|§ls"'7§N>%ZO—P(§P17”"§PN|:|§ls"'7§N>(‘§17"'5‘§N|:1'
P

3.3 The proof proceeds by substituting (3.26) into the right-hand side of (3.37) and
applying (3.22) and (3.12) successively to obtain

<¢u/|xﬁ*(§1)/€“%ﬁ(§1>|¢ )

N(N 1)' ZGPqDU’(glaSPZ’ 7§pN)l’;(ll)q)v(gl,§2’... ’EN)

= NO(E, &, ENI @ (81 &, -+ En)

= NCD:’(§27§1’§3"” ’gN)hA(ll)qDV(Englag?ﬂ'“ vg_N)
N

= ¢:'(§1’§2’§37”' "gN)Z};;l)qDV(‘§17§27§3s"' 7§N)-
j=1

3.4 Substitute 0 = —1 and (3.56) into (3.54), insert the resulting wave function
and (3.19) into (3.44), and use (3.50) and (3.51) successively. Specifically, the
transformation proceeds as follows:
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|q>V> = |§17"' 5§N>q>l)(§lv"' ,EN)
T D I Gy, B G, EIO)
P

1 P
At At = of At
m Z(_l) C’Im o C’IpN |O) - C’Il o CQN |O)
p
3.5 The first identity is proved by expanding the commutator as

[e.(&N)'], = [e.7], (@) +&f[e. ] )"

HEVIE @7 4 @],

and substituting [5 , éT] 4+ = 1 on the right-hand side. The second identity is
obtained by expanding g(¢') in the commutator as

. X gm)
g@h =3 & Py
n=0 :

and using the first equality.

Problems of Chapter 4

4.1 The wave number for d = 1is given by k, = 2zn/L (n = 0,£1,+£2,--+),
which lies in —oo < k, < oo with a common spacing Ak, = k,+; — k, =
27/ L. Thus, the density of states is calculated as

D(e) = @2s+ 1)) 8(c— &)
—(2s+1)LZAk8(e—s) sum — integral
B 2m ~ ! ! ! &

25+ 1)L [
~ (Sz;)/ dk,8(e — &) k = —K/ for k, <0
T —00

254+ 1)L [® 2m\/?
_ @+ DL / dnb(e—en) ko= (22) e
b/ 0 A2

12 poo
_ @s+ DL (2_’") / _dgljza(e—sn)
0

EL1 #2 2¢)
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2s + )L (2m\/? 1
= @s+ DL (_m) —0(e).
27 h2 el/?

As for d = 2, we express the wave vector as k = (k cos ¢, k sin ) with d*k =
kdkdp (0 < k < 00,0 < ¢ < 2m) and make a change of variable as k =
@2m/h?)Y 25,1{/ * The density of states is thereby transformed as

D) =(2s+1) 28(6 — &)
K

2
~@2s+1) (%) /dzk 8(e — 1)

L2 2 o) 2m 1/2
= (25 + 1)W/0 d(p/o dkk8(e — x) k= (?) e’

_ (2s+1)L22_m/°° dey 280 _ g0)
v 1o 26l k
Qs+ 1DL*2m

47 h2 o).

4.2

(a) The chemical potential is determined from (4.12) with 0 = —1, where the
distribution function at 7" = 0 reduces to the step function, (4.32). Substituting
the density of states for d = 2 obtained in Problem 4.1 and setting 1(0) = ¢,
we can transform the equation as

2

R L“m
N =/ D(e)de =
0

wh?

EF.

We thereby obtain the Fermi energy ep and Fermi wave vector kp =
(2meg/h*)/? as

nh*N 2N\

=T ( )

(b) Equation (4.12) for the chemical potential corresponds to the case of g(€) —
D(e) in (4.41). As D(e) is constant in two dimensions, there is no power-law
temperature dependence in  according to the Sommerfeld expansion, i.e., u ~
€r holds at low temperatures. A weak exponential 7' dependence in p still exists
at low temperatures, which can be reproduced by removing the approximation
w/kgT — oo in (4.38).
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4.3

(a) Let us introduce variables ¢, = n,hw (n = x,y,2), the spacing between
adjacent pair of levels being constant and given by Ae, = hw. Using them,
we rewrite the density of states as

oo 0 o0

D)= >3 > se—er—e,—e.—3hw/2) € =e—3hw/2)

ny=0n,=0n,=0

(ha))3 Z Z Z AeAeyAe (€ —e, — e, — &)

ny=0ny=0n,=0

(hw)3 / dex / de, / de,8(E -, —8, — &)

6@ - 2
ww/ / yzmﬁﬂ)

(b) This case corresponds to A = 1/2(hw)? and n = 3 in (4.52). Substituting both
into (4.53) yields the expression of Tj stated in the problem.

(c) Repeat the calculation of (4.48) using the present density of states to obtain
No/N as

& 1_/°° D(e)/N de = 1— (kgT)? oo x2

_ [ e = d
N (e ks 1 2hoyN J, e =10
_ _tOre)ksT) _ | (T
N 2(hw)3N o)’

(d) Repeat the calculation of (4.49) using the present density of states and setting
€0 = 3hw/2. We thereby obtain internal energy U as

*° D(e)e
U = Nogy + /80 N YT lde

1 % (e — £0)* (0 + € — &)
= Nogo + 2(hw)’ / ale—e0)/ksT _ ] de

©  D(e) (kT)* [ 3
- [NO + /;0 ele—e0)/kpT _ 1d6:| €0 + 2(hw)3 /O ex — 1d'x
EHI4)
2(hw)?

B 3¢(4) \
‘NF+5@“R()]

= Neg + (kgT)*
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The heat capacity is subsequently obtained based on C = dU /9T as

o 120(4) 13
€ =" (To)'

Problems of Chapter 5

5.1 First, in taking an average, enumerate distinct decompositions by marking each
pair of operators with a common symbol on top. Hence,

W EDV EVTEVE)V EDY(ED)
= (U ENVIEY EPEND ENE))
T EDYTEDT ENTEN P )Y E))
T EDYTET ENT ENPE)Y E))
U ENTTEN EETETED)
T EDYT EDT ENTEP E)Y )
T EDTTEP ETEY EVED).

Next, focus on a single operator from the left in each term and move its partner
successively to its right, multiplying by o upon each exchange of operators,
until all pairs are coupled as in

WTEDT ENVT ENVEVE)T (D)
= o2 ENY EV T ETEY EDT )
+o T EDT EDT T EV DT ()
+o W EDNT @V T EY €T (&)
+o W EDT T T ET EDTE))
+o T (T EDY E) DT EV @V T )
+o 2T EDY E)YT EDVEDT EDT (&),

Finally, we replace identical symbols on each pair with angle brackets around
them, i.e.,

W EDYTENVTEDV E) Y (E)TED)
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= (VT EDVEDV W ET (E)) (VT (EDV (63))
+o (YT ENTEN (DT EDVEN (I EDT (&)
+o (YT ENTE (DT EDV EDN T EDT (&)
HTEDY EDV P T EV E)) (P ED T (ED)
+o (YT EDTEN (DT EDV ED)N (T EDT ED)
+WTEDTEN W EY ED) (T EDT (E)).

5.2 The formula can be derived in the following manner:

& gin(korél/?
Ukor) — % sin(kqrél”?) . ar= L

t
0 kQI‘ kQI‘

kgr 1/3
b/ . ~1/2 6
— tsint dt krp =k =kol|—
2(kqr)? /0 " R ¢ (ﬂ )

T kgr kgr
—— | —tcost + cost dt
2(/6)(kgr)? 0 /0

3 (—kgr coskgr + sin kgr)
(kgr)? ‘

273

From the Taylor series expansions of —x cosx = —x + %x3 — %xs +--- and

sinx=x—%x3+

1

ng — -+, we then obtain the expression near r = 0.

Problems of Chapter 6

6.1

(a) Let us multiply (6.18) by e ¥""1=™) integrate over r = r; — r,, and
use the orthonormality of (4.14) given by (¢w|¢k) = dSwk. Then, replacing

k' — k, we obtain % = | ¥(r)e *"d’r. This integral can be calculated

analytically by choosing the z axis along k and adopting polar coordinates r =
(rsinfcosg,rsinfsing,rcosf) (0<r <00,0<60<mw,0<¢ <2m). We

have

2r e b4
N = / dg / dr r?¥(r) / d6 sin e ke
0 0 0

o] 1 . o] e e
= Zn/ dr rz“//(r)/ dre " = Zn/ dr r*¥ (r)————
0 -1 0

ikr _ —ikr

ikr
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27tU0 o

— o i drr [e—(l/ro—ik)r _ e—(l/ro-‘rik)r]
_ 2zl [ 1 1 i| _ SnUorg
ik [ (/r—ik)2 (U/ro+ik)2 ] (1 +r2k?)?

(b) Expansion (6.51) can be expressed in this instance as

o0

=Y QU+ D)V (k.k') Py (x),
=0

SnUorg
[1+ rg(k2 + k2 — 2kk x)]?

where x = cos . Let us multiply the equation by P¢(x), integrate over —1 <
x <1, and use (6.36) to obtain

1! 8Uor P,
Yok k') = _/ I L) N—
2 )0 [V +ri(k? + k™ — 2kK x))?
This integral for £ = 0 can be calculated analytically with Py(x) = 1,

8JTU()I’8

(1+ r2k? 4 r2k?)’ — 4rdk2k?

Yok k') =

(c) Substitute the results of (a) and (b) into (6.52) to obtain

. 87Uy D(er) 1 . 8 Uord D(er)
K=—r— 270 y22) = 5ygi1i2
2V 1+ 4r2k2 2V(1 + 4r2k2)
Problems of Chapter 7

7.1 This Schrédinger equation forms an ordinary second-order differential equation
with constant coefficients for each of |x| < a and |x| > a. Hence, it can be
solved most simply in terms of k£ and « in (7.5),

Acoskx + A'sinkx  : |x| <a
$(x) = Be™* cx>a
B’ e~ tx<-—a

where A, A’, B, and B’ are constants, and we have used the boundary conditions

|¢p(£o0)| = 0. Because the potential is even in x, eigenfunctions can be
classified into even functions with A’ = 0, B’ = B or odd functions with
A =0, B = —B. The lowest eigenfunction without nodes is an even function,

so we set A” = 0, B = B and focus on the region x > 0. We match the
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solutions for 0 < x < a and x > a by requiring that ¢’(x)/¢(x) be continuous
at x = a. The condition yields

n=§&tané,

where (&, 7) are defined by (7.6). By plotting the curve in Fig. 7.2, we find that
this function has an intersection with (7.8) in the first quadrant for an arbitrary
U() > 0.

To obtain the solution of Uy — 0 analytically, we expand tan £ = £ + O(£?) to
approximate 7 ~ £ in the above equation. Substituting the result into (7.8) and
noting £ < 1, we obtain n ~ (2ma?/#?)U,. Moreover, (7.5) and (7.6) yield
n= (—2ma2s/ hz)l/ 2, Equating the two expressions of 7 fixes the ground-state
energy for Uy — 0,

€ ~ —(2ma* /WU

Thus, a bound state is formed by an infinitesimal attraction also in one
dimension. It follows from considerations in Sect.7.2 that this result can be
attributed to the fact that the one-dimensional density of states given by (4.54)
does not vanish for ¢ — 0. Indeed, (4.54) for d = 1 even diverges, thereby
producing a deeper bound-state energy than that of (7.26) for d = 2 with a
constant density of states.

Problems of Chapter 8

8.1

(a)

(b)

Let us substitute the expansion of the pair wave function into (8.3) and then
rewrite O as

e CAU t
A Ck1Cx k) C—k
0" =) ¢ Zdw
k
In deriving the last expression, we have used clt CikT = —cik clt and

symmetry ¢x = ¢_x, and also made a change of variables k — —k to simplify
the expression.

Let us substitute the expression of (a) into (8.6), expand the exponent in a Taylor
series, and use the identity (Elta)2 = 0 for fermions. We can thereby transform
the condensate wave function as

|q>) =A exp (Z ¢kCAlTCAik¢) |0> =4 l_[eXP (¢kCAlTC{k¢) |0>
k k
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= AT (1 + ol ) 100 =TT (e + el ) 100,
k k

withug = 1/4/1 + |¢x|? and vk = ¢/ /1 + |Pk|*.
8.2
(a) Equation (8.96) can be shown using (8.7) as follows:

0.0 = 50°GLB[IEWE). O],

1 e (= A~ R " - R n -
= 39" GBI EVED. 0", + [P E). 0LV &)

= 6 EBE BV EI G + 0 BTG E)

= 20" BN ELE) — 6@ B G )
+(E. 0V GV ED)

= S0 GL B + 91 Ep B L EDI ).

(b) It is clear that, when the second term of (8.96) can be neglected, the relevant
operator ¢' satisfies [¢,¢%]4 = 1. Moreover, the BCS wave function can be
written as |¥) = Ae@5T|O). The normalization condition (¥|¥) = 1 yields
|A| = e~10F/2,

Problems of Chapter 9

9.1 We focus on the region £ > 0 for an even function (9.46) and express its sum
over k using the normal density of states (6.28) as

DS(E) = /_ dSkD(Sk)S(E — Ek) ~ D(SF)/_ dSkS(E — Ek),

where we have approximated D(g;) ~ D(er) and made a change of variable,
ex — & = er — p. Subsequently, we use the relation E,f = 5,3 + A% to
make another change of variable & — Ej. Because the resulting function &, =
& (Ey) is multivalued, i.e., & = £,/ E,f — A2, we must choose a single branch
to perform it appropriately. This is done so that the signs of &, and Ej coincide
as & = ,/E,E—Az for Ex > 0 and & = —,/EIE—A2 for E, < 0; see the
thick line in the figure below. With £ > 0 in the integrand, we only need to
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perform the above integration for the positive branch &, = / E ]f — A2,

Dy(E) = mm/dwwAm mm/dm—WEEm

S(E — Ey) = 0(E — A)D(er) ——0z

k
[E2 — a2 E2—A?

= D(8F)/A dEy

9.2 Let us substitute (9.48) into (9.47), approximate 1(E) ~ e P as appropriate
at low temperatures, and make a change of variable £ = A cosh x. We thereby
express the heat capacity as

e E/ksT
C = D(SF)/ A2)1/2 kBT2 dE

o0
= D(SF)k 2 / e (A/keTcoshx oo6h3 x dx
0
A3 d3 00
= —D(SF)——/ e coshx gy .
kBT2 da3 0 a=A/kBT

The last integral is exactly the modified Bessel function K¢ (a), which fora > 1
is approximated as [1, 2]

00 1/2
Ko(a) = / e dcoshrgy (l) e
0 2a

Using it, we obtain the heat capacity fora = A/kgT > 1 as

D)o () e (Z)" e

3
~D () ——
a=A/kgT k T2

’

a=A/kgT

which gives (9.49).
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9.3 Using (9.39) and the identity in the problem, we can transform (9.51) as

D(e) — /°° E*+ &2 A?
F. = -1 n d
B ,;—oo "Tre TEra)®

_ D(ep) > [ A? A?
~ B ,;/—oo[_ln(Héz+ei)+52+sz+A2}dg’

with B = 1/kgT and ¢, = (2n + 1)wkgT. Subsequently, we expand the
integrand in a Taylor series of A%/(£2+¢2), retain the leading term, and perform
the integration over £ using the residue theorem [2]. We thereby obtain the
condensation energy Fy, for T < T as

D(ep)A* S [* dE D(Ep)A* < . d 27
Fop o ———— =— lim —————
26 /oo (& +23)’ 26 Z&m 98 (5 +ie)’
_ DEpAt N, . -2 D(ep) 7 .
Y Z2’”(215,,)3 = ik A

n=0

where we have performed the same transformation as (9.41). Setting T ~ T in
the final expression and substituting (9.42), we obtain (9.53).

Problems of Chapter 10

10.1

(a) Substitute the identity

© 5
0=1 gL
+/_oo SOEFE L

into the right-hand side of (10.16), rewrite the derivative of the mean occupation
number using 1/(¢* + 1) = (1 — tanh}) and (9.39), and perform the
differentiation of the resulting expression to obtain

Y(T) 1—}-%/_00 d¢ [%tanhﬁ;—%tanh%}

2n [ 0 E 3 £
1+Enz=;)/—oodg[3_EE2+8%_§S2+s%}
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— AP+ g +&
‘”/32/ [@2 T1AR + 22)2 (52+s,%>2]

Performing the integration using the residue theorem, we obtain (10.17).

(b) Approximate 8,21 + AP ~ sﬁ in the denominator of (10.17), transform the
resulting expression in the same way as in (9.41), and substitute (9.42). We
thereby obtain (10.47).

(c) Approximate 7i; ~ e E+/k8T in the integrand of (10.16) and transform the
resulting expression into the form

o 2 [
Y(T) = —2/ dg—% ~ —/ dgeeVETA/RT (g = Asinhx)
o E T T ),

2A [ : d ,
— dxe—(A/kBT)coshx cosh x= —2a—/ dxe—acoshx
kBT 0 a=A/kgT
_ g 3K0@) ~—g L [ _ |27A e=O/keT
da a=A/kgT da Y 2a a=A/kgT kB

where Ky(a) is the modified Bessel function [1, 2], and we have used its
asymptotic form for a — oco.

Problems of Chapter 11

11.1 Equation (11.11) can be shown using [eﬂ(g_‘}?),eiiﬂz’/”] = 0 and the
invariance of trace under cyclic permutations as follows:

([on(®). 25u(")])
=Tr eﬂ(Q—ij) [eiijt/h ﬁe_iﬁ(’_ﬂ)/fl%e—ii@t’/fz
_ ol [h g i —1) [ ﬁ"e—i)?t/h]
w
— Treb@—7) [eu?(t—z’)/h Hea—it=t)/h A~ f%zw’ei'}?(f—’” 1h i i) "
= ([Ou(t — 1), #,]).

11.2 Tt follows from 7,7 = 2, and A7 (1) = [e”1/h e i1/h]"

e 1/h e 1M = 527 (1) that the expectation in the integrand of (11.17)
satisfies

([ ). )" = (Te P @D, (). = Ay A D]}
= Tl A A, (1) = AL (00110
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= Tref@” f)[%/ A (1) = A g (A,
_([%H(t)vt}f—/w]>

Using it, proof of (11.18) obtains.

Problems of Chapter 12

12.1 Writing i(E) = %(1 — tanh ﬁTE) in the integrand of (12.34) for V' = 0 and
using (9.39), we find

n(E"Yy—n(E) 2 EE — ¢?
T E-E L Z « (B> + e2)(E” + ¢2)’

with &, = (2n + 1)7B~". The &2 term in the numerator does not contribute to
the integral of (12.34) at V' = 0 because the other function (12.30) is odd in E.
Next, we make a change of variable E — § = sgn(E)/E? — |AL|? to obtain
My (E)AE = My (E)(/E)d§ = Ni(er)(|ALl/ E)dE. We thereby obtain an
alternative expression for /. = —1r4(0) as

de *°
o ==l [t
—00

® 2 NL(er) Nr(ep)|AL|| AR|
* /_oo * E,; (> + AP + &) (E? + |Ar] + &)

The integral can be calculated analytically to yield (12.40).

12.2 Sum 27[,8_1 Zn for T — 0 reduces to the integral of ¢, over 0 < ¢, < oo. It
can be transformed by setting &, = |Ap|tan 8 (0 < 6 < 7/2) for |AL| < |AR|
into

AL do
lelRx Jo /1 — (1= |ALP/|Ag[?) sin? 6

Ai) (T TAR/IARE).

~ le|Rn

Where K denotes the complete elliptic integral [1, 2]. Using the identity K(x) =
e +y —K (11 +y ) with y = +/1 —x2, we produce a symmetric expression as in
(12.42), where we have extended the formula to |Ar| > |ARr| as |Ar| —|AL| —
[IALl — | AR]|-
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Problems of Chapter 13

13.1 Here, we simplify the notation of (8.79) as A(k) — Ay, uz(k) — ug, etc.

(a) Let us write (8.79) for # = o, in a form suitable for a perturbation
expansion with A, as

[(Ek& — &), 0 :||:“k&:| _ [ 0 Ak:| |:llk&:|
0 (Exa + &)00] L Vka =A% 0 [[via]

We distinguish the pairs of eigenvalues that satisfy Exz > 0 by subscripts @ =
1,2. Let us solve the equation perturbatively in terms of A. The zeroth-order
equation is given by

(Ex —&)ag 0 we | _ m
0o (B0 +ae) W] o)

Its eigenvalues El(((;) > 0 and eigenvectors are obtained by considering the cases
& > 0 and & < O separately. The results are given concisely using the step
function (4.11),

0) __(0) (0)
. u,, u 6 o U
EQ =l G=1.2), [%‘05 z‘o%}:[ @“—0}5[-'50)]

Vi1 Vie 0(=&k)a,

Hence, the positive eigenvalues are degenerate. Next, we use the above eigen-
vectors to obtain eigenvalue El((g to first order,

m ©
Eg 0 ) [ U(O)T][ 0 ék:| e —y
0 El((z) Tk Sk | A* 0 Q:() =

Thus, there is no first-order correction to the eigenvalues. The first-order
eigenvectors are found by solving

(EY —&)ey 0 u.}‘f :[ 0 Ak} u
0 (Elg)—i-ék)go Vkl;s -A% 0 Vk(¢))7)

vy’ wo :[e(—ék)ék/zmqg G|
Vil Vio | L0E0AN 26 T | v

as
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Substituting the above results into (8.72), we thereby obtain é(” (k) to first order,

] 1
PO ~ () + o = 0O - v S tanh Pls]

2 2
(A ATy Blék| 1 Béi
= (Ak—AL) 2 o nh = ék_zgkt nh ==,

where we have used symmetry (8.76).
(b) Substitution of the result of (a) and (13.3) into (8.76) at T = T, yields

c ) £
A, = —47 / = )3”1/( % Z Vi ()5, (R) Ay 5 g tanh 25

m=—1

Subsequently, we express the integral in terms of the density of states using
(8.90), approximate N(gx/) &~ N(eg), and substitute (13.2). Further, we expand
the gap matrix as

1
Ay = Vi Z Ay 0(ee = 18D Yim(K)

m=—1

and use orthogonality (8.86). We thereby obtain

1+ N "//(Eﬁ)/d/ tanh —%_ ] A
[ FNETT | e T

=0.

Hence, we conclude that (13.35) holds for any internal state.

13.2 The angular integral of (13.27) is transformed by setting ¢ = cos 6 into

/ dr (lEl Amax _ 2) : ABM state
/dszk 0(EI - 1M _ | ) OB A 1—t2) '
4w (B2~ M) O(E] — Amaxt)
dt —_—_— : polar state
The two integrals can be calculated using the indefinite integrals:
/ dx In(x + vVx2 +¢) / dx arcsin =
— =In(x X , —_— = in —,
Vxt+ec va? — x? a

and considering the two cases |E| < Apax and |E| > Apax separately. To
be more specific, the step function for |E| < Apax replaces the lower (upper)
limit of the integral by /1 — E2/AZ (|E |/ Amax) for the ABM (polar) state,
whereas it is irrelevant for | E| > Ap.x. We thereby obtain (13.29).
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Problems of Chapter 14

14.1

(a) Following the procedure described in the problem, we obtain

. 1 e .
p A / A imp
E(En,k, I‘) = _V2 E Uk] O'ZG(S,,,k ,I‘)()’ZUk2 Na5k1+k2,08k1,k—k’-
K’k ko

Subsequently, we use relation U"}* = (U,™)", which follows from Upp(0) =
Uimp (1), to obtain (14.102).
(b) One may prove (14.71) by following the procedure in the problem.

Problems of Chapter 15

15.1 Imagine that the supercurrent density has changed by §j during time ¢ in
inducing a change 6B in the flux density inside the superconductor. According
to Faraday’s induction law, this change in the flux density produces an electric
field E,

5B
VXE=——,
x ot

which in turn will perform work on the external current,

—§'W = /d3rjex[-E8t.

Moreover, the decrease —§F in the free energy in reversible processes can be
written as —6F = —H - fd3r8B according to (15.6) and (15.8), where by
definition 6B = 0 outside the sample. Moving H into the integral over the
whole space and using Faraday’s induction law, —§ F is further transformed as

—8F = — d3rH-88—I:8t :/d3rH-(VxE)8t
:/d3r[V-(ExH)+E-(VxH)]8t
:/dS'(EXH)& +/d3r(VxH)-E8t

:/d3r(V x H) - Edt,
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where we have used identity (VxA)-B = V- (A xB) + A-(V xB) and Gauss’
theorem [2]. Substituting the above two expressions into the equality §F = §'W
from (1.23) for reversible isothermal processes, we obtain V x H = je,.

15.2 Let us express the integrand of (15.51) as [|¢00(r’)|2]2. As it is a periodic
function, we can expand |¢og(r')|? in terms of the reciprocal lattice vector in
(15.48) as

1 Sl
oo () |* = 7 Z Too(K') ™,
K/

where Ioo(K) is given by (15.52) with Ny = N, = 0. Substituting these
relations into the definition of (15.51) and performing the integration with

—i(K|+Ky)r 330 _ 17
/e d - V SKQ,—K; y

we obtain (15.56).
15.3 Let us expand B(r) and §2(r) as

d’k 4 &2k
B(r) = Z B 1k~r’ 82 r) = 1k~r’
=i [ Gt =] @t
and substitute them into (10.46) with n = —1 and ry = 0. We then obtain

By = ®/(Afk* + 1). The corresponding magnetic flux density is then written
in two-dimensional polar coordinates using a couple of integral representations
for the Bessel functions [1, 2],

B(r) = zd, Fk et =1 il /°° dk— £ /M d_(peikrcos‘/’
(2m)? Alk? +1 273 Jo k2+A72 )y 27

2 /oodk k Jo(k) A%K(/A)
=7 =1 r .
2722 Jo k2 + A2 0 27} 0 k

Problems of Chapter 16

16.11f &y < 0 holds, (16.12) is replaced by

ICI> 2E ICI> 2E

412 E— JE2— | Ao 422 E+ JET— A2
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so that |A;| < |Az|. Hence, we can identify the z element of (16.17) with
coefficient |A,|? and kg, < 0 as the incident current from the normal side. In
addition, current (16.18) is replaced by

[ 2 2
hk E /_IAOI
.S F|C|2 q ]

fo = =5 Eq

With these modifications, we can express the transmission coefficient for & <
0as

ICI> VE? —|A)? 2V E?— Ao
T =05 O(E —[Ao]) = O(E —[Ao)).
| 42| E E + JVE2—|Ao)?
which is identical to (16.19). This is the process where a hole on the normal

side, represented by the lower element of (16.5), is incident on the interface and
reflected as an electron.

16.2 First, we substitute (16.70) into the differential equation in (16.66) and use
K{(x) = —K(x) [2]. We then obtain (16.72). Second, we integrate the
differential equation of (16.66) with the initial condition (16.70) to express the
flux density of 0 < r < r. as

B(r) = cKo(re/Aw) + / Cdrj(r).

Third, we divide the integration of (16.76) at r = r., perform that over
0 < r < r. using the expression above, and perform that over r. < r < oo
using the asymptotic expression B(r) = ¢Ko(r/AL) and the identity xKy(x) =
—[xK;(x)]' [2]. Equation (16.76) thereby becomes

e

2 re re
I:?CKO(rC/AL) +/ drm/ drzj("z):| + cALreKi(re/AL) = 1.
0 r

Substitution of (16.72) into this equation yields (16.71).

16.3 Regarding the gradient term in (16.45) as a perturbation, we obtain the first-
order equation

2e, [V + %30 =248,

where f© denotes the homogeneous solution in (16.41), and gV for &, > 0 is
obtained from (16.38) as

0 SOSO 4 fOFO A O AFO
2¢©® 26,

g

3
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with f = f*(e,, —kp, ). The above equation for /() can be solved easily by
coupling it with that for f(1) as

Fo7_ 1 262 +|AR —A2 ([—¥-8/©
FOL T dg@ + AP | —a2 282+ AR v-0fO |

Substituting £ @ = |Ale!¥)/ /&2 + |A|? into the above expression for 1),
we obtain

f(l) _ enA

e N A v/ A).
G rap VY

which yields g above as

|A2

M —
202 + | AR

V- (Vo +A).

Let us insert this expression into (16.47) and perform the average over the
isotropic Fermi surfaces of d = 2, 3. Also noting (10.17), we obtain (16.74).
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coherence length, 232
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condensate wave function, 41, 66
Cooper pairing, 98
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Cooper-pair creation operator, 102
cutoff energy, 128

D
DC Josephson effect, 183
density matrix, 61
reduced, 61
density of states, 45
per unit cell and spin component, 121
per unit volume and spin component, 95
Dirac delta function, 45
dissipation, 162
dyadic, 116

E
effective mass, 81
effective pairing interaction, 130
Eilenberger equations, 220
entropy, 5, 6, 16
equation of state, 3

ideal gas, 3

van der Waals’, 3
exchange hole, 70
expectation, 14
extensive variable, 4

F

Fermi contact interaction, 169
Fermi distribution, 45

Fermi energy, 53

Fermi sea, 53

Fermi statistics, 39

Fermi vacuum, 37, 53
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Fermi wave number, 53
Fermi-surface sum rule, 80
fermion, 28

first law of thermodynamics, 4
fluctuation, 14

fluctuation range, 140

flux quantum, 155

G

gap equation, 119

gas constant, 3

gauge invariance, 211

Gibbs entropy, 16
Gibbs-Duhem relation, 86
Ginzburg-Landau equations, 224
GL parameter, 232

Gor’kov equations, 208
gradient, 1

gradient expansion, 211

grand canonical distribution, 22
grand canonical ensemble, 22
grand partition function, 22
grand potential, 9, 22

H

Hartree—Fock equations, 77
Hartree—Fock potential, 76, 109
heat, 4

heat capacity at constant volume, 10

Heaviside step function, 45
Hebel-Slichter peak, 173
Helmboltz free energy, 7, 20
hyperfine interaction, 169

I

impact parameter, 252
intensive variable, 4
internal energy, 4, 18
isolated system, 6

K

Knight shift, 169
Korringa relation, 173
Kramer-Pesch effect, 261
Kronecker delta, 15

L
Landau level, 235
Landau parameters, 83

left-right subtraction trick, 216
Legendre transformation, 8
London equation, 154

London penetration depth, 154, 232
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longitudinal magnetic relaxation time, 172

M

magnetization, 230

Matsubara frequency, 203
Matsubara Green’s function, 202
Maxwell’s relation, 3, 10

Maxwell-Boltzmann distribution, 45

Meissner effect, 151, 154

method of Lagrange multipliers, 17
microcanonical distribution, 18
microcanonical ensemble, 18

N

Nambu matrix, 208

Nernst’s theorem, 5
normal-ordering operator, 206

(0]
off-diagonal long-range order, 69
order parameter, 140

P
pair distribution function, 70
pair potential, 109
particle-hole symmetry, 111
partition function, 20
Pauli exclusion principle, 36, 70
Pauli matrices, 111
permutation, 25

cyclic, 25

even, 26

odd, 26
polar state, 197
potential, 1
pure state, 5, 15

Q

quasi static process, 4
quasiparticle, 88
quasiparticle field, 103

R
relaxation time, 220



Index
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reversible process, 4

S

second law of thermodynamics, 5
second quantization, 34

second-order phase transition, 134, 141
Shannon entropy, 16

Slater determinant, 36

Sommerfeld expansion, 55

spin, 26

spin-statistics theorem, 28
spontaneous symmetry breaking, 140

spontaneously broken gauge symmetry, 140,

185

SQUID, 186
standard deviation, 14
state function, 3
state quantity, 1
state variables, 3
superfluid *He

A phase, 194

B phase, 191
superfluid density, 149

T

thermodynamic critical field, 231
thermodynamic potential, 9

third law of thermodynamics, 288

total derivative, 2
transposition, 25
type-I superconductor, 229
type-II superconductor, 229

U
upper critical field, 234

v
vacuum permeability, 151, 169
von Neumann entropy, 16

w

weak coupling, 128

Wick decomposition, 64

Wigner transform, 211
gauge-covariant, 212
gauge-invariant, 212

work, 4

Y
Yosida function, 147

Z
Zeeman effect, 84, 152, 169
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