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Preface

The purpose of this book is to present the fundamentals of the theory of
superconductivity in a self-contained manner by developing and illustrating every
required technique of advanced equilibrium statistical mechanics. It is addressed
to graduate and undergraduate students who have finished elementary courses of
thermodynamics and quantum mechanics. No further background knowledge is
required in reading through all the chapters.

Superconductivity is one of the most spectacular phenomena in nature and
typical of broken symmetries. The Bardeen–Cooper–Schrieffer (BCS) theory that
has clarified it has had a tremendous impact on the whole field of physics, ranging
from condensed-matter physics itself to nuclear and particle physics. Hence, one
may expect that learning superconductivity enables one to reach and acquire
key concepts and techniques of modern theoretical physics. This book treats
this fascinating topic from the viewpoint of statistical mechanics to clarify both
mathematical and logical structures of the theory as transparently as possible.

Standard textbooks on the topic usually begin by describing basic experimental
results such as the Meissner effect, show subsequently that electron–phonon
interactions may establish virtual attractive forces between electrons, and proceed
to present the BCS theory for homogeneous systems. Descriptions of the phe-
nomenological London and Ginzburg–Landau theories are often inserted prior to the
microscopic BCS theory. In this way, one may see that these theories can describe
experiments exceedingly well and also acquire basic skills to use them for one’s
own purposes. However, it may not be entirely clear in this standard approach where
superfluidity (flow without dissipation) originates, what causes the Meissner effect
to expel the magnetic field from the bulk, or how phase coherence responsible
for superfluidity is established. There is also a high threshold in learning about
superconductivity for those who are not well acquainted with electromagnetism or
especially well versed in topics in solid-state physics.

With these observations, this book adopts an alternative approach based on
statistical mechanics. Specifically, it starts from statistical mechanics of quantum
ideal gases, adding one by one every new element that is required in under-
standing superconductivity together with relevant techniques of modern statistical
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mechanics. The theory of superconductivity is developed on this basis by taking full
advantage of the second-quantization method so that macroscopic condensation into
a two-particle bound state is manifest. The starting point is the BCS wave function
in real space, which is closely connected with the coherent state for lasers and Bose–
Einstein condensates. A definite advantage of this approach is that phase coherence
is quite apparent. The basic formulation is thereby performed in real space to derive
the Bogoliubov–de Gennes equations so that inhomogeneous cases and arbitrary
pairing symmetry can be studied on an equal footing. The BCS theory is presented
subsequently as an application of it to homogeneous s-wave pairing.

It would bring great pleasure to me, the author, if the book is helpful for students
full of curiosity and pioneering spirit. Finally, I would like to express my gratitude
to Professor Koh Wada for a critical and careful reading of the manuscript and
consequent useful comments.

Sapporo, Japan Takafumi Kita
February 2015
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Chapter 1
Review of Thermodynamics

Abstract We summarize the fundamentals of thermodynamics that will be indis-
pensable for describing superconductivity. Advanced readers familiar with the topic
may wish to skim through to the next chapter.

1.1 Thermodynamics and Hiking

It may be useful for those who feel thermodynamics is too abstract to imagine hiking
with a geographical map. A position on the map is specified by a two-dimensional
coordinate vector r � .x; y/ with which an altitude z D z.x; y/ is associated. A
contour line defines a continuous curve that connects positions of a given altitude.
As illustrated in Fig. 1.1, consider walking up to the peak P from the trailhead A by
following either trail C1 or C2. The distances one has to walk along C1 and C2 are
generally different. However, the acquired elevation does not depend on the path; it
is expressible solely in terms of the initial and final altitudes as �z D z.xP; yP/ �
z.xA; yA/.

This altitude z D z.x; y/ is given uniquely as a function of .x; y/. In
thermodynamics, we call such a quantity a potential or state quantity, for which
the infinitesimal increment will be denoted with symbol d as dz. In contrast, the
distance�` from trailhead A to peak P depends on the path. We call such a quantity
a non-potential and distinguish its infinitesimal increment with symbol d0 as d0`.
Note that we also have to specify the direction when determining d0`.

When we know that there is a potential, how is that potential constructed? For
altitude z D z.x; y/, one may (i) combine angle � determining the elevation with
distanceL to the target to obtain�z D L sin � ; distanceL can be found fairly easily
using an instrument such as a laser rangefinder. Alternatively, one may (ii) measure
the gradient:

rz �
�
@z

@x
;
@z

@y

�
; (1.1)
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Fig. 1.1 A pair of trails C1
and C2 that start from
trailhead A up to peak P

P

A

C1
C2

x

y

at every point and subsequently integrate the total derivative:

dz � @z

@x
dx C @z

@y
dy; (1.2)

along a convenient path; here “�” signifies definition.
In thermodynamics, we encounter proper potentials such as internal energy and

entropy. However, we seldom have a direct method to find them as for method (i)
above. Hence, we are almost always obliged to rely on method (ii) to construct
them. The required integration of (1.2) is carried out as follows; see Problem 1.1
for a specific example. First, we integrate it along the x axis as

z.x; y/ D
Z x

x0

@z.x1; y/

@x1
dx1 C g.y/; (1.3)

where x0 is an arbitrary lower limit and g.y/ denotes an unknown function of y. To
determine g.y/, we differentiate (1.3) in terms of y to obtain an ordinary first-order
differential equation for g.y/ as

dg.y/

dy
D @z.x; y/

@y
�
Z x

x0

@2z.x1; y/

@y@x1
dx1; (1.4)

which can be integrated easily. Substituting the resulting g.y/ into (1.3), we obtain
z D z.x; y/. The integration constant, which may be chosen arbitrarily, becomes
irrelevant when we consider differences�z.

The right-hand side of (1.4) has a formal x dependence that is absent on the
left-hand side. Hence, we differentiate (1.4) in terms of x to obtain an integrability
condition for z,
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@2z.x; y/

@x@y
D @2z.x; y/

@y@x
; (1.5)

which is known as Maxwell’s relation in thermodynamics. It is quite useful for
confirming the consistency of experimental data as well as for predicting new results
without relying on experiments.

1.2 Equation of State

Thermodynamics describes macroscopic behaviors of systems with many particles
based on state quantities. Those quantities familiar to us include volume V; pressure
P; and absolute temperature T. It has been established experimentally that the three
variables are not independent but generally obey a constraint:

P D P.T; V /; (1.6)

which is called the equation of state. Quantities .T; V; P / here correspond to
.x; y; z/ on the map, and one may draw a contour line based on (1.6). The
independent variables .T; P / in (1.6) are sometimes called state variables to
distinguish them from the dependent variable P called state function.

Among the well-known equations of state are the ideal gas law:

P D nRT

V
; (1.7)

and van der Waals’ equation of state:

P D nRT

V � nb
� a n

2

V 2
; (1.8)

where n is the number of moles of a substance, R D 8:31 J/(mol�K) denotes the
gas constant, and a and b are some positive constants. Equation (1.8) has a definite
advantage over (1.7) in that it can describe both gas and liquid phases on an equal
footing; parameters a and b represent measures of attraction between molecules and
the finite extension of the constituent molecules, respectively. Derived in 1873, van
der Waals’ equation of state provided a theoretical guideline around the turn of the
twentieth century in realizing the condensation of various gases by cooling, thereby
stimulating the development of low-temperature physics toward the discovery of
superconductivity in mercury at 4.2 K by Kamerlingh Onnes in 1911.

Equation (1.6) may be converted to T D T .P; V / or V D V.T; P /. For example,
(1.7) can be expressed alternatively as T D PV=nR and V D nRT=P . However, this
change of independent variables may not always be possible analytically. In general,
the equation of state forms a constraint f .T; V; P / D 0 among .T; V; P /.
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State quantities are also divided into extensive and intensive variables. To see
this, let us express (1.7) and (1.8) as P D RT=.V=n/ and P D RT=.V=n � b/ �
a.n=V /2. We thereby realize that the volume V for a fixed .T; P / increases in
proportion to the number of moles n. We call thermodynamic variables that are
proportional to (independent of) n extensive (intensive) variables. Therefore, V is
extensive whereas T and P are intensive.

A couple of comments are in order before closing the section. First, volume V
can be defined mechanically, whereas .T; P / are not. Indeed, we shall see below
in Sect. 1.4.2 that intensive variables .T; P / are true thermodynamic variables that
define the state of equilibrium. Second, all state quantities are defined within the lim-
ited regime of thermodynamic equilibrium being connected by reversible processes,
which may be realized experimentally as quasistatic processes. Such processes
change state variables so slowly that one can define .T; P / unambiguously at every
moment.

1.3 Laws of Thermodynamics

Thermodynamics has established the existence of a couple of novel state quantities
called internal energy and entropy. We present the basic laws of thermodynamics
concerning the state quantities in their mathematical forms.

Consider a closed system that does not exchange matter with its surroundings, as
depicted in Fig. 1.2. The first law of thermodynamics states that infinitesimal heat
d0Q flowing into the system and work d0W performed on it, which are both non-
potentials, add up to an increment dU of a potential U of the system called internal
energy as

First Law of Thermodynamics
dU D d0QC d0W: (1.9)

Fig. 1.2 Change in internal
energy dU of a closed system
due to infinitesimal heat d0Q

entering the system and work
d0W performed on the system

Heat Work

Internal Energy
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Historically, the first law thereby identified heat as a form of energy and established
the law of energy conservation (1.9).

The second law of thermodynamics characterizes heat in (1.9) as an inferior form
of energy in comparison with work in that it is bounded by the Clausius inequality:

Second Law of Thermodynamics
d0Q � T dS; (1.10)

where T is the temperature of the surroundings from which heat flows, and S is
a new state quantity called entropy. Equality holds in reversible processes along
which we can trace changes in entropy. The second law plays a central role in
thermodynamics. It cannot be over-emphasized that entropy is defined here with
regard to thermodynamic equilibrium.

The third law of thermodynamics, which is also referred to as Nernst’s theorem,
reads

Third Law of Thermodynamics
lim
T! 0

S D 0: (1.11)

It also implies that entropy in the limit T ! 0 does not depend on other state
variables such as P and V ; that is,

lim
T! 0

@S

@P
D 0; lim

T! 0

@S

@V
D 0:

Thermodynamics can only state that entropy at T D 0 is a constant that does not
depend on other state variables. Statistical mechanics reveals that the zero on the
right-hand side of (1.11) corresponds to the fact that every system at T D 0 is in
a single pure state with the lowest energy, the details of which appear around (2.8)
below.

1.4 Equilibrium Thermodynamics

We now focus on reversible processes for which d0Q D T dS in (1.10) and discuss
the fundamentals of equilibrium thermodynamics. To be specific, we shall consider
gases as a typical example, where the work performed on the system is given by

d0W D �P dV: (1.12)
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1.4.1 Basic Equation

Substitution of (1.12) and d0Q D T dS into (1.9) yields

dU D T dS � P dV: (1.13)

This is the basic equation of equilibrium thermodynamics for gases. It may be
expressed alternatively in terms of entropy as

dS D 1

T
dU C P

T
dV; (1.14)

from which we can identify

1

T
D
�
@S

@U

�
V

;
P

T
D
�
@S

@V

�
U

; (1.15)

where we have used a standard notation .@S=@U /V � @S.U; V /=@U in thermody-
namics.

1.4.2 Equilibrium Conditions

A system with no exchange of heat and work with its surroundings is termed an
isolated system. Substitution of its defining condition d0Q D d0W D 0 into (1.10)
yields inequality 0 � dS.U; V / for arbitrary processes, including irreversible ones
such as the free expansion into an insulated evacuated chamber. This inequality tells
us that entropy of an isolated system should increase up to its maximum value,
whereupon the variation stops. To put it another way, the equilibrium of every
isolated system is identified as the state with maximum entropy. We shall use this
statement to explain the meaning of intensive variables .T; P /.

Consider the isolated system depicted in Fig. 1.3, which is partitioned into
subsystems 1 and 2 by a wall that moves smoothly and transmits heat. The total
internal energy U and volume V are extensive variables expressible in terms of
those of the subsystems:

U D U1 C U2; V D V1 C V2; (1.16)

Fig. 1.3 An isolated system
1C 2 partitioned by a wall
that moves smoothly and
transmits heat

Subsystem 2Subsystem 1
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each of which remains constant for an isolated system. The total entropy S D
S.U; V / is also extensive so that we can write it as

S D S1.U1; V1/C S2.U2; V2/: (1.17)

Now, suppose that the system has reached equilibrium at .Uj ; Vj / (j D 1; 2),
the state having maximum entropy. This implies that entropy should decrease upon
a virtual variation .Uj ; Vj /! .Uj C ıUj ; Vj C ıVj / as

�S �
2X

jD1
ŒSj .Uj C ıUj ; Vj C ıVj / � Sj .Uj ; Vj /� < 0: (1.18)

A necessary condition for this inequality is that �S remains invariant up to first
order in .ıUj ; ıVj /; that is,

0 D
2X

jD1

"�
@Sj

@Uj

�
Vj

ıUj C
�
@Sj

@Vj

�
Uj

ıVj

#
D
�
1

T1
� 1
T2

�
ıU1 C

�
P1

T1
�P2
T2

�
ıV1:

(1.19)
In the second equality, we have substituted (1.15) and subsequently used

ıU1 C ıU2 D 0; ıV1 C ıV2 D 0

that result from (1.16). Noting that (1.19) should hold for an arbitrary pair of
.ıU1; ıV1/, we conclude

T1 D T2; P1 D P2: (1.20)

Thus, both temperature and pressure are the same between subsystems 1 and 2 in
equilibrium. Dividing the system into more subsystems and repeating the argument,
one may conclude that the temperature and pressure remain constant throughout the
isolated system in equilibrium. To put it another way, the temperature and pressure
are true thermodynamic variables that specify the state of equilibrium.

1.4.3 Legendre Transformation and Free Energy

In experiments, the temperature is easier to control than the internal energy or
entropy, because we only need to supply a contact with a heat bath of a known
temperature and wait until the system comes to an equilibrium. Correspondingly,
we now introduce a state quantity, called the Helmholtz free energy, which has
temperature as a natural independent variable.



8 1 Review of Thermodynamics

Equation (1.13) implies that temperature is a gradient of the internal energy given
by T D .@U=@S/V . Using it, we define a state function F by

Helmholtz Free Energy

F � U � TS; T �
�
@U

@S

�
V

: (1.21)

Its infinitesimal increment dF D dU � d.TS/ is rewritten using (1.13) and d.TS/ D
SdT C T dS into

dF D �SdT � P dV: (1.22)

Given S D S.T; V / and P D P.T; V /, we can integrate (1.22) to obtain F D
F.T; V /. Thus, we have successfully introduced a relevant state function. Because
U and S are both extensive whereas T is intensive, F is classified as an extensive
quantity.

The procedure of (1.21) is mathematically called a Legendre transformation
from U.S; V / to F.T; V / with T D .@U=@S/V . We frequently encounter this
transformation in other fields of physics. A typical example is that encountered in
classical mechanics in mapping Lagrangian L.r; v; t/ to Hamiltonian H.r;p; t/ D
p � v�L with p � @L=@v, where r D r.t/ and v.t/ � dr.t/=dt denote the position
and velocity, respectively, of a particle at time t .

Finally, we trace the origin of the term free energy for F . Substituting (1.10) into
(1.9), imposing the isothermal condition dT D 0, and using (1.21), we obtain

� d0W D �dU C d0Q � �dU C T dS D �d.U � TS/ D �dF: (1.23)

That is, work performed by a system in contact with a heat bath has an upper bound
given by the decrease in F . Expressed another way, F represents the maximum
energy that can be extracted freely from a system in contact with a heat bath.

1.4.4 Particle Number as a Variable

We extend the above analysis to cases where the number of particles varies. Such a
situation is realized when vapor is in equilibrium with water in a closed vessel, for
example. The associated formalism is also indispensable as a purely mathematical
tool for describing many-particle systems that obey quantum mechanics.

We extend the basic equation (1.13) to include a contribution to work due to a
change in the particle numberN ,

dU D T dS � P dV C �dN: (1.24)
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The third term on the right-hand side denotes the new contribution that embodies
an increment of internal energy due to a change dN in the particle number. The
coefficient � is called the chemical potential, which is classified as an intensive
quantity as N is extensive. This � is kept constant throughout for a system in
equilibrium, as may be realized by repeating the argument in Sect. 1.4.2 for a
permeable wall.

Correspondingly, (1.22) for an infinitesimal increment of F is modified into

dF D �SdT � P dV C �dN; (1.25)

where the chemical potential is given by � � .@F=@N/T;V . It is convenient for later
purposes to define another state quantity� D �.T; V; �/ by

Grand Potential

� � F � �N; � �
�
@F

@N

�
T;V

: (1.26)

Alternatively called the thermodynamic potential, its infinitesimal increment can be
expressed, using (1.25) and d.�N/ D �dN CN d�, as

d� D �SdT � P dV �N d�: (1.27)

Given .S; P;N / as a function of .T; V; �/, we can integrate (1.27) to obtain
�.T; V; �/.

Let us express � in terms of quantities that are more familiar. To this end, we
notice that�.T; V; �/ is an extensive quantity with V as the only extensive variable.
Hence, if the volume is multiplied by � with .T; �/ fixed, the grand potential should
also be increased by factor �, i.e.,

�.T; �V;�/ D ��.T; V; �/:
Let us express �V � V� and differentiate the above equation in terms of �. We then
obtain

@�.T; V�; �/

@V�

@V�

@�
D �.T; V; �/:

Setting � D 1 subsequently yields

�
@�

@V

�
T;�

V D �:

As .@�=@V /T;� D �P according to (1.27), we obtain the desired relation:

� D �PV: (1.28)
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1.5 Thermodynamic Construction of Entropy and Internal
Energy

We finally clarify the minimal information required for constructing entropy S and
internal energy U thermodynamically as a function of .T; V / for a system with a
fixed number of particles. This consideration also reveals how thermodynamics is
useful.

Choosing .T; V / as state variables, one can write the infinitesimal change in S
formally as

dS D
�
@S

@T

�
V

dT C
�
@S

@V

�
T

dV: (1.29)

Substitution of this equation into (1.13) yields

dU D T
�
@S

@T

�
V

dT C
�
T

�
@S

@V

�
T

� P
�

dV: (1.30)

It also follows from (1.10) for reversible processes that the first term in (1.30)
represents infinitesimal heat entering the system under a fixed volume. Dividing
the term by dT yields the heat required to raise the temperature by 1K at a fixed
volume,

CV � T
�
@S

@T

�
V

D
�
@U

@T

�
V

; (1.31)

which is called the heat capacity at constant volume. Meanwhile, Maxwell’s
relation (1.5) for (1.30) reads

@

@V

�
T
@S

@T

�
D @

@T

�
T
@S

@V
� P

�
;

i.e.,

�
@S

@V

�
T

D
�
@P

@T

�
V

: (1.32)

Substitution of (1.31) and (1.32) into (1.29) and (1.30) yields

dS D CV

T
dT C

�
@P

@T

�
V

dV; (1.33)

dU D CV dT C
�
T

�
@P

@T

�
V

� P
�

dV: (1.34)
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Heat capacity (1.31) in these expressions is a basic quantity that is measurable in
experiments. Further, the coefficients for dV can be calculated once the equation of
state P D P.T; V / is known accurately. Hence, apart from P D P.T; V /, all that is
required experimentally to construct entropy and internal energy isCV D CV .T; V /.
Moreover, Maxwell’s relations for (1.33) and (1.34) both read

�
@CV

@V

�
T

D T
�
@2P

@T 2

�
V

: (1.35)

The inference is that we need only know the temperature dependence of CV
once P D P.T; V / is measured accurately. Equation (1.35) may also be used
as a consistency check between independent experiments used to obtain CV D
CV .T; V / and P D P.T; V /.

Thus, thermodynamics has clarified that we need not perform direct measure-
ments of .@S=@V /T and .@U=@V /T . Indeed, they can be calculated alternatively
based on the equation of state by (1.32) and

�
@U

@V

�
T

D T
�
@P

@T

�
V

� P: (1.36)

As an example, consider the internal energy for n moles of an ideal gas. It follows
from the ideal gas law P D nRT=V that .@P=@T /V D nR=V D P=T . Substitution
into (1.36) yields .@U=@V /T D 0. Thus, the internal energy of an ideal gas should
be independent of volume; that is, expressible asU D U.T /. This fact was found by
Joule experimentally in 1844 when thermodynamics had not yet been established. In
contrast, we can reach this statement theoretically with the help of thermodynamics
using only the ideal gas law.

Problems

1.1. Consider the case where the gradients in (1.2) are given by

@z

@x
D 2xyC 1; @z

@y
D x2 C 2y:

(a) Check that the integrability condition (1.5) is satisfied.
(b) Integrate the corresponding (1.2) based on the procedure described around

(1.3) and (1.4).

1.2. Use (1.9) and (1.10) to show that it is impossible to do work outside using a
heat engine with only a single heat bath.
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1.3. Suppose that there are nmoles of a gas that obey van der Waals’ equation (1.8),
for which the heat capacity CV is known experimentally to be temperature
independent.

(a) Write expressions for the infinitesimal increments in entropy dS and
internal energy dU based on (1.33) and (1.34).

(b) Show that CV does not depend on volume V .
(c) Obtain expressions for entropy S and internal energy U .
(d) Show that quantity T .V �nb/nR=CV does not change in reversible adiabatic

processes.
(e) Calculate the temperature change during an adiabatic free expansion from

volume V1 to volume V2.



Chapter 2
Basics of Equilibrium Statistical Mechanics

Abstract The basics of equilibrium statistical mechanics are developed. We first
derive a statistical-mechanical expression for entropy, (2.10) called the Gibbs
or von Neumann entropy, that is compatible with the laws of thermodynamics.
It is used subsequently to find the equilibrium statistical distributions, namely,
microcanonical, canonical, and grand canonical distributions as (2.12), (2.18),
and (2.26), respectively, based on the principle of maximum entropy by Jaynes.

2.1 Entropy in Statistical Mechanics

We first derive a statistical-mechanical expression for entropy in terms of probability
w� for the state � to occur as (2.10) below based on three plausible assumptions. This
forms our foundation in formulating equilibrium statistical mechanics and will be
used subsequently to obtain the equilibrium probability distributions.

Statistical mechanics aims at providing a theoretical framework that is consistent
with thermodynamics and also enables us to perform theoretical calculations of
macroscopic quantities such as the heat capacity and equation of state, which in
thermodynamics can only be obtained by experiments. Such a system contains a
large number of particles or degrees of freedom comparable with the Avogadro
constant NA D 6:02 � 1023 mol�1, for which it is practically impossible to solve
the Newtonian equations of motion or the Schrödinger equation. If it were possible,
the resulting data for the points of phase space or the wave function of NA particles
in configuration space, which accumulate at every moment, could only exhaust
computer memories without ever being accessed usefully. Instead, what we need
here is information on their average motion and position, which are closely related
to the observable quantities such as pressure and temperature. Hence, statistical
mechanics is designed to calculate average quantities concisely with the help of
statistics and probability theory.

Therefore, we begin by summarizing the basics of statistics and probability
theory. Quantum mechanics [3, 5] tells us that every microscopic state may be
specified by a set of discrete quantum numbers, which we denote by the Greek

© Springer Japan 2015
T. Kita, Statistical Mechanics of Superconductivity, Graduate Texts in Physics,
DOI 10.1007/978-4-431-55405-9_2
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symbol �. Let us assume that (i) there are � D 1; 2; � � � ;W states and (ii) each state
occurs with probability w� � 0, which is normalized as

WX
�D1

w� D 1: (2.1)

Consider a quantity g� of state �; its average over the whole states, called the
expectation, is defined as

hgi �
X
�

w�g�: (2.2)

Sometimes hgi is denoted alternatively as Ng. We also introduce its standard
deviation by

	g �
sX

�

w�.g� � hgi/2 D
p
hg2i � hgi2; (2.3)

where the second expression is obtained using (2.1) and (2.2). The standard
deviation is also called the fluctuation in statistical mechanics.

With these preliminaries, we construct the fundamentals of statistical mechanics.
The second law of thermodynamics establishes the existence of entropy. Unlike
the internal energy or volume, it is a true thermodynamic quantity that cannot
be expressed mechanically. Thus, we start by deriving a statistical-mechanical
expression for entropy. To this end, we adopt three plausible assumptions:

(a) Entropy is an extensive quantity.
In other words, the total entropy of a composite of subsystems 1 and 2, as given
in Fig. 1.3, can be written as the sum of the entropy for each subsystem,

S.1C2/ D S.1/ C S.2/: (2.4)

(b) Entropy is given as a functional of probability w� alone.
The statement implies that we can express entropy as

S D
X
�

w�f .w�/; (2.5)

where f .w/ is an unknown function. Here we ignore all correlations like
w�w�0 between different states � and �0 by assuming that each state is realized
independently.

(c) Two subsystems of a composite system are statistically independent.
This may be expressed mathematically as

w.1C2/�1;�2
D w.1/�1 w.2/�2 ; (2.6)
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where w.j /�j and w.1C2/�1;�2 denote the probabilities that subsystem j and total
system 1C 2 are in state �j and .�1; �2/, respectively.

Conditions (a)–(c) determine the expression for entropy uniquely as follows. First,
let us substitute (2.5) into (2.4) and use (2.1) and (2.6). We can thereby rewrite (2.4)
as

0 D S.1C2/ � S.1/ � S.2/

D
X
�1

X
�2

w.1C2/.�1;�2/
f
�
w.1C2/.�1;�2/

��X
�1

w.1/�1 f
�
w.1/�1

� �X
�2

w.2/�2 f
�
w.2/�2

�

D
X
�1

X
�2

w.1/�1 w.2/�2 f
�
w.1/�1 w.2/�2

��X
�1

w.1/�1 f
�
w.1/�1

�X
�2

w.2/�2 �
X
�1

w.1/�1
X
�2

w.2/�2 f
�
w.2/�2

�

D
X
�1

X
�2

w.1/�1 w.2/�2
�
f
�
w.1/�1 w.2/�2

� � f �w.1/�1 � � f �w.2/�2 �	 :

Requiring that this equality holds for an arbitrary pair of .w.1/�1 ;w
.2/
�2 /, we obtain

f .uw/ D f .u/Cf .w/. Its differentiation with respect to u yields wf 0.uw/ D f 0.u/.
Setting u D 1, we then obtain f 0.w/ D f 0.1/=w. The equation can be integrated
easily,

f .w/ D �kB ln wC C; (2.7)

where kB � �f 0.1/ and C are constants and ln w denotes the natural logarithm of
w. Thus, f .w/ has been obtained explicitly.

Let us substitute (2.7) into (2.5) and use (2.1). We thereby obtain the expression
sought for the entropy

S D �kB

X
�

w� ln w� C C: (2.8)

We also note that �w� ln w� � 0 for 0 � w� � 1, where equality �w� ln w� D 0

holds for w� D 0; 1. Hence, the first term of (2.8) satisfies �kB
P

� w� ln w� � 0,
for which the lowest value 0 corresponds to a pure state where some single state �0
is realized with probability 1. This pure state can be expressed as w� D ı��0 , where
ı��0 denotes the Kronecker delta defined by

ı��0 �


1 W � D �0
0 W � ¤ �0 : (2.9)

Combining the above with the third law of thermodynamics (1.11), we con-
clude C D 0 in (2.8). Thus, we obtain the statistical-mechanical expression for
entropy:
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Entropy in Statistical Mechanics

S D �kB

X
�

w� ln w� : (2.10)

Further, the requirement that (2.10) be compatible with the thermodynamic entropy
enables us to identify kB with the gas constant R D 8:31 J/(mol�K) divided by the
Avogadro constant NA D 6:02 � 1023 mol�1, i.e.,

kB D R=NA D 1:38 � 10�23 J/K; (2.11)

which is known as the Boltzmann constant.
Gibbs pointed out in his seminal book [1] that entropy for the canonical

distribution is given as the expectation of the logarithm of the probability. Later, von
Neumann derived (2.10) based on a quantum-mechanical consideration [7]. Thus,
(2.10) may be called the Gibbs entropy [4] or von Neumann entropy. It is essentially
equivalent to the Shannon entropy of information theory [6].

Expression (2.10) still contains unknown parameters fw�g, which will be deter-
mined appropriately below given three distinct external conditions. In this sense,
(2.10) is a form of nonequilibrium entropy. However, it cannot be used to describe
nonequilibrium time developments. Because we have no knowledge of how w�
changes in time, we usually regard w� as constant. Correspondingly, (2.10) is
invariant in time even for an isolated system [4], in contradiction with the second law
of thermodynamics. Indeed, we do not have a widely accepted general expression
of nonequilibrium entropy that develops in time. It should be remembered in this
context that entropy in thermodynamics is defined, as in (1.10), only for systems
in equilibrium. Despite this obvious defect, the great advantage of (2.10) is that
it enables a concise and transparent derivation of three representative equilibrium
probability distributions in statistical mechanics, to be described shortly below.

2.2 Deriving Equilibrium Distributions

We have seen in Sect. 1.4.2 that the thermodynamic equilibrium of an isolated
system corresponds to the state of maximum entropy. In addition, (1.23) states
that the inequality d.�U C TS/ � 0 holds for a system of fixed volume (i.e.,
d0W D 0) in contact with a heat bath of temperature T , which is equivalent to
d.S � T �1U / � 0. Thus, the state of equilibrium for this system corresponds to a
maximum of S�T �1U , where T �1 may be regarded mathematically as a Lagrange
multiplier used in maximizing S subject to a fixed U .
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On the basis of these observations, we here adopt the principle of maximum
entropy, which was proposed by Jaynes in 1957 [2], to derive equilibrium proba-
bilities for various external conditions.

2.2.1 Microcanonical Distribution

First, we consider an isolated system of fixed volume V with no exchange of energy
or matter with its surroundings and derive its equilibrium probability distribution
fw�g as (2.12) below.

Following the principle of maximum entropy and noting that there are no
external conditions for an isolated system, we maximize (2.10) subject to (2.1).
In accordance with the method of Lagrange multipliers, this is equivalent to the
optimization problem of

QS.fw�g; �/ � S � �
 X

�

w� � 1
!
D �kB

X
�

w� ln w� � �
 X

�

w� � 1
!
;

where � is the Lagrange multiplier. Indeed, (2.1) is equivalent to @ QS=@� D 0.
A necessary condition for QS to take its maximum at w� D weq

� is given by

0 D @ QS
@w�

ˇ̌
ˇ̌
w�Dw

eq
�

D �kB.ln weq
� C 1/� �:

Its solution immediately follows, i.e., weq
� D e��=kB�1. Thus, weq

� does not depend
on � but has a common value, which is determined by (2.1) as

weq
� D W �1:

This probability distribution, called the microcanonical distribution, underscores
precisely the postulate or principle of equal a priori probabilities. Note, however,
that it has been derived here based on the principle of maximum entropy in terms
of (2.10). Substitution of weq

� D W �1 into (2.10) yields the entropy for a system in
equilibrium, S eq � SŒweq

� �, as

S eq D kB lnW;

which is known as Boltzmann’s principle.
Let us call a system that obeys the microcanonical distribution a microcanonical

ensemble. Using this terminology and removing the superscript eq for simplicity, we
can summarize the above results as follows:
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Microcanonical Ensemble

w� D 1

W
W microcanonical distribution (2.12)

W.U; V;N / : number of states (2.13)

S D kB lnW : entropy (Boltzmann’s principle) (2.14)

Thus, a fundamental quantity for a microcanonical ensemble is the number of states
W , with which we obtain its entropy using (2.14). Subsequently, we can use the
thermodynamic relation (1.24) to calculate the temperature, pressure, and chemical
potential:

�
@S

@U

�
V;N

D 1

T
;

�
@S

@V

�
U;N

D P

T
;

�
@S

@N

�
U;V

D ��
T
: (2.15)

In general, S.U; V;N / is a monotonically increasing function of U so that T > 0

holds. However, it should be kept in mind that this condition T > 0 may not hold
for some theoretical models such as a spin system where there is an upper bound in
the available energy.

2.2.2 Canonical Distribution

Next, we consider a system of fixed volume V that is in contact with a heat bath
without any exchange of matter and obtain its equilibrium probability distribution
fw�g as (2.18) below.

The total energy of such a system in equilibrium is expected to remain constant
in time on average, but fluctuations may occur. The condition can be written as

hE i �
X
�

w�E� D U; (2.16)

where E� is the energy of the state � and U is a constant called internal energy.
Given the principle of maximum entropy with (2.10), the equilibrium of this

system can be found by minimizing

QS.fw�g; �; �U / � S � �
 X

�

w� � 1
!
� �U

X
�

w�E�
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in terms of fw�g under conditions @S=@� D 0, @S=@�U D �U . However, it is more
convenient to consider F � � QS=�U instead of QS to make the correspondence with
thermodynamics transparent. Indeed, F can be written in terms of new Lagrange
multipliers T � ��1

U and �S � �=�U ,

F � hE i � TSC �S
 X

�

w� � 1
!
D
X
�

w� .E� C kBT ln w� C �S/ � �S ;
(2.17)

which is exactly the Helmholtz free energy for a system in nonequilibrium, as may
be realized from a comparison with (1.21). The unknown Lagrange multipliers
.T; �S/ can be determined using (2.1) and (2.16), which are also expressible in terms
of F as @F=@�S D 0 and F

ˇ̌
TD�SD0 D U , respectively. Thus, we have transformed

the optimization problem of QS into one for F .
A necessary condition that F be extremal at w� D weq

� is given by

0 D @F

@w�

ˇ̌
ˇ̌
w�Dw

eq
�

D E� C kBT .ln weq
� C 1/C �S;

which yields weq
� D e�.E�C�S /=kBT�1. Introducing a new constant Z � e�S=kBTC1,

we can write weq
� alternatively as

weq
� D e�E�=kBT =Z;

which is known as the canonical distribution. We call a system obeying this
distribution a canonical ensemble. The physical condition that w� ! 0 as E� !1
yields T > 0. In addition, (2.1) enables us to expressZ as

Z D
X
�

e�E�=kBT ;

which is known as the partition function. Let us substitute the expression of weq
�

above into (2.17). We thereby obtain F eq � F Œweq
� � for a system in equilibrium as

F eq D
X
�

weq
�

�
E� C kBT

�
� E�
kBT

� lnZ

��
D �kBT lnZ:

It follows from the condition T > 0 that F eq with maximum entropy corresponds
to the minimum of (2.17).

Removing superscripts eq for simplicity, the above results are summarized as
follows:
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Canonical Ensemble (ˇ � 1=kBT )

w� D e�ˇE�
Z

W canonical distribution (2.18)

Z.T; V;N / D
X
�

e�ˇE� : partition function (2.19)

F D �ˇ�1 lnZ : Helmholtz free energy (2.20)

Thus, the fundamental quantity in a canonical ensemble is the partition function
Z, with which we obtain the Helmholtz free energy using (2.20). Subsequently, we
can use the thermodynamic relation (1.25) to calculate the entropy, pressure, and
chemical potential from

�
@F

@T

�
V;N

D �S;
�
@F

@V

�
T;N

D �P;
�
@F

@N

�
T;V

D �: (2.21)

Moreover, substitution of (2.18) into (2.16) yields

U D 1

Z

X
�

e�ˇE�E� D � @
@̌

lnZ; (2.22)

where we have used (2.19) in the second equality. Thus, one obtains the internal
energy U directly from the partition function. Regarding heat capacity (1.31), we
use @=@T D �kBˇ

2.@=@̌ / and the definition of the expectation in (2.2) to express
CV D .@U =@T /V;N in two different ways:

CV D hE
2i � hE i2
kBT 2

D 1

kBT 2
@2

@̌ 2
lnZ: (2.23)

Hence, we obtain the internal energy and its fluctuation by successive differentia-
tions of the logarithm of the partition function with respect to ˇ, the latter of which
is directly related to the heat capacity.

The internal energyU is an extensive quantity, as is the heat capacityCV obtained
by differentiating U in terms of the intensive quantity T. Equation (2.23) enables
us now to estimate the fluctuation in energy as �U � phE 2i � hE i2 / N1=2.
Hence, we conclude that �U=U / N�1=2, i.e., the relative magnitude of the
energy fluctuation decreases as a function of the particle number in the system
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as N�1=2. This statement holds true generally for fluctuations in thermodynamics
and statistical mechanics. It also informs us that the microcanonical and canonical
distributions should yield identical expectations.

2.2.3 Grand Canonical Distribution

Finally, we consider a system of fixed volume V exchanging particles as well as heat
with a reservoir and derive its equilibrium probability distribution fw�g as (2.26)
below.

Besides the internal energy, the total particle number of such a system is expected
to remain constant on average in equilibrium, although it may fluctuate. The
condition can be expressed as

hN i �
X
�

w�N� D N; (2.24)

where N� is the number of particles in state �, and N is some constant, i.e., the
average particle number.

The principle of maximum entropy tells us that equilibrium occurs when (2.10)
takes its maximum in terms of fw�g subject to the conditions given by (2.1), (2.16),
and (2.24). This optimization problem can be solved by introducing a functional:

� �hE i � �hN i � TSC �S
 X

�

w� � 1
!

D
X
�

w� .E� � �N� C kBT ln w� C �S/� �S ; (2.25)

where T , �, and �S are the associated Lagrange multipliers determined by
(2.1), (2.16), and (2.24). Recalling (1.26), we realize that (2.25) is the nonequi-
librium grand potential with T and � denoting temperature and chemical potential,
respectively.

A necessary condition that � be extremal at w� D weq
� is given by

0 D @�

@w�

ˇ̌
ˇ̌
w�Dw

eq
�

D E� � �N� C kBT .ln weq
� C 1/C �S ;

which is immediately solved to yield weq
� D e�.E���N�C�S /=kBT�1. Introducing a

new constant by ZG � e�S=kBTC1, we write weq
� in the form

weq
� D e�.E���N� /=kBT =ZG;
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which is known as the grand canonical distribution. We call a system that obeys
this distribution a grand canonical ensemble. The physical condition that w� ! 0

as E� !1 yields T > 0. In addition, the normalization condition (2.1) enables us
to express ZG as

ZG D
X
�

e�.E���N� /=kBT ;

which is known as the grand partition function. Let us substitute the expression of
weq
� above into (2.25). We thereby obtain�eq � ��weq

�

	
in equilibrium as

�eq D �kBT lnZG:

It follows from the condition T > 0 that �eq with the maximum entropy
corresponds to the minimum of (2.25).

Removing superscript eq for simplicity, the above results are summarized as
follows.

Grand Canonical Ensemble (ˇ � 1=kBT )

w� D e�ˇ.E���N� /

ZG
W grand canonical distribution (2.26)

ZG.T; V; �/ D
X
�

e�ˇ.E���N� / : grand partition function (2.27)

� D �ˇ�1 lnZG : grand potential (2.28)

Thus, a fundamental quantity associated with grand canonical ensembles is the
grand partition functionZG, with which we obtain the grand potential using (2.28).
Subsequently, we can use the thermodynamic relation (1.27) to calculate entropy,
pressure, and particle number:

�
@�

@T

�
V;�

D �S;
�
@�

@V

�
T;�

D �P;
�
@�

@�

�
T;V

D �N: (2.29)

Moreover, substitution of (2.26) into (2.16) yields

U D 1

ZG

X
�

e�ˇ.E���N� /.E� � �N� C �N�/ D � @
@̌

lnZG C �N; (2.30)

where we have used (2.24) and (2.27) in the second equality. In regard to the
fluctuation of the particle number inherent in the grand canonical distribution, a
calculation of the variance gives
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	2N � hN 2i � hN i2 D 1

ˇ2
@2

@�2
lnZG; (2.31)

in exactly the same way as the energy fluctuation, (2.23).

Problems

2.1. Let p and 1 � p be the probabilities for success and failure, respectively, in
a trial. Assuming that the probability of k (� n) successes for n independent
trials obeys the binomial distribution

Pn
k D

nŠ

kŠ.n � k/Šp
k.1 � p/n�k;

answer the following questions.

(a) Show that kP n
k D npPn�1

k�1 .
(b) Obtain the expectation and standard deviation for the number of successes.

2.2. Use the method of Lagrange multipliers to find the point on a unit circle of
x2 C y2 D 1 that gives the maximum for the function f .x; y/ � x C y.
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Chapter 3
Quantum Mechanics of Identical Particles

Abstract In general, superconductivity occurs in a system of identical particles;
specifically, the conduction electrons in metals. Being indistinguishable from each
other, swapping any two electrons leaves the system unchanged. This feature,
which is associated with invariance under permutations, has a profound implication
for every system composed of identical particles. We study a crucial connection
between the spin of a particle and permutation symmetry of many-particle wave
functions. We also develop a special technique called second quantization that
enables us to describe such a system concisely and conveniently. The results are
summarized generally in Sect. 3.7 and specifically for ideal gases in (3.61)–(3.65).

3.1 Permutation

ImagineN children sitting onN chairs that are arranged in a circle and numbered in
a clockwise manner from 1 to N . A permutation is an action by which the children
mutually exchange their seats [5]. Denoted OP , the associated operator is written in
the form

OP D
�
1 2 3 � � � N
p1 p2 p3 � � � pN

�
; (3.1)

where 1 � pi � N with no duplication among the pi ’s. Hence, the child previously
on chair i moves to chair pi . The number of distinct permutations is easily identified
to be NŠ.

Among these permutations, there is a special subset called the cyclic permuta-
tions, in which the children move in a cyclic fashion, e.g.,

�
1 2 3 4

4 3 1 2

�
� .1 4 2 3/ (3.2)

for N D 4, where the last identity represents a shorthand notation and is to be read
‘the child on chair 1 goes to chair 4’, ‘the child on chair 4 goes to chair 2’, ‘the
child on chair 2 goes to chair 3’, and ‘the child on chair 3 goes to chair 1’. A cyclic
permutation of length two is called a transposition, which is given by

© Springer Japan 2015
T. Kita, Statistical Mechanics of Superconductivity, Graduate Texts in Physics,
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OP12 �
�
1 2

2 1

�
� .1 2/: (3.3)

We briefly give statements of some elementary theorems (without proof) related
to permutations. See, for example, [5] for relevant proofs. First, every permutation
can be expressed as a product of cyclic permutations that are disjoint to each other
with equal or fewer elements. For example,

OPa �
�
1 2 3 4 5 6

2 5 6 4 1 3

�
D .3 6/ .1 2 5/D .1 2 5/ .3 6/; (3.4)

where we have omitted the identity permutation .4/; the order of application is to
proceed from right to left by definition, but we can change it arbitrarily for disjoint
permutations. Second, every cyclic permutation can be composed of a product of
transpositions; for example

�
1 2 � � � k�2 k�1 k
2 3 � � � k�1 k 1

�
D .1 k/ .1 k�1/ � � � .1 3/.1 2/;

where again operations are applied from right to left. Combining the two statements,
we realize that every permutation can be expressed as a product of transpositions.
For example, (3.4) may be decomposed into

OPa D .3 6/ .1 5/ .1 2/:

Another example is

OPb �
�
1 2 3 4 5 6

2 5 6 3 1 4

�
D .3 6 4/ .1 2 5/D .3 4/ .3 6/ .1 5/ .1 2/:

An odd (even) permutation describes a permutation that can be expressed as a
product of an odd (even) number of transpositions, as for OPa ( OPb) above. Indeed,
every permutation is either even or odd.

3.2 Permutation Symmetry of Identical Particles

We turn our attention to a physical system of N identical particles. Quantum
mechanics tells us that every species of particle has an internal degree of freedom
called spin, whose magnitude s takes a proper value from the series 0; 1

2
; 1; 3

2
; 2; � � �

[7, 10]. Accordingly, we need an additional index to specify the spin state of the
particle besides its coordinate r. A complete set of indices follows from solving the
eigenvalue problem Oszj˛i D ˛j˛i, where Osz denotes the z component of the spin
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operator; it yields the eigenvalue ˛ D s; s � 1; � � � ;�s. Because every spin state is
describable as a linear combination of fj˛ig, index ˛ may be used as the ‘coordinate’
for the spin degrees of freedom. On the basis of these observations, we combine r
and ˛ to form a set of coordinates 
 � .r; ˛/ to describe the complete set of states
for a single particle.

An N -particle wave function can be expressed generally in terms of this index
variable as

ˆ�.
1; 
2; � � � ; 
N /; (3.5)

where � denotes a set of quantum numbers to specify theN -particle state. Operating
with permutation (3.1) on this wave function yields

OPˆ�.
1; 
2; � � � ; 
N / � ˆ�.
p1 ; 
p2 ; � � � ; 
pN /; (3.6)

by definition.
A many-particle system composed of N identical particles has a special symme-

try related to permuting the particles. To see this, consider a system described by
Hamiltonian

OH D
NX
jD1

Op2j
2m
C

N�1X
iD1

NX
jDiC1

V .jri � rj j/ �
NX
jD1
Oh.1/j C

X
i<j

Oh.2/ij ; (3.7)

where Opj is the momentum operator [7, 10] and V denotes a two-body potential.
The corresponding time-independent Schrödinger equation is given by

OH ˆ�.
1; 
2; � � � ; 
N / D E�ˆ�.
1; 
2; � � � ; 
N /; (3.8)

with E� the eigenenergy. Operating with permutation (3.1) from the left of (3.8) and
inserting the identity operator OP�1 OP between OH and ˆ� , we obtain

� OP OH OP�1� OPˆ�.
1; 
2; � � � ; 
N / D E� OPˆ�.
1; 
2; � � � ; 
N /: (3.9)

Now, operator OP OH OP�1 generally satisfies OP OH OP�1 D OH . This is exemplified
using OH for N D 2:

OP12 OH OP�1
12 D OP12

� Op21
2m
C Op

2
2

2m
C V .jr1 � r2j/

�
OP�1
12

D
� Op22
2m
C Op

2
1

2m
C V .jr2 � r1j/

�
OP12 OP�1

12 D OH OP12 OP�1
12 D OH :

Thus, any permutation on OH only changes the order of the summation, leaving OH
itself invariant. Let us rewrite OP OH OP�1 D OH as

OP OH D OH OP : (3.10)
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Hence, we conclude by virtue of the Heisenberg equation of motion

i„d OPH.t/

dt
D PH.t/ OH � OH PH.t/ (3.11)

for the operator OPH.t/ � ei OH t=„ OP e�i OH t=„ that the expectation value of OP does not
change in time [10]. In addition, OP and OH can be diagonalized simultaneously [10]
assuming OP is Hermitian; this last point will be proved in the final paragraph of this
section.

Let us find the eigenvalues of the permutation operators. We start with the
simplest case of transposition (3.3). Because OP2

12 is the identity permutation, an
eigenvalue 	 of OP12 should satisfy 	2 D 1. Hence, 	 is either 1 or �1. Next, we
consider the general permutation of (3.1) and denote its eigenvalue by 	P , i.e.,

OPˆ�.
1; 
2; � � � ; 
N / D 	Pˆ�.
1; 
2; � � � ; 
N /: (3.12)

Now, recalling earlier statements in Sect. 3.1 that “every permutation can be
expressed as a product of transpositions” and “every permutation is either even or
odd,” we find the eigenvalue of OP to be

	P D


1 if OP is even
	 if OP is odd

: (3.13)

It has been established that every stationary wave function for a system of
identical particles belongs to an eigenstate of the permutation operators. This
implies that, upon application of an odd permutation, a wave function either remains
invariant (	 D 1) or changes sign (	 D �1). The two categories here are connected
with the spin magnitude s of the constituent individual particle, specifically

Spin-Statistics Theorem
s D 0; 1; 2; � � �  ! 	 D C1
s D 1

2
;
3

2
;
5

2
; � � �  ! 	 D �1 : (3.14)

A particle with an integer (a half-integer) spin is called boson (fermion) after Bose
(Fermi), who introduced the rule upon studying statistical mechanics of photons
with s D 1 (electrons with s D 1

2
) without referring to the connection with spin.

The remarkable relationship was formulated by Fiertz [3] and proved by Pauli [9]
in the context of relativistic quantum field theory. Although the statement itself has
been confirmed experimentally without doubt, a direct proof in the non-relativistic
framework seems yet to be performed. Incidentally, it is worth pointing out that the
connection, which has been known as the “spin-statistics theorem” generally, has
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nothing to do with “statistics” or “probability” in the present context. Instead, it is
relevant here to the permutation symmetry of many-particle wave functions, as we
have seen.

The electron, proton, and neutron are all fermions with s D 1
2
, whereas the

photon is a boson with s D 1. The rule applies also to every atom composed of
protons, neutrons, and electrons that moves as a whole in our condensed-matter
world. For example, the hydrogen atom consists of one electron and one proton,
so that its total spin can be either 0 or 1 according to the addition rule of angular
momenta [2, 7, 10]; thus, the hydrogen is a boson. In general, a neutral atom with an
equal number of protons and electrons is classified as a boson or fermion according
to whether the number of neutrons is even or odd. Thus, the 4He atom with two
neutrons is a boson with total spin s D 0 in the ground state, whereas its isotope
3He with a single neutron is a fermion with total spin s D 1=2 in the ground state.

Finally, we confirm that OP is Hermitian for a set of wave functions fˆ�g
satisfying (3.12). Let us introduce the inner product by

hˆ�0 jˆ�i �
Z

d
1 � � �
Z

d
Nˆ�
�0.
1; 
2; � � � ; 
N /ˆ�.
1; 
2; � � � ; 
N /; (3.15)

where the ‘integration’ over 
j signifies an integration and a summation

Z
d
j �

sX
˛jD�s

Z
d3rj : (3.16)

With this definition, hˆ�0 j OPˆ�i is transformed as

hˆ�0 j OPˆ�i D h OP�1ˆ�0 j OP�1 OPˆ�i D h OP�1ˆ�0 jˆ�i D 	P hˆ�0 jˆ�i D h OPˆ�0 jˆ�i;

where we have performed a change of variables corresponding to an operation of
OP�1 in the first equality, and subsequently used the fact that the eigenvalue of OP�1

is identical to that of OP . Thus, OP is indeed Hermitian.

3.3 Eigenspace of Permutation

Equation (3.12) implies that a wave function of identical particles should be
a permutational eigenstate that is either symmetric (bosons) or antisymmetric
(fermions). Here, we construct the eigenspace of permutations to which the many-
particle wave functions belong.

In analogy to the treatment of the harmonic oscillator in quantum mechanics
using creation and annihilation operators [10], we first introduce a pair of operators
O and O � that satisfy the commutation relations:
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� O .
/; O �.
 0/
	
	
� O .
/ O �.
 0/ � 	 O �.
 0/ O .
/ D ı.
; 
 0/;

� O .
/; O .
 0/
	
	
D � O �.
/; O �.
 0/

	
	
D 0; (3.17)

with 	 D ˙1 and ı.
; 
 0/ � ı.r� r0/ı˛˛0 . In addition, we define the ket j0i and bra
h0j via the right (left) action of the annihilation (creation) operator,

O .
/j0i D 0; 0 D h0j O �.
/ D � O .
/j0i	�; h0j0i D 1: (3.18)

These are the basic ingredients needed to construct the eigenspace of permutations.
Next, we introduce the ket j
1; 
2; � � � ; 
N i and its Hermitian conjugate by

j
1; 
2; � � � ; 
N i � 1p
NŠ
O �.
1/ O �.
2/ � � � O �.
N /j0i; (3.19)

h
1; 
2; � � � ; 
N j � 1p
NŠ
h0j O .
N / � � � O .
2/ O .
1/Dj
1; 
2; � � � ; 
N i�: (3.20)

The space spanned by (3.19) naturally forms the eigenspace of OP . To see this, we
start with transpositions. Let us operate with OPij .i < j / on (3.19) and transform
the ket by repeatedly using the operator commutation relation (3.17),

OPijj
1; 
2; � � � ; 
N i �j
1; � � � ; 
i�1; 
j ; 
iC1; � � � 
j�1; 
i ; 
jC1; � � � ; 
N i
D	j�i j
1; � � � ; 
i�1; 
i ; 
j ; 
iC1; � � � ; 
j�1; 
jC1; � � � ; 
N i
D	.j�i /C.j�i�1/j
1; � � � 
i�1; 
i ; 
iC1; � � � ; 
j�1; 
j ; 
jC1; � � � ; 
Ni
D	 j
1; � � � ; 
i�1; 
i ; 
iC1; � � � ; 
j�1; 
j ; 
jC1; � � � ; 
N i:

Thus, the states defined by (3.19) are eigenstates of transpositions. Second, as any
OP is either even or odd, we easily conclude that

OP j
1; 
2; � � � ; 
N i D 	P j
1; 
2; � � � ; 
N i (3.21)

holds generally.
Ket j
1; 
2; � � � ; 
N i satisfies the normalization condition:

h
 0
1; 


0
2; � � � ; 
 0

N 0 j
1; 
2; � � � ; 
N i D ıN 0N

N Š

X
OP
	P ı.
 0

1; 
p1 /ı.

0
2; 
p2 / � � � ı.
 0

N ; 
pN /:

(3.22)
To prove this, we make use of the identity:

O .
 0
1/
O �.
1/ O �.
2/ � � � O �.
N / D ı.
 0

1; 
1/
O �.
2/ � � � O �.
N /

C 	1ı.
 0
1; 
2/

O �.
1/ O �.
3/ � � � O �.
N /
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C � � �
C 	N�1ı.
 0

1; 
N /
O �.
1/ � � � O �.
N�1/

C 	N O �.
1/ O �.
2/ � � � O �.
N / O .
 0
1/; (3.23)

to move the annihilation operator O .
 0
j / in (3.22) to the left of j0i and use

O .
 0
j /j0i D 0 repeatedly for j D 1; � � � ; N 0. For example, with N D N 0 D 2,

(3.22) is shown to hold as

h
 0
1; 


0
2j
1; 
2i D

1

2Š
h0j O .
 0

2/
O .
 0

1/
O �.
1/ O �.
2/j0i

D 1

2Š
h0j O .
 0

2/
�
ı.
 0

1; 
1/
O �.
2/C 	ı.
 0

1; 
2/
O �.
1/

C 	2 O �.
1/ O �.
2/ O .
 0
1/
	j0i

D 1

2Š

�
ı.
 0

1; 
1/h0j O .
 0
2/
O �.
2/j0i C 	ı.
 0

1; 
2/h0j O .
 0
2/
O �.
1/j0i

	

D 1

2Š

�
ı.
 0

1; 
1/ı.

0
2; 
2/C 	ı.
 0

1; 
2/ı.

0
2; 
1/

	
:

Thus, we have constructed the eigenspace of OP .

3.4 Bra-Kets for Many-Body Wave Functions

Let us define ket jˆ�i for the wave function (3.5) by

jˆ�i �
Z

d
1

Z
d
2 � � �

Z
d
N j
1; 
2; � � � ; 
N iˆ�.
1; 
2; � � � ; 
N /: (3.24)

The corresponding bra is given by

hˆ� j �
Z

d
1

Z
d
2 � � �

Z
d
N h
1; 
2; � � � ; 
N jˆ�

� .
1; 
2; � � � ; 
N / D jˆ�i�:
(3.25)

The ket has the following properties:

O .
1/jˆ�i D
p
N

Z
d
 0
2 � � �

Z
d
 0
N j
 0

2; � � � ; 
 0
N iˆ�.
1; 
 0

2; � � � ; 
 0
N /; (3.26)

O .
2/ O .
1/jˆ�i D
p
N.N�1/

Z
d
 0
3 � � �

Z
d
 0
N j
 0

3; � � � ; 
 0
N iˆ�.
1; 
2; 
 0

3; � � � ; 
 0
N /;

(3.27)

O .
N / � � � O .
2/ O .
1/jˆ�i D
p
NŠ j0iˆ�.
1; 
2; � � � ; 
N /: (3.28)
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Thus, the action of O .
/ on jˆ�i extracts argument 
 from jˆ�i. Equations (3.26)–
(3.28) may be proved straightforwardly by substituting (3.24) on the left-hand side
and using (3.19), (3.23), (3.18), and (3.12) successively (Problem 3.1). It follows
from (3.18), (3.20), and (3.28) that

h
1; 
2; � � � ; 
N jˆ�i D ˆ�.
1; 
2; � � � ; 
N / : (3.29)

Substitution of (3.29) into (3.24) yields

jˆ�i �
Z

d
1

Z
d
2 � � �

Z
d
N j
1; 
2; � � � ; 
N ih
1; 
2; � � � ; 
N jˆ�i;

which is equivalent to

Z
d
1

Z
d
2 � � �

Z
d
N j
1; 
2; � � � ; 
N ih
1; 
2; � � � ; 
N j D 1: (3.30)

Thus, kets
˚j
1; 
2; � � � ; 
N i� form a complete set for the eigenspace of OP .

Equation (3.24) can also be used to symmetrize or antisymmetrize any wave
function Q̂ .
1; 
2; � � � ; 
N / that is not an eigenstate of OP . Indeed, we only need to
construct

jˆi D AN
Z

d
 0
1

Z
d
 0
2 � � �

Z
d
 0
N j
 0

1; 

0
2; � � � ; 
 0

N i Q̂ .
 0
1; 


0
2; � � � ; 
 0

N /; (3.31)

with AN the normalization constant. Ket j
 0
1; 


0
2; � � � ; 
 0

N i in the integrand naturally
extracts the symmetric or antisymmetric contribution from Q̂ .
 0

1; 

0
2; � � � ; 
 0

N /. Equa-
tion (3.31) may be regarded as projecting Q̂ onto the eigenspace of OP . The wave
function for (3.31) is obtained using (3.22) and (3.29), giving

ˆ.
1; 
2; � � � ; 
N / � h
1; 
2; � � � ; 
N jˆi D AN

N Š

X
OP
	P Q̂ .
p1 ; 
p2 ; � � � ; 
pN /:

(3.32)

3.5 Orthonormality and Completeness of Bra-Kets

Let us assume that wave functions fˆ�.
1; � � � ; 
N /g satisfy orthonormality and
completeness given by

Z
d
1 � � �

Z
d
Nˆ�

�0.
1; � � � ; 
N /ˆ�.
1; � � � ; 
N / D ı�0�; (3.33)

X
�

ˆ�.
1; � � � ; 
N /ˆ�
� .


0
1; � � � ; 
 0

N / D
1

N Š

X
OP
	P ı.
 0

1; 
p1 / � � � ı.
 0
N ; 
pN /;

(3.34)
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respectively. These relations can be expressed alternatively in terms of the ket and
bra of (3.24) and (3.25) as

hˆ�0 jˆ�i D ı�0�;
X
�

jˆ�ihˆ�j D 1: (3.35)

The proof proceeds straightforwardly by substituting (3.24) and (3.25) into (3.35)
and using (3.12), (3.21), (3.22), (3.30), (3.33) and (3.34) (Problem 3.2).

3.6 Matrix Elements of Operators

Equation (3.7) tells us that every one-particle operator OH .1/ and two-particle
operator OH .2/ for a system of identical particles may be written generally as

OH .1/ �
NX
jD1
Oh.1/j ; OH .2/ �

X
i<j

Oh.2/ij : (3.36)

Matrix elements of these operators betweenˆ�
�0 andˆ� are alternatively expressible

in terms of hˆ�0 j and jˆ�i as

Z
d
1 � � �

Z
d
Nˆ

�
�0.
1; � � � ; 
N / OH .1/ˆ�.
1; � � � ; 
N /

D
Z

d
1hˆ�0 j O �.
1/ Oh.1/1 O .
1/jˆ�i; (3.37)

Z
d
1 � � �

Z
d
Nˆ

�
�0.
1; � � � ; 
N / OH .2/ˆ�.
1; � � � ; 
N /

D 1

2

Z
d
1

Z
d
2hˆ�0 j O �.
1/ O �.
2/ Oh.2/12 O .
2/ O .
1/jˆ�i: (3.38)

The equalities can be proved by substituting (3.26) and (3.27) into the right-hand
sides of (3.37) and (3.38), respectively, and successively using (3.22) and (3.12)
(Problem 3.3). Note that the expressions on the right-hand sides are free from the
sums over the particle indices i and .i; j /; each of them is given using only a single
one-particle operator Oh.1/1 and two-particle operator Oh.2/12 in (3.36), thereby enabling
us to simplify the notation considerably.

3.7 Summary of Two Equivalent Descriptions

The preceding considerations have shown that there are at least two equivalent
descriptions for many-particle systems in that they yield the same matrix elements
and hence the same probabilities for observables quantum mechanically.
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In the first description, the Hamiltonian is given for example by

OH D
NX
jD1

Op2j
2m
C

N�1X
iD1

NX
jDiC1

V .jri � rj j/: (3.39)

Its eigenfunctions are obtained by simultaneously solving the Schrödinger equation:

OH ˆ�.
1; 
2; � � � ; 
N / D E�ˆ�.
1; 
2; � � � ; 
N /; (3.40)

and the eigenvalue problem:

OPˆ�.
1; 
2; � � � ; 
N / D 	Pˆ�.
1; 
2; � � � ; 
N /: (3.41)

Here, we have introduced 
 � .r; ˛/ to express the space coordinate r and spin
variable ˛ D s; s � 1; � � � ;�s in a unified way, OPˆ�.
1; 
2; � � � ; 
N / is defined
by (3.6), and eigenvalue 	P is given by (3.13) and (3.14). The orthonormality and
completeness of eigenstates fˆ�g are expressible as (3.33) and (3.34).

The alternative description is called second quantization, where the Hamiltonian
can be written as

OH D
Z

d
1 O �.
1/ Op
2
1

2m
O .
1/C 1

2

Z
d
1

Z
d
2 O �.
1/ O �.
2/V .jr1�r2j/ O .
2/ O .
1/;

(3.42)
and the Schrödinger equation is expressible as

OH jˆ�i D E�jˆ�i: (3.43)

The orthonormality and completeness of fjˆ�ig are given by (3.35).
It follows from (3.37) and (3.38) that (3.39)–(3.41) and (3.42)–(3.43) yield

the same eigenvalues fE�g and the same matrix elements for every observable of
identical many-particle systems. Ket jˆ�i and wave functionˆ�.
1; 
2; � � � ; 
N / are
connected by

jˆ�i D
Z

d
1 � � �
Z

d
N j
1; � � � ; 
N iˆ�.
1; � � � ; 
N /; (3.44)

where the basis kets fj
1; � � � ; 
N ig are defined by (3.19) and satisfy (3.21)
and (3.22).

3.8 Second Quantization for Ideal Gases

We now focus on non-interacting many-particle systems and express the Hamil-
tonian and eigenkets in terms of one-particle eigenstates. The eigenkets thereby
obtained also form a convenient starting point for a perturbation expansion with
respect to the interaction.
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Let us consider Hamiltonian:

OH0 �
Z
O �.
1/

� Op21
2m
CU .r1/

�
O .
1/ d
1; (3.45)

where U .r/ is a one-body potential. Suppose that the following one-particle
eigenvalue problem has been solved:

� Op21
2m
CU .r1/

�
'q.
1/ D "q'q.
1/; (3.46)

where q denotes a set of quantum numbers that specifies the one-particle eigenstate
'q � jqi and its eigenvalue "q . We assume that 'q.
/ D h
jqi satisfies
orthonormality:

hqjq0i �
Z
'�
q .
1/'q0.
1/d
1 D ıqq0 ; (3.47)

and completeness:

h
j
 0i �
X
q

'q.
/'
�
q .


0/ D ı.
; 
 0/: (3.48)

Next, we expand the operators . O ; O �/ in terms of 'q.
/ as

O .
/ D
X
q

Ocq'q.
/; O �.
/ D
X
q

Oc�q'�
q .
/: (3.49)

To obtain “coefficients” Ocq and Oc�q , we multiply the two expansions by '�
q0.
/ and

'q0.
/, respectively, perform integrations over 
, and then use orthonormality (3.47).
Replacing q0 ! q in the resulting expression, we obtain

Ocq D
Z
'�
q .
/
O .
/ d
; Oc�q D

Z
'q.
/ O �.
/ d
: (3.50)

Using (3.17) and (3.47), they are shown to obey

� Ocq; Oc�q0

	
	
D ıqq0 ;

� Ocq; Ocq0

	
	
D � Oc�q ; Oc�q0

	
	
D 0: (3.51)

Let us substitute (3.49) into (3.45) and use (3.46) and (3.47). Hamiltonian (3.45) is
thereby reduced to the diagonal form:

OH0 D
X
q

"q Oc�q Ocq: (3.52)
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Next, we obtain the eigenstates of OH0 in the same representation. To this end, we
start with the product of N one-particle eigenfunctions:

Q̂
�.x1; x2; � � � ; xN / �

NY
jD1
h
j jqj i; � D .q1; q2; � � � ; qN /;

for which the eigenvalues are given by

E� D
NX
jD1

"qj : (3.53)

Subsequently, we symmetrize or antisymmetrize the above wave function based on
(3.32) to obtain

ˆ�.
1; 
2; � � � ; 
N / D AN

N Š

X
OP
	P h
1jqp1ih
2jqp2i � � � h
N jqpN i: (3.54)

It follows from (3.10) that its eigenenergy is still given by (3.53).
Let us focus on fermions. With 	 D �1, the summation over OP in (3.54) defines

a determinant of a matrix of entries h
i jqj i [1, 8]

ˆ.F/� .
1; 
2; � � � ; 
N / D
A
.F/
N

N Š
det

2
64
h
1jq1i � � � h
1jqN i
:::

:::

h
N jq1i � � � h
N jqN i

3
75 ; (3.55)

which is known as the Slater determinant. It follows from properties of the deter-
minant [1, 8] that ˆ.F/� vanishes when a pair of columns or rows are identical. The
statement is precisely the Pauli exclusion principle; specifically, no pairs of identical
fermions can simultaneously occupy the same one-particle state or coordinate
(including spin). Thus, the Pauli exclusion principle naturally results from the
permutation symmetry of the system of identical particles. In this context, it is not
a principle but a natural outcome of the permutation symmetry. Nevertheless, we
cannot overstate its historical importance; it provided a microscopic understanding
of the periodic table and was also a precursor of the Fermi-Dirac statistics. Indeed,
the latter may be regarded as a direct extension of the Pauli exclusion principle
proposed specifically for electrons in atoms to other electronic systems at finite
temperatures.

Noting that fqj g for 	 D �1 are different from each other and using (3.47), we
can express the normalization condition for (3.54) as

1 D
Z

d
1 � � �
Z

d
N jˆ.F/� .
1; � � � ; 
N /j2D
�
A
.F/
N

�2
.N Š/2

X
OP

X
OP 0

.�1/P 0CP
NY
jD1
hqp0

j
jqpj i
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D
�
A
.F/
N

�2
.N Š/2

X
OP

X
OP 0

.�1/P 0CP
NY
jD1

ıp0

j pj
D
�
A
.F/
N

�2
.N Š/2

X
OP

X
OP 0

.�1/P 0CPı OP 0 OP D
�
A
.F/
N

�2
N Š

:

Hence, we obtain A.F/N as

A
.F/
N D

p
NŠ: (3.56)

For bosons, each state qj can accommodate multiple particles. Consider specifi-
cally the case where there are nj particles in the state qj (j D 1; 2; � � � ; `I ` � N )
as for

� D . q1; � � � ; q1„ ƒ‚ …
n1

; q2; � � � ; q2„ ƒ‚ …
n2

; � � � � � � ; q`; � � � ; q`„ ƒ‚ …
n`

/;
X̀
jD1

nj D N: (3.57)

The corresponding wave function is given by (3.54) with 	 D 1, where qpj denotes
a permutation of � in (3.57). The normalization condition becomes

1 D
Z

d
1 � � �
Z

d
N jˆ.B/� .
1; � � � ; 
N /j2 D
�
A
.B/
N

�2
.N Š/2

X
OP 0

X
OP

NY
jD1
hqp0

j
jqpj i

D
�
A
.B/
N

�2
.N Š/2

N Š
X

OP

NY
jD1
hqj jqpj i D

�
A
.B/
N

�2
N Š

n1Šn2Š � � �n`Š;

where the third equality obtains by multiplying the result for OP 0 D O1 byNŠ. Hence,
we obtain the normalization constant as

A
.B/
N D

p
NŠp

n1Šn2Š � � �n`Š
: (3.58)

Now that the wave functions have been obtained, we can construct the corre-
sponding bras. First, we consider fermions. Let us substitute 	 D �1 and (3.56)
into (3.54), insert the resulting wave function and (3.19) into (3.44), and use (3.50)
and (3.51) for f Oc�qg. We thereby obtain jˆ.F/� i as (Problem 3.4)

jˆ.F/� i D Oc�q1 Oc�q2 � � � Oc�qN j0i: (3.59)

This expression is much simpler than (3.55), and a transposition of Oc�qi and Oc�qj
corresponds to a column exchange qi $ qj in (3.55). The ground state is composed
of N -lowest one-particle states, which is sometimes called the Fermi vacuum to
emphasize the fact that there are no excitations; it is distinct from the vacuum state
j0i of (3.18) with no particles.
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For bosons, we substitute 	 D 1 and (3.58) into (3.54), insert the resulting wave
function and (3.19) into (3.44), and use (3.50) and (3.51) for f Oc�qg. We thereby obtain

jˆ.B/� i for the state � in (3.57) as

jˆ.B/� i D
. Oc�q1 /n1p
n1Š
� � � . Oc

�
q` /

n`

p
n`Š
j0i: (3.60)

This state is identical in form to that for the harmonic oscillator with multiple
frequencies [10].

It follows from (3.51) that
� Oc�q�2j0i D 0 holds for fermions of 	 D �1. Noting

this fact, we realize that (3.60) for bosons also includes (3.59) for fermions. We may
also relax the condition nqj � 1 (j D 1; 2; � � � ; `) in (3.60) to nq � 0 for all q’s to
remove the asymmetry in the notation between occupied and unoccupied states.

With these observations in mind, the main results of this section are summarized
as follows. The non-interacting Hamiltonian (3.45) can be expressed alternatively
in terms of the eigenvalues of (3.46) and operators of (3.50) as

OH0 D
X
q

"q Oc�q Ocq; (3.61)

where q denotes a set of one-particle quantum numbers, and Ocq and Oc�q satisfy

Œ Ocq; Oc�q0 �	 � Ocq Oc�q0 � 	 Oc�q0 Ocq D ıqq0 ; Œ Ocq; Ocq0 �	 D Œ Oc�q ; Oc�q0 �	 D 0: (3.62)

Every eigenstate � of (3.61) is specified completely in terms of the number nq of
particles in each one-particle state q as

jˆ�i � jnq1 ; nq2 ; nq3 ; � � � i �
�
Oc�q1

nq1

p
nq1 Š

�
Oc�q2

nq2

p
nq2 Š

�
Oc�q3

nq3

p
nq3 Š

� � � � � � j0i: (3.63)

The possible values for nq differ between bosons (	 D 1) and fermions (	 D �1)
as

nq D


0; 1; 2; � � � .	 D C1/
0; 1 .	 D �1/ : (3.64)

Particle number N� and energy E� of state � are expressible as

N� D
X
q

nq; E� D
X
q

nq"q: (3.65)

Figure 3.1 shows a diagrammatic representation of a non-interacting eigenstate
for (a) bosons and (b) fermions. With no vertical energy scale, the one-particle
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5q

4q

3q

2q

1q

5q

4q

3q

2q

1q

a b

Fig. 3.1 Diagrammatic representation of a non-interacting eigenstate for (a) bosons and (b)
fermions. The eigenstate corresponds to (a) jˆ�i D j 4 1 2 0 3 � � � i and (b) jˆ�i D
j 1 0 1 1 0 � � � i

energy levels are simply represented by horizontal lines; a filled circle on a level
denotes a particle occupying the state. We remark that with degeneracies for the
one-particle energy levels, the different occupancies are often distinguished using
distinct symbols for particles occupying different states. For example, in the absence
of a magnetic field, the spin states of an electron are two-fold degenerate and are
marked using " for ˛ D 1

2
and # for ˛ D � 1

2
.

A couple of comments are in order before closing the section. First, the
second quantization is often described based on the occupancy representation of
(3.63). However, there may be cases where an expansion of a many-particle wave
function in terms of one-particle eigenstates is not appropriate. A typical example is
superconductivity with the formation of coherent two-particle bound states, which
is the main topic of this book. We shall see that (3.44) rather than (3.63) enables
us to develop a theory of superconductivity so that the phase coherence is manifest.
Second, (3.64) is sometimes called Bose statistics or Fermi statistics. As we have
seen already, the statement has little to do with “statistics” or “probability” but is
a direct consequence of the permutation symmetry inherent in systems of identical
particles.

3.9 Coherent State

Here, we introduce the coherent state in terms of the ground state of non-interacting
bosons.

Looking back at (3.63), one may express the ground state of n non-interacting
bosons .n� 1/ as

jˆni D
� Oc��np
nŠ
j0i; (3.66)
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where Oc� � Oc�q1 is the creation operator of the lowest-energy state q1. However,
(3.66) with a fixed number of particles turns out to yield apparently wrong
predictions for particle-number fluctuations and two-particle correlations of bosons
at low temperatures when calculated in the grand canonical ensemble [6], as we
shall see in Sect. 5.3.

To remove the difficulties, we construct a linear combination of (3.66) over the
particle number; specifically,

jˆi D A
1X
nD0

an

� Oc��np
nŠ
j0i; (3.67)

where an is an expansion coefficient. The normalization constant is easily calculated
using the orthonormality of

� Oc��nj0i=pnŠ,

A D
" 1X
nD0
janj2

#�1=2
: (3.68)

One of the notable properties of (3.67) is that it yields a finite average of the
annihilation operator,

hˆj Ocjˆi D jAj2
1X
nD0

p
nC1 a�

nanC1: (3.69)

Especially useful among the combinations of (3.67) is the coherent state introduced
by Sudarshan [11] and Glauber [4] in the context of laser lights as an eigenstate of
the annihilation operator:

Ocjˆi D �jˆi; (3.70)

where� denotes the eigenvalue. To find its explicit expression, substitute (3.67) into
(3.70), use the commutation relation

� Oc; � Oc��n	C D n
� Oc��n�1

(Problem 3.5) and

Ocj0i D 0 to express Oc� Oc��nj0i D n
� Oc��n�1j0i on the left-hand side, and compare

the coefficients of
� Oc��n�1j0i on both sides. We thereby obtain the recursion relationp

nan D �an�1. It yields an D a0�
n=
p
nŠ, where a0 can be chosen as a real

positive number. Substitution of this result into (3.67) gives the coherent state in the
form

jˆi D e�j�j2=2C� Oc� j0i: (3.71)



References 41

Using expansion (3.49) and noting that Oc � Ocq1 is the creation operator of the
lowest-energy state, we can re-express (3.70) in terms of the field operator O .
/
as

O .
/jˆi D 
.
/jˆi; (3.72)

where 
.
/ � �'q1.
/ denotes the condensate wave function.

Problems

3.1. Prove (3.26).

3.2. Prove (3.35).

3.3. Prove (3.37).

3.4. Prove (3.59).

3.5. Consider field operators Oc and Oc� that satisfy
� Oc; Oc�	C D 1. Show that

� Oc; � Oc��n	C D n� Oc��n�1

holds. Use it to prove

� Oc; g. Oc�/	C D g0. Oc�/;

where g.x/ is a function analytic at x D 0 and g0.x/ � dg.x/=dx.

References

1. A.C. Aitken, Determinants and Matrices (Oliver and Boyd, Edinburgh, 1956)
2. A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press,

Princeton, 1957)
3. M. Fierz, Helv. Phys. Acta 12, 3 (1939)
4. R.J. Glauber, Phys. Rev. 131, 2766 (1963)
5. I.N. Herstein, I. Kaplansky, Matters Mathematical (Chelsea, New York, 1978)
6. J.R. Johnston, Am. J. Phys. 38, 516 (1970)
7. L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-relativistic Theory, 3rd edn.

(Butterworth-Heinemann, Oxford, 1991)
8. S. Lang, Linear Algebra (Springer, New York, 1987)
9. W. Pauli, Phys. Rev. 58, 716 (1940)

10. J.J. Sakurai, Modern Quantum Mechanics, rev. ed. (Addison-Wesley, Reading, 1994)
11. E.C.G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963)



Chapter 4
Statistical Mechanics of Ideal Gases

Abstract We clarify the thermodynamic properties of quantum ideal gases com-
posed of identical monoatomic bosons or fermions. Aside from the standard content
on the topic described in many textbooks, we specifically clarify the following: (i)
Thermodynamic quantities of ideal gases can be expressed universally in terms of
the single-particle density of states and either the Bose or Fermi distribution func-
tion. (ii) An appropriate choice of units enables us to study various homogeneous
systems in a unified way. The result of (ii) is summarized in Fig. 4.1 below.

4.1 Bose and Fermi Distributions

As summarized in (3.61)–(3.65) of the previous chapter, the total particle number
N� and energy E� for an ideal gas of identical particles can be written in terms of
the one-particle energy "q and its occupation number nq :

N� D
X
q

nq; E� D
X
q

nq"q; (4.1)

where q distinguishes the single-particle eigenstates. A many-particle eigenstate �
of the ideal gas is specified by the set fnqg of occupation numbers for the one-
particle eigenstates and written j�i D jnq1 ; nq2 ; nq3 ; � � � i. Moreover, the possible
values of nq differ between bosons and fermions in that

nq D


0; 1; 2; � � � : bosons .	 D 1/
0; 1 : fermions .	 D �1/ ; (4.2)

where 	 is the eigenvalue of transposition (3.3). We now apply the equilibrium
statistical mechanics formulated in Sect. 2.2 to describe ideal gases, derive expres-
sions for basic thermodynamic quantities of these systems, and obtain the mean
occupation number given in (4.6) below.

The most mathematically suited for this purpose is the grand canonical ensemble
given by (2.26) because it is free from the dual constraints of constant particle
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number N� D N and energy E� D U . A fundamental quantity in the ensemble
is the grand partition function (2.27). Its summation over � can be performed using
(4.1), giving

ZG D
X
�

e�ˇ.E���N� / D
X
fnqg

e�ˇPq."q��/nq D
X
fnqg

Y
q

e�ˇ."q��/nq

D
Y
q

X
nq

e�ˇ."q��/nq D
Y
q


 �
1C e�ˇ."q��/ C e�2ˇ."q��/ C � � � 	 .	 D 1/�
1C e�ˇ."q��/	 .	 D �1/

D
Y
q

�
1 � 	e�ˇ."q��/	�	 .	 D ˙1/: (4.3)

Here, we have used eaCbCcC��� D eaebec � � � in the third equality. In the fourth
equality, “the sum over possible sets of fnqg for

Q
q e�ˇ."q��/nq” is transformed

into “a product over q of the sum over possible nq’s of e�ˇ."q��/nq .” Its validity
is illustrated for a system of fermions (nqj D 0; 1) with only two quantum states
(q1; q2) as

X
fn1;n2g

e�n1x1�n2x2 D 1C e�x1 C e�x2 C e�x1�x2 D .1C e�x1/.1C e�x2/;

with nj � nqj and xj � ˇ."qj � �/. The statement holds true irrespective of the
upper limit of nq or the number of states, as may be confirmed by changing them and
checking the equality as above. In the fifth equality based on (4.2), we performed
the summation over nq of a geometric series.

Substituting (4.3) into (2.28), we obtain the grand potential � D �.T;�/ as

� D 	

ˇ

X
q

ln
�
1 � 	e�ˇ."q��/	 : (4.4)

This expression is effective even when the volume V is not an appropriate variable,
as for a quantum dilute gas trapped in a harmonic potential. Next, we obtain
the mean particle number N D N.T;�/ and internal energy U D U.T;�/ by
substituting (4.4) and (4.3) into (2.29) and (2.30), respectively, to obtain

N D
X
q

Nnq; U D
X
q

"q Nnq; (4.5)

with

Nnq � 1

eˇ."q��/ � 	 .	 D ˙1/: (4.6)

Here Nnq denotes the mean occupation number of state q. Indeed, a formal averaging
of (4.1) yields (4.5). Equation (4.6) for 	 D 1 (�1) is called the Bose distribution
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(Fermi distribution). In the high-temperature limit of eˇ."q��/ � 1, they both
approach the Maxwell-Boltzmann distribution Nnq D e�ˇ."q��/.

The first of (4.5) may be regarded as an integral equation to determine � D
�.T;N / for a givenN . Once the latter expression is obtained, we can make a change
of variables for � from � to N , specifically �.T;�.T;N //.

As for entropy S D S.T; �/, we substitute (4.4) into the first expression of (2.29)
and use � @

@T
D � dˇdT

@
@ˇ
D kBˇ

2 @
@ˇ

and ˇ."q � �/ D ln
�
.1C 	 Nnq/= Nnq

	
to obtain

S D kB

X
q

˚�	 ln
�
1 � 	e�ˇ."q��/	C ˇ."q � �/ Nnq�

D kB

X
q

��Nnq ln Nnq C 	.1C 	 Nnq/ ln.1C 	 Nnq/
	
: (4.7)

Heat capacity C.T;N / is also obtained by substituting S.T; �.T;N // into the
thermodynamic relation C D T .@S=@T / and using (4.6),

C.T;N / D
X
q

."q � �/@ Nnq
@T

D kB

X
q

�
x C 1

kB

@�.T;N /

@T

�
xex

.ex � 	/2
ˇ̌
ˇ̌
xDˇ."q��/

: (4.8)

4.2 Single-Particle Density of States

Let us introduce the single-particle density of states by

D.�/ �
X
q

ı.� � "q/; (4.9)

where ı.x/ is the Dirac delta function defined by

ı.x/ �

1 W x D 0
0 W x ¤ 0 ;

Z 1

�1
ı.x/ dx D 1: (4.10)

It is the corresponding continuous-variable impulse function to the Kronecker
delta (2.9) as well as being the derivative of the Heaviside step function

�.x/ �


1 W x � 0
0 W x < 0 ; (4.11)

that is, ı.x/ D � 0.x/. The latter fact may be realized by noting that ı.x/ D � 0.x/
also satisfies (4.10).
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The thermodynamic quantities of ideal gases such as (4.4), (4.5), (4.7), and (4.8)
are all expressible in terms of the density of states (4.9) and the distribution
function (4.6). For example, (4.5) can be written as

N D
Z 1

�1
D.�/

eˇ.���/ � 	 d�; (4.12)

U D
Z 1

�1
D.�/�

eˇ.���/ � 	 d�: (4.13)

These expressions show clearly what is necessary for the statistical-mechanical
description of ideal gases. Rather than detailed expressions for "q , the important
information is how single-particle energies f"qg are distributed on the energy
axis.

4.3 Monoatomic Gases in Three Dimensions

We now focus on a gaseous system composed of identical monoatomic molecules
with mass m and spin s confined in a container of volume V in the absence of
external magnetic fields and potentials. We analyze the thermodynamic properties
of both Bose and Fermi gases, which will be shown to behave quite distinctly
(Fig. 4.1).

4.3.1 Single-Particle Density of States

First, we obtain the single-particle density of states for free particles. Because the
boundary conditions do not affect the bulk density of states [6], we adopt the most
convenient set, that being the periodic boundary conditions. Specifically, consider
a cubic container with edge length L and impose the periodic boundary conditions
for solving the single-particle Schrödinger equation. In the absence of magnetic
fields, the spin variable ˛ D s; s � 1; � � � ;�s is a good quantum number of
the eigenstate as the spin operator commutes with the Hamiltonian, and hence is
simultaneously compatible with the set of eigenenergies. Indeed, the eigenfunctions
and corresponding eigenenergies are given explicitly by

' k˛0.r˛/ D hr˛jk˛0i D ı˛0˛

1p
V

eik�r; (4.14)

"k D „
2k2

2m
; (4.15)

where V � L3 is the volume of the system, and the wave vector k is determined by
the integers n� (� D x; y; z) from
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k D 2�

L
.nx; ny; nz/: (4.16)

The corresponding density of states is obtained from (4.9) by replacing q ! k˛.
Noting that the spacing of two adjacent quantum states in (4.16) is �k D 2�=L,
we can convert the sum into an integral in the limit L!1 to obtain

D.�/ D
X
k˛

ı.� � "k/ insert
1

.�k/3
.�k/3 and sum over ˛

D .2s C 1/
�
L

2�

�3X
k

.�k/3ı.� � "k/ sum! integral

	 .2s C 1/
�
L

2�

�3 Z
d3k ı.� � "k/ adopt polar coordinates

D .2s C 1/L3
.2�/3

4�

Z 1

0

dkk2ı.� � "k/ use k D
�
2m"k

„2
�1=2

D .2s C 1/V
2�2

�
2m

„2
�3=2 Z 1

0

d"k

2"
1=2

k

"kı.� � "k/

D .2s C 1/V
4�2

�
2m

„2
�3=2

�1=2�.�/: (4.17)

In the last equality, the step function �.�/ signifies that there is no state for � < 0.
Hence, the density of states depends on the square root of the energy, �1=2. In
general, one can show that the density of states for free particles in d dimensions
behaves as D.�/ / Ld�.d�2/=2 for � � 0 (Problem 4.1). This difference in
energy dependence manifests itself in distinct physical properties among systems
of different dimensions.

4.3.2 Connection Between Internal Energy and Pressure

Using (4.17), one obtains the relation,

PV D 2

3
U: (4.18)

To derive this, we start from PV D �� of (1.28), substitute (4.4) for �, transform
the sum over states into an integral over � using the density of states (4.9), and
substitute (4.17) for the density of states, expressing it more generally as

D.�/ D A���1�.�/;
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where A and � > 0 are constants. Quantity PV thereby becomes

PV D �� D �	
ˇ

Z 1

0

D.�/ ln
�
1 � 	e�ˇ.���/	 d�

D � 	A
ˇ�
�� ln

�
1 � 	e�ˇ.���/	ˇ̌ˇ̌1

0

C 	A

ˇ�

Z 1

0

��
	ˇe�ˇ.���/

1� 	e�ˇ.���/ d�

D 1

�

Z 1

0

D.�/�

eˇ.���/ � 	 d� D 1

�
U; (4.19)

where we have used (4.13) in the last equality. Setting � D 3=2, we obtain (4.18).
The above general derivation also implies that the energy dependence of the density
of states manifests itself in the proportionality constant between PV and U . To be
specific, (4.18) is replaced by PLd D .2=d/U for d dimensions.

4.3.3 Introducing Dimensionless Variables

Using a set of appropriate dimensionless variables often enables us to make physical
arguments clearer and find similarities among apparently different systems. Let us
introduce the following unit of length for an assembly of identical particles in three
dimensions,

lQ �
�

V

N=.2s C 1/
�1=3

: (4.20)

The order of lQ is roughly the mean interparticle spacing of particles with spin
component ˛. Using lQ, we next define the units associated with wave number,
energy, and temperature:

kQ � �

lQ
; "Q �

„2k2Q
2m

; TQ � "Q

kB
; (4.21)

where � in kQ is introduced for convenience. Each of these units represents the
scale at which quantum effects are manifest. Table 4.1 presents values of TQ for

Table 4.1 Estimates of TQ below which quantum effects manifest themselves. The valence of Cu
is taken to be 1

Systems Conduction electrons in Cu Liquid 4He Liquid 3He

Magnitude of spin 1/2 0 1/2

Atomic mass (g/mol) 63.5 4.00 3.02

Density (g/cm3 at 1 atm) 8.96 (298 K) [8] 0.125 (4.23 K) [7] 0.059 (3.19 K) [7]

TQ (K) 5:31� 104 4.21 2.58
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three typical systems of identical particles. The temperature is of the order of 104 K
for electrons in metals, whereas it is 4:21 and 2.58 K for liquid 4He (s D 0) and
3He (s D 1=2), respectively. Thus, values of TQ differ considerably among systems.
However, it is possible to find close similarities in different ensembles of the same
species with integer or half-integer spins, e.g., between electrons and liquid 3He with
s D 1=2. For this reason, we make a change of variables for energy, temperature,
chemical potential, internal energy, and heat capacity in units of (4.21) by defining
‘tilde’ quantities

� D "Q Q�; kBT D "Q QT ; � D "Q Q�; U D N"Q Qu; C D NkB Qc:
(4.22)

Using (4.17) and (4.20)–(4.22), we can transform (4.12) into a dimensionless form:

1 D .2s C 1/V
4�2N

�
2m"Q

„2
�3=2 Z 1

0

Q�1=2
e.Q�� Q�/= QT � 	 d Q�

D �

4

Z 1

0

Q�1=2
e.Q�� Q�/= QT � 	 d Q�; (4.23)

which forms an integral equation for Q� D Q�. QT /. Similarly, (4.13) for the internal
energy simplifies to

Qu D �

4

Z 1

0

Q�3=2
e.Q�� Q�/= QT � 	 d Q�: (4.24)

We also express (4.8) for the heat capacity in terms of the density of states, and
subsequently use (4.22) to write it as

Qc D �

4

Z 1

0

Q�1=2
�
x C @ Q�

@ QT
�

xex

.ex � 	/2
ˇ̌
ˇ̌
xD.Q�� Q�/= QT

d Q�; (4.25)

where @ Q�=@ QT is obtained by differentiating (4.23) with respect to QT ,

@ Q�
@ QT D �

Z 1

0

Q�1=2 xex

.ex � 	/2
ˇ̌
ˇ̌
xD.Q�� Q�/= QT

d Q�
Z 1

0

Q�1=2 ex

.ex � 	/2
ˇ̌
ˇ̌
xD.Q�� Q�/= QT

d Q�
: (4.26)

From (4.7), entropy can also be expressed concisely in a dimensionless form.



50 4 Statistical Mechanics of Ideal Gases

0.0

0.5

1.0

1.5

2.0
Bose

Fermi

0

1

2

3

4

Fermi

Bose

S
/N

k B

-4

-3

-2

-1

0

1

2

Fermi

Boseμ/
ε Q

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4

5

Bose

Fermi

C
/N

k B
U

/N
ε Q

T/TQ
T/TQ

T/TQ T/TQ

Fig. 4.1 Temperature dependences of the chemical potential �, internal energy U , entropy S , and
heat capacity C . Solid lines are exact results from numerical calculations, whereas chain lines are
the classical Maxwell-Boltzmann results. Dashed lines in the heat capacity for kBT="Q � 1 show
leading-order quantum corrections to the classical result

4.3.4 Temperature Dependences of Thermodynamic Quantities

Let us survey the temperature dependences of the thermodynamic quantities to
capture their basic features. Figure 4.1 plots the chemical potential, internal energy,
and heat capacity as a function of reduced temperature T=TQ. They are obtained
by solving (4.23)–(4.26) numerically for bosons (	 D 1) and fermions (	 D �1).
In detail, we first solve (4.23) to obtain Q�. QT /, which is subsequently used in (4.24)
and (4.26) to calculate Qu and @ Q�=@ QT . Finally, Q� and @ Q�=@ QT are used to plot (4.25).
Entropy has been calculated similarly.

The solid lines show the exact numerical results, whereas the chain lines are
obtained using the classical Maxwell-Boltzmann distribution; the dashed lines for
heat capacity plot the formula (4.31), which incorporates the leading quantum
corrections to the classical result. Each solid line exhibits a considerable deviation
from the classical result below around TQ. We can also see a marked difference
between bosons and fermions at low temperatures for each thermodynamic quantity.
Noting (4.18), we may regard the lines ofU as the quantum equations of state. Thus,
we realize that the pressure for a system of bosons (fermions) decreases (increases)
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compared with the classical result. This implies that there is an effective attraction
(repulsion) between each pair of bosons (fermions) with the same ˛ due to the
permutation symmetry. Whereas classical entropy shows unphysical behavior in
falling below 0 and diverging to�1, entropy for bosons and fermions appropriately
approaches 0 as T ! 0 in accordance with the third law (1.11) of thermodynamics;
the same feature appears for heat capacity. The peak in heat capacity for bosons
marks the onset of a phase transition called Bose-Einstein condensation (BEC),
below which the chemical potential is pinned at the lowest one-particle energy
"0 D 0. We shall elaborate on these features below.

4.4 High-Temperature Expansions

We first consider the high-temperature region of QT � T=TQ � 1, where

e�.Q�� Q�/= QT 
 1 holds in (4.23). Hence, we perform an expansion of its integrand
in terms of e�.Q�� Q�/= QT and retain the leading two contributions to obtain the
approximation

1 D �

4

Z 1

0

Q�1=2e�.Q�� Q�/= QT h1C 	e�.Q�� Q�/= QT C e�2.Q�� Q�/= QT C � � �
i

d Q�

	 �

4
QT 3=2

�
e Q�= QT

Z 1

0

x1=2e�xdx C 	e2 Q�= QT
Z 1

0

x1=2e�2xdx

�

D �3=2 QT 3=2
8

e Q�= QT
 
1C 	 e Q�= QT

23=2

!
: (4.27)

Here, we have written Q� D QT x, expressed the integrals in terms of the Gamma
function [1, 3]:

�.x/ �
Z 1

0

e�t tx�1 dt .x > 0/; (4.28)

and used �.3=2/ D p�=2. Taking the logarithm of (4.27) yields Q�,

Q� 	 � QT
2
4ln

 
� QT
4

!3=2
C ln

 
1C 	 e Q�= QT

23=2

!3
5

	 �3
2
QT ln

� QT
4
� 	

�
2

�

�3=2
1

QT 1=2 ; (4.29)

where we have approximated ln.1C 	e Q�= QT =23=2/ 	 	e Q�= QT =23=2 and subsequently

replaced e Q�= QT with its leading-order expression e Q�= QT 	 �
4=� QT �3=2. The first term
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in the last expression is the classical chemical potential, whereas the second one
represents the leading quantum correction.

Similarly, internal energy (4.24) is estimated using (4.27),

Qu 	 3�3=2 QT 5=2
16

e Q�= QT
 
1C 	 e Q�= QT

25=2

!
	 3

2
QT
 
1 �

p
2	

�3=2 QT 3=2
!
: (4.30)

Differentiating with respect to QT yields the dimensionless heat capacity,

Qc D 3

2

�
1C 	p

2�3=2 QT 3=2
�
: (4.31)

The first term in the round brackets of (4.31) gives the classical heat capacity 3=2,
whereas the second term incorporates the leading quantum correction with opposite
signs for bosons and fermions. As shown by the dashed lines in Fig. 4.1, (4.31)
reproduces precisely the behaviors of heat capacity for QT & 1.

4.5 Fermions at Low Temperatures

Next, we consider fermions (	 D �1) at low temperatures. The results here were
obtained by Sommerfeld in his theory of electrons in metals in 1927, which clarified
that the heat capacity of electrons should vanish as T ! 0.

4.5.1 Fermi Energy and Fermi Wave Number

As we have already seen, solving (4.23) yields Q� D Q�. QT /. We specifically consider
the case of QT ! 0, where the Fermi distribution function in the integrand behaves
as

NnF.Q�/ � 1

e.Q�� Q�/= QT C 1
QT!0�! �. Q� � Q�/; (4.32)

with � denoting the step function (4.11); see also Fig. 4.2. Its derivative with respect
to Q� can be expressed in the limit QT ! 0 as

@ NnF.Q�/
@Q� D � 1

T

e.Q�� Q�/= QT

Œe.Q�� Q�/= QT C 1�2
QT!0�! �ı.Q� � Q�/; (4.33)

where ı is the delta function (4.10).
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Fig. 4.2 Fermi distribution
function defined by (4.32) at
T=TQ D 0:0, 0:1, 0:4, and
1:0. The chemical potential
has been calculated by
solving (4.23) numerically

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.0

0.4

0.1

ε/εF

n F
(ε

)

T/TQ=0.0

Substituting the limiting form of (4.32) into (4.23) and performing the inte-
gration, we obtain 1 D �

6
Q�3=2. Hence, we find the chemical potential at zero

temperature in reduced units, Q�.0/ � Q"F, and in standard units, "F � "Q Q"F, using
(4.20) and (4.21),

Q"F D .6=�/2=3 D 1:54; "F D „
2

2m

�
6�2N

.2s C 1/V
�2=3

: (4.34)

The quantity "F introduced here is called the Fermi energy, which is of the same
order as "Q in (4.21). The corresponding wave number kF � .2m"F=„2/1=2, i.e.,

kF D
�

6�2N

.2s C 1/V
�1=3

(4.35)

is called the Fermi wave number, which depends only on the density of a single spin
component ˛. It follows from (4.32) that a Fermi gas at zero temperature realizes
the lowest-energy state where the single-particle states for "k � "F (k � kF) are all
occupied with no vacancies. This ground state is sometimes called the Fermi sea or
Fermi vacuum.

4.5.2 Sommerfeld Expansion

In general, the thermodynamic quantities for fermionic systems are expressible in
terms of the integral,

I �
Z 1

0

g.Q�/
e.Q�� Q�/= QT C 1d Q�: (4.36)

For example, (4.23) for the chemical potential has this form with g.Q�/ D �
4
Q�1=2. Let

us evaluate the above integral analytically for QT 
 1.
The Fermi distribution function in (4.36) approaches the singular step function

�. Q� � Q�/ as QT ! 0 with a discontinuity at Q� D Q�; see also Fig. 4.2 for a graphical
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representation of this point. In contrast, function g.Q�/ is in general smooth at Q� D Q�.
With these observations, we express the Fermi distribution function in (4.36) as a
sum of the step function and the deviation from it:

I D
Z Q�

0

g.Q�/d Q�C�I; �I �
Z 1

0

g.Q�/
�

1

e.Q�� Q�/= QT C 1 � �. Q� � Q�/
�

d Q�:
(4.37)

Next, we divide integral�I at Q� D Q� into two contributions, use .ex C 1/�1 � 1 D
�.e�xC1/�1 for the low-energy part, and with a change of variable x � ˙.Q�� Q�/= QT
for Q" ? Q� obtain

�I D �
Z Q�

0

g.Q�/
e�.Q�� Q�/= QT C 1d Q�C

Z 1

Q�
g.Q�/

e.Q�� Q�/= QT C 1d Q�

D � QT
Z Q�= QT

0

g. Q� � QT x/
ex C 1 dx C QT

Z 1

0

g. Q�C QT x/
ex C 1 dx:

The integrands decrease exponentially for x � 1 because of the factor ex in the
denominator. Also, noting Q�= QT � 1 at low temperatures, we can replace the upper
limit of the integration in the first term by1 to an excellent approximation. Thus,
�I becomes

�I 	 QT
Z 1

0

g. Q�C QT x/ � g. Q� � QT x/
ex C 1 dx

D 2g0. Q�/ QT 2
Z 1

0

x

ex C 1dx C 2g.3/. Q�/
3Š

QT 4
Z 1

0

x3

ex C 1dx C � � � : (4.38)

The integrals in the second line can be evaluated exactly,

J F
n �

Z 1

0

xn�1

ex C 1dx D
Z 1

0

xn�1 e�x

1C e�x dx D
1X
mD1

.�1/m�1
Z 1

0

xn�1e�mxdx

D
1X
mD1

.�1/m�1

mn
�.n/ D

�
1 � 1

2n�1

�
�.n/�.n/; (4.39)

where � is defined by (4.28), and � denotes the Riemann zeta function [1]:

�.x/ �
1X
mD1

1

mx
: (4.40)

The relevant values are �.2/ D 1, �.2/ D �2=6, �.4/ D 3Š, �.4/ D �4=90; these
then yield J F

2 D �2=12 and J F
4 D 7�4=120 for the integral (4.39). Substituting the

values into (4.38), we obtain for the low-temperature expansion of (4.37),
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I �
Z 1

0

g.Q�/
e.Q�� Q�/= QT C 1d Q� 	

Z Q�

0

g.Q�/d Q�C �2

6
g0. Q�/ QT 2 C 7�4

360
g.3/. Q�/ QT 4 C � � � ;

(4.41)
which is known as the Sommerfeld expansion.

4.5.3 Chemical Potential and Heat Capacity

Using (4.41) with g.Q�/ D �
4
Q�1=2 in (4.23) and retaining terms up to order QT 2, we

hence obtain an equation that determines the chemical potential for QT 
 1,

1 D �

6
Q�3=2

2
41C �2

8

 QT
Q�

!23
5 :

Noting .6=�/2=3 D Q"F in (4.34), we obtain Q� as

Q� D Q"F

2
41C �2

8

 QT
Q�

!23
5

�2=3

	 Q"F

2
41 � �2

12

 QT
Q"F

!23
5 ; (4.42)

where the second expression has been derived by expanding .1C x/�2=3 	 1� 2
3
x

in the first expression and subsequently approximating Q� 	 Q"F.
Internal energy (4.24) corresponds to g.Q�/ D �

4
Q�3=2 in (4.41). Retaining terms

up to order QT 2 in the resulting expression, we obtain

Qu 	 �

10
Q�5=2

2
41C 5�2

8

 QT
Q�

!23
5 	 �

10
Q"5=2F

2
41C 5�2

12

 QT
Q"F

!23
5 ; (4.43)

where we have substituted (4.42) into Q� to obtain the second expression. Dif-
ferentiation of this expression with respect to QT yields the heat capacity at low
temperatures,

Qc D �3

12
Q"1=2F
QT ; C D NkB Qc D �2

3
D."F/k

2
BT: (4.44)

Hence, the heat capacity of low-temperature fermions is proportional to T , and the
density of states at the Fermi energy is relevant in its presence in the prefactor. See
also Fig. 4.1.
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4.6 Bosons at Low Temperatures

Next, we consider bosons at low temperatures. The most peculiar feature of the Bose
distribution function (4.6) with 	 D 1 is the singularity at "q D � that causes the
function to diverge. This singularity has no physical relevance at high temperatures
where � < 0 so that "q > � for any q. As the temperature is lowered, however, �
increases gradually to approach the lowest eigenenergy "0 from below. Depending
on the density of states, it may finally reach "0 at a certain temperature T0 where
the singularity in the Bose distribution function manifests itself as a phase transition
called Bose-Einstein condensation (BEC). This phase places a macroscopic number
of particles into the lowest energy level.

We present a preliminary survey of the BEC based on Fig. 4.1 for free bosons in
three dimensions. With decreasing temperature, the chemical potential approaches
"0 D 0 from below to eventually become zero at the temperature T0 D 0:671TQ.
For T � T0, the chemical potential stays constant at � D 0, while more and more
particles occupy the lowest energy level as T ! 0. We give a detailed description
of this BEC state below.

Bose-Einstein condensation was predicted by Einstein in 1925 in his attempt
to extend the statistical-mechanical theory of photons by Bose in 1924 to massive
particles, hence his connection to BEC. It is well known that before his discovery,
Einstein not only realized the importance of Bose’s preprint sent to him, but also
showed kindness and sincerity in translating it into German and getting it published.
No BEC systems were known for a long time except for the strongly correlated
4He liquid. Finally, in 1995, systems that could be described quantitatively by the
theory of Einstein were realized using atomic gases trapped in harmonic potentials
[2, 5].

4.6.1 Critical Temperature of Condensation

The equation to determine the critical temperature QT0 is obtained from (4.23) with
	 D 1 by setting QT D QT0 and Q� D 0 as

1 D �

4

Z 1

0

Q�1=2
eQ�= QT0 � 1d Q� D �

4
QT 3=20

Z 1

0

x1=2

ex � 1dx: (4.45)

This integral can be evaluated quite generally in the same manner as (4.39) for
fermions,

J B
n �

Z 1

0

xn�1

ex � 1dx D
1X
mD1

Z 1

0

xn�1e�mxdx D �.n/�.n/; (4.46)
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where �.n/ and �.n/ are defined by (4.28) and (4.40), respectively. The relevant
values are �.3=2/ D 2:612 � � � , �.3=2/ D p�=2, �.5=2/ D 1:341 � � � , and
�.5=2/ D 3

p
�=4. Using them in (4.46) to evaluate (4.45) and noting (4.20)

and (4.21), we obtain QT0 and T0 D TQ QT0:

QT0 D 4

��.3=2/2=3
D 0:671; T0 D „2

2mkB

4�.N=V /2=3

Œ.2s C 1/�.3=2/�2=3 : (4.47)

4.6.2 Thermodynamic Quantities of T < T0

For T < T0, a macroscopic numberN0 of particles occupies the lowest energy level
with "0 D 0. The ratioN0=N can be calculated by subtracting the fraction of excited
particles with "k > 0 from 1 and using (4.45),

N0

N
D 1 � �

4

Z 1

0

Q�1=2
eQ�= QT � 1d Q� D 1 � �

4
QT 3=2

Z 1

0

x1=2

ex � 1dx D 1 �
 QT
QT0

!3=2

D 1 �
�
T

T0

�3=2
: (4.48)

The internal energy Qu for T < T0 is obtained from (4.24) by setting Q� D 0 and
using (4.46),

Qu D �

4

Z 1

0

Q�3=2
eQ�= QT � 1d Q� D �

4
QT 5=2

Z 1

0

x3=2

ex � 1dx D 3�3=2�.5=2/

16
QT 5=2: (4.49)

Using Œ8=�3=2�.3=2/� QT�3=2
0 D 1 from (4.47), we can transform the heat capacity

Qc D dQu=d QT as

Qc D 15�3=2�.5=2/

32
QT 3=2 D 15�.5=2/

4�.3=2/

�
T

T0

�3=2
D 1:93

�
T

T0

�3=2
: (4.50)

Note that value 1.93 is larger than the value 1.5 for the classical Maxwell-Boltzmann
distribution. See also Fig. 4.1 on this point.

4.6.3 Chemical Potential and Heat Capacity for T &T0

To find the explicit temperature dependence of the chemical potential for QT & QT0
where Q� . 0, we transform the integral in (4.23) to obtain
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1 D �
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use (4.45) for the first term and set Q� D j Q�jx2 in the second term

D
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QT j Q�j1=2

Z 1
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1
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set x D tan � in the second term

D
 
1C

QT � QT0
QT0

!3=2
� �
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QT j Q�j1=2

Z �=2

0

d�

	 1C 3

2

QT � QT0
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� �

2

4
QT0j Q�j1=2:

We thereby obtain Q� for QT & QT0 as

Q� 	 � 36

�4 QT 20

 QT � QT0
QT0

!2
: (4.51)

This expression tells us that both Q� and @ Q�=@ QT are continuous at QT D QT0.
Accordingly, heat capacity is also continuous at QT D QT0, as seen from (4.25).

4.7 Bose-Einstein Condensation and Density of States

The thermodynamic quantities of ideal gases can be expressed as integrals in terms
of the density of states D.�/ and distribution function Œeˇ.���/ � 	��1, where all
the effects of external potentials and system dimensions are contained in D.�/. For
example, we have seen earlier that the density of states D.�/ for free particles in
d dimensions is expressible as D.�/ / �.d�2/=2�.�/ in terms of a d -dependent
exponent. With these observations, it is worth considering a general model with the
density of states:

D.�/ D A.� � "0/��1�.� � "0/; (4.52)
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where A > 0 is a constant, "0 is the lowest one-particle energy, and �.x/ is the step
function (4.11). Indeed, setting � D 3=2 (� D 1) and "0 D 0 yields the free Bose
gas in three (two) dimensions. We shall clarify how the critical temperature T0 for
the BEC transition depends on the exponent �.

The equation to determine T0 is obtained by substituting (4.52) into (4.12) with
� D "0 and T D T0. The resulting equation is further transformed as

N D
Z 1

"0

A.� � "0/��1
e.��"0/=kBT0 � 1d� D A.kBT0/

�

Z 1

0

x��1

ex � 1dx D A.kBT0/
��.�/�.�/;

where we have used (4.46). Thus, we obtain T0 as

T0 D 1

kB

�
N

A�.�/�.�/

�1=�
: (4.53)

Specifically, we conclude T0 ! 0 as �! 1 from above, because �.�! 1/!1.
This also implies that there is no BEC transition for � < 1. A critical case with
� D 1 is the free Bose gas in two dimensions, where the BEC transition occurs at
T D 0.

As for the thermodynamic quantities, we only need to replace the results of
Sect. 4.6 with, for example, �.3=2/! �.�/, �.5=2/! �.�C 1/, and .T=T0/3=2 !
.T=T0/

� (Problem 4.3).

Problems

4.1. Consider a free particle with mass m and spin s that moves in a rectangular
area of d dimensions with edge length L. For d D 1; 2, show that the density
of states is given by

D.�/ D

8̂̂
<
ˆ̂:

.2s C 1/L
2�

�
2m

„2
�1=2

��1=2�.�/ W d D 1
.2s C 1/L2

4�

�
2m

„2
�
�.�/ W d D 2

: (4.54)

4.2. N identical monoatomic molecules with mass m and spin 1=2 are confined in
a two-dimensional square area with edge length L.

(a) Obtain expressions for the Fermi energy and Fermi wave number.
(b) Find the expression for � at low temperatures up to order T 2 using (4.41).

4.3. N identical monoatomic molecules with mass m and spin 0 are confined in
a harmonic potential U .r/ D 1

2
m!2r2 in three dimensions without mutual

interactions. The one-particle eigenenergy is given by [4]
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"nxnynz �
�
nx C ny C nz C 3

2

�
„!;

where n� (� D x; y; z) are non-negative integers.

(a) Evaluate (4.9) for q � .nx; ny; nz/ to show that the density of states is
given to an excellent approximation for T & „!=kB by

D.�/ D .� � "0/2
2.„!/3 �.� � "0/

with "0 � 3„!=2.
(b) Show that the BEC transition temperature T0 is given by

T0 D 1

kB

�
2.„!/3N
�.3/�.3/

�1=3
D
�
N

�.3/

�1=3 „!
kB
:

(c) Show that the numberN0 of condensed particles for T < T0 is given by

N0

N
D 1 �

�
T

T0

�3
:

(d) Show that internal energy U and heat capacity C for T < T0 are given by

U D N
"
"0 C 3�.4/

�.3/
kBT0

�
T

T0

�4 #
; C D NkB

12�.4/

�.3/

�
T

T0

�3
:
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Chapter 5
Density Matrices and Two-Particle Correlations

Abstract In this chapter, we first introduce two new concepts named density matrix
and reduced density matrices as (5.1) and (5.3). The reduced density matrices are
closely connected with the n-particle correlations in equilibrium (n D 1; 2; � � � ).
Next, we give a proof of the Bloch–De Dominicis theorem, i.e., a thermodynamic
extension of Wick’s theorem, which enables us to express the n-particle correlations
of ideal gases in terms of one-particle correlations as (5.11). Finally, the theorem is
applied to obtain the two-particle correlations of homogeneous ideal Bose and Fermi
gases in three dimensions. The results are summarized in Fig. 5.1 below. It clearly
shows that there exists a special quantum-mechanical correlation between each pair
of identical particles due to the permutation symmetry, which is completely different
in nature between Bose and Fermi gases.

5.1 Density Matrices

The density matrix is defined in terms of eigenstates jˆ�i of the Schrödinger
equation (3.43) and its probability w� of realization,

O� �
X
�

jˆ�iw�hˆ� j: (5.1)

The distributions frequently used for fw�g are the microcanonical distri-
bution (2.12), the canonical distribution (2.18), and the grand canonical
distribution (2.26). Once O� is obtained, we can calculate the expectation of an
arbitrary Hermitian operator OO by

h OOi � Tr O� OO D
X
�

w�hˆ� j OOjˆ�i; (5.2)

where Tr denotes trace.
Next, we introduce reduced density matrices in terms of (5.2) for the

expectation by

�.n/.
1; � � � ; 
nI 
 0
1; � � � ; 
 0

n/ � h O �.
 0
1/ � � � O �.
 0

n/
O .
n/ � � � O .
1/i
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D
X
�

w�
N�Š

.N� � n/Š
Z

d
nC1 � � �
Z

d
N�ˆ�.
1; � � � ; 
n; 
nC1 � � � 
N� /

�ˆ�
� .


0
1; � � � ; 
 0

n; 
nC1 � � � 
N� / (5.3)

with n D 1; 2; � � � ;N� , where we have successively used (3.26)–(3.28), (3.22),
and (3.12) to give the concise expression in terms of the wave functions. It should
be noted that the particle number in the microcanonical and canonical ensembles is
a constant that does not depend on � as N� D N . Quantity �.n/ is also called the
n-particle density matrix. Its physical meaning may be realized by looking at the
case n D 2 with 
 0

1 D 
1 and 
 0
2 D 
2:

�.2/.
1; 
2I 
1; 
2/ D h O �.
1/ O �.
2/ O .
2/ O .
1/i

D
X
�

w�N�.N��1/
Z

d
3 � � �
Z

d
N� j
�.
1; 
2; 
3; � � � ; 
N� /j2; (5.4)

which is proportional to the probability that a pair of particles are simultaneously
at 
1 and 
2. Thus, we can clarify many-particle correlations once reduced density
matrices have been obtained. We also realize from Hamiltonian (3.42) that we can
evaluate the n-particle operators using �.n/.

Definition (5.2) of the density matrix contains bras and kets, which are indis-
pensable for describing systems with spontaneous symmetry breaking such as
ferromagnets. To be specific, the free energy for an isotropic ferromagnet is
degenerate with respect to the direction of the macroscopic moment. However,
this rotational symmetry is broken spontaneously to realize a macroscopic moment
that is directed along some specific direction. Because a huge number of magnetic
moments are aligned cooperatively along a single direction, there is essentially no
chance for the macroscopic moment to change its direction at a time. Thus, the
direction of the magnetic moment is essentially fixed with possible fluctuations
around it, and the brackets in (5.2) should also describe this situation by excluding
those possibilities where the moment is aligned along other directions.

5.2 Bloch–De Dominicis Theorem

Equation (5.3) is given as an expectation of a product of 2n field operators. How
can we evaluate it? For the special cases of ideal gases in the grand canonical
distribution, the theorem of Bloch and De Dominicis [2] enables us to perform this
concisely. It is a thermodynamic extension of Wick’s theorem for the evaluation of
the S-matrix in relativistic field theory [7]. The present proof follows that given by
Gaudin [3], which is more elementary and easier to understand.

Consider a system without interactions described by Hamiltonian OH0 in (3.45).
As we are considering a grand canonical ensemble, we subtract the product term
involving the chemical potential � and number operator ON from OH0 to introduce
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OH0 � OH0 � � ON D
Z

d
 O �.
/
� Op2
2m
CU .r/� �

�
O .
/

D
X
q

."q � �/ Oc�q Ocq: (5.5)

Here "q is a single-particle eigenenergy determined by (3.46), and Ocq obeys the
commutation relation (3.51). Substituting (2.26) into (5.1) and using (3.35), we
obtain the corresponding density matrix,

O� D
X
�

jˆ�ieˇ��ˇ.E���N� /hˆ�j D
X
�

eˇ��ˇ OH0 jˆ�ihˆ�j

D eˇ.�� OH0/: (5.6)

As preliminaries for the theorem, let us prove the identities:

Ocqe�ˇ OH0 D aqe
�ˇ OH0 Ocq; aq � e�ˇ."q��/; (5.7)

Oc�qe�ˇ OH0 D 1

aq
e�ˇ OH0 Oc�q : (5.8)

Equation (5.8) is the Hermitian conjugate of (5.7) so that it suffices to show the
latter. For this purpose, we introduce

Ocq.ˇ/ � eˇ OH0 Ocqe�ˇ OH0 : (5.9)

We differentiate this equation with respect to ˇ, substituting (5.5), and using (3.51)
to bring the derivative to the form

d Ocq.ˇ/
dˇ

D eˇ OH0 . OH0 Ocq � Ocq OH0/e�ˇ OH0

D eˇ OH0

X
q0

."q0 � �/. Oc�
q0 Ocq0 Ocq � Ocq Oc�q0 Ocq0/e�ˇ OH0

D eˇ OH0

X
q0

."q0 � �/Œ Oc�
q0	 Ocq Ocq0 � .ıqq0 C 	 Oc�

q0 Ocq/ Ocq0 �e�ˇ OH0

D �eˇ OH0 ."q � �/ Ocqe�ˇ OH0

D �."q � �/ Ocq.ˇ/:
This first-order differential equation can be solved easily using the initial condition
Ocq.0/ D Ocq from (5.9) as

Ocq.ˇ/ D e�ˇ."q��/ Ocq: (5.10)
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Finally, we equate the right-hand sides of (5.9) and (5.10) and multiply the resulting
equation by e�ˇ OH0 from the left. We thereby obtain (5.7). This completes the proof.

We proceed to the main theorem, the statement of which is

Bloch–De Dominicis Theorem

h OC1 OC2 � � � OC2ni � Tr eˇ.�� OH0/ OC1 OC2 � � � OC2n
D
X

OP

0
	P h OCp1 OCp2ih OCp3 OCp4i � � � h OCp2n�1

OCp2ni: (5.11)

Here OCj represents either Ocqj or Oc�qj , and symbol
P

OP
0 with the prime denotes a

restricted sum that, of the permutations given by

OP D
�
1 2 3 � � � 2n � 1 2n
p1 p2 p3 � � � p2n�1 p2n

�
; (5.12)

only those obeying the conditions

p1 < p2; p3 < p4; � � � ; p2n�1 < p2n; p1 < p3 < � � � < p2n�1; (5.13)

enter in the summation. The transformation (5.11) is called the Wick decomposition.
The first condition of (5.13) implies that the alignment order in each expectation
remains the same before and after the Wick decomposition; the second condition
excludes the double counting of the same decomposition. See (5.18) below for a
specific example.

To prove (5.11), it is convenient to express the commutation relations of (3.51)
in a unified way with the notation

Œ OCi ; OCj �	 D .i; j /; .i; j / �

8̂
<
:̂
ıij W OCi D Ocqi ; OCj D Oc�qj
�	ıij W OCi D Oc�qi ; OCj D Ocqj
0 W otherwise

: (5.14)

By noting that .i; j / is a constant, we move OC1 on the left-hand side of (5.11) to the
rightmost position,

h OC1 OC2 � � � OC2ni D h
�
.1; 2/C 	 OC2 OC1

	 OC3 � � � OC2ni
D .1; 2/h OC3 � � � OC2ni C 	h OC2

�
.1; 3/C 	 OC3 OC1

	 OC4 � � � OC2ni
D .1; 2/h OC3 � � � OC2ni C 	.1; 3/h OC2 OC4 � � � OC2ni C � � �
C 	2n�2.1; 2n/h OC2 OC3 � � � OC2n�1i C 	2n�1h OC2 � � � OC2n OC1i:
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The last term can be transformed by noting the definition of the expectation in (5.11)
and using (5.7) and (5.8),

h OC2 � � � OC2n OC1i D a�1h OC1 OC2 � � � OC2ni; � D
(
1 W OC1 D Ocq1
�1 W OC1 D Oc�q1

:

Combining the two equations above, we can express the original expectation of the
2n product of operators in terms of those with a 2n � 2 product of operators,

h OC1 OC2 � � � OC2ni D .1; 2/

1� 	a�1
h OC3 OC4 � � � OC2ni C 	 .1; 3/

1 � 	a�1
h OC2 OC4 � � � OC2ni

C � � � C 	2n�2 .1; 2n/
1 � 	a�1

h OC2 OC3 � � � OC2n�1i: (5.15)

In particular, the case n D 1 yields

h OC1 OC2i D .1; 2/

1 � 	a�1
; � D

(
1 W OC1 D Ocq1
�1 W OC1 D Oc�q1

: (5.16)

Substituting this back into (5.15), we obtain

h OC1 OC2 � � � OC2ni D h OC1 OC2ih OC3 OC4 � � � OC2ni C 	h OC1 OC3ih OC2 OC4 � � � OC2ni
C � � � C 	2n�2h OC1 OC2nih OC2 OC3 � � � OC2n�1i:

This is a recursion formula that enables us to reduce the number of products in the
expectation by 2. With repeated use, we obtain (5.11). Note that condition (5.13) is
satisfied here.

Three comments on the Bloch–De Dominicis theorem are in order. First, Cj in
(5.11) is originally specified as an eigenoperator corresponding to an eigenstate of
the single-particle Schrödinger equation (3.46). However, the theorem holds true
directly for an arbitrary linear combination of OCj given by OBk �

X
k

Ukj OCj ; that is,

h OB1 OB2 � � � OB2ni D
X

OP

0
	P h OBp1 OBp2ih OBp3 OBp4i � � � h OBp2n�1

OBp2ni: (5.17)

In proof, we only need to express the left-hand side of (5.17) in terms of OC , use
(5.11), and finally put

P
k Ukj back into the appropriate pair of brackets. Note

especially that OBk above can be a linear combination of Ocqj and Oc�qj . We shall
encounter this situation when we consider superconductivity.

As a simple application of (5.17), consider the two-particle density matrix (5.4)
for a normal system without interactions. Its Wick decomposition can be performed
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concisely as follows. First, we enumerate distinct decompositions by marking each
pair of operators with a common symbol on top;

�.2/.
1; 
2I 
1; 
2/ � h O �.
1/ O �.
2/ O .
2/ O .
1/i
D h PO �.
1/ RO �.
2/ RO .
2/ PO .
1/i C h PO �.
1/ RO �.
2/ PO .
2/ RO .
1/i;

where we used the fact that a pair of annihilation operators have null expectation
in the normal state. Next, we focus successively on a single operator from the left
in each term and move its partner to its right, multiplying by 	 D ˙1 upon each
exchange of operators until all the pairs are coupled. We then obtain

�.2/.
1; 
2I 
1; 
2/
D 	2h PO �.
1/ PO .
1/ RO �.
2/ RO .
2/i C 	h PO �.
1/ PO .
2/ RO �.
2/ RO .
1/i:

Finally, we place around each coupled pair angle brackets and simultaneously
remove common symbols on top of them,

�.2/.
1; 
2I 
1; 
2/
D h O �.
1/ O .
1/ih O �.
2/ O .
2/i C 	h O �.
1/ O .
2/ih O �.
2/ O .
1/i
D �.1/.
1; 
1/�.1/.
2; 
2/C 	�.1/.
2; 
1/�.1/.
1; 
2/: (5.18)

Thus, the two-particle density matrix has been expressed successfully in terms of
one-particle density matrices �.1/.
1; 
2/ � h O �.
2/ O .
1/i.

Second, we extend (5.11) to the BEC phases with 	 D 1, where a macroscopic
number of particles occupies the lowest-energy state (Sect. 4.6). In this case, we
should express O .
/ in (3.49) as a sum of the condensate wave function:


.
/ � h O .
/i (5.19)

and the rest as

O .
/ � 
.
/C
X
q

0 Ocq'q.
/ � 
.
/C O'.
/; (5.20)

and apply the theorem only to the field O'.
/ without the lowest-energy state. Note
that the finite average h O .
/i ¤ 0 is possible only when we consider a superposition
over the occupation number for the lowest-energy state as (3.67), which in turn will
be shown to yield a two-particle correlation that is physically reasonable, as seen
below. See also [1] for a justification in setting h O .
/i ¤ 0. The one-particle density
matrix with this procedure is given by
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�.1/.
1; 
2/ � h O �.
2/ O .
1/i
D 
.
1/
�.
2/C h O'�.
2/ O'.
1/i
D 
.
1/
�.
2/C

X
q

0
'q.
1/'

�
q .
2/ Nnq; (5.21)

where we have used (5.20), h O'.
/i D 0, and h Oc�
q0 Ocqi D ıq0q Nnq . As for the two-

particle density matrix, we substitute (5.20) into (5.4) and apply the theorem (5.17)
only to the field O', noting that h O'i D 0 and h O' O'i D 0. We thereby obtain

�.2/.
1; 
2I 
1; 
2/
D hŒ
�.
1/C O'�.
1/�Œ
�.
2/C O'�.
2/�Œ
.
2/C O'.
2/�Œ
.
1/C O'.
1/�i
D j
.
1/j2j
.
2/j2 C j
.
1/j2h O'�.
2/ O'.
2/i C j
.
2/j2h O'�.
1/ O'.
1/i
C
.
1/
�.
2/h O'�.
1/ O'.
2/i C 
.
2/
�.
1/h O'�.
2/ O'.
1/i
Ch O'�.
1/ O'.
1/ih O'�.
2/ O'.
2/i C h O'�.
1/ O'.
2/ih O'�.
2/ O'.
1/i

D �.1/.
1; 
1/�.1/.
2; 
2/C 	�.1/.
2; 
1/�.1/.
1; 
2/� j
.
1/j2j
.
2/j2;
(5.22)

where in the last equality, we have inserted the factor 	 D 1 for later convenience
and expressed �.2/ concisely in terms of �.1/, (5.21).

Third, theorem (5.11) does not apply to the canonical and microcanonical
ensembles. This may be realized by inspecting (5.16) in the proof. For the grand
canonical ensemble, this one-particle expectation (5.16) for each of OCj D Ocqj
and Oc�qj adequately yields the single-particle occupation number in equilibrium as

h Oc�q1 Ocq2i D ıq1q2 Nnq1 , h Ocq1 Oc�q2i D ıq1q2 .1C 	 Nnq1 /, h Ocq1 Ocq2i D h Oc�q1 Oc�q2i D 0 with Nnq1
given by (4.6). The above proof may seem applicable to the canonical ensemble.
However, if we set �! 0, (5.16) does not yield the correct one-particle expectation
for the canonical ensemble. The reason for this is that (5.11) makes use of processes
where the particle number changes. In the canonical or microcanonical ensembles,
this is not permitted.

5.3 Two-Particle Correlations of Monoatomic Ideal Gases

Expressions (5.21) and (5.22) for the reduced density matrices of ideal gases can
be used not only for the BEC phases, but also for normal states of both bosons
(	 D 1) and fermions (	 D �1) by setting 
 ! 0. Here, we use (5.22) to clarify
the two-particle correlations of free bosons and fermions as a supplement to the
thermodynamic considerations of Sects. 4.3–4.6.

Because �.2/ in (5.22) is expressed in terms of �.1/, we first consider (5.21). Its
quantum number q is specified in the present case by a combination of wave vector
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k and spin index ˛ D s; s � 1; � � � ;�s. The corresponding wave function is given
by (4.14); that is,

'k˛.

0/ D hr0˛0jk˛i D ı˛˛0

1p
V

eik�r0

: (5.23)

In contrast, the wave function of a homogeneous BEC carries wave vector 0 and
can be written in terms of volume V , spin s, and condensate particle number N0 of
(4.48) as


.
/ D
s

N0

.2s C 1/V ; (5.24)

where the phase of 
.
/ has been put equal to 0 irrespective of spin element ˛ as
it does not affect the energy at all for ideal gases. Note that integrating j
.
/j2 as
(3.16) yields N0.

Substituting (5.23) and (5.24) into (5.21), we obtain the one-particle density
matrix,

�.1/.
1; 
2/ D N0

.2s C 1/V C
ı˛1˛2

V

X
k

0 eik�.r1�r2/

eˇ."k��/ � 	

D N0

.2s C 1/V C ı˛1˛2
Z

d3k

.2�/3
eik�.r1�r2/

eˇ."k��/ � 	 ; (5.25)

where we have replaced the sum over k into an integral as in (4.17) by noting
that the point k D 0 measures zero in the integral. Let us choose r � r1 � r2
along the z axis in (5.25) and express the wave vector in polar coordinates as
k D .k sin � cos'; k sin � sin'; k cos �/. We subsequently perform the integration
over the solid angle,

Z 2�

0

d'
Z �

0

d� sin � eikr cos � D 2�
Z 1

�1
eikrtdt D 4� sin kr

kr
:

Next, we express 4� above as an integral over the solid angle, substitute it back into
(5.25), and rewrite the resulting expression as a sum over k. We thereby obtain

�.1/.
1; 
2/ D N0

.2s C 1/V C
ı˛1˛2
V

X
k

0 1

eˇ."k��/ � 	
sin kr

kr

D N0

.2s C 1/V C
ı˛1˛2

.2s C 1/V
Z 1

�1
d�

D.�/

eˇ.���/ � 	
sin
p
2m�=„2rp
2m�=„2r ;
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where we have used the first expression of (4.17) in the second equality. Using
the last expression of (4.17) and making a change of variables specified in (4.22),
we obtain

�.1/.
1; 
2/ D N0

.2s C 1/V C
ı˛1˛2N

.2s C 1/V
�

4

Z 1

0

d Q� Q�1=2
e.Q�� Q�/= QT � 	

sin
�
kQr Q�1=2

�
kQr Q�1=2

D N

.2s C 1/V
�
N0

N
C ı˛1˛2`.kQjr1 � r2j/

�
; (5.26)

where kQ is given in (4.21), and function `.x/ is defined by

`.x/ � �

4

Z 1

0

1

e.Q�� Q�/= QT � 	
sin.Q�1=2x/

x
d Q�: (5.27)

Recalling (4.23) for normal states (N0 D 0) and (4.48) for BEC phases .N0 >
0I Q� D 0/, we can write limiting behaviors of `.x/ in a unified way as

`.x/ �!


1 �N0=N W x ! 0

0 W x !1 : (5.28)

Equation (5.27) can be evaluated numerically in the same way as (4.23).
It follows from (5.26) and (5.28) that

�.1/.
; 
/ D N

.2s C 1/V ; (5.29)

which denotes the particle density per single spin component ˛. We also conclude
that, in BEC phases withN0 > 0, the one-particle density matrix remains finite even
for jr1 � r2j ! 1 as

�.1/.
1; 
2/ ! N0

.2s C 1/V .jr1 � r2j ! 1/: (5.30)

This property characteristic of BEC phases is named off-diagonal long-range order
[5, 6, 8].

Now, we focus on �.2/ to clarify two-particle correlations. Let us substitute
(5.24), (5.26), and (5.29) into (5.22). We then obtain an expression for the two-
particle density matrix

�.2/.
1; 
2I 
1; 
2/ D
�

N

.2s C 1/V
�2
g˛1˛2 .jr1 � r2j/; (5.31)
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Fig. 5.1 Pair distribution
function g˛˛.r/ for fermions
(solid lines) at
T D 0; TQ; 2TQ, and for
bosons (chain lines) at
T D 0; 0:5T0; T0; TQ; 2TQ,
where TQ and T0 are given in
(4.21) and (4.47), respectively
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with

g˛1˛2.r/ � 1C ı˛1˛2	


Œ`.kQr/�

2 C 2N0
N
`.kQr/

�
: (5.32)

Function g˛1˛2.r/ introduced here is called the pair distribution function, which
represents the probability that one finds a pair of particles simultaneously in states

1 D r1˛1 and 
2 D r2˛2. When ˛1 ¤ ˛2, g˛1˛2 .r/ D 1, independent of r ,
implying that there are no correlations between a pair of particles with different spin
components. For ˛1 D ˛2, the second term of (5.32) is finite; hence, in contrast, we
expect finite correlations between pairs of particles.

Figure 5.1 plots the pair distribution function g˛˛.r/ for a pair of particles with
the same spin component ˛ obtained by calculating (5.32) numerically. We observe
a clear difference between bosons (	 D 1) and fermions (	 D �1). For fermions,
g˛˛.r/ approaches 0 rapidly for kQr . 1, indicating the presence of an effective
repulsive force due to the antisymmetry of the corresponding state. Therefore, the
probability is zero for a pair of particles in the same spin state to be simultaneously
at the same position, in accordance with the Pauli exclusion principle. The region
near r D 0 where g˛˛.r/ reduces considerably from 1 is called the exchange
hole. Conversely, for normal bosons, g˛˛.r/ approaches 2 for r ! 0, implying
an effective attraction between a pair of particles due to the symmetry of the
corresponding state. The value of g˛˛.0/ starts to decrease below the BEC transition
temperature T0 and finally reaches 1 at T D 0. The latter fact indicates the absence
of correlations between any pair of particles at T D 0. Hence, each particle loses its
individual characteristics following its complete assimilation to the same quantum
state in the condensate.

Finally, it is worth mentioning what would result without the finite off-diagonal
expectation (5.19) for the BEC phase. If this were the case, the pair distribution
function at T D 0would become g˛˛.r/ D 2 irrespective of r instead of g˛˛.r/ D 1
above, implying a huge fluctuation in the particle number [4]. This suggests that the
superposition over the particle number for the condensate is an integrable part of
BEC [1].
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Problems

5.1. Perform the Wick decomposition for the three-particle density matrix of
normal ideal gases given by

�.3/.
1; 
2; 
3I 
 0
1; 


0
2; 


0
3/ � h O �.
 0

1/
O �.
 0

2/
O �.
 0

3/
O .
3/ O .
2/ O .
1/i:

5.2. Use (4.32) and (4.34) to show that function (5.27) for ideal Fermi gases
(	 D �1) can be expressed analytically at T D 0 in terms of the Fermi wave
number kF D .6=�/1=3kQ as

`.kQr/
T!0�! 3 .�kFr coskFr C sin kFr/

.kFr/3
:

Show also that near r D 0 this function behaves as

`.kQr/
r!0�! 1 � .kFr/

2

10
:

References

1. P.W. Anderson, Rev. Mod. Phys. 38, 298 (1966)
2. C. Bloch, C. De Donimicis, Nucl. Phys. 7, 459 (1958)
3. M. Gaudin, Nucl. Phys. 15, 89 (1960)
4. J.R. Johnston, Am. J. Phys. 38, 516 (1970)
5. O. Penrose, Philos. Mag. 42, 1373 (1951)
6. O. Penrose, L. Onsager, Phys. Rev. 104, 576 (1956)
7. G.C. Wick, Phys. Rev. 80, 268 (1950)
8. C.N. Yang, Rev. Mod. Phys. 34, 694 (1962)



Chapter 6
Hartree–Fock Equations and Landau’s
Fermi-Liquid Theory

Abstract In the previous two chapters, we have considered only non-interacting
quantum many-particle systems in obtaining exact results for basic thermodynamic
quantities and two-particle correlations. However, in real systems, particles interact,
making exact statistical-mechanical calculations impossible except for some low-
dimensional solvable models. Thus, we are almost always obliged to introduce some
approximation when studying interacting systems. Here, we derive the Hartree–
Fock equations, i.e., one of the simplest approximation schemes for studying
interaction effects at finite temperatures, based on a variational principle for the
grand potential. They are most effective when interactions are weak and repulsive
and are crucial in describing molecular-field effects, but may not be applicable
to systems with attractive potentials, as will be seen in later chapters. Next, we
apply the Hartree–Fock equations to fermions at low temperatures to clarify how
the interaction affects thermodynamic properties along the lines of Landau’s Fermi-
liquid theory.

6.1 Variational Principle in Statistical Mechanics

The thermodynamic equilibrium of a system exchanging heat and particles with
a reservoir is given by the grand canonical distribution (2.26), which has been
obtained by minimizing functional (2.25). Thus, (2.25) forms a variational principle
in statistical mechanics. Here, we express it in terms of the density matrix of (5.1)
to make it convenient for subsequent discussions.

First, we transform (2.25) into a functional of density matrix O�. Noting w� � 0
and

P
� w� D 1, we may state the definition of O� in (5.1) alternatively as follows:

The density matrix O� is a Hermitian operator that is positive semidefinite (i.e., all
eigenvalues are nonnegative) and satisfies

Tr O� D 1: (6.1)

Using O�, we can express (2.25) as

�Œ O�� � Tr O� . OH C ˇ�1 ln O�/; OH � OH � � ON : (6.2)

© Springer Japan 2015
T. Kita, Statistical Mechanics of Superconductivity, Graduate Texts in Physics,
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This may be confirmed by substituting (5.1) and ln O� D P
� jˆ�i ln w�hˆ�j into

(6.2) and then using (3.35), (3.43), and ON jˆ�i D N�jˆ�i.
The density matrix in equilibrium is given by (5.6) with replacement OH0 ! OH .

Thus, operator

O�eq � eˇ.�eq� OH /

with �eq � �ˇ�1 ln Tr e�ˇ OH minimizes�Œ O��, i.e., inequality

�Œ O�� � �Œ O�eq� (6.3)

holds. The variational principle (6.3) also enables us to obtain O� approximately.
To be specific, one may construct an approximate O� by incorporating variational
parameters in it and choosing them to minimize �Œ O��. The smaller the value, the
closer we expect O� is to the real density matrix.

6.2 Hartree–Fock Equations

We consider a system of normal bosons or fermions described by the Hamiltonian1:

OH �
Z

d
1 O �.
1/
� Op21
2m
CU .r1/� �

�
O .
1/

C 1

2

Z
d
1

Z
d
2V .jr1 � r2j/ O �.
1/ O �.
2/ O .
2/ O .
1/; (6.4)

which has an additional interaction term in comparison with (5.5) of the previous
chapter. We derive the Hartree–Fock equations for this system using two different
methods. One is based on the variational principle (6.3), whereas the other relies
on a self-consistent Wick decomposition technique. Both will be shown to give an
identical set of equations, (6.12) and (6.13), below.

6.2.1 Derivation Based on the Variational Principle

To incorporate interaction effects approximately, we make use of (6.3) and choose
O� in an ideal-gas form given by (4.4), (5.5), and (5.6) as

1We use symbol OH to denote OH � OH � � ON from now on, which is distinct from those in
Chap. 3 like one in (3.39).
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O� D exp

(
ˇ

"
�0 �

X
q

."q � �/ Oc�q Ocq
#)
; �0 � 	

ˇ

X
q

ln
�
1� 	e�ˇ."q��/	;

(6.5)
where Oc�q and Ocq are supposed to obey the commutation relation (3.51). A key
point here is that "q is a variational parameter, to be determined appropriately
below, which has the physical meaning of a renormalized one-particle energy with
interaction effects. Thus, we no longer use (3.46) for the one-particle eigenstate 'q
and eigenenergy "q , but derive new equations for them in such a form as to include
interaction effects.

Let us substitute (6.4) and (6.5) into (6.2) and evaluate the grand potential
by noting the following: (i) The Bloch-De Dominicis theorem holds true for the
variational density matrix so that the interaction term in (6.4) can be evaluated with
the Wick decomposition of (5.18); (ii) Entropy S � �kBTr O� ln O� for (6.5) can be
expressed in terms of the mean occupation number:

Nnq � hOc�q Ocqi D
1

eˇ."q��/ � 	 ; (6.6)

as

S D �kBˇ

"
�0 �

X
q

."q � �/ Nnq
#

D kB

X
q

��Nnq ln Nnq C 	.1C 	 Nnq/ ln.1C 	 Nnq/
	
: (6.7)

Thus, it is identical in form to (4.7) for ideal gases. Using (i) and (ii) above, we can
express�Œ O�� as

�Œ O�� D
Z

d
1

� Op21
2m
CU .r1/� �

�
�.1/.
1; 
2/

ˇ̌

2D
1 C

1

2

Z
d
1

Z
d
2

� V .jr1 � r2j/
�
�.1/.
1; 
1/�

.1/.
2; 
2/C 	�.1/.
2; 
1/�.1/.
1; 
2/
	

� 1

ˇ

X
q

��Nnq ln Nnq C 	.1C 	 Nnq/ ln.1C 	 Nnq/
	
: (6.8)

The one-particle density matrix �.1/.
1; 
2/ � h O �.
2/ O .
1/i is transformed by
expanding the field operators formally as (3.49) and using h Oc�

q0 Ocqi D ıq0q Nnq into

�.1/.
1; 
2/ D
X
q

'q.
1/'
�
q .
2/ Nnq: (6.9)



76 6 Hartree–Fock Equations and Landau’s Fermi-Liquid Theory

In addition, (6.2) tells us that we obtain the expectation h ON i � N for the particle
number from N D �@�Œ O��=@�. This differentiation can be performed easily for
(6.8),

N D
Z
�.1/.
1; 
1/ d
1 D

X
q

Nnq: (6.10)

Next, we minimize �Œ O�� in terms of variational parameters f"qg in (6.5). A
necessary condition for this is that (6.8) is stationary with respect to "q [4]. Noting
(6.6) and (6.9), however, we realize that (6.8) depends on "q only through Nnq . Thus,
condition ı�Œ O��=ı"q D 0 is equivalent to ı�Œ O��=ı Nnq D 0, which is expanded to
give

0 D ı�Œ O��
ı Nnq

D
Z

d
1'�
q .
1/

� Op21
2m
CU .r1/� �

�
'q.
1/C 2 � 1

2

Z
d
1

Z
d
2V .jr1 � r2j/

� �'�
q .
1/'q.
1/�

.1/.
2; 
2/C 	'�
q .
1/'q.
2/�

.1/.
1; 
2/
	 � 1

ˇ
ln
1C 	 Nnq
Nnq

D
Z

d
1'
�
q .
1/


� Op21
2m
CU .r1/

�
'q.
1/C

Z
d
2UHF.
1; 
2/'q.
2/

�

� "q � �
�Z

d
1j'q.
1/j2 � 1
�
; (6.11)

where UHF.
1; 
2/ denotes the Hartree–Fock potential:

UHF.
1; 
2/ � ı.
1; 
2/
Z

d
3V .jr1 � r3j/�.1/.
3; 
3/C 	V .jr1 � r2j/�.1/.
1; 
2/:
(6.12)

The last equality in (6.11) may be confirmed by substituting (6.12) and "q � � D
ˇ�1 lnŒ.1C 	 Nnq/= Nnq� into the final expression. Condition (6.11) can be satisfied by
solving the eigenvalue problem:

� Op21
2m
CU .r1/

�
'q.
1/C

Z
d
2UHF.
1; 
2/'q.
2/ D "q'q.
1/: (6.13)

This is seen as follows. First, symmetry U �
HF.
1; 
2/ D UHF.
2; 
1/ of (6.12) tells

us that (6.13) is a Hermitian eigenvalue problem. Hence, "q is real and f'qgq can be
constructed to form a complete orthonormal set that satisfies (3.47) and (3.48). Next,
we can use (6.13) and (3.47) to show that the last expression of (6.11) is certainly
zero.
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Equations (6.12) and (6.13) are called the Hartree–Fock equations, which form
a closed set of self-consistency equations. To be specific, (6.13) can be interpreted
as an eigenvalue equation for "q and 'q.x/ for a given UHF.
1; 
2/, However, as
seen from (6.9) and (6.12), UHF.
1; 
2/ itself includes "q and 'q.x/ that are to be
determined. Hence, (6.12) and (6.13) form a set of self-consistency (i.e., nonlinear)
equations for "q and 'q.x/. In this circumstance, we need to make an appropriate
guess about the solutions to start solving the nonlinear equations, as they may have
multiple solutions including unphysical ones. For the Hartree–Fock equations, one
may initially adopt the eigenvalues and eigenfunctions for UHF D 0 and improve on
them iteratively using (6.12) and (6.13) until a convergence is reached.

Let us denote the minimum of (6.8) by �HF. Its concise expression is obtained
from (6.8) using (6.7), (6.9), (6.12) and (6.13) and finally substituting �0 of (6.5).
This gives

�HF D
X
q

."q��/ Nnq�1
2

Z
d
1

Z
d
2UHF.
1; 
2/�

.1/.
2; 
1/C�0�
X
q

."q��/ Nnq

D 	

ˇ

X
q

ln
�
1 � 	e�ˇ."q��/	� 1

2

Z
d
1

Z
d
2UHF.
1; 
2/�

.1/.
2; 
1/: (6.14)

The second term in the last expression is an additional term from the interaction,
which removes the double counting of the interaction energy in "q obtained by (6.12)
and (6.13).

6.2.2 Derivation Based on Wick Decomposition

There is an alternative concise method for deriving the Hartree–Fock equations,
which proceeds as follows: (i) Consider all the possible Wick decompositions for
the interaction in (6.4); (ii) Express each pair for the decomposition as a sum of
their average and the deviation from it; and (iii) Neglect terms that are second order
in the deviations. Following this procedure and using abbreviations O .
i / ! O i ,
the product of four field operators in the interaction transforms to

O �1 O �2 O 2 O 1
! �h O �1 O 1i C O �1 O 1 � h O �1 O 1i��h O �2 O 2i C O �2 O 2 � h O �2 O 2i�
C 	�h O �1 O 2i C O �1 O 2 � h O �1 O 2i��h O �2 O 1i C O �2 O 1 � h O �2 O 1i�

	 h O �1 O 1ih O �2 O 2i C
� O �1 O 1 � h O �1 O 1i�h O �2 O 2i C h O �1 O 1i� O �2 O 2 � h O �2 O 2i�

C 	�h O �1 O 2ih O �2 O 1i C � O �1 O 2 � h O �1 O 2i�h O �2 O 1i
C h O �1 O 2i

� O �2 O 1 � h O �2 O 1i�	
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D O �1 O 1h O �2 O 2i C h O �1 O 1i O �2 O 2 C 	
h O �1 O 2h O �2 O 1i C h O �1 O 2i O �2 O 1

i

� h O �1 O 1ih O �2 O 2i � 	h O �1 O 2ih O �2 O 1i: (6.15)

The Hamiltonian (6.4) is thereby replaced by an expression given in terms
of (6.12) as

OHHF�
Z

d
1 O �.
1/

� Op21
2m
CU .r1/ � �

�
O .
1/C

Z
d
2UHF.
1; 
2/ O .
2/

�

� 1
2

Z
d
1

Z
d
2UHF.
1; 
2/�

.1/.
2; 
1/: (6.16)

The second term on the right-hand side is a constant, whereas the first term has a
quadratic form with respect to O � and O . Expanding them formally as (3.49) and
determining eigenstate 'q.
/ by (6.13), we can put the first term into a diagonal
form,

OHHF D
X
q

."q � �/ Oc�q Ocq �
1

2

Z
d
1

Z
d
2UHF.
1; 
2/�

.1/.
2; 
1/:

Let us use this expression and (6.7) to estimate �HF � h OHHFi � TS. We thereby
reproduce (6.14) for the grand potential. Thus, the Hartree–Fock formalism has been
derived also by the Wick decomposition procedure.

6.2.3 Homogeneous Cases

We apply the Hartree–Fock formalism to homogeneous systems to derive a simpli-
fied equation. This helps in understanding clearly how the one-particle energy is
determined self-consistently while accounting for interaction effects. Linearization
of the equation with respect to external perturbations gives the basic equation of
Landau’s Fermi-liquid theory with molecular-field effects, as will be seen shortly.

With no external potential (U D 0), the eigenfunctions of (6.12) and (6.13)
are plane waves given by (5.23). This is shown self-consistently as follows. Let
us assume that (5.23) is indeed an eigenfunction and substitute it into (6.9) with
q ! k˛. We then obtain

�.1/.
1; 
2/ D ı˛1˛2
V

X
k

eik�.r1�r2/ Nnk˛1 : (6.17)

Accordingly, we expand the delta function and the interaction potential of (6.12) as

ı.
1; 
2/ D ı˛1˛2
V

X
k

eik�.r1�r2/; V .jr1 � r2j/ D 1

V

X
k

Vk eik�.r1�r2/: (6.18)
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Using (6.17) and (6.18), we can express the Hartree–Fock potential (6.12) in the
form

UHF.
1; 
2/ D ı˛1˛2
V

X
k

eik�.r1�r2/ 1

V

X
k0˛0

�
V0 C 	ı˛0˛1Vjk�k0j

� Nnk0˛0 : (6.19)

Substitution of (6.19) into (6.13) with U D 0 confirms that (5.23) is certainly an
eigenfunction of the Hartree–Fock equations with eigenvalue

"k˛ D "0k C
1

V

X
k0˛0

�
V0 C 	ı˛˛0Vjk�k0j

� Nnk0˛0 ; (6.20)

where

"0k �
„2k2
2m

(6.21)

denotes the one-particle energy assuming no interaction. Note that Nnk0˛0 on the
right-hand side of (6.20) is a function of "k0˛0 . Hence, (6.20) forms a set of self-
consistency (or nonlinear) equations for f"k˛g.

Equation (6.20) also determines changes of "k˛ when external perturbations are
applied. The corresponding first-order variations fı"k˛g obey coupled equations
obtained by linearizing (6.20),

ı"k˛ D ı"0k˛ C
1

V

X
k0˛0

f˛˛0.k;k0/
@ Nnk0

@"k0

ı"k0˛0 : (6.22)

Here, we have replaced the subscript of "0, k ! k˛, by considering the possibility
of some k˛ dependence because of perturbations; function f˛˛0.k;k0/ is defined by

f˛˛0 .k;k0/ � V0 C 	ı˛˛0Vjk�k0j: (6.23)

Further, we have replaced the derivative of the mean occupation number by an
isotropic term without perturbations as justified in the first-order approximation. The
second term on the right-hand side of (6.22) represents molecular-field (or mean-
field) effects. It indicates that a perturbation to the system causes a change in the
molecular field originating from the interaction, which then produces a feedback
effect on the one-particle energy.

Equation (6.22) for low-temperature identical fermions (	 D �1) forms the
starting point of Landau’s Fermi-liquid theory [5], and function (6.23) may be
regarded as the Hartree–Fock approximation to the Landau f function. This Landau
theory describes how low-temperature fermions respond to external perturbations;
details will be given below.
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6.3 Application to Low-Temperature Fermions

Among systems of identical fermions are those with spin 1=2 particles, which
include typical targets of statistical mechanics such as electrons in metals and liquid
3He. Thus, we apply (6.22) to low-temperature fermions (	 D �1) with spin 1/2 to
clarify how the interaction affects their thermodynamic properties.

6.3.1 Fermi Wave Number and Fermi Energy

First, we focus on the zero-temperature case in the absence of a magnetic field to
clarify how the Fermi wave number and Fermi energy are affected by the interaction.

As the system under consideration is isotropic, the energies "k˛ for the zero
magnetic field will depend only on the wave number k. Thus, we may set "k˛ ! "k
in (6.20). To determine the chemical potential �.0/ � "F, we substitute (6.6) into
(6.10), set q ! k˛ and T ! 0, and use (4.32). The resulting equation is given by

N D
X
k˛

�."F � "k/ D
X
k˛

�.kF � k/; (6.24)

where we have transformed the condition for "k into that for k. The latter expression
is identical to that for the non-interacting case in terms of the wave vector (4.16).
Hence, we conclude that the Fermi wave number kF is still given by (4.35) with
s D 1=2, that is,

kF D
�
3�2N

V

�1=3
: (6.25)

Thus, kF does not depend on the interaction. This is because the interaction does
not change the density of particles confined in a fixed volume. The theorem, which
is known as the Fermi-surface sum rule, also holds true for electrons in anisotropic
metals where the volume enclosed by the surface "k D "F remains invariant as a
function of the interaction strength [6]. In contrast, the first expression of (6.24),
given in terms of "k, is affected by the interaction. Hence, the value of the Fermi
energy "F changes because of the interaction.

6.3.2 Effective Mass, Density of States, and Heat Capacity

We now introduce the concept of effective massm�, which will be shown to describe
how the density of states at the Fermi energy and low-temperature heat capacity are
modified by the interaction.
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The one-particle energy "k of isotropic systems depends only on k D jkj and
may be expanded for k � kF as

"k 	 "F C d"k
dk

ˇ̌̌
ˇ
kDkF

.k � kF/ D "F C „
2kF

m� .k � kF/; (6.26)

wherem� denotes the effective mass defined by

1

m� �
1

„2kF

d"k
dk

ˇ̌
ˇ̌
kDkF

: (6.27)

It follows from (6.21) that m� is identical to m for ideal gases.
The effective mass manifests itself in the single-particle density of states defined

by

D.�/ �
X
k˛

ı.� � "k/: (6.28)

Indeed, D.�/ at the Fermi energy � D "F can be transformed in the same way as
(4.17) for s D 1=2 as

D."F/ D 2V

.2�/3
4�

Z 1

0

dkk2ı."F � "k/ D V

�2

Z 1

"0

d"k
d"k=dk

k2ı."F � "k/

D V

�2
k2F

d"k=dk
ˇ̌
kDkF

D V kFm
�

�2„2 ; (6.29)

where we have used (6.27) in the last equality. Noting that kF does not depend on
the interaction, we realize that the density of states at the Fermi energy is modified
by factorm�=m because of the interaction.

This change in the density of states is observable in the low-temperature heat
capacity. To see this, we start from (6.7) for entropy in the Hartree–Fock approxi-
mation. It has the same expression as (4.7) for ideal gases with the difference being
only in the one-particle energy in Nnq . Hence, the heat capacity C D T .@S=@T / in
the Hartree–Fock approximation is identical in form to (4.8) for ideal gases; in terms
of the density of states (6.28), we have

C D kB

Z 1

�1
D.�/

�
x C 1

kB

@�

@T

�
xex

.ex C 1/2
ˇ̌
ˇ̌
xDˇ.���/

d�: (6.30)

In particular, near T D 0, we may approximateD.�/ 	 D."F/ and make a change
of variables, x � ˇ.� � "F/. Consequently, the term with @�=@T in the integrand
becomes odd in x to yield a null contribution. Let us transform the remaining
integral over �1 < x < 1 into that over 0 � x < 1 with a change of variables
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for x < 0 and perform an integration by parts to evaluate it with (4.39). We thereby
obtain

C 	 2D."F/k
2
BT

Z 1

0

x2ex

.ex C 1/2 dxD2D."F/k
2
BT

�
� x2

ex C 1
ˇ̌̌
ˇ
1

0

C2
Z 1

0

x

ex C 1dx

�

D �2

3
D."F/k

2
BT: (6.31)

The last result is identical in form to (4.44) for ideal gases, but D."F/ is modified
by factorm�=m.

6.3.3 Effective Mass and Landau Parameter

In the present homogeneous case, because the mass change m ! m� is caused
solely by the interaction, it is reasonable to expect that ratiom�=m is expressible by
the Landau f function on the Fermi surface. We show that this is indeed the case
and write m�=m in terms of the Landau parameters.

First, let us adopt a coordinate system that moves with velocity u (u 
 vF)
relative to the original system, where vF � „kF=m

� denotes the Fermi velocity. The
Hamiltonian in the new coordinate system is given by (6.4) with Op1 ! Op1�mu and
U D 0. Thus, it is only the kinetic-energy operator that is affected by the change in
coordinate system. The corresponding Hartree–Fock equation for the homogeneous
system is obtained from (6.20) by replacing every wave vector with k! k�mu=„.
Thus, the wave vector is modified by

ık D �mu=„

from the change in coordinate system. Accordingly, the one-particle energy near the
Fermi surface is shifted to first order in ık by

ı"k D @"k

@k
� ık D d"k

dk

@k

@k
� ık 	 „

2kF

m�
k
k
�
�
�mu
„


	 � m

m� „k � u;

where we have used (6.26), k D .k2x C k2y C k2z /1=2, and k 	 kF. Similarly, (6.21)
is also changed by ı"0k D �„k � u. In contrast, function f˛˛0 .k;k0/ given by (6.23)
remains invariant as it depends only on k � k0. Let us substitute these expressions
into (6.22) with k! kF and note that u can be chosen arbitrarily. We thereby obtain

kF
m

m� D kF C 1

V

X
k0˛0

f˛˛0 .kF;k0/
@ Nnk0

@"k0

k0 m
m� :
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Further, we form the scalar product of the equation with kF=k
2
F, set T ! 0, and use

(4.33). This yields

m

m� D 1 �
1

V

X
k0˛0

f˛˛0 .kF;k0/ı."k0 � "F/
kF � k0

k2F

m

m� :

Subsequently, we transform the sum over k0 into an integral as (4.17), adopt polar
coordinates k0 D .k0 sin � 0 cos' 0; k0 sin � 0 sin ' 0; k0 cos � 0/, and express the angular
integrations as

Z �

0

d� 0 sin � 0
Z 2�

0

d' 0 �
Z

d�0; (6.32)

to obtain

m

m� D 1�
X
˛0

Z 1

0

dk0

.2�/3
k02ı."k0 � "F/

Z
d�0f˛˛0.kF;k0

F/
kF � k0

F

k2F

m

m�

D 1� D."F/

2V

X
˛0

Z
d�0

4�
f˛˛0 .kF;k0

F/
kF � k0

F

k2F

m

m� ; (6.33)

whereD."F/ is the density of states at the Fermi energy given by (6.29).
It follows from (6.23) that function f˛˛0 .kF;k0

F/ on the Fermi surface depends
only on the scalar product kF � k0

F=k
2
F � cos � 0. Let us multiply f˛˛0.kF;k0

F/ by
D."F/=2V and expand it in terms of Legendre polynomials fP`.cos � 0/g,

D."F/

2V
f˛˛0 .kF;k0

F/ D
1X
`D0

�
F s
` � F a

`

2
C ı˛˛0F a

`

�
P`.cos � 0/; (6.34)

where F s
` and F a

` are dimensionless parameters called Landau parameters. Specifi-
cally, P`.x/ is defined by [1, 2]

P`.x/ � 1

2``Š

d`

dx`
.x2 � 1/`; (6.35)

and satisfies

Z 1

�1
P`.x/P`0.x/dx D 2

2`C 1ı``0 : (6.36)

The first few low-order polynomials are P0.x/ D 1, P1.x/ D x, P2.x/ D 1
2

.3x2 � 1/. Let us substitute (6.34) into (6.33), write kF � k0
F=k

2
F D P1.cos � 0/, and

use (6.36). Equation (6.33) thereby becomes



84 6 Hartree–Fock Equations and Landau’s Fermi-Liquid Theory

m

m� D 1 �
1X
`D0

X
˛0D˙ 1

2

�
F s
` � F a

`

2
C ı˛˛0F a

`

�Z
d�0

4�
P`.cos � 0/P1.cos � 0/

m

m�

D 1 �
1X
`D0

F s
`

Z 1

�1
dx0

2
P`.x

0/P1.x0/
m

m� D 1 �
F s
1

3

m

m� :

That is, ratio m�=m is given solely in terms of F s
1 as

m�

m
D 1C F s

1

3
: (6.37)

6.3.4 Spin Susceptibility

Next, we study the spin susceptibility � at T D 0. We shall see that it is also
modified from the ideal-gas value by a couple of factors, which are expressible in
terms of Landau parameters.

Suppose that there is a weak magnetic flux density of magnitude B along the z
axis. In this situation, the non-interacting one-particle energy is shifted because of
the spin degrees of freedom by

ı"0k˛ D ��0m˛B: (6.38)

This energy splitting between ˛ D ˙1=2 is the Zeeman effect. The quantity �0m
denotes the magnetic moment whose magnitude varies from particle to particle; for
electrons, for example, it is given in terms of the Bohr magneton

�B � jej„
2m
D 9:27 � 10�24 J � T�1 (6.39)

as �0m D �2�B. We also expect that the one-particle energy with interactions is
expressible as

ı"k˛ D ��m˛B; (6.40)

where �m is an unknown constant having the physical meaning of an effective
magnetic moment.

Let us substitute (6.38) and (6.40) into (6.22), set k D kF, divide both sides by
�B , and take the limit T ! 0. We thereby obtain

�m˛ D �0m˛ �
1

V

X
k0˛0

f˛˛0 .kF;k0/ı."F � "k0/�m˛
0:
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Subsequently, we express the sum over k0 into an integral over k0 as (6.33), substitute
(6.34), and use (6.36) and P0.x/ D 1. The above equation thereby becomes

�m˛ D �0m˛ �
D."F/

2V

X
˛0D˙ 1

2

Z
d�0

4�
f˛˛0.kF;k0

F/�m˛
0

D �0m˛ �
X

˛0D˙ 1
2

�m˛
0

1X
`D0

�
F s
` � F a

`

2
C ı˛˛0F a

`

�
1

2

Z 1

�1
P`.x

0/P0.x0/dx0

D �0m˛ � �m˛F
a
0 :

Hence, we obtain �m in terms of �0m as

�m D �0m
1C F a

0

: (6.41)

The total moment M due to spin is expressible generally in terms of the spin
magnetic moment �0m˛ and one-particle density matrix as

M D
Z

d
 �0m˛ �
.1/.
; 
/; (6.42)

where d
 is defined by (3.16). Let us substitute (6.17) into the above expression,
expand Nnk˛ 	 Nnk C .@ Nnk=@"k/ı"k˛ with @ Nnk=@"k D �ı."F � "k/, and successively
use (6.40), (6.28), and (6.41) to arrange it in the form

M D
X
k˛

�0m˛ Nnk˛ 	
X
k˛

�0m˛
@ Nnk
@"k

ı"k˛ D �0m�mB
X

k

X
˛D˙ 1

2

˛2ı."F � "k/

D
�
�0m=2

�2
D."F/

1C F a
0

B: (6.43)

Hence, the spin susceptibility is obtained from � � @M=@B , giving

� D
�
�0m=2

�2
D."F/

1C F a
0

: (6.44)

The numerator .�0m=2
�2
D."F/ is identical to that for ideal gases, but the density

of states here is modified from that for the non-interacting system by the factor
m�=m D 1 C F s

1 =3, as seen from (6.29) and (6.37). Moreover, there is another
factor .1 C F a

0 /
�1 that originates from the spin-dependent part of the interaction,

(6.34).
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6.3.5 Compressibility

Compressibility � is defined in terms of volume V and pressure P by

� � � 1
V

@V

@P
: (6.45)

For T D 0, we clarify how this is affected by the interaction.
To begin, we transform � at T D 0 into an alternative convenient expression. An

infinitesimal variation of the grand potential� can be expressed as in (1.27). It also
follows from (1.28) that d� D �P dV � V dP holds. Equating the two expressions
yields the Gibbs-Duhem relation:

dP D S

V
dT C N

V
d�; (6.46)

variables .P; T; �/ of which are all intensive as well as the coefficients
.S=V;N=V /. Using (6.46) with dT D 0 at T D 0 and noting that � depends
on extensive variables .V;N / only through ratio V=N , we write the inverse of
(6.45) as

1

�
D �V @P

@V
D �V N

V

@�

@V
D � @�

@.V=N/
D � 1

V

@�

@.1=N /
D N2

V

@�

@N
: (6.47)

Thus, compressibility at T D 0 takes the alternative form with @N=@�.
To find @N=@� at T D 0, we start from (6.10) with q ! k˛ and rearrange its

small variation due to ı�, which should accompany no spin polarizations, using
(4.33) and (6.6) to obtain

ıN D
X
k˛

ı Nnk D
X
k˛

�
@ Nnk
@�

ı�C @ Nnk
@"k

ı"k

�
D
X
k˛

ı."k �"F/.ı�� ı"k/: (6.48)

The contribution proportional to ı"k determines an indirect effect that ı� brings
about through the interaction. Noting (6.22), we may express this ı"k as

ı"k D 1

V

X
k0˛0

f˛˛0 .k;k0/ı Nnk0 :

As ı� is infinitesimal and T D 0, we only need to consider those k and k0 that lie
on the Fermi surface in the above expression. In addition, ı Nnk0 due to ı� should be
isotropic. Keeping these points in mind, we transform the sum over k0 above into an
integral in the same way as in (6.33), and then use P0.x/ D 1, (6.34), and (6.36) to
obtain
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ı"k D
Z 1

0

dk0

.2�/3
k02ı Nnk0

X
˛0D˙ 1

2

Z
d�0f˛˛0 .k;k0/

D
Z 1

0

dk0

.2�/3
k02ı Nnk0

2V

D."F/

1X
`D0

X
˛0D˙ 1

2

�
F s
` � F a

`

2
C ı˛˛0F a

`

�

�2�
Z 1

�1
P`.x

0/P0.x0/dx0

D
Z 1

0

dk0

.2�/3
k02ı Nnk0

2V

D."F/
4�F s

0 D
F s
0

D."F/

X
k0˛0

ı Nnk0 D F s
0

D."F/
ıN:

Substituting this expression into (6.48) and using (6.28), we obtain ıN D
D."F/Œı�� F s

0 ıN=D."F/�, i.e.,

@N

@�
D D."F/

1C F s
0

: (6.49)

A further substitution into (6.47) yields the compressibility at T D 0 as

� D V

N2

D."F/

1C F s
0

: (6.50)

Thus, � is also affected by the interaction.

6.3.6 Landau Parameters

We have considered low-temperature fermions with s D 1=2 based on the Hartree–
Fock approximation to clarify how the interaction affects thermodynamic properties.
The main results are (6.25), (6.29), (6.31), (6.37), (6.44), and (6.50), which are
all given in terms of the Landau parameters F s;a

` . Here, we derive microscopic
expressions of the parameters within the Hartree–Fock theory, and discuss a possible
extension of the theory to systems with strong interactions where the Hartree–Fock
formalism is no longer effective.

First, let us derive microscopic expressions for the Landau parameters within the
Hartree–Fock theory. To this end, we note that Vjk�k0j in (6.23) depends only on jk�
k0j D .k2 C k02 � 2kk0 cos �kk0/1=2, where �kk0 denotes the angle between k and k0.
Thus, we can expand Vjk�k0j generally in terms of Legendre polynomials (6.35) as

Vjk�k0j D
1X
`D0
.2`C 1/V`.k; k0/P`.cos �kk0/: (6.51)
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Table 6.1 Landau
parameters of liquid 3He [7]

P (bar) F s
0 F s

1 F a
0

0 9:30 5:39 �0:695
3 15:99 6:49 �0:723
6 22:49 7:45 �0:733

Let us substitute (6.51) into (6.23) with 	 D �1, choose k and k0 on the Fermi
surface, and compare the resulting expression with (6.34). We thereby obtain F s

`

and F a
` ,

F s
` D

D."F/

2V
Œ2V0ı`0 � .2`C 1/V`.kF; kF/� ; F a

` D �
D."F/

2V
.2`C1/V`.kF; kF/:

(6.52)

These expressions indicate that, for a repulsive interaction with Vk > 0, we may
expect F s

0 > 0 and F a
0 < 0 generally (Problem 6.1). In particular, inequality

F a
0 < 0 in (6.34) indicates that the repulsive interaction favors a pair of particles

with the same spin alignment (˛1 D ˛2) rather than the opposing alignment
(˛1 ¤ ˛2); the state associated with the former can naturally suppress the repulsive
force because of the Pauli exclusion principle. Thus, the Hartree–Fock equations
enable an explanation of how the interaction affects thermodynamic properties
qualitatively. However, because they have been derived based on the variational
density matrix (6.5) of an ideal-gas form, (6.52) cannot be used quantitatively for
describing strongly interacting systems.

In contrast, Landau’s Fermi-liquid theory [5] starts from (6.22) and (6.34) and
treats F s

` and F a
` as phenomenological parameters. It is also applicable to strongly

interacting systems so that (6.25), (6.29), (6.31), (6.37), (6.44), and (6.50) can be
used as they are. This is because scatterings between quasiparticles (i.e., renormal-
ized entities with interaction effects that work like “particles”) are suppressed at low
temperatures because of the Fermi degeneracy so that they behave like real particles
with an infinite lifetime to form an ideal gas [3, 5].

Landau’s Fermi-liquid theory has been quite successful in describing liquid
3He (s D 1=2) at low temperatures. Table 4.1 shows that quantum effects in 3He
should be substantial below around TQ D 2:58K, and Landau’s Fermi-liquid theory
is applicable for extremely low temperatures of T 
 TQ. Table 6.1 presents values
of Landau parameters extracted from various experiments. Both F s

0 and F s
1 are

large and positive, indicating that the interaction between particles in 3He is mainly
repulsive and strong. Thus, according to (6.50) and (6.37), its compressibility is
small and the effective mass is enhanced substantially, making particle motion
difficult. In addition,F a

0 is negative and close to�1 to give a large spin susceptibility
according to (6.44). This enhancement of � indicates that the system is close to the
instability of the ferromagnetic transition for F a

0 ! �1.
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Problems

6.1. Suppose that the interaction potential in (6.4) is given by

V .r/ D U0 e�r=r0 ; (6.53)

where r0 > 0 and U0 are constants.

(a) Show that coefficient Vk of the Fourier expansion in (6.18) is given by

Vk D 8�U0r
3
0

.1C r20 k2/2
: (6.54)

(b) Replace k with jk � k0j in (6.54) and expand it as in (6.51). Show that
V0.k; k

0/ is given by

V0.k; k
0/ D 8�U0r

3
0�

1C r20 k2 C r20k02�2 � 4r40k2k02 : (6.55)

(c) The Landau parameters in the Hartree–Fock approximation can be written
generally as in (6.52). Express F s

0 and F a
0 of the present model in terms of

U0, r0, and the density of states D."F/ at the Fermi energy.
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Chapter 7
Attractive Interaction and Bound States

Abstract Struggling to find a way to theoretically explain the phenomenon of
superconductivity, in 1956 Cooper eventually reached a simplified version of the
problem of two particles on the Fermi surface under a mutual attraction. Cooper’s
problem, which represented a breakthrough in constructing a microscopic theory of
superconductivity, is essentially identical to a one-particle problem with an attrac-
tive potential in two dimensions. In this chapter, we consider attractive potentials
to clarify under what conditions a bound state is formed. First, we consider one-
particle problems with an attractive potential in two and three dimensions to show
that an infinitesimal attraction suffices in two dimensions to form a bound state
whereas a finite threshold is requisite in three dimensions. Next, we shall see that
this qualitative difference between two and three dimensions is caused by whether
the one-particle density of states is finite at zero energy. Finally, the presence of the
Fermi surface in Cooper’s problem will be shown to make the density of states at
the excitation threshold finite even in three dimensions, resulting in the formation
of a bound state from only an infinitesimal attraction.

7.1 Attractive Potential in Two and Three Dimensions

We consider a particle in a central potential V .r/ that obeys the Schrödinger
equation:

� Op2
2m
C V .r/

�
�.r/ D ��.r/; (7.1)

where Op � �i„r is the momentum operator, m is the particle mass, �.r/ denotes
the wave function, and � is the eigenenergy. Here, we adopt a square-well potential
given by (see also Fig. 7.1)

V .r/ D

 �U0 W r < a
0 W r � a (7.2)

to clarify under what conditions a bound state is formed in two and three dimensions.
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Fig. 7.1 A square-well
potential

7.1.1 Bound State in Three Dimensions

First, we consider the three-dimensional case to show that there is a finite threshold
for U0 that determines whether a bound state can form; see (7.9) below.

The lowest-energy eigenstate is expected to have an isotropic s-wave symmetry.
Its wave function may be written in terms of the spherical harmonic function [2, 5]
Y00.�; '/D .4�/�1=2 as �.r/DR.r/Y00.�; '/ (0� r �1, 0� � �� , 0�'� 2�).
Substituting it into (7.1) and restating the resulting equation in polar coordinates
[2, 7], we thereby obtain the radial Schrödinger equation,

1

r

d2

dr2
rR.r/C 2mŒ� � V .r/�

„2 R.r/ D 0: (7.3)

By noting (7.2), setting �U0 � � < 0, and imposing boundary conditions jR.0/j <
1 and R.1/ D 0, we can easily solve (7.3) separately for r < a and r > a in
terms of rR.r/ as

rR.r/ D


A sin kr W r < a
B e��r W r � a ; (7.4)

where A and B are constants, and k and � are defined by

k �
p
2m.U0 C �/
„ ; � �

p�2m�
„ : (7.5)

Subsequently, we match these solutions so that ŒrR.r/�0=rR.r/ is continuous at
r D a. The condition can be expressed concisely in terms of the dimensionless
quantities:


 � ka > 0; � � �a > 0 (7.6)

as

� D �
 cot 
: (7.7)

Also, from (7.5) and (7.6), variables .
; �/ satisfy
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Fig. 7.2 A plot of the three
constraints in the .
; �/ plane,
i.e., 
2 C �2 D r2 for
r D 1; 2, � D �
 cot 
, and
�K 0

0.�/=K0.�/ D

J 0

0 .
/=J0.
/

 0

 0.5

 1

 1.5

 2

 0.5  1  1.5  2


2 C �2 D 2ma2

„2 U0: (7.8)

In Fig. 7.2, plots of (7.7) and (7.8) are drawn by which we can see graphically
whether a solution of the coupled equations exists. An intersection point is present

in the first quadrant of the .
; �/ plane if
�
.2ma2=„2/U0

	1=2 � �=2 is met. This
condition is expressed more concisely as

U0 � „
2

2m

� �
2a


2
: (7.9)

That is, no bound state exists in three dimensions unless U0 exceeds a finite value.

7.1.2 Bound State in Two Dimensions

Next, we consider the two-dimensional case to show that an infinitesimal attraction
suffices in forming a bound state, as revealed in (7.14) below.

The isotropic wave function in two dimensions is similarly expressed in polar
coordinates r D .r cos'; r sin'/ as �.r/ D R.r/=

p
2� . Substitution into (7.1)

and a change to the two-dimensional polar coordinates [2, 7] yields the radial
Schrödinger equation

1

r

d

dr
r

d

dr
R.r/C 2mŒ� � V .r/�

„2 R.r/ D 0: (7.10)

Substituting (7.2), we find that (7.10) reduces to Bessel’s (modified Bessel’s)
differential equation of zeroth order for r < a (r > a) [1, 2]. Imposing the same
boundary conditions jR.0/j <1 and R.1/ D 0, we obtain the solution
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R.r/ D



AJ0.kr/ W r < a
BK0.�r/ W r � a ; (7.11)

where A and B are constants, J0.kr/ is the Bessel function of zeroth order,K0.�r/

denotes the modified Bessel function of zeroth order [1, 2], and k and � are defined
by (7.5). The matching criterion, i.e. R0.r/=R.r/ is continuous at r D a, yields

�K 0
0.�/

K0.�/
D 
J 0

0.
/

J0.
/
; (7.12)

where � and 
 are defined by (7.6).
The pair of coupled equations (7.8) and (7.12) may be solved qualitatively by

drawing their graphs in the .
; �/ plane, as in Fig. 7.2. The two curves intersect in
the first quadrant for any � > 0. This fact can be stated quantitatively by expanding
J0.
/ 	 1 � 
2=4 C O.
4/ and K0.�/ D � ln.�e�=2/ C O.�2 ln �/ in the weak-
coupling region of 0< 
; �
 1 [1, 2], where � D 0:57721 � � � is Euler’s constant.
Substitution of both into (7.12) yields Œln.�e�=2/��1D�
2=2, i.e.,

� D 2e�� exp

�
� 2

2

�
	 2e�� exp

�
� „2

ma2U0

�
: (7.13)

In the second approximation, we have used 
2 	 2ma2U0=„2 as obtained from (7.8)
by noting 
� e�2=
2 � � for 0 < 

 1. It also follows from (7.5) and (7.6) that
� � �a D p�2ma2�=„. Substituting back into (7.13), we obtain the bound-state
energy for U0! 0 as

� D � „
2

2m

�
2e��

a

�2
exp

�
� 2„2

ma2U0

�
: (7.14)

Hence, a bound state is formed for any U0 > 0. We also realize from � Dp�2m�=„, (7.11), andK0.x/ � .�=2x/1=2e�x for x !1 [1, 2] that the radius r0
of the bound state for �! 0 is quite large as r0 � ��1 D „=p�2m�.

7.2 Consideration in Wave Vector Domain

Regarding bound-state formation, we now study the one-particle problem of
Sect. 7.1 once more, to trace in the wave vector domain the origin of the qualitative
difference between the two- and three-dimensional cases. We shall see that it
depends on whether the one-particle density of states is finite at zero energy.

Let us expand the wave function and potential of (7.1) as plane waves,1

1Factor V �1=2 in (7.15) originates from the normalization condition h�j�i D 1, whereas V �1 in
(7.16) is so chosen to ensure that the coefficient Vk is independent of V in the thermodynamic
limit.
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�.r/ D 1p
V

X
k

eik�r�k; (7.15)

V .r/ D 1

V

X
k

eik�rVk: (7.16)

It should be noted that �.r/ and �k above are different functions distinguished
by their arguments, as are V .r/ and Vk . Because V .r/ is isotropic, its Fourier
transform Vk is also isotropic depending only on k � jkj. Let us substitute (7.15)
and (7.16) into (7.1), multiply the equation by V �1=2e�ik0 �r, and integrate it over r.
Exchanging k and k0, we obtain the Fourier-transformed Schrödinger equation

"k�k C 1

V

X
k0

Vjk�k0 j�k0 D ��k; (7.17)

where "k � „2k2=2m is the kinetic energy. Rearranging this equation gives

�k D Ck

"k � � ; Ck � � 1
V

X
k0

Vjk�k0j�k0 :

Further, we substitute the first into the second to obtain an integral equation for Ck,

Ck � � 1
V

X
k0

Vjk�k0j
"k0 � �Ck0 : (7.18)

Next, we expand Vjk�k0 j as in (6.51) and retain only the ` D 0 term,

Vjk�k0j ! V0.k; k
0/; (7.19)

which is justified in solely studying the s-wave bound states. Substitution of this
equation into (7.18) yields an equation for Ck that depends only on k,

Ck D �
Z 1

0

d"k0N."k0/
V0.k; k0/
"k0 � � Ck0 ; (7.20)

where we have transformed the sum over k0 into an integral over "k0 by using the
density of states per unit volume and spin component defined by

N.�/ � 1

V

X
k

ı.� � "k/: (7.21)

Apart from the factor .2s C 1/V , this N.�/ is identical to D.�/ in (4.17).
Equation (7.20) is suitable for clarifying the origins for the difference between

two- and three-dimensional bound-state formation. In general, the s-wave compo-
nent V0.k; k0/ of an attractive potential takes a finite negative value for k; k0 ! 0,
whereas it vanishes for k; k0 ! 1; see (6.55) with U0 < 0 for example. As a
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simple model that contains these features and is also tractable analytically in the
wave vector domain, we adopt the model potential

V0.k; k
0/ D ��0 �."c � "k/�."c � "k0/; (7.22)

where �0 > 0 is a constant, "c > 0 denotes a cutoff energy, and �.x/ is the step
function defined in (4.11). Substituting (7.22) into (7.20), we find that Ck can also
be written as

Ck D C0�."c � "k/: (7.23)

Moreover, we have already obtained the density of states in both three and two
dimensions as given in (4.17) and (4.54), respectively. Thus, (7.21) per unit volume
and spin component vanishes for � < 0 whereas for � � 0 it is expressible as

N.�/ D


A�1=2 W three dimensions
N.0/ W two dimensions

; (7.24)

where A and N.0/ are constants.
First, focusing on the two-dimensional case and substituting (7.22)–(7.24) into

(7.20), we obtain an equation that determines the bound-state energy � < 0,

1

N.0/�0
D
Z "c

0

1

"k0 � � d"k0 D ln
"c � �
�� : (7.25)

When the attractive potential is weak, N.0/�0 
 1, the left-hand side of the
equation takes a large positive value that diverges as N.0/�0 ! 0. Meanwhile,
the right-hand side as a function of � also diverges logarithmically as � ! 0. Hence,
(7.25) always has a solution of � < 0 as long as N.0/�0 is finite. The eigenenergy
in the limit ofN.0/�0! 0may be found analytically by approximating "c�� 	 "c

in (7.25),

� D �"c exp

�
� 1

N.0/�0

�
: (7.26)

Thus, we confirm that in two dimensions a bound state is formed when there is an
infinitesimal attraction.

The same consideration in three dimensions yields an analogous equation that
determines the bound-state energy � < 0,

1

A�0
D
Z "c

0

"
1=2

k0

"k0 � � d"k0 : (7.27)

The left-hand side diverges in the limit �0 ! 0, whereas the right-hand side as a
function of � remains finite in the limit �! 0 because the density of statesN."k/ /
"
1=2

k vanishes as "k ! 0. Hence, there is no bound-state solution for �0 ! 0 in three
dimensions.
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Thus, the present analysis has clarified unambiguously that the bound-state
formation in two dimensions by an infinitesimal attractive potential is attributable
to a finite density of states at zero energy.

7.3 Cooper’s Problem

Besides the repulsive Coulomb force from other electrons, an electron in a metal
interacts with quantized lattice vibrations called phonons. These phonons may bring
a net attraction between each pair of electrons near the Fermi energy, as shown by
Fröhrich [6] and Pines and Bardeen [3] before 1956. With this realization, Cooper
was able to construct a relatively simple model of two electrons on the Fermi surface
attracting each other [4]. Here, we study this Cooper’s problem to see that they form
a bound state by an infinitesimal attraction.

We seek the simplest possibility allowing a pair of electrons on the Fermi surface
under a mutual attraction to form an s-wave bound state without a center-of-mass
motion. Accordingly, the Schrödinger equation for their orbital motion can be
written in terms of their relative coordinates r1 � r2 as

� Op21
2m
C Op

2
2

2m
C V .r1 � r2j/

�
�.jr1 � r2j/ D .� C 2"F/�.jr1 � r2j/: (7.28)

where m is the electron mass, V is the interaction potential, "F denotes the Fermi
energy, and � is the energy of the two electrons measured from their total kinetic
energy 2"F. A solution with " < 0 corresponds to a bound state. Let us expand the
two-particle wave function �.jr1 � r2j/ as plane waves,2

�.jr1 � r2j/ D 1

V

X
k

�k eik�.r1�r2/: (7.29)

Substitution of (7.16) and (7.29) into (7.28) gives the Fourier-transformed
Schrödinger equation as

2."k � "F/�k C 1

V

X
k0

Vjk�k0j�k0 D ��k; (7.30)

where "k D „2k2=2m is the kinetic energy of a single electron. Equation (7.30) has
the same form as (7.17). Hence, we repeat the procedure from (7.17) through (7.20)
for (7.30) to obtain an integral equation for Ck � Œ2."k � "F/ � ���k ,

Ck D �
Z 1

"F

d"k0N."k0/
V0.k; k0/

2."k0 � "F/ � �Ck
0 : (7.31)

2Factor V �1 in (7.29) results from a product of two V �1=2 for each of r1 and r2.
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It differs from (7.20) in only a couple of points, specifically: (i) the denominator is
replaced by 2."k0 � "F/ � � and (ii) the lower limit of the integral is "F. The latter
change reflects the fact that filled one-particle states inside the Fermi sphere cannot
be used for forming a bound state because of the Pauli exclusion principle. We also
adapt the model potential of (7.22) to the present situation,

V0.k; k
0/ D ��0 �."c � j"k � "Fj/�."c � j"k0 � "Fj/; (7.32)

with "c 
 "F. Substituting (7.32) into (7.31) enables Ck to be written as Ck D
C0�."c � j"k � "Fj/. Let us put this expression and (7.32) back into (7.31),
approximateN."k0/ 	 N."F/ based on "c 
 "F, and make a change of variables as

 � "k0 � "F. We thereby obtain an equation to determine the bound-state energy as

1

N."F/�0
D
Z "c

0

1

2
 � � d
 D 1

2
ln
2"c � �
�� ; (7.33)

which is essentially equivalent to (7.25) with a replacement ofN.0/ byN."F/. Thus,
the presence of the Fermi sphere in Cooper’s problem has made: (i) the density
of states at the excitation threshold � D "F finite, and (ii) the formation with an
infinitesimal attractive potential of a two-particle bound state on the Fermi surface
possible. The bound-state energy for �0 ! 0 is easily obtained,

� D �2"c exp

�
� 2

N."F/�0

�
: (7.34)

The formation of this two-particle bound state is now referred to as Cooper pairing.
It is worth pointing out that prior to the BCS theory, the idea of pair condensation

as the mechanism underlying superconductivity was presented by Schafroth [8]
based on the analogy to superfluidity in the charged Bose-gas model [9]. Around
1957, however, it had not established Cooper’s finding described above or the BCS
wave function (8.6) given below, thereby failing to produce quantitative results
testable by experiments.

Problems

7.1. Consider the one-dimensional Schrödinger equation:

�
� „

2

2m

d2

dx2
C V .x/

�
�.x/ D ��.x/

with the attractive potential

V .x/ D

 �U0 W jxj < a
0 W jxj � a .U0 > 0/:
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Show that there always exists a bound state of �U0 < � < 0 for an arbitrary
U0 > 0. Obtain an analytic expression of the bound-state energy for U0 ! 0.
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Chapter 8
Mean-Field Equations of Superconductivity

Abstract Cooper’s analysis clarified that an ideal gas of identical fermions
becomes unstable in the presence of a mutual attractive potential, however small it
may be. What is the new ground state, and how is it related to superconductivity?
A breakthrough for this fundamental issue was achieved by Schrieffer, then a
graduate student of Bardeen. Motivated by Cooper’s finding, he finally had the
idea of applying Tomonaga’s intermediate coupling theory for mesons (Tomonaga,
Prog Theor Phys 2:6, 1947) to describe the new ground state (Cooper LN, Feldman
D (eds), BCS: 50 years. World Scientific, Hackensack, 2011). In this chapter,
we construct this BCS wave function in the coordinate space in such a way that
both the pair condensation and phase coherence are manifest. We then derive the
Bogoliubov–Valatin operator that describes excitations based on the BCS wave
function. These two ingredients are subsequently used to obtain the basic mean-
field equations of superconductivity, called the Bogoliubov–de Gennes (BdG)
equations, using the same methods as in Chap. 6 for the Hartree–Fock equations.
Besides the Hartree–Fock potential, the BdG equations are characterized by a novel
self-consistent potential we call the pair potential.

8.1 BCS Wave Function for Cooper-Pair Condensation

Superconductivity may be regarded as a kind of BEC in terms of electrons. However,
from the Pauli exclusion principle, it is certainly impossible for electrons with s D
1=2 to occupy the same one-particle state macroscopically. Nevertheless, it does
not prohibit them from condensing to form identical two-particle bound states. The
variational wave function Schrieffer wrote down can be regarded as a mathematical
expression of this Cooper-pair condensation. First, we present a variational wave
function for the macroscopic Cooper-pair condensation, (8.6) below.

The BEC of an ideal Bose gas is characterized by a macroscopic number of
particles occupying the one-particle state with the lowest energy, as we have seen in
Sect. 4.6. A system of identical fermions may also be able to condense into a two-
particle bound state with no fundamental conflicts with the Pauli exclusion principle.

© Springer Japan 2015
T. Kita, Statistical Mechanics of Superconductivity, Graduate Texts in Physics,
DOI 10.1007/978-4-431-55405-9_8
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Without any consideration, one may write down the wave function
immediately as

Q̂ .N /.
1; 
2; � � � ; 
N / / �.
1; 
2/�.
3; 
4/ � � ��.
N�1; 
N /; (8.1)

where

�.
1; 
2/ D ��.
2; 
1/ (8.2)

is the Cooper-pair wave function that incorporates the transposition symmetry (	 D
�1) required at the two-particle level. Here we have chosen N (� 1023) as an even
integer for convenience.

However, (8.1) still fails to obey the required permutation symmetry of (3.12) for
fermions (	 D �1). The method to incorporate it has already been given in (3.31).
To perform the antisymmetrization concisely for the present case, we introduce the
Cooper-pair creation operator:

OQ� � 1

2

Z
d
1

Z
d
2�.
1; 
2/ O �.
1/ O �.
2/; (8.3)

where O � is the field operator for fermions that obeys (3.17) with 	 D �1. Using
it, we can easily modify (8.1) to incorporate the required permutation symmetry as
[1, 13]

jˆ.N/i � AN
� OQ�


N=2 j0i: (8.4)

Here AN is a normalization constant and j0i is defined by (3.18). Indeed, the
corresponding wave function is obtained using (3.20) and (3.22),

ˆ.N/.
1; 
2; � � � ; 
N / � h
1; 
2; � � � ; 
N jˆ.N/i

D AN

2N=2
p
NŠ

X
OP
.�1/P�.
p1 ; 
p2 / � � ��.
pN�1 ; 
pN /; (8.5)

which is appropriately antisymmetrized.
Further, we consider a linear combination of (8.4) in terms of the number of

Cooper pairs to make it more convenient for statistical-mechanical calculations in
the grand canonical ensemble. The most convenient among various combinations
may be the exponential form, called the BCS wave function given by [13, 14]

jˆi � A
1X
nD0

� OQ�

n

nŠ
j0i D A exp

� OQ�


j0i; (8.6)

where A is the normalization constant and OQ� is defined by (8.3).
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Equation (8.6) represents an extension of Schrieffer’s homogeneous variational
wave function with isotropic s-wave symmetry to inhomogeneous cases with
arbitrary pairing symmetry (Problem 8.1). It has the advantages of (i) being able
to describe inhomogeneous superconductors and (ii) the phase coherence of the pair
condensation seen manifestly in the wave function. Moreover, (8.6) also includes
the coherent state (3.71) for BECs and laser beams [10, 15] as the limit where the
pair radius is smaller than the mean interparticle spacing (Problem 8.2). Thus, (8.6)
enables us to study the BEC and Cooper-pair condensation in a unified way.

8.2 Quasiparticle Field for Excitations

Suppose that the ground state is given by (8.6). What kind of excitations may
be possible then? Here, we derive the Bogoliubov–Valatin operators that describe
excitations and clarify their properties. They are given by (8.13) and (8.14) below
and satisfy (i) (8.12) that specifies BCS wave function jˆi as the vacuum of the
excitations and (ii) fermionic commutation relation (8.18). Fields such as O� of
(8.13), which have properties similar to O for real particles, are generally called
quasiparticle fields.

Let us begin with mathematical preliminaries. First, the annihilation operator
O .
/ satisfies the following commutation relations with (8.3):

� O .
/; OQ�
	

C D
Z

d
1�.
; 
1/ O �.
1/ � �.
; N
1/ O �. N
1/; (8.7)

�� O .
/; OQ�
	

C; OQ�
	
C D 0; (8.8)

� O .
/; g. OQ�/
	

C D
� O .
/; OQ�

	
C g

0. OQ�/; (8.9)

where Œ OA; OB�	 � OA OB � 	 OB OA .	 D ˙/, and g.x/ is a function that is analytic at
x D 0. To simplify the notation, we shall sometimes express an integration over a
variable by an overbar, as in (8.7). Those readers who are familiar with the Einstein
summation convention may ignore those bars when reading them. Equations (8.7)–
(8.9) can be easily proved as follows. First, (8.7) follows using (3.17) as

� O .
/; OQ�
	

C D
1

2
�. N
1; N
2/

� O .
/; O �. N
1/ O �. N
2/	C
D 1

2
�. N
1; N
2/

n� O .
/; O �. N
1/	� O �. N
2/ � O �. N
1/� O .
/; O �. N
2/	�
o

D �.
; N
2/ O �. N
2/ � �. N
1; 
/ O �. N
1/
2

D �.
; N
2/ O �. N
2/:

Here the second equality is easily seen to hold by expanding the anticommutator
in the curly brackets. The last expression is obtained from the preceding one by
changing integration variables as 
1 ! 
2 and using (8.2). Second, (8.8) is seen to
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hold by noting that the right-hand side of (8.7) is given in terms of O � alone and so
is OQ�. Third, we can prove (8.9) using (8.8) by

� O .
/; g. OQ�/
	

C D
1X
nD0

g.n/.0/

nŠ

� O .
/; . OQ�/n
	
C

D
1X
nD1

g.n/.0/

nŠ

n�1X
`D0
. OQ�/`

� O .
/; OQ�
	

C. OQ�/n�1�`

D � O .
/; OQ�
	

C
1X
nD1

g.n/.0/

nŠ
n. OQ�/n�1 D � O .
/; OQ�

	
C g

0. OQ�/;

where the second equality may be confirmed by writing the expression after the
equality sign without commutators for n D 2; 3.

Next, we consider 
1 and 
2 in �.
1; 
2/ as row and column indices to introduce
a matrix � � .�.
1; 
2//; its Hermitian conjugate is given by �� � .��.
2; 
1//.
Accordingly, we define the unit matrix by 1 � .ı.
1; 
2//. With this notation,
(8.2) implies that the matrix � is antisymmetric as �T D ��, where T denotes
the transpose. Using � and 1, we introduce a couple of new matrices u and v by [14]

u � .1C � ��/�1=2; v � .1C � ��/�1=2�; (8.10)

which satisfy

u D u�; v D �vT; u uC v v� D 1; u v D v u�: (8.11)

The first two identities in (8.11) result from (8.2) and (8.10). The third identity is an
extension of the identity Œg.x/�2 C g.x/x2g.x/ D 1 for the scalar function g.x/ �
.1C x2/�1=2 to the matrix argument using the Taylor expansion of g.x/ at x D 0,
as also for the fourth identity. Thus, u is Hermitian, whereas v is antisymmetric.
It turns out that v may be regarded as an effective condensate wave function, as
discussed around (8.47) below.

We are now ready to derive a field operator that describes excitations. Let us
operate O .
/ on (8.6) and rearrange the resulting expression using (3.18), (8.9),
and (8.7) successively as

O .
/jˆi D A� O .
/; e OQ�	
Cj0i CAe OQ� O .
/j0i D � O .
/; OQ�

	
CAe OQ� j0i

D �.
; N
2/ O �. N
2/jˆi:
Next, we multiply this equation by u.
1; 
/ from the left, integrate over 
, and use
(8.10) to obtain u.
1; N
/ O . N
/jˆi � v.
1; N
2/ O �. N
2/jˆi D 0. Thus, we have derived
a new field operator that satisfies

O�.
1/jˆi D 0; (8.12)
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in the form

O�.
1/ � u.
1; N
2/ O . N
2/ � v.
1; N
2/ O �. N
2/: (8.13)

This is a direct extension of the Bogoliubov–Valatin operator for homogeneous
systems [4, 5, 18] to inhomogeneous situations [14]. According to (8.12), we may
characterize the BCS wave function (8.6) as the “vacuum of quasiparticles” in the
same terminology as used below (3.59). However, it should be noted that jˆi is
occupied by particles and should be distinguished clearly from the vacuum state j0i
of (3.18) with no particles. The Hermitian conjugate of (8.13) reads

O��.
1/ D �v�.
1; N
2/ O . N
2/C u�.
1; N
2/ O �. N
2/: (8.14)

Further, (8.13) and (8.14) may be expressed concisely in terms of matrices in (8.10),

� O�
O��
�
D
�

u v

�v� �u�
� � O 
� O �

�
: (8.15)

The inverse transformation is

� O 
� O �

�
D
�

u v

�v� �u�
� � O�
O��
�
; (8.16)

which is confirmed by substituting (8.15) into the right-hand side of (8.16) and
subsequently using (8.11). Equation (8.16) can be written explicitly as


 O .
1/ D u.
1; N
2/ O�. N
2/C v.
1; N
2/ O��. N
2/;
O �.
1/ D v�.
1; N
2/ O�. N
2/C u�.
1; N
2/ O��. N
2/ : (8.17)

The quasiparticle field O� satisfies the commutation relations for fermions:

Œ O�.
/; O��.
 0/�� D ı.
; 
 0/; Œ O�.
/; O�.
 0/�� D 0; (8.18)

as shown by substituting (8.15) into (8.18) and using (3.17) and (8.11).

8.3 Bogoliubov–de Gennes Equations

For the state (8.6) to be realized, it is necessary for its free energy to be lower than
that of the normal state for a given set of independent thermodynamic variables.
It has been established for single-element superconductors like Hg and Pb that
phonons are responsible for the effective attraction that causes superconductivity.
However, thermodynamic properties of “weak-coupling” superconductors do not
depend on this source of attraction at all. Hence, we adopt Hamiltonian (6.4), i.e.,
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OH �
Z

d
1 O �.
1/ OK1
O .
1/

C1
2

Z
d
1

Z
d
2V .jr1 � r2j/ O �.
1/ O �.
2/ O .
2/ O .
1/; (8.19)

with

OK1 � Op
2
1

2m
CU .r1/ � �; (8.20)

in studying superconductivity. To be more specific, we here assume that the
interaction potential V .jr1� r2j/ has some attractive part to derive the fundamental
mean-field equations of superconductivity; that is, the BdG equations. This will
be performed by two different methods. The first is based on the variational
principle (6.3), whereas the second relies on a self-consistent Wick decomposition
technique. Both methods yield an identical set of equations.

The main results are summarized as follows. The BdG equation is given
by (8.38), where the operators in it are defined by (8.34)–(8.36) with (8.29)
and (8.30). It forms an Hermitian eigenvalue problem, whose eigenfunctions satisfy
the orthonormality and completeness given in (8.44) and (8.45). This eigenvalue
problem has a particle-hole symmetry given by (8.43). With this fact, we only need
to calculate states with Eq � 0 in (8.38). Equations (8.34), (8.35), and (8.38) form a
closed set of self-consistency equations, which for vq ! 0 reduces to the Hartree–
Fock equations (6.12) and (6.13).

8.3.1 Derivation Based on Variational Principle

First, we derive the BdG equations based on the variational principle (6.3), i.e.,

�Œ O�� � Tr O� . OH C ˇ�1 ln O�/ � �eq; (8.21)

where �eq is the exact thermodynamic potential. We have already used it in
Sect. 6.2.1 to obtain the Hartree–Fock equations by choosing the density matrix as
(6.5). The same procedure is followed here, with a key difference being that the
quasiparticle field O�.
/ now takes the place of O .
/ because of (8.12).

To be specific, let us write the variational density matrix in the ideal-gas form in
terms of quasiparticles:

O� D exp

"
ˇ

 
�0 �

X
q

Eq O��q O�q
!#

; �0 � � 1
ˇ

X
q

ln
�
1C e�ˇEq � : (8.22)

Here Eq � 0 is a variational parameter that denotes an excitation energy from the
“vacuum” (8.6), and the operator O�q is defined through the formal expansion of O�.
/
in terms of eigenfunctions f'q.
/g,
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O�.
/ D
X
q

O�q'q.
/: (8.23)

Using (8.18) and assuming that f'q.
/g forms an orthonormal set, one can show
that O�q obeys the commutation relations:

� O�q; O��q0

	
� D ıqq0 ;

� O�q; O�q0

	
� D 0: (8.24)

We use the variational density matrix (8.22) for the system described by
Hamiltonian (8.19) to evaluate the grand potential (8.21). A couple of key points
for performing this are summarized as follows. First, it follows from (8.22) that the
entropy, S � �kBTr O� ln O� D �kB hln O�i, is given in terms of the mean occupation
number Nnq � h O��q O�qi as

S D �kBˇ

 
�0 �

X
q

Eq Nnq
!
D kB

X
q

��Nnq ln Nnq � .1 � Nnq/ ln.1� Nnq/
	
;

(8.25)

in exactly the same form as in (6.7) for the Hartree–Fock theory. Second, the Bloch–
De Dominicis theorem (5.11) also holds true for the present density matrix (8.22).
Hence, the expectation of the four field operators in the interaction can be evaluated
by the Wick decomposition procedure into a form that extends (5.18) for the normal
state,

�.2/.
1; 
2I 
1; 
2/ � h O �.
1/ O �.
2/ O .
2/ O .
1/i
D h PO �.
1/ RO �.
2/ RO .
2/ PO .
1/i C h PO �.
1/ RO �.
2/ PO .
2/ RO .
1/i
C h PO �.
1/ PO �.
2/ RO .
2/ RO .
1/i

D h O �.
1/ O .
1/ih O �.
2/ O .
2/i � h O �.
1/ O .
2/ih O �.
2/ O .
1/i
C h O �.
1/ O �.
2/ih O .
2/ O .
1/i: (8.26)

The third term in the final expression is the expectation that characterizes super-
conductivity. Indeed, each of O and O � in (8.17) is given as a linear combination
of O� and O�� so that the density matrix (8.22) yields finite expectations not only for
h O �.
2/ O .
1/i but also for h O .
2/ O .
1/i. Specifically, they are expressible in terms
of averages

h O��q O�q0i D ıqq0

eˇEq C 1 � ıqq0 Nnq; h O�q O��q0i D ıqq0.1 � Nnq/; (8.27)

and new functions

uq.
1/ � u.
1; N
2/'q. N
2/; vq.
1/ � v�.
1; N
2/'q. N
2/; (8.28)
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concisely as

�.1/.
1; 
2/ � h O �.
2/ O .
1/i D �.1/�.
2; 
1/
D
X
q

�
uq.
1/u

�
q .
2/ Nnq C v�

q .
1/vq.
2/.1 � Nnq/
	
; (8.29)

Q�.1/.
1; 
2/ � h O .
1/ O .
2/i D � Q�.1/.
2; 
1/

D
X
q

�
uq.
1/v

�
q .
2/� v�

q .
1/uq.
2/
	 �1
2
� Nnq

�
: (8.30)

They can be derived by substituting (8.17) into the defining expressions, expanding
the quasiparticle field as in (8.23), and using (8.27) and (8.28) to express the
quasiparticle expectations in terms of Nnq . For example, (8.29) obtains from

h O �.
2/ O .
1/i
D hŒu�.
2; N
4/ O��. N
4/C v�.
2; N
4/ O�. N
4/�Œu.
1; N
3/ O�. N
3/C v.
1; N
3/ O��. N
3/�i
D u�.
2; N
4/u.
1; N
3/h O��. N
4/ O�. N
3/i C v�.
2; N
4/v.
1; N
3/h O�. N
4/ O��. N
3/i
D
X
qq0

�
u�.
2; N
4/u.
1; N
3/'�

q0. N
4/'q. N
3/h O��q0 O�qi

Cv�.
2; N
4/v.
1; N
3/'q0. N
4/'�
q .
N
3/h O�q0 O��q i

	
D
X
q

�
uq.
1/u

�
q .
2/ Nnq C v�

q .
1/vq.
2/.1 � Nnq/
	
:

Equation (8.30) has been derived similarly but involves an additional step that uses
the completeness of f'qg and (8.11) to transform

P
q uq.
1/v�

q .
2/ as

X
q

uq.
1/v
�
q .
2/ D u.
1; N
3/v.
2; N
4/

X
q

'q. N
3/'�
q .
N
4/

D u.
1; N
3/v.
2; N
4/ı. N
3; N
4/ D u.
1; N
3/v.
2; N
3/ D �u.
1; N
3/v. N
3; 
2/
D �v.
1; N
3/u�. N
3; 
2/ D �v.
1; N
3/u.
2; N
3/
D �v.
1; N
3/u.
2; N
4/ı. N
3; N
4/ D �v.
1; N
3/u.
2; N
4/

X
q

'�
q .
N
3/'q. N
4/

D �
X
q

v�
q .
1/uq.
2/ D

X
q

uq.
1/v�
q .
2/� v�

q .
1/uq.
2/

2
: (8.31)

The resulting expression (8.30) has the advantage that antisymmetry Q�.1/.
1; 
2/ D
� Q�.1/.
2; 
1/ arising from the commutation relation of O .
1/ and O .
2/ is manifest.
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We are now ready to write down the grand potential (8.21) for Hamiltonian (8.19)
evaluated by (8.22). Indeed, we can re-express (8.21) using (8.25), (8.26), (8.29),
and (8.30),

�Œ O�� D
Z

d
1 OK1�
.1/.
1; 
2/

ˇ̌

2D
1 C

1

2

Z
d
1

Z
d
2V .jr1 � r2j/

�
�.1/.
1; 
1/

� �.1/.
2; 
2/ � �.1/.
2; 
1/�.1/.
1; 
2/C Q�.1/�.
2; 
1/ Q�.1/.
2; 
1/
�

� 1
ˇ

X
q

��Nnq ln Nnq � .1 � Nnq/ ln.1 � Nnq/
	
; (8.32)

where we have used Q�.1/�.
2; 
1/ D h O .
2/ O .
1/i� D h O �.
1/ O �.
2/i. Equa-
tion (8.32) contains an additional contribution Q�.1/ compared with (6.8) in the
Hartree–Fock approximation. Moreover, the expression for �.1/ changes from that
in (6.9) into (8.29) using uq and vq .

Next, we minimize (8.32) with respect to variational parameters fEqg. To this
end, we note that (8.32) depends onEq only through Nnq , as seen from (8.27), (8.29),
and (8.30). Hence, the minimization with respect to Eq is equivalent to that for Nnq ,
the necessary condition for which becomes

0 D ı�Œ O��
ı Nnq

D
Z

d
1
h
u�
q .
1/

OK1uq.
1/� vq.
1/ OK1v
�
q .
1/

i
C
Z

d
1

Z
d
2V .jr1 � r2j/

�

�juq.
1/j2 � jvq.
1/j2	�.1/.
2; 
2/�

h
u�
q .
1/uq.
2/� vq.
1/v�

q .
2/
i

� �.1/.
1; 
2/ � 1
2

h
uq.
2/v

�
q .
1/� v�

q .
2/uq.
1/
i
Q�.1/�.
2; 
1/

� 1
2

h
u�
q .
2/vq.
1/� vq.
2/u�

q .
1/
i
Q�.1/.
2; 
1/

�
� 1

ˇ
ln
1 � Nnq
Nnq

D
Z

d
1
h
u�
q .
1/

OK1uq.
1/� v�
q .
1/

OK �
1 vq.
1/

i

C
Z

d
1

Z
d
2

n
UHF.
1; 
2/

h
u�
q .
1/uq.
2/� vq.
1/v�

q .
2/
i

���.
1; 
2/v�
q .
1/uq.
2/C�.
1; 
2/u�

q .
1/vq.
2/
o
�Eq: (8.33)

In the last equality, we have performed integration by parts twice in terms of
the operator (8.20) to change vq.
1/ OK1v

�
q .
1/ !

� OK �
1 vq.
1/�v

�
q .
1/, and also

simplified the expression using the Hartree–Fock potential and pair potential
defined by
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UHF.
1; 
2/ D U �
HF.
2; 
1/

� ı.
1; 
2/
Z

d
3V .jr1 � r3j/�.1/.
3; 
3/ � V .jr1 � r2j/�.1/.
1; 
2/; (8.34)

�.
1; 
2/ D ��.
2; 
1/ � �V .jr1 � r2j/ Q�.1/.
1; 
2/; (8.35)

respectively. In the latter, we have also used a change of variables 
1 $ 
2 and
antisymmetry �.
1; 
2/ D ��.
2; 
1/ to express the terms with �.
1; 
2/ and
��.
1; 
2/ as

1

2
�. N
2; N
1/

h
u�
q .
N
2/vq. N
1/� vq. N
2/u�

q .
N
1/
i
D �. N
1; N
2/u�

q .
N
1/vq. N
2/:

Introducing the operator

KHF.
1; 
2/ DK �
HF.
2; 
1/ � OK1ı.
1; 
2/CUHF.
1; 
2/ (8.36)

in terms of (8.20) and (8.34), we can write (8.33) concisely as

Z
d
1

Z
d
2

h
u�
q .
1/ v

�
q .
1/

i�KHF.
1; 
2/ �.
1; 
2/

���.
1; 
2/ �K �
HF.
1; 
2/

��
uq.
2/
vq.
2/

�
D Eq:

(8.37)
ParameterEq and functions uq.
1/ and vq.
1/ that obey this equality can be obtained
by solving the eigenvalue problem,

Z
d
2

�
KHF.
1; 
2/ �.
1; 
2/

���.
1; 
2/ �K �
HF.
1; 
2/

� �
uq.
2/
vq.
2/

�
D Eq

�
uq.
1/
vq.
1/

�
; (8.38)

with normalization,

Z
d
1

hˇ̌
uq.
1/

ˇ̌2 C ˇ̌vq.
1/ˇ̌2
i
D 1: (8.39)

That (8.38) with normalization (8.39) satisfies (8.37) is seen by multiplying (8.38)
by the row vector Œu�

q .
1/ v
�
q .
1/� from the left and performing an integration over 
1.

Equation (8.38) was derived by de Gennes by extending Bogoliubov’s quasiparticle
method developed for homogeneous systems [4, 5] to inhomogeneous systems
[6, 8], and hence are generally referred to as the Bogoliubov–de Gennes (BdG)
equations.1 They form the basic mean-field equations of superconductivity.

The properties of (8.38) are summarized as follows. First, the matrix operator
on its left-hand side is Hermitian; this follows from the properties of the matrices
K HF � .KHF.
1; 
2// DK

�
HF and � � .�.
1; 
2// D ��T,

1It should be noted, however, that the same equations had been derived by Andreev [2]. In addition,
they have the same content as the Gor’kov equations derived previously in 1959 [11], which will
be discussed in Sect. 14.2.
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�
K HF �

��� �K �
HF

��
D
"
K

�
HF ��T

�� �K T
HF

#
D
�
K HF �

��� �K �
HF

�
: (8.40)

Hence, its eigenvalues fEqg are real. Second, one can show that the matrix operator
also satisfies

	x

�
K HF �

��� �K �
HF

��
	x D �

�
K HF �

��� �K �
HF

�
; (8.41)

where 	x is the x element of the Pauli matrices; for later purposes, we present it here
together with the others that form the complete orthonormal set of 2 � 2 matrices:

	0 D
�
1 0

0 1

�
; 	x D

�
0 1

1 0

�
; 	y D

�
0 �i
i 0

�
; 	 z D

�
1 0

0 �1
�
: (8.42)

Using the symmetry relation (8.41), one can show that the BdG equation has
a crucial property called particle-hole symmetry. To be specific, let us take the
complex conjugate of (8.38), operate 	x from the left, and insert the unit matrix
	2x between the matrix operator and eigenvector,

	x

�
K HF �

��� �K �
HF

��
	x	x

�
uq
vq

��
D Eq	x

�
uq
vq

��
:

Simplifying using (8.41) yields

�
K HF �

��� �K �
HF

� "
v�
q

u�
q

#
D �Eq

"
v�
q

u�
q

#
;

which may be combined with (8.38) to form a single matrix equation,

�
K HF �

��� �K �
HF

�"
uq v�

q

vq u�
q

#
D
"

uq v�
q

vq u�
q

#�
Eq 0

0 �Eq
�
: (8.43)

This equation implies that, once an eigenvalue Eq � 0 and its eigenfunction
Œuq vq�T are obtained, the rearranged vector Œv�

q u�
q �

T naturally forms an eigenstate
that belongs to �Eq . Thus, the eigenvalues of the BdG equations are distributed
symmetrically with respect to 0, and those satisfyingEq � 0 represent the excitation
energies.

Stated in this matrix form, the orthonormality and completeness of the eigen-
functions of (8.38) are

Z
d


"
u�
q0.
/ v

�
q0.
/

vq0.
/ uq0.
/

#"
uq.
/ v�

q .
/

vq.
/ u�
q .
/

#
D
�
ıq0q 0

0 ıq0q

�
; (8.44)
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X
q

(�
uq.
1/
vq.
1/

�h
u�
q .
2/ v

�
q .
2/

i
C
"
v�
q .
1/

u�
q .
1/

#�
vq.
2/ uq.
2/

	) D
�
ı.
1; 
2/ 0

0 ı.
1; 
2/

�
;

(8.45)

respectively. The off-diagonal elements in (8.44) result from the orthogonality of
the wave functions belonging to different eigenvalues˙Eq . Note also that the first-
row elements of (8.45) are equivalent to u u C v v� D 1 and u v D v u� in (8.11),
respectively. For example, the first statement can be proved by noting (8.28) and
assuming completeness for f'qg; that is,

ı.
1; 
2/ D
X
q

h
uq.
1/u

�
q .
2/C v�

q .
1/vq.
2/
i

D u.
1; N
3/u�.
2; N
4/
X
q

'q. N
3/'�
q .
N
4/C v.
1; N
3/v�.
2; N
4/

X
q

'�
q .
N
3/'q. N
4/

D u.
1; N
3/u�.
2; N
3/C v.
1; N
3/v�.
2; N
3/
D u.
1; N
3/u. N
3; 
2/C v.
1; N
3/v�. N
3; 
2/: (8.46)

Thus, the basic properties of the BdG equations have been established. As potentials
in (8.34) and (8.35) contain the eigenstates to be obtained as seen in (8.29)
and (8.30), (8.38) should be solved self-consistently until convergence is attained.

Although the topic may be rather academic, it is worth pointing out that we can
construct matrices u � .u.
1; 
2// and v � .v.
1; 
2// from the eigenfunctions of
(8.38). First, one establishes equalities:

X
q

uq.
1/u
�
q .
2/ D u.
1; N
3/u. N
3; 
2/; �

X
q

uq.
1/v
�
q .
2/ D u.
1; N
3/v. N
3; 
2/;

in the same way as (8.46). Thus, we obtain u u from the left-hand side of the
first equation, which is subsequently used to find u D .u u/1=2. Additionally, the
second equality enables us to construct v by multiplying u�1 from the left of
�Pq uq.
1/v�

q .
2/. Pair wave function � can then be constructed based on (8.10)
by � D u�1v. Matrix v may be regarded as an effective condensate wave function.
Indeed, we can express the one-particle density matrix (8.29) in a manner similar to
(8.46),

�.1/.
1; 
2/ D
Z

d
3v.
1; 
3/v�.
2; 
3/C
X
q

�
uq.
1/u

�
q .
2/� v�

q .
1/vq.
2/
	 Nnq;
(8.47)

from which the total particle numberN is obtained,

N D
Z

d
1�
.1/.
1; 
1/: (8.48)
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Thus, we realize that, at T D 0 where Nnq D 0 holds, all the particles are in the two-
particle bound state described by the effective condensate wave function v.
1; 
2/.

Finally, we can use (8.38) to simplify the expression for the grand potential (8.32)
in equilibrium,

�BdG D � 1
ˇ

X
q

ln
�
1C e�ˇEq �CX

q

Z
d
1

Z
d
2

�
vq.
1/KHF.
1; 
2/v

�
q .
2/

� 1
2

u�
q .
1/vq.
2/�.
1; 
2/ �

1

2
uq.
1/v

�
q .
2/�

�.
1; 
2/

� 1
2
�.1/.
1; 
2/UHF.
2; 
1/C 1

2
Q�.1/.
1; 
2/��.
1; 
2/

�
; (8.49)

following the procedure used in deriving (6.14).
In summary, we have obtained the basic equation, (8.38), that describes super-

conductivity together with the corresponding grand potential, (8.49). In the limit
vq ! 0, they reduce to (6.12)–(6.14) of the Hartree–Fock theory.

8.3.2 Derivation Based on Wick Decomposition

We now derive the BdG equations in an alternative manner based on the Wick
decomposition procedure used in deriving the Hartree–Fock equations in Sect. 6.2.2.
Indeed, this is the method de Gennes used in his derivation [8].

First, (6.15) is generalized here to include the contribution of the anomalous pair
expectations,

O �1 O �2 O 2 O 1 ! O �1 O 1h O �2 O 2i C h O �1 O 1i O �2 O 2 � h O �1 O 1ih O �2 O 2i
� O �1 O 2h O �2 O 1i � h O �1 O 2i O �2 O 1 C h O �1 O 2ih O �2 O 1i
C O �1 O �2 h O 2 O 1i C h O �1 O �2 i O 2 O 1 � h O �1 O �2 ih O 2 O 1i: (8.50)

Let us adopt this in (8.19) and use (8.34)–(8.36) to approximate OH by the mean-
field Hamiltonian:

OHMF � O �. N
1/KHF. N
1; N
2/ O . N
2/C 1

2
O �. N
1/ O �. N
2/�. N
1; N
2/

� 1
2
O . N
1/ O . N
2/��. N
1; N
2/� 1

2
UHF. N
1; N
2/�.1/. N
2; N
1/

C 1

2
Q�.1/. N
1; N
2/��. N
1; N
2/: (8.51)
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We then use the commutation relation for O and symmetry in (8.36) to convert the
term with KHF to

O �. N
1/KHF. N
1; N
2/ O . N
2/ D KHF. N
1; N
2/ O �. N
1/ O . N
2/
D K �

HF.
N
2; N
1/

h
ı. N
1; N
2/� O . N
2/ O �. N
1/

i

D KHF. N
1; N
2/ı. N
1; N
2/ � O . N
2/K �
HF.
N
2; N
1/ O �. N
1/

D 1

2

�
O �. N
1/KHF. N
1; N
2/ O . N
2/CKHF. N
1; N
2/ı. N
2; N
1/

� O . N
1/K �
HF.
N
1; N
2/ O �. N
2/

�
:

Equation (8.51) is then written

OHMF D 1

2

h O �. N
1/ O . N
1/
i �KHF. N
1; N
2/ �. N
1; N
2/
���. N
1; N
2/ �K �

HF.
N
1; N
2/

� � O . N
2/
O �. N
2/

�

C 1

2
KHF. N
1; N
2/ı. N
2; N
1/� 1

2
UHF. N
1; N
2/�.1/. N
2; N
1/

C 1

2
Q�.1/. N
1; N
2/��. N
1; N
2/: (8.52)

The last three terms on the right-hand side are constants. In contrast, the first term
has a bilinear form with respect to O � and O ; its 2� 2 matrix is Hermitian as shown
in (8.40). Hence, we can diagonalize it given the expansions

� O .
/
O �.
/

�
D
X
q

"
uq.
/ v�

q .
/

vq.
/ u�
q .
/

#"
O�q
O��q

#
; (8.53)

h O �.
/ O .
/i DX
q

h
O��q O�q

i "u�
q .
/ v

�
q .
/

vq.
/ uq.
/

#
; (8.54)

and using (8.43) and (8.44),

1

2

h O �. N
1/ O . N
1/
i�KHF. N
1; N
2/ �. N
1; N
2/
���. N
1; N
2/�K �

HF.
N
1; N
2/

�� O . N
2/
O �. N
2/

�

D 1

2

X
q

h O �. N
1/ O . N
1/
i�KHF. N
1; N
2/ �. N
1; N
2/
���. N
1; N
2/�K �

HF.
N
1; N
2/

�"
uq. N
2/v�

q .
N
2/

vq. N
2/ u�
q .
N
2/

#"
O�q
O��q

#

D 1

2

X
q0q

h
O��q0 O�q0

i"u�
q0. N
1/v�

q0. N
1/
vq0. N
1/uq0. N
1/

#"
uq. N
1/v�

q .
N
1/

vq. N
1/ u�
q .
N
1/

#�
Eq 0

0 �Eq
�" O�q
O��q

#
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D 1

2

X
q

h
O��q O�q

i�
Eq 0

0 �Eq
�" O�q
O��q

#
D 1

2

X
q

�
Eq O��q O�q � Eq O�q O��q




D
X
q

Eq O��q O�q �
1

2

X
q

Eq: (8.55)

The second term in the final expression is divergent. Combining it with the second
term in (8.52) and using (8.38), (8.44), and (8.45), we obtain

1

2
KHF. N
1; N
2/ı. N
2; N
1/� 1

2

X
q

Eq

D 1

2
KHF. N
1; N
2/

X
q

h
uq. N
2/u�

q .
N
1/C v�

q .
N
2/vq. N
1/

i

� 1
2

X
q

h
u�
q .
N
1/ v�

q .
N
1/
i�KHF. N
1; N
2/ �. N
1; N
2/
���. N
1; N
2/ �K �

HF.
N
1; N
2/

��
uq. N
2/
vq. N
2/

�

D
X
q

�
vq. N
1/KHF. N
1; N
2/v�

q .
N
2/� 1

2
u�
q .
N
1/�. N
1; N
2/vq. N
2/

� 1
2

uq. N
1/��. N
1; N
2/v�
q .
N
2/
�
; (8.56)

where we have used KHF.
1; 
2/DK �
HF.
2; 
1/ and ��.
1; 
2/D���.
2; 
1/ and

also performed a change of variables for the last equality. Using (8.55) and (8.56),
we can expand (8.52) as

OHMF D
X
q

�
Eq O��q O�q C vq. N
1/KHF. N
1; N
2/v�

q .
N
2/ � 1

2
u�
q .
N
1/�. N
1; N
2/vq. N
2/

� 1
2

uq. N
1/��. N
1; N
2/v�
q .
N
2/
�
� 1
2
UHF. N
1; N
2/�.1/. N
2; N
1/

C 1

2
Q�.1/. N
1; N
2/��. N
1; N
2/: (8.57)

This expression and (8.25) are used to estimate h OHMFi � TS. We thereby reproduce
(8.49) for the grand potential. Thus, the BdG formalism has also been derived by
the Wick decomposition procedure.

8.3.3 Matrix Representation of Spin Variables

It is convenient for practical purposes to express every spin variable in (8.38)
separately as a matrix.
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Specifically, let us introduce the pair of vectors

uq.r/ �
�

uq.r"/
uq.r#/

�
; vq.r/ �

�
vq.r"/
vq.r#/

�
; (8.58)

where " and # represent ˛ D 1=2 and ˛ D �1=2, respectively. Accordingly,
the one-particle density matrices (8.29) and (8.30) are transformed into the 2 � 2
matrices:

�.1/.r1; r2/ D
�
�.1/.r2; r1/

	� �X
q

�
uq.r1/u�q.r2/ Nnq C v�

q .r1/v
T
q .r2/.1 � Nnq/

	
;

(8.59)

Q�.1/.r1; r2/ D �
� Q�.1/.r2; r1/	T �

X
q

�
uq.r1/v�q.r2/� v�

q .r1/u
T
q .r2/

	 �1
2
� Nnq

�
:

(8.60)

Indeed, each term on the right are all composed of dyadics, i.e., direct products of
2 � 1 and 1 � 2 vectors forming a 2 � 2 matrix. The self-consistent potentials in
(8.34) and (8.35) are also expressible as 2 � 2 matrices,

U HF.r1; r2/ D U �
HF.r2; r1/ � 	0ı.r1; r2/

Z
d3r3V .jr1 � r3j/Tr �.1/.r3; r3/

� V .jr1 � r2j/ �.1/.r1; r2/; (8.61)

�.r1; r2/ D ��T.r2; r1/ � �V .jr1 � r2j/ Q�.1/.r1; r2/; (8.62)

where 	0 is the 2�2 unit matrix, given in (8.42), and Tr denotes the trace. Similarly,
the Hartree–Fock operator (8.36) becomes

K HF.r1; r2/ �
� Op21
2m
CU .r1/� �

�
ı.r1; r2/	0 CU HF.r1; r2/: (8.63)

With this notation, (8.38) reads

Z
d3r2

�
K HF.r1; r2/ �.r1; r2/
���.r1; r2/�K �

HF.r1; r2/

��
uq.r2/
vq.r2/

�
D Eq

�
uq.r1/
vq.r1/

�
; (8.64)

with
Z �juq.r/j2 C jvq.r/j2	 d3r D 1: (8.65)
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We only need to consider states with Eq � 0 in consequence of the particle-hole

symmetry (8.43). Indeed, the eigenstate with �Eq is given by
h
v�q.r/ u�q.r/

iT
in

terms of uq and vq above with Eq .
With (8.58)–(8.63), the grand potential (8.49) in equilibrium now becomes

�BdG D � 1
ˇ

X
q

ln
�
1C e�ˇEq �CX

q

Z
d3r1

Z
d3r2

�
vT
q .r1/K HF.r1; r2/v

�
q .r2/

C 1

2
Tr u�

q .r1/v
T
q .r2/�.r2; r1/C

1

2
Tr uq.r1/v�q.r2/�

�.r2; r1/

� 1
2

Tr �.1/.r1; r2/U HF.r2; r1/�
1

2
Tr Q�.1/.r1; r2/��.r2; r1/

�
: (8.66)

Finally, the particle number (8.48) is rewritten given the one-particle density matrix
of (8.59),

N D
Z

d3r Tr �.1/.r; r/: (8.67)

8.3.4 BdG Equations for Homogeneous Cases

When the system is homogeneous with no external potential (U D 0), we can
simplify the BdG equations considerably.

Adopting periodic boundary conditions, a quasiparticle eigenstate q can be
specified with a wave vector k and spin index Q̨ D 1; 2 as q � k Q̨ , where Q̨ is
generally some linear combination of ˛ D";#. The corresponding eigenfunction
can be expressed as a plane wave,

�
uk Q̨.r/
vk Q̨.r/

�
D 1p

V
eik�r

�
u Q̨.k/
v Q̨.k/

�
: (8.68)

Substituting this expression into (8.59) and (8.60), we obtain expansions of the one-
particle density matrices

�.1/.r1; r2/ D 1

V

X
k

�.1/.k/ eik�.r1�r2/; (8.69)

Q�.1/.r1; r2/ D 1

V

X
k

Q�.1/.k/ eik�.r1�r2/; (8.70)

with

�.1/.k/ D
h
�.1/.k/

i� DX
Q̨

�
u Q̨.k/u�Q̨.k/ Nnk Q̨ C v�

Q̨.�k/vT
Q̨.�k/.1 � Nn�k Q̨/

	
;

(8.71)
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Q�.1/.k/ D �
h
Q�.1/.�k/

iT

D
X

Q̨

�
u Q̨.k/v�Q̨.k/

�
1

2
� Nnk Q̨

�
� v�

Q̨.�k/uT
Q̨.�k/

�
1

2
� Nn�k Q̨

��
: (8.72)

Next, we substitute (6.18), (8.69), and (8.70) into (8.61) and (8.62) to expand the
self-consistent potentials as

U HF.r1; r2/ D
1

V

X
k

U HF.k/ eik�.r1�r2/; (8.73)

�.r1; r2/ D 1

V

X
k

�.k/ eik�.r1�r2/; (8.74)

with

U HF.k/ D U
�
HF.k/ D

1

V

X
k0

h
	0V0Tr �.1/.k0/� Vjk�k0j �.1/.k0/

i
; (8.75)

�.k/ D ��T.�k/ D � 1
V

X
k0

Vjk�k0 j Q�.1/.k0/: (8.76)

It also follows from (6.18) and (8.73) that the Hartree–Fock operator (8.63) with
U D 0 is expressible as

K HF.r1; r2/ D
1

V

X
k

K HF.k/ eik�.r1�r2/; (8.77)

with

K HF.k/ �
�„2k2
2m
� �

�
	0 CU HF.k/: (8.78)

Substituting (8.68), (8.74), and (8.77) into (8.64) and performing the integration, we
thereby obtain the BdG equation for homogeneous systems,

�
K HF.k/ �.k/
���.�k/ �K �

HF.�k/

� �
u Q̨.k/
v Q̨.k/

�
D E Q̨.k/

�
u Q̨.k/
v Q̨.k/

�
; (8.79)

with

ˇ̌
u Q̨.k/

ˇ̌2 C ˇ̌v Q̨.k/
ˇ̌2 D 1: (8.80)

Equation (8.79) constitutes an eigenvalue problem of a 4 � 4 matrix, which may be
solved without much difficulty. However, the potentials in the 4 � 4 space are given
by (8.75) and (8.76) in terms of the one-particle density matrices (8.71) and (8.72),
which include the eigenvalues E Q̨.k/ � 0 and eigenfunctions

�
uT

Q̨.k/ vT
Q̨.k/

	T
to be
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obtained. Thus, (8.75), (8.76), and (8.79) have to be solved self-consistently until
convergence is reached. Finally, from (8.43), the eigenvector of (8.79) belonging to
�E Q̨.k/ is given by

�
v�Q̨.�k/ u�Q̨.�k/

	T
.

The grand potential (8.66) is also simplified using (8.68)–(8.70), (8.73), (8.74),
and (8.77), and then performing the integration,

�BdG D
X
k Q̨



� 1
ˇ

ln
�
1C e�ˇE Q̨ .k/

	C vT
Q̨.�k/K HF.k/v

�
Q̨.�k/

C 1

2
Tr u�

Q̨.k/v
T
Q̨.k/�.�k/C 1

2
Tr u Q̨.k/v�Q̨.k/�

�.�k/

� 1
2

Tr �.1/.k/U HF.k/ �
1

2
Tr Q�.1/.k/��.�k/

�
: (8.81)

It follows from (8.67) and (8.69) that the particle number N is expressible in terms
of (8.71) as

N D
X

k

Tr �.1/.k/: (8.82)

8.4 Expansion of Pairing Interaction

8.4.1 Isotropic Cases

Equation (8.76) for homogeneous systems is called the gap equation, which for
isotropic cases can be simplified further.

First, the Fourier component Vjk�k0j is expanded as a harmonic series

Vjk�k0 j D
1X
`D0

V`.k; k
0/
X̀
mD�`

4�Y`m. Ok/Y �̀
m.
Ok0/; (8.83)

where Ok � k=k is a unit vector, and Y`m. Ok/ are the spherical harmonic functions
[3, 9]; adopting polar coordinates Ok D .sin �k cos'k; sin �k sin 'k; cos �k/, they are
defined as

Y`m. Ok/ D .�1/`
2``Š

s
.2`C 1/.`Cm/Š
4�.` �m/Š

1

.1 � z2/m=2
d`�m

dz`�m
.1 � z2/`

ˇ̌̌
ˇ
zDcos �k

eim'k :

(8.84)

They obey orthonormality conditions given with respect to an integration over solid
angle d�k

Z
d�k �

Z �

0

d�k sin �k

Z 2�

0

d'k; (8.85)
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as
Z

d�kY
�̀
0m0. Ok/Y`m. Ok/ D ı`0`ım0m: (8.86)

Moreover, Y`m obeys a sum rule in connection with the Legendre polynomialP`.x/
defined in (6.35) as [3, 9]

P`. Ok � Ok0/ D 4�

2`C 1
X̀
mD�`

Y`m. Ok/Y �̀
m.
Ok0/:

Indeed, (8.83) with this sum rule produces (6.51).
Substitution of (8.83) into (8.76) yields an expansion for�.k/

�.k/ D
1X
`D0

X̀
mD�`

�`m.k/
p
4�Y`m. Ok/; (8.87)

with

�`m.k/ D �
1

V

X
k0

V`.k; k
0/
p
4�Y �̀

m.
Ok0/ Q�.1/.k0/: (8.88)

In most cases, only a single ` is known to yield finite f�`m.k/g. Cases ` D 0; 1; 2

are called s-wave, p-wave, and d -wave pairing, respectively. Making a change
of integration variables k0 ! �k0 in (8.88) and using the symmetry (8.72) and
Y`m.�Ok0/ D .�1/`Y`m. Ok0/, we realize that �`m.k/ satisfies

�`m.k/ D .�1/`C1�T
`m.k/: (8.89)

The sum over k in (8.88) can be replaced by an integral as

1

V

X
k

D
Z

d3k

.2�/3
D
Z 1

�1
d"kN."k/

Z
d�k

4�
; (8.90)

where d�k is given by (8.85) and N."/ is the density of states per unit volume and
spin component defined by (7.21), which is further related to (4.17) by N.�/ D
D.�/=.2s C 1/V .

8.4.2 Anisotropic Cases

We discuss how the expansion (8.83) for isotropic systems may be generalized for
anisotropic systems; this part can be omitted completely for proceeding to later
chapters.
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Conduction electrons in a metal move in the lattice potential created by the
protons in the nucleus and the core electrons. Accordingly, Hamiltonian OH for
conduction electrons now commute only with those discrete symmetry operations
f ORg that keep the crystal structure invariant. They form the group G that maintain
OH invariant as OR OH OR�1 D OH . The symmetry operations relevant here are the

coset G=T of G by the translation subgroup T , which coincides for simple crystal
structures with the point group [12, 16]. In many cases, the time-reversal operator
can also be added to these symmetry operations.

The one-particle energy "bk;˛ of the conduction electrons in zero magnetic field
may be specified by the wave vector k in the first Brillouin zone, “spin” index ˛,
and band index b. It satisfies OR"bk˛ D "bk˛ in the wave vector domain reflecting the
symmetry of OH .

Similarly, the interaction potential relevant to the pairing may also be written
in terms of state labels .k; ˛; b/ as Vkk0 for a single-band model with no spin
dependence or Vk˛b;k0˛0b0 for the most general situations. The first-principle cal-
culations for Vkk0 are generally difficult to perform, but we may assume that it is
Hermitian V �

kk0 D Vk0k and satisfies symmetry relations ORVkk0
OR�1 D Vkk0 . With

these properties, we can expand it as

Vkk0 D
X
�j �

V�j ��j � .k/ ��
�j � .k

0/; (8.91)

where V�j denotes the j th eigenvalue associated with the irreducible representation
� for G=T [12, 16] and ��j� .k/ is its � th eigenfunction, so that the transformed
basis OR��j� .k/ for any R 2 G=T can be expressed as a linear combination of the
bases f��j� 0.k/g� 0 within the same .�; j /. We remark that (8.83) is included as a
special case of (8.91) under the mapping � ! `, � ! m, ��j� !

p
4�Y`m; index

j can be removed for isotropic systems because there is only a single eigenvalue for
each `. For general cases, (8.91) should be modified with the replacement k! k˛b.

Similarly, (8.90) for the isotropic model is now replaced by

1

Na

X
k

D
Z

d3k

.2�/3
D
Z 1

�1
d"kN."k/

Z
dSk; (8.92)

where Na is the number of unit cells in the system,

N.�/ � 1

Na

X
k

ı.� � "k/ (8.93)

denotes the density of states per unit cell and spin component, and dSk is the
‘volume’ element on the equal-energy surface "k D � with normalization conditionR

dSk D 1.
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Problems

8.1. The pair wave function � in (8.3) for the homogeneous spin-singlet pairing can
be expanded in terms of the relative coordinates r1 � r2 as

�.r1˛1; r2˛2/ D 1

V

X
k

�k eik�.r1�r2/
�
ı˛1"ı˛2# � ı˛1#ı˛2"

�
: (8.94)

where " and # denote ˛ D 1=2 and �1=2, respectively. It also follows from
(8.2) that �k D ��k holds.

(a) Show that the Cooper-pair creation operator (8.3) can be written as

OQ� D
X

k

�k Oc�k" Oc��k#; Oc�k˛ �
Z
O �.r˛/ 1p

V
eik�rd3r:

(b) Show that the condensate wave function (8.6) is expressible as

jˆi D
Y

k

�
uk C vk Oc�k" Oc��k#



j0i; (8.95)

with uk � 1=
p
1C j�kj2 and vk � �k=

p
1C j�kj2. This is exactly the

wave function Schrieffer wrote down.

8.2. In the context of Cooper-pair condensation, answer the following questions.

(a) Show that the Cooper-pair creation operator (8.3) satisfies

Œ OQ; OQ��C D 1

2
j�. N
1; N
2/j2 C O �. N
1/�. N
1; N
2/��. N
2; N
 0

1/
O . N
 0

1/: (8.96)

(b) The second term in (8.96) is proportional to the overlap integral

�.
1; N
2/��. N
2; 
 0
1/;

so that it may be negligible when the radius of the bound state is
smaller than the mean interparticle spacing. Show that (8.6) for this case
reduces to the coherent state (3.71), where � is now a complex number

with magnitude
�j�. N
1; N
2/j2=2	1=2, and operator Oc� � OQ�=� satisfies

Œ Oc; Oc��C D 1.
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Chapter 9
BCS Theory

Abstract Immediately noting the correctness of Schrieffer’s variational wave func-
tion, Bardeen, with his deep knowledge of the phenomenon (Cooper LN, Feldman D
(eds) BCS: 50 years. World Scientific, Hackensack, 2011), teamed up with Cooper
and Schrieffer to construct a microscopic theory of superconductivity. The BCS
theory was thereby developed quite rapidly to bring remarkable agreement between
theory and various experiments on single-element superconductors. This is because
in these superconductors the relevant attraction in Cooper-pair condensation is
weak, making the mean-field description appropriate. In this chapter, we derive
the main thermodynamic results of the BCS theory for homogeneous s-wave
superconductors based on the formalism developed in the previous chapter.

9.1 Self-Consistency Equations

We shall derive the quasiparticle eigenenergies and eigenstates of the homogenous
s-wave pairing as (9.5) and (9.6), and the self-consistency equations for the Hartree-
Fock and pair potentials as (9.12) and (9.13).

The BCS theory considers the possibility of homogeneous s-wave pairing [2]. It
follows from (8.87), (8.89), and Y00. Ok/ D .4�/�1=2 [1, 4] that the gap matrix of this
s-wave pairing is isotropic as �.k/ D �00.k/ with symmetry �00.k/ D ��T

00.k/.
Hence, we can express�.k/ as

�.k/ D
�
0 �k

��k 0

�
D i	y�k; (9.1)

where 	y is the y component of the Pauli matrices in (8.42). Thus, �"#.k/ D
��#".k/ D �k whereas �"".k/ D �##.k/ D 0, implying that the s-wave
superconductivity is caused by Cooper pairs composed of a pair of "-spin and#-spin
electrons in the spin-singlet state; see also Problem 8.1 on this point. In the absence
of magnetic fields, the self-consistent Hartree–Fock potential is also expected to be
diagonal and isotropic; that is, U HF.k/ D 	0U

HF
k . Accordingly, we can express

(8.78) as

© Springer Japan 2015
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K HF.k/ D 	0 
k; 
k � „
2k2

2m
CU HF

k � �: (9.2)

Substituting (9.1) and (9.2) into (8.79) yields the eigenvalue problem:

2
664

k 0 0 �k

0 
k ��k 0

0 ���
k �
k 0

��
k 0 0 �
k

3
775

2
664

u Q̨.k"/
u Q̨.k#/
v Q̨.k"/
v Q̨.k#/

3
775 D E Q̨.k/

2
664

u Q̨.k"/
u Q̨.k#/
v Q̨.k"/
v Q̨.k#/

3
775 : (9.3)

Diagonalization of this 4 � 4 matrix is equivalent to that for the (1,4)- and (2,3)-
submatrices. The above equation separates into two equations of the form

�

k ˙�k

˙��
k �
k

� �
uk
˙vk

�
D Ek

�
uk
˙vk

�
; (9.4)

where the upper and lower signs correspond to the (1,4)- and (2,3)-submatrices,
respectively. Here we have adopted a simplified notation for the eigenvector. The
eigenvalue equation is identical for both, .
k �Ek/.�
k �Ek/� j�kj2 D 0, which
yields a positive eigenvalue

Ek D
q

2k C j�kj2: (9.5)

Its eigenvector can be determined based on the second row of (9.4) and normaliza-
tion (8.80), which read

��
kuk � .Ek C 
k/vk D 0; jukj2 C jvkj2 D 1;

respectively. They yield

uk D Ek C 
kp
.Ek C 
k/2 C j�kj2

D
s
Ek C 
k
2Ek

; vk D ��
kp

2Ek.Ek C 
k/
;

(9.6)
where we have chosen uk as real. The original eigenvalue problem (9.3) can now be
diagonalized in terms of the unitary matrix:

OUk �

2
664

uk 0 0 �v�
k

0 uk v�
k 0

0 �vk uk 0

vk 0 0 uk

3
775 D

"
	0uk �i	yv�

k

�i	yvk 	0uk

#
(9.7)
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as
"

	0
k i	y�k

�i	y��
k �	0
k

#
OUk D OUk

�
	0Ek 0

0 �	0Ek
�
; (9.8)

with 0 denoting the 2 � 2 zero matrix. The first two columns of OUk represent
the eigenvectors of Q̨ D 1; 2 with an identical positive eigenvalue Ek . The latter
two columns for �Ek have been obtained based on the procedure described below
(8.80).

Comparing (9.3) and (9.8), we can express the eigenvectors of Q̨ D 1; 2 in (9.3)
as

u1.k/ D
�

uk
0

�
; v1.k/ D

�
0

vk

�
; u2.k/ D

�
0

uk

�
; v2.k/ D

��vk
0

�
:

(9.9)
Substituting them into (8.71) and (8.72) yields the one-particle density matrices

�.1/.k/ D 	0
�
u2k Nnk C jvkj2.1 � Nnk/

	
; (9.10)

Q�.1/.k/ D
�

0 ukv�
k .1 � 2 Nnk/

�ukv�
k .1� 2 Nnk/ 0

�
D i	y

�k

2Ek
tanh

ˇEk

2
; (9.11)

where we have used 1 � 2 Nnk D tanh.ˇEk=2/ and ukv�
k D �k=2Ek as obtained

using (9.6).
We next substitute (9.10) into (8.75). We then confirm that the Hartree–Fock

potential is indeed diagonal and isotropic as U HF.k/ D 	0U HF
k with

U HF
k D V0

N

V
� 1

V

X
k0

Vjk�k0j
�
u2k0 Nnk0 C jvk0 j2.1 � Nnk0/

	
; (9.12)

whereN denotes the particle number of (8.82). Also using (9.1) and (9.11) in (8.88)
for ` D m D 0 and noting Y00. Ok/ D .4�/�1=2, we obtain the gap equation to
determine�k as

�k D �
Z

d3k0

.2�/3
V0.k; k

0/
�k0

2Ek0

tanh
ˇEk0

2
: (9.13)

Equations (9.12) and (9.13) form a set of nonlinear equations for .U HF
k ;�k/.

Indeed, the quantities .uk; vk; Ek/ used there are expressible in terms of .U HF
k ;�k/

as (9.2), (9.5), and (9.6).
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By substituting (9.1), (9.2), (9.9), (9.10), and (9.11) into (8.81) and subsequently
using (9.5) and (9.6), the corresponding grand potential in equilibrium is obtained,

�BdG D
X

k



� 2
ˇ

ln
�
1C e�ˇEk �C 2jvkj2
k � ukvk�k � ukv

�
k�

�
k

�U HF
k

�
u2k Nnk C jvkj2.1� Nnk/

	C ukv
�
k .1� 2 Nnk/��

k

�

D
X

k

�
� 2
ˇ

ln
�
1C e�ˇEk �C 
k �Ek C j�kj2

2Ek
.1� 2 Nnk/

�U HF
k

Ek � 
k C 2
k Nnk
2Ek

�
: (9.14)

The particle number N is obtained from (8.82) and (9.10) yielding

N D 2
X

k

�
u2k Nnk C jvkj2.1 � Nnk/

	
: (9.15)

9.2 Effective Pairing Interaction

Focusing on the weak-coupling regime where inequality

jVkjN
V

 „

2k2F
2m
� "F (9.16)

holds, we simplify (9.13) further to obtain (9.24) below given in terms of the
effective pairing interaction (9.26) near the Fermi surface. Those who are interested
more in physics than in mathematical consistency may skip to the next section.

When (9.16) is satisfied, we can neglect the Hartree–Fock potential because
U HF
k ! 0 to an excellent approximation. Hence, we replace 
k in (9.2) by the

ideal-gas form


k D „
2k2

2m
� �; (9.17)

and consider only (9.13). The corresponding superconducting transition temperature
(or critical temperature) Tc is expected to be much smaller than the Fermi
temperature TF � "F=kB. For single-element superconductors, for example, TF 	
104 � 105 K (see Cu in Table 4.1 with TF � TQ), whereas Tc 	 1 � 10K (see
Table 9.3 below). On the basis of this observation, we introduce a cutoff energy "c

in such a way as to satisfy
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0−

out outin

−

Fig. 9.1 Decomposition of the energy domain, where “in” and “out” denote the domains with
j
k j � "c near the Fermi surface and j
k j > "c, respectively. Inequality "c 	 � 
 "F holds

Table 9.1 Debye temperatures of single-element metals and semiconductors [5]

Solid Al Cd Cr Cu Fe Ni Si

TD (K) 428 209 630 343 467 450 640

j�kj � kBTc 
 "c 
 "F; (9.18)

and divide the energy domain into “in” for j
kj � "c and “out” for j
kj > "c as
depicted in Fig. 9.1. The quantity "c=kB for single-element superconductors, where
phonons are responsible for the attraction between electrons, is estimated near the
Debye temperature of order TD 	 200 � 600K, as listed in Table 9.1. Thus, we can
choose "c as in (9.18) also in real systems.

At low temperatures where T . Tc holds, we introduce two approximations into
(9.13): (i) tanhx 	 1 for x � 1 and (ii) Ek D .
2k C j�kj2/1=2 	 j
kj for j
kj � "c

based on (9.18) to transform the key factor in its integrand to

1

Ek0

tanh
ˇEk0

2
	 �."c � j
k0 j/

Ek0

tanh
ˇEk0

2
C �.j
k0 j � "c/

j
k0 j ;

where �.x/ denotes the step function (4.11). We substitute this into (9.13) and per-
form an integration over the solid angle, as in (4.17). Furthermore, we approximate
the k0 integral by a discrete sum over k0 with interval dk0 to obtain

�k D �
X
k0

dk0V0.k; k0/k02

4�2

�
�."c � j
k0 j/�k0

Ek0

tanh
ˇEk0

2
C �.j
k0 j � "c/

�k0

j
k0 j
�
:

(9.19)
Next, we introduce a matrix M � .Mkk0/ with elements

Mkk0 � �dk0V0.k; k0/k02

4�2j
k0 j ; (9.20)

and recast (9.19) as

�
�in

�out

�
D
�
M in;in M in;out

M out;in M out;out

� �
� in

�out

�
; (9.21)

where �in and �out are vectors composed of elements �k in the domain j
kj � "c

and j
k j > "c, respectively, and � in is a vector with elements
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fk � j
kj�k

Ek
tanh

ˇEk

2
(9.22)

for j
kj � "c.
Next, we eliminate �out from (9.21) to derive a closed equation for �in as

follows. The lower element of (9.21) reads

�out DM out;in� in CM out;out�out;

which can be solved in terms of �out using the unit matrix 1out;out � .ıkk0/ for
j
kj > "c,

�out D �1out;out �M out;out
��1

M out;in� in: (9.23)

Substituting (9.23) into the upper element of (9.21), we obtain

�in D
h
M in;in CM in;out�1out;out �M out;out��1 M out;in

i
� in:

This equation is further modified using (9.20) and (9.22) to a form similar to (9.13),

�in
k D �

Z
d3k0

.2�/3
V
.eff/
0 .k; k0/

�in
k0

2Ek0

tanh
ˇEk0

2
; (9.24)

where V .eff/
0 .k; k0/ is an effective pairing interaction near the Fermi surface defined

by

V
.eff/
0 .k; k0/ � V0.k; k

0/ �
X
k1k2

0V0.k; k1/k21
4�2j
k1 j

dk1
�
1out;out �M out;out

��1
k1k2

V0.k2; k
0/:

(9.25)
Here the primed sum is over j
k1 j; j
k2 j > "c with the limits dk1; dk2 ! 0 implied.
In practical calculations, one may reduce the value of dk successively to confirm
convergence.

Arguments k and k0 in (9.25) lie in a thin shell near the Fermi surface satisfying
j
kj, j
k0 j � "c 
 "F. Hence, to an excellent approximation, we can set
V
.eff/
0 .k; k0/ 	 V

.eff/
0 .kF; kF/. Alternatively, V .eff/

0 .k; k0/may be expressed in terms

of constant V .eff/
0 � V

.eff/
0 .kF; kF/ and cutoff energy "c,

V
.eff/
0 .k; k0/ D V

.eff/
0 �."c � j
kj/�."c � j
k0 j/; (9.26)

where �.x/ is the step function (4.11), and "c denotes a cutoff energy chosen subject
to (9.18). We shall see that the pair condensation does occur when V

.eff/
0 < 0 is

satisfied.
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Table 9.2 Effective s-wave pairing interaction V .eff/
0 and transition temperature Tc in units of

kF D "F D kB D 1 calculated for the interaction potential (9.27)

a1 r1 a2 r2 V0.kF; kF/ "c V
.eff/
0 Tc

�0.12 0.1 0.0 – �2.90 0.01 �8.61 1:16� 10�4

�0.13 0.1 0.0 – �3.14 0.01 �11.22 3:36� 10�4

�0.14 0.1 0.0 – �3.38 0.01 �15.17 8:40� 10�4

�0.05 0.016 0.1 0.001 1.26 0.01 �6.14 1:83� 10�5

�0.05 0.015 0.1 0.001 1.26 0.01 �8.06 8:48� 10�5

�0.05 0.014 0.1 0.001 1.26 0.01 �12.45 4:76� 10�4

�0.05 0.014 0.1 0.001 1.26 0.005 �15.94 4:76� 10�4

To see how V
.eff/
0 < 0 may be realized, we consider the model interaction

potential described by a linear combination of two exponential functions given by

V .r/ D
2X

jD1

„2aj
2mr3j

e�r=rj ; (9.27)

where rj > 0 and aj (j D 1; 2) are parameters with units of length that specify the
range and strength of the potential, respectively. Expanding its Fourier coefficient
Vk as (8.83), we obtain the s-wave component V0.k; k0/ as (see (6.55))

V0.k; k
0/ D 4�„2

m

2X
jD1

aj

.1C r2j k2 C r2j k02/2 � 4r4j k2k02 : (9.28)

Using (6.25), we can transform the weak-coupling condition of (9.16) into kFja1 C
a2j 
 1. Table 9.2 gives V .eff/

0 calculated numerically for several sets of parameters
.a1; r1; a2; r2/ based on (9.25). The first three rows are values for pure attractive
potentials with a1 < 0 and a2 D 0, whereas the last four rows are for potentials
with an additional short-range repulsion (a1 < 0, a2 > 0). For reference, we have
also given values of Tc obtained from (9.33) below. Thus, the potential (9.27) does
produce pair condensation. We also notice that the renormalized potential V .eff/

0 can
be negative even when the original V0.kF; kF/ on the Fermi surface is repulsive. The
values of Tc obtained for the same values of parameters .a1; r1; a2; r2/ in the last two
rows are seen to be identical irrespective of the cutoff energy "c, as is expected. One
may also check that Tc thereby obtained coincides with the value from the original
equation (9.13) in the weak-coupling regime.

As will be seen shortly, introducing the effective pairing interaction enables us
to perform analytic calculations of thermodynamic quantities in the weak-coupling
regime using only the states of j
kj � "c. Nevertheless, we should keep in mind that
the pair correlation extends also to j
kj > "c, as seen from (9.23).
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9.3 Gap Equation and Its Solution

The gap equation (9.24) written in terms of the effective pairing interaction (9.26)
is equivalent to the original (9.13). Moreover, because only states of j
kj � "c are
relevant, (9.24) can be treated analytically. Indeed, this effective-interaction method
can describe not only single-element superconductors like Hg and Pb quantitatively,
but also the p-wave superfluidity in liquid 3He with large spin fluctuations to the
first approximation, as we shall see in Chap. 13. Here, we solve (9.24) and clarify
basic thermodynamic properties of s-wave pair-condensed states.

Equation (9.24) with (9.26) implies that the energy gap �in
k near the Fermi

surface also depends solely on constant�,

�in
k D ��."c � j
kj/: (9.29)

We substitute it together with (9.26) back into (9.24), writing the integral using the
density of states N."/ defined by (7.21), and then perform a change of variable as
(9.17). Equation (9.24) thus reduces to

��."c � j
kj/ D �
Z 1

0

d"k0N."k0/V
.eff/
0 .k; k0/

� �."c � j
k0 j/
2Ek0

tanh
ˇEk0

2

D �V .eff/
0 �."c � j
kj/

Z "c

�"c

d
k0N.
k0 C �/ �

2Ek0

tanh
ˇEk0

2
:

As cutoff energy "c satisfies (9.18), we can replace N.
k0 C �/ 	 N.�/ 	 N."F/

to an excellent approximation. Dividing the resulting equation by� and choosing k
to satisfy j
kj � "c, we obtain a simplified gap equation as

1

g0
D
Z "c

0

1

E
tanh

ˇE

2
d
; (9.30)

where E D p
2 C j�j2, and g0 is a dimensionless coupling constant defined by

g0 � �N."F/V
.eff/
0 : (9.31)

As will be seen shortly, (9.30) has a non-trivial solution when g0 > 0 (i.e., V .eff/
0 <

0) is satisfied. Alternatively stated, pair condensation is realized if there is a net
attraction near the Fermi level.

In the following, we choose the phase of � equal to zero so that � � 0. To
determine the transition temperature, we set T D Tc and � D 0 in (9.30). The
resulting equation for Tc can be transformed as

1

g0
D
Z "c

0

1



tanh




2kBTc
d
 D

Z "c=2kBTc

0

tanhx

x
dx
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D tanhx lnx

ˇ̌
ˇ̌"c=2kBTc

0

�
Z "c=2kBTc

0

lnx

cosh2 x
dx

	 ln
"c

2kBTc
�
Z 1

0

lnx

cosh2 x
dx D ln

"c

2kBTc
C ln

4e�

�

D ln
2e�"c

�kBTc
; (9.32)

where � D 0:57721 � � � is Euler’s constant, and we have set "c=2kBTc ! 1 in the
upper limit of the integral by noting (9.18) and lnx= cosh2 x 	 0 for x � 1. We
thereby obtain an expression for kBTc,

kBTc D 2e�

�
"ce�1=g0 	 1:13"ce�1=g0 : (9.33)

Similarly, setting T D 0 in (9.30) gives an equation for the zero-temperature energy
gap�0 � �.T D 0/ as

1

g0
D
Z "c

0

d
q

2 C�2

0

D ln

�

 C

q

2 C�2

0

�ˇ̌ˇ̌"c

0

	 ln
2"c

�0

; (9.34)

which yields

�0 D 2"ce�1=g0 : (9.35)

Dividing (9.35) by one-half of (9.33) gives

2�0

kBTc
D 2�e�� 	 3:53: (9.36)

This relation without .g0; "c/ is an important prediction of the BCS theory that can
be directly tested in experiments (see Table 9.3 below).

To obtain the energy gap � � �.T / for 0 � T � Tc, we subtract (9.32) from
(9.30) to obtain

0 D
Z "c

0

�
1

E
tanh

E

2kBT
� 1



tanh



2kBT

�
d
C

Z "c

0

1




�
tanh




2kBT
� tanh




2kBTc

�
d


	
Z 1

0

�
1

E
tanh

E

2kBT
� 1



tanh



2kBT

�
d
 C ln

Tc

T
;

where we have used (9.32) and "c=2kBT � 1. This equation can be expressed as

ln
Tc

T
D
Z 1

0

�
1



tanh




2kBT
� 1

E
tanh

E

2kBT

�
d
: (9.37)
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Fig. 9.2 Energy gap as a
function of reduced
temperature
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Similarly, subtracting (9.34) from (9.30) gives an alternative expression

ln
�0

�
D 2

Z 1

0

1

E

1

eˇE C 1d
: (9.38)

With a change of variable 
 ! x � 
=kBTc, one sees that these integrals depend
only on the ratios T=Tc and �=kBTc. That is, each of (9.37) and (9.38) determines
the dimensionless energy gap �=kBTc as a function of reduced temperature T=Tc.
The two equations are equivalent; (9.37) is useful for T . Tc, whereas (9.38) may
be more convenient for T & 0.

Figure 9.2 plots energy gap � as a function of reduced temperature T=Tc. We
observe that � grows rapidly for T . Tc, which is typical of second-order phase
transitions described by mean-field theories. We now solve (9.37) analytically for
T . Tc to study this behavior in detail. To this end, we use the series

1

x
tanh

x

2
D

1X
nD0

4

x2 C .2nC 1/2�2 ; (9.39)

which may be seen to hold by noting that both sides share poles with the same
residues [1]. Using it and introducing "n � .2nC 1/�kBT , we expand the second
term in the integrand of (9.37) in terms of �=kBT 
 1 to obtain

1

E
tanh

E

2kBT
D

1X
nD0

4kBT


2 C�2 C "2n
D

1X
nD0

4kBT


2 C "2n

�
1 � �2


2 C "2n
C � � �

�

D 1



tanh




2kBT
� 4kBT

1X
nD0

�2

�

2 C "2n

�2 C � � � ; (9.40)

which we substitute into (9.37). Retaining only the leading term, and performing
the integration over 
 by applying the residue theorem [1],

Z 1

0

d
�

2 C "2n

�2 D 1

2

Z 1

�1
d
�


2 C "2n
�2 D 2�i

2
lim

!i"n

d

d


1

.
 C i"n/2 D
�

4"3n
;
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we thereby simplify (9.37) for T . Tc to derive

ln
Tc

T
	 �2

.�kBT /2

1X
nD0

1

.2nC1/3 D
�2

.�kBT /2

�
1� 1

23

� 1X
nD1

1

n3
D 7�.3/�2

8.�kBT /2
;

(9.41)

where �.3/ D 1:202 � � � is the Riemann zeta function (4.40). The left-hand side
of this equation can be approximated as ln.Tc=T / D � lnŒ1 � .Tc � T /=Tc� 	
.Tc � T /=Tc to leading order, whereas we may set kBT 	 kBTc in the rightmost
expression. Hence, for the energy gap of T . Tc, we obtain the analytic expression

�.T . Tc/ 	 �kBTc

�
8

7�.3/

�1=2 �
Tc � T
Tc

�1=2
; (9.42)

which rapidly grows proportional to .Tc�T /1=2. This temperature dependence of�
just below the transition temperature is characteristic of the mean-field second-order
phase transition; see Sect. 9.5 below on this point.

9.4 Thermodynamic Properties

Having obtained the energy gap �, we proceed to clarify the temperature depen-
dences of the heat capacity, chemical potential, and free energy.

9.4.1 Heat Capacity

First, we focus on heat capacity. Entropy in the mean-field description of supercon-
ductivity is given by (8.25), which is formally identical to (4.7) for ideal Fermi gases
with 	 D �1. The difference lies in the quasiparticle energyEq , as seen from (8.27).
Hence, the heat capacity C D T .@S=@T / is obtained from the first expression of
(4.8) for ideal gases by replacement "q � � ! Eq . Noting q D k Q̨ ( Q̨ D 1; 2) for
homogeneous superconductors and using the density of states (4.17) with s D 1=2,
we can transform the resulting expression as

C D
X
k Q̨
Ek
@ Nnk
@T
D
Z 1

�1
d"kD."k/Ek

@ Nnk
@T
D
Z 1

�1
d
kD.
k C �/Ek @ Nnk

@T

	 kBD."F/

Z 1

�1
d


�
x2 � 1

2k2BT

d�2

dT

�
ex

.ex C 1/2
ˇ̌
ˇ̌
xDˇE

; (9.43)

where we have used (9.5) and also approximatedD.
 C �/ 	 D."F/.
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Next, we focus on the temperature just below Tc where E D j
j holds. Making
the change of variable 
 ! x � ˇ
 in (9.43), and using (9.42) to calculate
d�2=dT , we obtain the heat capacity just below Tc,

C.Tc/ D D."F/k
2
BTc

Z 1

�1

�
x2 � 1

2k2BT

d�2

dT

ˇ̌̌
ˇ
TDTc

!
ex

.ex C 1/2 dx

D Cn.Tc/CD."F/k
2
BTc

4�2

7�.3/
; (9.44)

where Cn.Tc/ denotes the normal heat capacity given by (6.31). Thus, we obtain an
estimate of the magnitude of the discontinuity�C � C.Tc/�Cn.Tc/ relative to the
normal heat capacity Cn.Tc/ as

�C

Cn.Tc/
D 12

7�.3/
D 1:43: (9.45)

This is another important prediction of the BCS theory directly testable by
experiments. Table 9.3 summarizes Tc, 2�0=kBTc, and �C=Cn at T D Tc for
single-element superconductors. We observe good agreement between experiments
and theoretical predictions of (9.36) and (9.45).

Figure 9.3 presents the temperature dependence of the superconducting heat
capacity (9.43) normalized by the normal heat capacity Cn / T given explicitly
by (6.31). A jump at T D Tc is followed by an exponential decrease of the heat
capacity as T ! 0. This is because there remain no excitations of order kBT at low
temperatures in consequence of the widening of the energy gap � � kBT . This

Table 9.3 Properties of
single-element
superconductors [8]

Al Hg In Nb Pb V

Tc (K) 1.2 4.16 0.4 8.8 7.22 4.9

2�0=kBTc 3.53 3.95 3.65 3.65 3.95 3.50

�C=Cn 1.29–1.59 2.37 1.73 1.87 2.71 1.49

Fig. 9.3 Superconducting
heat capacity relative to
normal heat capacity Cn / T
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low-temperature behavior can be understood intuitively in terms of the quasiparticle
density of states defined generally by1

Ds.E/ �
X
k Q̨
Œı.E �Ek Q̨/C ı.E C Ek Q̨/� ; (9.46)

where we have extended the domain of E to negative energies for later purposes.
Using this and noting Ek Q̨ ! Ek > 0 in the present case, we can express the heat
capacity (9.43) as

C D
Z 1

0

dEDs.E/E
@ Nn.E/
@T

; (9.47)

with Nn.E/ � .eˇE C 1/�1. Calculations show that (9.46) for the s-wave excitation
spectrum (9.5) becomes (Problem 9.1)

Ds.E/ D jEj
.E2 ��2/1=2

�.jEj ��/D."F/; (9.48)

where D."F/ is the normal density of states at the Fermi energy. As plotted in
Fig. 9.4 for E � 0, there are no states for 0 � E < �. Combining this fact with
Nn.E/ 	 e�ˇ� for E & � and T ! 0, we conclude that the low-temperature heat
capacity is proportional to e�ˇ�. A more detailed calculation yields (Problem 9.2)

C.T ! 0/ 	 kBD."F/

s
��5

2.kBT /3
e��=kBT : (9.49)

Fig. 9.4 Quasiparticle
density of states for s-wave
superconductors as a function
of the excitation energy
E � 0

0 1 2
0

1

2

3

4

D
s(E

)/
D

(ε
F
)

E/Δ

1Variable E should be distinguished from eigenvalues Ek Q̨ .
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9.4.2 Chemical Potential

We now show that, within the approximation of D."/ 	 D."F/, chemical potential
� in the superconducting phase is the same as �n for the normal state.

Expressing (9.15) in terms of the density of states (4.17) for s D 1=2, then
subtracting (4.12) for the normal state, we use (9.6) to transform the resulting
equation as

0 D
Z 1

0

D."k/

�
jvkj2 C u2k � jvkj2

eˇEk C 1 �
1

eˇ."k��n/ C 1
�

d"k

	 D."F/

Z 1

0

�
1

2

�
1 � 


E

�
C 


E

1

eˇE C 1 �
1

eˇ."��n/ C 1
�

d"

	 D."F/

Z 1

�1
1

2

�
� 

E

tanh
ˇE

2
C tanh

ˇ.
 C �� �n/

2

�
d
;

where we have made a change of variable, " ! 
 D " � �, and also replaced the
lower limit of integration by�1 as the main contribution to the integral stems from
region j
j=� 
 1. The first term in the final integrand is odd in 
 so that it gives a
null contribution. We thereby conclude that the above equality holds when

� D �n (9.50)

is satisfied.

9.4.3 Free Energy

For the pair-condensed state to be stable, its free energy F D � C �N must be
lower than that of the normal state, Fn D �n C �nN . We shall confirm this within
the approximation of D."/ 	 D."F/, where (9.50) holds so that the free-energy
difference can be expressed in terms of the grand potential�, Fsn � F �Fn D ��
�n. We express the grand potential (9.14) using the density of states, set U HF

k D 0

as appropriate for the weak-coupling regime, and subtract �n � �BdG

ˇ̌
�D0 for the

normal state. We thereby obtain the free-energy difference as

Fsn.T / D D."F/

2

Z 1

�1

�
� 2
ˇ

ln
1C e�ˇE

1C e�ˇj
j C j
j �E C
�2

2E
tanh

ˇE

2

�
d
:

(9.51)
This definite integral can be calculated analytically at T D 0,

Fsn.0/ D D."F/

Z 1

0

�

 �E C �2

0

2E

�
d
 D �1

4
D."F/�

2
0: (9.52)
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Additionally, one can show that Fsn.T . Tc/ decreases continuously from
Fsn.Tc/ D 0 as (Problem 9.3)

Fsn.T . Tc/ 	 �2D."F/.�kB/
2

7�.3/
.T � Tc/

2: (9.53)

Thus, the pair-condensed state with a finite � has been confirmed to have a lower
free energy than the normal state.

9.5 Landau Theory of Second-Order Phase Transition

Superconductivity presents a prototype of a second-order phase transition where the
symmetry changes spontaneously. It is also distinctive in that the Landau theory
of second-order phase transitions [6] can be applied even quantitatively. Hence, a
brief outline of the Landau theory for the superconducting phase transition is worth
presenting. Nevertheless, this section can be skipped without loss of continuity.

The Landau theory is relevant in describing continuous phase transitions with
spontaneous symmetry breaking without latent heat. For an isotropic ferromagnet,
for example, rotational symmetry is broken spontaneously because of the emergence
of magnetization M, i.e., the magnetic moment per unit volume, which is realized
by a cooperative alignment of electron spins. The corresponding free energy may
be written as a function of M as F D F ŒM�. Landau assumed that it is expandable
near the transition temperature Tc in terms of the lowest-order scalar M2 D M �M
with M; hence,

F

V
D Fn

V
C a2M2 C a4

2
M4 C � � � : (9.54)

Here Fn is the normal free energy, a2 changes its sign at the transition temperature
Tc as a2 D ˛.T �Tc/ with ˛ > 0, and a4 is a positive constant. This free energy as a
functional ofM is plotted schematically in Fig. 9.5 by setting Fn D 0 and extending
the domain of M to the negative region. Thus, the state M ¤ 0 may be stabilized

Fig. 9.5 Landau free energy
for a ferromagnet as a
functional of
magnetization M

M

F T >Tc T <Tc
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below Tc, but the resulting F ŒM� still has a large degeneracy with respect to the
direction of M. This degeneracy needs to be broken spontaneously to lower the free
energy by the emergence of M. This phenomenon is called spontaneous symmetry
breaking, with M called the order parameter that distinguishes the ferromagnetic
state from the normal state. Unfortunately, the basic assumption that “F ŒM� can
be expanded analytically in terms of M2” is not correct in the strict sense because
of large spatial and temporal fluctuations near Tc. Alternatively stated, M D 0 is
a singular point of the free energy. However, this fluctuation range near Tc where
(9.54) does not apply can be very narrow for some systems [6] to be unobservable
in practice.

Classic superconductors form a typical example for which an expansion of the
type (9.54) holds true even quantitatively with negligible fluctuation range. The
order parameter for this case can be identified as the energy gap �, which is
generally a complex number. The scalar of the lowest order with respect to� is j�j2.
Hence, the quantity that is broken spontaneously is the degeneracy with respect to
the phase of �, which is sometimes called spontaneously broken gauge symmetry
[7]. Now, we expand the free energy per unit volume F=V near Tc as

F

V
D Fn

V
C a2j�j2 C a4

2
j�j4 C � � � ; (9.55)

choosing a2 and a4 in the form

a2 D D."F/

2V

T � Tc

Tc
; a4 D D."F/

2V

7�.3/

8.�kBTc/2
: (9.56)

Then, the extremal condition, 0 D @F=@j�j2 D a2 C a4j�j2, yields (9.42) for the
equilibrium energy gap near Tc. In addition, substitution of (9.42) into (9.55) gives

F eq D Fn � 2D."F/.�kB/
2

7�.3/
.T � Tc/

2; (9.57)

as the equilibrium free energy near Tc, which agrees with (9.53) for the condensation
energy. The first and second derivatives of F eq with respect to T yield the entropy
and heat capacity,

S D �@F
eq

@T
D Sn C 4D."F/.�kB/

2

7�.3/
.T � Tc/; (9.58)

C D T @S
@T
	 Cn C Tc

4D."F/.�kB/
2

7�.3/
: (9.59)
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Equation (9.59) also coincides with (9.44) from the BCS theory. Thus, the super-
conducting phase transition within the BCS theory is describable in terms of the
Landau theory of second-order phase transitions.

It follows from (9.57) and (9.58) that the free energy F and its first-order
derivative �S are both continuous, implying no latent heat upon the transition. In
contrast, heat capacity C of (9.59), determined from the second-order derivative of
F , is discontinuous. These are general features of the second-order phase transition
predicted by the Landau theory. We shall see an inhomogeneous extension of the
Landau theory in (14.95) below.

Problems

9.1. Substitute (9.5) intoEk Q̨ in (9.46) to obtain the s-wave quasiparticle density of
states (9.48).

9.2. Show (9.49).

9.3. By multiplying (9.39) by x, using tanh.x=2/ D 1�2=.exC1/, and integrating
the resulting expression over x1 � x � x2, we thereby obtain

x2 � x1 C 2 ln
1C e�x2
1C e�x1 D 2

1X
nD0

ln
x22 C .2nC 1/2�2
x21 C .2nC 1/2�2

:

Use this equality together with (9.39) and (9.42) to show that the condensation
energy (9.51) can be approximated for T . Tc as in (9.53).
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Chapter 10
Superfluidity, Meissner Effect, and Flux
Quantization

Abstract One of the most outstanding features of superconductivity is undoubtedly
the persistence of a current without dissipation. However, in obeying Ampère’s law,
the flow of charged particles necessarily produces magnetic fields, thereby compli-
cating the phenomenon. With this observation, we first consider neutral systems to
reveal the origin of superfluidity, i.e., the persistence of flow without dissipation,
caused by the phase coherence of the Cooper-pair condensate. Subsequently, we
discuss the Meissner effect concerning the flow of charged systems that expels
weak magnetic fields from the bulk of superconductors. Finally, we study flux
quantization arising from the single-valuedness of the macroscopic wave function.

10.1 Superfluid Density and Spin Susceptibility

We consider a neutral Cooper-pair condensate to clarify the origin of superfluidity.
We shall also study spin paramagnetism to obtain expressions for s-wave pairing
of the spin susceptibility and superfluid density, (10.18) and (10.22), respectively,
in terms of the Yosida function (10.16). It is also shown that molecular-field effects
modify these expressions; (10.28) and (10.29).

Let us express the pair wave function as a 2 � 2 matrix using the spin degrees of
freedom, �.r1; r2/ �

�
�.r1˛1; r2˛2/

�
. Then the state in which the pair moves with

center-of-mass momentum „q is expressible by incorporating its contribution to the
expansion of (8.94) in the form

�.r1; r2/ D 1

V

X
k

�.k/ eik�.r1�r2/eiq�.r1Cr2/=2 D 1

V

X
k

�.k/ eikC�r1�ik� �r2 ;

(10.1)
where k˙ is defined by

k˙ � k˙ q
2
: (10.2)
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Its Hermitian conjugate ��.r1; r2/ �
�
��.r2˛2; r1˛1/

�
is given by

��.r1; r2/ D 1

V

X
k

��.k/ e�ik�.r2�r1/�iq�.r1Cr2/=2 D 1

V

X
k

��.k/ eik��r1�ikC �r2 :

Let us substitute the two expansions together with that of the delta function in (6.18)
into (8.10). We then find that the 2 � 2 matrices u.r1; r2/ and v.r1; r2/ are also
expressible as

u.r1; r2/ D 1

V

X
k

u.kC/ eikC�.r1�r2/; v.r1; r2/ D 1

V

X
k

v.k/ eikC�r1�ik� �r2 ;

(10.3)
with u.kC/ �

�
	0 C �.k/��.k/

	�1=2
and v.k/ � u.kC/�.k/. The rationale for

using the arguments kC and k for u and v, respectively, will become clear shortly.
Noting that u and v in (10.3) are the first-row elements of the transformation

matrix in (8.15), one may also expect that the first-row elements of the BdG
matrix (8.64) are expressible as

OK HF.r1; r2/ D
1

V

X
k

OK HF.kC/ eikC�.r1�r2/; (10.4)

�.r1; r2/ D 1

V

X
k

�.k/ eikC �r1�ik� �r2 : (10.5)

For example, the pair potential of (8.35) is given at T D 0 by

�.r1; r2/ D V .jr1 � r2j/u.r1; Nr3/v.Nr3; r2/;

as can be shown using (8.30) and (8.31), which is expressible as (10.5). The
expansion (10.4) may be confirmed similarly based on (8.36). Additionally, one can
show that the complex conjugates of (10.4) and (10.5) can be written with a change
k! �k of summation variables as

OK �
HF.r1; r2/ D

1

V

X
k

OK �
HF.�k�/ eik� �.r1�r2/; (10.6)

��.r1; r2/ D 1

V

X
k

��.�k/ eik� �r1�ikC �r2 : (10.7)

Equations (10.4)–(10.7) can now be combined in matrix form as

" OK HF.r1; r2/ �.r1; r2/
���.r1; r2/ � OK �

HF.r1; r2/

#
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D 1

V

X
k

�
	0 eikC �r1 0

0 	0 eik��r1

�" OK HF.kC/ �.k/
���.�k/ OK �

HF.�k�/

#�
	0 e�ikC �r2 0

0 	0 e�ik� �r2

�
;

(10.8)

where 	0 and 0 are the 2 � 2 unit and zero matrices, respectively.
Substituting (10.8) into (8.64), we can choose q � k Q̨ ( Q̨ D 1; 2) and express

the eigenfunction as

�
uk Q̨.r/
vk Q̨.r/

�
D 1p

V

�
	0 eikC �r 0

0 	0 eik� �r
��

u Q̨.k/
v Q̨.k/

�
: (10.9)

Vectors u Q̨.k/ and v Q̨.k/ now obey the 4 � 4 eigenvalue problem:

�
K HF.kC/ �.k/
���.�k/ �K �

HF.�k�/

��
u Q̨.k/
v Q̨.k/

�
D E Q̨.k/

�
u Q̨.k/
v Q̨.k/

�
(10.10)

and normalization condition (8.80). Equation (10.10) extends (8.79) for homoge-
neous systems to describe a uniform flow with momentum „q.

From now on we focus on s-wave Cooper pairing and consider a situation where
a weak homogeneous magnetic field of flux density B is also present along the
z direction. The resulting one-particle energy acquires an additional contribution
ı"k˛ D ��0m˛B proportional to both B and ˛ D ˙1=2 as in (6.38). Incorporating
this effect into (9.2) and setting U HF

k ! 0 as before, we can express K HF.˙k˙/
as

K HF.˙k˙/ D
�„2.˙kC q=2/2

2m
� �

�
	0 �

�0m
2
B	 z

	
�

k ˙ „

2k � q
2m

�
	0 �

�0m
2
B	 z; (10.11)

where 	 z is given in (8.42), 
k is defined by (9.17), and we have neglected terms of
order q2 based on the assumption q 
 k � kF. Let us substitute (10.11) together
with (9.1) into (10.10). We then find that the matrix to be diagonalized is of the form

2
664

k C Cq � CB 0 0 �k

0 
k C Cq C CB ��k 0

0 ���
k �
k C Cq C CB 0

��
k 0 0 �
k C Cq � CB

3
775 ; (10.12)

with Cq � „2k � q=2m and CB � �0mB=2. The corresponding 4 � 4 eigenvalue
problem is reduced to those of the (1,4) and (2,3) submatrices given by
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�

k C Cq � CB ˙�k

˙��
k �
k C Cq � CB

� �
uk
˙vk

�
D Ek Q̨

�
uk
˙vk

�
:

Compared with (9.4), this equation contains an extra term Cq � CB , which lies
equally on the diagonal. Hence, we only need to add Cq � CB to (9.5) to obtain its
eigenvalues,

Ek Q̨ D Ek C „
2k � q
2m

C .�1/ Q̨

2
�0mB . Q̨ D 1; 2/: (10.13)

Moreover, the eigenvectors are still given by (9.9) as they remain invariant in adding
contribution proportional to the unit matrix. The corresponding one-particle density
matrix is obtained by substituting (10.9) and (10.13) into (8.59) with q ! k Q̨ ,

�.1/.r1; r2/D 1

V

X
k

�
u2k Nnk1Cjvkj2.1� Nn�k2/ 0

0 u2k Nnk2 C jvkj2.1 � Nn�k1/

�
eikC�.r1�r2/;

(10.14)
where uk and vk are given by (9.6), and we have made a change of summation
variables k! �k for the v Q̨.k/ terms.

10.1.1 Spin Susceptibility

First, we set q D 0 and consider the limit B ! 0 to obtain the spin susceptibility.
The spin magnetic moment operator along the z axis is given by .�0m=2/	z.
Operating with it on the one-particle density matrix (10.14), we then take the trace,
and use the relation n�k Q̨ D nk Q̨ valid for q D 0 and u2k C jvkj2 D 1. We thereby
obtain the spin magnetic moment as

M D
Z

d3rTr
�0m
2
	 z �

.1/.r; r/ D �0m
2

X
k

. Nnk1 � Nnk2/:

Recalling (10.13), we then approximate the mean occupation number,

Nnk Q̨ 	 Nnk C @ Nnk
@Ek

.�1/ Q̨

2
�0mB . Q̨ D 1; 2/;

with which we obtain the moment as

M 	
�
�0m
�2
4

B
X

k

2

�
� @ Nnk
@Ek

�
	
�
�0m
�2
4

BD."F/

Z 1

�1

�
� @ Nnk
@Ek

�
d
k D �nY.T /B:

(10.15)
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Fig. 10.1 Yosida function as
a function of temperature

0.0 0.5 1.0
0.0

0.5

1.0

Y
(T

)

T/Tc

Here, �n �
�
�0m=2

�2
D."F/ is the normal susceptibility derivable from (6.44) by

F a
0 ! 0 as appropriate for U HF

k ! 0, and Y.T / is the Yosida function [10] defined
by

Y.T / �
Z 1

�1

�
� @ Nnk
@Ek

�
d
k D

Z 1

�1
1

4kBT
sech2

p

2 C Œ�.T /�2
2kBT

d
: (10.16)

Various response functions of the pair-condensed state are expressible in terms of
the Yosida function, which describes quasiparticle excitations. Figure 10.1 plots
Y.T / as a function of temperature. This satisfies Y.Tc/ D 1 and Y.0/ D 0, and
can be written alternatively as (Problem 10.1)

Y.T / D 1 � 2�kBT

1X
nD0

j�.T /j2�
"2n C j�.T /j2

	3=2 ; (10.17)

with "n � .2nC 1/�kBT .
The spin susceptibility � �M=B is obtained from (10.15),

�.T / D �nY.T /: (10.18)

The reduction of � as T ! 0 can be understood as a condensing of developing
pairs into the .";#/ singlet bound state as described below (9.1), which does not
contribute to the susceptibility.

10.1.2 Superfluid Density

Next, we set B D 0 and consider the limit q! 0 to calculate the total momentum
P. We operate with momentum operator Op1 � �i„r 1 on the one-particle density
matrix (10.14) and then take the trace. We thereby obtain the total momentum as
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P D
Z

d3r1Tr Op1�.1/.r1; r2/
ˇ̌
ˇ̌
r2Dr1

D
X

k

„kC
�
2jvkj2 C u2k. Nnk1 C Nnk2/� jvkj2. Nn�k1 C Nn�k2/

	
: (10.19)

Recalling (10.13), we then approximate the mean occupation number by

Nnk Q̨ 	 Nnk C @ Nnk
@Ek

„2k � q
2m

. Q̨ D 1; 2/;

with which we obtain the total momentum

P 	
X

k

„
�

kC q
2


�
2jvkj2 C 2.u2k � jvkj2/ Nnk C 2.u2k C jvkj2/

@ Nnk
@Ek

„2k � q
2m

�

D „q
2

X
k

�
2jvkj2 C 2.u2k � jvkj2/ Nnk

	C 2X
k

@ Nnk
@Ek
„k„

2k � q
2m

:

D „q
2
N C 2

X
k

@ Nnk
@Ek
„k„

2k � q
2m

: (10.20)

The second equality results from the fact that terms odd in k yield a null
contribution after the integration over the solid angle, and we have used (9.15) for
the total particle numberN . Subsequently, we convert the second term into a three-
dimensional integral as (8.90) and perform its angular integration using

Z
d�k

4�
k�k�0 D ı��0

k2

3
.�; �0 D x; y; z/:

The factor @ Nnk=@Ek in (10.20) implies that only the region 
 	 0 contributes to the
integral, so that we can approximate the density of states as D."/ 	 D."F/, where
D."/ D 2VN."/ for s D 1=2. The � element of the second term in (10.20) thereby
reduces to

2
X

k

@ Nnk
@Ek
„k� „

2k � q
2m

D
Z 1

�1
d"kD."k/

@ Nnk
@Ek

X
�0Dx;y;z

Z
d�k

4�
k�k�0

„3q�0

2m

D
Z 1

�1
d
kD.
k C �/ @ Nnk

@Ek

X
�0Dx;y;z

ı��0

k2

3

„3q�0

2m

	 „q�
2
D."F/

„2k2F
3m

Z 1

�1
d
k

@ Nnk
@Ek

D �„q�
2
N

Z 1

�1

�
� @ Nnk
@Ek

�
d
k:
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In the last equality, we have substituted (6.29) for s D 1=2 and m� D m

together with (4.35) for the Fermi wave number to express D."F/„2k2F=3m D N .
Substituting the result into (10.20), we obtain the total momentum in terms of the
Yosida function (10.16) as

P D mN Œ1 � Y.T /� vs; (10.21)

where vs � „q=2m is the superfluid velocity. Dividing the coefficient of vs in
(10.21) by V and m defines the superfluid density1:

ns � N

V
Œ1 � Y.T /� : (10.22)

Expression (10.21) may be understood as follows. At T D 0 where Y.0/ D 0

holds, all the particles condense into the pair bound state of (10.1), and they
can move coherently without dissipation. At finite temperatures, the presence
of quasiparticle excitations causes a reduction in the superfluid density, which
eventually vanishes at T D Tc where Y.Tc/ D 1. Thus, the present formalism
starting from (8.6) enables us to understand the superfluidity naturally. The origin of
the persistence of flow without dissipation may be attributed to the phase coherence
over quite a large number of particles (N � 1023) originating from condensation
into an identical two-particle bound state, which blocks any small perturbation from
affecting the motion.

10.1.3 Leggett’s Theory of Superfluid Fermi Liquids

We now incorporate the Hartree–Fock potential U HF into our consideration to see
how it alters the results for the spin susceptibility and superfluid density obtained
above. This issue was considered by Larkin and Migdal at T D 0 [5], and studied
thoroughly by Leggett [6] at all temperatures below Tc. The content may be regarded
as an extension of Landau’s Fermi-liquid theory considered in Sect. 6.3 to superfluid
phases.

With the presence of superflow and external magnetic field, the quasiparticle
energy Ek Q̨ for U HF ! 0 is given by (10.13). There is a shift in the eigenenergy,
which to first order in „q and B is given by

ıE0
k Q̨ �

„2k � q
2m

C .�1/ Q̨

2
�0mB . Q̨ D 1; 2/: (10.23)

Similarly, we expect that the first-order variation ıEk Q̨ for U HF ¤ 0 is also
expressible as

1Quantity �s � mns is also called superfluid density in the literature.



150 10 Superfluidity, Meissner Effect, and Flux Quantization

ıEk Q̨ � „
2k � q
2m�

s
C .�1/ Q̨

2
�s

mB . Q̨ D 1; 2/; (10.24)

wherem�
s and�s

m are parameters that must be determined self-consistently. We shall
see that a solution of this form does exist and obtain expressions form�

s and �s
m.

The one-particle density matrix with the first-order variation (10.24) is still given
by (10.14). Substituting it together with (6.18) into (8.61), we find that U HF.r1; r2/
is expressible in the same way as in (10.4) with “coefficient”

U HF.kC/ D 1

V

X
k0



	0V0

�
2jvk0 j2 C u2k0. Nnk01 C Nnk02/ � jvk0 j2. Nn�k01 C Nn�k02/

	

�Vjk�k0 j
�

u2
k0 Nnk01 C jvk0 j2.1� Nn�k02/ 0

0 u2k0 Nnk02 C jvk0 j2.1 � Nn�k01/

��
:

Next, we expand the mean occupation number,

Nnk Q̨ D Nnk C @ Nnk
@Ek

ıEk Q̨ . Q̨ D 1; 2/;

and use the symmetry ıE�k Q̨ D �ıEk;3�Q̨ of (10.24) and equality u2kCjvk j2 D 1 to
obtain a first-order expression for the Hartree–Fock potential,

ıU HF.kC/ D 1

V

X
k0

@ Nnk0

@Ek0



	0V0.ıEk01CıEk02/� Vjk�k0j

�
ıEk01 0

0 ıEk02

��
:

It is diagonal and expressible in terms of the Landau f function (6.23) as

ıU HF
k Q̨ D

1

V

X
k0 Q̨0

f Q̨ Q̨0.k;k0/
@ Nnk0

@Ek0

ıEk0 Q̨0 : (10.25)

As first-order variation (10.24) is equal to the sum of (10.23) and (10.25) by
definition, we then have

ıEk Q̨ D ıE0
k Q̨ C

1

V

X
k0 Q̨0

f Q̨ Q̨0.k;k0/
@ Nnk0

@Ek0

ıEk0 Q̨0 : (10.26)

This is the self-consistency equation for ıEk Q̨ with the same form as (6.22) in the
normal state. Hence, to determine the unknown parameters m�

s and �s
m, we only

need to repeat the arguments of Sect. 6.3.3 for B D 0 and Sect. 6.3.4 for q D
0 using (10.26) as the first-order variation of the eigenenergy. In this respect, we
notice that the change from @ Nnk0=@"k0 D �ı."k0�"F/ to @ Nnk0=@Ek0 in the superfluid
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phase yields an extra factor Y.T /, i.e., the Yosida function given by (10.16). This
observation implies that (6.37) and (6.44) for the normal state are now replaced by

m�
s

m
D 1C 1

3
F s
1 Y.T /; (10.27)

� D ��0m=2�2D."F/
Y.T /

1C F a
0 Y.T /

; (10.28)

respectively. Thus, we have derived the sought-after expression for the spin
susceptibility.

To derive the superfluid density ns, we start once again from (10.20) by replacing
m ! m�

s , then converting its sum over k into a three-dimensional integral as in
(8.90), and expressing the density of states in (6.29) asD."F/ D .m�=m/D0."F/ D
.1CF s

1 =3/D
0."F/ in terms ofD0."F/ for the ideal gas. Repeating the considerations

for (10.21), we then obtain the superfluid density

ns D N

V

2
6641 �

�
1C 1

3
F s
1

�
Y.T /

1C 1

3
F s
1 Y.T /

3
775 : (10.29)

This coincides with N=V at T D 0 as Y.0/ D 0, indicating that a coherent flow
with all particles is realized. In contrast, ns vanishes at T D Tc because Y.Tc/ D 1

in accordance with our expectation. Interaction effects on ns, which are embodied
in F s

1 , may become substantial at finite temperatures between 0 and Tc.

10.2 Meissner Effect and Flux Quantization

Superconductivity is caused by condensing Cooper pairs of electrons each of which
carries charge e < 0. Their superflow necessarily obeys Maxwell’s equations for
electromagnetism. Among them is Ampère’s law for steady currents given by

r � B.r/ D �0j.r/; (10.30)

where B denotes the microscopic magnetic flux density, �0 D 4� � 10�7 N�A�2
is the vacuum permeability, and j.r/ is the current density. This coupling between
the supercurrent and magnetic field yields a unique phenomenon called the Meissner
effect, whereby weak magnetic fields are excluded from the bulk of superconductors.
Discovered by Meissner and Ochsenfeld in 1933 [9], we discuss this effect together
with the flux quantization, using the London equation to be developed from (10.30).
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10.2.1 Ampère’s Law

To begin, we derive Ampère’s law (10.30) itself based on a variational principle to
find a microscopic expression of the current density j.r/.

Let us incorporate the effects of the magnetic field into the grand potential (8.32).
First, operator (8.20) needs to embrace the vector potential A1 � A.r1/ as

OK1 � . Op1 � eA1/
2

2m
CU .r1/� �: (10.31)

Second, the energy of the magnetic field

Hmag D 1

2�0

Z
d3r1 .r1 � A1/

2 (10.32)

should be included, where r1 � A1 D B1. This latter term is generally neglected
in the normal state, because in most cases the magnetic fields produced by
orbital motions of electrons or spin magnetic moments are negligibly small. In
superconductors, however, a supercurrent can produce a large magnetic field so that
this contribution must be manifest. There is also a contribution from the Zeeman
effect:

OHZ � �B

Z
d
1 O �.r1˛0

1/
�
�
�̨

0

1˛1
O .r1˛1/ � B1; (10.33)

due to the spin magnetic moment, where �B is the Bohr magneton (6.39). However,
because it is much less important in single-element superconductors than the orbital
diamagnetism due to the supercurrent, we shall omit this contribution, noting that it
may be easily incorporated when necessary.

The corresponding BdG equations can be derived in the same way as in Sect. 8.3.
Indeed, they are still given by (8.38) by replacing Op1 ! Op1 � eA1 in OK1 of (8.36).
As for the vector potential, we require that the magnetic field actually realized in the
system minimizes�Œ O��CHmag. A necessary condition for this is that�Œ O��CHmag

is stationary with respect to the variation A1 ! A1 C ıA1. As a preliminary to
calculate the relevant first-order variation ı�Œ O�� C ıHmag, we rewrite the kinetic
energy in (8.32) using integration by parts,

�kin D
Z
. Op1 � eA1/

2

2m
�.1/.
1; 
2/

ˇ̌̌
ˇ

2D
1

d
1

D
Z X

˛1

.�Op2�eA2/ � . Op1�eA1/

2m
�.1/.
1; 
2/

ˇ̌
ˇ̌

2D
1

d3r1: (10.34)

Using the latter expression, we can transform the first-order variation as

ı
�
�Œ O��CHmag

� D ı�kin C ıHmag
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D �e
Z X

˛1

ıA2 � . Op1 � eA1/C .�Op2 � eA2/ � ıA1

2m
�.1/.
1; 
2/

ˇ̌
ˇ̌

2D
1

d3r1

C 2

2�0

Z �r 1 � ıA1

� � �r 1 �A1

�
d3r1

D
Z
ıA1 �

"
�e
X
˛1

. Op1 � eA1/C .�Op2 � eA2/

2m
�.1/.
1; 
2/

ˇ̌̌
ˇ

2D
1

C 1

�0
r 1 �

�r1 � A1

��
d3r1; (10.35)

where we have applied the mathematical identity .r � ıA/ �B D r � .ıA�B/CıA �
.r � B/ [1] to the magnetic energy and subsequently removed r � .ıA � B/ using
Gauss’ theorem [1] and condition ıA D 0 on the surface. For the equality ı�Œ O��C
ıHmag D 0 to hold in terms of an arbitrary ıA1, it is necessary that the coefficient of
ıA1 be zero. We thereby obtain Ampère’s law (10.30) with a microscopic expression
for the current density,

j.r1/ D e
X
˛1

. Op1 � eA1/C .�Op2 � eA2/

2m
�.1/.
1; 
2/

ˇ̌
ˇ̌

2D
1

: (10.36)

10.2.2 London Equation

The BdG equation (8.38) and Ampère’s law (10.30) with current density (10.36)
form a set of self-consistency equations for the quasiparticle eigenstates and
magnetic field. Here, we solve them approximately to derive the London equation.

Let us generalize the argument of Sect. 10.1 by presuming that the current density
spatially changes its magnitude and direction. More specifically, we replace the
phase q � .r1Cr2/=2 in (10.1) with a function Œ'.r1/C'.r2/�=2 that varies slowly in
space; the term “slow” is used here in comparison with the radius of the bound
wave function �. Accordingly, the phase factor in (10.3)–(10.9) is replaced by
q � rj ! '.rj / (j D 1; 2), as is the phase of the one-particle density matrix in
(10.14). Let us substitute the density matrix into (10.36) and repeat the steps for
(10.19)!(10.21). We thereby obtain an expression for the current density

j.r/ D ensvs.r/; (10.37)

where ns denotes the superfluid density (10.22), and vs is now given by

vs � „
2m

�
r' � 2e„ A

�
: (10.38)

This vs reduces to (10.21) for neutral systems by setting ' ! q � r and e ! 0.
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Substituting (10.37) into (10.30), we can express Ampère’s law as

r � B D �0ens„
2m

�
r' � 2e„ A

�
: (10.39)

We further operate with r� on this equation and use identities r � r � B D rr �
B � r2B and r � r' D 0 together with Gauss’ law r � B D 0 for magnetism. We
thereby obtain the London equation [8] in the form

r2B.r/ D 1

�2L
B.r/; �L �

r
m

�0nse2
; (10.40)

where �L is called the London penetration depth. Note that this derivation of the
London equation assumes no reduction in the energy gap in the presence of an
applied magnetic field.

10.2.3 Meissner Effect

Let us solve (10.40) for a simple one-dimensional geometry to establish a theoretical
basis for the Meissner effect.

We consider the case where a uniform magnetic field of flux density B0 is
applied along the z axis in the vacuum occupying the domain x < 0, and a
superconductor is placed in the region x � 0. In this geometry, the magnetic flux
density in the superconductor is expressible as B.r/ D .0; 0; B.x//, and the London
equation (10.40) reduces to

d2B.x/

dx2
D 1

�2L
B.x/:

Its general solution is expressible in the form B.x/ D C1e�x=�L C C2ex=�L where
C1 and C2 are two constants of integration. The continuity of the flux density at
x D 0 yields B.0/ D C1 C C2 D B0, whereas the physical boundary condition
jB.x !1/j <1 gives C2 D 0. We thereby obtain the solution

B.x > 0/ D B0e�x=�L : (10.41)

Hence, the magnetic field decreases exponentially near the surface over the length
�L and is excluded completely from the bulk of the superconductor. The correspond-
ing current density is obtained from (10.30) as j.r/ D .0; B.x/=�0�L; 0/, which is
also confined to the surface region to depth �L. Thus, the Meissner effect can be
understood as a response of the superconductor in preventing an energy increase in
the bulk due to the magnetic field and superflow.
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Fig. 10.2 Superconductivity
in an annulus with a trapped
magnetic field

R1

R2

C
B

Superconductor

10.2.4 Flux Quantization

Next, we consider superconductivity in an annulus with a weak magnetic field
trapped in the central vacuum region, as depicted in Fig. 10.2. We shall show that
the trapped magnetic flux is quantized in deriving (10.43) below.

If the difference between the outside diameterR2 and inside diameterR1 satisfies
R2 � R1 � �L, the magnetic field is excluded from the bulk. Let us perform a line
integral of (10.39) along a closed path C in the bulk region. The integral on the
left-hand side yields 0 because B D 0 along C . Next, the equality is transformed
using Stokes’ theorem [1] to give

0 D
I
C

�
r' � 2e„ A

�
� dr D

I
C

r' � dr � 2e„
Z
R

.r � A/ � dS

D 2�n � 2e„
Z
R

B � dS D 2�n � 2e„ ˆ; (10.42)

where R denotes the region enclosed by C , and ˆ is the total flux confined in the
central region. Noting that (i) ' is the phase of the pair wave function �.r1; r2/
in terms of the center-of-mass coordinate .r1 C r2/=2 and (ii) �.r1; r2/ must be
single-valued, we conclude that the integration constant n should be an integer. This
implies that the total flux in the central region is quantized,2

ˆ D �nˆ0 .n D 0;˙1;˙2; � � � /; (10.43)

where

ˆ0 � h

2jej D 2:068 � 10
�15 Wb (10.44)

forms the unit of magnetic flux in a superconductor called the flux quantum. Flux
quantization was predicted by London in 1948 [7, 8] prior to the idea of pair

2The minus sign in (10.43) reflects e < 0.
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condensation, where the flux quantum was predicted to be twice ˆ0 because of
2jej ! jej. The discrepancy in the factor 2was understood subsequently in a couple
of experiments [2, 4] by cooling Sn or Pb in weak magnetic fields from above Tc

and measuring the trapped flux. The results showed clearly that the unit of magnetic
flux is given by (10.44). These experiments may also be regarded as establishing the
Cooper-pair condensation for the mechanism of superconductivity.

The quantization described above is relevant to the flux trapped mostly out-
side the superconducting material. Nevertheless, we shall see in Chap. 15 that
a quantized flux can also be trapped inside type-II superconductors. However,
this possibility is excluded from the London equation (10.40). To incorporate it
appropriately, we replace the “identity” r � r' D 0 with

r � r' D 2�nOzı2.r � r0/; (10.45)

where Oz is the unit vector along the z axis, ı2.r/ � ı.x/ı.y/, and r0 denotes the
singular point of '.r/ around which '.r/ changes by 2�n upon a counterclockwise
rotation in the .x; y/ plane. The validity of (10.45) is confirmed by taking its scalar
product with Oz, integrating the resulting equation over a region R in the .x; y/
plane that includes r0, and transforming the left-hand side using Stokes’ theorem
[1]. Noting (10.45), let us operate r� on (10.39). We thereby find that (10.40) is
now replaced by

� �2Lr2B.r/C B.r/ D �nˆ0 Ozı2.r � r0/: (10.46)

We note that the singularity of '.r/ at r D r0 is superimposed by a zero of the pair
potential �.r/ to remove the singularity, as will be studied in detail in Sects. 15.6
and 16.3. Equation (10.46) has been useful in clarifying the flux-line structures of
so-called extreme type-II superconductors [3]; see also (15.79) on this point.

Problems

10.1. In regard to the Yosida function Y.T /,

(a) Show that (10.16) can be written alternatively as (10.17) by using (9.39).
(b) Prove

Y.T . Tc/ D 1 � 2Tc � T
Tc

; (10.47)

using (9.42) and (10.17).
(c) Show that Y.T ! 0/ is given approximately by

Y.T ! 0/ 	
s
2��

kBT
e��=kBT : (10.48)
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Chapter 11
Responses to External Perturbations

Abstract One basic experimental method to probe condensed matter is to subject
the system to small perturbing forces, using for example electromagnetic fields,
and measure responses. In this chapter, we first develop a linear-response theory
for analyzing the resulting data. We then use it to obtain theoretical formulas for
ultrasonic attenuation and nuclear-spin relaxation in s-wave superconductors. It is
thereby shown that changes in the excitation spectrum through the superconducting
transition can be captured unambiguously by these experiments.

11.1 Linear-Response Theory

We consider an arbitrary grand canonical ensemble in equilibrium at t D �1
described by Hamiltonian OH , and apply a small time-dependent perturbation
OH 0.t/ for t > �1. We formulate a linear-response theory following Kubo [7].

Key formulas are given by (11.7) with (11.5) for the response in the time domain,
(11.13) for the response in the frequency domain, and (11.19) with (11.17) for the
energy dissipation.

11.1.1 Response in Time Domain

First, we study responses in the time domain to derive a linear-response formula,
(11.7), in terms of the operator (11.5).

Our starting point is the density-matrix operator (5.1), the ket and bra of which
now obeys the time-dependent Schrödinger equation:

i„djˆ�i
dt
D � OH C OH 0�jˆ�i; �i„dhˆ�j

dt
D hˆ� j

� OH C OH 0�; (11.1)

© Springer Japan 2015
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instead of the time-independent equation.1 Using them, we differentiate (5.1) with
respect to t , changing O� ! O�P.t/ to emphasize the presence of the time-dependent
perturbation. We thereby obtain2

i„d O�P.t/

dt
D � OH C OH 0.t/; O�P.t/

	
; (11.2)

with Œ OA; OB� � OA OB � OB OA. It is convenient to express O�P.t/ as

O�P.t/ D e�i OH t=„ O�H.t/ei OH t=„: (11.3)

Indeed, substitution of this expression into (11.2) produces a cancelation of OH on
the right-hand side. Multiplying the resulting equation by ei OH t=„ from the left and
e�i OH t=„ from the right, we obtain

i„d O�H.t/

dt
D � OH 0

H.t/; O�H.t/
	
; (11.4)

where OH 0
H.t/ is defined by

OH 0
H.t/ � ei OH t=„ OH 0.t/e�i OH t=„: (11.5)

With the initial condition O�H.�1/ D e�i OH t=„�e�ˇ OH =ZG
�
ei OH t=„ D e�ˇ OH =ZG �

O�, we integrate (11.4)

O�H.t/ D O� � i

„
Z t

�1
dt 0
� OH 0

H.t
0/; O�H.t

0/
	 	 O� � i

„
Z t

�1
dt 0
� OH 0

H.t
0/; O�	; (11.6)

where the last expression is valid up to first order in OH 0.t/.
Now, consider an observable OO with no explicit time dependence. Its expectation

at time t is given by Tr O�P.t/ OO . Let us substitute (11.6) into (11.3) and transform
Tr O�P.t/ OO � O.t/ using the invariance of the trace under cyclic permutation of the
operators [1, 9]. We thereby obtain an expression for the expectation under the same
approximation

O.t/ � Tr O�P.t/ OO D Tr O�H.t/ OOH.t/ 	 O� OO � i

„
Z t

�1
dt 0Tr

� OH 0
H.t

0/; O�	 OOH.t/

D h OOi � i

„
Z t

�1
dt 0
˝� OOH.t/; OH 0

H.t
0/
	˛
; (11.7)

1The density matrix (5.1) in equilibrium remains invariant under the change in definition of the ket
and bra, because the additional phase factor e�iE� t=„ of jˆ�i in the absence of OH 0 is canceled by
eiE� t=„ of hˆ� j.
2Probabilities w� are assumed to have no time dependence at all, which is justified when
considering linear responses.
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with h OOi � Tr O� OO as defined by (5.2). Thus, we can express the linear response due
to the perturbation in terms of the expectation in equilibrium as

O .1/.t/ D � i

„
Z t

�1
dt 0
˝� OOH.t/; OH 0

H.t
0/
	˛
: (11.8)

11.1.2 Response in Frequency Domain

Next, we show that (11.8) in the time domain can be Fourier-transformed into
(11.13) below in the frequency domain.

Let us express OH 0.t/ in a continuous Fourier series,

OH 0.t/ D
Z 1

�1
d!

2�
e�i!t OH 0

! ; (11.9)

where OH 0�
! D OH 0�! holds because of the Hermiticity of OH 0.t/. Using this equation

and introducing OH 0
!H.t/ � ei OH t=„ OH 0

!e�i OH t=„, we can rewrite (11.8) as

O .1/.t/ D � i

„
Z t

�1
dt 0
Z 1

�1
d!

2�
e�i!t 0

˝� OOH.t/; OH 0
!H.t

0/
	˛

D
Z 1

�1
d!

2�
e�i!t

Z t

�1
dt 0ei!.t�t 0/

�
� i

„
� ˝� OOH.t/; OH 0

!H.t
0/
	˛
: (11.10)

Now, one can show (Problem 11.1)

˝� OOH.t/; OH 0
!H.t

0/
	˛ D ˝� OOH.t � t 0/; OH 0

!

	˛
: (11.11)

With this, and making a change of variable t 0 ! t1 � t � t 0, we can express O .1/.t/

above as

O .1/.t/ D
Z 1

�1
d!

2�
e�i!tO .1/

! ; (11.12)

with

O .1/
! �

Z 1

0

�
� i

„
� ˝� OOH.t1/; OH 0

!

	˛
ei!Ct1dt1; (11.13)

where !C � ! C i0C with 0C denoting an infinitesimal positive constant. The
additional factor e�0Ct1 introduced here makes the integrand vanish for t1 ! 1
and thereby ensures the convergence of the t1 integral. It physically corresponds to
the fact that the perturbation is absent at t 0 D �1.

Equation (11.12) is given as a linear combination of O
.1/
! that represents the

response of observable OO to perturbation OH 0
! of the same frequency. In other words,

the response to each ! can be calculated independently within the linear-response
regime.
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11.1.3 Energy Dissipation

Finally, we consider the perturbation3

OH 0.t/ D
OH 0
! e�i!t C OH 0�! ei!t

2
D 1

2

X
	D˙1

OH 0
	! e�	 i!t ; (11.14)

to obtain an expression for the energy dissipation per unit time, (11.19) below,
in terms of the retarded Green’s function (11.17). The pair of frequencies of
opposite sign are included here to make OH 0.t/ Hermitian, which is indispensable
for studying dissipation.

The relevant observable is

OR.t/ � d OH 0.t/
dt

D � i!

2

X
	D˙1

	 OH 0
	! e�	 i!t : (11.15)

The energy injected into the system per unit time is given by the time average˝
d OH 0.t/=dt

˛
, which is transformed into heat associated with random motions within

the system. It is carried to the surface by electrons or phonons to eventually disperse
into the surroundings. All these processes are beyond linear order. Hence, we can
choose OO in (11.8) as OR above for the evaluation of the energy dissipation rate,
which here denotes the energy transferred to its surroundings per unit time in the
steady state.

With two relevant frequencies in OR.t/ above, (11.12) is modified for taking the
time average as follows. Let us substitute (11.14) and (11.15) into (11.8) with OO !
OR. We then transform R.1/ similarly to (11.10)–(11.13), obtaining

R.1/.t/ D � i

„
Z t

�1
dt 0
�i!

4

X
	;	 0D˙1

	e�	 i!t�	 0 i!t 0 ˝� OH 0
	!;H.t/;

OH 0
	 0!;H.t

0/
	˛

D �i!

4

X
	;	 0

	e�.	C	 0/i!t
�
� i

„
�Z t

�1
dt 0e	 0i!.t�t 0/˝� OH 0

	!;H.t � t 0/; OH 0
	 0!

	˛

D �i!

4

X
	;	 0

	e�.	C	 0/i!t

�
� i

„
�Z 1

0

dt1e	
0i!t1

˝� OH 0
	!;H.t1/;

OH 0
	 0!

	˛
:

Subsequently, we average R.1/.t/ over a single period, through which only terms
with 	 D �	 0 survive,

NR.1/ � !

2�

Z t0C2�=!

t0

R.1/.t/dt D i!

4

�
KR.!/ �KR.�!/	; (11.16)

3We adopt a normalization for OH! different from (11.9) for the continuous spectrum.
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whereKR.!/ is defined by

KR.!/ � � i

„
Z 1

0

dt1 ei!Ct1
˝� OH 0�!;H.t1/; OH 0

!

	˛
; (11.17)

in terms of OH 0̇
! given in (11.14). Note that factor e�0Ct1 has been incorporated

into the integrand once again. This is a retarded Green’s function that represents
the response of OH 0�!;H.t1 � 0/ due to perturbation OH 0

! at t1 D 0 in the frequency
domain; it satisfies (Problem 11.2)

ŒKR.!/
	� D KR.�!/: (11.18)

Using this, we can express (11.16) as

NR.1/ D �!
2

ImKR.!/; (11.19)

where Im denotes the imaginary part.

11.2 Ultrasonic Attenuation

We study the longitudinal ultrasonic attenuation of s-wave superconductors based
on (11.19) to derive (11.39) for the relevant energy dissipation, which is plotted in
Fig. 11.1 below.

Ultrasound is an oscillating sound wave whose frequency f � !=2� ranges
from 20 kHz up to several giga-Hertz (i.e., 109 Hz). When applied to superconduc-
tors, it perturbs the system with energy 2�„f 
 � and wave number q 
 kF.4 The
disturbance by longitudinal waves may be modeled by the time-dependent potential
U .r; t/ D U1 cos.q � r � !t/ for electrons. The corresponding Hamiltonian is
given by

OH 0.t/ D
Z

d
 O �.
/U .r; t/ O .
/ D
OH 0
! e�i!t C OH 0�! ei!t

2
; (11.20)

where OH 0
! denotes

OH 0
! � U1

X
˛

Z
d3r O �.
/ O .
/ eiq�r D U1

X
k˛

Oc�kC˛
Ock�˛; (11.21)

4The energy of sound in the temperature scale is of the order of�T � 2�„f=kB . 2��10�34�
109=10�23 
 0:1K, which is much smaller than Tc in general. The corresponding wave number q
is given in terms of the speed of sound s 
 103 m/s by q D 2�f=s . 2� � 109=103 
 107 m�1,
which is also much smaller than kF 
 a�1 
 1010 m�1 with a 
 10�10 m denoting the lattice
spacing of metals.
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with k˙ � k ˙ q=2. In deriving the second expression, we have expanded O �.
/
and O .
/ in plane waves,

O �.r˛/ D 1p
V

X
k1

Oc�k1˛e�ik1 �r; O .r˛/ D 1p
V

X
k2

Ock2˛eik2�r; (11.22)

then used orthonormality hk1jk2 C qi D ık1;k2Cq to eliminate k1, and set k2 D
k� q=2 to change the summation variable from k2 to k.

Next, we expand Ock˛ in terms of quasiparticle fields with unitary matrix (9.7),

2
66664

Ock"
Ock#
Oc��k"
Oc��k#

3
77775 D

2
66664

uk 0 0 �v�
k

0 uk v�
k 0

0 �vk uk 0

vk 0 0 uk

3
77775

2
66664

O�k1

O�k2

O���k1

O���k2

3
77775 : (11.23)

Using this, we transform (11.21) into

OH 0
! D U1

X
k

2X
Q̨D1

�
ukC
O��kC Q̨C.�1/ Q̨vkC

O��kC3�Q̨
	�

uk�
O� k� Q̨ C .�1/ Q̨v�

k�

O���k�3�Q̨
	

D U1

X
k Q̨

��
ukC

uk�
� vk�

v�
kC

� O��kC Q̨ O� k� Q̨ C .�1/ Q̨

2
.ukC

v�
k�

C uk�
v�
kC

/

� O��kC Q̨ O���k�3�Q̨ C
.�1/ Q̨

2
.uk�

vkC
C ukC

vk�
/ O��kC3�Q̨ O� k� Q̨

�
; (11.24)

where the second expression has been derived by (i) changing the summation
variables for the vv and uv terms as .k; Q̨ / ! .�k; 3 � Q̨ / and (ii) using the
anticommutation relations of field operators for q ¤ 0.

Substituting (11.24) and OH 0�! D OH 0�
! into (11.17), we can express the

expectation of the commutator as

˝� OH 0�!;H.t/; OH 0
!

	˛

D U 2
1

X
k Q̨



jukC

uk�
� vk�

v�
kC

j2˝� O��k� Q̨.t/ O� kC Q̨.t/; O��kC Q̨ O� k� Q̨
	˛

C2
4
jukC

vk�
C uk�

vkC
j2˝� O��k�3�Q̨.t/ O� kC Q̨.t/; O��kC Q̨ O���k�3�Q̨

	˛

C2
4
jukC

vk�
C uk�

vkC
j2˝� O��k� Q̨.t/ O���kC3�Q̨.t/; O��kC3�Q̨ O� k� Q̨

	˛�
; (11.25)
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where O� k Q̨.t/ � ei OH t=„ O� k Q̨e�i OH t=„, and we have retained only terms with finite
expectations. Factor 2 in the uv terms may be confirmed by choosing the summation
variables of OH 0

! and OH 0�! as .k; Q̨ / and .k0; Q̨ 0/, respectively, and noting that the two
combinations .k0; Q̨ 0/ D .k; Q̨ /; .�k; 3 � Q̨ / yield the same average.

We now evaluate (11.25) based on the mean-field theory of superconductivity
where Hamiltonian OH is approximated as (8.57). Specifically for the present
homogeneous s-wave pairing, it reads

OH 	
X
k Q̨
Ek O��k Q̨ O� k Q̨ C const:;

with Ek given by (9.5). Now, we have shown that (5.9) is expressible as (5.10).
Similarly, operator O� k Q̨.t/ D ei OH t=„ O� k Q̨e�i OH t=„ and its Hermitian conjugate with
the above Hamiltonian can be written as

O� k Q̨.t/ D e�iEk t=„ O� k Q̨ ; O��k Q̨.t/ D eiEkt=„ O��k Q̨ : (11.26)

Using them, we can perform the Wick decomposition of the first average in (11.25),

˝� O��k� Q̨.t/ O� kC Q̨.t/; O��kC Q̨ O� k� Q̨
	˛

D e�i.Ek
C

�Ek� /t=„�˝ O� kC Q̨ O��kC Q̨
˛˝ O��k� Q̨ O� k� Q̨

˛ � ˝ O��kC Q̨ O� kC Q̨
˛˝ O� k� Q̨ O��k� Q̨

˛	

D e�i.Ek
C

�Ek� /t=„�.1 � NnkC
/ Nnk�

� NnkC
.1 � Nnk�

/
	
;

with Nnk � .eˇEk C 1/�1. The other two expectations can be estimated similarly.
Substituting them into (11.25) and summing over Q̨ , we obtain

˝� OH 0�!;H.t/; OH 0
!

	˛

D 2U 2
1

X
k



jukC

uk�
�vk�

v�
kC

j2. Nnk�
�NnkC

/e�i.Ek
C

�Ek� /t=„

CjukC
vk�
Cuk�

vkC
j2

2
.1�NnkC

�Nnk�
/
�
e�i.Ek

C
CEk� /t=„� ei.Ek

C
CEk� /t=„	� :

(11.27)

Using this expression, we can perform the integration of (11.17) to obtain

KR.!/ D 2U 2
1

X
k



jukC

uk�
� vk�

v�
kC

j2 Nnk�
� NnkC

„!C � .EkC
� Ek�

/

CjukC
vk�
C uk�

vkC
j2

2
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�
�

1 � NnkC
� Nnk�

„!C � .EkC
C Ek�

/
� 1 � NnkC

� Nnk�

„!C C .EkC
C Ek�

/

��
: (11.28)

Quantities ukC
uk�
� vk�

v�
kC

and ukC
vk�
C uk�

vkC
are called coherence factors,

whose magnitudes are given using (9.6) by

jukC
uk�
� vk�

v�
kC

j2 D EkC
Ek�
C 
kC


k�
��2

2EkC
Ek�

;

jukC
vk�
˙ uk�

vkC
j2 D EkC

Ek�
� 
kC


k�
˙�2

2EkC
Ek�

; (11.29)

where the lower signs are incorporated for later convenience. Let us substitute
(11.29) into (11.28) and use identity

1

x ˙ i0C
D P

1

x
� i�ı.x/; (11.30)

with P denoting the principal value, which may be seen to hold by integrating both
sides over an arbitrary interval on the real x axis. Equation (11.19) with (11.28) is
thereby transformed into

NR.1/ D �!U 2
1

X
k



EkC

Ek�
C 
kC


k�
��2

2EkC
Ek�

. Nnk�
� NnkC

/ı.„! � EkC
C Ek�

/

CEkC
Ek�
� 
kC


k�
C�2

4EkC
Ek�

.1 � NnkC
� Nnk�

/
�
ı.„! � EkC

� Ek�
/

�ı.„! C EkC
C Ek�

/
	�
: (11.31)

Noting that „! 
 � � Ek
˙

, we omit the second term in the curly brackets.
For convenience, we then shift the summation variable as k � q=2 ! k, and
subsequently convert the sum over k into an integral using (8.90),

NR.1/ 	 �!U 2
1 VN."F/

Z 1

�1
d
k

Z 1

�1
dt

2

EjkCqjEk C 
jkCqj
k ��2

2EjkCqjEk
�Œ Nn.Ek/� Nn.EjkCqj/�ı.„! �EjkCqj C Ek/; (11.32)

where t � cos �k in the coordinate system with q k z.
We first consider the normal-state limit of � ! 0 and Ek ! 
k , where (11.32)

reduces to

NR.1/
n D �!U 2

1 VN."F/

Z 1

�1
d
k

Z 1

�1
dt

2
Œ Nn.
k/� Nn.
jkCqj/�ı.„! � 
jkCqj C 
k/:

(11.33)
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Noting q 
 kF, we approximate 
jkCqj 	 
k C „2k � q=m 	 
k C .„2kFq=m/t .
Then, we can express the argument of the ı function in terms of the Fermi velocity
vF � „kF=m � 106 m/s and the speed of ultrasound s � !=q � 103 m/s as

„! � 
jkCqj C 
k 	 „
2kFq

m

�
m!

„kFq
� t
�
D „

2kFq

m

�
s

vF
� t
�
: (11.34)

Note that s=vF � 10�3 certainly lies in the interval Œ�1; 1� of the t integral. Hence,
the t integral in (11.33) only has the effect of setting 
jkCqj D 
k C„! via the delta
function ı.„! � 
jkCqj C 
k/ D .m=„2kFq/ı.t � s=vF/. With this observation, we
can simplify (11.33),

NR.1/
n 	 �!U 2

1 VN."F/
m

2„2kFq

Z 1

�1
d
kŒ Nn.
k/� Nn.
k C „!/�

D �U 2
1 VN."F/

m!2

2„kFq
; (11.35)

where we have used

I."/ �
Z 1

�1
Œ Nn.
/ � Nn.
 C "/�d
 D "; (11.36)

as shown easily based on dI."/=d"D 1 and I.0/ D 0.
We now proceed to (11.32); the delta function transforms as

ı.„! �EjkCqj C Ek/ D
ˇ̌
ˇ̌dEjkCqj

dt

ˇ̌
ˇ̌�1 ı.t � t0/ 	

ˇ̌
ˇ̌dEk

d
k

„2kFq

m

ˇ̌
ˇ̌�1 ı.t � t0/;

(11.37)

where t0 (jt0j 
 1) denotes the value of t at which EjkCqj D „! C Ek holds. With
this and noting q 
 kF, we can rewrite (11.32) as

NR.1/ 	 �!U 2
1 VN."F/2

Z 1

0

d
k
E2
k C 
2k ��2

2E2
k

Œ Nn.Ek/ � Nn.EkC„!/� d
k
dEk

m

2„2kFq

	 �!U 2
1 VN."F/

m

„2kFq

Z 1

�

dEk

�
d
k
dEk

�2 
2k
E2
k

�
�d Nn.Ek/

dEk

�
„!

D �U 2
1 VN."F/

m!2

„kFq
Nn.�/; (11.38)

where we have used d
k=dEk D Ek=
k for 
k � 0, which follows from (9.5).
Hence, we obtain the energy dissipation of ultrasound in s-wave superconductors
relative to (11.35) for the normal state as (R.1/ ! R

.1/
s )

R.1/
s =R.1/

n D 2 Nn.�/; (11.39)
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Fig. 11.1 Coefficient of
attenuation for ultrasound as
a function of temperature
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which is equal to the ratio ˛s=˛n of the ultrasound attenuation rate ˛s observed in
experiments. Figure 11.1 plots (11.39) as a function of temperature. We see a steep
decrease in the attenuation rate for T . Tc resulting from the widening of the energy
gap. An excellent agreement between theory and experiment was reported soon after
the publication of the BCS theory [10].

11.3 Nuclear-Spin Relaxation

Next, we consider nuclear-spin relaxation in s-wave superconductors to derive an
expression for the relaxation rate, (11.57), plotted in Fig. 11.2.

We have already seen in Sect. 3.2 that every particle has an internal degree of
freedom called spin with a proper magnetic moment. We focus here on the nuclei
in a metal that are arranged periodically at lattice sites fRj g (j D 1; 2; � � � ; Na)
with electrons moving around them. Each nucleus j has a composite spin OIj of the
same magnitude I . Its magnetic moment is given in terms of the nuclear magneton
�N D 5:05 � 10�27 J/T and g-factor gI of order 1 as

O�Ij D gI�NOIj : (11.40)

Electrons also carry spin moments, for which the density is expressible as

O�e.r/ � ��B

X
˛˛0

O �.r˛0/� ˛0˛
O .r˛/ D ��B

V

X
˛˛0

X
kq

Oc�kC˛
0� ˛0˛ Ock�˛e�iq�r;

(11.41)

where �B is the Bohr magneton (6.39), � � .� ˛0˛/ are the Pauli matrices, (8.42),
and we have expanded the field operators as given in (11.22) with k1 D k C q=2
and k2 D k � q=2. The moment density O�e.r/ yields a local magnetic field at each
nuclear site given by the flux density:

Ob.Rj /D �0
4�

Z
d3r

�
3.Rj�r/.Rj�r/ � O�e.r/

jRj�rj5 � O�e.r/
jRj�rj3C

8�

3
O�e.r/ı.Rj�r/

�
;

(11.42)
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where�0 D 4��10�7 N �A�2 denotes the vacuum permeability. The first two terms
in the square brackets are the dipole magnetic field, whereas the third term denotes
the Fermi contact interaction. The corresponding molecular Zeeman energy:

OHhf � �
NaX
jD1
O�Ij � Ob.Rj / (11.43)

is called the hyperfine interaction.
Now, suppose that a homogeneous magnetic field with flux density B D B Oz is

present initially, in which the nuclear spins are subject to the Zeeman effect:

OHZ � �
NaX
jD1
O�Ij � B: (11.44)

It splits each nuclear energy level into 2I C 1 distinct sublevels all equally spaced5:

„! � gI�NB; (11.45)

making the state Ijz D I with the Zeeman energy �„!I the nuclear ground state.
Note that „!=kB � 10�3B K in the temperature scale, which is much smaller than
Tc even for a strong field of B � 1 T. Next, we turn off the external magnetic field
at t D �1 and let the nuclear state Ijz D I relax to one of the 2I C 1 degenerate
states. Assuming that the electronic density around each nucleus is isotropic, we can
identify the term in (11.43) that is responsible for the relaxation; this is due to the
last term in the square brackets of (11.42) and given explicitly by

OH 0 D �2�0
3

NaX
jD1

O�e�.Rj / O�IjC C O�eC.Rj / O�Ij�
2

D 2gI�N�B�0

3V

NaX
jD1

e�iq�Rj X
kq

� Oc�kC# Ock�" OIjC C Oc�kC" Ock�# OIj�
�
; (11.46)

where O�e˙ � O�ex˙i O�ey , O�Ij˙ � O�Ijx˙i O�Ijy, and we have used (11.40) and (11.41).
Operator OIj˙ � OIjx ˙ i OIjy causes a change Ijz ! Ijz ˙ 1 [2, 8, 11].

As the original Hamiltonian is given as a sum of the electronic Hamiltonian
OH and nuclear Hamiltonian (11.44), we need to take additional care to construct
OH 0
H.t/. Indeed, the nuclear-spin operators give rise to an extra time dependence due

to (11.44), i.e.,

5There is also a molecular-field contribution from (11.43), which yields a correction �! . 0:01!

called the Knight shift [4, 5].
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OIj˙.t/ � ei. OH C OHZ/t=„ OIj˙e�i. OH C OHZ/t=„ D e�i!t OIjz OIj˙ei!t OIjz ; (11.47)

with ! defined by (11.45). To remove this, we differentiate (11.47) with respect to t ,

d OIj˙.t/
dt

D �i!e�i!t OIjz Œ OIjz; OIj˙�ei!t OIjz D �i! OIj˙.t/;

where we have used the commutation relation Œ OIjz; OIj˙� D i OIjy ˙ OIjx D ˙ OIj˙ for
the angular momentum operators [2, 8, 11]. Integrating subject to OIj˙.0/ D OIj˙
yields

OIj˙.t/ D e�i!t OIj˙: (11.48)

Hence, using this, OH 0
H.t/ � ei. OH C OHZ/t=„ OH 0e�i. OH C OHZ/t=„ with (11.46) becomes

OH 0
H.t/ D ei OH t=„ OH 0

!e�i!t C OH 0�!ei!t

2
e�i OH t=„; (11.49)

where

OH 0
! �

4gI�N�B�0

3V

NaX
jD1

e�iq�Rj X
kq

Oc�kC# Ock�" OIjC (11.50)

and OH 0�! D OH 0�
! . The fraction in (11.49) thereby acquires the same expression as

that in (11.14) for electrons alone. We subsequently substitute (11.23) into (11.50)
and rewrite it as

OH 0
! D

4gI�N�B�0

3V

NaX
jD1

e�iq�Rj X
kq

�
ukC
O��kC2

C vkC
O��kC1

��
uk�
O� k�1 � v�

k�

O���k�2

� OIjC

D 4gI�N�B�0

3V

NaX
jD1

e�iq�Rj X
kq

��
ukC

uk�
C vk�

v�
kC

� O��kC2
O� k�1

�
ukC

v�
k�

� uk�
v�
kC

2
O��kC2

�
�
�k�2

C uk�
vkC
� ukC

vk�

2
O��kC1 O� k�1

�
OIjC; (11.51)

where the second expression has been obtained by (i) changing the summation
variable for the vv and uv terms as k ! �k, and (ii) using the commutation
relations of the field operators.

We substitute (11.51) and OH 0�! D OH 0�
! into the commutator of (11.17), take the

extra expectations with respect to the nuclear initial state as hI j OIjC OIj 0�jI i D 2Iıjj 0

and hI j OIj� OIj 0CjI i D 0 to find hŒ OH 0�!;H.t/; OH 0
!�i D �h OH 0

!
OH 0�!;H.t/i, and use

orthogonality
PNa

jD1 ei.q�q0/�Rj D Naıqq0 . We thereby obtain the expectation for the
commutator as
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˝� OH 0�!;H.t/; OH 0
!

	˛

D �2INa

�
4gI�N�B�0

3V

�2X
kq

�
jukC

uk�
C vk�

v�
kC

j2˝ O��kC2
O� k�1 O��k�1

.t/ O� kC2.t/
˛

C2
4
jukC

vk�
� uk�

vkC
j2˝ O��kC2

O���k�2
O��k�2.t/ O� kC2.t/

˛

C2
4
jukC

vk�
� uk�

vkC
j2˝ O��kC1 O� k�1 O��k�1

.t/ O���kC1
.t/
˛�
:

Factor 2 in the uv terms may be confirmed by choosing the summation variables
of OH 0

! and OH 0�! as .k; Q̨ / and .k0; Q̨ 0/, respectively, and noting that the two com-
binations .k0; Q̨ 0/ D .˙k; Q̨ / yield the same average. Subsequently, we substitute
(11.26) into the above expression and perform the Wick decompositions to obtain

˝� OH 0�!;H.t/; OH 0
!

	˛

D �2INa

�
4gI�N�B�0

3V

�2X
kq

�
jukC

uk�
Cvk�

v�
kC

j2 NnkC
.1 � Nnk�

/e�i.Ek
C

�Ek�/t=„

CjukC
vk�
� uk�

vkC
j2

2
NnkC
Nnk�

e�i.Ek
C

CEk�/t=„

CjukC
vk�
� uk�

vkC
j2

2
.1 � NnkC

/.1 � Nnk�
/ei.Ek

C
CEk�/t=„

�
; (11.52)

with Nnk � .eˇEk C 1/�1. With this expression in the integrand, the integration of
(11.17) is easily performed, yielding

KR.!/ D �2INa

�
4gI�N�B�0

3V

�2X
kq

(
jukC

uk�
C vk�

v�
kC

j2 NnkC
.1 � Nnk�

/

„!C � .EkC
� Ek�

/

CjukC
vk�
� uk�

vkC
j2

2

" NnkC
Nnk�

„!C � .EkC
CEk�

/
C .1� NnkC

/.1 � Nnk�
/

„!C C .EkC
CEk�

/

#)
:

(11.53)

Substituting (11.29) into (11.53) and using identity (11.30) to calculate (11.19), we
thereby obtain the average energy gain of the electrons per unit time as

NR.1/ D ��!INa

�
4gI�N�B�0

3V

�2X
kq



EkC

Ek�
C 
kC


k�
C�2

2EkC
Ek�

NnkC
.1 � Nnk�

/

�ı.„! � EkC
CEk�

/C EkC
Ek�
� 
kC


k�
��2

4EkC
Ek�

� NnkC
Nnk�

ı.„! � EkC
� Ek�

/

C.1 � NnkC
/.1 � Nnk�

/ı.„! CEkC
CEk�

/
	�
; (11.54)
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where the minus sign after the equality sign implies that the energy actually flows
from electrons to nuclei to compensate the negative nuclear energy �I„!. The
quantity

T1 � NaI„!
� NR.1/

; (11.55)

which is called the longitudinal magnetic relaxation time, gives the time scale over
which the nuclear-spin state Ijz D I relaxes to the new equilibrium of equally
populated sublevels Ijz D I; I � 1; � � � ;�I . Noting that „! 
 � � Ek

˙
, we

omit the second term within the curly brackets in (11.54). We then change the
summation variables from .k;q/ to .kC;k�/ � .k1;k2/ and transform the sums
over .k1;k2/ into integrals using (8.90). The term 
kC


k�
, being odd in 
k

˙
, gives

a null contribution to the integration over �1 � 
k
˙
� 1. Subsequently, setting


k
˙
! �
k

˙
for �1 � 
k

˙
� 0, we can rearrange T �1

1 D � NR.1/=NaI„! as

1

T1
	 �

„
�
4gI�N�B�0

3

�2
4

Z 1

0

d
1N."F/

Z 1

0

d
2N."F/

�E1E2 C�
2

2E1E2
Nn.E1/Œ1 � Nn.E2/�ı.„! � E1 C E2/

D 2�

„
�
4gI�N�B�0

3

�2 Z 1

�

dE1N."F/
E1


1

Z 1

�

dE2N."F/
E2


2

�E1E2 C�
2

E1E2
Nn.E1/Œ1 � Nn.E2/�ı.„! � E1 C E2/; (11.56)

where we have used d
=dE D E=
 D E=
p
E2 ��2. Finally, we take the limit

! ! 0 based on the inequality „! 
 kBTc, as noted below (11.45), and express
Nn.E/Œ1 � Nn.E/� D �kBT Œ@ Nn.E/=@E�. We thereby obtain6

1

T1
D 2�

„ kBT

�
4gI�N�B�0

3

�2 Z 1

0

dE
�
Ns.E/

	2 E2 C�2

E2

�
�@ Nn.E/

@E

�
:

(11.57)

This integral is different from (11.38) for ultrasound attenuation mainly because of
the extra quasiparticle density of states Ns.E/ � �.E ��/N."F/E=

p
E2 ��2 in

6For electrons in solids, there appears another factor hjuk.0/j2i2F on the right-hand side of (11.57)
[12], where juk.0/j2 is the relative density of electrons at the nuclear site with Bloch vector k, and
h� � � iF denotes the Fermi-surface average.



11.3 Nuclear-Spin Relaxation 173

Fig. 11.2 Nuclear-spin
relaxation rate as a function
of temperature
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the integrand, which originates from the sign difference in coherence factors (11.29).
The extra factor gives rise to an enhancement of the relaxation rate T �1

1 for T . Tc

beyond the normal-state value, as seen below.
First, we consider the normal-state limit of �! 0 and Ns.E/! N."F/, where

(11.57) reduces to (T1 ! T1n)

1

T1n
D �

„ kBT

�
4gI�N�B�0N."F/

3

�2
: (11.58)

This formula T1nT D constant for the normal state is called the Korringa relation
[6, 12]. TemperatureT here reflects the number of thermally excited electrons above
the Fermi surface (see Sect. 4.5) that can transfer energy to the nuclear spins.

Next, we consider (11.57), where the integral diverges because of
�
Ns.E/

	2 /
E2=.E2��2/. However, this divergence may be regarded as unphysical, because it
is removed immediately by incorporating anisotropy into the energy gap that should
be present in real materials. To describe the situation, we replace the density of states
in (11.57) with a smeared version,

QNs.E/ D 1

2ı

Z ECı

E�ı
Ns.E

0/dE 0; (11.59)

where 0 � ı 
 �. Figure 11.2 plots T �1
1s =T

�1
1n (T1! T1s) as a function of reduced

temperature calculated in this way with ı D 0:1�.T /. As seen clearly, there is
an enhancement in the relaxation rate over the normal-state value T �1

1n for T . Tc,
which is caused by the divergence in the quasiparticle density of states (see Fig. 9.4).
The corresponding peak in T �1

1s =T
�1
1n is called the Hebel-Slichter peak [3] that is

characteristic of isotropic s-wave superconductors. The peak reduces gradually as
the gap anisotropy is increased, vanishing completely for a gap structure with a line
node, for example, which may be confirmed by substituting the rightmost density of
states in Fig. 13.3 into (11.57).
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Problems

11.1. Show (11.11).

11.2. Show (11.18).
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Chapter 12
Tunneling, Density of States, and Josephson
Effect

Abstract The tunneling current through a superconducting-normal (SN) junction
or a superconducting-superconducting (SS) junction provides rich information
about the quasiparticle density of states and condensate wave function. On the
basis of the linear response theory developed in the previous chapter, we first
derive a general expression for the tunneling current applicable to both junctions as
(12.31). It is subsequently applied to SN junctions to show that the current-voltage
characteristics directly reflect the quasiparticle density of states as Fig. 12.2. Next,
we consider SS junctions to clarify that, besides extra structures caused by two kinds
of the quasiparticle density of states, there appears a new feature at zero bias due to
the Josephson effect, as seen in Fig. 12.4, that depends on the phase difference of the
two coupled superconductors. Thus, a weak contact between two superconductors
provides a unique means to detect the phase of the condensate wave function.

12.1 Formula for Tunneling Current

Consider two superconductors separated by an insulating layer, as depicted in
Fig. 12.1, with a chemical potential difference between superconductors L and R
given by

�L � �R D eV; (12.1)

where e < 0 and V are the electron charge and voltage across the barrier,
respectively. Setting j�.0/j=kB . 10 K, we can estimate the relevant voltage as
jV j � j�.0/j=jej � 10kB=jej . 10�3 V. We develop an expression for the tunneling
current, given in (12.31), where

' � 'L � 'R (12.2)

denotes the relative phase between �L D j�Ljei'L and �R D j�Rjei'R. Note that
(12.31) can also describe SN junctions by letting �R ! 0. Those who are familiar
with the microscopic derivation may skip to formula (12.31) to proceed.

© Springer Japan 2015
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Fig. 12.1 Two
superconductors L and R
separated by an insulating
layer L R

We assume that the layer in Fig. 12.1 is sufficiently thin for electrons to tunnel
through but also thick enough for the tunneling process to be regarded as a small
perturbation. The whole system may be described by the Hamiltonian [6]:

OHtot D OHL C OHR C OH 0: (12.3)

Here OHL ( OHR) is the Hamiltonian of the L (R) side without the perturbation, and
OH 0 is the tunneling Hamiltonian given by

OH 0 D 1p
VLVR

X
kq˛

�
Tkq Oc�k˛ Odq˛ C Tqk Od �q˛ Ock˛



; (12.4)

where VL (VR) is the volume of the L (R) side, Ock˛ . Odq˛/ is the field operator of
L (R) with wave vector k .q/ and spin ˛, and Tkq D T �

qk is the tunneling matrix,
independent of spin, for which we also assume the time-reversal symmetry Tkq D
T ��q;�k [8]. This Hamiltonian adequately describes the electron transfer from one

side to the other to the lowest order in OH 0 [4, 10].
The quantity of interest is the current between the superconductors. To derive the

relevant operator OI , we consider the charge operator on the L side:

OQL D e
X
k0˛0

Oc�k0˛0 Ock0˛0 : (12.5)

Operator OQL.t/ D ei OHtott=„ OQLe�i OHtott=„ satisfies the Heisenberg equation of motion,

d OQL.t/

dt
D ei OHtott=„ i

„
� OHtot; OQL

	
e�i OHtott=„ D ei OHtott=„ i

„
� OH 0; OQL

	
e�i OHtott=„;

where we have used
� OHL; OQL

	 D � OHR; OQL
	 D 0. Hence, we can identify the

current operator for L!R from d OQL.t/=dt as1

1Quantity d OQL.t /=dt denotes the gain of negative charges (i.e., the loss of positive charges) per
unit time on the L side.
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OI D i

„
� OH 0; OQL

	 D i

„
ep
VLVR

X
k0q0˛0

�
Tq0k0

Od �q0˛0 Ock0˛0 � Tk0q0 Oc�k0˛0

Odq0˛0



; (12.6)

where we have used the commutation relation (3.62) for 	 D �1 and also set q! q0
for the second expression.

Let us express (12.4) and (12.6) concisely in matrix form. To this end, we
transform the second term in the round brackets of (12.4) as

X
kq

Tqk
Od �q˛ Ock˛ D

X
kq

T�q;�k
Od ��q˛ Oc�k˛ D �

X
kq

T �
kq Oc�k˛

Od ��q˛; (12.7)

where we have made a change of summation variables, .k;q/ ! .�k;�q/, and
subsequently used Od ��q˛ Oc�k˛ D �Oc�k˛ Od ��q˛ and T�q;�k D T �

kq. We also introduce

Ock �

2
6664
Ock"
Ock#
Oc��k"
Oc��k#

3
7775 ; Oc�k �

h
Oc�k" Oc�k# Oc�k" Oc�k#

i
; (12.8)

OTkq �
"
Tkq 	0 0

0 T �
kq 	0

#
; O	z �

�
	0 0

0 �	0

�
; (12.9)

where 	0 and 0 are the 2 � 2 unit and zero matrices, respectively. Using (12.7)–
(12.9), we can express (12.4) concisely as

OH 0 D 1p
VLVR

X
kq

Oc�k OTkq O	z Odq: (12.10)

Similarly, (12.6) is transformed into

OI D i

„
ep
VLVR

X
k0q0

Od�q0
OTq0k0 Ock0 : (12.11)

With these preliminaries, we now estimate the current through the barrier by
regarding OH 0 as a perturbation that is applied adiabatically from t D �1. Hence,
the current is absent at t D �1, and its expectation at time t is given by (11.8) with
OO ! OI and OH 0.t 0/! OH 0e0Ct

0

,

I.t/ D � i

„
Z t

�1
dt 0
˝� OIH.t/; OH 0

H.t
0/
	˛

e0Ct
0

; (12.12)
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where OIH.t/ � ei OH t=„ OI e�i OH t=„ and OH 0
H.t/ � ei OH t=„ OH 0e�i OH t=„ with OH � OHLC

OHR. The first term in the expectation becomes, using (12.10) and (12.11),

˝ OIH.t/ OH 0
H.t

0/
˛ D i

„
e

VLVR

X
kq

X
k0q0

˝ Od�q0.t/ OTq0k0 Ock0.t/Oc�k.t 0/ OTkq O	z
Odq.t

0/
˛

D i

„
e

VLVR

X
kq

X
k0q0

.�1/2Trh Od�
q0.t/ OdT

q.t
0/iT OTq0k0hOck0.t/Oc�k.t 0/i OTkq O	z;

where Ock.t/ � ei OHL t=„ Ocke�i OHLt=„, Odq.t/ � ei OHRt=„ Odqe�i OHRt=„, and Od�
q0 �

� Od�q0

�T
are column vectors, and Tr denotes trace. In the second equality, we have used
AiBiCjDj D .AiDj /.BiCj / D .ADT/ij.BCT/ij for arbitrary column vectors
A; � � � ;D in performing the Wick decomposition. Note that the two expectations in
the second line are finite only for k0 D k and q0 D q. The other term�˝ OH 0

H.t
0/ OIH.t/

˛
can be expanded similarly. Substituting them into (12.12) and using the invariance of
the trace under cyclic permutations, we can express the current through the barrier as

I.t/ D e

„2
1

VLVR

X
kq

Z t

�1
dt 0Tr

�hOck.t/Oc�k.t 0/i OTkq O	zh Od�
q.t/
OdT

q.t
0/iT OTqk

�hOc�
k.t

0/OcT
k.t/iT OTkq O	zh Odq.t

0/ Od�q.t/i OTqk
	
e0Ct

0

; (12.13)

with Od�
q �

� Od�q�T.

Next, we show that in the Heisenberg representation with respect to OH �
OHL C OHR, the field operators in (12.13) acquire extra phases because of the

potential difference (12.1). To see this, let us express �L D �R C eV and write
Hamiltonian OHL � OHL � �L ONL on the L side explicitly as a function of V ,
OHL.V / D OHL.0/� V OQL, where OQL � e ONL is given by (12.5). Then the equation

of motion for Ock˛.t/ D ei OHL.V /t=„ Ock˛e�i OHL.V /t=„ can be written as

d Ock˛.t/

dt
D i

„
� OHL.0/; Ock˛.t/�C i

eV

„ Ock˛.t/; (12.14)

where we have used �ei OHL.V /t=„� OQL; Ock˛�e�i OHL.V /t=„ D e Ock˛.t/. This yields
Ock˛.t/ D eieVt=„ Oc0k˛.t/, where Oc0k˛.t/ is the solution for V D 0. Accordingly, the
Heisenberg representation of the field operators in (12.8) is expressible as

Ock.t/ D O�.t/Oc0k.t/; Oc�k.t/ D Oc0�k .t/
O��.t/; (12.15)

where O�.t/ is defined by

O�.t/ �
�
	0 eieVt=„ 0

0 	0 e�ieVt=„
�
: (12.16)
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Let us substitute (12.15) into (12.13), set Oc0k˛.t/ ! Ock˛.t/ to simplify the notation
in the following, and use . OA OB/T D OBT OAT on the transpose of the matrix product.
We can thereby express the current as

I.t/ D e

„2
1

VLVR

X
kq

Z t

�1
dt 0Tr

� O�.t/hOck.t/Oc�k.t 0/i O��.t 0/ OTkq O	zh Od�
q.t/
OdT

q.t
0/iT OTqk

� O�.t/hOc�
k.t

0/OcT
k.t/iT O��.t 0/ OTkq O	zh Odq.t

0/ Od�q.t/i OTqk
	
e0Ct

0

; (12.17)

where the expectations should be calculated at V D 0.
Next, we focus on the expectations in (12.17). Expressing (11.23) as Ock D OUk O�k,

we can write them as hOck.t/Oc�k.t 0/i D OUkh O� k.t/ O��k.t 0/i OU �

k and hOc�
k.t/OcT

k.t
0/iT D� OU �

k h O��
k.t/ O�T

k.t
0/i OU T

k

	T D OUkh O��
k.t/ O�T

k.t
0/iT OU �

k . They can be reduced further

using (9.7), (11.26), h O��k Q̨ O�k Q̨i D Nn.Ek/, and h O�k Q̨ O��k Q̨i D Nn.�Ek/ into

hOck.t/Oc�k.t 0/i D
"
	0gL.�Ek; t1/ �i	yf

�
L .Ek;�t1/

i	yfL.Ek; t1/ 	0gL.Ek; t1/

#
; (12.18)

hOc�
k.t/OcT

k.t
0/iT D

"
	0gL.Ek; t1/ i	yf

�
L .Ek;�t1/

�i	yfL.Ek; t1/ 	0gL.�Ek; t1/

#
; (12.19)

where t1 � t � t 0, and gL.Ek; t/ and fL.Ek; t/ D �fL.�Ek; t/ are defined by2

gL.Ek; t/ � u2k Nn.Ek/eiEkt=„ C jvkj2 Nn.�Ek/e�iEkt=„; (12.20)

fL.Ek; t/ � ukvk
h
Nn.Ek/eiEkt=„ � Nn.�Ek/e�iEkt=„

i
; (12.21)

with Nn.Ek/ � .eˇEk C 1/�1 D 1 � Nn.� NEk/.
As the matrices in (12.17) are mostly diagonal except those in (12.18)

and (12.19), we can calculate its trace easily. We subsequently make a change
of variable with t1 D t � t 0 and set e0Ct ! 1 safely to obtain

I.t/ D 2e

„2
X
kq

jTkqj2
VLVR

Z 1

0

dt1
h
eieVt1=„g2.Ek;EqI t1/C e�ieVt1=„g2.Ek;EqI �t1/

C eieV.2t�t1/=„f2.Ek;EqI t1/C e�ieV.2t�t1/=„f �
2 .Ek;EqI t1/

i
e�0Ct1 ;

(12.22)

2We here regard uk and vk as independent of Ek by definition but omit them from the arguments
of gL and fL for simplicity.
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where g2.Ek;EqI t/ and f2.Ek;EqI t/ are defined in terms of (12.21) as

g2.Ek;EqI t/ � gL.�Ek; t/gR.Eq; t/�gL.Ek; � t/gR.�Eq; � t/
D � Nn.Eq/� Nn.Ek/	�u2ku2qe

� i.Ek �Eq/t=„� jvkj2jvqj2ei.Ek �Eq/t=„	
C�1�Nn.Eq/� Nn.Ek/	�u2kjvq j2e � i.EkCEq/t=„�jvkj2u2qei.EkCEq/t=„	;

(12.23)

f2.Ek;EqI t/ � f �
L .Ek; � t/fR.Eq; t/� f �

L .Ek; t/fR.Eq; � t/
D ukv

�
k uqvq

˚� Nn.Eq/� Nn.Ek/	�ei.Ek �Eq/t=„� e � i.Ek �Eq/t=„	
� �1� Nn.Ek/� Nn.Eq/	�ei.EkCEq/t=„� e � i.EkCEq/t=„	�: (12.24)

Integration in (12.22) can be performed easily yielding

I.t/ D 2e

„2
X
kq

jTkqj2
VLVR

� Qg2.Ek;EqI!/

Ce2i! Qf2.Ek;EqI!/C e � 2i! Qf �
2 .Ek;Eq I!/

	
!D eV

„

; (12.25)

where Qg2 is the Fourier transform of g2 defined by

Qg2.Ek;EqI!/�
Z 1

�1
g2.Ek;EqI t/ei!tdt

D 2�„ �̊ Nn.Eq/� Nn.Ek/	�u2ku2qı.„! �Ek C Eq/� jvkj2jvq j2ı.„! C Ek �Eq/
	

C�1�Nn.Eq/� Nn.Ek/	�u2kjvqj2ı.„! �Ek �Eq/�jvkj2u2qı.„!CEkCEq/	�;
(12.26)

and Qf2 denotes (!� � ! � i0C)

Qf2.Ek;EqI!/ �
Z 1

0

f2.Ek;Eq I t/e�i!�tdt

D ukv
�
k uqvq


� Nn.Eq/ � Nn.Ek/	
� �i„
„!� � Ek C Eq �

�i„
„!� C Ek �Eq

�

��1 � Nn.Ek/� Nn.Eq/	
� �i„
„!� � Ek �Eq �

�i„
„!� CEk CEq

��
: (12.27)

We first focus on the Qg2 term in (12.25) and transform the sums over k and q
into integrals as (8.90) with NL."k/ 	 NL."F/ and NR."q/ 	 NR."F/. We may
also approximate jTkqj2 by its Fermi surface average hjTkqj2iF to take it outside the
integral. We can thereby express the Qg2 contribution in (12.25) as
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Ig � 2e

„2 hjTkqj2iF
Z 1

�1
d
kNL."F/

Z 1

�1
d
qNR."F/ Qg2.Ek;Eq I eV=„/: (12.28)

Let us substitute (12.26) into (12.28) and express u2k;q D 1
2
.1 C 
k;q=Ek;q/ and

jvk;qj2 D 1
2
.1 � 
k;q=Ek;q/ based on (9.6). We then see that the odd functions


k;q=Ek;q give a null contribution to the integral so that both u2k;q and jvk;qj2 in
its integrand can be replaced by 1=2. Subsequently, we set 
k;q ! �
k;q for
�1 � 
k;q � 0 to map the regions onto 0 � 
k;q � 1. We thereby obtain

Ig D 2e

„2 hjTkqj2iF 22
Z 1

0

d
kNL."F/

Z 1

0

d
qNR."F/
2�„
22

�˚� Nn.Eq/� Nn.Ek/	ı.eV�EkCEq/C
� Nn.�Eq/� Nn.�Ek/	ı.eVCEk�Eq/

C� Nn.�Eq/� Nn.Ek/	ı.eV�Ek�Eq/C
� Nn.Eq/ � Nn.�Ek/	ı.eVCEkCEq/

	�
;

where we have used Nn.�E/ D 1� Nn.E/. Next, we make a change of variable d
k D
dEk=.dEk=d
k/ D dEk�.Ek � j�Lj/Ek=

q
E2
k � j�Lj2 based on (9.5). We then

notice that the four terms in the curly brackets above can be expressed as a single
integral of the first term over �1 � Ek;q � 1. Performing the Eq integraion, we
find that the resulting Ig.V / is expressible in terms of the superconducting density
of states,

NLs.E/ D NL."F/
jEjp

E2 � j�Lj2
�.jEj � j�Lj/ (12.29)

concisely as

Ig.V / D 4�e

„ hjTkqj2iF
Z 1

�1
dE NLs.E/NRs.E � eV/

� Nn.E � eV/� Nn.E/	:

The Qf2 term in (12.25) can be transformed similarly by expressing ukv�
k uqvq D

ei' j�Ljj�Rj=4EkEq in (12.27) based on (9.6) and (12.2). Indeed, differences from
the Ig case lie only in (i) MLs.E/ � NLs.E/j�Lj=E in place of (12.29) and (ii)
function (11.30) instead of the delta function. TheM function can also be written as

MLs.E/ � NL."F/
j�Ljsgn.E/p
E2 � j�Lj2

�.jEj � j�Lj/; (12.30)

with sgn.x/ � x=jxj. We thereby obtain the total current through the barrier as

I.V; t/ D Ig.V /C If c.V / cos

�
2eV

„ t C '
�
C If s.V / sin

�
2eV

„ t C '
�
;

(12.31)
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where Ig.V /, If c.V /, and If s.V / are defined in terms of (12.29) and (12.30) by

Ig.V / D 4�e

„ hjTkqj2iF
Z 1

�1
dENLs.E/NRs.E � eV/

� Nn.E � eV/� Nn.E/	;
(12.32)

If c.V / D 4�e

„ hjTkqj2iF
Z 1

�1
dEMLs.E/MRs.E � eV/

� Nn.E � eV/ � Nn.E/	;
(12.33)

If s.V / D 4e

„ hjTkqj2iF P
Z 1

�1
dE

Z 1

�1
dE 0MLs.E/MRs.E

0/
Nn.E 0/� Nn.E/
E 0 C eV � E ;

(12.34)

recalling that P denotes the principal value.

12.2 NN Junction

First, we consider the situation where L and R are both normal. The corresponding
current INN is obtained from (12.31) by setting If c D If s D 0, replacing
NLs;Rs.E/ ! NL;R."F/ in (12.32), and using (11.36). We thereby obtain Ohm’s
law for the junction:

INN.V / D R�1
N V; (12.35)

with resistance

RN �
�
4�e2

„ hjTkqj2iFNL."F/NR."F/

��1
: (12.36)

12.3 SN Junction and Density of States

Next, we consider a superconducting L and normal R. The corresponding current
ISN is obtained from (12.31) by setting If c D If s D 0 and replacing NRs.E/ !
NR."F/ in (12.32) as [6]

ISN.V / D 1

eRNNL."F/

Z 1

�1
NLs.E/

� Nn.E � eV/ � Nn.E/	dE; (12.37)

where we have used (12.36). Its derivative with respect to V is obtained using
@ Nn.E � eV/=@V D �e@ Nn.E � eV/=@E as



12.4 SS Junction and Josephson Effect 183

 0

−2 −1  0  1  2

I SN

−2 −1  0  1  2

dI
SN

dV

e     |ΔL(0)|/V e     |ΔL(0)|/V

T=Tc

T=Tc

T=0

T=0

Fig. 12.2 Tunneling current ISN and its derivative dISN=dV given by (12.37) and (12.38) for
T=Tc D 0:0; 0:25; 0:5; 0:75; 1

dISN.V /

dV
D 1

RNNL."F/

Z 1

�1
NLs.E/

�
�@ Nn.E � eV/

@E

�
dE

T!0�! NLs.eV/

RNNL."F/
:

(12.38)

Thus, derivative dISN.V /=dV at low temperatures directly measures the supercon-
ducting density of states, as first shown by Giaever experimentally [7].

Figure 12.2 presents graphs of (12.37) and (12.38) as functions of V for
T=Tc D 0:0; 0:25; 0:5; 0:75; 1. The dISN=dV curves clearly show a transition from
the normal density of states at T D Tc to the superconducting density of states at
T D 0. The behavior of ISN D ISN.V / at T D 0 can be realized schematically by
drawing the densities of states on both sides as in Fig. 12.3a; the current flows for
eV � j�j (eV � �j�j) where there are filled states on the left-hand (right-hand)
side that can move horizontally to the empty states on the right-hand (left-hand) side.

12.4 SS Junction and Josephson Effect

We now focus on the direct current through superconducting-superconducting (SS)
junctions.

Equation (12.31) implies that, besides the quasiparticle current Ig , there are extra
contributions, i.e., the second and third terms on its right-hand side, which for V ¤ 0
form an alternating current with frequency 2eV=h (the AC Josephson effect). For the
special case with V D 0, however, the contribution converts to direct current whose
magnitude depends on the phase difference (12.2); this is called the DC Josephson
effect [9]. Noting If c.0/ D 0 from (12.33), we can express the total direct current as

IDC.V / D Ig.V / � ıV 0Ic sin'; (12.39)
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Fig. 12.3 Schematics illustrating the density of states in electron tunneling for (a) an SN junction
and (b) an SS junction (e < 0). Shaded areas denote filled states at T D 0
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Fig. 12.4 Tunneling current ISS of SS junctions given by (12.39) for (a) j�R.0/j D j�L.0/j and
(b) j�R.0/j D 2j�L.0/j at T=TcL D 0:0; 0:5; 0:75; 0:9; 1

where Ig.V / is given by (12.32), and Ic � �If s.0/ denotes the maximum of the
extra direct current at V D 0. Figure 12.4 plots ISS D ISS.V / for j�Rj D j�Lj and
j�Rj D 2j�Lj at five different temperatures.

We first focus on the quasiparticle current Ig.V /. It develops from eV D
˙.j�LjC j�Rj/ at T D 0 discontinuously, which may be understood schematically
by graphing the superconducting densities of states (Fig. 12.3b). The temperature
variation of ISS for j�Rj D j�Lj is much slower at low temperatures than that
of ISN in Fig. 12.2 because the threshold 2j�Lj is larger by factor 2 than for the
SN junction. For j�Rj ¤ j�Lj, extra peaks develop at finite temperatures near
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eV D ˙.j�Lj � j�Rj/, arising from thermally excited quasiparticles around the
edges of the excitation thresholds with a smaller energy gap. As the temperature
increases, these peaks near eV D ˙.j�Lj�j�Rj/move towards the steeper sections
at eV D ˙.j�Lj C j�Rj/ and eventually merge into the latter at T D TcL where
j�Lj D 0. The curve at T D TcL .T D 0:5TcR/ is identical in form to the ISN curve
at T=Tc D 0:5 in Fig. 12.2.

Next, we consider the Josephson current at V D 0 in (12.39). Its magnitude
directly depends on the phase difference ' D 'L � 'R as sin ' so that it differs
every time the SS junction is cooled during its work cycle. Thus, the phenomenon
can be regarded as an experimental manifestation of the spontaneously broken
gauge symmetry. A finite current for 'L ¤ 'R may be regarded as a response of
the coupled system in attaining total phase coherence of 'L D 'R. The critical
current Ic � �If s.0/ corresponds to 'R�'L D �=2, whose magnitude depends on
both temperature and Tc ratio TcR=TcL between the two superconductors. Its precise
expression is obtained from (12.34) (see Problem 12.1),

Ic D j�Ljj�Rj
jejRN

2�

ˇ

1X
nD0

1p
."2n C j�Lj2/."2n C j�Rj2/

; (12.40)

where RN is defined by (12.36) and "n � .2n C 1/�kBT . The critical current
Ic is plotted as a function of T in Fig. 12.5 for two different cases, specifically
j�R.0/j D j�L.0/j and j�R.0/j D 2j�L.0/j. There are two limits where the sum
over n in (12.40) can be performed analytically. One is j�Lj D j�Rj � j�j, where
we can use (9.39) to obtain

Ic D �j�j
2jejRN

tanh
ˇj�j
2
; .j�Lj D j�Rj � j�j/: (12.41)

The other is T D 0, where 2�ˇ�1P
n reduces to the integral of "n over 0 � "n � 1

to yield (Problem 12.2)

Ic D 2

jejRN

j�Ljj�Rj
j�Lj C j�RjK

 ˇ̌j�Lj � j�Rj
ˇ̌

j�Lj C j�Rj

!
; .T D 0/; (12.42)

Fig. 12.5 Normalized
critical current Ic.T / as a
function of reduced
temperature for
j�R.0/j D j�L.0/j and
j�R.0/j D 2j�L.0/j
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Fig. 12.6 A superconducting
loop with two Josephson
junctions in a magnetic field

L R

W
1

2

I Φ

where K denotes the complete elliptic integral [1, 3]. Expressions (12.41)
and (12.42) are due to Ambegaokar and Baratoff [2].

Finally, we consider a superconducting loop with two Josephson junctions,
depicted in Fig. 12.6, where the width is assumed much larger than the London
penetration depth,W � �L. We perform a line integral of (10.39) along the broken
line far inside the loop in Fig. 12.6 in the counterclockwise direction. The left-hand
side yields 0 from the Meissner effect; the contribution from the junction regions can
be neglected. Proceeding similarly with (10.42) for the right-hand side, we obtain

0 D
I �

r' � 2e„ A
�
� dr D 'L2 � 'L1 C 'R1 � 'R2 C 2� ˆ

ˆ0
;

whereˆ andˆ0 are the total flux in the loop and flux quantum (10.44), respectively.
Thus, we obtain

'2 D '1 � 2� ˆ
ˆ0
; (12.43)

with 'j � 'Lj � 'Rj (j D 1; 2). We thereby obtain an expression for the DC
Josephson current in the loop,

ID�Ic1 sin'1�Ic2 sin

�
'1 � 2� ˆ

ˆ0

�
Ic2DIc1�! �2Ic1 cos

�
�
ˆ

ˆ0

�
sin

�
'1 � � ˆ

ˆ0

�
:

(12.44)

The last expression states that the critical current Ic of the loop for Ic1 D Ic2 varies
as a function of ˆ,

Ic D 2Ic1

ˇ̌
ˇ̌cos

�
�
ˆ

ˆ0

�̌̌̌
ˇ : (12.45)

The critical current can be measured easily by increasing I and identifying the
point where a finite voltage appears across the junction. The device, called the
superconducting quantum interference device (SQUID), has been used widely to
measure the magnetic field accurately [5].
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Problems

12.1. Derive (12.40) from (12.34) at V D 0.

12.2. Show that (12.40) at T D 0 reduces to (12.42).
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Chapter 13
P-Wave Superfluidity

Abstract Superfluidity in liquid 3He was discovered at ultra-low temperatures
below around 3mK by Osheroff, Richardson, and Lee in 1972 (Osheroff et al., Phys
Rev Lett 28:885, 1972; Phys Rev Lett 29:920, 1972). The 3He atom is composed
of two protons, one neutron, and two electrons, each of which carries a spin of
magnitude 1=2, and hence is classified as a fermion according to the spin-statistics
theorem. Quantum effects in liquid 3He is expected to emerge below TQ � 3K
according to Table 4.1, and the superfluid transition occurs at about 10�3TQ to be
attributed to the Cooper-pair condensation. As the atom can be regarded roughly
as a rigid sphere, it is clearly impossible for a pair of 3He atoms to make up an
s-wave bound state that has a high probability of occupying the same position
in space. However, they may form a bound state while being separated through a
higher (` � 1) channel of expansion (8.83) to overcome repulsion. Among various
theoretical predictions, superfluidity was soon identified to be associated with p-
wave (` D 1) pairing with total spin s D 1. Hence, the bound state has a total of
.2`C 1/.2s C 1/ D 9 internal degrees of freedom, which brings unique features to
the p-wave superfluidity including two distinct phases A and B observed in the bulk
(see Fig. 13.1). Here, we survey the fundamentals of this superfluidity (Leggett, Rev
Mod Phys 47:331, 1975; Vollhardt and Wölfle, The superfluid phases of helium 3.
Taylor & Francis, London, 1990, p 31).

13.1 Effective Pairing Interaction

The p-wave superfluidity exploits the ` D 1 channel of the expansion (8.83). It
follows from (8.84) that the corresponding spherical harmonic functions are linear
in Ok � k=jkj,

Y1;˙1. Ok/ D �
r

3

8�
. Okx ˙ i Oky/; Y10. Ok/ D

r
3

4�
Okz: (13.1)

To understand the pairing interaction microscopically, we need a treatment beyond
the mean-field level [2] that is outside the scope of this book. Nevertheless, it has
been established that the effective interaction near the Fermi surface can also be
expressed to a first approximation as

© Springer Japan 2015
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Fig. 13.1 Schematic T -P
phase diagram for 3He at
ultra-low temperatures [5, 16]
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V
.eff/
1 .k; k0/ D V

.eff/
1 �."c � j
kj/�."c � j
k0 j/ (13.2)

with kBTc 
 "c 
 "F, in exactly the same way as (9.26) for s-wave pairing. Hence,
we retain only the ` D 1 element in (8.83), set V1.k; k0/ ! V

.eff/
1 .k; k0/, and then

substitute (13.1). We thereby obtain the p-wave pairing interaction as

Vjk�k0j D 4�V .eff/
1 .k; k0/

1X
mD�1

Y1m. Ok/Y �
1m.
Ok0/ D 3V .eff/

1 .k; k0/ Ok � Ok0: (13.3)

13.2 Gap Matrix

The pair potential for homogeneous systems within the mean-field theory is defined
generally by (8.76) as a 2 � 2 gap matrix. Let us express it in another way that has
been used widely especially for p-wave pairing. To this end, we notice that any 2�2
matrixM D .Mij/ can be expanded in terms of the complete set (8.42),

M � ŒM0	0 CM � � �i	y D
��Mx C iMy M0 CMz

�M0 CMz Mx C iMy

�
; (13.4)

where i	y has been introduced for convenience. Thus, the four matrix elements
Mij (i; j D 1; 2) can be expressed alternatively in terms of the four coefficients
.M0;M/. The gap matrix �.k/ is also a 2 � 2 matrix, which for p-wave (` D 1)
pairing should obey the symmetry relation �T.k/ D �.k/ from (8.87) and (8.89).
Hence, the coefficient of 	0 is 0 in the expansion of �.k/ as (13.4). We can also
neglect the k � jkj dependence of �.k/ near the Fermi surface for the pairing
interaction (13.2). For j
kj � "c, we therefore expand the gap matrix for p-wave
pairing to within an overall constant� � 0,
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�.k/ D � d. Ok/ � � i	y: (13.5)

Explicitly, we have

�
�"".k/ �"#.k/
�#".k/ �##.k/

�
D �

"
�dx. Ok/C idy. Ok/ dz. Ok/

dz. Ok/ dx. Ok/C idy. Ok/

#
: (13.6)

With amplitude � extracted in the expansion, vector d should obey some normal-
ization condition in terms of angular integration (8.85); we choose for convenience

Z
d�k

4�
jd. Ok/j2 D 1: (13.7)

It follows from (13.6) that vector d. Ok/ lies in a plane perpendicular to the
quantization axis of spin.

As the Y1m. Ok/’s are linear in Ok, we can in general expand d for p-wave pairing
as

d�. Ok/ D
X
�0

A��0
Ok�0 .�; �0 D x; y; z/; (13.8)

where fA��0g are the expansion coefficients obeying constraint (13.7). To find the
equilibrium state, we need to minimize the free energy in terms of not only � but
also fA��0g.

It can be shown that the transition temperature Tc is the same for any configu-
ration of fA��0g within the p-wave pairing (Problem 13.1). This degeneracy in the
free energy is lifted eventually for T < Tc.

13.3 Two Bulk Phases

As already mentioned, liquid 3He realizes two bulk superfluid phases distinguished
as “A” and “B” in Fig. 13.1, whose gap structures have been confirmed unambigu-
ously (Fig. 13.2). We discuss each of them separately in this and following sections.

13.3.1 B Phase

Although discovered later [11, 12], the B phase has now been established as
occupying a large domain in the P -T phase diagram except for the high-pressure
region near Tc [15]. Its gap structure is identified as the Balian-Werthamer (BW)
state [4].
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A phase (ABM state)B phase (BW state)
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Fig. 13.2 Energy gaps of the B and A phases (shaded areas) above the spherical Fermi surface,
which correspond to the lowest excitation energies given in (13.11) and (13.20), respectively. The
A-phase gap has point nodes at the north and south poles. The polar state with a line node along
the equator, which has never been observed as a bulk phase, is also plotted for later convenience in
Sect. 13.4

The d vector and gap matrix are expressible, for example, as

d. Ok/ D Ok  ! �.k/ D �
"
� Ok�

? Okz
Okz
Ok?

#
; (13.9)

where Ok? � Okx C i Oky , and we have used (13.6) and (13.7). Substituting (9.2)
and (13.9) into (8.79), we find the matrix to be diagonalized,

OHBdG �

2
6664


k 0 �� Ok�? � Okz

0 
k � Okz � Ok?
�� Ok? � Okz �
k 0

� Okz � Ok�? 0 �
k

3
7775 : (13.10)

The eigenvalues of this 4 � 4 matrix are easily calculated based on Laplace’s
expansion of the determinant in terms of cofactors [3, 9]. However, we obtain them
more readily here by noting that OH 2

BdG is proportional to the 4 � 4 unit matrix O1,

OH 2
BdG D E2

k
O1; Ek �

q

2k C�2: (13.11)

It follows from this equality and (8.43) that the eigenvalues of OHBdG are given by
˙Ek with double degeneracy for each. The eigenvectors corresponding to Ek are
obtained from the first and second rows of the eigenvalue equation:

� OHBdG �Ek O1

 �u Q̨.k/

v Q̨.k/

�
D
�

0
0

�
. Q̨ D 1; 2/;
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by comparing them with the first and second rows of (9.8) for Q̨ D 1; 2. We obtain

�
u1.k/
v1.k/

�
D

2
6664

uk
0

�vk Ok?
vk Okz

3
7775 ;

�
u2.k/
v2.k/

�
D

2
6664

0

uk
vk Okz

vk Ok�
?

3
7775 ; (13.12)

where uk and vk are also given by (9.6) for s-wave pairing. Substitution of (13.12)
into (8.72) yields Q�.1/.k/ in terms of �.k/ in (13.9),

Q�.1/.k/ D �

2Ek

"
� Ok�? Okz
Okz
Ok?

#
.1 � 2 Nnk/ D �.k/ 1

2Ek
tanh

ˇEk

2
: (13.13)

Next we substitute (13.3) and (13.13) into (8.76), transform the sum over k0 into
an integral as (8.90), approximate N."k0/ 	 N."F/, make the change of variable,
"k0 ! 
k0 , and perform the angular integration over Ok0 using

Z
d�k

4�
Ok� Ok�0 D ı��0

1

3
.�; �0 D x; y; z/: (13.14)

We thereby obtain the gap equation

�.k/ D �N."F/V
.eff/
1

Z "c

�"c

d
�.k/
1

2E
tanh

ˇE

2
: (13.15)

Further, we remove a common “factor” �.k/ and introduce a dimensionless
coupling constant:

g1 � �N."F/V
.eff/
1 : (13.16)

We then find that (13.15) is identical to (9.30) for s-wave pairing with g0 ! g1. In
particular, the transition temperature can be expressed in terms of g1 above,

kBTc D 2e�

�
"ce�1=g1 	 1:13"ce�1=g1 : (13.17)

It also follows from (13.11) that the thermodynamic properties of the BW state in
terms of T=Tc are completely identical to those for s-wave pairing.

Finally, of note is the fact that the state Rd. Ok/ obtained from (13.9) by a
three-dimensional rotation R is also the BW state. The degeneracy is partially
spontaneously broken by the dipole interaction between nuclear spins, which is not
included here [10, 15]. The remaining degeneracy is also lifted by other factors such
as surface effects and initial fluctuations.
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13.3.2 A Phase

The superfluid phase of 3He that was first discovered was the high-temperature high-
pressure phase called the A phase [11, 12], which is now identified as the Anderson-
Brinkmann-Morel (ABM) state. Having an anisotropic energy gap [10, 15], this state
was found as a theoretical candidate for the stable p-wave pairing by Anderson and
Morel in 1961 [2], and studied in more detail by Anderson and Brinkmann in regard
to its stabilization [1].

Given the normalization condition of (13.7), the d vector of the ABM state may
be written

d. Ok/ D
r
3

2
Ok? Oz  ! �.k/ D

r
3

2
�

"
0 Ok?
Ok? 0

#
(13.18)

with Ok? � Okx C i Oky , for example. Let us substitute (9.2) and (13.18) into (8.79).
The resulting BdG equation can be solved easily by the procedure used in obtaining
(9.8) for s-wave pairing,

2
6666664


k 0 0

q
3
2
� Ok?

0 
k

q
3
2
� Ok? 0

0

q
3
2
� Ok�? �
k 0q

3
2
� Ok�

? 0 0 �
k

3
7777775
OUk D OUk

2
664
Ek 0 0 0

0 Ek 0 0

0 0 �Ek 0

0 0 0 �Ek

3
775 : (13.19)

Here, the excitation energies are anisotropic,

Ek D
r

2k C

3

2
�2j Ok?j2; (13.20)

for which the energy gap vanishes at the north and south poles of the Fermi surface
where Ok? D 0 (Fig. 13.2). The unitary matrix OUk takes the form

OUk D

2
664

uk 0 0 v�
k

0 uk v
�
k 0

0 vk uk 0

vk 0 0 uk

3
775 ;

8̂̂
ˆ̂<
ˆ̂̂̂:

uk �
s
Ek C 
k
2Ek

vk �
q

3
2
� Ok�?p

2Ek.Ek C 
k/

: (13.21)

Hence, the eigenvectors belonging to Ek are given by

u1.k/ D
�

uk

0

�
; v1.k/ D

�
0

vk

�
; u2.k/ D

�
0

uk

�
; v2.k/ D

�
vk

0

�
: (13.22)
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Substitution of (13.22) into (8.72) yields Q�.1/.k/ as

Q�.1/.k/ D
�

0 ukv
�
k .1 � 2 Nnk/

ukv
�
k .1 � 2 Nnk/ 0

�
D �.k/ 1

2Ek
tanh

ˇEk

2
: (13.23)

Thus, Q�.1/.k/ is expressible in terms of the gap matrix also for the ABM state. Let
us substitute (13.3) and (13.23) into (8.76), change the sum over k0 to an integral
as (8.90), approximate N."k0/ 	 N."F/, make a change of variable "k0 ! 
k0 ,
and perform the angular integrations over Ok0 using (13.14). Gap equation (8.76) is
thereby transformed, using g1 in (13.16),

Ok? D �N."F/V
.eff/
1

Z "c

�"c

d
k0

Z
d�k0

4�

3. Okx Ok0
x C Oky Ok0

y C Okz
Ok0
z/
Ok0?

2Ek0

tanh
ˇEk0

2

D g1
Z "c

�"c

d
k0

Z
d�k0

4�

3. Okx Ok02
x C i Oky Ok02

y /

2Ek0

tanh
ˇEk0

2

D g1
Z "c

�"c

d
k0

Z
d�k0

4�

3
2
. Okx C i Oky/j Ok0?j2

2Ek0

tanh
ˇEk0

2
;

where we have expressed Ok0 D .sin �k0 cos'k0 ; sin �k0 sin'k0 ; cos �k0/ in polar
coordinates and used identities:

Z 2�

0

d'k0

2�
Ok0? Ok0

z D
Z 2�

0

d'k0

2�
Ok0
x
Ok0
y D 0;

Z 2�

0

d'k0

2�
Ok02
x D

Z 2�

0

d'k0

2�
Ok02
y D

j Ok0
?j2
2

:

We thereby obtain the gap equation for the ABM state as

1 D g1
Z "c

0

d
k

Z
d�k

4�

3
2
j Ok?j2
Ek

tanh
ˇEk

2
: (13.24)

The transition temperature Tc is determined by setting T ! Tc and Ek ! 
k in
(13.24). One confirms easily that it is also given by (13.17). As mentioned earlier,
all the p-wave states are thermodynamically degenerate at T D Tc (Problem 13.1).
This degeneracy is lifted as the temperature is lowered below Tc.

Proceeding similarly as in (9.34) for the energy integral, the gap equation (13.24)
at T D 0 can be solved analytically by changing the order of the energy and angular
integrals,

1

g1
D
Z

d�k

4�

3

2
j Ok?j2

Z "c

0

d
k
Ek
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D
Z 2�

0

d'k

2�

Z �

0

d�k sin �k

2

3

2
sin2 �k ln

2"cq
3
2
�0 sin �k

.t � cos �k/

D 3

4

Z 1

�1
dt .1 � t2/

�
ln
2"c

�0

� 1
2

ln
3

2
� 1
2

ln.1 � t2/
�

D ln
2"c

�0

C 5

6
� 1
2

ln 6;

where the last integral over t has been performed using

Z
.x C a/n ln.x C a/dx D .x C a/nC1

nC 1
�

ln.x C a/ � 1

nC 1
�
:

Hence, we obtain the angular average of the energy gap for the ABM state as (�0 !
�ABM
0 )

�ABM
0 D 2"ce�1=g1C5=6� 1

2 ln 6 D e5=6p
6
�BW
0 D 0:94�BW

0 ; (13.25)

where�BW
0 � 2"ce�1=g1 is the energy gap of the BW state. The condensation energy

of the ABM state at T D 0 is obtained from (9.52) by changing�2
0 ! 3

2

ˇ̌
�ABM
0
Ok?
ˇ̌2

and subsequently performing the angular integral
R

d�k=4� ,

F ABM
sn D �D."F/

4

�
�ABM
0

�2 Z d�k

4�

3

2
j Ok?j2 D �D."F/

4

�
�ABM
0

�2 D 0:88F BW
sn ;

(13.26)
where F BW

sn � � 1
4
D."F/

�
�BW
0

�2
is the condensation energy of the BW state. Thus,

our mean-field theory predicts that the ABM state is metastable with a higher free
energy than the BW state. It turns out that this conclusion holds for 0 � T � Tc

within the mean-field theory. Indeed, the prediction agrees with the phase diagram at
low pressures in Fig. 13.1. However, the stabilization of the ABM state in the high-
pressure region cannot be explained within the mean-field theory; its explanation is
attributed to spin-fluctuation effects that are describable only by a treatment beyond
the mean-field level [1, 8, 13].

A couple of comments are in order before closing the section. First, the ABM
state also has a large degeneracy. To be specific, consider (13.18) and rotate both
Oz in the spin space and Ok? in the orbital space independently around arbitrary
axes by arbitrary angles. The state thereby obtained is also an ABM state with
the same free energy. Part of the degeneracy is spontaneously broken through
dipole interactions between nuclear spins that are not included here [10, 15]. The
remaining degeneracies are also lifted by other effects such as surface effects and
initial fluctuations. Second, the complex d vector of (13.18) implicitly describes a
Cooper pair with an orbital angular momentum „, which is expected to produce a
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total angular momentum of .N=2/„ at T D 0 due to the macroscopic condensation
into identical two-particle bound states [6, 7]. This effect remains to be confirmed
experimentally.

13.4 Gap Anisotropy and Quasiparticle Density of States

The gap structures are different between the A and B phases; whereas it is isotropic
for the B phase, the gap closes at a couple of points in the A phase. We now see
that this difference manifests itself in the quasiparticle density of states at low
energies, which are observable by low-temperature thermodynamic experiments.
Thus, our main purpose here is to find general means to identify this gap anisotropy
in experiments [14].

The quasiparticle density of states is defined by (9.46), which is expressible
as (9.48) for s-wave pairing. Its extension to p-wave pairing is easily performed
by incorporating the angular dependence into the energy gap as � ! j�kj and
averaging the resulting expression over the solid angle,

Ds.E/ D D."F/

Z
d�k

4�

jEj
.E2 � j�kj2/1=2 �.jEj � j�kj/: (13.27)

We consider three j�kj’s given in terms of Ok D .sin �k cos'k; sin �k sin 'k; cos �k/

as

j�kj D
8<
:
� : BW statep
3=2� sin �k : ABM statep
3� cos �k : polar state

: (13.28)

Thus, besides the BW and ABM states given by (13.11) and (13.20), respectively, a
novel polar state d.k/ D p3 Okz [10, 15] is included here. Although it is not stabilized
as a bulk phase, it has a distinct gap structure in that it closes on the equator of the
Fermi surface (Fig. 13.2) to make it worth including in the present considerations.

Integral (13.27) for each gap structure can be performed easily, and we obtain
(Problem 13.2)

Ds.E/

D."F/
D

8̂̂
ˆ̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂̂̂
:̂

jEj
.E2��2/1=2

�.jEj��/ : BW state

jEj
2�max

ln

ˇ̌
ˇ̌ jEjC�max

jEj��max

ˇ̌
ˇ̌ : ABM state

�jEj
2�max

�
�.�max � jEj/C�.jEj��max/

2

�
arcsin

�max

jEj
�

: polar state

;

(13.29)
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−Δ Δ
BW state (full gap) ABM state (point nodes) polar state (line node)

E E E

Fig. 13.3 Quasiparticle density of states given by (13.29). Broken lines denote the normal density
of states

with �max D
p
3=2� (�max D

p
3�) for the ABM (polar) state; each is plotted in

Fig. 13.3. At low energies of jE=�maxj 
 1, Ds.E/ can be approximated as

Ds.E/

D."F/
D
8<
:
0 : BW state (full gap)
.jEj=�max/

2 : ABM state (point nodes)
�jEj=2�max : polar state (line node)

: (13.30)

These relations give the general connection between the low-energy density of states
and the dimension of nodes in the gap; they are also valid for anisotropic Fermi
surfaces except for the prefactor.

The low-energy density of states manifests itself in temperature dependences
of various thermodynamic quantities. First, we consider heat capacity. Let us
substitute the latter two expressions of (13.30) into (9.47), rewrite @ Nn.E/=@T D
�.E=T /@ Nn.E/=@E , perform an integration by parts, and express C in terms of
the dimensionless integral (4.39). We thereby find that the low-temperature heat
capacity behaves as

C.T ! 0/ /
8<
:

e��=kBT : full gap
T 3 : point nodes
T 2 : line nodes

; (13.31)

where we have used (9.49) for the full gap.
Second, we consider an anisotropic extension of the Yosida function (10.16)

given by

Y. Ok; T / � �2
Z 1

0

d

@ Nn.Ek/

@Ek
; Ek �

p

2 C j�kj2: (13.32)

Its angular average can be transformed by writing d
 D .d
=dEk/dEk, substituting

d
=dEk D Ek�.Ek � j�kj/=
q
E2

k � j�kj2, exchanging the order of integrations
over d�k and dEk, and using (13.27) as
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NY .T / �
Z

d�k

4�
Y. Ok; T / D �2

Z 1

0

dE
Ds.E/

D."F/

@ Nn.E/
@E

: (13.33)

Let us substitute the latter two expressions of (13.30) into (13.33), perform
an integration by parts in terms of E , and express NY .T / using dimensionless
integral (4.39). We thereby obtain

NY .T ! 0/ /
8<
:

e��=kBT : full gap
T 2 : point nodes
T : line nodes

; (13.34)

where we have used (10.48) for the full gap. The temperature dependence is
observable by measuring the spin susceptibility and penetration depth, as described
by (10.18) and (10.40) with (10.22).

Problems

13.1. Follow the procedure below to show that every homogeneousp-wave (` D 1)
state has an identical transition temperature Tc.

(a) Let us consider the cases where submatrixK HF in the homogeneous BdG
equation (8.79) is given by K HF D 
k	0 in terms of 
k in (9.17) and 	0
in (8.42). Solve the BdG equation by a perturbation expansion in terms of
�.k/ to show that (8.72) to lowest order becomes

Q�.1/.k/ 	 �.k/ 1
2
k

tanh
ˇ
k

2
:

(b) Substitute the result of (a) and (13.3) into (8.76) to show that the resulting
equation at T D Tc is given for any internal state as

�1
N."F/V

.eff/
1

D
Z "c

�"c

d

1

2

tanh




2kBTc
(13.35)

that yields (13.17) for the transition temperature.

13.2. Show (13.29) for the ABM and polar states.

References

1. P.W. Anderson, W.F. Brinkman, Phys. Rev. Lett. 30, 1108 (1973)
2. P.W. Anderson, P. Morel, Phys. Rev. 123, 1911 (1961)
3. G.B. Arfken, H.J. Weber, Mathematical Methods for Physicists (Academic, New York, 2012)



200 13 P -Wave Superfluidity

4. R. Balian, N.R. Werthamer, Phys. Rev. 131, 1553 (1963)
5. D.S. Greywall, Phys. Rev. B 33, 7520 (1986)
6. M. Ishikawa, Prog. Theor. Phys. 57, 1836 (1977)
7. T. Kita, J. Phys. Soc. Jpn. 67, 216 (1998)
8. Y. Kuroda, Prog. Theor. Phys. 53, 349 (1975)
9. S. Lang, Linear Algebra (Springer, New York, 1987)

10. A.J. Leggett, Rev. Mod. Phys. 47, 331 (1975)
11. D.D. Osheroff, W.J. Gully, R.C. Richardson, D.M. Lee, Phys. Rev. Lett. 29, 920 (1972)
12. D.D. Osheroff, R.C. Richardson, D.M. Lee, Phys. Rev. Lett. 28, 885 (1972)
13. J.W. Serene, D. Rainer, Phys. Rep. 101, 221 (1983)
14. M. Sigrist, K. Ueda, Rev. Mod. Phys. 63, 239 (1991)
15. D. Vollhardt, P. Wölfle, The Superfluid Phases of Helium 3 (Taylor & Francis, London, 1990),

p. 31
16. J.C. Wheatley, Rev. Mod. Phys. 47, 415 (1975)



Chapter 14
Gor’kov, Eilenberger, and Ginzburg–Landau
Equations

Abstract One of the most outstanding features of superconductivity is that there
can be various stable structures with quasimacroscopic inhomogeneity, such as
the flux-line lattice realized in certain superconductors under an applied magnetic
field. To describe these structures concisely, we here simplify the BdG equations
in three steps. First, we derive the Gor’kov equations (14.26) for the Matsubara
Green’s functions, which is equivalent to the BdG equations. Second, we integrate
out an independent variable from the Gor’kov equations to derive the Eilenberger
equations (14.61) and (14.62) for the quasiclassical Green’s function (14.59). Third,
we focus on the region near Tc to simplify the Eilenberger equations further into the
Ginzburg–Landau (GL) equations (14.89) and (14.94). Those who are interested
mainly in the physical phenomena rather than the microscopic derivations of the
standard equations may skip this chapter.

14.1 Matsubara Green’s Function

Introduced in 1955 [14], the Matsubara Green’s function is now regarded as one
of the most fundamental tools in equilibrium statistical mechanics. We introduce it
here and enumerate its basic properties.

Let us distinguish the creation and annihilation operators with integer subscripts
[11],

O 1.
/ � O .
/; O 2.
/ � O �.
/; (14.1)

so that O �i .
/ D O 3�i .
/ holds (i D 1; 2). Next, we introduce the field operators in
the Heisenberg representation in terms of a new variable �1 2 Œ0; ˇ�,

O i .1/ � e�1 OH O i.
1/e��1 OH ; (14.2)

with O i.1/ � O i.
1; �1/. Replacing �1 ! it1=„ yields the standard Heisenberg
representation with respect to time t1.

© Springer Japan 2015
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We now define the Matsubara Green’s function using the field operators and step
function (4.11) as

Gij.1; 2/ � ��.�1 � �2/h O i.1/ O 3�j .2/i C �.�2 � �1/h O 3�j .2/ O i.1/i
� �h OT� O i .1/ O 3�j .2/i; (14.3)

where the second expression is to be regarded as defining the OT� operator. Thus,
OT� rearranges field operators to its right in descending order of � , multiplying the

result by 	 D �1 for each exchange of adjacent operators. Diagonal elements
G11.1; 2/ and G22.1; 2/ are composed of a pair of creation and annihilation
operators, which remain finite even for normal states. In contrast, the off-diagonal
elements are characteristic of superconductivity; for example, G12.1; 2/ is made
up of two annihilation operators and sometimes called the “anomalous” Green’s
function.

The Matsubara Green’s function has the following properties.

(a) Gij.1; 2/ is a function of only �1 � �2.
The proof proceeds using Tr OA OB DTr OB OA and the commutativity of e�ˇ OH

and e��1 OH as follows:

Gij.1; 2/ D �Tr OT�eˇ.�� OH /e�1
OH O i.
1/e��1 OH e�2

OH O 3�j .
2/e��2 OH

D �Tr OT�eˇ.�� OH /e.�1��2/ OH O i.
1/e�.�1��2/ OH O 3�j .
2/
� Gij.
1; 
2I �1 � �2/: (14.4)

Operator OT� does not affect the proof at all, as may be confirmed by performing
it separately for �1 > �2 and �1 < �2 without OT� . It follows from 0 � �1; �2 � ˇ
that �ˇ � �1 � �2 � ˇ.

(b) Gij.
1; 
2I � C ˇ/ D �Gij.
1; 
2I �/ for � 2 Œ�ˇ; 0�.
This is shown as follows. First, the right-hand side is given explicitly by

�Gij.
1; 
2I �/ D h OT� O i.
1; �/ O 3�j .
2/i
D �eˇ� Tr e�ˇ OH O 3�j .
2/e� OH O i.
1/e�� OH :

The left-hand side can be expanded as

Gij.
1; 
2I � C ˇ/ D �eˇ� Tr e�ˇ OH e.�Cˇ/ OH O i.
1/e�.�Cˇ/ OH O 3�j .
2/
D �eˇ� Tr e� OH O i .
1/e�� OH e�ˇ OH O 3�j .
2/
D �eˇ� Tr e�ˇ OH O 3�j .
2/e� OH O i .
1/e�� OH :
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Hence, we conclude Gij.
1; 
2I � C ˇ/ D �Gij.
1; 
2I �/. It is convenient
to expand Gij in a complete set that satisfies boundary condition g.� C ˇ/ D
�g.�/. With this aim, we consider the first-order differential equation:

dg.�/

d�
D �i"g.�/; g.� C ˇ/ D �g.�/; (14.5)

where factor �i has been introduced for convenience. Its general solution is
g.�/ / e�i"� . Imposing the boundary condition yields eigenvalues " (with units
of energy)

"n D .2nC 1/�=ˇ .n D 0;˙1;˙2; � � � /: (14.6)

The quantity "n=„ is called the Matsubara frequency for fermions. The basis
functions fe�i"n�=

p
ˇg with � 2 Œ0; ˇ� form a complete orthonormal set for an

arbitrary function f .�/ that satisfies f .� C ˇ/ D �f .�/. Their completeness
relation reads

ı.�1 � �2/ D 1

ˇ

1X
nD�1

e�i"n.�1��2/: (14.7)

Expanding in the basis functions, the Matsubara Green’s function becomes

Gij.
1; 
2I �/ D 1

ˇ

1X
nD�1

Gij.
1; 
2I "n/e�i"n� ; (14.8)

where we distinguish the Gij’s on each side by their arguments. The inverse
transform is obtained by multiplying the equation by ei"n0 � and performing
integration over � 2 Œ0; ˇ�. The result is given with n0 ! n as

Gij.
1; 
2I "n/ D
Z ˇ

0

Gij.
1; 
2I �/ei"n� d�: (14.9)

(c) Gij.1; 2/ D G�
ji .
2�1; 
1�2/ D �G3�j;3�i .2; 1/.

The first equality for � � �1��2 � 0 can be proved using h OA OBi� D h OB� OA�i
and O �j .
/ D O 3�j .
/,

G�
ij .
1; 
2I �/ D �he� OH O i.
1/e�� OH O 3�j .
2/i�

D �h O j .
2/e�� OH O 3�i .
1/e� OH i
D �he� OH O j .
2/e�� OH O 3�i .
1/i
D Gji.
2; 
1I �/: (14.10)
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It follows from (b) above that the equality also holds for � 2 Œ�ˇ; 0�. The
second equality obtains using the anticommutation relation of the fermion field
operators under the influence of OT� and noting i D 3 � .3 � i/,

Gij.1; 2/ D �h OT� O i.1/ O 3�j .2/i D h OT� O 3�j .2/ i .1/i
D �G3�j;3�i .2; 1/: (14.11)

The two symmetry relations are expressible in terms of the Fourier coefficients
in (14.9), specifically

Gij.
1; 
2I "n/ D G�
ji .
2; 
1I �"n/ D �G3�j;3�i .
2; 
1I �"n/: (14.12)

14.2 Gor’kov Equations

We consider a system described by the Hamiltonian:

OH �
Z

d
2 O �.
2/ OK2
O .
2/

C 1

2

Z
d
2

Z
d
 0
2V .jr2 � r0

2j/ O �.
2/ O �.
 0
2/
O .
 0

2/
O .
2/; (14.13)

to derive the Gor’kov equations within the mean-field approximation. To describe
phenomena in magnetic fields, the one-particle operator OK2 now contains the vector
potential A2 � A.r2/,

OK2 � . Op2 � eA2/
2

2m
� �; (14.14)

with m and e < 0 denoting the electron mass and charge, respectively.1

14.2.1 Equation of Motion for Field Operators

As a preliminary, we obtain an equation of motion obeyed by O i.1/.
Differentiation of (14.2) with respect to �1 yields

@ O i .1/
@�1

D e�1
OH Œ OH O i.
1/� O i.
1/ OH �e��1 OH : (14.15)

1We omit the Zeeman coupling once again. See the comment below (10.33) on this point.
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Using commutation relation (3.17) for 	 D �1, we then move O i.
1/ in the term
OH O i.
1/ above successively to the left to cancel � O i.
1/ OH . The result for i D 1

is given by2

@ O .1/
@�1

D e�1
OH

�
� OK1

O .
1/C 1

2

Z
d
2V .jr2 � r1j/ O �.
2/ O .
1/ O .
2/

� 1
2

Z
d
 0
2V .jr1 � r0

2j/ O �.
 0
2/
O .
 0

2/
O .
1/

�
e��1 OH :

The second and third terms in the square brackets yield the same contribution, as
seen easily using commutation relation O .
1/ O .
2/ D � O .
2/ O .
1/ and 
2; 
 0

2 !

 0
1. Finally, we exchange the order of OK1 and e�1 OH ,3 insert identity operator

e��1 OH e�1 OH between every pair of adjacent field operators, and express the result
in terms of the operators in (14.2). We thereby obtain

@ O 1.1/
@�1

D � OK1
O 1.1/�

Z
d
 0
1V .jr1 � r0

1j/ O 2.10/ O 1.10/ O 1.1/; (14.16)

where �1 in 10 � .
 0
1; �1/ is equal to that in 1 � .
1; �1/. For i D 2, it is convenient

as a preliminary to apply integration by parts to the first term in (14.13),

Z
d
2 O �.
2/ OK2

O .
2/ D
Z

d
2
h OK �

2
O �.
2/

i O .
2/;
and use it to calculate the commutator of (14.15). The final result is given by

@ O 2.1/
@�1

D OK �
1
O 2.1/C

Z
d
 0
1V .jr1 � r0

1j/ O 2.1/ O 2.10/ O 1.10/: (14.17)

The two differential equations (14.16) and (14.17) can be expressed in a unified
way as

@ O i.1/
@�1

D .�1/i
�
OK i
1
O i .1/C

Z
d
 0
1V .jr1 � r0

1j/ ON O 2.10/ O 1.10/ O i.1/
�
;

(14.18)

2The calculation of the commutator Œ O .
1/; OH �C � O .
1/ OH � OH O .
1/ is equivalent to
the functional derivative ı OH =ı O �.
1/ by incorporating the anticommutation relation (3.17).
Similarly, Œ O �.
1/; OH �C is equal to �ı OH =ı O .
1/.
3There is only a single point 
2 D 
1 in (14.13) that does not commute with OK1 , its measure being
zero in the integration. Therefore, the procedure is justified.
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where OK i
1 denotes OK 1

1 D OK1 and OK 2
1 D OK �

1 , and ON is the so-called
normal-ordering operator that places the creation operators to the left of the
annihilation operators, multiplying by 	 D �1 for each exchange of field operators;
specifically,

ON O 2.10/ O 1.10/ O i.1/ �

 O 2.10/ O 1.10/ O 1.1/ W i D 1
.�1/2 O 2.1/ O 2.10/ O 1.10/ W i D 2 : (14.19)

The case iD2 can also be expressed as .�1/1 O 2.10/ O 2.1/ O 1.10/.

14.2.2 Derivation of the Gor’kov Equations

We are now ready to derive the Gor’kov equations by differentiating Gij.1; 2/

with respect to �1 and adopting the mean-field approximation with the Wick-
decomposition procedure.

The �1 dependence of (14.3) lies in the step function and O i.1/. Using ı.x/ D
� 0.x/ D �� 0.�x/ as noted below (4.11), we differentiate Green’s function with
respect to �1 to obtain

@Gij.1; 2/

@�1
D �ı.�1 � �2/

h
h O i.1/ O 3�j .2/i C h O 3�j .2/ O i.1/i

i

�
*
OT� @
O i .1/
@�1

O 3�j .2/
+
:

The first term on the right-hand side contains expectations at �1D �2, which do not
depend on �1, as seen in (14.4). Hence, it can be simplified with the help of (3.17)
for 	 D �1 to �ı.�1 � �2/ıijı.
1; 
2/ � �ıijı.1; 2/. The second term can also be
expanded by substituting (14.18). We thereby obtain

@Gij.1; 2/

@�1
D �ıijı.1; 2/� .�1/i

�
OK i
1 h OT� O i.1/ O 3�j .2/i C

Z
d
 0
1V .jr1�r0

1j/

� h OT�Œ ON O 2.10/ O 1.10/ O i.1/� O 3�j .2/i
�
: (14.20)

Subsequently, we adopt the mean-field approximation as for (8.26). A couple of
key points in the process are summarized as follows: (i) The first condition in
(5.13) implies that the OT� operator should be incorporated in the expectations with
different “times” after the Wick decomposition. (ii) The expectations of “equal-
time” operators do not depend on � .

Keeping these points in mind, let us write the interaction term of (14.20) for
i D 1 without ON and rearrange it using (8.29), (8.30), (8.34), and (8.35),
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Z
d
 0
1V .jr1�r0

1j/h OT� O 2.10/ O 1.10/ O 1.1/ O 3�j .2/i

	
Z

d
 0
1V .jr1�r0

1j/
�
h O 2.10/ O 1.10/ih OT� O 1.1/ O 3�j .2/i

� h O 2.10/ O 1.1/ih OT� O 1.10/ O 3�j .2/i C h O 1.10/ O 1.1/ih OT� O 2.10/ O 3�j .2/i
�

D
Z

d
 0
1V .jr1�r0

1j/
�
��.1/.
 0

1; 

0
1/G1j .1; 2/C �.1/.
1; 
 0

1/G1j .1
0; 2/

C Q�.1/.
1; 
 0
1/G2j .1

0; 2/
�

D �
Z

d
 0
1

�
UHF.
1; 


0
1/G1j .1

0; 2/C�.
1; 
 0
1/G2j .1

0; 2/
�
:

Substituting this result into (14.20) for i D 1 gives

�
� @

@�1
� OK1

�
G1j .1; 2/�

Z
d
 0
1

�
UHF.
1; 


0
1/G1j .1

0; 2/C�.
1; 
 0
1/G2j .1

0; 2/
	

D ı1j ı.1; 2/: (14.21)

The interaction term of (14.20) for i D 2 similarly becomes

Z
d
 0
1V .jr1�r0

1j/h OT� O 2.1/ O 2.10/ O 1.10/ O 3�j .2/i

	
Z

d
 0
1V .jr1�r0

1j/
�
h O 2.10/ O 1.10/ih OT� O 2.1/ O 3�j .2/i

� h O 2.1/ O 1.10/ih OT� O 2.10/ O 3�j .2/i C h O 2.1/ O 2.10/ih OT� O 1.10/ O 3�j .2/i
�

D
Z

d
 0
1V .jr1�r0

1j/
�
h O 2.10/ O 1.10/i�h OT� O 2.1/ O 3�j .2/i

� h O 2.10/ O 1.1/i�h OT� O 2.10/ O 3�j .2/i � h O 1.1/ O 1.10/i�h OT� O 1.10/ O 3�j .2/i
�

D
Z

d
 0
1V .jr1�r0

1j/
�
��.1/�.
 0

1; 

0
1/G2j .1; 2/C �.1/�.
1; 
 0

1/G2j .1
0; 2/

C Q�.1/�.
1; 
 0
1/G1j .1

0; 2/
�

D �
Z

d
 0
1

�
U �

HF.
1; 

0
1/G2j .1

0; 2/C��.
1; 
 0
1/G1j .1

0; 2/
�
:
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Substituting into (14.20) for i D 2, we obtain

�
� @

@�1
C OK �

1

�
G2j .1; 2/C

Z
d
 0
1

�
U �

HF.
1; 

0
1/G2j .1

0; 2/C��.
1; 
 0
1/G1j .1

0; 2/
	

D ı2j ı.1; 2/: (14.22)

Next, we expand ı.�1 � �2/ and Gij.1; 2/ as (14.7) and (14.8). The corre-
sponding coupled equations for the Fourier coefficients can be calculated easily.
Indeed, they are derivable from (14.21) and (14.22) using the three replacements,
Gij.1; 2/ ! Gij.
1; 
2I "n/, �@=@�1 ! i"n, and ı.1; 2/ ! ı.
1; 
2/. To express
them concisely, let us introduce matrices in the particle-hole space, i.e., the Nambu
matrces4:

OG.
1; 
2I "n/ �
�
G11.
1; 
2I "n/ G12.
1; 
2I "n/
G21.
1; 
2I "n/ G22.
1; 
2I "n/

�
; (14.23)

OUBdG.
1; 
2/ �
�
UHF.
1; 
2/ �.
1; 
2/

���.
1; 
2/ �U �
HF.
1; 
2/

�
; (14.24)

Oı.
1; 
2/ �
�
ı.
1; 
2/ 0

0 ı.
1; 
2/

�
: (14.25)

Using (14.23)–(14.25), we can combine all four equations into a single matrix
equation:

"
i"n � OK1 0

0 i"n C OK �
1

#
OG.
1; 
2I "n/ �

Z
d
3 OUBdG.
1; 
3/ OG.
3; 
2I "n/ D Oı.
1; 
2/:

(14.26)
This is called the Gor’kov equations [6]. More specifically, it is an extension
of the equations that Gor’kov derived for s-wave pairing to an arbitrary pairing
symmetry expressed in the concise representational form of Nambu [17].
The Gor’kov equations in the mean-field approximation are equivalent
in content to the BdG equations. This may be seen by observing that
the matrices that operate on the Nambu Green’s function in (14.26) are
identical as a whole for i"n ! 0 with the matrix in (8.38) to be diagonal-
ized.

4Like operators, we denote the Nambu matrices in the particle-hole space also by a caret O above
each, but they are easily distinguished from operators by context.
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14.2.3 Matrix Representation of Spin Variables

For later purposes, we shall express the spin degrees of freedom explicitly as
matrices.

Let us introduce a new notation for each of Gij as G11 ! G, G12 ! F , G21 !
� NF , and G22 ! � NG. We also separate the spin variable ˛ D";# from 
 D r˛ to
write the four new functions as

8̂̂
<
ˆ̂:

G11.
1; 
2I "n/DG˛1˛2.r1; r2I "n/
G12.
1; 
2I "n/ D F˛1˛2 .r1; r2I "n/
G21.
1; 
2I "n/ D � NF˛1˛2 .r1; r2I "n/
G22.
1; 
2I "n/ D � NG˛1˛2 .r1; r2I "n/

: (14.27)

Subsequently, the spin degrees of freedom is made evident by constructing the 2�2
matrix

G.r1; r2I "n/ �
�
G"".r1; r2I "n/ G"#.r1; r2I "n/
G#".r1; r2I "n/ G##.r1; r2I "n/

�
: (14.28)

In the matrix notation, symmetry (14.12) now reads

G.r1; r2I "n/ D G�.r2; r1I �"n/ D NGT
.r2; r1I �"n/; (14.29)

F .r1; r2I "n/ D � NF �
.r2; r1I �"n/ D �F T.r2; r1I �"n/; (14.30)

where � and T denote Hermitian conjugate and transpose, respectively. From
these symmetry relations, NG.r1; r2I "n/ D G�.r1; r2I "n/ and NF .r1; r2I "n/ D
F �.r1; r2I "n/.

The Nambu matrix (14.23) in this notation can be expressed as a 4 � 4 matrix,

OG.r1; r2I "n/ D
�
G.r1; r2I "n/ F .r1; r2I "n/
�F �.r1; r2I "n/ �G�.r1; r2I "n/

�
: (14.31)

Expressing (14.24) and (14.25) similarly, we have

OUBdG.r1; r2/ �
�
U HF.r1; r2/ �.r1; r2/
���.r1; r2/ �U �

HF.r1; r2/

�
; (14.32)

Oı.r1; r2/ �
�
ı.r1; r2/	0 0

0 ı.r1; r2/	0

�
: (14.33)
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where 	0 and 0 are the 2 � 2 unit and zero matrices, respectively. Using them, we
can rewrite (14.26) as

"
.i"n � OK1/	0 0

0 .i"n C OK �
1 /	0

#
OG.r1; r2I "n/ �

Z
d3r3 OUBdG.r1; r3/ OG.r3; r2I "n/

D Oı.r1; r2/: (14.34)

14.2.4 Gauge Invariance

Equation (14.34) has an important property called gauge invariance.
Let us introduce the gauge transformation in terms of a continuously differen-

tiable function �.r/ by

8<
:

A.r1/ D A0.r1/C r 1�.r1/
O 1.1/ D O 0

1.1/e
ie�.r1/=„

O 2.1/ D O 0
2.1/e

�ie�.r1/=„
; (14.35)

where a prime 0 distinguishes f 0 from f as a different function. The corresponding
variations of Green’s function (14.31) and potential (14.32) are expressible in terms
of the matrix

O�.r1/ �
�
	0e

ie�.r1/=„ 0

0 	0e
�ie�.r1/=„

�
(14.36)

as

OG.r1; r2I "n/ D O�.r1/ OG0.r1; r2I "n/ O��.r2/; (14.37)

OUBdG.r1; r2/ D O�.r1/ OU 0
BdG.r1; r2/ O��.r2/: (14.38)

Property (14.38) follows by recalling (8.29), (8.30), (8.34), and (8.35). Moreover,
operation .�i„r 1 � eA1/

2 on e˙ie�1=„ yields

.�i„r 1 � eA1/
2e˙ie�1=„ D e˙ie�1=„ Œ�i„r 1 � e.A1 � r 1�1/�

2

D e˙ie�1=„��i„r 1 � eA0
1

�2
;

so that
"
� OK1	0 0

0 OK �
1 	0

#
O�.r1/ D O�.r1/

"
� OK 0

1 	0 0

0 OK 0�
1 	0

#
(14.39)
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holds for the OK1 term of (14.34). Let us substitute (14.37) and (14.38) into (14.34),
then use (14.39), and multiply the resulting equation by O��.r1/ and O�.r2/ from
the left and right, respectively. We then realize that the resulting equation in terms
of A0, OG0.r1; r2I "n/, and OU 0

BdG.r1; r2/ is identical in form to (14.34). This is gauge
invariance, implying that there is an arbitrariness in the choice of vector potential.
Incidentally, we sometimes encounter a phrase like “spontaneously broken gauge
symmetry” in superfluids and superconductors [13]. What is meant by this is that
superconductivity is a state described by a macroscopic wave function with a fixed
phase. It should be emphasized that gauge invariance is maintained as it must.

14.2.5 Gauge-Covariant Wigner Transform

The Wigner transform was introduced by Wigner in 1932 to study quantum
corrections to classical statistical mechanics [20]. It enables us to define a quasi-
probability distribution in terms of coordinates and momenta quantum mechani-
cally. It has also been useful in formulating quantum mechanics in phase space
and elucidating its connection with classical mechanics [7, 15]. Moreover, the
transform forms a tool indispensable for deriving the quasiclassical equations of
superconductivity.

The original Wigner transform may be defined, for example, in terms of the
Nambu matrix (14.31) as follows: Let us introduce the “center-of-mass” and
“relative” coordinates as

r12 � r1 C r2
2

; Nr12 � r1 � r2: (14.40)

The Wigner transform is defined as the Fourier transform with respect to the relative
coordinates,

OG."n;k; r12/ D
Z

d3r e�ik�Nr12 OG.r1; r2I "n/;

where the OG’s on both sides are different functions distinguished by their arguments.
There is no r12 dependence for homogeneous systems. Also for inhomogeneous
systems with slow variations, we may expect that the first few terms of the gradient
expansion, i.e., the expansion of OG."n;k; r12/ in terms of gradients in r12, suffice to
describe them quantitatively.

However, we encounter a fundamental difficulty when the Wigner transform
is applied to charged systems. More specifically, the definition above breaks the
gauge invariance with respect to the center-of-mass coordinates. This may be
realized by noting that the gauge transformation (14.37) depends on both r1 and
r2 instead of .r1 C r2/=2, so that the simple Fourier transform with respect to
r1�r2 necessarily breaks the gauge invariance. To remove this difficulty, Stratnovich
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introduced a modified Wigner transform that may be called the gauge-invariant
Wigner transform [19]. However, the method is valid only for normal systems
with G12 D G21 D 0. Here, we apply an extended version for describing
superconductors [9].

Let us introduce the line integral:

I.r1; r2/ � e

„
Z r1

r2
A.s/ � ds; (14.41)

where s denotes a straight-line path from r2 to r1. As may be confirmed easily, factor
eiI.r1;r2/ is transformed under the gauge transformation (14.35) as

eiI.r1;r2/ D eie�.r1/=„eiI 0.r1;r2/e�ie�.r2/=„: (14.42)

Using this factor, we define the matrix:

O�.r1; r2/ �
�
	0e

iI.r1;r2/ 0

0 	0e
�iI.r1;r2/

�
; (14.43)

for which the variation under the gauge transformation can be expressed in terms of
matrix (14.36),

O�.r1; r2/ D O�.r1/ O� 0.r1; r2/ O��.r2/: (14.44)

With these preliminaries, we introduce the gauge-covariant Wigner transform
for (14.31) by

OG."n;k; r12/ �
Z

d3r e�ik�Nr12 O�.r12; r1/ OG.r1; r2I "n/ O�.r2; r12/

�
�

G."n;k; r12/ F ."n;k; r12/
�F �."n;�k; r12/ �G�."n;�k; r12/

�
; (14.45)

with inverse relation

OG.r1; r2I "n/ D O�.r1; r12/ 1
V

X
k

OG."n;k; r12/eik�Nr12 O�.r12; r2/: (14.46)

Using (14.37) and (14.44), it follows easily that OG."n;k; r12/ changes under the
transformation (14.35),

OG."n;k; r12/ D O�.r12/ OG0."n;k; r12/ O��.r12/: (14.47)

Thus, only the center-of-mass coordinate is of relevance to the variation of
OG."n;k; r/ under the gauge transformation. Note that the diagonal elements in
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(14.47) are gauge-invariant as in Stratnovich’s transformation [19], whereas the
off-diagonal elements characteristic of superconductivity acquire extra phases
e˙2ie�.r12/.

Similarly, we transform the mean-field potential (14.32),

OUBdG.k; r12/ �
Z

d3r e�ik�Nr12 O�.r12; r1/ OUBdG.r1; r2/ O�.r2; r12/

�
�
U HF.k; r12/ �.k; r12/
���.�k; r12/ �U �

HF.�k; r12/

�
; (14.48)

whose inverse reads

OUBdG.r1; r2/ D O�.r1; r12/ 1
V

X
k

OUBdG.k; r12/eik�Nr12 O�.r12; r2/: (14.49)

Note U HF.k; r/ D U
�
HF.k; r/ and�.k; r/ D ��T.�k; r/ due to (8.61) and (8.62).

14.3 Eilenberger Equations

Although equivalent to the BdG equations, the Gor’kov equations for Green’s
functions with two arguments may be more difficult to resolve. However, they
provide a convenient starting point for simplifying the equations. Passing to the
Wigner representation, we shall integrate out an irrelevant variable from the Gor’kov
equations to obtain the quasiclassical Eilenberger equations [4].

14.3.1 Quasiclassical Green’s Function

We introduce the quasiclassical Green’s function by (14.59) below and obtain
(14.61) and (14.62) it obeys. Our derivation here is from Larkin and Ovchin-
nikov [12] instead of the ingenious original [4]. For clarity, we only consider the
weak-coupling case setting U HF ! 0 in (14.48).

First, let us simplify the kinetic-energy terms of the Gor’kov equation (14.34)
in the Wigner representation (14.46). To this end, we rewrite the kinetic-energy
operator (14.14) in terms of the center-of-mass and relative coordinates in (14.40),

OK1 D 1

2m

�
�i„ @

@Nr12 �
1

2
i„ @

@r12
� eA.r12 C Nr12=2/

�2
� �: (14.50)
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Next, we approximate the vector potential as A.r12 C Nr12=2/ 	 A.r12/. As for the
phase factor O�.r12; rj / (j D 1; 2) defined by (14.41) and (14.43), we expand A.s/
in I.r12; rj / at s D r12 and retain only the leading term,

I.r12; rj / 	 e

„
�
r12 � rj

�� A.r12/ D .�1/j e
2„ Nr12 � A.r12/: (14.51)

After substituting (14.46), we can thereby expand the kinetic-energy terms in
(14.34),

OK1G.r1; r2I "n/ 	 eiI.r1;r12/CiI.r12;r2/ 1

V

X
k



1

2m

�
�i„ @

@Nr12 �
i„
2

@

@r12
� eA.r12/

C „@I.r1; r12/
@Nr12 C „@I.r12; r2/

@Nr12
�2
� �

�
G."n;k; r12/eik�Nr12

D eiI.r1;r12/CiI.r12;r2/ 1

V

X
k

�
1

2m

�
„k� i„

2

@

@r12

�2
� �

�

�G."n;k; r12/eik�Nr12 ; (14.52)

OK1F .r1; r2I "n/ 	 eiI.r1;r12/�iI.r12;r2/ 1

V

X
k



1

2m

�
„k� i„

2

@

@r12
� eA.r12/

�2

� �
�
F ."n;k; r12/eik�Nr12 ; (14.53)

OK �
1 F

�.r1; r2I "n/ 	 e�iI.r1;r12/CiI.r12;r2/ 1

V

X
k



1

2m

�
�„kC i„

2

@

@r12
� eA.r12/

�2

� �
�
F �."n;�k; r12/eik�Nr12 ; (14.54)

OK �
1 G

�.r1; r2I "n/ 	 e�iI.r1;r12/�iI.r12;r2/ 1

V

X
k

�
1

2m

�
�„kC i„

2

@

@r12

�2
� �

�

�G�."n;�k; r12/eik�Nr12 : (14.55)

As for the interaction term in (14.34), we substitute (14.46) and (14.49), approxi-
mate r13, r32 	 r12, and perform the integration over r3. Further, we expand the
delta function in (14.34) as (6.18). Finally, we introduce the operator
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@ �

8̂̂
ˆ̂<
ˆ̂̂̂
:

r :on G or G�

r � i
2e

„ A.r/ :on F

r C i
2e

„ A.r/ :on F �

(14.56)

to express (14.52)–(14.55) concisely, and neglect second and higher-order terms in
@, which is justified considering that the scale of the spatial variation is much longer
than k�1

F . Equation (14.34) is thereby transformed into

2
664
�

i"n � 
k C i
„2k
2m
� @
�
	0 0

0

�
i"n C 
k � i

„2k
2m
� @
�
	0

3
775 OG."n;k; r/

� OUBdG.k; r/ OG."n;k; r/ D O1; (14.57)

where 
k is defined by (9.17), and O1 denotes the 4 � 4 unit matrix.
Next, we take Hermitian conjugate of (14.57), use symmetries OU �

BdG.k; r/ DOUBdG.k; r/ and OG�."n;k; r/ D OG.�"n;k; r/ that originate from (8.61), (8.62), (14.29),
and (14.30), and replace "n ! �"n to obtain

OG."n;k; r/

2
664
�

i"n � 
k � i
„2k
2m
� @
�
	0 0

0

�
i"n C 
k C i

„2k
2m
� @
�
	0

3
775

� OG."n;k; r/ OUBdG.k; r/ D O1; (14.58)

where @ operates on OG."n;k; r/. This equation may also be obtained directly from
the differential equation of (14.31) with respect to r2. We refer to (14.57) and (14.58)
as the left and right Gor’kov equations in the Wigner representation.

Now, in terms of (14.45), we introduce the quasiclassical Green’s function,

Og."n;kF; r/ � P
Z 1

�1
d
k
�
O	zi OG."n;k; r/

�
"

g."n;kF; r/ �if ."n;kF; r/
�if �."n;�kF; r/ �g�."n;�kF; r/

#
; (14.59)

where P denotes the principal value, O	z is given in (12.9), and coefficient�i in front
of f is introduced for convenience. It follows from (14.29) and (14.30) that the
upper elements g and f satisfy

g."n;kF; r/ D �g�.�"n;kF; r/; f ."n;kF; r/ D �f T.�"n;�kF; r/: (14.60)
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To derive the equation for Og, we multiply (14.57) by O	z from the left, (14.58) by O	z

from the right, subtract the latter from the former to eliminate 
k , and multiply the
resulting equation by O	z from the left. We thereby obtain

h
i"n O	z � OUBdG.k; r/ O	z; O	z OG."n;k; r/

i
C i
„2k
m
� @ O	z OG."n;k; r/ D O0;

where Œ OA; OB� � OA OB � OB OA. Next, we replace k in OUBdG.k; r/ and „2k=m by kF as
appropriate for the weak-coupling case and subsequently eliminate the remaining k
dependence in Green’s function by performing the principal-value integral over 
k .
The resulting equation can be written in terms of Og of (14.59) as

h
i"n O	z � OUBdG.kF; r/ O	z; Og."n;kF; r/

i
C i„vF � @ Og."n;kF; r/ D O0; (14.61)

where vF � „kF=m is the Fermi velocity and @ is defined by (14.56). Hence, we
have derived the main part of the Eilenberger equations.

Because the source term O1 in (14.57) and (14.58) has been canceled in the left-
right subtraction trick, (14.61) has an arbitrariness about the amplitude of Og, which
is removed by Eilenberger’s normalization condition,

� Og."n;kF; r/
	2 D O1: (14.62)

Equation (14.62) may be derived as follows. Operating i„vF � @ on Og2 and using
(14.61), the resulting equation becomes

i„vF � @ Og2 D .i„vF � @ Og/ Og C Og.i„vF/ � @ Og
D �

h
i"n O	z � OUBdG O	z; Og

i
Og � Og

h
i"n O	z � OUBdG O	z; Og

i

D �
h
i"n O	z � OUBdG O	z; Og2

i
:

From this differential equation, when Og2 D O1 holds at a certain point, the right-hand
side vanishes giving i„vF � @ Og2 D O0. Integrating i„vF � @ Og2 D O0 with the initial
condition Og2 D O1, we conclude that Og2 D O1 everywhere in the system.

Condition Og2 D O1 does hold for homogeneous s-wave pairing. To see this, we
substitute (14.48) with (9.1) and U HF ! 0 into (14.57) and set i.„2k=2m/ � @! 0.
The resulting Gor’kov equation can be solved easily to obtain the homogeneous
Green’s function,

OG."n;k/ D �1
"2n C 
2k C j�kj2

2
664

i"n C 
k 0 0 �k

0 i"n C 
k ��k 0

0 ���
k i"n � 
k 0

��
k 0 0 i"n � 
k

3
775 :
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Note the correspondence with the eigenvalue problem (9.3). Substituting this into
(14.59) and performing the integral, we obtain the quasiclassical Green’s function
for homogenous s-wave pairing,

Og."n;kF/ D 1p
"2n C j�kj2

2
664
"n 0 0 �i�k

0 "n i�k 0

0 �i��
k �"n 0

i��
k 0 0 �"n

3
775 ; (14.63)

which obeys (14.62) as is easily verified. Noting that an arbitrary Og."n;kF; r/ can be
produced from (14.63) through a gradual variation in space, we may conclude that
(14.62) holds true for s-wave pairing. The same argument may be applied for other
pairing symmetries to confirm (14.62).

14.3.2 Pair Potential

Next, we rewrite the self-consistency equation for the pair potential using the
quasiclassical Green’s function as (14.68) below.

Function Q�.1/ in (8.62) is defined by (8.30), which is expressible in terms of the
Matsubara Green’s function (14.3),

Q�.1/˛1˛2.r1; r2/ D �G12.
1; 
2I 0/ D �
1

ˇ

1X
nD�1

F˛1˛2.r1; r2I "n/;

where we have used (14.4), (14.8), and (14.27). Using it together with
(6.18), (14.46), (14.49), we rewrite (8.62) as

�.k; r/ D 1

V

X
k0

Vjk�k0j
1

ˇ

1X
nD�1

F ."n;k0; r/: (14.64)

Expanding the pairing interaction as (8.83), we follow the procedure of Sect. 9.2 to
replace V`.k; k0/ with the effective one,

V`.k; k
0/! V

.eff/
` .k; k0/ � V

.eff/
` �."c � j
kj/�."c � j
k0 j/: (14.65)

We also assume that a single ` is relevant, use (8.90), approximateN."k0/ 	 N."F/,
and make a change of variable as "k0 ! 
k0 . Equation (14.64) thereby becomes

�.k; r/

N."F/V
.eff/
`

D
Z "c

�"c

d
k0

Z
d�k0

4�
4�

X̀
mD�`

Y`m. Ok/Y �̀
m.
Ok0/
1

ˇ

1X
nD1

F ."n;k0; r/:

(14.66)
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Next, we remove both the coupling constant N."F/V
.eff/
` and cutoff energy "c in

favor of the transition temperature Tc in zero magnetic field. To this end, we use the
Tc equation for homogeneous `-wave pairing, which is obtained from (13.35) with
V
.eff/
1 ! V

.eff/
` ,

�1
N."F/V

.eff/
`

D
Z "c

�"c

d

1

2

tanh




2kBTc

D
Z "c

�"c

d


�
1

2

tanh




2kBTc
� 1

2

tanh




2kBT

�
C
Z "c

�"c

d

1

ˇ

1X
nD�1

1


2 C "2n
;

where we have inserted identity (9.39) with x D 
=kBT and "n D .2nC 1/�kBT

in the integrand. The first term on the right-hand side can be expressed as ln.T=Tc/

based on (9.32). As for the second term, we may restrict the summation over n as
�nc � 1 � n � nc, taking the limit "c !1, and evaluate the integral analytically.
The above equation thereby reduces to

�1
N."F/V

.eff/
`

D ln
T

Tc
C 1

ˇ

ncX
nD�nc�1

�

j"nj : (14.67)

Substitution of (14.67) into (14.66) yields the self-consistency equation for the pair
potential in terms of Tc in zero magnetic field,

�.kF; r/ ln
Tc

T
D 1

ˇ

1X
nD�1

�
�

j"nj�.kF; r/C
Z

d�k0

X̀
mD�`

Y`m. Ok/Y �̀
m.
Ok0/

�
Z "c

�"c

d
k0F ."n;k0; r/
�
;

where we have taken the limit nc ! 1 on the right-hand side, with no divergence
problems, and also replaced an argument of � as k ! kF. Finally, we make
"c ! 1 and express the final integral in terms of the quasiclassical Green’s
function (14.59). We thereby obtain the self-consistency equation for the pair
potential in the quasiclassical formalism as

�.kF; r/ ln
Tc

T
D �

ˇ

1X
nD�1

�
�.kF; r/
j"nj �

X̀
mD�`

Y`m. Ok/
Z

d�k0Y �̀
m.
Ok0/f ."n;k0

F; r/
�
;

(14.68)

where Tc denotes the transition temperature of the homogeneous case at zero
magnetic field.
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14.3.3 Current Density

Next, we express the current density (10.36) using the quasiclassical Green’s
function, i.e., (14.69) below.

The one-particle density matrix, defined by (8.29), is expressible in terms of the
Matsubara Green’s function (14.3),

�.1/.
1; 
2/ D G11.
1; 
2I 0�/ D 1

ˇ

1X
nD�1

G˛1˛2.r1; r2I "n/e�i"n0� ;

where 0� is an infinitesimal negative constant, and we have used (14.4), (14.8),
and (14.27). Writing Green’s function above as (14.46), we substitute the resulting
expression into (10.36), and simplify the expression of j.r/ in the same way as
(14.52). We thereby obtain

j.r1/ D e . Op1 � eA1/C .�Op2 � eA2/

2m

1

ˇ

1X
nD�1

TrG.r1; r2I "n/
ˇ̌
ˇ̌
r2Dr1

D e

ˇ

1X
nD�1

1

V

X
k

„k
m

TrG."n;k; r1/;

where the trace represents the sum over spin components, and we have set 0� ! 0

safely.5 We transform the sum over k as (8.90), then approximate N."k/ 	 N."F/

and „k 	 „kF, and express the final integral using the quasiclassical Green’s
function (14.59). We thereby obtain the expression for the current density in the
quasiclassical formalism,

j.r/ D �i
�eN."F/

ˇ

1X
nD�1

Z
d�k

4�
vFTrg."n;kF; r/; (14.69)

where vF � „kF=m is the Fermi velocity.

14.3.4 Summary of the Eilenberger Equations

Let us summarize the results of the quasiclassical formalism.
The quasiclassical Green’s function is defined by (14.59), which has symme-

try (14.60) and satisfies the normalization condition (14.62). The (1,1) submatrix of
(14.62) reads g2 � f f � D 	0. Hence, g � g."n;kF; r/ is expressible in terms of

5Factor 0� becomes relevant only when we calculate the particle number in terms of G.
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f � f ."n;kF; r/ and f � � f �."n;�kF; r/ D �f �.�"n;kF; r/ as

g."n;kF; r/ D sgn."n/
�
	0 � f ."n;kF; r/f

�.�"n;kF; r/
	1=2

; (14.70)

where the factor sgn."n/ � �."n/ � �.�"n/ is introduced to be compatible with
(14.63) for homogeneous s-wave pairing. Equation (14.70) tells us that we only
need to solve the (1,2)-submatrix element of the Eilenberger equation (14.61). We
write it explicitly by including effects of impurity scatterings, which are known to
affect the magnetic properties of s-wave superconductors considerably. They give
rise to an additional impurity self-energy given by (Problem 14.1)

OUimp."n; r/ � �i
„
2�
h Og."n;kF; r/iF O	z; (14.71)

where � is the relaxation time, and h� � � iF denotes the average over the Fermi surface:

hAiF �
Z

d�k

4�
A.kF/: (14.72)

Let us replace OUBdG ! OUBdG C OUimp in (14.61), substitute (14.48), (14.59),
and (14.71) subsequently, and extract the (1,2)-submatrix element noting (14.56)
and setting U HF ! 0. We thereby obtain

2"nf C„vF �
�
r � i

2e

„ A
�
f D �g�Cg�C ghf iF C hf iFg

� � hgiFf � f hg�iF
2�=„ ;

(14.73)
where .f ; g�; �/ denote f D f ."n;kF; r/, g� D g�."n;�kF; r/, and � D
�.kF; r/, respectively, and g D g."n;kF; r/ is given in terms of f by (14.70). This
is the main part of the Eilenberger equations.

Next, we focus on (14.68) for the pair potential and expand

�.kF; r/ D
X̀
mD�`

�`m.r/
p
4�Y`m. Ok/: (14.74)

We then multiply the resulting equation by
p
4�Y �̀

m.
Ok/, integrate over the solid

angle, and use (8.86) to obtain for �`m.r/,

�`m.r/ ln
Tc

T
D �
ˇ

1X
nD�1

�
�`m.r/
j"nj �

Z
d�k

4�

p
4�Y �̀

m.
Ok/f ."n;kF; r/

�
: (14.75)

Finally, we substitute (14.69) for the current density into (10.30). We thereby
obtain Ampère’s law that determines the magnetic flux density B.r/ D r � A.r/,
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r � B.r/ D �i
�e�0N."F/

ˇ

1X
nD�1

Z
d�k

4�
vFTrg."n;kF; r/: (14.76)

Equations (14.73)–(14.76) form a set of self-consistency (i.e. nonlinear) equa-
tions for the quasiclassical Green’s function f ."n;kF; r/, pair potential �.kF; r/,
and magnetic flux density B.r/ in the quasiclassical formalism. It forms an excellent
approximation to the Gor’kov equations when Tc 
 TF � "F=kB holds.

Comments on the quasiclassical formalism are in order before ending this
section. First, there are several different expressions for the quasiclassical free
energies [4, 18]; they yield identical results for the bulk free energy but may
differ from one another in terms of the surface contribution. Incorporating many-
body effects beyond the mean-field theory is discussed in detail in [18]. Boundary
conditions for solving the Eilenberger equations are studied, e.g., in [16]. Finally,
the Lorentz force for the supercurrent is missing from the above quasiclassical
formalism, which can be incorporated appropriately by retaining the next-to-leading
order term in (14.51) [3, 9, 10].

14.4 Ginzburg–Landau Equations

We focus on s-wave superconductors near Tc and simplify the Eilenberger equations
further into the GL equations.

The gap matrix for the homogeneous s-wave pairing is given by (9.1). We assume
the same form for both the pair potential and the quasiclassical Green’s function:

�.r/ D �.r/ i	y; f ."n;kF; r/ D f ."n;kF; r/ i	y; (14.77)

to seek an inhomogeneous solution self-consistently near Tc in terms of �.r/. It
follows from (14.60) that the scalar function f satisfies

f ."n;kF; r/ D f .�"n;�kF; r/: (14.78)

Accordingly, (14.70) reduces to a multiple of the unit matrix, g D g	0, with

g."n;kF; r/ D sgn."n/
�
1 � f ."n;kF; r/f �.�"n;kF; r/

	1=2
D g�."n;�kF; r/: (14.79)

Substitution of these expressions into (14.73) yields a differential equation for f D
f ."n;kF; r/,

2"nf C „vF � @f D 2�gC „ghf iF � f hgiF
�

; (14.80)

where operator @ is defined by (14.56).
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Now, we solve (14.80) perturbatively with respect to � D �.r/ by expanding f
and g as power series,

f D
1X
�D1

f .�/; g D sgn."n/

 
1C

1X
�D2

g.�/

!
: (14.81)

Equality g.1/ D 0 may be seen from (14.79). Let us substitute these expansions into
(14.80) and regard operator „vF � @ as O.�/. We thereby obtain an expression for
the �th order (� D 1; 2; � � � ),

f .�/ D �g.��1/

"n
� „vF � @f .��1/

2"n
�

��1X
kD0
„f

.��k/hg.k/iF � hf .��k/iFg.k/
2�"n

;

(14.82)
with f .0/ D 0, g.0/ D sgn."n/, and g.1/ D 0.

The first-order equation is given as f .1/ D �=j"nj � „.f .1/ � hf .1/iF/=2� j"nj,
which has no kF dependence. Hence, we conclude f .1/ D hf .1/iF and

f .1/ D �

j"nj : (14.83)

Substituting (14.83) into (14.79) and comparing the resulting expression with the
expansion of g in (14.81), we thereby obtain g.2/,

g.2/ D �sgn."n/
j�j2
2"2n

: (14.84)

Next, setting � D 2 in (14.82) yields

f .2/ D �„vF � @f .1/

2"n
� „f

.2/ � hf .2/iF
2� j"nj :

As the source term / vF � @f .1/ is linear in vF, we conclude hf .2/iF D 0. The
corresponding equation for f .2/ can be solved easily using (14.83),

f .2/ D � „vF � @f .1/

2"n.1C „=2� j"nj/ D �
„vF � @�

2"n.j"nj C „=2�/ : (14.85)

To find g.3/, we substitute (14.81) into (14.79), extract third-order terms, and use
(14.83) and (14.85). We thereby obtain

g.3/ D �sgn."n/
f .1/�f .2/ C f .2/�f .1/

2
D „vF � �

�@� ��@��

4"2n.j"nj C „=2�/
; (14.86)
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where f � D f �.�"n;kF; r/. Finally, we set � D 3 in (14.82) and subsequently use
f .1/ D hf .1/iF and g.2/ D hg.2/iF based on (14.83) and (14.84). This yields

f .3/ D �g.2/

"n
� „vF � @f .2/

2"n
� „f

.3/ � hf .3/iF
2� j"nj

D �j�j
2�

2j"nj3 C
.„vF � @/2�

4"2n.j"nj C „=2�/
� „f

.3/ � hf .3/iF
2� j"nj :

Its Fermi-surface average is easily obtained using (13.14),

hf .3/iF D �j�j
2�

2j"nj3 C
.„vF/

2@2�

12"2n.j"nj C „=2�/
: (14.87)

We are now ready to derive the GL equations. First, we consider the
equation for the pair potential. Let us set ` D m D 0 in (14.75)
with �00 ! �, substitute (14.77) and Y00. Ok/ D .4�/�1=2, multiply the
equation by N."F/, and substitute the expansion of f in (14.81). We thereby
obtain

N."F/�.r/ ln
T

Tc
CN."F/

�

ˇ

1X
nD�1

"
�.r/
j"nj �

1X
�D1
hf .�/."n;kF; r/iF

#
D 0;

(14.88)
where we have used the notation of (14.72). Further, we expand ln.T=Tc/ near Tc

as ln.T=Tc/ 	 lnŒ1 C .T � Tc/=Tc� 	 .T � Tc/=Tc, retain terms of � � 3 in the
square brackets, and substitute (14.83), (14.85), and (14.87). We thereby obtain an
equation for the pair potential as

a2�.r/C a4j�.r/j2�.r/� b2 @2�.r/ D 0; (14.89)

where a2, a4, and b2 are defined by

a2 � N."F/
T � Tc

Tc
; (14.90)

a4 � N."F/
�

2ˇ

1X
nD�1

1

j"nj3 	 N."F/
7�.3/

8.�kBTc/2
; (14.91)

b2 � N."F/
�.„vF/

2

12ˇ

1X
nD�1

1

"2n.j"nj C „=2�/
	 .„vF/

2

6
a4�: (14.92)



224 14 Gor’kov, Eilenberger, and Ginzburg–Landau Equations

The approximation in (14.91) has been obtained with the procedure of (9.41), and �
is defined by

� � 8

7�.3/

1X
nD0

1

.2nC 1/2.2nC 1C „=2��kBTc/
: (14.93)

Whereas a4 and b2 are positive, a2 changes sign at T D Tc to be negative for
T < Tc. Function � decreases from 1 in the clean limit (� !1) as � is decreased.
It should be noted that � is inversely proportional to the impurity concentration, as
seen in (14.103).

Next, we focus on Ampère’s law. Let us substitute g D g	0 into (14.76), expand
g as (14.81) and retain terms of � � 3, and use (14.84) and (14.86). The resulting
equation can be expressed in terms of coefficient b2, (14.92),

r � B D �i
2e�0b2

„
�
��@� ��@���: (14.94)

Equations (14.89) and (14.94) constitute the GL equations. The corresponding
free-energy functional is given by

FsnŒ�;�
�;A� �

Z
d3r

"
a2j�j2 C a4

2
j�j4 C b2��

�
�ir � 2e„ A

�2
�C .r � A/2

2�0

#
:

(14.95)

Indeed, one sees easily, applying the transformation of (10.35) to (14.95),
that extremal conditions ıFsn=ı�

�.r/ D 0 and ıFsn=ıA.r/ D 0 yield (14.89)
and (14.94), respectively. Note that functional (14.95) with coefficients (14.90)–
(14.92) forms an inhomogeneous extension of the Landau functional (9.55) with
coefficients (9.56).

The homogeneous solution of (14.89) for T < Tc is given by �0 �
p�a2=a4,

which does not depend on the relaxation time � as seen from (14.90) and (14.91).
Hence, we conclude that the thermodynamic properties of homogeneous s-wave
superconductors are not affected by impurities [1, 2]. However, it should be pointed
out that the statement no longer holds true when gap anisotropy is present. In
contrast, the third term in the square brackets of (14.95) represents the kinetic energy
due to the spatial variation of �. It follows from (14.92), (14.93) and (14.103)
that this term strongly depends on the impurity concentration, i.e., the kinetic
energy is reduced as relaxation times � shorten because of increased impurity
concentration.

Assuming that spatial variation of the pair potential in (14.94) lies only in
its phase as �.r/ D �0ei'.r/ D p�a2=a4 ei'.r/, we reproduce the London
equation (10.39) or (10.40). The corresponding London penetration depth is given
by
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�L D
s

„2a4
8�0b2.�a2/e2 D

r
m

�0.N=V /2Œ.Tc � T /=Tc��e2
; (14.96)

where we have substituted (14.90)–(14.92) and used the relation 2N."F/v
2
F=3 D

.N=mV /. Equation (14.96) in the clean limit �! 1 is identical with �L in (10.40)
for T . Tc, as may be confirmed by using (10.22) and (10.47).

The original motivation of Ginzburg and Landau in 1950 [5] was to extend the
London theory to incorporate the superconducting order parameter �.r/. To this
end, they extended the Landau theory for second-order phase transitions described
in Sect. 9.5 to inhomogeneous superconductors phenomenologically in a gauge-
invariant manner based on the free-energy functional,

Fsn D
Z

d3r

"
˛j
 j2 C ˇ

2
j
 j4 C 
�

��i„r � e�A
�2

2m� 
 C .r � A/2

2�0

#
:

(14.97)
Later in 1959, Gor’kov derived the functional microscopically [6] to show that their
order parameter 
.r/ and constants .˛; ˇ/ can be expressed in terms of quantities
in (14.90)–(14.92) and (14.95); that is,


.r/ D
p
2m�b2
„ �.r/; ˛ D „2

2m�b2
a2; ˇ D

� „2
2m�b2

�2
a4; (14.98)

withm� D 2m and e� D 2e. Note thatm� and e� in the considerations of Ginzburg
and Landau [5] were set equal to the bare electron massm and charge e, respectively,
as was realized naturally for a period prior to the key concept of pair condensation.
They subsequently calculated the surface energy in a magnetic field to show that
superconductors can be classified into two groups according to whether the surface
energy is positive or negative [5]. We shall discuss this aspect in the next chapter.

Problem

14.1. Scatterings by Na impurity atoms of the same kind may be described by the
Hamiltonian:

Himp �
Z

d
1 O �.
1/
NaX
aD1

Uimp.r1 � ra/ O .
1/; (14.99)
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where Uimp is the impurity potential and ra denotes
the position of impurity atom a. We incorporate effects
described by this Hamiltonian based on the self-consistent
Born approximation. In general, the perturbation expan-
sion for superconducting phases can be performed in
terms of normal-state Feynman diagrams by replacing the
normal Green’s function Gn with the product OG O	z of the
Nambu matrices (14.31) and (12.9) [8]. We thereby obtain
the self-energy due to the double scatterings by the same
impurity as

a

Ȯ .r1; r2I "n/ D
X
a

Uimp.r1�ra/ O	z OG.r1; r2I "n/ O	zUimp.r2�ra/: (14.100)

Solve the following problems.

(a) Let us transform the impurity potential as

Uimp.r1 � ra/ D 1

V

X
k

U
imp
k eik�.r1�ra/: (14.101)

Similarly, we expand the self-energy Ȯ and the Green’s function OG
as (14.46). Further, we assume that ra is distributed randomly so thatP

a eik�ra D Naı k0 holds. Show that the Fourier coefficient Ȯ ."n;k; r/
of the self-energy (14.100) is given by

Ȯ ."n;k; r/ D na

V

X
k0

jU imp
k�k0 j2 O	z OG."n;k0; r/ O	z; (14.102)

where na � Na=V denotes the density of impurities.
(b) Let us replace the sum over k0 in (14.102) by an integral as (8.90)

and approximate N."k0/ 	 N."F/. We also consider s-wave impurity
scattering where U imp

k does not depend on k, and introduce the relaxation
time � with

„
�
� 2�naN."F/jU impj2: (14.103)

Hence, � is inversely proportional to the impurity concentration na
in the self-consistent Born approximation. Show that the right-hand
side of (14.102) can be written in terms of the quasiclassical Green’s
function (14.59) as (14.71).
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Chapter 15
Abrikosov’s Flux-Line Lattice

Abstract Superconductors can be classified into two types according to their
response to applied magnetic fields. Whereas type-I superconductors exclude
the magnetic field completely from the bulk due to the Meissner effect, type-II
superconductors can retain quantized magnetic fluxes in the bulk over a certain
range of magnetic field. In 1957, Abrikosov solved the Ginzburg–Landau equations
analytically for a couple of limiting cases to predict that type-II superconductors
can form a lattice of quantized flux lines between lower critical field Hc1 and upper
Hc2, which was later confirmed by experiments. In this chapter, we elaborate on this
flux-line lattice.

15.1 Ginzburg-Landau Equations

Focusing on the region near the transition temperature, Ginzburg and Landau
produced a phenomenological version of the free energy as a functional of the
superconducting order parameter 
.r/ and vector potential A.r/ in 1950 [7]. Later,
Gor’kov derived it microscopically by extending the BCS theory to inhomogeneous
systems. The resulting free energy, measured from the normal-state free energy in
zero magnetic field at the same temperature T , is given in terms of the s-wave pair
potential�.r/, (14.95), i.e.,

Fsn D
Z

d3r

"
a2j�j2 C a4

2
j�j4 C b2��

�
�ir � 2e„ A

�2
�C .r � A/2

2�0

#
;

(15.1)
where �0 is the vacuum permeability and .a2; a4; b2/ are constants given explicitly
by (14.90)–(14.92). Whereas a4 and b2 are positive, a2 is proportional to T � Tc

and becomes negative for T < Tc. Additionally, b2 is susceptible to variations in the
concentration of impurities arising in alloying, becoming smaller as the impurity
concentration increases.

As thermodynamic equilibria correspond to the minima of Fsn, the pair and
vector potentials should obey ıFsn=ı�

�.r/ D 0 and ıFsn=ıA.r/ D 0. Following
the procedure of (10.35) to calculate them, we obtain a pair of equations
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a2�C a4j�j2�C b2
�
�ir � 2e„ A

�2
� D 0; (15.2)

r � r � A D 2e�0b2

„
�
��
�
�ir � 2e„ A

�
�C�

�
ir � 2e„ A

�
��
�
: (15.3)

Equation (15.3) represents Ampère’s law (10.30). Indeed, the left-hand side can be
written in terms of the microscopic magnetic flux density:

B.r/�r�A.r/ (15.4)

as r�B.r/, whereas the right-hand side can be identified as superconducting current
density j.r/ multiplied by �0.

15.2 Microscopic Flux Density and Magnetization

We elaborate now on how the magnetic flux density (15.4) is determined.
In performing experiments on superconductors in magnetic fields, there are

essentially two distinct sources for B. The first is the external current jext that flows
far outside the sample and produces the magnetic field H that obeys Ampère’s law:

r �H.r/ D jext.r/: (15.5)

In general, the experimental setup is arranged to produce a uniform field around
the sample using, e.g., a Helmholtz coil. The second is the supercurrent j that flows
inside the sample. Flux density B.r/ in the sample is determined by solving (15.3)
so that it is connected smoothly to �0H far outside the sample. The spatial average
of B.r/ inside the sample, defined by

NB � 1

V

Z
B.r/ d3r; (15.6)

is not equal to �0H generally. Their difference divided by �0,

M �
NB
�0
�H (15.7)

defines the magnetization due to the supercurrent. Spins may also contribute to M,
but in a first approximation their effect in single-element superconductors can be
neglected in comparison with that of the supercurrent.

In particular, when H is applied parallel to the side of a long cylindrical sample,
the field produced by the supercurrent is confined inside the sample. We shall
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consider this situation below, where H is derivable from the free energy (15.1) given
as a function of NB by the thermodynamic relation (Problem 15.1):

H D 1

V

@Fsn

@ NB : (15.8)

A subsequent Legendre transformation:

Gsn.H/ � Fsn. NB/� V NB �H (15.9)

introduces another free energy Gsn.H/ as a function of H that is controllable
experimentally.

Considering (15.6), we express the microscopic flux density inside the sample as

B.r/ D NBC r� QA.r/; 1

V

Z
Œr� QA.r/� d3r D 0: (15.10)

Thus, QA represents the spatially varying part of the flux density.

15.3 Dimensionless Equations

We shall rewrite the GL equations (15.2) and (15.3) in dimensionless form, as
(15.18) and (15.19). This helps us to simplify the mathematical treatment and also
capture the essence of type-II superconductors more clearly.

Let us focus on the region T . Tc where a2 < 0, and perform an appropriate
change of variable in (15.1). First, the homogeneous solution of (15.2) is easy to
obtain;

�0 D
p�a2=a4; (15.11)

which is realized in zero magnetic field. Substituting this into (15.1), we obtain
the zero-field condensation energy in equilibrium per unit volume as F .eq/

sn =V D
�.a4=2/�4

0 D �a22=2a4. This result agrees with (9.53), as confirmed using (14.90),
(14.91), and N."F/ D D."F/=2V . Second, we define thermodynamic critical field
Hc by the equality F .eq/

sn =V D ��0H2
c =2, which yields

Hc D
q
a22=�0a4: (15.12)

It is the field at which a type-I superconductor changes into the normal state via
a first-order phase transition involving latent heat. Third, focusing on the terms of
O.�/ in (15.2), we note that the b2 term contains a squared differential operator
compared with the a2 term. Hence, the quantity
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 � pb2=.�a2/ (15.13)

has a unit of length, which is called the coherence length and represents the typical
scale of variations for amplitude j�j. Similarly, we set �.r/ ! �0 D

p�a2=a4
in (15.3), compare the terms of O.A/, and obtain another length scale called the
London penetration depth:

�L �
s

„2a4
8�0b2.�a2/e2 ; (15.14)

which represents a typical scale for variations in the flux density B.r/. The ratio of
the above two lengths,

� � �L



D
s
„2a4

8�0b
2
2e
2

(15.15)

forms the important dimensionless parameter called the GL parameter. It follows
from (14.90)–(14.93) and (14.103) that � is temperature independent for T . Tc

but is susceptible to variations in impurity concentration na through factor � in
b2 and is enhanced as na increases. Note that na may be controlled systematically
by alloying. The existence of another characteristic length 
, apart from �L, was
discovered by Pippard in 1953 [14].

In summary, (15.11), (15.12), and (15.14) are constants that have the units of
energy, magnetic field, and length. Using them, we perform a change of variable in
(15.1) as

r D �Lr0; �.r/ D �0

0.r0/; A.r/ D p2�0Hc�LA0.r0/; (15.16)

where factor
p
2 has been introduced for convenience. The corresponding unit of

magnetic flux density is given by
p
2�0Hc. Substituting (15.16) into (15.1), using

(15.11)–(15.15), and noting e < 0, we rewrite the free energy in the form1

Fsn D �0H2
c �

3
L

Z
d3r 0

"
�j
 0j2 C 1

2
j
 0j4 C 
 0�

�
� i

�
r 0CA0

�2

 0 C .r 0�A0/2

#
:

(15.17)
The corresponding dimensionless GL equations are obtained by either calculating
ıFsn=ı


0�.r0/ D 0 and ıFsn=ıA0.r0/ D 0 or applying (15.16) to (15.2) and (15.3).
They are given by

1Ginzburg and Landau [7] and Abrikosov [2] set e > 0 when transforming the free energy
functional into a dimensionless form, so that A0 ! �A0 in their expressions. However, the
essential results are the same as those described here.
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�
� i

�
r 0 C A0

�2

 0 � 
 0 C j
 0j2
 0 D 0; (15.18)

r 0 � B0 D �1
2

�

 0�

�
� i

�
r 0 C A0

�

 0 C 
 0

�
i

�
r 0 C A0

�

 0�

�
; (15.19)

where B0 � r 0 � A0 denotes the microscopic magnetic flux density.

15.4 Upper Critical Field and Distinction Between Type-I
and II

First, we derive an expression for the upper critical field Hc2 at which the
superconducting phase transition occurs.

Assuming a continuous transition in a magnetic field, we may linearize (15.18)
in terms of 
 0,

�
� i

�
r 0 C A0

�2

 0 D 
 0: (15.20)

As the supercurrent is negligible at the transition point, we can also set B0.r0/ D NB0.
Let us choose the z0 axis along NB0, assume a uniform solution along z0, and consider
a region of unit length along the z0 axis from this point on. We also adopt the Landau
gauge:

A0.r0/ D .0; NB 0x0; 0/ (15.21)

for describing NB0 D r 0 � A0 and introduce creation and annihilation operators

Oa�
Oa
�
� 1p

2� NB 0

�
� @

@x0 � i

�
@

@y0 C i� NB 0x0
��

(15.22)

satisfying Oa Oa� � Oa� Oa D 1. Equation (15.20) thereby becomes

�
Oa� OaC 1

2

�
2 NB 0

�

 0 D 
 0; (15.23)

which has the same form as the Schrödinger equation for the one-dimensional
harmonic oscillator [15]. Hence, we conclude that the eigenvalues of Oa� Oa are non-
negative integers. The maximum field NB 0 D B 0

c2 at which (15.23) has a solution can
be obtained by replacing Oa� Oa above with the smallest eigenvalue 0 as

B 0
c2 D �; Hc2 D

p
2�Hc; (15.24)



234 15 Abrikosov’s Flux-Line Lattice

where the second identity in the ordinary units has been derived based on (15.16).
This Hc2 is called the upper critical field.

For the magnetic field to penetrate into the bulk, conditionHc2 � Hc must hold,
from which we obtain for type-II superconductors the criterion

� � 1p
2
: (15.25)

15.5 Flux-Line Lattice Near Hc2

Next, we consider the region H . Hc2 in calculating the pair potential �0.r0/ and
microscopic magnetic flux density B0.r0/.

Supercurrent j0.r0/ also becomes finite in this region to produce a finite contribu-
tion to the average flux density (15.6). The corresponding vector potential may be
chosen to reproduce (15.10) as

A0 D NB 0x0 Oy0 C QA0; (15.26)

where Oy0 denotes the unit vector along the y0 direction. We fix the gauge of QA0 so
that

r 0 � QA0 D 0 (15.27)

is satisfied. Let us substitute (15.26) into the third term in the square brackets of
(15.17). We then find that its operator part is expressible in terms of (15.22),

�
� i

�
r 0 C A0

�2
	 Oh0 C i

s
2 NB 0
�

��. QA0
x C i QA0

y/ OaC . QA0
x � i QA0

y/ Oa�
	
; (15.28)

where Oh0 is defined by

Oh0 �
�
� i

�
r 0 C NB 0x0 Oy0

�2
D
�
Oa� OaC 1

2

�
2 NB 0

�
; (15.29)

and we have neglected a term of O. QA02/ as appropriate nearHc2.

15.5.1 Constructing Basis Functions

To find the equilibrium structure of �0.r0/, we use operator (15.29) to construct
a complete set of basis functions in which to expand �0.r0/. Those who are not
interested in the derivation may proceed to the next section.
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Hamiltonian (15.29) is identical to that for an electron in a uniform magnetic
field in two dimensions [13]. Its eigenvalues distinguish the Landau levels given by

"0
N D

�
N C 1

2

�
2 NB 0

�
.N D 0; 1; 2; � � � /; (15.30)

with a macroscopic degree of degeneracy for each level. Every eigenfunction �0.r0/
for N D 0 obeys the first-order differential equation Oa �0.r0/ D 0. Noting that
operator (15.22) does not depend on y0, we set �0.r0// eiq

0

yy
0

'0.x
0/ characterized

by wavenumber q0
y and substitute it into Oa �0.r0/ D 0. The resulting equation for

'0.x
0/ can be solved easily, and we find the eigenfunctions take the form,

�0.r0/ / exp

"
iq0
yy

0 � .x
0 C q0

yl
02
c /

2

2l 02c

#
; (15.31)

where

l 0c �
1p
� NB 0 ; lc D �Lq

�. NB=p2�0Hc/

D
s
„

2jej NB ; (15.32)

denotes the magnetic length for a bound pair with charge 2e, as may be realized
from the second expression given in the ordinary units. To find the number of
possible q0

y’s in (15.31), we consider a square region of sides L0 .� l 0c/ and impose
the periodic boundary condition along the y0 direction [13]. We thereby obtain an
expression for q0

y as q0
y D 2�ny=L

0 in terms of integers ny . Let us substitute this
into inequality 0 � �q0

yl
02
c � L0, which denotes that the central coordinate of the

wave function (15.31) along the x0 axis lies within the system. We thereby obtain
the number of allowed values for ny as L02=2�l 02c . Alternatively, there is a single
state per area of 2�l 02c .

If we choose �0.r0/ / �0.r0/ in terms of (15.31), we can describe a state where
a region of width � 2p2l 0c around x0 D �q0

yl
02
c is superconducting. However, it is

clearly more favorable to realize superconductivity over the entire system. Hence,
Abrikosov considered a linear combination of (15.31) to find that a quantized flux-
line lattice should be stable [2].

The basic issue here is how to construct extended wave functions from (15.31).
To this end, we use the magnetic translation operator in the Landau gauge [5, 10]:

OTR0 � e�R0 �.r 0Ci� NB0y0 Ox0/ D e�i� NB0R0

x .y
0�R0

y=2/e�R0�r 0

; (15.33)

where Ox0 denotes the unit vector along the x0 axis. For the second equality, we have
used the identity e OCC OD D e� 1

2 Œ
OC; OD�e OC e OD that holds for a pair of operators OC and OD

satisfying Œ OC ; Œ OC ; OD�� D Œ OD; Œ OC ; OD�� D 0, where Œ OC ; OD�� OC OD� OD OC . It follows
from the commutation relation Œ.r 0 C i� NB 0y0 Ox0/i ; .r 0 C i� NB 0x0 Oy0/j � D 0 (i; j D
x0; y0) that OTR0 and Oh0, (15.29), commute
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Fig. 15.1 A pair of primitive
translation vectors .a0

1; a
0

2/ of
the flux-line lattice, and the
corresponding pair of
reciprocal lattice vectors
.b0

1; b
0

2/. The area of the unit
cell is given by
ja0

1 � a0

2j D 2�l 02c

� OTR0 ; Oh0
	 D 0: (15.34)

Using this relation, we transform the degenerate bases of Oh0 into eigenstates of
OTR0 , which will be shown to form a complete orthonormal set that is suitable

for describing the flux-line lattice [10]. First, let us introduce a set of primitive
translation vectors a0

1 and a0
2 as (see Fig. 15.1)

a0
1 D .a0

1x ; a
0
1y/; a0

2 D .0; a0
2/; a0

1xa
0
2 D 2�l 02c ; (15.35)

where the areas spanned by a0
1 and a0

2 are set equal to 2�l 02c , i.e., the basic area for a
single quantum state. The corresponding reciprocal lattice vectors are given by

b0
1 D 2�

a0
2 � Oz0

ja0
1 � a0

2j
; b0

2 D 2�
Oz0 � a0

1

ja0
1 � a0

2j
; (15.36)

satisfying a0
j � b0

j D 2�ıij (i; j D x; y). Next, we write the translation vector R0 of
OTR0 in terms of integers n1 and n2,

R0 D n1a0
1 C n1a0

2: (15.37)

Further, we use an even number Nf � 1 to impose periodic boundary conditions
OTNfa0

j
D 1 (j D 1; 2). We can thereby distinguish the degenerate eigenstates

belonging to "0
N in (15.30) by the magnetic Bloch vector:

q0 D m1

Nf
b0
1 C

m2

Nf
b0
2

�
mj D �Nf

2
C 1;�Nf

2
C 2; � � � ; Nf

2

�
; (15.38)

which specifies the eigenstate of OTR0 . To be specific, the eigenfunction associated
with N D 0 and q0 D 0 is given by [10]
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�00.r0/ D 1

Nf

qp
�l 0ca0

2

Nf=2X
nD�Nf=2C1

exp

"
�i
na0

1x

l 02c

 
y0� na

0
1y

2

!
� .x

0�na0
1x/

2

2l 02c

#
:

(15.39)
Further, the eigenfunction of N D 0 and q0 ¤ 0 can be obtained by a magnetic
translation from �00.r/,

�0q0.r0/ D OTl 02c q0�Oz0�00.r0/: (15.40)

Eigenfunctions of the higher Landau levels obey the recursion relations [15]:

�Nq0.r0/ D 1p
N
Oa��N�1q0.r0/: (15.41)

It follows from (15.38) that the number of distinct wave vectors is equal to the
number N 2

f of possible states in the area spanned by Nfa0
1 and Nfa0

2. Also, the
eigenfunctions can be shown to satisfy orthonormality relations h�0q0

1
j�0q0

2
i D

ıq0

1q0

2
. Hence, the degenerate states belonging to the lowest Landau level are now

transformed into an orthonormal set of magnetic Bloch states that satisfy [10]

OTR0�0q0.r0/ D e�iq0 �R0�i�n1n2�0q0.r0/: (15.42)

To find the zeros of �00.r0/, we use the following symmetry relations:

�00.r0 � R0/ D ei� NB0R0

x .y
0�R0

y=2/�i�n1n2�00.r0/; (15.43)

�00.�r0/ D �00.r0/: (15.44)

The first equality is obtained from (15.42) by setting q0 D 0 and rearranging its
left-hand side using the second expression of (15.33). The second equality obtains
by replacing r0 ! �r0 in (15.39) and subsequently changing n ! �n in the
summation. Let us set r0 D R0=2 in (15.43) and use (15.44) on the left-hand side.
We thereby obtain �00.R0=2/ D e�i�n1n2�00.R0=2/, concluding that

�00.n1a0
1=2C n2a0

2=2/ D 0 when n1n2 is odd. (15.45)

Therefore, the zeros of �00.r0/ are distributed periodically, their total number being
equal to N 2

f . One may also confirm numerically that the wave function changes its
phase by �2� for a counterclockwise rotation around every zero point. Figure 15.2
plots the amplitude of the sum in (15.39) for a0

2=a
0
1 D 1 and �A � cos�1.a0

1 �
a0
2=a

0
1a

0
2/ D �=3. We can clearly observe a periodic hexagonal arrangement of

zeros.
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Fig. 15.2 Plot of the
amplitude of the sum in
(15.39) for a0

2=a
0

1 D 1 and
�A � cos�1.a0

1 � a0

2=a
0

1a
0

2/ D
�=3 over jx0j; jy0j � 5l 0c in
units of l 0c D 1 1.0

0.5

5

0

5

0

–5

–5

15.5.2 Minimization of the Free Energy Functional

Basis functions (15.39) and (15.40) with translational symmetry (15.42) are suitable
for describing superconductivity that extends over the whole system. Moreover,
states with different q0’s are connected by magnetic translations, as given in (15.40),
so that they are essentially the same. Hence, we choose a single magnetic Bloch
state, e.g., that of q0 D 0, to expand the pair potential�0.r0/ for H 0 . H 0

c2,

�0.r0/ D c0
p
V 0�00.r0/: (15.46)

Choosing a single q0 represents spontaneously broken translational symmetry of the
flux-line lattice. As �00.r0/ / 1=

p
V 0 from the normalization condition, we have

extracted the factor
p
V 0 to make c0 of order 1.

Correspondingly, we assume periodicity QA0.r0CR0/D QA0.r0/ for the second term
of (15.26) and expand it as

QA0.r0/ D
X
K0

QA0.K0/ eiK0 �r0

; (15.47)

where K0 is a reciprocal lattice vector expressible in terms of (15.36) and integers
mj (j D 1; 2) as

K0 D m1b0
1 Cm2b0

2: (15.48)

It follows from QA0.r0/ being real and (15.27) that

QA0�.K0/ D QA0.�K0/; K0 � QA0.K0/ D 0 (15.49)

holds.
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We now use the Ritz method [6] to obtain an approximate solution of (15.18)
and (15.19) by minimizing the free energy in terms of the variational param-
eters, i.e., expansion parameters .c0; QA0

K0/, angle �A � cos�1.a0
1 � a0

2=a
0
1a

0
2/

between the two primitive vectors, and their ratio a0
2=a

0
1. Specifically, we substitute

(15.26), (15.28), (15.46), and (15.47) into (15.17), use (15.41), and perform the
integration. We thereby transform Fsn into

Fsn 	 �0H2
c V


 NB 0

�
� 1

!
jc0j2 C jc0j

4

2
I
.4/
00;00 C NB 02 C

X
K0

K 02j QA0.K0/j2

C i

s
2 NB 0
�

X
K0

I01.�K0/
� QA0

x.K
0/ � i QA0

y.K
0/
	jc0j2

�
; (15.50)

where I .4/00;00 and IN1N2.K
0/ are defined by

I
.4/
00;00 � V 0

Z
j�00.r0/j4 d3r 0 D

p
2�l 0c
a0
2

X
n1n2

exp

"
� .n

2
1 C n22/a02

1x

2l 02c
C i

n1n2a
0
1xa

0
1y

l 02c

#
;

(15.51)

IN1N2.K
0/ �

Z
��
N10.r

0/�N20.r0/ e�iK0�r0

d3r 0

D 1p
N2

"p
N1IN1�1;N2�1.K0/� i.K 0

x C iK 0
y/p

2� NB 0 IN1;N2�1.K0/
#
: (15.52)

The second expression of (15.52) has been obtained by substituting (15.41) with
N ! N2 and q0 ! 0, performing integration by parts in terms of Oa� in (15.22),
and writing Oa �N10 D

p
N1�N1�10. Using (15.49) and (15.52), we can express the

I01.�K0/ term in (15.50) as

I01.�K0/
� QA0

x.K
0/� i QA0

y.K
0/
	 D I00.�K0/

�
K0� QA0.K0/

	 � Oz0
p
2� NB 0 : (15.53)

Let us substitute (15.53) into (15.50) and calculate the extremal conditions
@Fsn=@jc0j2 D 0 and @Fsn= QA0.�K0/ D 0. They are given by

NB 0

�
� 1C I .4/00;00jc0j2 C

i

�

X
K0

I00.�K0/
�
K0� QA0.K0/

	 � Oz0 D 0; (15.54)

QA0.K0/ D i

2�K 02 I00.K
0/ Oz0 �K0jc0j2: (15.55)
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Further, we put (15.55) into (15.54) and use the identity (Problem 15.2):

I
.4/
00;00 D

X
K0

I00.K0/I00.�K0/; (15.56)

to obtain jc0j2 as

jc0j2 D 2�.� � NB 0/
.2�2 � 1/I .4/00;00

: (15.57)

By substituting (15.53) and (15.54) into (15.50) and then using (15.55), (15.56),
and (15.57), the equilibrium free energy is expressed concisely as

Fsn D �0H2
c V

"
�jc0j

4

2
I
.4/
00;00 C NB 02 C

X
K0

K 02j QA0.K0/j2
#

D �0H2
c V

"
� .� � NB 0/2

.2�2 � 1/I .4/00;00

C NB 02
#
: (15.58)

Further, it should be minimized with respect to I .4/00;00, which contains information

about the lattice structure. A numerical evaluation of (15.51) [12] verifies that I .4/00;00

takes its minimum for the hexagonal lattice of Fig. 15.2,

I
.4/
00;00 D 1:16: (15.59)

That the hexagonal lattice is stable follows naturally by recalling that it is the
densest-packing structure in two dimensions. Nevertheless, as the temperature is
lowered from Tc, the Fermi surface anisotropy changes the stability of the structure
and Hc2 to such an extent that the hexagonal lattice is seldom observed in certain
materials [3, 11].

Next, we calculate the magnetic field H based on (15.8) by differentiating
(15.50) in terms of NB D p2�0Hc NB 0. As @Fsn=@jc0j2 D 0 and @Fsn= QA0.�K0/ D 0
hold in equilibrium, we only need to consider the explicit NB 0 dependences. Noting
that I .4/00;00 and IN1N2.K

0/ are constants whereasK 02 / l 0�2c / NB 0, the differentiation
yields

H D Hcp
2

�
2 NB 0 C jc0j

2

�
CO.jc0j4/

�
	
NB
�0
C Hc2 �H
.2�2 � 1/I .4/00;00

:

Comparing this expression with (15.7), we obtain the magnetization for H . Hc2,

M D � Hc2 �H
.2�2 � 1/I .4/00;00

: (15.60)
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Its gradient in terms of Hc2 � H increases as � is decreased towards 1=
p
2, and

we finally have a discontinuous transition at � D 1=
p
2 between the normal and

Meissner states.
The above consideration can be extended to lower fields by retaining terms of

O. QA02/ in (15.28) and including contributions from higher Landau levels (N >0) in
(15.46) [10]. The solid line in Fig. 15.3 plots the normalized magnetization M 0 �
M=
p
2Hc as a function of H 0 � H=

p
2Hc for � D 5, whereas the dotted line

represents the approximate curve of (15.60) near Hc2 (H 0
c2 D �). As the magnetic

field is reduced fromH 0
c2,�M 0 starts to deviate upwards from (15.60), indicating an

accelerating demagnetization. The upward curvature continues to increase through
H 0

c D 1=
p
2 D 0:707 and eventually stops at a certain field H 0

c1 < H 0
c , where

complete diamagnetism ( NB 0D0) is achieved because of the Meissner effect.

15.6 Lower Critical Field Hc1

Equation (10.43) infers that the magnetic flux in superconductors should be
quantized in units ofˆ0 in consequence of the single-valuedness of the macroscopic
wave function. In every type-II superconductor, there exists a lower critical fieldHc1

at which a single flux starts to penetrate into the bulk. To study Hc1, we here solve
the GL equations in cylindrical coordinates; see also Sect. 16.3 on this topic for a
detailed study at all temperatures.

Let us express the wave function and vector potential for a single flux quantum
using r0 D .r 0 cos' 0; r 0 sin' 0; z0/,


 0.r0/ D f .r 0/ e�i'0

; A0.r0/ D A0.r 0/ O'0
; (15.61)

Fig. 15.3 Magnetization
curve for � D 5
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where f 0.r 0/ and A0.r 0/ are real functions and O'0 � Oz0 � Or0 denotes the unit vector
along the ' 0 direction.2 This
 0.r0/ changes its phase by�2� for a counterclockwise
rotation around the z axis. Hence, f .0/ D 0 should hold because of the single-
valuedness of the wave function. The corresponding microscopic flux density
B0.r0/ D r 0�A0.r0/ is given in cylindrical coordinates by [4]

B0.r0/ D Oz
0

r 0
d

dr 0
�
r 0A0.r 0/

	 D � Oz0

r 0
d

dr 0
�
r 0Q0.r 0/

	
; (15.62)

where we have introduced a new function,

Q0.r 0/ � �A0.r 0/C 1

�r 0 ; (15.63)

to express the derivative of r 0A0.r 0/ D �r 0Q0.r 0/ C 1=� in terms of r 0Q0.r 0/.
Substituting (15.61) into (15.18) and (15.19) and performing the differentiations
in the cylindrical coordinates [4], for example ��1r 0' 0 D .�r 0/�1 O'0, we thereby
obtain the GL equations for a single flux quantum,

� 1

�2r 0
d

dr 0

�
r 0 df 0

dr 0

�
CQ02f 0 D f 0.1 � f 02/; (15.64)

d

dr 0

�
1

r 0
d

dr 0
�
r 0Q0/

�
D Q0f 02: (15.65)

Equations (15.64) and (15.65) should be solved with boundary conditions:

f 0.0/ D 0; f 0.1/ D 1; r 0Q0.r 0/
ˇ̌̌
ˇ
r 0D0
D 1

�
; Q0.1/ D 0: (15.66)

Next, we derive an expression for Hc1 in terms of f 0 and B 0. Let us substitute
(15.18) into (15.17) and use (15.61) and (15.62). We thereby obtain the equilibrium
free energy for a single flux quantum per unit length along the z0 axis,

F .eq/
sn D �0H2

c �
3
L

Z
d2r 0

�
�f

04

2
C B 02

�
:

Subtracting the zero-field free energy with f 0D1 andB 0D0 from it and integrating
over 0 � ' 0 � 2� , we obtain

"1 � 2��0H2
c �

3
L

Z 1

0

�
1 � f 04

2
CB 02

�
r 0dr 0; (15.67)

2The minus sign in the phase of 
 0.r0/ originates from the negative electronic charge e < 0. From
classical mechanics, when the field is applied along the positive z direction, an electron rotates in
a clockwise manner around the z axis, and the current flows in the opposite direction.
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which represents the energy of formation for a singly quantized vortex. An assembly
of such vortices with area density 	 yields the flux density:

NB � 	 h

2jej D 	
�„
jej :

Now, the lower critical field Hc1 is obtained from the condition that the free
energy (15.9) as a function of H is equal to the zero-field value, i.e.,

0 D Gsn.Hc1/ �Gsn.0/

V
D 	"1

�L
� NBHc1 D 	

�
"1

�L
� �„jejHc1

�
:

Hence, we obtain

Hc1 D jej"1
�„�L

D Hc
�p
2

Z 1

0

�
1 � f 04

2
C B 02

�
r 0dr 0; (15.68)

where we have used (15.11)–(15.15) in expressing the prefactor.
Solving (15.64) and (15.65) for a given � and substituting the results into (15.68),

we obtain Hc1 D Hc1.�/. While this procedure needs numerical studies in general,
we can find analytic solutions for some limiting cases.

First, � D 1=p2 is special in that (15.64) and (15.65) have first integrals [8]:

df 0

dr 0 D
Q0f 0
p
2
; B 0 � � 1

r 0
d

dr 0
�
r 0Q0/ D 1 � f 02

p
2

: (15.69)

Indeed, substitution of the second equality into (15.65) yields the first equality, and
that of the first equality into the left-hand side of (15.64) for � D 1=

p
2 using

(15.69) confirms the second equality. We use this B 0 in (15.68) for � D 1=
p
2 and

write the resulting expression as

Hc1 D Hc

2

Z 1

0

.1 � f 02/r 0dr 0 D Hcp
2

Z 1

0

B 0r 0dr 0 D Hcp
2

��r 0Q0	1
r 0D0 D Hc:

(15.70)

Combining this result with (15.24), we conclude Hc1 D Hc2 D Hc at � D 1=
p
2.

Thus, we have confirmed that � D 1=
p
2 is the critical value that separates

superconductors into type-I and type-II.
Second, we focus on the region r 0 
 1 near the vortex core, where (15.63) can

be approximated as Q0.r 0/ 	 1=�r 0. Substituting this into (15.64) yields

1

�2

�
� 1
r 0

d

dr 0

�
r 0 df 0

dr 0

�
C f 0

r 02

�
	 f 0.1� f 02/: (15.71)

Further, near the vortex core, we set the right-hand side to zero to obtain

f 0.r 0/ 	 c0r 0 .r 0 	 0/: (15.72)
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Thus, f 0.r 0/ grows linearly for r 0 	 0 with some gradient c0. We expect c0 � �,
as ��1 is the coherence length in the dimensionless units that gives the scale of the
variation in f 0.r 0/; see (15.15) on this point. Let us substitute (15.72) andQ0.r 0/ 	
1=�r 0 into (15.65), integrate both sides over 0 � r 0 � r 0

1, use (15.62), and set
r 0
1 ! r 0. We thereby obtain

B 0.r 0/ 	 B 0.0/� c20
2�
r 02: (15.73)

Thus, the magnetic flux density decreases quadratically from the vortex center.
Third, we can approximate f 0 	 1 for r 0 & ��1. Substitution of this into (15.65)

finds that the equation for Q0 is the modified Bessel’s equation of first order [1, 4].
Thus, the solution is given by

Q0.r/ 	 cK1.r
0/; (15.74)

where c is a constant. Using this expression in (15.62), we find the flux density,

B 0.r 0/ 	 cK0.r
0/: (15.75)

The asymptotic expression ofK0.r
0/ for r 0 !1 [1, 4] implies that the flux density

for r 0 � 1 decreases exponentially, .�=2r 0/1=2e�r 0

.
Fourth, we can simplify the problem for the extreme type-II limit of �� 1. In

this case, we expect that f 0.r 0/ grows rapidly over 0 � r 0 . ��1 and asymptotes to
1. Hence, f 0 for ��1
r 0
1 should obey (15.71). Let us parameterize the solution
in this region as f 0.r 0/ 	 1 � ar 0� (jaj 
 1) in terms of unknown constants a and
�, substitute it into (15.71), and use the leading terms to determine a and �. We
thereby obtain a D 1=2�2 and � D �2, and hence

f 0.r 0/ 	 1 � 1

2�2r 02 : (15.76)

As for the magnetic field, we can use K1.r
0/ 	 1=r 0 for r 0 
 1 to equate the

leading terms of (15.63) and (15.74) for ��1 
 r 0 
 1. This yields c D 1=� for
the coefficient of (15.74). Substituting this into (15.75), we thereby obtain the flux
density for r 0 & ��1,

B 0.r 0/ D K0.r
0/

�
	 � ln r 0

�
; (15.77)

where the second expression holds for r 0 
 1. We now estimate (15.68) for
Hc1 using these results. To this end, we note that the main contribution to the
integral for � � 1 originates from the region ��1 
 r 0 . 1, whereas that from
r 0 & 1 is exponentially small. Hence, we may replace the lower and upper limits of
(15.68) with ��1 and 1, respectively, substitute (15.76) and (15.77), and perform the
integration. The contribution from the flux density can be neglected, and we obtain
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Hc1 	 Hc
�p
2

Z 1

��1

1� f 04

2
r 0dr 0 D Hc

ln �p
2�
:

By solving (15.64) and (15.65) numerically, a better expression for � � 1 has been
obtained [9],

Hc1 D Hc
ln � C 0:497p

2�
: (15.78)

As may be expected from (15.70) and (15.78), the ratioHc1=Hc decreases from 1 at
� D 1=p2 monotonically as � is increased.

We note that the London equation (10.46) with a singularity n D �1 at r0 D 0
yields (Problem 15.3)

B.r/ D Ozˆ0
2��2L

K0.r=�L/; (15.79)

which agrees with (15.77) for the extreme type-II superconductors, as may be
confirmed by multiplying (15.77) by

p
2�0Hc and using (15.11)–(15.15). Thus, the

London equation can be regarded as the extreme type-II limit of the GL equations
near Tc, but also has the advantage of being applicable at lower temperatures.

Although we have not considered it here, the possibility of doubly or triply
quantized vortices may be excluded in the bulk based on the observation that
distributing singly quantized vortices homogeneously on a macroscopic scale
realizes the most homogeneous distribution of magnetic flux density.

Problems

15.1. Show that vector H defined by (15.8) satisfies (15.5).

15.2. Prove (15.56) between (15.51) and (15.52) for N1 D N2 D 0.

15.3. Show that (10.46) for n D �1 and r0 D 0 gives (15.79) as the solution.
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Chapter 16
Surfaces and Vortex Cores

Abstract We discuss topics concerning inhomogeneous superconducting states
of s-wave pairing that are realized near boundaries and vortex cores. First, we
consider a normal-superconducting interface to show that an electron approaching
the interface from the normal side experiences a peculiar reflection called Andreev
reflection, which backscatters a hole; the energy flow is substantially blocked
through the interface because of this reflection. Next, we study quasiparticles around
a vortex core to find that there exist localized quasiparticle states called Caroli–de
Gennes–Matricon mode below the bulk energy gap; they recover a T -linear term
in the specific heat and are also responsible for the electric resistivity when vortices
are forced to move. Finally, we use the quasiclassical Eilenberger equations to study
in detail an isolated s-wave vortex and its local density of states, Figs. 16.3–16.5.

16.1 Andreev Reflection

We consider a normal-superconducting interface as given in Fig. 16.1 to study how
a normal electron or hole incident on the boundary is scattered and transmitted.

A starting point is the BdG equations. For weak-coupling s-wave pairing, they
read

" OK �.r/
��.r/ � OK �

#�
u.r/
v.r/

�
D E

�
u.r/
v.r/

�
; (16.1)

with OK D Op2=2m � �. This is a direct extension of the .1; 4/ elements of (9.3) to
inhomogeneous systems. Equations for the .2; 3/ elements are obtained from (16.1)
by changing the signs of� and v simultaneously. Hence, they are identical to (16.1)
so that it suffices to consider only (16.1). As for the pair potential, we here adopt a
model form:

�.r/ D �0�.x/; (16.2)
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a b

Fig. 16.1 (a) Model pair potential around a normal-superconducting (NS) interface. (b) Andreev
reflection (chain line) at an NS interface

which enables an analytic treatment. In principle, the pair potential should be
determined self-consistently and is expected to change smoothly near the interface.
However, we may capture the essence of the scattering by studying this simplified
model.

Let us express the eigenvector in (16.1) as

�
u.r/
v.r/

�
D eikF �r

� Qu.r/
Qv.r/

�
; (16.3)

where kF denotes a Fermi wave vector. Functions .Qu; Qv/ thereby introduced are
expected to vary slowly compared with k�1

F . Next, we substitute (16.3) into (16.1)
and approximate the kinetic energy of the upper element as

OK u.r/ D
� Op2
2m
� �

�
eikF �r Qu.r/ D eikF �r

�
.�i„r C „kF/

2

2m
� �

�
Qu.r/

	 eikF�rvF � .�i„r /Qu.r/;

with vF � „kF=m. Here we have used � D „2k2F=2m and also neglected the r2 Qu
term. Equation (16.1) is thereby simplified to

��i„vF � r �.r/
��.r/ i„vF � r

� � Qu.r/
Qv.r/

�
D E

� Qu.r/
Qv.r/

�
: (16.4)

This is the Andreev approximation to the BdG equations [2], which is essentially
identical to the quasiclassical approximation adopted in Sect. 14.3.

Equation (16.4) on the normal side reduces to

��i„vF � r 0

0 i„vF � r
� � Qu.r/
Qv.r/

�
D E

� Qu.r/
Qv.r/

�
:
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Its eigenfunctions have the general form:
� Qu.r/
Qv.r/

�
D
�
A1eiq�r
A2e�iq�r

�
; (16.5)

with eigenvalues:

Eq D „vF � q: (16.6)

Because q is a correction to kF with q 
 kF, we should choose the direction of q
either parallel to kF (Eq > 0) or antiparallel to kF (Eq < 0) by definition. Keeping
this particle-hole symmetry in mind, we shall focus our attention on the case q k kF

(Eq > 0) below.
Equation (16.4) far inside the superconductor is expressible generally in terms of

a plane wave as
� Qu.r/
Qv.r/

�
D
�
B1

B2

�
eiq0 �r; (16.7)

as we have seen in Sect. 8.3.4. Substituting into (16.4) with �.r/ D �0, we obtain
�

q0 �0

��
0 �
q0

� �
B1
B2

�
D Eq0

�
B1
B2

�
; (16.8)

with 
q0 � „vF � q0. This eigenvalue problem is identical to (9.4) for homogeneous
systems. Hence, we can immediately write down the positive eigenvalue and its
eigenfunction as

Eq0 D
q

2q0 C j�0j2; (16.9)

�
B1

B2

�
D C

� p
.Eq0 C 
q0/=2Eq0

��
0 =
p
2Eq0.Eq0 C 
q0/

�
; (16.10)

where C is a constant.
We now match (16.5) and (16.7) continuously at x D 0 by setting Eq D Eq0 D

E > 0 based on the energy conservation through the barrier.1 Noting (16.10), we
can express the relevant condition as

A1 D C
r
E C 
q0

2E
; A2 D C ��

0p
2E.E C 
q0/

: (16.11)

1This matching condition also makes derivatives @u.r/=@x and @v.r/=@x continuous at x D 0 to
the lowest order in q=kF. Homogeneity along the y and z directions implies q0

y D qy and q0

z D qz

between (16.5) and (16.7).
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We shall focus on instances 
q0 > 0 below, deferring 
q0 < 0 to Problem 16.1. Then,
it follows from (16.9) and (16.11) that we can express jC j2=jA1j2 and jC j2=jA2j2 as

jC j2
jA1j2 D

2E

E CpE2 � j�0j2
;

jC j2
jA2j2 D

2E

E �pE2 � j�0j2
: (16.12)

Hence, inequality jA1j > jA2j holds for 
q0 > 0, implying that the upper element of
(16.5) should be regarded as the incident wave in the transmission process from the
normal side.

Next, we derive a formula for the quasiparticle current to obtain the transmission
coefficient. To this end, we generalize the wave function as

�
u.r/
v.r/

�
�!

�
u.r; t/
v.r; t/

�
D e�iEt=„

�
u.r/
v.r/

�
: (16.13)

Equation (16.1) is then expressible as

i„@u

@t
�
� Op2
2m
� �

�
u ��v D 0; (16.14)

i„@v
@t
C
� Op2
2m
� �

�
v ���u D 0; (16.15)

with u D u.r; t/ and v D v.r; t/. Let us multiply (16.14) and (16.15) by u� and v�,
respectively, add them to form a single equation, and subtract its complex conjugate.
We thereby obtain the continuity equation for �qp � juj2Cjvj2 in the form @�qp=@tC
r � jqp D 0 with

jqp � �i„
2m

�
u�ru � uru� � v�rv C vrv��: (16.16)

Because the extra t dependence introduced in (16.13) cancels out in (16.16), we
now return to the original wave function (16.1) without time dependence.

Substituting (16.3) and (16.5) into (16.16), we find the quasiparticle current on
the normal side,

jn
qp D

„
m

�jA1j2.kF C q/ � jA2j2.kF � q/
	 	 „kF

m
jA1j2 � „kF

m
jA2j2: (16.17)

The current on the superconducting side is found similarly using (16.3), (16.7), (16.9),
and (16.10) with 
q0 > 0 as

js
qp D

„.kF C q0/
m

�jB1j2 � jB2j2� 	 „kF

m
jC j2 
q0

E
D „kF

m
jC j2

p
E2 � j�0j2

E
:

(16.18)
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We are now ready to calculate the transmission coefficient for an incident wave
from the normal side. Combined with jA1j > jA2j from (16.12), we can identify
the z component of (16.17) with coefficient jA1j2 and kFz > 0 as the incident
current from the normal side. The transmission coefficient, which we denote by T ,
is defined as the ratio of the transmitted current density j s

qp;z relative to the incident
current density. Hence, we obtain T using (16.12), (16.17), and (16.18),

T D jC j
2

jA1j2
p
E2 � j�0j2

E
�.E � j�0j/ D 2

p
E2 � j�0j2

E CpE2 � j�0j2
�.E � j�0j/;

(16.19)
where the step function has been introduced to express that there is no transmitted
wave for E < j�0j. Thus, the flow of quasiparticles across the SN boundary is
completely blocked for E < j�0j. This causes a reduction in energy flow from the
normal side across the barrier at low temperatures, which explains the steep increase
in the low-temperature thermal resistance in the intermediate state with a periodic
SN arrangement [2].

It is interesting to note that wave function (16.5) is given as a linear combination
of an incident particle with wave vector q and reflected hole with wave vector �q,
as depicted in Fig. 16.1b. This reflection, called the Andreev reflection [2], is in
marked contrast to the normal-state reflection (broken line in Fig. 16.1b) in that all
three components of q are reversed simultaneously upon reflection. It should also be
emphasized that this law is relevant to the envelope functions .Qu; Qv/ with q 
 kF;
see, e.g., [4] for a more detailed treatment of the transmission and reflection at the
SN boundary without the Andreev approximation.

16.2 Vortex-Core States

As a second topic, we consider low-energy excitations localized around an isolated
s-wave vortex.

In the presence of the magnetic field, the BdG equations in the Andreev
approximation are given by

OHBdG Qu D E Qu; (16.20)

where

OHBdG �
�

vF � .�i„r � eA/ �

�� vF � .i„r � eA/

�
; Qu �

� Qu
Qv
�

(16.21)

with e < 0. This is modified from (16.4) to incorporate a vector potential A. We seek
a solution for an isolated s-wave vortex that is homogeneous along the z direction
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and isotropic in the xy plane. The corresponding pair potential and vector potential
are expressible in two-dimensional polar coordinates r D .r cos'; r sin'/ as

�.r/ D �.r/e�i'; A.r/ D A.r/ O'; (16.22)

where we choose the gauge so that �.r/ is real and positive and O' � Oz � Or denotes
the unit vector along the ' direction. We note that (16.22) is identical with (15.61)
for studying an isolated vortex within the GL formalism. As discussed around
(15.72), amplitude�.r/ grows linearly from r D 0 over the coherence length 
.

Next, we introduce the projection of vF onto the xy plane and the corresponding
unit vector,

vF? � vF � .Oz � vF/Oz; Ov? � vF?
jvF?j : (16.23)

Using Ov?, we can express r alternatively as

r D s Ov? C bOz � Ov?; (16.24)

which corresponds to a rotation of the coordinate system by

'v � arctan
Ov?y
Ov?x

; (16.25)

as seen in Fig. 16.2. Coordinate b is called the impact parameter. In this new
coordinate system, the differential operators in (16.21) are expressible as

vF � Œ�i„r � eA.r/ O'� D vF?
�
�i„ @

@s
C b

r
eA.r/

�
; (16.26)

Fig. 16.2 Two coordinate
systems of a two-dimensional
space b

s

y

x

r

v

z r
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where we have used Ov? � O' D Ov? �.Oz�r/=r D �b=r . Next, we introduce the rotation
matrix:

R �
�

ei'v=2 0

0 e�i'v=2

�
D ei.'v=2/	z ; (16.27)

where 	 z is given in (8.42).
With these preliminaries, we multiply (16.20) by R from the left and insert

the identity matrix R�1R between OHBdG and Qu. It is thereby transformed into
an eigenvalue problem for Hamiltonian OH 0

BdG � R OHBdGR
�1 and eigenvector

Qu0 � R Qu. Using (16.21), (16.22), (16.26), and (16.27), we can express OH 0
BdG

concisely as

OH 0
BdG.b/ D vF?

�
�i„	 z

@

@s
C b

r
eA.r/	0

�
C�.r/

�
	x cos Q' C 	y sin Q'



;

(16.28)
with

r D
p
s2 C b2; Q' � ' � 'v D arctan

b

s
: (16.29)

We solve OH 0
BdG.b/ Qu0 D E Qu0 perturbatively from b D 0. First, Hamilto-

nian (16.28) for b D 0 reduces to

OH 0
BdG.0/ D �i„vF?

@

@s
	 z C�.s/sgn.s/	x; (16.30)

with sgn.s/ � ˙1 for s ? 0, which has eigenvalue 0. Indeed, the differential
equation OH 0

BdG.0/ Qu0.0/ D 0 has the (unnormalized) eigenfunction

Qu0.0/.s/ D
�
1

�i

�
e�K.s/; K.s/ � 1

„vF?

Z s

0

�.s0/sgn.s0/ds0: (16.31)

Next, we regard OH 0.1/
BdG � OH 0

BdG.b/ � OH 0
BdG.0/ and E as a perturbation. The first-

order equation is given by

OH 0.1/
BdG Qu0.0/ C OH 0

BdG.0/ Qu0.1/ D E Qu0.0/: (16.32)

Hamiltonian OH 0.1/
BdG above is found by extracting terms of O.b/ from (16.28) with

sin Q' D b=ps2 C b2 	 b=jsj,

OH 0.1/
BdG 	

b

jsj
h
vF?eA.s/	0 C�.s/	y

i
: (16.33)
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Now, we multiply (16.32) by Qu0.0/� from the left, use Qu0.0/� OH 0
BdG.0/ D 0�, and

integrate the resulting equation over 0 � s � 1. We thereby obtain

Eb D �
b

Z 1

0

�.s/ � vF?eA.s/
s

e�2K.s/ds
Z 1

0

e�2K.s/ds
: (16.34)

This is the Caroli-de Gennes-Matricon mode for an isolated vortex [5], which plays
a central role in describing low-energy and dissipative properties of s-wave type-II
superconductors in magnetic fields.

To see how Eb grows from EbD0 D 0, let us adopt a model pair potential
�.r/ D �0 tanh.r=
?/ with 
? � „vF?=�0. For this pair potential, function
K.s/ in (16.31) for s > 0 becomes K.s/ D ln

�
cosh.s=
?/

	
. Substituting this into

(16.34) and neglecting A.r/, we find Eb D �0:85 b

?
�0 around b D 0. Thus, the

low-energy excitations are localized in the core region; see Fig. 16.5 below for the
Caroli-de Gennes-Matricon mode, and also [6] for a fully self-consistent solution of
the BdG equations for an isolated s-wave vortex.

16.3 Quasiclassical Study of an Isolated Vortex

As already noted, the Eilenberger equations form a useful and convenient basis for
studying inhomogeneous superconductors theoretically. We here apply them to an
isolated vortex of a clean s-wave superconductor to clarify numerically the details of
the spatial variations of the pair potential, magnetic flux density, and local density of
states near the vortex core. The equations to be solved are summarized in (16.64)–
(16.67), and results are presented in Fig. 16.3 for the pair potential and magnetic
flux density, and Fig. 16.5 for the local density of states.

16.3.1 Eilenberger Equations in Magnetic Fields

We consider a clean s-wave type-II superconductor in a weak magnetic field.
It follows from (14.80), (14.88), and (14.76) that the corresponding Eilenberger
equations are given by

2"nf C „vF �
�
r � i

2e

„ A
�
f D 2�g; (16.35)

�.r/ D g0 2�
ˇ

ncX
nD0
hf ."n;kF; r/iF; (16.36)
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r � r � A.r/ D �i
2�e�0N."F/

ˇ

1X
nD�1

hvFg."n;kF; r/iF: (16.37)

Here "n � .2n C 1/�kBT is the Matsubara energy, f � f ."n;kF; r/ D
f .�"n;�kF; r/ is the quasiclassical Green’s function, vF denotes the Fermi velocity,
e < 0 is the electronic charge, A and � are the vector and pair potentials,
respectively, h� � � iF is the Fermi-surface average, and g is given in terms of f by

g."n;kF; r/ � sgn."n/Œ1 � f ."n;kF; r/f �."n;�kF; r/�1=2

D g�."n;�kF; r/ D �g�.�"n;kF; r/: (16.38)

Quantity g0 in (16.36) denotes the dimensionless coupling constant, which from
(14.67) for ` D 0 is expressible in the form

1

g0
D ln

T

Tc
C 2�

ˇ

ncX
nD0

1

"n
; (16.39)

where nc > 0 denotes a cutoff determined at each temperature in terms of a fixed
cutoff energy "c � 40kBTc through

.2nc C 1/�kBT D "c: (16.40)

Coupling constant (16.39) with a finite sum forms a convenient basis for numerical
studies of the Eilenberger equations. This is confirmed for homogeneous systems
for which the solution of (16.35) is given as

f D �p
"2n C j�j2

; g D "np
"2n C j�j2

: (16.41)

Substituting this f into (16.36) and solving numerically, we can reproduce the
temperature dependence of the energy gap�.T / given in Fig. 9.2 excellently.

Let us measure the energy, length, and vector potential in units of

�0; 
0 � „vF

�0

; A0 � „
2jej
0 ; (16.42)

where �0 is the energy gap for the homogeneous systems at T D 0. We next make
a change of variables,

r D 
0r0; "n D �0"
0
n; �.r/ D �0�

0.r0/; A.r/ D A0A0.r0/;
kBT D �0T

0; f ."n;kF; r/ D f 0."0
n;kF; r0/; g."n;kF; r/ D g0."0

n;kF; r0/:
(16.43)
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The s-wave transition temperature in these units is given by T 0
c D e�=� 	 0:567

as seen from (9.36). We also introduce the London penetration depth �L0 at T D 0

and dimensionless parameter �0 by

�L0 �
s

dA0

�0jejN."F/�0vF
; �0 � �L0


0
; (16.44)

with d D 2; 3 denoting the dimension of the isotropic Fermi surface under
consideration. Equations (16.35)–(16.37) are then expressible in terms of primed
quantities and �0 as

2"0
nf

0 C Ov � .r 0 C iA0/f 0 D 2�0g0; (16.45)

�0.r0/ D 2�g0T 0
ncX
nD0
hf ."0

n;kF; r0/iF; (16.46)

r 0 � r 0 �A0.r0/ D i
2d�T 0

�20

ncX
nD0

˝Ov�g."0
n;kF; r0/� g�."0

n;kF; r0/
	˛

F; (16.47)

where Ov denotes the unit vector along vF. Equation (16.47) has been obtained by
mapping the sum over n < 0 in (16.37) onto n � 0, then using the symmetry
of (16.38), and finally omitting the sum over n � nc to give an excellent first
approximation. Thus, we only need to consider those Matsubara energies satisfying
0 < "n � "c. Hereafter, we remove primes from these equations.

It is worth noting that �L0 in (16.44) for d D 3 is identical with that defined
in the London equation (10.40) at T D 0. In addition, parameter �0 in (16.44)
is connected with the GL parameter � defined by (15.15) with (14.90)–(14.93) as
�0 D 0:5e��p7�.3/=6� 	 0:33� in the clean limit of d D 3.

16.3.2 Transformation to a Riccati-Type Equation

Two alternative methods have been developed to solve (16.45) numerically by
removing unphysical solutions that explode exponentially as we proceed with the
numerical integration. The first one is called the explosion method, which takes the
commutator of two exploding solutions to obtain a physical solution [9, 10, 16].
The other performs a transformation to a Riccati-type equation [9, 12, 15]. We here
adopt the latter approach and rearrange (16.45) to (16.51) below.

In (16.45), let us express f and g for "n > 0 alternatively as

f D 2a

1C a Na ; g D 1 � a Na
1C a Na ; (16.48)



16.3 Quasiclassical Study of an Isolated Vortex 257

with Na."n;kF; r/ � a�."n;�kF; r/, so that g2 C f Nf D 1 is satisfied automatically.
Substituting (16.48) into (16.45), we obtain

2"naC Ov � .r C iA/a � a Ov � r .a Na/
1C a Na D �.1 � a Na/: (16.49)

The corresponding equation for Na is given by

2"n Na � Ov � .r � iA/ NaC Na Ov � r .a Na/
1C a Na D ��.1 � a Na/: (16.50)

Let us multiply each of (16.49) and (16.50) by Na and a, respectively, from the left
and subtract the latter from the former. We thereby obtain

Ov � r.a Na/
1C a Na D � Na ��

�a:

Substitution of this expression back into (16.49) yields

Ov � .r C iA/a D �2"naC� ���a2: (16.51)

Taking "n > 0, the solution of (16.51) for homogeneous systems is obtained as

a D �

"n C
p
"2n C j�j2

; (16.52)

where we have chosen one of the two formal solutions by requiring that a ! 0 for
�! 0 based on (16.41) and (16.48).

16.3.3 Equations for an Isolated Vortex

We seek a solution of the Eilenberger equation for an isolated s-wave vortex that is
homogeneous along the direction of the magnetic field, which is taken parallel to the
z axis. To minimize the numerical computation without losing the essential features
of an isolated vortex, we consider a superconductor with a cylindrical Fermi surface
(d D 2) whose side is arranged to lie along the magnetic field. Accordingly, we
consider its variation in the xy plane. First, we write r and Ov as

r D .r cos'; r sin '/; Ov D .cos'v; sin 'v/; (16.53)

with Ov k kF for the cylindrical symmetry. See Fig. 16.2 with replacement Ov? ! Ov
for the present model. Using Ov, we can express r alternatively as

r D s OvC bOz � Ov;


s D r cos Q'
b D r sin Q' ; Q' � ' � 'v: (16.54)
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Second, we write the pair and vector potentials for an isolated vortex with cylindrical
symmetry as

�.r/ D �.r/e�i'; A.r/ D A.r/Oz � Or; (16.55)

where ��.r/ D �.r/ and r � ps2 C b2; see also (15.61). Now, the differential
operator of (16.51) is expressible concisely in the new coordinates as

Ov � .r C iA/ D @

@s
� i
b

r
A.r/: (16.56)

Moreover, r � r �A is transformed into [3]

r � r � A D �Oz � OrdB.r/

dr
; B.r/ � 1

r

d

dr
rA.r/: (16.57)

We also rewrite a as

a."n;kF; r/ D Qa."n; s; b/e�i'v : (16.58)

Substituting (16.55)–(16.58) into (16.51), we obtain

�
@

@s
� i
b

r
A

�
Qa D �2"n QaC�e�i Q' ��ei Q' Qa2; (16.59)

withA D A.r/ and� D �.r/, which depends only on the relative angle Q' � '�'v

between r and Ov. Taking the complex conjugate of (16.59), we obtain the symmetry
relation:

Qa�."n; s; b/ D Qa."n; s;�b/: (16.60)

The two results imply that we only need to solve (16.59) in the .s; b/ plane for a
single direction of Ov and b � 0, e.g., Ov D Ox and b � 0. Next, we insert (16.58) into
(16.48) and use (16.60) and e�i'�v D e�i.'vC�/ D �e�i'v . We can thereby express
f and g as

f ."n;kF; r/ D Qf ."n; s; b/e�i'v ; g."n;kF; r/ D Qg."n; s; b/; (16.61)

with

Qf ."n; s; b/ � 2 Qa."n; s; b/
1 � Qa."n; s; b/ Qa."n;�s; b/ D

Qf �."n; s;�b/; (16.62)

Qg."n; s; b/ D 1C Qa."n; s; b/ Qa."n;�s; b/
1� Qa."n; s; b/ Qa."n;�s; b/ D Qg

�."n; s;�b/: (16.63)
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Now, we are ready to summarize the equations to be solved numerically. The first
is given by (16.59), i.e.,

�
@

@s
� i
b

r
A

�
Qa D �2"n QaC�e�i Q' ��ei Q' Qa2; (16.64)

with r D ps2 C b2, Q' D arctan.b=s/, A D A.r/, Qa D Qa."n; s; b/, "n D .2n C
1/�T , and � D �.r/. Next, let us substitute (16.55) and (16.61) into (16.46) to
obtain a simplified equation for the pair potential as

�.r/ D 2g0�T
ncX
nD0

Z 2�

0

d Q'
2�
Qf ."n; r cos Q'; r sin Q'/ei Q'; (16.65)

where we have made a change of integration variables as 'v ! Q' � ' � 'v

in averaging over the cylindrical Fermi surface. Finally, we substitute (16.57)
and (16.61) into (16.47) for d D 2, take its scalar product with Or � Oz, and write
.Or� Oz/ � Ov D sin Q' based on (16.54). We then obtain a differential equation for B.r/
as

dB.r/

dr
D �j.r/; j.r/ � 8�T

�20

ncX
nD0

Z 2�

0

d Q'
2�

Im Qg."n; r cos Q'; r sin Q'/ sin Q';
(16.66)

where Im denotes the imaginary part. After integrating (16.66), the vector potential
is obtained based on (16.57) by

A.r/ D 1

r

Z r

0

r 0B.r 0/dr 0: (16.67)

Equations (16.64)–(16.67) form a set of self-consistency equations for Qa."n; s; b/,
�.r/, and A.r/. Using the symmetry of (16.62), we can reduce the integral of
(16.65) to that of the real part of Qf ."n; s; b/ei Q' over 0 � Q' � � . In addition, one
can show based on the symmetry of (16.63) that integrals over 0 � Q' < � and
� � Q' < 2� in (16.66) yield an identical contribution. Hence, we need to perform
the self-consistent calculations only over b � 0.

16.3.4 Numerical Procedures

The numerical procedures to solve (16.64)–(16.67) at a given temperature T are
summarized as follows. First, we solve the ordinary differential equation (16.64)
with some trial pair and vector potentials such as

�.r/ D �T tanh r; A.r/ D 1 � .1C r=�0/e�r=�0
r

;
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where �T is the energy gap of homogeneous systems that can be obtained by the
procedure described below (16.41). To this end, we choose a rectangular region
of �rc � s � rc and 0 � b � rc with rc & 5, fix "n and b, and integrate (16.64)
numerically along the straight-line path from .s; b/ D .�rc; b/ up to .s; b/ D .rc; b/

[14] by imposing the initial condition:

Qa."n;�rc; b/ D Qa.0/."n;�rc; b/� i
b

2R2c

�
1�RcA.Rc/

	 Qa.0/."n;�rc; b/q
"2n C�2

T

; (16.68)

with Rc �
p
r2c C b2. Here the first term is defined as

Qa.0/."n;�rc; b/ � �T

"n C
q
"2n C�2

T

�rc � ib

Rc
; (16.69)

which is obtained by setting the left-hand side of (16.64) equal to zero with
�.Rc/ ! �T . The second term originates from the first-order perturbation with
respect to the left-hand side of (16.64). Next, we use Qa."n; s; b/ obtained in this
manner on discrete points in�rc � s � rc and 0 � b � rc to perform integrations of
(16.65) and (16.66) numerically with interpolations [14] for updating�.r/ and j.r/
over 0 � r � rc. Current j.r/ thereby obtained is used subsequently to integrate
(16.66) for B.r/ with the initial condition:

B.rc/ D cK0.rc=�L/ (16.70)

given in terms of the modified Bessel function K0.x/ [1, 3] as established by
the London theory; see (15.75) on this point. As shown in Problem 16.2 below,
constants �L and c above can be determined in terms of j.r/ by solving

�
�L C rcK0.rc=�L/

2K1.rc=�L/

�
�Lrcj.rc/ D 1 �

Z rc

0

dr1r1

Z rc

r1

dr2j.r2/; (16.71)

c D �Lj.rc/

K1.rc=�L/
: (16.72)

This consideration also indicates that we can write 1�RcA.Rc/ D c�LRcK1.Rc=�L/

in (16.68). Finally, the vector potential is calculated using (16.67). Potentials �.r/
and A.r/ thereby obtained are used in the iteration of (16.64)–(16.67). When
updating �.r/ and A.r/ at this stage, it is better to mix old and new potentials
with certain relative weights, e.g., 0.5 vs. 0.5, to avoid numerical oscillations. The
procedure should be repeated until numerical convergence in �.r/ and A.r/ is
reached.
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16.3.5 Results

Figure 16.3 plots the spatial variations of the pair potential�.r/ and magnetic flux
density B.r/ near the vortex core calculated for �0 D 5:0. The pair potential is seen
to increase linearly from the core center, as

�.r/ � r


1
�T .r & 0/ (16.73)

towards the homogeneous value �T , and the core size, which may be estimated
by parameter 
1 D 
1.T /, is seen to diminish substantially as the temperature is
lowered. Contrastingly, B.r/ decreases quadratically from the core center, and its
behavior for r & 3
1, where �.r/ 	 �T holds, is well described by the formula
B.r/ 	 cK0.r=�L/; see also (15.73) and (15.75) on these points. The value of B.0/
is seen to increase as the temperature is lowered partly because of the decrease in
the penetration depth �L.T /.

Figure 16.4 plots 
1 and �L as a function of temperature to show these
features more quantitatively. Most remarkably, the core size 
1 is seen to approach
zero as T ! 0, which is known as the Kramer-Pesch effect for clean type-II



262 16 Surfaces and Vortex Cores

superconductors [11, 13]. However, its shrinkage 
1 ! 0 is an artifact of the
quasiclassical approximation and actually stops at a finite value of order k�1

F [7, 11].
In contrast, �L decreases rapidly following the law �L / .1 � T=Tc/

�1=2 near Tc

and eventually approaches a finite value � �0
0 around T � 0:4Tc. Indeed, one
can show that (16.47) for �.r/ D j�jei'.r/ can be approximated by the London
equation2 (Problem 16.3),

r � r � A D �1 � Y.T /
�20

.r' C A/; (16.74)

where Y.T / is the Yosida function (10.17); the equation implies �L.T / D �0Œ1 �
Y.T /��1=2, as seen from (10.39) and (10.40). Hence, the zero-temperature value of
�L.T / saturates at around T � 0:4Tc. The increase of B.0/ below that temperature
in Fig. 16.3 may be attributed to the core shrinkage.

Finally, Fig. 16.5 plots the normalized local density of states Ns.E; r/=N."F/

over �2 � E=�0 � 2 and 0 � r=
0 � 5 at T D 0:5Tc for �0 D 5:0. It is obtained
by solving (16.64) for the self-consistent �.r/ and A.r/ replacing "n ! �iE C ı,
where ı is a small positive constant. The explicit formula is given by

Ns.E; r/

N."F/
D
Z 2�

0

Re Qg.�iE C ı; r cos Q'; r sin Q'/ d Q'
2�
; (16.75)

where Qg is given by (16.63) and Re denotes the real part. Indeed, one confirms
that Re g."n ! �iE C ı/ in (16.41) with ı ! 0C yields the homogeneous
superconducting density of states given by (9.48) or (12.29). We have set here
ı D 0:1�0 to avoid any numerical divergence. We observe thatNs.E; r/ for r � 5
0
is almost identical with the bulk density of states (9.48) smeared by ı. Near the
core center, however, there is another structure with a sharp zero-energy peak at
r D 0, which represents the Caroli-de Gennes-Matricon mode given by (16.34).
This local density of states around a vortex core was observed experimentally with
the scanning-tunneling microscope by Hess et al. [8].

Fig. 16.5 Normalized local
density of states
Ns.E; r/=N."F/ plotted over
�2 � E=�0 � 2 and
0 � r=
0 � 5 at T D 0:5Tc

for �0 D 5:0 and ı D 0:1�0
3

2

1

–2 –1 0 1 2
5

4

3

2
1
0

2Quantity '.r/ here denotes the phase of �.r/; it is not the polar angle in two dimensions.
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Problems

16.1. With 
q0 < 0 in (16.11), obtain the corresponding equation to (16.19).

16.2. Derive (16.71) and (16.72) using the condition:

Z 1

0

dr1r1B.r1/ D 1; (16.76)

which results from (10.43) for the flux quantization with n D �1 in units of
(16.42).

16.3. Derive (16.74) from (16.47) by regarding the gradient term in (16.45) as a
perturbation and setting �.r/ D j�jei'.r/.
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Chapter 17
Solutions to Problems

Problems of Chapter 1

1.1

(a) Both differentiations in (1.5) gives 2x so that the equality holds.
(b) Performing the integration of (1.3) for the gradient @z=@x D 2xyC1, we obtain

z.x; y/ D x2y C x C g.y/;

where we have incorporated a constant �.x20y0 C x0/ into the definition of the
unknown function g.y/. Let us differentiate the above equation with respect
to y and set @z=@y D x2 C 2y. We thereby obtain g0.y/ D 2y, which gives
g.y/ D y2 C C with C denoting a constant. Substitution of this result into the
above z.x; y/ yields z.x; y/ D x2y C x C y2 C C .

1.2 Integrating (1.9) and (1.10) over a cycle of the heat engine in contact with a
single heat bath of temperature T yields

0 D
I

d0QC
I

d0W;
I

d0Q �
I
T dS D T

I
dS D 0;

where we have used the fact that the internal energy and entropy are potentials.
Combining the results, we obtain an inequality for the total work ��W
performed on the exterior,

��W � �
I

d0W D
I

d0Q � 0:

Hence, the statement is proved.
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1.3

(a) It follows from (1.8) that

�
@P

@T

�
V

D nR

V � nb ; T

�
@P

@T

�
V

� P D a n
2

V 2

holds. Substitution of them into (1.33) and (1.34) gives

dS D CV

T
dT C nR

V � nb
dV; dU D CV dT C a n

2

V 2
dV:

(b) Maxwell’s relation for dU above reads

@CV

@V
D @

@T

�
a
n2

V 2

�
D 0;

which implies that CV is independent of V . The same conclusion also results
from Maxwell’s relation for dS .

(c) Noting that CV is a constant, we integrate dS and dU in (a) above to obtain

S D CV lnT C nR ln.V � nb/C S0; U D CV T � an
2

V
C U0;

where S0 and U0 are constants of integration.
(d) Entropy does not change in reversible adiabatic processes. Keeping this fact in

mind, we rearrange the expression for S in (c) into the form S D CV lnT .V �
nb/nR=CV C S0. We thereby conclude T .V � nb/nR=CV D const in reversible
adiabatic processes.

(e) Equalities d0Q D d0W D 0 hold in adiabatic free expansions. Hence, it follows
from the first law of thermodynamics that the internal energy does not change.
Combining this fact with the expression for U obtained in (c), we obtain

CV T1 � an
2

V1
D CV T2 � an

2

V2
 ! �T � T2 � T1 D an2

CV

�
1

V2
� 1

V1

�
< 0:

Problems of Chapter 2

2.1

(a) Can be shown elementarily.
(b) Using the equality of (a), one may calculate the expectation as

hki D
nX

kD1
kP n

k D np
nX

kD1
P n�1
k�1 D np

n�1X
k0D0

P n�1
k0 D np:
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One can also show k2P n
k D Œk.k � 1/C k�P n

k D n.n � 1/p2P n�2
k�2 C npPn�1

k�1 ,
which is used to rearrange hk2i as

hk2i D
nX

kD1
k2P n

k D n.n � 1/p2
nX

kD2
P n�2
k�2 C np

nX
kD1

P n�1
k�1 D n.n � 1/p2 C np:

Hence, we obtain 	k �
phk2i � hki2 D pnp.1 � p/.

2.2 A necessary condition for g.x/ � x C y C �.x2 C y2 � 1/ being extremal is
given by @g.x; y/=@x D @g.x; y/=@y D 0, i.e., 0 D 1 C 2�x D 1 C 2�y.
Coupled with x2 C y2 D 1, the equalities yield x D y D ˙ 1p

2
. Substituting

both into x C y, we find the point to be .x; y/ D
�

1p
2
; 1p

2



.

Problems of Chapter 3

3.1 Substitute (3.24) into the left-hand side of (3.26) and use (3.19), (3.23), (3.18),
and (3.12) successively. Denoting integration over 
 by N
, the demonstration of
this proof follows:

O .
1/jˆ�i D 1p
NŠ
O .
1/ O �. N
 0

1/
O �. N
 0

2/ � � � O �. N
 0
N /j0iˆ�. N
 0

1;
N
 0
2; � � � ; N
 0

N /

D 1p
NŠ

�
O �. N
 0

2/ � � � O �. N
 0
N /j0iˆ�.
1; N
 0

2; � � � ; N
 0
N /

C	 O �. N
 0
1/
O �. N
 0

3/ � � � O �. N
 0
N /j0iˆ�. N
 0

1; 
1;
N
 0
3; � � � ; N
 0

N /C � � �
C	N�1 O �. N
 0

1/ � � � O �. N
 0
N�1/j0iˆ�. N
 0

1; � � � ; N
 0
N�1; 
1/

C	N O �. N
 0
1/
O �. N
 0

2/ � � � O �. N
 0
N /
O .
1/j0iˆ�. N
 0

1; � � � ; N
 0
N�1; N
 0

N /

�

D 1p
NŠ

�
O �. N
 0

2/ � � � O �. N
 0
N /j0iˆ�.
1; N
 0

2; � � � ; N
 0
N /

C	2 O �. N
 0
1/
O �. N
 0

3/ � � � O �. N
 0
N /j0iˆ�.
1; N
 0

1;
N
 0
3; � � � ; N
 0

N /C � � �

C	2.N�1/ O �. N
 0
1/ � � � O �. N
 0

N�1/j0iˆ�.
1; N
 0
1; � � � ; N
 0

N�1/
�

D Np
NŠ
O �. N
 0

2/ � � � O �. N
 0
N /j0iˆ�.
1; N
 0

2; � � � ; N
 0
N /

D pN j N
 0
2; � � � ; N
 0

N iˆ�.
1; N
 0
2; � � � ; N
 0

N /:
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3.2 The first equation is proved by substituting (3.24) and (3.25) and using
(3.22), (3.12), and (3.33) successively as follows

hˆ�0 jˆ�i D ˆ�
�0. N
 0

1; � � � ; N
 0
N /h N
 0

1; � � � ; N
 0
N j N
1; � � � ; N
N iˆ�. N
1; � � � ; N
N /

D ˆ�
�0. N
 0

1; � � � ; N
 0
N /

1

N Š

X
OP
	P ı. N
 0

1;
N
p1 / � � � ı. N
 0

N ;
N
pN /ˆ�. N
1; � � � ; N
N /

D 1

N Š

X
OP
	Pˆ�

�0. N
p1 ; � � � ; N
pN /ˆ�. N
1; � � � ; N
N /

D 1

N Š

X
OP
ˆ�
�0. N
1; � � � ; N
N /ˆ�. N
1; � � � ; N
N / D 1

N Š

X
OP
ı�0� D ı�0�:

Similarly, the second relation is proved by substituting (3.24) and (3.25) and
applying (3.34), (3.21), and (3.30) successively as follows

X
�

jˆ�ihˆ�j D j N
1; � � � ; N
N ih N
 0
1; � � � ; N
 0

N j
X
�

ˆ�. N
1; � � � ; N
N /ˆ�
� .
N
 0
1; � � � ; N
 0

N /

D jN
1; � � � ; N
N ih N
 0
1; � � � ; N
 0

N j
1

N Š

X
OP
	P ı. N
 0

1;
N
p1 / � � � ı. N
 0

N ;
N
pN /

D jN
1; � � � ; N
N i 1
N Š

X
OP
	P h N
p1 ; � � � ; N
pN j D j N
1; � � � ; N
N ih N
1; � � � ; N
N jD1:

3.3 The proof proceeds by substituting (3.26) into the right-hand side of (3.37) and
applying (3.22) and (3.12) successively to obtain

hˆ�0 j O �. N
1/ Oh.1/1 O . N
1/jˆ�i

D N 1

.N � 1/Š
X

OP
	Pˆ�

�0. N
1; N
p2 ; � � � ; N
pN / Oh.1/1 ˆ�. N
1; N
2; � � � ; N
N /

D Nˆ�
�0. N
1; N
2; � � � ; N
N / Oh.1/1 ˆ�. N
1; N
2; � � � ; N
N /

D Nˆ�
�0. N
2; N
1; N
3; � � � ; N
N / Oh.1/1 ˆ�. N
2; N
1; N
3; � � � ; N
N /

D ˆ�
�0. N
1; N
2; N
3; � � � ; N
N /

NX
jD1
Oh.1/j ˆ�. N
1; N
2; N
3; � � � ; N
N /:

3.4 Substitute 	 D �1 and (3.56) into (3.54), insert the resulting wave function
and (3.19) into (3.44), and use (3.50) and (3.51) successively. Specifically, the
transformation proceeds as follows:
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jˆ�i D j N
1; � � � ; N
N iˆ�. N
1; � � � ; N
N /

D 1

N Š

X
OP
.�1/P O �. N
1/'qp1 . N
1/ � � � O �. N
N /'qpN . N
N /j0i

D 1

N Š

X
OP
.�1/P Oc�qp1 � � � Oc

�
qpN
j0i D Oc�q1 � � � Oc�qN j0i:

3.5 The first identity is proved by expanding the commutator as

� Oc; � Oc��n	C D � Oc; Oc�	C� Oc��n�1 C Oc�� Oc; Oc�	C� Oc��n�2

C� Oc��2� Oc; Oc�	C� Oc��n�3 C � � � C � Oc��n�1� Oc; Oc�	C
and substituting

� Oc; Oc�	C D 1 on the right-hand side. The second identity is
obtained by expanding g. Oc�/ in the commutator as

g. Oc�/ D
1X
nD0

g.n/.0/

nŠ
. Oc�/n

and using the first equality.

Problems of Chapter 4

4.1 The wave number for d D 1 is given by kn � 2�n=L .n D 0;˙1;˙2; � � � /,
which lies in �1 � kn � 1 with a common spacing �kn � knC1 � kn D
2�=L. Thus, the density of states is calculated as

D.�/ D .2s C 1/
X
n

ı.� � "n/

D .2s C 1/ L
2�

X
n

�knı.� � "n/ sum! integral

	 .2s C 1/L
2�

Z 1

�1
dknı.� � "n/ kn � �k0

nfor kn < 0

D .2s C 1/L
�

Z 1

0

dknı.� � "n/ kn D
�
2m

„2
�1=2

"1=2n

D .2s C 1/L
�

�
2m

„2
�1=2 Z 1

0

d"n

2"
1=2
n

ı.� � "n/
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D .2s C 1/L
2�

�
2m

„2
�1=2

1

�1=2
�.�/:

As for d D 2, we express the wave vector as k D .k cos'; k sin'/ with d2k D
kdkd' (0 � k � 1, 0 � ' � 2�) and make a change of variable as k D
.2m=„2/1=2"1=2k . The density of states is thereby transformed as

D.�/ D .2s C 1/
X

k

ı.� � "k/

	 .2s C 1/
�
L

2�

�2 Z
d2k ı.� � "k/

D .2s C 1/ L2

.2�/2

Z 2�

0

d'
Z 1

0

dkkı.� � "k/ k D
�
2m

„2
�1=2

"
1=2

k

D .2s C 1/L2
2�

2m

„2
Z 1

0

d"k

2"
1=2

k

"
1=2

k ı.� � "k/

D .2s C 1/L2
4�

2m

„2 �.�/:

4.2

(a) The chemical potential is determined from (4.12) with 	 D �1, where the
distribution function at T D 0 reduces to the step function, (4.32). Substituting
the density of states for d D 2 obtained in Problem 4.1 and setting �.0/ D "F,
we can transform the equation as

N D
Z "F

0

D.�/d� D L2m

�„2 "F:

We thereby obtain the Fermi energy "F and Fermi wave vector kF �
.2m"F=„2/1=2 as

"F D �„2N
mL2

; kF D
�
2�N

L2

�1=2
:

(b) Equation (4.12) for the chemical potential corresponds to the case of g.Q�/ !
D.�/ in (4.41). As D.�/ is constant in two dimensions, there is no power-law
temperature dependence in � according to the Sommerfeld expansion, i.e., � 	
�F holds at low temperatures. A weak exponentialT dependence in � still exists
at low temperatures, which can be reproduced by removing the approximation
�=kBT !1 in (4.38).
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4.3

(a) Let us introduce variables "� � n�„! (� D x; y; z), the spacing between
adjacent pair of levels being constant and given by �"� D „!. Using them,
we rewrite the density of states as

D.�/ D
1X

nxD0

1X
nyD0

1X
nzD0

ı.� � "x � "y � "z � 3„!=2/ .Q� � � � 3„!=2/

D 1

.„!/3
1X

nxD0

1X
nyD0

1X
nzD0

�"x�"y�"zı.Q� � "x � "y � "z/

	 1

.„!/3
Z 1

0

d"x

Z 1

0

d"y

Z 1

0

d"z ı.Q� � "x � "y � "z/

D �.Q�/
.„!/3

Z Q�

0

d"x

Z Q��"x

0

d"y D Q�2
2.„!/3 �.Q�/:

(b) This case corresponds to A D 1=2.„!/3 and � D 3 in (4.52). Substituting both
into (4.53) yields the expression of T0 stated in the problem.

(c) Repeat the calculation of (4.48) using the present density of states to obtain
N0=N as

N0

N
D 1 �

Z 1

"0

D.�/=N

e.��"0/=kBT � 1d� D 1 � .kBT /
3

2.„!/3N
Z 1

0

x2

ex � 1dx

D 1 � �.3/�.3/.kBT /
3

2.„!/3N D 1 �
�
T

T0

�3
:

(d) Repeat the calculation of (4.49) using the present density of states and setting
"0 D 3„!=2. We thereby obtain internal energy U as

U D N0"0 C
Z 1

"0

D.�/�

e.��"0/=kBT � 1d�

D N0"0 C 1

2.„!/3
Z 1

"0

.� � "0/2."0 C � � "0/
e.��"0/=kBT � 1 d�

D
�
N0 C

Z 1

"0

D.�/

e.��"0/=kBT � 1d�

�
"0 C .kBT /

4

2.„!/3
Z 1

0

x3

ex � 1dx

D N"0 C �.4/�.4/

2.„!/3 .kBT /
4

D N

"
"0 C 3�.4/

�.3/
kBT0

�
T

T0

�4 #
:
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The heat capacity is subsequently obtained based on C D @U=@T as

C D NkB
12�.4/

�.3/

�
T

T0

�3
:

Problems of Chapter 5

5.1 First, in taking an average, enumerate distinct decompositions by marking each
pair of operators with a common symbol on top. Hence,

h O �.
 0
1/
O �.
 0

2/
O �.
 0

3/
O .
3/ O .
2/ O .
1/i

D h PO �.
 0
1/
RO �.
 0

2/
KO �.
 0

3/
KO .
3/ RO .
2/ PO .
1/i

Ch PO �.
 0
1/
RO �.
 0

2/
KO �.
 0

3/
RO .
3/ KO .
2/ PO .
1/i

Ch PO �.
 0
1/
RO �.
 0

2/
KO �.
 0

3/
KO .
3/ PO .
2/ RO .
1/i

Ch PO �.
 0
1/
RO �.
 0

2/
KO �.
 0

3/
RO .
3/ PO .
2/ KO .
1/i

Ch PO �.
 0
1/
RO �.
 0

2/
KO �.
 0

3/
PO .
3/ RO .
2/ KO .
1/i

Ch PO �.
 0
1/
RO �.
 0

2/
KO �.
 0

3/
PO .
3/ KO .
2/ RO .
1/i:

Next, focus on a single operator from the left in each term and move its partner
successively to its right, multiplying by 	 upon each exchange of operators,
until all pairs are coupled as in

h O �.
 0
1/
O �.
 0

2/
O �.
 0

3/
O .
3/ O .
2/ O .
1/i

D 	4C2h PO �.
 0
1/
PO .
1/ RO �.
 0

2/
RO .
2/ KO �.
 0

3/
KO .
3/i

C	4C1h PO �.
 0
1/
PO .
1/ RO �.
 0

2/
RO .
3/ KO �.
 0

3/
KO .
2/i

C	3C2h PO �.
 0
1/
PO .
2/ RO �.
 0

2/
RO .
1/ KO �.
 0

3/
KO .
3/i

C	3C1h PO �.
 0
1/
PO .
2/ RO �.
 0

2/
RO .
3/ KO �.
 0

3/
KO .
1/i

C	2C1h PO �.
 0
1/
PO .
3/ RO �.
 0

2/
RO .
2/ KO �.
 0

3/
KO .
1/i

C	2C2h PO �.
 0
1/
PO .
3/ RO �.
 0

2/
RO .
1/ KO �.
 0

3/
KO .
2/i:

Finally, we replace identical symbols on each pair with angle brackets around
them, i.e.,

h O �.
 0
1/
O �.
 0

2/
O �.
 0

3/
O .
3/ O .
2/ O .
1/i
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D h O �.
 0
1/
O .
1/ih O �.
 0

2/
O .
2/ih O �.
 0

3/
O .
3/i

C	h O �.
 0
1/
O .
1/ih O �.
 0

2/
O .
3/ih O �.
 0

3/
O .
2/i

C	h O �.
 0
1/
O .
2/ih O �.
 0

2/
O .
1/ih O �.
 0

3/
O .
3/i

Ch O �.
 0
1/
O .
2/ih O �.
 0

2/
O .
3/ih O �.
 0

3/
O .
1/i

C	h O �.
 0
1/
O .
3/ih O �.
 0

2/
O .
2/ih O �.
 0

3/
O .
1/i

Ch O �.
 0
1/
O .
3/ih O �.
 0

2/
O .
1/ih O �.
 0

3/
O .
2/i:

5.2 The formula can be derived in the following manner:

`.kQr/
T!0�! �

4

Z Q"F

0

sin
�
kQr Q�1=2

�
kQr

d Q� Q�1=2 � t

kQr

D �

2.kQr/3

Z kFr

0

t sin t dt kF D kQ Q"1=2F D kQ

�
6

�

�1=3

D �

2.�=6/.kFr/3

 
�t cos t

ˇ̌
ˇ̌kFr

0

C
Z kFr

0

cos t dt

!

D 3 .�kFr coskFr C sin kFr/

.kFr/3
:

From the Taylor series expansions of �x cosx D �x C 1
2Š
x3 � 1

4Š
x5 C � � � and

sinx D x � 1
3Š
x3 C 1

5Š
x5 � � � � , we then obtain the expression near r D 0.

Problems of Chapter 6

6.1

(a) Let us multiply (6.18) by e�ik0 �.r1�r2/, integrate over r � r1 � r2, and
use the orthonormality of (4.14) given by h'k0j'ki D ık0k. Then, replacing

k0 ! k, we obtain Vk D
Z

V .r/ e�ik�rd3r . This integral can be calculated

analytically by choosing the z axis along k and adopting polar coordinates r D
.r sin � cos'; r sin � sin '; r cos �/ (0 � r <1, 0 � � � � , 0 � ' < 2�). We
have

Vk D
Z 2�

0

d'
Z 1

0

dr r2V .r/
Z �

0

d� sin � e�ikr cos �

D 2�

Z 1

0

dr r2V .r/
Z 1

�1
dt e�ikrt D 2�

Z 1

0

dr r2V .r/
eikr � e�ikr

ikr
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D 2�U0

ik

Z 1

0

dr r
�
e�.1=r0�ik/r � e�.1=r0Cik/r

	

D 2�U0

ik

�
1

.1=r0 � ik/2
� 1

.1=r0 C ik/2

�
D 8�U0r

3
0

.1C r20 k2/2
:

(b) Expansion (6.51) can be expressed in this instance as

8�U0r
3
0

Œ1C r20 .k2 C k02 � 2kk0x/�2
D

1X
`0D0

.2`0 C 1/V`0.k; k0/P`0.x/;

where x � cos �kk0 . Let us multiply the equation by P`.x/, integrate over�1 �
x � 1, and use (6.36) to obtain

V`.k; k
0/ D 1

2

Z 1

�1
dx

8�U0r
3
0P`.x/

Œ1C r20 .k2 C k02 � 2kk0x/�2
:

This integral for ` D 0 can be calculated analytically with P0.x/ D 1,

V0.k; k
0/ D 8�U0r

3
0�

1C r20k2 C r20k02�2 � 4r40k2k02 :

(c) Substitute the results of (a) and (b) into (6.52) to obtain

F s
0 D

8�U0r
3
0D."F/

2V

�
2� 1

1C 4r20k2F

�
; F a

0 D �
8�U0r

3
0D."F/

2V .1C 4r20k2F/
:

Problems of Chapter 7

7.1 This Schrödinger equation forms an ordinary second-order differential equation
with constant coefficients for each of jxj < a and jxj � a. Hence, it can be
solved most simply in terms of k and � in (7.5),

�.x/ D
8<
:
A coskx C A0 sin kx W jxj < a
B e��x W x � a
B 0 e�x W x � �a

;

whereA,A0,B , andB 0 are constants, and we have used the boundary conditions
j�.˙1/j D 0. Because the potential is even in x, eigenfunctions can be
classified into even functions with A0 D 0, B 0 D B or odd functions with
A D 0, B 0 D �B . The lowest eigenfunction without nodes is an even function,
so we set A0 D 0, B 0 D B and focus on the region x � 0. We match the
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solutions for 0 � x < a and x � a by requiring that �0.x/=�.x/ be continuous
at x D a. The condition yields

� D 
 tan 
;

where .
; �/ are defined by (7.6). By plotting the curve in Fig. 7.2, we find that
this function has an intersection with (7.8) in the first quadrant for an arbitrary
U0 > 0.
To obtain the solution of U0 ! 0 analytically, we expand tan 
 D 
 CO.
2/ to
approximate � 	 
2 in the above equation. Substituting the result into (7.8) and
noting 
 
 1, we obtain � 	 .2ma2=„2/U0. Moreover, (7.5) and (7.6) yield

� D ��2ma2"=„2�1=2. Equating the two expressions of � fixes the ground-state
energy for U0 ! 0,

� 	 �.2ma2=„2/U 2
0 :

Thus, a bound state is formed by an infinitesimal attraction also in one
dimension. It follows from considerations in Sect. 7.2 that this result can be
attributed to the fact that the one-dimensional density of states given by (4.54)
does not vanish for � ! 0. Indeed, (4.54) for d D 1 even diverges, thereby
producing a deeper bound-state energy than that of (7.26) for d D 2 with a
constant density of states.

Problems of Chapter 8

8.1

(a) Let us substitute the expansion of the pair wave function into (8.3) and then
rewrite OQ� as

OQ� D
X

k

�k

Oc�k" Oc��k# � Oc�k# Oc��k"
2

D
X

k

�k Oc�k" Oc��k#:

In deriving the last expression, we have used c
�

k#c
�

�k" D �c��k"c
�

k# and
symmetry �k D ��k, and also made a change of variables k! �k to simplify
the expression.

(b) Let us substitute the expression of (a) into (8.6), expand the exponent in a Taylor
series, and use the identity

� Oc�k˛�2 D 0 for fermions. We can thereby transform
the condensate wave function as

jˆi � A exp

 X
k

�k Oc�k" Oc��k#

!
j0i D A

Y
k

exp
�
�k Oc�k" Oc��k#



j0i



276 17 Solutions to Problems

D A
Y

k

�
1C �k Oc�k" Oc��k#



j0i D

Y
k

�
uk C vk Oc�k" Oc��k#



j0i;

with uk � 1=
p
1C j�kj2 and vk � �k=

p
1C j�kj2.

8.2

(a) Equation (8.96) can be shown using (8.7) as follows:

Œ OQ; OQ��C D 1

2
��. N
 0

1;
N
 0
2/
� O . N
 0

2/
O . N
 0

1/;
OQ�
	

C

D 1

2
��. N
 0

1;
N
 0
2/
n O . N
 0

2/
� O . N
 0

1/;
OQ�
	
C C

� O . N
 0
2/;
OQ�
	

C O . N
 0
1/
o

D 1

2
��. N
 0

1;
N
 0
2/
n
�. N
 0

1;
N
2/ O . N
 0

2/
O �. N
2/C �. N
 0

2;
N
2/ O �. N
2/ O . N
 0

1/
o

D 1

2
��. N
 0

1;
N
 0
2/̊ �.

N
 0
1;
N
 0
2/� �. N
 0

1;
N
2/ O �. N
2/ O . N
 0

2/

C�. N
 0
2;
N
2/ O �. N
2/ O . N
 0

1/
�

D 1

2
j�. N
1; N
2/j2 C O �. N
2/�. N
2; N
1/��. N
1; N
 0

2/
O . N
 0

2/:

(b) It is clear that, when the second term of (8.96) can be neglected, the relevant
operator Oc� satisfies Œ Oc; Oc��C D 1. Moreover, the BCS wave function can be
written as j
 i D A e� Oc� j0i. The normalization condition h
 j
 i D 1 yields
jAj D e�j�j2=2.

Problems of Chapter 9

9.1 We focus on the region E > 0 for an even function (9.46) and express its sum
over k using the normal density of states (6.28) as

Ds.E/ D
Z 1

�1
d"kD."k/ı.E �Ek/ 	 D."F/

Z 1

�1
d
kı.E � Ek/;

where we have approximated D."k/ 	 D."F/ and made a change of variable,
"k ! 
k � "k � �. Subsequently, we use the relation E2

k D 
2k C �2 to
make another change of variable 
k ! Ek . Because the resulting function 
k D

k.Ek/ is multivalued, i.e., 
k D ˙

q
E2
k ��2, we must choose a single branch

to perform it appropriately. This is done so that the signs of 
k and Ek coincide

as 
k D
q
E2
k ��2 for Ek > 0 and 
k D �

q
E2
k ��2 for Ek < 0; see the

thick line in the figure below. With E > 0 in the integrand, we only need to
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perform the above integration for the positive branch 
k D
q
E2
k ��2,

Ds.E/ D D."F/

Z 1

0

d
kı.E � Ek/ D D."F/

Z 1

�

dEk
d
k
dEk

ı.E � Ek/

D D."F/

Z 1

�

dEk
Ekq

E2
k ��2

ı.E � Ek/ D �.E ��/D."F/
Ep

E2 ��2
:

E

ξ

Δ−Δ 0

9.2 Let us substitute (9.48) into (9.47), approximate Nn.E/ 	 e�ˇE as appropriate
at low temperatures, and make a change of variable E D � coshx. We thereby
express the heat capacity as

C D D."F/

Z 1

�

E3

.E2 ��2/1=2
e�E=kBT

kBT 2
dE

D D."F/
�3

kBT 2

Z 1

0

e�.�=kBT / coshx cosh3 x dx

D �D."F/
�3

kBT 2
d3

da3

Z 1

0

e�a coshxdx

ˇ̌
ˇ̌
aD�=kBT

:

The last integral is exactly the modified Bessel functionK0.a/, which for a� 1

is approximated as [1, 2]

K0.a/ �
Z 1

0

e�a coshxdx 	
� �
2a


1=2
e�a:

Using it, we obtain the heat capacity for a � �=kBT � 1 as

C	�D."F/
�3

kBT 2
d3

da3

� �
2a


1=2
e�a

ˇ̌
ˇ̌
aD�=kBT

	D."F/
�3

kBT 2

� �
2a


1=2
e�ǎ̌̌ˇ

aD�=kBT

;

which gives (9.49).
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9.3 Using (9.39) and the identity in the problem, we can transform (9.51) as

Fsn D D."F/

ˇ

1X
nD0

Z 1

�1

�
� ln

E2 C "2n

2 C "2n

C �2

E2 C "2n

�
d


D D."F/

ˇ

1X
nD0

Z 1

�1

�
� ln

�
1C �2


2 C "2n

�
C �2


2 C "2n C�2

�
d
;

with ˇ � 1=kBT and "n � .2n C 1/�kBT . Subsequently, we expand the
integrand in a Taylor series of�2=.
2C"2n/, retain the leading term, and perform
the integration over 
 using the residue theorem [2]. We thereby obtain the
condensation energy Fsn for T . Tc as

Fsn 	 �D."F/�
4

2ˇ

1X
nD0

Z 1

�1
d
�


2 C "2n
�2 D �D."F/�

4

2ˇ

1X
nD0

lim

!i"n

d

d


2�i�

 C i"n

�2

D �D."F/�
4

2ˇ

1X
nD0

2�i
�2

.2i"n/3
D � D."F/

4.�kBT /2
7

8
�.3/�4;

where we have performed the same transformation as (9.41). Setting T 	 Tc in
the final expression and substituting (9.42), we obtain (9.53).

Problems of Chapter 10

10.1

(a) Substitute the identity

0 D 1C
Z 1

�1
d

@

@


1

eˇ
 C 1
into the right-hand side of (10.16), rewrite the derivative of the mean occupation
number using 1=.ex C 1/ D 1

2

�
1 � tanh x

2

�
and (9.39), and perform the

differentiation of the resulting expression to obtain

Y.T / D 1C 1

2

Z 1

�1
d


�
@

@E
tanh

ˇE

2
� @

@

tanh

ˇ


2

�

D 1C 2

ˇ

1X
nD0

Z 1

�1
d


�
@

@E

E

E2 C "2n
� @

@






2 C "2n

�
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D 1C 2

ˇ

1X
nD0

Z 1

�1
d


� �
2 � j�j2 C "2n
.
2 C j�j2 C "2n/2

� �

2 C "2n

.
2 C "2n/2
�
:

Performing the integration using the residue theorem, we obtain (10.17).
(b) Approximate "2n C j�j2 	 "2n in the denominator of (10.17), transform the

resulting expression in the same way as in (9.41), and substitute (9.42). We
thereby obtain (10.47).

(c) Approximate Nnk 	 e�Ek=kBT in the integrand of (10.16) and transform the
resulting expression into the form

Y.T / D �2
Z 1

0

d
k
@ Nnk
@Ek
	 2

kBT

Z 1

0

d
ke�
p

2kC�2=kBT .
k D � sinhx/

D 2�

kBT

Z 1

0

dx e�.�=kBT / coshx coshxD� 2a d

da

Z 1

0

dx e�a coshx

ˇ̌̌
ˇ
aD�=kBT

D �2adK0.a/

da

ˇ̌
ˇ̌
aD�=kBT

	� 2a d

da

r
�

2a
e�a

ˇ̌
ˇ̌
aD�=kBT

D
s
2��

kBT
e��=kBT;

where K0.a/ is the modified Bessel function [1, 2], and we have used its
asymptotic form for a!1.

Problems of Chapter 11

11.1 Equation (11.11) can be shown using Œeˇ.�� OH /; e˙i OH t=„� D 0 and the
invariance of trace under cyclic permutations as follows:

˝� OOH.t/; OH 0
!H.t

0/
	˛

D Tr eˇ.�� OH /
�
ei OH t=„ OOe�i OH .t�t 0/=„ OH 0

!e�i OH t 0=„

� ei OH t 0=„ OH 0
!ei OH .t�t 0/=„ OOe�i OH t=„	

D Tr eˇ.�� OH /
�
ei OH .t�t 0/=„ OOe�i OH .t�t 0/=„ OH 0

! � OH 0
!ei OH .t�t 0/=„ OOe�i OH .t�t 0/=„	

D ˝� OOH.t � t 0/; OH 0
!

	˛
:

11.2 It follows from OH 0�
! D OH 0�! and OH 0�

�!;H.t/ D
�
ei OH t=„ OH 0�!e�i OH t=„	� D

ei OH t=„ OH 0��!e�i OH t=„ D OH 0
!;H.t/ that the expectation in the integrand of (11.17)

satisfies

˝� OH 0�!;H.t/; OH 0
!

	˛� D ˚
Tr eˇ.�� OH /

� OH 0�!;H.t/ OH 0
! � OH 0

!
OH 0�!;H.t/

	��

D Tr
� OH 0�

!
OH 0�
�!;H.t/ � OH 0�

�!;H.t/ OH 0�
!

	
eˇ.�� OH /
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D Tr eˇ.�� OH /
� OH 0�! OH 0

!;H.t/ � OH 0
!;H.t/

OH 0�!
	

D �˝� OH 0
!;H.t/;

OH 0�!
	˛
:

Using it, proof of (11.18) obtains.

Problems of Chapter 12

12.1 Writing Nn.E/ D 1
2

�
1 � tanh ˇE

2
/ in the integrand of (12.34) for V D 0 and

using (9.39), we find

Nn.E 0/� Nn.E/
E 0 � E D 2

ˇ

1X
nD0

EE0 � "2n
.E2 C "2n/.E 02 C "2n/

;

with "n � .2nC 1/�ˇ�1. The "2n term in the numerator does not contribute to
the integral of (12.34) at V D 0 because the other function (12.30) is odd in E .
Next, we make a change of variable E ! 
 � sgn.E/

p
E2 � j�Lj2 to obtain

MsL.E/dE D MsL.E/.
=E/d
 D NL."F/.j�Lj=E/d
. We thereby obtain an
alternative expression for Ic D �If s.0/ as

Ic D �4e„ hjTkqj2iF
Z 1

�1
d


�
Z 1

�1
d
 0 2
ˇ

1X
nD0

NL."F/NR."F/j�Ljj�Rj
.
2 C j�Lj2 C "2n/.
 02 C j�Rj2 C "2n/

:

The integral can be calculated analytically to yield (12.40).

12.2 Sum 2�ˇ�1P
n for T ! 0 reduces to the integral of "n over 0 � "n � 1. It

can be transformed by setting "n D j�Lj tan � (0 � � � �=2) for j�Lj � j�Rj
into

Ic D j�Lj
jejRN

Z �=2

0

d�p
1� .1 � j�Lj2=j�Rj2/ sin2 �

D j�Lj
jejRN

K
�p
1 � j�Lj2=j�Rj2

�
;

whereK denotes the complete elliptic integral [1, 2]. Using the identityK.x/ D
2

1CyK.
1�y
1Cy / with y D p1 � x2, we produce a symmetric expression as in

(12.42), where we have extended the formula to j�Lj > j�Rj as j�Rj � j�Lj !ˇ̌j�Lj � j�Rj
ˇ̌
.
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Problems of Chapter 13

13.1 Here, we simplify the notation of (8.79) as �.k/! �k, u Q̨.k/! uk Q̨ , etc.

(a) Let us write (8.79) for K HF D 
k	0 in a form suitable for a perturbation
expansion with �k as

�
.Ek Q̨ � 
k/	0 0

0 .Ek Q̨ C 
k/	0

��
uk Q̨
vk Q̨

�
D
�

0 �k

����k 0

��
uk Q̨
vk Q̨

�
:

We distinguish the pairs of eigenvalues that satisfy Ek Q̨ � 0 by subscripts Q̨ D
1; 2. Let us solve the equation perturbatively in terms of �. The zeroth-order
equation is given by

"�
E
.0/

k Q̨ � 
k
�
	0 0

0
�
E
.0/

k Q̨ C 
k
�
	0

#"
u.0/k Q̨
v.0/k Q̨

#
D
�

0
0

�
:

Its eigenvaluesE.0/

k Q̨ � 0 and eigenvectors are obtained by considering the cases

k > 0 and 
k < 0 separately. The results are given concisely using the step
function (4.11),

E
.0/

k Q̨ D j
kj . Q̨ D 1; 2/;
"

u.0/k1 u.0/k2

v.0/k1 v.0/k2

#
D
�
�.
k/	0
�.�
k/	0

�
�
"

u.0/k

v
.0/
k

#
:

Hence, the positive eigenvalues are degenerate. Next, we use the above eigen-
vectors to obtain eigenvalueE.1/

k Q̨ to first order,

"
E
.1/

k1 0

0 E
.1/

k2

#
D
h
u.0/�k v

.0/�

k

i�
0 �k

����k 0

�"
u.0/k

v
.0/

k

#
D 0:

Thus, there is no first-order correction to the eigenvalues. The first-order
eigenvectors are found by solving

"�
E
.0/

k Q̨ � 
k
�
	0 0

0
�
E
.0/

k Q̨ C 
k
�
	0

#"
u.1/k Q̨
v.1/k Q̨

#
D
�

0 �k

����k 0

�"
u.0/k Q̨
v.0/k Q̨

#

as
"

u.1/k1 u.1/k2

v.1/k1 v.1/k2

#
D
�
�.�
k/�k=2j
kj
��.
k/���k=2
k

�
�
"

u.1/k

v
.1/

k

#
:
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Substituting the above results into (8.72), we thereby obtain Q�.1/.k/ to first order,

Q�.1/.k/ 	
�

u.1/k v
.0/�

k C u.0/k v
.1/�

k � v.1/��k u.0/T�k � v.0/��k u.1/T�k


 1
2

tanh
ˇj
kj
2

D �
�k ��T�k

� 1

4j
kj tanh
ˇj
kj
2
D �k

1

2
k
tanh

ˇ
k

2
;

where we have used symmetry (8.76).
(b) Substitution of the result of (a) and (13.3) into (8.76) at T D Tc yields

�k D �4�
Z

d3k0

.2�/3
V
.eff/
1 .k; k0/

1X
mD�1

Y1m. Ok/Y �
1m.
Ok0/�k0

1

2
k0

tanh

k0

2kBTc
:

Subsequently, we express the integral in terms of the density of states using
(8.90), approximateN."k0/ 	 N."F/, and substitute (13.2). Further, we expand
the gap matrix as

�k D
p
4�

1X
mD�1

�1m�."c � j
kj/Y1m. Ok/

and use orthogonality (8.86). We thereby obtain

�
1CN."F/V

.eff/
1

Z "c

�"c

d
k0

1

2
k0

tanh

k0

2kBTc

�
�1m D 0:

Hence, we conclude that (13.35) holds for any internal state.

13.2 The angular integral of (13.27) is transformed by setting t � cos �k into

Z
d�k

4�

�.jEj � j�kj/
.E2 � j�kj2/1=2 D

8̂
ˆ̂<
ˆ̂̂:

Z 1

0

dt
�
�jEj ��max

p
1 � t2 �p

E2 ��2
max.1 � t2/

: ABM state

Z 1

0

dt
�
�jEj ��maxt

�
p
E2 ��2

maxt
2

: polar state

:

The two integrals can be calculated using the indefinite integrals:

Z
dxp
x2 C c D ln.x C

p
x2 C c/;

Z
dxp
a2 � x2 D arcsin

x

a
;

and considering the two cases jEj < �max and jEj > �max separately. To
be more specific, the step function for jEj < �max replaces the lower (upper)
limit of the integral by

p
1 �E2=�2

max

�jEj=�max
�

for the ABM (polar) state,
whereas it is irrelevant for jEj > �max. We thereby obtain (13.29).
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Problems of Chapter 14

14.1

(a) Following the procedure described in the problem, we obtain

Ȯ ."n;k; r/ D 1

V 2

X
k0k1k2

U
imp
k1
O	z OG."n;k0; r/ O	zU

imp
k2
Naı k1Ck2;0ı k1;k�k0 :

Subsequently, we use relation U imp
�k D

�
U

imp
k

��
, which follows from U �

imp.r/ D
Uimp.r/, to obtain (14.102).

(b) One may prove (14.71) by following the procedure in the problem.

Problems of Chapter 15

15.1 Imagine that the supercurrent density has changed by ıj during time ıt in
inducing a change ıB in the flux density inside the superconductor. According
to Faraday’s induction law, this change in the flux density produces an electric
field E,

r � E D �ıB
ıt
;

which in turn will perform work on the external current,

�ı0W D
Z

d3r jext � E ıt:

Moreover, the decrease �ıF in the free energy in reversible processes can be
written as �ıF D �H � R d3rıB according to (15.6) and (15.8), where by
definition ıB D 0 outside the sample. Moving H into the integral over the
whole space and using Faraday’s induction law, �ıF is further transformed as

�ıF D �
Z

d3r H � ıB
ıt
ıt D

Z
d3r H � .r � E/ıt

D
Z

d3r Œr � .E �H/C E � .r �H/� ıt

D
Z

dS � .E �H/ıt C
Z

d3r.r �H/ � Eıt

D
Z

d3r.r �H/ � Eıt;
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where we have used identity .r �A/ �B D r � .A�B/CA � .r �B/ and Gauss’
theorem [2]. Substituting the above two expressions into the equality ıF D ı0W
from (1.23) for reversible isothermal processes, we obtain r �H D jext.

15.2 Let us express the integrand of (15.51) as
�j�00.r0/j2	2. As it is a periodic

function, we can expand j�00.r0/j2 in terms of the reciprocal lattice vector in
(15.48) as

j�00.r0/j2 D 1

V 0
X
K0

I00.K0/ eiK0 �r0

;

where I00.K/ is given by (15.52) with N1 D N2 D 0. Substituting these
relations into the definition of (15.51) and performing the integration with

Z
e�i.K0

1CK0

2/�r0

d3r 0 D V 0ıK0

2;�K0

1
;

we obtain (15.56).

15.3 Let us expand B.r/ and ı2.r/ as

B.r/ D Oz
Z

d2k

.2�/2
Bkeik�r; ı2.r/ D

Z
d2k

.2�/2
eik�r;

and substitute them into (10.46) with n D �1 and r0 D 0. We then obtain
Bk D ˆ0=.�2Lk2 C 1/. The corresponding magnetic flux density is then written
in two-dimensional polar coordinates using a couple of integral representations
for the Bessel functions [1, 2],

B.r/ D Ozˆ0
Z

d2k

.2�/2
eik�r

�2Lk
2 C 1 D Oz

ˆ0

2��2L

Z 1

0

dk
k

k2 C ��2
L

Z 2�

0

d'

2�
eikr cos '

D Oz ˆ0

2��2L

Z 1

0

dk
k

k2 C ��2
L

J0.k/ D Oz ˆ0

2��2L
K0.r=�L/:

Problems of Chapter 16

16.1 If 
q0 < 0 holds, (16.12) is replaced by

jC j2
jA1j2 D

2E

E �pE2 � j�0j2
;

jC j2
jA2j2 D

2E

E CpE2 � j�0j2
;
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so that jA1j < jA2j. Hence, we can identify the z element of (16.17) with
coefficient jA2j2 and kFz < 0 as the incident current from the normal side. In
addition, current (16.18) is replaced by

js
qp D �

„kF

m
jC j2

q
E2

q0 � j�0j2
Eq0

:

With these modifications, we can express the transmission coefficient for 
q0 <

0 as

T D jC j
2

jA2j2
p
E2 � j�0j2

E
�.E � j�0j/ D 2

p
E2 � j�0j2

E CpE2 � j�0j2
�.E � j�0j/;

which is identical to (16.19). This is the process where a hole on the normal
side, represented by the lower element of (16.5), is incident on the interface and
reflected as an electron.

16.2 First, we substitute (16.70) into the differential equation in (16.66) and use
K 0
0.x/ D �K1.x/ [2]. We then obtain (16.72). Second, we integrate the

differential equation of (16.66) with the initial condition (16.70) to express the
flux density of 0 � r < rc as

B.r/ D cK0.rc=�L/C
Z rc

r

dr2j.r2/:

Third, we divide the integration of (16.76) at r D rc, perform that over
0 � r � rc using the expression above, and perform that over rc � r � 1
using the asymptotic expression B.r/ D cK0.r=�L/ and the identity xK0.x/ D
�ŒxK1.x/�

0 [2]. Equation (16.76) thereby becomes

�
r2c
2
cK0.rc=�L/C

Z rc

0

dr1r1

Z rc

r1

dr2j.r2/

�
C c�LrcK1.rc=�L/ D 1:

Substitution of (16.72) into this equation yields (16.71).

16.3 Regarding the gradient term in (16.45) as a perturbation, we obtain the first-
order equation

2"nf
.1/ C Ov � @f .0/ D 2�g.1/;

where f .0/ denotes the homogeneous solution in (16.41), and g.1/ for "n > 0 is
obtained from (16.38) as

g.1/ D �
Nf .0/f .1/ C f .0/ Nf .1/

2g.0/
D ��

�f .1/ C� Nf .1/
2"n

;
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with Nf � f �."n;�kF; r/. The above equation for f .1/ can be solved easily by
coupling it with that for Nf .1/ as

�
f .1/

Nf .1/

�
D 1

4"n."2n C j�j2/
�
2"2n C j�j2 ��2

���2 2"2n C j�j2
� ��Ov � @f .0/

Ov � @ Nf .0/

�
:

Substituting f .0/ D j�jei'.r/=
p
"2n C j�j2 into the above expression for f .1/,

we obtain

f .1/ D �i
"n�

2."2n C j�j2/3=2
Ov � .r' C A/;

which yields g.1/ above as

g.1/ D i
j�j2

2."2n C j�j2/3=2
Ov � .r' C A/:

Let us insert this expression into (16.47) and perform the average over the
isotropic Fermi surfaces of d D 2; 3. Also noting (10.17), we obtain (16.74).
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Andreev reflection, 251
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Andreev approximation, 248
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Boltzmann constant, 16
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Bose-Einstein condensation, 51
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canonical distribution, 20
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chemical potential, 9
Clausius inequality, 5
coherence factors, 166
coherence length, 232
coherent state, 103
condensate wave function, 41, 66
Cooper pairing, 98
Cooper’s problem, 97

Cooper-pair creation operator, 102
cutoff energy, 128

D
DC Josephson effect, 183
density matrix, 61

reduced, 61
density of states, 45

per unit cell and spin component, 121
per unit volume and spin component, 95

Dirac delta function, 45
dissipation, 162
dyadic, 116

E
effective mass, 81
effective pairing interaction, 130
Eilenberger equations, 220
entropy, 5, 6, 16
equation of state, 3

ideal gas, 3
van der Waals’, 3

exchange hole, 70
expectation, 14
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F
Fermi contact interaction, 169
Fermi distribution, 45
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Fermi wave number, 53
Fermi-surface sum rule, 80
fermion, 28
first law of thermodynamics, 4
fluctuation, 14
fluctuation range, 140
flux quantum, 155

G
gap equation, 119
gas constant, 3
gauge invariance, 211
Gibbs entropy, 16
Gibbs-Duhem relation, 86
Ginzburg–Landau equations, 224
GL parameter, 232
Gor’kov equations, 208
gradient, 1
gradient expansion, 211
grand canonical distribution, 22
grand canonical ensemble, 22
grand partition function, 22
grand potential, 9, 22

H
Hartree–Fock equations, 77
Hartree–Fock potential, 76, 109
heat, 4
heat capacity at constant volume, 10
Heaviside step function, 45
Hebel-Slichter peak, 173
Helmholtz free energy, 7, 20
hyperfine interaction, 169

I
impact parameter, 252
intensive variable, 4
internal energy, 4, 18
isolated system, 6

K
Knight shift, 169
Korringa relation, 173
Kramer-Pesch effect, 261
Kronecker delta, 15

L
Landau level, 235
Landau parameters, 83

left-right subtraction trick, 216
Legendre transformation, 8
London equation, 154
London penetration depth, 154, 232
longitudinal magnetic relaxation time, 172

M
magnetization, 230
Matsubara frequency, 203
Matsubara Green’s function, 202
Maxwell’s relation, 3, 10
Maxwell-Boltzmann distribution, 45
Meissner effect, 151, 154
method of Lagrange multipliers, 17
microcanonical distribution, 18
microcanonical ensemble, 18

N
Nambu matrix, 208
Nernst’s theorem, 5
normal-ordering operator, 206

O
off-diagonal long-range order, 69
order parameter, 140

P
pair distribution function, 70
pair potential, 109
particle-hole symmetry, 111
partition function, 20
Pauli exclusion principle, 36, 70
Pauli matrices, 111
permutation, 25

cyclic, 25
even, 26
odd, 26

polar state, 197
potential, 1
pure state, 5, 15

Q
quasi static process, 4
quasiparticle, 88
quasiparticle field, 103

R
relaxation time, 220
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retarded Green’s function, 163
reversible process, 4

S
second law of thermodynamics, 5
second quantization, 34
second-order phase transition, 134, 141
Shannon entropy, 16
Slater determinant, 36
Sommerfeld expansion, 55
spin, 26
spin-statistics theorem, 28
spontaneous symmetry breaking, 140
spontaneously broken gauge symmetry, 140,

185
SQUID, 186
standard deviation, 14
state function, 3
state quantity, 1
state variables, 3
superfluid 3He

A phase, 194
B phase, 191

superfluid density, 149

T
thermodynamic critical field, 231
thermodynamic potential, 9
third law of thermodynamics, 288

total derivative, 2
transposition, 25
type-I superconductor, 229
type-II superconductor, 229

U
upper critical field, 234

V
vacuum permeability, 151, 169
von Neumann entropy, 16

W
weak coupling, 128
Wick decomposition, 64
Wigner transform, 211

gauge-covariant, 212
gauge-invariant, 212

work, 4

Y
Yosida function, 147

Z
Zeeman effect, 84, 152, 169
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