Springer Series in Synergetics E&}I;&%ﬁg ’

Sergey G. Abaimov

Statistical Physics
of Non-Thermal
Phase Transitions

From Foundations to Applications

@ Springer



Springer Complexity

Springer Complexity is an interdisciplinary program publishing the best research and aca-
demic-level teaching on both fundamental and applied aspects of complex systems—cutting
across all traditional disciplines of the natural and life sciences, engineering, economics,
medicine, neuroscience, social and computer science.

Complex Systems are systems that comprise many interacting parts with the ability to
generate a new quality of macroscopic collective behavior the manifestations of which are
the spontaneous formation of distinctive temporal, spatial or functional structures. Models
of such systems can be successfully mapped onto quite diverse “real-life” situations like
the climate, the coherent emission of light from lasers, chemical reaction-diffusion systems,
biological cellular networks, the dynamics of stock markets and of the internet, earthquake
statistics and prediction, freeway traffic, the human brain, or the formation of opinions in
social systems, to name just some of the popular applications.

Although their scope and methodologies overlap somewhat, one can distinguish the follow-
ing main concepts and tools: self-organization, nonlinear dynamics, synergetics, turbulence,
dynamical systems, catastrophes, instabilities, stochastic processes, chaos, graphs and net-
works, cellular automata, adaptive systems, genetic algorithms and computational intelligence.

The three major book publication platforms of the Springer Complexity program are the
monograph series “Understanding Complex Systems” focusing on the various applications
of complexity, the “Springer Series in Synergetics,” which is devoted to the quantitative
theoretical and methodological foundations, and the “SpringerBriefs in Complexity” which
are concise and topical working reports, case-studies, surveys, essays and lecture notes of
relevance to the field. In addition to the books in these two core series, the program also
incorporates individual titles ranging from textbooks to major reference works.

Editorial and Programme Advisory Board

Henry Abarbanel, Institute for Nonlinear Science, University of California, San Diego, USA

Dan Braha, New England Complex Systems Institute and University of Massachusetts Dartmouth,
USA

Péter Erdi, Center for Complex Systems Studies, Kalamazoo College, USA and Hungarian
Academy of Sciences, Budapest, Hungary

Karl Friston, Institute of Cognitive Neuroscience, University College London, London, UK
Hermann Haken, Center of Synergetics, University of Stuttgart, Stuttgart, Germany

Viktor Jirsa, Centre National de la Recherche Scientifique (CNRS), Université de la Méditerranée,
Marseille, France

Janusz Kacprzyk, System Research, Polish Academy of Sciences, Warsaw, Poland

Kunihiko Kaneko, Research Center for Complex Systems Biology, The University of Tokyo,
Tokyo, Japan

Scott Kelso, Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca
Raton, USA

Markus Kirkilionis, Mathematics Institute and Centre for Complex Systems, University of
Warwick, Coventry, UK

Jirgen Kurths, Nonlinear Dynamics Group, University of Potsdam, Potsdam, Germany

Andrzej Nowak, Department of Psychology, Warsaw University, Poland

Linda Reichl, Center for Complex Quantum Systems, University of Texas, Austin, USA

Peter Schuster, Theoretical Chemistry and Structural Biology, University of Vienna, Vienna, Austria
Frank Schweitzer, System Design, ETH Zurich, Zurich, Switzerland

Didier Sornette, Entrepreneurial Risk, ETH Zurich, Zurich, Switzerland

Stefan Thurner, Section for Science of Complex Systems, Medical University of Vienna, Vienna,
Austria



Springer Series in Synergetics

Founding Editor: H. Haken

The Springer Series in Synergetics was founded by Herman Haken in 1977. Since
then, the series has evolved into a substantial reference library for the quantitative,
theoretical and methodological foundations of the science of complex systems.

Through many enduring classic texts, such as Haken’s Synergetics and Information
and Self-Organization, Gardiner’s Handbook of Stochastic Methods, Risken’s The
Fokker Planck-Equation or Haake’s Quantum Signatures of Chaos, the series has
made, and continues to make, important contributions to shaping the foundations
of the field.

The series publishes monographs and graduate-level textbooks of broad and general
interest, with a pronounced emphasis on the physico-mathematical approach.

For further volumes:
http://www.springer.com/series/712


http://www.springer.com/series/712

Sergey G. Abaimov

Statistical Physics
of Non-Thermal Phase
Transitions

From Foundations to Applications

@ Springer



Sergey G. Abaimov

Advanced Structures, Processes
and Engineered Materials Center
Skolkovo Institute of Science
and Technology

Skolkovo

Russia

ISSN 0172-7389

Springer Series in Synergetics

ISBN 978-3-319-12468-1 ISBN 978-3-319-12469-8 (eBook)
DOI 10.1007/978-3-319-12469-8

Library of Congress Control Number: 2014953779

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



“To those summer sunny days,
When world was warm and still,
And unicorn’s four gleamy eyes
Were made of glass and steel,

The running man was hunt in maze
To make a Minotaur s meal,

But slow, emerald-green waves
Demanded: “Drive the quill!”

A hurt white-crow made mistakes
Against its kind and will,

And near train depot earthquakes
Became a part of cozy home deal.
A life was crazy like a waste
Collecting future regrets’bill.”



Preface

Statistical physics describes a wide variety of phenomena and systems when in-
teraction forces may have different natures: mechanical, electromagnetic, strong
nuclear, etc. The commonality that unites all these systems is that their belonging to
statistical physics requires the presence of thermal fluctuations. In this sense these
phenomena necessarily include the thermodynamic aspect.

Meanwhile, the second half of the last century may be named the time of the
discovery of the so-called complex systems. These systems belong to chemistry,
biology, ecology, geology, economics, social sciences, etc. and are generally united
by the absence of concepts such as temperature or energy. Instead, their behavior is
governed by stochastic laws of nonthermodynamic nature; and these systems can
be called nonthermal. Nevertheless, in spite of this principal difference with statisti-
cal physics, it was discovered that the behavior of complex systems resembles the
behavior of thermodynamic systems. In particular, many of these systems possess a
phase transition identical to critical or spinodal phenomenon of statistical physics.

This very analogy has led in recent years to many attempts to generalize the for-
malism of statistical physics so that it would become applicable and for nonthermal
systems also. If we achieved this goal, the powerful, well-developed machinery of
statistical physics would help us to explain phenomena such as petroleum clusters,
polymerization, DNA mechanism, informational processes, traffic jams, cellular
automata, etc. Or, better, we might be able to predict and prevent catastrophes such
as earthquakes, snow-avalanches and landslides, failure of engineering structures,
economical crises, etc.

However, the formalism of statistical physics is developed for thermodynamic
systems; and its direct application to nonthermal phenomena is not possible. In-
stead, we first have to build analogies between thermal and nonthermal phenomena.

But, what do these analogies include? What are they based on? And even more
important question: Why does the behavior of complex systems resemble their ther-
modynamic analogues?

The answer to the last question is that the analogy exists only in the presence
of phase transitions. It is the machinery of a phase transition that is universal, not
the systems themselves. In spite of the fact that the behavior of complex systems is
governed by nonthermal fluctuations whose nature is quite different from thermal

vii



viii Preface

fluctuations in statistical physics, these fluctuations are, nevertheless, stochastic and
scale invariant; and it is the stochastic scale invariance of the system that leads to
the universality of phase transitions. Therefore, our attempt to apply the formal-
ism of statistical physics to nonthermal phenomena would be successful only if we
mapped the nonthermal fluctuations on their thermal analogues.

This book is devoted to the comparison of thermal and nonthermal systems. As
an example of a thermodynamic system we generally discuss an Ising model while
the considered nonthermal systems are represented by percolation and damage phe-
nomena. Step-by-step, from the equation of state to the free energy potential, from
correlations to the susceptibility, from the mean-field approach to the renormaliza-
tion group, we compare these systems and find that not only are the rules of behav-
ior similar but also, what is even more important, the methods of solution. We will
see that, developing the concept of susceptibility or building the renormalization
group, although each time we begin with a particular system considered, the foun-
dation of an approach is always based on the formalism of statistical physics and is,
therefore, system independent.

To the purpose of comparison we often sacrifice in this book the specific details
of the behavior of particular systems discussed. We cannot claim our study to be
complete in the description of rigorous formalism or experimental results of fer-
romagnetic, percolation, or damage phenomena. Instead, we focus our attention on
the intuitive understanding of the basic laws leading to the analogies among these
systems. For the same reason and also because we consider our text to be introduc-
tory, we cannot claim our list of references to represent all corner-stone studies
related to the discussed phenomena. Instead, we are generally referring the reader
to the brilliant reviews and references therein.!

Also, we should mention that, although in many aspects this book may repre-
sent the biased view of its author, we hope that the reader will enjoy, as we do, the
mystery of the birth of a new science that has been happening right before our eyes
during the last few decades. Since this new science, in our humble opinion, is still
at the infantile stage, there are many questions in the book which we cannot answer.
However, from our point of view this adds an additional charm to the discussion
because it encourages the reader to generate and apply her/his own ideas at the
frontiers of science.

Another important aspect of the book is that the comparison with nonthermal
systems presents the alternative point of view on thermodynamic phenomena them-
selves. Not all concepts of statistical physics have their counterparts in complex
systems. Thereby, nonthermal phenomena often allow looking at well-known phe-
nomena from quite a different angle to emphasize the omissions in statistical phys-
ics itself.

! The author would appreciate very much to hear about all possible omissions or
mistakes by e-mail sgabaimov(@gmail.com to the purpose of future corrections.
“Needless to say the computer, as a text editing system, should be blamed for all the
errors in the book.” (Dietrich Stauffer, in Stauffer, D., Aharony, A.: Introduction to
Percolation Theory, 2nd ed. Taylor & Francis, London (1994), rephrased).
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This book is based on the course of lectures taught by the author for 5 years at the
Department of Theoretical Physics of Moscow Institute of Physics and Technology.
The first two chapters represent prerequisites. Statistical physics is often considered
to be at the top of theoretical disciplines of a student’s curriculum and requires the
knowledge of previously studied theoretical mechanics and quantum mechanics.
This often prohibits the reader not acquainted with these disciplines to study the
applicability of statistical physics to complex phenomena.

However, several years of lecturing statistical physics convinced the author that
what is truly required to understand the formalism of phase transitions is the dis-
cussion of a limited set of concepts. Chapter 2 presents an attempt to reduce the
theoretical formalism of statistical physics to a minimum required to understand
further chapters. Therefore, as a prerequisite for this monograph we consider only
general physics but not theoretical, quantum, or statistical mechanics. It is our belief
that Chap. 2 will be sufficient for the reader, not acquainted earlier with theoretical
physics, to understand the following chapters.

The completion of this book has left me indebted to many. I am most grateful
to Dr. Yury Belousov, Head of the Department of Theoretical Physics at Moscow
Institute of Physics and Technology, for his invaluable support and help in the cre-
ation of the monograph and course; and also to my colleagues at the Department
of Theoretical Physics for fruitful discussions, especially to Dr. Ilya Polishchuk
and Dr. Andrey Mikheyenkov. I am most grateful to Dr. Zafer Giirdal, Director of
Advanced Structures, Processes and Engineered Materials Center, Skolkovo Insti-
tute of Science and Technology, for his support of the monograph and of the course
that I am lecturing at ASPEM. I would like to express my warmest gratitude to Dr.
Joseph Cusumano, Department of Engineering Science and Mechanics, Penn State
University, for his invaluable support and collaboration in the research of damage
phenomena. I am also thankful to Dr. Christopher Coughlin, Springer, for his ines-
timable support and help in the publication of the monograph.

Sergey Abaimov
Department of Theoretical Physics, Moscow Institute of Physics and Technology

Currently at: Advanced Structures, Processes and Engineered Materials Center,
Skolkovo Institute of Science and Technology

Moscow, 2014
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Chapter 1
Fractals

Abstract The power-law dependences in the vicinity of a critical point could often
be attributed to the self-similarity and fractal nature of clusters. Therefore, in this
chapter, we discuss the basic formalism of fractals. We consider this chapter to be
a prerequisite of fractals. Required for further discussions, we consider understand-
ing of both the concept of fractal dimensionality and the origin of fractal power-law
dependences. The reader, proficient in these concepts, can skip this chapter.

Since we consider this chapter to be a prerequisite, we only briefly discuss
ideas behind the formalism of fractals, providing basic, intuitive understanding.
For further study, we refer the reader to brilliant textbooks (Feder 1988; Vicsek
1992; Falconer 2003) and references therein.

Besides the fractals, we also discuss multifractals. Although multifractals with
complex geometric support will not be applied directly in the further chapters, we
encourage the reader to study their formalism in view of its similarities with the
concepts of statistical physics.

1.1 The Concepts of Scale Invariance and Self-Similarity

Although the rapid development and application of the fractal formalism hap-
pened in the second half of the twentieth century, the mathematical sets, named
later fractals, had been known long before that. So, the Koch snowflake (the Koch
star, the Koch island) was created by Helge von Koch in 1904 (von Koch 1904)
and another set—the Sierpinski carpet—by Wactaw Sierpinski in 1916 (Sierpinski
1916). And the well-known, classical Cantor set was discovered by Henry J.S.
Smith as early as in 1874 (Smith 1874) and introduced by Georg Cantor in 1883
(Cantor 1883).

However, mathematicians of the beginning of the last century often considered
these sets only as “amusing toys” (called them “monsters”); and nobody expected
that in several decades the fractals would become widely applicable not only in
mathematics but even more so in physics, chemistry, biology, and other sciences.

© Springer International Publishing Switzerland 2015 1
S. G. Abaimov, Statistical Physics of Non-Thermal Phase Transitions,
Springer Series in Synergetics, DOI 10.1007/978-3-319-12469-8 1



2 1 Fractals

Fig. 1.1 Self-similar structure
of the San Francisco Bay
coastline.

Fractals began to be “actual” fractals only after Benoit Mandelbrot had pub-
lished his book (Mandelbrot 1975, 1982). It was one of those occasions when one
publication leads to the appearance of a new science. Therefore, in spite of the fact
that similar mathematical sets had had a long history in mathematics before, Benoit
Mandelbrot is sometimes called “the farther of fractals.”

Following Mandelbrot’s book, we begin our discussion by considering a map
of a shoreline. But in contrast to previous books which have considered the coast-
lines of Great Britain or Norway, we consider the coastline of San Francisco Bay.
Choosing some part of the curve and increasing the scale of the map, we obtain the
curve stochastically similar to the initial (Fig. 1.1). A new choice and new scale
increase provide again the similar curve, and so on.

The property when a part (a branch) of a mathematical set is similar to the whole
set is called scale invariance. For example, at geological departments of univer-
sities students are taught that, photographing a geological object, one should put
something beside to demonstrate the scale. Something like a pen, a water bottle, or a
hammer (a cigarette pack, which was traditionally on the list, has been excluded by
the author). Beside big boulders, a geologist herself/himself could also stay. All this
is necessary to distinguish the scale later, on the photograph. Otherwise, it would
not be clear what was shot: a mountain or a small piece of rock which one could put
in her/his pocket.

If we measure length of a usual curve, the length does not depend on what scale
we have used: 1 m scale or 10 cm scale. But the situation would change drastically
if we considered not a classical geometrical set but a self-similar set. Let us look at
Fig. 1.2.

Initially, we measure our curve by applying etalons with the length &. There
are two such etalons. Therefore, we expect that when we decrease the etalon
length thrice, six etalons should be enough to measure the length of the curve.
But in reality, it is almost seven etalons. Again, decreasing the length of the etalon
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Fig. 1.2 The coastline length
measured by etalons of differ-
ent sizes.
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Fig. 1.3 The triadic Koch
curve
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thrice, we expect the curve length to be less than 3-7 =21 etalons. In reality, it is
23 etalons.

Why has this happened? Because smaller etalons distinguish smaller map de-
tails. As a result, larger etalons go across all coastline meanders while smaller etal-
ons wind, making detours along them. The smaller the etalons, the larger the curve
length we obtain in the result of measurements. For infinitesimal etalons & — +0,
the length of the coastal line would diverge, L — +o.

The San Francisco Bay coastline was an example of the stochastic fractal when
we could not exactly predict finer details of the increased scale but could fore-
see them only stochastically. But it is easy to build a deterministic analogue of
the coastal line fractal. Let us consider the triadic Koch curve (von Koch 1904) in
Fig. 1.3.



4 1 Fractals

As well as for any other fractal, to build the triadic Koch curve we should first
construct its initiator and its generator. In case of Fig. 1.3, the line segment of
length L, will serve as the initiator (iteration n =0 ). The generator transforms the
initiator of iteration n =0 into the structure of iteration n=1. To do that it takes
the line segment (a parent branch) of length L, and breaks it into three thirds L, /3
(daughter branches). Then the generator replaces the central daughter branch with
two other daughter branches at angles 60°. In other words, the parent branch gener-
ates K =4 daughter branches, each of which is similar to the parent branch with
scale factor r =1/3.

This is how the generator transforms iteration » = 0 into iteration » = 1. To trans-
form iteration n =1 into iteration n =2, iteration n =2 into iteration n =3, and
so on, the generator is applied to each branch of the parent iteration to provide
branches of the daughter iteration. So, in Fig. 1.3 each of the four branches of itera-
tion n=1 is replaced by four branches (in total, 16 daughter branches) of iteration
n=2.

Applying the generator n times, we obtain iteration n. We see that infinite it-
eration n — +oo forms a scale-invariant mathematical set. Indeed, in this case each
branch is similar to the set in whole, only it is scaled with the scale factor » =1/3.
The scale invariance in the case of deterministic (not stochastic) generators is called
self-similarity. The self-similar iteration n — +o is called a fractal.

Strictly speaking, the term “fractal” is referred only to the infinite iteration
n — +o0. However, it has become a common practice to refer to finite iteration n as
to iteration n of the fractal. Sometimes (which is already not correct at all) iteration
n is called a fractal. To avoid this confusion, we will call a finite iteration »n of a
fractal as a prefractal while the infinite iteration n — +o00 we will call the developed
fractal.

1.2 Measure Versus Dimensionality

What is the measure of the developed triadic Koch curve? To find its length, we
again should find the number of etalons covering it.

We are living in the three-dimensional embedding space, d, =3, and in the rest
of the chapter will measure not only curves but also surfaces, volumes, and more
complex sets. Henceforth for etalons, we will not utilize line segments but three-
dimensional cubes (boxes) of side ¢ and volume &°. In other words, for etalons we
utilize the elements of volume of the embedding space.

To measure, for example, the length of a curve, we should cover this curve by
etalons and count the number N of the required etalons (Fig.1.4). This method is
called box counting. Multiplying the number N of the etalons by the etalon linear
size &, we find the length of the curve: L = N¢.



1.2 Measure Versus Dimensionality 5

Fig. 1.4 Box counting
method

To find the length of the developed triadic Koch curve, we also cover it by et-
alons. In this case, it is convenient to choose the size of the etalon & to be equal to
the size of the branches of iteration n: & = Lyr". And we immediately discover that
the number of boxes, covering the developed fractal, coincides with the number of
boxes covering iteration n . For example, in Fig. 1.5 we have chosen ¢ = Lorl, and
four boxes happen to cover both iteration n =1 and all further iterations.

This property, where the number of boxes covering a particular iteration coin-
cides with the number of boxes covering the whole fractal, is valid only for the
simplest formulation of fractal we currently consider. Unfortunately, as we will see
later, it is no longer valid for more complex cases, requiring more complex ap-
proaches to be developed.
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Fig. 1.5 The box counting for
the triadic Koch curve

Generator:

But now, considering the simplest fractal, we see that the number of box-
es of size € =Lyr", covering the developed fractal, coincides with the number
of branches of iteration n: N(¢)=K". So, the measured length of the curve is
L(e)=K"Lyr" = Ly(4/3)" which clearly depends on the choice of etalon linear
size € = Lyr" (on the choice of iteration 7). In the limit & — +0 (n — +o0) the length
diverges: L — +o.

Why a particular choice of the etalon size changes the results of the measurements?
The error in our considerations is not the measure, the error is the dimensionality.

How the dimensionality is defined in mathematics? There are many differ-
ent approaches: the box counting dimension (Kolmogorov 1958), the Cantor—
Minkowski—Bouligand dimension (upper and lower) (Bouligand 1928), and the
Hausdorff—Besicovitch dimension (Hausdorff 1918; Besicovitch 1929; Besicovitch
and Ursell 1937). To avoid mathematical difficulties, we consider only the simplest
examples of fractals when all these dimensions are equal.

The Hausdorff-Besicovitch measure (Hausdorff 1918; Besicovitch 1929;
Besicovitch and Ursell 1937) is the limit

M, = lim N(g)e“, (1.1)
£—>+0

where N(¢g) is the number of three-dimensional boxes covering the mathematical
set and d > 0 is some positive (or zero) real number.
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Besicovitch measure: a For
the point, the measure is zero
for d > 0. b For the curve, the
measure is infinite for d <1
and zero for d > 1. ¢ For

the surface, the measure is

Fig. 1.6 The Hausdorff- M, '

infinite for d < 2 and zero for D=0 Vd
d > 2. d For the volume, the a
measure is infinite for d <3
and zero for d >3
b
Md \
+o0 _I)
I
I
SF--- -?— -—=-
1
I
__->
c D = 2 d
Md ‘
400 —I)
|
I
VE----- —?— --
I
I
-
d D=3 d

Let us apply definition (1.1) to the simplest geometrical sets: a point, a curve,
a surface, and a volume. If the mathematical set is a point, only one box covers it.

Ld=0 . -
Therefore, the measure is M; = lim el = as it is presented in Fig. 1.6a.
§>+0 0,d >0

The number of boxes, covering a curve, is obviously (Fig. 1.4) the length of the
curve L divided by the size of a box: N(¢) =L/ ¢&. For the measure this provides

+00,d <1
My=Llim &' ={ Ld=1.
&—>+0
0,d>1

In Fig. 1.6b, we schematically plot infinite value as the top of the axis.
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In the case of a surface, the number of covering it boxes is N(g) =S/ &*, where §
+00,d <2

isthearea ofthis surface. The behavior ofthe measure M, =S lim g =18,d=2

£>+0
0,d >2
is plotted in Fig. 1.6c.

The volume ¥ can be covered by N(g)=V/&® boxes. The corresponding

+00,d <3
measure M, =V 1im0 e =1V.d=3 is presented in Fig. 1.6d.
—>+
’ 0,d >3

We see now the common tendencies in the behavior of measure (1.1) for all
mathematical sets considered above. With d (where d is just a parameter) increasing
from zero to infinity, the measure is always singular (zero or infinity) with the
exception of just one point where it is finite. We see that the value of d at this
point corresponds to the dimensionality in the sense of common practice. Therefore,
we have denoted this value by letter D, representing the actual dimensionality of
the mathematical set. The measure M ,_j at this point is finite and represents the
common sense measure (length of the curve, area of the surface, the value of the
volume).

For an arbitrary mathematical set, we define its dimension D as the value of d
when the Hausdorff-Besicovitch measure is finite (when it passes from infinity to
zero). The value M ;_;, of the measure at this point we define as the measure of the
set.

But what does it mean that at D the measure M, is finite (of the order of unity,
My oc O(1))? From (1.1) we see that it means that

lim N(e)=M, SILIEOgLD’Where M, oc O(D). (1.2a)

£—>+0

or, simpler,

N(e)x g%when & —+0. (1.2b)

Expressing D from (1.2a), we find

D= lim 2N —InM),
£—>+0 In(1/ &)

(1.3)
But in the limit € — +0 the number of boxes is infinite: N(&) — +. Therefore, we
can neglect In M, in comparison with In N(¢) to find

_ InN(¢)
e>0In(l/ &)

(1.4)
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Let us consider the general case of a fractal whose generator has K branches and
the scale factor ». We choose the size ¢ of boxes to be equal to the linear size Lyr"
of branches of prefractal iteration n: &= Lyr" . Then we can cover the developed
fractal by N(¢) =K " boxes which is the number of branches in this iteration. Sub-
stituting these equalities into (1.4), we find

D= lim — "KWk (1.5)
n>soIn(1/ (Lyr"))  In(l/r)

For example, for the triadic Koch curve above (with K =4 and » =1/3) we obtain

D= hl—4 (1.6)
In3

The dimension is higher than one but is lower than two. In other words, the math-

ematical set is more “dense” than a usual curve but less dense than a surface.

Now we understand why the length of the coastal line was diverging. This
happened because the mathematical set we considered was not one-dimensional.
Mathematical sets with noninteger dimensions are called fractals.

Since we expect the measure M, of a fractal to depend on its size L as

M, o I,”, (1.7)
we can transform (1.2) into
IR
N(g) (—0) when ¢ — +0. (1.8)
£

In all formulae above, we have considered two equivalent limits: n — 400 and
& =Lyr" — +0. Rigorously speaking, the limit # — + is not equivalent to & — +0
but to

lnl:nlnl—lnL0 — +0; (1.9)
£ r

and we have utilized & — +0 only due to simpler notation. Although we do not see
the difference between (1.9) and & — +0, later we will specifically refer to limit

(1.9).
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Problem 1.2.1

Find dimensions of Cantor sets (Smith 1874; Cantor 1883) presented in the
below given figure.

Generator: +——o)H H Generator: ——o)—+—

— —

HH HH HH HH

a b

Generator: ———o— Generator: @ 000
oo 00

c d

Solution: The Cantor set is generated by breaking a unit line segment into
parts and discarding some of them. So, in part a of the figure we build
the Cantor fractal with K =2 branches and scale factor »=1/3. In oth-
er words, a parent branch is divided into three thirds and the middle third
is discarded. In accordance with (1.5) for the dimension of the developed

fractal, we find D = E
In3

In the part b of the figure, we consider the Cantor set with K =2 and
r =1/2. We divide the init line segment into two halves but do not discard any
of them. Thereby, the sum of branches of iteration # is always equivalent to

the initiator—the init line segment. In accordance with our expectations, the

dimension of the developed fractal is D = % =1; and strictly speaking, this
n

mathematical set is not fractal.

In part ¢ of the figure, we consider the Cantor set with only one daughter
branch, K =1, and »=0.95. In other words, the parent branch each time
reduces itself by 5% and does not generate other daughter branches. The
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dimension D = _ It =0 is zero because the single branch transforms
In(1/0.95)

itself step by step into a point.

Although the definition of the Cantor set assumes that the initiator is the
unit line segment, in part d of the figure, we consider the initiator to be the
unit three-dimensional cube. The generator breaks the cube into 27 daughter
cubes with linear scale factor » =1/3 (the linear size decreases thrice). Then
the generator keeps only two of the daughter cubes, K =2, at the corners
of the parent, discarding the rest. For the dimension of this fractal, we find

D= % which equals the dimension of the fractal in the part a of the figure.
n

We see that the dimension of the fractal does not depend on the dimension of
the initiator but is determined by the model of the generator.

Problem 1.2.2

Find dimensions of fractals presented in the below given figure.

= Generator: = —H—

-

b

Generator:

Hﬂ

Generator: A’:’ A Generator: .E> n

(2]
Q
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Solution: The part a of the figure represents the prefractal of the quadratic
Koch curve (Minkowski sausage). The generator creates K = 8 branches with
scale factor » =1/4. The fractal dimension is D = E—i = %

In the case of the Mandelbrot—Given curve (Mandelbrot and Given 1984)
the generator has K =8 branches and »=1/3 (part b of the figure). The

In8
fractal dimension is D = ——.
In3
The Sierpinski gasket (Sierpinski 1915) has K = 3 branches with scale fac-
tor » =1/2 (part ¢ of the figure). The fractal dimension is D = in—;
n

The Sierpinski carpet (Sierpinski 1916) has K =8 branches with scale

factor » =1/3 (part d of the figure). The fractal dimension equals the fractal

In8
dimension of the Mandelbrot—Given curve, D = ——

In3

1.3 Self-Similarity (Scale Invariance) as the Origin
of the Fractal Dimension

So far, we have determined the fractal dimensions by the box counting method.
However, there is another method which we can derive from the concept of the
self-similarity itself.

Let us assume that the total developed fractal is covered by N(¢) cubes of linear
size ¢ (in the upper part of Fig. 1.7 the total developed fractal is covered by four
cubes of size €).

Any developed branch (the lower part of Fig. 1.7) is similar to the fractal in
whole but in comparison with the whole fractal it is reduced in size with the linear
scale factor 7 (thrice in Fig. 1.7). If we reduce the boxes with the same scale factor
r (boxes with size er = &£/3 in Fig. 1.7), the number N, (é7) of them, covering
the developed branch (four in Fig. 1.7), will be equal to the number of initial boxes
of size ¢, covering the whole fractal.

In other words, let us look at Fig. 1.7 as if we transformed the upper part into
the lower part by threefold shrinking of both the fractal and the boxes. Thereby, the
fractal transforms into its branch while the boxes become thrice smaller but their
number, obviously, does not change.

So, the number N,,,,,., (67) of boxes of size er, covering one fractal branch, equals
the number of boxes N(¢) of size &, covering the total fractal: Ny, ., (€7) = N(&).
But there are K separate branches in the fractal. Therefore, the fractal in whole can
be covered by the number N(gr) of boxes of size ¥ which is K times larger than

Nbranch (81")2

N(er)=KN(¢). (1.10)
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Fig. 1.7 Self-similarity
&

Lo\ /Sl

&3

Again, four big boxes of size £ cover the total fractal in Fig. 1.7; and also four small
boxes of size 7 = &/3 cover one branch. Then all K =4 branches can be covered
by four times four small boxes which is exactly represented by equality (1.10).
Equality (1.10) is possible only if N(g) depends on ¢ as the power-law (1.2) and
(1.8):
const
D

N(g) o (€ = +0). (1.11)

Substituting (1.11) into (1.10)

const const
K

(gr)D - &P

(& — +0) (1.12)

and expressing D from this equation, we return to the right-hand side of (1.5).

Instead of the developed branches of iteration 7 = 1, we could consider developed
branches of an arbitrary iteration n,. The boxes we now assume to be infinitesimal,
& — +0, not only in comparison with the size L, of the fractal but even in compari-
son with the size Ly of the branches of iteration .

Small boxes can “feel” the fractality of both the total developed fractal and the
considered developed branches. Since (due to self-similarity) we assume the dimen-
sion of both the developed fractal and the developed branch to be the same, D, for
the total fractal, we have a proportionality

IR
N(g)oc(—oj (e > +0) (1.13)
£
while for a developed branch of iteration 7, valid is a similar proportionality

o
Lyr

D
Npyanen(€) € [ ] (e = +0). (1.14)

There are K™ branches of iteration 7,. Summing their boxes, we should obtain the
total number of boxes, covering the fractal:

N(g):Knomench(g)‘ (115)
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Fig. 1.8 A fractal tree Generator: |):>:r

REE

Substituting now (1.13 and 1.14) into (1.15), we find

D o )2
(ﬁ) mKno(LOF } (6> +0) or (1.16a)
& &

(Lg)? o K™ (Lyr™)?, (1.16b)

where we have cancelled the dependence on €. The limit £ — +0 is no longer pres-
ent in the equation, but the right-hand side still depends on the number of iteration
n,y. Considering now the new limit n, — 40, we see that the proportionality (1.16b)
is possible only when the dimension D obeys the right-hand side of equality (1.5).

In this and previous sections, we have considered different fractals and have
found their dimensions. Before moving on to a discussion of more complex math-
ematical sets, we should mention where in nature we can encounter fractals.

The distribution of lakes on the Earth surface is fractal. Fractals are rivers which
are, in fact, fractal trees discussed in the following section. Fractals are metal veins
in rock. Fractals are the fracture surfaces of damaged solids. Fractals are the statisti-
cal properties of earthquakes. Fractals are time dependencies like white and color
noises which are self-affine fractals considered below. Fractals are aggregation and
surface growth—we can recall here the complex shape of snow-flakes. Fractals are
birds’ feathers and lung tracheas. Fractals are polymer clusters and the clusters of
galaxies. In the following chapters, we will study the fractal behavior of clusters of
phases in the vicinity of a point of phase transition.

The reason why so many studies have been and are devoted to fractals is the wide
abundance of fractals in nature. Even buying a chocolate bar, it is possible that instead
of solid material we find inside the fractal distribution of bubbles. And although it
tastes better, there is definitely less chocolate in it than it was suggested by its size.

1.4 Fractal Trees

Fractal trees (Fig. 1.8) represent another kind of fractals. The main difference in
comparison with the “usual” fractals is that during generation of daughter branches,
we do not discard parent branches but keep them along.
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Fig. 1.9 One box covers not | == | — =1 |— = 7

only a parent branch but also I l il l " _-‘_{‘I l
all its further development L/ I ,3y_ R

Although it is a common practice to assume the structure of the fractal to be like
that of a tree, for the mathematical formalism it is not required. So, all fractals
above would become fractal trees if we considered their figures to represent not a
succession of iterations but the last iteration. For example, four one-dimensional
sets given in the part a of the figure given in Problem 1.2.1 were considered as four
successive iterations. If, on the contrary, we considered now these four sets to be
one set of iteration n = 3, we would obtain the prefractal tree.

How can we find the dimension of a fractal tree? Iteration n contains K" branches
of length Ly", K" branches of length Ly"™,..., K branches of length Ly, and
one branch of length L.

The size of boxes we choose to be € = Lyr" . A branch of length Ly is covered
by one box. A branch of length Lorn_1 is covered by (1/ r)d boxes, where d is the
dimensionality of the fractal initiator (we consider only the simplest geometrical
forms for the initiators). So, the initiator in Fig. 1.8 is the init line segment, and
d =1. Initiator in part d of the figure in Problem 1.2.1 is the unit cube, and d =3.

Applying this rule to branches of all possible sizes, we find the number of boxes
covering each of them. So, the branch of length L is covered by (1/ r)("_Dd boxes
while the branch of length Z, by (1/ r)"d boxes.

To find the total number of boxes of size ¢ = Lyr", covering the whole developed
tree, we should sum all the numbers above:

N(g)=K"+K"" (l)d +...+K(1](M)d +1(l)nd. (1.17)
r r

r

Implicitly we have made a very important assumption here that daughter and parent
branches are located not far from each other. Indeed, by number (1.17) of boxes, we
have definitely covered iteration n. But what about the whole developed tree? Have
we covered branches of iterations n+ 1,7+ 2,...? If daughter branches were located
in the vicinity of the parent branch, one box might cover both the parent branch and
all its development (Fig. 1.9). In other words, one box will be enough to cover not
only one branch of length L, but also all its further development. Then (1.17) is
applicable not only to iteration n but also to the developed tree. Otherwise, all for-
mulae below will no longer be valid.
Applying geometric progression to (1.17), we find

n+l
v 1) | (1.13)



16 1 Fractals

In the limit & — +0 (n — +0) the obtained expression depends on the ratio of K to
I K >, we find

K™ p_ K

or
1 In(1/r)

7

N(g)—>

>d (1.19)
K_

which again corresponds to the right-hand side of (1.5). It, in fact, would be the
dimension of the fractal if we had discarded parent branches as before. Discarding
parent branches means that we neglect the “trunk and boughs” of the tree and
consider only the “canopy of leaves,” called, simpler canopy or tip set. Therefore,
(1.19) is often called the canopy dimension or the tip set dimension.

In the opposite case K < = we obtain

1 n+l
&

-K

N(e) > orD=d. (1.20)

1
4

The case K =1/r9 requires special attention because geometric progression is no
longer applicable. All terms in (1.17) become equal; and we find

N@)=K"+K"+..+K"=K"(n+l)or D=——2K__q (121
In(1/7)
Bringing all three equations (1.19-1.21) together, we obtain
nK InK .

In(1/7) In(1/

p - r)l K( o (1.22)
———<d
In(1/7)

So, the dimension of the fractal tree is still determined by (1.5) but only if it is
higher than the dimension d of the initiator. In other words, if the canopy dimension
is higher than the dimension of the “trunk.” In the opposite case, the dimension of
the whole tree becomes equal to the dimension of the initiator. This result is quite
expected because the dimension of a mathematical set, fractal or not, cannot be
lower than the dimension of its arbitrary subset.

1.5 Self-Affine Fractals

Self-affine fractals present another modification of the “usual” fractals. The dif-
ference is that there are several scale factors now, each acting in its own direction.
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Fig. 1.1 1f- .
ig. 1.10 Self-affine fractal Generator: . :>
]
TY_> .
X
H
B

Fig. 1.11 The number of
“small” boxes, covering

a branch of iteration n, is
higher than the number of
boxes covering its develop-
ment, because during the ntl
branch’s development some

“holes” appear within it

A classical example of a self-affine fractal is the self-similar time dependence
(like Brownian random walk) where a part of the dependence is stochastically simi-
lar to the dependence in whole if two separate scale factors are applied: one for the
time scale, another for the amplitude of the walk.

Another example of self-affine fractals is presented in Fig. 1.10. The genera-
tor creates K =4 daughter branches in the corners of the parent branch. Each
daughter branch is generated by the application of two scale factors to the parent
branch: 7, =1/3 in the horizontal direction (along X-axis) and r,, =1/ 4 in the verti-
cal direction (along Y-axis).

We see that after many iterations, the branches become “stretched”: one side is
much smaller than another. This complicates the box counting because the set of
boxes covering iteration n, may no longer correspond to the set of boxes covering
the developed fractal.

To discuss this question, let us consider some self-affine fractal in the three-
dimensional (d,, = 3) embedding space. In general, this fractal can possess three
different scale factors r,, r,, r, which, without loss of generality, we assume to be
arranged in increasing order: 7, <r, <r..

Let us first choose ¢ to be equal to the smallest side of branches of iteration
n, e =r.", and cover with these boxes iteration n. This number of boxes will then
exceed the number of boxes covering the developed fractal because, when a branch
of iteration n is further developed, some “holes” appear within it which “small”
boxes of size £ =r," can “feel” (Fig. 1.11). In other words, after the branch’s
development some boxes, which covered the branch before, will become empty.

Should we then choose the size of boxes to be equal to the largest side of
branches of iteration n, € =#,"? Then, clearly, after the branch’s development,
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Fig. 1.12 One “big” box of

size € = rZ" can cover several n A LTS
branches of iteration 7

nt+l

none of these boxes will become empty (Fig. 1.12). And now indeed the number
of boxes, covering iteration n, corresponds to the number of boxes covering the
developed fractal.

But simultaneously, we encounter another difficulty. From Fig. 1.12, we see that
one “big” box of size £ =r," can cover several branches of this iteration at once.
Therefore, the number of boxes N(g), covering iteration #, is no longer equal to the
number K" of branches of this iteration. This complicates things because to find
now the number of boxes, covering the fractal, we should take into account the rela-
tive positions of branches.

To our help, here comes the scale invariance as the method of dimension deter-
mination. Let us consider some finite iteration n,. We consider the developed fractal
and the developed branches of this iteration. We choose the size ¢ of boxes to be
infinitesimal in comparison not only with the size L.L,L, of the initiator, but also
in comparison with the size L7, L ", L7, of branches of iteration 7.

Then, the small boxes “feel” the fractal dimension D of both the developed frac-
tal and the developed branches of iteration n,. For the total fractal, we have the

proportionality
D
YL.L,L.
N(g)oc| X222 (1.23)
£

while for the developed branch of iteration n, we obtain

D

n n, n,
%/Lxrx OLyry 0L 1" (124)

Nbranch (g) o

The number N(¢) of boxes, covering the whole fractal, is K™ times higher than
Nbranch (8):
N(S) = KnoNbranch (‘9) (1 25)

Substituting (1.23 and 1.24) into (1.25), we find

SLLL ) g/Lr”OLr"OLr"0
xHytz o« K™ xix yly 2z

& &

D

(1.26)



1.6 The Geometrical Support of Multifractals 19

Here, we can cancel the dependences on ¢, removing the limit & = +0 from the
proportionality:

loc K0 (3 ro ry”orzno )D ) (1.27)

Introducing the new limit n, — +oo, we see that the proportionality (1.27) is pos-
sible only when

1:K(3 Iy )D. (1.28)

D=————. (1.29)

1.6 The Geometrical Support of Multifractals

Multifractals are applied to a system when its behavior is described by more com-
plex laws than just simple power-law dependences. The closest analogy would be
the application of a Fourier spectrum to a process that is more complex than just a
simple harmonic time dependence. Besides, the formalism of multifractals has the
closest resemblance with the formalism of statistical physics. That is why, although
in further chapters, we consider only the cases of phase transition phenomena
described by power-law dependences when the multifractals will not be applied
directly, we still encourage the reader to study the rest of this chapter.

Multifractals have been introduced by Benoit Mandelbrot in his works on
turbulence (Mandelbrot 1972, 1974, 1982). The multifractals are much more
complex than fractals, mathematically and to understand intuitively. Therefore, we
will study them step by step, choosing sometimes not the fastest but more illustrative
way of discussion.

First, we will consider not multifractals themselves but their geometrical sup-
port. The geometrical support of a multifractal is a mathematical set represented by
infinite iteration of a generator when K branches of the generator have their own
scale factors 7,..., 7.

In other words, we again consider a succession of prefractal iterations leading to
the developed set. But, in this case, each of K daughter branches of the generator
has its own linear scale factor 7; which the generator applies to reduce the linear size
of the daughter branch i relative to the parent branch. Without loss of generality, we
assume that all branches are arranged in the increasing order of their scale factors:
B Sy

Since the simplest fractal we have studied above was the Cantor set, we will uti-
lize it to illustrate all concepts of multifractals. However, the reader should always
remember that we consider the one-dimensional generator only for illustrative pur-
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Fig. 1.13 The Cantor set Generator: ——AH HiH
when each of the three
daughter branches has its
own scale factor

HHH HHH H H+—

poses while in general the geometrical support can have an arbitrary dimensionality.
As an example, in Fig. 1.13 we present the Cantor set with K =3 daughter branches
with scale factors ; =1/9,n =2/9,and r;, =1/3.

Let us consider some finite iteration n. Firstly, this iteration contains the smallest
branch of size Ly;" which, during all n applications of the generator, was formed
as the first daughter branch of the generator with the scale factor 7. In future, we
will say that this branch was formed “along the path which has passed & =n times
through the first branch of the generator and has avoided other generator’s branches:
S =8=...=5¢=0"

Secondly, there will be n branches with length Ly5"'r, which have been formed
along n different paths, passing & =n—1 times through the first branch of the gen-
erator and &, =1 times through the second branch, avoiding other generator’s
branches: & =...=& =0.

And so on. For an arbitrary branch of iteration n, we can say that it was formed &
times through the first branch of the generator,..., £ times—through the K™ branch
of the generator. Since the generator has worked » times in total, the following
equality is always valid:

E+E 4.+ 8k =n. (1.30)

For a particular set of numbers &,&,,...,&g, obeying (1.30), there are #

' 1 PRRRY K .

corresponding branches of length Lo’”1§1 ...I”Ké" (there are % different paths
by which these branches have been formed). oK

Sometimes instead of numbers &;,$5,---»Sx, we will consider a set of normalized
numbers

m=Sl ne =K (1.31)
n n

each of which represents the share of a particular generator branch in the path. If
n; =0, the path has never passed through branch i. If 7, =1, for all n times the path
has passed only through branch i. Constraint (1.30) thereby transforms into

m+m,+...+ng =1 (1.32)

Sometimes, we will refer to the set of numbers &j,$5,---s6¢ as to the vector é
just for the simplicity of notation. Similarly, we will refer to the set of numbers
Ms>Mps---> 1k as to the vector 7.
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How do we find the dimension of such a set? Similar to self-affine fractals,
we cannot use boxes with the size equal to the smallest or the largest branch of
iteration n. Indeed, let us suppose that we have chosen some finite iteration n. The
smallest branch of this iteration has length Ly5". If we chose boxes to have size
equal to this length, & = Ly;", the number of boxes, covering iteration n, would
not correspond to the number of boxes, covering the developed set because when
branches of iteration » are further developed, some “holes” appear within them. On
the contrary, if we chose the size of the boxes to be equal to the length of the largest
branch, € = Lyr", the boxes covering iteration n would be the boxes covering the
developed set. However, in this case the boxes are so big that they may cover sev-
eral branches of the iteration # at once, and the number of boxes will not correspond
to the number of branches K".

Similar to the case of self-affine fractals, to find the dimension of the devel-
oped set, we should involve the concept of self-similarity. A developed branch of
iteration n, is supposed to be similar to the developed set in whole. Therefore, the
dimension D of this developed branch equals the dimension of the developed set in
whole. If we choose the size of boxes to be infinitesimal in comparison with the size
of this branch, the boxes will “feel” the fractality of both the total set and its branch.
Then for the total set and for the branch, we obtain

1\
N(g)oc(—oj , (1.33)
&
(L 7o §K\D

N (&)oc| LK (1.34
branch:f( ) L e J )

respectively, where
E+E .+ Eg =1y, (1.35)

But to find the total number of boxes, covering the whole set, we should sum boxes,
covering separate branches:

ny!
N(e)= —2 N (e (1.36)
fpn%}( o 51 !'"§K | branch:&

Substituting (1.33 and 1.34) into (1.36), we find:

b D D(..D D\™
(Ej . ny 1! Loriél"'rKgK _ Ly (}”1 +.o. 1y ) . (137)
€ goife=0. &l S € g’

&+ +Ek=ny
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Cancelling the dependence on ¢, we remove the limit ¢ — +0 from the equation:

loc (P 4.+ 7P, (1.38)

In the limit n;, — +oo, this proportionality is possible only if

P kb =1, (139)

This is the equation that implicitly determines the dimension of the developed geo-
metrical support.

We have found the dimension by box counting. However, as we saw in Sect. 1.3,
the dimension can also be found by the self-similarity of the mathematical set. Let
us choose infinitesimal size € — +0 for boxes and cover the whole developed geo-
metrical support by them. Let N(g) be the total number of boxes required. Then, in
accordance with (1.8), the dimension of the set is determined by

1.40
N(e)ocLthene — +0. (1.40)
£

Each branch i of iteration n =1, developed further, is similar to the whole set and
has the same dimension D. Since it is similar to the whole set, it is covered by the
same number of boxes, only reduced in size in the same proportion 7; :

Nbranchi(gri') = N(¢). (1.41)

We cannot sum the boxes, covering different branches, because they all have dif-
ferent sizes now. Instead, since & has been chosen arbitrarily, we can change the
variable for every branch separately:

Nbranchi(g): N(&‘/}’l) (142)

In other words, a branch i is covered by the same number of boxes of size ¢ as the
number of boxes of size ¢ /7;, covering the total set.

Now, since all branches are covered by boxes of the same size ¢, summing
them, we find the total number of boxes, covering the whole geometrical support:

K K
N(©&) =D Nyaneni(8) = 2. N(&/1). (1.43)
i=l1 i=1

Substituting (1.40) into the left- and right-hand sides of this equation, we return to
(1.39).
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Fig. 1.14 The distribution
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1.7 Multifractals, Examples
1.7.1 Definitions

In the previous section, we studied how to build the geometrical support of a mul-
tifractal and found its dimension. In this section, we begin to consider examples of
multifractals.

Multifractal is determined as a distribution of measure over branches of the
multifractal’s geometrical support. The function of measure distribution is fulfilled
by the same generator that creates the geometrical support. For this purpose, we
assume that initial measure equals 1 and assign measure distribution coefficients

Di>Pas---» Px for each daughter branch of the generator. Then the law of conserva-
tion of measure is

PPyt pr =1 (1.44)

The role of measure, therefore, can be played by any conserved quantity like prob-
ability, mass, etc.

Let us, as a simple example, consider the distribution of gold in the Earth’ crust.
We know that gold is not distributed uniformly. Instead, the general mass of rock is
barren while gold is highly concentrated in gold veins.

As an example, we consider the Cantor set formed by the generator with K =2
branches with scale factors 7 =1/4 and r, =3/4 (Fig. 1.14). Since we have cho-
sen the scale factors to obey the length conservation law 7 +7, =1, the sum of
branches’ lengths does not change during iterations and represents a rock sample
of unit length.

In addition to scale factors for each branch, we introduce measure distribution
factors 7, and P,. The mass of gold works now as the measure; and we assume that



24 1 Fractals

the initial mass of gold, contained in the initiator, equals 1. Also, we assume that
each daughter branch of the generator receives exactly one half of parent’s gold:
p=1/2and p, =1/2.

In Fig. 1.14, we plot three iterations of the prefractal. The rational number below
each branch is the length of this branch. The rational number above the branch is the
mass of gold within this branch.

We see that the density of gold (as the ratio of the branch’s gold mass to the
branch’s length) is not uniform along the specimen but is much higher in some
branches than in other. However, in multifractals, we do not consider the density
of measure. Instead, we introduce the Lipschitz—Holder exponent a (Lipschitz
1877—-1880; Holder 1882) of a branch as

p=2e, (1.45)

where u is the measure of this branch and A is the length of this branch.

So, in the case of the example we have considered above, the first branch
of iteration n=2 has length 1/16 and measure 1/4. Therefore, its Lipschitz—
In(1/4) 1
In(1/16) 2~
of the same iteration have length 3/16 and measure 1/4. So, they both have the
In(1/4)  2In2

In(3/16) 4In2-1In3

Holder exponent is o = Both the second and third branches

same exponents o =

. Finally, the fourth branch has

o= In(1/4)  In2
In(9/16) 2In2-In3
Inthe example above, we have considered the measure equally distributed between
the branches. But it is not necessarily the case. In Fig. 1.15, we present the prefractal
with p; =1/3 and p, =2/3 when the generator transfers one-third of the parent’s
gold to the first branch and two-thirds to the second. The Lipschitz—Ho6lder exponents
_In(1/9) In3 o - In(2/9) 2In3-In2
In(1/16) 2In2 In(3/16) 4In2-1In3

In(2/9) 2In3-In2 In(4/9) In3-In2
a= = >and a = = .
In(3/16) 4In2-1In3 In(9/16) 2In2-In3

We see that some branches (second and third) have equal Lipschitz—Hdlder ex-
ponents. To study the multifractal, we sort its branches into subsets by the values of
their Lipschitz—Holder exponents and then study these subsets separately.

From Figs. 1.14 and 1.15, we see that the first branch of iteration n=2 is
formed along the path & =2,&, =0. The second and third branches (that have the
Lipschitz—Hoélder exponents equal one to another) correspond to two paths with
& =1,&, =1. Finally, the fourth branch is formed by the path & =0,&, =2. This
simple comparison suggests that equal Lipschitz—Hdlder exponents are possessed
by the branches that were formed along the paths corresponding to the same set of
numbers &;,&, . Later, we will discuss that this is not correct in general because
this correspondence is not bijective. But for now, for illustrative purposes, we will
assume that the subsets a of branches formed by different values of a are equiva-
lent to subsets & formed by different sets of numbers &, &,.

of branches of'iteration n =2 are o
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Fig. 1.15 The distribution
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1.7.2 The General Case of the Cantor Set

After considering the simplest examples of Figs. 1.14 and 1.15, let us now discuss

the general case of the Cantor set (Fig. 1.16) whose generator has K branches with

scale factors 7#,-..,/x and measure distribution factors p,,..., px, obeying (1.44).
Iteration n of our multifractal contains _n branches formed along paths

&se.., &, where §il..Sk!

€1+§2+"'+§K =n. (146)

Each of these branches has length rf‘ ...rK§’< and measure pf:‘ pK‘:" . Since they

all have equal lengths and equal measures, they all have equal Lipschitz—Holder
exponents

plé “_pka - (rlff] _._,,.ka )%, or (1.47)

azélnpl+...+§KlnpK’ (1.48)
Slnn+...+ & Inrg

a:nllnp1+...+nK1npK (1.49)

mnp+. 40 lnrg

where we applied the change of variables (1.31).

Generally, we build the subsets of the multifractal by gathering the branches with
equal values of o . As we agreed before, we assume that different sets of numbers
&,,...,&x bijectively correspond to different o . Although it is not true in general,
for now, we assume this equivalence to be present. In other words, as a subset of our
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Fig. 1.16 The distribution D D
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multifractal, we consider all branches formed by paths corresponding to a particular
vector & (to a particular vector 7 determined by (1.31)).

1.7.3 Dimensions of the Subsets

Let us find the dimension D(7j) of a subset 7. The size of boxes that we choose to

match with the length of the branches of this subset is given by: &=r" ... .
!

Then the number of boxes N. ;7(8) , covering the subset, is the number W of
L Eg!
branches in this subset. For the definition of fractal dimension (1.11) to be valid, it

should have the following proportionality:

n! " 1
S
ggl!...ggK! (”1§I~~VK§K) (n)

N;(e)= (1.50)

To obtain the dimension, we should apply Stirling’s approximation,

- owrm (2

where the notation “~;, ” means that in the limit n > 1, we lose all power-law de-
pendences on 7 in comparison with the exponential dependences on n. We will call
this approximation the “logarithmic accuracy.” Applying (1.51) to (1.50), we find
1

=& —$x
ui N/)e OC—D- or 1.52
(l’lfl...rka) (77) ( . )

~ Inn +...4ng In
D(n):m m Mg Mng

mng +.. 40 Inr (1.53)
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Let us investigate the dimensionality of the subsets. To find the subset, having max-
imal fractal dimension, we should find the point 7™ of a maximum of (1.53)
subject to constraint (1.32). We can achieve that by applying the method of La-

grange multipliers. In other words, we should maximize functional

_ In7m +...+ ¢ In (1.54)
W)= A2 Ik K L g+ e —1)
mnn+...+ g Inr

defined on the vector space 177. Here, a is the Lagrange multiplier.
To maximize (1.54), we find when its derivatives become zero. Differentiation
with respect to a

¥ _, (1.55)
oa

returns us to (1.32). Differentiation with respect to 7,

(1.56)
v
& o
771‘ ;ImaxD
provides
nimaxD — riconst. (157)
Substituting (1.57) into (1.32) and recalling (1.39), we find
nmaxD — I’iD (158)

where D is the dimension of the geometrical support of the multifractal in whole.
Utilizing (1.49), we see that (1.58) corresponds to

amaxD_rlDlnp1+...+rKDlnpK (1.59)

D D
Rolnp+. 4 Inrg

Substituting (1.58) into (1.53), we find that the maximal dimension of the subsets
equals the dimension of the geometrical support of the multifractal in whole:
D(ﬁmaXD) -D. (1.60)

Therefore, we could say that the subset with the highest dimension “inherits” the
dimensionality of the whole geometrical support.
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Problem 1.7.1

Consider the multifractal in the below given figure whose generator has K =2
branches with scale factors 7,7, and measure factors p, = p and p, =1-p.
Investigate the dependence of the subset dimension on the Lipschitz—Ho6lder
exponent of the subset.

P P
Generator: l—m}Hl —
non
1
n=0
1
V4 P>
n=1 — —_—
h n
2 2
P PP, b p yZ3
n=2 H H —H —
r12 nn nr r22

Solution: Let us consider a particular vector 7 = Hl ! H Substituting it into
(1.53) and (1.49), we find ~7h

__nInp +(1-n)n(-7) (1.61)
D(n) =
mnn+(1-n)lnr
o Mminp+(d-n)in(-p) (1.62)

nInz +(1-n)lnr,

Above, in (1.50-1.60), we were working in terms of vectors 7 although we
should be working in terms of the Lipschitz—Hdlder exponents ¢. But what
was difficult in the general case becomes quite simple for the case of our
problem when K =2 . We need only to express 7; from (1.62) and substitute
it into (1.61) to find the dependence of the subset’s dimension on the subset’s
Lipschitz—Holder exponent

In(1-p)—alnr, In In(l1-p)-alnr, (L)

D(OC)—1n(1_P)1nr1_1n(p)lnr2 a1n£+lnl_—p
r P

. olny—Inp " alng—Inp _

In(1- p)In7, —In(p)Inr, alni+lnl_—p

) p
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To find the maximum of this dependence, we should equate its derivative
to zero:
dD

=0. 1.64
do | max D ( )

D

For the point ™" of maximum this provides

oD 7’ In p+7," In(1- p) (1.65)

D D
" Inrn+r" Inr

Substituting (1.65) into (1.63), for the dimension of the subset corresponding
to the point o™ we find

D(amaxD):D’ (166)
where D is the dimension of the geometrical support in whole. The general

dependence of the subset’s dimension on the Lipschitz—Hdlder exponent is
given in the below figure for the case p=0.9, 5 =r, =1/2.

D(ov)
4
1.0

A

0.8
0.6
0.4
0.2

o
>

From the above figure, we see that subsets in the vicinity of o™ " have di-
mensions close to D while other subsets have lower dimensions.

1.7.4 Lengths of the Subsets

To find the total length of the prefractal, we should sum the lengths of all branches
of iteration n:

n

. n (1.67)

- z ] i
&iZe=0: &1 1L !

S+ Ak =n

‘...rKéK =(r1 +...+rK)n.
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We see that if the length is not conserved, 1, +...+ 1, <1, the total length of the pre-
fractal becomes smaller and smaller from one iteration to another.
For the subset of vector 1j, the total length of branches is

R N S

m’i L SR ™ ;IJ LEJ

Similar to (1.54), to find the subset with the largest length, we should maximize the
following functional:

("™ ()T (1.69)
Y[7]= L—‘ LL) +a(m +...+ g —1),
Th Tk
where a is the Lagrange multiplier.
Maximization with respect to a,
N _,, (1.70)
Oa
returns us to constraint (1.32). Maximization with respect to 177,
o¥(n
@ =0, (1.71)
af] ﬁmax L
provides
max L __ r[ (172)
i - K .
P
i=1
The corresponding Lipschitz—Hdlder exponent is
amaxLzrllnpl+...+rKlnpK' (1.73)
nlnn 4. 41 Inrg
At the point of maximum 7™ the length of the corresponding subset is equal
with logarithmic accuracy to the total length of the prefractal:
L(ﬁmaxL) ~, L. (174)

Since the length (1.67) of the whole prefractal is the sum of the subsets’ lengths,

no (1.75)
L= > L@,
& rlx =0:

G+.+Eg=n
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about equality (1.74) it is said that the length of the prefractal is equal to its maximal
term.

Critical here are the words “with logarithmic accuracy” because the subsets, ad-
jacent to the subset with maximal length, have comparable lengths. Indeed, let us
consider the “adjacent” subset:

+1
g =&l 4| (1.76)

In other words, the paths corresponding to this chosen subset are the same as for
7™ with the exception that we go one time less through the second branch of the
generator and one time more through the first branch. The total length of the new

subset,

n' max L max L maxL
=N & +1 & -1
L(’]o)—(é:maxL 1)'( maxL _ ) . flrgaXL!rll 7”22 ...VK (1 77)

differs from the largest length of the subset 7%,
—max L _ n' émaxL émaxL fmaxL
L(n ) B fmaXL 'fmaXL ! fmaxL | 1 1 ¢ ’ Ty K > (178)
1 . 2 LY K .
by multiplier
i -1 (1.79)
}’;.
L(ﬂo) _ ;naxL i _ rl;naxL i |1y P N
L(ﬁmaxL) (émaXL +1) 5] (TllmaXL +1) 5] nn
n
K
2
=1-+=L— 1 when n — +o,

nn

We see that the subsets, adjacent to 7™, indeed have similar lengths. Therefore,

beside L(7j™*") there are many other terms of the order of L(7j™%) in equality
(1.74) which we do not see explicitly. This has happened because equality (1.74) is
valid only with logarithmic accuracy.

The logarithmic accuracy means that we neglect all power-law dependences on
n in comparison with the exponential dependence on n. Therefore, equality (1.74) is
valid with the accuracy of a power-law multiplier:

L=L(7™")o(n?). (1.80)
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In other words, the sign ~, disguises the presence of 9(n¢) similar terms, showing
only one of them. In fact, in the limit #» — +oo there could be infinite (!) number of
terms of the order of L(fF™*) in (1.74). And we would still put only one of them
in the left-hand side of (1.74)!

In the vicinity of the point 7™ of maximum, we can expand (1.68) in small
parameter A7 = 77— ™", As a result, we find that the lengths of the subsets in the

vicinity of the maximum obey the Gaussian distribution:

WK ap? (1.81)

5 K

i=l,
r/ 7

L= +...+1x)"e =

The width of the Gaussian “bell” is very small:

1 (1.82)
omn; «« —= —> 0 when n — +o.

Jn

It corresponds to

8¢, o = =In = +o0 when 1 — +o0 (1.83)

Jn

which represents the standard deviation of an arbitrary component of E In other
words, there are C=)(\/; ) different values of & under the “bell” of the maximum.

Considering all components of E together, there are (O(\/Z ))K oc Q(nK/ 2) different

subsets which all have lengths comparable with (7™~

(1.80) as

). Therefore, we can refine

L=L(f]maXL)g(nK/2). (1.84)

Problem 1.7.2

For the multifractal from Problem 1.7.1, prove the Gaussian distribution to be
valid for the lengths of subsets.

Solution: The total length of branches for a subset formed along paths

1-1n, YT YO
L) = (_1] ( ) ] , (1.85)
m I-mn

where 7, is connected with o by (1.62). Expressing n; from (1.62) and
substituting it into (1.85), we find the dependence of the logarithm of L(177)
on a :
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( )

In(1-p)—alnr, In 1In(l-p)—alnn

alni+1n1_—p gl alnr—l+1n1_—p
b3 p ) p

( )

alny—Inp 1 ahn-Inp

- 7 1- L 7 I-p |
aln+in—2 |2 gniym-—P

n p ) p

InL(x)~—n

(1.86)

The logarithm is the monotonically increasing function. Therefore, L(cr) will
be maximal when its logarithm is maximal:

Oln L(a) _0 (1.87)
605 amax i ’
Differentiating, we find the point of maximum
gmat _filnp+nnd-p) (1.88)

nlnn +r,nr
Substituting (1.88) into (1.86), we find that the length of the set, correspond-

ing to the point of maximum, equals with logarithmic accuracy the length of
the total prefractal:

InL(a@™ ") = nin(s; +r,) or L(@™ ") =, (5+n)" =L (1.89)

max L

Let us now expand (1.86) in the vicinity of the point o of maximum:
lnL(a):lnL(ama"L)+M (o0 —a ™™
aa amaxL
2
+l—8 lan(oc) (a0 —a™ )2 4 (1.90)
2 aa amaxL

In accordance with (1.87), the first derivative here is zero. The second deriva-
tive we find as follows:

1

(rllnr1 +r ]nrz)2

2
&'Inifa) _(1.91)
L niry | (1 + 1) (In(1- p)Ins —In plnr, )

oa’
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Substituting (1.91) into (1.90) and exponentiating this equality, we find that
the distribution of the subsets’ lengths in the vicinity of maximum is Gaussian:

2
_EL( (rllnrl"'rzlan)2 \ (a_amaxl)z
L(@)~ Le 2r1r2L(r1+r2 )(ln(lfp)lnrl—lnplnrz)J (1.92)

a
Let us also find derivative ) at the point o™ . Differentiating (1.63)

and substituting (1.88), we find

oD(«x)
oo

In(r, +7r)Inn —In(; +7)Inr,

. In(1- p)Inz; ~Inplnr, (LL5)

a

1.7.5 Measures of the Subsets

We have discussed the dimensionality and the lengths of different subsets. Now, let
us consider the measures of the subsets. First, we check that the total measure of the
multifractal is conserved. Summing the measure over all subsets, we find that the
measure of iteration # still equals 1:

n nl : : " (1.94)
M = z,.é!... !pll...pKK:(p1+...+pK) =1.
&1 =0: S1 K
&+ AEg=n
The measure of a subset 17 is
- n! (o™ ()™ (1.95)
M) =———=p" . p® o~y [ ]
&l &l "Un) U

To find the subset with the highest measure, we should maximize the following
functional

nm nng
‘P[ﬁ]={ﬂj [p—Kj +a(my +...+ng 1), (1.96)
m Nk

where a is the Lagrange multiplier. Maximization provides

max M __

n! (1.97)

pi
which corresponds to

amaxM:pllnp1+"'+pK1npK. (198)
pnp+.+ pelnrg
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—~max M

We see that at the point 7 of maximal measure, the number of branches is
inversely proportional to the measure of branches,
n! N 1 (1.99)
M M ~In max M max M ?
G gy T e R

to provide the unit value of measure for this subset.

In accordance with (1.97), the highest measure is possessed by the subset whose
paths have been chosen in accordance with the probabilities of the measure distribu-
tion. The measure of this subset with logarithmic accuracy equals the measure of
the total prefractal:

M(ﬁmaxM)zl M=1. (1100)

n

Since the measure (1.94) of the whole set is the sum of subsets’ measures,

0 ) (1.101)
M= % M@,

gl """ §K=0:

G+..+Ek=n

it is said that the measure of the prefractal is equal to its maximal term. Again,
equality (1.100) is valid only with logarithmic accuracy, and there are other subsets
with the measure of the same order.

Expanding (1.95) in small difference A% = 7— 7™ | we again find the Gauss-
ian distribution:

nk Ar]»z
o Y (1.102)
M@y =e > 7.

The width of the maximum is again
1
on oc— —0, (1.103)
R

S5E oc\In —> +o0, (1.104)

so for equality (1.100), the logarithmic accuracy means that there are O (nk/z) dif-
ferent subsets under the “bell” of the maximum, each of which has measure of the
order of M (7™>My:

M = M@G™")0(n* 7). (1.105)
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Problem 1.7.3

For the multifractal from Problem 1.7.1, prove the Gaussian distribution to be
valid for the measures of subsets.

m
1—n,

p niy 1-p n(l-ny) 1106
M) =, (—] [—J : St
Ui 1-n,

Solution: The total measure of a subset formed along paths 77 = H is

where 7, is connected with o by (1.62). Expressing 7 from (1.62) and sub-
stituting into (1.106), we find the dependence of the logarithm of A (77) on
a:

Inl-p)-alnr, In 1 In(dl-p)-alnr

alni+ln1_—p palni—i-lnl_—p
) P 7 P

InM(a)=—n

_, alnri=np b1 alp-lnp | (1.107)

oclni+ln1_—[7 1_poclni+ln1_—p
7 p 7 P

To find the maximum of M (), we differentiate its logarithm:

olnM ()
aa amaxM

_0 (1.108)

and find the point of maximum:

maxp _ pInp+(1=p)n(l-p)
plnr+(1-p)nr,

a

(1.109)

Substituting (1.109) into (1.107), we find that the measure of the set, correspond-
ing to the point a™ of maximum, equals with logarithmic accuracy unity:

lnM(amaxM) z0 or M(amaxM) zln 1’ (1.110)

where unity is the measure of the total prefractal.
Finally, we expand (1.107) in the vicinity of the point o™ of the
maximum:
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lnM(a)zlnM(amaXM)+M (o — ™My
aa amaxM (1111)
2
+l—8 lan(a) (o —o™My2 4
2 aa amaxM

The first derivative (1.108) is zero. The second derivative we find as follows:

2
& In M(a) :_n[ (plny +(1_p)11’17'2)2 J (14_%)‘ (1.112)

oa’

In(l-p)Inyy —In plnr, p l-p

Exponentiating equality (1.111), we prove the distribution of subsets’ mea-
sures in the vicinity of the maximum to be Gaussian:

_ﬁ( (plnr1+(1—p)lnr2)2 \2[l+ L](a_amaxM)z (1 : 1 13)
M(a) —e 2Lln(l—p)lnr1—lnplnr2J p l-p
: ... dD(x) o maxM .

Finally, let us find the derivative Jor at the point « of the maximum.

Differentiating (1.63) and substituting (1.109) into it, we find
oD(a) 1 (1.114)

aa amaxM ’
We see that for multifractal from Problem 1.7.3, the subset o™ with the highest

measure corresponds to the point at which (1.114) is valid. But will this be true for
the general case?

To answer this question, in the general case of the Cantor set with K branches,
we should differentiate expression (1.53):

(771 Inm +...+ 1% lnnK\
minn +.. 4+ Inrg J

dD(m)=d (1.115)

However, we should remember that variables 7,,...,ny are not independent but
obeying constraint (1.32). Let us express 1 as a function of 1;,...,ng_;,

K-1
ng =1->.m;, (1.116)
i=1

and substitute it into (1.115):
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K-1 K-1 K-1
Z”i Inn; +(1— Znijln(l— Znij
dD(ij) =d| =

K-1

) (1.117)
Zr)l Inz +[1 anJlan

Differentiating, we find

K-1 K K K-1
{Z(lnnl—lnnK)dnl}{Zni lnr,} {Znilnn,}
dD( ) i=1 i

K 2 -
{Z T, lnr,}
i=1

At the point 7™

(1.118)
this expression transforms into
K- R
P ;(lnpi_lnp[()dni_a ;(lnrf—lan)dni 119
[ My =4 = ' : (1.119)
Z pilnr;
i=1

Similarly, the differential of the Lipschitz—Ho6lder exponent (1.49)

K-l K-l
Zni In p; +[1_ ZU;‘]IHPK
do =d| 2L

i=1
K-1

K- ’
Zni Inz +{1— Zni]lan
i=1 i=1

(1.120)

equals

K-1 K K -1
{Z(lnpi—lnp,()dm}{z lnr} {Z 1np,H (lnr—lan)dn,}
d(l= i=1 p - =1 =1 p 1
{Zﬂilnrz}
i=1

At the point 7™M |

>=

i

2

=1

g

(1.121)
we find

K-1

-1
> (Inp;—In py)dn; —amM > (Inr; —Inry )dn,
da(ﬂmaxM) _ =l i=1

— o (1122)
il i
by
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We see that (1.122) is equal to (1.119). Therefore, for the general case of the Cantor

set, the point 7™ of the highest measure is indeed determined by the equation
9D(@) =1. (1.123)
aa max M

A somewhat similar situation we have already seen for the case of the point 7™**?

of the highest dimension (1.58—1.60); only in that case the point was determined by
equation
oD(a)
oo

-0 (1.124)

o Max D

1.7.6 Analogy with Statistical Physics

Let us look one more time at the measure of a branch p,*' ... p,°<. We can rewrite
this expression as

-5 lnp% -5 1an (1.125)

e l...e K,

This expression closely resembles Gibbs probability in statistical physics, espe-
cially if we consider each branch to be a particular microstate and introduce effec-
tive temperatures

@=L, 0=l (1.126)

P Pk

Then the measure of a subset 77 becomes the partial partition function (see Chap. 2)

,_4 &
n: © o 9% (1.127)

M) =22

while the measure of the whole prefractal—the total partition function

_h &

n
n! o, Ok

~e (1.128)

S+ AEg=n

After the introduction of this similarity with statistical physics, all approaches of
the next chapter become applicable. For example, we can introduce the action of the
free energy of a multifractal as the minus logarithm of the partial partition function:
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Y
T O e Ox, (1.129)

A AL &1

A= —InM(p)=-In

Obviously, minimization of the action functional leads us to the subset ™M with
the highest measure.

All other methods of Chap. 2 can be easily generalized for the case of multifrac-
tals as well; however, we will not present the formulae here, leaving their develop-
ment to the reader.

1.7.7 Subsets ij Versus Subsets o

At the end of this section, we discuss the question why the subsets in terms of the
Lipschitz—Hoélder exponents o do not correspond to the subsets in terms of vectors
7. The simplest example would be a multifractal whose generator has coinciding
scale factors, 7, = T, and coinciding measure distribution factors, p; = p s for two
different branches, i # j. Going / times through the i branch and m times through
the j branch of the generator, we would create the same Lipschitz—Hdélder exponent
as if we were going m times through the i branch and / times through the j* branch
of the generator. The Lipschitz—Holder exponent is the same but the vectors 7] are
different. Therefore, the connection between o and 7 is not bijective—many vec-
tors 77 can correspond to the same value of «.

The example above is trivial; and, having such a multifractal, we could analyti-
cally unite subsets of different vectors 7], corresponding to the same value of «, into
one subset. However, there are trickier situations. Let us consider a generator with
pi=1/4,p;=1/9, r,=1/2,and r; =1/3. For an arbitrary iteration n we consider
a branch that has been formed by path ...,&; =L...,§; =0,... The measure of this

N1y Ny
branch is ...|—| .../ = | ... and the length is ...| = | ...| = | ... The Lipschitz—
4 9 2 3

Holder exponent of this branch (taking into account only the known multipliers) is

a=2.

Now, let us consider another path ...,&; :O,...,éj =1,... The measure of the

Y 1y Y
branchis ...l —| .../ = | ... while its length is ...| = | ...| = | ... The Lipschitz—
4 9 2 3

Holder exponent of this branch is again a =2 . And the connection between « and

7] is again not bijective.

We have built subsets in terms of different vectors 1 only because this provided
preliminary intuitive understanding of multifractals. In reality, following the defini-
tion of a multifractal, we had to build subsets in terms of different Lipschitz—Hdlder
exponents a.
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1.7.8 Summary

Summarizing, in this section we have considered several examples of multifractals.
Also, we have introduced the concept of the Lipschitz—Ho6lder exponent whose val-
ues allowed us to divide the total set into subsets. We have studied the properties of
these separate subsets and found the distributions of subsets’ dimensions, lengths,
and measures.

Now, we see that the properties of multifractals are determined by the “clash” of
two phenomena: the geometry of daughter branches and the measure distribution
among the daughter branches. The larger the size of a branch, the lower is its Lip-
schitz-Holder exponent. The higher the measure of a branch, the higher is its Lip-
schitz—Holder exponent. This “tug of war” over the value of the Lipschitz—Ho6lder
exponent leads to the separation of the mathematical set into fractal subsets with
different properties.

Also, we saw that there is no bijective connection between vectors 77 and Lip-
schitz—Holder exponents a. It could be convenient to work with vectors 77; however,
to study the multifractal, we will have to transform finally subsets 7] into subsets a.

Of course, this is only a matter of definition—to investigate the properties of
subsets a instead of subsets 1j. But, again, the reader should always remember that,
generally speaking, the subsets of multifractals are always determined by different
values of the Lipschitz—Ho6lder exponents . If one builds subsets by different vec-
tors 77, she/he, rigorously speaking, is investigating not multifractals.

1.8 The General Formalism of Multifractals

In the previous section, we considered several examples of multifractals and began
to understand intuitively what the multifractals are. In this section, we study the
general formalism.

We consider a developed multifractal and cover it by boxes of size €. For ex-
ample, we can divide the embedding space into cells of volume e®, where d, is
the dimension of the embedding space. Then we count only those boxes that have
caught something from the set and disregard empty boxes.

We will enumerate nonempty boxes by index i. Integrating the measure over
each box, we denote the measure, contained by box 7, as ;. Since the measure is

conserved, we always have
N(&)
M= Zui:L (1.130)
=1

where N(¢) is the number of nonempty boxes, covering the multifractal.
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For each box 7, we introduce the Lipschitz—Holder exponent o, by the following
definition:

— (1.131)

Let us divide the initial mathematical set into subsets, corresponding to different
values of the Lipschitz—Hoélder exponent. In other words, having found for each box
i its Lipschitz-Holder exponent o;, we gather into a subset « all boxes whose Lip-
schitz—Hoélder exponents a; correspond to the given value o. Then, in accordance
with (1.131), the boxes of the subset « contain all the same measure g, =&“.

Firstly, we should understand how many different subsets are there. Let us imag-
ine that we investigate the properties of the multifractal experimentally. So, we lit-
erally divide the embedding space into cells and experimentally calculate the mea-
sure within each box. How then we unite boxes into subsets? For example, if the
Lipschitz—Holder exponent of one box is a =1.00000 while the Lipschitz—Holder
exponent of another box is o =1.00001, do these boxes belong to one subset or to
two different subsets?

If we are working experimentally, we generally divide the range of possible val-
ues of o into a set of intervals (bins). Each interval then represents a particular
subset whose boxes possess the Lipschitz—Hdlder exponents with values from this
interval. Further, we assume that the number of intervals is a power-law dependence
2(1&9 é) on lni in the limit (1.9).

The whole set is covered by N(g) boxes while only some of them are boxes,
covering the subset « . If we denote the number of boxes, covering the subset «, by
N, (&), then the total number N(¢) of boxes should equal the sum of numbers of
boxes, covering different subsets:

N(S):ZNa(S). (1132)

Following the box counting method (1.8), the dimension of the whole multifrac-
tal is determined by

N(g)ocLD (1.133)
g
while the dimension of a subset « is determined by
(1.134)
Na (8) oC EDW.

Only this time, we will look at these proportionalities from a different point of view.
These proportionalities are valid in the limit € — +0 or, more rigorously, in the limit
(1.9):

L s 4o, (1.135)
&
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“Tossing” ¢ into the exponents, we rewrite proportionalities (1.133 and 1.134) as

Dint (1.136)
N(g)xe ¢,

1
D(a)ln— 1.137
N,(g)oce ¢ ng. ( )

In the right-hand sides of these proportionalities, we see exponential dependencies

on In— which is infinite in the limit In— — 4o . The exponential dependence on
£ £

an infinite parameter suggests the applicability of logarithmic accuracy:

Dlnl 1 Dlni
N(E) —e gQ n? — R, e e, (1.140)
- &

D(oz)lnl
&

1
D(a)ln—
N.(e)=e sg[w lj < e (1.141)

&

However, an equality valid with logarithmic accuracy is not equivalent to a propor-
tionality. A proportionality means that only a constant of proportionality is omitted:

f(e)=const - g(g) x g(¢), (1.142)

while an equality valid with logarithmic accuracy means that omitted is a power-
law dependence:

f(e)= g(a)Q(ln“’ l) ~, g(e). (1.143)
- &

What should we choose for further discussions: strict proportionalities (1.136 and
1.137) or more general equalities (1.140 and 1.141)? If we considered the math-
ematically rigorous division of the multifractal into subsets (when o =1.00000 and
a =1.00001 always meant two different subsets), then we could apply rigorous pro-
portionality dependences (1.136 and 1.137). However, instead, we have divided the
range of possible values of « into a set of intervals. The width of these intervals

was, in fact, arbitrary; we only require that the number of the intervals should be a

power-law dependence O| In? l) on lnl.
= g g

Why did not we specify more detailed information about the procedure of how
we choose the length of intervals of o ? Because this information is not required for
the formalism to work. Indeed, suppose we choose intervals twice larger than be-
fore, what would happen? Instead of N, (g) boxes, there are now Na (e)=2N,(¢)
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boxes corresponding to the subset . But this does not influence equality (1.141)
because the multiplier 2 will be neglected by the logarithmic accuracy:

~ D(oz)lnl 1 D(a)lnl (l~144)
N, (&) =2e 0| In?—| =, e e,
&

. . | e
Even if we chose the length of the intervals O (ln"’ —j times larger (infinite (!)
= £

number of times larger in the limit (1.135)), the logarithmic accuracy would still
disguise the difference!

We see now that the logarithmic accuracy is the corner stone of the whole for-
malism. It allows us to choose the width of the intervals of @ almost arbitrarily. It
allows us to neglect all complex power-law dependencies in comparison with the
exponential dependencies. It allows us to equate sums to their maximal terms. And
so on. Without logarithmic accuracy, the general formalism could be impossible.
And this is true not only for multifractals but also for many other systems as we will
see in the following chapters.

Summarizing, since the choice of the width of the intervals of o was arbitrary,
we cannot apply strict mathematical proportionality (1.137). Instead, we have to
utilize less strict (1.141):

1 1
D(a)ln— 1 D(a)ln— 1.145
N, (&)=e fQ[ln‘” —) Ry € ¢ or ( )
= &
1
No (&) = gy (1.146)

However, the loss of strictness will be only to our benefit because it simplifies all
further formulae.

Let us see how. The subset o™ ? with the highest dimension is, obviously, de-
termined by
D@ _, (1.147)
aa amaxD

which is analogous to (1.124). But in accordance with (1.132), N(¢) is the sum of
N, (&) . Substituting (1.140) and (1.146) into (1.132), we find

1 1

1 1 Din— D(a)In— 1.148
5 ®n 2 b ¢ "% 2e ° ( )
& o & [24
The left- and the right-hand sides of this equality are “fast” exponential depen-

1 . L .
dences on In— — +oo while the number of significant terms in the sum Z, over
& 13
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. . . . 1
which the sum gathers its main value, is a power-law dependence on In—. There-
g
fore, we can approximate the sum by its maximal term and neglect the power-law

dependence on 1nl :

1 1
Dln— D(a)]n;. (1149)

g
1 &

8—Dz1n maan or e =, max, e

Since the maximal term is provided by (1.147), we find

1 1 pnl D(a™™ D)lnl

ore fxp e €, (1.150)

Taking the logarithm of this equation, we prove that the highest dimension among
the subsets belongs to the subset, determined by condition (1.147), and equals the
dimension D of the whole multifractal:

D(a™ Py~ D. (1.151)

For the total measure of the whole multifractal we find

M= M@)=1. (1.152)

Since all boxes of a subset & possess the same value of measure 4., = &%, the mea-
sure of the whole subset o is

M(a)=N,(e)e” =, £* 7@, (1.153)

The subset o™ with the highest measure is determined by

olnM () —0 or dD(a)

80! o™max M d o P M

—1 (1.154)

which is analogous to (1.123).
From (1.153), we see that the subsets’ measures M (o) depend exponentially on

1
In— while the number of significant terms in the sum (1.152), over which the sum
£
1
gathers its unity value, is a power-law dependence on In— (recall (1.101-1.105)).
£

Neglecting all power-law dependencies, the total sum (1.152) is equal with logarith-
mic accuracy to its maximal term:
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M %, M(amaxM). (1.155)

Since M =1, (1.155) states that

1 z11’1 NamaxM (g)gamaXM or (11563,)

1
maxMﬁD(amaxM) {D(OémBXM)—(ZmaX‘M}lnf

=e ‘.

(1.156b)

~ a
=, &

In the limit (1.135) this is possible only if

oM (1.157a)

Namax w (&) =y € and

amaxM zD(amaxM)' (1157b)

max M

Next, we find the second derivative of M (&) at the point & of the maximum

by differentiating (1.153):

Int. (1.158)
&

o’ In M(a)
oa’

. *D(at)

o 02X M aa

o 02X M

Substituting the first derivative (1.154) and the second derivative (1.158) into the
expansion of In M («),

InM(a)= lnM(amaXM)+M (a— amaXM)
aa amaxM
2
+la ln]\g(a) ((Z—amaXM)2+..., (1.159)
2 aa amaxM

and exponentiating, we return to the Gaussian distribution:

15°D(a) in(mqmes )
Py o Max M n—-ja-a (1160)
M(a) < &2 o ¢ .
The width of the maximum is

Sot o 1 (1.161)

1

In—

€

which is very small in the limit (1.135).
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Let us now calculate Gibbs—Shannon entropy (Gibbs 1876, 1878; Shannon 1948)
of the multifractal:
N(e)

SM = pyln (1.162)
i=1

We should mention that in contrast to the previous section as microstates, we con-
sider here not the separate branches of the prefractal but separate nonempty boxes
covering the developed multifractal.

Substituting (1.131) into the logarithm in (1.162), we find

F 1\ ¥E)
S :h{zj > . (1.163)
i=l

The obtained equality represents averaging of the Lipschitz—Ho6lder exponent with
the measure distribution:

GMF zln(l]<a> (1.164)
£ n’
where
N(¢g)
<a>u =Y ua, (1.165)

Let us rewrite the definition of averaging (1.165) as the sum not over boxes but
over subsets:

(@), =2 N, (e)e“a. (1.166)

1
. . D(a)In—
Here, the first two dependencies under the sign of the sum, N, (¢) =, e ¢ and

1
—aln— . 1.
e*=e ¢, are very “fast” dependencies on « because of the parameter In— in
€

the exponent. The product N, (g)e” of these dependencies is the measure M (a) of
the subset o which has the very narrow maximum (1.160).

In contrast, the third dependence « is rather “slow” in comparison with the other
dependencies. Therefore, the product N, (g)e” acts for this “slow” dependence as

a o-function. All the more so that in accordance with (1.152), the sum ZNa (e)e”

a
is normalized to unity. So, we expect the averaged o to be equal to the point of
maximum o™

(), =™, (1.167)
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Let us now prove this statement. The width of the maximum is provided by
(1.161). Sum (1.166) gathers its main value under the “bell” of the maximum; and
we can neglect other terms. Under the “bell” of the maximum, the “slow” depen-
dence o equals

azama"M+g(l/\/1nl/8). (1.168)

Substituting it into (1.166), we find

(@), = @™+ O(LVINT2)| TN, ()% = @™ +0(1/In1 ) (1.169)

which proves (1.167) in the limit (1.135).
Substituting (1.167) into (1.164), for the entropy of the multifractal we find:

sMF :ln(ljama"M. (1.170)
&

1.9 Moments of the Measure Distribution

Next, we introduce the moments of the measure distribution:

N(e) (1.171)
M,(&)= Y u.
i=1

In other words, we sum over all (nonempty) boxes the g-power of box’ measure

(Sinai 1972; Bowen 1975; Ruelle 1978). Here, ¢ should be considered to be just a

parameter whose values might not correspond to a physical property of the system.
For the zeroth moment (¢ =0) from (1.171), we find

N(e)

1
My(e)= D 1=N(e)~, ol (1.172)
i=1
while for the first moment (¢ =1):
N(e)
M (g)= Zlul.:], (1.173)

i=1

We assume that all moments depend exponentially on In l, similar to dependencies
(1.140 and 1.141): ¢

(g-DA 1.174
M, (e)xce 7, ( )
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Parameters A, here are called rhe q™-order generalized dimensions (Grassberger
1983; Hentschel and Procaccia 1983; Grassberger and Procaccia 1983). The reader
should understand that these parameters may not correspond to any physical dimen-
sions really present in the system. Therefore, we have utilized letter A instead of
letter D to emphasize this.

The multiplier (¢ —1) in the exponent of (1.174) is just a matter of definition
and was introduced to guarantee that for the case of the first moment (g =1) equal-
ity (1.173), representing the law of conservation of measure, will be always valid.
Besides, if we distribute measure evenly over a classical nonfractal set (like a sur-

face), measure y; is the same for all boxes, u, = ;, while g"-moment (1.171)
N(e)
N(e)
N(e)
M,(g)x £DP and comparing the result with (1.174), we see that the multiplier
(g —1) has also been chosen for the purpose that all g"-order generalized dimensions
coincide with the dimension of the classical set with evenly distributed measure.
Comparing (1.174) with (1.172), we see that

Ay=D. (1.175)

transforms into M, () = =N (¢). Substituting (1.2b) into this equality,

The moments introduced by (1.171) are often called also the generating functions,
or partition functions, or statistical sums. There are so many names due to the im-
portance of the role played by these quantities.

Indeed, let us transform sum (1.171) over boxes into the sum over the subsets « :

M,(e)=) N, (s)&™. (1.176)

This expression is very similar to the partition function of the canonical ensemble:

ZE = gpe T, (1.177)
E

Indeed, if we thought of boxes as of microstates and of Lipschitz—Hdlder exponent
a—as of the negative energy of these microstates, then the subset o would seem to
play the role of a group of microstates, corresponding to the given value of energy.
And N, (¢) would be g,—the statistical weight of energy level £ (the number of
microstates corresponding to the given value of energy) while parameter g—the
inverse temperature of the system.

Due to this analogy, the moments are often called the partition functions. Howev-
er, the reader should clearly understand the difference between (1.176) and (1.177).
In statistical physics, e © e represents the probability of a microstate while £% is
not the measure of a microstate but the g"-power of that measure. Therefore, al-
though the mathematics is very similar, the concepts behind it are not.
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. . 1 .
Since all moments depend exponentially on In—, we expect that sum (1.176) is
equal to its maximal term: €

max M,
~ e 7(q) 1.178
My @)%y N s, (22 : (1.178)

where the point of maximum o™ My (g) is determined by

qa qor
O(N,(8)&™™) _Oor Oln(N, (8)&?™) o, (1.179)
aa maqu a maqu
a a
Substituting (1.146) into (1.179), we find equality
qo—D(a)
Olng™™ " _0or 2P@ —q (1.180)
oa o My oo P Mg

which determines the point o™ My (g) of the maximum.

For the g™-moment we have introduced the g™-order generalized dimension
(1.174). Substituting (1.178) and (1.146) into (1.174), we find the connection be-
tween the subsets’ dimensions D(a) and the generalized dimensions A, :

qamaXMq(q)—D(amaXMq):(q_l)Aq- (1181)
Differentiating the left-hand side of this equality, we find

L g™ (g)— D™ )}

dq

_ ™My, da™ M 3 oD(a)| ﬂ = oMy (1.182)
dq aa | amax Mq dq

B

where in the last equality we have cancelled two last terms in accordance with

(1.180). Therefore, o M4 can be found as the derivative of the right-hand side of
(1.181):

max d
a Mq(q)=d—q{(q—1)Aq}. (1.183)

If we know the dependence A (g), we substitute it into (1.183) to find the depen-

a.

dence o™ M (¢). Inverting, in turn, the last functional dependence g(«a maxM") and
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substituting it into (1.181), we find the dependence D(a). So, knowing A, (q), we
can find D(a). And vice versa, knowing D(a), we can find A, (g). Both depen-
dences can be investigated experimentally, and having found one of them, we im-
mediately obtain another (Halsey et al. 1986).

For the first moment from (1.181), we find

a ™M (1) = D(a™ M) (1.184)

which coincides with (1.157b). Substituting ¢ =1 into (1.183), we obtain

OtmaXMl(l)=Al. (1.185)

Let us now find the generalized dimensions with the aid of self-similarity. We
consider an arbitrary case of a multifractal whose generator has K branches with
scale factors #,...,7x and measure distribution factors p,..., pg.

We cover the whole developed set with boxes of infinitesimal size €. Let N(¢)
be the total number of boxes required.

Next, we consider a branch 7 of the first iteration n = 1. Further development of
this branch is similar to the set in whole and can be covered by the same number of
boxes but with the reduced size ¢7;:

Nyraneni(€r) = N(é). (1.186)

The share of measure, inherited by the branch, is p;. This means that the distri-
bution of measure for further development of this branch is similar to the measure
distribution of the whole multifractal, only the branch starts with measure p; in
contrast to 1 in the case of the total set (the generator creates the same distribution
but with the different initial value). So, each box of size ¢r;, covering the branch,
possesses measure p; times lower than the corresponding box of size ¢, covering
the whole multifractal:

u(en) = pu(e). (1.187)

For the ¢g"™-moment of the whole multifractal, covered by boxes of size &, we
have

N(e)
M, (&)=Y u(e) (1.188)
=1
while for the branch i valid is

Noranch i (€17) N(e)

My ey = X wfen) = 3 (P (@) = M (o), (1189)
j=1 j=1
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where we have utilized (1.186) and (1.187).
Since ¢ has been chosen arbitrarily, we can change the variable:

branch i
Mq ‘anc 1(8)=piqu(€/l’}). (1190)

Then, because after the change of the variable all branches are covered by boxes of
the same size ¢, summing (1.190) over all branches, we find the g*-moment of the
whole multifractal, covered by boxes of size ¢:

S branch i S (1191)
M,(&)=2 M (&)= pIM, (/1.
i=1 i=1

Substituting (1.174) into this equation, we find (Hentschel and Procaccia 1983;
Halsey et al. 1986)

K
1= p? A (1.192)

i
i=1

which provides implicitly the dependence of A on g. 0"-moment (g = 0) returns us
to (1.39) while for the first-moment (¢ =1) from (1.192), we obtain only the trivial
equality (1.44).

Knowing the dependence A, (¢), we can find the dependence D(a), as it was
described above.
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Chapter 2
Ensemble Theory in Statistical Physics:
Free Energy Potential

Abstract In this chapter, we discuss the basic formalism of statistical physics.
Also, we consider in detail the concept of the free energy potential.

Similar to Chap. 1, this chapter is a prerequisite. As required for further discus-
sions, we consider understanding of the free energy concept, its connection with the
probability of fluctuations,

equilibrium _
ks lIJﬂuctumiun

Wensemble —e Tres (2 1)
Sfluctuation ’

and with the partial partition function,

\Pﬂuctuation =-T""InZ Sluctuation* (22)

The reader who is proficient in these concepts may skip this chapter.

Since the purpose of this chapter is to refresh in memory the class studied by
students only 1 or 2 quarters ago, we generally avoid rigorous discussions or math-
ematical proofs. Instead, we illustrate the formalism by simple examples and mul-
tiple figures. This provides intuitive understanding of all concepts discussed in the
following chapters and simultaneously introduces terminology utilized in the fol-
lowing discussions.

For the reader not familiar with statistical physics, we recommend to follow thor-
oughly all the formulae below because the chapter has been developed to serve as a
“guide” to basic concepts of statistical physics. Although we consider the discussions
presented here to be sufficient for understanding of the following results, for further
study we refer the reader to brilliant textbooks, e.g., Landau and Lifshitz (1980).

2.1 Basic Definitions

Statistical physics studies systems with high number of degrees of freedom. A
classical example is a gas, 1 mol of which contains N, oc 6:10% particles, where
N, is the Avogadro constant. This is important because many results in statistical
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physics are valid only when the number of degrees of freedom is infinite: N — +oo.
This limit is called the thermodynamic limit of infinite number of degrees of freedom
or, simply, the thermodynamic limit.

A system is called an ideal system if its particles or degrees of freedom do not
interact with each other. For example, an ideal gas is a gas with noninteracting,
noncolliding particles.

However, the above definition is not completely correct because such a gas
would never reach the state of thermal equilibrium. For example, if initially half
of the gas particles have velocities 10 m/s while the other half have 20 m/s, and
particles do not interact or collide, the gas will keep the velocities of its particles
unchanged and we will never see the Maxwell-Boltzmann distribution.

Therefore, to reach the state of thermal equilibrium, there must always be present
some (maybe weak but nonzero) interaction among the degrees of freedom. For ex-
ample, we can modify the definition of ideal gas to be a gas whose particles can col-
lide, but these events are extremely rare. So, observing the system for a long period
of time, we will see how it evolves toward an equilibrium state. On the contrary,
for short time intervals we can neglect particle collisions as improbable events and
consider the system to be completely without particle interactions. Therefore, the
possibility to consider the system ideal significantly depends on the duration of the
time interval during which we intend to investigate the system’s behavior.

Besides the interactions of particles or degrees of freedom with each other, we
consider their interactions with external fields. An example is a magnetic system in
a nonzero magnetic field 4. We will always consider external fields to be supported
as constant and not depending on the state of the system considered.

Constant external field is an example of boundary conditions imposed on a sys-
tem. Other examples may include systems maintained at constant volume, pressure,
temperature, etc. In particular, an isolated system is a system with prohibited energy
and particle exchange, and maintained at constant volume: E,V, N = const.

If a property of a system can fluctuate for the given set of boundary conditions,
we call this property the system’s fluctuating parameter. For example, for a sys-
tem maintained at constant temperature, its energy can fluctuate and is, therefore,
a fluctuating parameter. If pressure is also maintained constant, another fluctuating
parameter is the system’s volume.

In the case when a phase transition is present in the system, the phases are dis-
tinguished by the values of fluctuating parameters. For example, for the gas—liquid
phase transition at constant pressure, two phases are distinguished by the values of
the volume; while for a ferromagnetic system the role of a parameter distinguishing
phases is played by the system’s magnetization. Such fluctuating parameters are
often called order parameters because they describe the appearance of an order in a
system below its critical point. We will discuss this definition in more detail in the
following chapters.

If the property of a system is proportional to the number N of degrees of freedom
in the system, we call this property the extensive parameter (e.g., energy, entropy, heat
capacity, volume, magnetization, etc.). On the contrary, if the property of a system is
not proportional to N, we call this property the intensive parameter (e.g., temperature,
pressure, chemical potential, specific heat capacity, specific magnetization, etc.).



2.2 Energy Spectrum 57

The last definition we should introduce is the definition of an ensemble. Let us
investigate a particular system. If we observe the system’s behavior, we see that it
evolves, jumping from one state into another. If we consider, for example, gas par-
ticles when they follow their trajectories, the gas as a whole will keep moving from
its current state into the next, into the next, into the next, and so on.

But instead of observing the behavior of one particular system, we can build an
ensemble of systems. All systems in the ensemble are identical and differ from one
another only by their initial conditions. In other words, instead of observing a chain
of states { }1 - { }2 - { }3 —> ... for one particular system, we can consider the
ensemble of systems which initially are in states { }] ,{ }2 ,{ }3 ,... The ergodic
hypothesis claims that these two modeling techniques of the system’s behavior are
equivalent.

2.2 Energy Spectrum

Firstly we consider an isolated system whose Hamiltonian does not depend on time
explicitly. For such a system, we find a discrete or continuous energy spectrum of
microstates {E } as eigenfunctions of the Hamiltonian operator. For simplicity, we
consider in this chapter only discrete energy spectra although all our formulae are
valid for the case of continuous spectra as well.

We make no assumptions about the structure of the spectrum, requiring only for
the dependence of the spectrum density to be exponential on the number of degrees
of freedom N — +o in the system. This requirement is valid for the majority of
systems and, as we will see below, is in fact, crucial for the formalism of statistical
physics.

Each eigenvalue E of the Hamiltonian (as a possible value of the system’s en-
ergy) is called an energy level. Generally for an ideal system, many eigenfunctions
{E } correspond to the same Hamiltonian eigenvalue £. Then this energy level E is
called degenerate while the number of microstates {E } belonging to this eigenvalue
E is called the degeneracy g, of this energy level. This is schematically presented in
Fig. 2.1a where microstates {E } (shown as horizontal lines to the right) are combined
into energy levels E; (shown as horizontal lines to the left) with degeneracies g Ey

}e.,

Fig. 2.1 A schematic Es é

representation of an energy z } 8k, Es
i 4

T e o

E

E; with degeneracies g, . ;é } 8k, s —] } 8k,

b Microstates are combined E, ‘ —

into groups with energies £, _é } 8, b= } 8,

and statistical weights g E, 1 é } g, E = } g
a
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Problem 2.2.1

Find the energy spectrum for the Ising model without spin interactions. For
simplicity, assume that the model consists only of N =3 spins.

Solution: The Ising model (Ising 1925) is described in detail in Chap. 3. Here
we present only the brief description of the Ising model without spin interac-
tions which will be utilized as an example for the rest of this chapter. The
model is built on the base of an absolutely rigid lattice whose geometry is
currently not important. At each lattice site, a spin (a magnetic moment g) is
located. As it is known from quantum mechanics, the spin of an electron can

L 1 . .
have only two projections iE on an axis of an external magnetic field 4. In

the Ising model, a spin also can have only two projections on the axis of the
magnetic field #. But now these projections are chosen to be +1 where the
multiplier 1/2 has been lost for the purpose of convenience.

Generally, we consider the lattice with N spins, where N is infinite in the
thermodynamic limit: N — +oo. Let index i enumerate the sites of the lattice.
If the spin at site ; has projection o, = +1 on the axis of magnetic field, then its
energy is —uh. For projection o, = —1, we have energy +ph. The Hamiltonian
of the system equals the sum of the spin energies:

N
H,, =-uh) o, (2.3)
i=1

As we see from (2.3), the Ising model without spin interactions is nothing
more than a two-level system, where each degree of freedom is allowed to
have only two values of energy: & = £uh. As an example, we utilize here the
Ising model but not the two-level system with the purpose to acquaint the
reader with the former.
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The formulation of the model above has been oversimplified. Neverthe-
less, it corresponds to the rigorous formulation; we only need to put “caps” of
quantum operators over the Hamiltonian and over the spins:

N
H=-uh) o, (2.4)
=1

Microstates {G}, as the eigenfunctions of Hamiltonian (2.4), correspond
to the realizations of different spin orientations on the lattice. In other words,
prescribing for each spin its orientation (along the field, o, = +1, or against
the field, o, = —1), we are forming a particular microstate {0'} of the system.

In the case of N =3 (which corresponds to the formulation of our
problem), there are only eight microconfigurations {G } of spin orientations

on the lattice: {TTT}, {TTi}, {N/T}, {J«TT}, {'N»L}, {iN«}, {»LiT}, and
{iiﬂl,}, where the symbol “1 > denotes a spin oriented “up” (along the
field) while the symbol “J” denotes a spin oriented “down” (against the
field). These microconfigurations correspond to the following microstates:

{E=-3uh}, {E=-ph}, {E=-ph}, {E=-ph}, {E=uph}, {E=uph},
{E = ,uh}, and {E = 3/.Lh}.

E=3uk Bun} g, =1

E=h {uh}}
Ll g, =3
E=—uh -
{_“h} —uh =3
E{—uh}}g
S aumbe, =1

Therefore, the energy spectrum of the system consists of four energy levels.
Only one microstate {T’M‘} (which we have denoted as {~3uh}) corresponds

to energy level £ = —3uh. Therefore, this level is not degenerate: g 5, =1.
Three microstates {T’N,}, {TLT}, and {M‘T} (which we have denoted as

{—uh}) correspond to energy level E = —puh, and this level has triple degen-
eracy: g, =3. And so on.

Problem 2.2.2

Find the energy spectrum for the Ising model without spin interactions. Con-
sider the model consisting of N =5 spins.
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Problem 2.2.3

Find the energy spectrum for the Ising model without spin interactions. Con-
sider the case of the model with an arbitrary number of spins M.

Solution: Magnetization of the system in a microstate {0'} is introduced as the
sum of magnetic moments over the lattice:

(2.5)

Dividing the magnetization by the number of spins and by the value of the
magnetic moment £, we obtain specific magnetization:

1& M
m = — . =——,
@ NZ =T (2.6)

It is easy to see that in the case of the Ising model without spin interactions
the energy of the system depends on its magnetization bijectively: knowing
energy, we can find magnetization and vice versa:

H,, =-hM, =—uhNm,,. 2.7)

For convenience, we also introduce two more parameters: the number of
spins along the field, N,, and the number of spins against the field, V. The
magnetization is, obviously, proportional to the difference between these two
numbers,

Mg, = p(Ny =N)), (2.8)
while the sum of these numbers equals the total number of spins on the lattice,
N=N,+N,. (2.9)

Therefore, if we know the energy of the system or its magnetization, we can
bijectively find the numbers of spins along and against the field:

NT:l N—£ ,N¢=l N+£ (2.10)
2 uh 2 uh
or
1+m I-m @.11)

Ni=N——,N, =N——-.
! 2 2
Vice versa, if we know N, and N, we know the energy of the system

E=-ph(N,-N,). (2.12)
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This expression corresponds to the value of energy of a particular energy
level. From (2.12) it is easy to see that two adjacent energy levels are sepa-
rated by one spin “flip”:

|AE |=2uh, (2.13)

where “2” comes from that a spin with one orientation disappears while a spin
with the opposite orientation appears.

To find the degeneracy of energy level E, we should find how many micro-
states {o‘} correspond to numbers N, and N, given by (2.10) and (2.11). In
other words, for the given values of N, and N, we have to find the number
of microconfigurations by which N, of N spins could be oriented along the
field while the rest of spins would be oriented against the field:

N!

: (2.14)
N, !N, !

8 =

As we will see later, one of the most important mathematical formulae in
statistical physics is Stirling’s approximation

NI [9 o), (2.15)

where O(N“) is the power-law dependence on N. In the thermodynamic
limit, N' = +0, the power-law dependence O(N®) on N is much “slower”

than the “fast,” exponential dependence (N /e)". Further, we will often uti-
lize the notation “~,,” of the logarithmic accuracy meaning that in the ther-
modynamic limit, N — +oo, we neglect all “slow” power-law multipliers in
comparison with the “fast,” exponential dependencies on N . In particular, for
Stirling’s approximation we have

Nix, [E] 2.16)

Applying (2.16) to (2.14), for the energy level degeneracy we find

(N\NT(N\ o (N\NT(N\M 1+m _NHTm 1-m _Nl_Tm
o) ) el W) 059 )

Equation (2.17) is the typical representative of the degeneracy dependence

on the number of degrees of freedom N in the system. Firstly, we see that
I+m

1- .
both exponents, N, = N and N, =N Tm , are proportional to N, and,
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therefore, the degeneracy of energy levels indeed depends exponentially on
N. Secondly, N/ N, and N/ N, are intensive parameters (not proportional
to V), and the singularity of the thermodynamic limit, N — +oo, is absent in
them.

Therefore, we can conclude that the typical behavior of the energy-level
degeneracy on the value of energy is presented by a “tendency”” when some-
thing finite is raised to the “singular” power proportional to N.

And it is not important whether this dependence is increasing or decreas-
ing with the increase of energy. For example, for the Ising model, the lowest
energy level, when all spins are along the field, is not degenerate. Neither
degenerate is the highest energy level, when all spins are against the field.
Between these two extremes, the degeneracy initially grows with the increase
of energy but then decreases back to unity. For both cases, what is important
is that the dependence is exponential on N, when we can neglect all power-
law dependences.

The spectrum presented in Fig. 2.1a corresponds to the case of an ideal system.
If we consider a nonideal system (which cannot be converted into the ideal by
variables’ change), the interactions among the degrees of freedom destroy the strict
degeneracy when the energy levels “blur,” spreading their microstates all over the
spectrum and mixing them with other energy levels. The sketch of the resulting
spectrum is presented in Fig. 2.1b.

As we will see later, statistical mechanics very successfully “manipulates™ the
degeneracy of energy levels. Therefore, and for the spectrum of a nonideal system,
we would like to introduce something analogous to the strict quantum degeneracy.

Let us unite closely located microstates { £} (microstates { £} with close values
of energy) into groups with the averaged values of energy E;, where g, is the num-
ber of microstates in the group (Fig. 2.1b). We would like to call the quantity g, by
analogy, the degeneracy. However, this term is reserved for the strict degeneration
in quantum mechanics. Therefore, the special term, the statistical weight, is intro-
duced, which sometimes is abbreviated as “the stat-weight.” In future, it will not be
important for us whether we refer to the strict degeneracy in the sense of quantum
mechanics or to the statistical weight as the number of microstates with close values
of energy in the group. In both cases, we will refer to &, by the term “statistical
weight” without attributing it to the particular structure of the spectrum.

Students who begin to study statistical mechanics after such rigorous disciplines
as theoretical or quantum mechanics are often confused by the fact that microstates
are combined into groups “at will.” How many microstates do we unite into a par-
ticular group? Why cannot we make groups 2, 10, 100 times larger? We will obtain
the answer to this question later. Now we only mention that the formalism of statis-
tical physics “works” in such a way that it is not important how many microstates
we unite into a particular group. In fact, the whole mechanism of statistical physics
operates only because this combining can be performed arbitrarily.



2.3 Microcanonical Ensemble 63

2.3 Microcanonical Ensemble

A microcanonical ensemble (or MCE) is an ensemble of identical isolated systems
(Fig. 2.2). The isolation boundary condition means that there are neither heat ex-
change §Q =0, nor work of external forces W =0, nor particle exchange
ST =0.

Microstates {E, p} of the considered system are the eigenfunctions of the sys-
tem’s Hamiltonian with the value of energy £ corresponding to the condition of
the system’s isolation, E = const. Here, by p we have denoted some set of internal
parameters distinguishing microstates with the same value of energy E. For ex-
ample, for the Ising model from Problem 2.2.1, which consists of N =3 spins and
is isolated with energy —pu#, there are only three microstates, {’M\L}, {’I\LT}, and

{J/TT}, corresponding to this value of energy. The parameter p here denotes spin
orientations on the lattice and can be equal, for example, to 71 .

Isolating our system, we allow it to “visit” microstates with the given value
of energy and prohibit “visiting” other microstates. Strict isolation means isola-
tion strictly on one energy level (Fig. 2.3a) or strictly in one group of microstates
(Fig. 2.3b).

But in nature no system with dense energy spectrum could be strictly isolated.
There is always some uncertainty AE of isolation, which can include several energy
levels (Fig. 2.4a) or several groups of microstates (Fig. 2.4b), if, of course, the en-
ergy spectrum is dense enough.

Similar to uncertainty of uniting microstates into groups, the uncertainty of the
system’s isolation does not influence the formalism of statistical physics. Let us
discuss in detail why it is so.

Fig. 2.2 An isolated system E,V,N = const

SNNANNNN

777777

Fig. 2.3 The strict isolation
on one energy level (a) or in
one group of microstates (b)

_}FE3 =&k,
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Fig. 2.4 The nonstrict
isolation on three energy
levels (a) or in three groups
of microstates (b)

Firstly, we need to introduce a new term, the statistical weight of an ensemble,
or, using slang, the ensemble stat-weight. What the statistical weight of a group of
microstates is we already know: It is the number of microstates in the group. For
the MCE, we utilize a similar definition—the statistical weight of the MCE, MCE,
is the number of microstates which the system visits with nonzero probabilities. In
other words, it is the number of microstates corresponding to the isolation condi-
tions.

In the case of the strict isolation on one energy level £ (in one group of micro-
states), the statistical weight of the MCE is the statistical weight g of this energy
level (of this group of microstates):

[ MCE (2.18)

=&E-
If the nonstrict isolation allows the system to visit k energy levels (groups) with
close values of energy, the statistical weight of the MCE equals the sum of statistical
weights of these levels (groups):

T —gp +. +gp . (2.19)

Let Wi p) be the probability distribution to observe the system in a microstate
{E , p} in the ensemble. If, for example, we consider a quantum system, this prob-
ability distribution is provided by the diagonalized statistical operator (quantum
density matrix) W{E,p} = p{E,p},{E,p} .

Liuville’s theorem (Gibbs 1902) suggests that in equilibrium all microstates of
the MCE are equiprobable:

1 ~
LI - S
W{A‘;{CE _pwee E=EL_ ke (2.20)
.p} . [ MCE
0,E£E

where E is the energy of isolation. Here we should again emphasize that distribu-
tion of probabilities (2.20) is equilibrium. For nonequilibrium cases, we are free
to consider any arbitrary distribution of probabilities Wi p)- We will discuss this
question in detail later.
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Problem 2.3.1

Find the probability distribution of microstates for the Ising model without
spin interactions when there are N = 3 spins in the model. Consider the model
to be strictly isolated with energy E = —ph.

1

3

- 1
8m=3 N\ TNTE wiihy= g 3
comee _ 1 _ 1

[ wiics = -

—yth

Solution: The strict isolation with energy E = —uh means that two spins are
oriented along the field, N, =2, while one spin is against the field, N| =1.
The statistical weight of the ensemble is 3, and the probability distribution of
microstates is illustrated in the figure.

Entropy is a frequent subject of discussions in the scientific and popular literature
because its growth breaks the symmetry of the time axis. Sometimes in the popular
literature, entropy is treated as having “magical” properties. Later we will see that
all the “magic” belongs to the formalism of statistical physics while there is nothing
“magical” in the growth of entropy as a parameter directly related to the probability
distribution.

There are many ways to introduce the concept of entropy into the formalism. As
the main axiom, we utilize the following definition of entropy:

Slwy1==Y ywy Inwy, (2.21)
which follows from an even more general definition
S=-Tr(plnp), (2.22)

when the statistical operator (quantum density matrix) is diagonal and its diagonal
elements form the distribution of probabilities,

WO EPLM Y (2.23)

Let us take a closer look at definition (2.21). Firstly, we see that the entropy is
a functional defined on the function space of all possible probability distributions
Wiy Secondly, if f; | is some system’s parameter related to microstates { 1, e.g.,
specific magnetization (2.6), its averaged value should be provided by

(), = {Z}:w{ iy (2.24)
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Therefore, from definition (2.21) we conclude that the entropy is the averaged mi-
nus logarithm of the probability distribution:
S=(-Inw,) . (2.25)

i

For the first time, definition (2.21) appeared in Gibbs’ works (Gibbs 1876, 1878)
while later it received further development in Shannon’s studies (Shannon 1948)
when it was applied to informational processes. Therefore, in statistical physics
definition (2.21) is called Gibbs entropy while in the theory of complex systems
(when there are no thermal fluctuations in a system) it is called Gibbs—Shannon
entropy. We utilize this definition as a formalism axiom due to its universality—it is
applicable to any ensemble, any set of microstates, and any probability distribution
Wy, both equilibrium and nonequilibrium. Therefore, definition (2.21) is always
applicable in contrast to other approaches that require more detailed descriptions.
The reader can find formulae, similar to (2.21), in many books devoted to non-
thermal complex systems which are not described by the formalism of statistical
physics. Even more, definition (2.21) was the very starting point that encouraged
looking at complex systems from the statistical physics point of view.

For the case of nondiagonal statistical operator (quantum density matrix), a
more general definition (2.22) is applied which is called von Neumann entropy (von
Neumann 1932, 1955).

We already know probability distribution (2.20) of the MCE. To find the entropy
of the MCE, we should substitute this distribution into entropy functional (2.21):

MCE __ MCE MCE
ST =- Z Wik MW - 226
{E.p} ( . )

Let us, firstly, utilize the limit

lim xInx=0 (2.27)

x—>+0

for the terms of the sum corresponding to zero probabilities. Secondly, since the
remaining terms are all equal one to another, we find,

1 1
MCE __ MCE _ MCE
S =-I 1—~MCE lnm =InlC . (228)

that the entropy of the ensemble equals the logarithm of the ensemble statistical
weight (the logarithm of the number of microstates in which the system “lives”).
This equality is called Boltzmann's entropy. We see that this definition of the en-
tropy is less universal than (2.21) because it corresponds only to the equilibrium
distribution of probabilities (2.20) in the ensemble.

Now let us return to the question why the accuracy of isolation AE does not influ-
ence the formalism of statistical physics. But firstly, what is generally the accuracy
of isolation? For a gas, we can assume that AE corresponds to energy of several
particles. For the Ising model, to flips of several spins. In this case, the system is
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Fig. 2.5 The non strict
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nonstrictly isolated and can visit k£ adjacent levels of energy (Fig. 2.5). Let us see
how the accuracy of the isolation influences the value of the system’s entropy.

Problem 2.3.2

For the Ising model without spin interactions, compare the degeneracies of &
adjacent energy levels.

Solution: When we move from one energy level to the adjacent, the numbers
of spins along and against the field, N, and N, are changed by unity, e.g.,
N, = N, +1land Ny = N, —1. When we move across i energy levels, we
have Ny = N, +iand N) = N, —i, where i =0,...,k —1. Substituting these
numbers into (2.14), we find

Zee NN (N, —i+]) (N}

= = . (2.29)
g, (N, +D(N, i)l (N, +1) (N, +i)

Both N, and N are proportional to V. Therefore, ratio (2.29) is of the order
of unity:
Bpear o) (2.30)

8k

which is even less than the logarithmic accuracy, O(N “), we used in (2.16).

For an arbitrary system, we assume that similarly to Problem 2.3.2 its statistical
weight changes by multiplier O(1) when we move from one energy value to the
adjacent. Substituting this assumption into (2.19) and then into (2.28), we find

$"* =1n(kg, 0(1)) =Ing, +Ink+mO(1). 2.31)

Here g, depends on N exponentially and, therefore, its logarithm is proportional
to N while Ink and In O(1) are of the order of unity. Therefore, we can neglect two
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last terms to find that the entropy of the nonstrictly isolated system approximately
equals the entropy of the strictly isolated system:

SMCE

~Ing,, (2.32)

and the accuracy of the isolation does not influence the value of the entropy.
What if k& depended as a power-law on N: k oc O(N®)? Again it would not in-
fluence the value of the entropy because logarithm of & would be of the order of

In N << N. This exact situation we will encounter later in this chapter in the case

of a canonical ensemble when the relative energy fluctuations are of the order of

E 1
ok o —— while absolute energy fluctuations are of the order of 0 E o« JN . This

E, N

corresponds to k oc N—the number of energy levels on which the canonical

ensemble “lives.” In the thermodynamic limit, £ is infinite but still does not influ-
ence the value of the entropy! Of course, here as well as above we assume that the
statistical weight g is the same (with logarithmic accuracy) for all k o JN energy
levels.

Now we already can answer the question when the accuracy of the system’s
isolation does not influence its entropy. Firstly, the number of levels (or groups of
microstates), on which the system is isolated, should not exceed the power-law
dependence k o« O(N”) on N. Secondly, all these values of energy should be so close
one to another that their statistical weights would be the same with logarithmic accu-
racy (with the accuracy of a multiplier with a power-law dependence O(N®) on N).

Also now we can answer the question how we have united microstates into
groups. We do not care how many microstates we unite into a group providing that
its statistical weight does not change more than by a power-law dependence O(N*)
on N. For example, let us imagine a system strictly isolated in one group of micro-
states. Its entropy is SMCE _ I g Uniting into this group 10, 100, or O(N®) times
more microstates than it is now should influence neither the value of the system’s
entropy nor any further formulae of statistical physics.

Earlier we introduced the notation ““m” of logarithmic accuracy when in the
thermodynamic limit, N — +oo, we neglect all “slow” power-law multipliers in
comparison with the “fast,” exponential dependencies on N. Now we see that this
is more than just a useful notation—this is the mechanism that “actuates” the for-
malism of statistical physics. Therefore, in future we will utilize the logarithmic
accuracy in almost all formulae unless the opposite will be stated specifically.

And, as we will see later, almost all results of statistical physics and all concepts
such as a sharp maximum of a probability distribution, the equation of state cor-
responding to the point of this maximum, the Gaussian distribution in the vicinity
of the equilibrium state, the fact that a partition function equals its maximal term,
and, finally, “magical” properties of the entropy are the results of the applicability
of logarithmic accuracy. And this is also the reason why statistical physics is ap-
plicable to nonthermal, complex systems. Neglecting system-dependent power-law
dependences provides the universality of the applied formalism and makes it inde-
pendent on the particular details of the system considered.
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Several times above we have emphasized that we consider the nonstrict isola-
tion of a system on k levels (groups) only in the case when statistical weights g, of
these levels (groups) are identical with logarithmic accuracy. But what does happen
if moving across & levels we do change the statistical weight significantly? Let us
return to (2.19), only in this case we assume that all g E > &, are significantly
different (not equal one to another with logarithmic accuracy). Firstly, we find the
maximal statistical weight among these values:

gmax = ‘£111axkg5i . (2.33)

Then we substitute this maximum value into (2.19):

SHE =T < n(gy, + g )= (g™ B+ i), 239)

where all parameters f3; are in the range 0 < 8; <1and only one of them equals strictly
unity. Since & is not higher than a power-law dependence on N, k oc O(N “), we find

SMCE — ln(gmax Q(N!Z )) ~ ln gmax. (2‘35)

This returns us to (2.32); only in this case into the logarithm function we put the
maximal statistical weight among all energy levels (groups of microstates) on which
the system is isolated.

So now it is not even important whether the levels (groups) on which we have
isolated our system have significantly different statistical weights or not. We are just
choosing the maximal among them, and it serves as the statistical weight of the MCE.

2.4 MCE: Fluctuations as Nonequilibrium Probability
Distributions

Now we turn our attention to the most difficult question of the ensemble theory—
the definition of a nonequilibrium fluctuation. We can define a fluctuation in many
ways: by prescribing its properties, by prescribing a set of microstates belonging to
this fluctuation, and so on. But the most universal way is to define a fluctuation by
prescribing a nonequilibrium probability distribution.

First, let us consider a simple example, what we understand under the term
“nonequilibrium distribution of probabilities.” Let us imagine a kingdom whose
leading scientist, Dr. Richelieu, while conducting tests in his Bastille clinic, had
discovered that the most beneficial to health is to drink one glass of wine a week.
Therefore, he issued an Edict of Health that everyone has to drink one glass of wine
per week.

But, of course, this Edict was often violated because one week a peasant could
afford a glass of wine whereas next time he could be out of money. Therefore, af-
ter severe punishments had not helped, Dr. Richelieu decided to modify the Edict.
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Now it was not a deterministic prescription but a stochastic one. Everyone again
should drink a glass of wine a week; however, this time not strictly but on average.
With probability 1/4, a person could drink two glasses of wine during a week; with
probability 1/2, one glass; and with probability 1/4, no wine at all. This way every-
body would drink one glass of wine per week on average.

To follow this new law was much easier; therefore, the majority of people fol-
lowed it to the letter. They could drink two glasses of wine per week or no wine at
all; but, on average, they drank one glass a week. In other words, they exactly fol-
lowed the prescribed probability distribution and, therefore, their own probability
distribution was “in equilibrium with the law.”

However, some of the people continued to violate the Edict. For example, there
was a guy, called d’Artagnan, who drank two glasses of wine a week with prob-
ability 1/8, five glasses of wine with probability 1/8, and seven bottles a week with
probability 3/4. On another extreme, Constance Bonacieux did not drink wine at
all because she was afraid to be killed by poisoned wine. Therefore, we may say
that both d’Artagnan and Mademoiselle Bonacieux were following the probability
distributions nonequilibrium with the law.

Returning to the MCE, we see that according to (2.20) the ensemble dictates to
a system to visit all its microstates equiprobably. If the system follows this prob-
ability distribution (2.20), its distribution of probabilities is in equilibrium with the
ensemble requirements, or an equilibrium distribution of probabilities. Such dis-
tributions we mark by the symbol of the ensemble w{ﬂﬁf} to distinguish them from
other distributions.

But the system may not follow the equilibrium distribution of probabilities
wf/E[C/i dictated by the MCE. Instead, it can choose to follow some other distribution
of probabilities WiE p) which in this case is called a nonequilibrium distribution of
probabilities.

After we have discussed what is a nonequilibrium distribution of probabilities,
let us return to the main question—how we can describe a fluctuation.

How do we define nonequilibrium states in thermodynamics? The most illus-
trative example is a gas whose density is not uniform in the volume and obeys
some dependency n(F) on the coordinates inside the volume. For example, we can
imagine a fluctuation as a state when all gas is gathered in the right half of the vol-
ume while in the left half its density is zero.

As an illustration we, however, consider not a gas, but the Ising model without
spin interactions. Let the model be a one-dimensional chain of N spins. Further, for
the purposes of abbreviation, we will call the spins oriented along the field / by the
term “the 1-spins” while the spins oriented against the field, “the |-spins.”

We choose such energy E of the system’s isolation that the number N4 of the
1-spins is three times higher than the number N of the |-spins:

Ny =3N/4and Ny =N /4. (2.36)
We can do that because we are free in our choice of the value of energy with which

the system is isolated. The values of Ny and N are not special and are chosen to be
equal to (2.36) only to have simple fractions 3/4 and 1/4 for illustration purposes.
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Since our system is isolated strictly, the statistical weight of the MCE equals the
statistical weight of the given energy level:

3N/4
pmce _, __ N! .y (ij 4NA (2.37)
"3

Let us discuss how we introduce a nonequilibrium fluctuation for our model.
Similar to a gas with nonuniform density, we consider a nonuniform distribution of
the |-spins along the model chain. Then the gas gathered in one half of the volume
will be equivalent to the |-spins all gathered in one half of the chain.

Therefore, let us divide the one-dimensional chain of spins into two with N /2
spins in each half. We will denote by p the fraction of the |-spins gathered in the
right half. When all (N, = N /4) |-spins are gathered in the left half, we have p = 0.
When all (N, =N /4) |-spins are gathered in the right half, we have p=1. An
arbitrary value of p in the range 0 < p <1 corresponds to pN /4 |-spins in the right
halfand (1- p)N /4 |-spins in the left.

We define a nonequilibrium fluctuation {{ p}} (or a nonequilibrium macrostate
{{ p}}) in the MCE as a state of the system with the given fraction p of the |-spins
in the right half of the chain. In other words, we define a fluctuation by a particular
value of p = p. This value represents the criterion indicating when we observe the
given fluctuation in the ensemble.

We see that the criterion “to have p |-spins in the right half” does not specify
particular locations for these spins, and pN /4 |-spins can be distributed arbitrarily
in the right half among the 1-spins. Therefore, a lot of microstates correspond to the
criterion of our fluctuation. Observing the fluctuation in the ensemble is equivalent
to observing any of these microstates.

Let o)l be the number of microstates {£, p}, corresponding to the given fluc-

tuation {{P}}, among the total number I'F of microstates {E, p} of the MCE
ensemble (Fig. 2.6). We will call F{{p}} the statistical weight of fluctuation {{p}}

But for the MCE we know that the distribution of probabilities for the micro-
states {E, p} is dictated by (2.20), where T microstates {E, p} serve as the
fan of possible outcomes in the ensemble. The requirement to observe currently
the fluctuation {{ p}} intervenes in the “work” of the ensemble, reducing the fan of

Fig. 2.6 Statistical weight —
F{{p}} of fluctuation {{p}}
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possible outcomes to I" microstates {E, p}. In other words, if we know that the

system is in the macrostate of fluctuation {{ p}} , the distribution of probabilities for
such a system is not (2.20) but reduces to

W = Uy -E=EP=p =55=Eﬁ. (2.38)
£:7) 0 ,otherwise F{{p}}

Distribution of probabilities (2.38) is the nonequilibrium distribution of proba-
bilities, determining the given fluctuation. If our system does not obey requirement
(2.20), dictated by the ensemble, but is in the macrostate {{ p}}, the probabilities to
observe particular microstates obey distribution (2.38). In contrast to (2.20), we did
not use here the superscript “MCE” because this distribution of probabilities is not
dictated by the ensemble and is not in equilibrium with the ensemble.

Instead of saying that distribution (2.38) corresponds to the fluctuation {{ p}}, we
can say that it defines the fluctuation. Therefore, any fluctuation can be described
by a nonequilibrium distribution of probabilities, and, vice versa, a system obeying
a nonequilibrium distribution of probabilities is in the macrostate of fluctuation
determined by this distribution.

Substituting the nonequilibrium distribution of probabilities (2.38) into the defi-
nition of entropy functional (2.21), we find the entropy of the fluctuation {{ p}}:

St ="y @39)

This is again Boltzmann’s entropy which equals the logarithm of the number of
microstates which the system visits with nonzero probabilities.

Problem 2.4.1

For the one-dimensional Ising model without spin interactions find the statis-

tical weight F{{p}} and the entropy S{ ) of the fluctuation {{ p}}

Solution: To find the statistical weight of the fluctuation, we need to find the
number of microconfigurations when pN, = pN /4 |-spins are distributed
among the 7-spins in the right half of the chain while (1- p)N, =(1-p)N /4
|-spins are distributed in the left half:

N, N,
2 2
r =
o a—mN.(N_a—p)Nj.xpN.(N_pNj. (240
4 2 4 4\ 2 4 )

Utilizing Stirling’s approximation, we find

) (1-p)N/4 ) (1+p)N/4 ’ pN/4 ) (2-p)N/4
F{{p}} A | —— —_ — S — . (2.41)
I-p I+p D 2—-p
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Therefore, the entropy of the fluctuation is

S

N N
) :NIHZ—Z(I—p) In (l—p)—Z(1+P)1n(1+P)

—%plnp—%(z—m In 2 p). (242)

Our system wants to be independent from the ensemble and to follow its own path
of fluctuations. But the probabilities of these fluctuations are still dictated by the
ensemble. Since all microstates of the MCE are equiprobable, the probability to
observe the fluctuation {{ p}} in the ensemble equals the share of microstates be-
longing to this fluctuation:

i} .
(R e

Here for the given boundary condition (2.36) the statistical weight of the ensem-
ble T™is constant. Therefore, the probability of a fluctuation {{ p}} is directly
proportional to the statistical weight of this fluctuation. The smaller the statistical
weight of the fluctuation, the rarer we observe this fluctuation in the ensemble. This
is the reason why we never see a gas gathered in one half of the volume.

Since any microstate of the MCE must belong to one or another fluctuation {{ P}} ,
the statistical weight T'MF of the MCE is the sum of statistical weights I’ (o) of all
possible fluctuations {{ p}},

1

MCE __
D Y (2:44)
p=0,Ap=1/(N/4)
and probability distribution (2.43) is normalized to unity,
1
WME 1, (2.45)

{{r}}

p=0,Ap=1/(N/4)

We have considered above only the simplest example (2.38) of nonequilibrium
distributions when all the probabilities of microstates, not corresponding to the
criterion p, were exactly zero. However, in general we can consider an arbitrary
distribution of probabilities defining a particular type of fluctuations.

Problem 2.4.2

Let us consider an example of more complex fluctuations. We consider
an optical device that generates red photons with the constant probability

wimentle - oreen photons with the probability w;;jjg”n’;’e, and blue photons with

{red } R
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ensemble

the probability Wbl - Since other colors are impossible, the color of the next
photon must be red, green, or blue:

W{red} + W{green} + W{blue} =1 . (246)

Find the probability of the fluctuation {red U green} that the next pho-
ton will be red or green but not blue. In other words, find the probability
of the fluctuation defined by the following nonequilibrium distribution of
probabilities:

ensemble
red
S E— ,color = red
ensemble + Wensemble
{red } { green}
ensemble
_ {green} _
W{COIO”} - ensemble ensemble ,COIOI" =green . (247)
W{ red } { green}

0 ,color = blue

Solution: Obviously, the probability for the next photon to be red or green is

ensemble __ ., ensemble ensemble
{real Jgreen}} =Wty T Wigreen) - (2.48)

In this problem, in contrast to the case of the MCE we have introduced that
microstates {red}, { green}, and {blue} are no longer equiprobable. The next
problem will be even more complex.

Problem 2.4.3

For the ensemble described in Problem 2.4.2 find the probability to observe
for the next photon the following nonequilibrium probability distribution:

Wirea> color = red

W{Color} = w{g"een}’color = green ;. (249)

Wisiie) ,color = blue

Solution: The simplest way to find the probability of the fluctuation is to con-
sider n consecutive photons. In this sample, nw,, photons must be red, nw,

ed
photons green, and W11 photons blue. The probability of this sample is

green}

blue
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Wensemble _ n '
) ! ! !
(}'ZW red} )(nw {green} )(I’ZW blue})'
ensemble (red) ensemble "™ green) ensemble \"{biuc) 2.50
23 ( red ) (W{ green ) ( {blue} ) 2 ( )
ensemble \"™(red} ensemble \"|gr ensemble \"Wibiue} = BB
where (wm ) ) {areen) ) (w Wihtuel ) 1S the' probability of one
such configuration while the multiplier is the

(nw{red} )!(nw{green} )!(nw{blue} )'
number of possible configurations given by the distribution of 7w, red

photons, nw, green photons, and nw,,, , blue photons among n photons.

green } {hlue}

Utilizing Stirling’s approximation (2.16), we find

ensemble \"™(red} ensemble \"™|green} ensemble “\"™{biue}
Wensemble _ W{red} W{gyee”} w{blue} 2.51
ol T - - @5
W{ red} W{ green} W{ blue}

Since the color of a photon is independent of other photons in a sequence,
probability (2.51) is the product of 7 identical probabilities corresponding to
n independent events. In other words, to find the probability of fluctuation
(2.49) in the ensemble we should extract the n® root of (2.51):

ensemble “\"ired} ensemble "\ "green} ensemble "\ "{biue}
yrememtie _ | Wired) Wigreen) Wibiue) (2.52)
ty ’
W{ red } W{ green} W{ blue}

Generalizing the solution of Problem 2.4.3, for the probability to observe a nonequi-

librium distribution of probabilities Wiy in the ensemble, which itself follows the
ensemble

probability distribution wih

, we find

Wememb/e "3
Wensemble — { } . (253)
e

But let us return to the case of simple fluctuations (2.38) in the MCE ensemble.
To find the maximum of probability (2.43), we should find when its derivative
equals to zero:

MCE
Wiy

op

~0. (2.54)
Po

But probability (2.43) is an exponential dependence. Therefore, it is usually more
convenient to differentiate not the probability itself but its logarithm:



76 2 Ensemble Theory in Statistical Physics: Free Energy Potential

{p}}
op

— W . (2.55)

Po

Since the logarithm is the monotonically increasing function, its derivative equals
zero when the derivative of the probability is zero.
Differentiating the logarithm of (2.43), into which we should substitute F{{p}}

from (2.41), for the point of the probability maximum, we easily find p, =1/2
when each half of the model contains exactly one half of the |-spins. Therefore,
fluctuation {{ po =1/ 2}} is the most probable macrostate and corresponds to the
equilibrium state.

The reader should clearly distinguish two equilibrium concepts: the equilibrium
state as the most probable macrostate and the equilibrium distribution of probabili-
ties. Returning to the imaginary kingdom ruled by Dr. Richelieu, we already know
that most of the people followed the Edict of Health to the letter. They could drink
two glasses of wine a week or no wine at all; but, on average, they drank one glass a
week. In other words, they exactly followed the prescribed probability distribution
and, therefore, their own probability distribution was “in equilibrium with the law,”
or the equilibrium distribution of probabilities. If it was so happening that during
one particular week a person indeed drank literally (not on average) one glass of
wine, they called it “the equilibrium week,” or the most probable, equilibrium
macrostate.

Similarly, in the case of the MCE, the ensemble dictates the equiprobable prob-
ability distribution (2.20). If the system follows this probability distribution, its dis-
tribution of probabilities is in equilibrium with the ensemble requirements, or an
equilibrium distribution of probabilities.

But microstates visited by the system can be very different. Some of them could
correspond to rare events, when, for example, all gas has been gathered in one half
of the volume. But these events are rare, and on average the system stays in equilib-
rium macrostate when the gas density is uniform across the volume.

Let us now study the equilibrium macrostate. Substituting p, =1/2 into (2.41),
we find the statistical weight of the most probable fluctuation:

PRI 2.56)
- 2 N/4 )
r{{Po}} Tin (3} e

But this is exactly expression (2.37) for the statistical weight of the ensemble
in whole! So, the number of the microstates corresponding to the equilibrium mac-
rostate {{ po =1/ 2}} equals the total number of the microstates in the ensemble?!
How is it possible? From (2.44) we have expected that other fluctuations should
also contribute to the total ensemble statistical weight. Where are then the micro-
states corresponding to these other fluctuations?

To answer this question we should recall that both equalities, (2.37) and (2.56),
are valid with logarithmic accuracy:

I"MCE
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rMCE LTI (2.57)

In
The logarithmic accuracy assumes that the left-hand side of (2.57) can be N times
greater than the right-hand side. The difference is precisely the number of lost mi-

crostates corresponding to other fluctuations from sum (2.44):
1

FMCE — Z F

p=0,Ap=1/(N/4)

=T OV =, T, (2.58)

o} pol}’

{p

About equality (2.58), it is said that the statistical weight of the ensemble equals
to its largest term. However, one should not forget that this is valid only with the
logarithmic accuracy. In other words, although the statistical weight F{{po}} of the

equilibrium macrostate {{ po =1/ 2}} is comparable with the total number of mi-
crostates in the ensemble, there are still a lot of other microstates to divide among
other fluctuations.

In particular, all macrostates adjacent to p, =1/2 have statistical weights com-

parable with F{{po}}'

Problem 2.4.4
Find the statistical weight of the fluctuation adjacent to {{ po=1/2}}.
Solution: The adjacent is the fluctuation {{ p= %-f- ﬁ}} when the right

half of the model has two more |-spins than the left half. Returning to the
exact expression (2.40), we find the ratio

ol G5s) | » e
ENi=SoN

We see that although the absolute difference is huge, the relative difference
is negligible even from the point of view of usual, not logarithmic calculus.

r

Let us now find the distribution of probabilities ¥} of fluctuations {{ p}} in the
vicinity of the equilibrium macrostate {{ po}}. As we already know, at the point

{{ po}}, the first derivative of the logarithm of probability W{Z{\f}f equals zero in

accordance with (2.55). The second derivative at this point we find to be nonzero:
S (11 I VS (2.60)
op* 3
Po
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Therefore, for the expansion of In W{?éc}}E in a power series of (p — p,), we have

wee _y e, O 1 O I ;
Iy =Wl + P (p—po)+5 e (P=po)” +...
Po Po

o MCE 2 2 (2.61)

= an{{pO}} _EN(P_PO) +.o,
or, exponentiating,

2(p-po)’
W{/{V}[)C}}E ce 3 UN | (2.62)

We see that in the vicinity of the equilibrium macrostate {{ po =1/ 2}} the prob-
abilities WMC}E of fluctuations { { p}} obey the Gaussian distribution. The width of
the maximum is of the order of

5(p)oc ——. 2.63)

JN

Since beyond the “bell” of the probability maximum the fluctuations have almost
zero probabilities, quantity (2.63) represents the characteristic size of fluctuations
in p. And since its value is inversely proportional to the square root of NV, it is very
small in the thermodynamic limit, N — +oo.

Above we have considered fluctuations in p. But since statistical physics usu-
ally operates with extensive parameters (proportional to N), we can easily modify
distribution (2.62) to prescribe probabilities to fluctuations {{Np}} in Np:

2 (Np=Npo)*
MCE T3 N (2.64)
W{{NP}} xe
Now the width of the maximum is of the order of
8(Np) <IN (2.65)

and is called absolute fluctuation in Np. To find relative fluctuation in Np, we
should divide (2.65) by the averaged value Np,:

S(Np) L (2.66)

Np, \/ﬁ

The result is again very small in the thermodynamic limit, N — +oo.

Nonzero probabilities are possessed only by fluctuations located inside the prob-
ability maximum. Beyond the width of the maximum, the probabilities of fluc-
tuations are almost zero. Let us, for example, compare the statistical weight of the
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fluctuation {{ p= 1}}, when all |-spins are gathered in the right half of the model,
with the statistical weight of the equilibrium macrostate {{ po=1/ 2}}:

r —3N/4 IN/4
- {{1}} ~, 4V (gj 4-NA _ (%j <l 2.67)
{{Po}}
MCE F{{l}} F{{l}}
We see that probability W, = ~, ——— to observe the fluctuation
{1 [MCE "I
{{p = 1}} is infinitesimal. trol)

Problem 2.4.5

[lustrate the dependence of the statistical weight ' (il of fluctuations {{ p}}

{r
on p with the example of the model consisting of N = 400 spins. Demonstrate

the validity of formula (2.58).

Solution: Following isolation condition (2.36), there are N, = N /4 =100
|-spins in the model. The dependence of the statistical weight F{{p}} of fluc-
tuations {{ p}} on p is presented in the following figure.

y
5x10°%"

\[
{{p}}
4x10% 1
3x10%" 1
2x10%'1

110"

0.0 0.2 04 p, 0.6 0.8 1.0

In this figure, different fluctuations {{ p}} are demonstrated as separate col-
umns under the “bell” of the maximum. We see that already for the number
of degrees of freedom of the order of 100 the fluctuations in the vicinity of
the equilibrium macrostate have statistical weights of the order of 10%7. In
contrast, there are only 101 separate fluctuations in the ensemble when the
right half of the model contains 0,1,2,...,100 |-spins. Therefore, sum (2.44)
contains only 101 terms, some of which are of the order of 107

Fluctuations beyond the range p =0.4—0.6 of the maximum have negli-
gible statistical weights in comparison with statistical weight " { {1}} =5-10"

2

of the equilibrium macrostate {{ Dy =1/ 2}} Under the “bell” of the maxi-
mum, there are only about 20 separate fluctuations with 40, 41, 42,...,60
1-spins in the right half of the model ( p= 0.4—0.6). All these fluctuations
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have comparable statistical weights of the order of 10°7. If we sum them all,
we obtain the total statistical weight of the ensemble I'* which is only about
ten times higher than the statistical weight I" { {1}} of the equilibrium macro-

2
state {{ po =1/ 2}}! Therefore, comparing the logarithms of these two statisti-
cal weights,

InTY* =1n(10-510"7) = 227 (2.68a)

and

InT,, ., =In(5-10"") =225, (2.68b)

(i)

we can neglect their relative difference. And this happens already for the
number of degrees of freedom in the model of the order of 100! But when
we consider the thermodynamic limit of infinite number of degrees of free-
dom in the model, the relative difference between the statistical weight of the
ensemble and the statistical weight of the equilibrium macrostate becomes
even more negligible, and the statistical weight of the ensemble is indeed
equal to its maximal term.

However, this does not mean at all that other terms are significantly
smaller. There are at least 20 “near-equilibrium” fluctuations in the above
figure (20 vertical columns under the “bell” of the maximum) which have
statistical weights of the same order.

Equality (2.57) means that the entropy of the equilibrium macrostate equals the
entropy of the ensemble:
Siipol) = SMCE . (2.69)

l’o}}

Since this equality is always valid when the rule of the logarithmic accuracy is
applicable, these two different parameters are often treated as one. However, the
reader should always clearly understand that one of these quantities corresponds to
the equilibrium macrostate while another to the equilibrium distribution of prob-
abilities.

2.5 Free Energy Potential of the MCE

Let us now develop the formalism of free energy potential of the MCE. Nonequi-
librium processes within an isolated system lead this system to its equilibrium mac-
rostate (Fig. 2.7).

From thermodynamics we know that for any process in an isolated system the
entropy of the system always increases (or stays constant but does not decrease):
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AS >0. (2.70)

This principle is called the entropy maximization principle.

We define the free energy potential or, simply, the free energy to be a parameter
that for any process in a system always decreases (or stays constant but does not
increase):

AY <0. 2.71)

When a system reaches its equilibrium state, its free energy achieves its minimal
value. Therefore, to find the equilibrium state of a system we always should look
for the minimum of the system’s free energy potential. This procedure is called the
free energy minimization principle.

Comparing inequalities (2.70) and (2.71), we expect that the role of the free energy
in the MCE is played by the negative entropy:

¥=_§. (2.72)

Let us return to expression (2.43) for the probability of fluctuations. Following
Boltzmann’s definition, the entropy of fluctuation, (2.39), is the logarithm of the
fluctuation’s statistical weight while the entropy of the ensemble, (2.28), is the loga-
rithm of the ensemble statistical weight. Substituting these equations into (2.43),
we find

r MCE
el _ =S
Wiio)} = Toier = s (2.73)

Since the logarithmic function is monotonic and I'* is constant, we see that the
potential defined by (2.72) is always decreasing when the probability is increasing:

Pty = CSypy) = ~In@ MCEW{?%E) (2.74)

When the system reaches its equilibrium macrostate { po =1/ 2 } the probability
W{?//’?C}f is maximal and, therefore, the potential ¥ o)l achieves its minimal value
{tr

b4 ool = —-Inl o)l This proves that the potential ¥ 0 plays the role of the free

energy in the MCE.

Fig. 2.7 All processes within
an isolated system lead to the
equilibrium macrostate
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Now we see that there is nothing “magical” in the entropy growth. Since the
entropy of a fluctuation is strictly correlated with the probability to observe this
fluctuation in the ensemble, the entropy growth merely corresponds to the tran-
sition from less probable, nonequilibrium fluctuations to more probable, more
“equilibrium” macrostates with higher statistical weights.

Each separate system, classical or quantum, is deterministic and during its evo-
lution can pass through any microstate, even when a gas is gathered in one half
of its volume. Why in reality do we not observe such fluctuations? Because they
are highly improbable—their share of microstates is negligible in comparison with
near-equilibrium fluctuations. But still nothing prohibits a deterministic system to
be in a macrostate of such an improbable fluctuation.

But when we consider not a separate system but an ensemble of identical sys-
tems, the situation changes drastically. In the ensemble, we do not consider evolu-
tions of separate systems. Instead, we average them stochastically.

But stochasticity claims that we are always moving in the direction of the in-
creasing probability. Therefore, the behavior of the ensemble is governed by the
rule that we have to go from less probable fluctuations to more probable, toward
equilibrium. And it is not the entropy that breaks the symmetry of the time axis; it is
the stochasticity forced onto the ensemble that dictates the direction of time.

Fluctuations moving the system away from its equilibrium are still possible. But
they contradict the law of probability growth and, therefore, are improbable.

To illustrate these concepts, in the rest of the section we consider the aspects that
lead to the growth of entropy. However, the discussion below could be confusing for
the reader who just got acquainted with the MCE because we also have to discuss
the equiprobability of microstates which we introduced in (2.20) as a hypothesis.
Therefore, we encourage the reader to skip the rest of this section and return to it
later, when the MCE would be well understood.

Let us consider an isolated quantum system whose state is described by a statisti-
cal operator (density matrix) p(¢). The evolution of the statistical operator obeys the
Liouville—von Neumann equation (von Neumann 1932, 1955):

%’) _ E ,3(1)}. 2.75)

For the system’s entropy, we utilize definition (2.22). To find how the entropy of the
system changes with time, we differentiate this expression:

aslp] _Tr(@ln ,3]4{‘9_13). (2.76)
dt ot ot

Since the diagonal elements of the statistical operator play the role of probabilities,
its trace is always equal to unity:

Tr(p)=1. 2.77)
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Therefore, we immediately find that the second term in (2.76) is zero:

Tr(a_/’jzﬁn(,;):ﬁlzo (2.78)
ot) ot ot
and the entropy growth equals
das|p D
L] :—Tr[a—pln ,3). (2.79)
dt ot

Substituting (2.75) into this equation and rearranging the commutator’s brackets,
we find that the entropy growth is exactly zero:

ds|[p] H | H_ . _H,
=-Tr||—,p|Inp |==Tr| —plnp |+Tr| p—In

H H H
— Trl Z5mp leTrl =10(8) 56 = —Trl Z[5.m 5] =0 2.80
{l plllpj+ r{l l]l({))p] I'( [p,lllp]) , ( )

i

because the statistical operator always commutates with its logarithm. Therefore,
the entropy growth of a quantum system is zero even when it is not in a pure state
but in a mixed state whose evolution is determined by the Liouville-von Neumann
equation (2.75).

Let us, for example, consider the strictly isolated Ising model, consisting of
N =2 spins, whose Hamiltonian is

H{Ulﬁz} - —,Llh(al +62)_J6162- (2.81)

Here for the first time we consider an additional term in the Hamiltonian corre-
sponding to interactions between two spins. This Hamiltonian has four eigenfunctions

{TT}, {'N«}, {xLT}, and {\N,} with energies E{T,T} =2uh-J, E{T,l} = E{L,T} =J,
and Ey| |, =2uh—J. We will work in the energy representation; in other words, in

the representation of microstates {TT}, {Ti«}, {J«T}, and {l«i} Then the matrix of
this Hamiltonian is

2uh-=J 0 0 0
_ 0 J 0o 0
A=Y E|EVE|= . (2.82)
] {ZE}: |E)E 0 0J 0

0 0 0 2uh—J

Let us assume that at time 7 = 0 the system is in the pure state {T»L} :

(2.83)

|¥(0)) = |N> =

S o = O
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This corresponds to the following density matrix:

0 0000
1 0100
5(0)| = - - 2.84
p@[=[T){T =] Jlo 10 o=} = (2.84)
0 0000

The evolution of the pure quantum state is determined by Schrddinger s equation
(Schrédinger 1926),

ihﬁ|w>=ﬁ|\y>, (2.85)
ot
and provides the following time dependence:

—i

w(@))=e " o (2.86)
0

If we described the system not by the vector of state but by the density matrix,
its evolution would be determined by the Liouville-von Neumann equation (2.75).
But since the initial density matrix (2.84) commutes with the Hamiltonian (2.82), its
derivative with respect to time is always zero

00 0 O
op_1 A,p]= 000 (2.87)
ot ih 00 0 O
0O 0 0 O
and the density matrix remains unchanged:
00 0O
01 0 0
5] =| Y (M| = (2-88)
p@l=[T){N=l ¢ o o
0 0 0O

But because the density matrix stays constant, the entropy (2.22) also stays constant.
Substituting (2.88) into (2.22), we find the entropy of the system to be always zero
(it is difficult to expect something else from the system staying in one microstate):

S(t) = 0. (2.89)
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We have considered clearly the most uninteresting case when the system, which
is initially in the microstate {'N}, stays in this microstate forever. The system was
isolated with energy £ = J but never visited the second microstate {i«T} which has
the same value of energy (which belongs to the same energy level).

This system violates the equiprobability (2.20) hypothesis we introduced before.
An analogy would be the ideal gas without particle collisions. If initially half of
gas particles had velocities 10 m/s while the other half had 20 m/s, the gas would
keep the velocities of its particles unchanged and we would never see the Maxwell—
Boltzmann distribution. Similarly, for photons within a perfectly reflecting body we
will never obtain the Planck spectrum.

To obtain the Maxwell-Boltzmann distribution for the ideal gas (to make its mi-
crostates with energies corresponding to the isolation condition all equiprobable),
we should introduce rare events of particle collisions. This is equivalent to introduc-
tion of trajectory’s mixing when the system can jump from one trajectory to another
due to the presence of some noise.

To achieve the Planck spectrum within the perfectly reflecting body, we should
introduce a small black dust particle inside the cavity. The dust particle is small and
its term can be neglected in the common Hamiltonian. However, over long periods
of time, it provides the equiprobability of microstates.

Similarly, for our quantum system we introduce some noise which leads to the
system, jumping from one of microstates, {Ti«} or {iT}, into another. Thereby, we
consider the Hamiltonian which in the previous representation of microstates {TT},
{N«}, {JrT}, and {i«i} is provided by the following matrix:

2uh-J 0 0 0

_ 0 J ihe 0
H| =Y E|E)(E|= ) (2.90)
A ) [E)E] 0 —ing" J 0

0 0 0 2uh—-J

We continue to work in the representation of microstates {TT}, {'N}, {»LT}, and
{JAL} for the illustrative purposes, although the eigenfunctions of the new Hamilto-
nian may not coincide with the microstates {TT}, {Ti«}, {i«T}, and {J«»L}. Thereby,
we, in fact, no longer work in the energy representation of the system.

We consider the nondiagonal noise term to be small, where £ — 0 is some small
complex constant. For the same initial state (2.83), we integrate Schrodinger’s
equation (2.85) to find that system still stays in the pure state

0
L cos(|e|1)
_ it R
Y (1) =e _lg sin(el )| (2.91)

€|

0
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Integrating the Liouville-von Neumann equation (2.75), for the density matrix
we also find

0 0 0 0
0 l+lcos(2|g|t) —lisin(2|£|t) 0
. 2 2 2 el (2.92)
P ()] =¥ ())(¥(1)|= . -
—lg—sin(2|8|t) l—lCOS(2|8|1) 0
2 |5| 2 2
0 0 0 0

From (2.91) and (2.92), we clearly see that the introduction of small noise has
made the system to oscillate between microstates, {Ti« and J/T} (has led to the
mixture of these microstates). However, nothing in the formulae above has made
the derivation of zero entropy growth (2.80) no longer valid. In other words, if we
substitute the density matrix (2.92) into the entropy definition (2.22), the entropy
will still be constant during the system’s evolution. The reader can easily prove
it herself/himself and find that the entropy is zero (2.89) again (the entropy will
always be zero for a system in a pure state).

Even if we consider the noise, deterministically depending on time, &(¢), the
derivation of (2.80) will still be valid, and entropy will remain constant.

A similar situation occurs when we consider not the pure but the mixed state
whose time dependence is provided by the Liouville—von Neumann equation (2.75).
The entropy would probably be already nonzero, but still (2.80) would give zero
growth for the entropy.

To understand what is going on let us return to the obtained solution (2.92). The
density matrix is not diagonal which we expect for the equilibrium distribution
(2.112). And strictly speaking, we do not see the equiprobability of microstates
{Ti«} and {i«T}. Instead, we see oscillations between these two microstates. But we
can consider the so-called sliding (moving) time averaging when for each time ¢
we average any time dependence in the neighborhood of this time over the interval
t—At/2<t<t+At/2. Assuming that the interval of averaging is much larger than

the period of oscillations, Az >> 2—”, we lose all time dependencies in (2.92) and
find 2]
0 0 0 0
0 1/2 0 O
o(t)) = . (2.93)
POl o 12 0
0 0 0 0

Here the density matrix becomes diagonal and microstates {'N«} and {i«T} are al-
ready undoubtedly equiprobable.

The evolution of the system has initiated from the pure state (2.84) with zero entro-
py (2.89). On the contrary, substituting (2.93) into (2.22), we find the nonzero entropy:

s[(p (1)), |=m2>0. (2.94)
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This is the entropy growth, from 0 to In 2, and we see that it has been caused by the
very time averaging.

Why has it happened? Because the procedure of time averaging included av-
eraging over classical probabilities. The averaging over the classical probabilities
cannot be described by the formalism of the Liouville-von Neumann equation
(2.75) which deals only with quantum uncertainties. It does not belong to quantum
mechanics; and the derivation of zero entropy growth (2.80) did not consider it.

But what is time averaging? Obviously, if we consider the noise £(#) to depend on
time not deterministically but stochastically, with classical probability distribution
(stochastic trajectory’s mixing), this will be equivalent to the time averaging and
will provide the nonzero entropy growth.

We see that for the considered system the simple noise introduction leads only to
the oscillations among microstates. On the contrary, introduction of averaging with
classical uncertainties leads to the equiprobability of microstates and to the entropy
growth.

So far we have considered time averaging of a particular system. What would
happen if instead of time averaging we considered ensemble averaging over the
classical probability distribution?

The evolution of our system has initiated from the pure state (2.84). Instead of
a particular initial time # = 0, we can consider arbitrary time which is equivalent to
introduction of the additional phase of oscillations:

0 0 0 0
l+w —lisin(2|g|t+9) 0
R 2 2 2 el
|p(t,9)| B * cos(2|s|t+9) (233)
0 —lg—sin(2|e|t+9) 1_costmer+s)
2|g| 2
0 0 0 0

We are building the ensemble by considering different initial conditions for each
particular system. If we allow the role of the initial condition to be played by the
phase of oscillations, averaging over the ensemble (over initial values of 0) will be
given by

2r

<ﬁ(t)>ensemb[e = .[ ﬁ(t’g)pdf(e)de’ (296)
0
where pdf is the classical probability density function:
pdf (0) = L while 0 <0 <27, 297)

2w

Since the statistical operator p(#,0) in the integrand represents the pure state (2.91),
we are, in fact, averaging pure states with classical probabilities:
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() = [[%(00) (¥ (1,0)] pif (6)db. (2.98)

Although (2.98) is often considered as a quantum density matrix, it is, in fact, not
in the sense that it is no longer the solution of the Liouville—von Neumann equation
(2.75). The averaging over classical probability distribution is not described by the
Liouville—von Neumann equation (2.75), and (2.98) no longer represents quantum
statistical operator. In contrast, it is now the ensemble statistical operator.

The ensemble averaging returns us to the same density matrix (2.93) as in the
case of the time averaging:

0 0 0 0

_ 0 1/2 0 O
<p(t)>ensemble = 0 0 1/2 0 : (2'99)

0 0 0 O

It would be difficult to expect something else because ensemble averaging in-
volves the same averaging over classical probabilities.

Another important aspect here is that we have proved for our system the state-
ment of the ergodic hypothesis that time averaging is equivalent to ensemble aver-

aging.

2.6 MCE: Free Energy Minimization Principle (Entropy
Maximization Principle)

In the previous sections, we assumed the equiprobability of all microstates in the
MCE and have proved that the negative entropy is the free energy potential of the
MCE. In this section, the other way around, we assume that the free energy poten-
tial of the MCE is the negative entropy and will prove the equiprobability of all
ensemble microstates.

Following (2.72) and (2.21), we define the free energy in the MCE as

‘P[WH]:gw”lan. (2.100)

This potential is the functional defined on the function space of all possible prob-
ability distributions wy,.

By definition, the equilibrium corresponds to the minimum of the free energy.
Therefore, to find the equilibrium distribution of probabilities we should minimize
the free energy potential (2.100) over all nonequilibrium distributions wi,.

But any probability distribution is normalized to unity:
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2w, =1 (2.101)
0 ’

and instead of all possible functional dependences wy, only normalized probability
distributions w;, should be considered during minimization.

It is easy to do minimization subject to equality constraint (2.101) by utilizing
the method of Lagrange multipliers,

‘P[w{}]:Zwﬁlnw{}+ﬂ.£Zw{}—1], (2.102)
) {

where to functional (2.100) we added constraint (2.101) multiplied by the Lagrange
multiplier A.

To minimize this functional we should find when its derivatives equal zero. The
derivative with respect to A returns us to constraint (2.101),

oY .
0=—=>wi" -1, 2.103
or T ( )
where we used the superscript index “MCE” to emphasize that this is the equilib-
rium probability distribution.
The derivative with respect to the probability wy, of microstate {}' provides
equation

0= ¥ =In WK,CE +1+4 or w{}‘f,CE =e'. (2.104)

ow,
We see that the equilibrium probability distribution W%CE does not depend on the
parameters of a particular microstate and, therefore, all microstates are equiprob-
able. Substituting W{AfCE = const into (2.103), we find

PMEENCE <1 (2.105)

which returns us to (2.20).

In (2.100) for the entropy functional we utilized definition (2.21) corresponding
to the case of the diagonal statistical operator. But what would happen if we consid-
ered a nondiagonal statistical operator? In this case, we should substitute not (2.21),
but (2.22) into (2.72) to obtain the desired functional of the free energy potential:

W[p]=Tr(pln p). (2.106)

This functional is defined on the operator space of all possible statistical operators
p. Again, the statistical operator is normalized by

Tr(p)=1. (2.107)
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To minimize the functional subject to equality constraint (2.107), we utilize the
method of Lagrange multipliers:

Y[p]=Tr(plnp)+A(Tr(p)-1). (2.108)

To find the equilibrium statistical operator p"“*, we should minimize this func-
tional by equaling its derivatives to zero. The derivative with respect to A returns
us to constraint (2.107). The derivative with respect to p provides the following
equation:

Tr(0pIn p¥” +06p +Adp) =0. (2.109)

Since this equality should hold for any arbitrary variation §p, we find
InpME +1+ 21 =0, (2.110)

where 1 is the unity matrix. The solution of this equation is

BHCE = o IFA _ -(+2) ] (2.111)

This matrix is diagonal and all diagonal elements are equal one to another. Substi-
tuting (2.111) into constraint (2.107), we find that all diagonal elements are equal to
the inverse statistical weight of the ensemble:

~uee _ Ouuy (2.112)

L [ MCE :

Therefore, in the operator space of all possible nonequilibrium statistical operators
p the equilibrium operator p"*“* corresponds again to the equiprobable distribution
(2.20).

2.7 Canonical Ensemble

In the previous sections, we have considered the case of the MCE corresponding to
an isolated system. Now we relax the isolation constraint and allow our system to
participate in heat exchange (Fig. 2.8). We still consider a system at constant vol-
ume V = const (SW = 0) and constant number of particles N = const (5 1< =0).
But now the system can exchange heat, §Q* # 0, with surrounding medium called
thermal reservoir (or heat reservoir, or heat bath, or thermostat).

The thermal reservoir is assumed to be so big in comparison with our system that
any energy fluctuations in our system do not influence its temperature. Besides, its
heat conductance is assumed to be perfect which allows it to react immediately to
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Fig. 2.8 The system in
contact with the thermal
reservoir
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any boundary heat exchange by maintaining the temperature 7" always constant.
Here and further by the superscript index “res” we denote the reservoir parameters.

The fact that the reservoir’s temperature is always constant leads to two conse-
quences. Firstly, since any fluctuations in our system are negligible for the reservoir,
the last participates in heat exchange always quasistatically.

Secondly, the system is assumed to be at constant temperature condition
T"® = const. An ensemble of such systems is called a canonical ensemble (or CE).

Uniting our system and the thermal reservoir into one “big” system X, we con-
sider the system X to be isolated, £ * = const (Fig. 2.8). Then the behavior of the
system X is described by the MCE formalism. To avoid complications, we will
always assume the strict isolation of the system X on one of its energy levels (in one
group of microstates).

Generally speaking, heat exchange between our system and the thermal reservoir
means interaction of these two subsystems when the total Hamiltonian H* of the
system X, besides the sum of the Hamiltonians of our system H and of the reservoir
H'’®, contains also an interaction term v

H®=H+H™ +V. (2.113)

We could build energy spectra for both our system {E } and the thermal reservoir
{E m} ~ as the eigenfunctions of the Hamiltonians H and H', respectively. How-

~ >
ever, due to the presence of the interaction term V' the energy spectrum {E Z} of the

system X would not be represented by the tensor product of these spectra:

es

(£*)" »(E}@{E)". (2.114)

To avoid this complication, it is often assumed that the interaction term Vs
small because interactions with the reservoir are provided by the parts of the system
d-1

close to its surface. Since the number of degrees of freedom on the surface, N 7,
is much smaller than the number of degrees of freedom in the system’s volume, N,

d-1
N <<N. (2.115)

where d is the dimensionality of the system, we can usually neglect the surface en-
ergy in comparison with the energy in the volume of the system and thereby neglect
the term 7 in Hamiltonian (2.113).
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However, we do not follow this approach because, firstly, heat exchange can be
not limited to the surface of the model and, secondly, we consider surface energy
being of extreme importance for the phase transition phenomena. Instead, we con-
sider the stroboscopic approximation when we allow our system to interact with the
reservoir “stroboscopically.” Our system interacts with the thermal reservoir by heat
exchange. After some period of time, we briefly isolate it and observe how much
energy it has “consumed” or “provided.” Then we allow the interactions to resume
heat exchange; then again, we briefly isolate our system and observe its energy
change. And so on, and so on. In other words, into the process of heat exchange we
introduce very brief periods of virtual isolation which do not influence the system’s
behavior but allow us to observe the system in the absence of the interaction term V.

This way, if we observe our system only during short periods of virtual isolation,
we can treat it as if it were fully isolated except for the fact that its energy constantly
jumps from one value to another. Therefore, we exclude the interaction term V from
the total Hamiltonian,

H*=H+H™, (2.116)

b
and consider microstates {E z} of the system X to be the tensor product of the set
res
of microstates { E } of our system and the set of reservoir’s microstates { E "’S} :

(£*)" = (Ey@lE)". 2.117)

In other words, choosing a particular microstate {E } for our system and a particu-
17 . . .
lar microstate {E m} for the thermal reservoir, we form a particular microstate

{E > }Z of the system X. Therefore, it is often said that even in the presence of heat
exchange the energy spectra of two subsystems are still identifiable separately as if
for independent subsystems.

The “big” system X is isolated. Therefore, if the energy of our system were in-
creasing, the energy of the thermal reservoir would be decreasing:

E+E™ = E* = const. (2.118)
Let us look at Fig. 2.9 where to the left we schematically plot the energy spec-

trum of our system while to the right we have the energy spectrum of the thermal
reservoir. Both spectra are divided into groups of microstates.

Fig. 2.9 Energy fluctuations —] — res
& = E a’g% E§“=}gEsm
— }\ ~ res _= } res
E, =718« Ef = J &=
— ~ —
I R N
——— L S o — L
E,=T8:. gp,pe_p \Ei =]'gE£m
— res R— res
P =Y
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If our system “lives” in group FE,, the thermal reservoir must be somewhere in
its group E;* = E* — E,. When our system takes away from the thermal reservoir
some additional energy and jumps into group FEs, the thermal reservoir, following
(2.118), has to move into group E* = E* — E.

b
As we have discussed above, a microstate {EZ} can be formed by the choice
of a particular microstate {E } of our system (a horizontal line to the left in Fig. 2.9)

and a particular microstate {E e Lm of the thermal reservoir (a horizontal line to
the right), providing, of course, that equality (2.118) holds. Therefore, to find the
statistical weight I="F of the MCE ensemble of the system X we should go over
all microstates of our system, one by one. For each microstate {E } of our system,
we should calculate in accordance with (2.118) the corresponding energy of the

yres |
thermal reservoir. Then we should go over all reservoir’s microstates {E m} n

the group with this value of energy because the thermal reservoir could be in any of
them. Finally, we obtain

=3 % 1=)"g.g% . (2.119)

B} gy E
E_EE_|

where in the last equality we went from the sum over microstates { E } to the sum
over the different values of energy for our system.
The isolated system X is in the MCE. Therefore, all its microstates are equiprobable:

1
3, MCE _
= (2.120)

In this case, the probability for our system to be in a particular microstate {E}
with energy E is the sum of probabilities (2.120) over all reservoir’s microstates

{ Eres }res : res _ X .
with energy £’ = E* — E:

res

ce _ 8 g
Wiy = [ZMCE " .121)

Then the probability for our system to have energy £ is just g, times higher
because in this case our system can be in any of g, microstates of the group cor-
responding to this value of energy E:

res

88
WEE = gpwh: :%. (2.122)
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Problem 2.7.1

Illustrate formulae (2.119)—(2.122) with the aid of the Ising model without
spin interactions when the model consists of V = 3 spins.

Solution: Let us assume for a moment that the system has, for example,
energy E =—ph. Then it is in one of three microstates {TTi«}, {TiT}, or
{i«TT} while the energy of the reservoir is £ = E* + uh and the reservoir
is in one of its g";sw , microstates, corresponding to this value of energy. The
general correspondence between two spectra is shown in the following figure.

res
3& ~ ey — } gres
/ z
,uh \\ // — E™+3uh
— — res
E)-1, L AS e
4n_ -7 "3~ ~ —_—
— - 7 ~ -~ — res
— - ~ { — } 8
~
*3/,{}1 - 7z N { p—i } res
=J & 3

Now, when we have described how two spectra are associated one with
another, we can start constructing microstates {Ez} of the total system X.
If our system is in microstate {TTT}, the thermal reservoir can be in any of

res

E*+3uh -
. . . 3,

any of these reservoir’s microstates form a microstate {E } of the system

Y. When our system is in one of microstates {T'Nf}, {N/T}, {iTT}, a com-

res

its g microstates {E r“}m and a combination of microstate {TTT} and

bination of any of these microstates and any of g;;  reservoir’s microstates

E*+ 1
>
again form a microstate {E E} of the system X. And so on. Summing, we find

F X, MCE res res res res

= g—3.“th2+3;zh + g—ﬂthEﬂ:h + gﬂthx—yh + g3uhg5273uh
— res res res res
- gEE+3uh +3gEE+yh +3gE27yh +gE273uh' (2123)

The system X is isolated, and all its microstates are equiprobable:

S MCE _ 1

{Ez}z - grm +3gres +3g

E*+3uh E* +ph

(2.124)

res res

E*—ph i gEZ—Buh

How do we find the probability for our system to be, for example, in micro-
state { T4 1?2 When our system is in this microstate, its energy is £ = uh and
the energy of the reservoir is £ = E* — ph. Therefore, the thermal reservoir

can be in any of its g;eff“h microstates, which, together with microstate
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{Ti«i} , form g?_# , microstates of the system X. Since the probability of any
of microstates of the system X is (2.124), to find the probability for our system

to be in microstate {TJ,J/ we should sum probabilities (2.124) for g,y COT-
responding microstates of the system X:

& _ E . (2.125)

w{TiﬁL} - res + 3 res + 3 res + res
gEZ+3yh g gEE—,uh g52—3yh

Ez+,uh

To find the probability for our system to have energy £ = uh, we should

sum the probabilities for our system to be in any of its microstates {T»H«},
(L (T
WuChE = W{CTiJ,} i W{Cﬁi; & W{Cﬁﬂ
3gV€S

_ £~ , (2.126)

- res res res res
gEZ—3/,th +3gE27/,1h +3gE2+yh +gEE+3uh

2.8 Nonequilibrium Fluctuations of the Canonical
Ensemble

In formulae (2.121) and (2.122), we have utilized the superscript “CE” because
these probability distributions corresponded to the rules dictated by the CE and,
therefore, were in equilibrium with the ensemble. In this section, we introduce non-
equilibrium fluctuations as nonequilibrium probability distributions.

In the MCE, the microstates {E , p} were distinguished by some set of fluctuat-
ing parameters p while their energy was prescribed by the isolation condition. In
the CE, energy E of the system becomes a new fluctuating parameter. Then we de-
fine the nonequilibrium fluctuation {{E,p}} (macrostate {{E,p}}) by the following
nonequilibrium probability distribution:

Wie ) :{I/Fi{ﬂp}} E=Eand p=p }:m. (2.127)

0 ,otherwise F{{E,p}}

The simplest case, which we consider in future formulae, is when we distinguish
macrostates only by the values of energy of the system. These fluctuations {{E }}
are defined by the distribution

W{E} _ l/r{{E}} ,E:E _ SE,E - (2128)
0 ,otherwise r{{g}}
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In this case, the macrostate {{E }} is just the fluctuation corresponding to the system
with energy E; and we will call this macrostate as the energy fluctuation in the
system.

The statistical weight F{{ £} of energy fluctuation {{E }} is just the statistical

weight of this energy level (of this group of microstates):

Substituting the nonequilibrium distribution of probabilities (2.128) into the defini-
tion of entropy (2.21), we find the entropy of the fluctuation {{E }}

Sty = _{ZE; Wiy Wiz =Dy (2.130)

again obeying Boltzmann’s rule.

Problem 2.8.1

Explain what energy fluctuations are with the aid of the Ising model without
spin interactions when the model consists of N = 3 spins.

Solution: There are four energy fluctuations in this model: {{—3 uht}, {{— ph} } ,

{{uh}}, and {{30n}}.

Macrostate {{—3 uh}} corresponds to the fluctuation with energy £ = -3 uh.
Only one microstate {771 corresponds to this fluctuation; therefore, its sta-
tistical weight equals unity, F{Hﬂh}} =1, and its entropy is zero, S{Huh}} =0.

Three microstates {T'N«}, {’NT}, and {»LTT} correspond to energy fluc-
tuation {{—uh}} with statistical weight L gy =103

Similarly, for two remaining energy fluctuations we have L, =3 and
=In3, T =land S =0.

=3 and entropy S{

S{{#h}}

{{3/,th}} {{3yh}}
What is the probability to observe fluctuation {{E}} in the CE, that is, the prob-
ability to observe the system in the CE at a particular energy level (group of micro-
states)? Obviously, we have already found this probability as probability (2.122) for

the system to have energy E:

| VTN e
CE _ He) {{EE_E}}

W{{Cg}} - F{{E}}W{E} =T e (2.131)

While T2 is some constant, two other quantities, F{{E}} =g, and

@Z e = gg;_ 5o depend on the energy E of the fluctuation {{E }} Since both

these quantities also depend exponentially on N, these are very fast dependencies.
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When the system is taking some energy away from the thermal reservoir, its sta-
tistical weight rapidly increases while the statistical weight of the reservoir rapidly
decreases. The “clash” of these two “fast” dependencies leads to the appearance
of a very narrow maximum of the probability distribution (2.131). To obtain this
maximum, we find when the derivative of the probability distribution (2.131) (or
the derivative of the logarithm of this distribution) becomes zero at the point of the
most probable, equilibrium fluctuation {{Eo }}

CE CE
MEN] _ g ang 2] (2.132)
oE oE '

Ey Ey

Equation (2.132) is called the equation of the equilibrium macrostate. Differentiat-
ing (2.131), we find

dr’ - res dr - res
F dE res ) dE res ) res ’ .
ey ) Yoy
d 1 n Fres s dS res e
B 1 NN i e 11 U (|
dE dE™ ’ dE dE™
where §7¢ is the entropy of the fluctuation {{E e }}m of the reservoir.

=)

Following thermodynamics, for quasistatic processes we define a system’s tem-
perature as the derivative of the system’s energy with respect to system’s entropy:

dE
aS gy,

r= (2.134)

Since in the vicinity of the equilibrium all fluctuations are small (near quasistatic),
the equilibrium equality (2.133) transforms into the requirement for the system’s
temperature to be equal to the reservoir’s temperature:

:Tll‘es Orﬁ:ﬁres’ (2135)

N =

where S usually denotes the inverse temperature, f =1/T.

Let us now obtain a more suitable expression for the probability to observe our
system in microstate {E } Since I'*MF is constant and does not depend on the sys-
tem’s energy, we transform (2.121) into

res

Wig oc e HETTEN (2.136)
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Our system and its fluctuations are small in comparison with the energy of the ther-
mal reservoir. Therefore, we can expand the reservoir’s entropy in powers of the
energy E of our system as a small parameter:

res
res It Eres ) yres

CE {{Ere_\' } }VL‘X E},&y :EZ dErES E/Trfs
res _ X —
Wi, e EU=E* o e . (2.137)

Since all processes are quasistatic for the thermal reservoir, we have utilized here
definition (2.134) for its temperature. Also we should note that the reservoir’s tem-
perature has been defined at the point when all the energy of the total system X is
gathered inside the reservoir and our system has zero energy:

pres - dE™ _ (2.138)
ds{reS

{Ere.v } }re.v pres :EZ

But the thermal reservoir is so huge in comparison with the energy of fluctuations
in our system that its temperature does not depend on what the energy of our system
is. That is why the thermal reservoir provides the constant temperature boundary
condition 7" = const and we can refer to its temperature as to a constant regardless
of what is currently the energy of our system.

The obtained probability distribution

1 _ res
w{% :Fe EIT (2.139)

is called Gibbs probability distribution, where ZF is the normalization constant of
this distribution,
ZF =N, (2.140)

£}

which is called a partition function of the CE. Similar to the statistical weight of the
MCE, this function normalizes the distribution of probabilities of separate micro-
states. Therefore, it is often referred to as a statistical sum of the CE. Later we will
see that there is more to this similarity than we have mentioned here.

.. A _E/T™ .
We have defined a partition function as a sum of terms e T over all micro-

states of the system. But since terms e BT depend only on system’s energy, we

can transform sum (2.140) into summation over energy levels (groups of micro-
states):

7%= g (2.141)
E

Recalling that we have built macrostates {{E }} as energy fluctuations equivalent to
observe the system at a particular energy level (group of microstates) and that the
statistical weight of fluctuation (2.129) is the statistical weight of this energy level
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(group of microstates), we can interpret (2.141) as the summation over all possible
energy fluctuations:

(2.142)

The difference between (2.141) and (2.142) is just a matter of notation; and we will
utilize both expressions at our convenience.

2.9 Properties of the Probability Distribution of Energy
Fluctuations

Having found in the previous section the probability (2.139) of one microstate, we
substitute it into (2.131) to find the probability of energy fluctuations in the CE:

1 e
Wiy =Tyapvies =Ty S B (2.143)

where the normalization of this distribution follows from

CE _
Wiey = 2T
HEH HEH

W =1 (2.144)

Earlier we have assumed that the probability distribution (2.143) has a very
narrow maximum. Let us now prove this statement. For the first derivative of the
logarithm of (2.143), we find

CE
AWy dnlyey 1 1 1

L S (2.145)
dE dE TI‘ES T TI'QS

At the point £, of the maximum, this derivative is zero and, therefore, the equality
of equilibrium (2.135) is valid.
The second derivative

2 CE
Wiy a1 1 (2.146)
dE? dET TGy,
at the point £, equals
2 CE
! an{{E}}| o (2.147)
2 resy 2 '
dE N (T7) CV|E0
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Substituting these derivatives into the expansion of In W{{Cg}} in powers of small
energy deviations from £,

CE 2 CE
S]] RS ]
dE o dE?
Ey Ey

(E-Ey)*+...,
(2.148)

and exponentiating the obtained equality, we find the probability distribution of
nonequilibrium energy fluctuations in the vicinity of the equilibrium macrostate
{{EO?} to be Gaussian:

(E-Ey)*

)l (2.149)
Wiiey) ™ € :

Since both energy and heat capacity are extensive parameters (proportional to N),
for absolute energy fluctuation and relative energy fluctuation we find

SE o« OIWN (2.150)

and
%L o).

Ey, = JN
Here O(1) means the absence of a dependence on N, but contains constants related
to energy spectrum, like u in the case of the Ising model. Therefore, O(1) can, in
fact, be significantly less or more than unity and we have utilized here the notation
O(1) only to emphasize the absence of a dependence on N.
" Only energy fluctuations under the Gaussian “bell” (2.149) of the probability
maximum have nonzero probabilities and, therefore, only these fluctuations deter-
mine system’s behavior. To find how many fluctuations {{E }} are under the “bell,”
we should divide (2.150) by the energy difference A E between two adjacent energy
levels (groups of microstates).

For the ideal gas, the adjacent energy values differ by the transition of one of gas

(2.151)

2
2nh
particles into the next cell in its phase space AE = A ZP; oc Ap o< % . For the Ising
m

model, one spin flip AE o« 2uh moves the system to the next energy level. In both
cases, the difference between two adjacent energy levels (groups of microstates) of
the energy spectrum is some small quantity that does not depend on N. Dividing
SFE by AE, we find that the number of energy fluctuations under the Gaussian

“bell” of the probability maximum is proportional to JN:

OF 0N, (2.152)
AE =
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However, if AE depended on N as a power-law AE oc N™%, the number of energy
fluctuations with nonzero probabilities would still be a power-law dependence on
N but with different exponent:

1
5_Eoc O(l)NME. (2.153)
AE =

From (2.151) we see that the relative width of the probability maximum is inverse-
ly proportional to VN and, therefore, is indeed very small. The maximum is provided

by “clash” (2.143) of two dependencies, I (£} and W%, exponential on the energy £

of fluctuation (which means exponential dependence on N because E o« N). There-
fore, these dependencies are very “fast” (very sensitive to energy change) and their
product creates a very narrow probability maximum at the point E,.

Since the maximum is very narrow, its point £, should correspond to the aver-
aged system’s energy in the CE. Let us prove this statement.

The averaged value of an arbitrary parameter f in the ensemble is provided by
definition (2.24). Applying this definition to system’s energy in the CE, we find

(E)., =D Ewg = ZEF e Wier = ZEW‘E (2.154)

{E}

Here I' (E)) and W{CEE} again depend exponentially on energy (on N) while the mul-

tiplier £ is a power-law dependence on N (proportional to N). Therefore, both
functions, T’ and wE , are much more “faster” than the “slow” dependence of
{tey 40 P

multiplier £; and the product F{{ E}}W{Cg‘; = W{{Cg}}, which has a very narrow maxi-

mum, seems to act like a J-function at the point £: 6 (£ — E|)). All the more so that
this J-function is normalized to unity by (2.144). So, we expect that (2.154) can be
transformed into

(E)ep = [ ES(E - Ey)dE = E, (2.155)

which would indeed prove our statement that the point £, of the probability maxi-
mum equals the averaged value of energy in the CE.

To prove (2.155), we should find how the change 6 E of the “slow” dependence
E over the width of the maximum influences the value of integral (2.155). Since the
change 0 E of E over the width of the maximum is provided by (2.150), neglecting
S E in comparison with E itself would lead to the following error in the integral:

~ j (E+O(N)S(E - Ey)dE = Ey + ON). (2.156)

We see that £, does not equal exactly to < > but the difference is of the order
of VN . And since E, «c N, we can indeed neglect O(\/— N) in comparison with E
which finally proves our statement.
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Problem 2.9.1

[lustrate formulae (2.150)—(2.156) with the aid of the Ising model without
spin interactions.

Solution: As an example, we consider the Ising model with 100 spins and for
simplicity will assume that ph =1 and 7" =1. In the following figure, we
plot the “clash” between the statistical weight of fluctuations F{{ £ and the

probability W{CEE} of microstates. Their product provides the maximum of W{{CEE}}

at the point £,. In the figure, we apply the logarithmic scale for the ordinate
axis. Therefore, all the dependencies only seem to be slow while in reality
they change by many orders of magnitude.

E
100 75 50 25 0 25 50 75 100

In the next figure, we plot the dependence of the probability distribution

W{ZEE}} on the energy of fluctuations in linear axes. Fluctuations are presented

by separate columns under the common “bell” of the maximum; the distance
between two adjacent fluctuations corresponds to one spin “flip”AE = 2.

W«f»“
0.141
0.121
0.10+
0.081
0.061
0.04 1

0.024
E

100 -75 -50 -25 0 25 50 75 100

The absolute width of the maximum is of the order of 5 E o« /NAE =10AE
and there are only about JN =10 separate fluctuations under the “bell.” The
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averaged energy corresponds to averaging over these fluctuations with non-
zero probabilities. Therefore, <E > o lies also somewhere under the “bell” and
its difference with the point £ of the maximum is of the order of the maxi-
mum width: (), = E, +8E. Since E, o N =100 and 5E oc /N =10, we
can neglect the difference; the more so, the higher number of degrees of free-
dom in the system.

The energy E, of the most probable macrostate {{EO}} is determined by the equa-
tion of the equilibrium macrostate (2.132). Solving this equation for a real system,
we find E as a function of the ensemble boundary condition 7", volume, and the
number of particles in the system. For example, for the ideal monatomic gas we

would find E; = %NT .

But now in accordance with (2.156) we have proved that the energy E, of the
most probable macrostate equals the averaged energy in the CE. Substituting (2.156)
in the equation of equilibrium macrostate (2.132), we find the equation of state of

3
=—NT.
CE 2

the system. For the ideal monatomic gas this provides <E >

Since (2.156) is always valid, in future we will not distinguish the equation of
the equilibrium macrostate and the equation of state. So, we will refer to (2.132) as
to just the equation of state.

The possibility to neglect “slow,” power-law dependences in comparison with
“fast,” exponential dependences presents a useful method which we will often apply
in future. Let us, for example, consider the condition of the probability distribution
normalization (2.144). Here the sum goes, in fact, only over those fluctuations that
are lying under the “bell” of the maximum because only these fluctuations have
nonzero probabilities. Following (2.153), the number of these fluctuations is a pow-
er-law dependence on N JN in the particular case of the Ising model considered
in Problem 2.9.1). Therefore, we can approximate the sum as

1

_ CE _ S CE CE _ 137CE
1‘{%r{m}wfﬁ> i Q[N JF{{EO}}WW *n DigeyWizg =Wigey- (2:157)

We have obtained a very important equality. Firstly, it proves that at the point
E, of the maximum, the probability ng)} of microstates equals with logarithmic

accuracy the inverse statistical weight I' HE)) of the equilibrium macrostate {{EO }}

1
Wiz ®in — (2.158)
{Eo}}

Secondly, equality (2.157) means that the sum z W{{Cf}}, which normalizes the

(e}
probability distribution W{{CE}}, gathers (with logarithmic accuracy!) its unity value

only over its maximal term. We have emphasized here that this is valid only with
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1

a+—
the logarithmic accuracy because there are at least N 2 other fluctuations under

the “bell” of the maximum with similar probabilities W{{Cg}} R W{{Cfo e Therefore,

1
a+—
the maximal term W{{Cfo}} is N 2 times less than unity.

It is customary to present equality (2.157) in a more intuitively clear form. Let us
multiply this equality by the partition function Z% of the ensemble:

ZCE — Z F efE,/T""" ~ r efEU/T"“". (2159)

E In E,
o (£} (e}
The first equality here is just definition (2.142) of the partition function while the
second equality is much more important because it claims that the partition function
of the ensemble is equal (with logarithmic accuracy) to its maximal term.

Problem 2.9.2

[lustrate formulae (2.157)—(2.159) with the aid of the Ising model from
Problem 2.9.1.

Solution: From the second figure in Problem 2.9.1, we see that the sum

Z W{{C}f}} gathers its unity value over the width of the maximum. But there are

{ie)
about /N =10 fluctuations with similar probabilities under the “bell” of the

maximum

= %} Wiiey = {{E}};MS Wiy = NN Wiz (2.160)
In other words, the total sum is /N =10 times higher than its maximal term
Wiey

W{{Cfi}} - F{{Eo}}w{c’;> * ﬁ (2-161)

But both functions, I’ &)

applying logarithmic accuracy to this equation, we return to (2.158). Indeed,
if we look at the first figure in Problem 2.9.1, we see that at the point £, both

and W{CEE}, depend exponentially on N. Therefore,

values, T, = 7-10" and w{Cg)} =1.4-10""7, are symmetric relative to unity

{Eo}}

1 1 1
= zln .
OCyey  VNTn " Tiay

CE
Wigy ¥ 1

(2.162)

In comparison with the order of 103 (and it is already for only 100 spins in
the model!), we always can neglect multiplier 10 with logarithmic accuracy.
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Multiplying equality (2.160) by the partition function Z“* of the CE, we find

CE BT BT
Z==>T ~ i@

e € =

{2} {{E}}:-85<E<-65

e 10T e e INT e ™7 (2.163)

The first equality here is the definition of the partition function. The second
equality tells us that the sum gathers its value over ten fluctuations under

_E T
e 0

the “bell” of the maximum. Both the main term I" { of the partition

{Eo}}
function and the partition function itself, Z“ = 7x10*, depend exponentially

on N. Therefore, we can neglect the power-law multiplier JN =10 (10 in
comparison with 10*!) which returns us to (2.159).

In this section, we have considered the behavior of the probability distribution W{{Cg} |

and have found that it has a very narrow maximum provided by the “clash” of two
“fast” dependencies: I’ (E)) and wﬁf}. But does this situation always take place? Are

there situations when two “fast” dependences happen to be not enough to create a
narrow maximum of the probability distribution?

Unfortunately, there are indeed situations when the presented formalism does
not work. Let us consider a system whose statistical weight " ey obeys a simple
exponential dependence on the energy of the system:

~ const-E
F{{E}} R € . (2164)

We should mention here that everywhere above we have assumed something more
complex. For example, the statistical weight (2.17) of the Ising model was more
complex than the simple exponential dependence. But what would happen if we
indeed had (2.164)?

Substituting (2.164) into the probability distribution (2.143), we find that both
“clashing” functions are exactly exponential on F,

1 *TTE
e (2.165)

WCE CE __ const-E

ey = Dy Wiy =

when one exponential dependence cancels another leaving us with just simple ex-
ponential probability decay (the maximum now is at £ = 0):

1
- cE 1 —(ﬁ—const)E (2 166)
{{E}}__Z CE e . .



106 2 Ensemble Theory in Statistical Physics: Free Energy Potential

Unfortunately, a similar situation takes place in the case of percolation which we
consider in Chap. 4. From our point of view, this is the reason why the complete
analogy between percolation phenomena and phase transition phenomena of statis-
tical physics has not been developed yet.

In the rest of this chapter, we consider only “good” systems whose probability
distribution W{{Cg}} for energy fluctuations in the CE has a narrow maximum at point

E,. To the opposite situation in the case of percolation, we return in Chap. 6.

2.10 Method of Steepest Descent

In Sect. 2.8, we have utilized expression (2.142) for the partition function when in-
stead of summing over microstates { £} we summed over energy fluctuations {{£}}.
But energy fluctuations are represented by energy levels (groups of microstates)
separated by very small interval AE (which, in general, could vary over the spec-

trum AE(E)). Therefore, we can approximate the sum Z F 1} by the integral

J‘ {{E dE J (E)dE, where we introduced the uantlt
AE(E) ¢ R
r
(E)= ey _ g (2.167)
AE(E) AE(E)

called the density of microstates in the spectrum because the product

g(E)dE = 5L
quantity with the aid of the Ising model.

provides the number of microstates in dE. Let us illustrate this

Problem 2.10.1
Find the density of microstates for the Ising model without spin interactions.

Solution: In the case of the Ising model, two adjacent energy levels are
divided by one spin flip

| AE |= 2 uh. (2.168)

Therefore, the density of microstates equals

195
E)= , (2.169)
g(E) 2

where the dependence of the statistical weight g, on system’s energy E is
provided by (2.7) and (2.17)
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1 E 7NG’W] 1 E ’N(é*ﬁmj
i (__—j (§+mj . (2.170)

Applying approximation (2.167) to (2.142), for the partition function we find

7%~ jdE g(E)e ™" (2.171)

Problem 2.10.2

For the Ising model without spin interactions, approximate the sum over
energy fluctuations by integral.

Solution: Utilizing the obtained density of microstates (2.169), for the parti-
tion function we find
+Nuh
AR j dE g(E)e ™" . (2.172)

—Nuh

However, for the purpose of convenience for the Ising model it is standard
practice to integrate not over system’s energy but over system’s magnetiza-
tion. Indeed, from (2.7) we recall that the energy of the Ising model without
interactions is bijectively associated with the specific magnetization,

E =—Nuhm, (2.173)

when any energy fluctuation {{E }} bijectively corresponds to a magnetization
fluctuation {{m}} Therefore, instead of summing over energy fluctuations,
we can sum terms of the partition function over magnetization fluctuations,

Z% =3 Ty, (2.174)

1+m 1-m

l4m) " 2 (1-m\ " 2
T, o~ |27 il _ (2.175)
{tmi} " {9 P
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In equality (2.174) the sum can also be approximated by integral

+1
7 o [Am o reyre (2.176)
ndo/N ’

where we again utilized that the difference between two fluctuations corre-
sponds to one spin flip:

| Am|=2/N. (2.177)

From expressions (2.171), (2.172), and (2.176), we see that the common feature of
all these integrals is the exponential dependence of the integrand on N. To find such
integrals, the method of steepest descent (saddle-point method) is often applied.
Since this method is not always included in the textbooks on statistical physics, we
develop it in the current section.

Our purpose will be to find in the complex plane z = x +iy the integral

1=[e"IF(z)ds, (2.178)

Bl

where in the integrand’s exponent the number A is finite but very large: N >>1. We
assume both functions, f(z) and F(z), to be analytic.
Let us separate the function f(z) into its real and imaginary part,

S(@) =u(x,y)+iv(x,y), (2.179)

where both functions, u(x, y) and v(x, y), are real and, since f(z) is analytic, obey
Cauchy—Riemann conditions:

6—”—@anda—u——@ 2.180
ox oy dy  ax (2.180)

From (2.180) we easily find that

2 2 2 2
Tu_ O g SV 0 (2.181)
Ox oy Ox Oy

These equalities mean that both surfaces, u(x, y) and v(x, y), are the saddle surfaces
when one curvature equals minus another curvature.

Let us assume that for the function f(z) we have found its saddle point deter-
mined by the condition

£'(z4) =0. (2.182)
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Then we deform the contour of integration so that it passes through this point.
Next, we expand f(z) in the vicinity of z, in powers of z -z,

2 — n
f(z)zf(zo)—i-cz(z—zo) +ch(Z—ZO) , (2.183)
n=3
with the radius R of convergence. The coefficients of the power expansion are

C =if<”)(zo)—LgS—f(C)déw (2.184)

n " _zn_iCR(é,_ZO)nHa

where Cj, is the contour of radius R with the center at z,
Since the function f(z) is analytic, it is bounded at the given contour,

|f(zo + Re" ) | < const, (2.185)

along with its coefficients:

LCﬁ 7(¢)d¢ |< 27 R const _ const

| = - < — = (2.186)
2mi g, (g ~z, )'” 2r R™ R"
In the neighborhood of z, we will utilize Euler’s form for z,
z=re?, (2.187)

where we always bound the considered neighborhood by the convergence radius R
of series (2.183):

F<R. (2.188)

Let us consider how significant is the contribution of the last sum in (2.183).
Utilizing (2.186) and the expression for the sum of geometric progression, we find

< n (Y Nconstr®
NZ;CH(Z—ZO) SNCOHSt;(Ej :—RZ(R—r)' (2.189)

Considering small » << R, we can neglect » in the denominator:

3
< Nconst(%j . (2.190)

NioCﬂ (z—z0 )"
n=3

So far we have considered arbitrary r, providing it is small enough. However,
now we choose r to obey the particular inequality,

r<r, =const- N << R when a >0, (2.191)
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which is, obviously, always possible because N >>1. This neighborhood of the
point z, we will call the -neighborhood.
Substituting the radius of the 7-neighborhood into (2.190), we obtain

+00 " B t
NY C (z-z)|< N m%. (2.192)
n=3
Parameter o in (2.191) is some positive real number. After choosing
1
a>—, (2.193)

3

sum (2.192) inside the 7,-neighborhood becomes of the order of c=)(1 / N3 ) while

1/N3a—l
its exponent is of the order of e:( ) =1+ Q(l / N3 ) Therefore, its contribu-

tion to the integral over the 7,-neighborhood provides the integrand multiplier of
the order of unity and in the 7,-neighborhood we can consider only two first terms
of (2.183):

f(2)= f(zy)+Cy(z—zy)" whenr <7, (2.194)

We want to develop the method in such a way that the main contribution to inte-
gral (2.178) would be provided by the integration over the 7,-neighborhood of the
saddle point z, and that both terms in (2.194) would participate significantly. The
estimation of the participation of the second term is

INC, (=2, | < N1 %rft. (2.195)
For it to be significant, we should require that
o < % (2.196)

As we will see later, condition (2.196) also allows us to neglect the integration over
the contour beyond the r-neighborhood of the saddle point z,.
Inside the 5y-neighborhood we will utilize Euler’s form for (2.194):

f(2)= f(z0) = |Cy|rPe/™E 20, (2.197)

Earlier we have deformed the contour of integration so that it would pass through
the saddle point z,. Now we choose the direction at which it crosses the 7,-neighbor-
hood of this point:
__agG+r (2.198)
§=-TET
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Fig. 2.10 The contour
corresponds to the direction
of the steepest descent of
function u(x,y)

Substituting this angle into (2.197), we find

F(2) = f(z9) = =|Gy| . (2.199)

In other words, along the chosen path the increment of the function is real. Recall-
ing (2.179), we see that inside the 7;-neighborhood the imaginary part v(x,y) of
f(z) remains approximately constant, v(x, y) = v(X,, ;). And since on the complex
plane the curves v = const and u = const are always perpendicular one to another,
we conclude that our contour corresponds now to the direction of the steepest de-
scent of the real part u(x, y) as it is schematically shown in Fig. 2.10.

Further we assume that function u(x,y) continues to decrease monotonically
while we move away from the 7,-neighborhood along the contour. This is the main
assumption of our method. If it happened to be not valid, we should be more careful
with the obtained results. In particular, this assumption is not valid in the presence
of several saddle points. In this case, we should take into account all of them by a
similar approach.

Let us divide the contour of integration into three parts (Fig. 2.11): from z, up
to the 7y-neighborhood of the saddle point z;, inside this neighborhood, and from
this neighborhood to z,. We will denote two cross-points of the contour and the 7
-neighborhood as -7, and 7,

Since z,, is constant, we can move the integrand’s multiplier ¢V ahead of the
integral (2.178),

Z

[=eY) j eN{f(Z)ff(ZO )}F (Z) dz; (2:200)
2
Fig. 2.11 The contour ¥
corresponds to the direction z
of the steepest descent of the 1o

function u(x, y) ?

Z1 X
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and our purpose becomes to find the integral:

I=| MO (2) . (2.201)

4

The variable r has been, in fact, parametrizing the contour of integration inside
the r-neighborhood in accordance with (2.187). We will continue to utilize the pa-
rametrizing definition (2.187) outside of the 7-neighborhood as well; however, in
this case the angle is no longer provided by (2.198) but is some other dependence
¢(r) on the parameter r.

Let us estimate the contribution to integral (2.201) coming from the path from
Zyup to —ryt

—rye®
J' eN{f(Z)*f(-”o)}F(Z)dZ

2

< J' eN{u(r)fu(O)}

===l

dr, (2.202)

= Mu(xy)

Zp Zp
where we have utilized that always j f(2)dz| < j | /(2)dz| and that ‘eNf @

Za Za

If we also recall that we have assumed the function u(x, y) to be monotonically de-

creasing while we move away from the point z,, we obtain

b

i
=€

9
[ VO (2)de| < MO R (2) def o conste O (2.203)

2

But the difference in the exponent is provided by (2.199),
u(-ry) —u(0) = =|Cy |, ?, (2.204)
where the radius 7, of the r-neighborhood is defined by (2.191):
u(—ry) —u(0) = —const|Cy| N> (2.205)

Substituting (2.205) into (2.203), we find

-y
J‘ SO g ( Z) dz

2

‘onst-N'"2%
< const-e "N I, (2.206)

However, earlier in (2.196) we have considered only oo <1/2. Now we see that
this particular requirement provides that in the limit N >> 1 we can neglect the inte-
gration along the contour from z; to —#,. A similar statement is valid and for the in-
tegration from 7, to z,. Therefore, requirement (2.196) provides that the main value
of integral (2.201) comes from the 7-neighborhood of the saddle point z, while the
integration along the rest of the contour may be neglected.
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j P (2)de = Te’N‘CZ"'zF(zo cre)etdr.  (2:207)

e )

Since in the general case function F(z) is not singular at the point z,, we can
neglect its change inside the small #-neighborhood:

[~F(z,)e" j e M gy (2.208)

Changing the variable,

x> =N|Gy| 7, (2.209)

we obtain

o N[y R
[ e an. (2.210)

v N|C2 *m’o

Since N >> 1, the upper and lower integration limits are also some large numbers
and we would like to know whether it would be possible to replace both integration
limits with infinity. In order to do that, we should evaluate the asymptotic behavior
of the error function:

i F)e?

Err(+0)=Err(X >>1)= [ e dx. (2211)
X>>1

Changing the variable
y=x2, (2.212)

we find that

eV dv== (2.213)
X-!;l j \/7
The second variable change
sy x? (2.214)
allows us to set the lower limit to zero:
+00 —X? 4o —z
j e de=C I _° _» (2.215)
x>>1 2X 1+ oz
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The integrand’s multiplier e~ provides that the integral gathers its main value
while z is of the order of unity. In this limit, the value of iz <<1 is negligible in
X
comparison with unity:

+a0 _X? 4w 2

[ e dx~—je s = 2?( (2.216)

X>>1

Applying this result to evaluate the following integral

+o0 ) Zd e‘N‘Cz‘roz e—conslNl’Z“\Cz\
e dx~ = ; , (2.217)
WGl 2\/N|C2|r0 2const N2 IC,|

we see that we indeed can replace both integration limits in integral (2.210) with
infinity

i-L @T < e L) (2.218)
4/N|C - ING|/r '
Substituting this result into the initial integral (2.178), we finally obtain
o F "” _
_ove F(2) € vy [ 2m | (z0) €. (2219)

NGz N9 (z,) g

We should note that this result is valid with the accuracy of the multiplier of the
order of unity: 1+ Q(_ﬁj’ where 8 > 0. However, in statistical physics for statisti-
—\N

cal weights and partition functions, both exponentially depending on N, we gener-
ally utilize the logarithmic accuracy. Applying logarithmic accuracy to (2.219), we
should neglect all power-law multipliers to find

I=[e"OF(z)dz =, "), (2.220)

2

where the saddle point z, of the function f(z) is determined by

f(z) =0. (2.221)

To apply this result to the sum of partition function we, firstly, should present
this sum in the form

_ g Sy —EITT
=Y Ty =Y et : (2222)
= i
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where we have emphasized that the integrand depends exponentially on N because
both entropy S{ ()} and energy E are extensive parameters. Transforming the sum
into integral

o [_9E  SumyET

CE
i J‘me (2223)

and applying (2.220), we find that with logarithmic accuracy the sum in (2.222) is
equal to one of its terms,

Sty B0/ T

~, e - {{Eo}}e‘Eo/T , (2.224)

where E; is determined by

8 E
{5_5(%{5}} e j}

Modifying the left-hand side of (2.225) as

0 o 0
_ CEy5,CE
{ﬁln[r{w}}e ' ]H ‘{@Eh‘(Z W{{E}})}
Ey

-0. (2.225)

Ey

(2.226)

Ey

and recalling that does not depend on the energy of fluctuation {{E }}, we find
that £, is determined by the equation of the equilibrium macrostate (2.132)

olnwSE
% 0 (2.227)

Ey

corresponding to the point of the maximum of probability distribution W{{Cf}} and

simultaneously to the point of the maximal term (2.159) of the partition function.
Therefore, the method of steepest descent represents the “essence” of the main rule
in the CE: the partition function of the ensemble is equal with logarithmic accuracy
to its maximal term.

The method of steepest descent is often utilized to find partition functions of
nonideal systems when the exact solution may be unknown. We consider this ques-
tion in more detail in the following chapters.
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2.11 Entropy of the CE. The Equivalence of the MCE
and CE

So far we have considered only the entropy (2.130) of energy fluctuations {{E }}
but not the entropy of the ensemble itself. To find the entropy of the CE, we should
substitute the equilibrium probability distribution (2.139) into definition (2.21) of
the entropy functional:

S == wir Inwi,. (2.228)
{E}

Transforming the sum over microstates {E} into the sum over macrostates {{E}}
and utilizing (2.143), we find

SE == W Inw,

. (2.229)
deg o

Here W{{Cg}} is again the very “exponentially fast” dependence on £ which is equiva-

lent to (£ — E,)). On the contrary, In W{C‘f} is only proportional to £ (to N) and is,

therefore, a “slow” power-law dependence. So, for the entropy of the CE we expect
to find

S ~ —jdEs(E—Eo)ln wig, =—Inw(E . (2.230)

To prove this equality, we should prove that the relative change of the function In W{C:,ﬁ

over the width of the maximum of the probability distribution W%, is negligible.
(e}
Indeed, we find that

5 (Inw, - res
( C;j’) S L LL S (2.231)
Inw, -InZ™" -E,/T™

tEo}

because SE oc /N while E, oc N. This proves (2.230).
Substituting (2.158) into (2.230)

A z—lnw{CEEo} ~InT (2.232)

e}t
we find that the entropy of the CE (with the accuracy of terms small in comparison
with N) equals the entropy of the equilibrium macrostate:

SE ~ Sz (2.233)

Similar to our statement after (2.69), we should mention here that these two parameters

are often treated as one because of equality (2.233). However, the reader should

SCE

clearly understand the difference: the entropy of the ensemble is the entropy
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of the equilibrium probability distribution (2.139) while the entropy S HE)) is the
logarithm of the statistical weight of the most probable fluctuation {{EO }}

Since the statistical weight (2.129) of an energy fluctuation {{E }} is just the
statistical weight of this energy level (of this group of microstates), for the entropy
of the CE we find

S ~1n g, - (2.234)

Let us now imagine the same system but strictly isolated with the energy E,.
This corresponds to the case of the MCE, and the statistical weight and entropy of
this ensemble are

et =g, (2.235)

and

SMCE _1nTMCE — 1 g5, (2.236)

Comparing (2.234) and (2.236), we see the equality between the entropies of two
different ensembles (which means equality of other thermodynamic potentials be-
sides the entropy):

SCE ~ gMCE (2.237)

This equality is called the principle of equivalence between canonical and micro-
canonical ensembles.
Only energy fluctuations {{E }} under the “bell” of the maximum of probability

distribution W{?g}} have nonzero probabilities. The number of these fluctuations is
provided by (2.153), and each of them contains the number of microstates {E } of
the order of F{{E ok
0
Let us call the total number of microstates {E } under the “bell” of the maximum

of the probability distribution W{{Cg}} as the statistical weight of the CE, e Itis of
the order of

1
CE _ oty -
b O(N )F{{m} o iy (2:238)

so the entropy of the ensemble again obeys Boltzmann’s rule and equals the
logarithm of the number of microstates where the system “lives” with nonzero
probability:

SE —InT“E. (2.239)
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2.12 Free Energy Potential of the CE

From thermodynamics we know that for any system what is always valid is the
inequality

.
As> 99 (2.240)
TV&'S

where §Q¢ is the amount of heat supplied to the system. This inequality is a mix-
ture of two different phenomena. Firstly, any heat, quasistatically transferred into
the system, increases the entropy of the system while any heat leaving the system

-
decreases its entropy. This corresponds to the equality AS = 5% However, if we
consider nonequilibrium processes in an isolated system, there is already no heat
exchange but the entropy of the system is increasing while the system achieves its
equilibrium state: AS > 0. The mixture of these two different phenomena is pre-
sented by the very inequality (2.240).

Thermodynamics defines the Helmholtz energy as

F=-T"“S+E. (2.241)

We will call (2.241) the “thermodynamic” definition.

Also, we should emphasize here that in this definition as well as in (2.240) we
have utilized the temperature 7" of thermal reservoir but not the temperature 7' of
the system itself. As we will see below, this is very important because only such a
definition makes the Helmholtz energy free in the CE.

Finding the increment of the Helmholtz free energy, we should always remember
the boundary condition 7" = const of the CE:

AF =—T"AS +AE. (2.242)

From the law of conservation of energy it follows that
AE =50°. (2.243)

Substituting (2.242 and 2.243) into (2.240), we find that for arbitrary processes in
the system the Helmholtz energy can only decrease (or stay constant):

AF <0. (2.244)

This suggests that the Helmholtz energy plays the role of the free energy potential
in the CE.

To prove this statement we return from the thermodynamic considerations to
statistical physics. First, we want to understand how inequality (2.240) is associated
with inequality (2.70). Is one a consequence of the other?
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To answer this question let us return to the “big” system X consisting of two sub-
systems, our system and the thermal reservoir (Fig. 2.8). The system X is isolated
and, therefore, obeys the rules of the MCE.

To investigate its behavior, we should construct somehow nonequilibrium fluc-
tuations {{ p}}, where p is some set of system’s fluctuating parameters. In Sects. 2.4
and 2.5, as p we utilized the fluctuations of concentration of the |-spins. But we
are free in the choice of the type of fluctuations because fluctuations are just a tool
helping us to investigate system’s behavior.

Being consistent with the previous discussions of the CE, we choose p to repre-
sent the energy of our system in contact with the thermal reservoir. In other words,

s
for the system X we construct MCE fluctuations as macrostates {{E ,E*-E }} when

our system has energy E while the thermal reservoir has energy £ = E* — E. We
define these fluctuations with the aid of the following nonequilibrium probability
distribution:

1/T*

E=E S-
W{ZE‘ 5 E} y = {{E’EE_E}} ’ = FZL (2245)
’ 0 JE#E {{E,EZ—E}}Z
s
The statistical weight "> s of the fluctuation {{E JE*-E }} equals the

flz-e*-z)

number of microstates of the system X when our system has energy E while the
reservoir has energy E™ = E* —E:

FZ — res ,
{{E,EZ—E}}Z EE8ps (2.246)
and for the entropy S* s of this fluctuation we find
flz.*-z)
s* s =InT* r=Ingg+lngls . (2.247)

e N

b
We have specifically constructed fluctuations {{E JE* —E }} of the isolated sys-
tem X in such a way that they correspond to fluctuations {{E }} of our system in the

CE. Considering now the latter, the entropy S{ (£)) of the fluctuation {{E }} is

Similarly, for fluctuations {{E e }} " of the thermal reservoir we have

S{{EE—E}}M zlnl"{{Ez_E}} e =INgLs (2.249)
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Substituting (2.248) and (2.249) into (2.247), we find that the entropy of the
system X is additive over its subsystems:

S{Z{E,EZ -£}} = =Sy ¥ S{r{e;z ) (2.250)

We have to mention that we have been able to obtain the property of additivity here
only because we considered the stroboscopic approximation of virtual isolation for
the heat exchange properties when during the brief periods of isolation two subsys-
tems become, in fact, independent. Otherwise, the rule of additivity would not be
applicable.

Equality similar to (2.250) should be valid and for increments of these quantities:

AS{Z{E,ELE}} s = ASypy + AS{’{Q; ) (2.251)

But the system X is isolated. Therefore, following inequality (2.70), the incre-
ment of its entropy is positive (or zero):

AS* =ASypy +ASTE L 20, 2.252

(e A A T e

Earlier, in (2.137), we have already expanded the entropy S'” .., of the ther-

mal reservoir: {{E £ }}
o :
E™

LS”‘GX2 res — S"@X o)) 7€ - E { re}Y = Srm res || 7 - T : (2'253)

fte-elf ™l e dE™ e e T

Eres gt

Since the first term in the right-hand side of (2.253) is some constant which does not
depend on fluctuations, for the increment of the entropy of the reservoir we obtain

ASTE __AE (2.254)

{{EZ—E}} res Tres ’
Following the law of conservation of energy, we have
5Qrese :AEres :_AE:_SQ(;’ (2255)

where the left-hand side is the amount of heat received by the thermal reservoir.
Substituting —AFE into (2.254), we find
res<—
AS'® res = 00 . (2.256)
{ { EX_ E}} Tres
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We have found that for the thermal reservoir, inequality (2.240) happens, in fact,
to be always the equality. From thermodynamics we know that inequality (2.240)
turns into equality only when all processes of heat exchange are quasistatic. This
is indeed the case for the thermal reservoir because it difficult to expect something
else from a system that has to provide the constancy of the boundary constraint
T = const. Therefore, the heat exchange could be not quasistatic for our small
system but it is always quasistatic for the reservoir.
Substituting (2.254) into (2.252), we find

P
> AE 00" (2.257)
E}} T"es Tres

AS{{

which proves that inequality (2.240) is the consequence of inequality (2.70). And
we indeed see that this inequality should contain the temperature of the reservoir but
not the temperature of our system.

Let us now define nonequilibrium Helmholtz energy. For energy fluctuations
{{E}} in the CE, we utilize thermodynamic definition (2.241) to obtain

Fien =17 Sy + £ (2258)
Substituting into this expression entropy (2.130) of fluctuations {{E }}

By =T 2 Wi Inwig, + E (2259)

{E}

and normalization constraint z wigy =1, we transform definition (2.258) into
{E}
Fyy = 2 Wi {7 nw, + EJ, (2.260)

{E}

where the probability distribution Wig) is the probability distribution (2.128), non-
equilibrium with the CE.

Generalizing (2.260) to the case of an arbitrary ensemble and arbitrary probability
distribution wy , of microstates { |, we obtain the “stochastic” definition of the

Helmbholtz energy:

Flw, 1= ZW{} {T’” Inw, +E, }, (2.261)
)

Of course, this definition is valid as long as there is such a quantity as temperature
of the thermal reservoir in the ensemble. With the exception of this limitation, defi-
nition (2.261) is completely equivalent to Gibbs definition (2.21) of entropy and
could be used instead of (2.21) as a “cornerstone” for all our formulae. It can be
even further generalized to the case when the statistical operator (quantum density
matrix) is not diagonal:

F=Tr(p{T" Inp+ ﬁ}) (2.262)
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which is again valid in any ensemble providing that the quantity 7" makes sense.

Similar to how we have found the entropy (2.228) of the CE, we can find the
Helmbholtz energy of the CE by substituting Gibbs probability distribution (2.139)
into (2.261):

FO =Y wi{T™ nw, + E} =T InZ". (2.263)

{E}

This equality is often treated as the definition of the Helmholtz energy. However,
we should always remember that it defines only the equilibrium value of the Helm-
holtz energy corresponding to the equilibrium probability distribution (2.139). To
be valid for nonequilibrium values of the Helmholtz energy as well, equality (2.263)
should be modified as we will see below.

Earlier we introduced the partition function Z“* of the ensemble as the nor-
malizing constant of Gibbs probability distribution (2.139). Now we see that this
distribution can also be normalized by the Helmholtz energy of the ensemble:

FE-E

e (2.264)

CE
W{E} =e

We expect the Helmholtz energy to be the free energy potential of the CE. Let us
now prove this statement by finding the connection of the Helmholtz energy with
the probability distribution W{{CE}} of fluctuations {{E }} Considering again the MCE

z
of the system X with fluctuations {{ E,E*-E }} , for the probability of a fluctuation
in accordance with (2.73) we have
z

w* s ce HEE*-E

flee>-z)

Substituting (2.250)2and (2.253) into this expression and also recalling that fluctua-
tions {{ E,E*-E }} of the MCE of the system X correspond to fluctuations {{E }}
of the CE of our system, for the probabilities of latter we find

0

(2.265)

VV{{Cg}} oc e{T “Siiey 7‘5}”" — e’Fé(E',}/Tm . (2.266)
Transforming (2.258) into
_F, /T res
ey} = ~EIT (2.267)
¢ =Tme -
we can easily normalize the probability distribution (2.266):
e _ 1 Ry _ TRt (2.268)

T
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We have utilized here the MCE of the system X only to illustrate how the prob-
ability of fluctuations in the CE happens to be the consequence of the probability
distribution (2.73) of the MCE. However, a much simpler way to obtain formula
(2.268) is just to substitute (2.258) in its form (2.267) into (2.143):

CE _ CE _ l _E/T"® _ l ,F{{E}} res
Moy =Teyve =Ny Jaee - =a® . (2269)

From equality (2.268) we see that the probabilities of energy fluctuations in the
CE exponentially decrease with the increase of the Helmholtz energy of these fluc-
tuations. To emphasize this association, we transform (2.268) into

Fy =T 1n(ZCEW{C ). (2.270)

El} {E}
This expression can also serve as a definition of the Helmholtz energy and we will
call it the “probabilistic” definition.

The logarithm is the monotonically increasing function. Therefore, the increase
of the probability always leads to the decrease of the Helmholtz energy in the CE.
This proves that the Helmholtz energy is indeed the free energy potential of the CE
and that its minimum corresponds to the equilibrium state.

Let us now obtain the last definition of the Helmholtz energy. But first we need to
define a partial partition function as the sum of terms e * T not over all system’s
microstates {£} but only over microstates corresponding to a particular energy
level (to a particular group of microstates):

zif= 3 e =gt @.271)
Ev-E=E

And since each energy fluctuation {{E }} corresponds to a particular energy level
(group of microstates), the sum in (2.271) can be treated as if over the microstates
{E} of this fluctuation {{E}} and, therefore, we can call (2.271) the partial partition
function of this fluctuation {{E}}

D V) N 2.272)
HE

The difference between two definitions, (2.271) and (2.272), is just a matter of
notation.

Substituting (2.272) into (2.143), we find that the probability of an energy fluc-
tuation {{E }} is just the ratio of the partial partition function of this fluctuation
{{E }} to the partition function of the ensemble:

{C{E}}
E
weE, = e (2.273)
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which clearly reminds us (2.43) of the MCE. We see that while in the MCE the
probability of a fluctuation is the ratio of the statistical weight of the fluctuation to
the statistical weight of the ensemble, in the CE the probability of a fluctuation is
the ratio of the partial partition function of the fluctuation to the partition function
of the ensemble. In other words, the statistical weight in the MCE plays the role
similar to the partition function in the CE. We will return to this similarity later.
The quantity Z cE W{{Cb‘?}} in (2.273) is just what defines the Helmholtz energy

in (2.270). Therefore, we obtain the last, “partition” definition of the Helmholtz
energy:

Fygy ==T"" mZ{p. (2.274)

We see that this definition differs from (2.263) only by the fact that under the sign of
the logarithm is the partial partition function of this fluctuation but not the ensemble
partition function. But the partition function of the CE is the sum (2.142) of partial
partition functions of energy fluctuations:

z% = {{Z}}r{m}efﬂf"”x = {{Z} Zipy- (2.275)
E E}

Since the partition function of the ensemble is equal with logarithmic accuracy to
its maximal term

CE _
Z ~In

Z{?go}} , (2.276)

the ensemble Helmholtz energy approximately equals the Helmholtz energy of the
equilibrium macrostate {{ £, } :

CE _ _mres CE _, _mres CE  _
F=" =-T"IzZ" ~-T 1nZ{{EO}}—F{{EO}}. (2.277)

2.13 Free Energy Minimization Principle

For the Helmholtz energy as the free energy potential, we will utilize the stochastic
definition (2.261)

\P[Ww;] = ZW{E} {Tm In Wigy + E}, (2.278)
{E}

acting as a functional on the function space of all possible probability distributions
wyg,. Since the probability distribution is always normalized,

2 W =1 (2.279)
{E}
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we add this constraint into our functional by the method of Lagrange multipliers:

Plw,, 1= Wy, {T Inw, + E} + ,1[2 Wi, — 1}. (2.280)
(E}

{E}

To follow the free energy minimization principle, we should find the equilibrium
distribution w% corresponding to minimal value of functional (2.280). To do that,

we find when the derivatives of (2.280) become zero.
Differentiation with respect to A returns us to constraint (2.279),

oY

0=—=>wy -1, (2.281)
/T

while the differentiation with respect to the probability Wiy of microstate {E}’
provides

oY

0= =T + T InwE, + E+ A (2.282)
oW,y
or ’
T+a  E
ng, —e Tres Tres ) (2.283)

Substituting (2.283) into (2.279), we find

| S ——
CE _ Tres
Wi = e (2.284)

which is equivalent to (2.139).
We have found the equilibrium distribution of probabilities for the case when

the statistical operator (quantum density matrix) of the system was diagonal. In the
opposite case, we should utilize the definition (2.262):

W[p]=Tr(p{T Inp+H}) (2.285)

subject to constraint

Tr(p)=1 (2.286)
which provides the functional
W[p1="Tr(p{T™ Inp+H})+A(Tr(p)-1). (2.287)

Differentiation with respect to A returns us to (2.286) while the variation with
respect to p provides
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Tr(op {77 In p +H} + 77 5p + ,15,3) =0. (2.288)

Since (2.288) should be valid for an arbitrary variation §p, we find

Tres lnﬁCE +H +(Trzav +}V)I =0. (2289)

The solution of (2.289) is the operator

e (k- _ (o) -2 (2.290)

=e

where 1 is the unity operator. Substituting (2.290) into (2.286), we finally find the
equilibrium statistical operator:

_ [
P = e (2.291)

where the partition function is now defined by

H
7% = Tr{e e J (2.292)

2.14 Other Ensembles

First let us consider as an example the case of the y—P—T-ensemble when the
system is maintained at constant chemical potential g
P"™ = const, and constant temperature 7"* = const. Therefore, fluctuating param-
eters are the system’s number of particles (degrees of freedom) N, volume V/, and
energy L.

Microstates of the system now are the eigenfunctions not only of the Hamilto-
nian of the system but also of the volume operator and the operator of the number of
particles: {N VL E } Being more correct, the energy spectrum of the system depends
now on the system’s volume and number of particles: {N VL EV,N )} but we will
utilize simpler notation {N VL E } just for the purpose of the simplicity.

Our system interacts with the reservoir by heat exchange §Q # 0, “volume
exchange” SW # 0, and particle exchange ST # 0, where §Q is the amount
of heat supplied to our system, S is the work of external forces performed on
our system, and SIT¢ is the energy gain of our system due to the particle exchange.

The total system X, including our system and the reservoir as subsystems, is
again isolated in the MCE:

= const, constant pressure

N+Nres _ NZ _ COI’le, (22933)
V+V"™ =V = const, (2.293b)

E+E"™ =E* = const. (2.293¢)
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Applying the stroboscopic approximation of brief periods of virtual isolation, we
construct microstates of the system X as combinations of microstates of our system
and the reservoir:

(Ve 72 B2} = (N By @ N e 2 (2.294)

In other words, the choice of a particular microstate {N V. E } of our system and a

res
particular microstate {N ’e‘g,VV”,Em} of the reservoir forms the particular mi-

crostate {NZ JVE E* } of the system X.

We define a nonequilibrium fluctuation {{N, 7, E}} (a macrostate {{ N,V E}}) in
the system as a macrostate with the energy E, volume V', and number of particles N.
In other words, we define a fluctuation by the nonequilibrium probability distribution

N,N VVé‘EE

r

Wiwrgy =

{1 /Ty ey N =NandV =V and E = E} 5, .6 (2295,

0,otherwise (v .E})

Obviously, the statistical weight 1"{{ N E) of the fluctuation {{N ,V,E}} is the

statistical weight of this energy level (this group of microstates) when the volume

and the number of particles in the system correspond to the given values:
r{{N,V,E}} =8EWD): (2.296)

Substituting (2.295) into the definition of entropy (2.21), we find that the entropy
of the fluctuation {{N JV,E }} follows Boltzmann’s rule and equals the logarithm of
the fluctuation statistical weight:

(Vo) = z Wi s MWgmpm = In r{{N’V’E}}~ (2.297)

(NV,E}

The behavior of any physical system is determined by two sets of factors: ex-
ternal influence and the structure or the properties of the system itself. In the case
of a thermodynamic system, the external influence consists of the rules dictated to
the system by the reservoir while the properties of the system itself are represented
by the structure of its energy spectrum, gz jy. Let us, with the aid of the consid-
ered u—P—T-ensemble, understand what part in system’s behavior is dictated by the
reservoir and what part is determined by the properties of the system.

Firstly, the reservoir dictates the boundary conditions p", P™ ,T"* = const to
the system. This boundary constraint provides for the system at least three fluctuat-
ing parameters: N,V , E. The fluctuating behavior of the system is much more rich
than these three parameters (for example, the density of the gas could fluctuate from
one point to another within the volume which would be described by the additional
set of fluctuating parameters p). However, in our study we restrict ourselves to
fluctuations (2.295) only of these three fluctuating parameters N,V, E and ignore
the rest of other possible fluctuating parameters p.
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Secondly, the reservoir dictates the equilibrium probability distribution of sys-
tem’s microstates

res

o {{NL—N,VX—V,EL—E}} e S;T’f\,x,,\rvka,Ex*E'rFm (2298)

Winrgy = [2MCE {{szN,Vzi,,,Esz}}"“ =e

res

without regard to which system it is dealing with (without regard to the spectrum
gg v,y of the system considered).

For quasistatic processes, we define temperature, pressure, and chemical
potential as

1_[ By sy (2.299a)
T OF ’
NV

P _[ By (2.299)
T ov ’
N,E

B OSyn .5} (2.299¢)
T aN '
V.,E

Expanding the reservoir’s entropy in (2.298) and applying (2.299) (because all pro-
cesses are quasistatic for the reservoir), we return to the exponential dependence
similar to the case of the CE with the exception that now we have three fluctuating
parameters in it,

N v E (2.300)

1
—P-T
wh e ,

(NVE} T Zu-PT

where Z* 7 is the partition function of the y—P—T-ensemble:
- ¥ v _E (2.301)
Zu=P-T _ Z e CTEIEY (e T
{N.V,E}
N 4 E

_ r L T @ T
Z {{v.y.E}}

e

So far the properties of the system itself have influenced only the last expression
for the partition function as a normalization constant and, therefore, we may say
that the probability distribution of system’s microstates was dictated almost entirely

by the reservoir. However, the energy spectrum gy ) =T (V. E)) of the system

becomes indeed important when we consider the probability distribution not of sys-
tem’s microstates {N,V, E} but of system’s fluctuations {{N,V,E}}:
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F{{N,V,E}}F{{:NE—N,VX—V»EZ*E}}

WH*P*T — — F u—P-T (2302)

{{v7.E}} rZ,MCE {{N,V,E}}W{N,V,E}'

The energy spectrum works here as one of two multipliers with the exponential
dependence on N,V , E whose “clash” determines the narrow probability maximum
around the equilibrium macrostate {{N,.V;,E}}. The relative width of this maxi-

mum is again inversely proportional to /N, and, therefore, is very small in the
thermodynamic limit:

oN L (2.303a)
Ny N,
CLAE (2.303b)
Vo N,
S 1 (2.303¢)

At the point of the maximum, three equilibrium equalities are valid,

1 1 P Pres res
N (2.304)
T Tres T Tres T TWS

when temperature, pressure, and chemical potential of our system are equal to
T, P™, u"®, respectively.

Let us now discuss thermodynamic considerations about what quantity could
serve as the free energy potential for our ensemble. One inequality (2.240) we al-
ready know,

«— res 5Qe
SO <T'AS or AS > , (2.305)

TVES

which states that the entropy of the system grows not only due to the heat supplied
to the system but also due to the internal processes leading the system into its equi-
librium macrostate.

To find the second inequality we should consider the case when pressure P
inside the system differs from the value P™ dictated by the reservoir. Illustrative
examples are the expansion of a gas into a vacuum and a weight dropped on a piston
of a volume containing gas. When the boundary of the system moves, the performed
work is determined by the least of two pressure values:

SW =—min(P,P™)AV. (2.306)
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For example, for the gas expanding into a vacuum the work is zero because no force
counteracts the expansion:

SW< =—P' AV =0. (2.307)

On the contrary, when a weight is dropped upon a piston, the work is determined by
the nonequilibrium gas pressure while initially the weight pressure is much higher:

SW< =—PAV. (2.308)

Therefore, if the system’s pressure were higher, P > P™, the system would ex-
pand, performing work SW~ = P AV on the reservoir. On the contrary, if the
system’s pressure were lower, P < P™, the system would contract and the reservoir
would perform work W = P|AV |< P | AV | on the system. For both cases,
the following inequality is valid:

W

SWE <—=P"AV or —AV > .
PVeS

(2.309)

which we consider to be fundamental, no less than inequality (2.305).

Considering heat exchange leads us to inequality (2.305), and considering
“volume exchange” leads us to inequality (2.309). For particle exchange, when the
chemical potential u of the system differs from the chemical potential u™ of the
reservoir, similar considerations provide

«—

ST < AN or AN > ol ) (2.310)

res

u

But all three considered inequalities characterize the change of energy of the
system. Applying the law of conservation of energy, we find

AE =80 +SW< +8I1° <T"™AS - P AV + u"“AN. (2.311)

Developing this inequality, we have utilized thermodynamic considerations. Let
us now prove the last inequality from the point of view of statistical physics. We
again consider the isolated system X. Only now as its fluctuations we employ mac-

rostates {{(N,V,E);(N2 ~N,V*—V,E* —E)}}z when our system has energy FE,
volume V , and the number of particles N while the reservoir has E™* = E* — E,
V' =V*—V,and N = N* - N.

These fluctuations we define by the nonequilibrium probability distribution:
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(%7 B) (v N7 e E))

1/T* s  N=N,V=V,and E=FE
_ {{(N,V,E),(NZ—N,VZ—V,EZ—E)}}
0 ,otherwise
0. .0, 0-
_ = N NP vCOEE - (2312)
{{(N,V,E),(NZ—N‘VZ—V,EE—E)}}l
The statistical weight "> + of the fluctuation {{(N, V', E);

{{(N,V,E),(NZ _NVE_p,EE —E)}}

b
(N *_NV*-V,E*-E )}} is the number of microstates of the system £ when our

system has fluctuating parameters £,V , N:

z res
I : = 8ewvn&p_pivyy (2.313)

{{(I\I,V,E);(NE—NJ/z —V,EE—E)}}

where gg(y y) is the statistical weight of the energy level (group of microstates) £
of our system when its volume is /' and the number of particles is N. Respectively,

res
8g> —E(NJV)
of the reservoir when its volume is V> —¥ and the number of particles is N *_N.
b

{{(N,I/,I;");(NE—N,V2 —V,EZ—E)}}
the fluctuation’s statistical weight:

is the statistical weight of the energy level (group of microstates) E* — E

The entropy S s of the fluctuation is the logarithm of

S* . =InT* .
{{(N,V,E);(NZ NPV B 75)}} {{(N,V,E);(Nz SNV B 75)}}

=1In Eewvr) +In g:;;—E(N,V)' (2.319)

We have specifically constructed fluctuations {{(N,V,E);(Nz ~N,VE-V,
E*-E )}} of the system X in such a way so they could represent fluctuations

{{N VL E }} of our system in the u—P—-T-ensemble. Considering the latter now, the

entropy S{{ ) of a fluctuation {{N, V,E}} is

N,V.,E
Sivwey =Ty gy =N8r ) (2.315)

3 res .
while for fluctuations {{N e yre BT }} of the reservoir we have

A o =InT"" w =Ing’y (2.316)

{{N""“' e e }} {{Nm s EL}} EX—E(NV)"
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Substituting (2.315) and (2.316) into (2.314), we prove the additivity of the en-
tropy of the system X over its subsystems:

z _ res
S{{(N,V,E);(NZ—N,VZ—V,EZ 75)}}2 - S{{N’V’E}} * S{{NZ N VEVEE —E}} e (2317)

We have been able to prove this property of additivity only because we consider the
stroboscopic approximation when during the brief periods of virtual isolation two
subsystems become, in fact, independent. Otherwise, the rule of additivity would
not be valid.

Differentiating (2.317), for the increments of entropies we find:

AS> =AS +AS™ res + (23 1 8)

{{(N,V,E);(NZ NJVEVEE 75)}}2 (Vg {{NE NVEVER —E}}

Since the system X is isolated, in accordance with inequality (2.70) the increment
of its entropy is positive (or zero):

AS* =AS +AS™”

{{(N,V,E);(N2 NVE-V EE -E)}}L (Ve {{Nz NVEVEE 75}}

w20, (2319)

res

Expanding the entropy S { {NE—N,VE g _E}}

that N,V , E are infinitesimal relatively to N, V"™ E"™ we find

s Of the reservoir in an assumption

res

{{NZ “NJVEV E 75}}

res N V E
:S res 1rres presl|’® N'“:Nz, - __res res - res res - res * (2320)
R v S e e e W EeR D
Eres gt

Here the first term in the right-hand side is some constant, not depending on fluctua-
tions. Therefore, for the increment of the entropy of the reservoir we obtain

s AN AV AE 2320
{{NZ—N,VZ—V,EZ—E}} res (_Tres /MreS) Tres /Pres Tres : .

Substituting here the law of conservation of energy

5Qrm<— +6Wre.\'<— +5Hre.\'47 — AEre.\' — _AE — _5Q<— _6W<— _51—[(— (2.322)
along with (2.293) into (2.321), we find
AE’”ES — TVESASVES - _PVL’SAVVES + uVeSANVé’S' (2.323)

{{Nz _NVEV.E® —E}}



2.14 Other Ensembles 133

Comparing (2.323) with (2.311), we see that for the reservoir all processes are
indeed quasistatic. It would be difficult to expect something else from the sys-
tem which has to provide constant boundary conditions u'®,P"”,T"™ = const.
To maintain the temperature constant, no matter what are the processes within the
system in contact, the reservoir has to possess the superior heat conductance. To
support constant pressure, when there is an arbitrary pressure at the other side of
the boundary, the reservoir has to possess the superior “pressure conductance.” To
provide constant chemical potential, “particle conductance” has to be superior also.

Substituting (2.321) into (2.319), we find

AE < T”“AS{{ — P AV + i AN (2.324)

N.V.E}}
which proves that (2.311) is the consequence of inequality (2.70).
Inequality (2.311) means that under the ensemble boundary conditions

we, P T = const the following potential would be always decreasing (or stay-
ing constant but not increasing) for arbitrary processes in the system:

A-T™S - N+ PV +E)<0. (2.325)
Therefore, we thermodynamically define the Y-energy of the u—P—T-ensemble as
Y=-T*S-u“N+P*“V+E. (2.326)

The important fact here is that this definition contains parameters of the reservoir
W, P T" but not parameters u, P,T of the system.

Inequality (2.325) suggests that the Y-energy plays the role of the free energy
potential in the y—P-T- ensemble.

To prove this, we define the Y-energy of a fluctuation {{N JV,E }} as

Yivry =T Sy —H N+PEVHE (2.327)

which provides the stochastic definition:

Y[w,]= Z}:w{} {T Inw, — N, + PV, +E, } (2.328)

Substituting (2.297) into (2.327), we obtain the probabilistic definition connect-
ing the Y-energy with the probabilities of fluctuations in the system

Y{{ }} =_T7"% I (Zy—P—TWy—P—T ) (2'329)

V. {tv.2))

which finally proves that Y-energy is indeed the free energy potential of the u—P-T-
ensemble.
Introducing partial partition functions of fluctuations as
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S A A
ZuPT o T @
N.V,E} o N 5
{{ I} {NJV,E}:N=N,V=V,E=E
B S
_T o T @ T (2.330)
o vy ’

we find the last, partition definition of the Y-energy:

Yiwymy =T n Zﬁﬁfg}} : (2.331)

Now, when we already understand how to generalize the free energy formalism
for the case of an arbitrary ensemble, let us briefly summarize formulae for different
ensembles. We will consider the following sets of boundary conditions:

E™ V'™ N =const for the MCE, (2.332a)
T, V"™  N" = const for the CE, (2.332b)
T, V"™, u™ = const for the GCE, (2.332¢)
T, P N" = const for the P-T-E, (2.332d)
T, P™,u"* = const for the u-P-T-E, (2.332¢)

where GCE is the grand canonical ensemble, P-T-E is the P-T-ensemble, and y—P—
T-E is the y—P-T-ensemble.
The probability distribution for system’s microstates is dictated by the reservoir:

MCE 1 -0
Wipy T McE € (2:333)
A
.- E
W{CE% - e (2.333b)
Z
! N _E
W{G]\?:g} _ ZGCE e (7T)[.’S/yl‘[i¥) T}’L’S , (2.333C)
! __r _E
W{;’g} = e (T /Py T , (2.333d)
Z
. N Vv _E
W%u’]\;”[i:g} _ e (7TI’ES/HV£’A\') (T)GS/P)’ES) TYL‘A , (2.3336)

Zy—P—T
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where each ensemble has its own partition function as a normalization constant for
this distribution:

ZMCE _ Ze—o’ (2.334a)
{p}
E
Ly T (2.334b)
{E}
N E
ZGCE Z B Trcs /‘uns Tre.v ’ (2.3340)
{N.E}
%4 E
ZP*T _ Z e (Tr@s/me) Tres i (2334(1)
{V.E}
_ N - r - £
Z‘ufP*T _ Z B (=T /™)y (T7 /Py 7% ' (23343)
{N,V,E}

In Sect. 2.12, we have already seen the analogy between the statistical weight of the

MCE and the partition function of the CE. To emphasize this symmetry, we here

call the statistical weight MCE = Zl of the MCE by the term the partition func-
{p}

tion of the MCE Z MCE Zefo =TME The meaning of the quantity remains the

{r}
same—it is the number of equiprobable microstates in the ensemble. But the change

of terminology has allowed us to symmetrize the formulae above. We will utilize a
similar definition and for the partial partition functions of the MCE which are just

the statistical weights of fluctuations: Z = Z e
{py:p=p

For the entropy of fluctuations, Boltzmann’s rule is applicable

Sy =T (2.335a)
Siey =Ty (2.335b)
Siwe =0Ty (2.335¢)
Syrey =Ty (2.335d)
Sy ey =0Tz (2.335¢)
while for the probability of fluctuations we find
WCE = % - ZM%eS{“’” : (2.336a)
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2.336b
CE ey 1 es{{E}}‘Tis ( )
ey = 4cE = ,CE ’
Zin g R L R e
W OCE £y _ e T/ T (2.336¢)
{{N.E}} 7GCE~ 7GCE ’
Zuy k) 1 Sy (2.336d)
wp-r  _ TdnE o WEE ey T :
ey} = ,p1 = ,PT ’
N 14 E
g Gvrey L Sown S e e (2336€)

{(vr.E} — nypfr _nypfr

Next, for each ensemble we introduce its free energy potential,

Fiton =S (2.3372)
‘{’{{E}} = —T’”S{{E}} +E, (2.337b)
Flvsy =TSz ~HTN+E, (23379
‘P{{V’E}} = —T’“S{{V’E}} +P“V+E, (2.337d)
‘I’{{N,V’E}} = —T’“S{{N’V’E}} —u N+ PV +E, (2.337¢)
which are called
negative entropy (X-energy), X = —S, (2.338a)
the Helmholtz energy, F = -T"*S + E, (2.338b)
Q-energy, Q=-T"*S—u"* N+ E, (2.338¢)
the Gibbs energy, ® = -T"“S+ P “V + E, (2.338d)
Y-energy, Y =-T"*S -y N+ PV +E. (2.338¢)

Definition (2.337) can be presented in a more universal form as

X[w, 1= D w, Inw,, (2.339a)
&

Flw,1= 2w, (Tm Inw, +E{})> (2.339b)
0
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w,l= %:Wu (Tm Inw, —p™ N, +E, )’

Dlw, 1= Y w, (T Inw, + PV, +E, )
{

Yw, 1= w, (Tm Inw, =N, + PV, +E, )
]
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(2.339¢)

(2.339d)

(2.339%)

If the statistical operator (density matrix) p is not diagonal, (2.339) transforms into

X[p]=Tr(plnp),
Tr( {T'“lnp+H})

Qw1 =Te(p{T7p - N +H}).
®[p]=Tr(p{T™ Inp+ PV +1}),
ETr( {1 np- /,t’“N+P’“V+H})

(2.340a)

(2.340b)

(2.340¢)

(2.340d)

(2.340¢)

To prove that (2.337) is the free energy potential, we substitute (2.337) into
(2.336) and see that probabilities of fluctuations indeed depend exponentially on

(2.337):
1 —‘i’
MCE {{r}}
Winy = S MCE © o
) )]
CE _ res
W{{E}} - ZCE e T,
. _ .y
GCE 7%
W{{NaE}} ~ 7GCE ¢ ’
: ()
P-T _ res
W{{V:E}} - zP-T e T,
| _Fvrey
W,LI*P*T - ¢ Tre.v

(2.341a)

(2.341b)

(2.341c¢)

(2.341d)

(2.341¢)
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Inverting (2.341), we find

iy =@ WD = =nZy (2.342a)
Wiy =T 1n(ZCEW{{C§}}) =-T" nZy. (2.342b)
¥ivgy =T In (ZGCEW{GCE P="T"IZ . (2.342¢)
Wiy =T W ) =T InZyy, (2.3424)
Yoy =T W) =T I 2y (23420)

Substituting the equilibrium distribution of probabilities (2.333) into (2.339), we
find the free energy potential of the ensemble:

PMEE — _n ZMCE (2.3432)
Y — e 1nzCF, (2.343b)
\PGCE —_Tres 1IIZGCE, (23430)
lI,P*T — _Tres anP—T, (2343d)
\pHePT e g g oo P (2.343¢)

We see that the difference between (2.342) and (2.343) is that in the former we used
partial partition functions while in the latter we used ensemble partition functions. We
can utilize (2.343) to normalize the probability distribution (2.341) which provides

W{z{zc}f _ , (2.344a)
¥y
CE _ Tres
WiE =e , (2.344b)
¥ ¥
GCE res
Wivey=e 7 (2344¢)
M)
P-T res
Wil =e 7 , (2.344d)
T
W h—P-T 77 ) (2.344¢)
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In expressions (2.341)—(2.344), we see the asymmetry of the MCE which, in con-
trast to other ensembles, does not contain in its formulae the temperature of the res-
ervoir. However, as we will see in Sect. 2.16, it is not the MCE that is asymmetrical
but, on the contrary, other ensembles lack the symmetry.

Since the partition function of any ensemble equals with logarithmic accuracy
its maximal term

ZMCE & Zyp1 (2.345a)
7% 5, Zypns (2.345b)
Z9F 2 Zygy, - (2.345¢)
VAR Zy1y, i) (2.345d)
VAR Zino o o)} (2.345¢)

probabilities (2.344) we can normalize by the free energy of the most probable
macrostate:

WIE &Y, (2.3460)
Fiteoy Yy
W{{Cg}} ~,e T (2.346b)
Fitvo.50)) ~F (v}
GCE res
Wilv ey = e T : (2.346¢)
P60y Vi ey
P-T res
Wby = e r , (2.346d)
Yivoo.E0)) "V i gy
—-P-T res
W{’{‘N,V,E}} e T , (2.346¢)

2.15 Fluctuations as the Investigator’s Tool

Fluctuations are a very convenient tool allowing us to investigate system’s behavior.
And as for any other tool, a particular choice of a particular type of fluctuations is
the investigator’s prerogative allowing her/him in her/his studies focusing on this or
that particular type of system’s behavior.
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For the MCE we considered fluctuations {{P}} of concentrations of the |-spins
along the model length (fluctuations of gas density in the volume). But instead we
could consider any other fluctuations. For example, as a fluctuation we could con-
sider a vortex of gas particles, or fluctuations in the distribution of particle veloci-
ties, or energy fluctuations from one point within the volume to another, and so on.

In the CE, we have chosen fluctuations to be energy fluctuations {{E }} when our
system took away from the reservoir this or that amount of energy. But, in addition
to energy fluctuations, we also could consider, for example, fluctuations of gas den-
sity within its volume or something else. Our choice was based on the wish to study
energy exchange with the reservoir. If we wanted to study another type of behavior,
we would choose a different type of fluctuations.

However, one concept has remained constant when we have moved from one
type of fluctuation to another—the probabilities of all fluctuations have depended
exponentially on the free energy of these fluctuations:

§ (\pensemble_q_, )/Tres (¥ - )/Tres
I/V{?"-}?mble —e e ~, € fof =Y . (2.347)

(We consider here all ensembles but the MCE which lacks the concept of tempera-
ture. Removing temperature from (2.347) would generalize this equation and for the
case of the MCE. We will discuss it in more detail in the following section.)
Fluctuations always represent deviations from the equilibrium macrostate {{0}}
Therefore, the free energy of fluctuations is always higher than the free energy of
the equilibrium macrostate: ¥ i >Y¥ o)} (Fig. 2.12). And the probability of fluc-

tuations decays as the exponential dependence on this difference.

To illustrate that the choice of fluctuations is merely a tool we return to the case
of the CE. Earlier in the CE we constructed an energy fluctuation {{E }} as a system
having a particular value of energy E:

) E=E | _ Okp , (2.348)

1/ l"{
(e} = se|
0 ,otherwise I ({E})

On the contrary, now we will construct a fluctuation as a system being in its particu-
lar microstate {{ }} ={E}):

Fig. 2.12 Fluctuations AY
always have higher free (%
energy than the equilibrium
macrostate

oy MLy

T
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L{E} ={E}
W{E}’ = {0’ {E}' + {E}} = 5{E}’»{E}' (2349)

The statistical weight of such a fluctuation is always unity,
Lig =1 (2.350)
and the entropy of the fluctuation is zero:

The probability to observe a fluctuation { £} in the CE,
1 res
CE _ CE _  CE _ —EIT
Wiy =Tiewe =V =& (2.352)

is just Gibbs probability (2.139) of a microstate { E}.
Substituting the nonequilibrium probability distribution (2.349) into the stochas-
tic definition (2.261), we obtain the Helmholtz energy of fluctuations:

Fgy =Y{T™ Inl+ E} = ~T" S, + E = E. (2.353)

Substituting (2.353) into (2.352), we see that the probability of a fluctuation decays
as the exponential dependence on the free energy of this fluctuation:

res
~Figy/ T

W{% «e (2.354)
But simultaneously, in accordance with (2.352), it depends exponentially on the
energy of the fluctuation:

Wi =wiey = e (2.355)

This coincidence has happened only because we have so constructed the fluc-
tuations that their entropy (2.351) was always zero. If it were not the case, the
probability of fluctuations would be always the exponential dependence (2.347) on
the free energy of fluctuations, not on the energy of them.

Simultaneously we can conclude that Gibbs probability distribution (2.139)
depends exponentially on the energy of microstates only because the entropy of one
microstate is zero. If it were not the case, Gibbs probability distribution would also
depend on free energies, not energies.
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2.16 The Action of the Free Energy

For illustrative purposes, we consider the u—P—T-ensemble when the equilibrium
equalities (2.304) for our system in contact with the reservoir are

1
? Tres ’ T - Tres T - Tres :

res res
L PP g Ko # (2.356)

The equilibrium probability distribution of microstates is given by (2.333e¢):

N 4 E

1 - res res - res res - res
-P-T -1 TIPSy T
quN,V,E} = ZH_,P,T e o ) ) (2.357)

where the partition function of the ensemble is

Ny v _E
u-P-T _ (=T 1@y (T /Py T
2RI IK : (2.358)
{N.V.E}
To find the entropy of the ensemble S* 7 we substitute the equilibrium prob-

ability distribution (2.357) into the entropy functional (2.21):
ST == 3 Wi Wi (2359)
However, this time let us explicitly substitute expression (2.357) only under the sign

of the logarithm function, keeping the probabilities in front of it in their original
form:

SH_P_T =- Z W;’j\]_g_;} {_ln Zﬂ_P—T - re\'N res - )‘e‘\'V res _%} (2'360)
NoE =T /™)y (T /P*) T

The right-hand side of this equation represents ensemble averaging with the equilib-

rium probability distribution w{“j\z,lj’_g}:

I S

ST =zt s a— (2.361)
(_T)& /u es ) (Tr(.. /P}(,A) T es
Expressing Z*~ "7 from this equation and substituting it into (2.343¢),
pHPT = Iz T (2.362)

we find the connection of the ensemble free energy with the averaged energy,
volume, and number of particles:

WO S st  (NY s PUE) L+ (E) L (2363)

u-pP-T n-P-T
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The equality we have obtained merely represents the averaging of the free energy
definition (2.337¢).

Quasistatically changing the boundary conditions of the ensemble, we can
change the averaged fluctuating parameters of the system. Differentiating (2.363),
we obtain

d\{lH—P—T — _Tm\'ds,u—P—T _S,u—P—TdTres _ ,uresd<N>H_P_T _<N>H_P_T d’ure.y

+Pd (V) +<V>H7T dpP™ +d(E>‘ (2.364)

u—-P-T —P-T >

Recalling that for quasistatic processes the change of the energy equals

d<E>H,P,T — Trest#—P—T _ Presd<V>‘u7P7T T 'uresd<N>“7P7T , (2365)

for the increment of the free energy we finally find

-P-T -P-T res res res
dv* =-S* dr’ _<N>,u—P—T du™ + <V>H_P_T dP™. (2.366)
We see here three differentials of the boundary conditions. For two of them, du"
and dP™”, we see in front of them the corresponding fluctuating parameters,
<N >y7 p_pand <V>”_ p»_p» Tespectively. But in front of the third differential d " we
see not the corresponding fluctuating parameter, the energy, but the entropy. There-
fore, our formulae are not completely symmetric.
Where has the asymmetry come into the above expressions? If we consider the
equilibrium equalities (2.356) and the probability distribution (2.357), we see that
there are, in fact, three independent “effective” temperatures in our ensemble,

T
0,=T,0, =5 05 T (2.367)

and three equilibrium equalities (2.356) transform into

1 1 1 1 dL: 1 .
@3 @5’63

>

= s T 2.368
@1 @]res @2 ®12€S ( )

Why then in (2.362), (2.342¢), and (2.343e) we have made a choice in favor of
the first temperature, ®; = 7", putting it ahead of the logarithm? This was the
very asymmetry which we have introduced into our formulae. Let us recall, for ex-
ample, the case of multifractals (1.126). There were K temperatures in that system,
and none of them could be chosen as a favorite.

But it is easy to remove this asymmetry from all expressions above. We need
only to divide all formulae for the free energy W by the reservoir’s temperature 7"
to obtain the action of the free energy potential A. Thereby, (2.337¢) transforms into

the action of a fluctuation:
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N V E
+ -+ -+ -
@}3’3& @5&5 @i’&s

A{{N,V,E}} = _S{{N,V,E}} (2.369)

Definitions (2.339¢) and (2.340¢) transform into the stochastic definition of the
action:

Alwy 1= w, | Inw, + Ny o, By (2.370)
U m U { @ge: @iZ‘ES @lres > .
_ [ N Vv H
Alp]l=Tr Inp+ +—t .
[p] (p{ P or Tor "o }J (2.371)

Definitions (2.342e) and (2.343e) transform into the partition definition of the
action:

Alwye) = _ln(ZWPiTW{!{IJ;i;}}) =-In Ziny g (2.372)
AT — i ze T (2.373)

Finally, (2.341¢) and (2.344¢) transform into the probabilities of a fluctuation:

1 -A

u-P-T  _ {vr Bl

W{{N,V,E}} - guP-T € ’ (2.374)
wir T =t 2375)

Dividing (2.363) by the reservoir’s temperature 7", we find

Wy Oy Eyar

ARTET - _guePT : : : (2.376)
@%&S @;&S @i’eé
Since the differential of energy (2.365) transforms into
d{E), p. AV ypr dN)p
—@fes” R @fes” L @j;sp L, 2.377)
1 2 3

for the differential of action (2.376), we find
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d{N
dA* T = —gserT +—< >::;1»r +(N) . d[ lm J+
®3 ! ®3

dV),pr 1), 9E), s I
+®—r}+<V>y—P—T d(@;es J +T:>s+<E>y—P7T d(@]res ]

ST oy Y ) R 2 NP

We see that differential (2.378) of the action is more symmetric than differential
(2.366) because in the right-hand side of (2.378) each differential of the inverse
temperature is coupled to the corresponding fluctuating parameter staying ahead of
this differential.

Let us return to probabilities (2.344) of fluctuations for different ensembles:

MCE _
WcE = el ol (2.379a)
¥y
cE _ e (2.379b)
Wiy =¢ ’
¥ ¥y
GCE res
Wi =e T , (2.379¢)
)
P*T res
Wiy =e 7 , (2.379d)
T Yy
wheIT  —e e ) (2.379¢)

For the MCE, we define action of the free energy potential as the free energy itself.
For the rest of the ensembles, we divide the free energy by the temperature of the
reservoir:

A=V, (2.380a)
A=Y/TY, (2.380b)
A=V/TY, (2.380c¢)
A=Y/TY, (2.380d)

A=VY/T. (2.380¢)
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Then probabilities (2.379) transform into

e A A (2.381a)
e, =™ e, (2.381b)
WO, = AT My (2.381¢)
Wiy et e, 23814)

I, (2.381¢)

We see that it was not the MCE that was asymmetric but the rest of the ensembles.
Removing the asymmetry of the temperature ®, =7 from our formulae, we have
come to the symmetric expression

Aensemble _A

VV{ensemhle _ {t (2.382)

T

for the case of an arbitrary ensemble.

Looking backward from the position of our current understanding, we see that
it would be reasonable to consider the concept of the action of the free energy from
the very beginning instead of references to the free energy potential itself. However,
this seems to be impossible because the majority of the studies in the literature con-
sider the free energy, not its action.

We have already seen a similar situation earlier when in (2.334a) we have in-
troduced the partition function of the MCE. It seems to be reasonable to unite both
concepts of the statistical weight of the MCE and of the partition functions of other
considered ensembles by introducing the common term “statistical sum.” However,
the current terminology is applied in so many publications that it seems almost
impossible to change it. For this particular reason, in this chapter we followed the
“common practice” terminology but at the end of the chapter demonstrated its pos-
sible flaws.
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Chapter 3
The Ising Model

Abstract In the previous chapter, we have discussed the formalism of statistical
physics. A big help for us was the Ising model which provided the very intuitive
understanding for all the concepts considered.

However, the Ising model serves even better as an illustration of phase-transition
phenomena. Therefore, in this chapter, we study the behavior of this model in detail.

3.1 Definition of the Model

There are many magnetic lattice models: the Heisenberg model (Heisenberg 1928),
the O(n)-vector model, the X—Y model (Matsubara and Matsuda 1956), the Potts
model (Potts 1952), the spherical model (Berlin and Kac 1952), the Ising model
(Lenz 1920; Ising 1925), etc. In all these models, magnetic moments (or spins)
are located at the lattice sites and interact with an external field 4 and with each
other. Primarily, the models differ by the rule, what projections on coordinate axes
a magnetic moment can have? For example, in the classical O(n)-vector model,
magnetic moments are assumed to be classical and their projections are arbitrary,
limited only by the module of the vector. On the contrary, the quantum Heisenberg
model (Heisenberg 1928) considers spins as quantum operators whose projections
are determined by the laws of quantum mechanics. In the Ising model, we consider
a spin projection only on the axis of a magnetic field 4, and there are, generally, only
two possible values, 0 =+1and o =—1.

Phase-transition phenomena can be illustrated with the aid of any of these mod-
els, both quantum and classical. However, the simplest approach would be to con-
sider the Ising model. This model possesses the quantum discreteness of its energy
spectrum because spin projections are discrete: o =+1 or o =—1; and it is much
simpler to work with a discrete spectrum than with a continuous spectrum. On the
other hand, spin projections, other than on the axis of the magnetic field, are not
considered in this model which allows avoiding the complications of matrix cal-
culations. Therefore, the Ising model can be considered as the most convenient
example, illustrating the phenomena of phase transitions.
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Fig. 3.1 A schematic ? * ? * *
representation of different

geometrical forms of lattice: a

a one-dimensional chain of
spins; b two-dimensional
square lattice; ¢ three-
dimensional cubic lattice;

d two-dimensional triangular L
lattice; e Bethe lattice c b
d e

The Ising model was invented by Wilhelm Lenz (Lenz 1920) and has been named
after his student Ernst Ising who in his doctoral dissertation obtained a solution and
proved the absence of a phase transition for the one-dimensional case. The question
whether there is a phase transition in higher dimensions, which was elusive at the
beginning, was answered positively by Lars Onsager (Onsager 1944) who found the
exact solution for the two-dimensional model.

Initially, the Ising model was intended to serve as a crude but efficient descrip-
tion of ferromagnetic phenomena. However, later the model has become popular
due to the exemplariness of its phase transition. Nowadays, the latter is considered
to be the main merit of the model; and similarly to the models of an ideal gas,
van der Waals gas, etc., the Ising model has become canonical in the sense that its
properties are worth investigating as such, without association with particular, real
physical systems.

We consider N magnetic moments u located at the sites of the lattice. The limit
N — +oo of an infinite system is called the thermodynamic limit. The geometrical
form and dimensionality of the lattice can be arbitrary (Fig. 3.1). Boundary condi-
tions are usually considered to be either free or periodic. In the last case, the oppo-
site sides of the lattice are “glued” together, forming a ring in the one-dimensional
case and a torus in the two-dimensional case.

Spins o; are enumerated by numbers i of the lattice sites. Only spin projections
on the axis of the magnetic field / are considered. These projections can be equal
only to +1 or —1. These two possible values represent the two possible projections,
o =+1/2 and o =-1/2, of an electron’s spin on the axis of a magnetic field. For
the purpose of convenience, the multiplier 1/2 has been moved inside of the con-
stants of interactions, leaving two spin projections ¢; =+1 and o; = —1.

In the case o; = +1, we will say that spin i is oriented along the magnetic field A,
and we will denote this spin orientation as T. In the opposite case o; =—1, we will
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say that spin 7 is oriented against the magnetic field 4, and we will denote this spin
orientation as .

The energy of spin o, in the magnetic field 4 is —uho,, where u is the value of
the spin’s magnetic moment. If there were no other interactions, due to the interac-
tion with the magnetic field 4, each spin could have only two possible values of
the energy: —uh and +uph. In this case, the system would be a two-level system.
However, besides the interaction with the magnetic field /, the exchange interaction
- Z J(¥;,¥;)o,0; of spins in pairs is also usually considered, where the sum <IZJ;>
<i,j> >
goéé over all pairs <i, j > of spins on the lattice.

Positive sign of J corresponds to the ferromagnetic case when two spins have
lower mutual value of the energy if they are both oriented in the same direction:
Ejy < E4y. In other words, if J > 0, any spin in the ferromagnet attempts to rotate
all its neighbors so that their orientations become coincident with its own and the
interaction energy decreases. On the contrary, J <0 corresponds to the antiferro-
magnetic case when the energy is lower, when two spins have opposite orientations:
E4 | < Ej4. So, in the antiferromagnet, any spin attempts to rotate its neighbors so
that they have their orientations opposite to its own.

The dependence of J(R; ;) on the distance R, ; = |f‘, —Fj| between two spins in
a pair can be arbitrary. Often a power-law or exponential decay of J(R; ;) on R, ; is
assumed. Also, often two extremes are considered. The first extreme (long-range
interactions) assumes that.J does not depend on the distance R; ; between two spins
in a pair: —J Z 0,0;.

<i,j>

The second extreme (short-range interactions), on the contrary, considers only
the interactions of the nearest neighbors, when R; ; equals the lattice constant a and
neglects interactions of spins over longer distances: —J Z 0,0 ;. Here, notation

<i:j>pn,
“n.n.” means that the sum goes over only those pairs whose spins are nearest neigh-
bors. This type of the Ising model is often called the n.n. Ising model.

A particular realization of spin projections on the lattice is called a microcon-
figuration {c}. In other words, prescribing to each spin on the lattice its particular
orientation (o; = +1 along the magnetic field or o; = —1 against the field), we form
a particular microconfiguration {o'}. The Hamiltonian of the system is defined as

N
Hip =—uh) o= 3 J(F.F)oo;. G.D)

i=1 <i,j>

The lattice of the model is assumed to be absolutely rigid. So, neither the volume
nor the number of particles can change in the system. Therefore, the system can
only belong to either the microcanonical ensemble (MCE), when it is isolated, or
to the canonical ensemble (CE), when a fluctuating parameter is the energy of the
system.
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3.2 Microstates, MCE, CE, Order Parameter

Hamiltonian (3.1) is written in terms of spin projections. But to find the microstates
of the system, we should start with its predecessor, the quantum operator

ﬁ:—tha—ZJ(,,J 66, (3.2)

<i,j>

which corresponds to (3.1), only now instead of spin projections it contains the
quantum operators.

Microstates {E , p} of the system can be found as the solutions of the quantum
Schrodinger equation,

H{E,p}=E{E,p}, (3.3)

where E is the eigenvalue of the energy corresponding to the eigenvector {E R p} of
the operator H.

A quantum vector of state of the system will be the eigenvector {E , p} of this
Hamiltonian if it is the common eigenvector for all spin operators ;:

o {E.p}=0{E,p}. 3.4

Indeed, substituting (3.2) and (3.4) into (3.3), we immediately prove (3.3) to be
valid.

This means that the system’s microstates {E , p} are just the system’s microcon-
figurations {o '}, where the role of the set of parameters p, distinguishing microstates
with equal energy one from another, is played by the eigenvalues o, of the spin
projections.

In other words, to specify a particular microstate {E , p} of the system, we should
prescribe particular projections for all spins on the lattice. Flipping one of the spins,
we create a new microstate, and so on. Then, Hamiltonian (3.1) becomes the eigen-
value Ey;, of the operator H

By = #hsz - 2 () (3.5)

<i,j>

corresponding to the given microstate {c}.

As an example, we consider the Ising model with N =3 spins. There are eight
possible microconfigurations {o'} of spin orientations on the lattice: {TTT}, {TTi},
{'N«T} {i«TT} {T~L~L} {i«'N«}, {iM‘}, and {ii«i«} If there are no interactions among
spins in our model, J =0, the microstates, corresponding to these microcon-
figurations, are {E =-3uh,p :TTT}, {E =—uh,p :'M\L}, {E =—uh,p :N«T},

{E =—puh,p :iTT}, {E =ph,p =T~L~L}, {E =ph,p :M\L}, {E =puh,p :J»LT}, and
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Fig. 3.2 The energy spec- —
trum of the ideal Ising model E=3uh

3uh} =1
with N =3 spins { Hhy }ghﬂ:

h =3
_Eiﬂhi} g;ﬂ:
E=—uh —u }

{_M} —uh = 3
e

E=-3uh
———3ui}g =]

{E =3uh,p =i»l«i«}. Further, we may utilize simpler notations for these microstates:

{=3uh}, {—uh}, {—uh}, {-uh}, {ph}, {uh}, {uh}, and {3ph}. The energy spectrum
of such a system is presented in Fig. 3.2.

In the future, we will sometimes refer to the microstates of the system by the
notation “{o}” when we want to distinguish them by spin orientations on the lat-
tice. This is the most convenient notation when we want to count the number of
these microstates. However, when the energy of microstates becomes important, we
will utilize another notation “{ E, p},” where the energy of the microstate is shown
explicitly and p represents particular spin orientations on the lattice corresponding
to the given value of the energy. Finally, in the CE, only the energy of a microstate
plays a significant role, and in this case, we will use the notation “{E }.” All three
different types of notation are equivalent and refer to the same set of microstates.
In the future, we will use that type which will be the most convenient in a given
situation.

In the MCE, all microstates, corresponding to the given value of the energy, are
equiprobable (2.20):

L E=E S -
Wi = T :rf‘i—é’ (3.6)
0,E+FE

where I'M is the statistical weight of the ensemble. So, if the system from Fig. 3.2

is isolated with the energy —puh, the probabilities of three microstates, {TTJ«},
{'N«T}, and {LTT}, corresponding to this value of the energy, will be 1/3 while the
probabilities of other microstates are zero.

In the CE, we consider a fluctuation {{E }} as the macrostate of the system when
it has the energy £. While the probability (2.139) of microstates { E, p} is

1
CE -EIT
W{E} = Zﬁe 5 (37)
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the probability (2.143) of energy fluctuations is

1 _
Wiy =Tyme =Ty 7z (3.8)

where the statistical weight " (e} of the fluctuation is just the statistical weight g

of this energy level (of this group of microstates), and the partition function Z ¢
serves as the normalization constant of the probability distribution:
7CE _ Ze—E/T _ Z r{{E}}e—E/T_ (3.9)
{E} {ey

Probability (3.8) has a very narrow maximum at the point £, which corresponds
to the averaged value <E > cE= ZEW% of the system’s energy in the CE. The point
{E}
E, of the maximum is given by the equation

e, (3.10)

which is the equation of state of the system.
As we will see later, the nonideal Ising model with interactions of spins in pairs
possesses a phase transition. The magnetization of the system,

N
My, E‘uzO'i, (3.11)
i=1

plays the role of the order parameter, distinguishing phases. Instead of full magne-
tization (3.11), it is often more convenient to work with the specific magnetization,

Ly
m{61 =— O-i, (3.12)
' N i=1

as the full magnetization M divided by N, the total number of spins, and u, the mag-
netic moment of one spin.

The specific magnetization is convenient because it always changes from —1,
when all spins are against the field, to +1, when all spins are along the field. It is,
in fact, the spin projection averaged over the spin orientations on the lattice for a
particular microstate {c}:

Mgy =(0) ) (3.13)
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To emphasize that the averaging goes over the spin orientations of one microstate
and not over the ensemble, we have used the subscript (...) o}

The magnetization is called the long-range order parameter, because it repre-
sents the interactions of the system as a whole with the external magnetic field or
with the mean field generated by the spins themselves.

Besides the long-range order parameter, a short-range order parameter is also
introduced as we will see later.

Let us assume that we have found the ensemble partition function ZF of the
system. Differentiating it with respect to magnetic field 4, we find

CE N
O :zﬂe-%/? (3.14)
oh ohE =l

The equilibrium value of any quantity f{c} in the CE of our model is found by
averaging with Gibbs distribution of probabilities:

<f>CE = Zf{a}w{cf} = Zf{cr}

LM, (3.15)
1o} o Z

We see that (3.14) resembles (3.15), we only need to divide the exponential function
by the value of the partition function. Thereby, (3.14) transforms into averaging of
the magnetization:

CE

3.16
o =T &l T 3.16)

Therefore, if we have found the ensemble partition function, then the equilibrium
value of the magnetization is as follows:

=L51naiCE, (3.17)
Np

(m) e

3.3 Two-Level System Without Pair Spins Interactions

As the first and simplest example, let us consider the Ising model without interac-
tions of spins in pairs: J = 0. The Hamiltonian of such a system is

N
i=1

The system is the two-level system when the energy of the system is the sum of the
energy of separate spins and each spin can have only two possible values of the
energy: —uh along the field and wh against the field.



156 3 The Ising Model

Let us consider a particular microstate {o}. If, in this microconfiguration, the
number N; represents the number of spins along the field while N is the number
of spins against the field, then the energy of this microstate is

Eygy =—ph(Ny =N). (3.19)

Recalling that the number of spins is conserved,

from (3.19), we can find the numbers N4 and N for our system:
1y Eo 1y Bar )
Ny=—| N- s Ny=Z| N+—— (3.21)
2 uh 2 uh
Simultaneously, for the specific magnetization (3.12) we obtain

Ny =Ny, Eg

= . 3.22
N Nph (3.22)

Mgy =

So, if we know the energy of the microstate, we know the number of spins along the
field /# and the specific magnetization of the system; and vice versa, knowing the
specific magnetization, we find

1 1-
N.=N Mo N, =N-— et (3.23)
2 2
and
E\gy =—uhNmyg, =—hM,,,, (3.24)

because the correspondence between the energy and magnetization is bijective.

We should emphasize here that the obtained correspondence is valid for an arbi-
trary microstate. If we consider an ensemble, MCE or CE, similar correspondence
will, of course, appear for the averaged quantities as well. However, the reader
should always distinguish equalities valid for microstates from equalities valid only
on average in the ensemble—the former are more basic and cause the appearance
of the latter.

In the MCE, the system is isolated with energy E. So, in accordance with (3.21)
and (3.22), we immediately find the numbers N4 and N|. The statistical weight
I'MCE of the ensemble is the number of microstates corresponding to this energy
level. In other words, it is the number of microconfigurations {c}, when among
N spins, we should choose N4 spins along the field and N spins against the field:

N (3.25)
N;IN, !

MCE
r =8 =
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By applying Stirling’s approximation, we find

l+m(E) 1-m(E)

- [l+m(E)jN2 [l—m(E)jN 2 (3.26)
8E P —2 ) ’
where
m(E) = — £ (3.27)
Nuh

In the MCE, all microstates corresponding to the given value of the energy are
equiprobable,

1+m(E) 1-m(E)

s _ 1 (1+m(E)jN 2 (l—m(E)jN 2 (3.28)
B =g % — — ,

while all other microstates have zero probabilities.
In the CE, the statistical weight I, of the fluctuation {{£}} is just the statisti-

cal weight g of the given energy level,

N!
NyIN, !

Ty =8e (3.29)

which is provided by (3.26) and (3.27). The probability of a microstate is deter-
mined by Gibbs probability distribution as follows:
ce_ 1 gr_ 1 HhNmEYT (3.30)

Wi =—==¢€ —=e
{E} 7CE 7CE

while to find the probability of the fluctuation {{E }} we have to multiply this quan-
tity by the statistical weight I" 1E)) of the fluctuation as follows:

Wiiey =Tigepier e

Let us find the partition function (3.9) of the CE. The sum Z over all micro-
{E}

states of the system’s energy spectrum is just the sum z Z over all possible
o=l oy==%l

microconfigurations {c} . For the partition function, this provides

ZE-S Y B 2 oHhoVT | HhoNIT | _
o‘l;tl Z z Z

oy=tl o=%1 oy=%l

(M e TN (3.32)
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where we have factorized the partition function, transforming it into the product of
N identical multipliers, each of which is the one-spin partition function.

The method of the factorization of the partition function works for any ideal
system. Therefore, no wonder it works for our two-level system as well, which is
ideal. If we are going to consider the nonideal systems in the future, we should have
a method to calculate the partition function when the method of factorization is not
applicable.

For this purpose, in Chap. 2, we have developed the method of steepest descent.
Although applying this method to the two-level system is like crushing a fly upon a
wheel, let us still do it for the illustrative purposes.

We know that the distance 2 zh between two adjacent energy levels in our system
corresponds to one-spin flip. Transforming sum (3.9) into the integral,

+Nuh
dE _EIT

——gge , 3.33

In 2,Lth 8k ( )

—Nuh

ZCE ~

we use this distance to normalize dE. Applying the method of steepest descent, we
find that the integral equals its maximal term (the partition function equals its maxi-
mal partial partition function):

2% sy g1y, (.34

where the point of the maximal term is determined by

Agee "D _y o On(gre )
OE £, OFE £,

0 (3.35)

which, when divided by Z%, is equivalent to the equation of state (3.10).
Substituting (3.26) and (3.27) into (3.35), we find

E, =—uhN tanhu?h. (3.36)

Substituting in turn (3.36) into (3.34), we return to (3.32).

Instead of integrating over E, it is much simpler to integrate over m which is
bijectively connected with E by equality (3.27). If the distance between two adja-
cent energy levels is 2 uh, the distance between corresponding values of m is 2/ N.
Integral (3.33) transforms into

+1
CE _
Z ~In J.

-1

dm o uhNm/T (3.37)
2/ N Aim} ’

where

l+m\ Y2 (1=m\ V2 338
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Again, in accordance with the method of steepest descent, the integral equals its
maximal term

ZCE ~, {{mo}}e,utho/T’ (339)
where m,, is provided by
a(r " e/.tth/T) aln(r " e[.thNn1/T)|
{m} —0 or {m}} —0. (3.40)
om om ‘
mo my

The solution of (3.40) is the equation of state

m :tanh’u?h, (3.41)

which returns us to (3.36) and (3.32).

3.4 A One-Dimensional Nonideal System with Short-
Range Pair Spin Interactions: The Exact Solution

Let us obtain an exact solution for the one-dimensional Ising model with spin inter-
actions in n.n. pairs.

Problem 3.4.1

Consider the one-dimensional n.n. Ising model in the absence of magnetic
field. For simplicity, consider the periodic boundary conditions o,,, =0,
when the model is a one-dimensional chain of spins closed into a ring. Find
the ensemble partition function of the system.

N-1
On  Opy
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Solution: The Hamiltonian of the system is

il (3.42)
H{U} = —JZI 0,0,

The partition function of the CE is determined by

z 3 (F N io- o,
%Y Y LY ALY Y S [, G4

o=tlo,=*1 oy=%l o=tlo,=*1 oy=tl i=l

Let us define the so-called transfer matrix 7' (Kramers and Wannier 1941a,
b) by

7o (3.44)

where the matrix indices o,, o , can take the values +1 or —1. So, this is the
2 x 2 square matrix

T= : (3.45)

where the first row/column corresponds to +1 while the second row/column
corresponds to —1:

(3.46)

Returning to (3.43), we can substitute (3.44) into that expression:

ZCE = Z Z Z IEITU,O'M = Z Z Z T0'1¢72T0'203 ...TGND'.V+1.

oy =tlo,=*1 oy=%1 i=1 oy =tlo,=+1 oy=*l
(3.47)
Here,
N
Y 2 LT Ty =T (3.48)
o,=*1 oy==t1

is the matrix product of V transfer matrices. But we are considering the peri-
odic boundary conditions o, = g,. Therefore, if we add the sum Z in front
of this expression, o=l
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> T, = 2 (TN, =Te(TY), (3.49)

o =%l oy =*1

we obtain that partition function (3.47) equals the trace of 7":
Z% =Tr (TV). (3.50)
We assume that 7"has two independent eigenvalues, 4, and A,. Let us prove

this assumption. To find these eigenvalues, we should solve the characteristic
equation:

det g =0. (3.51)
T

This equation, indeed, provides two independent eigenvalues:

i L 3.52
AL=el +e T:2cosh%, (3:52)

Jf Jf

Ay=el —e” =Zsinh%. (3.53)

From linear algebra, we know that the trace of the N power of a ma-
trix with independent eigenvalues equals to the sum of the N powers of its
eigenvalues:

ZE ="+, (3.54)
But comparing (3.52) and (3.53), we see that
B> (3.55)

Therefore, in the thermodynamic limit NV — +oo, we can neglect the second
eigenvalue in (3.54) to find

VAU RS (3.56)

Problem 3.4.2

Consider the model of Problem 3.4.1 in the presence of magnetic field. Find

the equilibrium magnetization (m)_ .
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Solution: The Hamiltonian of the system is
N N
H{a} = _:uh;o-i _J; 001 (3.57)

The transfer matrix in this case is

LhU*'iUG 358
= o i .
Tcr,o'l =e H ( )
ph J bh_J
. el T el T
() _whJ (3.59)
e T T o TT

which provides again
(3.60)

=¥ 3 3 [, =T,

o =%l o, =%1 oy=%1 i=1

The eigenvalues of the transfer matrix are

) ] (3.61)
21z=eT{cosh h+,/smh2“h+e }
’ T T

In the thermodynamic limit, only the greater eigenvalue participates in the
partition function:

ZE =27+, = 4", (3.62)

Differentiating the logarithm of the last expression with respect to the mag-
netic field /2, we in accordance with (3.17) find the equilibrium magnetization:

sinh u—h
_ T

(m),, = \/ ”h 41‘ (3.63)
sinh? ==

For nonzero temperature 7 > 0, in the absence of magnetic field, 4 =0, the
magnetization (3.63) is zero

(1) =0 669

However, when the limit of zero temperature, 7 — 0, is taken before the limit
of zero magnetic field, we find
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(m)e, =+1. (3.65)

The appearance of nonzero magnetization in the zero field is called the
spontaneous magnetization, which generally corresponds to the presence of
a phase transition. We now see that in the one-dimensional case, the phase
transition is present only at zero temperature, when the critical point is deter-
mined by 7, =0, h. = 0.

The magnetic susceptibility is defined by the response of the averaged
magnetization to the change in the magnetic field:

X= {%l : (3.66)

Oh

Differentiating (3.63), we find

Y h
Ee ¥ cosh/'l?
xX= uh Y 32 (3.67)
sinh>—+¢ T

~

Let us approach the critical point along the isofield curve 4 = A. First, we
take the limit # — 0, and only then the limit 7 — 0. For this case, we find

/.12
=—e
ZT

_N"\

(3.68)

We see that the susceptibility diverges exponentially.

Second, we consider the isotherm 7" = T;.. We take the limit 7 — 0 while A
remains either finite or the limit # — 0 is taken after the limit 7 — 0. For the
susceptibility, we find

4u - 2pjp] 47

P (3.69)
T

We see that along the critical isotherm T = T, the susceptibility remains zero.
Indeed, for any value of the magnetic field, the magnetization is either +1 or
—1 in accordance with (3.65) and does not depend on the field.

We have proved that the one-dimensional Ising model with short-range interac-
tions possesses the phase transition only at zero temperature and has at this point
the exponentially diverging susceptibility. As we will see later, for longer ranges
of interactions and in higher dimensions, the critical point is expected to be not at
the zero temperature while the divergences are expected to be the power law, not
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Fig. 3.3 The two-dimen- 44414 44414
sional n.n. Ising model on 1911 f(_I_I,f
square lattice versus the one- 44414 44414
dimensional n.n. Ising model — —

E <E
a 1 2

URCR 3 S YR IT )
b E =E,

exponential. Therefore, the one-dimensional case of short-range interactions can be
considered as “degenerate.”

But why this case is “degenerate”? To answer this question, let us compare two
n.n. ferromagnets: one, on the two-dimensional square lattice, and another, on the
one-dimensional lattice. We consider zero magnetic field, # =0, and temperature
near zero, T — 0.

In the n.n. ferromagnet, all spins are attempting to reorient their nearest neigh-
bors in their own direction. So, the ground state is achieved when all spins are
oriented in the same direction, which is “up” in Fig. 3.3.

Although we consider the temperature to be low, it is still higher than zero. This
means that there are thermal fluctuations which are attempting to disorder the sys-
tem by disaligning the spins randomly.

On the square lattice, the orientation “up” of each spin is supported by ¢ =4
nearest neighbors; and it is problematic for thermal fluctuations to flip the spin be-
cause they need to increase the energy of four spin pairs from —J to +J.

But let us assume that a thermal fluctuation has managed to flip one of the spins
(Fig. 3.3a). This spin is now oriented “down” and is, in turn, attempting to rotate its
nearest neighbors “down” also. On the contrary, these neighbors are attempting to
restore the previous orientation of this spin.

So, what will happen next? Will the spin flip its nearest neighbors? Or will these
neighbors flip the spin? To answer this question, we should compare the energies
of the possible outcomes. From Fig. 3.3a, we see that restoring the spin orientation
will reduce the energy of the system. On the contrary, orienting “down’ more and
more spins will require more and more energy.

Therefore, the preferable outcome is for the nearest neighbors to reorient the
considered spin “up,” restoring the order in the system (all spins are “up” again).
That is why the n.n. systems in dimensions higher than one can possess the nonzero
spontaneous magnetization at temperatures above zero.

Next for comparison, let us consider the n.n. Ising model in one dimension
(Fig. 3.3b). Now only ¢ =2 nearest neighbors are keeping the spin’s orientation
“up.” Therefore, it is easier for thermal fluctuations to flip the spin.

But this is not all. The main difference with higher dimensions is that when one
spin is aligned “down,” no more energy is required to rotate “down” its neighbors!
When in Fig. 3.3b, the nearest neighbor to the right rotates “down” also, the energy
of one pair increases but simultaneously the energy of another pair decreases. So,
the total change in the energy is zero!
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Then, the next neighbor to the right can flip, then the next, and so on. In the re-
sult, the whole right half of the lattice can become oriented “down.”

We see that just one-spin flip can cause the succession of flips along the lattice,
forming a domain, oriented “down.” But in the middle of this domain, thermal fluc-
tuations can disorient another spin, so it rotates “up.” It causes a new succession
of flips, this time orienting the spins “up,” and the domain oriented “up” appears
right in the middle of the domain oriented “down.” And so on, and so on while no
spontaneous magnetization is left.

In the result, even the tiny thermal fluctuations, equivalent only to one-spin flip,
are capable to break the spontaneous magnetization of the one-dimensional Ising
model with short-range interactions. As we will see later, the spontaneous magneti-
zation represents the appearance of a phase transition in the system. Therefore, we
can conclude that the phase transition in the one-dimensional n.n. Ising model is
possible only at zero temperature.

We intend to study the “full-blown” phase transitions; and the “degenerate” case
is of little interest to us. What can be done to improve the situation? One possibility
we already know is to increase the dimensionality of the system so that more spins
would support their mutual orientation. The case of higher dimensions is considered
in the following sections.

But there is another way also. Instead of increasing dimensionality, we can make
the spin interactions long-ranged. More spins would be attempting to keep the com-
mon orientation unchanged, so it would be harder for thermal fluctuations to break
the order. The extreme of this scenario, when the amplitude of interactions does
not depend on the distance between spins in a pair, is considered in Problem 3.7.4.

3.5 Nonideal System with Pair Spin Interactions:
The Mean-Field Approach

In the model with interactions among spins, J # 0, the exact analytical solutions can
be obtained only in the rare cases of some lattices. Indeed, in the previous section,
we were able to find the exact solution for the one-dimensional case. It is gener-
ally true that a one-dimensional case of a system can be solved exactly. However,
the one-dimensional case is “degenerate.” It has a phase transition only at zero
temperature and instead of common power-law dependencies in the vicinity of a
critical point it generally demonstrates exponential dependencies. Therefore, the
one-dimensional model can hardly be considered as a general representative of a
system with a phase transition, and we have to look at higher dimensions.

But in higher dimensions, the possibility to obtain the exact solution is rare. So,
while the exact solution of the two-dimensional Ising model on square lattice has
been found by several ingenious methods (Kramers and Wannier 194 1a, b; Onsager
1944; Kac and Ward 1952; Potts and Ward 1955; Hurst and Green 1960; Vdovi-
chenko 1965a, b; Glasser 1970), the three-dimensional case remains a mystery even
nowadays.
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Thereby, for an arbitrary lattice type of an arbitrary dimensionality, it is usually
necessary to apply some approximations. In Chap. 7, we will consider the approxi-
mation of the renormalization group. However, there is also another approxima-
tion—the mean-field approximation which we discuss in the following paragraphs.

The mean-field approach has appeared much earlier than the renormalization
group approach. It does not work always, sometimes only for the given range of pa-
rameters. However, this approximation has become canonical due to its capability
to crudely but exemplarily illustrate the phase-transition phenomena.

Why can we not find the exact solution for the case of an arbitrary lattice? The
reason is that for the nonideal system the energy of microstate {o'} depends already
not only on the averaged spin over the lattice, <Gi> -1» but also on the orientations
of one spin relative to another. Therefore, the energy spectrum of the system be-
comes much more complex in comparison with the ideal system. The number of
microstates, corresponding to the given value of magnetization, is still determined
by (3.38)

_ykm _ykm
rooa (Lm) 2 (Iom) (3.70)
{imf} "n | 7y 2

but it is very difficult to find the number g, of microstates, corresponding to the
given value of energy.

In addition to the long-range order parameter, another parameter emerges in a
nonideal system—the short-range order parameter, which is responsible for the
local orientations of one spin relative to another. For simplicity, further, we will
generally consider only the n.n. Ising model. For this model, the short-range order
parameter is introduced as

1 (3.71)
S{"}:<a’0-f><i,/>n,n.e{a}:Nq/z 2

<6J>nn.

Here, we average the interactions between spins, 0,0 ;, over the nearest-neighbor
spin pairs, <1, j >, ,, of a microstate {o}. The total number of the n.n. pairs on the
lattice is Ng /2, where ¢ is the lattice coordination number (the number of neigh-
bors of a spin; ¢ =2 in Fig. 3.1a; ¢ =4 in Fig. 3.1b; ¢ =6 in Fig. 3.1c,d; and ¢ =3
in Fig. 3.1e.

In terms of two order parameters, we can rewrite Hamiltonian (3.1) for the n.n.
case as

Ng 3.72
H{o‘} = —,Ltl’le{G} —JTS{O.} ( . )

The mean-field approach is introduced as an approximation which substitutes
the exact behavior of the short-range order parameter by some equivalent behavior
depending on the long-range order parameter. Let us assume that from some a priori
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considerations for every microstate {o}, we have been able to approximate the exact
value of Sy, by some function of my,. In this case, Hamiltonian (3.72) becomes a
function only of the long-range order parameter:

Hy,, ~ H(my,) (3.73)

Equality (3.73), like for the case of the ideal system, provides the correspon-
dence between the energy of a microstate and its magnetization. So, the energy level
of the system again determines the numbers Ny and N, and the statistical weight
of this energy level is

1+m(E) 1-m(E)

N (1emE)Y 2 (1=mE)Y 2 374
gE_N¢!N¢!~'“( 2 j [ 2 J R

To find the partition function of the CE, we can now transform the sum (3.9) into

the integral
E ‘max

dE
Z% =, | g, 3.75
by (3.75)
where E; and E_, are the minimal and maximal energies in the spectrum and AE

is the energy shift corresponding to one-spin flip. The particular dependencies of
these three quantities are not important because the integral equals again its maxi-
mal term (the partition function equals its maximal partial partition function),

7% =, gpe ™, (3.76)
which is determined by
~E/T -E/T
a(gEe ) =0 aln(gEe ) =0. (377)
OE OE
E, Eo

If we divide (3.77) by Z%, we return to the equation of state (3.10).
However, it is again much easier to integrate not over the energy but over the
magnetization:

+1 dm
CE r e—H(m)/T ~ T

—H(my)/T
zln P ap—— m In € ’ (378)
J2/N

{{”’0}}

where the point m, of the maximal term is determined by

o(r

—H(m)/T —H(m)/T
((m)€ ) 0 o 61n(1"{{m}}e )
om om

my Moy

=0. (3.79)



168 3 The Ising Model

Substituting (3.70) into (3.79), we find the equation of state

)

(
_L oH(m) J (3.80)

my = tanhL— NT 5
m

Once we have obtained m,, from this equation, we substitute it into (3.78) to find
the value of Z* and, correspondingly, the equilibrium free energy of the system:

FCE — _TinzCE (3.81)

Substituting (3.70), (3.73), and (3.78) into (3.81), we find

1 1 1- 1-
FCE - NT +2m0 ln[ +2m0j +NT 2m0 ll’l( 2””0] +H(m0). (382)

The term “mean field” appears because dependence (3.73) is generally assumed
to be the result of the approximation when the interactions of spins in pairs are
substituted by the interactions of separate spins with the effective field created by
all spins together:

H,,, ~ —pu(h+h{,)Nmy,,., (3.83)

where the effective field is some function hfg ' (my4,) of the specific magnetization

of this microstate {o'}. The difference between (3.73) and (3.83) is just a matter of
notation. Meanwhile, (3.80) transforms into

» (3.84)

m, = tanh % h+h (my) +m, a@

m
my

As an example, we consider further the mean-field approach for a ferromagnet
that is applied often and often. In this approach, it is assumed that the effective field
is proportional to the magnetization of a ferromagnet:

/-
Helh = . (3.85)

For this simple case, the equation of state (3.84) transforms into

iy = tanh(%{h+2Am0}J. (3.86)

Let us consider the model in the absence of the external magnetic field, # = 0:

my = tanh—z‘uAmo . (3.87)
T
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Fig. 3.4 The graphical solu- A>T T=T, T<T,
tion for the value of the equi- 14
librium magnetization m, in
the absence of magnetic field

If the magnetization is present when the external magnetic field is zero, this magne-
tization is called spontaneous.

The easiest way to obtain the solution of (3.87) is to find graphically when the
linear dependence intersects with the hyperbolic tangent function (Fig. 3.4).

As we see from Fig. 3.4, two different situations are possible. If in the vicinity of
the point m = 0 the linear dependence is steeper than the hyperbolic tangent,

1>% or T>2uA, (3.88)

there is only one solution m, = 0, corresponding to the absence of spontaneous mag-
netization.

On the contrary, if in the vicinity of the point m = 0 the linear dependence is less
steep than the hyperbolic tangent,

1<2“TA or T<2ud, (3.89)

there are three points of intersection: —my, 0, m,. Two of them, —m, and m,, are
nonzero which correspond to the presence of the spontaneous magnetization.

In the absence of magnetic field, the orientation “up” is no more or less prefer-
able than the orientation “down.” It is said that there is the symmetry in the model
for these two orientations. However, we see that below the critical point, the system
chooses one of the two directions to align spins along it. This is called the spontane-
ous symmetry breaking.

The third point of intersection for 7' < 2u A, corresponding to zero magnetiza-
tion, is not, in fact, a solution. It is easy to see that if we return to (3.79). To find the
maximal term of the partition function, we differentiated it and equated the deriva-
tive to zero. But a zero derivative returns all extrema, both maxima and minima.
The point of zero magnetization corresponds to a minimum. Therefore, it should be
discarded.

Comparing inequalities (3.88 and 3.89), we see that the temperature

T, =244, (3.90)
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plays the role of the critical temperature of a ferromagnet. Above the critical tem-
perature, T > Tt there is only one phase corresponding to zero magnetization.
Below the critical temperature, T < T, there are two solutions, —m,, and m,, cor-
responding to two different phases. The point T =T, & = h- = 0 is called the criti-
cal point.

From Fig. 3.4, we see that in the vicinity of the critical point (when the linear
dependence is almost tangent to the hyperbolic tangent) the magnetization is small.
This gives us an opportunity to investigate the neighborhood of the critical point in
detail.

3.6 Landau Theory

3.6.1 The Equation of State

Let us return to the general case of a ferromagnet in the nonzero magnetic field 4.
If we consider the close proximity of the critical point, we can assume that the field
h, specific magnetization m,, and relative deviation of temperature from its critical
value

r=—-¢ (3.91)

are small. Therefore, we can expand the hyperbolic tangent (3.86) in these small
parameters to find the equation of state of a ferromagnet:

0=—h+2atmy +4bm,’> +..., (3.92)

where a=A and b= A4 (3.93)
6

Here, we have introduced two parameters, @ and b, whose true purpose will become
clear later. Let us now abstract away from the particular system discussed in the
previous section and in the future consider an arbitrary magnetic system whose
equation of state is (3.92) and whose mean-field approximation is (3.73).

The equilibrium value of spontaneous magnetization is the solution of the equa-
tion of state (3.92); and in zero magnetic field, 4 = h- = 0, we find

my =0 (3.94)

and my =+ /—;’—2. (3.95)

Above the critical point (7 > T;.), there is only zero solution (3.94) because for
t >0 both square roots provide only complex numbers. The nonzero spontaneous
magnetization (3.95) appears only below the critical point (z < 0).
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In fact, the zero spontaneous magnetization m; =0 formally remains the solu-
tion of the equation of state (3.92) and below the critical point. However, later we
will prove that this solution is not genuine, leaving only the nonzero magnetization
atT <71

my=0 at T>T-,t>0, (3.96)

t
m0=i/—;—b at T<T.,t<0. (3.97)

This behavior is illustrated in Fig. 3.5 by a dotted line. The part of the critical iso-
field curve & = . = 0 for temperatures below critical is called the coexistence curve
or binodal curve. The filled dot in Fig. 3.5 represents the critical point.

The appearance of the spontaneous magnetization in the zero magnetic field is
sometimes called as self-organization, because of the appearance of the nonzero
order parameters in the system when the field parameter is zero. In other words,
there is no external magnetic field which would prescribe for spins their directions.
Instead, the spins themselves choose one of two possible directions as preferable
and align themselves along it.

We see that below the critical point the dependence of the spontaneous magneti-
zation on | t | along the binodal curve / = h- = 0 is a power law with exponent 1/2.
If we introduce a critical index S° as

my ot 7, (3.98)

then, we immediately find that Landau theory provides for spontaneous magnetiza-
tion critical index ﬂ,c =1/2. In turn, Landau theory is the consequence of the mean-
field approach. So, we attribute the critical index, which is just a simple rational
number (simple rational fraction), to the properties of the mean-field approxima-
tion.

Next, instead of the critical isofield curve of zero magnetic field, we consider the
critical isotherm T" = 7. On this isotherm, the equation of state (3.92) provides the
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following power-law dependence of the magnetization on the value of the magnetic

field:
A 13
= — 3.99
my [ 4bj ( )

If we define the second critical index g by
my oo h P (3.100)

we see that the mean-field approach determines ,th =1/3.

3.6.2 The Minimization of Free Energy

As we already know, the equation of state (3.92) must follow from the free energy
minimization. To illustrate this principle for our particular system, we should inves-
tigate closer the free energy behavior.

Since we are working in the CE, the free energy potential of this ensemble is the
Helmbholtz energy. From (2.274), we know that the Helmholtz energy of a fluctua-
tion {{E}} is provided by

Fygy =—T1nz{c{§}}. (3.101)

Here, Z {c{g}} is the partial partition function:

ZCE EZCEWCE = Z e—E/T =T e—E/T =g e—E/T (3102)
(=) = B {iz) £

or 7 T

—H(m)/T
o} = {y® ’ (3.103)

where in the last equation we have again decided that it is more convenient to work
with the magnetization than with the energy. Substituting (3.70) and (3.73) into
(3.103), we find the dependence of the nonequilibrium free energy on the nonequi-
librium value of system’s magnetization m (the magnetization which does not obey
the equation of state (3.92)):

1+m
2

1+m
F{{m}}:NT 2 ln(

j+NT1_2m1n(l_2mj+H(m), (3.104)
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Remarkable is that this is the same functional dependence as (3.82). Only differ-
ence is that there we were looking for the equilibrium value of the Helmholtz en-
ergy; and, correspondingly, the dependence was on the equilibrium value m,, of the
magnetization which obeys the equation of state (3.92). On the contrary, energy
(3.104) is nonequilibrium, and the dependence is on the nonequilibrium value m of
the magnetization.

Similar to how we have expanded the hyperbolic tangent (3.86) to obtain the
equation of state (3.92), we now expand dependence (3.104) in small parameters #,
t, and m for the close proximity of the critical point:

Fip = Nu(=24I02—hm+atm® +bm* + ...). (3.105)

Here, —2A41In 2 is a constant, and therefore, it can be easily removed by the shift of
the free energy. Further, we will neglect this term as not influencing behavior of the
system.

Functional dependence (3.105) represents Landau theory, developed for our
magnetic system, while a and b, introduced earlier in (3.93), are, in fact, the coef-
ficients of the free energy expansion.

We already know that to find the equilibrium state we should minimize the
free energy over all nonequilibrium states. To do this, we differentiate dependence
(3.105) with respect to m and equate the derivative to zero

OFm)
om

0. (3.106)

my

This returns us to the equation of state (3.92), and we see that this equation is indeed
the consequence of the free energy minimization principle.

Let us now investigate the system’s behavior with the aid of expression (3.105)
obtained for nonequilibrium states in the vicinity of the critical point. If we look
at the definition (3.85), we see that constant 4, as the constant of proportionality
between the effective field and magnetization, is expected to be positive for a fer-
romagnet. Therefore, in accordance with (3.93), both coefficients, a and b, are also
positive.

Let us consider first the system in the absence of magnetic field, #=0. The
sketch of the free energy dependence on nonequilibrium magnetization m is pre-
sented in Fig. 3.6. For temperatures higher than critical (z > 0), both the quadratic
dependence and the fourth-order dependence in (3.105) have minima at the point of
zero magnetization. Therefore, their sum also has a minimum at m =0.

At critical temperature (¢ =0), the quadratic dependence disappears, and the
minimum becomes flatter, following the fourth-order dependence. Below the criti-
cal point (¢ <0), the fourth-order dependence has again a minimum at zero mag-
netization while the quadratic dependence turns upside down and has a maximum
at m=0. For small values of m, the free energy dependence is dominated by the
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Fig. 3.6 The nonequilibrium
free energy in the absence of
magnetic field

quadratic term while in the infinity the fourth-order dependence becomes in turn
dominant. This “wrestle” of the quadratic dependence and the fourth-order depen-
dence causes the appearance of two minima at the nonzero values of spontaneous
magnetization, —mj,m,, which correspond to solutions (3.95) we obtained earlier.
Between these two minima, there is a maximum at zero magnetization.

Now, we can answer the question why in (3.97) we discarded zero solution (3.94)
of the equation of state (3.92) below the critical point. To find equilibrium states,
we should minimize the free energy potential. We did this by finding its derivative
and equating it to zero (3.106). But this procedure returns not only minima but also
maxima, and maxima do not correspond to equilibrium solutions. In accordance
with Fig. 3.6, the zero magnetization below the critical point corresponds precisely
to the maximum and, therefore, is not an equilibrium solution.

We see now the beauty of Landau theory. We kept only first terms in the free
energy expansion (3.105), and in zero magnetic field only two of them influenced
the system’s behavior. But these two terms were enough to illustrate the behavior
of criticality.

However, this is not all what Landau theory is capable of! Besides the second-
order phase transitions, it can also illustrate the first-order phase transitions. To be
applicable, the theory requires only that the system should still be in the vicinity of
the critical point. However, both the coexistence curve and spinodal curve originate
just at the critical point. Therefore, in its vicinity we are still able to consider the
first-order phase transitions.

We consider the temperature below critical. In Fig. 3.7, we first draw the curve
for /=0 similar to Fig. 3.6. Let us now increase the value of the field 4. Due to the
term —/Am in the free energy expansion (3.105), the left minimum becomes local
(less deep) in comparison with the right, global minimum.

Following the free energy minimization principle, the system would prefer to
move to the global minimum. However, if it is initially in a state close to the local
minimum, a potential barrier between two minima prevents the system to leave.
Therefore, the system will stay in a quasi-equilibrium, metastable state, corre-
sponding to the fluctuations in the vicinity of the local minimum.
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Because of these fluctuations, the system performs many attempts to climb out
of the local minimum. If we studied dynamic phenomena of phase transitions, for
the linear response, we would find to be valid the time-dependent evolution equa-
tion (the Ginzburg—Landau—Langevin equation for the nonconserved order param-
eter): !

om aF{{'"}} 310
__ 107
o(time) 5 om e ( )

Here, ¢ is the noise which constantly generates fluctuations in the vicinity of the
system’s current state. However, when due to the presence of this noise, the system

. . . . . OF
“jumps” up the slope of the potential barrier, the gradient __ {{”}} of the free energy
om
at the minimum’s “wall” “rolls it down.” The system “jumps” again, but the free

energy gradient returns it back again, and so on.

Saying that the system performs “many attempts” to climb out of the local mini-
mum, we mean really many. The reader can imagine an ant in a sand cone. While
the ant tries to climb up, the sand avalanches constantly drop it back to the bottom.

After a large number of attempts, it could so happen that a very improbable fluc-
tuation would take place, so the system could climb up to the top of the potential
barrier. After that, it slides down to the bottom of the right, global minimum, cor-
responding to the stable state, by the “explosive,” nonequilibrium process.?

At further increase of the magnetic field, the left minimum becomes shallower
and shallower and finally disappears at the spinodal point. The disappearance of

l” 13

! Unfortunately, to avoid confusion with the relative deviation ¢ of temperature from its critical
value for the derivative with respect to time we have to use here the notation 0/ d(time).

2 Once during a lecture, when I colorfully described how it is difficult for the system to climb up
to the top of the potential barrier and how many attempts it would require, a student asked a ques-
tion: “What if at the top of the potential barrier the system would reel not to the “right” but to the
“left,” back into the local minimum?” “In this case we will call it a looser!” was the only answer
I could then come up with.
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the left minimum is caused by its coalescence with the maximum of the potential
barrier.

“After” the spinodal point, there is no potential barrier, only one, global mini-
mum is left, and therefore, there are no metastable states. This means that for any
initial state the gradient of the free energy leads the system directly into the equilib-
rium state at the bottom of the single minimum left.

3.6.3 Stable, Metastable, Unstable States, and Maxwell’s Rule

We already know that the equation of state (3.92) corresponds to the minimum of
the free energy potential. Now, we also see that it represents not only stable states,
corresponding to the global minimum of the free energy, but also metastable states
of the local minimum. The stable and metastable isotherms, corresponding to the
equation of state (3.92), are presented in Fig. 3.8.

Above the critical point (7 > T.), these isotherms are continuous curves with
zero spontaneous magnetization in zero field, and they represent only stable states.
There is only one phase here which is called paramagnetic.

The critical isotherm T = T;. is tangent to the abscissa axis (recall (3.99) and
(3.100)) and, therefore, has an infinite derivative, dm, /dh =, at the zero mag-
netic field 2 =0. This can be considered as an inheritance of the spinodal curve
disappearing at the critical point. We will discuss the spinodal curve in detail later.

Below the critical temperature (T < 7;) the isotherms intersect with the ab-
scissa axis at two nonzero values which represent two phases of spontaneous mag-
netization. These phases are called ferromagnetic. The isotherms are stable while
the sign of the magnetic field coincides with the sign of the magnetization. If the
field changes its sign, the isotherms are continued as metastable until the spinodal
point.

In Fig. 3.7, the spinodal point corresponded to the field at which the local mini-
mum disappeared. In Fig. 3.8, the spinodal can be found as a point on the isotherm
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Fig. 3.9 The equation of state h T<T,
below the critical point
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at which the derivative of the magnetization with respect to the field becomes in-
finite, dmy, / dh = . After the spinodal point (Fig. 3.9), this derivative is negative,
dmy / dh <0, which corresponds to unstable states. Therefore, the spinodal point
dmy /| dh =0 delimits the metastable states with positive derivative dmy /dh>0
from the unstable states with negative derivative dm, / dh <0. A similar situation
takes place in liquid—gas systems, for example, in the case of a van der Waals gas,
when spinodal corresponds to the infinite derivative of concentration with respect to
pressure dn/ dP = o and delimits stable dn/dP >0 and unstable dn/dP <0 parts
of the van der Waals equation of state.

If we continued analogy with the liquid—gas systems, we would recall that for
these systems there is such an important concept as Maxwell’s rule. For the pres-
sure, that at given temperature coincides with the Clausius—Clapeyron pressure of
the liquid—gas phase transition, Maxwell’s rule introduces heterogeneity into the
system when the volume of the system is divided into separate domains (clusters)
of liquid and gas phases.

For magnetic systems, similar rule is illustrated in Figs. 3.8 and 3.9 as a horizon-
tal line at zero magnetic field / = 0, which connects two stable parts of an isotherm.
In the absence of magnetic field, the lattice breaks up into a set of separate domains
with positive and negative magnetizations. The system’s spontanecous magnetiza-
tion equals the domain’s magnetizations averaged over the lattice and can take any
value between two homogeneous solutions (3.97)

- < v - at T<Toh=he =0 (3.108)
2b 2b

We have built Fig. 3.5 to correspond to the case of a homogeneous system. To in-
clude heterogeneous Maxwell’s rule into this figure, we should allow the system to
be in any state inside of the coexistence curve (Fig. 3.10). That is why this curve is
called the coexistence curve; it delimits the one-phase region from the two-phase
region of phase coexistence.

In liquid—gas systems, we know that at given temperature any deviation of the
pressure from the Clausius—Clapeyron pressure immediately transforms the het-



178 3 The Ising Model

Fig. 3.10 The equation of
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erogeneous system into one of the homogeneous phases. In magnetic systems, the
appearance of a nonzero field, no matter how small, immediately transforms a het-
erogeneous state into one of the homogeneous phases as well. In other words, the
appearing field breaks the phase coexistence. It keeps domains of one phase as
favorable but breaks domains of another phase, transforming them into the favor-
able phase.

Therefore, minor changes in the magnetic field around its zero value transfer
the system from one phase to another along Maxwell’s rule. Stronger changes in
the field lead to the appearance of a hysteresis loop along the metastable parts of an
isotherm (Fig. 3.11). We observe similar phenomena in liquid—gas systems when we
transform one phase into another not by means of Maxwell’s rule but through the
region of metastable states.

In Fig. 3.8, we plotted the equation of state (3.92) by means of separate iso-
therms. But the equation of state is, in fact, a three-dimensional surface; and iso-
therms represent merely its two-dimensional cross-sections. Therefore, it would be
much more illustrative to plot this equation in three-dimensional space as a three-
dimensional surface (Fig. 3.12).

The behavior of the system significantly depends on whether we consider it be-
low or above the critical point. Below the critical point, the surface of stable states
consists of lateral one-phase sheets for nonzero field and a piece of the two-phase

Fig. 3.11 The hysteresis loop h A

T<T,
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plane inside of the coexistence curve. Two sheets of metastable states continuously
extend the lateral sheets up to the spinodal curve. Above the critical point, there is
only one sheet, presenting the stable paramagnetic states.

The first important curve—the coexistence curve (binodal curve)—is deter-
mined by the spontaneous magnetization (3.97) of the homogeneous system. This
curve delimits the one-phase and two-phase regions for magnetic systems as well
as for liquid—gas systems.

The equation of the second important curve—the spinodal curve—we can find
by the condition that at the spinodal point in Fig. 3.7 the minimum and maximum
of the free energy coalesce. In other words, we should find when the determinant of
cubic equation (3.92) becomes zero. Or, differentiating this equation, we could find
when the derivative of the magnetization with respect to the magnetic field becomes
infinite: Om, / Oh = . In both cases, the solution is given by

3/2
—at —at,

Recently, it was discovered that in the vicinity of the spinodal point physical
dependences are also power-laws similar to the behavior of the system in the vicin-
ity of the critical point. Expanding the equation of state (3.92) in small parameters
|m0 —mS| and |t —ts| while the magnetic field is kept equal to its spinodal value,

h = hg, we find
|m0 _ms|: /é|f—fs|- (3.110)

The spinodal index 8° is defined as

o =mo =15/ A1
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So, the mean-field approach of Landau theory provides ,Bts =1/2.
On the contrary, expanding the equation of state (3.92) in small parameters
|m0 - mS| and |h - hs| while the temperature is kept unchanged, we find

1/2

|
|m0—ms|=w. (3112)
The spinodal index g} is defined as
|m0—ms|oo|h—hs|ﬁhs, (3.113)

and we immediately find ,B,? =1/2. This parabolic dependence is obvious from
Fig. 3.9.

3.6.4 Susceptibility

We define the magnetic susceptibility as the response of the equilibrium magnetiza-
tion to the change in the magnetic field:

_(omy (3.114)
"‘( oh )

In more detail, the importance of this quantity will be discussed in Chap. 6. Here,
we investigate only the divergence of the susceptibility in the vicinity of the critical
and spinodal points.
Differentiating the equation of state (3.92) with respect to the magnetic field 4,
we find
1

S — (3.115)
x 2at +12bm,’

First, we approach the critical point along the isofield curve, h = i =0, which
below the critical temperature corresponds to the binodal curve. Substituting (3.96)
and (3.97) into (3.115), we obtain

sz when >0, (3.116)
2at
y=— when <0, (3.117)
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We see that if we define the critical index y< by

oC

W (3.118)

the mean-field approach provides ;/,C =1L
Second, we approach the critical point along the critical isotherm 7" = T;.. Substi-
tuting (3.99) and ¢ =0 into (3.115), we find

1
%_3%1/12/3' (3119)
For the critical index y{, defined by

1
X ——, (3.120)
| B[

we obtain y§ =2/3.
Next, let us consider the proximity of the spinodal point. For the isofield / = Ag
approach, we expand (3.115) in small parameters |m0 - mS| and |t - tS| while keep-

ing h = hg:
1
x= . (3.121)
atg
2a(t—ts)—24b4/—5(mo —mg)

Here, we should recall that along the spinodal isofield curve we have relationship
(3.110) between |m, —mg| and |¢ — 5. Substituting it into (3.121), we find

1 1
Z_ 2a(t ~ 1) + a5 |t~ 15| ) da~ts fl—t5] (3.122)
For the spinodal index, defined by
1

goo—t (3.123)
|t—t5 |

this provides }/,S =1/2.
Finally, we approach the spinodal point along the isotherm ¢ = #5. Expanding
(3.115) in small parameter |m0 - ms| while keeping ¢ = £, we find

1

- .
24b\/—2; |m0 - ms|

x= (3.124)
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Recalling that along the isotherm ¢ = 5 we have found earlier relationship (3.112)
between |m0 - ms| and |h - hS|, we obtain

1
X= . 3.125
"y 6abis |h- 12
So, for the critical index
1
XC—7, (3.126)
[ [

we find 5 =1/2.

Earlier we have discussed that the stable and metastable states are distinguished
from the unstable states by the sign of the derivative Om, / 0h. Now, we see that
this derivative represents the susceptibility (3.114) of the system. This behavior is
presented in Fig. 3.13. In more detail, we discuss the susceptibility in Chap. 6.

3.6.5 Heat Capacity

The heat capacity is defined by

CE 2 ~CE
c=1| % _ 7| OF , (3.127)
or ), or? ,

where the ensemble Helmholtz free energy is given by (3.82). In the vicinity of the
critical point, (3.82) can be expanded as

F¢E =Nu(—2A1n2—hm0+atm02 +bm04 +...). (3.128)

Since
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0 10

o_1ao (3.129)

or Ty ot
differentiating (3.128), we find

2
0 0
C=—NE g, Mo {2at+126m,’ | [ﬂ]
T. ot ot
31 &g 3.130
+{—h-|—2atm0—i-4bm0 } PRt (3.130)
t

The last term in the right-hand side of this expression is zero due to the equation of
state (3.92):

2
c=_N# 4am0%+{2at+l2bm02}(%) : (3.131)
ot ot

Simultaneously, we differentiate the equation of state (3.92) to find the derivative of
the equilibrium magnetization:

omy ___ amy (3.132)
ot at + 6bm,’

which we substitute into (3.131):

C- Nu 2azm02

N famg (3.133)
Te at+6bm,*

If we approach the critical point along the isofield curve /4 = A = 0, substituting
(3.96) and (3.97) and 4 =0 into (3.133), we find

C=0 at 1>0, (3.134)

Nu a’
c="HL 4 <o (3.135)

T.. 2b

2
Recalling from (3.90) and (3.93) that L%~ _ 3 we find
Ie b u

C=0 at >0, (3.136)

c:% at 1<0. (3.137)
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We see that the heat capacity does not have a singularity when we approach the
critical point along the binodal curve. Therefore, the critical index atc , defined by

1
Coc—0o, (3.138)

Hs

is zero: atc =0.
Next, we consider the approach of the critical point along the critical isotherm
T = T¢. Substituting (3.99) and ¢ = 0 into (3.133), we obtain

2
_Nua® _ (3.139)
T. 3b
Again, the critical index @ , defined by
1
Co—rp, (3.140)
|

is zero: af = 0.
Above we have found that € =1/2 and yC = 1. Therefore, we prove that

al +2p5+yC =2. (3.141)

If we considered an arbitrary magnetic system, this equality would transform into
the Rushbrooke inequality (Essam and Fisher 1963; Rushbrooke 1963):

af +285+yf 2. (3.142)

We return to this relation for the critical isotherm indices in Chap. 8.

Now, let us investigate the vicinity of the spinodal point. Approaching the spi-
nodal point along the isofield /# = hg curve, we expand (3.133) in small parameters
|m0 —ms| and |t —ts| while keeping # = hg:

3
ts /(3
c=_NH a’ts 13b) . (3.143)
TC ats
a(t—1tg)—12b —a(mo—ms)
Recalling (3.110), we find
2
Nu a /-t N —.
=24 5_- 5 (3.144)

_E6b\/|t—ts| _?\/|t—ts|'
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Fig. 3.14 The sign of the
heat capacity distinguishes
stable and metastable states
from unstable states
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we find ats =1/2 which provides the relation analogous to (3.141), only this time

formulated for the spinodal indices:

a2+ =2

(3.146)

The Rushbrooke inequality arises from the general considerations of positivity of
the heat capacity. Therefore, there is no reason why this inequality should not be
applicable for spinodal indices as well.
Finally, we approach the spinodal point along the isotherm ¢ = fg. Expanding
(3.133) in small parameters |m0 - ms| and |h - hs| while keeping ¢ = g, we find

Recalling (3.112), we find

oo M \/Eaz (—ats)3/4
Te (6b)* |h - |

3
alg

TC at
36b* —6—;(m0 —mg)

For the spinodal index ¢}, defined by

C o

1
[

>

N

(3.147)

(3.148)

(3.149)
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Fig. 3.15 The values of the h“ T<T.
equilibrium free energy, pre- .
sented as an epure over the
curve of the equation of state

we find @) =1/2.

We see that the heat capacity, similar to the magnetic susceptibility, diverg-
es in the vicinity of the spinodal point and becomes negative for unstable states
(Fig. 3.14). Therefore, the heat capacity, as well as the magnetic susceptibility, can
be considered as an indicator determining the stability of the states. Positive values
correspond to the stable or metastable states while negative values indicate the pres-
ence of instability.

3.6.6 Equilibrium Free Energy

In Figs. 3.6 and 3.7, we have considered the dependence of the free energy (3.105)
on nonequilibrium values m of magnetization. Let us now turn our attention to the
free energy of equilibrium states. In other words, let us return to the equilibrium
free energy (3.82), which depends on the equilibrium values m, of magnetization
as solutions of the equation of state (3.92).

In Fig. 3.15, we present the sketch of the equilibrium free energy as an epure
covering the curve of the equation of state. The free energy grows in one-phase re-
gion with the decrease of the absolute value of magnetic field. In zero field, the free
energy of the heterogeneous system remains constant along Maxwell’s rule, and
therefore, its values at the beginning and at the end of this rule are equal. In contrast,
the free energy of the metastable states continues to grow in the metastable region
and achieves its maximum at the spinodal point.

We already discussed above that although the equation of state (3.92) is sup-
posed to provide only equilibrium, stable states, it, in fact, does not distinguish
local and global minima and, therefore, its solutions could not only be stable but
also metastable. From the free energy minimization principle, we know that meta-
stable states must have higher values of the free energy than stable states. This can
be clearly seen from Fig. 3.15, where the metastable states have higher free energy
than both the heterogeneous states along Maxwell’s rule and the states along the
stable parts of the isotherm.



3.6 Landau Theory 187
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In Fig. 3.16, we present the dependence of the equilibrium free energy on the
magnetic field 4 for a given value of temperature below critical. The one-phase
branches of the stable states are the lowest in the figure. The two-phase region of
Maxwell’s rule degenerates here into the point at the intersection of these branches.
From this point, two metastable branches disperse upward which transform at the
spinodal points into the unstable branch.

Again, Fig. 3.16 is only an isothermic cross-section of some three-dimensional
surface. This surface itself is presented in Fig. 3.17. Above the critical point, it has
only one sheet. Below the critical point, additional sheets of metastable and unstable
states appear which are located higher than the stable sheet. The two-phase region
of Maxwell’s rule collapses into the coexistence curve. The metastable sheets are
separated from the unstable sheet by two spinodal curves.

The reader should clearly distinguish Figs. 3.16 and 3.17 for the equilibrium free
energy from Figs. 3.6 and 3.7 for the nonequilibrium free energy. In Figs. 3.6 and
3.7, for the given values of field and temperature, we were looking for the minimum
of the free energy over all possible nonequilibrium values of m. On the contrary,
in Figs. 3.16 and 3.17, magnetization is already a solution of the equation of state

Fig. 3.17 The equilibrium
free energy
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(3.92), and metastable states, overlooked by it, are the only remnants of nonequi-
librium states. Therefore, in Figs. 3.16 and 3.17, the free energy minimization prin-
ciple degenerates into the choice between the stable and metastable branches when
we choose the lower sheet.

3.6.7 Classification of Phase Transitions

The critical point is generally considered to represent a continuous (second-order)
phase transition while the binodal and spinodal curves, originating at this point, are
representatives of a first-order transition. Classification defines that at the point of
a continuous phase transition the derivatives of the equilibrium free energy (or a
quasi-equilibrium free energy of metastable states) with respect to field parameters
of the system should be zero. On the contrary, a nonzero derivative indicates the
presence of a first-order phase transition.

There are two field parameters in Landau theory: the magnetic field # and the
relative deviation ¢ of the temperature from critical. So, we should investigate when
two derivatives, (6F % / Oh), and (OF CE ot),,, are zero, where the ensemble free
energy is

FE = Nu(-24In2 - hmy + atmy* + bm,”* +...). (3.150)

Differentiating, we find

CE
O | =Ny + Nya(h+ 2amm, +abmy* +..) (220 ) =0 3.151)
oh ) oh )
and
CE
(61; j =Nyam02 +N/v1(—h+2atm0+4me3 +)(%j =0, (3.152)
g h

where the derivatives Om,, / 0h and Om, / Ot we obtain by differentiating the equa-
tion of state (3.92):

(%) . (%j L (3.153)
oh ), 2ar+12bm*>" \ ot ), t+6bm,*/a

We consider the states at the binodal curve. The binodal curve is determined by
(3.97) when h =0,z <0. Substituting these equations into (3.151) and (3.152), we
find that the continuous phase transition takes place only at ¢ =0. In other words,
the critical point represents the continuous phase transition in our system while the
rest of the binodal curve is the first-order transition.
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Fig. 3.18 The free energy
difference between stable and
metastable states

This could be easily illustrated with the aid of Fig. 3.16. For simplicity, we in-
vestigate only the behavior of the derivative (9F <% / 0Oh),. Let us suppose that we
consider a point at the binodal curve below the critical point: 2= 0,7 <O0.

The meaning of the derivative (0F“ / 0Oh), is how the equilibrium (or quasi-
equilibrium) free energy would change if we introduced a nonzero magnetic field.
One phase would slide downward along the stable branch while another phase
would climb up the branch of metastable states (two small arrows in Fig. 3.18). We
see that well below the critical point the difference is pronounced; the metastable
free energy is clearly higher than the free energy of the stable phase.

However, when we approach the critical temperature, the phase branches be-
come less and less steep (Fig. 3.18). Exactly at critical point the metastable and
unstable branches disappear leaving only the single continuous stable branch with
zero derivative at zero magnetic field. So, this is how in practice the first-order
phase transition transforms into the continuous phase transition in the proximity of
the critical point.

We see now that the first-order phase transition differs from the continuous phase
transition by the presence of metastable states whose free energy is higher than the
free energy of stable states. Therefore, we can add to the rule of the classification
of phase transitions that the presence of metastable states clearly indicates that the
phase transition is of the first order.

3.6.8 Critical and Spinodal Slowing Down

Let us study in more detail the processes of relaxation of fluctuations. First, we
consider the system above the critical point (z > 0) in the absence of magnetic field
(h=0). We assume that a noise term in the Ginzburg—Landau—Langevin equation
(3.107) has created a fluctuation that has “tossed” the system up along the slope of
the free energy potential (Fig. 3.19). Next, we remove the noise from this equation,

om (3.154)

a(time)  om
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Fig. 3.19 The relaxation F A
process attenuates the fluc- {{m}}
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and observe how the relaxation process returns the system back to the bottom of the
free energy minimum.

The steeper the slope of the free energy “wall,” the higher the derivative
| OFj, . / m|, and the faster the relaxation process (3.154) is. However, when the sys-
tem approaches the bottom of the minimum, the value of the derivative | GF{ (m}) /m)|
decreases, and so does the speed of the relaxation process.

In the vicinity of the point of the minimum m,, = 0, the dependence of F{ {m}} O0
m is parabolic:

Fifyyy © Nu(-24In2+am® +...). (3.155)

Substituting (3.155) into (3.154), we obtain the ordinary differential equation

%n = —2BN pat-d(time) (3.156)
whose solution is
[moc ¢ (T (3.157)
where (1ime),,, 1s
(time), ., = ; (3.158)
7 2BNuat

We see that fluctuations decay exponentially with the characteristic time of the de-
cay provided by (3.158).

We can generalize this case for the nonzero field /2 >0 as well. This time the
equilibrium value of magnetization is not zero but some value m; >0, which is
provided by the solution of the cubic equation of state (3.92). Expanding the free
energy (3.105) in the vicinity of this point, we return to the parabolic dependence
which is obvious from Fig. 3.20:
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Fig. 3.20 The relaxation pro- F A
cess for the system above the H{mp T
critical point in the nonzero h>OC

magnetic field

m
mO
_ 2 0 2
Fit = Figmo +N,u({at+6bmo }(m my): +...). (3.159)
But in accordance with (3.115), the susceptibility,
1
(3.160)

X st 12bm,”

represents the inverse coefficient we see in the expansion of the free energy (3.159):

_ (m—my )2

Next, we again consider a fluctuation “tossing” the system up the slope of the
free energy potential (Fig. 3.20). Substituting (3.161) into the Ginzburg—Landau—
Langevin equation (3.154), we obtain the ordinary differential equation

d(m—my) :—BN'ud(time) (3.162)
(m—my) X
whose solution is
N (3.163)
where (time),,; is
(time),,; = ﬁu' (3.164)

The decay of fluctuations is exponential with time again.
As a next example, let us consider fluctuations in the vicinity of the local mini-
mum of the free energy when the system is below the critical point (¢ < 0) and mag-
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Fig. 3.21 The relaxation pro- F }“
cess below the critical point {tm} T<T,
attenuates the fluctuation, h>0

returning the system back
to the bottom of the local
minimum "
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netic field is nonzero (4 > 0). To find the point of the local minimum, we consider
the solution m,, < 0 of the cubic equation of state (3.92). Expanding the free energy
(3.105) in the vicinity of this point, we return to the parabolic dependence (3.161),
which is obvious from Fig. 3.7. Considering a relaxation process in the vicinity of
the local minimum (Fig. 3.21), we obtain the solution which is identical to (3.163)
and (3.164).

One more time we see that the decay of fluctuations is exponential with time.
Why does this happen again and again? Is this tendency general?

Above we have considered the vicinity of the free energy minima, where the
dependence of the free energy on the deviations of magnetization from the equilib-
rium value was parabolic. It is obvious that substituting the parabolic dependence
into the Ginzburg—Landau—Langevin equation (3.154), each time we will obtain the
exponential decay of fluctuations. Therefore, this tendency is quite general for the
near-equilibrium fluctuations in Landau theory with the exception of some special
cases we consider below.

Let us return to the relaxation process (3.163) valid both above and below the
critical point. From (3.164), we see that the characteristic time of the decay of the
relaxation process is proportional to the susceptibility of the system. But the suscep-
tibility diverges in the vicinity of the critical and spinodal points. Therefore, so does
the characteristic time of the decay (with the same values of critical and spinodal
indices). This phenomenon is called the (critical or spinodal) slowing down.

However, considering the system at the critical or spinodal point, we can no lon-
ger rely on the formulae above. Indeed, at these points, the dependence of the free
energy (3.105) in the vicinity of its minimum is no longer parabolic.

So, at the critical point, substituting # =0 and 4 =0 into (3.105), we should con-
sider the fourth-power dependence:

i) = Nu(=2AIn2+bm* +..). (3.165)

Considering a fluctuation (Fig. 3.22), we substitute (3.165) into the Ginzburg—
Landau—Langevin equation (3.154) to obtain the ordinary differential equation:
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Fig. 3.22 The relaxation
process at the critical point

A _4BN ub-d(time). (3.166)
m

The solution is
1

ml= _ .
\/8BN ub-(time) + const

| (3.167)

In the limit of long relaxation time, (fime) — +, the decay (3.167) becomes a
power-law decay:

me— (3.168)

/8BN ub-(time) '

If we define the critical index 7€ by

Ims ——, (3.169)

Landau theory determines 7° =1/2.
Finally, we consider the system at the spinodal point. Substituting (3.109) into
(3.105), we find the dependence of F{{m}} on the nonequilibrium value of m to be

cubic which is obvious in the vicinity of the point of inflection:

( \
Flimy) = Flpmsy) + V4| =2 -éabts (m—mg)’ tef- (3.170)

Next, as usual, we consider a fluctuation. Only this time the fluctuation is not
required to return the system back to the metastable state (Fig. 3.23); so the process
will not attenuate fluctuation but, on the contrary, will lead the system to the bottom
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Fig. 3.23 The dynamical F
process at the spinodal point {{my t=t

of the global minimum. Nevertheless, we can discuss the speed of this process in the
vicinity of the point of inflection.
Substituting (3.170) into (3.154), we find the ordinary differential equation,

d—m2 = 2BN p|—6abts - d(time), (3.171)
(m—mg)
whose solution is
1
(m—mg)=— (3.172)

const +2BN p,/—6abtg - (time) .

This solution can be interpreted in two different ways. If initially (m(0)—mg) <0
so that the fluctuation has “tossed” the system to the left from the inflection point in
Fig. 3.23, we observe the relaxation process toward the inflection point:

1
|m—mg |= (3.173)
const +2BN p,|—6abty - (time)
which in the limit of long relaxation times
| | 1 (3.174)
m—mg |= .
ST BN U —6abtg - (time)
provides the power-law decay of the fluctuation. For the spinodal index:
1
= —— (3.175)
(time)®

this returns 7> =1.

On the contrary, if we consider (m(0)—mg) > 0 initially so that the fluctuation
has “tossed” the system to the right in Fig. 3.23, toward the global minimum, the
difference (m —mg) continue to increase as
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1
~ (m(0)—mg) ™' —2BN u\/-6abis - (time)’

(m—mg) (3.176)

leading the system to the stable state at the bottom of the global minimum. The
time necessary to reach this state is inversely proportional to the initial difference

(m(0) —mg):

(time) o ; (3.177)
(m(0) —mg) '

so that the bigger the initial fluctuation is, the sooner the system will reach the stable
state.

3.6.9 Heterogeneous System

So far, in all our formulae, the value of magnetization m has not depended on the
coordinates within the system; and the only heterogeneous states we considered
were provided by Maxwell’s rule. Even when we minimized the free energy over
all possible nonequilibrium states in Figs. 3.6 and 3.7, we considered, in fact, only
homogeneous states with the uniform magnetization over the lattice.

But the homogeneous system is just an idealization that helps us to find the so-
lution. Systems in nature are heterogeneous when magnetization (or density in the
liquid—gas systems) is not required to be uniform over the space of a system.

What would happen if we were looking at a heterogeneous system? And first,
how do we build a heterogeneous system? We should divide the lattice into mag-
netic domains (clusters). For simplicity, we consider that inside each domain the
magnetization is uniform but it changes when we move from one domain to another.
Then, the free energy will be the sum of the domain’s free energies.

But how does it happen in practice? In Fig. 3.24, we consider one of the iso-
therms of the homogeneous system below the critical point in nonzero magnetic

>

Fig. 3.24 The rule of mixture F )‘
for two types of domains h>0 {m}
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Fig. 3.25 Maxwell’s rule for %
the case of nonzero magnetic h>0 {tm)}
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field. What we want is to use this curve to build the domain’s uniform magnetiza-
tions and then to mix these domains in the volume of the heterogeneous system.

Let us first build the simplest heterogeneous state when we choose a priori two
different values of magnetization, and the domain’s magnetizations in the hetero-
geneous system may be equal only to one or another of these two values. Empty
circles in Fig. 3.24 represent the separate homogeneous domains, which we are
mixing, while dotted lines, connecting empty circles into pairs, are the mixing itself.

The magnetization of the heterogeneous system equals the domain’s magnetiza-
tions averaged over the lattice. Let a vertical dashed line represent the desired value
of the averaged magnetization. Then filled circles which we build at the intersec-
tions of the dotted lines and the vertical dashed line are the results of the mixture.
An ordinate of any of these filled circles equals the total free energy of the hetero-
geneous system provided by the domain’s free energies averaged over the lattice.

Following the free energy minimization principle, we are looking for the mixture
with the minimal free energy. This is the lowest filled circle when the dotted mixing
line is tangent to the homogeneous isotherm at two different points. After we have
built this line, we can remove the part of the isotherm above it as having higher
values of the free energy and, therefore, as “less equilibrium.”

The final result of our work is presented in Fig. 3.25. It represents those mixtures
which have the minimal free energy for the given value of the averaged over the lat-
tice magnetization. However, so far the free energy has not been minimized yet by
the value of the averaged magnetization itself which is still nonequilibrium.

We should mention that although we have considered the simplest case when the
domain’s magnetizations had values only of two possible, it has lead us to the cor-
rect dependence of the free energy of the heterogenecous system. If we considered
mixing domains with arbitrary magnetizations, this would not do us any better.
Indeed, the reader can consider mixing not just two empty circles in Fig. 3.24 but
three, four, or any number of circles lying on the homogeneous curve. In any case,
the lowest value (for the given averaged magnetization) of the free energy of the
mixture will still correspond to Fig. 3.25.

Let us minimize the free energy of mixture for all isotherms in Fig. 3.7. The
result is presented in Fig. 3.26. In all cases, the “straightening” line has been drawn
as a tangent to the curve at two points.
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Fig. 3.26 Maxwell’s rules
for different values of the
magnetic field
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For the zero magnetic field, this line is horizontal. It starts from the bottom of
one minimum and ends at the bottom of another minimum. This, in fact, is Max-
well’s rule we have introduced before. It represents the line, along which the free
energy potential degenerates and instead of a discrete point of global minimum
provides a continuous range of minimal values. Each point on this line represents a
stable heterogeneous state as a mixture of phases (3.97) with positive and negative
magnetizations.

For the nonzero field, the “straightening” lines start and finish not at the points
of minima. On the contrary, from Fig. 3.26, it is easy to see that they all start and
finish at the same values of magnetization which are shown by vertical dashed lines.
These two values of magnetization are easy to be found because we already know
that in the absence of magnetic field they coincide with the equilibrium solutions
(3.97).

However, here we have come to a contradiction. If we look at Fig. 3.26, we see
that for all isotherms the “straightening” lines have removed the potential barri-
ers between two minima. Now nothing prevents the system, which “follows” the
“slope” of these lines, to “roll down” from any initial state into the stable state
of the global minimum. In other words, the introduction of the heterogeneity has
eliminated local minima and made the existence of metastable states impossible.

But although almost all systems in nature are heterogeneous (like a liquid—gas
system which consists of the mixture of liquid and gas domains), this does not pre-
vent the possibility for these systems to be metastable (like a superheated liquid or
a supercooled gas).

Therefore, a system, that is described mathematically as heterogeneous, still can
possess metastable states, provided by some local minima behind some potential
barrier. But what causes this potential barrier, dividing metastable and stable states,
to appear in a heterogeneous system?

To answer this question, we should look back at what we have overlooked in our
previous analysis. We introduced the heterogeneity as the system’s lattice divided
into domains with different magnetizations. Then, we built the rule how to mix
these domains by connecting them with dotted lines in Fig. 3.24. Simultaneously,
we assumed that the total free energy of the system is the sum of the domain’s free
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energies, and therefore, the ordinates of our filled circles, built at dotted lines, pro-
vide correct values for the total free energy of the heterogeneous system.

This was our mistake because the theory developed above has correctly taken
into account the volumetric free energy of separate domains but overlooked the
interactions of domains at their boundaries. Indeed, at the boundary between two
phases, adjacent spins have presumably opposite orientations. This leads to the ad-
ditional free energy, necessary to create the boundary. This additional energy is the
most known in liquid—gas systems as the concept of surface tension.

Let us consider the appearance of a bubble belonging to the stable phase inside a
metastable medium. Inside the bubble’s volume, the system gets a benefit of lower
free energy because the new phase corresponds to the global minimum and, there-
fore, has lower volumetric free energy than the metastable medium. However, the
appearance of the bubble requires some energy to create its surface. The “wrestle”
of these two factors leads to the appearance of a new potential barrier dividing local
and global minima of the free energy.

A system in a metastable state can easily produce only small nuclei of stable
phase because only small fluctuations are probable. Creation of these nuclei is
equivalent to that the system jumps due to a fluctuation up the slope of the barrier
toward the global minimum.

But small nuclei are disadvantageous because their volumetric benefit in lower
free energy of stable phase is negligible in comparison with the surface energy.
Therefore, the system “rolls down” from the wall of the potential barrier back into
the local minimum by dissolving all created nuclei. Then, the system experiences
another fluctuation, again jumps up the slope, and returns back to the bottom. And
so on, and so on.

The system would not return back to the local minimum if a created nucleus were
big enough, when the loss in the volumetric energy would overcome the gain in the
surface energy. But the big nucleus means a large fluctuation which is improbable.

The nucleus, when the volumetric loss equals the surface gain of the energy, cor-
responds to the peak of the potential barrier and is called a critical nucleus.

Therefore, for the long time, the system fluctuates around the local, metastable
minimum until an improbable fluctuation creates a nucleus with the size larger than
critical. In other words, until the improbable fluctuation tosses the system to the top
of the potential barrier or even farther. Then, the quick, “explosive” process follows,
transferring the system to the stable state at the bottom of the global minimum. By
“rapid boiling or precipitation,” the total system almost instantaneously transforms
into the stable phase.

We say here “almost instantaneously” in contrast with the long lifetime of the
metastable state. The difference between these two timescales may be of many or-
ders of magnitude. As an illustration, we could imagine a bomb stored on a military
base. For the long decades or centuries, the bomb remains latent although energeti-
cally it would be beneficial to split the complex chemical compound into simpler
substances. But the potential barrier of self-ignition prohibits the bomb to do that.
Finally, after multiple attempts, thermal fluctuations create the local heat increase
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Fig. 3.27 The epure of the ha T<T.
critical nucleus radius

equivalent to the critical nucleus. The consequence is an explosion whose duration
is negligible in comparison with the previous long life in warehouse.

For the stable, one-phase parts of the isotherms below the critical point, the sys-
tem always returns to the stable state, no matter how huge the fluctuations are.
Therefore, the size R of the critical nucleus has no physical meaning for these states
or can be considered to be infinite.

When entering the metastable region, the size of the critical nucleus continu-
ously decreases and becomes almost zero at the spinodal point, where very small
fluctuations (like a flip of one spin or a collision of a couple of molecules) can
trigger the collapse of the metastable state. This behavior of the critical radius is
schematically shown in Fig. 3.27 as an epure over the equation of state.

As we said, in the vicinity of the spinodal point, the radius of the critical nucleus
is very small, and even small fluctuations are capable to toss the system behind
the very small potential barrier. This makes the experimental investigations dif-
ficult and the spinodal itself is often unreachable in experiments. For this particular
reason, the spinodal power-law scaling was discovered much later than its critical
analogue.’

The described phenomena of nucleus birth are studied by the theory of nucle-
ation. Generally, this theory requires functional (field) description of heterogeneous
phenomena and takes into account the shape of nuclei (Gunton and Droz 1983;
Kashchiev 2000). But this discussion lies beyond the scope of our book.

At the end of this chapter, we would like to say that it is wonderful how such
complex and beautiful phenomena as criticality and spinodal are described only by
the first three terms of the free energy expansion in Landau theory!

3 However, there are systems (generally with long relaxation times) in which it is quite possible
to observe in experiment the spinodal point and even the behavior of unstable states. The classical
example is binary alloys which below the critical point split into phases of separate metals. The
relaxation times in such systems can be of the order of days or months. Therefore, it is quite pos-
sible to observe these systems in the vicinity or inside of the unstable region.
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3.7 Mean-Field Approach

Problem 3.7.1

For the ferromagnetic n.n. Ising model, develop the mean-field approach by
replacing the interactions of spins in pairs by the effective field generated by
all spins together (the Weiss theory of ferromagnetism (Weiss 1907)). Find
the ensemble partition function, the ensemble Helmholtz energy, and the
equation of state.

Solution: We should replace the interactions —J Z 0,0, of spins in pairs
i .

by some effective field. Every spin has ¢ neighbors on the lattice, where ¢

is the lattice coordination number. Let us replace one of spins in the product

0,0, by its value averaged over the lattice:

J L J <&
—J Z CECH 2_52‘0—" Z % z_EZ"" Z <G/><c} -
i= Jnnofi 1= In.nof i

<i\Jonn v
Jq N o\
== (o), 20 =—Hhg 2o, (3.178)

=1 i=1

where <> - denotes averaging over the spin orientations on the lattice of
the microstate {G} and
- J Je
Wl =) Ay (3.179)
o} 2,Lt {o} 2’u {o}

N
Multiplier 1/2 appears due to that summing over all spins, z Z , we have
counted each n.n. pair twice. i
This provides the following approximation for the Hamiltonian:

o\ Je
H,, ~-uh+h)> o, :—,u[h+ﬁmm]mm. (3.180)
i=1
Substituting (3.180) into (3.80), we find the equation of state:

moztanh[%{uh+quo}j. (3.181)

For the critical temperature, this equation provides:

T, = Jq. (3.182)
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Problem 3.7.2

For the ferromagnetic n.n. Ising model, develop the mean-field approach by
neglecting spin correlations (the Bragg—Williams theory of ferromagnetism
(Brag and Williams 1934, 1935)). Find the ensemble partition function, the
ensemble Helmholtz energy, and the equation of state.

Solution: Let us consider the correlation of two n.n. spins on the lattice of a
microstate {0'}:

<(U,- ()0, )(G/‘,,,n.uﬂ - <‘jjn.,,vufl >{U})> = <0f‘7.fn.,,w >{a} —my,’. (3.183)

{o}

Neglecting spin correlations in (3.183),

<(0i ~{q, >{U} )(U./n.nv[.f, - <Gjn,n.o,-,- >m)> ~0, (3.184)

{o}

we find
2
<0'f°'jn,,,,n,, >m M, (3.185)

or
(00,.) EEICABRCANS (3.186)

Each spin has ¢ nearest neighbors, so there are Ng /2 n.n. pairs on the lat-
tice. Multiplier 1/2 appears here because summing over g nearest neighbors
for each of N spins, we have countered each pair twice. The averaged over the
lattice correlation of two neighboring spins is defined by

Z e,

<O',-G.fn i >(U} = 09}7 (3.187)

while the magnetization, averaged over the lattice of a microstate {0'}, is
defined by

N
;C’f (3.188)
ST

Substituting (3.187) and (3.188) into (3.184-186), we find
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1 1Y
e OO0.~R| — O. .
Ngi2.2 O [ NZ j (3.189)

So, neglecting spin correlations, we have been able to express the short-range
order parameter in terms of the long-range order parameter. The rest of the
solution is straightforward and follows the discussion of Sect. 3.5. As a result,
we obtain the effective field and the equation of state coinciding with (3.179)
and (3.181), respectively.

Problem 3.7.3

For the ferromagnetic n.n. Ising model, find the equation of state with the aid
of the Gibbs—Bogolyubov—Feynman inequality. Find the ensemble partition
function and the ensemble Helmholtz energy.

Solution: Let H,, be the exact Hamiltonian of a model. For the case of the
n.n. Ising model, the exact Hamiltonian is given by

N
EIf =—,uh;cyi—J > oo, (3.190)

<i,/>nn.

We approximate the exact Hamiltonian (3.190) with a model Hamiltonian

H{U}'

The exact partition function is defined as
ZCE Ezefﬂgg}/T (3.191)

{o}

Let us perform the following transformations

{o} {o}

742 (Z —ﬂm/TJ ~(Hy, Ay, )T e*ﬁm/r
=] e Ze ﬁ _
(3.192)

; —Hy,,/T
_ ZCE ze*(HmFHaa:)/T €
- Z"'CE ’

{o}

where Z* is the partition function of the system with the model Hamiltonian
3|

{o}
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7 CE zze—ﬁm/r. (3.193)
{o}

In (3.192), the sum represents the averaging of the quantity ¢ o Fion) T
-H,,,/T

with the probabilities € , corresponding to Gibbs probabilities of the sys-

Z~CE

tem with the model Hamiltonian 1oy In Other words, it is averaging over the

CE of the model Hamiltonian:

7 = G <e(Hw>H<U>)/T> , (3.194)

H

Again, we apply some simple transformations to the last expression:

7CE _ ZCEe—<Haa:‘Hw>>ﬁ/T <e‘((H¢a:‘ﬁ«a>)‘<Hw:‘ﬁw:>ﬂ)/T> ) (3.195)

i
Next, we utilize the algebraic inequality

e >1-x. (3.196)

Applying this inequality to (3.195), we find

13

ZF » g o oy T <1 _((Hm ~ ) - <H<G> -Hy, >ﬂ ) / T>H

_ e (Hig iy )y /7 g g
= 5CE i Hioy 1_(<H{G} — <0>>1:1 —<H{0} —H{J}>ﬁ)/T
= 58 o, Hioy Fio)g /T (3.197)

Since the logarithm is the monotonically increasing function, we find the

Gibbs—Bogolyubov—Feynman inequality (Gibbs 1902; Bogoliubov 1947a, b,

1962a, b; Feynman 1972) for the ensemble Helmholtz energy:
FE<F*+(H,, -H,,) . (3.198)

H

In other words, the equilibrium value of the free energy of the real system is
always less than (or equal to) the right-hand side of (3.198); and this state-
ment is valid for an arbitrary model Hamiltonian H (o}~ Therefore, minimizing
the functional

w[A 1

0 J=F +(Hy, ~H, ) (3.199)
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over the functional space of all possible model Hamiltonians, we will approx-
imate the exact value of the free energy of the real system.

To obtain the exact value F'“* of the free energy, we should consider all
possible functional dependencies H )+ But it is very difficult. Instead, we
could consider only some simple functional dependencies of model Hamil-
tonians and minimize functional (3.199) only over them. This would not, of
course, provide the exact value F* of the free energy but it would give us at
least some approximation.

The functional dependencies of model Hamiltonians, over which we will
minimize functional (3.199), should be rather simple so that we could per-
form all calculations analytically. But the simplest dependence is the Hamil-
tonian (3.18) of the ideal system. Only now, to represent the nonideal system,
we should add the effective field to this Hamiltonian:

i, =—u(h+h7) 30, (3.200)

i=l

So, we are going to minimize functional (3.199) not over all possible func-
tional dependencies of the model Hamiltonians but only over the simplest
dependences presented by (3.200). These functional dependencies are param-
eterized by values 47 of the effective field. So, our purpose is to substitute
(3.200) into (3.199) and to minimize the obtained functional over the values
of the effective field 4 as if over the values of a fitting parameter. This will
provide the approximation of the exact value of the free energy F*.

The partition function of the model Hamiltonian (3.200) has been found
before in (3.32):

o ary\Y
e =[2c03h@] : (3.201)
The equilibrium magnetization is also already known from (3.41):
e
R Y nialin (3.202)

The problem is to find the value of the real Hamiltonian averaged over the
ensemble of the model Hamiltonian: <H ©} >H. Not of our own will, but we
have to return here to the previous approximation of Problem 3.7.2 when we
neglected the correlations among spins:

- NgJ
<Hw>ﬁ - ‘ﬂh;<0i>g =3 <0i0,->ﬁ ~ —pthNm, =y M. (3203)

<6, J>nn,
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where m, depends on h*" in accordance with (3.202).
The averaging of the model Hamiltonian over the ensemble of the model
Hamiltonian can be found in a similar way:
()., =—u(h+hT)Y (o) = —p(h+h" ) Nm,. (3.204)
i=1

i

Substituting (3.201)—(3.204) into (3.199) and minimizing the obtained func-
tional over the values of 4%, we return to (3.181).

Problem 3.7.4

Find the equation of state, the ensemble partition function, and the ensemble
Helmbholtz energy for the ferromagnetic Ising model with spin interactions in
pairs which do not depend on the distance between spins in a pair.

Solution: So, every spin 7 interacts with any other spin j with the energy
—Jo,0, which does not depend on the distance between these two spins on
the lattice. The Hamiltonian of the model is determined as

N N J o
Hg, = —thdi _JZ @, = _.UhZU,- 5 Z 0,0, (3.205)
=l i=1

<i,j> i,j=l:i#j
where multiplier 1/2 has appeared in front of the last sum due to the fact that
N
the sum z counts each spin pair twice.

i,j=1:i#j

Let us move the peculiarity i # j from this sum into a separate term:

N J N J N 3
H,, = _”h_zl“f —EZ:IG,.G/. +EZIG" : (3.206)
i=! i,j= i=!

Since ¢,* =1, we find

y NJ

i,j=1

g J
H{U} :_'uhZI:Gi _5

N
Now we can transform z into the product of two separate sums, each
over its own spins: i,j=1

N N N
H,, =-uh) o, —g(ZGiJ(ZG,}%. (3.208)

i=1
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We see that spin interactions in pairs, which do not depend on the distance
between spins, return us to the Hamiltonian depending only on the long-range
order parameter:

J NJ
H{U} :—H[h-FZNm{U)JNm{U}JFT- (3209)

However, we should emphasize that in this case this is not an approximation—
Hamiltonian (3.209) is exact. And we see that the system with infinite-range
interactions behaves exactly as if its behavior were determined by the mean-
field approximation. Therefore, we can assume that the longer interactions in
the system, the better it is described by the mean-field approach. In detail, we
will return to this question in Chap. 6.

Also, we should mention here that when the amplitude of interactions does
not depend on the distance between two spins in a pair, the shape or dimen-
sionality of the lattice plays no role in the behavior of the system. Therefore,
our results are applicable to all possible lattices, of all possible shapes and
dimensions.

In the first half of the twentieth century, the mean-field approach was the only
known approach to investigate phase transitions analytically. However, the experi-
mental results (e.g., Ley-Ko and Green 1977; Pittman et al. 1979) suggested that the
mean-field solution is far from being accurate—for some systems it is very crude
(e.g., value 0.32 of the critical index versus 1/2 predicted by the mean-field). And
what was even worse, there were no means to make the solution more accurate.

It suggests that there is something very wrong with the mean-field approach.
Something, that in some cases, makes this approach completely inapplicable.
Therefore, many attempts had been made to develop alternative approaches that
would lead to different results.

However, the mean-field approach often acts as a catch-22 rule. In Problem 3.7.3,
we tried to develop a different approximation, alternative to the mean-field solution.
But to solve the problem analytically we had to consider only the simplest model
Hamiltonians. In addition, we had to neglect the correlations again. Altogether, this
returned us back to the mean-field solution.

And this problem is not attributed only to our solution in Problem 3.7.3 but is
quite typical. We can develop an approximation that would be alternative to the
mean-field approach. This approximation could be very complex—it could con-
sider, for example, the heterogeneous magnetization as a field over the lattice of the
model. But to find an analytical solution, we have to make some further approxima-
tions like neglecting correlations or considering only long-wave approximations. In
any case, these approximations lead us back to the crude mean-field solution.

As we will see in Chap. 7, only the approach of the renormalization group is
able to break this “catch-22” rule and to lead us towards a new understanding of
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the problem. That is why the appearance of the renormalization group approach has
caused such a boom of new discoveries in the second half of the past century.

3.8" Antiferromagnets

In the previous sections, we have studied the ferromagnetic systems, J > 0, in which
a pair of interacting spins has lower energy if the orientations of the spins coincide.
In other words, each spin in a ferromagnet attempts to make the orientations of its
neighbors coinciding with its own. This behavior is the most transparent when we
consider two ferromagnetic phases of the spontaneous magnetization at tempera-
tures below critical in zero magnetic field (Fig. 3.28a).

In this section, we turn our attention to antiferromagnetic systems, J <0, whose
behavior is richer than the behavior of ferromagnets. In an antiferromagnet, the en-
ergy of a spin pair is lower if orientations of the spins are opposite. In other words,
each spin now attempts to make orientations of its neighbors opposite to its own.

The most illustrative is the bipartite lattices. The lattice is called bipartite if it is
possible to divide it into two sublattices, A and B, when each spin of one sublattice
is surrounded only by spins of another.

: 000000000 0000000000
Fg.llS}%nmm@nms ©000000000 0000000000
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. ©000000000 000000000

square lattices. a Two fer- @000000000 0000000000
. ©000000000 0000000000
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Two examples of bipartite lattices are the two-dimensional square (Fig. 3.28b)
and three-dimensional cubic lattices. At temperatures below critical in the absence
of magnetic field, there are two antiferromagnetic phases (Fig. 3.28c). In one phase,
almost all spins of sublattice A have orientations +1 while almost all spins of sub-
lattice B have orientations —1. In another phase, orientations of spins of sublattice A
are primarily —1 while on sublattice B spin orientations are primarily +1. Again, it
corresponds to the self~organization of spins; only now the preferable spin orienta-
tions are divided between the sublattices.

Introduction of nonzero magnetic field / in the ferromagnet below the critical
point breaks one of the phases, keeping only the phase with spin orientations pri-
marily along the field. In the antiferromagnet, the situation is different. Both phases
below the critical point have spins in both directions; so, a nonzero magnetic field /
does not break any of them, at least while this field is small.

Problem 3.8.1

Prove that an n.n. antiferromagnet and an n.n. ferromagnet on the square lat-
tice have equal ensemble free energies in the absence of magnetic field.

Solution: For both the n.n. antiferromagnet and n.n. ferromagnet, the Hamil-
tonian in the absence of magnetic field is

H(J o), {o5})=—J D, 0.0,, (3.210)

<i® P>

where index i* enumerates spins of sublattice A while index iP—of sublat-
tice B. Here, we have shown explicitly that in the case of the n.n. model on
the bipartite lattice the spins of one sublattice interact only with the spins of
another sublattice.

From the functional dependence (3.210), it follows that

H(~J,{0,},{05})=H(J,{~0,},{04}). (3.211)

In other words, the inversion of the sign of J is equivalent to the inversion of
spin orientations on one of the sublattices. The antiferromagnet corresponds
to the inversion of the sign of J relative to the ferromagnet:

Zantif CE _ 7[.CE (—J) _ Z 2 e—H(—J,éo“A},wB})/T _ Z 2 efH(J,{—GA},wB})/T.

{oat{op} {oa} {og}

(3.212)
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Since the first sum z goes over both spin orientations, +1 and —1, the
{oa}

partition function does not depend on the inversion of spin orientations of one
of the sublattices:

Zant;‘f.,CE _ z Ze—H(J‘{o—A},{GB})/T _ Zf-,CE (J) (3.213)

{oatiog}

Thereby, we have proved that the ensemble partition function of the antifer-
romagnet in the absence of magnetic field equals the ensemble partition func-
tion of the ferromagnet.

Problem 3.8.2

Develop the mean-field approach for the n.n. antiferromagnet on square lat-
tice in nonzero magnetic field 4.

Solution: In nonzero magnetic field, the Hamiltonian of the system is

N/2 N/2

_—uhZGA uhZaB—J Z OO0 . (3.214)

=1 <i* j >

Let us carry out the following change of spin variables:

S.=0,, S,=-0,. (3.215)

i i J J

In terms of the new spin variables, each spin again tries to reorient its neigh-
bors so that their orientations would coincide with its own, and the Hamilto-
nian is

N/2 N/2

rs}——uhZS +uh2S —|J] Z SnS s (3.216)

it=l /—1 <z/>

Now, the external field interacts with each sublattice differently, but the inter-
actions of spins in pairs transformed into usual ferromagnet interactions.
The antiferromagnet requires two separate long-range order parameters,

A and m® , , one for each sublattice:

m{SA} SB}’

N/2 1 N/2

= Sy, M =——> S, 3217
st N/2Z s N/zjsz::,f G217
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If we neglect the correlations among nearest neighbors, the Hamiltonian
transforms into

I8l :—uh m +uh m —|J| m }m{ . (3.218)
Instead of fluctuations {{m}} of one order parameter, the energy fluctuations
{{E }} in the CE are now equivalent to fluctuations {{mA,mB}}. The statisti-
cal weight of a fluctuation {{mA , mB} is

_(N/2)! (N/2)!
{lrn®l} ~ NAANPUNPIND L
(N/2)! (N/2)!
TN L+mt) (N1-m*) (N1+m®) (N1- mB\

22 )2 a2 zJ

) f1+m*‘\‘%”7'"(l_mw?%’"mmB\'?”T’"m_mB\-%%

(3.219)

To find the partition function, we should now integrate over two order
parameters:

1 A 1 B
ZCEZJ‘ dm J‘ dm r .. e—H(mA,mB)/T. (3.220)
Jarviyd iy )

Application of the method of steepest descent proves that the integral equals
its maximal term

Z% =Ty, mﬁ}}e’”‘”’g\ o, (3.221)

where the point of the maximum is determined by

olr - eH(mA,mB)/Tj G(F - eH(mA,mB)/Tj
( [l ) o and Ul

om™* om®

(3.222)

A solution of (3.222) gives us the equations of state:

= tanh[ ! {+uh+ | T | qm }j (3.223)
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my = tanh(%{—y}ﬁ | J | gm) }] (3.224)

or

m) = tanh(%{+,uh+ |J| qtanh(%{—,uiﬁ | J | gm} })B, (3.225)

m® = tanh {H—ym | J | ¢ tanh (%{wm | J | gm? }j B . (3.226)

In the absence of magnetic field, the equations of state transform into

J A

atanh m," = /14 tanh| |]({m0 , (3.227)
J B

atanh m; = IJTIq tanh‘ |;m0 . (3.228)

Solving these equations graphically, we find that the left- and right-hand
sides of (3.227) and (3.228) always intersect at m =0, which provides the
solution above the critical temperature:

my =0, mi=0 when T>T., h=0, (3.229)
When temperature decreases, the nonzero solutions appear first when the

tangents to the left- and right-hand sides of (3.227) and (3.228) coincide at
m = 0. For the value of the critical temperature, this provides:

T.=|J|q, (3.230)
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which coincides with mean-field approximation (3.182) of the critical tem-
perature of the ferromagnet.
Let us consider a variable x obeying the equation

x = tanh(ax). (3.231)

Multiplying this equation by a and taking tanhs of both sides, we obtain

tanh(ax) = tanh(a tanh(ax)). (3.232)

Substituting here tanh(ccx) from (3.231), we find

x = tanh(a tanh(a x)). (3.233)

The obtained equation is equivalent to the equations of state (3.227 and
3.228) we are trying to solve in the absence of magnetic field. Applying the
equivalent representation (3.231) to (3.227) and (3.228) and recalling the con-
nection (3.223 and 3.224) between two order parameters, we immediately
find that the solution for each of the sublattices is equivalent to the zero-field
case of the ferromagnetic equation of state (3.181):

J A
m? = tanh 190 (3.234)
7
J B
m? = tanh |2 190 (3.235)
T
o = (3.236)

But for the ferromagnetic case, we utilized the graphical solution of Fig. 3.4.
Therefore, the equations of state can be solved in both ways, by the graphical
solution in the figure above or by the graphical solution of Fig. 3.4.

Next, we return to the case of nonzero magnetic field 4 and the equations
of state (3.223 and 3.224). Let us prescribe the direction of the field: 4 > 0.
First, we consider the limit 7’ — 0 of low temperatures. In this limit, the argu-
ments of the tanh functions are infinite which transforms the tanh functions
into the sign functions

1
m) = sgn(;{+,uh+ | J | gm) }) , (3.237)

m = sgn(%{—yhﬂﬂqm{; }) (3.238)
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where

+1L, x>0
sgn(x)=+<0,x=0. (3.239)
-1, x<0

Since m;," = sgn(...), m; =sgn(...), the order parameters m, and m; can be
equal only to 0 or+ 1. Zero solution below the critical temperature is unstable;
therefore, we do not consider it further.

To find the solution of (3.237) and (3.238), we should consider four pos-
sible situations: m, =+1 and m; = +1, m;' =+1 and m; = -1, m} = -1 and
my =+1, m) =—land m} = -1

For the case m; = +1and m; = +1to be true, both sign functions in (3.237)
and (3.238) should have positive arguments which (for the considered /4 > 0)
provides the following inequality:

pelld (3.240)
u

Similar inequality we obtain for m; = —1and mg = —1.
On the contrary, for m; = +1and m; = -1 we find

ACALY (3.241)
u

The last case, m; = —1and m; = +1, requires

uh+|J|g<0 (3.242)
which is impossible for the considered % > 0.
We see that
AL (3.243)
y7i

plays the role of the critical field.

If the magnetic field # is less than its critical value, 4 < A, there are two
antiferromagnetic phases in the system: m; =m; =+1 and m; =m} = -1.
Here, for both phases, one sublattice has spins along the field while another—
against the field. The phases differ one from another by the choice which
sublattice has spins along the field while spins of another are against the field.

On the contrary, if the magnetic field / exceeds its critical value (3.243),
the strong field rotates the spins which were oriented against it, so that both
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sublattices are now oriented along the strong magnetic field. Only one para-
magnetic phase corresponds to this situation: m, = —m; = +1.

Finally, let us consider the case of finite temperatures. For any value of
temperature 7" below critical, there is the corresponding value 4. (7)) of the
critical magnetic field which breaks the coexistence of two antiferromagnetic
phases. And vice versa, for each value of the magnetic field below (3.243),
there is also the corresponding value T;. (%) of the critical temperature, break-
ing the self-organization of spins. So, in contrast to the critical point of a
ferromagnet, in the case of the antiferromagnetic system, we have not a criti-
cal point but a critical curve. This curve delimits two regions, one with two
antiferromagnetic phases, another with one paramagnetic phase.

"\

he(0) <

We see here the main difference between a ferromagnet and an antifer-
romagnet. In the ferromagnet, even a small magnetic field breaks the coexis-
tence of ferromagnetic phases and transforms one of them into another, which
is more preferable. In the antiferromagnet, the introduction of the small mag-
netic field does not make one of the phases more preferable than another. In
Fig. 3.7, both minima of the free energy would have equal depth in the case of
an antiferromagnet, even in the presence of the small nonzero magnetic field.
Only the strong field breaks the antiferromagnetic phases. It does not keep
one of the phases as favorable like in the ferromagnetic system. Instead, the
field breaks both phases to create a new paramagnetic phase, in which both
sublattices have spin orientations along the field.

Let us find the dependence T (%) of the critical curve on a small magnetic
field in the proximity of the point 7.(0) =| J | ¢ given by (3.230). First, we
take the atanh function from both sides of the equations of state (3.223 and
3.224):

1
atanh m? = F{+yh+ | [qmy}, (3.244)

1
atanh m® = ?{—yh+ | J [ qm;}. (3.245)
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Second, we notice that in the vicinity of the point 7, (0) both order param-
eters, m, and m,, are small. So, we can expand atanh functions in (3.244) and
(3.245) in a power series of these small parameters:

A3
J h
L UA L - Y (3.246)
3 T T
o, My AV
my +——+..=—"my ——. (3.247)
T T
Instead of considered sublattice magnetizations, m{ & and m{ sy next we
change the order parameters by introducing another two:
}'}'[AA ]'nBB 1 (N/Z N/2 \ 1 N
mg, =———E1=— 13§ -5, [==>0, (3248
2 N\&ZD D oo N
A B
m (5% +m N/2 N/2

Psy

ST T S, +ZSJ—%§S, (3.249)

i=1

Here, parameter m, is the specific magnetization of the lattice in whole
which represents interactions of the model with the external magnetic field.
On the contrary, parameter @, represents the antiferromagnetic interactions
and is called the staggered magnetization.

Adding (3.246 and 3.247) one to another and subtracting them one from
another, we find the equations of state for the new order parameters:

uh/T

_pRir 3250
+|J|q/T ( )

0 =

J
?, (1+m02—| T|qj+9(¢02)=0. (3.251)

These equations are valid on both sides of the critical line. But on the one
side, the staggered magnetization ¢, is zero while on the another side, it has
two nonzero values. Equation (3.251) can represent such behavior only if the
coefficient 1+m,”—|J | q/T at the term, linear in ¢, is zero when we cross
the critical line. This is similar to the ferromagnetic case when in the equa-
tion of state (3.92) the coefficient at the term, linear in m,, was zero when we
moved across the critical point.

So, the coefficient 1 +m,’—|J | g /T is zero at the critical line. Substituting
here the magnetization from (3.250), we find the equation of the critical line:
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[ whI T Vo Jlg
T/ T

(3.252)

Since we are working in the close neighborhood of the point 7;.(0) = J | ¢,
we can expand here 7. (%) in a power series of 4:

T.(h) = T.(0) -%. (3.253)

This is the dependence we have been looking for. We see that the decrease of
the critical temperature along the critical line is parabolic.

Problem 3.8.3

For the n.n. antiferromagnetic Ising model on square lattice, find the equation
of state with the aid of the Gibbs-Bogolyubov-Feynman inequality. Find the
ensemble partition function and the ensemble Helmholtz energy.

Solution: The exact Hamiltonian of the model is determined by (3.216). The
model Hamiltonian we choose to have the following functional dependence:

N/2 N/2

H, =—u(h+h) )Zs +,u(h+h£f,)ZSjE. (3.254)
A=l B_1

Here, heff and heBﬂ are two fitting parameters, over which we will minimize the
free energy functional.
The partition function of the model Hamiltonian is

) R SRy )

ZCE:(2cosh J LZcoshTJ ;. (3.255)

and in the ensemble of the model system the equations of state are

A “(h”leff) B —”(h;hfff). (3.256)

m, = tan - m, = —tanh

To find the averaged value of the exact Hamiltonian in the ensemble of the
model Hamiltonian, we neglect correlations of n.n. spins:
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N/2 N/2

< {s}> ,uhzl< > +,uhzl< > —|J] .AZB: <SiASjB>I_-I
te J= S
& —#h%m{? +,Uh?mé3 —N|2J|qm€mg, (3.257)

where m* =(S,) and m, =(S,) are the solutions (3.256).
® i* /i At

Similarly, averaging the model Hamiltonian in its own ensemble, we find

N/2 N/2

(ﬁm% - —y(h+h§,.)z<SiA >H + u(h+ ej,,)Z( >

= (3.258)

,u(h+h ) m0 +y(h+heff) > mB

Substituting these expressions into functional (3.199) and minimizing this
functional over the fitting parameters h and heﬂ, we return to the mean-field
solution (3.223 and 3.224), in detail dlscusses in Problem 3.8.2.

3.9 Antiferromagnet on a Triangular Lattice. Frustration

Again, as the simplest example, we consider the n.n. antiferromagnetic Ising model.
However, now we consider not square but triangular lattice.

The triangular lattice is not bipartite—we cannot divide this lattice into two sub-
lattices so that each spin of one sublattice would be surrounded only by the spins
of another sublattice. But we can divide the triangular lattice into three sublattices
(Fig. 3.29) so that each spin of one sublattice is surrounded only by the spins of
other sublattices. Such lattices are called tripartite.

The fact that the lattice is no longer bipartite significantly changes the behavior
of the system. Let us consider, for example, the ground state of the model at zero
temperature and zero field. The energy of the system is minimal in the ground state.

The ferromagnet on any lattice is able to reach the minimum energy of spin inter-
actions for all spin pairs by just aligning all spins in one direction. This corresponds
to the twofold degenerate ground state—all spins are “up,” TT117, or all spins are
“down,” V44,

The antiferromagnet on square lattice is also capable to minimize the energy of
spin interactions for all spin pairs at once by just aligning one sublattice “up” and
another “down.” The ground state is again twofold degenerate; and these two
ground microstates differ by which sublattice is “up” and which sublattice is

(RN N i N2
“down™:d T lLor T 1 T.
RV I T4



218 3 The Ising Model

Fig. 3.29 Sublattices of a XY ZXYZ
tripartite triangular lattice YZXYZXY
XY ZXYZ
YZXYZXY
XY ZXYZ

However, on triangular lattice, the antiferromagnet cannot minimize the energy
of all spin pairs at once. Indeed, let us consider one triangular cell with three spins

at the corners: I . If one pair has been able to minimize its energy, its spins are

7 1
oriented in opposite directions:

1 VY

third spin, | pory s wesee that it must have coinciding orientation with one

Choosing now an arbitrary orientation for the

of the previously assigned spins. Therefore, it is not possible to minimize the energy
of all spin pairs at once. This is valid both for one triangular cell and for the whole
triangular lattice. Therefore, the antiferromagnet on triangular lattice is called geo-
metrically frustrated.

As we have seen above, both the ferromagnet on an arbitrary lattice and the anti-
ferromagnet on square lattice have the twofold degenerate ground states. Let us now
estimate the degeneracy of the ground state of the antiferromagnet on triangular lat-
tice. We consider microstates when the spins on sublattice X are oriented “up,” the
spins on sublattice Y are oriented “down,” and the spins on sublattice Z are oriented
arbitrarily. All such microstates correspond to the ground state because two spins in
any cell have minimized their pair energy, and the energy of the cell cannot become
lower. But the orientations of the spins on sublattice Z are arbitrary. Therefore, the
degeneracy of the ground state is at least 2" /3 and depends exponentially on N.

At zero temperature and zero magnetic field, each cell of the antiferromagnet
on triangular lattice has one spin oriented “up,” one spin oriented “down,” and the
last spin oriented arbitrarily. If this third spin were oriented “up,” the cell would
have positive magnetization which could be considered as a phase. If this spin were
oriented “down,” the magnetization of the cell would be negative, and we could
consider it as another phase.

So, one homogeneous phase is when all cells on the lattice have exactly two
spins oriented “up” and exactly one spin “down.” Another homogeneous phase is
when all cells have exactly one spin “up” and two spins “down.” The introduction
of a small magnetic field will break the phase coexistence and will make one of the
phases preferable.

But let us return back to the case of zero magnetic field. Earlier we considered
ground microstates with the spins on sublattice X oriented “up,” spins on sublat-
tice Y oriented “down,” and spins on sublattice Z oriented arbitrarily. So, any typi-
cal ground microstate is the heterogeneous system consisting of domains of two
phases.

Never before we saw a system that could be heterogeneous in its ground state.
The reason was that the heterogeneity generally requires additional surface energy
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which makes it not a ground state a priori. For example, the ferromagnet in a het-
erogeneous state requires additional surface energy at the boundaries among phase
domains. This state cannot be ground a priori because there are states with lower
energy.

But this is not true for the antiferromagnet on triangular lattice. Let us consider
the homogeneous phase when the spins on sublattices X and Z are oriented “up”
while the spins on sublattice Y are oriented “down.” If we now divide the lattice into
domains and within some of the domains invert the orientations of the spins of sub-
lattice Z, we will form the heterogeneous system. But the energy will not change—
we will still obtain one of the ground microstates! We have formed a heterogeneous
microstate from a homogeneous, but it has not required additional energy.

The reason is that the surface energy on the domain boundaries is zero. Each cell
on triangular lattice is frustrated and already possesses the encapsulated, irremov-
able energy of spin interactions. This energy can be transformed into the form of the
surface energy between two domains, and any additional energy is not necessary.

First, this leads to the possibility for a heterogeneous microstate to be ground.
That is why the degeneracy of the ground state is so high. Second, zero surface en-
ergy leads to the appearance of domains in all shapes and sizes—starting from the
lattice size and ending by the size of a cell.

3.10° Mixed Ferromagnet-Antiferromagnet

Problem 3.10.1

Develop the mean-field approach for the mixed n.n. ferromagnet-antiferro-
magnet on square lattice in nonzero magnetic field 4.

Solution: The Hamiltonian of the mixed n.n. ferromagnetic-antiferromag-
netic Ising model is

N
H,, =-phY o,-J Y nnoo, (3.259)
i=l

<isJ>pn.

where J > 0. Parameters 7;, defined a priori for each lattice site i, have fixed
values +1 or —1, randomly distributed over the lattice. Since these parameters
are defined a priori and do not change their values during the system’s evolu-
tion, this type of disorder, introduced into a system, is called quenched. The
presence of the disorder transforms the Ising model into the mixture of fer-
romagnetic and antiferromagnetic spin pairs.

The change of spin variables is introduced as:

S, =no, (3.260)
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Next, we divide the lattice into two sublattices, X and Y. Sublattice X con-
tains only sites with 7, = +1 while sublattice Y—only sites with 77, = —1. For
the sublattices, the change of spin variables (3.260) goes in accordance with

Sx =05, Sy=-0,. (3.261)

Let us look closer at the interaction 17,17,0,0; of spins in a pair. We see that
in terms of the new spin variables it transforms into simple ferromagnetic
interaction:

S8, =+, m,=+LieX, jeX
SS,m=+Ln=-LieX, je¥Y

noo =4 7 =SS. (3.262
W% =N8S, p =~ =+LieY, jex[ (3.262)

i jo

S$S,n=-Ln=-LieY,jeY

i~ jo?

Therefore, in terms of the new spin variables, the Hamiltonian of the system is

Hy, = _:”his,-x +Hh§: Sy=J D S8, (3.263)
=1 Y=l

<i,j>p .

where N* and NV are the total numbers of sites in sublattices X and Y,
respectively.

The following solution is similar to Problem 3.8.2 when we replace the
short-range order parameter by the function of the long-range order param-
eters. Or to Problem 3.8.3 when we apply the Gibbs—Bogolyubov—Feynman

inequality. The difference with the previous solutions is that sublattices X and
Y are no longer bipartite. Therefore, the averaged product <S ny >{S; of spins

i~ jnn.
in a pair does not mean already that one spin belongs to sublattice X while
another—to sublattice Y:

~ — X Y
(85 0 # (S8 (S0 )i {8 )0 =i (3269)

In other words, both spins in a pair could belong to the same sublattice.

Instead, to solve the problem, we have to account for the randomness of
the disorder. The probability for both spins in a pair to belong to sublattice X
is (N* / N)*. The probability for both spins in a pair to belong to sublattice Y
is (NY / N)*. The probability that one spin in a pair belongs to sublattice X
while another—to sublattice Y is 2N* N / N*. The sum of these probabilities
is unity, as it should be.
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Averaging with these probabilities, we find

<Six >{SX} = m{)éx)’ <SJ'Y >{SY) - m{\;Y}’ (3.265)
(N*Y’ NX NY
<SiSf "‘"‘>{S} N LTJ <S"X >?sx> i 277@“ >{S"> <S1'Y ><SY>
(N /o v [N NY Y’
+LT) < i >{SY} - LT<S"X >{SX} +T<SJ'Y >{sY}J
_{ NTm{} +N7Ymggy}]2. (3.266)

We should mention here that the mixed ferromagnet-antiferromagnet is
not frustrated even on the triangular lattice. Indeed, in a triangular cell for an
arbitrary assignment of parameters 7, at three cell’s sites all three spin pairs of
the cell can minimize their energy simultaneously.

However, even the square lattice becomes frustrated if we assign param-
eters 1), not to lattice sites but to connections between n.n. sites, i.e., to n.n.
spin pairs:

N
H,, =-ph) o,-J Y n,,. o0, (3.267)
i=l1

<6 J>nn.

It is easy to see that the square lattice in this case is frustrated. Let us consider
a square cell. If three of its “edges” (three spin pairs) were ferromagnetic
while the fourth “edge” were antiferromagnetic, then this cell would be frus-
trated. And if one cell is frustrated—the whole lattice is frustrated.
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Chapter 4
The Theory of Percolation

Abstract In the previous chapter, we have considered the phase transition phenom-
enon in the Ising model. May we call this system “complex?” In the literature there
is no settled definition of what we call “complex.”

The theory of phase transitions is generally attributed to thermodynamic sys-
tems. However, in the second half of the last century many nonthermal systems
have been discovered whose behavior resembled the theory of phase transitions in
statistical physics. However, these systems belong to such diverse sciences—bi-
ology, geology, engineering, chemistry, mathematics, economics, social sciences,
etc.—that their unified classification seems to be impossible. Examples include but
not limited to the percolation of petroleum oil in a rock, polymerization, damage of
engineering structures, earthquakes, forest fires, snow avalanches and landslides,
traffic jams, chaotic systems, strange attractors, informational processes, self-orga-
nized criticality, etc.

To distinguish such systems from the classical examples of phase transition phe-
nomena (like the Ising model), the term “complex” has appeared. However, beyond
the fact that all these systems obey the rules of phase transitions and, therefore, can
form universality classes, their common rigorous classification is deemed to be cur-
rently impossible.

We see that the term “complex” is collective and, therefore, may describe a great
variety of phenomena. But what does this term mean? First, as we have said, calling
a system complex, one generally assumes that this complexity is the consequence of
a phase transition (or a bifurcation, catastrophe, nonanalyticity, etc.) present in the
system. Second, the term “complex” is generally used to distinguish the nonthermal
systems from their thermodynamic analogues.

Summarizing, we call a system complex if it possesses a phase transition but
is nonthermal. In the sense of this definition, the Ising model is only partially
complex—it possesses a phase transition but is thermal. In this chapter, as a first
example of a “completely complex” system, we consider a phenomenon of per-
colation.

The fact that the system is supposed to be nonthermal means that fluctuat-
ing behavior is no longer described by thermodynamic fluctuations. Instead, the
system must possess another source of stochastic behavior, forming nonthermal
fluctuations.
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Once the nonthermal fluctuations are generated, our main purpose is to map these
fluctuations on their thermodynamic analogs so that the well-developed formalism
of the theory of phase transitions in statistical physics may become available for
their description.

4.1 The Model of Percolation

The name “percolation” is generally attributed to the percolation of petroleum oil
through the pores in a rock. When the rock containing petroleum oil possesses a
system of pores connected one to another, the oil may flow through these pores to
form oil clusters. The main question of the petroleum industry is that, on drilling a
well, how much oil we can pump out of this cluster.

In spite of its name, the problem was originally formulated not in the petro-
leum industry but in chemistry as a model describing the process of polymerization
(Flory 1941a, b, c; Stockmayer 1943). During gelation, separate molecules form
bonds organizing them into clusters. The question then transforms into how big
these clusters are.

Besides these two examples, many other phenomena are described by the for-
malism of percolation theory. E.g., the formation of a conducting cluster may cause
the breakdown of a dielectric, the cluster of defects may cause the failure of a struc-
ture, the formation of a big cluster of trees in a forest leads to the possibility for a
significant part of the forest to be destroyed by a fire, etc.

The name “percolation” and the mathematical formulation of bond percolation
appeared in 1957 (Broadbent and Hammersley 1957). The scaling of the system
was first discussed by Essam and Gwilym (1971). Here we consider only the basic
concepts of this theory. For further details, we refer the reader to Stauffer and Aha-
rony (1994) and other brilliant textbooks given in the list of references.

Similar to the Ising model, a model in the theory of percolation is based on a lat-
tice. The shape of the lattice may be arbitrary (Fig. 4.1): one-dimensional, square,
triangular, cubic, or the Bethe lattice (Cayley tree). The lattice is composed of sites
connected by bonds.

There are two different types of percolation models: site percolation and bond
percolation. In both cases, a field parameter p is introduced. In site percolation, p is
the probability for a site to be occupied (independently of the states of other sites).
Correspondently, (1— p) is the probability for a site to be empty. Thereby, on an
average, p represents the fraction of lattice sites that are occupied. So, if N is the
total number of sites on the lattice, there are Np occupied sites and N(1 - p) empty
sites on average.

Similarly, for the case of bond percolation, the field parameter p represents the
probability for a bond to be occupied while (1— p) is the probability for a bond to
be empty.
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Fig. 4.1 A schematic O0—0—0—0—0
representation of different
geometrical forms of a lattice.
a The one-dimensional chain
of sites. b The two-dimen-
sional square lattice. ¢ The
three-dimensional cubic lat-
tice. d The two-dimensional
triangular lattice. e The Bethe
lattice

Fig. 4.2 Cluster formation
for a site percolation, and
b bond percolation

For both types, 0 < p <1, where p = 0 corresponds to a completely empty lattice
while p =1 corresponds to a completely occupied lattice.

The occupied sites or bonds (depending on the type of percolation considered)
form clusters. Two sites are united into a common cluster if they are nearest neigh-
bors and both are occupied. Two bonds are united into a cluster if they are connected
by their ends and both are occupied.

Examples of clusters on square lattice for the case of site percolation are present-
ed in Fig. 4.2a. Here, filled dots represent occupied sites while empty dots represent
empty sites. If the distance between two occupied sites equals the lattice constant
(the length of the edge of a square cell), we consider these sites to be the nearest
neighbors and unite them into the common cluster (black lines represent this proce-
dure; each cluster is surrounded by a dashed curve to separate it visually from the
neighboring clusters).

We present similar examples of clusters on square lattice for the case of bond
percolation in Fig. 4.2b. Here black lines represent the occupied bonds while dotted
lines represent the empty bonds. Each cluster is surrounded by a dashed curve to
separate it visually from other clusters.
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Comparing Fig. 4.2a and b, we see that the behavior of clusters for the site per-
colation differs from the case of bond percolation. In Fig. 4.2b, two clusters are
separated only by the lattice constant (edge of a square cell) while in Fig. 4.2a,
such a situation is, obviously, impossible—the clusters must be separated at least by
“the diagonal of a square cell” (\/5 times the lattice constant)—otherwise these two
clusters would be united into one. This comparison suggests that the behavior of the
site percolation should differ from the case of bond percolation.

Although the case of bond percolation is no less interesting than the site percola-
tion, the majority of studies are devoted to the latter. Therefore, we will primarily
consider the site percolation and will return to the bond percolation only in Chap. 7,
where it will present a beautiful example of the renormalization group (RG) trans-
formation.

The size of a cluster is, obviously, measured by the number s of sites belonging
to this cluster. Instead of saying “a cluster of size s,” we further say “s-cluster,”
which makes explanations much less cumbersome. We call separate occupied sites
surrounded only by empty sites as 1-clusters.

The edges of the whole lattice play crucial role in the formulation of the per-
colation problem. The cluster is called a percolating cluster when it connects the
opposite edges of the model. For example, the very percolating cluster (composed
of the conducting sites) provides the breakdown of a dielectric. Since we generally
consider the case of an infinite lattice, a percolating cluster generally contains an
infinite number of sites.

As an example, we suggest the reader to imagine a square lattice. This lattice has
left, right, top, and bottom edges. Generally, the left-right percolation is considered
when a cluster should connect the left and right edges of the model (or, on the con-
trary, the top—bottom percolation when a cluster connects the top to bottom).

As usual, there are many modifications of the model formulation when, for ex-
ample, the periodic boundary conditions are imposed, transforming, e.g., a square
lattice into a torus. In this case, a percolating cluster is expected to form a ring
around the torus (to go over one of the two torus dimensions and to reconnect to
itself).

Many other modifications are possible. However, for simplicity we consider
only the “canonic” formulation of the model with free boundary conditions when a
percolating cluster should connect two opposite sides of the model.

Obviously, the possibility for a percolating cluster to exist depends on the field
parameter p. When p is small (p — +0), almost the whole lattice is empty and a
percolating cluster is, obviously, impossible. In the opposite case, when p — 1-0,
almost the whole lattice is occupied and a percolating cluster certainly exists.

Between these two extremes, the field parameter p changes in the range 0 < p < 1.
If we are increasing p from zero to unity (adding more and more occupied sites to
the lattice), the point p., when a percolating cluster appears for the first time, is
called a percolation threshold. This point plays the role of a critical point of a con-
tinuous phase transition in the model.

A system is said to be below or above the percolation threshold if p < p- or
P > pc, respectively.
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Also, we should mention that the case of an infinite system N — 4o is mainly
considered. The name thermodynamic limit for N — +oo stays in spite of the fact
that we no longer consider a thermal system. The case of a finite system will be
discussed in Chap. 8,which leads to the appearance of the so called finite-size effect.

4.2 One-Dimensional Percolation

Problem 4.2.1

For the one-dimensional case, find the percolation threshold, the probability
for a percolating cluster to exist, the cluster-size distribution, and the mean
cluster size.

Solution: In the one-dimensional case, a percolating cluster is supposed to
connect two opposite ends of the chain of sites. When p <1, empty sites
would always be present on the infinite lattice ( p may be close to unity but its
value is fixed while we consider the limit N — +o0), and there is no percolat-
ing cluster.

Therefore, the percolating cluster exists only when all sites of the lattice
are occupied:

pe=1 (4.1)

So, the probability for a percolating cluster to exist is

M(p)= {0”’ e, (42)
Lp=pc

We see that the one-dimensional percolation resembles the one-dimen-
sional Ising model from Problem 3.4.2. There the phase transition took place
only at zero temperature because one spin oriented opposite to others could
break the spontaneous magnetization. In the one-dimensional percolation, the
phase transition appears only when the total lattice is occupied because one
empty site breaks the percolating cluster.

——0O00 00O

f

Next we consider the system below the percolation threshold: p < p. = 1.
We choose a particular site on the lattice and intend to find the probability
n (p) that this site happens to be the first site on the left of an s-cluster.
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For example, as shown in the figure, we have built a 3-cluster. The chosen
site is marked by an arrow. It is occupied (a big filled dot) as well as two more
sites to the right to form a 3-cluster so that the left end of this cluster would
correspond to the chosen site.

However, to finally form the cluster, we should not only prescribe the
occupied sites belonging to this cluster but also surround the cluster with
empty sites (so that our cluster would not spread further). For this purpose,
we employ two big empty circles in the figure to denote the presence of empty
sites.

Having formed the cluster of occupied sites and its perimeter of empty
sites, we no longer care whether the rest of the lattice is occupied or not. The
sites whose status is unknown are represented by small dots in the figure.

Since the probability for an arbitrary site to be occupied is p while the
probability for a site to be empty is (1 — p), the probability of given figure (that
the chosen site is the first on the left of the 3-cluster) is

n(p)=p’(1-p). 4.3)
For an s-cluster, we similarly obtain:

n(p)=p'(1=-p) =(-pye . (4.4)

Talking about that the left end of an s-cluster corresponds to the chosen
site, we are, in fact, talking about the probability to find an s-cluster at a
particular place on the lattice. Summing probabilities (4.4) over all N sites on
the lattice, we sum the probabilities to find an s-cluster at different locations.
Therefore, the total averaged number of s-clusters on the lattice is expected
to be Nn_(p). Here n (p) plays the role of the cluster-size distribution and is
often called a normalized cluster number because it represents the number of
s-clusters on the lattice per lattice site.

Expanding (4.4) in the vicinity of the percolation threshold (4.1),
p—pc = —0, we find

n, (p) oc e 30=P) = pslprcl 4.5)

As we will see later, in the case of an arbitrary lattice, the good approxima-
tion is provided by the hypothesis that

n,(p) oc s WO (4.6)

where

|1/<7

c(p) | p—pc for p — pe. 4.7)



4.2 One-Dimensional Percolation 231

Here 7, o, and ¢ are critical indices. From (4.5), we immediately find
7=0,0=1,and { =1.

Next, let us find the probability P.(p) for an arbitrary site to belong to an
s-cluster. It is not equal to n_(p) since this time we do not require from the
given site to be located at the left end of the cluster. Instead, the site can be at
any point along the length of the s-cluster.

Before we have found n_(p) as a probability for a site to be the first on the
left of an s-cluster. Obviously, the probabilities for this site to be the second,
the third, the s™ site on the left of the s-cluster are all the same and all equal
n,(p). Summing these probabilities over different positions of the chosen
site along the s-cluster length, we find the probability for an arbitrary site to
belong to an s-cluster,

P.(p)=sn(p)=sp’(1-p)’ (4.8)

which is just s times higher than »_(p).

So far, we did not know in advance whether the chosen site is itself occu-
pied or empty. However, if we know that this site is occupied, we should
divide (4.8) by p:

P(p)=sn(p)/ p=sp* (- p)’. (4.9)

We have obtained probability (4.8) for the system below the percolation
threshold, p < p. =1. At the percolation threshold p = p. =1, there are no
finite s-clusters

Sps(l_p)27p<pc (4.10)

fi(p)={ 9 p=p
s/ — Fc

because the whole lattice is occupied by the infinite percolating cluster.
Therefore, for the probability of this cluster to exist, we find

Ppc(P)Z{(l)’pij- (4.11)
»P = Pc

By definition, p is the probability for an arbitrary site to be occupied. But
if a site is occupied, it belongs either to a finite cluster or to an infinite per-
colating cluster. Summing the respective probabilities, we obtain the law of
conservation of probability":

! This equation resembles very much the law of conservation of particles in the case of the
Bose—Einstein condensation. In both cases, after the critical point, one term of the discrete
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p=Y. P.(p)+P(p). (4.12)

This statement can be easily proved directly. Substituting (4.10 and 4.11) into
(4.12), we find

< 0,p<
_Z{SP (1-p).p pc}+{ P<pc @13
0 ,p=pc Lp=pc

For p < p., the sum over s can be transformed as

> sp’ Zp——p—Zp p——- (4.14)

dpl-p

Substituting this result, we immediately prove (4.12).
There are several ways to determine the mean cluster size for the system.
If on the lattice with N sites we counted all s-clusters, their number would be
Nn_(p) on average. So, one way to define the mean cluster size is to average
Nn,(p) .
> Nn(p)

s

s with probabilities

Zan () an ()
S(p)= (4.15)

ZN (») Zns (p)

However, we may average clusters in a different way. Let us point randomly
a finger at the lattice sites. If the site we have hit is occupied and belongs to an
s-cluster, we register the size of the cluster s. Later, when we have repeated this
procedure several times, we average the obtained cluster numbers.

The probability that a site belongs to an s-cluster is P,(p) = sn,(p). Point-
ing K times at the lattice, we hit s-clusters Ksn_ (p) times. So, averaging s with

Ksn,(p)
D Ksn (p)’

probabilities we find

ZSKSI’l (p) Zs n.(p)
ZKsn (p) an: (»

S(p)= (4.16)

sum begins to represent the number of degrees of freedom which is comparable with N. So,
in the case of the Bose—Einstein condensation, the number of particles in the condensate
becomes comparable with the total number of particles in the system while in percolation
the number NP, (p) of sites belonging on average to a percolating cluster occupies a sig-
nificant part of the lattice. In both cases, the considered term is separated from the sum to
emphasize its outstanding role and not to lose it when the sum is substituted by an integral.
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The difference between two methods of determining the mean cluster size
is better illustrated with an example. Let us consider a lattice with one-thou-
sand 1-clusters and one 1000-cluster. Then, following the formulae above, we

. . - 2 . 2 .
find S = 1-1000+1000 -1 <2 and § = 17-1000+1000” -1

~ 500.
1000 +1 1-1000+1000 -1

It is easy to explain the difference: there are many 1-clusters on the lat-
tice and just one 1000-cluster. Averaging all clusters by (4.15), we obtain the
mean cluster size close to s =1. On the contrary, the 1000-cluster is much
bigger than 1-clusters and occupies a significant part of the lattice. Therefore,
pointing randomly at the lattice, we hit this cluster very often; in fact, as often
as all 1-clusters together. Therefore, the second method of averaging (4.16)
returns the result close to s =1000.

Drilling a petroleum well, we, in fact, almost randomly point at the rock
and thereby follow the second method. Thus, it is probable that we hit the
1000-cluster. Thank God! because it is much better to pump out 500 barrels
of oil than only 2.

For the one-dimensional case below the percolation threshold, we can find
S(p) and S(p) directly:

1
S(p) = P _ ,
(p) S P a-py 1-p (4.17)
D s*p'-p) : 2
I _(I-p) d s _l+p (4.18)
S(p)= = — =—£,
2 p P (de] gp 1-p

As we will see in Chap. 6, S(p) provides more interesting results than S(p).
In particular, in the vicinity of the percolation threshold, we define the critical
index y by

Sl p—pc 7. (4.19)

A comparison with (4.18) determines y =1 for the one-dimensional case.

4.3 Square Lattice

Let us discuss the cluster-size distribution in the case of a square lattice. If we con-
sider the probability to find a 1-cluster at a particular place on the lattice, first, we
need to take into account that this site is itself occupied. Second, we should provide
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that four neighboring sites at the cluster perimeter are empty (Fig. 4.3(a)), which
would guarantee that the considered cluster is indeed a 1-cluster:

m(p)=p(-p)*. (4.20)

The case of the probability to find a 2-cluster at a given place on the lattice is
more difficult. This time we have to take into account that a 2-cluster may be “ori-
ented horizontally” (Fig. 4.3(b)) as well as “vertically” (Fig. 4.3(c)). For both cases,
we should provide two occupied sites of the cluster itself and six empty sites for its
perimeter:

ny(p)=2p*(1-p)°. “.21)

The case of 3-cluster is even more difficult. There are two configurations with
eight empty sites at the perimeter (Fig. 4.3(d—e)) and four configurations with seven
empty sites at the perimeter (Fig. 4.3(f-1)). The corresponding probability is

ny(p)=2p°(1-p)* +4p>(1-p). (4.22)

For 4-clusters, there are two configurations with ten empty sites at the perim-
eter (Fig. 4.3(j-k)), eight configurations with nine empty sites at the perimeter
(Fig. 4.3(1-s)), and nine configurations with eight empty sites at the perimeter
(Fig. 4.3(t=0)):

n,(p)=2p*(1-p)'° +8p* (- p)’ +9p*(1- p)*. (4.23)

Problem 4.3.1

Find the normalized cluster number for s = 5.

Different configurations of an s-cluster on a lattice are called /attice animals. The
problem is that different lattice animals, in spite of the fact that they all have the
same size s, have different perimeters. Therefore, to find the normalized cluster
number #, (p) for an arbitrary s, we have to sum these configurations with different
numbers of empty sites:

n(p)= g, p'(1-p)". (4.24)

Here, the sum goes over different perimeters ¢,, and &, is the degeneracy of this
value of perimeter. Since the perimeter means the corresponding number of empty
sites surrounding the cluster and separating it from other clusters, it represents not
only the cluster’s “external surface” but also the surface of “internal holes” within
the cluster.
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Fig. 4.3 Lattice animals on square lattice

When s increases, the corresponding number of lattice animals also increases
very fast. Besides, different animals have different perimeters. All this makes exact
analytical calculations of n, impossible for high s; and the problem of percolation
on square lattice has not been solved exactly yet.
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The main difficulty is that the perimeter is different for different lattice animals
corresponding to the same s. If the number of empty sites at the perimeter were
fixed for fixed s, this would drastically simplify the problem and probably provide
the possibility of an analytical solution.

But how can we achieve that? On square lattice, the animals have complex con-
figurations due to the possibility for the clusters to form loops. A lattice which
prohibited loops would significantly simplify the problem.

One way to avoid loops would be to increase the dimensionality of the system
(to consider cubic or d-dimensional hypercubic lattices instead of the square lat-
tice). Indeed, the higher the dimensionality of the system, the more the variety of
lattice animals, which is provided by that the animals settle the multiple dimensions
instead of forming loops.

For example, in Fig. 4.3(—0), we consider 4-clusters on square lattice. Among
them there is only one loop (Fig. 4.3(0)). Let us increase the dimensionality of the
system to see that the role of the loops will be, indeed, diminishing.

If we added one more dimension to the lattice, transforming the square lattice
into the cubic lattice, there would appear two more 4-loops in two appearing planes.
In d dimensions of the hypercubic lattice to form a 4-loop, we choose one axis of
d and then the second axis of the remaining (d —1). Having chosen two axes, we
form the plane for the 4-loop. However, this way we have counted all planes twice.
Therefore, the total number of the 4-loops on the d-dimensional hypercubic lattice
isd(d-1)/2.

But in parallel with the increase of the dimensionality of the system, the number
of other lattice 4-animals would increase more significantly because now the ani-
mals may “wriggle” in the high-dimensional space.

Let us calculate, for example, the number of lattice 4-animals, “wriggling” only
in the positive direction of every axis (considering only the positive direction we
avoid mixture with the animals at neighboring locations). On square lattice, we
choose the given location as the initial site. Then the 4-animal, to form the second
site, can “wriggle” to the east or to the south only. One more step to the east or south
forms the third site, and then the last step to the east or south forms the fourth, last
site. The number of configurations 2-2-2 =8 includes lattice animals (j), (k), (m),
(0), (p), (), (x), and (O) from Fig. 4.3. We have counted not all “wriggling” lattice
4-animals but those that are quite enough for our proof.

In d dimensions, similar considerations allow us to count d-d-d = d’ lattice
4-animals “wriggling” from the given location only in the positive directions of all
axes.

In the limit d — +oo, the number of 4-loops increases as d % /2 and becomes neg-
ligible in comparison with the rest of the lattice 4-animals whose number increases
at least as d°. So, one way to simplify the system is to increase its dimensionality or,
better, make it infinite. But besides the infinite-dimensional lattices, are there other
lattices without loops?
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4.4 Bethe Lattice

A lattice without loops is the Bethe lattice (Fig. 4.1¢). The procedure to build this
lattice is the following. We create a seeding site of the 0™ generation. This site
emits Z bonds of the 1% generation to create Z neighboring sites of the 1% genera-
tion (Z =3 in Fig. 4.1¢). Each site of the 1% generation emits Z —1 bonds of the 2
generation to create the sites of the 2" generation. And so on, any site of the n
generation emits Z —1 bonds to create the (n+ 1) generation. In the result, we ob-
tain the infinite lattice, spreading like the branches of a tree (called Cayley tree).
Each site has Z neighbors, and since the bonds do not intersect, the lattice has no
loops. Therefore, the Bethe lattice is often called the infinite-dimensional lattice.

Let us calculate the number of sites on the Bethe lattice located within the vol-
ume of radius R. We should sum 1 for the central site (0" generation), Z for the sites
of the 1% generation, Z(Z —1) for the sites of the 2™ generation, ..., Z(Z —1)*" for
the sites of the R™ generation:

V=1+Z+Z(Z-1)+..+Z(Z-D*"

PR (4.25)
ez DA 5z (Z-D*forR>>1
z-n-1 " z-2
The surface of this volume is formed by the last term in the sum:
S=zz-nf, (4.26)
hence, the ratio of the surface to the volume surrounded by it
S, 220 272 pes, 427)
Z (Z- 1)R
Z-2

does not depend on the radius R. In other words, the surface of a volume is compa-

rable with the volume itself, which resembles the infinite-dimensional hypercubic
(d-1/d

lattice for which — oc . % —>1(d - +»).

The percolation threshold is very easy to find in the case of the Bethe lattice.
Let us consider a branch of a percolating cluster. This branch is supposed to bear
a stretched to infinity chain of occupied sites (further we may say that the branch
leads to infinity).

Each site generates Z —1 daughter sites. By the definition of the field parameter
p, only (Z —1)p of these sites are occupied. If (Z —1)p <1, each site generates less
than one occupied site, and the chain of occupied sites will end sooner or later
(Fig. 4.4a) so that there is no percolating cluster and our system is below its perco-
lation threshold.
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Fig. 4.4 The formation of a
percolating cluster. a Below
the percolation threshold,
each site generates less than
one occupied site and the
chain of occupied sites ends
sooner or later and does not
lead to infinity. b Only at the
percolation threshold each
site generates one occupied
site on average and the perco-
lating cluster appears

If we are increasing p, the percolating cluster appears only when (Z -1)p =1 so
that one of the generated sites would be occupied on average (Fig. 4.4b) to be able
to continue the chain. This determines the percolation threshold

_ 1 (4.28)
Pc= 71

Problem 4.4.1

Each site generates Z —1 daughter sites of the 1% generation and (Z —1)* sites
of the 2" generation. For the given value of p, only (Z —1) p sites of the 2
generation are occupied. If (similar to the previous discussion) we required
that on an average only one site of the 2" generation should be occupied,
(Z-1)*p =1, this would lead to the incorrect value p.=1/(Z-1) of the
percolation threshold. Explain what went wrong.

Solution: One occupied site of the 2™ generation does not guarantee the pres-
ence of a percolating cluster since the corresponding site of the first genera-
tion may happen to be empty (see figure).
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Instead, we should require that one of (Z —1)* chains leading from the ini-
tial site to the sites of the 2" generation would be occupied:

(Z-1)’pl =1 (4.29)

which would return us to the correct answer (4.28).

Therefore, on average we need not only one occupied site but
(Z -1y P =(Z-1) occupied sites of the 2™ generation so that only one of
them would support a stretching to infinity chain of occupied sites.

Next, for the Bethe lattice, we find the probability Py (p) for a site to belong to
a percolating cluster. Since the percolating cluster represents the appearance of a
new phase above the percolation threshold (like the spontaneous magnetization ap-
pearing below the critical point), this probability will play the role of the order
parameter.

We choose an arbitrary site on the lattice to serve as the 0™ order site (site 4 in
Fig. 4.5). Z bonds (a, b, and c in Fig. 4.5 for the case Z = 3) of the 1 generation
emanate from this site to form Z branches of the lattice. Let us first find the prob-
ability Q that one of these branches (branch &) does not contain a stretching to infin-
ity chain of occupied sites (does not lead to infinity). Thereby, this branch will not
belong to a percolating cluster.

The chosen bond of the 1% generation (bond a) leads to one of the sites of the 1%
generation (site B). If this site is empty with probability 1— p, the branch a does not
lead to infinity without regard to whether other sites along the branch are occupied
or empty.

On the contrary, if site B is occupied with probability p, we consider its Z —1
daughter bonds (d and e) of the 2" generation. These bonds start their own branches
serving as the subbranches for the parent branch a. Due to the symmetry of the lat-
tice and the symmetry of the choice of the initial site 4, the probability for any of
these daughter branches (d or e) not to lead to infinity is Q. The probability that they
all do not lead to infinity is then 0”7 In the result, the probability Q that branch
a does not lead to infinity is provided when either site B is empty with probability
1— p or it is occupied with probability p and its branches do not lead to infinity:

Q=(1-p)+p0”". (4.30)
Fig. 4.5 An illustration how b
we find the probability for a o~ i
site to belong to a percolating gk “
cluster Ab a B e )
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For the particular case Z = 3, this equation is quadratic and has two solutions:

O=land 0=12F. 4.31)
p

In accordance with the law of conservation of probability, an occupied site be-
longs either to a finite cluster or to an infinite percolating cluster:

p= Z P.(p)+ P (p). (4.32)

The probability that the initial site 4 belongs to a finite cluster equals the prod-
uct of the probability p that it is occupied and the probability QO that none of its Z
branches (a, b, or ¢) lead to infinity. Substituting this result into (4.32), we find the
probability for this site to belong to an infinite percolating cluster:

Ppe(p) = p(1-07), (4.33)

where Q is provided by (4.31).

The obtained result (4.33) is obvious if we consider it from a different point of
view. The probability Py (p) for site A to belong to an infinite percolating cluster is
the product of the probability p that it is occupied and the probability (1- Q%) that
one or more branches (a, b, or ¢), emanating from it lead to infinity. The last prob-
ability is unity minus the probability Q” that none of the branches a, b, or ¢ lead to
infinity.

For Z =3, we have obtained two solutions (4.31) for Q. The first solution, O =1,
substituted into (4.33) returns Py (p) = 0, which represents the absence of a perco-
lating cluster below the percolation threshold. The second solution, Q = (1—-p)/ p,
corresponds to the system above the percolation threshold when the probability for
a site to belong to a percolating cluster is

3
Ppc(p) = P[l —(1_7‘0} J (4.34)

S . 1
In the vicinity of the percolation threshold p — p. +0 =—+0, we expand (4.34)
to find 2

Ppc(p) o< p—pc- (4.35)

Since this probability represents the order parameter of the system, we define the
critical index S by

Ppc(p)oc (p=pc)’. (4.36)
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Comparison with (4.35) immediately provides =1 for the Bethe lattice.

Next, let us find the mean cluster size S below the percolation threshold. We as-
sume that an arbitrary branch (branch a in Fig. 4.5 for the case Z =3) on average
bears a bunch of T occupied, connected one-to-another sites.

If site B is empty with probability 1— p, then 7' = 0. If site B is occupied with
probability p, then we have to consider its (Z —1) daughter branches (d and e).
Due to the lattice symmetry and the arbitrary choice of site 4, each of the daughter
branches (d and e) on average bears a bunch of T occupied, connected sites again.
Therefore, the averaged number 7 of occupied and connected sites born by branch
a equals zero with probability | — p and 1+ (Z —1)T with probability p:

T=01-p)+(A+(Z-DT)p. (4.37)
The solution of this equation is

- P (4.38)
1-(Z-Dp

In the result, the size of a cluster to which site 4 belongs is zero if site 4 is empty
with probability 1 — p or 1+ ZT and if site 4 is occupied with probability p:

5(p)=0'(1—p)+(1+ZT)p:% for p < pe. (4.39)

In the limit p — p -0, expanding (4.39), we find
= 1
Soc——— (4.40)
|p—pcl

which returns y =1 for the Bethe lattice.
Next, let us find the cluster-size distribution. For 1-clusters, we easily obtain

m(p)=p(-p)* (4.41)

as the probability for the site to be occupied while all its neighbors are empty
(Fig. 4.6a).

For a 2-cluster, two sites are occupied while the remaining (Z —1) neighbors of
each of these sites are empty (Fig. 4.6b):

AzZ-D, (4.42)

2
ny(p)=gyp~(1-p)

Here, the degeneracy & represents possible configurations of a 2-cluster.
For the Bethe lattice, it is also easy to find the perimeter for a cluster of an arbi-
trary size. We assume that s-cluster in Fig. 4.6c has perimeter 7,. Occupying one site
of this perimeter (site 4), we transform our s-cluster into the (s+ 1)-cluster. Thereby
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Fig. 4.6 Normalized cluster
number. a A 1-cluster. b A O/IM H
2-cluster. ¢ When we are

a b

increasing the size of a clus-

ter, its perimeter loses site 4
s+1)-cluster
that becomes occupied but ¢ ) ( )
gains the outer neighbors B B 7 - s-cluster
and C of this site :"
c !

the perimeter loses site 4 that has been occupied but gains the outer (Z —1) neigh-
bors of this site (sites B and C for the case Z =3 of Fig. 4.6).

o =t —1+(Z-1). (4.43)
Since
ty=Zand t, =2(Z-1), (4.44)
by induction, we find
t, =2+s(Z-2). (4.45)

which determines the perimeter 7, for a cluster of an arbitrary size s. We see that in
the case of the Bethe lattice, the perimeter of a cluster is the same for all clusters of
the same size, which simplifies further calculations drastically.

For the cluster-size distribution in comparison with (4.24), we may omit the sum
over the different perimeter values:

n(p)=g,p*(1-p)s =g,p*(1-p)*""?, (4.46)

where g, is the total number of lattice animals of size s. To avoid complications of
finding g, analytically, we normalize the cluster-size distribution (4.46) by its value
at the percolation threshold:
2
n(p) _ p-pPt? P [1-p) o cl)s (4.47)
ns(pc) pCS(l_pC )2+S(Z*2) l_pCJ

where

_ z-2
! _pPed=p) (4.48)

c(p)=In ! —In
p(-p)?  p(-p)"~ p(—p)"?
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Fig. 4.7 Normalized cluster
number for the case Z =3
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For the case Z = 3, we find
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n 1- —c s

el ] e (4.49)
n(p.) \l-p,

where c(p) =—In(1-4(p— p.)’). (4.50)

The dependence of n, on p for different values of s is presented in Fig. 4.7. When
p 1s increasing from zero, the number of s-clusters on the lattice is also increasing
because more and more sites become occupied. In the vicinity of the percolation
threshold, », reaches its maximal value and then decays back to zero, due to the fact
that the lattice becomes more and more consumed by a percolating cluster leaving
less and less space for finite clusters.

In the vicinity of the percolation threshold p — p., we expand (4.50) as

c(p)oc (p—pe)’. (4.51)

If, similar to (4.6 and 4.7), we introduce the hypothesis:

n,(p) oc s Te P97, (4.52)

where ¢(p) o p— pe ['* for p = pe. (4.53)

comparison with (4.49—4.51) immediately provides o =1/2 and ¢ =1 for both cas-
es below and above the percolation threshold.

The critical index r cannot be determined from (4.49—4.51) because, normal-
izing the cluster-size distribution by its value at the percolation threshold, we have
excluded this power-law decay from the dependence (4.47).
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To find v we should return to hypothesis (4.52 and 4.53). At the percolation
threshold p = pc, the exponential decay transforms into unity, leaving only the
power-law decay:

ny(pe) ocir. (4.54)
s

From Chap. 1, we recall that power-law dependences indicate the presence of frac-
tal scale invariance in a system. Experiments support this assumption—at the per-
colation threshold, clusters on a lattice become fractal.

This implies that on all scales, from the lattice constant to the size of a system
as a whole, there is no characteristic length or characteristic cluster size so that the
structure of clusters on the lattice becomes scale invariant. But a single possible de-
pendence which does not possess a characteristic size is the power-law dependence
(4.54). The critical index 7 serves here as an exponent of the cluster-size distribution
decay and is called the Fisher exponent (Fisher 1967a, b).

We should also mention that assumption (4.54) of scale invariance at the percola-
tion threshold allows us to find the numbers g of lattice animals. Indeed, substitut-
ing (4.54) into (4.46), we obtain

ny(pc) const —5(Z-2)
g = = pc (I=pc)
pcs (1 _ pC)2+s(Z—2) ST C C

1
sh—M—
_ const " pe-pc)* (4.55)

SZ'

We see that, neglecting the “slow” power-law dependence s, the number of lattice
animals grows exponentially “fast” with s increasing: g, =, e“""".

For the Bethe lattice, it is possible to find the numbers g_analytically. Let us re-
turn to the law of conservation of probability (4.32) below the percolation threshold:

p=2sn(p)= sg.p’ (1= p)** 2. (4.56)

s=1 s=1

Rewriting this equation as

(1-py% =Yg {p0-p 2}, (4.57)

s=1
we introduce a new parameter

&= p(l-p)* > (4.58)

in terms of which our equation transforms into a power series:

- p(O) ngb i (4.59)
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Considering £ as a complex number, we observe that by Cauchy’s theorem the coef-
ficients of this power series are given by
1 d
sg, = —— dg — (4.60)
2mid (1-p()y'

where C, is the contour of integration of radius p — +0 encircling the point &= 0.
Substituting the variable change (4.58) into (4.60), we find

ng {1-p(Z-D)}dp

pS (1 _ p)(Z—2)5+3 ’ (4.61)

S8 = ;
52 o
P

where C,, is still the contour of integration encircling the point p = 0; however, now
it is no longer a circle.
To find the integral we need to find the residue at point p = 0:

s —res_LmPZ=D [ z-1 1

R p=0 ps (l_p)(Z—Z)‘v+3 p=0 p.v ps—l (l_p)(Z—2)x+3

1] & pF {(Z-2)s+3+ (k-]
:V@S{L—_Z 1} p_{( )S ( )}

PP ikt {(Z-2)s+2}

p=0
0,s=1

—(Zz-1) {(Z-Ds}!
-D(Z-s+2)0° "

_ {@z-ps+1p
S (s-D{(Z-2)s+2)!

—1st!
_ Z@-bspt (4.62)
(s—l)!{(Z —2)s+2}!
Thereby, for the number of lattice animals we find
sl
Z{(Z-Ds|! (4.63)

& Tz -2+l

It is easy to verify the validity of this formula for small clusters. When s =1, a
1-cluster can occupy any site of the lattice, and g, = N/ N =1.

When s =2, a 2-cluster can occupy any bond of the lattice. Each site has Z at-
tached bonds; thereby, there are NZ /2 bonds on the lattice with N sites (where 2
comes from the fact that, counting bonds in this manner, we will count each bond
twice). To find g, we should divide the total number NZ /2 of possible 2-clusters

NZ/2 _ % which coincides with

on the lattice by the total number N of sites, g, =
the result provided by (4.63). N
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In the limit of big clusters s >> 1, applying Stirling’s approximation for (4.63),
we do obtain the exponential dependence on s:

g, = AEZDIZ-D)~(Z-2)n(z-2)} (4.64)

However, keeping other multipliers as well, we find

Z /Z L 1 (z-ninz-n-(z-2)in(z-2)} =
& = (Z—-2)" SS/Ze L+o(h]. (465

For the cluster-size distribution this provides:

ny(p) = gsps a- p)“(z’z)

- - 2)5/2 / (1 p)’ x (4.66)

o s{(Z-D)In(Z-1)~(Z-2)In(Z~2)+In p+(Z-2)In(1- p)} [1+<_)(1)j.

S5/2

X

At the percolation threshold (4.28) this expression transforms into the power-law
dependence representing the fractal scale invariance in the system:

(4.67)

ny(pe) = z — [1+0(1)j
2m(Z=2)Z-1) s

Comparing (4.66) with hypothesis (4.52), we see that this hypothesis is valid for
the Bethe lattice. Besides, we find 7=5/2.

All critical indices we have found for the Bethe lattice are simple integers or
rational fractions. As we already know, such indices are characteristic for the mean-
field approach. However, many indices we have obtained exactly; and no approxi-
mation has been employed. Why then is the behavior of the Bethe lattice similar to
the mean-field approach?

The reason is that the Bethe lattice is equivalent to the infinite-dimensional lat-
tice. As we will see in Chap. 6, in high dimensions, if a dimensionality of a system
exceeds the upper critical dimension, the system’s exact behavior generally obeys
the mean-field rules. For cluster behavior this happens because the higher the
dimension of a system is, the less its behavior is influenced by clusters with loops.

Unfortunately, in nature we are surrounded by two- and three-dimensional sys-
tems whose dimensionality is below the upper critical dimension. Thereby, the
mean-field approximation is crude for these systems, and their critical indices are
no longer simple integers or fractions.
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4.5 An Arbitrary Lattice

Now we consider the case of an arbitrary lattice. First, we should say that the law of
conservation of probability was derived from the basic principles and is, therefore,
lattice-independent:

p =2 sn(p)+ Poc(p). (4.68)

Besides, the hypothesis that at the percolation threshold the structure of clusters
becomes scale invariant,

1
ny(pe) K2 (4.69)

also follows from general considerations only and may be accepted for an arbitrary
lattice as well. }
For the mean cluster size S we utilize the previous definition (4.16):

X s'n(p)
S(p)= W 4.70)

However, in contrast to the one-dimensional percolation when the system above the
percolation threshold was impossible, now we need to discuss whether we include
or do not include a percolating cluster in sums of (4.70) when p > p.. If we do so,
the percolating cluster will participate as an additional term with s =+ in both
sums. This may lead only to the trivial result S = +o0 when the mean cluster size is
determined by the percolating cluster.

For us such a description of the system’s behavior is not interesting because
above the percolation threshold we expect the mean cluster size to represent the
size of finite clusters. Therefore, we do not include the percolating cluster in both
sums of (4.70).

The denominator of the right-hand side of (4.70) is a number between zero and
unity as a part of the law of conservation of probability (4.68). Hence, the singular
behavior of the mean cluster size $ is determined only by the numerator Z s’n,(p)

of (4.70). Substituting hypothesis (4.52) into (4.70) and replacing the discrete sum
by an integral, we find

+00

~ | PR o ¢
S(p)oe X5 n,(p)oc os* e P = [ $E 0 ds
s s

3-71
o3 (p)[ s
¢« w [ 3 J

@4.71)

+o0
where I'(v > 0) = I x" e dx is the gamma function whose argument does not de-
pend on p. 0



248 4 The Theory of Percolation

Substituting (4.53) into (4.71), we find the divergence of the mean cluster size in
the vicinity of the percolation threshold

S(pyec e (pyod p=pe 777 (4.72)
that corresponds to the following relation among the critical indices:

y=327 (4.73)

Recalling that for the Bethe lattice y =1, o =1/2, and 7 =5/2, we immediately
prove the validity of this relation for the Bethe lattice.

Let us find other relations or inequalities among the critical indices valid in the
case of an arbitrary lattice. At the percolation threshold Py (pc) = 0 so that the law
of conservation of probability transforms into

pc =2 sn,(pc)- (4.74)

Substituting here (4.69), we find

+o0
De = constZsH ~ const‘[ s 7T ds. (4.75)
s 1

The left-hand side, p, is the probability and, therefore, has a value between zero
and unity. The last integral in the right-hand side does not diverge only if

r>2 (4.76)

which is the first inequality for the Fisher exponent valid on an arbitrary lattice.
Let us now consider the system above the percolation threshold, p > p.. From
(4.68), we find

Poc(p)=p—D sn(p)=p—pc+pc— Y sn(p). 4.77)

Substituting here (4.74),
Poc(p)=p—pc+ Y s(n(pc)—n,(p)) 4.78)

and then hypothesis (4.52 and 4.53), we obtain
Poo(p)=(p—pc)+consty s (1—e )

i ¢ (4.79)
~(p—pc)+ const"- s (1 _ o les)* ) ds.
1
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Performing a variable change z = (¢( p)s)g

+00 2-1-¢
Ppe(p) = (p— pc)+const-c"*(p) j z ¢ (l_efz )dz (4.80)
¢ (p)=0
and integrating by parts, we find
2-¢ +00 . 2c
Poc(p) = (p=pe)+const-¢" > (p){—z ¢ (1-¢7) v [ ozt
Sy )0
=(p—pc)+const~crz(p)1“[2_—2+é’j 4381)

In the vicinity of the percolation threshold, we may substitute ¢(p) in (4.81)
from hypothesis (4.53) that returns another relation among the critical indices of an
arbitrary lattice:

] o o
P=y ", (4.82)
1, >1
O

Obviously, this relation is true for the found above critical indices of the Bethe lat-
tice.

In the vicinity of the percolation threshold, we expect that the order parame-
ter tends to zero, P (p) —> +0, while the mean cluster size diverges, S(p) — +oo.
This implies that > 0 and y > 0. Comparing these two inequalities with (4.73 and
4.82), we see that they are possible only when

2<r<3. (4.83)

These are the first and second inequalities for the Fisher exponent.

The power-law dependence Pp-(p) o< (p— pc)ﬁ has important consequenc-
es. Since Pp-(p) is the probability for a site to belong to a percolating cluster,
NPp(p) < N(p— p¢ )/3 is the number of sites on the lattice belonging to the perco-
lating cluster on average.

We see that for p > p., a finite fraction of the total number N of sites on the lat-
tice belongs to the percolating cluster. Therefore, above the percolation threshold
the percolating cluster has the dimension d of the embedding lattice and is not a
fractal with a fractal dimension.

However, at the percolation threshold p = p-, we obtain Pp-(p)=0. In the
meantime, the percolating cluster already exists and percolates the infinite system!



250 4 The Theory of Percolation

Thereby it contains an infinite number of occupied sites. However, the fraction of
these sites relative to the total number N of sites on the lattice is zero. Hence, this
allows us to hypothesize that at the percolation threshold the percolating cluster is
fractal with a fractal dimension D which is less than the dimension d of the embed-
ding lattice. The scaling of the number of sites belonging to the percolating cluster
may be schematically represented as

0,p < pc
NPy(p) < L”, p=pc, (4.84)
Ld,l? > Pe

where L is the linear size of the lattice: N = [7. At the percolation threshold, this
dependence provides
D-d
Poc(pe)oc [P e N @ <<1, (4.85)

which in the thermodynamic limit N — +o indeed transforms into
Ppc(pc) =0. (4.86)

This statement may be illustrated with the aid of the petroleum clusters in a rock.
Let us assume that these clusters are formed at the percolation threshold. We drill
a well and, if we are lucky, we hit not a finite cluster but the infinite percolating
cluster. Then we might pump out P barrels of petroleum, where L is the linear size
of the oil field. Meantime, the total amount of petroleum in the rock is Np. oc I
barrels. Since D < d, we have pumped out only a negligible part of the total amount
of petroleum!

We have hypothesized that the normalized cluster number obeys the hypothesis
(4.52):

n,(p) oc s Te P97, (4.87)

. . —(¢ ¢ . .
For small s, the exponential function e “/?»)" is of the order of unity, and the
cluster-size distribution decays as a power law:

n,(p)ocs™, wheres <<1/c. (4.88)

On the contrary, for large clusters s >>1/ ¢, the exponential function dominates the
decay:

n,(p) e P97 (4.89)

What values are typical for the exponent {?
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If we consider the limit p — +0, almost the whole lattice is empty. On the empty
lattice there is no need to care about forming (1— p)* empty sites at the perimeter
of an s-cluster because in the limit p — +0, the probability (1— p)* is almost unity.
Therefore, to form an s-cluster we should only form s-occupied sites:

n(p)ocp’ = e{li} (4.90)

This returns us to the value {'=1:
n (p) =, e " fors>>1/c. 4.91)

Experiments show that =1 may be a crude but reasonable approximation not
only in the limit p — +0 but also for p < p.. Similar decay we have already ob-
served in the one-dimensional case and for the Bethe lattice. If our results were
directly applicable to nucleation in liquid—gas or magnetic systems, we would say
that (4.91) describes the nucleus-size distribution above the critical point.

Next, let us consider the opposite extreme p — 1—0 when almost the whole
lattice is occupied. This time, on the contrary, there is no need to care to form s oc-
cupied sites for an s-cluster because the probability p® is almost unity in the limit
p — 1-0. Instead, we should care about the empty sites of a perimeter which “cuts”
the required s-cluster from the percolating cluster.

A perimeter can be arbitrary. One cluster might be compact having a smooth
surface while another could resemble a snowflake with a fractal perimeter. But the
more complex the perimeter is, the more sites must be empty so that the lower is the
probability (1- p)’s. Therefore, the most probable are the clusters with the simplest,
smooth, better spherical surface which cuts from the occupied lattice a d-dimensional
“chunk.”? While such a cluster of size s has the dimension of the embedding lattice,

2 While the statement is valid, the reasoning behind it is oversimplified. Further, we apply the
logarithmic accuracy in the limit of big clusters, s >> 1/ ¢. To find the probability for a cluster pe-
rimeter to be smooth instead of being more complex (fractal), we should compare the part of the

normalized cluster number that comes from the lattice animals with smooth perimeters,
d-1

-
Ang=0(s“)p*(1- P ‘ ~, p'(-p)* * with the share of the normalized cluster number be-
longing to the complex lattice animals. An, =,, ¢ p*(1—- p)®, where we have taken into account

that the numbers g, of lattice animals with perimeters Z, are the power-law dependences O(s”) on
d-1
sfor z; oc As 4 and the exponential dependences ¢® on s for t, o Bs. In the limit p — 1-0, com-
d-1
paring As ¢ In(1- p) with s{C +BlIn(1- p)} oc BsIn(1— p), we observe that the first expression
has smaller absolute value but is higher than the second expression when we take into account the
d-1
negative sign, s{...<0} <<s ¢ {..<0}. In other words, the number of complex lattice animals
are much bigger than the number of animals with smooth perimeters, but the improbability to have

larger perimeters cancels this advantage, leaving the leading role to smooth, non-fractal, compact
d-1

clusters, n, =, p*(1- p)* * , which proves the statement above.
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d-1
its smooth surface is (d —1) -dimensional and contains s ¢ empty sites. Thus, the
cluster-size distribution is

d-1

ny(p) e (1-py” = e_l“(ﬁjr. (4.92)

1
Comparison with (4.89) provides £ =1 7 and

1
d

n(p)=, e P fors>>1/c. (4.93)

Here for the first time we encounter an exponent ( that is not unity.

From (4.84), we see that the percolating cluster is fractal only at the percolation
threshold; however, above the percolation threshold it loses its fractal properties
and gains the dimensionality of the embedding lattice. The same statement seems to
be valid for big pieces of this cluster as well. Thereby we may assume the cluster-
size distribution (4.92) to be valid not only in the limit p — 1 -0 but, crudely speak-
ing, for p > pc as well.3

However, from (4.90), we recall that £ = 1 for the Bethe lattice for the cases both
below and above the percolation threshold. This is due to the fact that in accordance
with (4.27) on the Bethe lattice the surface of a volume is of the order of the volume
itself. So, if we need to “cut” a cluster of size s, its minimal perimeter is also of the
order of s. In the limit p — 1 -0, this provides

ny(p) < (1- p)’ = e (4.94)

with { =1 as expected.
The Bethe lattice serves as an analogue of the infinite-dimensional hypercu-
bic lattice. Thus, similar results are valid for a hypercubic lattice as well in the

3 The argument in the footnote on the previous page is no longer valid when we consider p to be
well below unity. In this case C + BIn(1 - p) can become positive, transferring the leading role to

complex clusters, n, =, e® p*(1- p)®, whereas the compact clusters are neglected now. The tran-

—C/B

sition occurs at p, =1-e"~'*, where C can be estimated with the aid of the total number g_of

lattice animals with s sites. Indeed, neglecting the number of compact lattice animals in compari-
son with their more complex counterparts, g, = 0(s“)+e™ =, ¢, we find C=1Ing, /s.

Thereby, for p, < p <1 the normalized cluster number represents the behavior of smooth peri-
d-1

meter clusters, n, =, p*(1— P *  Onthe contrary, for p. < p < p, the cluster-size distribution is
determined by complex clusters with ¢ Bs: n_ =~ e“p*(1- p)*. The constant B, here we can
estimate from the requirement that »_ has a maximum in the vicinity of the percolation threshold,
OzdlnnS _S Bs ,orle_pC
dp |, Pc 1-pc Pc

by, B~ 0.686. Therefore, for p, our argument provides p, ~ 0.870 which is indeed greater than

Pe.,

. On square lattice e ~4.06, p. ~0.593 and, there-
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limit d — +o0 when ¢ = 1—l — 1 so that the cluster-size distribution (4.94) is the
limit of (4.92) for d — +oo.

4.6 The Moments of the Cluster-Size Distribution

The last in this chapter, we discuss the moments

M (p)=).s"n (p) (4.95)

of the cluster-size distribution for an arbitrary lattice. We should mention at once
that the sum here does not include the term of the infinite percolating cluster again
for the reasons similar to the derivation of formulae (4.70—4.73).

Initially, we consider £ > 7 —1. Similar to how we have found Z sznx (p) earlier,
for the general case of the k"-moment we find s

+00

M, (p) = j s¥ T P g (4.96)

1

k+1—r] =t

oc ¢! (p)l"( o p-pcl°

This formula is valid for any integer k& with the exception of £k =0 and £ =1. In
the special cases k£ =0 and k =1, the inequality k£ > 7 —1 is no longer valid so that
the argument of the gamma function becomes negative.

To find the first moment M, we differentiate (4.95) with respect to c:

daM, d le=t =(es)* SN gkt (e)” ¢l
- c——>» s e xe ST e et TIM (4.97)
dc dc Z Z,: ke
For k =1, this equation transforms into
dM, ¢
——— T M, (4.98)
de 1+

Since for all known lattices 2 < 7 < (2+¢) and thereby (1+¢) > (z—1), to find
M, , we may utilize (4.96):

_ay . (4.99)
dc

Integrating this equation with respect to ¢, we obtain

-2
M, = const, —constzcr_2 = const, —consty | p—pc | © oc const;. (4.100)
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In other words, in the vicinity of the percolation threshold, the first moment is not
singular (its critical index is zero). This result is expected because the first moment
is the probability for a site to belong to a finite cluster:

M,(p)= > sn(p)=p—Poc(p) (4.101)

so that at the percolation threshold

M,(pc) = pc- (4.102)

The zeroth moment M, is also found by differentiating (4.95) with respect to
c. First, we consider the case when 2¢ > 7 —1. Differentiating (4.95) once, we find
how the derivative of M|, is associated with M

dM,

C

o <M, (4.103)

and how the derivative of M is associated with M,

di‘jg o M, (4.104)
C

Since we consider 2¢' > 7 -1, to find M, -, we apply (4.96):
My, o iy (4.105)

Integrating (4.104) and then (4.103), we obtain:

M, = const, + const,c™¢ 7, (4.106)

M, = const, + const,c® +const,c”. (4.107)

This result we have found for the case when 24> r—1. If, on the contrary,
2¢ < t—1but 3¢’ = r—1 (which might be possible on the two-dimensional lattice),
we add one additional equation to (4.103 and 4.104):

dM,,

dc

o« My, (4.108)

and find M5, in accordance with (4.96):

My, ey (4.109)
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Integration returns:

My, = const, + const,c™ 7, (4.110)

M; = const; + constzcg + constlcr_:_1 s (4.111)

¢ (4.112)

M = const, +constyc® + constzczg + constlcr_l.

Both results, (4.107 and 4.112), tell us that A/, is not singular (its critical index
is zero):

M, oc const. (4.113)

In the vicinity of the percolation threshold, we have assumed (4.53) that ¢ be-
haves as ¢ oc| p— pc \”"—) 0. Thus, the last term in (4.107 or 4.112) represents a
power-law dependence:

o o| p- pe ‘(1—1)/0 . (4.114)

Defining a critical index a by

1o (4.115)

| p-Pc oc| p—pc 77,

we see that the new critical index obeys the following inequality:

a+2f+y=2+2 d <2. (4.116)
1_1—2 -2
(e ’ (o2

We will discuss in more detail the index o in Chap. 6.

Earlier we considered two methods to determine the mean cluster size, (4.15 and
4.16):

2sn(p)

Sp)=~=——"="1, (4.117)
2on(p) M,
> s'n(p)

S(p) == M, (4.118)

Sen(p) M,
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but later we have studied only S. Now we can answer the question why the behavior
of S is more interesting than the behavior of S—because (with the exception of the
one-dimensional case (4.17) S does not diverge generally at the percolation thresh-
old. Indeed, from (4.117) we see that S is the ratio of the first moment to the zeroth
moment. Both these moments are not singular at the percolation threshold (with the
exception of the one-dimensional case). }

On the contrary, while the denominator of S is not singular, its numerator diverg-
es as (4.71). Therefore, the behavior of S is more interesting; the more so since the
very S represents on average the size of a cluster which we discovered while drilling
a petroleum well. As we will see in Chap. 6, S plays the role of the susceptibility in
the theory of percolation.

In this chapter, we have become acquainted with the percolation model and have
considered several quantities that obey power-law dependencies in the vicinity of
the percolation threshold. We may consider this threshold to be a critical point of the
model while with the mentioned quantities we may associate their analogues from
the Ising model (this association may be traced by the fact that the critical indices of
two corresponding quantities are denoted by the same Greek letter).

However, the analogy with statistical physics developed so far is incomplete—
indeed, besides the mentioned power-law dependencies we have not discussed other
similarities. We return to this question in details in Chap. 6 and further chapters.

But before discussing analogies with statistical physics, in the next chapter we
should consider one more complex system that will participate in future compari-
sons also.
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Chapter 5
Damage Phenomena

Abstract The problem of percolation, studied in the previous chapter, might be
called complex. The system was not thermal; and the concept of thermodynamic
temperature was absent. The structure of the model allowed the possibility of non-
thermal fluctuations which, in turn, lead to the presence of a continuous phase
transition and a critical point in the system. We saw many similarities with the
thermal systems of statistical physics; however, the completely developed analogy
was absent. So, we introduced a set of parameters, such as the order parameter, the
field parameter, and the averaged cluster size S'; but so far we have not found the
counterparts of these quantities in statistical physics. In more detail, we return to
this question in Chap. 6, where these analogies will be found. However, at first we
need to consider one more complex, nonthermal system whose mapping on the
phenomena of statistical physics will be more transparent.

The model considered represents damage phenomena. The thermodynamic tem-
perature is absent in the system; however, the stochastic distribution, as an “input”
of the model, generates fluctuations, perfectly described by the laws of statistical
physics.

In fact, the analogy with statistical physics will be so complete and the model
will be so illustrative that the discussion of the concepts of statistical physics itself
in Chap. 2 could be illustrated with the aid of this system instead of the thermody-
namic systems.

5.1 The Parameter of Damage

The classical mechanics is formed by two separate sciences: theoretical mechanics
and statistical mechanics. Similarly, there are two separate sciences, describing the
destruction of solids: fracture mechanics and damage mechanics. Fracture mechan-
ics is a deterministic discipline studying the behavior of separate (a few) flaws or
defects much like when theoretical mechanics studies the deterministic behavior of
separate (a few) degrees of freedom. On the contrary, damage mechanics describes
the behavior of very many microdefects stochastically and resembles, therefore,
statistical physics, studying stochastically the behavior of many degrees of freedom.
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Since our intention is to build analogies between complex systems and statistical
physics, we will concentrate our study on the phenomena of damage mechanics in
particular.

Damage mechanics is a very young science which emerged after Lazar’ Kacha-
nov had published his book (Kachanov 1986). Also, we refer the reader to another
two brilliant textbooks: (Lemaitre 1996) and (Krajcinovic 1996). Besides, the equa-
tions containing the parameter of damage as an additional variable are included in
many textbooks on continuum mechanics (e.g., a brilliant textbook (Narasimhan
1993)).

During the last decade of the twentieth century a new promising idea appeared
in the literature: to consider the process of damage development as a phase transi-
tion phenomenon (Rundle and Klein 1989; Sornette and Sornette 1990; Blumberg
Selinger et al. 1991; Sornette and Sammis 1995; Buchel and Sethna 1996; Andersen
et al. 1997; Buchel and Sethna 1997; Zapperi et al. 1997; Sornette and Andersen
1998; Zapperi et al. 1999a, b). However, although the similarity of phase diagrams
was impressive, the mechanism connecting damage mechanics with statistical
physics has not been built completely. While the behavior of thermal fluctuations is
well described by statistical mechanics, the nonthermal stochasticity requires devel-
oping separate approaches. Only recent studies began to overcome this difficulty by
mapping nonthermal fluctuations on their thermal analogs (Abaimov 2008, 2009).
In the following sections, we reproduce the results of these studies.

The main parameter in damage mechanics is the parameter of damage D. In the
literature, its definition is not settled completely. However, since we will consider
only a one-dimensional case, the simplest and the most illustrative definition will
be sufficient for our needs.

Let us consider a solid containing many microdefects which may be microcracks,
microflaws, microvoids, etc. If we passed a section perpendicular to the direction
of the applied force, in the cross-section, we would see multiple holes representing
these defects (Fig. 5.1).

We define damage D as the ratio of the cross-sectional area of the defects to the
total cross-sectional area of the solid:

S, .
D= defects . (5 1)
Sl‘

otal

Fig. 5.1 The cross-section of
a solid revealing the presence
of microdefects

g
S
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In the absence of defects (undamaged solid), when the total cross-section carries
the load, the damage is zero: D = 0. When the defects coalesce and occupy the
total cross-sectional area, the solid is broken and no longer supports the load.
In this case, we have D =1. Between these two extremes the solid is damaged
partially, and only some fraction of its cross-sectional area carries the load, and
0<D<I.

5.2 The Fiber-Bundle Model with Quenched Disorder

For simplicity, we will study not the three-dimensional continuum medium but a set
of one-dimensional fibers (springs) connecting two absolutely rigid plates which
transfer the load (Fig. 5.2). Some fibers (like the second from the left in Fig. 5.2)
may be broken and do not carry the load while the intact fibers support the load
transferred by the rigid plates. This model is called the fiber-bundle model (further,
FBM) (Pierce 1926; Daniels 1945). Although in the following sections, we consider
in detail only the original version of the FBM, there are many modifications of the
model which we have briefly discussed in Sect. 5.7.

The number N of fibers in the FBM is considered to be infinite in the thermo-
dynamic limit N — +oo (our system is not thermal, but the limit of infinite system
size is often called the thermodynamic limit by analogy with statistical physics). We
assume each fiber to be elastic while its Hooke’s law is linear

o; =FEg; (5.2)

1 1

right up to the point of the fiber’s failure (brittle type of failure). Here o, is the stress
of the fiber, ¢;,—the strain of the fiber, and £—Young’s modulus which does not
depend on the strain and is the same for all fibers.

Since all fibers are loaded by means of the absolutely rigid plates, they all have
the same strain coinciding with the strain of the model as a whole:

g =e&. (5.3)

Fig. 5.2 The fiber-bundle
model
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A fiber breaks when its stress exceeds the strength threshold of this fiber: o; > s,.
We assume that the strength s; of each fiber i is chosen a priori and does not change
during the model evolution. This type of noise introduced into a system is called
quenched disorder because once defined, deterministically or stochastically, it stays
further unchanged.

Quenched disorder is generally introduced as the variability of fiber strengths,
not Young’s moduli, since to find elastic constants of a fiber, we average local elas-
tic properties while fiber’s strength is represented by the weakest point along the
fiber and has, therefore, much higher variability.

We assume that the strengths of fibers are assigned in accordance with a stochas-
tic probability density function p(s) (further, strength PDF): J.(:mp(s)ds =1. Here,
we implicitly involve the concept of an ensemble. For each particular system in the
ensemble, we prescribe to each fiber its strength in accordance with the PDF p(s).
We load this system, observe how many fibers are broken, and move on to a new
system.

So, each particular system behaves deterministically under the loading in accor-
dance with the particular realization of strengths of its fibers, inherited at the begin-
ning of its evolution from the PDF p(s). However, the ensemble in whole behaves
stochastically, exhibiting fluctuations of broken fibers. And these fluctuations are
the very subject of our investigation.

Instead of the PDF p(s), we will generally refer to the cumulative distribution
function (further, CDF),

P(c) = [ p(s)ds, (5.4)
0

because, while the PDF determines whether a fiber would break now, the CDF de-
termines whether a fiber has been broken. So, if a fiber i is required to carry stress
o now, P(o) is the probability for this fiber to have been broken. On the contrary,
1—-P(o) is the probability for a fiber to stay intact if its stress is ©.

After a fiber has been broken, it can no longer support the load and, therefore,
redistributes its loading to other fibers. Similar to the Ising model, there are short-
range and long-range types of the FBM which are different by how far the loading
spreads. For example, in the nearest-neighbor version of the model, only the nearest
neighbors of the broken fiber obtain from it an additional loading. On the contrary,
in the mean-field type of the FBM (called the democratic FBM or DFBM) a broken
fiber distributes its loading evenly among all still-intact fibers. We further consider
only the last, mean-field version of the model.

The definition of the parameter of damage D is, obviously, straightforward in our
model—it is a share of broken fibers. Then the numbers of broken and intact fibers
are determined by

Nintact = N(l_D)’ Nbroken =ND. (55)
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Microstates {D} in our model are the particular microconfigurations of intact and
broken fibers over the model. In other words, prescribing for each fiber to be intact
or broken, we form one particular microstate { D} of the system. So, if, for example,
the model consists only of N =3 fibers, its possible microstates are { ||}, {I[l}, {lI}.
{1 (I}, {1 {111}, and {111}, where the symbol ‘| represents an intact fiber while the
symbol ‘’—a broken fiber.

Fluctuation {{D}} is then a macrostate of the system when its damage is D.
For example, for the system with N =3 fibers three microstates, { |}, {iI}, and {II},
represent fluctuation {{D =1/ 3}} So, the statistical weight of this fluctuation is
r {(D=13)) = 3. For general case of an arbitrary number N of fibers, the statistical weight

of a fluctuation {{D}} is determined as the number of microconfigurations when there

are Ny« = N(1-D) intact fibers and Ny, ., = ND broken fibers:
N! N! _ _N(=
Doy = ! 1 ! ) ¥n D Pa-Dy L (5.6)
Nbroken 'Nintact : (ND) (N(l - D)) :

5.3 The Ensemble of Constant Strain

First, we consider the ensemble of the constant strain of the system when the bound-
ary condition of the ensemble is & = const (further, e-ensemble or “c—E”). Since the
strain ¢; of each fiber i equals in accordance with (5.3) the strain of the total model,
the stress (5.2) is constant for all intact fibers:

o, =FEe. 5.7)

1

The probability for a fiber to have been broken in the ¢-ensemble is P(E¢g). On
the contrary, the probability for a fiber to stay intact in the e-ensemble is | — P(E¢).
Therefore, the probability to observe a microstate {D} in the e-ensemble is

wip = (P(Ee)P (1- P(Ee)N =P, (5.8)

where we have raised P(E¢) to the power of Ny .., = ND and 1- P(Eg) —to the
power of N, . = N(-D).

Since the probability (5.8) depends only on the value of D and does not depend
on a particular microconfiguration of broken and intact fibers, all microstates {D},
corresponding to the given value of D, have equal probabilities. The probability to
observe the fluctuation {{D}} in the e-ensemble (to observe damage D) equals then
the sum of these probabilities of corresponding microstates:

Wioi) =Ty ior- 9

Substituting (5.6) into (5.9), we see that this is the binomial distribution
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¢—E :L ND 1 N(1-D) 510
Wiol = Wpyva - py CEEN T A= PEE) T (5.10)

Similar to statistical physics, the probability of a fluctuation is the product of two
“fast” dependencies, F{ (D)) and wa_}E. These dependencies are “fast” because they

can be presented in a form

F{{D}} ~, e—N{DlnDJr(l—D)ln(l—D)}’ (511)

W{g[;}E _ eN{Dln(P(Eg))Jr(lfD)ln(lfP(Eg))} ’ (5.12)

when the dependence on D in the exponent is multiplied by N — +oo. This provides
a very narrow maximum of the probability distribution (5.9).

To find the point D, of this maximum, we should find when the derivative of the
probability distribution is zero (or, since the logarithm is a monotonically increasing
function, when the derivative of the logarithm of this distribution is zero):

e-E ¢-E
ol _gor Mimt| (5.13)
oD oD
Dy Dy
Solving this equation, we find the equation of state
D, = P(E¢). (5.14)

As it could be expected, the share D, of the broken fibers equals the probability
P(E¢) for a fiber to be broken.

Similar to Chap. 2, we can demonstrate that the most probable macrostate {{ D, }}
corresponds to the value of damage <D> averaged in the ensemble. Indeed, in the
definition

¢-E

(ND) ZD:NDW{‘EB}E = NDF{{D}}W{SD_}E (5.15)

¢—E =
{ D} {{p}}

two functions, I’ (o}) and wfgf , are “fast” since they depend exponentially on N. On
the contrary, the function ND is “slow” since it depends on N only as a power-law.
Therefore, the product W{?;}:‘} =T i D}}wfgf , whose integral is normalized by unity:

> W{j‘;}E =1, (5.16)
{(D}}

forms a o-function for the “slow” function ND:
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&—

1
(ND), , ~ [ NDS(D—Dy)dD ~ ND,. (5.17)
0

For more details of the proof of this equality, we refer the reader to Chap. 2.
Let us now return to the probability distribution (5.8) of microstates {D} . We
rewrite this expression as

o P(Ee)
wipt =(—-P(Ee)Ve TP (5.18)

What does this formula remind us of? We encourage the reader not to look further
but first to answer this question herself/himself.

First, the boundary condition of the e-ensemble is & = const. Therefore, P(E¢) is
also some parameter kept constant. Let us introduce two new parameters defined by

7 =y L2 P(EE) (5.19)
P(E¢)
and
Z5E =(1-P(Es) . (5.20)

Then probability (5.18) can be presented in the form

1 <ff
e-E _ ~ND/T
Wipy = ok e . (5.21)

This expression is analogous to Gibbs probability of the canonical ensemble,
where the new order parameter, instead of energy, is ND.

The parameter T is the effective temperature and represents a new field param-
eter, replacing ¢. Indeed, if & = const, then T, given by (5.19), is also maintained
constant in the ensemble to represent the new boundary condition 7% = const. This
new boundary condition replaces the original & = const; so, instead of calling our
ensemble the e-ensemble, we could call it the effective-canonical ensemble.

The parameter Z¢F, given by (5.20), is the partition function of the ensemble.
We can prove this statement directly by considering the definition of the partition
function:

N I (5.22)
{D} {o}}

How many different fluctuations {{D}} are there? When a fiber breaks, the damage
increases by AD =1/ N. In other words, in sum (5.22), the damage changes from 0
to 1 with the step AD =1/ N corresponding to the failure of a fiber:

B % N ~yTé'\ ND (5.23)
“ _(N%::O(ND)!(N(l—D))!(e )
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This is the binomial sum which returns us to (5.20):

N

75 E :(ef”T‘f”' + 1) (1-P(Es)) ™. (5.24)

Obviously, we could obtain nothing else, since, the partition function is the normal-
ization constant of the probability distribution.

Summarizing, the introduction of the quenched disorder in the form of the fiber
strength distribution P allowed us to build fluctuations {{D}} in the z-ensemble.
These fluctuations were not thermal but generated by the stochasticity of the dis-
tribution P itself. However, considering a nonthermal system, we have obtained a
complete analogy with the canonical ensemble of a thermodynamic system.

This has happened because we have been able to map the nonthermal fluctua-
tions {{D}} on their thermal analogs. Thereby, Chap. 2 as a whole has become ap-
plicable to our system. We only need to substitute energy £ by damage ND in all
formulas and to talk about “damage spectrum” instead of the energy spectrum. Then
the statistical weight (5.6) becomes the statistical weight of the “damage level.”
Two adjacent “damage levels” in the spectrum are separated by AD =1/ N. The

relative width of the probability maximum is S(ND) = s(D) oc L’ and so on.
ND, D, <N
For example, transforming sum (5.22) into the integral,
1
_ dD _NDITY
&-E ND/T
=|— 5.25
z -([1/NF{{D}}Q ’ (5.25)

and applying the method of steepest descent, we prove that the partition function of
the ensemble is equal, with logarithmic accuracy, to its maximal term,

}e*NDo/T"ff, (5.26)

where the most probable macrostate {{DO }} is determined by

a(r{{D}}wfgf) oo aln(r{{D}}wfgf)
oD oD
Dy Dy

(5.27)

which, when divided by Z°7F, is equivalent to (5.13).

Let us develop the analogy of the free energy for our system. While the equilib-
rium free energy of the e-ensemble is determined by the logarithm of the ensemble
partition function,

o VA (5.28)
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Fig. 5.3 The dependence
s P Voo

of the nonequilibrium free
energy on the nonequilibrium
value of damage
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the nonequilibrium free energy of a fluctuation {{D}} is determined by the loga-
rithm of the partial partition function of this fluctuation:

=T nzit (5.29)

iy (o))

D}}

where

e-E _ »e-Epe-E _ —D/Teff —D/Teff
R C P YA

The behavior of the nonequilibrium free energy is presented in Fig. 5.3. The free
energy potential has one minimum corresponding to the obtained earlier equation
of state (5.14).

Why is it so important to build an analogy (5.21) with statistical physics instead
of describing the system by law (5.8) of damage mechanics? What does this analogy
provide us with? There are two possible answers to this question. First, the well-
developed formalism of statistical physics becomes suddenly applicable to damage
phenomena providing us with alternative descriptions and solutions. Second, this
gives us a completely different point of view on the problem. As we will see later,
this new point of view, appearing by means of comparison, can highlight what has
been overlooked in damage mechanics itself. In particular, statistical physics allows
us to look at a damage phenomenon as at a phase transition, as we will see in the
following sections.

5.4 Stresses of Fibers

In the previous section, we have considered the ensemble when the strain of the mod-
el is maintained constant: ¢ = const. However, while all systems in the e-ensemble
have the same strain, the external force F acting on the rigid plates, obviously, var-
ies from system to system in the ensemble due to the fluctuations of fiber strengths.

Dividing the external force £ acting on a plate, by the area of the plate, we obtain
the stress o in the plate. Considering for simplicity the model packed tightly with
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fibers, we will assume further that the area of the plate coincides with the sum of the
cross-sectional areas of fibers. Then, the stress ¢ would be the stress in the fibers if
they all were still intact. This particular stress o is assumed to be acting within the
model by an external observer, who perceives the system as a “black box” and do
not see that some fibers are broken.

However, within the model, some fibers may break and redistribute their load to
still intact fibers. Thereby only N(1— D) intact fibers carry the applied load, so their
stresses o; are higher than o

o =0,(1-D) = E(1- D). (5.31)

Further for simplicity, we will assume that the area of the rigid plate is unity, so we
will not distinguish the external force /" and the stress o, e.g., we will refer to o as
to the external force.

Equation (5.31) demonstrates us that for the given value of the strain & in the
e-ensemble, the external force o varies from system to system, depending on the
fluctuating share D of broken fibers. On average, we have

(o), p =Ee(1-Dy). (5.32)

As an example, we consider a particular probability distribution of fiber strengths,

0,5 <s
p(s)=141/(s, —57),8 <5<8,, (5.33)
0,5, <s

0,5 <
P(s)=1(s=5))/(55 —5,),8 <§<5,, (5.34)
Ls, <s

when the strengths of fibers are distributed uniformly from s, to s, (Fig. 5.4).

We are still considering the e-ensemble when the strain of the model is main-
tained constant. However, now we quasi-statically change this boundary condition,
increasing strain ¢ from zero until the whole model fails.

When E¢ < s, all fibers are intact, and the external force increases linearly with
the increase of the strain. When E¢ > s, the weakest fibers begin to break, so the
dependence of <U>ng on ¢ becomes nonlinear. When E¢ > s,, all fibers are broken,
so the external force is zero. Substituting (5.14) into (5.32) and utilizing (5.34), for
the described above tendencies we find an analytic expression:

Ee,Ee <5
(0), p =1E&(s, —Eg)/(sy—5)),5 < Eg <s,. (5.35)
0,s, <Eeg
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Fig. 5.4 The uniform p(s)
distribution of fiber strengths ’
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Fig. 5.5 The dependence of (0)e g
the averaged external force A
on the strain of the model
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This dependence is presented in Fig. 5.5. We consider here only the nondegener-
ate case s, > 2s; when after the failure of the weakest fibers, the external force still
increases with the increase of the strain.

From Fig. 5.5, we see that when the strain is increasing, the averaged external
force <C7>8_E indeed increases first linearly, then—nonlinearly. Later, it reaches its
maximal value after which it decreases to zero.

Substituting CDF (5.34) into the equation of state (5.14), we find the dependence
of the strain ¢ on the equilibrium value of damage D,:

E¢ =5,+Dy(s,—s;) when 0< D, <1. (5.36)

Substituting (5.36) into (5.35), we find the dependence of (&) on Dy:
<6>57E =(1-=Dy)(s; +Dy(s, —s;)) when 0 < D, <1. (5.37)
This dependence is presented in Fig. 5.6. When D, is increasing, the external
force initially leaps to the value s,, corresponding to the first fiber failures. Then it

increases, has a maximum, and finally decreases to zero at the point D, =1 when
the whole model fails.
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Fig. 5.6 The dependence of (6)e_ g
the averaged external force 4
on the equilibrium value of
damage
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5.5 The Ensemble of Constant Stress

So far, we have considered only the ensemble of constant strain: &€ = const. In the &-
ensemble for the given value of g, there is only one solution of the equation of state
(5.14) which is always stable and can easily be achieved experimentally (Fig. 5.7).

However, the behavior of the system changes drastically when instead of the
constant strain we require the boundary condition of the constant external force:
o = const (further, o-ensemble or o-E).

While the external force is the same for all systems of the o-ensemble, the strain
now varies from system to system in accordance with (5.31). On average, we expect
to find

o=E(e)_, (1-D,). (5.38)

The probability of a microstate {D},

ND N(-D)
-l (A e
! 1-D 1-D

Fig. 5.7 One solution of {o)s_E
the equation of state in the
g-ensemble
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Fig. 5.8 Two solutions of Ky
the equation of state in the
o-ensemble
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can no longer be transformed into the form of Gibbs probability. While the probabil-
ity of a fluctuation {{D}} is still provided by the product of the statistical weight
and probability of a microstate,

Woy =Ty o1 - (5.40)

its maximum generates the new equation of state:

DO:P[ g ] (5.41)

0

Since we have built our model as a mean-field system when a broken fiber redis-
tributes its stress uniformly among all intact fibers, the behavior of the equation of
state (5.41) should resemble the mean-field solution of the Ising model or the van
der Waals equation. Below indeed, we will see many similarities.

In contrast to the previous ensemble, for the given value o of the boundary
condition, the equation of state (5.41) has not one but two solutions presented in

dD,
Fig. 5.8. One of them, D, , corresponds to positive derivative —2 >0 while an-
o

. . .. dD . . .
other, D,,—to negative derivative d_o < 0. When o quasi-statically increases,
’ o

. . o D .
two solutions approach one another while the derivatives % of these solutions
o
keep their signs but diverge (Fig. 5.9).

dD
To understand what the derivative d_o represents, we should differentiate (5.38)
o

with respect to o to find the derivative of the averaged strain with respect to the
stress:

dE
(2o s _ ! {1+E<g> " ﬂ}. (5.42)
do 1-D, " do
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Fig. 5.9 When o increases,
two solutions approach one
another while their deriva-

tives keep signs but diverge
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dbD,
From this equality, it is obvious that when the derivative —

de(e) 90

g

d—U’E has the same sign and also
o

tends to plus or minus

infinity at point S in Fig. 5.9, the derivative
diverges.
dD. dE (&
But what does it mean that — >0 and % > 0 simultaneously? The
o c

. . dD .
first inequality, _d 250, says us that when the external force increases, some fibers
o

dE (e
break so that the damage also increases. Simultaneously, M > 0 means that
the increase of the load causes the strain to also increase.

These two derivatives resemble the conditions of stability (metastability) for a

L . 0
gas—liquid system, a@% > 0, and for a magnetic system, % > 0. Therefore, the
. o D dE
negative values of these derivatives, ? <0 and % < 0, correspond to the
c do

branch of unstable solutions.

So, we may conclude that point S in Fig. 5.9 separates two branches of the equation
of state, one of which (to the left) is stable or metastable while another (to the right) is
unstable. For example, the macrostate {{Do,z }} is unstable; so, if the system happens
to be in this macrostate, the fibers continue to break until the whole model fails.

The presence of the unstable branch of the equation of state indicates here the
presence of a phase transition in the system. But if we are talking about a phase
transition, what are the phases? One of them we know—it should be the stable
or metastable part of the equation of state to the left from point S. Another phase
should be separated from the first by the unstable branch; so, the second phase is
supposed to represent the completely broken model.

The first phase—the intact model—is transparent and easy to imagine. However,
this cannot be said about the second phase, the broken model. We do not see here
any dependencies on the boundary conditions—only a discrete point D, =1, c = 0.
This “degeneracy” of the second phase in damage phenomena for many years con-
cealed from scientists the fact that these phenomena can be considered as a phase
transition from the intact to the broken solid.
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Fig. 5.10 The size of the
critical nucleus schematically
presented as the epure over
the equation of state

Do

Let us now consider the first phase represented by the branch of the equation of
state to the left from point S. What would happen if in this system we, by means of
some external forces, break very many fibers at once? Common sense suggests that
the fibers, remaining still intact, may not be able to support the applied load which
causes new fiber’s failures and the failure of the whole model.

But broken fibers represent the second phase. So, by breaking with the aid of
external forces very many fibers at once, we, in fact, include a nucleus of the bro-
ken phase within the intact phase. If the size of this nucleus (the number of broken
fibers) exceeds the critical size, the nucleation process transfers the system across
the potential barrier into the stable state of the broken phase.

Obviously, to the right of point S, the critical size is zero, since, the states there
are all unstable and transform into the second phase on their own (Fig. 5.10). The
zero critical size is always typical for the unstable branch without regard to what
particular system we consider.

Also, we now know that the critical size may exist to the left of point S although
here it is not zero—we need to break many fibers so that the model would fail. Does
the critical size exist all along the equation of state to the left of point S? Does it ex-
ist even along the vertical part where D, = 0 and the external force is small?

To answer this question, let us imagine a model when o is small and even the
weakest fibers are all still intact. In the thermodynamic limit N — +o0, we may (by
means of external forces) break all fibers but one which, left alone, would not be
able to support the applied force o, no matter how small this force is (o is small but
constant while we consider the limit N — +o0). Therefore, the critical size exists all
along the equation of state, even along its vertical part (Fig. 5.10), although it may
become big here—proportional to N.

But the very possibility of existence of a critical nucleus clearly indicates that the
states we consider are not stable but metastable. Indeed, in a stable state the critical
nucleus does not exist at all, and any possible fluctuation, no matter how big it is,
cannot lead to a transition into a different phase.

So, we may conclude that the equation of state to the left of point S represents not
stable but metastable states. Point S as a point where the metastable branch trans-
forms into the unstable branch must, therefore, be the spinodal point.

In Fig. 5.11, we compare the phase diagrams for three systems: (a) a damage
phenomenon, (b) a liquid—gas system, and (c) a magnetic system. The similarity
of these diagrams has prompted the hypothesis that a damage phenomenon can be
described as a phase transition.
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Fig. 5.11 The analogy of
phase diagrams for three
systems: (a) a damage phe-
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Liquid—gas and magnetic systems possess a hysteresis loop when a transition
into the second phase takes place not along Maxwell’s rule but originates from a
metastable branch. For the damage phenomenon, we present the beginning of the
hysteresis loop in Fig. 5.12.

However, contrary to other systems, damage is an irreversible phenomenon:
once broken, the model cannot become intact again. This makes some aspects of
the damage phase transition special, specific only to this type of phenomena. The
simplest example—the hysteresis loop in Fig. 5.12 cannot be closed. Also, recent
studies demonstrated that the irreversibility significantly modifies the lifetime of a
metastable state, drastically changing the statistical distribution of nucleation times
(Abaimov and Cusumano 2014).

From Fig. 5.9, we see that at the spinodal point the dependence of the external
force ¢ on D, is parabolic. More rigorously, we should consider the expansion

do 1 d*c
=05t~ (Dy = Ds)+———| (Dy—Ds)* +... (5.43)

0ls 0

S
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Fig. 5.12 The beginning of o S
the hysteresis loop /..\
Do
By definition of the spinodal point the first derivative is zero:
do| _o (5.44)
dDy |
To find the second derivative, we differentiate the equation of state (5.41):
dD,
dp, = 49 2%\ p: (5.45)
1-Dy  (1-Dy)

Expressing from this equation the derivative P’,

-l

, 1 do o

P'= — A (5.46)
1=Dy dDy  (1-Dy)

with the aid of (5.44) for the spinodal point we find

;1 _(1=Dg)’
Pl = (5.47)
S

Next, we rewrite (5.45) as

1:[1 do o JP, (5.48)

1=Dy dDy (1~ D, )’

and differentiate it with respect to D :

2
1 do o Y 1 d*c 2 do 20 ,
0= —+ > | P+ >+ s —+ 7 1P
1-Dy dD, (1-D,) 1-D, dp,> (1-D,)* dDy (1-D,)
(5.49)

At the spinodal point, this equality transforms into

2 2
OZL(G—S)ZJ P”|S+(1_DS) { 1 d26| N 265 3} (550)
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or
2 3
do| ___os R (5.51)

a’ly (1-p5) " (1-D5)

Since P is some arbitrary cumulative distribution functional dependence, its sec-
ond derivative P" is not expected to have some particular value at the spinodal
point. Therefore, the right-hand side of (5.51) is expected to be nonzero so that the
second order term in expansion (5.43) is also nonzero. In the result, in the close
proximity of the spinodal point we find

| D, - Dg o< o —og . (5.52)

Considering D, to be the order parameter while the role of the field parameter
seems to be played by o, we may define the spinodal index [32 by

S
|D-Dq |od| o —og [P (5.53)

From (5.52), we immediately see that ﬂg =1/2. However, as we will find in
Chap. 6, this choice of the order parameter and field parameter is not correct. There-
fore, the obtained spinodal index is also incorrect.

Concluding this section, we should say that the main purpose of fracture or dam-
age mechanics is to predict the failure of a structure: a geological fault, a building,
an aircraft, etc. The mapping of the formalism of statistical physics on damage
phenomena provides us with wide prospects for these investigations.

From the theory of the first order transitions, we know that the transition happens
when a nucleus with a size higher than critical becomes available in a metastable
state. The damage phenomenon is especially dangerous in this sense because its
nuclei grow irreversibly. So, to avoid the catastrophic consequences of a structure
failure, fracture mechanics suggests detecting possible nuclei well ahead of the time
when they would become dangerous. This purpose is fulfilled generally by periodic
inspections, whether it is the ultrasound diagnostic of rails or visual inspection of
the skin of an aircraft. A found defect is repaired, thereby suppressing fluctuations
to the level below critical.

The approach of the spinodal point is especially dangerous in this sense because
then the critical size tends to zero. In this case, any inspections are useless since
even tiny defects may cause the cascade of total failure. Therefore, the peak loads
are generally restricted to be much lower than the spinodal values.

The most complex problem arises when the experimental control of nucleus
sizes in a structure becomes impossible. This happens not only when the direct
inspections are impossible (like in the case of the bowels of the Earth). Another
important case is when the accumulation of small nuclei fulfills the role of the pres-
ence of one big defect with the size higher than critical. The help comes here from
statistical physics and nucleation theory which are capable to predict this situation
by the anomalous behavior of a structure in the vicinity of the failure point. How-
ever, the detailed discussion of these approaches lies beyond the scope of this book.
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5.6 Spinodal Slowing Down

The phenomenon of critical slowing down, when the relaxation times of nonequi-
librium processes diverge in the vicinity of the critical point, is well known in the
literature. On the contrary, the spinodal slowing down has been discovered only re-
cently and is much less understood. The damage phenomenon helps us here again—
it illustrates this phenomenon (Pradhan et al. 2002, 2008, 2010; Bhattacharyya et al.
2003; Abaimov 2009) as easy as it has recreated the formalism of statistical physics
in Sect. 5.3.

Earlier in Fig. 5.4, we have considered an example of the PDF for fiber strengths
which was uniform in the specified range of values. However, such perfectly uni-
form distribution is a mathematical idealization which never exists in nature. In
real systems, there is always noise which can be considered as a divergence from
the perfect mathematical idealization. The amplitude of this noise may be small;
however, taking it into account allows us to consider such important phenomenon
as avalanches of broken fibers.

In Fig. 5.13 we consider the same uniform PDF, only now it is disturbed by the
noise. The noise, together with the PDF itself, serves as a model input for all sys-
tems in the ensemble and, therefore, represents the quenched disorder (which varies
from system to system as a particular realization of this PDF).

The presence of the noise influences the equation of state also. We present this
disturbance schematically in Fig. 5.14 as the “waviness” of the curve. Important

. . . .. dD
here is that due to this “waviness,” the derivative — fluctuates locally and can
o

even become negative. As we recall from Sect. 5.5, this causes the small interval of

dD, .
the curve, where d—o < 0, to become unstable, leading to the appearance of a local
o

cascade of fiber failures (horizontal arrows in Fig. 5.14).

Thereby, when we quasi-statically increase the external force o, the system no
longer responds by the quasi-static increase of damage. Instead, it may reach its
new equilibrium state in the result of a nonequilibrium process as a cascade of fiber
failures called an avalanche. Since the noise is supposed to be small, the avalanches
are also small except the last one, beginning at the spinodal point and leading to the
total model failure.
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Fig. 5.14 The equation of
state in the presence of noise. g
The horizontal arrows present A

avalanches of fiber failures

>
Dy

Let us consider what happens during a cascade of fiber failures. If at time # dam-
age is D, ,, how many fibers will break at the next stage of the cascade? For the

given o and D, the probability for a fiber to have been broken is P[ o J
0,

This probability determines the damage parameter at the next step of the cascade:

o
D0,1+1 :P(l D J (5.54)
ot

In other words, we utilize the equation of state (5.41) as an iteration equation to
form the consecutive stages of the cascade of fiber failures.

Initially, we consider an avalanche which is located far from the spinodal point
(point A in Fig. 5.14 serves as a point of the cascade destination). Since we consider
the avalanche to be small, as a small parameter we will consider the difference of
the current value D, , of damage from its value D, , at the point of the cascade des-
tination: AD,, , = (D, , — D, » ). Linearizing (5.54), we obtain

c
Dy 1 =Dy + P |A WADO,,- (5.55)
—oa

Substituting (5.46), we find

-1
1-D
ADy . =| 1420 o] (5.56)
0,7+1 0.t
ox  dDy|,
or 1
ADy 1 —=ADy, =~ ADy,. 5.57
1+ t 1+ GA dDO ! ( )
1-Dy o do |,

Approximating the discrete time variable by a continuous time variable, we
transform (5.57) into the ordinary differential equation:
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dADy _ dt

- . (5.58)
ADOJ o, dD,

1-Dy 5 do |,

1+

The solution of this equation is the cascade of fiber failures decaying exponentially:
|ADy, Joce" (5.59)

with the characteristic decay time

o, db,
1-Dy 5 do |,

ey =1+ (5.60)

re

We have considered point A to be located far from the spinodal point. On the
contrary, if point A approaches the spinodal point, the behavior of avalanches
changes drastically. Indeed, from (5.60), we see that in accordance with (5.44) the
characteristic time of the cascade decay diverges:

lyoy =+ when A —S. (5.61)

This phenomenon is called the spinodal slowing down.
Let us first crudely estimate the divergence of the characteristic time /..

in the close
A

dD,
Thereby, we should estimate the divergence of the derivative —=
o

proximity of the spinodal point:
[ d do J
+ —_—
s \dD, dD,

As we have proved in (5.51), the second derivative

d*c
. (DO,A - Do,s) = 502

do

do N do
dD,

— Dys—Dys). (5.62
dDO ( 0,A O,S) ( )

A—>S N

2

is not expected to be

0
singular at the spinodal point. Substituting (5.62) into (5.60), we find the divergence
of the characteristic decay time:

1 1 (5.63)

oc oc .
‘DO,A _Do,s | \/| Op—Os |

! ref

Defining the spinodal index 6° by

1
tfa:

rej

_ (5.64)
|op 05 "

for the case of the mean-field stress redistribution, we obtain 65 =1/2.
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Let us consider the vicinity of the spinodal point more rigorously. From the pre-
vious discussion, we see that the linear approximation (5.55) of the iteration equa-
tion (5.54) is no longer sufficient in the vicinity of the spinodal. Instead, we should
keep terms at least of the second order:

s
> (1-Dyg)’

2
2
e St P | 25 LAD, . (5.65)
2 (1-Dys) (1-Dys)

_ ’
Dy =Dys+P Dy,

Substituting here (5.47) and (5.50), we obtain
1- D(),s dZG
204 dDO2

ADy,,, =AD,, - AD, (5.66)

S

or

dADy,  1-Dys d’ | dt
AD,,’ 205 dD,?|;

(5.67)

The solution of this ordinary differential equation,

1-Dys | % | S (5.68)

ADy, |= ,
|ADo, | 20y ‘QIDO2 |S t+const

is well known Omori’s law (Omori 1894; Kagan and Knopoff 1978; Utsu et al.
1995; Sornette and Ouillon 2005; Sornette 2006, and ref. therein) representing the
decay of the cascade of aftershock earthquakes after the occurrence of a mainshock.
Associating mainshocks with avalanches while aftershocks—with separate fiber
failures, we may conclude (as far as our simple model is applicable to the real
earthquake occurrence in the Earth crust) that the mainshocks happen to be gener-
ated in the vicinity of the spinodal point when the external tectonic force reaches
its maximal value.

In the limit of long relaxation times, we can neglect the constant in (5.68) to
obtain

1
|ADy, [oc —-, (5.69)
'

where the mean-field value of the spinodal index is 75 =1.

Comparing (5.59) and (5.69), we see that in the proximity of the spinodal point
not just only the characteristic time 7,,, diverges, but the whole functional depen-
dence of the decay changes—the exponential decay (5.59) is substituted by the
power-law decay (5.69).
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5.7° FBM with Annealed Disorder

In the previous sections of this chapter, we have considered the FBM in its original
form formulated by (Pierce 1926; Daniels 1945) when the noise was introduced by
means of quenched disorder representing the variability of fiber strengths (Coleman
1958a; Suh et al. 1970; Phoenix and Taylor 1973; Sen 1973a, b; Krajcinovic and
Silva 1982; Daniels and Skyrme 1985; Daniels 1989; Sornette 1989, 1992, 1994;
Hemmer and Hansen 1992; Krajcinovic et al. 1993; Hansen and Hemmer 1994a, b;
Lee 1994; Andersen et al. 1997; Kloster et al. 1997; da Silveira 1998, 1999; Moreno
et al. 1999, 2000; Pride and Toussaint 2002; Bhattacharyya and Chakrabarti 2006).
After a fiber breaks, the distribution of its load among intact fibers was assumed to
be mean-field. Besides, the plates transferring the external load to the fibers were
supposed to be absolutely rigid.

Many other modifications of the FBM have been considered. Instead of mean-
field load distribution, other load-sharing rules can be introduced (Gomez et al.
1993; Duxbury and Leath 1994; Hansen and Hemmer 1994a, b; Leath and Duxbury
1994; Zhang and Ding 1994, 1996; Kloster et al. 1997; Wu and Leath 1999; Moreno
et al. 2001b; Hidalgo et al. 2002). Instead of rigid plates, the load to fibers can be
transferred by a coupling to an elastic block (Delaplace et al. 1999; Roux et al. 1999;
Batrouni et al. 2002). Plastic behavior can be simulated in the so called continuous
FBM by fibers that are healed after their failure (Curtin and Takeda 1998; Kun et al.
2000; Hidalgo et al. 2001). More complex structures, like a chain of bundles (Har-
low and Phoenix 1978; Phoenix 1979b; Smith 1980; Harlow and Phoenix 1981a, b,
1982, 1991; Smith and Phoenix 1981; Smith 1982; Phoenix and Smith 1983; Harlow
1985; Sornette and Redner 1989; Phoenix and Raj 1992), can be formed.

In the case of quenched disorder, the nonthermal fluctuations are represented by
the variability of the sample distribution of fiber strengths in the ensemble. How-
ever, after we have assigned fiber strengths for a particular system in the ensemble,
the behavior of this system is deterministic—for the given value of load, we can
always foresee which fibers will be broken. Once the load has been applied, having
caused the predicted fiber failures, nothing changes in the system further—the in-
tact fibers will remain intact forever (unless, of course, we would decide to increase
the applied load). Therefore, quenched disorder is called “frozen” since it occurs in
space and does not depend on time.

Another type of disorder often considered is annealed disorder. 1t differs from
quenched disorder very much. First of all, the strengths of all fibers of all sys-
tems in the ensemble are assumed to be the same, generally equal to unity, which
completely excludes the previous type of nonthermal fluctuations from the model.
Instead, to generate the fluctuating behavior we consider thermal fluctuations of
statistical physics.

Contrary to the case of quenched disorder which occurs in space, annealed fluc-
tuations occur in time—they are not “frozen” but represent a time-dependent noise
introduced into the model. General approach to consider these fluctuations is to
assume that the stress carried by a fiber also fluctuates with time. When it exceeds
the unit value of the fiber’s strength, the fiber breaks leading to load redistribution.
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Originally (Coleman 1956, 1957a, b, 1958b, c, d; Birnbaum and Saunders 1958;
Phoenix 1978a, b, 1979a; Phoenix and Tierney 1983; Goémez et al. 1998; Vazquez-
Prada et al. 1999; Zhang 1999; Moral et al. 2001a, b; Moreno et al. 2001a; Newman
and Phoenix 2001; Turcotte et al. 2003; Yewande et al. 2003; Turcotte and Glasscoe
2004; Nanjo and Turcotte 2005; Sornette and Andersen 2006; Phoenix and New-
man 2009) annealed disorder was introduced by considering the phenomenological
expressions for the rate of fiber failures. So, if all fibers have the same stress o ,

in the o-ensemble with the mean-field load

(equal to E¢ in the e-ensemble or

o . 1[dN|_|dInN| o
redistribution), the relative rate P = — = of fiber failures is assumed
N dt dt
to be the function of fiber stress:
~dN =N(t)p(o,(t))at. (5.70)

Two phenomenological dependencies are generally considered: the power-law de-
pendence p(o,)x o f’( leading to the Weibull distribution and the exponential

dependence p(o /) o o°1/00

(Phoenix and Tierney 1983).

In later modifications of the model (Guarino et al. 1999b; Roux 2000; Ciliberto
et al. 2001; Scorretti et al. 2001; Politi et al. 2002; Saichev and Sornette 2005;
closely related model Sornette and Vanneste 1992; Sornette et al. 1992; Vanneste
and Sornette 1992), to avoid introduction of phenomenological dependences, ther-
mal noise ¢ was added directly to fiber stress:

representing Gibbs probability of thermal fluctuations

o, =0, +¢. (5.71)

Due to the presence of noise, the stress of a fiber fluctuates around its mean value,
and a big enough fluctuation can exceed the threshold of the unit strength causing
the failure of the fiber. In this model modification, we obtain the rate of fiber fail-
ures as the characteristic of the ensemble considered.

However, experimental studies (Pauchard and Meunier 1993; Bonn et al. 1998;
Sollich 1998; Guarino et al. 1999a, 2002) discovered that thermal noise is not nearly
enough to cause the observed rupture of materials under constant loading. To pro-
vide the desired level of fluctuations, the temperature within solids would have to
be of the order of several thousands kelvin. Therefore, the annealed disorder alone
cannot describe the phenomena observed experimentally.

To explain the difference between experimental and theoretical results, it was as-
sumed (Guarino et al. 1999a, 1999b; Roux 2000; Arndt and Nattermann 2001; Cili-
berto et al. 2001; Scorretti et al. 2001; Politi et al. 2002; Saichev and Sornette 2005;
Sornette and Ouillon 2005) that it is not thermal noise that causes damage growth
but the interaction of this noise with the quenched disorder also present in the sys-
tem (i.e., the presence of defects can amplify thermal fluctuations). For example,
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one possibility is to associate this phenomenon with the influence of thermal fluctu-
ations on the unstable, frustrated parts of defects (e.g., crack tips) at the microscopic
level (Abaimov and Cusumano 2014). Although these fluctuations are spatially and
quantitatively microscopic, and influence only microscopic parts of cracks, their
presence causes damage growth on the mesoscopic level. Thus, a “sensitive” crack
tip works in this case as an amplifier, causing the microscopic thermally induced
fluctuations to influence the mesoscopic growth of damage nuclei.

In the FBM, we cannot model the behavior of crack tips. However, we can dis-
cuss how the presence of defects interacts with thermal noise in general. Now, we
should consider both annealed and quenched disorders present in the FBM. Thermal
noise we introduce by (5.71), where ¢ is white noise whose variance is determined
by the temperature of the system:
£
annealed _ 2T
p &) —\/271'—T e 21, (5.72)
Quenched disorder is still introduced as the variability of fiber strengths. For sim-
plicity, the distribution we assume also to be Gaussian with variance ©:

hed 1 - ()’
plenched oy - = 20 (5.73)
2O

It was demonstrated (Roux 2000; Scorretti et al. 2001) that when both annealed and
quenched disorders are small, the effective temperature of fluctuations in the system
is the sum of the thermodynamic temperature 7 and the variance ® of quenched
disorder:

T =T +0; (5.74)

however, other studies (Ciliberto et al. 2001; Politi et al. 2002; Saichev and Sornette
2005) proposed for the amplification of thermal fluctuations to obey a more com-
plex dependence.

Therefore, the presence of defects does amplify thermal fluctuations signifi-
cantly increasing their temperature. So, Guarino et al. (Guarino et al. 1999a, 2002)
estimated experimentally that instead of 300 K, the effective temperature is about
3000 K. Nowadays, it still remains a mystery which part of this temperature in-
crease can be attributed to the variability of strength distribution and which to the
interactions of thermal fluctuations with frustrated parts of defects (crack tips).
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Chapter 6
Correlations, Susceptibility, and the
Fluctuation—Dissipation Theorem

Abstract In the previous chapters, we were acquainted with three complex sys-
tems. For each system, our primary interest was to find its equation of state. This
is quite reasonable because the equation of state provides us with the averaged sys-
tem’s response to the change of external field parameters. For example, if we know
the dependence of the equilibrium magnetization on temperature and magnetic field
for the Ising model, this knowledge is generally sufficient for practical applica-
tions. The equation of state, which represents the equilibrium state averaged over
the ensemble, does not take into account the possibility of system’s fluctuations
in the vicinity of this equilibrium state. But generally, we can neglect fluctuations
because large fluctuations are improbable.

However, the situation changes drastically in the proximity of the critical point.
The fluctuations become so large that they begin to dominate the system’s behavior,
disguising the details of microscopic interactions of the system’s degrees of free-
dom. The laws of the system’s behavior no longer depend on what particular system
we consider and become similar (universal) for very different systems. It no longer
matters whether we consider the Ising model, percolation, or damage—any of these
systems in the vicinity of its critical point forgets its own (specific for this particular
system) laws of behavior and begins to obey the universal power-law dependencies.

It happens because the fluctuations become fractal in the vicinity of the critical
point. Fractality means that fluctuations consume all possible scales of behavior—
from the lattice constant to the size of a system in whole. The fluctuations become
macroscopic.

Far from the critical point, large fluctuations are improbable. So, generally we
observe nothing more than just a collision of several particles or several spin flips.
But at the critical point, very large fluctuations become probable, so large that we
can observe them even with the naked eye. For example, the phenomenon, which
is called the critical opalescence, corresponds to the opalescence of a liquid—gas
system when it is transferred through its critical point. Inasmuch as the volume of
the system is divided into phase clusters whose size becomes comparable with the
size of the whole system, the light refracts at cluster boundaries creating the opal-
escence effect.

As we saw in Chap. 1, fractality disregards the structure of the initial set and gen-
erates the universal power-law dependencies (compare, for example, fractals from
figures (a) and (d) of Problem 1.2.1. So do the fractal thermal fluctuations as well
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disregarding the microscopic laws of the system’s behavior and substituting them
by power-law dependencies containing critical indices.

However, as we saw in Chap. 1, the fractality does not mean that everything of
the initial generations is lost; the final power-law behavior of a fractal is determined
by the rules of how we generate iteration n = 1 on the base of iteration » = 0. In other
words, what influences the behavior of the system is the structure not of a parent
branch but of the generator that transforms this branch, i.e., the laws of scaling.

Similarly, thermal fluctuations do disguise some microscopic features of a sys-
tem, making it universal; however, they do not discard all of them; the scaling laws
are preserved by means of fractal scale invariance and are transferred from the mi-
croscale to the meso- and macroscale by the succession of generations. Much like
family relics, transferred from one generation to another and thereby kept intact for
hundreds of years.

In Chap. 7, we will learn about the influence of scale invariance on the proper-
ties of a system. In this chapter, we study the first part of the phenomena discussed
above when fluctuations lead to universal power-law behavior.

First, we consider correlations. Then, we introduce the susceptibility as the sys-
tem’s response and prove the fluctuation—dissipation theorem. Comparing these
concepts for all three systems considered, the Ising model, percolation, and dam-
age, we find the similarities behind the “curtain” of the behavior of fluctuations.
Finally, we discuss a special role played by the susceptibility in the theory of phase
transitions.

6.1 Correlations: The One-Dimensional Ising Model
with Short-Range Interactions

We start by considering correlations. Let a function X(R) be defined on a
d-dimensional space R. Further, we assume that the mean <X > and variance
<(X—<X>)2 = <X2>—<X>2 do not depend on R.

The autocovariance function is defined as

gRR) = ((X(R)-(X))(X(R)-(X))) = (XRX®R))-(x)*. (6.1

To find the autocorrelation function, we should normalize the autocovariance func-
tion by the value of variance:

SRy - KR -XNHRIX)  (XRXR) ()

(x®-(x))) (a7)~(xy

Physicists, as it sometimes happens, do not follow the rigorous mathematical
definitions. Usually, the autocovariance function is called the correlation function.
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For example, in the case of the Ising model, the spin correlation function is defined
as

g(R,‘,j) = <(O'i —<O'>)(O'j —<o'>)> = <O-iC7_/>—<CT>2 . (6.3)

Problem 6.1.1

Consider the one-dimensional ferromagnetic nearest-neighbor (n.n.) Ising
model with pair (bi-spin) interactions. For simplicity, consider the periodic
boundary conditions o, ,, = o, when the model is the one-dimensional chain
of spins closed into a ring. Find the correlation function of the system.

Solution: We apply here the solution similar to Problem 3.4.2 of Chap. 3. For
details, we refer the reader to that problem.

First, let us find the averaged spin orientation in the canonical ensemble
(CE). By definition

O)a=Tomi=gw L T Tae = % 6

+10,=%1 oy =%l

Here, we see again the product of transfer matrices (3.58-3.59), but now one
of the indices is present as a multiplier:

< />CE ZCE Z Z Z H 6,00 * (6'5)

=tl o, =%l oy =%l i=1

To transform this expression into the matrix product, we should introduce
the Pauli matrix

(6.6)
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It is easy to see that the following equality is valid:

Z TUHGJ o-jTo'lo'.Hl = Z Z TUHGJ S;JC?J Té/‘)—#l . (67)

o;=%l 0;=t16;=%1

Substituting this equality into (6.5), we find

o Tr (777770, (6.8)

1
<Gf >CE - 7

Since the trace is invariant under cyclic permutations (cyclic property of the
trace operation), we can move the Pauli matrix ahead of the transfer matrices:

CANE %Tr(SZTN). (6.9)

Let us now assume that transformation F~'TF diagonalizes the transfer
matrix (3.58) and (3.59):

0

N (6.10)

)

il _ _;Ll
F"TF=D=

where the eigenvalues ﬂ1 and lz are provided by (3.61). From (6.10), it is
easy to see that the matrix £ is composed of the eigenvectors of the transfer
matrix:

TX,, = A,%,,, (6.11)
F= "ili2 " (6:112)

Next, we apply the diagonalization procedure to all transfer matrices in
(6.9). This is easy to accomplish because we can substitute the unit matrix

I 0
FF™' = HO I as many times as we need:

(o)), = ;CE Tr(S*FF'TFF'T ... FF'TFF) 6.1

=%Tr(SZFDNF‘1) = ZICE Tr(F'S*FDY).
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It is easy to find that

N
pv | ON ’ (6.14)
0 2
sinh'u—h Ksinhu—h
r PO
A A
sinhzy—h+e " sinhzy—h+e r
FIS°F = 4 I o (6.15)
sinh#—h sinh#—h
1 T B T
K A A
K1’sinhzu—h+e r sinhzu—h+e v
T T

where K is some lengthy expression whose exact form is not important. Mul-
tiplying matrices, we find

. h
sinh 47 N N
_ T M A (6.16)
Oiler = 47 )N 2 ’
ph AT+,
Sirlh2 7 +e u

where we have also utilized (3.62). In the thermodynamic limit N — +oo, we
can discard one of the eigenvalues which returns us to (3.63):

sinhu—h
<Uf>c5 T (6.17)

47
sinh? 2 +e T
T

Second, to find the correlation function, we have to find the averaged prod-
uct of spins separated by some distance along the chain:

Jo jtk

<aa)@5%quﬁJza (6.18)

In this case, the product of transfer matrices is “sandwiched” already not by
one but by two Pauli matrices:

(010t )ce 2%“@ SISO, (6.19)

Jojtk
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By consideration, similar to the previous case, we find
(0,0,4) - L Tr(S*FD'F'S"FDY*F ™)
Ik ee 7 CE (6.20)
- Tr(F'S*FD*F'S*FD"™).

ZCE

Substituting and multiplying matrices, and also recalling (3.62), we obtain

sinh? Hh + e_¥ [%Nuzk A ]
T Ny
(6,0, = Atk ) 2
CE . 2 uh 2
sinh® —+e T

In the thermodynamic limit N — +o0, we find

k N-k
AER
. &) "4,
(0.0, )ep = (0, +o o) (622)
eT sinhz%ﬂ

Here, £ is finite while N —£ is infinite. So, we can neglect the second term:

k
1 A
g(R;) = {0,014 ).y —<Gj>; - ﬁ[—zl . (6.23)
e’ sinh’ 'uT +1N71

This is the correlation function of two spins at distance ka, where «a is the
lattice constant. Therefore, we finally find

Ay 1A 1 s
g(R) - 4,( 2 /) = e’ n, (6.24)

47
el sinhzy—h+1 el sinhz’u—h+l
T T

The correlation length ¢ is defined as a characteristic distance at which the
correlation function decays to zero. In our case, it is just the distance of the
exponential decay:

g=—2 (6.25)
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In the absence of magnetic field, # = 0, we find
a (6.26)

S=—7
In coth A

T
The critical point of the one-dimensional model is 7. =0, A. =0. If we
approach this point by decreasing the temperature, 7 — 0, along the isofield
curve i = 0, then (6.26) diverges exponentially:

2J

ESer. (6.27)

As we see later, the exponential divergence of the correlation length gener-
ally corresponds only to the “degenerate” one-dimensional case with short-
range interactions and is substituted by a power-law divergence in higher
dimensions.

However, if we consider the limit 7 — 0 first and only then the limit
h — 0, we will approach the critical point along the critical isotherm 7;. = 0.
In this case, we find:

a aTl
el .
2u|h|

£= (6.28)

1+

tanh ,uh‘
T
In
1—

tanh ”h‘
T

For the divergence of the correlation length along the critical isotherm, the
special critical index is introduced:

o | |1vc when, T =T.,h— he. (6.29)
h h

We see that the mean-field approach provides v, =1.
Let us integrate the correlation function (6.23) along the length of the model:

[l £
40 +0 1 A 1 = A
Z gR; ;)= Z 47 h (Tz] Y h [H—ZZ[ZZJ ]
k== == o7 sinh? 2\ e” sinh? #4741 =
T T
47

e T cosh u—h

1 A+A,

44 ~2 - a5 2 °
eT sinh? £ 11 b=t sinh? P o T
T T

(6.30)
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where we have taken into account that due to symmetry, the correlations for
negative k are equal to the correlations for positive k. The sum we have found
as the sum of the geometric progression.

Comparing (6.30) with (3.67), we see that the magnetic susceptibility is
proportional to the integral of the correlation function:

r=5 3 e(R,,.) (631)
k=—0

This result is called the fluctuation—dissipation theorem.

6.2 Correlations: The Mean-Field Approach for the Ising
Model in Higher Dimensions

As we have seen in Chap. 3, the mean-field approach

<Gig ‘>{U} & <g>2 (6.32)

J {o}

means that we neglect spin correlations

<(Gi _<">{a})(61 ‘<0>{U})> ~0. (6.33)

{o}

However, the very mean-field approach can be used to find the correlation func-
tion. Further, we consider the ferromagnetic Ising model with pair (bi-spin) in-
teractions whose amplitude depends on the distance between two spins in a pair,
J(R; ;)=J(R,;;|), and somehow decays when this distance increases. The Ham-
iltonian of the model is

N
Hy, =-uh) o,- > J(R,;)o,0;. (6.34)
i=1 <i,j>

For simplicity, we consider the system in the absence of magnetic field, 4 = 0.
The mean-field approximation for the Hamiltonian (6.34) of the homogeneous
system is

Hyg, =1 il o, (6.35)
R
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where the effective field hféf} is determined by

o _ Moy
e, = = > J(R). (6.36)
R0
The equation of state is
my = tanh[ Bmy Y. J(R)j. (6.37)
R0

The critical point corresponds to the temperature when the spontaneous magne-
tization appears

T. =Y J(R). (6.38)
R#0

If we returned to the case of the n.n. Ising model, the obtained expressions would
transform into the formulae of Problem 3.7.1 considered in Chap. 3.

Above the critical point, there is no spontaneous magnetization. For this case, the
correlation function (6.3) in the CE of the Ising model is

Zoiaje_ﬂH{’” Z z GiajefﬂH*‘”
g(R;)=(o0,),, =" = A=t owsd , (6.39)

Y Yy
op

o=t oy=%1

Next, we separate the sum over spin o; and expand this sum explicitly:

Y X ooet
g(Ri,j ) _ o;=%1 {o}\o;

> > ¢ PHios (6.40)

o;=%1 {o}\o;

z (+1)Gje_ﬁH{a}:ai:+l + z (_I)Gje_ﬁH{a}:ai:—l

__{oj\o; {o}\o;

_ﬂH(o'"o-':H _ﬁH'o'}'o-:—l
> ey S

{oho; o)\,

If for a microconfiguration {c} : o; = +1, we invert the orientations of all spins,
including o;, we obtain one of microconfigurations {o} : o; = —1.Itis easy to see that
this transformation is bijective—one and only one microconfiguration {c}: 0, = -1
corresponds to each microconfiguration {c'} : o; = +1.

Let us utilize this bijective correspondence of microconfigurations to build
the correspondence of the terms of the sums in (6.40). In the numerator, the term
(+1)g ;e e

{-o}o;=-1

%=t of the first sum corresponds to the term (—=1)(-c j)e_ﬁ t
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ﬂH{c}:o‘izﬂ

of the second sum. In the denominator, the term e of the first sum cor-

ﬁH{fo'}:o',-:fl

responds to the term e of the second sum.

In the absence of the magnetic field, # = 0, Hamiltonian (6.34) does not depend
on the inversion of all spins:

H{—G}IGi:—l = H{o‘}:ci:-H' (641)

Thereby all terms, for which we have built the bijective correspondence, become
equal to one another, and for the correlation function we find:

2 z O'~€7ﬁH(o-}:o-i:+] Z G‘eiﬁH{U}IG,‘:ﬁ»l
J J

{o}\o; _{o}\o;

R )= _ iy . (6.42)
g( l’j) 2 Z e_ﬁH{cr}:di:H Z e_BH{c}:o‘i:-H < Y >CE,O‘,-:+1
{o}\o; {o}\o;
Here, in the last expression, instead of averaging just over the CE, < . > cp» We aver-

age over the probabilities of the ensemble < . > CE.o - - 118 the same CE but with an

additional boundary condition; the orientation of spin o, is maintained permanently
“up” by external forces.
But what is the meaning of the quantity <G J > Chosil We consider the CE when

the orientation o; = +1 of spin o; is “frozen.” This can be considered as a distur-
bance of the usual CE; we introduce a fixed magnetic moment into the system and
observe how the system would respond to its presence.

In the ferromagnet, spin o; attempts to reorient its neighbors also “up.” Spin
o is located at some distance | R, ; | from spin o;. Averaging o ; in the ensemble,

we find the averaged magnetization (O ; CE ot induced by the presence of the

fixed magnetic moment o; = +1. The farther spin o is located from spin o;, the
lower, probably, is the influence. Therefore, we expect the induced magnetization

O )k 5 =11 to decay with the distance from o;.

We see that equality (6.42) presents an important result: the spin correlation
function above the critical point equals the decay of the system’s response to the
presence of the external magnetic moment. Equality (6.42), when correlations are
determined by the system’s response and vice versa, is, in fact, the representative of
the fluctuation—dissipation theorem studied in detail later.

To find the quantity <o- (Ri ; )>CE | we apply the mean-field approach. Now
’ .0 =+ . .
we consider the ensemble when external forces support o; = +1. Let this spin be

located at R = 0. The mean-field approximation of the Hamiltonian is

fol
Oy

Hy, = -3 5 (R)og. (6.43)
R
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where hfgf} (R) is determined by

¢ 1 '
hll,(R) = 5, Y. J(R-R)oy, (6.44)

Hr rzR

and the equation of state is

<ch>CE’+1 = tanh[ B J(R—R')<6Rr>CE’+1J for R # 0. (6.45)
R":R'#R

For R = 0, by definition, we have

(Or0) 0y =1 (6.46)

The induced magnetization is small, so we expand the tanh function:

(ow >CE,+1 ~B 2, J(R-R) <GR’>CE,+1' (6.47)
R'R'#R

This equation of state is valid far from R =0. At the point R =0, spin o; acts as
the source of disturbance:

(O/)ep =B 2 JR-R)(op)y,, +S(R). (6.48)
R"R'#R

With the aid of the J function, we have allowed here for the solution singularity,
which is present due to constraint (6.46).
We assume the interactions of spins in pairs to be long-range. Then, we can sub-
stitute the discrete sum Z by the integral:
R'R'#R
+a0 dppr
(or)ep =B [ JR-R)ow) oy, C;—dR +3(R), (6.49)

—00

where we have normalized d“R by the volume a? of the lattice cell (with a being
the lattice constant).

We define the Fourier spectrums of the induced magnetization and of the ampli-
tude of pair (bi-spin) interactions by

(k) = Teikk (Ox)ep. AR, (6.50)
1 —ikR — d
(Or)ep = an j e ™nk)dk, (6.51)

—0
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+00

J(k) = je"kRJ(R)ddR, (6.52)
_ 1 v —-ikR 7 d
J(R)=—(2ﬂ)d L ™M J(K)d k. (6.53)

For the so-defined Fourier transform, the spectrum of the ¢ function equals 1:

5(k)= Te"‘“6(R)d"R =1. (6.54)

—o0

Applying the Fourier transform to (6.49), we find

k) =L [ed'R[J(R-R) (o),  dR'+1. (6.55)
) ,

—o0

Splitting the exponential function under the sign of the integral, we obtain two in-
dependent Fourier transforms:

m(k) = :%[Teik(RR"J(R -R")d’(R- R')j[Te“‘“’ (Or ) d”’R’J +1 (6.56)

—0 —0

= %J(k)m(k) +1.
a

For the spectrum of the induced magnetization, this provides

(k) = ——

5 (6.57)
1- " J(k)

Now, we have to recall some features of the spectrum analysis. The Fourier
transform of the 0 function provides unity (a constant, equation (6.54), Fig. 6.1a).
The Fourier transform of a constant is the J function (Fig. 6.1b). The constant and
the o function are two extremes of a “bell”’-shaped dependence. The Fourier trans-
form of a “bell” of width AR returns also the “bell”-shaped dependence of width
Ak o1/ AR (Fig. 6.1c). The brightest examples of this principle are the wave packet
theory in acoustics/radiophysics and the Heisenberg uncertainty principle in quan-
tum mechanics.

The amplitude J(R) of pair (bi-spin) interactions decays with the distance
R between spins. Assuming the characteristic length of decay to be AR, for the
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Fig. 6.1 General features of
the Fourier transform. (a) The :>
a

spectrum of the ¢ function
is unity. (b) The spectrum

of unity is the ¢ function. :> "

(¢) The “bell” of width AR
transforms into the “bell” of b

width Ak oc 1/ AR
-—> -—>

AR Ak

Cc

characteristic length of the spectrum’s decay, we find Ak oc 1/ AR. The crude ap-
proximation of the spectrum’s “bell” can be represented by the parabolic decay:

J(K)~ J(k =0){ 1-const- AR’K’}. (6.58)

We have obtained this equation from intuitive considerations. Let us now de-
velop it in a more rigorous way. The Fourier spectrum of the interaction amplitude
is provided by (6.52). For small k (the long-wave approximation), we expand the
exponential function under the sign of this integral and consider only three terms in
this expansion:

R = 1+ikR+%(ikR)2 _ (6.59)

Substituting this expansion into (6.52), we obtain

J(K) = f(l +ikR —%(kR)Z + ...jJ(R)d"R. (6.60)

—00

The first term of the expansion provides J(k = 0):
j J(R)d'R =J(k =0). (6.61)

The second term returns zero due to the spherical symmetry of the interaction am-
plitude, J(R)=J(|R):

j ikRJ(R)d'R =0. (6.62)

—00

For the third term, again due to the spherical symmetry, we choose k to be ori-
ented along the n"-component of R:

+oo +oo
-[ %(kR)ZJ (R)d‘R=- %szan(R)ddR, (6.63)
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where R, is the mentioned n"-component of R. Since for any n, the right-hand side
of (6.63) returns the same value of the left-hand side, not depending on n, we find

1

d +»©
l.2,2 d
;Z | SKR2I(R)AR (6.64)

n=l _on

+o0
- %(kR)ZJ(R)dd R=-
= —lleszJ(R)dd R

d-2 '

We define the root-mean-square radius of pair (bi-spin) interactions by

3 +00 5 ddR
A= /ZR J(R) ~ j R*J(R)—-. (6.65)
R#0 —o a

Substituting it into expansion (6.60), we, indeed, return to (6.58):

A —J(k—O)(l S j(k:O)J' (6.66)

- _ k2ad
JK)y=J(k=0)-
k)~ J(k=0) >

Recalling (6.38), we can express J(k = 0) in terms of the critical temperature:
J(k=0)= j J(R)dR =a'T,. (6.67)

Substituting it into (6.66), and then (6.66) into (6.57), for the spectrum of the in-
duced magnetization, we find

2
m(k) = 1 e _ 24T IA, (6.68)
l_i l_kiAi k2+72
T\ 2dT. S

where in the last equality for small relative deviations of temperature from critical

_I'-Tc
Tc

t 0, (6.69)

we have introduced a new parameter

A

1
: NN

(6.70)
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Later, we prove that this parameter is a correlation length. For a correlation length
of an arbitrary system, its own critical index vtC is defined as

1

e

§ o (6.71)

From (6.70), we see that the mean-field approximation of the correlation function
provides for the correlation length the simplest rational fraction, v,C =1/2, as the
critical index.

In accordance with (6.42), the spectrum m(k) of the induced magnetization in
the “CE, +1” ensemble is the spectrum g(k) of the correlation function in the usual
CE:

24T, | N
—
&

gk)= (6.72)

i+

To find the correlation function itself, we have to apply the inverse Fourier trans-
form:

T 2dT. | N*F 1
R)= e™Mgk)d k=" ™ d’k.  (6.73)
sR)= 7 e anr | oo L
+ 52
This integral is tabulated by the modified Bessel function K, (x):
1 R
SO
The modified Bessel function has the following asymptotes:
e—x
K, (x) for x >>1, (6.75)
Tk
K, (x) La forx<<1,a > 0. (6.76)
X

Substituting them into (6.74), we find the asymptotes of the correlation function:

—RIE
g(R) o —r——— forR>>¢, (6.77)

e‘R;

2(R) o Rj_z for R<< &,d > 2. (6.78)
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We have obtained another important result—on scales larger than & the correla-
tions decay exponentially. The exponential decay is a very “fast” decay. Therefore,
as a crude approximation, it is often assumed that on scales larger than ¢ there are
no correlations at all. The characteristic length ¢ delimiting scales with and without
correlations is called the correlation length.

On scales smaller than the correlation length & the correlations decay as the
“slow” power-law (6.78). From Chap. 1, we know that power-law dependencies
often indicate the presence of fractal mathematics. This is also the case for the
considered Ising model. On scales smaller than the correlation length, the phase
clusters become fractal. Fractality means the absence of both characteristic length
and characteristic cluster size. On these scales, the clusters are present in all shapes
and sizes, limited only by the lattice constant on one side and by the correlation
length on another.

Far from the critical point, the correlation length is small. However, when a sys-
tem approaches its critical point, the correlation length (6.71) diverges. This means
that above the critical point, the fractality is in its embryonic state, and only small
clusters are present. The closer the system to its critical point, the larger the sizes of
these clusters, and the larger scales are dominated by the fractality.

When the correlation length reaches the size of the system, the whole system
becomes fractal. The fractality has now occupied all possible scales from the lattice
constant to the size of the system. The clusters are now present in all possible shapes
and sizes, including macroscopic.

Asymptote (6.78) is not valid when d = 2. For this case, the asymptote is

g(R) < ln% forR<<&,d =2. (6.79)
The decay here is logarithmic which is even “slower” than the power-law decay.

For our three-dimensional space, d = 3, the modified Bessel function is found in
quadratures:

K, (x)= 2™ Wvx (6.80)
E 2x

For the correlation function, this provides

—R/E

g(R) o & VR. (6.81)

The asymptotes of this expression are the same as (6.77) and (6.78). On larger
scales, the correlations decay exponentially. On scales smaller than the correlation
length & the correlations decay as a power-law:

2(R) oc% for R << &,d =3. (6.82)
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The critical index of the correlation function is defined by
g(R)x ;C for R << ¢&. (6.83)
Rd—2+;7

From (6.78), we see that the mean-field approach provides nC =0.

Problem 6.2.1

Find the correlation function of the ferromagnetic n.n. Ising model above the
critical point in the absence of magnetic field by the method of sources (Green
1828; Kadanoff 1976, 2000).

Solution: The Hamiltonian of the n.n. Ising model is defined as

H,, :—uhici—J > oo, (6.84)
i=1

<i,J>y.p,

Following the method of sources, we introduce the model Hamiltonian
when the magnetic field is nonuniform over the model space:

I (6.85)
i=1

<0y j >
Later, we return to the real Hamiltonian (6.84) by just assuming the field of

being uniform again.
The mean-field approximation of the model Hamiltonian is

Hy, = =1 (he + 10 (R) ) o, (6.86)
R

where the mean-field 47,

{o}

(R) is defined as

J
IRy =—— > o (6.87)
2:u R':n.n.R

Then the equation of state is

(OR)ep = tanh[ B{ phe +J <0'R,>CE}]. (6.88)

R"n.n.R

Let us expand (o, ), in the neighborhood of R:

Jtorte

(6.89)

e (o o d
<GR’>CE_<GR>CE+((R R) RJ<O-R>CE+2[(R R)dR

dR
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This expansion is valid when <0'R,> o 18 @ “slow” function of R'. In other
words, we consider the long-wave approximation. Here, we keep only the
first three terms which is equivalent to (6.59) and (6.60).

Next, we substitute this expansion into (6.88). The second term returns
zero due to the symmetry of the lattice:

Jooa [k

For the third term, we write its definition explicitly:

> (R'- R)] =0. (6.90)

R"n.n.R

4
> ((R -R)—

R'n.n.R

R

2
1 ’
5 ((R -R)— ] (.
R':n.n.R R
1 d d 62<6R>CE
=— R —R)R —R).
222 2R, 0R, RR;_R( L R)R =R (691)

Due to the lattice symmetry, the expression under the sign of the sum is non-
zeroonly if n=k:

2
1 d
— R —-R)—
2 R':nﬁ.R(( ) dR RJ <GR >CE
13 82 <6R >CE 2
== R —R ).
23 aR,f R R;.R( ! ) (6:52)

For the isotropic lattice, the sum Z (R, —R,)’ does not depend on 7 and
equals R"n.n.R
> (R -R) =Cd’, (6.93)

R'n.n.R

where C is some constant depending on the lattice considered.
Finally, for the third term of the expansion, we find

1 —
5 ((R R)R

2 R"n.n.R

2 2
Ca® &0 <Cf > Ca’
j <GR>CE = )~ aRRZ £ = B A<O-R>CE'
R n= n R
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Here, A=(VV) is the Laplace operator. Substituting this expression into
(6.89), we find the approximation of the equation of state:

2

C;l A<oR)CEH, (6.95)

(O )es :tanh[ﬁ{uhR +Jq(0g )y +J

where ¢ is the lattice coordination number.
In the proximity of the critical point, we expand the tanh function:

= i) 82 |

2
C 2

+BJq (o), +BJ ;’

AOw) o —%(ﬁJq<oR>CE)3 +... (6.96)

Here, in the expansion we have kept only the terms, linear in the magnetic
field, and have neglected the terms with higher powers of the magnetic field.
Also in the long-wave approximation, we neglected the terms containing the
products of magnetization and its derivatives.

Introducing the relative deviation (6.69) of temperature from its critical
value 7. = Jg, we obtain

Jq Ca2 1 .,
Iy z:(— 2 A<GR>CE +t<GR>CE +§<0'R>CE j (6.97)

This is the equation of state which almost corresponds to the equation of
state (3.92) of Landau theory considered in Chap. 3. Only now, we consider a
heterogeneous system instead of a homogeneous system. Therefore, the addi-

. J Ca’ . .

tional term e A(o-R > . has appeared which takes into account how the
u

magnetization changes from one lattice site to another. While other terms

are responsible for the representation of the volumetric free energy, the term
J Ca*

u
phase clusters.

Let us find the response of the equation of state (6.97) to the change of the
external magnetic field at site R":

ohy Jq( Cd* oo
Sen =22 x| 2L Attt (o), M. (6.98)
ohy p\ 2g ohy,

A<GR > o represents, in fact, the surface energy of the boundaries of
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. 0 .

The quantity M represents here the appearance of the magnetization
g

at point R due to the appearance of the field at point R’, i.e., the correlation

function:

0
g(R'=R) %. (6.99)

Choosing R’ =0 in (6.98), we obtain

_Jq Ca’
Op ~ . ( oy (N j 2(R). (6.100)

Now, we can return from the model Hamiltonian (6.85) to the external
magnetic field, which is uniform over the lattice. Meanwhile, (6.100) remains
valid for this particular case as well. Above the critical point, the magnetiza-
tion of the system is zero, <GR> =0, in the zero magnetic field:

2
5. zﬁ(— Ca A+ng(R). (6.101)
n\ 2q

Next, we multiply (6.101) by &™® and carry out summation over all sites:
J‘]Z "R( A+t] (R)
+00 d
:ﬂje"k“[_ca j (R)dR
2q

zﬁfefm(_ciAj (R)dR J2,8®) (6.102)
2q u o al

Integrating by parts twice and taking into account that the correlation func-
tion and its derivatives are zero in the infinity, we find:

1:(;’1{)2&]@“‘[ C"j (R)dR+ﬂtg(k)
U 2q pooa

1{‘7 c k2+ﬂLj 5(K) or F(k) = —2E_ (6.103)
u2a’ poa 429
Ca®

This returns us to (6.72).
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Let us return to the differential equation (6.100) for the correlation function. Since
in Problem 6.2.1 we considered the system above the critical point in the absence of
magnetic field, we substituted the zero solution for the spontaneous magnetization,
<C7R > o =0, into (6.100) to obtain (6.101), whose very solution we found later.

Let us now discuss a more general case, when we may consider the system ei-
ther below or above the critical point, either in the absence or in the presence of

the uniform magnetic field /4. In this case we can no longer discard the value of the
magnetization <U R >CE in (6.100). However, this does not complicate further analy-
sis because in the case of the uniform field the equilibrium magnetization (o ).,
does not depend on R and, thereby, we obtain the solution by substituting 7+ <0'>ZE

instead of ¢ in all formulae:

. const — const
g =" o rs=" (6.104)
k +Ca2{t+<G>CE} k +?

where the correlation length is now defined as

(6.105)

£ = Cda’ 1
Vi [,

Solution (6.105) allows us to investigate the scaling behavior of the correlation
length. Let us consider first the proximity of the critical point which we approach
along the critical isofield curve 4 = A, = 0. Above the critical point, the spontaneous
magnetization is zero, and we return to an analogue of expression (6.70):

B Ca’ 1

2q Nt

Below the critical point, we should substitute the spontaneous magnetization (3.97)
together with particular values of coefficients (3.93),

(6.106)

(o), =31, (6.107)

into (6.105) to find:

2
Ca’ 1 (6.108)

A

Defining the critical index v by

_, (6.109)
|2]"
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we see that above and below the critical point the mean-field approach provides for
this critical index the value v =1/2.

Next, we approach the critical point along the critical isotherm 7 = 0. Here, the
magnetization is determined by (3.99), and we obtain:

1

£ o Tk (6.110)
Defining another critical index v by
1
éoc—‘wc, (6.111)

we immediately find v =1/3.
Now, let us consider the proximity of the spinodal point. For the isofield ap-
proach / = hg, utilizing (3.109) and (3.93), we obtain

& ! . (6.112)
J{t =)+ 2mg (m—m)
Recalling (3.110), we find:
Fo— L (6.113)
‘ t_ts |l/4 : .
Thereby, for the spinodal index v?, defined by,
1
o —r, (6.114)
2]

the considered mean-field approach provides v’ =1/4.
At last, we approach the spinodal point along the isotherm 7 = ¢,. With the aid of
(3.109) and (3.93), we find:

fo——1 (6.115)

\J2mg (m —myg) '

Substituting (3.112) into this expression, we obtain the sought scaling:

1

o —— .
5 |h_hs |l/4

(6.116)

Defining the spinodal index v, by
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R

Ihlv’

(6.117)

for the value of this index we find v}, =1/4.

Summarizing the obtained results of scaling, provided by the considered mean-
field approach, we may say that the correlation length diverges in the vicinity of the
critical point as well as spinodal point.

6.3 Magnetic Systems: The Fluctuation—Dissipation
Theorem

In the previous section, we considered the behavior of correlations of the Ising
model in the vicinity of its critical point. However, correlations are just one side of
phenomena described by the fluctuation—dissipation theorem. Another side is the

susceptibility of the system whose behavior we investigate in this section.
In Problem 6.2.1, we have assumed that quantity (6.99) serves as a correlation
o(o

. o R)
function. The derivative CE

is, in fact, the response of the system to the
-
change of the external field parameter.
Let us return to the case of the ferromagnetic Ising model with the magnetic field

h which is nonuniform over the lattice. The equilibrium magnetization is defined as

m, EEZ@J@ (6.118)

Varying this magnetization with respect to the magnetic field, we find

1 N
sm, =;25<@ sz (% Je 5h;. (6.119)
i

i=1 j=l1

For the uniform magnetic field, all variations 6/, equal the change of the uni-
form field, 5h; = 6h:

5’”0:WZZ o, CE. (6.120)

i=1 j=1
The magnetic susceptibility of a magnetic system is defined by

amo

. (6.121)
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In other words, it is the response of the equilibrium order parameter m;, to the change
of the field parameter 4. From (6.120), we see that the susceptibility of the Ising

6<GR >CE

model is determined as the quantity averaged over the lattice:

)
MZ :?

N 6
2==3 2i)er (6.122)
N i=1 j=1 ahj
. . . 0(og >CE
Recalling that in (6.99), we assumed that the derivative o serves as a
-

correlation function, we find the relationship between the correlations in the system
and the system’s response to the external disturbance:

X OC—ZZg(R,,) (6.123)

l]]l

Since we now consider a uniform field, due to the symmetry on the lattice, the cor-
relation function g(R; ;) depends only on the distance between two sites but not on
the explicit locations of these sites. Therefore, one of the sums and the multiplier
1/ N cancel each other out:

xoczg(Rm Zg(R)—g(k 0 (6.124)

We have found that the susceptibility is proportional to the integral of the corre-
lation function over the lattice. This statement is called the fluctuation—dissipation
theorem serving as a connection between the system’s correlations and system’s
responses.

oo
The quantity < 3 ; >CE
~

susceptibility as the system’s response at site R to the external disturbance at site R’
In this case, the fluctuation—dissipation theorem transforms from the integral form
(6.124) into the local form

is often called not the correlation function but the local

Zrr =&R'-R), (6.125)
while the integral over the lattice connects now the local and the integral suscepti-
bilities:

N
XD ARy R, = 2L ARy R (6.126)
R

J=1

Earlier, we obtained an analogue of (6.125) when the correlation function (6.42)
was equal to the response of the system to the external disturbance.
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. . . 0 <GR >CE
Since in (6.99) we only assumed that the quantity o plays the role of
~

the correlation function but did not prove this statement rigorously, we now verify
directly the applicability of the fluctuation—dissipation theorem to the Ising model.
We consider arbitrary pair (bi-spin) interactions (6.34). The partition function of
the CE is

B2y e Mo 2 Z 3 e e (6.127)

{o} oy =l

where we go through all microstates by considering all possible microconfigura-
tions {o} of spin orientations on the lattice.
Let us differentiate the partition function with respect to the magnetic field:

azcE

C— =Y Bulimige (6.128)

{o}

. -BH, .
Here, we have the sum of quantities m;,e PHiat over all microstates {o}.If we trans-

I -
o Aoy

formed the exponential functions ¢ "Ml into Gibbs probabilities w{‘f} =—=
VA

of microstates, the sum over microstates would transform into the averaging of m,,
in the CE:

on = ZEPuy Nmigywigy = 2 pu(Nm) ., (6.129)
{o}
CE
(Nm),, =L (6.130)
Bu  ©Oh

Differentiating for the second time, we find

2~CE
a;z ZZ(ﬂuNm{o})ze*ﬁHm _ ZCE(ﬁy)2<(Nm)2>CE or  (6.131)
1 3z
(my?) = TE G o (6.132)

The susceptibility is defined as the response of the averaged order parameter
(6.130) to the change of the external field:

10(Nm), 1 Iz
N oh NBu on*

X (6.133)
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“Moving” the logarithm in (6.133) to the left through two derivatives and utilizing
(6.129-6.132), we find that the susceptibility is proportional to the variance of the
order parameter in the CE:

1 1 8%z 1 oz Y _Pu 2
T Npu| 2F o {ZCE oh J (<(N ), ~(m)’) 6134)

=B (=, )")

The coefficient of proportionality S/ N is not singular at the region of the phase
transition at nonzero temperature and, therefore, does not influence the singular
behavior of the right-hand side.

Next, we substitute the definition of the magnetization:

1 N
My EﬁZai, (6.135)
i=1

into the right-hand side of (6.134):

- %ii«cidf >CE B <c;i>CE <Gf >CE ) (6.136)

Under the signs of the sums, we see here the definition (6.3) of the correlation func-
tion:

_bus Zzg(RI i) (6.137)

ll/l

Again, due to the fact that the correlation function for the uniform magnetic field
depends only on the distance between two sites but not on the numbers of the sites
themselves, we substitute one of the sums by N to prove the fluctuation—dissipation
theorem:

x= ﬁng(R) Bu g(k U (6.138)

In comparison with (6.124), we see here the additional multiplier Bu which is again
not singular in the region of phase transitions at nonzero temperature. Therefore,
our assumption (6.99) was valid with the accuracy of unimportant coefficient of
proportionality.
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We see now that the susceptibility (6.133) is a very interesting quantity. Firstly,
by definition, it is the response of the averaged order parameter to the change in the
field parameter. Secondly, it represents the variance of the order parameter in the
ensemble. Thirdly, it equals the integral of the correlation function.

More importantly, since the susceptibility is proportional to variance (6.134) of
the order parameter in the ensemble, it is always positive (or zero):

. <(Nm ~(Nm),,,) 2>CE >0. (6.139)

As we have seen in Chap. 3, at the spinodal point, the susceptibility becomes in-
finite. More rigorously, the susceptibility changes from +o to —oo when we pass
across the spinodal point (Fig. 6.2). Therefore, negative values of the susceptibility
correspond to the branch of unstable states.

Comparing (6.133) and (6.139), we see that the positivity of the susceptibility
in the stable or metastable state requires that the second derivative of the logarithm
of the ensemble partition function with respect to the magnetic field also remains
positive:

0*Inz

0 (6.140)

From Chap. 2, we recall that the negative logarithm of the ensemble partition func-
tion is the ensemble action of the free energy:

A =—InzE, (6.141)

Hence, inequality (6.140) transforms into the requirement that the second derivative
of the action of the free energy with respect to the magnetic field is always negative
along the stable and metastable parts of the equation of state:

azACE
on*

<0. (6.142)
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Since the free energy potential differs from its action only by the temperature as
a multiplier:

FE=TA® =Tz, (6.143)

and since this multiplier is not singular at the critical or spinodal point, inequality
(6.142) is valid for the free energy itself as well:

62FCE
on?

<0. (6.144)

This clearly can be seen from the dependence of the equilibrium free energy on the
magnetic field (Fig. 6.3) when the second derivative of this dependence is positive
in stable and metastable states and is negative in unstable states.

Earlier, we assumed that in the vicinity of the critical point, the correlation func-
tion decays as

g(R) ot — forR<< & (6.145)
Rd—2+7]

while for R >> & the decay is exponential. Since exponential decay is very “fast,”
we can assume that the integral of the correlation function in the fluctuation—
dissipation theorem (6.138) can be approximated by the integration only over the
distances of the order of the correlation length:
+¢ 4
x> gR)x [ gR)dRe [g(R)RTAR. (6.146)
[Rf<c -¢ 0

Substituting (6.145) into (6.146) and integrating, we find

qoc £ 4 (6.147)
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But in the vicinity of the critical point, both the susceptibility and correlation
length diverge. Along the isofield curve / = 0, these divergences are

1
o° —c, (6.148)
Vi
]
1
& o —oH, (6.149)
"
while along the critical isotherm
1
o« —Qc, (6.150)
|h|yh
1
oC — (6.151)
Z

Substituting these divergences into (6.147), we find the relations among the critical
indices:

re =Q2-nve, (6.152)

vy =Q2-n%Vv; (6.153)

Earlier, we have obtained that the mean-field approach provides ytc =1, y,? =2/3,
nc =0, vtC =1/2,and v,f =1/3. Obviously, these values satisfy (6.152—6.153).

Relations (6.152 and 6.153), which for our particular system happen to be equal-
ities, are a particular case of the Fisher inequality (Fisher 1969):

y<2-n)y, (6.154)

which is expected to be valid for an arbitrary magnetic system in the vicinity of its
critical point.

In (6.145), we have defined the critical index n° of the correlation function for
the vicinity of the critical point. In a similar manner, for the proximity of the spi-
nodal point, we define the spinodal index 1° of the correlation function by:

1

Analysis, identical to the considered above, provides similar relations for the spi-
nodal indices as well:
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7 =20, (6.156)
7h=Q2-n"W;. (6.157)

Therefore, the Fisher inequality again transforms into the equality for the spinodal
indices.

For the Ising model, the mean-field approach provided zero values for both criti-
cal and spinodal indices of the correlation function: n° =0 and 1n°=0. Thereby,
the indices of the susceptibility are just twice the indices of the correlation length.
The reader can notice that the solution (3.115) we obtained for the susceptibility is
proportional to the squared expression (6.105) of the correlation length:

yoc & if n=0. (6.158)

Therefore, in Sect. 6.2 we could avoid investigating the scaling behavior of the cor-
relation length saying that it is just the square root of the susceptibility. However,
we did not do that for the sake of systems whose indices of the correlation function
were not zero.

6.4 Magnetic Systems: The Ginzburg Criterion

In Chap. 3, we applied the mean-field approach to find the approximate solution of
the Ising model. But, we have not yet developed a criterion when this approxima-
tion is applicable because this criterion would require the knowledge of the behav-
ior of correlations in the system. Now, we turn our attention to this question.

We consider the ferromagnetic Ising model in the proximity of its critical point
when we approach the critical point from below (¢ < 0) along the binodal curve
(h=he =0). In Chap. 3, we demonstrated that the mean-field approach is equiva-
lent to the case when we can neglect correlations (3.183-3.185) in comparison with
the order parameter:

<(O'R ~{oR )cp )(GR’ ~{ow)ex )>CE <<{ow >2CE : (6.159)

This inequality is called the Ginzburg criterion (Ginzburg 1960).

To estimate the left-hand side of this inequality, we should estimate the value of
the correlation function g. Since the correlation length is the characteristic length of
the decay of correlations, we can estimate the correlation function as being of the
order of g within the volume §d and zero outside of this volume. For the susceptibil-
ity, this estimation provides
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2o [ gR)dRec g&?. (6.160)

—o0
Expressing g from this equation, we obtain

<(GR —(ow >CE)(GR' _<GR'>CE )>CE xgx éld (6.161)

Both the susceptibility and the correlation length diverge when we approach the
critical point along the binodal curve. Substituting the critical indices of these di-
vergences into (6.161), we find

<(GR —{or)es ) (GR’ ~{or ) )>CE * |t|d‘/107ylc : (6.162)

Next, we should estimate the right-hand side of criterion (6.159). This is also easy
since along the binodal curve the spontaneous magnetization has its own critical
index:

(or >CE ol ¢ \ﬂ’c . (6.163)

Substituting (6.162) and (6.163) into (6.159), we see that the Ginzburg criterion
transforms into

¢ |28 <, (6.164)

Applying a similar logic for the case when we approach the critical point not
along the binodal curve but along the critical isotherm ¢ = 0, we find

VC_,C

<(GR _<‘7R>CE)(GR' ~(Ow)ep )>CE oc |h|d o (6.165)
(OR g o hIPF, and (6.166)

|2 <<, (6.167)

For the mean-field approach, we have y,c =1, j/,f =2/3, vtC =1/2, v,? =1/3,
BE =1/2, and By =1/3. Substituting these values into (6.164) and (6.167), we
obtain

d-4
[t] 2 <<1, (6.168)
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ﬂ
|h| 3 <<1. (6.169)

When ¢t — 0 and /& — 0, these inequalities require that d > 4. Therefore, if the di-
mensionality of our system is higher than four, the mean-field approach is valid in
the close proximity of the critical point, providing the exact values of the critical
indices (but only the approximation of the critical temperature).

However, we are living in the three-dimensional space; and dimensions d < 4 are
of more interest to us. But for d < 4, inequalities (6.168 and 6.169) show that the
mean-field approach is no longer valid in the very proximity of the critical point.

What does this mean? Our purpose is to study the critical indices of a system.
But far from the critical point, the behavior of the system is determined by the laws
specific for this particular system. The universal power-law dependencies appear
only in the close proximity of the critical point. But the close proximity of the criti-
cal point is the very region where the mean-field approach does not work for d < 4!
Therefore, although the mean-field approximation is always very illustrative, it is of
little help to us in the most interesting three-dimensional or two-dimensional cases.
To study models in these dimensions, we should invent new approaches.

Dimension dVC =4 is called the upper critical dimension of the ferromagnetic
Ising model. In dimensions higher than d UC — 4, the mean-field approach works in
the vicinity of the critical point and provides the exact values of the critical indices.
In dimensions lower than "¢ = 4, the mean-field approach is no longer valid in the
close proximity of the critical point. Therefore, the critical indices, predicted by this
approach, do not correspond (and are not even close!) to the real values measured
experimentally or found analytically (for example, mean-field ﬁ,c =1/2 versus ex-
act ,Btc =1/8 for the two-dimensional n.n. Ising model and numerical ﬂ,C =0.325
for the three-dimensional n.n. Ising model).

Let us now consider the case d < 4. Criterion (6.159) is no longer valid. Instead,
the correlations become comparable with the order parameter:

(o ~(or)er ) (or (om0 )er )., = (o) (6.170)

This leads to the following relations for the critical indices:

dvi =2BF +yf, (6.171)

dvy =28 +7;. (6.172)

These relations are called the hyperscaling relations because they “glue” together
two different scales. At scales less than the correlation length, the behavior of the
system is determined by correlations (6.162, 6.165)—fractal behavior of small-
phase clusters. At larger scales, we see the scaling (6.163, 6.166) of the order pa-
rameter, determined for the whole system—Ilarge-phase cluster of the size of the
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system. Joining these two different types of behavior at the scale of the correlation
length provides the hyperscaling relations.

For d > 4, inequality (6.159) is valid no matter how close the critical point is.
Therefore, in these dimensions, the correlations never become comparable with the
order parameter, and the hyperscaling (6.171 and 6.172) is not valid.

This can be explained from another point of view. The mean-field approach is
dimensionless; so far, we have never seen the mean-field approach being directly
influenced by the dimensionality of the system. Therefore, while the mean-field
approach determines the critical indices for d > 4, the dimensionality of the system
cannot be part of the relations among the critical indices. Only when the mean-field
approach stops to work for d < 4, the hyperscaling relations become valid, and the
dimensionality of the system begins to influence the critical indices.

Earlier, when in Sect. 3.4, we discussed the absence of phase transitions at non-
zero temperatures in the one-dimensional system with short-range interactions, we
saw two ways to improve the situation: To increase the dimensionality of the sys-
tem or to increase the range of interactions. So far, we have investigated only the
influence of the dimensionality of the system on the applicability of the mean-field
approach. Let us next turn our attention to the second aspect—the range of pair
interactions.

The range of interactions is represented by the root-mean-square radius (6.65) of
pair (bi-spin) interactions. When we substituted (6.161) into criterion (6.159), we
did not take into account that the correlation function (6.73) is proportional to 1/ A?.
Modifying (6.164) and (6.167), we find

| 2A0 1 <o A2, (6.173)
| B |5 2B T <o A2 (6.174)

The higher A, the stronger these inequalities. In other words, the longer the interac-
tions in the system, the better the system is described by the mean-field approach.

For simplicity, let us consider again the ferromagnetic Ising model of dimen-
sion d < 4. Substituting the mean-field exponents ;/tC =1, y,? =2/3, v,C =1/2,
vi =1/3, BS=1/2, and Bf =1/3 into (6.173) and (6.174), we find that the
mean-field approach is still valid even for d <4 when

d—4
|1] 2 << A?, (6.175)

d-4
|h| 3 << A’ (6.176)

Since we consider d < 4, it is more convenient to rewrite these inequalities as

|t >> > (6.177)

Ad—d
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| h[>>— (6.178)

Ad—d

The nearest vicinity of the critical point
1
[t —, (6.179)
Ad—d
1

|hl<— (6.180)

Ad—d

is called the critical region. So, we have proved that the mean-field approach is ap-
plicable even for d < 4 outside of the critical region. However, within the critical
region, it is replaced by the hyperscaling relations (6.171 and 6.172).

There are systems (like the three-dimensional weak-coupling superconductors)
when the critical region is very narrow (of the order of |¢| <107'°) and is not observ-
able experimentally. In these cases, even in low dimensions, the observed behavior
is described by the mean-field critical indices.

For the particular case d =3, the size of the critical region depends strongly on
the range of interactions:

1
|t|SF, (6.181)

|h|< %. (6.182)

So, when the interactions are long-ranged, the critical region can be very narrow
leaving almost all proximity of the critical point to the zone of the mean-field de-
scription. As we already know from Chap. 3, Problem 3.7.4, in the limit of infinite
interaction range, the mean-field solution is exact for an arbitrary dimensionality of
the system.

Another important result to observe from (6.179) and (6.180) is that the lower
the dimensionality of the system, the weaker the dependence of the size of the criti-
cal region on the range of interactions. So, by lowering the dimensionality, we in-
crease the size of the critical region, pushing the zone of the mean-field validity
away from the critical point.

The reasoning (6.159-6.169) we discussed for the critical point will not work
in the proximity of the spinodal point. Indeed, while the divergencies of the sus-
ceptibility and correlation length are with respect to the deviations of the field pa-
rameters from their spinodal values, |r-fy| and |h-hy|, the appearance of the order
parameter (6.163) should still be attributed to the critical point.
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6.5 Magnetic Systems: Heat Capacity as Susceptibility

The heat capacity is somewhat similar to the magnetic susceptibility. Firstly, it is the
response of the energy of the system, which is a fluctuating parameter, to the change
of the temperature as a field parameter:

_[%E
C{Ml’ (6.183)

Secondly, the heat capacity is directly connected with the energy fluctuations in
the system. To see that we consider the partition function of an arbitrary thermal
system:

ZE =3 P (6.184)
{E}

Differentiating the partition function with respect to (—f3) = 7 we find

azcE _pH,,,
B D He M =ZFY Hwh =Z%(E),, or (6.185)
{E} {E}

=am2“
o-B)

(E)es

(6.186)

Differentiation for the second time with respect to (—f3) provides

aZZCE g
c= D (Hy e ™ =20 (Hy, Y wif, =2 (E*) o (6.187)
a(_ﬁ) {E} {E}

1 o0’z
(E?) - 7 5 py (6.188)
The formulae here are very similar to (6.128—6.132). To obtain the variance of
the energy, we should be looking for the second derivative of the logarithm of the
partition function:

Fmze 1 &z (1 z* Y 2 2
3Py :Fa(—ﬁ)z_(ﬁa(—mj =(E), ~(E)er =((E-())')
(6.189)

Now, when we have the variance of the energy at the right-hand side, we should
transform the left-hand side into the response of some fluctuating parameter to the
change of the field parameter (—f3):
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Oz _ o omz” _9(E),
o(=p)y  o=p) d-p) o-p)’

(6.190)

where in the last equality we have utilized (6.186). We see that the fluctuating pa-
rameter, which we have been looking for, is the energy of the system.

What is the physical meaning of quantity (6.190)? Substituting f =1/T explic-
itly, we find

2 CE 2 CcE P
6a(lnﬁZ)2 :Tza%TzaiTanCE:TZ(T%):_TZ(Taaiz \J:T2C.

(6.191)

So, the parameter, we have been looking for, is proportional to the heat capacity
C with the coefficient of proportionality 7> which is not singular at the critical
point. Therefore, this is the heat capacity that plays the role of the response function
(6.190) and variance (6.189).

We should add here that since variance (6.189) is expected to be always positive
(or zero), we expect the heat capacity to be positive (or zero) also:

Coc<(E—<E>CE>2> > 0.

CE

(6.192)

When this inequality is not valid, the considered state of a system cannot be stable
or metastable. Therefore, as we saw in Chap. 3, the positivity of the heat capacity
can serve as a criterion distinguishing stable and metastable states from unstable
states (Fig. 6.4).

Comparing (6.192) with (6.191), we see that when we consider stable or meta-
stable states, the positivity of the heat capacity determines the sign of the following
second derivatives:

0*InzE
>0, (6.193)
o(=p)
Fig. 6.4 The sign of the heat h T<T,
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Fig. 6.5 The equilibrium free
energy

AT o, (6.194)
o(-B)’
aZFCE

<0. 6.195
o(-B)’ - (15

This can easily be observed from the dependence presented in Fig. 6.5.

Summarizing, we have proved that heat capacity is the response of the energy of
the system (as a fluctuating parameter) to the change of the field parameter (—f3).
Also, it is the variance of energy fluctuations. What we have not proved is that the
heat capacity obeys some kind of a fluctuation—dissipation theorem.

If we proved that, we would be able to refer to the heat capacity as to the heat
susceptibility. But can we expect that the heat capacity will also obey the fluctua-
tion—dissipation theorem?

So far, we have considered the heat capacity of an arbitrary thermal system.
There is a huge variety of different systems, with strong correlations and without
correlations. Therefore, from an arbitrary system it is difficult to expect that the
integral of its correlations would correspond to the heat capacity.

Correlations can be absent in a system at all. The reader should recall here the
two-level Ising model from Sect. 3.3 when all spins were independent one from
another, meaning that there are no correlations in the system. However, the heat
capacity of such a system was nonzero. Therefore, considering an arbitrary thermal
system, we cannot expect the fluctuation—dissipation theorem to be valid for the
heat capacity of this system.

Does this mean that the heat capacity cannot be considered as a susceptibility of
the system?

To answer this question, let us summarize the criteria by which we define the
quantity to be a susceptibility:
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1. The susceptibility must be the response of some fluctuating parameter ¢ to the
change in some field parameter 7

(6.196)

There are two field parameters in the CE of a magnetic system: the magnetic field /
and the temperature 7 (or the inverse temperature ). For the magnetic susceptibil-
ity, the fluctuating parameter was the magnetization while for the heat capacity, the
fluctuating parameter was the energy of the system. Therefore, both quantities cor-
respond to this requirement.

2. The susceptibility must be equal to the variance of the fluctuating parameter ¢.

Apn = <(¢ ~($)es) 2>CE- (6.197)

At first glance, this requirement makes it more difficult to choose the appropriate
quantity. However, this is not generally true. For both the magnetic susceptibility
and heat capacity above, we were looking at the second derivative of the logarithm
of the partition function with respect to the field parameter:

_ 0*Inzt

P (6.198)

Z¢,7{

We did that because the exponential functions in the partition function contained the
product of the field parameter and the fluctuating parameter:

ZCE _ zeconst . n'¢+f(¢) (6199)
&

Therefore, if we see that the exponential function in the partition function con-
tains linear product of a field parameter 7 and some expression, we choose this
expression to be the fluctuating parameter:

ZF =N == (6.200)
{}

This guarantees that the susceptibility, defined as (6.196), equals the variance of the
so-chosen fluctuating parameter.

So, for the Ising model the Hamiltonian contains the term p#hNm which is lin-
ear in the magnetic field 4. Therefore, we have chosen pNm to be the fluctuating
parameter.

In the case of the CE of an arbitrary thermal system, the partition function is de-
fined as the sum of the exponential functions of —BE. We see that this expression is
linearly proportional to the field parameter (—f3). So, we have chosen the energy of
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the system to represent the fluctuating parameter. This automatically provided that
the heat capacity equaled the variance of energy fluctuations.

3. The last requirement is that the susceptibility must obey the fluctuation—dissipa-
tion theorem.

We have proved this statement for the magnetic susceptibility, but we were not able
to prove it for the heat capacity in the case of an arbitrary thermal system. Does this
mean that the heat capacity cannot be considered as a susceptibility?

In fact, we were just one step away from a possible answer. Let us recall how we
have managed to prove the fluctuation—dissipation theorem for the magnetic sus-
ceptibility. We substituted magnetization (6.135) as the sum over the spins into the
variance (6.134) of the magnetization and immediately obtained the required result!

Why cannot we do the same for the heat capacity? Because in the case of an
arbitrary thermal system with arbitrary interactions among the system’s degrees of
freedom, the Hamiltonian is no longer additive. And, we cannot split the energy into
the sum over the degrees of freedom.

However, what is not possible in the general case can be quite possible for a
particular system. Let us consider, for example, the ferromagnetic n.n. Ising model
in the zero magnetic field. The Hamiltonian of the system is

Hg,, =—-J Y o0, (6.201)

<i,j>pn.

We still cannot split this Hamiltonian into the sum of the energies of separate

spins because of the pair (bi-spin) interactions. However, we can introduce new

variables &, =—J0O;0;, one for each n.n. pair of spins, corresponding to the

energy of interactions. In terms of these new variables, the Hamiltonian becomes
additive

Hop = 2 eaps,, - (6.202)

<i,j>n.n.

Substituting Hamiltonian (6.202) into (6.189), we find

o @10 ([ Z e | T ) (6203

<L:JZnn <) Znn.

_< Z 8<i»/‘>n.7,.> < Z 8<i:f’>n.n>
< J > cE \<I >0 CE

= Z Z (<g<i’j>r7.n 8<i'~j'>n n. >CE - <g<i’j>r7.n >CE <8<i',.f'>n n >CE )

<E >, <>,

Due to the lattice symmetry over the choice of the interacting pairs, we can
remove one sum, replacing it with the total number of the n.n. pairs Ng /2 on the
lattice
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Coc % > (<g<io,jo>n_n_g<i’,_/'>n_,,. >CE _<g<i0:.fo>n.n. >c5 <g<i'7.i'>n,n_ >CE ) (6.204)

P
<i ’-/ >)‘I.Yl.

where ¢ is the lattice coordination number.

This is the result we have been looking for—the fluctuation—dissipation theorem
is valid for the heat capacity of the n.n. Ising model. And, we can now refer to the
heat capacity of this particular system as the heat susceptibility.

Looking back, we see that all that was required to prove the heat capacity to
be the susceptibility was to find some quantities, making the Hamiltonian addi-
tive. However, we should always remember that the correlations in that case were
correlations among the new variables ¢_; ;. ~=-Jo,0; but not among the initial
degrees of freedom of the system. So, for our particular system, the heat capacity
was associated with the correlations not among the spins but among the energies of
the spin pairs.

In other words, for many systems, the heat capacity can be proved to be the heat
susceptibility. However, it no longer equals the integral of correlations among the
degrees of freedom of the system. Instead, we should look for some new quantities,
in terms of which the Hamiltonian can be made additive. Thereby the heat suscepti-
bility will correspond to the correlations among these new quantities.

6.6 Percolation: The Correlation Length

Next, we consider the fluctuation—dissipation theorem for percolation.

We define the correlation function G(R) (also known as a pair connectedness) as
a probability that if it is known that the initial site is occupied (and, thus, belongs to
a cluster), then a site at distance R is also occupied and belongs to the same cluster.
Since for R = 0 the correlation function is always unity, G(0) = I, in contrast to the
Ising model the correlation function in the theory of percolation is always normal-
ized and is, therefore, the autocorrelation function (6.2).

The correlation length is defined as a characteristic length of the decay of the
correlation function. The percolation problem is unique in the sense that it provides
a very illustrative representation of the behavior of clusters in the system.

What does correlation length represent? By definition, it is the characteristic
length of the decay of the correlation function. But the correlation function is itself a
probability that a site at distance R belongs to the same cluster. Thus, the correlation
length represents, crudely speaking, the linear size of clusters.

More rigorously, the correlation length is defined as the root-mean-square dis-
tance between two sites belonging to the common cluster:

> R*G(R)
R
>.GR) ’
R

(AN
Il

(6.205)
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where the correlation function plays the role of the probability distribution. In fact,
averaging (6.205) represents the ensemble averaging of squared distances between
sites belonging to the common cluster:

2 R

<i,]>connected p-E

s(p)= : (6.206)

> o1

<i,]>connected p-E

Here, Z denotes the sum over all pairs of occupied sites on a lattice which

<1,]>connected

are connected by the common cluster. Averaging < >p7E is the averaging over all pos-
sible realizations of clusters on a lattice for the given value of the field parameter p.

In other words, we consider the ensemble of identical systems with the bound-
ary condition p = const (p-ensemble, p-E). For each system in the ensemble, we go
over its sites, one by one, and for each site we decide whether it will be occupied
(with probability p) or empty. So, each system will represent a particular realization
of the cluster distribution. Then, we go over all pairs of connected occupied sites in
the ensemble and average the distance in accordance with (6.206).

But in expression (6.206) for the correlation length, the averaging of distances
over all pairs of connected occupied sites may be separated into groups where in a
particular group we average only those pairs that belong to s-clusters:

s <i,j>e s—cluster
2mf o 21
K <i,j> e s—cluster p-E

The radius of gyration for a given s-cluster is introduced as the root-mean-square
distance between the sites of this cluster:

> Ry > R

&(p)= (6.207)

R _|<i,j>es—cluster | <i,j>es—cluster
s—cluster = Z 1 - 1 : (6208)
—s(s—1)
<i,j>es—cluster 2

What does this radius represent? If the center of mass of the cluster is located at
point R;:
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Ll -
Ry=-) R, (6.209)
S i=1

where the sum goes over the sites of the cluster, then for the radius of gyration we
find

<i,j>es—cluster

s—cluster — 1

<i,j>es—cluster

T —
El.’j;ij((Ri_Ro)_(Ri—Ro))
1 K
3 2!

i,j=lizj

%i {(R,~R,’ -2(R, -R )R, -R,)+ (R, -R,)’|

i,j=1

%S(S —-1)

:ﬁ\/Li(ﬁi_ﬁo)Z_ (6.210)

s=143

We see that the radius of gyration of the cluster is the root-mean-square radius

l S _ _
—Z R; - Ro)2 of the cluster times the unimportant multiplier /ZL1
S =1 S

Instead of considering the radius of gyration for a particular s-cluster, we may
average it (root-mean-square averaging) over all s-clusters on a lattice:

2
< )y Ri,j>
<i,j>es—cluster p-E

Rs (p) = <Rs—cluster2> = : (62 1 1)
e ls(s -1)
2

But the expression in the numerator is exactly what we see in the numerator of the
correlation length (6.207). Substituting, we find

S, s(s=DRA )
Ep)= | 1 : (6.212)
Z ng ES(S -1)
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In the limit of big clusters, s >> 1, this expression is simplified as

(6.213)

This result is easily interpreted. Let us return to (6.205) when it is known that the
site at R =0 is occupied. The probability that this occupied site belongs to an s-
cluster is sn (p)/ p. Thus, with this probability, this site will form (s —1) pairs with
other sites of this cluster. Meanwhile, the square length of these pairs, averaged in
the ensemble, is R_c2 (p) so that our expectation for the correlation length (6.205) is:

Z%@—DR.?(;»
E(p)= |2 . (6.214)

Sy 4
Zye

which returns us to (6.212).

That is why we have said that the percolation problem is unique; observing the
structure of clusters, we immediately find the correlation length as equivalent to the
(root-mean-square) linear size of the clusters which is very illustrative. Let us now
see what conclusions this may lead to.

Below the percolation threshold, everything is straightforward: The correlation
length is the averaged linear size of finite clusters. The higher p (which still remains
below p(), the larger correlation length and clusters. When the system tends to
the percolation threshold from below, the correlation length diverges in accordance
with

x| p-pcl™. (6:215)

So does the size of the clusters since they are supposed to give rise to an infinite
percolating cluster.

But above the percolation threshold a new length appears—the length of a perco-
lating cluster—which coincides with the size of the whole system. So the question
arises—does probability G(R) also predict the size of the percolating cluster? When
in accordance with (6.213), we sum all the sizes of clusters, should we average the
percolating cluster as well?

The situation resembles the case of magnetic systems. Above the critical point,
the correlation length also represents the linear size of clusters (magnetic domains).
Below the critical point, two phases arise. A homogeneous system, represented by
one of the phases, may be considered as one big cluster, occupying the whole system.

But for magnetic systems, the question whether the correlation length represents
the linear size of magnetic domains below the critical point does not arise. The rea-
son is that in the correlation function (6.3), we subtract the averaged magnetization
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so that the correlation function represents the heterogeneous response to an external
disturbance instead of representing a homogeneous phase.

For example, let us consider the ferromagnetic Ising model below the critical
point. Besides, we consider the system in the presence of magnetic field # > 0 so
that the majority of spins in the system are oriented “up.”

The external disturbance is then represented by a spin which is oriented “down”
and this orientation is fixed by some external forces. The correlation function is then
the response of the surrounding spins to this disturbance; and the correlation length
is the characteristic length of the decay of this response. The correlation length does
diverge at the critical point, but far from this point it is small and definitely not of
the size of the magnetic domain which for /# > 0 occupies the whole system.

Returning back to percolation, if we included the percolating cluster in the prob-
ability G(R), the correlation length would be always infinite above the percolation
threshold. We would definitely not want that. Instead, we prefer that power-law
(6.215) would represent the divergence of the correlation length for both sides of the
percolation threshold so that above the percolation threshold the correlation length
would be finite and would represent the linear size of only finite clusters. We will be
able to achieve all this if G(R) represented only the finite clusters and the percolat-
ing cluster did not participate in averaging (6.213).

As we have already discussed, the correlation length plays the role of the charac-
teristic length, dividing the scales. First, we consider the system below the percola-
tion threshold. On scales smaller than the correlation length, the behavior is domi-
nated by scale-invariant fluctuations. If we were looking at the lattice through a
“window” with the linear size smaller than the correlation length, we would observe
that clusters are fractal and that there is no characteristic length on all these scales,
beginning from the lattice constant and ending by the size of the window.

So, in Fig. 6.6, the two smallest squares (A and B) represent the scales smaller
than the correlation length. Each of these windows contains small clusters whole
and parts of big clusters which may percolate the window. Obviously, the bigger
window may contain bigger clusters. But the structure of clusters is scale invari-
ant—if we shrank window B together with its clusters to match the size of window
A, the structure of clusters of window B would transform into the clusters of win-
dow A (on average).

On the contrary, if we are looking at the system through the window of the
size larger than the correlation length, we see the appearance of the characteristic
length—the correlation length. The fractality breaks on these scales, and the struc-
ture of clusters is no longer scale invariant.

So, in Fig. 6.6, the correlation length, representing the averaged linear size of
clusters, is of the order of the size of window B. Looking at the system through
bigger windows, C, D, or F, we no longer see the fractal, scale-invariant structure
of clusters. Instead, we see the presence of a characteristic length—indeed, we visu-
ally observe that sizes of clusters are limited from above and there no longer present
parts of big clusters that are able to percolate the window.

Above the percolation threshold, almost the whole lattice is occupied by the
percolating cluster (the area filled by pattern in Fig. 6.7). The finite clusters exist
only within the holes of this cluster. Since the correlation length represents here the
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Fig. 6.7 Schematic represen-
tation of clusters above the
percolation threshold. The
pattern, occupying almost
the whole lattice, represents
the percolating cluster. Finite
clusters exist only within

the holes of the percolating
cluster

averaged linear size of the finite clusters only, it should be of the order of the size
of window B.

If we are looking at the system through a window with size less than the correla-
tion length (windows A and B), we again see the fractal, scale-invariant structure
of finite clusters and parts of percolating cluster. For bigger windows (C, D, and F)
the fractality, obviously, no longer exists. The main part of the window (D and F)
is occupied now by the nonfractal, d-dimensional mass of the percolating cluster.

6.7 Percolation: Fluctuation—Dissipation Theorem

The role of the susceptibility in percolation is played by the mean cluster size:

2
S(p)= W (6.216)

We will prove this to be true later in this section. For now, we may rely on the intui-
tive understanding that the numerator Z s’n_(p) (the very quantity that is diverging
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at the critical point and determines the scaling of the mean cluster size) represents
the averaged square of a fluctuating parameter s. As we have seen above, the sus-
ceptibility of a system should correspond to the variance of a fluctuating parameter.

Problem 6.7.1

Find the correlation function, correlation length, and the critical index v for
the case of the one-dimensional percolation. Prove the validity of the fluctua-
tion—dissipation theorem.

Solution: We consider the system to be below the percolation threshold,
P < p. =1. When we determine the correlation function, we know about the
initial site R = 0 that it is occupied. The probability G(1) that the neighboring
site to the right belongs to the same cluster is just the probability p that this
site is occupied also: G(1) = p.

Similarly, the probability G(R) that the site at distance R to the right be-
longs to the same cluster is the probability p* that this site and all the inter-

mediate sites at distances 1, 2, ..., R —1 are occupied:
G(R) = p* = e ™4 where (6.217)
E(p)=-1/Inp. (6.218)

At the percolation threshold p = p. =1, we, obviously, have
G(R)=1and &(1) = +oo. (6.219)

In the vicinity of the percolation threshold, p — p. —0, we expand (6.218),
1
&(p)oc —, (6.220)
I-p

to findv =1.

In Chap. 4, we considered two methods to find the mean cluster size. In
the vicinity of the percolation threshold, both quantities are of the order of the
correlation length:

‘ -

S(p)= (6.221)

=

<

AN

S(p) = (6.222)

gk
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This is expected because in the one-dimensional case, the size s of a cluster
equals the length of this cluster.

To obtain the analogue of the fluctuation—dissipation theorem, we inte-
grate the correlation function:

Z G(R) = G(0)+2Z G(R) _1+2Z = P_g (6.223)

R=—

“B

Thereby we prove that the integral of the correlation function equals the mean
cluster size S. So, S does indeed play the role of the susceptibility in the one-
dimensional case.

For an arbitrary lattice, the correlation function G(R) is defined as the probability
that if the site at R =0 is occupied, the site at distance R is also occupied and
belongs to the same cluster. If we know that the site at R = 0 is occupied, the prob-
ability for this site to belong to an s-cluster is sn, (p)/ p.

But if this site belongs to an s-cluster, it is connected with other (s —1) sites of

. S < sn .
this cluster. Thereby, on average this site is connected to z (s— l)ﬂ sites.
p

s=1
In comparison, by the definition of the correlation function, this site is connected
to ZG(R) ZG(R) G(0)= ZG(R) 1 sites. Equating these two results, we

R#0
prove the ﬂuctuat10n—d1ss1pat10n theorem for an arbitrary lattice:

ZS n.(p)

ZG(R)—lzi(s—l)sn"(p) = ~1=8-lor  (6.224)
® - P ans ()
Z G(R)=S. (6.225)

Thereby, S is indeed the susceptibility of the system.

We expect the fluctuation—dissipation theorem to be valid both below and above
the critical threshold since in both cases it represents only the properties of finite
clusters. Above the percolation threshold, we include the percolating cluster s = +o00
neither in the correlation function nor in the sums of the susceptibility (6.216).
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6.8 Percolation: The Hyperscaling Relation and the
Scaling of the Order Parameter

The correlation length serves as a characteristic length, dividing the scales. On
scales smaller than the correlation length clusters are scale-invariant with the fractal
dimension D whilst on larger scales the fractality is broken by the appearance of the
correlation length as a characteristic length.

So, for the s-clusters whose linear size R, (p) is less than the correlation length,
R, <&, by the definition of the fractal dimension D we have

socRP or R, ocs'P (6.226)

as a connection between the measure s and the linear size R, (p) of the fractal set.
Meanwhile, the condition R, < & transforms into

s<s:(p)=EP(p). (6.227)

where s;-cluster is a cluster whose averaged linear size corresponds to the correla-
tion length.

Let us return to the correlation length (6.213). When the system tends to the
percolation threshold, the correlation length diverges in accordance with (6.215) so
that the fractality occupies larger and larger scales. Thus, more and more clusters
obey (6.226) with the exception only for the biggest clusters.

As an approximation, we consider that (6.226) is valid for all clusters, even the
biggest. Substituting (6.226) into (6.213), we find

Znss
E— (6.228)

Z:nss2
s

2(1+1/D)

&(p)=

The singular behavior of the correlatlon length is accumulated in (6.215). The
singular behavior of the sum Zn s~ determines the divergence of S. The sum

Znssz(mm) represents the moment M, with k =2(1+1/ D) whose singular behav-

ior we find with the aid of (4.96):

7-3-2/D
M () p=pel o . (6.229)
D

Substituting all these results into (6.228), we find the relation among the critical
indices and the fractal dimension D of small clusters:

Loy my s E322ID (6.230)

(o2
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ovD=1. (6.231)

What does this relation mean physically? Let us return to hypothesis (4.52 and
4.53):

ny(p)ocs e P where (6.232)

c(p)od| p—pc |77 forp — pe. (6.233)

Substituting ¢ from (6.231) into (6.233), in the vicinity of the percolation threshold
we find

L1
c(p) < ’g‘_D = . . (6.234)

This transforms hypothesis (6.232) into

N
ny(p)ocs e VT (6.235)

We see that for clusters whose linear size R (p) is less than the correlation length
(s <s¢) the exponential function is of the order of unity, and the cluster-size distri-
bution decays as a power-law:

ng(p)ocs . (6.236)

This is expected since all clusters on scales smaller than the correlation length are
fractal.

On the contrary, for big nonfractal clusters (s > s;), the decay is dominated by
the exponential function. Although big clusters are not fractal, their parts, cut by a
window with the size smaller than the correlation length, are still fractal with the
same dimension D along with all small clusters. So, the big clusters are not fractal
as a whole but their internal structure is fractal.

Below the percolation threshold, p < p., there is no percolating cluster while the
correlation length is much smaller than the size of the system: & << L = N Vd When
the system tends to the percolation threshold, the correlation length diverges, and
the fractality occupies larger and larger scales. The percolating cluster appears when
the correlation length becomes comparable with the linear size of the system, & oc L
(or a bit earlier since the correlation length represents the averaged linear size of all
clusters on a lattice while extremes of this statistics are larger).

If we continue to increase p, the correlation length exceeds the linear size of the
system, & > L, and becomes infinite at the percolation threshold. The fractality, in
the meantime, occupies all possible scales. In particular, the appearing percolat-
ing cluslt)er, cut by the size of the system as if by Procrustes’ bed, is also fractal:
Spe oc L™,
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By definition, the order parameter NPy is the number of sites belonging to the

percolating cluster. Equating it to sp oc P, we find

Py oc [P, (6.237)

If we continue to increase p already above the percolation threshold, p > p., the
correlation length decreases. While it is still larger than the system size, & > L, the
percolating cluster remains fractal as a whole whilst (6.237) remains valid.

But if, while we are increasing p, the correlation length becomes smaller than
the system size, & < L, only the internal structure of the percolating cluster remains
fractal on scales smaller than the correlation length. However, the percolating clus-
ter as a whole is no longer fractal but gives rise to the scaling of the appeared order
parameter:

Poc(p) *d p=pc I (6.238)

The transformation of (6.237) into (6.238) must happen when the correlation
length passes the size of the system: Loc & oc| p—pe [V, Equating (6.237) to
(6.238) and substituting L oc| p— p [V, we obtain the hyperscaling relation, which
associates the critical indices with the dimensionality of the system:

d-D= Eord (1+ Bo)D. (6.239)

The origin of this relation is that we “glue” together two types of behavior when one
of them is transformed into another.

In fact, we “glue” together different scales. Due to the importance of this dis-
cussion, let us again consider the system slightly above the percolation threshold
p — pc +0. Since p is close to the percolation threshold but does not equal it, the
correlation length is large but finite.

Above the percolation threshold, the percolating cluster exists and percolates the
infinite system. Let us consider its structure through the windows of different size L.

When L < 5 the window cuts a piece of the percolating cluster which is fractal:

S part of PC % LP. However, such small scale L < & does not represent the behav1or of
the infinite percolating cluster. Since the scaling dependence Py (p) | p — pc \ is
defined for the infinite cluster, we do not expect that the small piece of this cluster
would represent this scaling.

When L > &, the piece of the percolating cluster, cut by the window, is no longer
fractal but is already big enough to represent the scaling behavior of the order pa-
rameter: s, - pc L p=pe |P. “Gluing” these two scales, as two sides of one
coin, together at L = £, we obtain the hyperscaling relation (6.239).

In Chap. 4, we hypothesized that the number of sites in the percolating cluster
scales as
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0,p < pc
NPpo(p, L =+0)c < IP, p= pc, (6.240)

d
L >p>pC

when there is no percolating cluster below the percolation threshold, it is fractal at
the percolation threshold, and inherits the dimensionality of the embedding lattice
above the percolation threshold. However, we should always remember that this
hypothesis was introduced for the case of the infinite system.

So, if we consider an infinite system above the percolation threshold, the whole
percolating cluster is not fractal and has the dimension d, but its structure on scales
smaller than the correlation length is fractal with the dimension D. But how is it
possible? How can a union of sets with the dimension D form a set with the dimen-
sion d?

To illustrate this transition of the dimensionality, let us consider a system of size
L above the percolation threshold. If L <&, the percolating cluster is fractal and
contains s, oc L” sites.

If, on the contrary, L > &, we divide the system of linear size L into cells of size
&. The part of the percolating cluster within each cell is fractal and consists of &”
sites. Since there are (L /& )? cells, the total number of sites in the percolating cluster
is EP(L/&).

Summarizing these tendencies, we obtain

P L<é&
d
NPpc(p,L) fD(éj y >§f0rp>pc or (6.241)
IP,L<
NPpe(p,L) S for P> pe. (6.242)
Lde_d,L 5

We see that on different scales, the order parameter has, indeed, different dimen-
sionalities. The transformation of one dimensionality into another happens similar
to fractals considered in Chap. 1 when the dimension of a fractal did not depend on
the dimension of the initial branch but, instead, was determined by the properties of
the fractal generator.

Considering the infinite lattice, & < L =+, from (6.242) we find

1 _ _
Ppc(p,L=+oo)ocL—dL"§D 4 =P forp> pe. (6.243)

But the scaling of the order parameter in the case of the infinite lattice is de-
fined as Ppq(p,L =+o) oc| p— pe |ﬁ while the scaling of the correlation length
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is & o] p— pc |- Substituting these power-law dependencies into (6.243), we re-
turn to the hyperscaling relation (6.239).
Functional dependence (6.241 and 6.242) may be written as

LL<¢
NP (p) o< LP [Ldi Lot forp > pc, (6.244)
,L>

S

representing the finite-size effect in the system. The role of the scaling parameter is
played by the ratio L / £ whose value chooses one of two possible scaling asymptotes
of the system’s behavior. We will return to the finite-size effect in Chap. 8 in more
detail.

In the case of magnetic systems, the hyperscaling relation (6.171 and 6.172) was
valid only below the upper critical dimension. A similar situation is observed in per-
colation, only now the upper critical dimension is d = 6. In higher dimensions, the
dimensionality d of the system does not influence the values of critical indices be-
cause in these dimensions they are determined by the mean-field approach and are
equal to the critical indices of the infinite-dimensional system (the Bethe lattice).

For magnetic systems, we saw situations when the hyperscaling relation was not
valid even below the upper critical dimension. These cases corresponded to sys-
tems with long-range interactions. Similar behavior can be observed in percolation
as well when we introduce long-range interactions by connecting into a common
cluster not only the occupied nearest neighbors but also occupied sites separated by
larger distances.

When =2 <1 and d £6, with the aid of the hyperscaling relation (6.239) we
obtain o

Tkl R g DU—k)=vd—kvD. (6.245)
O

This transforms the divergence (4.96) of the moment M, found in Chap. 4, into

T—k—1 ékD s k
My(p)| p—pc| © ocg—doc;—d. (6.246)

This expression illustrates that the logarithm of the moment is proportional to &

In M (p) < klns, —dIng o (kD—-d)In¢. (6.247)
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6.9 Why Percolation Differs from Magnetic Systems

Considering percolation, we have built several quantities, 7, Py, S, G(R), &, which
resemble the quantities of magnetic systems but have no direct relations with them.
For example, the correlation function and the susceptibility required specific defini-
tions and were not built on the base of the formalism of statistical physics.

Why is the problem of percolation special? To answer this question, let us com-
pare the principles lying behind correlation functions in percolation and in magnetic
systems.

Problem 6.9.1

Consider percolation on an arbitrary lattice. Introduce spin variables o, when
o, = +1 for an occupied site and o, = 0 for an empty site. Find the correlation
function (6.3):

g(R;) = <(O'[ —(o;)piE)(O', _<O-j>p_E)>p—E

=<0,0,>, . —<0,> .. (6.248)

Solution: By definition, o, = +1 with probability p for an occupied site and
o, =0 with probability (1— p) for an empty site. Since the probability for a
site to be occupied or empty does not depend on whether other sites are occu-
pied or empty, each spin is independent of the state of other spins:

<0,0;>,5=<0,>,:<0,> o (6.249)
This immediately provides that the correlation function defined in accordance
with (6.248) is always zero when R, # 0.

Problem 6.9.1 demonstrates that if we decided to define the correlation function
in percolation similar to magnetic systems, it would make no sense since whether
a site is occupied or not does not depend in percolation on whether other sites are
occupied or not.

That is why we have employed a different definition of the correlation function
G(R) for percolation—as the probability that if the initial site is occupied, the site
at distance R is also occupied and belongs to the same cluster.

The key phrase here is belongs to the same cluster. For magnetic systems, we
did not care whether two spins at distance R were or were not connected by a chain
of spins with the same orientation. For spins what was important is how many spins
are “up” or “down.”
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On the contrary, in percolation first we care about how occupied sites are con-
nected to one another. The origin of this specific request arises from the criterion
we employ to represent a phase transition. In particular, we associate the percolation
threshold with the appearance of a chain of occupied, connected to one another sites
which connect the opposite edges of a lattice.

While statistical physics cares about the states of sites so that the ensemble
assigns probabilities for a site to be in this or other state, percolation studies the
connectivity among sites when the ensemble deals with probabilities for sites to
form clusters.

The simplest example is when we try to build a microcanonical or canonical
ensembles for percolation. Let us imagine a lattice which contains exactly N, occu-
pied sites (which is isolated with N, occupied sites). As a microstate, we may con-
sider a particular configuration of occupied sites on the lattice. For example, for the
lattice with N =3 sites, two of which are occupied (N, = 2), the possible micro-
states are {eeo}, {soe}, and {oss}.

The diversity of all microstates represents the microcanonical ensemble with the
boundary condition N, = const. The statistical weight of the ensemble corresponds
to the number of ways to distribute N, occupied sites among N sites:

e N!

S ATAR (6.250)

Here, we even comply with the requirement of statistical physics for all microstates
to be equiprobable:

w'c? L (6.251)

= MCE
r

To build the canonical ensemble, we should substitute the boundary condition
N, = const by the boundary condition p = const. We imagine a small system to be
in contact with a big reservoir of occupied sites. Our system may consume as many
occupied sites from the reservoir as it wishes so that we may consider fluctuations
{{N}} of the number N, of occupied sites in our system.

In the canonical ensemble, the reservoir dictates the equilibrium probability dis-
tribution for microstates { N, }:

_N 2
p

wie, = p(=p)" ™ =(1-p)e , (6.252)

which resembles Gibbs probability in statistical physics with the effective tempera-

p

1= . o
ture 7% =In"' —= = const as a new boundary condition and ensemble partition

)4
function Z< =(1-p)™".
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Nothing is wrong in the presented approach of statistical physics to the phe-
nomena of percolation with the exception that this approach neither can predict the
appearance of a percolating cluster nor knows anything about clusters in the system.
The problem is that ensembles of statistical physics do not master the connectivity
of occupied sites within clusters.

6.10 Percolation: The Ensemble of Clusters

Since we cannot describe the connectivity of clusters with the traditional means of
statistical physics, the direct analogy between percolation and statistical physics is
not possible. Instead, we should seek an approach in which the ensemble would be
based not on the probabilities of states of sites but on the probabilities of connectiv-
ity among the sites. In other words, the partition function of the ensemble should
sum not the probabilities of states but the probabilities of clusters:

z5(p)=2.n,(p). (6.253)

Since the partition function is supposed to be the normalization constant of the
distribution of probabilities, these probabilities are

Wy = LEn (6.254)
Z
so that an averaged value of quantity f, in the ensemble we define by
1
(Fhp=2 00 = —F 2 (6.255)

For simplicity, as an example we consider further the Bethe lattice below the per-
colation threshold when into hypothesis (4.52 and 4.53) we should substitute & =1:

ny(p) o s e P’ where (6.256)
c(p)oc| p— pc "7 for p— pe. (6.257)

Differentiating the partition function with respect to the field parameter (—c):

dzt
d(—c)

= sn(p)=2"(s),. (6.258)

N
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we find that the ensemble averaging of the cluster size is equivalent to the mean
cluster size S defined in Chap. 4 by (4.117):

dinzf 1
(s)p = d?_c) =Z—E§Sm(p)55. (6.259)

Differentiating the partition function for the second time with respect to the field
parameter (—c):

d’z"
d( )2 = Zszns (P) = ZE <S2 >E , (6260)
—c B

for the averaged squared cluster size we find
5 1 d*zF 1 5 ~

K =———S=—72) sn(p)=S-S. 6.261

< >E 78 d(-e)* ZF Z (6260

Thereby the second derivative of the logarithm of the partition function equals
the variance of the cluster sizes in the ensemble:

d*mnz*® ) 2 5
d(—c)2 :<S >E_<S>E _<<S_<S>E) >E- (6.262)

From another point of view, this derivative represents the response of the averaged
cluster size (s), to the change in the field parameter (—c):

d*InzE B d<S>E

= . (6.263)
d(-¢)*  d(=¢)
Thus, it seems to be reasonable to define the susceptibility by
d <S>E 2 2 ~ 2
ST =(s7) ~(s);" =5-5-5". (6.264)

In the vicinity of the percolation threshold, the mean cluster size S is not singular
whilst the mean cluster size S diverges to determine the divergence of the suscep-
tibility:

s 1
yocSoe—m—, (6.265)
lp=pcl

We define the equilibrium action of the free energy as the minus logarithm of the
partition function:

Af =—InzE. (6.266)
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By definition (6.253), the partition function is the 0" moment M, whose value
(4.107) for the case { =1we have found in Chap. 4 in the vicinity of the percolation
threshold:

M = const; + constyc + consz‘lcr_1 or (6.267)
M, = consty +const, | p— pe | + const, | p— pe 7% (6.268)

Expanding (6.266) in the vicinity of the percolation threshold, we find
Af = const; +const, | p— pc o+ consty | p— pe e (6.269)

Differentiating this expression twice with respect to p and assuming that for the
Bethe lattice o =1/ 2, we obtain an analogue of the heat capacity:

2\E

dA _
Coc———op-pcl “. (6.270)
dp

Let us now discuss the developed approach. In (6.254), we have assumed that
the cluster-size distribution #, plays the role of the probability W{{ES 0 of fluctuations

{{s}} In other words, we consider each lattice s-animal as a microstate {s} with the

probability 1

T (6.271)

—sl
wiy < P (=p) =p'(1=p)" P =(1-p)e

This probability resembles Gibbs probability with the effective temperature

1

T =jn™' ——
p(l-p)*

(6.272)

Since we consider p = const to be the condition of the model, the requirement
T = const may be considered as the boundary condition of the ensemble so that
we may call our ensemble the effective canonical.

The number g of lattice s-animals plays the role of the statistical weight of the
fluctuation {{s}} Thereby, the probability of this fluctuation is
(6.273)

E _ E
Wiisiy = 8sWlsy <
which we have hypothesized by (6.254).

Since g, does not depend on p, in hypothesis (6.256) dependence c(p) on p may
come only from the effective temperature in (6.271). Indeed, by comparison with
(4.48) we find
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1 1

- , (6.274)
T (p) T (pe)

c(p)=

Therefore, if we neglect the multiplier (1 - p)2 in (6.271), derivatives (6.258) and
(6.260) with respect to (—c) can be considered as the derivatives with respect to the
field parameter (—1/ T ( p)) similar to our previous formulae (6.185 and 6.187)
for magnetic systems.

Taking into account the multiplier (1 - p)2 in (6.271) makes the derivatives more

complex since, differentiating with respect to (—1 1T ( p)), we, in fact, are differ-

entiating with respect to p and should differentiate (1— p)2 as well.

But this is not the main difficulty. Considering (below the percolation threshold)
an arbitrary lattice instead of the Bethe lattice, we can no longer use hypothesis
(6.256 and 6.257) with ¢ =1.

Indeed, let us consider the formulae above as if they were applicable in the case
of an arbitrary lattice as well. The mean cluster size

> s’ (p)
S(p)=<=—=—— 6.275
(p) S o (p) ( )
can be presented in the form
5 d
S= In . 6.276
s an (p) (6.276)

But in accordance with the law of conservation of probabilities below the percola-
tion threshold, the sum anS (p) equals p:

(6.277)

Since p is not singular at the percolation threshold, the divergence S | p=p. |7 of
the mean cluster size must come from the denominator of (6.277) as the differential
of the singular dependence (6.257):

a’lnpoc dp

‘—1/0'-*—1‘ (6.278)
d(=¢) d|p-pc

|l/0' Cx' P—Pc

Comparing the exponents, we find the relation between the critical indices

y=—-1. (6.279)
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Although this relation is valid for the mean-field critical indices of the Bethe
lattice, the exact or experimental values of critical indices below the upper critical
dimension do not obey this relation. This clearly indicates that hypothesis (6.256
and 6.257) cannot be applied for lattices below the upper critical dimension.

To avoid this difficulty, other approaches have been developed. So, we may, for
example, instead of (4.24) consider the cluster-size distribution in the form (Fisher
and Essam 1961):

n(p.9)=p" D 24" (6.280)
tA'

where ¢ is a parameter, we initially consider it to be independent of p.
Utilizing the definition (6.253) of the partition function again, for its derivatives
with respect to p we find

dzt

=20 (6.281)
d*zt
— = > s’n,(p.q), (6.282)
‘p s

which would return us to the previous formalism if we substituted ¢ =1-p in all
formulae later.

Another approach is called an approach of a ghost field (Griffiths 1967; Kaste-
leyn and Fortuin 1969; Coniglio 1976; Reynolds et al. 1977). Similar to magnetic
systems, the cluster-size distribution is assumed to contain interactions of each clus-
ter site with the external magnetic field /:

ny(p.h)=¢"> g p*(-p)". (6.283)
I3

s

Defining the partition function by (6.253) and differentiating it with respect to the
field, we find

E
djh = sn(p.h), (6.284)
2~E
=X (6.285)

Substituting then 4 = 0, we return to the previous formulae.
These approaches seem to be self-consistent. Why should we not accept the de-
veloped formalism as an analogy with statistical physics? Unfortunately, there are
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reasons for criticism. To illustrate it, let us return to the simple example of the Bethe
lattice below the percolation threshold.

Firstly, in statistical physics we get used to the situation when the probability
of fluctuations is determined by the “clash” of two “fast” multipliers, depending
exponentially on N in the thermodynamic limit N — +oo. The product of two “fast”
dependences generates a very narrow maximum of probability, corresponding to the
most probable macrostate of a system.

Probability (6.273) imitates this type of behavior. Here, the number g, of lattice
s-animals, provided by the Bethe lattice result (4.55) from Chap. 4, is the function
increasing very “fast” with the increase of s in the limit s — +o0:

sln%
_ COnSt " peipe) PP _ €ONSE /1Y (pc).

s
s s°

(6.286)

On the contrary, the probability w{i} of microstates, given by (6.271) for the Bethe
lattice, decreases very “fast” with the increase of s in the limit s — +o0.

However, as we have said, probability (6.273) only imitates the expected behav-
ior. Indeed, there is no narrow maximum of this probability. Instead, the dependence
W{]{i}} oc n, monotonically decreases with the increase of s (the point of maximum

is s =0)!
Why has this happened? Such a situation is possible only if one exponential de-
pendence on s completely cancels out another. In other words,

1 1
1 o o 1 'S{ - }
E  _ E SITY (pe) —siT (p) _ T (p) T (pc)
Wiy =8Wy 7€ € =5 ° )
S S
1
— —c(p)s _
==, (6.287)

leaving no narrow maximum but only the decaying dependence on s. Thereby, max-
imum of the obtained probability distribution W{fs I corresponds to s = 0 and returns
no interesting results.

Therefore, the product of two “fast” dependences is not enough to guarantee
the applicability of the formalism of statistical physics. In addition, one of these
dependencies (generally, the statistical weight) must be complex enough not to be
cancelled immediately by the second dependence.

The statistical physics would also no longer work if the statistical weight of
a thermodynamic system were determined by a simple exponential dependence
gz o O(E®)e™"F on the energy of a system. If const < 1/T, the statistical weight
would be canceled by Gibbs probability, leading to the maximum of probability at
near zero energy. The point of this maximum would no longer be determined by the
“clash” of two exponential dependencies on E but by the product of one exponential

—| ——const |E
dependence e (T ] and one power-law dependence O(E “). But, as we saw in
Chap. 2, the formalism of statistical physics works well only with the logarithmic
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accuracy. Therefore, it would fail to describe such a “degenerate” case, and we
would have to start to develop the new formalism from the beginning.

Secondly, returning to the question why we do not consider the developed ap-
proach (6.253-273) to be a complete analogy with statistical physics, we see that
for susceptibility (6.264) the fluctuation—dissipation theorem is valid only in the
vicinity of the percolation threshold when y oc S, Beyond this neighborhood, the
true susceptibility is S, not X

But S is not the second derivative of the logarithm of the partition function, de-
fined by (6.253). Instead, it is determined by

25" n(p) . )
2 ) . o
S S dce " et O

In other words, instead of putting the logarithm under the sign of the second de-
rivative, we should put it between the differentiating operators. This indicates that
the averaged order parameter is not the derivative of the logarithm of the partition

E
function but the logarithm of the derivative of the partition function: not ddan ,
e (=0)
but In = Inp.
d(-c)

Although we have developed some analogy with statistical physics, the complete
solution of the problem remains a mystery. We leave the solution of this problem to
the reader as an exercise.

6.11 The FBM: The Fluctuation—Dissipation Theorem

Next in this chapter, we consider the fluctuation—dissipation behavior of the fiber-
bundle model (FBM) representing damage phenomena (Abaimov 2009). In the &-
ensemble, it is easy to define the susceptibility of the system. Let us recall expres-
sion (5.22) for the ensemble partition function,

AR Y r{{D}}e—ﬁ‘“"ND, where (6.289)
(D} {{o})
g~ 1 _, 1=P(Ee)
Pl = (6.290)

Following the discussion of the magnetic systems, it is reasonable to choose (— B

as a field parameter and ND as an order parameter. The specific susceptibility is
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then defined as the response of the specific averaged order parameter to the change
in the field parameter:

(D), .
o-py

x (6.291)

Differentiating the partition function (6.289) twice with respect to the field pa-
rameter, we find

oz° ™" -B ND &-E
AT D NDe =75 (ND) ., (6.292)
_pY o
A 2 —BYND _ e-E 2

Comparing (6.291) and (6.292), we see that the susceptibility is the second de-
rivative of the logarithm of the partition function:
Iz E
f=—"7—. (6.294)
o=py?
Substituting the partition function here, we find the susceptibility of the system:
x =Dy (1-Dy). (6.295)
However, we are more interested not in finding the susceptibility but in proving

the fluctuation—dissipation theorem. Differentiating the logarithm twice, we find the
connection of the susceptibility with the fluctuations of the order parameter:

2 7e-E s—E \?
Ny 1 8z [1 oz J

2By \Z T apT)

=(p)*) _—~(ND), = <(ND ~(ND)._, )2>F . (6.296)

We have proved the first part of the fluctuation—dissipation theorem: The suscep-
tibility, as the response of the order parameter to the change in the field parameter,
equals the variance of the order parameter. To prove the second part of the theorem,
we should build the correlation function whose integral would be equal to the sus-
ceptibility.

It is also easy to accomplish—we need only to define the effective spin variables
o;. We substitute each fiber i by a spin o; which equals +1 if the fiber is intact and 0
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if the fiber is broken. Then, in terms of the new spin variables the damage parameter
D is defined by

D=1-—>"o, (6.297)

Substituting this parameter into variance (6.296), we find

2

= <(ND)2 > - E _<ND>5—E

(el .2,

ﬂMz

.MZ

(< DI CARNCANN! (6.298)

J

Due to the symmetry of choice of site i on the lattice, we substitute one of the sums
by N:

> (T R NN % S S

Jj=1

which provides the sought relation between the susceptibility and the integral of the
correlation function:

x= i«%% ) (o) o) o) (6.300)

Jj=

—_

In the o-ensemble, the probability (5.39) of a microstate { D} no longer obeys the
functional dependence of Gibbs probability (the distribution of probabilities is not
Gibbsian). Thereby we can define neither the partition function of the ensemble nor
the susceptibility as the second derivative of the logarithm of this partition function.

How then can we define the susceptibility? Damage D, seems to be a good can-
didate to play the role of the order parameter while the reasonable choice of the field
parameter is the external force o as the boundary condition of the ensemble. The
susceptibility is then naturally defined as the response of the order parameter to the
change in the field parameter:

oD,

oc —0. 6.301
XoEo ( )

This hypothesis seems to be supported by our results from Chap. 5, where the char-

e . . oD, .
acteristic time (5.60) of relaxation processes was proportional to y o 6_0 in anal-
o

ogy with (3.164).
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Recalling the parabolic dependence (5.52) of the stress o on D, in the vicinity
of the spinodal point, we immediately find

1

x o (6.302)

—
|o—og [

where the spinodal index ycsy =1/2 coincides with the spinodal index (3.126) of the
magnetic system, y; =1/2, and with the spinodal index 65 =1/2 of (5.63).

However, in spite of the fact that hypothesis (6.301) is beautiful and returns the
reasonable value of the mean-field spinodal index, it is, in fact, wrong! The reason
of such a harsh conclusion is that hypothesis (6.301) does not obey the fluctuation—
dissipation theorem.

How can we prove that? Defining the susceptibility in this chapter, we have
discussed its role in the fluctuation—dissipation theorem. However, what we have
not discussed yet is a special role played by the susceptibility in the theory of phase
transitions. We overcome this drawback in the following sections. Simultaneously,
it will help us to answer the question about the susceptibility definition in the o-
ensemble.

6.12 The Ising Model

First, we consider the mean-field approach (3.85) of the ferromagnetic n.n. Ising
model:

H,,, =—puhNm,, — uANm,>. (6.303)

The probability of a fluctuation {{m}} is

CE CE
Wiy =T ((my) Wimy » Where (6.304)
l+m _NHTm l—-m ‘Nl_Tm
F{{m}} R (—2 ) (—2 j , (6.305)
Wi = _ZICE e, (6:306)

=0, (6.307)

my
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corresponds to the equilibrium magnetization m,, determined by the equation of
state (3.86):

my = tanh(Bu(h+24my)). (6.308)
In the vicinity of the critical point 7- = 24, we expand this equation as

0 =—h+2atm, +4bm,’, (6.309)
A
where a = 4 andb:g. (6.310)

Let us expand the logarithm of (6.304) in powers of fluctuating m in the vicinity
of my:

ln WCE — ln WCE + l 82 ln VV{{C’f}} (m —m )2 + l 83 ln VV{?’Z} (m —m )3
{{m}} tmll “ 2 a2 e om’ 0
1 O, .
+—— (m—-my)". 6.311
24 om' ( ) (6.311)
For the second derivative, expanding in small ¢, 4, and m, we find
2 CE
| O W, 11 11 X 1
~ =2 | T 5T 3 +2pud=~t—my" =———, (6.312)
N  om 214+4m, 21-m, 24y
my
where we have utilized (3.115) for the magnetic susceptibility.
In a similar manner, we find the third and fourth derivatives:
o mwSE
i# =-2my, (6.313)
N  0om
my
o* nwSE
Lt {0} N (6.314)

N  om*

gy
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Substituting (6.312) into (6.311) and exponentiating the obtained expansion, we
find the Gaussian probability distribution of fluctuations in the vicinity of the point
my:

7(Nm—Nm0)2
W{{Crf} e HMWNVD) (6.315)

where, as we already know, the susceptibility plays the role of the variance of the
distribution and determines the amplitude of the relative fluctuations of the mag-

netization:
oNm \/Z (6316)
Nm N

We have seen similar expression (2.151) before, in Chap. 2. In addition to that
result, now we find that the numerator of this expression is not just unity but the
square root of the susceptibility.

As we know from Chap. 3, the magnetic susceptibility diverges in the vicin-
ity of both the critical and spinodal points. Thereby the second derivative (6.312)
becomes zero. This means the divergence of fluctuations (6.316) which become
infinite at the critical or spinodal points.

Let us firstly approach the critical point m- =0, A= =0. The third derivative
(6.313) is also zero at the critical point while the fourth derivative remains nonzero.
The probability distribution Wcj stops being Gaussian. Instead, there emerges the
probability distribution determined by the 4"-order term in expansion (6.311):

_ (Nm—Nmy)*
W{{Cnf}}oce Nt (6.317)

For the relative fluctuations of the magnetization this provides:

ONm 1 6318)
Nm YN
_ atg

On the contrary, if we approach the spinodal point, mg=7F b’

at 3/2
hy = i8b(—6—;j » the third derivative (6.313) is not zero. This means that the

local Gaussian maximum of the probability distribution is broken leaving the point
of inflection leading to the global maximum of probability. Therefore, it is meaning-
less to discuss small fluctuations at the spinodal point.

Finally, we should recall that in accordance with (2.269) and (2.270), the defi-
nition of the free energy potential is to be equivalent to the minus logarithm of
the probability distribution. Therefore, instead of maximizing probability for the
Ising model, we could minimize the Helmholtz free energy. In this case, we would
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again invoke Figs. 3.6 and 3.7 of Chap. 3. So, we would discuss, for example, the
inflection point not of the probability distribution but the inflection point of the free
energy in Fig. 3.7. However, we have preferred to consider in this chapter the prob-
ability distribution and not the free energy with the purpose to compare the results
later with the FBM under the constant force boundary condition which possesses
neither a partition function nor a free energy potential.

6.13 The FBM: The ¢-Ensemble

For the FBM, we consider the ¢-ensemble first. The probability of a fluctuation
{{D}} is provided by (5.9) and (5.10). The point of a maximum of this probability
distribution is determined by

oW
{{o}}
— =0, 6.319
oD ( )
Dy
generating the equation of state (5.14):
D, = P(E¢). (6.320)

Similar to the previous section, we expand the logarithm of the probability distri-
bution W{‘Eg}z} in a series of small fluctuations of D in the vicinity of the equilibrium
value D:

> Wi
e—E _ £ 1 {{D}} 2
an{{D}} _an{{Do}} +2—8D2 (D—-Dy)” +... (6.321)

Dy

For the second derivative we find again the connection with the susceptibility,
given by (6.295):

2 e-E
10 | 1
N  oD?

1
_ =-=, 6.322
Dy(=Dy)  x (0322

Dy

With the exception of trivial points D, =0 and D, =1, susceptibility (6.295) is
always nonsingular. Therefore, the distribution of probabilities W{’E;}:‘} is always
Gaussian:

_(ND-NDy)*

W{?Z)l}i}oce N (6.323)
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Again, the susceptibility plays in this distribution the role of the squared standard
deviation due to its association with the variance of ND. For the relative fluctuation

of ND we, therefore, find
o, Jx 6324
ND N (6.324)

6.14 The FBM: The s-Ensemble

In the o-ensemble, the distribution of probabilities is not Gibbsian, the partition
function is not defined, and therefore, we cannot find the susceptibility as the sec-
ond derivative of its logarithm.

However, there is no need to define the susceptibility by means of the deriva-
tives of the partition function. Instead, we can utilize the fluctuation—dissipation
theorem and define the susceptibility by its connection with the variance of the
order parameter:

Ny = <(ND—<ND>U_E)2>U_E. (6.325)

We can find directly this variance by averaging D and D? in the o-ensemble.
However, it is much easier to look again at the squared standard deviation of the
probability distribution W{?BJF} itself.

The distribution of probabilities W{C{’D’f} in the g-ensemble is given by (5.40). The
point of maximum

omwsh
B 100 1 I (6.326)
oD
Do
determines the equation of state (5.41):
o
D, =P . 6.327
0 [1 - D, ] (0327

Next, we again expand the logarithm of the probability W{C{FD’E in a series of small

fluctuations of D in the vicinity of the equilibrium value Dy:

2 o-E 3 o-E

10 W) 19 Wiy,
o-E __ o-E _ _ 2 _ — 3
W7, =l e o —— P (DD +o—— P (DD,

DO DD
o'W
+% GDJ{D}} (D-Dy)". (6.328)
D(\
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For the second derivative, we find

Lazan{‘{’lg}E} ) | ( -

=— 1—
N  op? Dy(1-Dy)\ (1-D,

Dy

2
. P'IDOJ (6.329)

or, applying (5.46):

Wk N
1 2{{D}}| R S PO AN (6.330)
N oD Dy(1-Dy) 1-D, do

Dy

Being consistent with the previous discussions, we define the susceptibility as
the squared standard deviation of the probability distribution which represents the
variance of D:

2 o-E
1T 1
N  oD? 2
Dy

or (6.331)

o dD,

2
— . (6332
1-D, do ] ( )

=D0(1—D0)[1+

-2
=p,(1-D)|1-—2_p'
X o ( 0)[ (1—D0)2 |D°j

When the susceptibility is not divergent, exponentiating (6.328), we return to the
case of the Gaussian distribution:

_(ND-NDy)*
VV{({);}E}QQé 2Ny (6.333)

The relative fluctuations of D are determined by the previous dependence:

OND
O o« | (6.334)
ND N
In the vicinity of the spinodal point susceptibility (6.332) diverges as
dp,
X el — (6.335)
do

in contrast to our previous hypothesis (6.301).
Recalling (5.52), for the spinodal index yi, defined by
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1
P E—— (6.336)

S b
|o—og [

we find the mean-field value ;/2 =1 which is quite different from the wrong value
;/5. =1/2 predicted by hypothesis (6.301).

Susceptibility (6.332) corresponds to the variance (6.325) of D just by definition.
To prove that it also equals the integral of the correlation function, we introduce the
effective variables o; and substitute (6.297) into (6.325). The rest of the proof fol-
lows formulae (6.297—-6.300).

The last relation we have to build for the susceptibility is to prove that it is a re-
sponse of some order parameter to the change in some field parameter. The sought
order parameter has been, in fact, already chosen implicitly to be ND by our deci-
sion that the distribution of probabilities W{C{;}E} should depend on D (and not, e.g.,

on some function of D). Hence, we built fluctuations {{D}} and expanded W{‘{’D_}E} in

a series of these small fluctuations. This led to the definition (6.332) of the suscep-

tibility (as the squared standard deviation of W{C{’gf}) to represent the variance of the
already chosen order parameter ND.

Therefore, the order parameter is proposed to be D by all our formulae above. On
the contrary, the choice of the field parameter z is much more ambiguous. Writing
the susceptibility as the response of D, to the change in 7,

_Dy
X on (6.337)
we find the last by integration
2
Dy N -1/ A
‘D, P (D,
ﬂ:I~d°~ 1- 1~ 71( ~°)
o D,(1-D,) 1-D, dP SDO)
dD,
2
N .
¢ dl 1 1
= [ = 1 — —— |, (6.338)
° D,(1-D,) 1-D, dln P (D,)
db,

where we have substituted o from the inversion of the equation of state (5.41):

o =(1-Dy)P ' (Dy). (6.339)
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After integrating (6.338), we should find the dependence D, (o) from the equation
of state and substitute it into the result of integration, leaving the dependence of the
field parameter 7 only on the value of ©.

Unfortunately, it is impossible to perform integration (6.338) analytically for an
arbitrary strength CDF P.

Problem 6.14.1

Find the field parameter 7 for the particular case of the strength distribution
(5.33 and 34).

Solution: Substituting (5.34) into (5.41), we find the equation of state:

o =(1-Dy)(D,(s, —s,)+s,) or (6.340)
D, - 8y =28, i2\(132 —4)0'(32 —-s,) . (6:341)
Sy =8

Differentiating (6.340) with respect to D,, we find the derivative

do
dD,

= &, = 2D} (8, =5)3 5 ) (6.342)

Substituting this derivative and (6.340) into the definition of susceptibility
(6.332), we obtain:

o (A-D)(s,=s) )
%—Do(l DO)[SZ—Q(DO(S2—S1)+S1)J. (6.343)

To find the field parameter 7, we should integrate this dependence

Dy

oDy (6.344)
oX(Do)

:D" dx _sz/(sz—sl) : 6.345

d -(I).x(l—x)(z e j o)

Integrating, we find the functional dependence 7 = 7(D,). Substituting here
D, from (6.341), we obtain the connection of the field parameter z with the
external force, 7 = (o), which is cumbersome and, therefore, not presented
here.
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Why does quantity (6.332), which we have proved to be the susceptibility of the
system, differ from our earlier hypothesis (6.301)? The one reason that we already
know is that hypothesis (6.301) does not correspond to the variance (6.325) of the
order parameter.

But hypothesis (6.301) was indirectly supported by our expectations that the
characteristic time (5.60) of the decay of relaxation processes should be propor-
tional to the susceptibility of the system and, thereby, in the vicinity of the spinodal
point should diverge with the same exponent. In Chap. 5, we found 02 =1/2 which
coincides with ;/2 =1/2 but not with yi =1. This supports hypothesis (6.301) but
not the true susceptibility (6.332). Why?

To answer this question, we should understand that susceptibility (6.332) rep-
resents the probability distribution W{C{;ﬁ in the ensemble. This probability distri-

bution is responsible for differences of the quenched strength disorder among the
systems of the ensemble; however, it cannot represent the evolution of fiber failures
during a relaxation process for one particular system.

For magnetic systems, this question did not arise because in Chap. 3 the probabil-
ity distribution WC:; represented the statistical properties of reversible fluctuations

{{m}} and was responsible for both the differences among the systems in the ensem-

Oy Oy
ble and evolution (3.107) of one particular system | since ———" oc

om om

Thereby, the susceptibility determined both the variance of fluctuations and charac-
teristic time of relaxation processes.

In the case of damage phenomena, this logic is no longer applicable since we no
longer consider reversible phenomena. Damage is irreversible.

Unfortunately, in our model the probability W{C{’L;}E} does not take into account

the irreversibility. Thereby, the probability distribution W{‘{’B}E} does represent the

fluctuations of the quenched disorder in the ensemble; but we cannot rely on it to
describe the dynamical evolution of avalanches in one particular system.

Instead of applying the Ginzburg-Landau-Langevin equation, in Chap. 5 we
considered the irreversible iteration equation (5.54). This equation directly em-
ployed the probabilities to fail for each fiber separately if this fiber was supposed
to carry the prescribed load. Since the iteration equation is not associated with sus-
ceptibility (6.332), we can no longer expect the critical indices to be equal to one
another.

Why is the Ginzburg—Landau—Langevin equation (3.107) not valid for the irreversible
processes? Because this equation employs the probability W{‘{’E)}E}, describing the
ensemble, not the evolution of a particular system. Imagine, for example, that the
current microstate of the system is {|!l||} when the first three fibers are broken.
Let us suppose that at the next state of the system the Ginzburg—Landau—Langevin
equation recommends us to break one more fiber. But this equation employs the
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probability W{C{’D’}E} which is the product W{‘{;}E} = F{{ D}}wfl;}E. Here, the statistical

weight F{{ D}} considers all possible microstates, including those when some of

the first three fibers are still intact. Therefore, generating its recommendation, the
Ginzburg-Landau—-Langevin equation considered microstates with arbitrary distri-
bution of broken fibers as possible outcomes. For example, one of the considered
outcomes, when we break one more fiber, was not necessarily {||||[} = {}ili|} or
Giilly = Giili} > but may be {ill} = {1}

But damage is irreversible. Therefore, our system cannot heal the broken fibers,
and the majority of microstates, contained in the statistical weight I' {p))> are not
suitable for its further evolution. For the Ising model, we did not have such a prob-
lem since nothing prevents for all spins to flip at once. However, we may encounter
similar difficulties for heterogeneous gas—liquid systems when, for example, a void
within the volume of the liquid cannot disappear or appear immediately but only
through a chain of intermediate states. In other words, the system becomes par-
tially irreversible and, applying the Ginzburg-Landau-Langevin equation here, we
should consider not the total set of microstates as possible outcomes, but only some

subset of them.
As we have mentioned above, for the general case of an arbitrary distribution P,

we cannot find the field parameter 7 analytically. However, we can find its scaling
in the vicinity of the spinodal point. Indeed, considering definition (6.337) applied
in the close proximity of the point S,

D, - D,
X= ) (6.346)
Ty — Ty
and recalling (5.52), we obtain
|Go _GS|
X oC T (6.347)
|7To - ”S|

But for the susceptibility, we have found divergence (6.336) with y> = 1. Substitut-
ing it into (6.347), we find the scaling of the field parameter z in the vicinity of the
spinodal point:

3/2

|7r0 —77.'S| oc |00 —GS| . (6.348)

The new field parameter «t is a “true” field parameter, coupled to the order param-
eter D, by the standard deviation of the probability distribution; and we should
reconsider all scaling dependencies, recreating them with respect to this parameter
instead of the previous field parameter 0. With the aid of (5.52) and (6.336), we find
the scaling of the order parameter,
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pS

|Dy =Dy o |7, — 7|, (6.349)

and of the susceptibility,

1
X ———, (6.350)

o
|7l'0 Tty

with two new spinodal indices: 5 =1/3 and y =2/3.

But let us return to the fluctuations in the ensemble. The divergence of suscep-
tibility (6.332) at the spinodal point leads to the divergence of fluctuations (6.334).
Thereby the second derivative (6.331) becomes zero, transferring the leading role
in expansion (6.328) to higher-order corrections.

The third derivative at the spinodal point is zero also

3 o-E
l% =0; (6.351)
N oD’
Dg
but the fourth derivative happens to be nonzero:
- 2
1ot 1 (1-D d' (152
N D' Dy(1-Dy)\ o5 dD*|, )" (6352)
Dy

Substituting these derivatives into expansion (6.328), we obtain the distribution
of probabilities in the vicinity of the spinodal point:

(ND-NDy)*
8N3Dg (1-Dg )[1;05% ]
Wi, e s (6.353)

The fact that the third derivative is zero at the spinodal point indicates that our
model (as well as, e.g., the van der Waals equation) does not contain a mechanism to

operate with the unstable states 6_0 < 0. In particular, the model provides maxima
c

of probability W{‘{;}E} for both the unstable state D, , and stable state D, from
Fig. 5.9, not taking into account the fact that in the unstable state D, the fibers
continue to fail leading to lower values of the supported force o . The correct model
should possess the nonzero third derivative to generate the point of inflection.
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Instead, in our model we see two maxima of the probability distribution W{%f}’

one at D, another at D, , , which coalesce when the external force o approaches
its spinodal value. This is very similar to the critical behavior and has led several
studies to the conclusion that this is not the first-order phase transition but a con-
tinuous phase transition.

The question whether point S in Fig. 5.9 is a spinodal point or a critical point still
remains open in the literature (Rundle and Klein 1989; Sornette and Sornette 1990;
Blumberg Selinger et al. 1991; Sornette and Sammis 1995; Buchel and Sethna
1996; Andersen et al. 1997; Buchel and Sethna 1997; Zapperi et al. 1997; Sornette
and Andersen 1998; Zapperi et al. 1999a, b; Kun et al. 2000; Moreno et al. 2000,
2001; Pradhan et al. 2002; Bhattacharyya et al. 2003; Sornette 2006; Abaimov
2008; 2009; and ref. therein) and requires further investigation.
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Chapter 7
The Renormalization Group

Abstract In the previous chapters, we saw that the mean-field approach always
determines the critical or spinodal indices as simple integers or rational fractions,
like 1 or 5/2. Even more, such indices are considered to be an indicator that the
behavior of a system is dominated by the mean-field approach. If the exact solution
of a problem provided such simple numbers, the dimensionality of the considered
system would probably be above the upper critical dimension, when the mean-field
approach represents the exact critical indices, or interactions in the system would be
long-range which would lead to the same result.

However, as we know from Chap. 6, the Ginzburg criterion states that if the
dimensionality of a system with short-range interactions is lower than the upper
critical dimension (which generally corresponds to our three-dimensional space),
the mean-field approach is too crude to describe the behavior of the system within
the critical region. The mean-field approach may still be considered as a good il-
lustration of a phase transition, but the predicted values of the critical indices are far
from being accurate.

Besides, as we discussed in Chap. 6, the mean-field approach is not at all capable
to explain the influence of the dimensionality of a system on its behavior—there
would be much poorer diversity of the critical indices if all systems obeyed the
mean-field approach exactly.

And what is even worse, it is not possible to improve the accuracy of the mean-
field approach within the method itself. Only the introduction of newer approaches,
within the mean-field approach as well as independent, can improve the situation.

In this chapter, we consider the renormalization group (RG) of coarse graining
as an alternative approach to the mean-field approximation. The critical indices
determined by this technique are no longer simple integers or fractions. And what is
more important is that the RG approach contains, within its formalism, the recipes
of how to make calculations more accurate so that the predicted results would be
closer to the experimental values.

That is why the RG has been met with such general approval in the literature. Even
for the critical indices themselves, to distinguish them from the “habitual” mean-field
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values, a special term anomalous dimension has been introduced which represents
the difference between the real index and its value provided by Landau theory'.

7.1 Scaling

As we saw in Chap. 6, the topological behavior of clusters depends significantly on
the scale considered. The characteristic length dividing two types of behavior is the
correlation length ¢ which diverges at the critical point.

On scales less than the correlation length, the fluctuations are probable so that
they dominate the behavior of a system. These scales could be called the scales of
fluctuation foam (similar to the term “quantum foam” with very close meaning).
There is no own characteristic length on these scales, so the clusters are fractal
(scale invariant) and come in all shapes and sizes, from the lattice constant to the
correlation length.

Scale invariant is not only the distribution of clusters but also the inner structure
of these clusters. An example is shown in Fig. 7.1 where we plot a cluster near the
percolation threshold.

In Fig. 7.1a, we consider the finest scale of linear size L =31. Increasing the size
of the window through which we are looking at the system, we see in Fig. 7.1b that
although for L = 62 the piece of the cluster is four times bigger, the fractal structure
of the cluster remains the same—if we distinguished only the cluster perimeter and
were not able to distinguish separate sites, we would not see any difference between
Figs. 7.1a and b.

In Fig. 7.1c, we again increase the scale twice—now the linear size of the win-
dow is L =125. And again, nothing changes in the fractal structure of the piece cut
from the cluster by the frame of the window.

We observe the first changes when the scale becomes L =250 (Fig. 7.1d). The
gaps in the cluster are now wider, while the “external” boundary of the cluster is
less fractal and starts to resemble a perimeter of a nonfractal compact set. What has
happened? Probably, we have crossed the scale of the correlation length.

! Here, we have oversimplified the definition of the term “anomalous dimension.” It can be dem-
onstrated by dimensional analysis that the mean-field critical indices are the consequence of the
presence of a characteristic length in the system—the correlation length. However, the anomalous
“additions” on top of the mean-field values can be explained only by the presence of another
characteristic length in the system beside the correlation length. This new characteristic length is
generally associated with the lattice constant. However, as we see in this chapter, the lattice con-
stant does not survive the coarse graining. Therefore, we support the point of view that this new
characteristic length of the system is associated not with the lattice constant but with the properties
of scale invariance. So in Chap. 1, we saw that the dimensionality of a fractal depended not on
the properties of the initial branch but on the properties of the fractal generator. Something similar
happens during the coarse graining as well when critical indices depend not on the lattice constant
but on the correspondence we build between the initial and new models during the RG transforma-
tion. We return to this question, in more detail, in the next chapter where we will find that the RG
transformation can explain the scaling appearing in a system in the vicinity of its critical point.
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Fig. 7.1 The structure of a cluster near the percolation threshold
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These changes become even more apparent for L =500 and L =1000 in
Figs. 7.1e and f. On scales larger than the correlation length, the structure of the
cluster is no longer fractal.

The fractality (scale invariance) of the system’s fluctuations on scales smaller
than the correlation length is the physical property itself. And since it is a physical
property, it should be described by some physical laws. It would be very important
to find these laws because they presented something new in the description of our
system; something that we have not studied in the previous chapters.

The scale invariance means that if we know the behavior of the system in
Fig. 7.1a, we should be able to derive the system’s behavior in Fig. 7.1b just by
simple analogy. Would it be possible to develop the laws of the system’s behavior
just from the concept that the system is scale invariant?

Such a technique does exist and is called coarse graining. The mathematical for-
malism of this technique is based on the renormalization group (RG). Initially, the
RG was developed in quantum field theory but nobody suspected then that it is also
applicable in statistical physics. The first ideas of coarse graining were postulated
by Leo Kadanoff (Kadanoff 1966). Later, the mathematical formalism of the RG in
application to critical phenomena in statistical physics was developed by Kenneth
Wilson (Wilson 1971a, b; Wilson and Kogut 1974) who, in 1982, was awarded the
Nobel Prize for this discovery.

The appearance of the RG caused a boom of new discoveries in the literature.
The RG has happened to be applicable not only to thermal systems but also to sys-
tems which have never been considered by statistical physics. This has led to the
hope that the formalism of statistical physics is able to describe not only thermal but
also complex phenomena.

The RG transformation can be formulated in both momentum and real (coordi-
nate) space. In our book, we consider only the real-space RG because this approach
has been applied to a wide variety of complex systems. Besides, the real-space
renormalization seems, to us, to be the most illustrative.

We start our discussion with the approach that we consider to be the most rigorous.

7.2 RG Approach of a Single Survivor:
One-Dimensional Magnetic Systems

To study RG, we start from the simplest example—the canonical ensemble (CE)
of the one-dimensional ferromagnetic nearest-neighbor (n.n.) Ising model with the
periodic boundary conditions (a chain of spins forms a ring). The Hamiltonian of
the model is

N N
H, I—hMZGi—JZGiGi+1. (7.1)

i=1 i=1

Here, o, =0, due to the periodicity of the boundary conditions.
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For convenience, we rewrite Hamiltonian (7.1) as
o, +0;,
HIO'} = _h'uz JZGIGH—I (72)
i=1
The partition function of the CE is
ZeXp[ﬁth +ﬂJZo,c,+lJ (7.3)
o} i=1
while Gibbs probability distribution of microstates {c} is

w{CGE} exp[ﬁh,uz +,BJZGIGH_1J (7.4)

i=1 i=1

We see that neither temperature nor interaction constants are included in the prob-
ability distribution (7.4) separately but form two combinations:

Kl :%a K2 = ﬁ']a
2 (7.5)

which are called the coupling constants. In terms of these coupling constants, Gibbs
probability distribution is

=

1 N
{CcrE} :ZWCXP(Z{KI (o +Gi+l)+K26i6i+l}J' (7.6)

i=l1

Coarse graining means that, investigating the system’s behavior, we do not
want to see all the microdetails of how one spin interacts with another. Indeed, why
should we, when at rougher scales the behavior is the same?

Therefore, we are going to coarse grain our model by half. In other words, we are
going to halve the number of degrees of freedom in the system so that the remaining
half would represent the same behavior. Therefore, we consider the number N of
spins in the chain to be even.

To perform the coarse graining, we divide the chain of spins into cells with b =2
spins in each cell (Fig. 7.2, top). Then, we build a new model when each cell of the
initial model generates only one spin in the new model (Fig. 7.2).

Fig. 7.2 The RG in action:
Each cell of the initial model
(top) generates one spin in
the new model (bottom)
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The new model contains twice less spins: N' = N /2. The lattice constant of the
new model is twice larger. However, we intend the new lattice to look exactly like
the initial one with the same lattice constant. Therefore, we rescale the length of the
new model twice so that the RG does not change the lattice constant but the length
of the model shrinks twice. To put it in a different way, we always measure the
length of the model in units of the lattice constant. Our RG transformation has the
parameter b = 2. We see now that » =1/ b is the scale factor which determines how
the size of the lattice shrinks.

Each cell of the initial model contains two spins. Possible microconfigurations
of spin orientations for a cell are {TT}, {N«}, {»LT}, and {J«i«}. To form a microstate
{o-} of the initial system, we should prescribe to each cell of it one of these four
microconfigurations.

The new model has its own microstates {cr’}. Somehow, we should build the
correspondence between the initial microstates {G} and the final microstates {0'}.

There are no explicit rules how we do that. This is the subjectivity introduced
into the formalism by an investigator (very much like a hypothesis in Bayesian
analysis). Even more, as we will see later, this is the measure of the skillfulness of
the investigator. The more ingenuous the investigator was inventing the rule of cor-
respondence, the more accurate results the RG would return.

Another side of this concept is that since the investigator introduces some sub-
jectivity into the formalism, the RG cannot provide exact results. We should under-
stand that the RG is merely a tool helping us to investigate the system’s behavior;
and it returns not exact but approximate results.

Our purpose is to keep the behavior of the system unchanged during the coarse
graining. What if, for microstates {c’} to represent microstates {o }, we would keep
the orientations of some spins untouched, while not paying attention to the orienta-
tions of the rest of the spins?

In other words, we look at the orientation of the first spin in a cell and make
the orientation of the spin on the new lattice the same. Simultaneously, we com-
pletely disregard the orientation of the second spin in the cell (Fig. 7.3). We call it
the single-survivor approach since only the first spin in the cell “survives” the RG
transformation and is transferred onto the new lattice with its orientation intact. The
second spin “disappears.” Therefore, this procedure is also called decimation.

As a result, two cell microconfigurations, {TT} and {Ti}, provide the new spin

oriented “up,” while another two cell microconfigurations, {iT} and {ii«}, provide
the new spin oriented “down.” Thereby, we have built the rule of the correspon-
dence between the initial microstates {0'} and the new microstates {6'}. Also, we
see that there are many initial microstates {G} corresponding to the same final mi-
crostate {G’}—these initial microstates {0'} differ from each other by the orienta-
tions of the second spins in the cells.
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To keep the behavior of the system unchanged, we should require that the prob-
ability to observe a microstate {c’} on the new lattice would equal the probability
to observe the corresponding microstates {o} on the initial lattice. In other words,
for each particular {c'}, we should sum Gibbs probabilities (7.6) of the correspond-
ing {o }—this provides the very probability of {c"}:

(CE"
{01.0'204010 0" N2}
CE

{01=0'1,02.,03=0"1.04....021=0"1,09;....0n =0y 0N} (7.7)

09,0 45.5075.,0 y=%1

Here, we keep the “surviving” spins unchanged, o,;,_; = ¢’;, while summing over
the orientations of the “disappearing” spins o,,. Equality (7.7) is the rule of invari-
ant probabilities of our RG transformation.

Our purpose is that the new system would resemble the initial one in all respects.
Under the term “resemble,” we understand that the lattice shape and the functional
form of the Hamiltonian (spins interact with the external field and in pairs) should
be exactly the same for the initial and final systems. The systems similar in this
sense are said to belong to the same universality class.

Therefore, the new Hamiltonian H',,, and Gibbs probability w’{Cf,'} should have
the same functional dependences, (7.1) and (7.6), on spin orientations:

N/2 N/2
H’{cr’} = _h,:u,z G,i _J,Z CT’,-CF,HI, (7.8)
i=1 i=1
CE 1 N/2
w’{g,} = ﬁexp[; {K’l (o';+0'1) +K'2G'i6'i+1}j. (7.9)

However, both coupling constants, K'; and K',, can change. In other words, coarse

graining of our system may change its field parameters, 7 and 4, or interaction

constants, # and J, for the sake of keeping unchanged both the lattice shape and

the functional form of the Hamiltonian. This was the purpose of introduction of the

coupling constants as quantities that “absorb” all parameters which may change.
Substituting (7.6) and (7.9) into (7.7), we find

N/2
[Texp(Ki(0] +0}.)) + Kiojol,)
i=1

Z!CE'

N/2 Kl(62i—l|o-lf +0,)+K, c721’—1|6; Oy

1
= 2 ZWH‘?XP

69,040y =1 i=1 +K;(0y; +G2i+1|0;+1)+K262i 0241 L,[/H

1 N/2 ’ ’ ’ 14
:ZWH Z eXP(K1(C7i +20,; +0;,,)+K,0,,(0; +‘7i+1))
i=1 0y;=%1
N/2
= FHZexp(Kl(O'i' +c7i'+l))cosh(2Kl +K, (o] +Gi'+1)). (7.10)

i=1
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This equality should be valid for arbitrary orientations of spins ¢, and o', ;:

. . 1 2K 4K 2 2K,
o, _+1’Gi+l —+1:>We _N/\Z/Zﬁe COSh(2K1+2K2),
ro_ ’ _ 1 -K'5 _ 2
o =+l0',,=-1= N/\Z/Fe —chosh(ZKl),
’ ’ _ 1 -K'5 _ 2
o, =-1l0,,=+1=> g e = N/\z/ZT cosh(2K)),
o, =-lo',, =-1= 1wk 2K cosh(2K, -2K,).  (7.11)

i+1
N/2, CE' N/2/ CE
NZ' NZ

There are three independent equations here and three independent variables: K',,
K',, and Z'“F'. The solution is

"W'u' h(2K, + 2K
M:K{ =K, 1, cosh@K, +2K,)

, (7.12)
2 4 cosh(2K; -2K,)

B'J =K, = ilncosh(ﬂ(I + 2K2)+%lncosh(2KI -2K,) —%lncosh(ZK]), (7.13)

V2 cosh® (2K, +2K,)

nZ' =nZ““ -Nn
xcosh"* (2K, —2K,)cosh"*(2K,)

} (7.14)

These equations associate the new coupling constants with the initial coupling
constants. We see that the RG transformation has created a system identical to the
initial one, but supported at different values of the field parameters and interaction
constants. The initial and final systems, connected by the RG transformation, are
said to belong to the same universality class.

From the third equation, we see that for any values of the coupling constants,
the logarithm of the partition function always decreases, at least by the quantity

NInv2 (when all cosh functions equal unity). This happens because the coarse
graining reduces the degrees of freedom so that the partition function must de-
crease. The minimal decrease,

1CE" _
2% =" (7.15)

corresponds to the case when both coupling constants are zero (when temperature is
infinite). This result could be foreseen. When the temperature is very high, the ex-
ponential functions ¢ PRl in the partition function all equal unity without regard
to the energies of particular microstates. The partition function, as the sum of these
exponential functions over the energy spectrum, transforms into the total number
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2" of microstates in the Ising model. Therefore, by reducing the number of degrees
of freedom twofold, we should divide the partition function by 2 12

The RG transformation is not always built in a manner similar to the approach
presented above. Often, an additional coupling constant X, is introduced in Gibbs
probability (7.6):

N
w{(’; exp[z K, +K,(o; +Gi+1)+K2(7iG,-+1}J. (7.16)
i=1

The purpose of this coupling constant is to keep the partition function unchanged:

2 cosh”* (2K, +2K
K',=2K,+21n V2 cosh™ (2K, +2K,) , (7.17)
xcosh”* (2K, —2K,)cosh"*(2K,)
while
AV ALS (7.18)

For thermal systems, the difference between the two approaches is just a matter
of notation or convenience. However, we do not consider the introduction of K|, to
be expedient for several reasons. First, the coarse graining must reduce the number
of degrees of freedom which requires the decrease of the partition function. Intro-
ducing K, we replace intuitively understandable decrease of the partition function
by the change of the new coupling constant K,.

Second, in the future, we will pay attention to the fixed points, K'; = K; Vi, of
the RG transformation on the space of coupling constants. In other words, we will
be looking for the values of coupling constants which the RG transformation does
not change. Obviously, the partition function cannot have a fixed value and always
decreases. Thereby, the new coupling constant K, must always increase during the
RG transformation and cannot have a fixed value either. And after the introduction
of K, the RG cannot have a fixed point on the space of coupling constants! So,
we would have to say constantly that K, is not a true coupling constant, that it is
a “white crow” among other coupling constants, and that we are looking for the
fixed points of the RG on the reduced space of coupling constants when K, is not
included in this space. So, finally, we will have to exclude K, from consideration.

What was the reason of introduction of K|, in the literature? This coupling con-
stant appears inevitably when instead of considering rule (7.7) of invariant prob-
abilities, we build our RG transformation on rule (7.18) of invariant partition func-
tion. In other words, instead of equating probabilities (7.7) of corresponding states,
we equate the partition functions (7.18) to guarantee that the behavior of the new
model represents the behavior of the spins on the initial lattice. This means that to
keep the behavior of the system unchanged, as unchanged we transfer from the ini-
tial system to the final system not the probabilities but the partition function!

For thermal systems, both approaches appear to be valid and return exactly the
same results due to the fact that they differ only by the variable change. So, for
thermal systems, this is just a matter of notation.
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However, if we study complex systems like percolation or damage, these sys-
tems often do not possess the partition function as such. To find the susceptibility of
the fiber-bundle model (FBM) under the constant load condition, we had to return
in the previous chapter from the partition function formalism to the probability
distribution itself.

Similarly, the RG transformations cannot be built on the base of rule (7.18) for
these systems. Instead, we have to return to the probability distribution itself and to
consider rule (7.7) when we keep invariant the probabilities of the corresponding
states. Therefore, the rule (7.7) of invariant probabilities is more fundamental than
the rule (7.18) of invariant partition function.

Here, we encounter that particular case when the application of the formalism of
statistical physics to complex systems demonstrates in the result of the comparison
analysis what is imperfect in statistical physics itself! Obviously, equating the prob-
abilities appears much more reasonable and understandable intuitively than equat-
ing partition functions. Therefore, in future, as the rule of the RG transformation,
we will always utilize (7.7).

Problem 7.2.1

In the absence of magnetic field, build the RG transformation for the one-
dimensional ferromagnetic n.n. Ising model with the periodic boundary con-
ditions when the cell of the RG transformation contains an arbitrary number
b of spins.

Solution: The Hamiltonian of the system is

N
Hyy =-J2.0,0., (7.19)

i=1

the partition function of the CE is

N
74 = Zexp[/ﬂ Y oo J (7.20)
{o}

i=1

and Gibbs probability is

1 ul 7.21
Wiy =Fexp(ﬁJZG,GM). (7.21)

i=1
There is only one coupling constant in this case:
K=pJ, (7.22)

so Gibbs probability transforms into

1 N
Wi, —exp[ZKa,-amj. (7.23)

= —cCE
VA =
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We divide the chain of spins into blocks of size b (assuming that N is a
multiple of b). The first spin of each cell “survives” the RG transformation
keeping its orientation in the new model (the approach of a single survivor).
The rest of the spins in the cell “disappears” (decimation). For example, for

b =3, the initial cell microconfigurations {TTT}, {T'N/}, {'N«T}, and {T\LJ{}

result in the spin oriented “up” on the new lattice. The rest of the cell micro-
configurations transform into the spin oriented “down.”

This is our subjective rule of microstate correspondence. After we have
hypothesized it, the next step is straightforward—applying the rule (7.7) of
the RG, we guarantee that the probabilities of the corresponding states are
unchanged by the transformation:

¢ CE' _ CE
w {o",..} Z W{Gl =6'1,62,03 1,045} " (724)
@) ST concf @y oo
In other words, for the given orientation of the “surviving” spino,, , , =0,

13
we sum the orientations of the “disappearing” spins ¢, , ,,,--,0:

N/b

1
7!CE’ Hexp KGI x+1)

Ko-ib—(b—l) o Oib-(b-2)

1 N/b
= z 7@ Hexp +K0, 400 53y T
50 ip—(b-2) *Oib—(b-3) >+sTib—1 s0ip =1 i=1
s +Ko, 0, +Ko,0,,|, | (725
Ol
Noticing that equality
coshK(1+0,0, tanh K) = " " (7.26)

is valid for arbitrary spin orientations o, = £1,0, =1, we transform (7.25) into

N/b

%Hcosh K'(l1+0'.0',, tanh K")
=l

b
cosh” K x (1 +0, ) L_ Oip_s_2) tanh K)

1 N/b
= _ZCE H Z (1 T 0w -0 iv-(5-3) tanh K)x
i=l Gl'/)f(])fz)’Ulhlf(fP;),...
; =+
o1 s0ip =t (1 +0,_,0, tanh K) (1 +0o, 0',1,+1| tanh K)

(7.27)
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Removing the brackets in the right-hand side, we obtain terms, containing
the “disappearing” spins in the 0%, 1%, and 2" powers. Since the sums go over
two projections o, = +1, all terms, linear in the “disappearing” spins, cancel
themselves out.

So, in the right-hand side, only the terms with the 0™ or 2™ powers of
the “disappearing” spins remain. If a “disappearing” spin o, is in the 2™
power in a particular term, this term must have been formed as the product of
o, ,0;,tanh K and o,0,,, tanh K. Therefore, this term contains o, , and o,,,
also. For this term not to be cancelled out, o, , and o,,, must be in the 2™
powers. But then this term must also contain o, ,> and o,,,”. And so on by
induction.

As a result, we conclude that when the brackets in the right-hand side of
(7.27) are removed, almost all terms are cancelled out leaving only two terms:
the first is formed only by unities from all brackets, the second is formed only
by 0,0,,, tanh K from all brackets:

i+l

N/b

ﬁncosh K'(l1+0',0', tanhK") =
i=1

1 N/b

=—— z cosh” K {Ix...x1+
z i=1 Oy (h-2):Oip(b-3) -+ Oip1:0 =%1
2 2 2 _ 2 b
T -0, Civ-6-2) Cib--3) *+*Oio-1 O Tips1 o tanh K} =
1 N/b
=—z [ [ cosh’(K){1+0",0",, tanh” K} D1 =
z i=1 Oib—(b-2) »Oib—(b-3) -+ Oip—1:0ip =%1
1 Mo
= FH cosh’ (K){l +0',0',, tanh® K} 2 (7.28)
i=1
The solution of this equation is
tanh K’ = tanh” K, (7.29)
b1
2% coshK (7.30)

InZ"¥ zanCE—NlnT.
cosh”” K’
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Problem 7.2.2:

In the absence of magnetic field, build the RG transformation for the one-
dimensional ferromagnetic n.n. Ising model with the periodic boundary
conditions when the spins can have three possible values of projections:
o, =—1,0,+1 (the spin-1 model also known as the Blume—Capel model,
(Blume 1966; Capel 1966)).

Solution: The Hamiltonian of the system is (7.19), the partition function of
the CE is (7.20), and Gibbs probability is (7.21). Introducing the coupling
constant (7.22), we transform Gibbs probability into (7.23).

For simplicity, in this problem, we consider the cell consisting of b =2
spins (N is assumed to be even). For the rule of correspondence, we again
utilize the approach of a single survivor: The first spin of each cell “survives”
keeping its orientation, and the second spin‘“disappears.” Equating probabili-
ties in accordance with (7.7), we find

1CE' CE

{01,000} {61=0"1.0,.03=0"1,04..,05;1=0";,03 ...} * (731)
03,045--07;,...=—1,0,1

In other words, for the given value o,, | = o', of the “surviving” spin, we sum
orientations of the “disappearing” spin o,

1 1 KI ' ' 1 2 KGZi—lL.rl 0-2,'
FI;[GXP( G, 0 i+1) —62’64’.”,;”-:_1‘0)1Fl;[exp +K62i GZMLVM
1 N/2
- FH > exp(Ko, (o', +0',,))
i=1 6y;=—1,0,1
1 N/2
= [T{2cosh(k (o, +0",.,))+1}. (7.32)
=il

This equality should be valid for arbitrary orientations of spins ¢’ and ¢’ ;:

G,i = +1’0-,i+1 =+1 1 K’ 1 2 h(2K) +1
GI,‘ :_136,”1 =-1 = NQ]erE' ¢ = N/\Z/ZW{ cos ( )+ }’
o', =+l,0',, =-1 1 e 3

= e = s
o, =-Lo',,, =+1 N/z/Z,CE' NI 7 CE
o' =00, =%I 1 1
o' —tlo' = 0} = g Vi {2cosh(K)+1},

1 3

’ ’
o.=00.,=0=> = .
b o N/\Z/Z,CE’ N/2/ZCE

(7.33)

377
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There are four independent equations here but only two unknown variables,
K'and Z'“"'. There is no possible solution of this system of equations.

For the first time, we have encountered the case when the RG seems to be
inapplicable. However, such difficulties are usually easily overcome. What
is the reason of the absence of a solution? That the number of the coupling
constants is less than the number of the RG equations. If we introduced new
coupling constants, the transformation would become possible.

What is the role of the coupling constants? We see that each coupling con-
stant is responsible for its own type of spin interactions: one for interactions
of spins with the external magnetic field, and another for the pair bi-spin
interactions among spins.

Therefore, we may conclude that in the considered model, some interac-
tions are overlooked. That is why we were not able to find another system
belonging to the same universality class.

Next, we consider three coupling constants instead of one:

K, =BJ,K,=0,and K, =0. (7.34)

The first coupling constant K, as before, is responsible for the pair spin inter-
actions, the second coupling constant K, is responsible for the interactions
of the second powers of spin projections with some effective field, and the
third coupling constant K, is responsible for the second power of pair spin
interactions:

N
Zexp[Z{K 0,0, +K (0] +0,)+K, (a,-cr,-+1>2}j, (7.35)

{o} i=1

{G = exp(ZN:{K c,0,,+K,(c}+0,)+K,(0,0,,) }j (7.36)

i=1

Why have we chosen these particular forms of interaction? Why not con-
sider, for example, triple-spin interactions, quadro-spin interactions, or some
other kind of interactions?

The most honest answer is: “Why not?”’! We are trying to build the uni-
versality class for our particular system, but we do not know what this uni-
versality class is. If we were able to build the RG for some particular type of
interactions, we would prove that our system belongs to the universality class
of these interactions. Choosing other interactions, we may prove that it also
belongs to a different universality class.

We again divide the lattice into cells of size b =2 and again apply the
approach of a single survivor. Substituting (7.36) into (7.31), we find
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N/2
i Hexp(K’o"o" +K(0/*+0., )+ Ki(0/0),) )

i+l

N/2

1
- 2 CE Hexp {K 05— | .’O.Zi +
63,04 1nOa; :-101Z

N/2

11 X exp{K 0, (0] +0.,)+

i=l 0y,=—1,0,1

2 2 2
+K2(Gi’ +20- +O_1+l )+K3o-2i (O-z’ + 0, l+1 )}

N/2

= Hexp(K (0/’+0/, )){ZCOSh(K (0] +07,))%

7.37
xexp(2K, +K,(0]*+07, ))+1} (7.37)

This equality should be valid for any values of spin projections ¢’, and ¢”,

O-; = +170_i,+1 = +1} - 1 PKIP2KLHKS
o;=-10], 1 NW
1
T 2 {2 cosh (2K, )7 +1Y,
o;=+l0;, = _1} - 1 o Kiv2K3 4K
o/=-lo;,=+1 iz
_ 1 {2 2K, 42K; 1}

1 e
=—N/27CE ek {2c0sh(K1)e2K2 = +l}, (7.38)
’ r 1 . 1 2%,
0;,=0,0,,=0=> TP = Fprd {26 +1}.

There are four independent equations and four independent variables: K'|,

K',, K'y,and Z'“"'. The solution of this system of equations exists; but we do
not adduce it here because it is cumbersome.
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So, we have proved that the initial system and the final system belong to
the same universality class with interactions (7.35 and 7.36). For the initial
system, these interactions were not obvious because they were disguised by
zero values of the coupling constants.

In the examples considered above, we have built the RG transformation which has
transformed the initial system into the new system, belonging to the same universal-
ity class (with the same lattice shape and the same interactions, but having different
values of coupling constants). But for the new system, we could again perform the
RG transformation with the aid of the same equations, connecting the second gen-
eration of the coupling constants with their values at the end of the first RG trans-
formation. This new system would again belong to the same universality class. And
so on, we can perform the RG transformation very many times, creating succession
of systems, inheriting properties from one another.

In the result, we obtain a chain of systems with the same interactions (with the
same functional form of the Hamiltonian, with the same lattice shape, with the same
behavior). These systems differ only by the values of their coupling constants repre-
senting field parameters and interaction constants.

If on the space of coupling constants we draw the succession of RG jumps as a
curve, this curve is called the RG flow curve (Fig. 7.4). We obtain a new flow curve
by slightly changing the coupling constants of the initial system. Since the lattice
and the spin interactions are still the same, the new flow curve belongs to the same
universality class.

How long can we continue the succession of the RG transformations? Can we
do it infinite number of times? Obviously not, because the initial system is scale
invariant only on scales less than the correlation length &, but on larger scales there
is no scale invariance.

Performing coarse graining with » =1/ being the linear-scale factor, we move
from a detailed system to the less detailed system, reducing the “excessive” degrees
of freedom. To keep the lattice invariant, we measure all distances in units of the lat-
tice constant. Obviously, the new lattice constant is b times larger than the old one.
Therefore, all distances in the model shrink 5-fold. So does the correlation length:

§'=r§=¢&/b. (7.39)

Fig. 7.4 The RG flow curves AKz
form a universality class
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Fig. 7.5 The RG transforma- AK:
tion moves the system away
from the vicinity of a critical T > T(’:

point. Only a critical point
can transform into a critical /PF/__
point _— ®

Performing the RG transformation many times, we sometime reach the state when
the linear size of the RG cell becomes comparable with the correlation length: b oc &
. Obviously, further transformations are impossible since there is no more scale in-
variance in the system. We have reached the limit of maximal coarse graining when
we have reduced all “excessive” degrees of freedom. The number of the remaining
degrees of freedom is the minimal number required to represent the system’s behavior
correctly; and any further reductions will no longer reproduce the same behavior.

The coarse graining is the physical process; and (7.39) is the law representing
this process without regard to a particular system under consideration.

Since the RG transformation always decreases the correlation length, this law
has two important consequences. First, because shorter correlation length means
larger distance from the critical point, we may conclude that the RG transformation
always moves the system away from the critical point.

Second, the correlation length diverges at the critical point. Therefore, if the final
system of the RG transformation is at its critical point, it corresponds to the infinite
correlation length, &' = +o0. In accordance with (7.39), this means that the correlation
length of the initial system was also infinite, & = +o0, and the initial system was also
at its critical point. So, only the critical point can transform into the critical point.

The opposite statement is generally not true—the critical point can transform
into a noncritical point. However, in accordance with (7.39), we see that each time
the correlation length decreases only h-fold. Therefore, to obtain the finite value of
the correlation length from the initial infinite value may require an infinite number
of transformations.

These tendencies of the RG transformation are presented in Fig. 7.5a—the flow
curve originating at the critical point goes through a succession of critical points.
This curve is called the critical flow curve or the critical manifold (or a part of this
manifold if it has dimensionality higher than one). Adjacent flow curves with near-
critical coupling constants diverge away from the critical flow curve.

However, in advance, we should say that the critical flow curve does not always
exist. Very often, this curve shrinks into a point to represent a critical fixed point
of the RG transformation. In particular, this is true when there is only one coupling
constant (Fig. 7.5b). Since the RG transformation tends to move systems away from
the critical point, this fixed point must be a repeller.
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Figure 7.5b illustrates that the flow curve, emerging from the critical point,
not necessarily generates critical points also—there is only one critical point in
Fig. 7.5b, and two-flow curves, spreading from it to the left and to the right, take the
system farther and farther away from the critical state.

7.3 RG Approach of a Single Survivor: Two-Dimensional
Magnetic Systems

As we have seen in Chap. 3, the one-dimensional n.n. Ising model cannot have a
phase transition at nonzero temperature. Therefore, we move to the two-dimension-
al systems and consider first the ferromagnetic n.n. Ising model on square lattice in
the absence of magnetic field. The Hamiltonian of the system is

H, =-J Z 0,0, (7.40)

<i,j>,

the partition function of the system is

=Zexp(ﬁ] Z O'idjj, (7.41)

{o} <iJ >y,

and Gibbs probability of microstates {G} is

Wi, = exp(ﬁJ > GGJ (7.42)

<i,j>,

If we introduced the single-coupling constant K; = 3./, similar to Problem 7.2.2,
the number of equations would be higher than one, and we would not be able to
build the RG again. This suggests that the universality class of our system has more
complex spin interactions that are disguised in the particular case of our initial sys-
tem by zero values of coupling constants.

In particular, we consider bi-spin n.n.n. interactions and quadro-spin interactions
of cells:

H,, =-TK, Z o,0,-TK, z 0,0, —TIQ%:cricjoka,, (7.43)
<l,‘/>”‘”> <L, J>u . cells
. K, z o0,+K, Z 0,0,
W =—me| W, (7.44)

CE
z +K326i6j(7k61

cells

Here, Z <i,j>,, 1s again the sum of bi-spin interactions over the n.n. spin pairs.
For site 5 in Fig. 7.6, this sum goes over the n.n. spin pairs 650,, 0504, 050y,
and o50,. The sum Z <i,j>,,, represents also bi-spin interactions and goes over
the next-nearest-neighbor (n.n.n.) spin pairs. For site 5 in Fig. 7.6, this sum goes



7.3  RG Approach of a Single Survivor: Two-Dimensional Magnetic Systems 383

Fig. 7.6 The RG on square o]
lattice
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over the n.n.n. spin pairs 650, 050, 0504, and 050 . The sum z represents the

cells
quadro-spin interactions inside separate cells. For cell 1-2—5—4, this sum contains
the term 0,0,050,.
Our initial system is the “degenerate” case of this universality class when two of
three coupling constants become zero:

K, =BJ,K,=0,K, =0. (7.45)

Again, there has been no reason to consider these particular types of interactions.
We just assume that our system may belong to this particular universality class. And
if we will be lucky to build the RG transformation for these types of interactions,
we will prove this statement. However, nothing prevents our system to belong to
another universality class also as a “degenerate” case when some other coupling
constants of that class are zero.

Let us look at the lattice of the initial model in Fig. 7.6. We will apply the same
rule of a single survivor. “Surviving” spins o,, ,, 0, and oy are presented as filled
circles while “disappearing” spins o}, 03, 05, 07, and o, are represented by empty
circles.

From Fig. 7.6, we see that the linear-scale factor of the RG transformation is
r=1/b=1/~/2 since the lattice constant (the length of the cell’s edge) increases by
multiplier /2 (Fig. 7.7).

Applying the rule of invariant probabilities, we find

) T S S S S S NSNS R
Z!CE' € -

_ 2 : e---*’(l(5162“&0'3*%%*%%*W%*%%) X

(7.46)

CE
+.,01,03,05,07,09,..=*t1 Z

K, (0,04 +04,07+0305 +0504 +0,04 +04 0
Xel(lA 407+0,05+0503+030¢ 69)X

x eKZ {0206+0105 +0509 +0,403 + 0,04 +0305+0507 +0603 } ¢

PP P [
K3{0,0,050,+0,0,0405+0,05030, +0505040% }

xXe

Here, we have shown explicitly only spins enumerated in Fig. 7.6. Contrary to the
previous examples, we have kept the site numbers unchanged so that “surviving”
spins have the same numbers on the initial and final lattices: o', =0,, 0’4 =0y,
o'c =04, 0's =0y



384 7 The Renormalization Group

Fig. 7.7 A cell of the initial O e© O e O
lattice versus a cell of the
final lattice ® ©-—-®» O ©
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The sum goes over the projections of all “disappearing” spins o, 03, 05, 07,
0y,... Let us, in this expression, keep only multipliers significant for the sum over
the projections of the central spin os:

1 e,,,+K,' {0304 +0403+030,+0,405 1+K; {005 +040¢ )+ Kio,05030
Z!CE’
[P S S SR . S .
— 1 . +K, {004 +0404+0,04+040g | % e...+K| {0405+0504+0,05+050% | x
CE
Z ..,01,03,07,09 .= o5=%1
Xel(z {0105+0509 +0305 +0507 } el(s {01030504 +0,030405 +04050507 +0506090% } (747)

We see that in comparison with the one-dimensional systems, we can no longer
separate the sum Z o=+1 50 that it would contain only o and the surviving spins.
Indeed, the bi-spin n.n.n. interactions, like o,0', or the quadro-spin interactions, like
o,0',050',, would not allow that. Therefore, it is not possible to perform the sum-
mation analytically for the general case.

However, our initial system contained neither the bi-spin n.n.n. interactions nor
the quadro-spin interactions: (7.45). Therefore, if we return to the particular case
of our initial system, this will significantly simplify the summation. However, we
should remember that in this case, we will build only one step of the RG transfor-
mation, from the initial system to the next system in the universality class. The
obtained solution will not describe the following RG steps because these steps will
start from systems with nonzero K, and K,. So, having only one step of the RG, we
would only guess what the whole flow curve is.

Substituting (7.45) into (7.47), we find

1 .+ K{{oy0(+0403+0304 +0,05 }+ K} {oy04 +0,40¢ }+K30504040),

Z/CE’

2 : z : e...+K, {0,405+0504+0,05+050% }

- ZCE ..,01,03,07.0g,..=%l o5=*%1
1 ’ ’ ’ ’
= > 2e" cosh(K, {o}; +0, +0;+04}). (7.48)

..201,03,07,09 ,...=%1

Summation over the projections of other “disappearing” spins leads to the ap-
pearance of similar multipliers 2 cosh(X {...}) on the right-hand side of (7.48):
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Fig. 7.8 Numbers of sites 10 11 12 13 14
o e O e O
5 1 2 3 16
® O e O o
17 4 5 6 18
o e O e O
9 7 8 9 20
® O e O o
21 22 23 24 25
0O e O e O
1 e...+K{ {0304 +0404+030,+0,405 1+K; {005 +040¢ }+Ki0505030

Z/CE'

1
=G x..x2cosh(K {0} +0; +0}+0,})
x 2cosh(K, {os + 0, +0), +0}})x2cosh(K {o, +0/ +0/; +0¢})

x 2cosh(K {0}, + 0y +0, +03,})x2cosh(K {o; + 03, +0, +03,}), (7.49)

where the numbers of sites are presented in Fig. 7.8.

Equality (7.49) is formulated for the whole lattice. Instead, we can formulate an
analogue of this equality but now only for just one cell. To move to the case of a
separate cell, we notice that multipliers, associated with K, K',, and K'; in (7.49),
belong to a particular cell of the new model. However, multipliers, associated with
K’ in (7.49), belong each to an edge between two adjacent cells of the new lattice.
To reformulate (7.49) for the case of a separate cell, we, therefore, should take the
square root of the last multipliers:

1 %{6’26’64-6’60"8+G’¥6’4+6’46’2}+K’Z {o'y0's+0',0'}+K'y0',0'sa'ga'y
—¢
N/ZIZm'E'
1
_ ' ’ ’ ’
=——2cosh(K, {o', +0's +0', +0,}). (7.50)

N/\Z/ZT

Here, we have used the fact that the number of new cells equals the number of new
spins: N'=N/b*> =N /2.

Equality (7.50) should be valid for arbitrary spin projections ¢',, 6’4, 6'¢, 0'5. If
all spins have the same orientation, (7.50) transforms into

L paxakneks o2 cosh(4K,). (7.51)

If one spin is oriented opposite to three others:
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1 ky 2
N/%/Z/CE’ e = N/\Z/ZCE COSh(ZKl). (752)

If one cell’s edge has spins oriented “up,” while the second edge is “down”:

1 e—ZK'2+K’3 _ # (753)

N/zlz,cE' NI 7 CE '

If one cell’s diagonal is “up,” while the second diagonal is “down’:

1 —2K"|+2K')+K'y _ 2
N/2IZ,CE' N2 7 CE ’ (7.54)

There are four independent equations and four independent variables, K'|, K',,
K';,and Z '“E' Therefore, the solution exists but is valid only for the first RG step
when in the initial system we have K, =0 and K5 = 0.

7.4 RG Approach of Representation: Two-Dimensional
Magnetic Systems in the Absence of Magnetic Field

Considering the RG approach above of a single survivor for the n.n. Ising model on
square lattice, we were able to build only the first step of the RG transformation.

Due to the introduction of a subjective rule of microstate correspondence, the
RG does not represent a physical process exactly. Strictly speaking, the subjectivity
does not make it an approximation either?. Instead, we consider an investigator’s
hypothesis as a subjective rule of microstate correspondence. Similar to the Bayes-
ian analysis, this hypothesis is just our “lucky guess” that may be right or wrong.
Therefore, the RG is just a tool that helps us to investigate particular systems.

As any tool, it is not unique. There are many possible approaches, each useful for
a specific system. The validity of these approaches is determined by how accurately
they can predict the exact or experimental results.

So far, we have built the “subjective” rule of microstate correspondence only with
the aid of the single-survivor approach. Let us consider now a different approach (Nie-
meijer and van Leeuwen 1974, 1976) which we call the approach of representation.

We consider the two-dimensional ferromagnetic n.n. Ising model on a triangular
lattice in the absence of magnetic field. The Hamiltonian, partition function, and
Gibbs probability of the system are identical to (7.40-7.42) of the square lattice.
There is a single-coupling constant, K = 3.J.

2 We are talking right now about the RG in real space when we consider the subjective rule of
correspondence among initial and final microstates. In momentum space, the RG is generally built
by truncating the spectrum from above since, truncating high frequencies, we are discarding fine
details. In this case, the RG can be considered to be the approximation.
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A A A A

Fig. 7.9 The RG transformation on triangular lattice

We divide the lattice into triangular cells with three spins in each cell (Fig. 7.9).
The linear-scale factor is +=1/b=1/~/3.

In the single-survivor approach, we chose the spins which would “survive” with
their orientations intact and then summed initial probabilities over the orientations
of the rest of the spins.

In the approach of representation, we consider all spins as “disappearing,” and
we sum the microstate probabilities over all spins without exclusions. We consider
the new spins to be appearing in the centers of the RG cells. So, spins o, c,, and
o5 in Fig. 7.9 “disappear,” giving birth to spin ¢'; in the middle of the cell.

Now, we have to state the subjective rule of microstate correspondence. In other
words, knowing orientations of spins o,, ¢,, o3, we should prescribe a particular
orientation to the new spin ¢’;. We do not have “surviving” spins now; all spins are
“disappearing.”

The order parameter of magnetic systems with spin interactions is the spontane-
ous magnetization. So, to keep the behavior of phase transitions invariant, we may
require the orientation of the new spin to represent the magnetization of the initial

cell. In other words, if three or two spins at the corners of the cell are oriented “up

(i.e., {T T T}, {T v T}’ {T T i}’ {i« T T}] , the new spin will also be oriented “up.”

Otherwise, if only one or none of the spins is “up,” the new spin is “down.”
Having built the rule of correspondence, we require the invariance of the cor-
responding probabilities:

;exp(K’ > G'i,d'j} = % > exp[K > Gia}}, (7.55)
>, {o}ito’} i J >

where, Z (o}:(0y 18 the sum over the initial microstates {o'} corresponding to the

final microstate {c'} considered by the left-hand side of (7.55).

Let us consider further the orientations of all new spins ¢’|,...,0" 5 to be fixed.
When the new microstate {o"} is given, the set of the possible original microstates
{o-} is limited by the correspondence to the final microstate: {o}:{c'}. In other
words, if a spin on the new lattice is “up,” we should consider only those microstates

0'} of the initial lattice when the corresponding cell is

{{T ' T}’ " {T ' T}’ o {T ' ¢}’ o {L ' T}‘
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Fig. 7.10 Spin interactions

For the initial model, let us consider a CE with an additional boundary condition
that our system can only be in one of the microstates {c} : {o'} while other original
microstates {0'} are prohibited either by the external forces or by the model formu-
lation. Then the properties of this ensemble should represent the properties of the
given microstate {c"}.

Similar to the n.n. Ising ferromagnet on square lattice, we see that we cannot
separate the sum over the orientations of one cell from the spins of other cells. In-
deed, each spin of a cell interacts with two spins of its own cell and with four spins
of three adjacent cells.

To overcome this difficulty, we divide the Hamiltonian into two parts:

H=H+V, (7.56)

where, the first term H is responsible for spin interactions within the cells. For the
spins enumerated in Fig. 7.10, H contains

ﬁ{o} =..—J(0,0, +0,0;+0,0,)—J (0504 +...). (7.57)

The second term ¥ in (7.56) represents spin interactions across the boundaries
of the cells:

V{U} =...—J(0,04, +0,0, + 0,05 +0,04 +0,07 +0307 +...).  (7.58)

We consider an approximation of small interactions among the cells when ¥ can
be considered small so that we can apply the perturbation theory.

Further, we consider the CE of the unperturbed Hamiltonian H with the addi-
tional boundary condition {o'} : {o'}, when the system can visit only those original
microstates {o} which correspond to the given {c'}. Let us denote this ensemble
as “CE of Hover {o}:{c'}” or, simpler, as “H:{c"}.” Then the averaging of an
arbitrary quantity A, over this ensemble we define as

Z A, exp(—H}“’]
<A<G>>~ = 2 Ayl = . (7.59)

Itaned) _%
5 exp[ z j
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Choosing 4, = exp(-V,,, / T), we transform (7.55) into

1 ' "
ﬁexp K z G,-VG/-V
<i'j">y

1 Vior Hio)
= exp| ——— |exp| ———
ze %a}ch:fw p( r )T
| Viey ]> { ﬁm] (7.60)
=——{CXp| ——— Z exXp| —— | ’
ZCE < [ T 1:1:{6'} (oo} T

H:{o' ﬁ{c}
A exp[——T J, (7.61)
{o}{c"}

The sum,

is the partition function of the unperturbed Hamiltonian. Exponential functions under

the sign ofthe sum contain spininteractions only within thecells. So, the spins, enumer-

ated in Fig. 7.10, provide exp(...)exp(K(c,0, + 0,05 +030)))exp(K (0504 +...)).
If o', =T, then the sum Z {0}y goes over the following orientations of spins

o,, 0,, o3 of the considered cell: {TTT}’ {TJ/T}’ {TTi«}’ {‘LTT}.Forthe

partition function (7.61) this provides

ZH:{U’} _ e eK(()'IO'2 +0,03+0307)

{o\o,.0,,03}:{c"} o2 - T ‘L T T
o o |t M TI’T i

= (e3K +3eX ) Z e, (7.62)

{o\01,05,0; }:{o"}

If o, =], analogous considerations lead to exactly the same result, so expres-
sion (7.62) is valid for an arbitrary orientation of ¢';. Performing the summation
for all other cells, we find

o} _ (e3K 430K )N/3 . (7.63)

This transforms (7.60) into

1 ' o) == : 7.64
FeXp[K 2 Gira"'jzﬁ@"p(_mw/T)>H:{U,} (e +3e K)M. (7.64)

o
<] Znn.

The last quantity to be found is <exp(—V{U} /T )>~ . Assuming the perturba-
H:{o'}
tion ¥ being small, we expand the exponential function in its powers:

exp| — Vi =1- <V{G">ﬁ:{“/} + <V{6}2>ﬁ:{5'} +... (7.65)
T ey

T 27°
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Taking logarithm on both sides of this equation, expanding the logarithm of the
right-hand side,

2
In <exp(— V{;} j> _ <K6}2ﬁ;{o'} N <V<6}2>ﬁ;{5'} 3 <V<a}>ﬁ:{6,} L (7.66)
Hi{o'}

277 277

and exponentiating, we find?

2
<exp(_%J> =exp| - <V{U}>ﬁ:{6'} + <V{G}2>ﬁ:{5'} _<V{G}>ﬁ:{"'} +..|. (7.67)

_ T 27°

H:{c'}

Since perturbation ¥ is small, we keep only the first term in the right-hand side

of this equation:
4 Vo Dsigor
<exp(——{c} J> ~exp| — L7 e . (7.68)

r ﬁ:{a'} T

The perturbation V contains interactions, (7.58), of adjacent cells. Averaging per-
turbation in the ensemble H : {G'} of the unperturbed Hamiltonian H, we find

(V) == (9104 +1020 4oy #0205 (7.69)

H:{o'} T + <6265 >ﬁ:{o—'} + <620-7 >]:I:{cr'} + <0-30-7 >]:I5{°"} o

But the unperturbed Hamiltonian H is responsible for spin interactions within the
cells. In the ensemble of this Hamiltonian two spins, belonging to different cells,
are independent, so the averaging of their product is the product of independent
averaged values:

<GIG4>ﬁ:{J'} = <‘71 >ﬁ:{o”} <G4>I~{:{cr'} ’<020-4>ﬁ:{o"} = <o-2>ﬁ:{o"} <G4>IN{:{6’} v (7170)

To find the averaged spin value, e.g., <02> , we utilize averaging (7.59):

ﬁ:{o"}

ﬁ 1
Z o, exp(— ] ] Z o,exp(K (0,0, +0,0,+0,0)))
{o}:{c"} T 0,0,,03:0]

<o-2>ﬁ:{o"}5 ( ﬁm] - z exp(K (0,0, +0,0,+0,0)))
T

z exp 01,0,,03:0(

{ol:{o’}

(7.71)

3 Generally two operations, taking the logarithm and exponentiation, performed consecutively,
make students smile. This is quite unmerited since it has helped us to transfer averaging from
outside of the exponential function under the sign of this function.
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For o', =1, we find

(o)) = D 12+ (=Dt P4 (1.72)
2/Hc"} 2K 1 3.7K K 1 3.K
while for o', =4,
(o)) = (D +2(-e* +(+1)e _ K —e® (7.73)
2/H{c"} 2K 130K K 130K

These two expressions differ only by the sign of &'}, so for the general case of the
orientation of spin ¢';, we have
K

3K, -
_ € te 7.74
<G2 >ﬁ:{a’} =01 K 430K (7.749)

To find

<V{c}>ﬁ: , = +<O-2>ﬁ:{a’} <05>ﬁ:{5'}+<02>ﬁ:{a'} <Gs>ﬁ;{o'} , 073
{ )

we should take into account that each pair of adjacent cells has always two pairs of
interacting spins (Fig. 7.11):

2
Z 00 . (7.76)

3K —-K
e +e
<ij>

oot )igory 4"[@

n.n.

Here, we are counting all pairs of adjacent cells by counting the n.n. pairs of the new
spins. For each pair of cells, we are taking into account two pairs of interacting spins
by introducing multiplier 2.

Fig. 7.11 Spin interactions
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Fig. 7.12 A trivial fixed K;
point—attractor
\
N E Y
PN
> X

K,

Substituting this result into (7.68) and (7.64), we finally find

1 | )
ZCE,eXp{]C z G,i’G’j’]:ZCE(e3K+3e [() N/3

i
<] Znn.

2
S oo, 7D

o
<] Znn.

3K, K
N B
K 137K

This equation provides the connection between the coupling constants and partition
functions of the initial and final lattices:

2
3K -K
e +e
K'=2K| — |, 7.78
{63[( +3e K ] ( )
7 = 7E (& 137K VB, (7.79)

The set of coupling constants K; is often represented by a vector K. In future,
we will choose the notation that will be the most convenient for the particular case
considered.

A point on the space of coupling constants, transforming into itself, K' =K, is
called the fixed point K" of the RG transformation. Since each RG transformation
changes the correlation length in accordance with (7.39), fixed points correspond to
either £ =0 or & = +o0.

The first type of fixed points, & =0, generally corresponds to a singularity of
boundary conditions or interaction constants (zero or infinite values of field param-
eters or interaction constants). These fixed points are called trivial. Since the RG
transformation decreases the correlation length in accordance with (7.39), a trivial
fixed point always possesses some incoming manifold of flow curves, attracted by
this point. If this manifold occupies all neighborhood of the fixed point, the trivial
fixed point attracts all flow curves in its vicinity (Fig. 7.12) and becomes an attrac-
tor (a sink).

However, this is not necessarily the case. There are systems when flow curves
emerge from one trivial fixed point to be consumed by another trivial fixed point.
In this case, the first trivial fixed point is the hyperbolic (saddle) fixed point (or an
even more complex formation) and has an outgoing manifold which plays the role of
the incoming manifold for the second trivial fixed point (Fig. 7.13). Since along the
manifold, connecting two trivial fixed points, the correlation length can only decrease
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e
*® X \

while it has been already zero at the first fixed point considered, we may conclude
that the correlation length is zero everywhere along this manifold (Fig. 7.13).

The reader should understand that Figs. 7.12 and 7.13 are schematic at best be-
cause we drew them only to illustrate the most general considerations. In reality, the
trivial fixed points correspond to a singularity of boundary conditions or interaction
constants. This means that the values of coupling constants are zero or infinite also.
Therefore, the trivial fixed points are often located at the boundaries of the con-
sidered space of coupling constants and do not possess both sides of the incoming
manifold. So, we treat Figs. 7.12 and 7.13 only as schematic illustrations and will
see what is going on in reality with the aid of particular examples discussed later.

The second type of fixed points with & = +oo represents critical phenomena, and
these points are called critical. From (7.39), we know that the RG transformation al-
ways decreases the correlation length. This leads to important consequences. When
there is only one coupling constant (Fig. 7.5b) and the critical manifold degenerates
into the fixed point of the RG transformation, this critical fixed point is expected to
be a repeller.

However, in the case of higher dimensionality of the space of coupling constants,
the situation may become more complex. The critical manifold ends up at the criti-
cal fixed point which in this case becomes the hyperbolic (saddle) fixed point or an
even more complex formation.

We are looking for the fixed points in the space of the coupling constants. Ob-
viously, the RG transformation (7.79) of the partition function cannot have fixed
points because the RG transformation is intended to decrease the number of degrees
of freedom in the system.

Let us find fixed points of (7.78):

Fig. 7.13 Hyperbolic trivial K;
fixed point r

K,

N . \2
S ek (7.80)

K 137K

K" =2K"

We immediately see that the trivial fixed points are K "=0 and K =+o. In ac-
cordance with the definition of the coupling constant K = J, the first trivial fixed
point K =0 corresponds to an infinite temperature or the absence of the pair spin
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Fig. 7.14 Evolution of the K

coupling constant K 104
10"+ /

K®10°4

1074

10%]

10°

10“‘

interactions. The second trivial fixed point K~ = +o0 corresponds, on the contrary,
to zero temperature or the infinite amplitude of the pair spin interactions.
However, the RG transformation in (7.80) possesses also a critical fixed point:

.,

.,

50
Steps of RG

C= %ln(2x/§ +1)~0.34. (7.81)
In comparison, the exact solution provides (Onsager 1944; Houtappel 1950):

€= %lnf& ~0.27. (7.82)

We see that the RG transformation returns not the exact but only the approximate
value. However, the approximation is accurate enough to rely on it as on an illustra-
tion of the system’s behavior.

The evolution of the coupling constant K is presented as the dependence on the
number of RG transformations in Fig. 7.14. We see that the system moves away
from the critical fixed point K ¢ (repeller) towards one or another trivial fixed point
(attractors). Since the correlation length is infinite at the critical fixed point, an in-
finite number of steps of the RG transformation is required for the system to leave
this point because at each step the correlation length decreases only by the linear-
scale factor r=1/b=1//3.

The flow curves of the system are presented in Fig. 7.15, where, for illustrative
purposes, we have put ahead of the axis the trivial fixed point K " = 40 also.

When there is only one coupling constant, its evolution is often illustrated by
a map (mapping transformation). In Fig. 7.16, we plot the dependence K'(K) as
well as the diagonal line K' = K of the square area of the plot. To build the RG
transformation, we choose a particular value of K and draw a vertical arrow up to

K'=0 K K K=t
— 0D

Fig. 7.15 The flow curves of the RG transformation
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Fig. 7.16 A map of the RG K'
. 1.0
transformation
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the dependence K'(K) to find K'. For the second RG step, we need to project K’ on
the abscissa axis (horizontal arrow up to the diagonal); and then for the found value
of K', we need to find (K')" by drawing the vertical arrow again. And so on. In the
result, the succession of the RG steps is presented by the succession of horizontal
and vertical arrows.

If initial K is less than K€, the succession of arrows moves the system to the left,
to the region of lower Ks, away from K. If initial K is higher than K€, the system
moves again away from K, in this case to the right, to the region of higher Ks.
From Fig. 7.16, it is easy to see that the critical fixed point K  is the repeller, while
both trivial fixed points are attractors.

In the vicinity of the critical fixed point K, the RG transformation can be lin-
earized:

RG(K)=K  + 14 (K-K©) (7.83)

where

A = ‘ZiK 4L 8-5Y2) (22 +1) ~ 1.62 (7.84)
I 2

is the eigenvalue of the linearized RG transformation. Subscript “K”" here empha-
sizes that this eigenvector corresponds to the coupling constant K. The exact solu-
tion provides the close value 1, = B ~173.

Let us return to the most general statement (7.39), determining the transforma-
tion of the correlation length:

&'=r&=8/b. (7.85)

We consider one step of the RG transformation in the vicinity of the critical point
(in our system with just one coupling constant, the critical state is represented by
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the critical fixed point K C). The correlation lengths of the initial and final models
are diverging in accordance with

—v,C -V ’,C/

1

Ha

T-T,
TC

1

e

T'-T'.
T'.

(7.86)

E o and &' oc

First, the scaling of the system is determined by the coupling constant
K = pJ =J/T. Therefore, let us express these divergences as

€ _C
Z_Tic Vi Z_T,C Vi
J_J W i
Eoc o and &'« T . (7.87)
J J'

Second, the critical points of the initial and final models are represented by the same
critical fixed point of the RG transformation:

k=L L (7.88)
I Tc
and we transform (7.87) into
o[
v v
s |K kS| _[KoKCT JK-KCT
i B v e
and K€
1o | o
, K’ KC B K/_KC 4 ~ K/_KC t
zgoc‘ 7 ‘ _| o | e (7.89)
k€

So, the divergences are the divergences with respect to the relative deviations of
the coupling constant from its critical value. Therefore, instead of the subscript “#”
in the critical index vtC , we could use the subscript “K” of the coupling constant,
corresponding to the field parameter #: v,g. However, the change of notation would
introduce confusion, so we will keep the original notation vtC .

The RG transformation keeps the lattice shape and the functional dependence of
the Hamiltonian invariant. Therefore, critical indices of the initial and final systems

must coincide, so we can omit apostrophes at the notation of the critical index:

C C
Vi Vi

K-K€
KC

K'-K°
KC

and &' (7.90)

£
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Substituting these divergences into (7.85), we find

1 _ bl/v,C
rl/v,c '

K'-K°
‘ (7.91)

K-KC¢

But the left-hand side of this equation is the eigenvalue, (7.84), of the RG transfor-
mation:

e (792)
v t
So, for the critical index v, we find
lnl
C r Inb ln\/g ~113. (7.93)

v, = = =
In|Ag|  In|A] 1n{1+;(8—5x/5)ln(2\/§+1)}

The exact value is v, =1. So, we see that the RG transformation we have built pro-
vides the approximate value of the critical index which is close to the exact value.

Problem 7.4.1

Build the RG approach of representation for the ferromagnetic n.n. Ising
model on the square lattice in the absence of magnetic field.

Solution: The solution of the problem is similar to the considered above case
of the triangular lattice. The main difference is in the subjective rule of the
microstate correspondence. For the triangular lattice, the sign of a new spin
was determined by the majority of spin orientations in the cell. However,
for the square lattice, this rule cannot be applied directly because in a square
cell half of the spins can be oriented “up,” while another half—"“down,” like

T
{ . In this case there is no majority that would suggest us the orientation

Tl

of the final spin.
What should we do in such a case? The answer is very simple: We should
divide the “undetermined” configurations in two, prescribing for the first half

T3t
T

L . ) 2 A
half, the spin is oriented “down { . T}{ 2 T} =1

to generate the spin oriented “up,” [ } =7, while for the second
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7.5 RG Approach of Representation: Two-Dimensional
Magnetic Systems in the Presence of Magnetic Field

In the previous section, we have discussed the ferromagnetic n.n. Ising model on
the triangular lattice in the absence of magnetic field. In this section, we consider a
more complex case when the magnetic field is nonzero.

Gibbs probability
ce _ 1 <
Wiy = —cp €XP KIZGI- +K, Z 00; |s (7.94)
z = S
contains now two coupling constants:
K, =puh and K, =pJ. (7.95)

So, the rule of invariant probabilities transforms into

1 N/3
’ ’ ! ’ ’
_Z'CE' exp KlZ]:G +K', Z o',
r= <i',j'>, .

in.n

:Z% > exp[&ioﬁ& > o,aj]. (7.96)
i=1

{o}:{o’} <LJ>pn

We include the interactions of spins with the magnetic field in the unperturbed
Hamiltonian H, while the perturbation is exactly the same as in the previous sec-
tion. For the partition function of the unperturbed Hamiltonian,

Zﬁ:{c’} - Z exp[_ ﬁ{G}J (797)
oo} r

whose exponential functions contain exp(...)exp(K, (o, +0, +0;)+K,(c,0, +
0,0, +0,0,)), we should consider again two possibilities: o', =T and o', =l. If
o', =T, we have

Zl:I:{U'} _ Z e Z e[(l(gl+cz +03)+K, (0,0, +0,05+050))
T

{0\0},0,,03 }:{c"} {5,0253}:{T TH ¢T1’

|
b
_ (e31<1+31<2 13k ke ) Z e (7.98)

{o\0y,0,.03}:{c"}
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If o', =\, we obtain

ZH:{G'} _ Z e Z eK, (0,+0,+03)+K, (0,0, +0,03+030,)

{c\0|,0,,04}:{c"} o | |4 T
{"1 03}7%’ i’}!{i i’}!
{ ¥
Lo
:(6—3K1+3KZ +3eiK‘7KZ) Z e, (7.99)
{o\o),0,.,03}:{c"}

In the result for the partition function of the unperturbed Hamiltonian, we find

Hio'} _ N3 301K, +3K, o/ Ki—K,
ZHe = H(e +3e ) (7.100)

i'=1

The average

> o, exp[— Hey ]

_ oyl r

<G2>ﬁ;{g'} = Her
2 exp[‘TJ

{ol:{o’}

Z o, exp(Kl(Gl+62+o-3) ]

_ 0,,0,,03:0( +K2 (0-162 +O—263 +O'3O-1) (7 101)

z exp(Kl (o-l +0—2 +G3) J

0,0,,03:0] +K2 (0-162 +O—20-3 +6361)

we find in a similar way. If ¢, =T R

C(#DE T 1 2(+ 1) 4 (<
- 3K, +3K, 13k

(o, >ﬁ;{5'} B

3K, +3K. K,-K.
e’ 24 e

e “te (7.102)

63K1+3K2 +3eK‘7KZ ’
while for o', =,

(_1)8—3K1+3KZ i 2(_1)671(1«2 + (+1)eiK' -k,
<O-2 >ﬁ:{o"} = e‘3K1+3K2 +3e_K1_KZ

3K, +3K, —K,-K,
_—e —e (7.103)

e KK | 3, KK
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Finally, for (o, >ﬁ:{c'} , we obtain

SoiKiH3Ks | oKk,

' 7.104)
05 )q.4.n =0 ; 7 (.
< 2>H:{cr} 16361K1+3K2 4 3001KI-Ks
which provides for <V{G . >ﬁ () the following expression
no
307K, +3K. /K ~K 30K, +3K, 'K, —K
W) =20 Y e e Lo e reT T (7.105)
o} iy S I POIKIKs 3 0iki Ky 1 397K 3K, 3K

Substituting (7.100 and 7.105) into (7.96), we find

1 N/3 1 N/3 , e
S oxp| KD ol + K} B olo) |=—5 [T(e "7 #3657
i'=1

<i'\ ">, i'=1

30/ K, +3K 'K —K, 30K, +3K oK —K.
e 1735, eU, 1782 e’ 1 2 e’ 178K
XexXp

’ ’
2K2 Z Oy esa,ﬁK,+3Kz +3ea,ﬂ1(,71<2 O 307K +3K, o'/'rK,KZJ' (7‘106)

<i'J">un.

+3e

This relationship is formulated for the spins of the whole new lattice with
N'q (N/3)6
2 2
a separate spin pair, we notice that each separate spin participates in six spin pairs.
Therefore, each multiplier of a separate spin in (7.106) belongs simultaneously to
six pairs, while for each of them it provides only ¢ ofits total value:

= N spin pairs. To transform it into the relationship, formulated for

1 ﬁ r+£]' "+ Koo'
Wexp 66,, 60'1., 20,0

e}o’,'vl(l+31(z

KKy | 0Ki=K,

2K,0; SoKiTKy | 300Kk, (7.107)

X exp ,
oK, -K. 361K +3K,
+ 37 , € ‘e

J' e}c;rK1+3K2 _i_3ea;,1<171<2

e3o'/'rK1 +3K,

+ 360"’K17K2 oK -K,

This equality should be valid for arbitrary projections of ¢'; and o'}

1 Kok
o=+l =+l=> ——e3

! J N/ ZICE’

3K, |, KK )2
_ _(63K1+3K2 13Kk )1/3 exp 2K2 ( e +e j , (7108)

K13k | 3Kk

3K,
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o', =+Lo’', =- 1 .
= —e
o', =-l0', =+1 N rcE
| SKiv3K: 176 o 3Kk, 176
N[ZCE + 3eK1 -K; + 36*1(1 -K;

K, +3K. K, -K, -3K,+3K, -K,-K.
Y A S S (7.109)
Xex — .
P 2 KK, | 3 KKy KK, | 3, KK ]
.
’ ' 1 _TH'K’Z
o,=-lLo", =-1= e

1 s ) o 3KiK | KK, 2 2110
_ 3K, 43K, —K,—Ky 173 .
= W(e +3e )" exp 2K2[63K1+3Kz Y j ( )

Dividing (7.108) by (7.110) and dividing (7.108) by (7.109), we find:

_ _ 2
. 11 [ K3y | 3 K=K, ]4_3 (63K1+3KZ 1 ki K ]
K =—1n K —
1 2

7 KK | 3, KK oKk 3 KK,

SBK 43K, | KK, \? (7.111)
—3K2( e +e j ’

e_3kl+3K2 + 3e—1(1 -K,

1 SKit3Ky | Ki-Ky  3K43K, | KoKy
K,
2

K, = — + .
2 SKI3Ky | 3, Ki-Ky T 3K 43K, 5K Ky (7.112)

_. [0 N
The trivial fixed points of this RG transformation are K = HO (zero field, infinite

= . 0 = e
temperature), K = (zero field, zero temperature), and K = (infinite
400

field, infinite temperature). The critical fixed point is the critical fixed point of the
system in the absence of magnetic field:

0
K¢ =1 | ° 7.113
vz " Jo34 (7.113)

The behavior of flow curves is presented in Fig. 7.17. When the magnetic field
is zero, K, =0, the space of the coupling constants degenerates into the abscissa
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Fig. 7.17 Flow curves of [ )
the ferromagnetic n.n. Ising K
model in nonzero magnetic \
field 1 Trivial
fixed
=0 points

Critical fixed point

axis whose flow curves we have studied in Fig. 7.15. When the magnetic field is

, which correspond to

s +oo
nonzero, two additional trivial fixed points appear, K = H 0

the case of infinite field and are working like attractors.
The appearance of the new trivial fixed points transforms two previous trivial

and K" = , into saddle points. The manifold, leaving

_ . |0
fixed points, K =‘
0 +00

+00

_. |0 .. = . . .
K = HO and arriving at K = , corresponds to zero correlation length. Similar

= s [T .
manifold connects K = with K = . To see that the reader may consider

+00

an alternative space of coupling constants when K, is substituted by 1/ K.
Linearizing the RG transformation in the vicinity of the critical fixed point, we
find

K —Kf :{%%(8_5@111(2&”)}(& -KS) e

K',-KS ={1+%(8—5\/§)1n(2\/5+1)}(K2—ch). (7.115)

We see that the increments of two coupling constants are independent from one
another. This means that the linearized matrix of the RG transformation is diagonal
in the axes of coupling constants,

dg 0
0 Ay,

oK'
oK

, (7.116)

KC
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with two eigenvalues,

7.117
e =+ 2 (8=542)In(242 +1) ~ 3.06, (7.117)
1 \/E 4
A, =1+%(8—5\/5)1n(2x/§+l)z1.62, (7.118)
and two corresponding eigenvectors,
1 0 (7.119)
Considering the critical isofield curve similarly to Sect. 7.4, we find
lnl
o r _ Inb (7.120)
= =—:.
In|Ag,|  In|i, |

Substituting into this expression 4, from (7.118), we find

ve In+/3 ~1.13. (7.121)

) ln{1+;(8—5x/5)ln(2\/§+1)}

If, instead of the approximate value of 4, , given by (7.118), we substituted the ex-
act eigenvalue 4, = /3, we would obtain the exact value of the critical index v

v :1“*/5:1, (7.122)
t
1I1\/§

To find the second critical index v, of the correlation length, we consider the
critical isotherm ¢ = 0. By definition
1

-
[

&

(7.123)

Since after the RG transformation, the system has the same value of the critical
index v, and the same value of the critical field /. = 0, for the new system we have

1

Eloe—.
[

(7.124)
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For the critical isotherm

K =Bt g B ik, -k, = kS =L (7.125)
Tc T ¢
From these equalities, we obtain
1K T-K' J
h="L =1 where T o BE— (7.126)
H H Z111(2\/5 +1)

Substituting (7.126) into (7.123) and (7.124), we find

and o (7.127)

£ o )
K[ IS

So, the divergences are the divergences with respect to the deviations of K, from its
crltlcal value K| = 0. Therefore, instead of the subscript “A” in the critical index
v, , we could use the subscrlpt “K,” of the coupling constant, correspondmg to
the field parameter A: v «- However, we will keep the original notation v, to avoid
confusion.

Substituting (7.127) into (7.85), we obtain

1

c
rl/"h

Ky_ 1 _pwi (7.128)

K,

The left-hand side of this equation is the eigenvalue (7.117) of the RG transforma-
tion:

1 _ l/v,?
|,1K1| — = (7.129)
For the critical index VhC , this provides
1
In— nb
o r _In (7.130)
h .
InfAg | Inja|

Substituting the RG approximation (7.117), we find the approximation of the
critical index V,,C :

C 11’1\/5

Ve = ~0.491. (7.131)
1n{j§+i(8—5\/5)ln(2\/§ +1)}
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Fig. 7.18 Flow curves of the K,
RG transformation in high r
dimensions of the space of
coupling constants

K,

We see that indeed the eigenvalues of the RG transformation, linearized in the
vicinity of the critical fixed point, provide the critical indices of the system. We will
discuss this question in Chap. 8 in more detail.

Since the RG transformation is merely an approximation, it is always reasonable
to compare its results with exact or experimental values. The exact solution pro-
vides 1, =3""°. Substituting this eigenvalue into (7.130), we find the exact value
of the critical index V;,C s

¢ W3 8

vy, =———=—=~0.533, 7.132
' 1—Sln\/g 15 ( :
8

to which the RG value (7.131) serves as a good approximation.

In higher dimensions of the space of coupling constants, the criticality of the
system may no longer be described by a single critical fixed point of Figs. 7.15
and 7.17. There could exist the critical manifold, ending up at the critical fixed
point. In Fig. 7.18, the critical manifold is plotted schematically by the succession
of filled dots which ends up at the critical fixed point “*.” The manifold, emerging
from the critical fixed point, is not necessarily critical; however, it would require an
infinite number of the RG steps to make the correlation length finite.

The near-critical system in Fig. 7.18 is moved away from its critical point by the
RG transformation. This is demonstrated by the dotted lines, schematically repre-
senting the distance from the critical point (how far the coupling constants are from
their critical values).

As an example of such behavior, we present in Fig. 7.19 the flow curves on the
space of coupling constants for the case of zero magnetic field of the ferromagnetic
Ising model with spin interactions in n.n. and n.n.n. pairs. There are two coupling
constants, K, = §J, , and K, = BJ, , where the first coupling constant is respon-
sible for the n.n. interactions, while the second is for the n.n.n. interactions.

If we consider K, =0 in the model, we return to the n.n. Ising model. On its
space of coupling constants (which is the abscissa axis of Fig. 7.19), we see the
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Fig. 7.19 Flow curves of
the ferromagnetic n.n.—n.n.n. K,
Ising model in zero magnetic
field

Critical point of
the n.n.n. model

Critical
fixed
point

Critical point of
the n.n. model

K,

A 4

flow curves of Fig. 7.15. We see a similar behavior for the n.n.n. Ising model with
K, =0 which is represented in Fig. 7.19 by the ordinate axis.

For the n.n.—n.n.n. mixture model, we should consider particular values of the
interaction constants J,  and J,, .. This corresponds to the particular value of the
ratio K, / K, of the coupling constants. Then the model is represented by one of the
dotted lines in Fig. 7.19; and its critical point is formed by the intersection of this
dotted line with the critical manifold.

Why are we so interested in the critical fixed points of the RG transformation?
Because they perform the role of the “capacitors” of criticality. The RG transforma-
tion keeps invariant the functional form of the Hamiltonian and the lattice shape.
Therefore, all systems of the universality class possess the same critical indices
which are invariant also.

So, critical indices are the same in the initial system and in the system at the criti-
cal fixed point. But it is much easier to find critical indices in the vicinity of the criti-
cal fixed point by linearizing the RG transformation there. We have already seen two
examples, (7.120) and (7.130): In the vicinity of the critical fixed point, we were able
to find the critical indices v, and v; from the general considerations and from the
eigenvalues (7.117) and (7.118) of the linearized RG transformation. A similar proce-
dure can be performed for other critical indices as well, as we will study in Chap. 8.

Of course, if for a one-dimensional space of coupling constants a critical mani-
fold degenerates into the critical fixed point—repeller (Fig. 7.15), the critical point
of the initial system is just the fixed point of the RG transformation; and the invari-
ance of critical indices becomes trivial in this case.

7.6 Percolation

Let us now consider how the RG transformation is built for the percolation
phenomena.
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Fig. 7.20 The approach of OCoaooocaooa
representation for the one- ﬂRG
dimensional percolation. (a)
The RG transformation with L O Lo TGO 1
b=3.(b—c) The rule of a
correspondence of micro- PeE =— 8]
states. Only a completely b
occupied cell transforms into "N No|
the occupied site. The rest of B oa
microstates transform into an oR N |
empty site B OO =—> CO
Oo®qa
ooa
0ooa
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As the first example, we consider the one-dimensional site percolation. We di-
vide the one-dimensional chain of sites into cells of size b (b =3 in Fig. 7.20a).
Each cell of the initial system generates a site of the new system.

How should we build the rule of correspondence of microstates? In Chap. 6, we
saw that direct, thoughtless application of statistical physics to percolation phenom-
ena does not provide the desired results.

Indeed, the primary concern in percolation is the connectivity of sites within clus-
ters. The percolation threshold itself represents a situation when the opposite edges
of the lattice become connected. Therefore, the subjective rule of correspondence of
microstates should be built keeping invariant the connectivity within clusters.

To keep the percolating properties of the cluster structure unchanged, the initial
cell which is percolated should transform into the percolating (occupied) site on the
new lattice. On the contrary, if the initial cell is not percolated, it should be trans-
formed into non-percolating (empty) site.

The one-dimensional cell is percolated only when all its b sites are occupied
(Fig. 7.20b). Therefore, applying the approach of representation, we say that only a
completely occupied cell is transformed into an occupied site, while the rest of the
microstates generate an empty site (Fig. 7.20c).

After we have built the rule of correspondence of microstates, it is easy to create
the rule of invariant probabilities:

P =p (7.133)

where the probability p’ for the new site to be occupied is generated only by the
completely occupied cell. If we decided to sum instead the probabilities for the new
site to be empty (to sum the probabilities of microstates from Fig. 7.20c), we would,
obviously, obtain the complementary equality 1— p' =1- p”.

We see that in percolation, the role of a coupling constant is fulfilled by the field
parameter p which “absorbs” all that changes during the RG transformation.

Since the lattice and model are invariant, the point of the percolation threshold
stays unchanged, p’. = p. =1, and plays the role of the critical fixed point of the
RG transformation. The trivial fixed point is p = 0.
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Fig. 7.21 The map represent- 1.0
ing flows of the one-dimen-
sional RG transformation 0.8 ul

0.6
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Again, since, in percolation, there is always only one coupling constant, the most
illustrative way to study the flows of the RG transformation is to represent the so-
lution (7.133) graphically as a map (Fig. 7.21). The map clearly demonstrates that
the critical fixed point is a repeller, and the system moves away from it towards the
trivial fixed point.

As we have already discussed in (7.39), the RG transformation decreases the
correlation length b times:

§'=r&=¢/b. (7.134)

Since the critical index v stays unchanged, for the divergences of the initial and new
correlation lengths in the vicinity of the percolation threshold we have:

gm; and élm;r' (7.135)

| p—Dpc I | p'—pc

Substituting them into (7.134), we find:

v Inb B Inb

- T - T 7.136
! ?~pc N (7.136)
|p—pcl dp|,.

Substituting (7.133) into this equation, for the one-dimensional percolation we
find:

Inb
V=ﬁ—>1(p—>pc=1), (7.137)
-P

l-p

which complies with the exact result (6.220).
Above, we have discussed that the rule of correspondence of microstates should
take into account the connectivity of sites within clusters. Let us, with the aid of the
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following problem, demonstrate what happens when we applied the techniques of
statistical physics thoughtlessly.

Problem 7.6.1
Apply the approach of a single survivor to the one-dimensional percolation.

Solution: To employ the approach of a single survivor, we should divide the
chain of sites into cells of size b and require that the first site of each cell sur-
vives the RG transformation to keep its state (occupied or empty) on the new
lattice. The rest of the sites in the cell disappear:

b1
(b-D! boick b
=p> — 2 pra- —p(p+1-p)'=p, (1138
p p;k!(b_l_k)!p( P =pp+l-p)=p, (7139

where the probability for the new site to be occupied equals p times the sum
of the probabilities for other sites within the cell to have arbitrary states.
Obviously, this sum equals unity so that p’ = p. The situation resembles the
RG transformation (7.12—7.14) for the magnetic system when in the absence
of interactions among spins, K, =0, the RG transformation becomes trivial:
K' =K,K', =K, =0.

From one point of view, the model transforms into itself exactly, keeping
even the value of the field parameter unchanged. Therefore, the correlation
length must stay unchanged also. But from another point of view, the RG
transformation must decrease the correlation length b times.

This contradiction clearly shows that the built RG transformation is incor-
rect. In particular, what is wrong is the rule of correspondence of microstates
which we introduced subjectively. This example clearly demonstrates that,
coarse graining our system, we must take into account the primary concern in
percolation—the connectivity within clusters. The correlation length in per-
colation is the direct representative of the connectivity; and paying no atten-
tion to the latter, we have lost the correct behavior of the former.

Let us now consider the RG transformation for two-dimensional site percolation;
first, on triangular lattice. We divide the lattice into triangular cells. Each cell gen-
erates a site on the new lattice. The geometry of transformation is analogous to the
geometry of magnetic system in Fig. 7.9.

Next, we should formulate the rule of correspondence of microstates. Following
the general rule to transform a percolated cell into an occupied site and not perco-
lated cell into an empty site, we need only to formulate the criterion for a triangular
cell to be percolated. We will consider a triangular cell as percolated when at least
two of its three sites are occupied (Fig. 7.22a) so that at least one edge of the cell
percolates. Otherwise, we consider the cell not to be percolated (Fig. 7.22b).
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The rule of invariant probabilities sums the probabilities of microstates from
Fig. 7.22a:

p'=p +3p°(1-p), (7.139)

where p’ is the probability for all three sites to be occupied and 3p*(1- p) repre-
sents three microstates, each bringing the probability p*(1— p) for two sites to be
occupied, while one site is empty.

Similarly, we can sum the probabilities from Fig. 7.22b to obtain the probability
for the new site to be empty:

1=p'=3p(-p)’ +(1-p)’. (7.140)

However, this equation does not contain any new information and returns us to
(7.139).

Again, the behavior of the RG flows is better illustrated by a map presented
in Fig. 7.23. The critical fixed point p. =1/2 serves as a repeller so that the RG

Fig. 7.23 A map of the flows p'1.0

of the RG transformation for

the percolation on triangular 0.8,

lattice '
0.61
0.41
0.2+
0.0

00 02 0f4p'*0f6 08 1.0
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transformation moves the system away from it towards one of the two trivial fixed
points: p=0or p=1.

The predicted value p. =1/2 of the percolation threshold coincides with the
exact solution of the system. This is one of those cases when the RG transformation
returns not an approximate but the exact result which proves us to be “lucky” (or
“skilful” if one prefers) in the formulation of the subjective criterion for the rule of
correspondence of microstates.

In the vicinity of the percolation threshold, we substitute (7.139) and b = V3 into
(7.136) to find the critical index

ln\/§
3

In=

V- ~1.355. (7.141)

It is close to the exact value v =4/3=1.333.

Problem 7.6.2:
Build the RG transformation for site percolation on square lattice.

Solution: We divide the square lattice into cells of linear size b = 2 when each
cell generates a site of the new lattice (part a of the figure).

T I

FlRinio

]+

I
oy

o [e]
[ +[#
bd ks
4
. [

To formulate the rule of correspondence of microstates, we, similar to the
case of the triangular lattice, as a percolated cell, consider a cell, at least one
edge of which is occupied. This cell transforms into the occupied site (part b
of the figure). Such a choice seems to be reasonable—one occupied edge of
the cell means that this cell can percolate along this edge to form a percolat-
ing cluster.
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Thereby, for the rule of invariant probabilities we find:
p'=p'+4p (1-p)+4p’(-p)’, (7.142)

where the first term represents the completely occupied cell, the second—four
microstates with three occupied sites, and the third—four microstates with two
occupied sites. However, the critical fixed point of this RG transformation:

Pe =%(3—\B) ~0.38, (7.143)

does not approximate the experimental value p. =~ 0.59.

Why the predicted value of the percolation threshold was so crude? As we
will see below, there is a technique to improve the accuracy of the RG trans-
formation. However, in our case, the prediction is so crude that it indicates we
have not been “skilful” enough (or “lucky” if one prefers) in our formulation
of the subjective criterion for the rule of correspondence of microstates.

Returning to the second row of microstates (part b of the figure), we see
that as percolated we have considered all four microstates when one edge of
the cell is occupied, while another is empty. But filling the lattice randomly
with these four microstates, we would never obtain a percolating cluster, con-
necting, for example, the left and the right sides of the model—one cell would
percolate horizontally, another vertically, and a chain of occupied sites would
end sooner or later.

For a percolating cluster to connect the left side of the model to the right
side, we expect all cells to percolate horizontally on average. Instead, we
have considered cells, percolating vertically, as also helping this cluster to be
formed. Thereby, we significantly weakened the criterion of percolation and
obtained the percolation threshold much lower than the real value.

To improve the situation, we keep only two of the discussed four micro-
states, corresponding to the cell percolated horizontally (part ¢ of the figure).
Now, all microstates, forming the occupied site on the new lattice, contain at
least one occupied horizontal edge to form the percolating cluster from the
left to the right of the model.

The corrected rule of invariant probabilities,

p'=p'+4p’(-p)+2p*(1-p), (7.144)

possesses a critical fixed point

B %(\/3—1) ~ 062, (7.145)



7.6 Percolation

which approximates the experimental value p. ~0.59 much better. This
problem illustrates that the RG transformation in real space is merely a tool
whose accuracy depends on the skillfulness of the investigator who formu-
lates the subjective criterion for the rule of correspondence of microstates.

Problem 7.6.3:
Build the RG transformation for bond percolation on the square lattice.

Solution: In this problem, we, for the first time, consider not the site but
bond percolation. Again, we divide square lattice into cells of linear size b = 2
when each cell generates two bonds of the new lattice (part a of the figure).

i
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We intend to study percolation from the left to the right of the model. The rule

of correspondence of microstates is presented in part b of the figure, where the

occupied horizontal bond on the new lattice is generated only by cells percolat-

ing from the left to the right. Solid lines represent the occupied bonds, absent

lines represent empty bonds, and dotted lines are bonds whose state (occupied

or empty) is undetermined since it does not influence the left—right percolation.
The rule of invariant probabilities is

P =p’ +5p"(1-p)+8p°(1—p)’ +2p*(1- p)’. (7.146)

The predicted value of the critical fixed point,

Pc == (7.147)

1
2

413
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coincides with the exact value.
For the critical index v from (7.136), we find:

volaia, (7.148)
In—
8

while the exact solution provides a close value v =4/3 =1.333.

7.7 Damage Phenomena

In previous sections, we considered coarse graining in the vicinity of a critical point,
where the divergence of the correlation length provided the possibility to consider
flow curves of the RG transformation. However, in Chap. 6 we found that the corre-
lation length diverges in the proximity of the spinodal point as well. The divergence
of the correlation length leads to scale invariance which allows us to build an RG
transformation in the vicinity of the spinodal as well. As an example, we consider
the fiber-bundle model (FBM) again (Allegre et al. 1982; Smalley et al. 1985; Sor-
nette 1989a, b; Narkunskaya and Shnirman 1990; Newman and Gabrielov 1991;
Newman et al. 1994; Sornette and Sammis 1995; Shnirman and Blanter 1998, 2003;
Sornette 2006). However, this time, the model will not be formulated as a mean-
field system—a broken fiber will not redistribute its loading uniformly among all
intact fibers. Instead, we will consider the nearest-neighbor stress redistribution.

In contrast to the FBMs considered earlier, this time we arrange the ends of all
fibers along an imaginary line, so the model becomes plane like a ply of a composite
material (Fig. 7.24). This makes our model a one-dimensional chain of fibers which
will further simplify the organization of fibers into the RG cells.

The load is transferred to fibers in such a way that when all fibers are intact, the
stress of each of them is o. We again consider the strength CDF P(c) as a prob-
ability for a fiber to have been broken when it is supposed to carry the stress o.

To form the RG cells, we divide the chain of fibers into cells with b = 2 fibers in
each. The RG transforms each cell of the initial model into a fiber of the final model.

The primary concern in damage phenomena is the behavior of the damage pa-
rameter. Therefore, to keep the behavior of the system unchanged, the state of the

Fig. 7.24 All fibers are ~ A -
arranged in pairs forming the X 2
RG cells

2.
i
2.
i

W=
W=
W=
W=
W=
W=
W=
W=
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new fiber (broken or intact) should represent the initial cell. If both fibers or at least
one fiber are still intact in the initial cell, { I { I } , or { i }, we consider this cell
as still able to carry the load, and the new fiber should also be intact: {\} On the
contrary, if both fibers are broken, { H }, the new fiber also has to be broken: { | }

Let us consider all these cases and situations leading to them separately:

» Ifboth initial fibers are intact, {|| }, when the stress in both fibers is o, the prob-
ability of such a case is (1—P(c))’. The new fiber is also intact.

* One fiber is broken while another remains intact. Then the first fiber breaks
when its stress is o so that the probability of this is P(c). Considering the
nearest-neighbor stress redistribution, we assume that the broken fiber transfers
its stress o to the second fiber in the cell so that the stress in the second fiber
becomes 2o. Therefore, the probability for the second fiber to still remain intact
is (1- P(20)). Since two microconfigurations, { I } and { i }, correspond to this
case, the total probability of such a situation is 2P(c)(1 - P(20)). The initial cell
transforms into an intact fiber.

» Both fibers of the initial cell break at once when their stresses are equal to o:
{ I } = { H } The probability of this case is P (o ); and the new fiber is also broken.

* One fiber breaks at once, when its stress is o , with probability P(c). The second
fiber, when its stress was ¢ also, stayed intact but breaks when the first fiber trans-
fers its stress so that the stress in the second fiber becomes 20 { [ } = { i } = { h } .
The corresponding probability for the second fiber is (P(20)— P(c)). Again, due
to the presence of an alternative scenario, { Il } = { l } = { i }, leading to the same
outcome, in the total probability 2P(c)(P(20)— P(o)) of such a situation, we
should use the multiplier 2 again. The new fiber is broken.

Summarizing these possible outcomes, for the probability of the new fiber to be
broken, we find:

P'(c") = P*(6)+2P(c)[P(20) - P(c)] = P(6)[2P(20) - P(5)]. (7.149)

Here, the role of a coupling constant is fulfilled by the stress o which is trans-
formed by the RG into o'. Since we build the RG transformation so that the be-
havior of the system would remain invariant, the functional dependence of P'(c’)
on ¢’ should be the same as the functional dependence P(c) on o. However, the
strength CDF P contains some parameters that can change. For example, the two-
parameter Weibull distribution

P(s)=1- e[;ojﬁ (7.150)

>

contains two parameters, s, and . These parameters may, in principle, also serve
as coupling constants. Therefore, we rewrite (7.149) as

P(c',d,b,..) = P(c,a,b,.. )[2P(25,a,b,..)— P(c,a,b,..)].  (7.151)
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However, since we have only one equation, connecting the previous and the new
values of the coupling constants, we expect that there is only a single-coupling con-
stant in this equation. Therefore, the parameters of the strength CDF P are usually
kept invariant, leaving only o to change:

P(c') = P(6)[2P(20) - P()]. (7.152)

Problem 7.7.1:

Build the RG transformation for the model considering the Weibull distribu-
tion to be the strength CDF.

Solution: Substituting the Weibull distribution (7.150) into (7.152), we find:

o B -(2”—1)(§]ﬂ _(25_2)(%,; /B
o'=s, 2[—] —In{1-2e¢ 4 2e %0 . (7.153)

So

7.8 Why does the RG Transformation Return
only Approximate Results?

For almost every model, we saw that the RG transformation returns not exact but
approximate results. Often the culprit is our misjudgment within the subjective cri-
terion which does not represent the real behavior of the system. But what if it were
absolutely correct? Are there other factors influencing the accuracy of the results of
the RG transformation?

The most illustrative is to discuss this question with the aid of clusters in the
theory of percolation. In Fig. 7.25 we apply the RG transformation to the triangular
lattice in accordance with the rule of correspondence of microstates from Fig. 7.22.
Small filled and empty circles represent initial occupied and empty sites, respec-
tively. Big circles are the new sites. Dashed lines connect the initial occupied sites
from one to another to form clusters.

In Fig. 7.25a, we see that the RG transformation unites two clusters, which have
been separate as yet, into one common cluster. On the contrary, in Fig. 7.25b, the
RG transformation breaks a cluster in two.

Therefore, even if the subjective criterion keeps the behavior of the system un-
changed within cells, on the cells’ boundaries the RG transformation does not man-
age to keep the connectivity invariant.

Thereby, the standard technique to improve the accuracy of the RG predictions is

to make the cells bigger. The larger the volume »“ of a cell, the less is the influence
d-1

of its surface b ¢ . However, increasing the size of the cell, we drastically increase



Fig. 7.25 The RG transfor-
mation does not represent

the real behavior of a system
at the cells’ boundaries. (a)
The RG transformation unites
two clusters which have

been separate as yet. (b) The
RG transformation breaks a
cluster in two

the complexity of analytical calculations since we should take into account more
and more microstates. Thus, the obtained values generally represent a compromise
between the complexity of calculations and the accuracy of the results.

For example, in percolation, we consider a new site to be occupied if the initial
cell is percolated. Similar to Chap. 4, we can write this condition with the aid of the
probability I1(p,L) for a system of size L =b to be percolated at the given value
of p:

p' =I1(p,b). (7.154)

All previous rules of invariant probabilities represented, in fact, this equation.
Since the percolation threshold is the critical fixed point of the RG transforma-
tion, it obeys the equation:

pc =1(pc,b). (7.155)

The larger the size of the cell is, the more accurate results this equation returns. As
we will find in the following chapter, the percolation threshold of a finite system
differs from the percolation threshold of an infinite system by the value of the order
of L. Thus, 5" is the accuracy of the RG transformation.

Increasing the size of the cell step-by-step, we would obtain more and more ac-
curate results of, e.g., the percolation threshold p.. Often, we do not even need to
consider very big cells. Instead, knowing the dependence p.(b) of the approximate
result on the cell’s size, we could forecast this dependence for larger b or even find
the exact solution.

It is the knowledge of scaling,
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e ()= p&t bV for b —> +oo, (7.156)

that helps us. Substituting a linear-scale factor of the RG transformation, » =1/b,
into (7.156), we obtain

1/v

pc(l/r)=p& ocr for r—+0. (7.157)

Taking the logarithm of both sides of this equation

exact

In(pc(1/r)—pc™) r e v +0, (7.158)
\4

we find that In(p.(1/7)— pc™) should be proportional to Inr.

exact

If we correctly guessed the value po”, the dependence of In(p.(1/7)— p&™")

exact

on In7 should become a straight line. Thereby, the sought p™" is provided as the
value straightening dependence (7.158).
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Chapter 8
Scaling: The Finite-Size Effect
and Crossover Effects

Abstract In the previous chapter, we have considered different approaches to build
the renormalization group (RG) transformation. The behavior of a system in the
vicinity of its critical point is scale invariant. This allows us to build relationships
among different systems of the universality class.

However, in the previous chapter, our primary concern was to study how we
can build the RG transformation, and we did not spend much time investigating the
emerging scaling.

We overcome this drawback in the current chapter. Initially, we consider the
basic principles of scaling (Widom 1965a; Widom 1965b; Domb and Hunter 1965;
Patashinski and Pokrovskii 1966; Kadanoff 1966). Then we see that scaling leads
to such important concepts as a finite-size effect and crossover effects. Finally, we
study the origins of scaling and find that it is described by the formalism of general
homogeneous functions. In turn, we demonstrate that the last formalism originates
from the scaling hypothesis of the RG transformation.

8.1 Percolation: Why Is the Cluster-Size
Distribution Hypothesis Wrong?

Let us first consider percolation. In Chap. 4, we have obtained the critical index
(4.82) of the order parameter. Assuming the presence of a nonzero order param-
eter, it was understood that we were considering the system above the percolation
threshold: p > pc.

However, if we take a look at formulae (4.74-4.82) again, we would find nothing
that would prevent us to apply them also for the system below the percolation
threshold: p < pc. But this would mean the presence of a nonzero order parameter
(a percolating cluster) for p < pc, which makes no sense just by the definition of
the percolation threshold itself.

What went wrong? Our single assumption was the hypothesis (4.52 and 4.53) for
the cluster-size distribution:

ny(p)ocs e P (8.1)
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where

e(p) oc|p— pel" for p - pe. (8.2)

Therefore, this hypothesis is the first to be suspected.

Let us look closer at the hypothesis (8.1 and 8.2). We know that the real cluster-
size distribution n( p) is determined by the sum of probabilities of all lattice animals
corresponding to the given s:

n(p)=2g p (1-p)", (8.3)

where the sum goes over the possible values ¢, of perimeters of s-clusters. Here g,
is the number of lattice s-animals corresponding to the given value of the perimeterf

Let us choose some particular value of s that is large, s >> 1, but finite. Then the
sum (8.3) contains large but finite number of lattice animals. Thereby, this sum is

apk
k
On the contrary, the k™ derivative (6_75] of hypothesis (8.1 and 8.2) contains
a K

k
the finite-order polynomial of p, all derivatives {8 s j of which are also finite.

K

o o L .
the & derivative of c, [a—iJ o | P pe |g*k , which in the limit p — p. diverges
P Js
for high values of k when 1/ ¢ is not an integer. For lattices below the upper critical
dimension, 1/o is generally not an integer so that hypothesis (8.1 and 8.2) turns out
to be, indeed, too crude.

But what is wrong with hypothesis (8.1 and 8.2)? What should be corrected?
T—

Let us consider the case when
(4.78): c

P (p)= D s(n,(pc)-n,(p)). (8.4)

s

<1 so that we can neglect the term (p — pc) in

Due to the symmetry of the function c(p) oc | P-DPc |l/g in the vicinity of the
percolation threshold, the dependence of our hypothesis (8.1 and 8.2) on p (for fixed
s) is symmetric (returns the same value for p- + A p) and has a maximum exactly at
p = pc- Therefore, the difference n,(pc)—n,(p) is positive both above and below
the percolation threshold which leads to the nonzero value of P,. (p) for p < p. as
well.

Let us transform statistics (8.1 and 8.2) as

n (p) o« Lrexp{—const(| p-p. 1"’ s)g} for p = pe,s>>1. (8.5)
s

Replacing the particular dependence exp {—const |z |§ } on parameter
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. 1/
z=sign(p-pc)|lp—pc| s (8.6)

by more general functional dependence f(z), we obtain

n(p)oc SLTf(Z) or 8.7)
n.(p) =n.(pe) /(). (8.8)

Parameter z is called the scaling parameter while f(z) is called the scaling func-
tion of one variable. This name comes from the fact that if we drew curves (8.5) for
a particular lattice in the vicinity of its percolation threshold, for example, as depen-
dences on s for fixed p, for each value of p, we obtain its own curve. However, if we
plot quantities s”n,(p) as dependences on z, all curves collapse onto one common
functional dependence f(z). This very technique is generally utilized to discover
the presence of a scaling dependence for experimental results while the quality of
the “collapse” characterizes the applicability of the scaling hypothesis in the model.

Of course, each particular lattice may have its own functional dependence f(z).
However, there are some features of behavior that characterize all lattices in com-
mon, and even the dependence f(z) can become universal.

So, there are two asymptotes of the functional dependence f(z) when we know
in advance what to expect from a system. As we will see later, relation (6.231),

ovD =1, (8.9)

can be proved for the case of an arbitrary scaling dependence f(z) as well. This
relation suggests that the limit | z| << 1 corresponds to the case s << s, (p) = &" (p)
when we consider clusters whose average linear size is smaller than the correlation
length. In this limit from statistics (8.7 and 8.8), we expect that the function f(z)
depends weakly on z to provide the power-law decay n,(pc)ocs™* of the cluster-
size distribution:

f(z)c O(1) for | z| <<1. (8.10)

This is one asymptote of the scaling.

On the contrary, in the limit | z|>>1, when we consider big clusters with the
linear size larger than the correlation length, s >> s, = &P, we expect the exponen-
tially “fast” decay of statistics (8.7 and 8.8) which is provided by the exponentially
“fast” decay of the function f(z) to form another asymptote of the scaling.

Problem 8.1.1

Find the scaling function of the cluster-size distribution for the one-dimen-
sional percolation.
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Solution: The cluster-size distribution (4.4) for the one-dimensional
percolation has been found in Chap. 4:

tlnl

n(p)=p'(-p)=(1-p)le °. (8.11)

In the vicinity of the percolation threshold p — p. —0, we transform this
dependence into the scaling form:

n,(p) = (p=pc) e’ (842)

Introducing the scaling parameter z by
z=(p—pc)s witho =1, (8.13)

for the cluster-size distribution, we obtain the scaling

n,(p) = Si,f(zx (8.14)

where 7 =2, and the scaling function is defined by
f(2)=2z%". (8.15)

For | z | >> 1, this function decays exponentially “fast” with the increase of
| z | However, for | z | << 1, contrary to the previous discussion, it is not of the
order of unity and tends to zero as z*. This is the special case of the presence
of the so-called dangerous coupling constant which we discuss in Sect. 8.11.

How does the introduction of scaling change our results from Chap. 4 obtained
for an arbitrary lattice? Repeating almost to the letter formulae (4.71-4.73) for the
mean cluster size, we find

S(p)ec Y. s'n,(p)=e [ 87 f(2)ds
s 1
7-3 +oosign(p—pc)

=sign(p—pe)yIp=pcl®  [I27 f(2)d= (8.16)

The integral in the right-hand side is some nonsingular constant. Thereby, the intro-
duction of scaling does not change the relation among the critical indices:

y = (8.17)

(o2

Next, we repeat formulae (6.228—6.231). The difference is that now, to find the
divergence of the moment M , (p), we can no longer use hypothesis (8.1 and
24—

8.2). Instead, we should employ Isjcaling (8.7 and 8.8):
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2-*—3 i 2+£—r
M (p)=2s Pnp)~ |5 P f(2)ds
D s 1
2
~p + sign(p—pc)

2,
~sign(p—pc)lp—pcl ° [ 127 fode (8.18)

7-3

Substituting this result into (6.228), we prove the validity of relation (8.9).

At last, let us consider the scaling of the order parameter. Almost repeating
(4.77-4.82), we find

Poe(p)=(p—pc)+const) s" (f(0)- f(2))

~ (p—pc)+constj sH(f(O)—f(z))ds

=(p— p.)+const-sign(p— p.)
-2 + sign(p—pc)
xXIp=pcl” [ 127 (SO~ (2)dz. (8.19)

0

Again, the integral in the right-hand side does not influence the scaling so that we
return to the second relation among the critical indices:

T—Z’r—z <1
B= 2_2 T . (8.20)
1, >1

(o2

L . T
For simplicity, let us consider the case

< 1. Then we can neglect the term
(p— pc) in the right-hand side of (8.19): c

+° sign(p-pe)

Pe(p)oesign(p=pcx p=pc ' [ 1217 (F(O)-f(2)dz (821)

0

This equation is supposed to be valid both above and below the percolation
threshold. However, for p < pc, the order parameter Ppc(p) by definition is ex-
pected to be zero. It is possible only when the integral in (8.21) is zero:

0

f | z[PD (f(2)~ £(0))dz =0. (8.22)

—0

We know that the above function f(z) for |z|<<1 is of the order of unity
but decays exponentially for | z|>>1 so that it is zero in the infinity: f(+e0) = 0.
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Fig. 8.1 The maximum f2)-A0)

of the scaling function A

provides the absence of a "

percolating cluster below . »Z

the percolation threshold —/ Zo "
————————— +0)

Thereby, the difference (f(z)— f(0)) is zero when z =0 and equals —f(0) when
z =+ (Fig. 8.1).

But the integral in (8.22) can be zero only if the difference ( f(z) — £(0)) is posi-
tive somewhere for negative z and, thereby, has a maximum at some point z, <0
(Fig. 8.1).

This means that for a fixed value of s, the cluster-size distribution n (p), as a
dependence on p, has a maximum at point

o

Po = Pc _|ZO|G s < pc. (8.23)

The point p, of the maximum depends on s and tends to p- when s — +oo. But
the very fact that it only tends to p. but does not equal p. exactly provides the
absence of a percolating cluster below the percolation threshold!

If we return to the exact result, (4.49) and (4.50) for the Bethe lattice with Z = 3,

2
ns(p) ZK I_P j e—c(p)s’ (824)
ng(pc) 1-pc
where c(p)=-In(1-4(p - pc)?), (8.25)

we see that the point of the maximum has been moved away from p. toward lower
values of p only by the presence of the multiplier (1 - p)%. This multiplier does not
participate in scaling, only in corrections to scaling:

2 2
1| N@=pc)'s pc)’s oApets _ 1 pi e

ns (p) o« —
S A=pens s\ (=pes
L e 2\/7 ozl (8.26)
ST ‘L'+1/2 (1

Therefore, the situation may be more complex than we considered in Fig. 8.1: The
dependence that moves the maximum of the cluster-size distribution away from the
percolation threshold toward lower values of p may be not in scaling function f(z)
itself but in corrections to scaling.

Let us now return to the definition (8.6) of the scaling parameter z. Where has
the critical index ¢ come into this dependence from? Initially, it appeared in (8.2)



8.1 Percolation: Why Is the Cluster-Size Distribution Hypothesis Wrong? 427

as a parameter of the exponential decay (8.1). But later, we have substituted this
decay with more general functional dependence f'(z). Thus, the origins of the index
o have disappeared from the formalism, while the index is still present in the defini-
tion of the scaling parameter.

Thereby, defining the scaling parameter (8.6), we define in parallel the index
o. Does it mean that its value is arbitrary? No, it does not, because the value
of the index ¢ is determined by relations (8.9, 8.17, and 8.20). In other words,
we hypothesize the presence of this index within the scaling parameter and are
attempting to develop the scaling of the cluster-size distribution. In the result, we do
obtain the desired scaling, but it requires from us that the so-defined index ¢ should
obey relations (8.9, 8.17, and 8.20).

The presence of an index within the scaling parameter is, in fact, quite general,
although, as we will see later, for magnetic systems, Greek letter A is usually uti-
lized while the index is called the critical crossover index. But why do we need an
index?

We have to generate two asymptotes of the scaling function. To this purpose,
we need to compare a large integer s with a small quantity | p— Pc| (which are both
present in definition (8.6)) to say, for example, that s is so large that it overpowers
the small multiplier | p- Pc| .

But we cannot compare s with | p— Pc| directly because they represent dif-
ferent physical quantities. Instead, we introduce index o to compare s with

-1 - S . .
| p— pC| Ve = | p- pC| D EP = s¢ which is the characteristic cluster size. There-
by, the scaling parameter (8.6) transforms into ratio

|z]==. (8.27)
S

The reader should not think that only the cluster-size distribution possesses the
scaling behavior. Generally, it is quite the opposite—whichever quantity we choose,
it is expected to generate the scaling behavior.

For example, let us consider the radius of gyration R (p) above the percolation
threshold. Small clusters, s << s, are fractal so that their radius of gyration depends

on the cluster size s as R (p) o s"P_On the contrary, big clusters, s >>s; , lose
their fractality and, similarly to the percolating cluster, acquire the dimension d of
the embedding lattice: R, (p) o sV,

These are two asymptotes of one scaling dependence,

R,(p) o s"PEp(s/s:), (8.28)
generated by the asymptotes of the scaling function Z,(z):

E,(2) > O(1) for | 2] <<1, (8.29)

L
o (2)oczd P for|z|>>1, (8.30)

We have seen one more example of scaling behavior in Chap. 6 when the
correlation function was considered. The correlation function G(R) is itself the
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scaling dependence when the role of the scaling parameter is played by the ratio of
the distance R to the correlation length &:

. 1 -
G(R)= Rd*—ZW:‘G (R/&), (8.31)

where E(z) oc O(1) for | z | <<1 and exponentially decays for | z|>>1.

8.2 Percolation: The Finite-Size Effect

So far, we have generally discussed only infinite systems in the thermodynamic lim-
it N — +oo. What would happen if we considered a finite system of size L = N ldq

In this case, the finite-size effect takes place which drastically changes the behav-
ior of the system. To distinguish results we have obtained for the infinite lattice, we
will further use for them the superscript “co.”

On the infinite lattice for p < pZ’, there are clusters of all sizes, as big as we are
looking for; however, their fraction on the lattice is exponentially small in compari-
son with smaller clusters.

For the finite lattice, in turn, this statement is already not true. By definition of
the cluster-size distribution n,, the product Nn, represents the number of s-clusters
on the finite lattice of size N = L. If we increase s, the number Nr, decreases until
it reaches unity,

Nn_ =1, (8.32)

when there is only one such cluster on the lattice. Thus, s, represents the size of
the biggest cluster present on average on the finite lattice. For even bigger clusters,
s >s5,,we have Nn, <1 so that, although such s-clusters are possible as extremes
of the statistics, there are no such clusters on average.

For simplicity, we again consider hypothesis (8.1 and 8.2) as an approximation
of the real cluster-size distribution:

1

7" (8.33)

We are considering the system below the percolation threshold when the linear
size L of the system is finite but is still much larger than the correlation length:
L >>E” (where & is the correlation length in the infinite system). Since we are
considering big clusters with the linear size much larger than the average size repre-
sented by the correlation length, the exponential decay dominates the statistics, and
we can neglect the power-law multiplier:

(8.34)
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Problem 8.2.1

Consider a d-dimensional hypercubic lattice with d > 1. One possible micro-
state is when pL? occupied sites on the lattice form a straight chain which
is a cluster of size s = pL’ and length pL’. Since L >>In L, the size of the
considered cluster is much larger than (8.34). Besides, the considered cluster
starts to percolate the lattice at the value of p

pL’=Lor p=L""—+0 for L - +» (8.35)

which is much less than the percolation threshold. Explain the contradiction.

Solution: The considered cluster represents an extreme event of the cluster-size
distribution. The normalized cluster number of this animal is the probability
p" for pI? sites to be occupied times the probability (1— p)>“""?*'** for the
required perimeter:

o (P) = P = P2 (36)

By definition of the normalized cluster number, there are
N, (p)=L'p™ (1= p) " (8.37)

such clusters on average on the lattice.
Applying the logarithmic accuracy, we find that the possibility to encounter
such a cluster in the ensemble is very improbable:

Nn . (p) =, ™ (1= py ™ <<1. (8.38)

However, we are generally interested not in extremes of the statistics but in
the behavior on average. Expression (8.34) represents the size of the biggest
on average cluster on the finite lattice.
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Let us now consider the vicinity of the percolation threshold when the power-law
divergences of the correlation length and quantity ¢ become applicable:

E° ol p—p¢& [V and coc| p— p& 7. (8.39)

But still we consider the case when the correlation length has not reached yet the
size of the system: L > &”. Substituting (8.39) into (8.34), we find

_y
‘ InZ¢ o Sg InZe. (8.40)

Sp « ‘P -pc ‘

If p tends to p_ —0, the correlation length diverges together with Se = (E™)P.
Thereby, s, diverges also. Since s, represents the size of the biggest on average
cluster, this cluster is first on average to reach the system size and to form a perco-
lating cluster, but in accordance with (8.40) s, >> s, because In 7 >>1. Thereby,
when the percolating cluster appears, the correlation length is still smaller than the
system size: L > &, Therefore, the percolating cluster in the finite system appears
earlier than in the infinite system (when £ = +o0) and even earlier than when the
correlation length reaches the size of the system (éw oc L.

Since the correlation length is still less than the system’s size when the percolating
cluster appears first on average, the whole sy-cluster is not fractal with dimension D.
But still we may say that its logarithm should be proportional to the logarithm of L
(times some constant representing the averaged dimensionality):

Ins, ocIn L. (8.41)
Taking logarithm of both sides of (8.40), we find

Ins, ocln{(afw)DlnLd}:Dlnéw+1n1nL+1nd. (8.42)

Substituting (8.41) into (8.42),
InLoc DInE” +InlnL+Ind, (8.43)

we see that in the right-hand side of (8.43), we may neglect not only Ind <<In L
butalsolnInZ <<InL:

Iné” ocInL or £° oc L. (8.44)

Thereby, when we are increasing p and the biggest cluster for the first time percolates
the finite system, the correlation length is, indeed, smaller than the system size but
differs from it only by the corrections that we can neglect with logarithmic accuracy:

In&” ocIn L —const; Inln L —const, Ind ~ In L. (8.45)

Another display of the finite-size effect is the hyperscaling relation (6.239)
found in Chap. 6. To obtain this relation, we glued together two scales. Above the
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percolation threshold, p > p°CO , on scales smaller than the correlation length, L < &%,
the piece of the percolating cluster is fractal, s ,,,, or pc L. On scales larger than
the correlation length, L > £, it, on the contrary, represents the appearing scaling of
the order parameter: s, ,r pc Ppe( p)Ld. By gluing these two types of behavior
at the scale of the correlation length, L oc &%, we obtain the hyperscaling relation

(6.239).
With the aid of this relation, the scaling of a piece of the percolating cluster, cut
by different scales, can be presented in the form:

Phl<g” D ldLj : 8.46
S part of pc (P L) ‘p—pg"ﬁL‘],Lmﬁw:L [LJ L (8.46)
£

to be represented by a scaling function

Spars of pe (P2 L) o< LPE(LIE™) (8:47)
which has two asymptotes,

E(z)x 2(1) for 0<z<<]1, (8.48)
E,.(z)cz?P for z>>1. (8.49)

So far, we have discussed only the order parameter P,.(p) on the infinite lat-
tice as the probability for a site to belong to an infinite percolating cluster. On the
finite lattice, we define the order parameter P~ (p, L) as the probability for a site to
belong to a cluster percolating the finite lattice.

Multiplying Pp-(p,L) by the number I of sites on the finite lattice, we obtain
the number LdPPC (p,L) of sites which belong to the cluster percolating the finite
lattice.

But we can consider our finite lattice as a window through which we are looking
at the infinite lattice with its infinite percolating cluster. Does )i Ppe(p, L) represent
the volume s,,,, . pc Of the infinite percolating cluster cut by the finite lattice as if
by Procrustes’ bed and determined by scaling (8.46—8.49)?

The answer is, obviously, negative because the finite lattice may be percolated
not only by the infinite cluster of the infinite lattice but also by finite clusters of the
infinite lattice with the linear size larger than our finite lattice (Fig. 8.2). In other
words, decreasing the size of the window, we see that it is still percolated by the
infinite cluster. But, besides the infinite cluster, it is also percolated now by other
clusters that were earlier enclosed entirely by the larger window (Fig. 8.2).

Thereby, the order parameter Pp-(p,L) of the finite lattice is higher than its in-
finite analogue Py (p). This can also be illustrated from a different point of view:
if we see a cluster that percolates our finite system, we do not know whether it is
infinite (Fig. 8.2) or finite (Fig. 8.3) beyond the window of our system.
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Fig. 8.2 The finite system
(as a window through
which we are looking at

the infinite system) can be
percolated not only by the
infinite percolating cluster
but also by finite clusters on
the infinite lattice

Fig. 8.3 If a finite lattice
(as a window through
which we are looking at the
infinite system) is perco-
lated by a cluster, we do not
know whether this cluster
is finite or infinite on the
infinite lattice

Problem 8.2.2

Consider the one-dimensional finite lattice with free boundary conditions
(part a of the figure below) below the percolation threshold p;. =1 of the infi-
nite lattice: p <1. Find the exact expression for the scaling function of the
mean cluster size S.

Solution: Let us first find the cluster-size distribution. Far from the bound-
ary, the probability to find s-cluster at the given place on the lattice is still the
probability p’(1- p)’ to have s occupied sites and two empty perimeter sites.

Here, by “far from the boundary,” we mean that the cluster touches neither
left nor right boundaries (part b of the figure). There are (L —s—1) different
locations for such s-clusters on the finite lattice with L sites.

Two more locations appear when the cluster touches the left or the right
boundary (part ¢ of the figure). The corresponding probability is p*(1— p)
because we have to require for only one perimeter site to be empty.
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The last lattice animal we should count is the percolating cluster s = L. The
probability of this cluster is the probability p" for the lattice to be occupied
completely (part d of the figure).

This probability p” is nonzero for p < 1, and therefore, the finite lattice is
percolated at values of p lower than the percolation threshold p: =1 of the
infinite lattice. In other words, for the finite lattice, the percolation threshold
P is lower than the percolation threshold p; =1 of the infinite lattice:

P <pe- (E50)

Summarizing the probabilities we discussed above, we find the cluster-
size distribution (as the number of s-clusters per one lattice site):

(L-s=1)p"(1-p)’+2p"(1-p),s<L
n(p)=7 plus=L . @)
0,s>L

On the infinite lattice, we have defined the mean cluster size $* by (4.118).
For the finite lattice, we utilize a similar expression

) 2.5°n.(p) 552
D YR |

As it was discussed in details in Chap. 6, we must not include the term s =L ,
corresponding to the percolating cluster, into both sums of (8.52):

) > s'n,(p)
S(p,L) = SL:L—
ans(p)

(8.53)

We find the sum in the denominator by utilizing the trick already known to us
when we replace s with the derivative 0/0p:

X om(p) = X4 {(L=s=Dp'(=p)* +2p' (1= p)}

=@[{(l—p)(L—1)+2}(p§j—<1—p)[p§j J 1’

s=1
=p-p .
(8.54)
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The obtained equation is already known to us as the law of conservation of
probability, especially if we rewrite it as

L-1

Y sn(p)+p" =p. (8.55)

s=1

The right-hand side is the probability for a site to be occupied. The first term
of the left-hand side is the probability for the site to belong to a finite cluster
while the second term represents the percolating cluster.

For the sum in the numerator of (8.53), we similarly find

ZSZnS (p)= M[{(l -p)(L-1)+ 2}(1’ %j

L
oY $
—(1—p)[p—j p
ap s=1
_ IL,
2 F A 8 O Y (8.56)
1-p L 1-p

Substituting (8.54) and (8.56) into (8.53), we obtain the exact expression for
the mean cluster size:

/A
1{1”,_21?1 P }—Lp“

- 1-p L 1-p
S(p,L)=

L-1

(8.57)

I-p

Far from the percolation threshold pJ =1, this expression does not
obey scaling. However, when the system tends to p.. —0, expression (8.57)
transforms into

1

1
— (1 _ e*L(I*P)) _ *L(l _ p)e—L(l—p)
S'(p,L)—) 2 L(1-p) 2

= — (8.58)

£l

where we have expanded (8.57) in small parameter (1— p) but so far have not
assumed anything about the order of the product L(1— p).

Let us recall from Chap. 6 that in the vicinity of the percolation threshold,
the correlation length diverges as (6.220):

£ mﬁ, (8.59)
P~ Pc
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so that the product L(1— p) plays the role of the scaling parameter z = L/E”.
Thereby we can transform (8.58) into a scaling function

S(p,L) —> %ES (L/ &™), where =1 and (8.60)
p

| _pc|

1 z
1_7 1_ —Z _ -z
(1-€e7) ¢

s(2)= = — . (8.61)
1-e~

[1]

When L >> £7 (and, correspondingly,

z| >>1), the scaling function (8.61)

is of the order of unity, Z,(z) oc 1, to recreate the divergence 5§ o | D~ D¢ | !
of the susceptibility on the infinite lattice:

S’(p,L)oc y =1when L >>&”. (8.62)

lp-pCl
This is the first asymptote of the mean cluster size.

The second asymptote appears when L <<¢&® (and, correspondingly,
| z|<<1). The expansion of (8.61) in the small parameter | z| demonstrates
that in this limit the scaling function behaves as

Es(z)ocz/3, (8.63)

which cancels the divergence (8.62) to provide constant asymptote:
~ 2L w
S(p,L) OCT when L << &”. (8.64)

Let us now discuss the obtained results. We assume that a scientist in-
vestigates percolation on a lattice of large but finite size L. The scientist is
interested in the critical indices; therefore, she/he, step by step, tends p to p¢
from below.

First, when the system is far from the percolation threshold, the scientist
observes complex behavior (8.57) which is specific for this particular system.

But the closer the percolation threshold is, the larger the correlation length
becomes, and therefore, the previous complex behavior (8.57) transforms into
the power-law divergence (8.62).

The best way to measure the critical index y is to approach the percolation
threshold closer and closer, following the power-law divergence (8.62) for

several orders of S. Thereby the scientist could plot In S versus 1n| P—De | ;
the slope of this line will provide the unknown critical index .
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But due to the logarithmic dependences, one step of ln| P—De | requires,

roughly speaking, one order of magnitude of | p—Dpé | Therefore, the
equipment the scientist is utilizing has to provide very precise measurements
in the very close proximity of the percolation threshold.

As the system approaches the percolation threshold, the correlation length
diverges according to (8.59) and sometime achieves the size of the system
L. The scaling switches from asymptote (8.62) to asymptote (8.64). Thus,
as the scientist tries to approach the percolation threshold closer and closer,
instead of the expected power-law divergence, she/he observes the tendency
to a constant with respect to p value (part a of the figure above). The value of
this constant is proportional to the system size L in accordance with (8.64).

The experiment was designed to provide high-accuracy measurements at

low values of | p—pé | and probably required a lot of funding and efforts. But
all efforts were in vain because scaling (8.64) limited the range of the power-
law validity, and the finite-size effect camouflaged the expected divergence.

The way to suppress the finite-size effect is to increase the system’s size.
This idea is presented in the figure (part b) as a sketch. The larger the size of
the system is, the farther the last will follow the power-law dependence, and
later the mean cluster size will approach the constant value.

But for numerical calculations, the increase in system size requires much
higher computer resources and calculation time. Unfortunately, there is no escape.

Nowadays, the number of degrees of freedom in computer models of
complex systems is often higher than 10°~10° which is already difficult to
call small. In the near future, this number will be probably equal to or exceed
the Avogadro constant 10> which is generally associated with the infinite
number of particles in the thermodynamic limit.
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Problem 8.2.3

Similar to Problem 8.2.2, find the scaling function of the mean cluster size S
if the boundary conditions are periodic.

Solution: For the one-dimensional lattice, the periodic boundary conditions

mean that the chain of sites is closed in a ring (part a of the figure below).
The probability for a small s-cluster to be at a given place on the lattice still

equals p*(1— p)*, and the number of possible locations is L (part b of the figure).
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But for (L —1)-clusters (part ¢ of the figure), whose number of possible loca-
tions is still Z, only one empty perimeter site is required, and therefore, the
probability equals p“~' (1 p).

For the percolating cluster, which again occupies all sites on the lattice

(part d of the figure), the probability is p*.
Summarizing these probabilities, we find the cluster-size distribution:

Lp'(1-p),s<L-1

1 |{Lp"'A-p),s=L-1
nS(P)=Z P (pL Is))—L . (8.65)
0,s>L

Calculating the mean cluster size, we should again exclude the percolating
cluster from the sums of (8.53). The denominator sum we find as follows:
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> on(p)= Y sp' (= p) +(L=Dp"(U1=p)

(8.66)
2 a <& s L-1 IL,
=(-p)*| p—~ > P +L-Dp"'1-p)=p-p
s=1
while the numerator sum equals
- 2 2 a ’ & s 2 _L-1
> s’n(p)=(1-p) P > p +(L-1)p (- p)
s=1 p s=1 (867)
=L {14 p+p'A-20)+ p2L-3)}.
1-p
Therefore, the mean cluster size we obtain as follows:
{1+ p+pt(1-3p-2L0 - )
S(p,L)= P ) (8.68)

L1

=

Far from the percolation threshold, this expression does not possess any
scaling properties. In the vicinity of ¢, we expand (8.68) in a small param-
eter (1— p), while we do not assume anything about the order of the product
L(1- p), keeping it as it is:

2 {1—e"+LA-p))

S(p,L) > — i (8.69)
Thereby, we have found the scaling function
S’(p,L)—)—wES(L/éw) where y =1 and (8.70)
|p—pcl
ES(Z)Ew. (8.71)

l-e*

In the limit | z |>> 1, this scaling function is of the order of unity, =, (z) oc 1,
while in the limit | z |<<1, it becomes a power-law dependence Z;(z) oc z /2.
For the mean cluster size (8.70), this provides two scaling asymptotes:

S(p,L) = when L >>&” and (8.72a)

© |y
_c|

S(p,L)oc L when L <<&”. (8.72b)
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We see that, similarly to Problem 8.2.2, when approaching the percolation
threshold, the power-law divergence is replaced with the constant asymptote
of the order of the lattice size L.

As we saw in Problems 8.2.2 and 8.2.3, the finite-size effect cancels singular diver-
gences by replacing them with a finite value depending on the size of the system. For
the mean cluster size, this result is obvious and could be foreseen in advance: The
closer the percolation threshold is, the larger scales are occupied by the fractality,
and the bigger the clusters on the infinite lattice are; however, the finite size of the
finite system, like Procrustes’ bed, limits the size of the clusters, not allowing them
to grow to the size they would have on the infinite lattice.

For the one-dimensional case, the size of a cluster equals its length; therefore,
S(p, L) was limited by L. For the d-dimensional lattice, we expect that S( p, L) would
be limited by L raised to some power. Let us assume the following scaling dependence:

~ l —_ . © o0
S(p.L) o« ————E(sign(p—p)LIE ), (8.73)
|p—pc |

where the first asymptote of the scaling function is

=g (2) o O(1) for | 2| >> 1 (8.74)

to provide the power-law divergence of the mean cluster size on the infinite lattice.
From the second asymptote, we, on the contrary, expect to cancel the singular
behavior §~| p— p |7 . This is possible only when this asymptote is the power law:

Eg(z) o z [V for |z]<<]1. (8.75)

Indeed, substituting (8.75) into (8.73), we find

ylv
ij o I7V for L << E”. (8.76)

S(p,L) o ;[
|p—pc (6"
We see that the scaling itself suggests us that L should be raised to the power y/v
to represent the finite value replacing the divergence. By utilizing all relations we
have obtained before (including the hyperscaling relation which is valid below the
upper critical dimension), we find

y/v=D@-1)=D-(d-D). (8.77)

Similar behavior is observed for other quantities, including the correlation length
itself. So far, we have referred only to the value &7 of the correlation length on the
infinite lattice. However, we may apply expression (6.206) as a definition for the
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correlation length £(p, L) on a finite lattice. The first asymptote of the so-defined
correlation length determines the divergence of the correlation length £ on the
infinite lattice:

E(p, L) ﬁ for L >>E”. (8.78)
P—Pc

Assuming the scaling
E(p, L) or ————Z, (sign(p— piIL/E7), (8.79)
-pc |

where (8.78) is provided by the first asymptote of the scaling function,

Eg(2) < O() for|z|>>1, (8.80)
we see that the second asymptote of the scaling function must be

Eg(2) x| z| for |z]<<], (8.81)
to cancel the power-law divergence on | p — p( | and generate the finite value:

E(p,L)oc L for L << &%, (8.82)

We have obtained one more result that could be predicted from the beginning:
While L > &7, the correlation length &(p, L) of the finite system repeats the be-
havior of its counterpart & on the infinite lattice. However, the correlation length,
defined by (6.206) as the averaged root-mean-square distance between sites within
clusters, cannot, obviously, exceed the size of the system. Therefore, when &(p, L)
reaches L, it stays at this limit, not able to grow farther.

So far, we have considered only how the finite-size effect can cancel the power-law
divergences. But the power-law divergences are just one type of possible singular
behavior. Another type is represented by the singular power-law dependences,
tending to zero at the percolation threshold. An example is the order parameter:

Pie(p)ecl p—pE P (8.83)

How does the finite-size effect influence this type of behavior?

Problem 8.2.4

For the one-dimensional percolation on the finite lattice, find the scaling of
the order parameter.
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Solution: The order parameter P,.(p,L) on the finite lattice is defined as the
probability for a site to belong to a cluster percolating the finite lattice. For the
one-dimensional chain of sites, we immediately find

L_ gl
Poe(p.L)= {p Py (8.84)
Lp=1

where for £*, we utilized (6.220).
We see that the order parameter is not zero for p < pl. Instead, it obeys
the scaling

P (p, L) =E,(L/E")where E,(z)=e. (8.85)

For an arbitrary lattice, the finite-size effect cancels the singularity of P(p, L) by
“smoothing” the tendency to zero at the percolation threshold p; (Fig. 8.4). There-
by, the probability to observe the percolating cluster becomes nonzero for p < pf.
For the scaling of P(p, L), we may assume

P(p.L)= p-p¢ I’ Ep(sign(p—pEIL/ET), (8.86)

where the asymptotes of the scaling function are

Ep(-0) =0, (8.87)
Ep(z) « O(1) for z >>1, and (8.88)
Ep(z) o z[PV for | z|<<1. (8.89)

At last, we consider the probability IT for the system to be percolated. On the
infinite lattice, since the percolation threshold p( is defined as the point of appear-

Fig. 8.4 The finite- AP
size effect for the order
parameter
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Fig. 8.5 The finite-size
effect for the probability for
a system to be percolated

Pc p¢

ance of a percolating cluster, this probability is, obviously, zero below P¢ and unity
above p( (Fig. 8.5, the dotted line):

0,p < p¢

¢ (8.90)
L,p2pc

H“’(p)={

On a finite lattice, the dependence IT(p,L) “smoothes” the singularity at pl
(Fig. 8.5, the solid line).

There was no question how to determine the percolation threshold on the infinite
lattice—it is the point of the singular step of I1” from zero to unity. On the contrary,
on a finite lattice, the dependence I( p, L) changes from zero to one continuously so
that there is no particular point that can be associated with the percolation threshold.
To choose the value pc of the percolation threshold on a finite lattice, we initially
should specify what value of I1(p, L) we attribute to the appearance of a percolating
cluster. Choosing I1(p¢,L) =1/ e in Fig. 8.5, we see that p- may be not equal to p¢.

Problem 8.2.5

Find the percolation threshold p,. for the one-dimensional percolation on the
finite lattice.

Solution: The probability for the one-dimensional lattice of size L to be per-
colated is

L:efL/fw’ < oo:1
H(p,L)={p Bl =2 (8.91)
Lp=p: =1

where for £, we utilized (6.220).
Choosing I1(p.,L) =1/ e to represent the percolation threshold, we find

w 1
or p. = pe ——. (8.92)

L:(SOO :w—
Pe Pe —Pc L

We see that on the finite lattice, the percolation threshold is lower than on the
infinite lattice.



8.3 Magnetic Systems: The Scaling of Landau Theory 443

The general expectation is that pe < p(, i.e., when we are increasing p, the finite
system is percolated earlier than the infinite system. We expect this statement to be
true because to percolate the infinite system, we need an infinite percolating cluster
(500 = +OO), while the finite system is percolated by a finite cluster with linear size
of the order of the system size (& o L) which happens at lower values of p.

For an arbitrary lattice, we may assume the presence of scaling:

T(p, L) =En (sign(p— p&)L/ E7) (8.93)
with two asymptotes:

Ep(—0) =0 and E; (+0) = 1. (8.94)

—
(=)

The scaling function = (z) and its scaling parameter z are dimensionless. There-
fore, we expect E;(z) to change from zero to unity when its argument z also chang-
es by the order of unity:

L
Az=A| — |cl. (8.95)
=)

Substituting here the divergence of &%, we find that the probability T1(p,L)
changes from zero to one when p changes by

AL p-p&|")ecl. (8.96)
For the percolation threshold Pc on the finite lattice, this provides

| pe—p& e L. (8.97)

8.3 Magnetic Systems: The Scaling of Landau Theory

We now turn our attention to magnetic systems, in particular to Landau theory of
the Ising ferromagnet, which was considered in Chap. 3. The minimization of the
specific Helmholtz free energy (3.105)

Fiimy
Nu

=-2AIn2—hm+atm® +bm* +... (8.98)

provides the equation of state (3.92):

h=2atm, + 4bm03 +... (8.99)

and the equilibrium Helmholtz energy
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Nu

= 2A4In2 - hmy + atm,* +bmy" +... (8.100)

By rearranging multipliers, we present the equation of state in the form:

3
h=11P? 24| 22 |sign r+4b| 20| 4. L. 8.101
. (m S W (8100

Considering the isofield approach /% =0 of the critical point,

3
m, m,
0=2a| — signt+4b(—°] , (8.102)
[\/ItJ N

we expect that (8.102) should provide the equilibrium value of the homogeneous
spontaneous magnetization (3.98):

- ocmﬂ,c . (8.103)
In Chap. 3, we had [}tc =1/2 in particular. That is why the magnetization partici-
pates in (8.102) in the form of the ratio m,/ \/m . For more general case, we expect

in (8.102) the presence of the ratio m, /| ¢ |ﬂ’C:

3
ozza[“”rglc Jsign t+4b[|:1;,c] . (8.104)

For the magnetic field (8.101), this provides

3
h=\t|3ﬁ‘C Za[ mOC ]signt+4l{ mOCJ +...p or (8.105a)
g g
h=2at™™ my+4bmy +... (8.105b)

Differentiating (8.105b) with respect to m,, we find the susceptibility of the
system:

" Omy, 1 ( )

X —= . . 8.106

Oh 24P 1 12bm? + ...

But in Chap. 3 for the susceptibility, we have introduced the critical index ytc
defined by
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1

x o (8.107)

when we approach the critical point along the isofield curve 4 =0. Comparing
(8.106) and (8.107), we see that

ve =2Bf, (8.108)

which is, indeed, correct for the mean-field indices th =1and ﬂ,c =1/2. However,
this relation between the critical indices is not complete yet, so we will discuss it in
more detail later.

For more general case, we can improve (8.105) as

3
h= e B 25{% sign 1+4b) —2_ | +._.Lor  (8.109)
s

h=2at" my+4bmy’ +... (8.109b)

Comparing (8.109b) with (8.99), we see that for the general case, we should modify
the initial expression of the Helmholtz energy (8.98) as

Flimy)

N =—2Aln2—hm+atyfcm2+bm4+..., (8.110a)
FCE c

—— =242 —hmy +at” my* +bm,* +... (8.110b)
Np

Substituting scaling (8.109a) of the magnetic field into (8.110b), we find

CE

3
F CLapC .
4242 =" x—| 2a moc signt+4b moc +... mOC
Nu |l|ﬁ’ |t\ﬁ’ |t\ﬁ’

2 4
+asign(r)| 2o | wp| To | 4L (8.111)
|t|’B’ |t\ﬁ’

From Chap. 3, we know that along the isofield curve % =0, the critical index of
the heat capacity is defined by

1
Coc—¢, (8.112)
[2[*
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which means that the singular part of the specific Helmholtz energy scales as

CE
L Y (8.113)
Nu

Comparing (8.112) with (8.111), we find the relation among the critical indices:

af +2B5 +y- =2, (8.114)

which is, obviously, valid for the mean-field exponents o =0, C =1/2, and
;/tc =1. The generalization of this equality is the so-called Rushbrooke inequality
(Essam and Fisher 1963; Rushbrooke 1963):

al +2B° +yC =2, (8.115)

So far, we have dealt only with the divergences along the critical isofield curve.
Next, we consider the critical isotherm ¢ = 0 when £ # 0:

0= —h+4bmg’ +... or (8.116)
m 3

1=4b| 2| +... (8.117)
(%/ZJ

For the magnetization on the critical isotherm, we introduced in Chap. 3 its own
critical index,

_— (8.118)

which happened to be equal to 8 =1/3. Again, substituting the ratio m, /YA in
C
(8.117) by the more general expression 1, / WP we find

3

1:4bLZZ§J T (8.119)

Returning to (8.109), we need to decide how we should modify this equation. We
cannot modify the exponent of the % like

3
ptiy ¢|t|yfc+ﬁ’c 2a[—m2 sign ¢ +4b To | 4. (8.120)
s
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because well above the critical temperature | |>> 1 for small values of the field 4,
we expect the magnetization to be linearly proportional to the field. Therefore, there
is only one way to modify (8.109)—to tune the exponent of the second term in the
right-hand side:

/85
. 1
h=1eF P 12a] O Ision 14| — +1 || 0 +obor (8.121a)
na By N
t h 1

h:zaﬂfmo+[ic+1me0”ﬁf o (8.121b)
h

Simultaneously, we have modified the coefficient at this term because this equation
of state is supposed to be generated by differentiating the Helmholtz free energy:

F, : i 8.122
i) :—2Aln2—hm+aty'cm2+bm1/ﬁ"c+1+..., ( 2
Nu

CE
e oum2 — gy +at” mg? +bmg P . (8.122b)
Nu

But, by comparing (8.121) with (8.99), we find that the absence of the tempera-
ture dependence at the second term of the right-hand side is possible only when

ve =B [ﬁ%—l} (8.123)
h

This relation among the critical indices (consuming (8.108) as a particular case) is,
in turn, a particular case of the more general inequality:

vz BS (%—l], (8.124)
B

called the Griffiths inequality (Griffiths 1965, 1972).
Differentiating (8.121b),

-1
;(ocaa%:{Zaty'C +(Lc+ljﬁicbmol/ﬂ"c_l+..} ) (8.125)
h h

we find that for the susceptibility at the critical isotherm ¢ = 0, the explicit tempera-
ture dependence disappears in the limit £ — 0:
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-1
1 1 1BC-1 1
o d| i | B L e L (8.126)
* {(B;f J/s,s ’ } P

leaving only the scaling with respect to the magnetic field. Comparing this scaling
with the definition of the critical index y,,

g (8.127)

i
we find the relation

vy =1-By, (8.128)

which is obvious due to the fact that the susceptibility is just the derivative (8.125)
of the magnetization with respect to the field. However, with the aid of (8.128),
equality (8.123) can be generalized as

c ¢
L b (8.129)
Y B
which, in turn, generalizes the Griffiths inequality:
v
%C > pCLth (8.130)

t (ol
By

Finally, we investigate the scaling behavior of the equilibrium Helmholtz energy
(8.122b) on the critical isotherm. In the limit # — 0, we see that the explicit tempera-
ture dependence disappears from (8.122b),

FCE c
—— +2AIn2 = —hmy +bmy" P (8.131)
N/l 0 0

leaving only the scaling with respect to the field:

CE
I;'v—y+2Aln2~hl+ﬁ’(’: (8.132)

This scaling is, again, obvious because the negative derivative of the Helmholtz
energy with respect to 4 should return us to the scaling of the magnetization:

1 oF‘t
mO —_ ——

- chPh . (8.133)
Nu ©Oh
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However, it seems that Landau theory allows us to generalize the critical indices
not for every quantity. Let us discuss, for example, the scaling of the heat capacity
along the critical isotherm. Differentiating twice the Helmholtz energy (8.122) with
respect to 7, one of the terms we obtain is

2 -CE

F N .

C=-T aaTZ = —T—”(ay,c (rE =1)e 2mg? .. ) (8.134)
C

-2

C
whose temperature divergence (;/tc - l)tyf cannot be canceled or neglected in the

limit # — 0 unless we consider only the mean-field value of the critical index y,c =1.
Therefore, it seems that in accordance with Landau theory, the scaling of the heat
capacity is possible only when the critical indices are determined by the mean-field
approach. In more detail, we will return to this question in Sect. 8.5.

After we have generalized the equation of state (8.99) by associating its expo-
nents with critical indices, let us study the behavior of the obtained equation of state
(8.121). Far from the critical point, expansion (8.122) is not valid and the magnetic
field / depends on T  and m, in accordance with some laws, specific for the given
system. However, when we approach the critical point, we see that (8.121) gener-
ates a scaling function for the magnetic field (Widom 1965a):

C,5C _ m
h=t] P gy —2 |, (8.135)
|t|ﬁt

where the superscript “+” means that there are two separate scaling functions:
(“+7) above the critical point and (“—") below the critical point. The scaling pa-
rameter here is

1y

z= . (8.136)
‘Z|13:C

Comparing (8.121) and (8.135), we find that the scaling function is

Ei (z)=F2az +(%+1Jbzl/ﬁhc +... (8.137)
h

It is not convenient to work with the magnetic field as a function of the magne-
tization, since the magnetic field is the external field parameter, supported constant
by the boundary conditions, while the magnetization is the fluctuating parameter.
Therefore, by inverting the magnetic field scaling function, we find the scaling of
the magnetization,

c h .
my =t 2, [ﬁ with (8.138)
| ¢
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=, =5, (8.139)

as the dependence on the new scaling parameter

h
y= Myf—ﬂ?f (8.140)
which now contains only the field parameters.
The scaling function (8.139) has two asymptotes:
5, ()¢ O(1) when | y | <<1, (8.141)
22 () oc P when | y|>> 1, (8.142)

which are obvious from (8.121). However, an easier way to prove these asymptotes
is to see what scaling dependencies they generate for magnetization (8.138).

The first asymptote, | y|<<1, corresponds to the critical isofield curve /# =0.
For this case, the scaling function (8.139) provides the asymptote of magnetization
(8.138)

my o O 117 o 1P when h<< ([ 7, (8.143)

which is just the scaling (8.103) of the magnetization along the critical isofield
curve.

The second asymptote (8.142) of the scaling function represents the critical
isotherm ¢ = 0. For magnetization (8.138) in this case, we find

B

h

mo oc |11 | —2—— | when h>> |t (8.144)
1] +B

The zero deviation of the temperature from critical =0, would cause singular-
ity (zero or infinity) in this expression unless the temperature dependence, coming
from the asymptote (8.142) of the scaling function, canceled out the previous scal-
ing (8.143). But this is exactly what is happening due to the relationship (8.123)
among the critical indices! So, we find

mgy o hﬁ”c when /2 >> |t |7tc+ﬂtc i (8.145)

which is just the scaling (8.118) of the magnetization at the critical isotherm.

What we have seen here is the typical example of how the scaling works. The
scaling function, depending on one scaling parameter, has two asymptotes. One of
them provides the scaling of the corresponding quantity along the isofield curve
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h =0. The second asymptote is built in such a way that it cancels out the previous
scaling on ¢ and generates the new scaling on 4 for the critical isotherm.
Differentiating (8.138) with respect to /, we find the susceptibility:

d_+
z~%=ltl d(y) (8.146)
Y h/|z|th h
This expression can also be represented by scaling:
c h
o [t B —— |, (8.147)
x | | l[|t|}’rc+ﬁrc}
where the scaling function has two asymptotes again:
85 () e O(l) when | y| <<, (8.148)
5 pi -1
E,(») ey~ when|y|>>1. (8.149)

To prove these asymptotes valid, we could find the susceptibility by differentiating
(8.121) with respect to m,. However, it is much easier to verify these hypotheses by
looking at the scaling they generate.

The first asymptote, | v | << 1, provides the scaling along the isofield curve 4 =0,

o
x o oo L when h<<|1 <5, (8.150)

C
‘t|7r |t|71

while the second asymptote, | y | >> 1, cancels the previous scaling (8.150) to gener-
ate the new scaling along the isotherm:

By -1

_ h 1 1

?C°C|t|y'C —<c =—C:—thenh>>|t|7tc+ﬁrc, (8.151)
It |}'/'+ﬁ/' A AT

In the vicinity of the critical point, the singular part of the specific Helmholtz
energy also exhibits scaling:

FCE FCE

singular _

h
L f2dAm2 e =, | —
Ny Np [t FCE[”%C%CJ (8.152)
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with the scaling function having two asymptotes:

Ercr (v) oc O(1) when | y [ <<1, (8.153)

Bt (1) o P when | y|>> 1. (8.154)

This provides two scaling asymptotes for the Helmholtz energy:

CE
s;r\z}gular o« Q(l) | / |2—ot,C OC| P |2—Ot,C when A << |t|}’zc+ﬁtc , (8]55)
u =

FCE c h 1+ﬂ}(f C C, pC
sz]r\z}gular o |t|2_a’ e = 1"Pr when h >> ‘Z|y’/+ﬁ’/ . (8.156)
yii | t |7t +hr

Scaling functions should not necessarily have only one scaling parameter. For
example, in Chap. 6, we obtained the following expression for the correlation func-
tion:

“R/E
g(R) o« “—whenR >> &, (8.157)
R2
g(R)oc%mahenR<<’g’ and d > 2. (8.158)
Ri-

This scaling is represented by the scaling function of two scaling parameters:

1 _.[R h
g(R,h,1) o prEw” [é o J (8.159)

where the scaling function is of the order of unity when the first scaling parameter
is small,

2z (x1,%;) o O(1) when 0 < x; <<1, (8.160)
and decays exponentially when x; >> 1.

Let us, for example, consider the system in the absence of magnetic field. In
accordance with the fluctuation—dissipation theorem, the magnetic susceptibility
equals the integral of the correlation function:
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Rd—l — )
=X (R|¢[",0).

d
xocjd R g(R,/i= Ot)mIdR pYET (8.161)

Let us perform the change of variable x = R | ¢ |"’C under the sign of the integral:

d71 e
22 (x,0) oc| £ [ (8.162)

*
d2“ g

ZOC|Z|V‘ (n°-2) Idx

Comparing this divergence with (8.107), we obtain the relation among the criti-
cal indices:

C=vE@2-n. (8.163)
The generalization of this equality is the Fisher inequality (Fisher 1969):
C<vE@2-n%). (8.164)

In conclusion of this section, we should say that although we have considered
here only the critical scaling of the Ising model, similar results can be found for the
proximity of the spinodal point as well. In particular, dependencies (3.92), (3.115),
(3.133), and (6.105) are the scaling functions whose asymptotes allowed us in
Chaps. 3 and 6 to find all spinodal indices. In more detail we return to this question
in Sect. 8.12.

8.4 Magnetic Systems: Scaling Hypotheses

We have considered the scaling of a ferromagnetic system in the approximation
of Landau theory. However, very similar scaling dependencies are valid for more
general, nonmean-field case as well since the scaling follows from the most basic
assumptions.

When the magnetic field is nonzero, a system of linear size L has two scaling
parameters:

h

|t |A2L/ ’

=% andy=
x=%and y = (8.165)

where by the subscript “4t” we have specified that this index A belongs to the

comparison of & with |t|AEJ’ and is called the critical crossover index of this
comparison.

In the thermodynamic limit L — +oo, the singular part of the equilibrium Helm-
holtz energy divided by the total number N = L4 of spins is intensive and can
depend, therefore, only on the intensive scaling parameter y:
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For h h
singular =+ CE det
s o 5t (| e FE oo L'EE, | ——|. (8.166)

|t |AL

If we had several extensive parameters, we could consider their combinations.
However, in (8.165), we have only one extensive parameter x " and one intensive
parameter ), which leaves no alternatives to (8.166).

The multiplier I in (8.166) seems to be the inheritance of the extensive scaling
parameter x, SO we can assume that

d
F‘\'lffular oC [éj Ei(:ﬁ: LC . (8167)
Singi zé F ‘ t |Ah.lt

Recalling that along the critical isofield curve in the vicinity of the critical point,
the correlation length diverges as (6.149),

1

§ox—¢, (8.168)
o]
we obtain
F;;Zular o Ld |t‘dV/C Ei(‘E [LCJ (8169)
‘ t |A/uz
If we assume the asymptote of the scaling function
Eper (1) e O(D) for | y| <<, (8.170)

this generates the following asymptote for the singular part of the Helmholtz energy
along the critical isofield curve:

FCE o 4| 1[™ for h<< |1 |, (8.171)

singular
Recalling the divergence (8.113),

FCE o Ld| y |2—a,c (8.172)

singular ’

we obtain the hyperscaling relation, containing explicitly the dimension of the
model:

2_atC :dvtc, (8.173a)
which is a particular case of the Josephson inequality (Josephson 1967a, b):

2—al <dvS. (8.173b)
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To find the magnetization, we should differentiate the Helmholtz energy with
respect to A:

1 OF" e xe dELe (¥)
mO = _F_ah OC| t |dl At F = (8174)
h/\t\AL’
Assuming
—t
d= pee () (8.175)

oc O(l) for | yl<<l,

in the limit / <<|¢ |Ang of the critical isofield curve, we find
my oc| ¢ |™ ¥ for b <<| ¢ [N . (8.176)

Comparing this result with scaling (8.103),
my oc| ¢ | forh <<| [, (8.177)

we obtain another relation among the critical indices:

BE = dv —AC (8.178)

ht®

The susceptibility is the derivative of the magnetization with respect to 4:

. 5{’;;0 o |1 o -2ahs e ) - (8.179)
R
Again, assuming
% oc O(1) for |y[<<1, (8.180)
for the critical isofield curve, we find
i oc | £ M2 for b <<| £ [ (8.181)

Comparing this power-law dependence with divergence (8.107),

1

we find the new relation among the critical indices:
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—yC =dvE —2A¢ (8.183)

hdt*

Excluding A , and the dimensionality d of the system from (8.173), (8.178),

and (8.183), we return to the particular case (8.114) of the Rushbrooke inequality
(Essam and Fisher 1963; Rushbrooke 1963):

al +2BF +yC =2. (8.184)

The scaling hypotheses above should be considered as illustrative rather than
rigorous. Even more so, a scaling assumption, which happens to be valid for a par-
ticular case, may provide incorrect results when applied in a different way. For
example, we based the scaling of the Helmholtz energy on the hypothesis that the
Helmbholtz energy is an extensive quantity and, therefore, should depend as x
on the extensive scaling parameter x. However, both the nonspecific magnetization
and nonspecific susceptibility are also extensive. If we applied the same scaling
hypothesis to these quantities, we would obtain incorrect relations among the criti-
cal indices.

Another example is that we have obtained the hyperscaling relation (8.173) for a
system of an arbitrary dimensionality. However, above the upper critical dimension,
we do not expect this relation to be valid because in this case, the critical indices are
determined by the mean-field values.

Therefore, we consider the scaling theory itself as a good illustration of already
obtained experimental or exact data rather than the independent technique to find
the critical indices. However, as we will see below, some hypotheses of the scaling
theory can be justified by the properties of the renormalization group (RG) transfor-
mation which provides much more fundamental foundation for this theory.

Above, we have considered the scaling of quantities along the critical isofield
curve, h <<|t \AEJ’ and | y | << 1. Let us now turn our attention to the critical isotherm.

The critical isotherm corresponds to the limit /# >>|¢ |A§” when | y | >>1. Assum-
ing in this limit the power-law asymptote of the scaling function,

d=. ()

o Yy for | y|>>1, (8.185)
dy

for the asymptote of magnetization (8.174), we find

vC _AC h =
my oc| £ | ( Afﬂj . (8.186)

On the critical isotherm, the deviation of the temperature from its critical value
is zero exactly: ¢ =0. To avoid singularities in (8.186), we expect that asymptote
(8.185) should cancel out the previous scaling (8.177) of the critical isofield curve.
Besides, we expect the new scaling to be in accordance with (8.118):
AfL

my och" forh >>| 1| (8.187)
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This is possible only when
C C
o =D B e (8.188)
my Ac h
hdt
Removing A;, and the dimensionality d of the system with the aid of the pre-
viously found relations, we return to the particular case (8.123) of the Griffiths

inequality (Griffiths 1965, 1972):

1
v =B~ [—C—IJ. (8.189)
By
Summarizing, we expect the magnetization to obey the scaling (Widom 1965a)
m, =" = h , (8.190)
0 ‘ ¢ |Ath
where two asymptotes of the scaling function,
g, (1) cO() for |y|<<l, (8.191)
— BE
B, () oc y for | y[>>1, (8.192)

provide two asymptotes of the magnetization:

m, oc| 17 forh <<| 1|, (8.193)
h B
my oc| | N | | kP for h>> |t [N (8.194)
0 | ¢ |Aﬁ,

Problem 8.4.1

Find the scaling of the susceptibility along the critical isotherm.

Solution: Assuming the power-law asymptote for the scaling function

2t
d = pee )

dy*

oc Y™ for | y|>>1, (8.195)

for the asymptote of susceptibility (8.179), we obtain

Xm|,|dvfuz,( h ] , (8.196)

|t |A§J
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However, we expect this asymptote to be (8.127):

X °C| 1|yc for h>> |t (8.197)
h h
It is possible if only
dv® —2AS
Ky == = (8.198)

ht

Excluding A7 and the dimensionality d of the system with the aid of the
previously found relations, we return to the trivial relation (8.128), connect-
ing the critical indices of the magnetization and the susceptibility which is the
derivative of the magnetization with respect to the field:

y$ =1-BF. (8.199)

So, the susceptibility obeys the scaling

P E;( h J (8.200)

| ¢ |V,C | ¢ |A5J,

where two asymptotes of the scaling function

g, (») o« O(1) for| y| <<1, (8.201)

EE(y)~y " for|y|>>1, (8.202)

provide two asymptotes of the susceptibility:

x o o for h<<|t|", (8.203)
y o P for h>> |t (8.204)

Problem 8.4.2

Find the scaling of the singular part of the Helmholtz energy along the critical
isotherm.

Solution: Similar to the previous discussion, we find
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C
Ko = d‘éf , (8.205)
Ah.Jt
which provides the following scaling:
F o [1)t|™ =t _h 8.206
singular = pCE ‘ ‘ |Ag,1r > ( ° )

where two asymptotes of the scaling function are
B e (1) O(1) for | y[<<1, (8.207)

B (y) Y for |y |>>1, (8.208)

and two asymptotes of the Helmholtz energy are

FSE L, o L e[ for h<<|t|", (8.209)
FCE e LR for h>> o[, (8.210)

8.5 Magnetic Systems: Superseding Correction

In Sect. 8.3, we were not able to build the scaling of the heat capacity along the
critical isotherm. Let us return to this question.
To find the heat capacity, we differentiate (8.169) twice with respect to temperature:

TOFT _ dvi(dvi =1 4 s
= =- |7] = pCE

N or? Te

c__
N

C
A
|t A

C_AC c . . d=
QAN DAL oo, 95 e

Te

C

A
| hee
2

+
(AhAth) | t|dv,c—2—2Af » d FCE

(8.211)
T dy2

C
A
Wit -t

Considering the critical isotherm, we should substitute asymptotes (8.208, 8.185,
and 8.195) into this expression:
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1+Bj; Bi
C c_ h C_H_AC h
— o const; |t || —— +const,y |t | TF —
N |t ‘Ah.Jr

K |ASAI

pi -1
o h
+consty |t|d"'c 2-280 [—J ) (8.212)

|t |AE.Jt

We have here three unknown constants of proportionality since the utilized asymp-
totes are proportionalities but not exact equalities.
Recalling relation (8.188), the first term in the right-hand side of (8.212) provides

% oc const |t[2 P | (8.213)

Contrary to our expectations, the temperature dependence has not disappeared
and is singular at the critical isotherm 7=0. Does it mean that the scaling is not
valid for the heat capacity?

To see what has happened, we should return to the example of Landau theory. We
consider the simplest form of the equilibrium Helmholtz energy when all critical
indices equal their mean-field values:

FE = Nu(-2A4In2 - hmy + atmy” +bmy* +...). (8.214)

We consider the system below the critical point when magnetic field is positive or
zero. The equation of state

0=—h+2atmy +4bmy’> +... (8.215)
is a cubic equation. When

a 3/2
h> Sb(—j 122, (8.216)
6b

it has one real solution
Y
a 1 1( a h
=2, [—+/|t|cosh{—acosh| —| — ) (8.217)
"o = 2 gp 11! {3 [819(617) |,|3/2}}

3/2
Osh<8b[ij P2, (8.218)
6b

When

there are three possible solutions, but we consider only the stable magnetization
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a 1 1(aY? n
=2,[—/| t|cosqy—acos| —| — — |} 8.219
"o =gV 3 [8b(6b] |;|3/2J (8:219)

This is clearly the scaling dependence on the scaling parameter 4/ | ¢ |AEJ‘, where

the mean-field approach provides the value of the crossover index A}, =3/2:

([
g = |t|¢m0{t|3/2] (8.220)

with the scaling function

P | 1 (a2 a2

= =2,/[— cos<{—acos| —| — for y < 8b| — s .

my (V) ’/61; 3 [8b(6bj y] y (6[)] (8.221)
P | L a Y2 a V72

o (y)=2 /a cosh gacosh[%(gl yj fory>8b(a) - (8.222)

The scaling function has two asymptotes:

_ 3
oy (V)2 %§= % for | y[<<1, (8.223)

1
2, (1) > ——= "7 for|y>>1, (8.224)

(4b)1/3

providing two asymptotes of the magnetization:

my = /%M for 0 < h<<|t[?, (8.225)

1

= Wh”3 for h>> 1. (8.226)

my

Here in the inequalities, we no longer pay attention to the constant of proportionality
(as well as in all other scaling inequalities in other sections).

Substituting solution (8.220) into (8.214), we see the scaling of the Helmholtz
energy:

F;'g'lErular — h
N;uzwﬁ E ma where (8.227)
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B (1) =-VE, (1)-aE, (M +bE, (N +... (8.228)
The scaling function has two asymptotes:

2

o (V) > —Z—b for | y << 1, (8.229)

B (¥) > = y*3 for| y[>>1, (8.230)

(4b)4/3

which provide two asymptotes of the Helmholtz energy:

CE a2
_singular __ & _ [1]* for0<h<<|t]'?, (8.231)
Nu 4b
Fsnggll 3b
K lar - _ h4/3 forh>>|t|3/2 )
e o (8.232)

Since we intend to investigate the behavior of the heat capacity along the criti-
cal isotherm, let us investigate the behavior of the scaling function (8.228) in the
proximity of this curve. Considering 4 >> | 2| we first improve the accuracy of
asymptote (8.224), adding several corrections to scaling:

3
—_ I 3 a 3 1 5/3( a ] 53
= - — +(4b)"° — ——(4b — +... for >>1.
my (V) (4b)1/3y (4) 5’ 3( ) I BY
(8.233)
This allows us to improve the accuracy of asymptote (8.230):
2
—_ 3b i a o5 a  a(4by’” ( a j 2/3
= —>- - —— | —
FCE ) (4b)4/3 y (4b)2/3 y 6b 3 6b
+... for | y|>>1. (8.234)

Also formula for (8.211) requires the knowledge of the first and second derivatives
of this scaling function:

dEiCE 4b 2a 2a a :
FE 13 13 24 400003 [_) =53
dy @ Tyt oW ) (8.235)

+... for | y|>>1.



8.5 Magnetic Systems: Superseding Correction 463

d*E e 4b 2 10 ’
F -2/3 a —4/3 a 213 4 -8/3
_ — 2 4p =
ot s Tt T (6bj Y (8.236)
+... for | y|>>1.

Let us now find the heat capacity by differentiating the Helmholtz energy (8.227):

c T 2FCE 28

hijeP? +2|t\73/2 hdZ e
Nu  Nu or? T 4 T dy

h/\t\m
- 2=
9[t[> n* d°Epcr

(8.237)
4 TC dy2

ik

Substituting asymptotes found above, we group the terms by their powers of the
scaling parameter y:

c 1 b n Y 3 1)1 n Y
a
o =693 | = +{2““}——2/3 —7
u c (4b)"" \ 1] 2 2] T (4b)"7 1]

5 ) 23
+La—+{z+l+§}ia(4b)2/3(£j _h +...,
Te 3b 13 2 6] 1 6b | |3/2 (8.238)

where the leading bracket in front of each group explicitly shows three separate
numbers, coming from three different terms of the right-hand side of (8.237).
From this result, we see that the leading scaling term (8.230) indeed provides
C o y[*?oc| [ which is singular at the critical isotherm 7=0. However, the
coefficient {6—9+ 3} at this term is exactly zero! Therefore, the divergence |7 |
does not affect the heat capacity.
The first correction to the main scaling returns singularity C oc yZ/ o ]!

. . 1] . .
again; however, the coefficient {2 _%_E} is zero again!

Only the second correction to the main scaling, which we call the superseding
correction, provides the nonzero value of the heat capacity, while all further correc-
tions are exactly zero at the critical isotherm 7 = 0:

— == (8.239)

In the result, the heat capacity is constant along the critical isotherm in the vicinity
of the critical point which corresponds to zero value of the critical index ahc =0.
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We see that the leading term of the scaling does not always determine the behavior
of the system. Corrections to this term often influence experimental results also.
Besides, as it has happened in the example considered above, sometimes the coef-
ficient at the leading term becomes exactly zero. In this case, the superseding cor-
rection completely “usurps” the leading role in determining the scaling behavior!

8.6 Crossover Effect of Magnetic Field

In Sect. 8.4 for the magnetization, we have found scaling (8.190-8.194):

S h
my 11" E:ﬂo( ] (8.240)

‘ t |A24r
where two asymptotes of the scaling function,

&, () ¢ O() for | y | <<1, (8.241)

g5, (1) VP for |y > 1, (8.242)

provide two asymptotes of the magnetization:

my oc| ¢ | forh <</t [, (8.243)

m, o hP for h >>|t |A24’. (8.244)

This scaling behavior is called the crossover effect which should always be taken
into account during experimental or numerical studies. Let a scientist investigate the
behavior of a magnetic system in the vicinity of its critical point. The main purpose
of this study may be to measure the critical index ﬁ,c at the binodal curve. For this
purpose, the scientist isolates the system from external fields and allows the tem-
perature to tend step by step to its critical value from below.

Far from the critical point, there is no scaling, and the investigator observes some
complex behavior, specific for this particular system. However, when the tempera-
ture more and more approaches the critical value, the fractality tends to occupy larg-
er and larger scales, leading to the appearance of the scaling when the dependence
of the magnetization on temperature transforms into power-law (8.243).

This is what the scientist has wanted to achieve. To find the critical index -
she/he needs only to measure the magnetization m, when | |- 0. Then the sought
critical index would be provided by the slope of the dependence of Inm, on In |7 |.
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Fig. 8.6 The crossover Ah
effect due to the presence of _
small magnetic field | ¢ |='\‘:._f

The more points along this curve the investigator would be able to measure, the
more accurate the final value of the critical index would be. However, each unit
step of In | ¢ |= In | 7| —1requires to decrease | ¢ | e times: |# |=>|?|/e. Therefore, the
scientist employs the most sensitive equipment capable to perform finest measure-
ments in the close proximity of the critical point. But will the scientist obtain the
desired result?

Even if the system has been isolated from external fields, a small but nonzero
magnetic field 4, is always present. So, we actually can talk only about how small
its magnitude is, but not about the complete absence of the field.

But the presence of even small field distorts the behavior of the system drasti-
cally! Let us look at Fig. 8.6. The small magnetic field 4, is presented here by the
dotted arrow. The scientist believes that when the system tends to the critical point,
it follows the abscissa axis of the zero field # = 0. However, in reality, the system
follows the dotted arrow and finally arrives not at the critical point but at the point
with the critical temperature 7 =0, but nonzero value of the field /2 = 7, # 0.

When A, <<|7[*, i.e., to the right of the curve / =|7[* in Fig. 8.6, the mag-
netization follows the asymptotlc power-law dependence (8.243) on temperature
which is singular (zero) at the critical point. However, when the investigator allows
the system to tend to the critical point, the system follows the dotted arrow and
crosses the curve 4 =|¢ |A“ The corresponding temperature |7 |= /4" Nt is called the
crossover temperature.

But to the left of this curve, the present nonzero field breaks the singular depen-
dence (8.243) on temperature to generate the new scaling (8.244) when the magne-

tization tends to a finite value mj, o hoﬁhL instead of the zero value which it would
achieve at the critical point. This dependence is presented schematically in Fig. 8.7.

Therefore, preparing the experiment, the scientist should take care not only
about how sensitive the equipment is but also about the better isolation from the
external field. Otherwise, the crossover effect would break the desired power-law
temperature dependence.

Similar to the crossover effect of magnetization, behavior is exhibited by other
quantities: Helmholtz energy, susceptibility, and heat capacity. Let us consider, for
example, the heat capacity. We expect that, when approaching the critical point,

the small but nonzero field should break the temperature divergence C oc 1/ ¢ |”"C
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Fig. 8.7 Due to the cross- m
over effect, the magnetiza- A 0
tion has a nonzero value at

the critical temperature

at both sides, t - +0 and t — —0, of the critical point to generate the finite value,
depending on the magnetic field:

ot i B
Coe[™ nc[m%} (8.245)

where two asymptotes of the scaling function,

B¢ () o O(1) for | y <<, (8.246)

EE(y) oy for|y|>> 1, (8.247)
provide two asymptotes of the heat capacity:

Coc|t[* forh<<|t[%, (8.248)

C h o C C
Cot[™ [ I ] och ™ for h>>|t|". (8.249)

We have assumed this scaling to be valid just from the general considerations.
But let us look what results this assumption can generate. First, to cancel out the
temperature dependence in (8.249), we should assume the following relation among
the critical indices:

al =A; o (8.250)

ht

which, with the aid of the relations obtained above, we transform into
C C C
O B Y _ e

c T hc C Bt
o, B

(8.251)

yh
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Fig. 8.8 Crossover effect of
the heat capacity

(8.252)

oy +2B5 +yS =2/A;

hdt

Obviously, the mean-field exponents atc =0, a,? =0, ﬁtc =1/2, ﬁhc =1/3,
yC=1,yF=2/3,and AS, =3/2 obey these relations.

Second, scaling (8.249) tells us that when the system tends to its critical tem-
perature, the temperature divergence (singularity) is substituted by some transient
dependence (Fig. 8.8), leading to a finite value of the heat capacity at ¢ = 0.We also
know this finite value—scaling (8.249) predicts from general considerations that
Coc %

From Fig. 8.8 we see that, theoretically, nothing prevents the point of maximum
of the heat capacity to be not exactly at critical temperature ¢ = 0. But how far the
point of the maximum can go?

Surprisingly, this question is also answered by the scaling itself. Let us suppose

C
that the maximum C oc 2~ is achieved at point ¢, . This maximum has been pro-

C
vided by the maximum of the function Eé (¥)/y~*" at some value y, of the scaling
parameter y. So, by definition, we have

— (8.253)

R

Here| y, | >>1, but y, is still a some finite value. This provides the assessment how
much the point of the maximum can deflect from #- =0:

/A5,
| t() |: [_] oc hl/A%J/ . (8.254)

If we decided to find the critical temperature experimentally as the point at which
the heat capacity diverges, this expression would give us the possible experimental
error present due to the crossover effect.

We should mention here that the presented discussion has been intended only to
illustrate the general concepts, following from scaling hypotheses, and should not
be considered as rigorous. Each particular system has its own symmetries, posi-
tively determined quantities, and model rules, dictating the behavior of the system.
For such a system, the presented concepts may illustrate the obtained experimental
or numerical results; however, they may also happen to be inapplicable, in which
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case the scaling hypotheses should be modified to suite the particular system under
consideration.

8.7 Magnetic Systems: Crossover Phenomena

So far for magnetic systems, we have studied the crossover effects caused only by
the magnetic field. However, similar phenomena can arise due to many other pa-
rameters, for example, weak interactions.

We approximate any real system by a model whose Hamiltonian includes terms
which we are holding responsible for the observed behavior. However, any model is
just an idealization. The real system may possess more complex interactions that are
missed in the model Hamiltonian due to their small amplitude ¢. For example, in
the Ising model, we may take into account only pair (bi-spin) interactions while the
real system may possess very weak but nonzero triple-spin interactions, quadrospin
interactions, etc.

These unknown interactions are weak and, far from the critical point, may not be
observable experimentally. However, when the system approaches its critical point,
the amplitude ¢ of these interactions may become comparable with the relative
deviation of temperature from its critical value, causing the appearance of the new
order parameter

=2 (8.255)

e

. .. . C
Here we have introduced a new critical crossover index A

o Tesponsible for the

comparison of the weak amplitude ¢ with |7 |Ag“.
In this case, for an arbitrary quantity @, we obtain the scaling

a=t” 25| 2|, (8.256)

where two asymptotes of the scaling function,

EX(z) c O(1) for |z]<<]1, (8.257)

Bl (z) o 2% for |zp>1, (8.258)
provide two asymptotes of the scaling:

acc|t’ for o <<|t|"™, (8.259)

¢
6,

acd i | —L—| wp” for 0 =0°/AC, and ¢ >>|1|™ . (8.260)

T
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Here we assume that the temperature dependence is canceled to provide scaling on
the amplitude ¢ with a new critical index 6.

Scaling (8.256-8.260) generates the crossover effect similar to the effect of the
small but nonzero magnetic field considered in the previous section. Namely, when
the temperature of the system tends to its critical value, the small amplitude ¢ of
unknown interactions breaks the singular (i.e., tending to zero or infinity) tempera-
ture dependence to generate the finite value of a depending on the amplitude ¢. The

temperature | |= (pmg” is, again, called the crossover temperature.

Real interactions may not have an amplitude that can be “tuned”’; however, in the
mathematical model, describing the system, everything is possible. Therefore, the
new scaling (8.260) can be considered as a singular power-law dependence again,
however in this case, this dependence is on the amplitude ¢.

All scaling dependencies considered so far broke the scaling on temperature to gen-
erate the new scaling on magnetic field or on amplitudes of weak interactions. How-
ever, the reader should not think that this is generally the case. It is also possible for
the scaling to transform one scaling dependence on temperature into another scaling
dependence also on temperature, changing only the critical index of this dependence.

The typical example is, again, the presence of weak interactions. Let us consider
scaling (8.256) when in the limit | z | >> 1, the power-law dependence (8.258) does
not cancel out the existing temperature power-law dependence:

aw|t" 5 0% for 05 #0° /AS, and @ >>[ [ (8.261)

it

In this case, the presence of unknown weak interactions changes the critical index
0F:

0 =06 -0,A,,. (8.262)

A scientist who does not know that weak interactions are present in the system
is observing the change of the temperature power-law dependence from (8.259) to
(8.261). She/he is lucky if the scaling (8.259), relevant to the theoretical model, de-
scribing the experiment, has been registered first. Otherwise, if only the second scal-
ing (8.261) has been observed, the scientist may blame the mathematical model for
crude predictions of the critical index, not knowing that the culprit is not the model.

8.8 Magnetic Systems: The Finite-Size Effect

When we considered the finite-size effect in percolation, we saw that the correla-
tion length of the infinite system, exceeding the size of the finite system, caused the
break of the existing power-law dependence on | p — p. |, leading to the finite value
(not zero and not infinite) of a quantity at the critical point. But this is exactly the
description of a typical crossover effect: Break the singularity on temperature and
generate a new scaling. Therefore, we expect the finite-size effect to be the cross-
over effect as well.
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Let us consider the finite-size effect in the case of magnetic systems. First, for
simplicity, we consider the critical isofield curve when % = 0 strictly. We consider
a model of linear size L = N whose behavior deviates from the behavior of the
infinite system. To distinguish the quantities belonging to the infinite system from
their analogues in the finite system, we will use the superscript “c0.”

The scaling behavior of the finite system is built on the base of the scaling
parameter

=5 (8.263)
L
Since we are considering the zero magnetic field, the second scaling parameter
y=h/|t |A%J’, is zero and will not participate in the scaling.
The new scaling parameter (8.263) can be transformed into the form identical to
already considered scaling parameters. Indeed, substituting into (8.263) the diver-

C
gence £ oc| ¢ | " of the correlation length of the infinite system, we find

x=d/D) (8.264)
¢
Introducing the new critical crossover index
AT =V (8.265)
L
we obtain
x=d /ACL) (8.266)
o] =

Let us consider the behavior of the extensive quantity 4 and of the intensive
quantity a. For the infinite system in the vicinity of the critical point, we have
power-law dependencies

A o 141 (8.267)
a® o)t (8.268)

For the finite system, the scaling dependencies are

Ao L4 |1[%F 53(%} (8.269)
)
a~ " E, L%) (8.270)
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where the scaling functions have asymptotes

B4 (x) o O(1), Ef (x) e O(1) for |x|<<]1, (8.271)
= (0)~ 2% EE ) ~ 2% for x> 1, (8.272)
providing the scaling
Ao I, aodt ' for £° << L, (8.273)
of /vy o
cl1/L 1.6
A oc Ld ‘ t |®l W Zj Vi , and (8274)
l t

0 vy oF

C
oc| t] I/LC oc [ljv' for & >> L. (8.275)

‘ t |V1/ L

The singular dependencies on temperature are substituted by some transient
dependencies, leading to the finite values, depending on the size of the finite system
(Figs. 8.9 and 8.10). Again, the scaling predicts the finite values (8.274 and 8.275),
replacing singularities of the quantities at the critical point.

If we decided to measure the critical temperature as the point of singularity, the
considered scaling would return the estimate with the accuracy

Fig. 8.9 The finite-size
effect for the singular
temperature dependence
tending to zero value at the
critical point of the infinite
system

Fig. 8.10 The finite-size
effect for the singular
temperature dependence
diverging at the critical
point of the infinite system

(8.276)
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8.9 The Illusory Asymmetry of the Temperature

So far, we have considered the crossover phenomena generated by a system, tending
to its critical point along the binodal curve.

Far from the critical point, the fractality occupies only the finest scales. The rest
of the scales is described by the laws specific for this particular system so that the
behavior of the system is not universal. The scaling is also absent.

When the system approaches its critical point, the fractality occupies larger and
larger scales, causing the scaling to appear. This scaling manifests itself for a quan-
tity a as a power-law temperature dependence | ¢ \9’ .

Further approach to the critical point makes the temperature comparable with a
small but nonzero amplitude ¢ of some interactions. This amplitude is unknown
but is considered to be fixed (to be supported constant while the system tends to
its critical point). The presence of this amplitude breaks the temperature scaling,
while the value of this amplitude dictates the value of the considered quantity a at
the critical point.

Since the majority of the scaling studies is devoted to the crossover phenomena
along the binodal curve, it may seem that the temperature plays an asymmetric role
in all crossover phenomena; that it is always the temperature scaling that is broken
by other field parameters or interaction constants.

However, this impression is not true. The temperature is neither more nor less
than any other field parameter or interaction constant. To demonstrate this, we re-
write scaling (8.256) as

-0 /A,
4 0F 1AG, ¢ | _ P
— |TP C a — |- (8.277)
{W-" |r|““] [nﬁ“']

Inside the square brackets, we see here the new scaling function

[1]

c
6,

+ t
a=o| Ea[| |Af J,WhereAi(p:l/AgA,. (8.278)
(p dp

Here the superscript index “+” differentiates functions already not above or below
the critical isotherm but the cases ¢ >0 and ¢ < 0. Two asymptotes of the scaling
function,

1] (8.279)

of
{ tAc ] oc [ | ZA|(. ] for | tA‘C >>1, (8.280)
lo[™ o™ lo ™




8.9 The Illlusory Asymmetry of the Temperature 473

provide two asymptotes of the scaling:

aco* for |t]<<|p [, (8.281)

|Ar('4¢ 1o

9/(
aoe* [Lj oc|t]” for 6 =6 /AL, and |1[>>|¢@ M (8.282)
|

In this case, instead of fixing | ¢ |, we are fixing |#|#0 as a small but nonzero
deviation from the critical temperature about which the scientist does not know. The
scientist assumes that she/he tends the system to its critical point along the critical
isotherm #=0 by decreasing the amplitude |¢ | (for example, by decreasing the
magnetic field |4 |). However, when |#|#0 becomes comparable with | |A’C“”, the
small but nonzero deviation of the system from its critical temperature breaks the
singular scaling on || to tend the measured quantity to a finite value, determined
by the fixed value of |7]#£0.

So, any crossover effect has “two sides of a coin.” In the above example, the
temperature scaling may be considered as broken by the amplitude | ¢ |. Or, on the
contrary, the scaling on | ¢ | may be considered as broken by the temperature.

We see that the role of the temperature is not special, and the temperature is nei-
ther more nor less than just one of many field parameters. In fact, the temperature
can disappear from the scaling at all!

To demonstrate this, let us support a system at exactly ¢ = 0. In this case, the tem-
perature is always less than all other field parameters or interaction constants and do
not participate in scaling. Then we can consider, for example, the crossover effect be-
tween the magnetic field and the finite size of the system along the critical isotherm.

The scaling parameter we consider in this case is

N £ (1/r) .
L

= —~ where Aih =v,. (8.283)

A(

ks '

We consider an extensive quantity 4 and an intensive quantity a whose scaling
on the magnetic field in the infinite system is provided by

A o 14| 1 P (8.284)

a® oc| h P (8.285)

For the finite system, we assume that the scaling dependencies are

Ao | h % =% (%J (8.286)
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where the scaling functions have asymptotes

= () ~ O(l), Z2(x)~ O(1) for |x|<<]1,

Cc, C C
2 ()~ x M B ()~ A0 for | x >>1,
providing the scaling

Ao IR aoc|hPF for £° << L,

@%/vf @72_‘{
C
Aoch|h|®5{”L,] o %jh ,

and

osnsof
C
aoc| {”—LJ o« G)h for £ >> L.

(8.287)

(8.288)

(8.289)

(8.290)

(8.291)

(8.292)

So, we obtain the crossover effect between the magnetic field and the finite size of
the system along the critical isotherm when the temperature does not participate in

the scaling.

Problem 8.9.1°

Demonstrate how crossover effect (8.261 and 8.262) can change not only the
index of the temperature scaling of the heat capacity but also the value of the

critical temperature.

Solution: Let us return to scaling (8.278):

(8.293)

When | £ [>>| @ |A’c“”, this scaling should provide the usual divergence of the

heat capacity:

Coc|t|“.

(8.294)
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It is possible if
0 =—aA’

(4 tlp

and B (z)~| z|“ for |z[>>1. (8.295)

When | ¢ |<<| @ |**, we can no longer assume that the scaling function is of
the order of unity. Instead, we should consider the following asymptote:

Ei(z)oc| z—z, [ for |z]<<1. (8.296)

For the heat capacity, this assumption provides

o

o]

o
(G-a)Af, AL
=z, |@[™*
0

Cox|gl* (8.297)

‘ Aﬁq, ~ %o

This is the result we have been looking for. First, for the close proximity

C
of the critical point, when the crossover effect |7|<<|@ | is in action, the
temperature divergence of the heat capacity has a different critical index a.

Second, this new scaling chooses the new value of the critical temperature

whent=z, | \A’CJ“’. Third, it also contains a power-law dependence on ¢, but,
contrary to our expectations, the index of this dependence is not 9; =—a A’ "
but (& — a)Aiw.

All this has happened only because we have assumed that for small values
of the scaling parameter the scaling function is no longer of the order of unity.

Such dependencies are called dangerous and are considered in Sect. 8.11.

8.10 The Formalism of General Homogeneous Functions

The mathematical apparatus, lying in the foundation of scaling, is the formalism of
homogeneous functions. The p™-order general homogeneous function depending on
n variables, x;,x,,...,x,, is defined as a function for which the equality

FADx, A2 %y, A% x )= AP £(x), X, X,) (8.298)

is valid for an arbitrary A. Further, we assume that this function depends slowly on
its arguments when the absolute values of those are much less than unity. In other
words, f(x,%5,...,%;,...,X,) does not almost depend on x; when | x; |<<1.

Next, we associate each variable x; with a particular coupling constant of the
system (with a particular field parameter or interaction constant). In accordance
with the definition of the general homogeneous function, each coupling constant x;
has its own index ¢,. Next, for each x,, we find x,% and then find the maximum

.. . g
among these quantities: i : maxx; 4,

1
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’qumax

Choosing 4 = X max , we substitute it into (8.298):

p/qimax f x] ximax -xn

ql /qimax e e qn /qimax

-max -max -max
1 1 7

f(x1’x2>"'>xn) :ximax

qimax /qimax

(8.299)
In the right-hand side of this equality, all arguments for i # ;™ are less than unity:
Xi

qi / ql.max

imax
the argument is exactly unity, so its participation in scaling is also weak. Thereby

the scaling of the right-hand side is provided only by the power-law dependence
P4 max |

-max
1

<1. Therefore, the function does not depend on them. For i =i"",

P/q.max P/‘I.max
S x0,000x,) C X T f(0,..,1,.,0) 00X
e i i (8.300)

l/q, ) ..
when X mees xil/q’ Vi#im™™,

And what is even more important is that this scaling is determined by the maximal
of quantities x,"% .
If, during an experiment, we were decreasing the coupling constant X max keep-

4 max

. . . . ]
ing other coupling constants unchanged, sometime the quantity x .. " would no

longer be the maximal among x,-” 9 Thereby the scaling function f would choose
the new “leader” among the coupling constants, providing now the scaling on this
variable.

The formalism of general homogeneous functions provides us with a perfect
opportunity to look for the relations among the critical indices. Let us consider the
magnetization as the scaling function of three arguments:

x; =[t], x, k|, xy=1/L, (8.301)

ax

when initially /™ =1. In other words, we assume that initially

C
Al

¢ 1 C
|h|<<|t[*and I/L<<|t| ", where AC, =ﬁ—fC and A =vS. (8.302)
—Jt
h L

For i™ =1, the scaling function is supposed to provide the scaling on

temperature:
1 - h 1/L
mO(tl,lhl,zj =[P ol (1 4] —J (8.303)

’|t|qh/% ’|t|q1/L/%
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C
where £ = g€, 90 Z AC | = ﬁ—'c and L ZAC —yC (8.304)
9, t h q, Z‘J’

Next, we assume that during the experiment, the temperature tends to its critical
value, so that sometime it happens that
A%
¢ . - 8.305
|h|>> |t [M butstill VL<<|t] & . (8.305)

Thereby the scaling function transforms into the scaling on magnetic field:
( UL ] (8.306)

+
|h|‘h/qh ’ ,|h |‘11/L/qh

1 -
m0[|r|, ’“z) = o =5

where £ = Br. (8.307)

qy

When we further tend the temperature to its critical value, it may stop to partici-
pate in the scaling, leaving only the crossover effect between the magnetic field and

the size of the system:
AC
! (8.308)

C —
|h|>>|t[% and VL>>|t] & .

. . * 1/L . .
The new scaling parameter is x = éL = # with A(f = v,?, and the scaling
—h

L

function provides L
|| *
mo| 1211 k1,2 | = == o, —LE | (8.309)
L | h ‘ql/L qn
(8.310)
where £~ = B; and kilia =vy.
qn qh

Comparing (8.304) and (8.310), we find the relation among the critical indices:

¢ ¢

Y ﬁ_hc (8.311)
vi B

Substituting this equality into (8.251), we find
C C C C
4 P 1 Ve (8312)
ay, By v Vi
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Problem 8.10.1

Prove the relation

ﬂC
& _ P (8.313)
@, By

by considering the scaling of the heat capacity.

Solution: For | /1 |<<] ¢ |* (Where A; ., =B By ), we expect that

+ h

C(|t|,|h|) :|t|p/q, Ee (1’|t||T/|q,]’ (8.314)

©
where 2 = € and L= ag, =B (8315)

4, q; ﬁh

For | h[>>| [ :
— t
C(|t|a|h|) :‘h'p/qh .:C(|h||ql/qh '»'lj’ (8316)
where qﬁ =-0. (8.317)
h

Comparison of (8.315) and (8.317) immediately provides (8.313).

8.11 The Renormalization Group as the Source of Scaling

The scaling behavior appears in the vicinity of the critical point. As we know, the
critical point can be the result of the RG transformation only if the initial system
was also in the critical state. So, one critical point replaces another along the critical
manifold which is the chain of critical states in the space of coupling constants. The
critical manifold ends at the critical fixed point which we may consider to be the
“capacitor” of the critical scaling behavior.

Besides, since the RG transformation keeps the lattice and the model invariant,
it also keeps the critical indices of the system invariant. So, all systems along the
critical manifold have the same values of the critical indices. Therefore, to find the
scaling behavior of the initial system, there is no need to look for the exact solution
of this system. Instead, we may investigate the system at the critical fixed point
which is much easier in comparison, as we will see now.



8.11 The Renormalization Group as the Source of Scaling 479

We assume that the RG transforms the vector of coupling constants K into the
vector K'=RG(K) . The critical fixed point K € of the RG transformation is de-
termined by

K¢ =RG(K®). (8.318)

Considering small deviations of the coupling constants from their values at the
fixed point,
K¢ +k'=RG(KC +k), (8.319)

we linearize the RG transformation in the vicinity of its fixed point by expanding
the right-hand side of (8.319):

‘ " oK 8.320
KS+kl =K+ oK/ k, ( )
Jj=1 Jjlge ‘
or n 4
T i (8.321)
0K e !
K

where 7 is the dimensionality of the space of coupling constants.
In Sect. 7.5, when we considered the RG transformation for the ferromagnetic
Ising model on triangular lattice, all eigenvalues and eigenvectors of the matrix

oK/

oK happened to be independent. For simplicity, now we also assume that this
J K€ ) Kl"
is the case: the matrix ——|  is symmetric, diagonalizable, and has »n independent
ilge
eigenvalues 4, and eigenvectors K, :

RG(&) = AR, (8.322)

On the basis of these eigenvectors, we introduce coordinates #; and u] to repre-
sent vectors k and k', respectively:

k= iuﬂzi and k' = zn:u;;z,.. (8.323)
i=1 i=1

Then from (8.321), we immediately find that each coordinate is transformed inde-
pendently:
ul = Au;. (8.324)

Obviously, the behavior of the linearized RG transformation in the vicinity of the
critical fixed point depends drastically on whether the absolute values of eigenval-
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Fig. 8.11 A schematic rep- h
resentation of the behavior
of relevant temperature and
magnetic field eigenvectors

KC

ues A, are more or less than unity. If | 4, [> 1, during the chain of the RG transfor-
mations, the absolute value of the coordinate u; will grow so that in the direction
of this eigenvector x;, the system will move away from the critical point. Such an
eigenvalue is called relevant since it determines the flow curves of the RG trans-
formation in the vicinity of the critical manifold and thereby influences the scaling.

Since in the direction of the relevant eigenvector x;, the system moves away
from the critical manifold, this eigenvector cannot be parallel to the critical mani-
fold and is said to form the codimension of this manifold. The temperature and mag-
netic field represent relevant coupling constants of the magnetic systems because,
as we have seen, the RG transformation moves these quantities away from their
critical values (Fig. 8.11).

On the contrary, the eigenvalue | A, <1 is called irrelevant because, as we will
see later, these eigenvalues do not influence the scaling (with the exception of the
so-called dangerous irrelevant eigenvectors which we will also discuss later). Dur-
ing the chain of the RG transformations, the corresponding coordinate u; disap-
pears. The irrelevant eigenvector k; must, therefore, belong to the critical manifold.

In Fig. 8.11, we considered the flow curves in the space of the coupling constants
but drew the eigenvectors in terms of the field parameters, the temperature and
magnetic field. We did that out of simplicity, recalling the example of the previous
chapter when we considered the ferromagnetic nearest-neighbor (n.n.) Ising model
on triangular lattice. It happened that there were two eigenvectors (7.119) parallel
to the axes of the space of coupling constants so that the first eigenvector corre-
sponded to the change in K, while the second to the change in K, .

Recalling the definitions (7.95) of the coupling constants,

uh J
K,=—and K, =—, 8.325
1= 2157 ( )

for small deviations k and k' in the vicinity of the critical fixed point,

(8.326)
KE=0and K, =2 = L In(242 +1),
T. 4
we find ;
i)
ky=—h and ky, =——*1.
T 27T (8.327)
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Therefore, in the case of the example from Chap. 7, the first eigenvector x, and
the first coordinate u; do correspond to the change of the magnetic field along the
critical isotherm, while the second eigenvector k, and the second coordinate u, do
correspond to the change of the temperature along the critical isofield curve.

For simplicity, in a general case, we may assume similar situation—each coor-
dinate u; is determined by the deviation of the corresponding field parameter or
interaction constant. Returning to the case of the ferromagnetic Ising model, we will
consider the first coordinate u,; to correspond to the magnetic field while the second
coordinate u, to the temperature.

As we know from Chap. 7, the RG transformation decreases the correlation
length b times, i.e., with the scaling factor r=1/b:

AR LI D=8 hLItD/b. (8.328)

Since the RG transformation keeps both the lattice and the model invariant, here the
functional dependence of the correlation length on the values of field parameters is
the same for both sides of the equation.

Substituting into (8.328) the connection (8.324) of the new coordinates with the
old ones, we obtain

EA A I RLIA [ty =E(hLIt])/b. (8.329)

Next, we consider the critical isofield / = 0. In this case, the correlation length
C
diverges as &(|],0) oc| £ . Substituting this scaling into both sides of (8.329), we
find the critical index v
1 1
= — or (8.330)
(212D b(eh™

Ve = nb (8.331)
In|4 |

We have obtained at first sight a strange result—the critical index vtC depends
on the linear size b of the cell of the RG transformation. The RG transformation is
merely a tool, so we have expected that the size of the cell should not influence the
found behavior of the system.

How can we exclude b from (8.331)? There is only a single way—to hypothesize
that In| 4, | is proportional to Inb . This assumption is supported by the fact that the
RG transformation is a semigroup.! We expect from two consecutive RG transfor-
mations with linear cell sizes b, and b, to be equivalent to the RG transformation
with cell size b,b;:

! The RG transformation is a semigroup since, after we have reduced the number of degrees of
freedom in the system, there is no inverse transformation that would restore these degrees of
freedom.
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RG, RG, (K)=RG,, (K). (8.332)

Since the eigenvectors k; depend on the field parameters but not on the cell size,
we expect that only the eigenvalues A, may depend on b. Performing transforma-
tion (8.324) of coordinates twice, we find

A (D)) (b)) = A;(byby). (8.333)
But for arbitrary 5, and b, , this equality is possible only when

2;(b)=b"", (8.334)

where y; are some indices, corresponding each to its own eigenvalue A;.
Substituting (8.334) into (8.331), we find

ve-L (8.335)

We see that the dependence on the cell size is no longer present in the formula and
that the critical index vtC is determined by the index y,, corresponding to the co-
ordinate u, =¢.

Let us now see how the RG transformation determines the scaling of the correla-
tion length. Substituting (8.334) into (8.329), we obtain

@ [ h|,b" [t =& hL|t])/b. (8.336)

After n consecutive RG transformations, this equality transforms into

@™ [h|,b™ [th=&E(n],lt]))/b" or (8.337)

1
‘t|]/yt

E(hLIt])= O™ L) EBH | h|,b™ (1)), (8.338)

where the first multiplier of the right-hand side is the scaling £(| 7 |,0) oc| ¢ |_‘”C of the
correlation length on the temperature.

So far, we have not specified the value of . Considering it as a parameter, we
choose

b=l (8.339)

In this case, (8.338) transforms into

(Rl =— s( L] 1], (8.340)

|t‘l/yt |t‘yh/Yt ’
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which is the scaling function, depending on the scaling parameter

y= h withaC =2 (8.341)

C hAt
Ah. it

7] Y,
Choosing another value of b for (8.337),

b=|h |’1/”Yh , (8.342)

we obtain the scaling on magnetic field

1 7]
é(\h|,|z|)_|h|l/yh é[l’lhlw" J (8.343)
which immediately provides values of the following critical indices
ve =L witmac, =22, (8.344)
yh yh

Substituting these indices and (8.335) into (8.312), we find

C C C C
C BT ey (8.343)
a, By v Vs i

Applying relations among the critical indices in the presence of hyperscaling
relations, we obtain

v =L andve =L (8.346)
Vi Y
2y, - 2y, -
af =2-ave =229 gpg gf 22274 (8.347)
Vi Y
B —dve—AS, =97V qngge 97 (8.348)
yt yh
2y, —d 2y, —d
7 =245, —dv == and y =2 (8.349)
Y, V)
C
nC=2-T=21d-2y, (8.350)
vl

There is an easy way to verify these expressions: For d = 4, they should transform
into the mean-field values of the critical indices which we can prove to be true by
direct substitution.
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Let us consider the RG transformation of an arbitrary intensive quantity a. In

comparison with (8.328), we hypothesize that we would find another power-law
dependence on b:

a([h' |t )=a( hl|,|t])/b". (8.351)
This provides
a(b™ [ h|,b™ |t))=a(h|,|t])/b™ and (8.352)

a(C L[t =1t @™ [t a@®™ |h],b™ |t]) or (8.353)

al AL ) =R @ a6 ). (8339

Substituting (8.339) and (8.342) into (8.353) and (8.354), respectively, we find the
scaling

(8.355)
a b= al 121

| t |A/ur

and "
mm,u)=h“”“@wm¢J' (8.356)

Defining critical indices for quantity a by
a(lhl, )=t [" a[ "Z' 1, (8.357)
‘ t | hot

a(hllt])=h" a(l%} (8.358)

h 1h

by comparison with (8.355) and (8.356), we immediately find

0¢ =— = and 0F = -5 (8.359)
Vi Vi
or C
0, Y C ¢
—=~"and k =-y,0, =-y,0,".
th v, ViU Y (8.360)

For example, for indices (8.348) of the specific magnetization, these relations
provide
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d— d—
BC = Yh X and B = Yn _ _

! —or (8.361)
Vi Yy Vi Vi
B2 and =y, d (8.362)
ﬂh Y
So, the specific magnetization transforms as
mo ([ h' L) 2 ) =my (R 2 ]) /b7 (8.363)

Problem 8.11.1

Find relations similar to (8.363) for the singular part of the specific Helmholtz
energy, specific susceptibility, and specific heat capacity.

CE
g o o 00 _ % CE ingule
Solution: Since all specific quantities Xpeciic = Tt = S":,W, and
C . . . . ..
Cypeic = — Are intensive parameters, from considerations similar to (8.351—
‘ N

8.363), we obtain

/;mgular (| h | | t |) -/;mgular (‘ h |=| t |)/b_d; (8364)
Lspeciic (B LT D = Lpeaipe (B2 /6777, (8.365)
Coecic LA 1121 = e (L2 1) /527 (8.366)

The last two dependencies are obvious consequences of the first dependence

IS @ LD [t = £ AR/ b7 (8.367)

when we differentiate it twice with respect to the magnetic field or temperature.

If we consider the RG transformation of an arbitrary extensive quantity A4, we
hypothesize the power-law dependence on b again:

AR |2 )= AR ) /b5 (8.368)

But each extensive quantity is a product of its intensive counterpart and the number
of degrees of freedom:

A(K L2 )= Na( h'|,|# ) and A( hL|¢]) = Na( hl|e]),  (8.369)
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where we know that the number of degrees of freedom in a system in transformed as

N'=N/b?. (8.370)

Substituting (8.369) and (8.370) into (8.368) and taking into account (8.351),
we find

K—kd (8371)

For example, utilizing (8.364), for the singular part of the nonspecific Helmholtz
energy, we find

Ftear (B L) = FSE i (2L 2] (8.372)

singular singular

In other words, the singular part of the Helmholtz energy remains invariant under
the RG transformation.

The presence of other field parameters or interaction constants leads to simi-
lar formulae. For example, returning to the scaling dependence of the correlation
length, we may have

EW | hLE" [t 6™ @ 6™ [y =&ALt oLy /b (8373)
This assumption, obviously, returns similar relations for the indices, e.g.,

A, = Yo (8.374)
y\//

For example, if we are going to take into account the finite-size effect, we expect
to obtain

EWBY | h1,b" [¢],6" (1 L)) = E( AL ¢],(1/ L))/ b. (8.375)

The finite-size effect represents the special case when the value of index y;,; we
can foresee from general considerations. Indeed, coarse graining our system, we
decrease its linear size b times:

L' =L/b. (8.376)
This immediately provides
(1/LYy=b":(1/L)y=b(1/L) (8.377)

or

yir =1 (8.378)
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Problem 8.11.2
Find relations similar to (8.363) for the correlation function.
Solution: Assuming

g( A ||t ,1/ Ry =g(hl|t],1/R)/b",
in accordance with R'= R /b , we find

g™ [h|.b™ 116" 1 R)=g(| hl.|].1/ R)/b™,

which leads us to scaling

(1Rl 1
h|,|t|,1/R)=R , 1
g(hL171,1/ R) g[(l RTTRY

Here we expect the scaling parameters to be

| A | :[ R JYh _ (Ejl/vf
/Ry \|np &)

|t| :[ R Jy, _ (ﬁjw
/Ry \Je™ &)

so we can rewrite scaling (8.381) as

R l/v,(,: R 1/\/1C
hl,|t|,1/R)=R" = o = 1|
g( 7L, 2],1/ R) g[(éj [5] ]

Since for R << &, we expect to obtain the scaling

1

Ra{—2+nC ’

g oC
which leads us to
k=—(d-2+n°).

Substituting (8.350) into this relation, we obtain

K =2(y, - d).

487

(8.379)

(8.380)

(8.381)

(8.382)

(8.383)

(8.384)

(8.385)

(8.386)

(8.387)



488 8 Scaling: The Finite-Size Effect and Crossover Effects

So far for the correlation function, we have considered the single critical
index ¢ which, following the introduced notation, would be better to call
ny - However, we see that the obtained scaling (8.380):

g™ [h],b™ [t/ R)=g(hLlt |1/ R)/ b= (8:388)

can generate two more scaling dependencies:

~Yn ) Vn |t| 1/R

g(hl,|2],1/ R) = B[ g(l,m'y’/yh,'h”yh . (8.389)
h| . 1R

g( kL, 2],1/ R)=| ¢ = g[|,|yh/|yz IW) (8.390)

which for the critical isotherm and critical isofield curves provide

g(RLItL1/ R) = b P g[l,O,%j, (8.391)

g(hLI 71,1/ R) =t P g(o,l,%j, (8392)

respectively. This allows us to introduce two more critical indices in the limit
R>>¢:

g( i, 21,1/ Ry oc| k" with n =2(d—y,)/y, = 2BS (8.393)
and

g( AL t|,1/ Ry t[* with n¢ =2(d—y,)/y, =2BC, (8.394)

where we explicitly demonstrate only proportionalities of the field parameters
of the system. Besides these power-law dependencies, the asymptotes of
the scaling function, of course, contain also the dependence exponentially
decaying with the increase of R. Both critical indices (8.393 and 8.394) are
obvious if we recall the connection between the correlation function and
magnetization.

Let us now answer the question why only the relevant eigenvalues influence the
scaling of the system while the irrelevant eigenvalues do not participate in the scal-
ing. We assume that in scaling

&b [h1bY (LB @)= E(htLl @)/ b (8.395)
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parameters s and ¢ are relevant as always while an amplitude ¢ is irrelevant.
Substituting (8.339), we generate the scaling on temperature:

é(h,ltl,ltp)=|t},yt§[ ]y Lol J (8.396)

|Z‘Yh/)’z ’|t‘J’w/)’t

This scaling dependence demonstrates the principal difference between relevant
and irrelevant variables. The field parameter / has the eigenvalue whose absolute
value is higher than unity: | 4, |>1. In accordance with (8.334), this requires that
the corresponding index y, must be positive: y, > 0. The corresponding scaling

7]
t |J’h/ Y
values from zero, | y |<< 1, to infinity, | y |>> 1. These two asymptotes generate two
asymptotes of the scaling function, representing diversity of the crossover phenom-
ena we have discussed above.

On the contrary, if the amplitude ¢ is irrelevant, the absolute value of the

parameter | y |= is the ratio of two small quantities and, therefore, can take

corresponding eigenvalue is less than unity, |4, [<1, which, in turn, provides
o]

t|y¢/y,

of two small quantities and, therefore, is always small by itself, | z |<< 1. Thereby the

Y, <0. In this case, the scaling parameter z = =@t \‘y oIV s the product

scaling parameter z does not participate in the scaling because generally the scaling

function does not depend on small parameters.
The exception is the case of the irrelevant amplitude ¢ when the scaling func-
tion does depend on the small scaling parameter z as a power law:

E(p,1,z) oc ZE(p,1) for |z |<< 1. (8.397)

Such irrelevant coupling constants are called dangerous coupling constants. We
have seen an example of the irrelevant dangerous parameter in Problem 8.1.1.
Substituting (8.397) into (8.396), we find

1
|t‘1/%

snlltlleh=

(8.398)
(|§D|l||y<0|/y'),(§( |h| ,lj

|t‘yh/yl

So, the irrelevant dangerous amplitude ¢ always influences the scaling.

Finally, we should discuss the question about the presence of additional char-
acteristic length (besides the correlation length) in a system in the vicinity of its
critical point. To begin the discussion, we should return to the definition of the term
“anomalous dimension.”

So far, we have discussed two approaches to find the critical indices of a system:
The mean-field approach and the RG transformation. It could be demonstrated that
the mean-field values of the critical indices can be found just from the dimensional
analysis when a single characteristic length in a system is the correlation length.
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This hypothesis claims that when a system tends to its critical point, the correla-
tion length diverges, and thereby the fractality occupies all scales, from the lattice
constant to the size of the system, forming a “fluctuation foam.” Fluctuations, oc-
cupying all possible scales, begin to dictate the behavior of the system.

But the stochastic behavior of fluctuations is generally universal for an arbitrary
system regardless of the nature of this system: thermal, complex, biological, geo-
logical, informational, social, etc. The fluctuations suppress the microscopic nature
of a system and dictate their own probabilistic tendencies. Therefore, there is no
surprise in the fact that in the vicinity of a critical point, the specific for a particular
system behavior is substituted by universal power-law dependencies.

This discussion would be perfectly sound if the critical indices were indeed de-
termined by their mean-field values. However, this is not always so. The studies,
either experimental, or numerical, or exact, demonstrate that the real critical indices
are often very different from the mean-field suggestions. Besides, if we decided to
find the nature of these indices with the aid of the dimensional analysis, it happens
that the value of an index splits into two parts: the mean-field value and some “ad-
dition” called the anomalous dimension. While the presence of the mean-field part
is explained by the correlation length, the anomalous part has to be determined by
the presence of some additional characteristic length besides the correlation length.

This leads to the belief that something of the microscopic properties of the fin-
est scale survives the fluctuations occupying this and larger scales. Some studies
suggest that this may be the lattice constant as the representative of the finest scale.

However, we do not share this belief. As we have seen, the process of coarse
graining erases all memory in a system about what was the lattice constant of the
very initial system. To illustrate this, we may refer to the example of fractals. Let
us return to Chap. 1. Comparing parts (a) and (d) of figure given in Problem 1.2.1
of Chap. 1, we see that the dimensionality of the initial branch does not affect the
dimension of the developed fractal set. Even more so, nothing of the initial branch
survives the process of coarse graining.

But what then determines the fractal dimension? The number of branches K and
the scale factor 7. In other words, the properties of the generator. We see similar situ-
ation in scaling generated by the RG transformation: In accordance with (8.334),
the critical index y; is determined by b as the size of the cell of the RG transfor-
mation and by the eigenvalue A, of this transformation. Both are the properties of
the “RG generator.” Therefore, we believe that the additional characteristic length
responsible for the appearance of the anomalous dimensions appears not from the
properties of the initial system but is determined by the laws of scale invariance.

8.12° Magnetic Systems: Spinodal Scaling

In previous sections, we paid attention mostly to critical phenomena for two rea-
sons. First, initially the scaling was investigated for the proximity of the critical
point. Second, the most of studies are devoted to critical phenomena which allow us
to present a set of illustrative examples.
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However, as we saw in Chap. 6, the correlation length diverges in the vicinity
of the spinodal point as well, thereby, providing that the same scales are occupied
again by fractal scale invariance. This guarantees that many concepts of critical
scaling considered above are applicable to spinodal phenomena as well.

Let us return to the equation of state (8.121):

h=2at" m, +(ﬂ—lc+1)bmo””f(" Fo (8.399)

h

To find the spinodal curve, we should investigate when the derivative (%j is
Oh

infinite. Differentiating (8.399) and utilizing (8.128) and (8.129), we find:

5~
o
Za ﬁC
M= () and (8.400)
h h
RE
s
h, :lc(icﬂjyfb 2|yt (8.401)
By B, 1[1 j
By \ B,

Then, expanding the equation of state (8.399) in the vicinity of the spinodal point,
we obtain:

(my=ms)" _ o pe =(h=hs) e =(t=t) (8.402)
(=m)’ A hg +26 (’s) o

We see that even in the most general case of the equation of state presented by
(8.399), the expansion still provides the mean-field values of the spinodal indices:
BS=1/2and B; =1/2.

Equation (8.402) represents the scaling function of the magnetization:

i C, 2 Cr .2 _
g —mg 1=t P [2PCm)” 2B Cm)” Th=he| (g 403)
(—ts) hS | t_ts |A;u/

where A | =1.
Differentiating (8.402), we find that the susceptibility,
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C (_ms)2 1

x=Pi hy  —(my—mg)

+o, (8.404)

is inversely proportional to the deviation of magnetization from its spinodal value,
which provides the following spinodal indices: y’ = B =1/2 and y; = B; =1/2.

In general case, the RG transformation can be applied in the vicinity of the spi-
nodal point as well as in the vicinity of the critical point. Therefore, the RG will
generate the relations among the spinodal indices, similar to (8.345):

S S S S S
o P v Ve _ps (8.405)
a, B, v, Vv, Vi

Besides, many other relations, valid for the critical indices, can be proved for the
spinodal indices as well (as we, for example, saw in Chap. 6). The reason is again
that the divergence of the correlation length, followed by the fractal scale invari-
ance, provides the similarity between critical and spinodal phenomena.
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e-E, 263 Coarse-graining, 368, 369
e-ensemble, 263 Coexistence curve, 171, 179
u-P-T-E, 134 Continuous FBM, 281
o-E, 270 Continuous phase transition, 188
o-ensemble, 270 Corrections to scaling, 462
Correlation function, 290, 328
A Correlation length, 303, 304, 325, 328
Absolute energy fluctuation, 100 Coupling constant, 369
Absolute fluctuation, 78 Critical cross-over index, 427, 453, 468, 470
Action of free energy, 143 Critical curve, 214
Annealed disorder, 281 Critical fixed point, 381, 393
Anomalous dimension, 490 Critical flow curve, 381
Antiferromagnetic phase, 208, 213 Criticality, 174
Approach of a single survivor, 377 Critical manifold, 381
Approach of representation, 386, 387, 407 Critical nucleus, 198
Attractor, 392, 394 Critical opalescence, 289
Autocorrelation function, 290 Critical point, 163, 170
Autocovariance function, 290 Critical region, 322
Avalanche, 277 Critical temperature, 170
Avogadro constant, 55 Cross-over effect, 464
Cross-over temperature, 465, 469
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Bethe lattice, 237 D
Binodal curve, 171, 179 Damage, 260
Bipartite lattice, 207 Dangerous coupling constant, 475, 489
Blume-Capel model, 377 Daughter branch, 4
Boltzmann’s entropy, 66, 96, 117 Daughter iteration, 4
Bond percolation, 226 Decimation, 370, 375
Boundary conditions, 56 Degeneracy of energy level, 57
Box counting, 4 Degenerate, 57
Branch, 2 Democratic FBM, 262
Density of microstates, 106
C Developed fractal, 4
DFBM, 262

Canonical ensemble, 91
Canopy, 16
Canopy dimension, 16
Cayley tree, 237
CE, 91 E
Cluster, 177, 195 Effective canonical ensemble, 345
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Energy fluctuation, 96

Energy level, 57

Energy spectrum, 57

Ensemble, 57

Entropy maximization principle, 81

Entropy of fluctuation, 72, 96

Entropy of MCE, 66

Equation of equilibrium macrostate, 97

Equation of state, 103, 170

Equilibrium distribution of probabilities, 70,
76

Equilibrium macrostate, 76

Equilibrium state, 76

Ergodic hypothesis, 57

Extensive parameter, 56

External fields, 56

F

Factorization of partition function, 158

FBM, 261

Ferromagnetic phases, 176

Fiber-bundle model, 261

Finite-size effect, 428

First order phase transition, 188

Fisher exponent, 244

Fisher inequality, 317, 453

Fixed point, 392

Fluctuating parameter, 56

Fluctuation-dissipation theorem, 298, 310, 312

Fluctuation foam, 366, 490

Fractal, 4, 9

Fractal tree, 14

Free energy, 81

Free energy minimization principle, 81, 88,
124

Free energy potential, 81, 123, 133, 136

Frozen disorder, 281

G

GCE, 134

General homogeneous function, 475
Generating function, 49

Geometrical frustration, 218

Geometrical support, 19

Ghost field approach, 347
Gibbs-Bogolyubov-Feynman inequality, 203
Gibbs entropy, 66

Gibbs probability distribution, 98
Gibbs-Shannon entropy, 47, 66

Ginzburg criterion, 318
Ginzburg-Landau-Langevin equation, 175
Global minimum, 174

Grand canonical ensemble, 134

Index
Griffiths inequality, 447, 457

H

Hausdorff-Besicovitch measure, 6

Heat bath, 90

Heat reservoir, 90

Heat susceptibility, 325, 328

Helmholtz energy, 118, 121, 123
Hyperbolic (saddle) fixed point, 392, 393
Hyper-scaling relation, 320, 338, 454
Hysteresis loop, 178

I

Ideal gas, 56

Ideal system, 56

Intensive parameter, 56
Irrelevant eigen-value, 480
Isolated system, 56

K

Koch island, 1
Koch snowflake, 1
Koch star, 1

L

Lattice animals, 234

Law of conservation of probability, 231
Liouville — von Neumann equation, 82
Lipschitz-Hélder exponent, 24, 42

Local minimum, 174

Logarithmic accuracy, 26, 31, 61, 68
Long-range interactions, 151

Long-range order parameter, 155
Long-wave approximation, 301, 306, 307

M

Macrostate, 95, 127

Magnetic susceptibility, 163, 180
Magnetization, 60, 154

MCE, 63

Mean-field, 166

Measure of set, 8

Metastable state, 174, 176
Method of sources, 305

Method of steepest descent, 108
Microcanonical ensemble, 63
Microconfiguration, 151
Microstates, 57

Moment, 48

Most probable macrostate, 76
Multifractal, 23
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N Scaling parameter, 423, 424, 449
Nearest neighbors, 151 Schrodinger’s equation, 84
N.n. Ising model, 151 S-cluster, 228
Noise, 85, 262, 277, 281 Self-affine fractal, 16
Non-equilibrium distribution of probabilities, Self-organization, 171, 208
70, 72 Self-similarity, 4
Non-equilibrium fluctuation, 71, 95, 127 Short-range interactions, 151
Non-equilibrium macrostate, 71 Short-range order parameter, 166
Normalized cluster number, 230 Sierpinski carpet, 1
Single survivor approach, 370, 375
0 Sink, 392
Omori’s law, 280 Site percolation, 226
Order parameter, 56 Sliding (moving) time averaging, 86
Slowing-down, 192
P Specific magnetization, 60, 154

Spin —1 model, 377

Spinodal, 175

Spinodal curve, 179

Spinodal slowing-down, 277, 279
Spontaneous magnetization, 163, 169
Spontaneous symmetry breaking, 169
Stable state, 175, 176

Staggered magnetization, 215
Statistical sum, 49, 98

Percolation threshold, 228 Statht¥cal quht’ 62
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Potential barrier, 174, 198 Stat%st%cal we%ght of fluctuation, 71
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P-T-ensemble, 134 Stroboscqplc approximation, 92,127
Superseding correction, 463
Susceptibility, 311

Pair connectedness, 328
Paramagnetic phase, 176, 214
Parent branch, 4

Parent iteration, 4

Partial partition function, 123, 133
Partition function, 49, 98

Partition function of the MCE, 135
Percolating cluster, 228
Percolation, 226

Q

qth-order generalized dimension, 49

Quenched disorder, 219, 262, 281 T

Thermal noise, 282

Thermal reservoir, 90
Thermodynamic limit, 56, 150, 229
Thermostat, 90

Tip set, 16

Tip set dimension, 16

Transfer matrix, 160

Tripartite lattice, 217

Trivial fixed point, 392

Two-level system, 58, 151, 155

R

Radius of gyration, 329

Relative energy fluctuation, 100
Relative fluctuation, 78

Relevant eigen-value, 480
Renormalization group, 368

Repeller, 381, 393, 394

RG flow curve, 380

Rule of invariant partition function, 373
Rule of invariant probabilities, 371

Rushbrooke inequality, 184, 446, 456 U

Universality class, 371, 372, 378, 379, 380
Unstable state, 177

S Upper critical dimension, 320

Saddle-point method, 108
Scale factor, 370 v
Scale invariance, 2

Scaling function, 423, 449 Virtual isolation, 92, 127
Von Neumann entropy, 66
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