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“To those summer sunny days,
When world was warm and still,
And unicorn’s four gleamy eyes
Were made of glass and steel,
The running man was hunt in maze
To make a Minotaur’s meal,
But slow, emerald-green waves
Demanded: “Drive the quill!”
A hurt white-crow made mistakes
Against its kind and will,
And near train depot earthquakes
Became a part of cozy home deal.
A life was crazy like a waste
Collecting future regrets’ bill.”
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Preface

Statistical physics describes a wide variety of phenomena and systems when in-
teraction forces may have different natures: mechanical, electromagnetic, strong 
nuclear, etc. The commonality that unites all these systems is that their belonging to 
statistical physics requires the presence of thermal fluctuations. In this sense these 
phenomena necessarily include the thermodynamic aspect.

Meanwhile, the second half of the last century may be named the time of the 
discovery of the so-called complex systems. These systems belong to chemistry, 
biology, ecology, geology, economics, social sciences, etc. and are generally united 
by the absence of concepts such as temperature or energy. Instead, their behavior is 
governed by stochastic laws of nonthermodynamic nature; and these systems can 
be called nonthermal. Nevertheless, in spite of this principal difference with statisti-
cal physics, it was discovered that the behavior of complex systems resembles the 
behavior of thermodynamic systems. In particular, many of these systems possess a 
phase transition identical to critical or spinodal phenomenon of statistical physics.

This very analogy has led in recent years to many attempts to generalize the for-
malism of statistical physics so that it would become applicable and for nonthermal 
systems also. If we achieved this goal, the powerful, well-developed machinery of 
statistical physics would help us to explain phenomena such as petroleum clusters, 
polymerization, DNA mechanism, informational processes, traffic jams, cellular 
automata, etc. Or, better, we might be able to predict and prevent catastrophes such 
as earthquakes, snow-avalanches and landslides, failure of engineering structures, 
economical crises, etc.

However, the formalism of statistical physics is developed for thermodynamic 
systems; and its direct application to nonthermal phenomena is not possible. In-
stead, we first have to build analogies between thermal and nonthermal phenomena.

But, what do these analogies include? What are they based on? And even more 
important question: Why does the behavior of complex systems resemble their ther-
modynamic analogues?

The answer to the last question is that the analogy exists only in the presence 
of phase transitions. It is the machinery of a phase transition that is universal, not 
the systems themselves. In spite of the fact that the behavior of complex systems is 
governed by nonthermal fluctuations whose nature is quite different from thermal 
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fluctuations in statistical physics, these fluctuations are, nevertheless, stochastic and 
scale invariant; and it is the stochastic scale invariance of the system that leads to 
the universality of phase transitions. Therefore, our attempt to apply the formal-
ism of statistical physics to nonthermal phenomena would be successful only if we 
mapped the nonthermal fluctuations on their thermal analogues.

This book is devoted to the comparison of thermal and nonthermal systems. As 
an example of a thermodynamic system we generally discuss an Ising model while 
the considered nonthermal systems are represented by percolation and damage phe-
nomena. Step-by-step, from the equation of state to the free energy potential, from 
correlations to the susceptibility, from the mean-field approach to the renormaliza-
tion group, we compare these systems and find that not only are the rules of behav-
ior similar but also, what is even more important, the methods of solution. We will 
see that, developing the concept of susceptibility or building the renormalization 
group, although each time we begin with a particular system considered, the foun-
dation of an approach is always based on the formalism of statistical physics and is, 
therefore, system independent.

To the purpose of comparison we often sacrifice in this book the specific details 
of the behavior of particular systems discussed. We cannot claim our study to be 
complete in the description of rigorous formalism or experimental results of fer-
romagnetic, percolation, or damage phenomena. Instead, we focus our attention on 
the intuitive understanding of the basic laws leading to the analogies among these 
systems. For the same reason and also because we consider our text to be introduc-
tory, we cannot claim our list of references to represent all corner-stone studies 
related to the discussed phenomena. Instead, we are generally referring the reader 
to the brilliant reviews and references therein.1

Also, we should mention that, although in many aspects this book may repre-
sent the biased view of its author, we hope that the reader will enjoy, as we do, the 
mystery of the birth of a new science that has been happening right before our eyes 
during the last few decades. Since this new science, in our humble opinion, is still 
at the infantile stage, there are many questions in the book which we cannot answer. 
However, from our point of view this adds an additional charm to the discussion 
because it encourages the reader to generate and apply her/his own ideas at the 
frontiers of science.

Another important aspect of the book is that the comparison with nonthermal 
systems presents the alternative point of view on thermodynamic phenomena them-
selves. Not all concepts of statistical physics have their counterparts in complex 
systems. Thereby, nonthermal phenomena often allow looking at well-known phe-
nomena from quite a different angle to emphasize the omissions in statistical phys-
ics itself.

1  The author would appreciate very much to hear about all possible omissions or 
mistakes by e-mail sgabaimov@gmail.com to the purpose of future corrections. 
“Needless to say the computer, as a text editing system, should be blamed for all the 
errors in the book.” (Dietrich Stauffer, in Stauffer, D., Aharony, A.: Introduction to 
Percolation Theory, 2nd ed. Taylor & Francis, London (1994), rephrased).
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This book is based on the course of lectures taught by the author for 5 years at the 
Department of Theoretical Physics of Moscow Institute of Physics and Technology. 
The first two chapters represent prerequisites. Statistical physics is often considered 
to be at the top of theoretical disciplines of a student’s curriculum and requires the 
knowledge of previously studied theoretical mechanics and quantum mechanics. 
This often prohibits the reader not acquainted with these disciplines to study the 
applicability of statistical physics to complex phenomena.

However, several years of lecturing statistical physics convinced the author that 
what is truly required to understand the formalism of phase transitions is the dis-
cussion of a limited set of concepts. Chapter 2 presents an attempt to reduce the 
theoretical formalism of statistical physics to a minimum required to understand 
further chapters. Therefore, as a prerequisite for this monograph we consider only 
general physics but not theoretical, quantum, or statistical mechanics. It is our belief 
that Chap. 2 will be sufficient for the reader, not acquainted earlier with theoretical 
physics, to understand the following chapters.

The completion of this book has left me indebted to many. I am most grateful 
to Dr. Yury Belousov, Head of the Department of Theoretical Physics at Moscow 
Institute of Physics and Technology, for his invaluable support and help in the cre-
ation of the monograph and course; and also to my colleagues at the Department 
of Theoretical Physics for fruitful discussions, especially to Dr. Ilya Polishchuk 
and Dr. Andrey Mikheyenkov. I am most grateful to Dr. Zafer Gürdal, Director of 
Advanced Structures, Processes and Engineered Materials Center, Skolkovo Insti-
tute of Science and Technology, for his support of the monograph and of the course 
that I am lecturing at ASPEM. I would like to express my warmest gratitude to Dr. 
Joseph Cusumano, Department of Engineering Science and Mechanics, Penn State 
University, for his invaluable support and collaboration in the research of damage 
phenomena. I am also thankful to Dr. Christopher Coughlin, Springer, for his ines-
timable support and help in the publication of the monograph.

Sergey Abaimov

Department of Theoretical Physics, Moscow Institute of Physics and Technology
Currently at: Advanced Structures, Processes and Engineered Materials Center, 

Skolkovo Institute of Science and Technology

Moscow, 2014
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Chapter 1
Fractals

Abstract  The power-law dependences in the vicinity of a critical point could often 
be attributed to the self-similarity and fractal nature of clusters. Therefore, in this 
chapter, we discuss the basic formalism of fractals. We consider this chapter to be 
a prerequisite of fractals. Required for further discussions, we consider understand-
ing of both the concept of fractal dimensionality and the origin of fractal power-law 
dependences. The reader, proficient in these concepts, can skip this chapter.

Since we consider this chapter to be a prerequisite, we only briefly discuss 
ideas behind the formalism of fractals, providing basic, intuitive understanding. 
For  further study, we refer the reader to brilliant textbooks (Feder 1988; Vicsek 
1992; Falconer 2003) and references therein.

Besides the fractals, we also discuss multifractals. Although multifractals with 
complex geometric support will not be applied directly in the further chapters, we 
encourage the reader to study their formalism in view of its similarities with the 
concepts of statistical physics.

1.1 � The Concepts of Scale Invariance and Self-Similarity

Although the rapid development and application of the fractal formalism hap-
pened in the second half of the twentieth century, the mathematical sets, named 
later fractals, had been known long before that. So, the Koch snowflake ( the Koch 
star, the Koch island) was created by Helge von Koch in 1904 (von Koch 1904) 
and another set—the Sierpinski carpet—by Wacław Sierpiński in 1916 (Sierpiński 
1916). And the well-known, classical Cantor set was discovered by Henry J.S. 
Smith as early as in 1874 (Smith 1874) and introduced by Georg Cantor in 1883 
(Cantor 1883).

However, mathematicians of the beginning of the last century often considered 
these sets only as “amusing toys” (called them “monsters”); and nobody expected 
that in several decades the fractals would become widely applicable not only in 
mathematics but even more so in physics, chemistry, biology, and other sciences.

© Springer International Publishing Switzerland 2015
S. G. Abaimov, Statistical Physics of Non-Thermal Phase Transitions, 
Springer Series in Synergetics, DOI 10.1007/978-3-319-12469-8_1



2 1  Fractals

Fractals began to be “actual” fractals only after Benoit Mandelbrot had pub-
lished his book (Mandelbrot 1975, 1982). It was one of those occasions when one 
publication leads to the appearance of a new science. Therefore, in spite of the fact 
that similar mathematical sets had had a long history in mathematics before, Benoit 
Mandelbrot is sometimes called “the farther of fractals.”

Following Mandelbrot’s book, we begin our discussion by considering a map 
of a shoreline. But in contrast to previous books which have considered the coast-
lines of Great Britain or Norway, we consider the coastline of San Francisco Bay. 
Choosing some part of the curve and increasing the scale of the map, we obtain the 
curve stochastically similar to the initial (Fig. 1.1). A new choice and new scale 
increase provide again the similar curve, and so on.
The property when a part ( a branch) of a mathematical set is similar to the whole 

set is called scale invariance. For example, at geological departments of univer-
sities students are taught that, photographing a geological object, one should put 
something beside to demonstrate the scale. Something like a pen, a water bottle, or a 
hammer (a cigarette pack, which was traditionally on the list, has been excluded by 
the author). Beside big boulders, a geologist herself/himself could also stay. All this 
is necessary to distinguish the scale later, on the photograph. Otherwise, it would 
not be clear what was shot: a mountain or a small piece of rock which one could put 
in her/his pocket.

If we measure length of a usual curve, the length does not depend on what scale 
we have used: 1 m scale or 10 cm scale. But the situation would change drastically 
if we considered not a classical geometrical set but a self-similar set. Let us look at 
Fig. 1.2.

Initially, we measure our curve by applying etalons with the length ε . There 
are two such etalons. Therefore, we expect that when we decrease the etalon 
length thrice, six etalons should be enough to measure the length of the curve. 
But in reality, it is almost seven etalons. Again, decreasing the length of the etalon 

 Fig. 1.1   Self-similar structure 
of the San Francisco Bay 
coastline.



31.1 � The Concepts of Scale Invariance and Self-Similarity�

thrice, we expect the curve length to be less than 3 7 21⋅ =  etalons. In reality, it is 
23 etalons.

Why has this happened? Because smaller etalons distinguish smaller map de-
tails. As a result, larger etalons go across all coastline meanders while smaller etal-
ons wind, making detours along them. The smaller the etalons, the larger the curve 
length we obtain in the result of measurements. For infinitesimal etalons 0ε → + , 
the length of the coastal line would diverge, L →+∞.

The San Francisco Bay coastline was an example of the stochastic fractal when 
we could not exactly predict finer details of the increased scale but could fore-
see them only stochastically. But it is easy to build a deterministic analogue of 
the coastal line fractal. Let us consider the triadic Koch curve (von Koch 1904) in 
Fig. 1.3.

ε ε

ε ε

ε ε

 Fig. 1.2   The coastline length 
measured by etalons of differ-
ent sizes.

 Fig. 1.3   The triadic Koch 
curve
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As well as for any other fractal, to build the triadic Koch curve we should first 
construct its initiator and its generator. In case of Fig.  1.3, the line segment of 
length L0  will serve as the initiator (iteration n = 0 ). The generator transforms the 
initiator of iteration n = 0  into the structure of iteration n =1 . To do that it takes 
the line segment ( a parent branch) of length L0  and breaks it into three thirds L0 3/  
( daughter branches). Then the generator replaces the central daughter branch with 
two other daughter branches at angles 60°. In other words, the parent branch gener-
ates K = 4 daughter branches, each of which is similar to the parent branch with 
scale factor r =1 3/ .

This is how the generator transforms iteration n = 0 into iteration n =1. To trans-
form iteration n =1 into iteration n = 2 , iteration n = 2 into iteration n = 3, and 
so on, the generator is applied to each branch of the parent iteration to provide 
branches of the daughter iteration. So, in Fig. 1.3 each of the four branches of itera-
tion n =1 is replaced by four branches (in total, 16 daughter branches) of iteration 
n = 2.

Applying the generator n times, we obtain iteration n. We see that infinite it-
eration n →+∞  forms a scale-invariant mathematical set. Indeed, in this case each 
branch is similar to the set in whole, only it is scaled with the scale factor r =1 3/ . 
The scale invariance in the case of deterministic (not stochastic) generators is called 
self-similarity. The self-similar iteration n →+∞ is called a fractal.

Strictly speaking, the term “fractal” is referred only to the infinite iteration 
n →+∞. However, it has become a common practice to refer to finite iteration n as 
to iteration n of the fractal. Sometimes (which is already not correct at all) iteration 
n is called a fractal. To avoid this confusion, we will call a finite iteration n of a 
fractal as a prefractal while the infinite iteration n →+∞ we will call the developed 
fractal.

1.2 � Measure Versus Dimensionality

What is the measure of the developed triadic Koch curve? To find its length, we 
again should find the number of etalons covering it.

We are living in the three-dimensional embedding space, d0 3= , and in the rest 
of the chapter will measure not only curves but also surfaces, volumes, and more 
complex sets. Henceforth for etalons, we will not utilize line segments but three-
dimensional cubes (boxes) of side ε  and volume 3ε . In other words, for etalons we 
utilize the elements of volume of the embedding space.

To measure, for example, the length of a curve, we should cover this curve by 
etalons and count the number N  of the required etalons (Fig.1.4). This method is 
called box counting. Multiplying the number N  of the etalons by the etalon linear 
size ,ε  we find the length of the curve: L Nε= .



51.2 � Measure Versus Dimensionality�

To find the length of the developed triadic Koch curve, we also cover it by et-
alons. In this case, it is convenient to choose the size of the etalon ε  to be equal to 
the size of the branches of iteration n: 0

nL rε = . And we immediately discover that 
the number of boxes, covering the developed fractal, coincides with the number of 
boxes covering iteration n . For example, in Fig. 1.5 we have chosen 1

0L rε = , and 
four boxes happen to cover both iteration n =1 and all further iterations.

This property, where the number of boxes covering a particular iteration coin-
cides with the number of boxes covering the whole fractal, is valid only for the 
simplest formulation of fractal we currently consider. Unfortunately, as we will see 
later, it is no longer valid for more complex cases, requiring more complex ap-
proaches to be developed.

 Fig. 1.4   Box counting 
method
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But now, considering the simplest fractal, we see that the number of box-
es of size 0

nL rε = , covering the developed fractal, coincides with the number 
of branches of iteration n: ( ) nN Kε = . So, the measured length of the curve is 

0 0( ) (4 / 3)n n nL K L r Lε = =  which clearly depends on the choice of etalon linear 
size 0

nL rε =  (on the choice of iteration n). In the limit 0ε → +  (n →+∞) the length 
diverges: L →+∞.

Why a particular choice of the etalon size changes the results of the measurements? 
The error in our considerations is not the measure, the error is the dimensionality.

How the dimensionality is defined in mathematics? There are many differ-
ent approaches: the box counting dimension (Kolmogorov 1958), the Cantor–
Minkowski–Bouligand dimension (upper and lower) (Bouligand 1928), and the 
Hausdorff–Besicovitch dimension (Hausdorff 1918; Besicovitch 1929; Besicovitch 
and Ursell 1937). To avoid mathematical difficulties, we consider only the simplest 
examples of fractals when all these dimensions are equal.

The Hausdorff–Besicovitch measure (Hausdorff 1918; Besicovitch 1929; 
Besicovitch and Ursell 1937) is the limit

� (1.1)

where ( )N ε  is the number of three-dimensional boxes covering the mathematical 
set and d ≥ 0 is some positive (or zero) real number.

M Nd
d=

→+
lim ( ) ,
ε

ε ε
0

 
Fig. 1.5   The box counting for 
the triadic Koch curve
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Let us apply definition (1.1) to the simplest geometrical sets: a point, a curve, 
a surface, and a volume. If the mathematical set is a point, only one box covers it. 

Therefore, the measure is 0

1, 0
lim

0, 0
d

d
d

M
dε

ε
→+

=
= =  >  as it is presented in Fig. 1.6a.

The number of boxes, covering a curve, is obviously (Fig. 1.4) the length of the 
curve L divided by the size of a box: ( ) /N Lε ε= . For the measure this provides 

1

0

, 1
lim , 1 .

0, 1

d
d

d
M L L d

d
ε

ε −

→+

+∞ <
= = =
 >

In Fig. 1.6b, we schematically plot infinite value as the top of the axis.

d

Md

D = 0

1

a

b

c

d

+∞

d

Md

D = 1

L

+∞

d

Md

D = 2

S

+∞

d

Md

D = 3

V

Fig. 1.6   The Hausdorff–
Besicovitch measure: a For 
the point, the measure is zero 
for d > 0. b For the curve, the 
measure is infinite for d < 1 
and zero for d > 1. c For 
the surface, the measure is 
infinite for d < 2 and zero for 
d > 2. d For the volume, the 
measure is infinite for d < 3 
and zero for d > 3
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In the case of a surface, the number of covering it boxes is 2( ) /N Sε ε= , where  S  

is the area of this surface. The behavior of the measure 2

0

, 2
lim , 2

0, 2

d
d

d
M S S d

d
ε

ε −

→+

+∞ <
= = =
 >

is plotted in Fig. 1.6c.

The volume V  can be covered by 3( ) /N Vε ε=  boxes. The corresponding 

measure 3

0

, 3
lim , 3

0, 3

d
d

d
M V V d

d
ε

ε −

→+

+∞ <
= = =
 >

 

is presented in Fig. 1.6d.

We see now the common tendencies in the behavior of measure (1.1) for all 
mathematical sets considered above. With d  (where d  is just a parameter) increasing 
from zero to infinity, the measure is always singular (zero or infinity) with the 
exception of just one point where it is finite. We see that the value of d  at this 
point corresponds to the dimensionality in the sense of common practice. Therefore, 
we have denoted this value by letter D, representing the actual dimensionality of 
the mathematical set. The measure Md D=  at this point is finite and represents the 
common sense measure (length of the curve, area of the surface, the value of the 
volume).

For an arbitrary mathematical set, we define its dimension D as the value of d  
when the Hausdorff–Besicovitch measure is finite (when it passes from infinity to 
zero). The value Md D=  of the measure at this point we define as the measure of the 
set.

But what does it mean that at D the measure MD  is finite (of the order of unity, 
MD ∝ O( )1 )? From (1.1) we see that it means that

�
(1.2a)

or, simpler,

� (1.2b)

Expressing D  from (1.2a), we find

�
(1.3)

But in the limit 0ε → +  the number of boxes is infinite: ( )N ε → +∞. Therefore, we 
can neglect lnMD in comparison with ln ( )N ε  to find

�
(1.4)

0 0

1lim ( ) lim ,where O(1).D DDN M M
ε ε

ε
ε→+ →+

= ∝

1( ) when 0.DN ε ε
ε

∝ → +

0

ln ( ) lnlim .
ln(1/ )

DN MD
ε

ε
ε→+

−
=

0

ln ( )lim .
ln(1/ )

ND
ε

ε
ε→+

=
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Let us consider the general case of a fractal whose generator has K  branches and 
the scale factor r. We choose the size ε  of boxes to be equal to the linear size L rn0  
of branches of prefractal iteration n: 0

nL rε = . Then we can cover the developed 
fractal by ( ) nN Kε =  boxes which is the number of branches in this iteration. Sub-
stituting these equalities into (1.4), we find

�
(1.5)

For example, for the triadic Koch curve above (with K = 4 and r =1 3/ ) we obtain

�
(1.6)

The dimension is higher than one but is lower than two. In other words, the math-
ematical set is more “dense” than a usual curve but less dense than a surface.

Now we understand why the length of the coastal line was diverging. This 
happened because the mathematical set we considered was not one-dimensional. 
Mathematical sets with noninteger dimensions are called fractals.

Since we expect the measure MD of a fractal to depend on its size L0 as

� (1.7)

we can transform (1.2) into

�
(1.8)

In all formulae above, we have considered two equivalent limits: n →+∞ and 
0 0nL rε = → + . Rigorously speaking, the limit n →+∞ is not equivalent to 0ε → +  

but to

� (1.9)

and we have utilized 0ε → +  only due to simpler notation. Although we do not see 
the difference between (1.9) and 0ε → + , later we will specifically refer to limit 
(1.9).

D K
L r

K
rn

n

n= =
→+∞
lim ln

ln( / ( ))
ln

ln( / )
.

1 10

D =
ln
ln

.4
3

M LD
D∝ 0 ,

0( ) when 0.
DLN ε ε

ε
 ∝ → + 
 

0
1 1ln ln ln ;n L

rε
= − → +∞
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Problem 1.2.1

Find dimensions of Cantor sets (Smith 1874; Cantor 1883) presented in the 
below given figure.

Generator:

a b

Generator:

Generator: Generator:

Solution: The Cantor set is generated by breaking a unit line segment into 
parts and discarding some of them. So, in part a of the figure we build 
the Cantor fractal with K = 2  branches and scale factor r =1 3/ . In oth-
er words, a parent branch is divided into three thirds and the middle third 
is discarded. In accordance with (1.5) for the dimension of the developed 

fractal, we find D =
ln
ln
2
3

.

In the part b of the figure, we consider the Cantor set with K = 2  and 
r =1 2/ . We divide the init line segment into two halves but do not discard any 
of them. Thereby, the sum of branches of iteration n  is always equivalent to 

the initiator—the init line segment. In accordance with our expectations, the 

dimension of the developed fractal is D = =
ln
ln
2
2

1 ; and strictly speaking, this 

mathematical set is not fractal.
In part c of the figure, we consider the Cantor set with only one daughter 

branch, K =1, and r = 0 95. . In other words, the parent branch each time 
reduces itself by 5 % and does not generate other daughter branches. The 
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dimension D = =
ln

ln( / . )
1

1 0 95
0 is zero because the single branch transforms 

itself step by step into a point.
Although the definition of the Cantor set assumes that the initiator is the 

unit line segment, in part d of the figure, we consider the initiator to be the 
unit three-dimensional cube. The generator breaks the cube into 27 daughter 
cubes with linear scale factor r =1 3/  (the linear size decreases thrice). Then 
the generator keeps only two of the daughter cubes, K = 2, at the corners 
of the parent, discarding the rest. For the dimension of this fractal, we find 

D =
ln
ln
2
3

 which equals the dimension of the fractal in the part a of the figure. 

We see that the dimension of the fractal does not depend on the dimension of 
the initiator but is determined by the model of the generator.

Problem 1.2.2

Find dimensions of fractals presented in the below given figure.

a b

c d
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1.3 � Self-Similarity (Scale Invariance) as the Origin 
of the Fractal Dimension

So far, we have determined the fractal dimensions by the box counting method. 
However, there is another method which we can derive from the concept of the 
self-similarity itself.

Let us assume that the total developed fractal is covered by ( )N ε  cubes of linear 
size ε  (in the upper part of Fig. 1.7 the total developed fractal is covered by four 
cubes of size ε ).

Any developed branch (the lower part of Fig.  1.7) is similar to the fractal in 
whole but in comparison with the whole fractal it is reduced in size with the linear 
scale factor r (thrice in Fig. 1.7). If we reduce the boxes with the same scale factor 
r (boxes with size / 3rε ε=  in Fig. 1.7), the number ( )branchN rε  of them, covering 
the developed branch (four in Fig. 1.7), will be equal to the number of initial boxes 
of size ε , covering the whole fractal.

In other words, let us look at Fig. 1.7 as if we transformed the upper part into 
the lower part by threefold shrinking of both the fractal and the boxes. Thereby, the 
fractal transforms into its branch while the boxes become thrice smaller but their 
number, obviously, does not change.

So, the number ( )branchN rε  of boxes of size rε , covering one fractal branch, equals 
the number of boxes ( )N ε  of size ε , covering the total fractal: ( ) ( )branchN r Nε ε= . 
But there are K  separate branches in the fractal. Therefore, the fractal in whole can 
be covered by the number ( )N rε  of boxes of size rε  which is K  times larger than 

( )branchN rε :
� (1.10)( ) ( ).N r KNε ε=

Solution: The part a of the figure represents the prefractal of the quadratic 
Koch curve (Minkowski sausage). The generator creates K = 8 branches with 

scale factor r =1 4/ . The fractal dimension is D = =
ln
ln
8
4

3
2

.

In the case of the Mandelbrot–Given curve (Mandelbrot and Given 1984) 

the generator has K = 8 branches and r =1 3/  (part b of the figure). The 

fractal dimension is D =
ln
ln
8
3

.

The Sierpinski gasket (Sierpiński 1915) has 3K =  branches with scale fac-

tor r =1 2/  (part c of the figure). The fractal dimension is D =
ln
ln
3
2

.

The Sierpinski carpet (Sierpiński 1916) has 8K =  branches with scale 

factor 1 / 3r =  (part d of the figure). The fractal dimension equals the fractal 

dimension of the Mandelbrot–Given curve, 
ln 8

ln 3
D = .
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Again, four big boxes of size ε  cover the total fractal in Fig. 1.7; and also four small 
boxes of size / 3rε ε=  cover one branch. Then all K = 4 branches can be covered 
by four times four small boxes which is exactly represented by equality (1.10).

Equality (1.10) is possible only if ( )N ε  depends on ε  as the power-law (1.2) and 
(1.8):

� (1.11)

Substituting (1.11) into (1.10)

�
(1.12)

and expressing D  from this equation, we return to the right-hand side of (1.5).
Instead of the developed branches of iteration n =1, we could consider developed 

branches of an arbitrary iteration n0. The boxes we now assume to be infinitesimal, 
0ε → + , not only in comparison with the size L0 of the fractal but even in compari-

son with the size L rn0
0  of the branches of iteration n0.

Small boxes can “feel” the fractality of both the total developed fractal and the 
considered developed branches. Since (due to self-similarity) we assume the dimen-
sion of both the developed fractal and the developed branch to be the same, D, for 
the total fractal, we have a proportionality

�
(1.13)

while for a developed branch of iteration n0 valid is a similar proportionality

�

(1.14)

There are Kn0  branches of iteration n0. Summing their boxes, we should obtain the 
total number of boxes, covering the fractal:

� (1.15)

( ) ( 0).D
constN ε ε
ε

∝ → +

( 0)
( )D D
const constK

r
ε

ε ε
= → +

0( ) ( 0)
DLN ε ε

ε
 ∝ → + 
 

0
0( ) ( 0).

Dn

branch
L rN ε ε

ε
 

∝ → +  
 

0( ) ( ).n
branchN K Nε ε=

ε

ε/3

Fig. 1.7   Self-similarity 
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Substituting now (1.13 and 1.14) into (1.15), we find

�
(1.16a)

� (1.16b)

where we have cancelled the dependence on ε . The limit 0ε → +  is no longer pres-
ent in the equation, but the right-hand side still depends on the number of iteration 
n0. Considering now the new limit n0 →+∞, we see that the proportionality (1.16b) 
is possible only when the dimension D obeys the right-hand side of equality (1.5).

In this and previous sections, we have considered different fractals and have 
found their dimensions. Before moving on to a discussion of more complex math-
ematical sets, we should mention where in nature we can encounter fractals.

The distribution of lakes on the Earth surface is fractal. Fractals are rivers which 
are, in fact, fractal trees discussed in the following section. Fractals are metal veins 
in rock. Fractals are the fracture surfaces of damaged solids. Fractals are the statisti-
cal properties of earthquakes. Fractals are time dependencies like white and color 
noises which are self-affine fractals considered below. Fractals are aggregation and 
surface growth—we can recall here the complex shape of snow-flakes. Fractals are 
birds’ feathers and lung tracheas. Fractals are polymer clusters and the clusters of 
galaxies. In the following chapters, we will study the fractal behavior of clusters of 
phases in the vicinity of a point of phase transition.

The reason why so many studies have been and are devoted to fractals is the wide 
abundance of fractals in nature. Even buying a chocolate bar, it is possible that instead 
of solid material we find inside the fractal distribution of bubbles. And although it 
tastes better, there is definitely less chocolate in it than it was suggested by its size.

1.4 � Fractal Trees

Fractal trees (Fig. 1.8) represent another kind of fractals. The main difference in 
comparison with the “usual” fractals is that during generation of daughter branches, 
we do not discard parent branches but keep them along.

0
00 0 ( 0) or

DD n
nL L r

K ε
ε ε

   ∝ → +      

( ) ( ) ,L K L rD n n D
0 0

0 0∝

Fig. 1.8   A fractal tree 
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Although it is a common practice to assume the structure of the fractal to be like 
that of a tree, for the mathematical formalism it is not required. So, all fractals 
above would become fractal trees if we considered their figures to represent not a 
succession of iterations but the last iteration. For example, four one-dimensional 
sets given in the part a of the figure given in Problem 1.2.1 were considered as four 
successive iterations. If, on the contrary, we considered now these four sets to be 
one set of iteration n = 3, we would obtain the prefractal tree.

How can we find the dimension of a fractal tree? Iteration n contains Kn branches 
of length L rn0 , Kn−1 branches of length L rn0

1− ,…, K  branches of length L r0 , and 
one branch of length L0.

The size of boxes we choose to be 0
nL rε = . A branch of length L rn0  is covered 

by one box. A branch of length L rn0
1−  is covered by ( / )1 r d  boxes, where d  is the 

dimensionality of the fractal initiator (we consider only the simplest geometrical 
forms for the initiators). So, the initiator in Fig. 1.8 is the init line segment, and 
d =1 . Initiator in part d of the figure in Problem 1.2.1 is the unit cube, and d = 3.

Applying this rule to branches of all possible sizes, we find the number of boxes 
covering each of them. So, the branch of length L r0  is covered by ( / )( )1 1r n d−  boxes 
while the branch of length L0 by ( / )1 r nd  boxes.

To find the total number of boxes of size 0
nL rε = , covering the whole developed 

tree, we should sum all the numbers above:

�
(1.17)

Implicitly we have made a very important assumption here that daughter and parent 
branches are located not far from each other. Indeed, by number (1.17) of boxes, we 
have definitely covered iteration n. But what about the whole developed tree? Have 
we covered branches of iterations n n+ + …1 2, , ? If daughter branches were located 
in the vicinity of the parent branch, one box might cover both the parent branch and 
all its development (Fig. 1.9). In other words, one box will be enough to cover not 
only one branch of length L rn0  but also all its further development. Then (1.17) is 
applicable not only to iteration n but also to the developed tree. Otherwise, all for-
mulae below will no longer be valid.

Applying geometric progression to (1.17), we find

�

(1.18)

( 1)
1 1 1 1( ) 1 .

d n d nd
n nN K K K

r r r
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−      = + +…+ +     

     

1
1 1

( ) .1

n
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d

K
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K
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+
+  −   
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−

Fig. 1.9   One box covers not 
only a parent branch but also 
all its further development
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In the limit 0ε → +  (n → +∞) the obtained expression depends on the ratio of K  to 
r d− . If K r d> − , we find

�
(1.19)

which again corresponds to the right-hand side of (1.5). It, in fact, would be the 
dimension of the fractal if we had discarded parent branches as before. Discarding 
parent branches means that we neglect the “trunk and boughs” of the tree and 
consider only the “canopy of leaves,” called, simpler canopy or tip set. Therefore, 
(1.19) is often called the canopy dimension or the tip set dimension.

In the opposite case K r d< −  we obtain

�

(1.20)

The case K rd=1/  requires special attention because geometric progression is no 
longer applicable. All terms in (1.17) become equal; and we find

�
(1.21)

Bringing all three equations (1.19–1.21) together, we obtain

�

(1.22)

So, the dimension of the fractal tree is still determined by (1.5) but only if it is 
higher than the dimension d  of the initiator. In other words, if the canopy dimension 
is higher than the dimension of the “trunk.” In the opposite case, the dimension of 
the whole tree becomes equal to the dimension of the initiator. This result is quite 
expected because the dimension of a mathematical set, fractal or not, cannot be 
lower than the dimension of its arbitrary subset.

1.5 � Self-Affine Fractals

Self-affine fractals present another modification of the “usual” fractals. The dif-
ference is that there are several scale factors now, each acting in its own direction.
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A classical example of a self-affine fractal is the self-similar time dependence 
(like Brownian random walk) where a part of the dependence is stochastically simi-
lar to the dependence in whole if two separate scale factors are applied: one for the 
time scale, another for the amplitude of the walk.

Another example of self-affine fractals is presented in Fig. 1.10. The genera-
tor creates K = 4  daughter branches in the corners of the parent branch. Each 
daughter branch is generated by the application of two scale factors to the parent 
branch: rx =1 3/  in the horizontal direction (along X-axis) and ry =1 4/  in the verti-
cal direction (along Y-axis).

We see that after many iterations, the branches become “stretched”: one side is 
much smaller than another. This complicates the box counting because the set of 
boxes covering iteration n, may no longer correspond to the set of boxes covering 
the developed fractal.

To discuss this question, let us consider some self-affine fractal in the three-
dimensional ( )d0 3=  embedding space. In general, this fractal can possess three 
different scale factors rx, ry, rz which, without loss of generality, we assume to be 
arranged in increasing order: x y zr r r≤ ≤ .

Let us first choose ε  to be equal to the smallest side of branches of iteration 
n, n

xrε = , and cover with these boxes iteration n. This number of boxes will then 
exceed the number of boxes covering the developed fractal because, when a branch 
of iteration n is further developed, some “holes” appear within it which “small” 
boxes of size n

xrε =  can “feel” (Fig.  1.11). In other words, after the branch’s 
development some boxes, which covered the branch before, will become empty.

Should we then choose the size of boxes to be equal to the largest side of 
branches of iteration n, n

zrε = ? Then, clearly, after the branch’s development, 

n

n+1

Fig. 1.11   The number of 
“small” boxes, covering 
a branch of iteration n, is 
higher than the number of 
boxes covering its develop-
ment, because during the 
branch’s development some 
“holes” appear within it

 

Generator:

X

Y

Fig. 1.10   Self-affine fractal 
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none of these boxes will become empty (Fig. 1.12). And now indeed the number 
of boxes, covering iteration n, corresponds to the number of boxes covering the 
developed fractal.

But simultaneously, we encounter another difficulty. From Fig. 1.12, we see that 
one “big” box of size n

zrε =  can cover several branches of this iteration at once. 
Therefore, the number of boxes ( )N ε , covering iteration n, is no longer equal to the 
number Kn of branches of this iteration. This complicates things because to find 
now the number of boxes, covering the fractal, we should take into account the rela-
tive positions of branches.

To our help, here comes the scale invariance as the method of dimension deter-
mination. Let us consider some finite iteration n0. We consider the developed fractal 
and the developed branches of this iteration. We choose the size ε  of boxes to be 
infinitesimal in comparison not only with the size L L Lx y z, ,  of the initiator, but also 
in comparison with the size L r L r L rx x

n
y y

n
z z

n0 0 0, ,  of branches of iteration n0.
Then, the small boxes “feel” the fractal dimension D of both the developed frac-

tal and the developed branches of iteration n0. For the total fractal, we have the 
proportionality

� (1.23)

while for the developed branch of iteration n0 we obtain

�
(1.24)

The number ( )N ε  of boxes, covering the whole fractal, is Kn0 times higher than 
( )branchN ε :

� (1.25)

Substituting (1.23 and 1.24) into (1.25), we find

�
(1.26)

3
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D
x y zL L L

N ε
ε

 
 ∝
 
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branch

L r L r L r
N ε

ε

 
 ∝
  
 

0( ) ( ).n
branchN K Nε ε=

0 0 0
0

33
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Fig. 1.12   One “big” box of 
size n

zrε =  can cover several 
branches of iteration n
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Here, we can cancel the dependences on ε , removing the limit 0ε → +  from the 
proportionality:

� (1.27)

Introducing the new limit n0 →+∞, we see that the proportionality (1.27) is pos-
sible only when

� (1.28)

This provides the expression for the dimensionality of our self-affine fractal:

� (1.29)

1.6 � The Geometrical Support of Multifractals

Multifractals are applied to a system when its behavior is described by more com-
plex laws than just simple power-law dependences. The closest analogy would be 
the application of a Fourier spectrum to a process that is more complex than just a 
simple harmonic time dependence. Besides, the formalism of multifractals has the 
closest resemblance with the formalism of statistical physics. That is why, although 
in further chapters, we consider only the cases of phase transition phenomena 
described by power-law dependences when the multifractals will not be applied 
directly, we still encourage the reader to study the rest of this chapter.

Multifractals have been introduced by Benoit Mandelbrot in his works on 
turbulence (Mandelbrot 1972, 1974, 1982). The multifractals are much more 
complex than fractals, mathematically and to understand intuitively. Therefore, we 
will study them step by step, choosing sometimes not the fastest but more illustrative 
way of discussion.

First, we will consider not multifractals themselves but their geometrical sup-
port. The geometrical support of a multifractal is a mathematical set represented by 
infinite iteration of a generator when K  branches of the generator have their own 
scale factors 1, , Kr r… .

In other words, we again consider a succession of prefractal iterations leading to 
the developed set. But, in this case, each of K  daughter branches of the generator 
has its own linear scale factor ri which the generator applies to reduce the linear size 
of the daughter branch i relative to the parent branch. Without loss of generality, we 
assume that all branches are arranged in the increasing order of their scale factors: 
1 Kr r≤ …≤ .

Since the simplest fractal we have studied above was the Cantor set, we will uti-
lize it to illustrate all concepts of multifractals. However, the reader should always 
remember that we consider the one-dimensional generator only for illustrative pur-

( )0 0 0 031 .Dn n n n
x y zK r r r∝

( )31 .D
x y zK r r r=

D K

r r rx y z

=
ln

ln
.1

3
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poses while in general the geometrical support can have an arbitrary dimensionality. 
As an example, in Fig. 1.13 we present the Cantor set with K = 3 daughter branches 
with scale factors r1 1 9= / , r2 2 9= / , and r3 1 3= / .

Let us consider some finite iteration n. Firstly, this iteration contains the smallest 
branch of size L r n0 1  which, during all n applications of the generator, was formed 
as the first daughter branch of the generator with the scale factor r1. In future, we 
will say that this branch was formed “along the path which has passed 1 nξ =  times 
through the first branch of the generator and has avoided other generator’s branches: 

2 3 0Kξ ξ ξ= = … = = ”.
Secondly, there will be n branches with length L r rn

0 1
1
2

−  which have been formed 
along n different paths, passing 1 1nξ = −  times through the first branch of the gen-
erator and 2 1ξ =  times through the second branch, avoiding other generator’s 
branches: 3 0Kξ ξ= … = = .

And so on. For an arbitrary branch of iteration n, we can say that it was formed 1ξ  
times through the first branch of the generator,…, Kξ  times—through the Kth branch 
of the generator. Since the generator has worked n times in total, the following 
equality is always valid:

� (1.30)

For a particular set of numbers 1 2, , , Kξ ξ ξ… , obeying (1.30), there are 
1

!
! !K

n
ξ ξ…

 

corresponding branches of length 1
0 1

K
KL r rξ ξ…  (there are 

1

!
! !K

n
ξ ξ…

 different paths 
by which these branches have been formed).

Sometimes instead of numbers 1 2, , , Kξ ξ ξ… , we will consider a set of normalized 
numbers

� (1.31)

each of which represents the share of a particular generator branch in the path. If 
ηi = 0 , the path has never passed through branch i. If 1iη = , for all n times the path 
has passed only through branch i. Constraint (1.30) thereby transforms into

� (1.32)

Sometimes, we will refer to the set of numbers 1 2, , , Kξ ξ ξ…  as to the vector 


ξ 
just for the simplicity of notation. Similarly, we will refer to the set of numbers 

1 2, , , Kη η η…  as to the vector 


η .

1 2 .K nξ ξ ξ+ +…+ =

1
1 , , ,K

Kn n
ξ ξη η≡ … ≡

1 2 1.Kη η η+ +…+ =

Generator:Fig. 1.13   The Cantor set 
when each of the three 
daughter branches has its 
own scale factor
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How do we find the dimension of such a set? Similar to self-affine fractals, 
we cannot use boxes with the size equal to the smallest or the largest branch of 
iteration n. Indeed, let us suppose that we have chosen some finite iteration n. The 
smallest branch of this iteration has length L r n0 1 . If we chose boxes to have size 
equal to this length, 0 1

nL rε = , the number of boxes, covering iteration n, would 
not correspond to the number of boxes, covering the developed set because when 
branches of iteration n are further developed, some “holes” appear within them. On 
the contrary, if we chose the size of the boxes to be equal to the length of the largest 
branch, 0

n
KL rε = , the boxes covering iteration n would be the boxes covering the 

developed set. However, in this case the boxes are so big that they may cover sev-
eral branches of the iteration n at once, and the number of boxes will not correspond 
to the number of branches Kn.

Similar to the case of self-affine fractals, to find the dimension of the devel-
oped set, we should involve the concept of self-similarity. A developed branch of 
iteration n0 is supposed to be similar to the developed set in whole. Therefore, the 
dimension D of this developed branch equals the dimension of the developed set in 
whole. If we choose the size of boxes to be infinitesimal in comparison with the size 
of this branch, the boxes will “feel” the fractality of both the total set and its branch. 
Then for the total set and for the branch, we obtain

�
(1.33)

� (1.34)

respectively, where

� (1.35)

But to find the total number of boxes, covering the whole set, we should sum boxes, 
covering separate branches:

� (1.36)

Substituting (1.33 and 1.34) into (1.36), we find:

�
(1.37)
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Cancelling the dependence on ε , we remove the limit ε → +0  from the equation:

� (1.38)

In the limit n0 →+∞ , this proportionality is possible only if

� (1.39)

This is the equation that implicitly determines the dimension of the developed geo-
metrical support.

We have found the dimension by box counting. However, as we saw in Sect. 1.3, 
the dimension can also be found by the self-similarity of the mathematical set. Let 
us choose infinitesimal size ε → +0  for boxes and cover the whole developed geo-
metrical support by them. Let N ( )ε  be the total number of boxes required. Then, in 
accordance with (1.8), the dimension of the set is determined by

� (1.40)

Each branch i of iteration n =1, developed further, is similar to the whole set and 
has the same dimension D. Since it is similar to the whole set, it is covered by the 
same number of boxes, only reduced in size in the same proportion ri :

� (1.41)

We cannot sum the boxes, covering different branches, because they all have dif-
ferent sizes now. Instead, since ε  has been chosen arbitrarily, we can change the 
variable for every branch separately:

� (1.42)

In other words, a branch i is covered by the same number of boxes of size ε  as the 
number of boxes of size ε / ri , covering the total set.

Now, since all branches are covered by boxes of the same size ε , summing 
them, we find the total number of boxes, covering the whole geometrical support:

�
(1.43)

Substituting (1.40) into the left- and right-hand sides of this equation, we return to 
(1.39).
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1.7 � Multifractals, Examples

1.7.1 � Definitions

In the previous section, we studied how to build the geometrical support of a mul-
tifractal and found its dimension. In this section, we begin to consider examples of 
multifractals.

Multifractal is determined as a distribution of measure over branches of the 
multifractal’s geometrical support. The function of measure distribution is fulfilled 
by the same generator that creates the geometrical support. For this purpose, we 
assume that initial measure equals 1 and assign measure distribution coefficients 
p p pK1 2, ,...,  for each daughter branch of the generator. Then the law of conserva-
tion of measure is

� (1.44)

The role of measure, therefore, can be played by any conserved quantity like prob-
ability, mass, etc.

Let us, as a simple example, consider the distribution of gold in the Earth’ crust. 
We know that gold is not distributed uniformly. Instead, the general mass of rock is 
barren while gold is highly concentrated in gold veins.

As an example, we consider the Cantor set formed by the generator with K = 2 
branches with scale factors r1 1 4= /  and r2 3 4= /  (Fig. 1.14). Since we have cho-
sen the scale factors to obey the length conservation law r r1 2 1+ = , the sum of 
branches’ lengths does not change during iterations and represents a rock sample 
of unit length.

In addition to scale factors for each branch, we introduce measure distribution 
factors p

1  and p
2. The mass of gold works now as the measure; and we assume that 

p p pK1 2 1+ +…+ = .

Fig. 1.14   The distribution 
of gold in rock when gold is 
distributed equally between 
two branches

 



24 1  Fractals

the initial mass of gold, contained in the initiator, equals 1. Also, we assume that 
each daughter branch of the generator receives exactly one half of parent’s gold: 
p1 1 2= /  and p2 1 2= / .

In Fig. 1.14, we plot three iterations of the prefractal. The rational number below 
each branch is the length of this branch. The rational number above the branch is the 
mass of gold within this branch.

We see that the density of gold (as the ratio of the branch’s gold mass to the 
branch’s length) is not uniform along the specimen but is much higher in some 
branches than in other. However, in multifractals, we do not consider the density 
of measure. Instead, we introduce the Lipschitz–Hölder exponent α  (Lipschitz 
1877–1880; Hölder 1882) of a branch as

� (1.45)

where µ  is the measure of this branch and λ  is the length of this branch.
So, in the case of the example we have considered above, the first branch 

of iteration n = 2  has length 1/16 and measure 1/4. Therefore, its Lipschitz–

Hölder exponent is α = =
ln( / )
ln( / )

1 4
1 16

1
2

. Both the second and third branches 

of the same iteration have length 3/16 and measure 1/4. So, they both have the 

same exponents α = =
−

ln( / )
ln( / )

ln
ln ln

1 4
3 16

2 2
4 2 3

. Finally, the fourth branch has 

α = =
−

ln( / )
ln( / )

ln
ln ln

1 4
9 16

2
2 2 3

.

In the example above, we have considered the measure equally distributed between 
the branches. But it is not necessarily the case. In Fig. 1.15, we present the prefractal 
with p1 1 3= /  and p2 2 3= /  when the generator transfers one-third of the parent’s 
gold to the first branch and two-thirds to the second. The Lipschitz–Hölder exponents 

of branches of iteration n = 2  are α = =
ln( / )
ln( / )

ln
ln

1 9
1 16

3
2 2

, α = =
−
−

ln( / )
ln( / )

ln ln
ln ln

2 9
3 16

2 3 2
4 2 3

, 

α = =
−
−

ln( / )
ln( / )

ln ln
ln ln

2 9
3 16

2 3 2
4 2 3

, and α = =
−
−

ln( / )
ln( / )

ln ln
ln ln

4 9
9 16

3 2
2 2 3

.

We see that some branches (second and third) have equal Lipschitz–Hölder ex-
ponents. To study the multifractal, we sort its branches into subsets by the values of 
their Lipschitz–Hölder exponents and then study these subsets separately.

From Figs.  1.14 and 1.15, we see that the first branch of iteration n = 2 is 
formed along the path ξ ξ1 22 0= =, . The second and third branches (that have the 
Lipschitz–Hölder exponents equal one to another) correspond to two paths with 
ξ ξ1 21 1= =, . Finally, the fourth branch is formed by the path ξ ξ1 20 2= =, . This 
simple comparison suggests that equal Lipschitz–Hölder exponents are possessed 
by the branches that were formed along the paths corresponding to the same set of 
numbers ξ ξ1 2, . Later, we will discuss that this is not correct in general because 
this correspondence is not bijective. But for now, for illustrative purposes, we will 
assume that the subsets α  of branches formed by different values of α  are equiva-
lent to subsets 



ξ  formed by different sets of numbers ξ ξ1 2, .

µ λα= ,
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1.7.2 � The General Case of the Cantor Set

After considering the simplest examples of Figs. 1.14 and 1.15, let us now discuss 
the general case of the Cantor set (Fig. 1.16) whose generator has K  branches with 
scale factors r rK1,...,  and measure distribution factors p pK1,..., , obeying (1.44).

Iteration n of our multifractal contains n

K

!
! !ξ ξ1 …

 branches formed along paths 
ξ ξ1, ,… K , where

� (1.46)

Each of these branches has length r rK K
1

1ξ ξ…  and measure p pK K
1

1ξ ξ… . Since they 
all have equal lengths and equal measures, they all have equal Lipschitz–Hölder 
exponents

� (1.47)

� (1.48)

� (1.49)

where we applied the change of variables (1.31).
Generally, we build the subsets of the multifractal by gathering the branches with 

equal values of α . As we agreed before, we assume that different sets of numbers 
ξ ξ1, ,… K  bijectively correspond to different α . Although it is not true in general, 
for now, we assume this equivalence to be present. In other words, as a subset of our 

ξ ξ ξ1 2+ +…+ =K n.

1 1
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Fig. 1.15   The distribution 
of gold in the rock when 
gold is distributed unequally 
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multifractal, we consider all branches formed by paths corresponding to a particular 
vector 



ξ  (to a particular vector ηη  determined by (1.31)).

1.7.3 � Dimensions of the Subsets

Let us find the dimension D( )ηη  of a subset 


ηη . The size of boxes that we choose to 
match with the length of the branches of this subset is given by: ε ξ ξ= …r rK K

1
1 . 

Then the number of boxes ( )N εη , covering the subset, is the number n

K

!
! !ξ ξ1 …

 of 

branches in this subset. For the definition of fractal dimension (1.11) to be valid, it 
should have the following proportionality:

� (1.50)

To obtain the dimension, we should apply Stirling’s approximation,

� (1.51)

where the notation “ ln≈ ” means that in the limit n1, we lose all power-law de-
pendences on n  in comparison with the exponential dependences on n. We will call 
this approximation the “logarithmic accuracy.” Applying (1.51) to (1.50), we find

�
(1.52)

� (1.53)
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Fig. 1.16   The distribution  
of measure over the 
multifractal
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Let us investigate the dimensionality of the subsets. To find the subset, having max-
imal fractal dimension, we should find the point ηηmaxD  of a maximum of (1.53) 
subject to constraint (1.32). We can achieve that by applying the method of La-
grange multipliers. In other words, we should maximize functional

� (1.54)

defined on the vector space ηη. Here, a is the Lagrange multiplier.
To maximize (1.54), we find when its derivatives become zero. Differentiation 

with respect to a

� (1.55)

returns us to (1.32). Differentiation with respect to ηi

� (1.56)

provides

� (1.57)

Substituting (1.57) into (1.32) and recalling (1.39), we find

� (1.58)

where D is the dimension of the geometrical support of the multifractal in whole. 
Utilizing (1.49), we see that (1.58) corresponds to

� (1.59)

Substituting (1.58) into (1.53), we find that the maximal dimension of the subsets 
equals the dimension of the geometrical support of the multifractal in whole:

� (1.60)

Therefore, we could say that the subset with the highest dimension “inherits” the 
dimensionality of the whole geometrical support.
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Problem 1.7.1

Consider the multifractal in the below given figure whose generator has K = 2 
branches with scale factors r r1 2,  and measure factors 1p p=  and p p2 1= − . 
Investigate the dependence of the subset dimension on the Lipschitz–Hölder 
exponent of the subset.

Solution: Let us consider a particular vector 1

11
η

η
=

−


η . Substituting it into 
(1.53) and (1.49), we find

� (1.61)

� (1.62)

Above, in (1.50–1.60), we were working in terms of vectors 


η  although we 
should be working in terms of the Lipschitz–Hölder exponents α . But what 
was difficult in the general case becomes quite simple for the case of our 
problem when K = 2 . We need only to express 1η  from (1.62) and substitute 
it into (1.61) to find the dependence of the subset’s dimension on the subset’s 
Lipschitz–Hölder exponent

� (1.63)
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1.7.4 � Lengths of the Subsets

To find the total length of the prefractal, we should sum the lengths of all branches 
of iteration n:

� (1.67)
L n r r r r

K
K

n

n
K

K

K

= = + +
=

+ + =

∑ !
!... !

... ...
,..., :
...

ξ ξ
ξ ξ

ξ ξ
ξ ξ

1
1

0
1

1

1

1

KK
n( ) .

To find the maximum of this dependence, we should equate its derivative 
to zero:

� (1.64)

For the point α maxD  of maximum this provides

� (1.65)

Substituting (1.65) into (1.63), for the dimension of the subset corresponding 
to the point α maxD we find

� (1.66)

where D is the dimension of the geometrical support in whole. The general 
dependence of the subset’s dimension on the Lipschitz–Hölder exponent is 
given in the below figure for the case p = 0 9. , r r1 2 1 2= = / .

α

From the above figure, we see that subsets in the vicinity of α maxD  have di-
mensions close to D while other subsets have lower dimensions.

dD
d Dα αmax
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α max ln ln( )
ln ln
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D D

D D
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r r r r
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We see that if the length is not conserved, r rK1 1+…+ < , the total length of the pre-
fractal becomes smaller and smaller from one iteration to another.

For the subset of vector ηη , the total length of branches is

�
(1.68)

Similar to (1.54), to find the subset with the largest length, we should maximize the 
following functional:

� (1.69)

where a is the Lagrange multiplier.
Maximization with respect to a,

� (1.70)

returns us to constraint (1.32). Maximization with respect to ηη ,

�
(1.71)

provides

� (1.72)

The corresponding Lipschitz–Hölder exponent is

� (1.73)

At the point of maximum ηηmax L , the length of the corresponding subset is equal 
with logarithmic accuracy to the total length of the prefractal:

� (1.74)

Since the length (1.67) of the whole prefractal is the sum of the subsets’ lengths,

� (1.75)
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about equality (1.74) it is said that the length of the prefractal is equal to its maximal 
term.

Critical here are the words “with logarithmic accuracy” because the subsets, ad-
jacent to the subset with maximal length, have comparable lengths. Indeed, let us 
consider the “adjacent” subset:

�
(1.76)

In other words, the paths corresponding to this chosen subset are the same as for 


ηηmax L with the exception that we go one time less through the second branch of the 
generator and one time more through the first branch. The total length of the new 
subset,

� (1.77)

differs from the largest length of the subset ηηmax L,

� (1.78)

by multiplier

� (1.79)

We see that the subsets, adjacent to ηηmax L, indeed have similar lengths. Therefore, 
beside L L( )maxηη  there are many other terms of the order of L L( )maxηη  in equality 
(1.74) which we do not see explicitly. This has happened because equality (1.74) is 
valid only with logarithmic accuracy.

The logarithmic accuracy means that we neglect all power-law dependences on 
n in comparison with the exponential dependence on n. Therefore, equality (1.74) is 
valid with the accuracy of a power-law multiplier:

� (1.80)
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In other words, the sign ln≈  disguises the presence of O( )nφ  similar terms, showing 
only one of them. In fact, in the limit n →+∞  there could be infinite (!) number of 
terms of the order of L L( )maxηη  in (1.74). And we would still put only one of them 
in the left-hand side of (1.74)!

In the vicinity of the point max L

η  of maximum, we can expand (1.68) in small 
parameter  max L∆ = −

  

η η η . As a result, we find that the lengths of the subsets in the 
vicinity of the maximum obey the Gaussian distribution:

� (1.81)

The width of the Gaussian “bell” is very small:

� (1.82)

It corresponds to

� (1.83)

which represents the standard deviation of an arbitrary component of 


ξ . In other 
words, there are O( )n  different values of ξi  under the “bell” of the maximum. 
Considering all components of 



ξ  together, there are ( )( ) ( )/2O O
K Kn n∝  different 

subsets which all have lengths comparable with L L( )maxηη . Therefore, we can refine 
(1.80) as

� (1.84)

Problem 1.7.2 

For the multifractal from Problem 1.7.1, prove the Gaussian distribution to be 
valid for the lengths of subsets.

Solution: The total length of branches for a subset formed along paths 


ηη =
−
η
η
1

11
 is

� (1.85)

where η1  is connected with α  by (1.62). Expressing η1  from (1.62) and 
substituting it into (1.85), we find the dependence of the logarithm of L( )ηη  
on α :
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� (1.86)

The logarithm is the monotonically increasing function. Therefore, L( )α  will 
be maximal when its logarithm is maximal:

� (1.87)

Differentiating, we find the point of maximum

� (1.88)

Substituting (1.88) into (1.86), we find that the length of the set, correspond-
ing to the point of maximum, equals with logarithmic accuracy the length of 
the total prefractal:

� (1.89)

Let us now expand (1.86) in the vicinity of the point αmax L  of maximum:

�

(1.90)

In accordance with (1.87), the first derivative here is zero. The second deriva-
tive we find as follows:

�
(1.91)
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Substituting (1.91) into (1.90) and exponentiating this equality, we find that 
the distribution of the subsets’ lengths in the vicinity of maximum is Gaussian:

�

(1.92)

Let us also find derivative 
dD
d
( )α
α

 at the point αmax L . Differentiating (1.63) 

and substituting (1.88), we find

�
(1.93)

1.7.5 � Measures of the Subsets

We have discussed the dimensionality and the lengths of different subsets. Now, let 
us consider the measures of the subsets. First, we check that the total measure of the 
multifractal is conserved. Summing the measure over all subsets, we find that the 
measure of iteration n still equals 1:

� (1.94)

The measure of a subset ηη  is

� (1.95)

To find the subset with the highest measure, we should maximize the following 
functional

� (1.96)

where a is the Lagrange multiplier. Maximization provides

� (1.97)

which corresponds to

� (1.98)
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We see that at the point ηηmaxM  of maximal measure, the number of branches is 
inversely proportional to the measure of branches,

� (1.99)

to provide the unit value of measure for this subset.
In accordance with (1.97), the highest measure is possessed by the subset whose 

paths have been chosen in accordance with the probabilities of the measure distribu-
tion. The measure of this subset with logarithmic accuracy equals the measure of 
the total prefractal:

� (1.100)

Since the measure (1.94) of the whole set is the sum of subsets’ measures,

� (1.101)

it is said that the measure of the prefractal is equal to its maximal term. Again, 
equality (1.100) is valid only with logarithmic accuracy, and there are other subsets 
with the measure of the same order.

Expanding (1.95) in small difference max∆ = −
   Mη η η , we again find the Gauss-

ian distribution:

� (1.102)

The width of the maximum is again

� (1.103)

� (1.104)

so for equality (1.100), the logarithmic accuracy means that there are O nK /2( ) dif-
ferent subsets under the “bell” of the maximum, each of which has measure of the 
order of M M( )maxηη :

� (1.105)
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Problem 1.7.3 

For the multifractal from Problem 1.7.1, prove the Gaussian distribution to be 
valid for the measures of subsets.

Solution: The total measure of a subset formed along paths ηη =
−
η
η
1

11
 is

� (1.106)

where 1η  is connected with α  by (1.62). Expressing 1η  from (1.62) and sub-
stituting into (1.106), we find the dependence of the logarithm of M ( )ηη  on 
α :

�

(1.107)

To find the maximum of M ( )α , we differentiate its logarithm:

� (1.108)

and find the point of maximum:

� (1.109)

Substituting (1.109) into (1.107), we find that the measure of the set, correspond-
ing to the point αmaxM  of maximum, equals with logarithmic accuracy unity:

� (1.110)

where unity is the measure of the total prefractal.
Finally, we expand (1.107) in the vicinity of the point αmaxM  of the 

maximum:
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� (1.111)

The first derivative (1.108) is zero. The second derivative we find as follows:

� (1.112)

Exponentiating equality (1.111), we prove the distribution of subsets’ mea-
sures in the vicinity of the maximum to be Gaussian:

� (1.113)

Finally, let us find the derivative 
dD
d
( )α
α

 at the point αmaxM  of the maximum. 

Differentiating (1.63) and substituting (1.109) into it, we find

� (1.114)

We see that for multifractal from Problem 1.7.3, the subset αmaxM  with the highest 
measure corresponds to the point at which (1.114) is valid. But will this be true for 
the general case?

To answer this question, in the general case of the Cantor set with K  branches, 
we should differentiate expression (1.53):

� (1.115)

However, we should remember that variables η η1, ,… K  are not independent but 
obeying constraint (1.32). Let us express ηK as a function of η η1 1, ,… −K ,

� (1.116)

and substitute it into (1.115):
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� (1.117)

Differentiating, we find

� (1.118)
At the point ηηmaxM , this expression transforms into

� (1.119)

Similarly, the differential of the Lipschitz–Hölder exponent (1.49),

� (1.120)

equals

� (1.121)
At the point max M

η , we find

� (1.122)
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We see that (1.122) is equal to (1.119). Therefore, for the general case of the Cantor 
set, the point ηηmaxM  of the highest measure is indeed determined by the equation

� (1.123)

A somewhat similar situation we have already seen for the case of the point ηηmaxD 
of the highest dimension (1.58–1.60); only in that case the point was determined by 
equation

� (1.124)

1.7.6 � Analogy with Statistical Physics

Let us look one more time at the measure of a branch p pK K
1

1ξ ξ… . We can rewrite 
this expression as

� (1.125)

This expression closely resembles Gibbs probability in statistical physics, espe-
cially if we consider each branch to be a particular microstate and introduce effec-
tive temperatures

� (1.126)

Then the measure of a subset 


η  becomes the partial partition function (see Chap. 2)

� (1.127)

while the measure of the whole prefractal—the total partition function

� (1.128)

After the introduction of this similarity with statistical physics, all approaches of 
the next chapter become applicable. For example, we can introduce the action of the 
free energy of a multifractal as the minus logarithm of the partial partition function:
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� (1.129)

Obviously, minimization of the action functional leads us to the subset 


ηηmaxM  with 
the highest measure.

All other methods of Chap. 2 can be easily generalized for the case of multifrac-
tals as well; however, we will not present the formulae here, leaving their develop-
ment to the reader.

1.7.7 � Subsets ηη  Versus Subsets α

At the end of this section, we discuss the question why the subsets in terms of the 
Lipschitz–Hölder exponents α  do not correspond to the subsets in terms of vectors 


η . The simplest example would be a multifractal whose generator has coinciding 
scale factors, i jr r= , and coinciding measure distribution factors, jip p= , for two 
different branches, i j≠ . Going l times through the ith branch and m times through 
the jth branch of the generator, we would create the same Lipschitz–Hölder exponent 
as if we were going m times through the ith branch and l times through the jth branch 
of the generator. The Lipschitz–Hölder exponent is the same but the vectors ηη  are 
different. Therefore, the connection between α  and ηη  is not bijective—many vec-
tors ηη  can correspond to the same value of α .

The example above is trivial; and, having such a multifractal, we could analyti-
cally unite subsets of different vectors ηη , corresponding to the same value of α , into 
one subset. However, there are trickier situations. Let us consider a generator with 
pi =1 4/ , p j =1 9/ , ri =1 2/ , and rj =1 3/ . For an arbitrary iteration n we consider 
a branch that has been formed by path … = … = …, , , ,ξ ξi j1 0  The measure of this 
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 The Lipschitz–

Hölder exponent of this branch (taking into account only the known multipliers) is 

α = 2.
Now, let us consider another path … = … = …, , , ,ξ ξi j0 1  The measure of the 

branch is …





 …






 …

1
4

1
9

0 1

 while its length is …





 …






 …

1
2

1
3

0 1

 The Lipschitz–

Hölder exponent of this branch is again α = 2 . And the connection between α  and 


ηη  is again not bijective.
We have built subsets in terms of different vectors ηη  only because this provided 

preliminary intuitive understanding of multifractals. In reality, following the defini-
tion of a multifractal, we had to build subsets in terms of different Lipschitz–Hölder 
exponents α.
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1.7.8 � Summary

Summarizing, in this section we have considered several examples of multifractals. 
Also, we have introduced the concept of the Lipschitz–Hölder exponent whose val-
ues allowed us to divide the total set into subsets. We have studied the properties of 
these separate subsets and found the distributions of subsets’ dimensions, lengths, 
and measures.

Now, we see that the properties of multifractals are determined by the “clash” of 
two phenomena: the geometry of daughter branches and the measure distribution 
among the daughter branches. The larger the size of a branch, the lower is its Lip-
schitz–Hölder exponent. The higher the measure of a branch, the higher is its Lip-
schitz–Hölder exponent. This “tug of war” over the value of the Lipschitz–Hölder 
exponent leads to the separation of the mathematical set into fractal subsets with 
different properties.

Also, we saw that there is no bijective connection between vectors ηη  and Lip-
schitz–Hölder exponents α. It could be convenient to work with vectors ηη ; however, 
to study the multifractal, we will have to transform finally subsets ηη  into subsets α.

Of course, this is only a matter of definition—to investigate the properties of 
subsets α instead of subsets ηη . But, again, the reader should always remember that, 
generally speaking, the subsets of multifractals are always determined by different 
values of the Lipschitz–Hölder exponents α . If one builds subsets by different vec-
tors ηη , she/he, rigorously speaking, is investigating not multifractals.

1.8 � The General Formalism of Multifractals

In the previous section, we considered several examples of multifractals and began 
to understand intuitively what the multifractals are. In this section, we study the 
general formalism.

We consider a developed multifractal and cover it by boxes of size ε . For ex-
ample, we can divide the embedding space into cells of volume ε d0, where d0 is 
the dimension of the embedding space. Then we count only those boxes that have 
caught something from the set and disregard empty boxes.

We will enumerate nonempty boxes by index i. Integrating the measure over 
each box, we denote the measure, contained by box i, as iµ . Since the measure is 
conserved, we always have

� (1.130)

where N ( )ε  is the number of nonempty boxes, covering the multifractal.

M i
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1
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For each box i, we introduce the Lipschitz–Hölder exponent αi by the following 
definition:

� (1.131)

Let us divide the initial mathematical set into subsets, corresponding to different 
values of the Lipschitz–Hölder exponent. In other words, having found for each box 
i its Lipschitz–Hölder exponent αi , we gather into a subset α all boxes whose Lip-
schitz–Hölder exponents αi  correspond to the given value α. Then, in accordance 
with (1.131), the boxes of the subset α  contain all the same measure µ εα

α
i∈ = .

Firstly, we should understand how many different subsets are there. Let us imag-
ine that we investigate the properties of the multifractal experimentally. So, we lit-
erally divide the embedding space into cells and experimentally calculate the mea-
sure within each box. How then we unite boxes into subsets? For example, if the 
Lipschitz–Hölder exponent of one box is α =1 00000.  while the Lipschitz–Hölder 
exponent of another box is α =1 00001. , do these boxes belong to one subset or to 
two different subsets?

If we are working experimentally, we generally divide the range of possible val-
ues of α  into a set of intervals (bins). Each interval then represents a particular 
subset whose boxes possess the Lipschitz–Hölder exponents with values from this 
interval. Further, we assume that the number of intervals is a power-law dependence 

O lnϕ 1
ε







 on ln 1

ε
 in the limit (1.9).

The whole set is covered by N ( )ε  boxes while only some of them are boxes, 
covering the subset α . If we denote the number of boxes, covering the subset α , by 
Nα ε( ), then the total number N ( )ε  of boxes should equal the sum of numbers of 
boxes, covering different subsets:

� (1.132)

Following the box counting method (1.8), the dimension of the whole multifrac-
tal is determined by

� (1.133)

while the dimension of a subset α is determined by

� (1.134)

Only this time, we will look at these proportionalities from a different point of view. 
These proportionalities are valid in the limit ε → +0 or, more rigorously, in the limit 
(1.9):

� (1.135)
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“Tossing” ε  into the exponents, we rewrite proportionalities (1.133 and 1.134) as

� (1.136)

� (1.137)

In the right-hand sides of these proportionalities, we see exponential dependencies 

on ln
1
ε

 which is infinite in the limit ln
1
ε
→ +∞ . The exponential dependence on 

an infinite parameter suggests the applicability of logarithmic accuracy:

� (1.140)

� (1.141)

However, an equality valid with logarithmic accuracy is not equivalent to a propor-
tionality. A proportionality means that only a constant of proportionality is omitted:

� (1.142)

while an equality valid with logarithmic accuracy means that omitted is a power-
law dependence:

� (1.143)

What should we choose for further discussions: strict proportionalities (1.136 and 
1.137) or more general equalities (1.140 and 1.141)? If we considered the math-
ematically rigorous division of the multifractal into subsets (when α =1 00000.  and 
α =1 00001.  always meant two different subsets), then we could apply rigorous pro-
portionality dependences (1.136 and 1.137). However, instead, we have divided the 
range of possible values of α into a set of intervals. The width of these intervals 
was, in fact, arbitrary; we only require that the number of the intervals should be a 

power-law dependence O lnϕ 1
ε







  on ln 1

ε
.

Why did not we specify more detailed information about the procedure of how 
we choose the length of intervals of α ? Because this information is not required for 
the formalism to work. Indeed, suppose we choose intervals twice larger than be-
fore, what would happen? Instead of Nα ε( )  boxes, there are now N Nα αε ε( ) ( )= 2  
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boxes corresponding to the subset α. But this does not influence equality (1.141) 
because the multiplier 2 will be neglected by the logarithmic accuracy:

� (1.144)

Even if we chose the length of the intervals O lnϕ 1
ε







 times larger (infinite (!) 

number of times larger in the limit (1.135)), the logarithmic accuracy would still 
disguise the difference!

We see now that the logarithmic accuracy is the corner stone of the whole for-
malism. It allows us to choose the width of the intervals of α almost arbitrarily. It 
allows us to neglect all complex power-law dependencies in comparison with the 
exponential dependencies. It allows us to equate sums to their maximal terms. And 
so on. Without logarithmic accuracy, the general formalism could be impossible. 
And this is true not only for multifractals but also for many other systems as we will 
see in the following chapters.

Summarizing, since the choice of the width of the intervals of α  was arbitrary, 
we cannot apply strict mathematical proportionality (1.137). Instead, we have to 
utilize less strict (1.141):

� (1.145)

� (1.146)

However, the loss of strictness will be only to our benefit because it simplifies all 
further formulae.

Let us see how. The subset αmaxD with the highest dimension is, obviously, de-
termined by

� (1.147)

which is analogous to (1.124). But in accordance with (1.132), N ( )ε  is the sum of 
Nα ε( ) . Substituting (1.140) and (1.146) into (1.132), we find

� (1.148)

The left- and the right-hand sides of this equality are “fast” exponential depen-

dences on ln 1
ε
→ +∞ while the number of significant terms in the sum 
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which the sum gathers its main value, is a power-law dependence on ln 1
ε

. There-

fore, we can approximate the sum by its maximal term and neglect the power-law 

dependence on ln 1
ε

:

� (1.149)

Since the maximal term is provided by (1.147), we find

� (1.150)

Taking the logarithm of this equation, we prove that the highest dimension among 
the subsets belongs to the subset, determined by condition (1.147), and equals the 
dimension D of the whole multifractal:

� (1.151)

For the total measure of the whole multifractal we find

� (1.152)

Since all boxes of a subset α  possess the same value of measure µ εα
α

i∈ = , the mea-
sure of the whole subset α  is

� (1.153)

The subset αmaxM  with the highest measure is determined by

� (1.154)

which is analogous to (1.123).
From (1.153), we see that the subsets’ measures M ( )α  depend exponentially on 

ln 1
ε

 while the number of significant terms in the sum (1.152), over which the sum 

gathers its unity value, is a power-law dependence on ln
1
ε

 (recall (1.101–1.105)). 

Neglecting all power-law dependencies, the total sum (1.152) is equal with logarith-
mic accuracy to its maximal term:
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� (1.155)

Since M =1, (1.155) states that

� (1.156a)

� (1.156b)

In the limit (1.135) this is possible only if

� (1.157a)

� (1.157b)

Next, we find the second derivative of M ( )α  at the point αmaxM  of the maximum 
by differentiating (1.153):

� (1.158)

Substituting the first derivative (1.154) and the second derivative (1.158) into the 
expansion of ln ( )M α ,

� (1.159)

and exponentiating, we return to the Gaussian distribution:

� (1.160)

The width of the maximum is

� (1.161)

which is very small in the limit (1.135).
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Let us now calculate Gibbs–Shannon entropy (Gibbs 1876, 1878; Shannon 1948) 
of the multifractal:

� (1.162)

We should mention that in contrast to the previous section as microstates, we con-
sider here not the separate branches of the prefractal but separate nonempty boxes 
covering the developed multifractal.

Substituting (1.131) into the logarithm in (1.162), we find

� (1.163)

The obtained equality represents averaging of the Lipschitz–Hölder exponent with 
the measure distribution:

� (1.164)

where

� (1.165)

Let us rewrite the definition of averaging (1.165) as the sum not over boxes but 
over subsets:

� (1.166)

Here, the first two dependencies under the sign of the sum, N e
D

α
α

εε( ) ln
( )ln

≈
1

 and 

εα
α

ε=
−

e
ln 1

, are very “fast” dependencies on α  because of the parameter ln 1
ε

 in 

the exponent. The product Nα
αε ε( )  of these dependencies is the measure M ( )α  of 

the subset α  which has the very narrow maximum (1.160).
In contrast, the third dependence α  is rather “slow” in comparison with the other 

dependencies. Therefore, the product Nα
αε ε( )  acts for this “slow” dependence as 

a δ-function. All the more so that in accordance with (1.152), the sum Nα
α

α
ε ε( )∑  

is normalized to unity. So, we expect the averaged α  to be equal to the point of 
maximum αmaxM :

� (1.167)
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Let us now prove this statement. The width of the maximum is provided by 
(1.161). Sum (1.166) gathers its main value under the “bell” of the maximum; and 
we can neglect other terms. Under the “bell” of the maximum, the “slow” depen-
dence α  equals

� (1.168)

Substituting it into (1.166), we find

� (1.169)

which proves (1.167) in the limit (1.135).
Substituting (1.167) into (1.164), for the entropy of the multifractal we find:

� (1.170)

1.9 � Moments of the Measure Distribution

Next, we introduce the moments of the measure distribution:

� (1.171)

In other words, we sum over all (nonempty) boxes the qth-power of box’ measure 
(Sinai 1972; Bowen 1975; Ruelle 1978). Here, q should be considered to be just a 
parameter whose values might not correspond to a physical property of the system.

For the zeroth moment (q = 0) from (1.171), we find

� (1.172)

while for the first moment (q =1):

� (1.173)

We assume that all moments depend exponentially on ln 1
ε

, similar to dependencies 
(1.140 and 1.141):

� (1.174)
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Parameters q∆  here are called the qth-order generalized dimensions (Grassberger 
1983; Hentschel and Procaccia 1983; Grassberger and Procaccia 1983). The reader 
should understand that these parameters may not correspond to any physical dimen-
sions really present in the system. Therefore, we have utilized letter Δ instead of 
letter D to emphasize this.

The multiplier ( )q −1  in the exponent of (1.174) is just a matter of definition 
and was introduced to guarantee that for the case of the first moment (q =1) equal-
ity (1.173), representing the law of conservation of measure, will be always valid. 
Besides, if we distribute measure evenly over a classical nonfractal set (like a sur-

face), measure iµ  is the same for all boxes, µ
εi N

=
1
( )

, while qth-moment (1.171) 

transforms into M N
N

Nq q
q( ) ( )

( )
( )ε

ε
ε

ε= = −1 . Substituting (1.2b) into this equality, 

Mq
q D( ) ( )ε ε∝ −1 , and comparing the result with (1.174), we see that the multiplier 

( )q −1  has also been chosen for the purpose that all qth-order generalized dimensions 
coincide with the dimension of the classical set with evenly distributed measure.

Comparing (1.174) with (1.172), we see that

� (1.175)

The moments introduced by (1.171) are often called also the generating functions, 
or partition functions, or statistical sums. There are so many names due to the im-
portance of the role played by these quantities.

Indeed, let us transform sum (1.171) over boxes into the sum over the subsets α :

� (1.176)

This expression is very similar to the partition function of the canonical ensemble:

� (1.177)

Indeed, if we thought of boxes as of microstates and of Lipschitz–Hölder exponent 
α—as of the negative energy of these microstates, then the subset α  would seem to 
play the role of a group of microstates, corresponding to the given value of energy. 
And Nα ε( ) would be gE—the statistical weight of energy level E (the number of 
microstates corresponding to the given value of energy) while parameter q—the 
inverse temperature of the system.

Due to this analogy, the moments are often called the partition functions. Howev-
er, the reader should clearly understand the difference between (1.176) and (1.177). 
In statistical physics, e E T res− /  represents the probability of a microstate while ε αq  is 
not the measure of a microstate but the qth-power of that measure. Therefore, al-
though the mathematics is very similar, the concepts behind it are not.

∆0 = D.

M Nq
q( ) ( ) .ε ε εα
α
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E T

E
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1.9 � Moments of the Measure Distribution



50

Since all moments depend exponentially on ln 1
ε

, we expect that sum (1.176) is 
equal to its maximal term:

� (1.178)

where the point of maximum αmax ( )Mq q  is determined by

� (1.179)

Substituting (1.146) into (1.179), we find equality

� (1.180)

which determines the point αmax ( )Mq q  of the maximum.
For the qth-moment we have introduced the qth-order generalized dimension 

(1.174). Substituting (1.178) and (1.146) into (1.174), we find the connection be-
tween the subsets’ dimensions D( )α  and the generalized dimensions q∆ :

� (1.181)

Differentiating the left-hand side of this equality, we find

� (1.182)

where in the last equality we have cancelled two last terms in accordance with 
(1.180). Therefore, αmaxMq can be found as the derivative of the right-hand side of 
(1.181):

� (1.183)

If we know the dependence ( )q q∆ , we substitute it into (1.183) to find the depen-
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substituting it into (1.181), we find the dependence D( )α . So, knowing ( )q q∆ , we 
can find D( )α . And vice versa, knowing D( )α , we can find ( )q q∆ . Both depen-
dences can be investigated experimentally, and having found one of them, we im-
mediately obtain another (Halsey et al. 1986).

For the first moment from (1.181), we find

� (1.184)

which coincides with (1.157b). Substituting q =1 into (1.183), we obtain

� (1.185)

Let us now find the generalized dimensions with the aid of self-similarity. We 
consider an arbitrary case of a multifractal whose generator has K branches with 
scale factors r rK1,...,  and measure distribution factors p pK1,..., .

We cover the whole developed set with boxes of infinitesimal size ε . Let N ( )ε  
be the total number of boxes required.

Next, we consider a branch i of the first iteration n =1. Further development of 
this branch is similar to the set in whole and can be covered by the same number of 
boxes but with the reduced size ε ri:

� (1.186)

The share of measure, inherited by the branch, is pi. This means that the distri-
bution of measure for further development of this branch is similar to the measure 
distribution of the whole multifractal, only the branch starts with measure pi in 
contrast to 1 in the case of the total set (the generator creates the same distribution 
but with the different initial value). So, each box of size ε ri, covering the branch, 
possesses measure pi  times lower than the corresponding box of size ε , covering 
the whole multifractal:

� (1.187)

For the qth-moment of the whole multifractal, covered by boxes of size ε , we 
have

� (1.188)

while for the branch i valid is

� (1.189)
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where we have utilized (1.186) and (1.187).
Since ε  has been chosen arbitrarily, we can change the variable:

� (1.190)

Then, because after the change of the variable all branches are covered by boxes of 
the same size ε , summing (1.190) over all branches, we find the qth-moment of the 
whole multifractal, covered by boxes of size ε :

� (1.191)

Substituting (1.174) into this equation, we find (Hentschel and Procaccia 1983; 
Halsey et al. 1986)

� (1.192)

which provides implicitly the dependence of q∆   on q. 0th-moment (q = 0) returns us 
to (1.39) while for the first-moment (q =1) from (1.192), we obtain only the trivial 
equality (1.44).

Knowing the dependence ( )q q∆ , we can find the dependence D( )α , as it was 
described above.
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Chapter 2
Ensemble Theory in Statistical Physics: 
Free Energy Potential

© Springer International Publishing Switzerland 2015
S. G. Abaimov, Statistical Physics of Non-Thermal Phase Transitions, 
Springer Series in Synergetics, DOI 10.1007/978-3-319-12469-8_2

Abstract  In this chapter, we discuss the basic formalism of statistical physics. 
Also, we consider in detail the concept of the free energy potential.

Similar to Chap. 1, this chapter is a prerequisite. As required for further discus-
sions, we consider understanding of the free energy concept, its connection with the 
probability of fluctuations,

�
(2.1)

and with the partial partition function,

� (2.2)

The reader who is proficient in these concepts may skip this chapter.
Since the purpose of this chapter is to refresh in memory the class studied by 

students only 1 or 2 quarters ago, we generally avoid rigorous discussions or math-
ematical proofs. Instead, we illustrate the formalism by simple examples and mul-
tiple figures. This provides intuitive understanding of all concepts discussed in the 
following chapters and simultaneously introduces terminology utilized in the fol-
lowing discussions.

For the reader not familiar with statistical physics, we recommend to follow thor-
oughly all the formulae below because the chapter has been developed to serve as a 
“guide” to basic concepts of statistical physics. Although we consider the discussions 
presented here to be sufficient for understanding of the following results, for further 
study we refer the reader to brilliant textbooks, e.g., Landau and Lifshitz (1980).

2.1 � Basic Definitions

Statistical physics studies systems with high number of degrees of freedom. A 
classical example is a gas, 1 mol of which contains 236·10AN ∝  particles, where 
NA  is the Avogadro constant. This is important because many results in statistical 

W efluctuation
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fluctuation
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fluctuationT Z= − ln .
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physics are valid only when the number of degrees of freedom is infinite: N → +∞. 
This limit is called the thermodynamic limit of infinite number of degrees of freedom 
or, simply, the thermodynamic limit.

A system is called an ideal system if its particles or degrees of freedom do not 
interact with each other. For example, an ideal gas is a gas with noninteracting, 
noncolliding particles.

However, the above definition is not completely correct because such a gas 
would never reach the state of thermal equilibrium. For example, if initially half 
of the gas particles have velocities 10 m/s while the other half have 20 m/s, and 
particles do not interact or collide, the gas will keep the velocities of its particles 
unchanged and we will never see the Maxwell–Boltzmann distribution.

Therefore, to reach the state of thermal equilibrium, there must always be present 
some (maybe weak but nonzero) interaction among the degrees of freedom. For ex-
ample, we can modify the definition of ideal gas to be a gas whose particles can col-
lide, but these events are extremely rare. So, observing the system for a long period 
of time, we will see how it evolves toward an equilibrium state. On the contrary, 
for short time intervals we can neglect particle collisions as improbable events and 
consider the system to be completely without particle interactions. Therefore, the 
possibility to consider the system ideal significantly depends on the duration of the 
time interval during which we intend to investigate the system’s behavior.

Besides the interactions of particles or degrees of freedom with each other, we 
consider their interactions with external fields. An example is a magnetic system in 
a nonzero magnetic field h. We will always consider external fields to be supported 
as constant and not depending on the state of the system considered.

Constant external field is an example of boundary conditions imposed on a sys-
tem. Other examples may include systems maintained at constant volume, pressure, 
temperature, etc. In particular, an isolated system is a system with prohibited energy 
and particle exchange, and maintained at constant volume: E V N const, , .=

If a property of a system can fluctuate for the given set of boundary conditions, 
we call this property the system’s fluctuating parameter. For example, for a sys-
tem maintained at constant temperature, its energy can fluctuate and is, therefore, 
a fluctuating parameter. If pressure is also maintained constant, another fluctuating 
parameter is the system’s volume.

In the case when a phase transition is present in the system, the phases are dis-
tinguished by the values of fluctuating parameters. For example, for the gas–liquid 
phase transition at constant pressure, two phases are distinguished by the values of 
the volume; while for a ferromagnetic system the role of a parameter distinguishing 
phases is played by the system’s magnetization. Such fluctuating parameters are 
often called order parameters because they describe the appearance of an order in a 
system below its critical point. We will discuss this definition in more detail in the 
following chapters.

If the property of a system is proportional to the number N of degrees of freedom 
in the system, we call this property the extensive parameter (e.g., energy, entropy, heat 
capacity, volume, magnetization, etc.). On the contrary, if the property of a system is 
not proportional to N, we call this property the intensive parameter (e.g., temperature, 
pressure, chemical potential, specific heat capacity, specific magnetization, etc.).
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The last definition we should introduce is the definition of an ensemble. Let us 
investigate a particular system. If we observe the system’s behavior, we see that it 
evolves, jumping from one state into another. If we consider, for example, gas par-
ticles when they follow their trajectories, the gas as a whole will keep moving from 
its current state into the next, into the next, into the next, and so on.

But instead of observing the behavior of one particular system, we can build an 
ensemble of systems. All systems in the ensemble are identical and differ from one 
another only by their initial conditions. In other words, instead of observing a chain 
of states { } →{ } →{ } →…1 2 3  for one particular system, we can consider the 
ensemble of systems which initially are in states { } { } { } …1 2 3, , ,  The ergodic 
hypothesis claims that these two modeling techniques of the system’s behavior are 
equivalent.

2.2 � Energy Spectrum

Firstly we consider an isolated system whose Hamiltonian does not depend on time 
explicitly. For such a system, we find a discrete or continuous energy spectrum of 
microstates E{ } as eigenfunctions of the Hamiltonian operator. For simplicity, we 
consider in this chapter only discrete energy spectra although all our formulae are 
valid for the case of continuous spectra as well.

We make no assumptions about the structure of the spectrum, requiring only for 
the dependence of the spectrum density to be exponential on the number of degrees 
of freedom N → +∞ in the system. This requirement is valid for the majority of 
systems and, as we will see below, is in fact, crucial for the formalism of statistical 
physics.

Each eigenvalue E  of the Hamiltonian (as a possible value of the system’s en-
ergy) is called an energy level. Generally for an ideal system, many eigenfunctions 
E{ } correspond to the same Hamiltonian eigenvalue E . Then this energy level E is 

called degenerate while the number of microstates E{ } belonging to this eigenvalue 
E is called the degeneracy gE of this energy level. This is schematically presented in 
Fig. 2.1a where microstates E{ } (shown as horizontal lines to the right) are combined 
into energy levels Ei  (shown as horizontal lines to the left) with degeneracies gEi.

a b

Fig. 2.1   A schematic 
representation of an energy 
spectrum. a Microstates are 
combined into energy levels 
Ei with degeneracies gEi . 
b Microstates are combined 
into groups with energies Ei  
and statistical weights gEi
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Problem 2.2.1

Find the energy spectrum for the Ising model without spin interactions. For 
simplicity, assume that the model consists only of N = 3 spins.

Solution: The Ising model (Ising 1925) is described in detail in Chap. 3. Here 
we present only the brief description of the Ising model without spin interac-
tions which will be utilized as an example for the rest of this chapter. The 
model is built on the base of an absolutely rigid lattice whose geometry is 
currently not important. At each lattice site, a spin (a magnetic moment µ ) is 
located. As it is known from quantum mechanics, the spin of an electron can 

have only two projections ±
1
2

 on an axis of an external magnetic field h. In 

the Ising model, a spin also can have only two projections on the axis of the 
magnetic field h. But now these projections are chosen to be ±1 where the 
multiplier 1/2 has been lost for the purpose of convenience.

Generally, we consider the lattice with N  spins, where N  is infinite in the 
thermodynamic limit: N → +∞. Let index i enumerate the sites of the lattice. 
If the spin at site i has projection σ i = +1 on the axis of magnetic field, then its 
energy is −µh. For projection σ i = −1, we have energy +µh. The Hamiltonian 
of the system equals the sum of the spin energies:

� (2.3)

As we see from (2.3), the Ising model without spin interactions is nothing 
more than a two-level system, where each degree of freedom is allowed to 
have only two values of energy: ε µ= ± h. As an example, we utilize here the 
Ising model but not the two-level system with the purpose to acquaint the 
reader with the former.

H{ } .σ µ σ= −
=
∑h i
i

N

1
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The formulation of the model above has been oversimplified. Neverthe-
less, it corresponds to the rigorous formulation; we only need to put “caps” of 
quantum operators over the Hamiltonian and over the spins:

�
(2.4)

Microstates σ{ }, as the eigenfunctions of Hamiltonian (2.4), correspond 
to the realizations of different spin orientations on the lattice. In other words, 
prescribing for each spin its orientation (along the field, σ i = +1, or against 
the field, σ i = −1), we are forming a particular microstate σ{ } of the system.

In the case of N = 3 (which corresponds to the formulation of our 
problem), there are only eight microconfigurations σ{ }  of spin orientations 
on  the lattice: ↑↑↑{ }, ↑↑↓{ }, ↑↓↑{ }, ↓↑↑{ }, ↑↓↓{ }, ↓↑↓{ }, ↓↓↑{ }, and 
↓↓↓{ }, where the  symbol “ ↑ ” denotes a spin oriented “up” (along the 

field) while the symbol “↓” denotes a spin oriented “down” (against the 
field). These  microconfigurations correspond to the following microstates: 
E h= −{ }3µ , E h={ }−µ , E h= −{ }µ , E h= −{ }µ , E h={ }µ , E h={ }µ , 
E h={ }µ , and E h={ }3µ .

µ
µ µ

µ

µ

µ

µ
µ
µ
µ
µ
µ

µ

µ

µ

µ

Therefore, the energy spectrum of the system consists of four energy levels. 
Only one microstate ↑↑↑{ } (which we have denoted as { }−3µh ) corresponds 
to energy level E h= −3µ . Therefore, this level is not degenerate: g h− =3 1µ .

Three microstates ↑↑↓{ }, ↑↓↑{ }, and ↓↑↑{ } (which we have denoted as 
{ }−µh ) correspond to energy level E h= −µ , and this level has triple degen-
eracy: g h− =µ 3. And so on.



Η = −
=
∑µ σh i
i

N

1
.

Problem 2.2.2

Find the energy spectrum for the Ising model without spin interactions. Con-
sider the model consisting of N = 5 spins.
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Problem 2.2.3

Find the energy spectrum for the Ising model without spin interactions. Con-
sider the case of the model with an arbitrary number of spins N.

Solution: Magnetization of the system in a microstate σ{ } is introduced as the 
sum of magnetic moments over the lattice:

� (2.5)

Dividing the magnetization by the number of spins and by the value of the 
magnetic moment µ , we obtain specific magnetization:

�
(2.6)

It is easy to see that in the case of the Ising model without spin interactions 
the energy of the system depends on its magnetization bijectively: knowing 
energy, we can find magnetization and vice versa:

� (2.7)

For convenience, we also introduce two more parameters: the number of 
spins along the field, N↑, and the number of spins against the field, N↓. The 
magnetization is, obviously, proportional to the difference between these two 
numbers,

� (2.8)

while the sum of these numbers equals the total number of spins on the lattice,

� (2.9)

Therefore, if we know the energy of the system or its magnetization, we can 
bijectively find the numbers of spins along and against the field:

�
(2.10)

or
� (2.11)

Vice versa, if we know N↑  and N↓, we know the energy of the system

�
(2.12)

M i
i

N

{ } .σ µ σ≡
=
∑

1

m
N

M
Ni

i

N

{ } .σ σ
µ

≡ ≡
=
∑1

1

H{ } { } { }.σ σ σµ= − = −hM hNm

M N N{ } ( ),σ µ= −↑ ↓

N N N= +↑ ↓ .

N N E
h

N N E
h↑ ↓= −









 = +











1
2

1
2µ µ

,

N N m N N m
↑ ↓=

+
=

−1
2

1
2

, .

E h N N= − −↑ ↓µ ( ).



612.2 � Energy Spectrum�

This expression corresponds to the value of energy of a particular energy 
level. From (2.12) it is easy to see that two adjacent energy levels are sepa-
rated by one spin “flip”:

� (2.13)

where “2” comes from that a spin with one orientation disappears while a spin 
with the opposite orientation appears.

To find the degeneracy of energy level E, we should find how many micro-
states σ{ } correspond to numbers N↑ and N↓, given by (2.10) and (2.11). In 
other words, for the given values of N↑ and N↓, we have to find the number 
of microconfigurations by which N↑ of N  spins could be oriented along the 
field while the rest of spins would be oriented against the field:

� (2.14)

As we will see later, one of the most important mathematical formulae in 
statistical physics is Stirling’s approximation

�
(2.15)

where O( )αN  is the power-law dependence on N . In the thermodynamic 
limit, N → +∞, the power-law dependence O( )αN  on N  is much “slower” 
than the “fast,” exponential dependence ( / )N e N . Further, we will often uti-
lize the notation “≈ 

ln” of the logarithmic accuracy meaning that in the ther-
modynamic limit, N → +∞, we neglect all “slow” power-law multipliers in 
comparison with the “fast,” exponential dependencies on N . In particular, for 
Stirling’s approximation we have

� (2.16)

Applying (2.16) to (2.14), for the energy level degeneracy we find

�

(2.17)

Equation (2.17) is the typical representative of the degeneracy dependence 
on the number of degrees of freedom N  in the system. Firstly, we see that 
both exponents, N N m

↑ =
+1
2

 and N N m
↓ =

−1
2

, are proportional to N , and, 
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The spectrum presented in Fig. 2.1a corresponds to the case of an ideal system. 
If we consider a nonideal system (which cannot be converted into the ideal by 
variables’ change), the interactions among the degrees of freedom destroy the strict 
degeneracy when the energy levels “blur,” spreading their microstates all over the 
spectrum and mixing them with other energy levels. The sketch of the resulting 
spectrum is presented in Fig. 2.1b.

As we will see later, statistical mechanics very successfully “manipulates” the 
degeneracy of energy levels. Therefore, and for the spectrum of a nonideal system, 
we would like to introduce something analogous to the strict quantum degeneracy.

Let us unite closely located microstates E{ } (microstates E{ } with close values 
of energy) into groups with the averaged values of energy Ei , where gEi  is the num-
ber of microstates in the group (Fig. 2.1b). We would like to call the quantity gEi, by 
analogy, the degeneracy. However, this term is reserved for the strict degeneration 
in quantum mechanics. Therefore, the special term, the statistical weight, is intro-
duced, which sometimes is abbreviated as “the stat-weight.” In future, it will not be 
important for us whether we refer to the strict degeneracy in the sense of quantum 
mechanics or to the statistical weight as the number of microstates with close values 
of energy in the group. In both cases, we will refer to gEi by the term “statistical 
weight” without attributing it to the particular structure of the spectrum.

Students who begin to study statistical mechanics after such rigorous disciplines 
as theoretical or quantum mechanics are often confused by the fact that microstates 
are combined into groups “at will.” How many microstates do we unite into a par-
ticular group? Why cannot we make groups 2, 10, 100 times larger? We will obtain 
the answer to this question later. Now we only mention that the formalism of statis-
tical physics “works” in such a way that it is not important how many microstates 
we unite into a particular group. In fact, the whole mechanism of statistical physics 
operates only because this combining can be performed arbitrarily.

therefore, the degeneracy of energy levels indeed depends exponentially on 
N. Secondly, N N/ ↑ and N N/ ↓ are intensive parameters (not proportional 
to N ), and the singularity of the thermodynamic limit, N → +∞, is absent in 
them.

Therefore, we can conclude that the typical behavior of the energy-level 
degeneracy on the value of energy is presented by a “tendency” when some-
thing finite is raised to the “singular” power proportional to N .

And it is not important whether this dependence is increasing or decreas-
ing with the increase of energy. For example, for the Ising model, the lowest 
energy level, when all spins are along the field, is not degenerate. Neither 
degenerate is the highest energy level, when all spins are against the field. 
Between these two extremes, the degeneracy initially grows with the increase 
of energy but then decreases back to unity. For both cases, what is important 
is that the dependence is exponential on N, when we can neglect all power-
law dependences.
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2.3 � Microcanonical Ensemble

A microcanonical ensemble (or MCE) is an ensemble of identical isolated systems 
(Fig. 2.2). The isolation boundary condition means that there are neither heat ex-
change δQ← = 0, nor work of external forces δW ← = 0, nor particle exchange 
δΠ← = 0.

Microstates E p,{ } of the considered system are the eigenfunctions of the sys-
tem’s Hamiltonian with the value of energy E corresponding to the condition of 
the system’s isolation, E const= . Here, by p we have denoted some set of internal 
parameters distinguishing microstates with the same value of energy E. For ex-
ample, for the Ising model from Problem 2.2.1, which consists of N = 3 spins and 
is isolated with energy −µh, there are only three microstates, ↑↑↓{ }, ↑↓↑{ }, and 
↓↑↑{ }, corresponding to this value of energy. The parameter p here denotes spin 

orientations on the lattice and can be equal, for example, to ↑↑↓.
Isolating our system, we allow it to “visit” microstates with the given value 

of energy and prohibit “visiting” other microstates. Strict isolation means isola-
tion strictly on one energy level (Fig. 2.3a) or strictly in one group of microstates 
(Fig. 2.3b).

But in nature no system with dense energy spectrum could be strictly isolated. 
There is always some uncertainty ∆E  of isolation, which can include several energy 
levels (Fig. 2.4a) or several groups of microstates (Fig. 2.4b), if, of course, the en-
ergy spectrum is dense enough.

Similar to uncertainty of uniting microstates into groups, the uncertainty of the 
system’s isolation does not influence the formalism of statistical physics. Let us 
discuss in detail why it is so.

Fig. 2.2   An isolated system 

a b

Fig. 2.3   The strict isolation 
on one energy level (a) or in 
one group of microstates (b)
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Firstly, we need to introduce a new term, the statistical weight of an ensemble, 
or, using slang, the ensemble stat-weight. What the statistical weight of a group of 
microstates is we already know: It is the number of microstates in the group. For 
the MCE, we utilize a similar definition—the statistical weight of the MCE, ΓMCE, 
is the number of microstates which the system visits with nonzero probabilities. In 
other words, it is the number of microstates corresponding to the isolation condi-
tions.

In the case of the strict isolation on one energy level E  (in one group of micro-
states), the statistical weight of the MCE is the statistical weight gE of this energy 
level (of this group of microstates):

� (2.18)

If the nonstrict isolation allows the system to visit k energy levels (groups) with 
close values of energy, the statistical weight of the MCE equals the sum of statistical 
weights of these levels (groups):

� (2.19)

Let w E p,{ } be the probability distribution to observe the system in a microstate 
E p,{ } in the ensemble. If, for example, we consider a quantum system, this prob-

ability distribution is provided by the diagonalized statistical operator (quantum 
density matrix) w E p E p E p, , , ,{ } { } { }≡ ρ .

Liuville’s theorem (Gibbs 1902) suggests that in equilibrium all microstates of 
the MCE are equiprobable:

�
(2.20)

where E is the energy of isolation. Here we should again emphasize that distribu-
tion of probabilities (2.20) is equilibrium. For nonequilibrium cases, we are free 
to consider any arbitrary distribution of probabilities w E p,{ }. We will discuss this 
question in detail later.
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Fig. 2.4   The nonstrict 
isolation on three energy 
levels (a) or in three groups 
of microstates (b)
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Entropy is a frequent subject of discussions in the scientific and popular literature 
because its growth breaks the symmetry of the time axis. Sometimes in the popular 
literature, entropy is treated as having “magical” properties. Later we will see that 
all the “magic” belongs to the formalism of statistical physics while there is nothing 
“magical” in the growth of entropy as a parameter directly related to the probability 
distribution.

There are many ways to introduce the concept of entropy into the formalism. As 
the main axiom, we utilize the following definition of entropy:

� (2.21)

which follows from an even more general definition

� (2.22)

when the statistical operator (quantum density matrix) is diagonal and its diagonal 
elements form the distribution of probabilities,

� (2.23)

Let us take a closer look at definition (2.21). Firstly, we see that the entropy is 
a functional defined on the function space of all possible probability distributions 
w{ }. Secondly, if f{ }  is some system’s parameter related to microstates { }, e.g., 
specific magnetization (2.6), its averaged value should be provided by

� (2.24)

S w w w[ ] ln ,{} {} {} {}≡ −∑

S ≡ − ( )Tr ln , ρ ρ

w{ } { } { }≡ ρ , .

f w f
w{ }

≡ { } { }
{ }
∑ .

Problem 2.3.1

Find the probability distribution of microstates for the Ising model without 
spin interactions when there are N = 3 spins in the model. Consider the model 
to be strictly isolated with energy E h= −µ .

=
=−=
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↓↑↑

−
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−
↑↑↓

µ

µ

µ

Solution: The strict isolation with energy E h= −µ  means that two spins are 
oriented along the field, N↑ = 2, while one spin is against the field, N↓ =1. 
The statistical weight of the ensemble is 3, and the probability distribution of 
microstates is illustrated in the figure.
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Therefore, from definition (2.21) we conclude that the entropy is the averaged mi-
nus logarithm of the probability distribution:

� (2.25)

For the first time, definition (2.21) appeared in Gibbs’ works (Gibbs 1876, 1878) 
while later it received further development in Shannon’s studies (Shannon 1948) 
when it was applied to informational processes. Therefore, in statistical physics 
definition (2.21) is called Gibbs entropy while in the theory of complex systems 
(when there are no thermal fluctuations in a system) it is called Gibbs–Shannon 
entropy. We utilize this definition as a formalism axiom due to its universality—it is 
applicable to any ensemble, any set of microstates, and any probability distribution 
w{ }, both equilibrium and nonequilibrium. Therefore, definition (2.21) is always 
applicable in contrast to other approaches that require more detailed descriptions. 
The reader can find formulae, similar to (2.21), in many books devoted to non-
thermal complex systems which are not described by the formalism of statistical 
physics. Even more, definition (2.21) was the very starting point that encouraged 
looking at complex systems from the statistical physics point of view.

For the case of nondiagonal statistical operator (quantum density matrix), a 
more general definition (2.22) is applied which is called von Neumann entropy (von 
Neumann 1932, 1955).

We already know probability distribution (2.20) of the MCE. To find the entropy 
of the MCE, we should substitute this distribution into entropy functional (2.21):

� (2.26)

Let us, firstly, utilize the limit

� (2.27)

for the terms of the sum corresponding to zero probabilities. Secondly, since the 
remaining terms are all equal one to another, we find,

�
(2.28)

that the entropy of the ensemble equals the logarithm of the ensemble statistical 
weight (the logarithm of the number of microstates in which the system “lives”). 
This equality is called Boltzmann’s entropy. We see that this definition of the en-
tropy is less universal than (2.21) because it corresponds only to the equilibrium 
distribution of probabilities (2.20) in the ensemble.

Now let us return to the question why the accuracy of isolation ∆E  does not influ-
ence the formalism of statistical physics. But firstly, what is generally the accuracy 
of isolation? For a gas, we can assume that ∆E  corresponds to energy of several 
particles. For the Ising model, to flips of several spins. In this case, the system is 
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nonstrictly isolated and can visit k adjacent levels of energy (Fig. 2.5). Let us see 
how the accuracy of the isolation influences the value of the system’s entropy.

For an arbitrary system, we assume that similarly to Problem 2.3.2 its statistical 
weight changes by multiplier O( )1  when we move from one energy value to the 
adjacent. Substituting this assumption into (2.19) and then into (2.28), we find

� (2.31)

Here gE depends on N exponentially and, therefore, its logarithm is proportional 
to N while ln k and ln ( )O 1  are of the order of unity. Therefore, we can neglect two 

S kg g kMCE
E E= ( )( ) = + + ( )ln O ln ln lnO .1 1

Problem 2.3.2

For the Ising model without spin interactions, compare the degeneracies of k  
adjacent energy levels.

Solution: When we move from one energy level to the adjacent, the numbers 
of spins along and against the field, N↑ and N↓, are changed by unity, e.g., 
N N↑ ↑⇒ +1 and N N↓ ↓⇒ −1. When we move across i  energy levels, we 
have N N i↑ ↑⇒ +  and N N i↓ ↓⇒ − , where i k= … −0 1, , . Substituting these 
numbers into (2.14), we find

� (2.29)

Both N↑ and N↓ are proportional to N . Therefore, ratio (2.29) is of the order 
of unity:

� (2.30)

which is even less than the logarithmic accuracy, O( )Nα , we used in (2.16).
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Fig. 2.5   The non strict 
isolation (a) on k = 3 energy 
levels, (b) in k = 3 groups of 
microstates
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last terms to find that the entropy of the nonstrictly isolated system approximately 
equals the entropy of the strictly isolated system:

� (2.32)

and the accuracy of the isolation does not influence the value of the entropy.
What if k depended as a power-law on N : k N∝ O( )α ? Again it would not in-

fluence the value of the entropy because logarithm of k would be of the order of 
ln N N<< . This exact situation we will encounter later in this chapter in the case 
of a canonical ensemble when the relative energy fluctuations are of the order of 
δ E
E N0

1
∝  while absolute energy fluctuations are of the order of δ E N∝ . This 

corresponds to k N∝ —the number of energy levels on which the canonical 

ensemble “lives.” In the thermodynamic limit, k  is infinite but still does not influ-
ence the value of the entropy! Of course, here as well as above we assume that the 
statistical weight gE  is the same (with logarithmic accuracy) for all k N∝  energy 
levels.

Now we already can answer the question when the accuracy of the system’s 
isolation does not influence its entropy. Firstly, the number of levels (or groups of 
microstates), on which the system is isolated, should not exceed the power-law 
dependence k N∝ O( )α  on N . Secondly, all these values of energy should be so close 
one to another that their statistical weights would be the same with logarithmic accu-
racy (with the accuracy of a multiplier with a power-law dependence O( )Nα  on N ).

Also now we can answer the question how we have united microstates into 
groups. We do not care how many microstates we unite into a group providing that 
its statistical weight does not change more than by a power-law dependence O( )Nα  
on N . For example, let us imagine a system strictly isolated in one group of micro-
states. Its entropy is S gMCE

E= ln . Uniting into this group 10, 100, or O( )Nα  times 
more microstates than it is now should influence neither the value of the system’s 
entropy nor any further formulae of statistical physics.

Earlier we introduced the notation “≈ln  ” of logarithmic accuracy when in the 
thermodynamic limit, N → +∞, we neglect all “slow” power-law multipliers in 
comparison with the “fast,” exponential dependencies on N . Now we see that this 
is more than just a useful notation—this is the mechanism that “actuates” the for-
malism of statistical physics. Therefore, in future we will utilize the logarithmic 
accuracy in almost all formulae unless the opposite will be stated specifically.

And, as we will see later, almost all results of statistical physics and all concepts 
such as a sharp maximum of a probability distribution, the equation of state cor-
responding to the point of this maximum, the Gaussian distribution in the vicinity 
of the equilibrium state, the fact that a partition function equals its maximal term, 
and, finally, “magical” properties of the entropy are the results of the applicability 
of logarithmic accuracy. And this is also the reason why statistical physics is ap-
plicable to nonthermal, complex systems. Neglecting system-dependent power-law 
dependences provides the universality of the applied formalism and makes it inde-
pendent on the particular details of the system considered.

S gMCE
E≈ ln  ,
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Several times above we have emphasized that we consider the nonstrict isola-
tion of a system on k levels (groups) only in the case when statistical weights gE  of 
these levels (groups) are identical with logarithmic accuracy. But what does happen 
if moving across k levels we do change the statistical weight significantly? Let us 
return to (2.19), only in this case we assume that all g gE Ek1

, ,…   are significantly 
different (not equal one to another with logarithmic accuracy). Firstly, we find the 
maximal statistical weight among these values:

� (2.33)

Then we substitute this maximum value into (2.19):

� (2.34)

where all parameters βi are in the range 0 1< <βi  and only one of them equals strictly 
unity. Since k  is not higher than a power-law dependence on N , k N∝ O( )α , we find

� (2.35)

This returns us to (2.32); only in this case into the logarithm function we put the 
maximal statistical weight among all energy levels (groups of microstates) on which 
the system is isolated.

So now it is not even important whether the levels (groups) on which we have 
isolated our system have significantly different statistical weights or not. We are just 
choosing the maximal among them, and it serves as the statistical weight of the MCE.

2.4 � MCE: Fluctuations as Nonequilibrium Probability 
Distributions

Now we turn our attention to the most difficult question of the ensemble theory—
the definition of a nonequilibrium fluctuation. We can define a fluctuation in many 
ways: by prescribing its properties, by prescribing a set of microstates belonging to 
this fluctuation, and so on. But the most universal way is to define a fluctuation by 
prescribing a nonequilibrium probability distribution.

First, let us consider a simple example, what we understand under the term 
“nonequilibrium distribution of probabilities.” Let us imagine a kingdom whose 
leading scientist, Dr. Richelieu, while conducting tests in his Bastille clinic, had 
discovered that the most beneficial to health is to drink one glass of wine a week. 
Therefore, he issued an Edict of Health that everyone has to drink one glass of wine 
per week.

But, of course, this Edict was often violated because one week a peasant could 
afford a glass of wine whereas next time he could be out of money. Therefore, af-
ter severe punishments had not helped, Dr. Richelieu decided to modify the Edict. 

g g
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Now it was not a deterministic prescription but a stochastic one. Everyone again 
should drink a glass of wine a week; however, this time not strictly but on average. 
With probability 1/4, a person could drink two glasses of wine during a week; with 
probability 1/2, one glass; and with probability 1/4, no wine at all. This way every-
body would drink one glass of wine per week on average.

To follow this new law was much easier; therefore, the majority of people fol-
lowed it to the letter. They could drink two glasses of wine per week or no wine at 
all; but, on average, they drank one glass a week. In other words, they exactly fol-
lowed the prescribed probability distribution and, therefore, their own probability 
distribution was “in equilibrium with the law.”

However, some of the people continued to violate the Edict. For example, there 
was a guy, called d’Artagnan, who drank two glasses of wine a week with prob-
ability 1/8, five glasses of wine with probability 1/8, and seven bottles a week with 
probability 3/4. On another extreme, Constance Bonacieux did not drink wine at 
all because she was afraid to be killed by poisoned wine. Therefore, we may say 
that both d’Artagnan and Mademoiselle Bonacieux were following the probability 
distributions nonequilibrium with the law.

Returning to the MCE, we see that according to (2.20) the ensemble dictates to 
a system to visit all its microstates equiprobably. If the system follows this prob-
ability distribution (2.20), its distribution of probabilities is in equilibrium with the 
ensemble requirements, or an equilibrium distribution of probabilities. Such dis-
tributions we mark by the symbol of the ensemble w E p

MCE
,{ }  to distinguish them from 

other distributions.
But the system may not follow the equilibrium distribution of probabilities 

w E p
MCE

,{ } dictated by the MCE. Instead, it can choose to follow some other distribution 
of probabilities w E p,{ } which in this case is called a nonequilibrium distribution of 
probabilities.

After we have discussed what is a nonequilibrium distribution of probabilities, 
let us return to the main question—how we can describe a fluctuation.

How do we define nonequilibrium states in thermodynamics? The most illus-
trative example is a gas whose density is not uniform in the volume and obeys 
some dependency n

r( ) on the coordinates inside the volume. For example, we can 
imagine a fluctuation as a state when all gas is gathered in the right half of the vol-
ume while in the left half its density is zero.

As an illustration we, however, consider not a gas, but the Ising model without 
spin interactions. Let the model be a one-dimensional chain of N  spins. Further, for 
the purposes of abbreviation, we will call the spins oriented along the field h by the 
term “the ↑-spins” while the spins oriented against the field, “the ↓-spins.”

We choose such energy E  of the system’s isolation that the number N↑ of the 
↑-spins is three times higher than the number N↓  of the ↓-spins:

� (2.36)

We can do that because we are free in our choice of the value of energy with which 
the system is isolated. The values of N↑  and N↓ are not special and are chosen to be 
equal to (2.36) only to have simple fractions 3/4 and 1/4 for illustration purposes.

N N N N↑ ↓= =3 4 4/ / .and
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Since our system is isolated strictly, the statistical weight of the MCE equals the 
statistical weight of the given energy level:

�
(2.37)

Let us discuss how we introduce a nonequilibrium fluctuation for our model. 
Similar to a gas with nonuniform density, we consider a nonuniform distribution of 
the ↓-spins along the model chain. Then the gas gathered in one half of the volume 
will be equivalent to the ↓-spins all gathered in one half of the chain.

Therefore, let us divide the one-dimensional chain of spins into two with N / 2 
spins in each half. We will denote by p the fraction of the ↓-spins gathered in the 
right half. When all (N N↓ = / 4) ↓-spins are gathered in the left half, we have p = 0. 
When all (N N↓ = / 4) ↓-spins are gathered in the right half, we have p = 1. An 
arbitrary value of p in the range 0 1< <p  corresponds to pN / 4  ↓-spins in the right 
half and ( ) /1 4− p N  ↓-spins in the left.

We define a nonequilibrium fluctuation p{ }{ } (or a nonequilibrium macrostate 
p{ }{ }) in the MCE as a state of the system with the given fraction p of the ↓-spins 

in the right half of the chain. In other words, we define a fluctuation by a particular 
value of p p= . This value represents the criterion indicating when we observe the 
given fluctuation in the ensemble.

We see that the criterion “to have p ↓-spins in the right half” does not specify 
particular locations for these spins, and pN / 4 ↓-spins can be distributed arbitrarily 
in the right half among the ↑-spins. Therefore, a lot of microstates correspond to the 
criterion of our fluctuation. Observing the fluctuation in the ensemble is equivalent 
to observing any of these microstates.

Let Γ p{ }{ }  be the number of microstates { , }E p , corresponding to the given fluc-

tuation p{ }{ }, among the total number ΓMCE  of microstates E p, { }  of the MCE 
ensemble (Fig. 2.6). We will call Γ p{ }{ }  the statistical weight of fluctuation p{ }{ }.

But for the MCE we know that the distribution of probabilities for the micro-
states E p, { }  is dictated by (2.20), where ΓMCE  microstates E p, { }  serve as the 
fan of possible outcomes in the ensemble. The requirement to observe currently 
the fluctuation p{ }{ } intervenes in the “work” of the ensemble, reducing the fan of 
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N
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N N
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Fig. 2.6   Statistical weight 
Γ p{ }{ } of fluctuation p{ }{ }  

and statistical weight 

ΓMCE
Eg=  of the MCE
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possible outcomes to Γ p{ }{ }  microstates { , }E p . In other words, if we know that the 
system is in the macrostate of fluctuation p{ }{ }, the distribution of probabilities for 
such a system is not (2.20) but reduces to

� (2.38)

Distribution of probabilities (2.38) is the nonequilibrium distribution of proba-
bilities, determining the given fluctuation. If our system does not obey requirement 
(2.20), dictated by the ensemble, but is in the macrostate p{ }{ }, the probabilities to 
observe particular microstates obey distribution (2.38). In contrast to (2.20), we did 
not use here the superscript “MCE” because this distribution of probabilities is not 
dictated by the ensemble and is not in equilibrium with the ensemble.

Instead of saying that distribution (2.38) corresponds to the fluctuation p{ }{ }, we 
can say that it defines the fluctuation. Therefore, any fluctuation can be described 
by a nonequilibrium distribution of probabilities, and, vice versa, a system obeying 
a nonequilibrium distribution of probabilities is in the macrostate of fluctuation 
determined by this distribution.

Substituting the nonequilibrium distribution of probabilities (2.38) into the defi-
nition of entropy functional (2.21), we find the entropy of the fluctuation p{ }{ }:
� (2.39)

This is again Boltzmann’s entropy which equals the logarithm of the number of 
microstates which the system visits with nonzero probabilities.

w
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S p p{ }{ } { }{ }= ln .Γ

Problem 2.4.1

For the one-dimensional Ising model without spin interactions find the statis-
tical weight Γ p{ }{ } and the entropy S p{ }{ } of the fluctuation p{ }{ }.
Solution: To find the statistical weight of the fluctuation, we need to find the 
number of microconfigurations when pN pN↓ = / 4 ↓-spins are distributed 
among the ↑-spins in the right half of the chain while ( ) ( ) /1 1 4− = −↓p N p N  
↓-spins are distributed in the left half:

�

(2.40)

Utilizing Stirling’s approximation, we find

�
(2.41)
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Our system wants to be independent from the ensemble and to follow its own path 
of fluctuations. But the probabilities of these fluctuations are still dictated by the 
ensemble. Since all microstates of the MCE are equiprobable, the probability to 
observe the fluctuation p{ }{ }  in the ensemble equals the share of microstates be-
longing to this fluctuation:

�
(2.43)

Here for the given boundary condition (2.36) the statistical weight of the ensem-
ble ΓMCE is constant. Therefore, the probability of a fluctuation p{ }{ } is directly 
proportional to the statistical weight of this fluctuation. The smaller the statistical 
weight of the fluctuation, the rarer we observe this fluctuation in the ensemble. This 
is the reason why we never see a gas gathered in one half of the volume.

Since any microstate of the MCE must belong to one or another fluctuation p{ }{ }, 
the statistical weight ΓMCE  of the MCE is the sum of statistical weights Γ p{ }{ } of all 
possible fluctuations p{ }{ },

�
(2.44)

and probability distribution (2.43) is normalized to unity,

�
(2.45)

We have considered above only the simplest example (2.38) of nonequilibrium 
distributions when all the probabilities of microstates, not corresponding to the 
criterion p, were exactly zero. However, in general we can consider an arbitrary 
distribution of probabilities defining a particular type of fluctuations.
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Problem 2.4.2

Let us consider an example of more complex fluctuations. We consider 
an optical device that generates red photons with the constant probability 
w red

ensemble
{ } , green photons with the probability w green

ensemble
{ } , and blue photons with 

Therefore, the entropy of the fluctuation is

�

(2.42)
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the probability w blue
ensemble
{ } . Since other colors are impossible, the color of the next 

photon must be red, green, or blue:

� (2.46)

Find the probability of the fluctuation red green


{ }{ } that the next pho-
ton will be red or green but not blue. In other words, find the probability 
of the fluctuation defined by the following nonequilibrium distribution of 
probabilities:

�

(2.47)

Solution: Obviously, the probability for the next photon to be red or green is

�
(2.48)

In this problem, in contrast to the case of the MCE we have introduced that 
microstates red{ }, green{ }, and blue{ } are no longer equiprobable. The next 
problem will be even more complex.
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Problem 2.4.3

For the ensemble described in Problem 2.4.2 find the probability to observe 
for the next photon the following nonequilibrium probability distribution:

�
(2.49)

Solution: The simplest way to find the probability of the fluctuation is to con-
sider n consecutive photons. In this sample, nw red{ } photons must be red, nw green{ } 
photons green, and nw blue{ } photons blue. The probability of this sample is
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Generalizing the solution of Problem 2.4.3, for the probability to observe a nonequi-
librium distribution of probabilities w{ }  in the ensemble, which itself follows the 
probability distribution wensemble

{ } , we find

�
(2.53)

But let us return to the case of simple fluctuations (2.38) in the MCE ensemble. 
To find the maximum of probability (2.43), we should find when its derivative 
equals to zero:

� (2.54)

But probability (2.43) is an exponential dependence. Therefore, it is usually more 
convenient to differentiate not the probability itself but its logarithm:
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(2.50)

where ( ) ( ) (w w wred
ensemble nw

green
ensemble nw

blue
red green

{ } { } { }
{ } { } eensemble nw blue) { } is the probability of one 

such configuration while the multiplier n
nw nw nwred green blue

!
( )!( )!( )!{ } { } { }

 is the 

number of possible configurations given by the distribution of nw red{ } red  
photons, nw green{ } green photons, and nw blue{ } blue photons among n photons.

Utilizing Stirling’s approximation (2.16), we find

�
(2.51)

Since the color of a photon is independent of other photons in a sequence, 
probability (2.51) is the product of n  identical probabilities corresponding to 
n independent events. In other words, to find the probability of fluctuation 
(2.49) in the ensemble we should extract the nth root of (2.51):

�
(2.52)
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�
(2.55)

Since the logarithm is the monotonically increasing function, its derivative equals 
zero when the derivative of the probability is zero.

Differentiating the logarithm of (2.43), into which we should substitute Γ p{ }{ }  
from (2.41), for the point of the probability maximum, we easily find p0 1 2= /  
when each half of the model contains exactly one half of the ↓-spins. Therefore, 
fluctuation p0 1 2={ }{ }/  is the most probable macrostate and corresponds to the 
equilibrium state.

The reader should clearly distinguish two equilibrium concepts: the equilibrium 
state as the most probable macrostate and the equilibrium distribution of probabili-
ties. Returning to the imaginary kingdom ruled by Dr. Richelieu, we already know 
that most of the people followed the Edict of Health to the letter. They could drink 
two glasses of wine a week or no wine at all; but, on average, they drank one glass a 
week. In other words, they exactly followed the prescribed probability distribution 
and, therefore, their own probability distribution was “in equilibrium with the law,” 
or the equilibrium distribution of probabilities. If it was so happening that during 
one particular week a person indeed drank literally (not on average) one glass of 
wine, they called it “the equilibrium week,” or the most probable, equilibrium 
macrostate.

Similarly, in the case of the MCE, the ensemble dictates the equiprobable prob-
ability distribution (2.20). If the system follows this probability distribution, its dis-
tribution of probabilities is in equilibrium with the ensemble requirements, or an 
equilibrium distribution of probabilities.

But microstates visited by the system can be very different. Some of them could 
correspond to rare events, when, for example, all gas has been gathered in one half 
of the volume. But these events are rare, and on average the system stays in equilib-
rium macrostate when the gas density is uniform across the volume.

Let us now study the equilibrium macrostate. Substituting p0 1 2= /  into (2.41), 
we find the statistical weight of the most probable fluctuation:

�
(2.56)

But this is exactly expression (2.37) for the statistical weight ΓMCE of the ensemble 
in whole! So, the number of the microstates corresponding to the equilibrium mac-
rostate p0 1 2={ }{ }/  equals the total number of the microstates in the ensemble?! 
How is it possible? From (2.44) we have expected that other fluctuations should 
also contribute to the total ensemble statistical weight. Where are then the micro-
states corresponding to these other fluctuations?

To answer this question we should recall that both equalities, (2.37) and (2.56), 
are valid with logarithmic accuracy:

∂

∂
=

{ }{ }ln
.

W

p
p

MCE

p0

0

Γ p

N
N

0

4
3

4
3 4

4
{ }{ } ≈







ln

/
/ .



772.4 � MCE: Fluctuations as Nonequilibrium Probability Distributions�

� (2.57)

The logarithmic accuracy assumes that the left-hand side of (2.57) can be Nα  times 
greater than the right-hand side. The difference is precisely the number of lost mi-
crostates corresponding to other fluctuations from sum (2.44):

� (2.58)

About equality (2.58), it is said that the statistical weight of the ensemble equals 
to its largest term. However, one should not forget that this is valid only with the 
logarithmic accuracy. In other words, although the statistical weight Γ p0{ }{ } of the 
equilibrium macrostate p0 1 2={ }{ }/  is comparable with the total number of mi-
crostates in the ensemble, there are still a lot of other microstates to divide among 
other fluctuations.

In particular, all macrostates adjacent to p0 1 2= /  have statistical weights com-
parable with Γ p0{ }{ }.

Let us now find the distribution of probabilities W p
MCE
{ }{ }  of fluctuations p{ }{ } in the 

vicinity of the equilibrium macrostate p0{ }{ }. As we already know, at the point 
p0{ }{ }, the first derivative of the logarithm of probability W p

MCE
{ }{ }  equals zero in 

accordance with (2.55). The second derivative at this point we find to be nonzero:

�
(2.60)
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Problem 2.4.4

Find the statistical weight of the fluctuation adjacent to p0 1 2={ }{ }/ .

Solution: The adjacent is the fluctuation p
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 when the right 

half of the model has two more ↓-spins than the left half. Returning to the 
exact expression (2.40), we find the ratio

�

(2.59)

We see that although the absolute difference is huge, the relative difference 
is negligible even from the point of view of usual, not logarithmic calculus.
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Therefore, for the expansion of lnW p
MCE
{ }{ }  in a power series of ( )p p− 0 , we have

�

(2.61)

or, exponentiating,

� (2.62)

We see that in the vicinity of the equilibrium macrostate p0 1 2={ }{ }/  the prob-
abilities W p

MCE
{ }{ }  of fluctuations p{ }{ }  obey the Gaussian distribution. The width of 

the maximum is of the order of

� (2.63)

Since beyond the “bell” of the probability maximum the fluctuations have almost 
zero probabilities, quantity (2.63) represents the characteristic size of fluctuations 
in p. And since its value is inversely proportional to the square root of N , it is very 
small in the thermodynamic limit, N → +∞.

Above we have considered fluctuations in p. But since statistical physics usu-
ally operates with extensive parameters (proportional to N ), we can easily modify 
distribution (2.62) to prescribe probabilities to fluctuations Np{ }{ } in Np:

�
(2.64)

Now the width of the maximum is of the order of

� (2.65)

and is called absolute fluctuation in Np. To find relative fluctuation in Np, we 
should divide (2.65) by the averaged value Np0:

�
(2.66)

The result is again very small in the thermodynamic limit, N → +∞.
Nonzero probabilities are possessed only by fluctuations located inside the prob-

ability maximum. Beyond the width of the maximum, the probabilities of fluc-
tuations are almost zero. Let us, for example, compare the statistical weight of the 
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fluctuation p ={ }{ }1 , when all ↓-spins are gathered in the right half of the model, 
with the statistical weight of the equilibrium macrostate p0 1 2={ }{ }/ :

�
(2.67)
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Problem 2.4.5

Illustrate the dependence of the statistical weight Γ p{ }{ } of fluctuations p{ }{ } 
on p with the example of the model consisting of N = 400 spins. Demonstrate 
the validity of formula (2.58).

Solution: Following isolation condition (2.36), there are N N↓ = =/ 4 100 
↓-spins in the model. The dependence of the statistical weight Γ p{ }{ } of fluc-
tuations p{ }{ } on p is presented in the following figure.

In this figure, different fluctuations p{ }{ } are demonstrated as separate col-
umns under the “bell” of the maximum. We see that already for the number 
of degrees of freedom of the order of 100 the fluctuations in the vicinity of 
the equilibrium macrostate have statistical weights of the order of 1097. In 
contrast, there are only 101 separate fluctuations in the ensemble when the 
right half of the model contains 0,1,2,…,100 ↓-spins. Therefore, sum (2.44) 
contains only 101 terms, some of which are of the order of 1097.

Fluctuations beyond the range p = −0 4 0 6. .  of the maximum have negli-
gible statistical weights in comparison with statistical weight 97

1
2

5·10  
 

  

Γ =  

of the equilibrium macrostate p0 1 2={ }{ }/ . Under the “bell” of the maxi-
mum, there are only about 20 separate fluctuations with 40, 41, 42,…,60 
↓-spins in the right half of the model p = −( )0 4 0 6. . . All these fluctuations 
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Equality (2.57) means that the entropy of the equilibrium macrostate equals the 
entropy of the ensemble:

� (2.69)

Since this equality is always valid when the rule of the logarithmic accuracy is 
applicable, these two different parameters are often treated as one. However, the 
reader should always clearly understand that one of these quantities corresponds to 
the equilibrium macrostate while another to the equilibrium distribution of prob-
abilities.

2.5 � Free Energy Potential of the MCE

Let us now develop the formalism of free energy potential of the MCE. Nonequi-
librium processes within an isolated system lead this system to its equilibrium mac-
rostate (Fig. 2.7).

From thermodynamics we know that for any process in an isolated system the 
entropy of the system always increases (or stays constant but does not decrease):
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have comparable statistical weights of the order of 1097. If we sum them all, 
we obtain the total statistical weight of the ensemble ΓMCE which is only about 
ten times higher than the statistical weight Γ 1
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 of the equilibrium macro-

state p0 1 2={ }{ }/ ! Therefore, comparing the logarithms of these two statisti-
cal weights,

� (2.68a)

and

� (2.68b)

we can neglect their relative difference. And this happens already for the 
number of degrees of freedom in the model of the order of 100! But when 
we consider the thermodynamic limit of infinite number of degrees of free-
dom in the model, the relative difference between the statistical weight of the 
ensemble and the statistical weight of the equilibrium macrostate becomes 
even more negligible, and the statistical weight of the ensemble is indeed 
equal to its maximal term.

However, this does not mean at all that other terms are significantly 
smaller. There are at least 20 “near-equilibrium” fluctuations in the above 
figure (20 vertical columns under the “bell” of the maximum) which have 
statistical weights of the same order.

97ln ln(10·5·10 ) 227MCEΓ = =
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ln ln(5·10 ) 225,  
 

  

Γ = =



812.5 � Free Energy Potential of the MCE�

� (2.70)

This principle is called the entropy maximization principle.
We define the free energy potential or, simply, the free energy to be a parameter 

that for any process in a system always decreases (or stays constant but does not 
increase):

� (2.71)

When a system reaches its equilibrium state, its free energy achieves its minimal 
value. Therefore, to find the equilibrium state of a system we always should look 
for the minimum of the system’s free energy potential. This procedure is called the 
free energy minimization principle.

Comparing inequalities (2.70) and (2.71), we expect that the role of the free energy 
in the MCE is played by the negative entropy:

� (2.72)

Let us return to expression  (2.43) for the probability of fluctuations. Following 
Boltzmann’s definition, the entropy of fluctuation, (2.39), is the logarithm of the 
fluctuation’s statistical weight while the entropy of the ensemble, (2.28), is the loga-
rithm of the ensemble statistical weight. Substituting these equations into (2.43), 
we find

�
(2.73)

Since the logarithmic function is monotonic and ΓMCE is constant, we see that the 
potential defined by (2.72) is always decreasing when the probability is increasing:

� (2.74)

When the system reaches its equilibrium macrostate p0 1 2={ }{ }/ , the probability 
W p

MCE
{ }{ }  is maximal and, therefore, the potential Ψ p{ }{ } achieves its minimal value 

Ψ Γp p0 0{ }{ } { }{ }= − ln . This proves that the potential Ψ p{ }{ } plays the role of the free 
energy in the MCE.

∆S ≥ 0.

∆Ψ ≤ 0.

Ψ ≡ −S.

W ep
MCE p

MCE

S SMCE
p

{ }{ }
{ }{ } − −

= = { }{ }
Γ

Γ

( )
.

Ψ Γp p
MCE

p
MCES W{ }{ } { }{ } { }{ }≡ − = −( ) ln( ).

Fig. 2.7   All processes within 
an isolated system lead to the 
equilibrium macrostate
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Now we see that there is nothing “magical” in the entropy growth. Since the 
entropy of a fluctuation is strictly correlated with the probability to observe this 
fluctuation in the ensemble, the entropy growth merely corresponds to the tran-
sition from less probable, nonequilibrium fluctuations to more probable, more 
“equilibrium” macrostates with higher statistical weights.

Each separate system, classical or quantum, is deterministic and during its evo-
lution can pass through any microstate, even when a gas is gathered in one half 
of its volume. Why in reality do we not observe such fluctuations? Because they 
are highly improbable—their share of microstates is negligible in comparison with 
near-equilibrium fluctuations. But still nothing prohibits a deterministic system to 
be in a macrostate of such an improbable fluctuation.

But when we consider not a separate system but an ensemble of identical sys-
tems, the situation changes drastically. In the ensemble, we do not consider evolu-
tions of separate systems. Instead, we average them stochastically.

But stochasticity claims that we are always moving in the direction of the in-
creasing probability. Therefore, the behavior of the ensemble is governed by the 
rule that we have to go from less probable fluctuations to more probable, toward 
equilibrium. And it is not the entropy that breaks the symmetry of the time axis; it is 
the stochasticity forced onto the ensemble that dictates the direction of time.

Fluctuations moving the system away from its equilibrium are still possible. But 
they contradict the law of probability growth and, therefore, are improbable.

To illustrate these concepts, in the rest of the section we consider the aspects that 
lead to the growth of entropy. However, the discussion below could be confusing for 
the reader who just got acquainted with the MCE because we also have to discuss 
the equiprobability of microstates which we introduced in (2.20) as a hypothesis. 
Therefore, we encourage the reader to skip the rest of this section and return to it 
later, when the MCE would be well understood.

Let us consider an isolated quantum system whose state is described by a statisti-
cal operator (density matrix) ρ( )t . The evolution of the statistical operator obeys the 
Liouville–von Neumann equation (von Neumann 1932, 1955):

�
(2.75)

For the system’s entropy, we utilize definition (2.22). To find how the entropy of the 
system changes with time, we differentiate this expression:

�
(2.76)

Since the diagonal elements of the statistical operator play the role of probabilities, 
its trace is always equal to unity:

� (2.77)
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∂
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Therefore, we immediately find that the second term in (2.76) is zero:

�
(2.78)

and the entropy growth equals

�
(2.79)

Substituting (2.75) into this equation and rearranging the commutator’s brackets, 
we find that the entropy growth is exactly zero:

�

(2.80)

because the statistical operator always commutates with its logarithm. Therefore, 
the entropy growth of a quantum system is zero even when it is not in a pure state 
but in a mixed state whose evolution is determined by the Liouville–von Neumann 
equation (2.75).

Let us, for example, consider the strictly isolated Ising model, consisting of 
N = 2 spins, whose Hamiltonian is

� (2.81)

Here for the first time we consider an additional term in the Hamiltonian corre-
sponding to interactions between two spins. This Hamiltonian has four eigenfunctions 
↑↑{ }, ↑↓{ }, ↓↑{ }, and ↓↓{ } with energies E h J↑ ↑{ } = − −, 2µ , E E J↑ ↓{ } ↓ ↑{ }= =, , , 

and E h J↓ ↓{ } = −, 2µ . We will work in the energy representation; in other words, in 
the representation of microstates ↑↑{ }, ↑↓{ }, ↓↑{ }, and ↓↓{ }. Then the matrix of 
this Hamiltonian is

�

(2.82)

Let us assume that at time t = 0 the system is in the pure state ↑↓{ } :

�
(2.83)
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This corresponds to the following density matrix:

�

(2.84)

The evolution of the pure quantum state is determined by Schrödinger’s equation 
(Schrödinger 1926),

� (2.85)

and provides the following time dependence:

�

(2.86)

If we described the system not by the vector of state but by the density matrix, 
its evolution would be determined by the Liouville–von Neumann equation (2.75). 
But since the initial density matrix (2.84) commutes with the Hamiltonian (2.82), its 
derivative with respect to time is always zero

�
(2.87)

and the density matrix remains unchanged:

�
(2.88)

But because the density matrix stays constant, the entropy (2.22) also stays constant. 
Substituting (2.88) into (2.22), we find the entropy of the system to be always zero 
(it is difficult to expect something else from the system staying in one microstate):

� (2.89)
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We have considered clearly the most uninteresting case when the system, which 
is initially in the microstate ↑↓{ }, stays in this microstate forever. The system was 
isolated with energy E J=  but never visited the second microstate ↓↑{ } which has 
the same value of energy (which belongs to the same energy level).

This system violates the equiprobability (2.20) hypothesis we introduced before. 
An analogy would be the ideal gas without particle collisions. If initially half of 
gas particles had velocities 10 m/s while the other half had 20 m/s, the gas would 
keep the velocities of its particles unchanged and we would never see the Maxwell–
Boltzmann distribution. Similarly, for photons within a perfectly reflecting body we 
will never obtain the Planck spectrum.

To obtain the Maxwell–Boltzmann distribution for the ideal gas (to make its mi-
crostates with energies corresponding to the isolation condition all equiprobable), 
we should introduce rare events of particle collisions. This is equivalent to introduc-
tion of trajectory’s mixing when the system can jump from one trajectory to another 
due to the presence of some noise.

To achieve the Planck spectrum within the perfectly reflecting body, we should 
introduce a small black dust particle inside the cavity. The dust particle is small and 
its term can be neglected in the common Hamiltonian. However, over long periods 
of time, it provides the equiprobability of microstates.

Similarly, for our quantum system we introduce some noise which leads to the 
system, jumping from one of microstates, ↑↓{ } or ↓↑{ }, into another. Thereby, we 
consider the Hamiltonian which in the previous representation of microstates ↑↑{ }, 
↑↓{ }, ↓↑{ }, and ↓↓{ } is provided by the following matrix:

�

(2.90)

We continue to work in the representation of microstates ↑↑{ }, ↑↓{ }, ↓↑{ }, and 
↓↓{ } for the illustrative purposes, although the eigenfunctions of the new Hamilto-

nian may not coincide with the microstates ↑↑{ }, ↑↓{ }, ↓↑{ }, and ↓↓{ }. Thereby, 
we, in fact, no longer work in the energy representation of the system.

We consider the nondiagonal noise term to be small, where ε → 0 is some small 
complex constant. For the same initial state (2.83), we integrate Schrödinger’s 
equation (2.85) to find that system still stays in the pure state

�

(2.91)
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Integrating the Liouville–von Neumann equation (2.75), for the density matrix 
we also find

�

(2.92)

From (2.91) and (2.92), we clearly see that the introduction of small noise has 
made the system to oscillate between microstates, ↑↓{ } and ↓↑{ } (has led to the 
mixture of these microstates). However, nothing in the formulae above has made 
the derivation of zero entropy growth (2.80) no longer valid. In other words, if we 
substitute the density matrix (2.92) into the entropy definition (2.22), the entropy 
will still be constant during the system’s evolution. The reader can easily prove 
it herself/himself and find that the entropy is zero (2.89) again (the entropy will 
always be zero for a system in a pure state).

Even if we consider the noise, deterministically depending on time, ε ( )t , the 
derivation of (2.80) will still be valid, and entropy will remain constant.

A similar situation occurs when we consider not the pure but the mixed state 
whose time dependence is provided by the Liouville–von Neumann equation (2.75). 
The entropy would probably be already nonzero, but still (2.80) would give zero 
growth for the entropy.

To understand what is going on let us return to the obtained solution (2.92). The 
density matrix is not diagonal which we expect for the equilibrium distribution 
(2.112). And strictly speaking, we do not see the equiprobability of microstates 
↑↓{ } and ↓↑{ }. Instead, we see oscillations between these two microstates. But we 

can consider the so-called sliding (moving) time averaging when for each time t 
we average any time dependence in the neighborhood of this time over the interval 
t t t t t− < < +∆ ∆/ /2 2. Assuming that the interval of averaging is much larger than 

the period of oscillations, ∆t >> 2π
ε

, we lose all time dependencies in (2.92) and 
find

�

(2.93)

Here the density matrix becomes diagonal and microstates ↑↓{ } and ↓↑{ } are al-
ready undoubtedly equiprobable.

The evolution of the system has initiated from the pure state (2.84) with zero entro-
py (2.89). On the contrary, substituting (2.93) into (2.22), we find the nonzero entropy:

� (2.94)
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This is the entropy growth, from 0 to ln 2, and we see that it has been caused by the 
very time averaging.

Why has it happened? Because the procedure of time averaging included av-
eraging over classical probabilities. The averaging over the classical probabilities 
cannot be described by the formalism of the Liouville–von Neumann equation 
(2.75) which deals only with quantum uncertainties. It does not belong to quantum 
mechanics; and the derivation of zero entropy growth (2.80) did not consider it.

But what is time averaging? Obviously, if we consider the noise ε ( )t  to depend on 
time not deterministically but stochastically, with classical probability distribution 
(stochastic trajectory’s mixing), this will be equivalent to the time averaging and 
will provide the nonzero entropy growth.

We see that for the considered system the simple noise introduction leads only to 
the oscillations among microstates. On the contrary, introduction of averaging with 
classical uncertainties leads to the equiprobability of microstates and to the entropy 
growth.

So far we have considered time averaging of a particular system. What would 
happen if instead of time averaging we considered ensemble averaging over the 
classical probability distribution?

The evolution of our system has initiated from the pure state (2.84). Instead of 
a particular initial time t = 0, we can consider arbitrary time which is equivalent to 
introduction of the additional phase of oscillations:

�

(2.95)

We are building the ensemble by considering different initial conditions for each 
particular system. If we allow the role of the initial condition to be played by the 
phase of oscillations, averaging over the ensemble (over initial values of θ ) will be 
given by

�
(2.96)

where pdf is the classical probability density function:

�
(2.97)

Since the statistical operator ρ θt,( ) in the integrand represents the pure state (2.91), 
we are, in fact, averaging pure states with classical probabilities:
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�
(2.98)

Although (2.98) is often considered as a quantum density matrix, it is, in fact, not 
in the sense that it is no longer the solution of the Liouville–von Neumann equation 
(2.75). The averaging over classical probability distribution is not described by the 
Liouville–von Neumann equation (2.75), and (2.98) no longer represents quantum 
statistical operator. In contrast, it is now the ensemble statistical operator.

The ensemble averaging returns us to the same density matrix (2.93) as in the 
case of the time averaging:

�

(2.99)

It would be difficult to expect something else because ensemble averaging in-
volves the same averaging over classical probabilities.

Another important aspect here is that we have proved for our system the state-
ment of the ergodic hypothesis that time averaging is equivalent to ensemble aver-
aging.

2.6 � MCE: Free Energy Minimization Principle (Entropy 
Maximization Principle)

In the previous sections, we assumed the equiprobability of all microstates in the 
MCE and have proved that the negative entropy is the free energy potential of the 
MCE. In this section, the other way around, we assume that the free energy poten-
tial of the MCE is the negative entropy and will prove the equiprobability of all 
ensemble microstates.

Following (2.72) and (2.21), we define the free energy in the MCE as

� (2.100)

This potential is the functional defined on the function space of all possible prob-
ability distributions w{}.

By definition, the equilibrium corresponds to the minimum of the free energy. 
Therefore, to find the equilibrium distribution of probabilities we should minimize 
the free energy potential (2.100) over all nonequilibrium distributions w{}.

But any probability distribution is normalized to unity:
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� (2.101)

and instead of all possible functional dependences w{} only normalized probability 
distributions w{} should be considered during minimization.

It is easy to do minimization subject to equality constraint (2.101) by utilizing 
the method of Lagrange multipliers,

� (2.102)

where to functional (2.100) we added constraint (2.101) multiplied by the Lagrange 
multiplier λ.

To minimize this functional we should find when its derivatives equal zero. The 
derivative with respect to λ  returns us to constraint (2.101),

�
(2.103)

where we used the superscript index “MCE” to emphasize that this is the equilib-
rium probability distribution.

The derivative with respect to the probability w{}′ of microstate {}′ provides 
equation

� (2.104)

We see that the equilibrium probability distribution wMCE
{}  does not depend on the 

parameters of a particular microstate and, therefore, all microstates are equiprob-
able. Substituting w constMCE

{} =  into (2.103), we find

� (2.105)

which returns us to (2.20).
In (2.100) for the entropy functional we utilized definition (2.21) corresponding 

to the case of the diagonal statistical operator. But what would happen if we consid-
ered a nondiagonal statistical operator? In this case, we should substitute not (2.21), 
but (2.22) into (2.72) to obtain the desired functional of the free energy potential:

� (2.106)

This functional is defined on the operator space of all possible statistical operators 
ρ . Again, the statistical operator is normalized by

� (2.107)

w{}
{}
∑ =1

Ψ[ ] ln ,{} {} {}
{}

{}
{}

w w w w= + −








∑ ∑λ 1

0 1=
∂
∂

= −∑Ψ
λ

wMCE
{}

{}
,

0 1 1=
∂
∂

= + + =
′

′ ′
− −Ψ

w
w w eMCE MCE

{ }
{ } { }ln .λ λ or 

ΓMCE MCEw{} =1

Ψ[ ] Tr ln .  ρ ρ ρ= ( )

Tr .ρ( ) =1



90 2  Ensemble Theory in Statistical Physics: Free Energy Potential

To minimize the functional subject to equality constraint (2.107), we utilize the 
method of Lagrange multipliers:

� (2.108)

To find the equilibrium statistical operator ρMCE , we should minimize this func-
tional by equaling its derivatives to zero. The derivative with respect to λ  returns 
us to constraint (2.107). The derivative with respect to ρ  provides the following 
equation:

� (2.109)

Since this equality should hold for any arbitrary variation δρ, we find

� (2.110)

where 


1 is the unity matrix. The solution of this equation is

� (2.111)

This matrix is diagonal and all diagonal elements are equal one to another. Substi-
tuting (2.111) into constraint (2.107), we find that all diagonal elements are equal to 
the inverse statistical weight of the ensemble:

�
(2.112)

Therefore, in the operator space of all possible nonequilibrium statistical operators 
ρ  the equilibrium operator ρMCE  corresponds again to the equiprobable distribution 
(2.20).

2.7 � Canonical Ensemble

In the previous sections, we have considered the case of the MCE corresponding to 
an isolated system. Now we relax the isolation constraint and allow our system to 
participate in heat exchange (Fig. 2.8). We still consider a system at constant vol-
ume V const=  (δW ← = 0) and constant number of particles N const=  δΠ← =( )0 . 
But now the system can exchange heat, δQ← ≠ 0, with surrounding medium called 
thermal reservoir (or heat reservoir, or heat bath, or thermostat).

The thermal reservoir is assumed to be so big in comparison with our system that 
any energy fluctuations in our system do not influence its temperature. Besides, its 
heat conductance is assumed to be perfect which allows it to react immediately to 
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any boundary heat exchange by maintaining the temperature T res always constant. 
Here and further by the superscript index “res” we denote the reservoir parameters.

The fact that the reservoir’s temperature is always constant leads to two conse-
quences. Firstly, since any fluctuations in our system are negligible for the reservoir, 
the last participates in heat exchange always quasistatically.

Secondly, the system is assumed to be at constant temperature condition 
T constres = . An ensemble of such systems is called a canonical ensemble (or CE).
Uniting our system and the thermal reservoir into one “big” system Σ, we con-

sider the system Σ to be isolated, E constΣ =  (Fig. 2.8). Then the behavior of the 
system Σ is described by the MCE formalism. To avoid complications, we will 
always assume the strict isolation of the system Σ on one of its energy levels (in one 
group of microstates).

Generally speaking, heat exchange between our system and the thermal reservoir 
means interaction of these two subsystems when the total Hamiltonian 



ΗΣ of the 
system Σ, besides the sum of the Hamiltonians of our system 



Η and of the reservoir 


Η res, contains also an interaction term 


V :

� (2.113)

We could build energy spectra for both our system E{ } and the thermal reservoir  
Eres res{ }  as the eigenfunctions of the Hamiltonians 



Η and 


Η res, respectively. How-
ever, due to the presence of the interaction term 



V  the energy spectrum EΣ Σ{ }  of the 
system Σ would not be represented by the tensor product of these spectra:

� (2.114)

To avoid this complication, it is often assumed that the interaction term 


V  is 
small because interactions with the reservoir are provided by the parts of the system 

close to its surface. Since the number of degrees of freedom on the surface, N
d
d
−1

, 
is much smaller than the number of degrees of freedom in the system’s volume, N ,

� (2.115)

where d  is the dimensionality of the system, we can usually neglect the surface en-
ergy in comparison with the energy in the volume of the system and thereby neglect 
the term 



V  in Hamiltonian (2.113).
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Fig. 2.8   The system in 
contact with the thermal 
reservoir
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However, we do not follow this approach because, firstly, heat exchange can be 
not limited to the surface of the model and, secondly, we consider surface energy 
being of extreme importance for the phase transition phenomena. Instead, we con-
sider the stroboscopic approximation when we allow our system to interact with the 
reservoir “stroboscopically.” Our system interacts with the thermal reservoir by heat 
exchange. After some period of time, we briefly isolate it and observe how much 
energy it has “consumed” or “provided.” Then we allow the interactions to resume 
heat exchange; then again, we briefly isolate our system and observe its energy 
change. And so on, and so on. In other words, into the process of heat exchange we 
introduce very brief periods of virtual isolation which do not influence the system’s 
behavior but allow us to observe the system in the absence of the interaction term 



V .
This way, if we observe our system only during short periods of virtual isolation, 

we can treat it as if it were fully isolated except for the fact that its energy constantly 
jumps from one value to another. Therefore, we exclude the interaction term 



V  from 
the total Hamiltonian,

� (2.116)

and consider microstates EΣ Σ{ }  of the system Σ to be the tensor product of the set 
of microstates E{ }  of our system and the set of reservoir’s microstates Eres res{ } :

� (2.117)

In other words, choosing a particular microstate E{ } for our system and a particu-
lar microstate Eres res{ }  for the thermal reservoir, we form a particular microstate 
EΣ Σ{ }  of the system Σ. Therefore, it is often said that even in the presence of heat 

exchange the energy spectra of two subsystems are still identifiable separately as if 
for independent subsystems.
The “big” system Σ is isolated. Therefore, if the energy of our system were in-

creasing, the energy of the thermal reservoir would be decreasing:

� (2.118)

Let us look at Fig. 2.9 where to the left we schematically plot the energy spec-
trum of our system while to the right we have the energy spectrum of the thermal 
reservoir. Both spectra are divided into groups of microstates.

  

Η Η ΗΣ = + res ,

E E Eres resΣ Σ{ } = { }⊗{ } .

E E Eres+ = =Σ const .

Fig. 2.9   Energy fluctuations 
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If our system “lives” in group E2, the thermal reservoir must be somewhere in 
its group E E Eres

3 2= −Σ . When our system takes away from the thermal reservoir 
some additional energy and jumps into group E5, the thermal reservoir, following 
(2.118), has to move into group E E Eres

1 5= −Σ .

As we have discussed above, a microstate EΣ Σ{ }  can be formed by the choice 
of a particular microstate E{ } of our system (a horizontal line to the left in Fig. 2.9) 
and a particular microstate Eres res{ }  of the thermal reservoir (a horizontal line to 
the right), providing, of course, that equality (2.118) holds. Therefore, to find the 
statistical weight ΓΣ,MCE of the MCE ensemble of the system Σ we should go over 
all microstates of our system, one by one. For each microstate E{ } of our system, 
we should calculate in accordance with (2.118) the corresponding energy of the 
thermal reservoir. Then we should go over all reservoir’s microstates Eres res{ }  in 
the group with this value of energy because the thermal reservoir could be in any of 
them. Finally, we obtain

� (2.119)

where in the last equality we went from the sum over microstates E{ } to the sum 
over the different values of energy for our system.
The isolated system Σ is in the MCE. Therefore, all its microstates are equiprobable:

�
(2.120)

In this case, the probability for our system to be in a particular microstate E{ } 
with energy E  is the sum of probabilities (2.120) over all reservoir’s microstates 
Eres res{ }  with energy E E Eres = −Σ :

�
(2.121)

Then the probability for our system to have energy E  is just gE  times higher 
because in this case our system can be in any of gE  microstates of the group cor-
responding to this value of energy E:

�
(2.122)

ΓΣ

Σ

Σ
,

{ } :{ }
,MCE

E
E E E

E
E E E

res

Eres res

res

g g= =

= −

−∑∑ ∑1

w
E

MCE
MCEΣ Σ

Σ
ΣΓ{ }

=,
, .1

w
g

E
CE E E

res

MCE{ } , .= −Σ

ΓΣ

W g w
g g

E
CE

E E
CE E E E

res

MCE= = −
{ } , .

Σ

ΓΣ
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Problem 2.7.1

Illustrate formulae (2.119)–(2.122) with the aid of the Ising model without 
spin interactions when the model consists of N = 3 spins.

Solution: Let us assume for a moment that the system has, for example, 
energy E h= −µ . Then it is in one of three microstates ↑↑↓{ }, ↑↓↑{ }, or 
↓↑↑{ } while the energy of the reservoir is E E hres = +Σ µ  and the reservoir 

is in one of its gE h
res
Σ +µ

 microstates, corresponding to this value of energy. The 
general correspondence between two spectra is shown in the following figure.

Now, when we have described how two spectra are associated one with 
another, we can start constructing microstates EΣ Σ{ }  of the total system Σ. 
If our system is in microstate ↑↑↑{ }, the thermal reservoir can be in any of 
its g

E h
res
Σ +3µ

 microstates Eres res{ }  and a combination of microstate ↑↑↑{ } and 
any of these reservoir’s microstates form a microstate EΣ Σ{ }  of the system 
Σ. When our system is in one of microstates ↑↑↓{ }, ↑↓↑{ }, ↓↑↑{ }, a com-
bination of any of these microstates and any of gE h

res
Σ +µ

 reservoir’s microstates 
again form a microstate EΣ Σ{ }  of the system Σ. And so on. Summing, we find

�

(2.123)

The system Σ is isolated, and all its microstates are equiprobable:

�
(2.124)

How do we find the probability for our system to be, for example, in micro-
state ↑↓↓{ }? When our system is in this microstate, its energy is E h= µ  and 
the energy of the reservoir is E E hres = −Σ µ . Therefore, the thermal reservoir 
can be in any of its gE h

res
Σ −µ

 microstates, which, together with microstate 

ΓΣ
Σ Σ Σ Σ

,MCE
h E h

res
h E h

res
h E h

res
h E

g g g g g g g g= + + +− + − + − −3 3 3µ µ µ µ µ µ µ 33

3 3
3 3

µ

µ µ µ µ

h
res

E h
res

E h
res

E h
res

E h
resg g g g= + + +

+ + − −Σ Σ Σ Σ .

w
g g g gE

MCE

E h
res

E h
res

E h
res

E h
resΣ Σ

Σ Σ Σ Σ

Σ

{ }
+ + − −

=
+ + +

, .1
3 3

3 3µ µ µ µ
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2.8 � Nonequilibrium Fluctuations of the Canonical 
Ensemble

In formulae (2.121) and (2.122), we have utilized the superscript “CE” because 
these probability distributions corresponded to the rules dictated by the CE and, 
therefore, were in equilibrium with the ensemble. In this section, we introduce non-
equilibrium fluctuations as nonequilibrium probability distributions.

In the MCE, the microstates E p,{ } were distinguished by some set of fluctuat-
ing parameters p while their energy was prescribed by the isolation condition. In 
the CE, energy E  of the system becomes a new fluctuating parameter. Then we de-
fine the nonequilibrium fluctuation E p,{ }{ } macrostate E p,{ }{ }( ) by the following 
nonequilibrium probability distribution:

�
(2.127)

The simplest case, which we consider in future formulae, is when we distinguish 
macrostates only by the values of energy of the system. These fluctuations E{ }{ } 
are defined by the distribution

�
(2.128)

w
E E and p p

otherwiseE p
E p E E
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

,
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
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
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1

0

/ ,

,
.,Γ

Γ

δ

↑↓↓{ } , form gE h
res
Σ −µ
 microstates of the system Σ. Since the probability of any 

of microstates of the system Σ is (2.124), to find the probability for our system 
to be in microstate ↑↓↓{ } we should sum probabilities (2.124) for gE h

res
Σ −µ

 cor-
responding microstates of the system Σ:

� (2.125)

To find the probability for our system to have energy E h= µ , we should 
sum the probabilities for our system to be in any of its microstates ↑↓↓{ }, 
↓↑↓{ }, ↓↓↑{ }:

�

(2.126)
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In this case, the macrostate E{ }{ } is just the fluctuation corresponding to the system 
with energy E; and we will call this macrostate as the energy fluctuation in the 
system.

The statistical weight Γ E{ }{ } of energy fluctuation E{ }{ } is just the statistical 
weight of this energy level (of this group of microstates):

� (2.129)

Substituting the nonequilibrium distribution of probabilities (2.128) into the defini-
tion of entropy (2.21), we find the entropy of the fluctuation E{ }{ }:
�

(2.130)

again obeying Boltzmann’s rule.

What is the probability to observe fluctuation E{ }{ } in the CE, that is, the prob-
ability to observe the system in the CE at a particular energy level (group of micro-
states)? Obviously, we have already found this probability as probability (2.122) for 
the system to have energy E:

�

(2.131)

While ΓΣ,MCE  is some constant, two other quantities, Γ E Eg{ }{ } ≡  and 
Γ

Σ Σ
E E

res
E E
res

res g
−{ }{ } −

≡ , depend on the energy E  of the fluctuation E{ }{ }. Since both 

these quantities also depend exponentially on N , these are very fast dependencies.

Γ E Eg{ }{ } = .

S w wE E E
E

E{ }{ } { }{ }= − =∑ { } { }
{ }

ln ln ,
 



Γ

W wE
CE

E E
CE

E E E

res

MCE

res

{ }{ } { }{ }

{ }{ } −{ }{ }
= =Γ

Γ Γ

Γ

Σ

Σ{ } , .

Problem 2.8.1

Explain what energy fluctuations are with the aid of the Ising model without 
spin interactions when the model consists of N = 3 spins.

Solution: There are four energy fluctuations in this model: −{ }{ }3µh , −{ }{ }µh , 
µh{ }{ }, and 3µh{ }{ }.
Macrostate −{ }{ }3µh  corresponds to the fluctuation with energy E h= −3µ . 

Only one microstate ↑↑↑{ } corresponds to this fluctuation; therefore, its sta-
tistical weight equals unity, Γ −{ }{ } =3 1µh , and its entropy is zero, S h−{ }{ } =3 0µ .

Three microstates ↑↑↓{ }, ↑↓↑{ }, and ↓↑↑{ } correspond to energy fluc-
tuation −{ }{ }µh  with statistical weight Γ −{ }{ } =µh 3 and entropy S h−{ }{ } =µ ln 3 .

Similarly, for two remaining energy fluctuations we have 
{ }{ } 3
µ

Γ =h
 and 

S hµ{ }{ } = ln 3, Γ 3 1µh{ }{ } =  and S h3 0µ{ }{ } = .
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When the system is taking some energy away from the thermal reservoir, its sta-
tistical weight rapidly increases while the statistical weight of the reservoir rapidly 
decreases. The “clash” of these two “fast” dependencies leads to the appearance 
of a very narrow maximum of the probability distribution (2.131). To obtain this 
maximum, we find when the derivative of the probability distribution (2.131) (or 
the derivative of the logarithm of this distribution) becomes zero at the point of the 
most probable, equilibrium fluctuation E0{ }{ }:

�
(2.132)

Equation (2.132) is called the equation of the equilibrium macrostate. Differentiat-
ing (2.131), we find

�

(2.133)

where S
E

res
res res{ }{ }

 is the entropy of the fluctuation Eres res{ }{ }  of the reservoir.

Following thermodynamics, for quasistatic processes we define a system’s tem-
perature as the derivative of the system’s energy with respect to system’s entropy:

�
(2.134)

Since in the vicinity of the equilibrium all fluctuations are small (near quasistatic), 
the equilibrium equality (2.133) transforms into the requirement for the system’s 
temperature to be equal to the reservoir’s temperature:

�
(2.135)

where β  usually denotes the inverse temperature, β ≡1/T .
Let us now obtain a more suitable expression for the probability to observe our 

system in microstate E{ }. Since ΓΣ,MCE is constant and does not depend on the sys-
tem’s energy, we transform (2.121) into

� (2.136)
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∂
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Our system and its fluctuations are small in comparison with the energy of the ther-
mal reservoir. Therefore, we can expand the reservoir’s entropy in powers of the 
energy E  of our system as a small parameter:

�

(2.137)

Since all processes are quasistatic for the thermal reservoir, we have utilized here 
definition (2.134) for its temperature. Also we should note that the reservoir’s tem-
perature has been defined at the point when all the energy of the total system Σ is 
gathered inside the reservoir and our system has zero energy:

�
(2.138)

But the thermal reservoir is so huge in comparison with the energy of fluctuations 
in our system that its temperature does not depend on what the energy of our system 
is. That is why the thermal reservoir provides the constant temperature boundary 
condition T constres =  and we can refer to its temperature as to a constant regardless 
of what is currently the energy of our system.

The obtained probability distribution

�
(2.139)

is called Gibbs probability distribution, where ZCE is the normalization constant of 
this distribution,

� (2.140)

which is called a partition function of the CE. Similar to the statistical weight of the 
MCE, this function normalizes the distribution of probabilities of separate micro-
states. Therefore, it is often referred to as a statistical sum of the CE. Later we will 
see that there is more to this similarity than we have mentioned here.

We have defined a partition function as a sum of terms e E T res− /  over all micro-
states of the system. But since terms e E T res− /  depend only on system’s energy, we 
can transform sum (2.140) into summation over energy levels (groups of micro-
states):

� (2.141)

Recalling that we have built macrostates E{ }{ } as energy fluctuations equivalent to 
observe the system at a particular energy level (group of microstates) and that the 
statistical weight of fluctuation (2.129) is the statistical weight of this energy level 
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(group of microstates), we can interpret (2.141) as the summation over all possible 
energy fluctuations:

� (2.142)

The difference between (2.141) and (2.142) is just a matter of notation; and we will 
utilize both expressions at our convenience.

2.9 � Properties of the Probability Distribution of Energy 
Fluctuations

Having found in the previous section the probability (2.139) of one microstate, we 
substitute it into (2.131) to find the probability of energy fluctuations in the CE:

�
(2.143)

where the normalization of this distribution follows from

�
(2.144)

Earlier we have assumed that the probability distribution (2.143) has a very 
narrow maximum. Let us now prove this statement. For the first derivative of the 
logarithm of (2.143), we find

�
(2.145)

At the point E0 of the maximum, this derivative is zero and, therefore, the equality 
of equilibrium (2.135) is valid.

The second derivative

�
(2.146)

at the point E0 equals

�
(2.147)
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Substituting these derivatives into the expansion of lnW E
CE
{ }{ } in powers of small 

energy deviations from E0,

�

(2.148)

and exponentiating the obtained equality, we find the probability distribution of 
nonequilibrium energy fluctuations in the vicinity of the equilibrium macrostate 

E0{ }{ } to be Gaussian:

�
(2.149)

Since both energy and heat capacity are extensive parameters (proportional to N ), 
for absolute energy fluctuation and relative energy fluctuation we find

� (2.150)

and

� (2.151)

Here O( )1  means the absence of a dependence on N , but contains constants related 
to energy spectrum, like µh  in the case of the Ising model. Therefore, O( )1  can, in 
fact, be significantly less or more than unity and we have utilized here the notation 
O( )1  only to emphasize the absence of a dependence on N .

Only energy fluctuations under the Gaussian “bell” (2.149) of the probability 
maximum have nonzero probabilities and, therefore, only these fluctuations deter-
mine system’s behavior. To find how many fluctuations E{ }{ } are under the “bell,” 
we should divide (2.150) by the energy difference ∆E  between two adjacent energy 
levels (groups of microstates).

For the ideal gas, the adjacent energy values differ by the transition of one of gas 

particles into the next cell in its phase space ∆ ∆ ∆E p
m

p
L

= ∝ ∝
2

2
2π

. For the Ising 

model, one spin flip ∆E h∝ 2µ  moves the system to the next energy level. In both 
cases, the difference between two adjacent energy levels (groups of microstates) of 
the energy spectrum is some small quantity that does not depend on N . Dividing 
δ E  by ∆E , we find that the number of energy fluctuations under the Gaussian 
“bell” of the probability maximum is proportional to N :

� (2.152)
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However, if ∆E  depended on N  as a power-law ∆E N∝ −α, the number of energy 
fluctuations with nonzero probabilities would still be a power-law dependence on 
N  but with different exponent:

�
(2.153)

From (2.151) we see that the relative width of the probability maximum is inverse-
ly proportional to N  and, therefore, is indeed very small. The maximum is provided 
by “clash” (2.143) of two dependencies, Γ E{ }{ } and w E

CE
{ }, exponential on the energy E  

of fluctuation (which means exponential dependence on N  because E N∝ ). There-
fore, these dependencies are very “fast” (very sensitive to energy change) and their 
product creates a very narrow probability maximum at the point E0.

Since the maximum is very narrow, its point E0 should correspond to the aver-
aged system’s energy in the CE. Let us prove this statement.

The averaged value of an arbitrary parameter f  in the ensemble is provided by 
definition (2.24). Applying this definition to system’s energy in the CE, we find

� (2.154)

Here Γ E{ }{ } and w E
CE
{ } again depend exponentially on energy (on N ) while the mul-

tiplier E  is a power-law dependence on N  (proportional to N ). Therefore, both 
functions, Γ E{ }{ } and w E

CE
{ }, are much more “faster” than the “slow” dependence of 

multiplier E ; and the product Γ E E
CE

E
CEw W{ }{ } { }{ }={ } , which has a very narrow maxi-

mum, seems to act like a δ-function at the point E0: δ ( )E E− 0 . All the more so that 
this δ-function is normalized to unity by (2.144). So, we expect that (2.154) can be 
transformed into

� (2.155)

which would indeed prove our statement that the point E0 of the probability maxi-
mum equals the averaged value of energy in the CE.

To prove (2.155), we should find how the change δ E of the “slow” dependence 
E  over the width of the maximum influences the value of integral (2.155). Since the 
change δ E  of E  over the width of the maximum is provided by (2.150), neglecting 
δ E  in comparison with E  itself would lead to the following error in the integral:

� (2.156)

We see that E0 does not equal exactly to E CE but the difference is of the order 
of N . And since E N0 ∝ , we can indeed neglect O( )N  in comparison with E0 
which finally proves our statement.
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Problem 2.9.1

Illustrate formulae (2.150)–(2.156) with the aid of the Ising model without 
spin interactions.

Solution: As an example, we consider the Ising model with 100 spins and for 
simplicity will assume that µh =1 and T res = 1. In the following figure, we 
plot the “clash” between the statistical weight of fluctuations Γ E{ }{ } and the 
probability w E

CE
{ } of microstates. Their product provides the maximum of W E

CE
{ }{ } 

at the point E0. In the figure, we apply the logarithmic scale for the ordinate 
axis. Therefore, all the dependencies only seem to be slow while in reality 
they change by many orders of magnitude.

In the next figure, we plot the dependence of the probability distribution 
W E

CE
{ }{ } on the energy of fluctuations in linear axes. Fluctuations are presented 

by separate columns under the common “bell” of the maximum; the distance 
between two adjacent fluctuations corresponds to one spin “flip”∆E = 2.

The absolute width of the maximum is of the order of  δ E N E E∝ =∆ ∆10  
and there are only about N =10 separate fluctuations under the “bell.” The 
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The energy E0 of the most probable macrostate E0{ }{ } is determined by the equa-
tion of the equilibrium macrostate (2.132). Solving this equation for a real system, 
we find E0 as a function of the ensemble boundary condition T res, volume, and the 
number of particles in the system. For example, for the ideal monatomic gas we 

would find E NT0
3
2

= .

But now in accordance with (2.156) we have proved that the energy E0 of the 
most probable macrostate equals the averaged energy in the CE. Substituting (2.156) 
in the equation of equilibrium macrostate (2.132), we find the equation of state of 

the system. For the ideal monatomic gas this provides E NTCE =
3
2

.

Since (2.156) is always valid, in future we will not distinguish the equation of 
the equilibrium macrostate and the equation of state. So, we will refer to (2.132) as 
to just the equation of state.

The possibility to neglect “slow,” power-law dependences in comparison with 
“fast,” exponential dependences presents a useful method which we will often apply 
in future. Let us, for example, consider the condition of the probability distribution 
normalization (2.144). Here the sum goes, in fact, only over those fluctuations that 
are lying under the “bell” of the maximum because only these fluctuations have 
nonzero probabilities. Following (2.153), the number of these fluctuations is a pow-
er-law dependence on N  N(  in the particular case of the Ising model considered 
in Problem 2.9.1). Therefore, we can approximate the sum as

�
(2.157)

We have obtained a very important equality. Firstly, it proves that at the point 
E0 of the maximum, the probability w E

CE
{ }0  of microstates equals with logarithmic 

accuracy the inverse statistical weight Γ E0{ }{ } of the equilibrium macrostate E0{ }{ }:

� (2.158)

Secondly, equality (2.157) means that the sum W E
CE

E

{ }{ }
{ }{ }
∑ , which normalizes the 

probability distribution W E
CE
{ }{ }, gathers (with logarithmic accuracy!) its unity value 

only over its maximal term. We have emphasized here that this is valid only with 

1
1
2

0 0 0
= ≈









 ≈{ }{ }

{ }{ }

+

{ }{ } { }{∑ Γ Ο Γ ΓE E
CE

E
E E

CE
Ew N w{ } ln { } ln

α

}} { }{ }≡w WE
CE

E
CE

{ } .
0 0

w E
CE

E
{ } ln .

0
0

1
≈

{ }{ }Γ

averaged energy corresponds to averaging over these fluctuations with non-
zero probabilities. Therefore, E CE  lies also somewhere under the “bell” and 
its difference with the point E0 of the maximum is of the order of the maxi-
mum width: E E E

CE
= ±0 δ . Since E N0 100∝ =  and δ E N∝ =10, we 

can neglect the difference; the more so, the higher number of degrees of free-
dom in the system.
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the logarithmic accuracy because there are at least N
α+

1
2 other fluctuations under 

the “bell” of the maximum with similar probabilities W WE
CE

E
CE

{ }{ } { }{ }≈ln 0
. Therefore, 

the maximal term W E
CE

0{ }{ } is N
α+

1
2 times less than unity.

It is customary to present equality (2.157) in a more intuitively clear form. Let us 
multiply this equality by the partition function ZCE of the ensemble:

�
(2.159)

The first equality here is just definition (2.142) of the partition function while the 
second equality is much more important because it claims that the partition function 
of the ensemble is equal (with logarithmic accuracy) to its maximal term.

Z e eCE
E

E T

E
E

E Tres res

= ≈{ }{ }
−

{ }{ }
{ }{ }

−∑ Γ Γ/
ln

/ .
0

0

Problem 2.9.2

Illustrate formulae  (2.157)–(2.159) with the aid of the Ising model from 
Problem 2.9.1.

Solution: From the second figure in Problem  2.9.1, we see that the sum 

W E
CE

E

{ }{ }
{ }{ }

∑  gathers its unity value over the width of the maximum. But there are 

about N =10 fluctuations with similar probabilities under the “bell” of the 
maximum

� (2.160)

In other words, the total sum is N =10 times higher than its maximal term 
W E

CE
0{ }{ }:

� (2.161)

But both functions, Γ E{ }{ } and w E
CE
{ }, depend exponentially on N . Therefore, 

applying logarithmic accuracy to this equation, we return to (2.158). Indeed, 
if we look at the first figure in Problem 2.9.1, we see that at the point 0E  both 
values, { }{ }0

157·10EΓ =  and w E
CE
{ } .

0
1 4 10 17= ⋅ − , are symmetric relative to unity

� (2.162)

In comparison with the order of 1015 (and it is already for only 100 spins in 
the model!), we always can neglect multiplier 10 with logarithmic accuracy.

1
85 65

0
= ≈ ∝{ }{ }

{ }{ }
{ }{ }

{ }{ } − < <−
{ }{ }∑ ∑W W NWE

CE

E
E
CE

E E
E
CE

:

.

W w
NE

CE
E E

CE
0 0 0

1
{ }{ } { }{ }≡ ∝Γ { } .

w
NE

CE

E E E
{ } ln .

0

0 0 0

1
10

1 1
≈ = ≈

{ }{ } { }{ } { }{ }Γ Γ Γ
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In this section, we have considered the behavior of the probability distribution W E
CE
{ }{ } 

and have found that it has a very narrow maximum provided by the “clash” of two 
“fast” dependencies: Γ E{ }{ } and w E

CE
{ }. But does this situation always take place? Are 

there situations when two “fast” dependences happen to be not enough to create a 
narrow maximum of the probability distribution?

Unfortunately, there are indeed situations when the presented formalism does 
not work. Let us consider a system whose statistical weight Γ E{ }{ } obeys a simple 
exponential dependence on the energy of the system:

� (2.164)

We should mention here that everywhere above we have assumed something more 
complex. For example, the statistical weight (2.17) of the Ising model was more 
complex than the simple exponential dependence. But what would happen if we 
indeed had (2.164)?

Substituting (2.164) into the probability distribution (2.143), we find that both 
“clashing” functions are exactly exponential on E,

�
(2.165)

when one exponential dependence cancels another leaving us with just simple ex-
ponential probability decay (the maximum now is at E = 0):

�
(2.166)

Γ E
const Ee{ }{ } ≈ln

· .

W w e
Z

eE
CE

E E
CE const E

CE
T

Eres

{ }{ } { }{ }
⋅

−
= =Γ { } ,1 1

{ }{ }

1
1 .

   
 

 

 − −  =
res const E

CE T
E CEW e

Z

Multiplying equality (2.160) by the partition function ZCE of the CE, we find

�

(2.163)

The first equality here is the definition of the partition function. The second 
equality tells us that the sum gathers its value over ten fluctuations under 
the “bell” of the maximum. Both the main term Γ E

E Te
res

0

0

{ }{ }
− /  of the partition 

function and the partition function itself, ZCE = ×7 1049, depend exponentially 
on N . Therefore, we can neglect the power-law multiplier N =10 (10 in 
comparison with 1049!) which returns us to (2.159).

Z e eCE
E

E T

E
E

E T

E E

res res

= ≈

∝

{ }{ }
−

{ }{ }
{ }{ }

−

{ }{ } − < <−
∑ ∑Γ Γ/ /

: 85 65

10ΓΓ ΓE
E T

E
E Te N e

res res

0

0

0

0

{ }{ }
−

{ }{ }
−∝/ / .
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Unfortunately, a similar situation takes place in the case of percolation which we 
consider in Chap. 4. From our point of view, this is the reason why the complete 
analogy between percolation phenomena and phase transition phenomena of statis-
tical physics has not been developed yet.

In the rest of this chapter, we consider only “good” systems whose probability 
distribution W E

CE
{ }{ } for energy fluctuations in the CE has a narrow maximum at point 

E0. To the opposite situation in the case of percolation, we return in Chap. 6.

2.10 � Method of Steepest Descent

In Sect. 2.8, we have utilized expression (2.142) for the partition function when in-
stead of summing over microstates E{ } we summed over energy fluctuations E{ }{ }. 
But energy fluctuations are represented by energy levels (groups of microstates) 
separated by very small interval ∆E  (which, in general, could vary over the spec-

trum: ∆E E( ) ). Therefore, we can approximate the sum Γ E
E

{ }{ }
{ }{ }
∑  by the integral 

Γ

∆
E dE

E E
g E dE{ }{ }

∫ ∫≡
( )

( ) , where we introduced the quantity

�
(2.167)

called the density of microstates in the spectrum because the product  

g E dE g dE
E E
E( )
( )

≡
∆

 provides the number of microstates in dE. Let us illustrate this 

quantity with the aid of the Ising model.

g E
E E

g
E E

E E( )
( ) ( )

≡ =
{ }{ }Γ

∆ ∆

Problem 2.10.1

Find the density of microstates for the Ising model without spin interactions.

Solution: In the case of the Ising model, two adjacent energy levels are 
divided by one spin flip

� (2.168)

Therefore, the density of microstates equals

�
(2.169)

where the dependence of the statistical weight gE  on system’s energy E is 
provided by (2.7) and (2.17)

| | .∆E h= 2µ

g E g
h

E( ) ,≡
2µ



1072.10 � Method of Steepest Descent�

Applying approximation (2.167) to (2.142), for the partition function we find

�
(2.171)Z dE g E eCE E T res

≈ ∫ −
ln

/( ) .

�

(2.170)

g N
N E

h
N E

h

E
N h

E

N E
N

=
−









 +










≈ −










− −

!

! !

ln

2 2 2 2

1
2 2

1
2 2

µ µ

µ

µµ µ

µ

h
N E

N hE
N h









 − +











+










1
2 2

1
2 2

.

Problem 2.10.2

For the Ising model without spin interactions, approximate the sum over 
energy fluctuations by integral.

Solution: Utilizing the obtained density of microstates (2.169), for the parti-
tion function we find

� (2.172)

However, for the purpose of convenience for the Ising model it is standard 
practice to integrate not over system’s energy but over system’s magnetiza-
tion. Indeed, from (2.7) we recall that the energy of the Ising model without 
interactions is bijectively associated with the specific magnetization,

� (2.173)

when any energy fluctuation E{ }{ } bijectively corresponds to a magnetization 
fluctuation m{ }{ }. Therefore, instead of summing over energy fluctuations, 
we can sum terms of the partition function over magnetization fluctuations,

�
(2.174)

where the statistical weight Γ m{ }{ } of a fluctuation is provided by (2.17):

�
(2.175)

Z dE g E eCE

N h

N h
E T res

≈
−

+
−∫ln

/( ) .
µ

µ

E N hm= − µ ,

Z eCE
m

E m T

m

res

= { }{ }
− ( )

{ }{ }
∑ Γ / ,

Γ m

N m N m

m m
{ }{ }

−
+

−
−

≈
+








−





ln .1

2
1
2

1
2

1
2



108 2  Ensemble Theory in Statistical Physics: Free Energy Potential

From expressions (2.171), (2.172), and (2.176), we see that the common feature of 
all these integrals is the exponential dependence of the integrand on N. To find such 
integrals, the method of steepest descent ( saddle-point method) is often applied. 
Since this method is not always included in the textbooks on statistical physics, we 
develop it in the current section.

Our purpose will be to find in the complex plane z x iy= +  the integral

�
(2.178)

where in the integrand’s exponent the number N  is finite but very large: N >> 1. We 
assume both functions, f z( ) and F z( ), to be analytic.

Let us separate the function f z( ) into its real and imaginary part,

� (2.179)

where both functions, u x y( , ) and v x y( , ), are real and, since f z( ) is analytic, obey 
Cauchy–Riemann conditions:

�
(2.180)

From (2.180) we easily find that

�
(2.181)

These equalities mean that both surfaces, u x y( , ) and v x y( , ), are the saddle surfaces 
when one curvature equals minus another curvature.

Let us assume that for the function f z( ) we have found its saddle point deter-
mined by the condition

� (2.182)

I e F z dzNf z

z

z

≡ ( )( )∫
1

2

,

f z u x y iv x y( ) ( , ) ( , ),= +

∂
∂

=
∂
∂

∂
∂

= −
∂
∂

u
x

v
y

u
y

v
x

 and .

∂
∂

= −
∂
∂

∂
∂

= −
∂
∂

2

2

2

2

2

2

2

2
u
x

u
y

v
x

v
y

 and .

′ =f z( ) .0 0

In equality (2.174) the sum can also be approximated by integral

� (2.176)

where we again utilized that the difference between two fluctuations corre-
sponds to one spin flip:

� (2.177)

Z dm
N

eCE
m

E m T res

≈
−

+

{ }{ }
−∫ln

( )/

/
,

21

1

Γ

| | / .∆m N= 2



1092.10 � Method of Steepest Descent�

Then we deform the contour of integration so that it passes through this point.
Next, we expand f z( ) in the vicinity of z0 in powers of z z− 0,

�
(2.183)

with the radius R of convergence. The coefficients of the power expansion are

�
(2.184)

where CR is the contour of radius R with the center at z0.
Since the function  f z( ) is analytic, it is bounded at the given contour,

� (2.185)

along with its coefficients:

�
(2.186)

In the neighborhood of z0 we will utilize Euler’s form for z,

�
(2.187)

where we always bound the considered neighborhood by the convergence radius R 
of series (2.183):

� (2.188)

Let us consider how significant is the contribution of the last sum in (2.183). 
Utilizing (2.186) and the expression for the sum of geometric progression, we find

�
(2.189)

Considering small r R<< , we can neglect r  in the denominator:

�
(2.190)

So far we have considered arbitrary r, providing it is small enough. However, 
now we choose r  to obey the particular inequality,

� (2.191)

f z f z C z z C z zn
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R
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which is, obviously, always possible because N >> 1. This neighborhood of the 
point z0 we will call the r0-neighborhood.

Substituting the radius of the r0-neighborhood into (2.190), we obtain

�
(2.192)

Parameter α  in (2.191) is some positive real number. After choosing

�
(2.193)

sum (2.192) inside the r0-neighborhood becomes of the order of O 1 3 1/ N α−( ) while 

its exponent is of the order of e N
NO

O
1 3 1

3 1

1 1
/

/
α

α
−( ) −= + ( ). Therefore, its contribu-

tion to the integral over the r0-neighborhood provides the integrand multiplier of 
the order of unity and in the r0-neighborhood we can consider only two first terms 
of (2.183):

� (2.194)

We want to develop the method in such a way that the main contribution to inte-
gral (2.178) would be provided by the integration over the r0-neighborhood of the 
saddle point z0 and that both terms in (2.194) would participate significantly. The 
estimation of the participation of the second term is

�
(2.195)

For it to be significant, we should require that

�
(2.196)

As we will see later, condition (2.196) also allows us to neglect the integration over 
the contour beyond the r0-neighborhood of the saddle point z0.

Inside the r0-neighborhood we will utilize Euler’s form for (2.194):

� (2.197)

Earlier we have deformed the contour of integration so that it would pass through 
the saddle point z0. Now we choose the direction at which it crosses the r0-neighbor-
hood of this point:

� (2.198)
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Rn
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0 when 
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Substituting this angle into (2.197), we find

� (2.199)

In other words, along the chosen path the increment of the function is real. Recall-
ing (2.179), we see that inside the r0-neighborhood the imaginary part v x y( , ) of 
f z( ) remains approximately constant, v x y v x y( , ) ( , )≈ 0 0  . And since on the complex 
plane the curves v const=  and u const=  are always perpendicular one to another, 
we conclude that our contour corresponds now to the direction of the steepest de-
scent of the real part u x y( , ) as it is schematically shown in Fig. 2.10.

Further we assume that function u x y( , ) continues to decrease monotonically 
while we move away from the r0-neighborhood along the contour. This is the main 
assumption of our method. If it happened to be not valid, we should be more careful 
with the obtained results. In particular, this assumption is not valid in the presence 
of several saddle points. In this case, we should take into account all of them by a 
similar approach.

Let us divide the contour of integration into three parts (Fig. 2.11): from z1 up 
to the r0-neighborhood of the saddle point z0, inside this neighborhood, and from 
this neighborhood to z2. We will denote two cross-points of the contour and the r0
-neighborhood as −r0 and r0.

Since z0 is constant, we can move the integrand’s multiplier eNf z( )0  ahead of the 
integral (2.178),

� (2.200)

f z f z C r( ) ( ) .− ≈ −0 2
2

I e e F z dzNf z N f z f z

z

z

= ( )( ) ( )− ( ){ }∫0 0

1

2

;

Fig. 2.11   The contour 
corresponds to the direction 
of the steepest descent of the 
function u x y( , )

 

Fig. 2.10   The contour 
corresponds to the direction 
of the steepest descent of 
function u x y( , )
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and our purpose becomes to find the integral:

�
(2.201)

The variable r  has been, in fact, parametrizing the contour of integration inside 
the r0-neighborhood in accordance with (2.187). We will continue to utilize the pa-
rametrizing definition (2.187) outside of the r0-neighborhood as well; however, in 
this case the angle is no longer provided by (2.198) but is some other dependence 
φ( )r  on the parameter r.

Let us estimate the contribution to integral (2.201) coming from the path from 
z1 up to −r0:

�

(2.202)

where we have utilized that always f z dz f z dz
z

z

z

z

a

b

a

b

( ) ( )∫ ∫≤  and that  e eNf z Nu x y( ) ( , ).=  

If we also recall that we have assumed the function u x y( , ) to be monotonically de-

creasing while we move away from the point z0, we obtain
�

(2.203)

But the difference in the exponent is provided by (2.199),

� (2.204)

where the radius r0 of the r0-neighborhood is defined by (2.191):

� (2.205)

Substituting (2.205) into (2.203), we find

�
(2.206)

However, earlier in (2.196) we have considered only α <1 2/ . Now we see that 
this particular requirement provides that in the limit N >> 1 we can neglect the inte-
gration along the contour from z1 to −r0. A similar statement is valid and for the in-
tegration from r0 to z2. Therefore, requirement (2.196) provides that the main value 
of integral (2.201) comes from the r0-neighborhood of the saddle point z0 while the 
integration along the rest of the contour may be neglected.
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�
(2.207)

Since in the general case function F z( ) is not singular at the point z0, we can 
neglect its change inside the small r0-neighborhood:

�
(2.208)

Changing the variable,

� (2.209)

we obtain

�
(2.210)

Since N >> 1, the upper and lower integration limits are also some large numbers 
and we would like to know whether it would be possible to replace both integration 
limits with infinity. In order to do that, we should evaluate the asymptotic behavior 
of the error function:

�
(2.211)

Changing the variable

� (2.212)

we find that

�
(2.213)

The second variable change

� (2.214)

allows us to set the lower limit to zero:

�
(2.215)
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The integrand’s multiplier e z−  provides that the integral gathers its main value 
while z  is of the order of unity. In this limit, the value of z

X 2 1<<  is negligible in 
comparison with unity:

�
(2.216)

Applying this result to evaluate the following integral

�
(2.217)

we see that we indeed can replace both integration limits in integral (2.210) with 
infinity

�
(2.218)

Substituting this result into the initial integral (2.178), we finally obtain

�
(2.219)

We should note that this result is valid with the accuracy of the multiplier of the 

order of unity: 1 1
+ 






O

N β
, where β > 0. However, in statistical physics for statisti-

cal weights and partition functions, both exponentially depending on N , we gener-
ally utilize the logarithmic accuracy. Applying logarithmic accuracy to (2.219), we 
should neglect all power-law multipliers to find

�
(2.220)

where the saddle point z0 of the function f z( ) is determined by

� (2.221)

To apply this result to the sum of partition function we, firstly, should present 
this sum in the form

� (2.222)
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where we have emphasized that the integrand depends exponentially on N  because 
both entropy S E{ }{ } and energy E  are extensive parameters. Transforming the sum 
into integral

�
(2.223)

and applying (2.220), we find that with logarithmic accuracy the sum in (2.222) is 
equal to one of its terms,

�
(2.224)

where E0 is determined by

� (2.225)

Modifying the left-hand side of (2.225) as

�
(2.226)

and recalling that ZCE does not depend on the energy of fluctuation E{ }{ }, we find 
that E0 is determined by the equation of the equilibrium macrostate (2.132)

�
(2.227)

corresponding to the point of the maximum of probability distribution W E
CE
{ }{ } and 

simultaneously to the point of the maximal term (2.159) of the partition function. 
Therefore, the method of steepest descent represents the “essence” of the main rule 
in the CE: the partition function of the ensemble is equal with logarithmic accuracy 
to its maximal term.

The method of steepest descent is often utilized to find partition functions of 
nonideal systems when the exact solution may be unknown. We consider this ques-
tion in more detail in the following chapters.
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2.11 � Entropy of the CE. The Equivalence of the MCE 
and CE

So far we have considered only the entropy (2.130) of energy fluctuations E{ }{ } 
but not the entropy of the ensemble itself. To find the entropy of the CE, we should 
substitute the equilibrium probability distribution (2.139) into definition (2.21) of 
the entropy functional:

� (2.228)

Transforming the sum over microstates E{ } into the sum over macrostates E{ }{ } 
and utilizing (2.143), we find

�
(2.229)

Here W E
CE
{ }{ } is again the very “exponentially fast” dependence on E which is equiva-

lent to δ ( )E E− 0 . On the contrary, ln { }w E
CE  is only proportional to E  (to N ) and is, 

therefore, a “slow” power-law dependence. So, for the entropy of the CE we expect 
to find

� (2.230)

To prove this equality, we should prove that the relative change of the function ln { }w E
CE  

over the width of the maximum of the probability distribution W E
CE
{ }{ } is negligible. 

Indeed, we find that

�
(2.231)

because δ E N∝  while E N0 ∝ . This proves (2.230).
Substituting (2.158) into (2.230)

� (2.232)

we find that the entropy of the CE (with the accuracy of terms small in comparison 
with N ) equals the entropy of the equilibrium macrostate:

� (2.233)

Similar to our statement after (2.69), we should mention here that these two parameters 
are often treated as one because of equality (2.233). However, the reader should 
clearly understand the difference: the entropy SCE of the ensemble is the  entropy 
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.
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of the equilibrium probability distribution (2.139) while the entropy S E0{ }{ }  is the 

logarithm of the statistical weight of the most probable fluctuation E0{ }{ }.

Since the statistical weight (2.129) of an energy fluctuation E{ }{ } is just the 
statistical weight of this energy level (of this group of microstates), for the entropy 
of the CE we find

� (2.234)

Let us now imagine the same system but strictly isolated with the energy E0. 
This corresponds to the case of the MCE, and the statistical weight and entropy of 
this ensemble are

� (2.235)

and

� (2.236)

Comparing (2.234) and (2.236), we see the equality between the entropies of two 
different ensembles (which means equality of other thermodynamic potentials be-
sides the entropy):

�
(2.237)

This equality is called the principle of equivalence between canonical and micro-
canonical ensembles.

Only energy fluctuations E{ }{ } under the “bell” of the maximum of probability 
distribution W E

CE
{ }{ } have nonzero probabilities. The number of these fluctuations is 

provided by (2.153), and each of them contains the number of microstates E{ } of 
the order of Γ E0{ }{ }.

Let us call the total number of microstates E{ } under the “bell” of the maximum 
of the probability distribution W E

CE
{ }{ } as the statistical weight of the CE, ΓCE. It is of 

the order of

�
(2.238)

so the entropy of the ensemble again obeys Boltzmann’s rule and equals the 
logarithm of the number of microstates where the system “lives” with nonzero 
probability:

� (2.239)
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2.12 � Free Energy Potential of the CE

From thermodynamics we know that for any system what is always valid is the 
inequality

�
(2.240)

where δQ← is the amount of heat supplied to the system. This inequality is a mix-
ture of two different phenomena. Firstly, any heat, quasistatically transferred into 
the system, increases the entropy of the system while any heat leaving the system 

decreases its entropy. This corresponds to the equality ∆S Q
T res=

←δ . However, if we 

consider nonequilibrium processes in an isolated system, there is already no heat 
exchange but the entropy of the system is increasing while the system achieves its 
equilibrium state: ∆S ≥ 0. The mixture of these two different phenomena is pre-
sented by the very inequality (2.240).

Thermodynamics defines the Helmholtz energy as

�
(2.241)

We will call (2.241) the “thermodynamic” definition.
Also, we should emphasize here that in this definition as well as in (2.240) we 

have utilized the temperature T res of thermal reservoir but not the temperature T  of 
the system itself. As we will see below, this is very important because only such a 
definition makes the Helmholtz energy free in the CE.

Finding the increment of the Helmholtz free energy, we should always remember 
the boundary condition T constres =  of the CE:

�
(2.242)

From the law of conservation of energy it follows that

� (2.243)

Substituting (2.242 and 2.243) into (2.240), we find that for arbitrary processes in 
the system the Helmholtz energy can only decrease (or stay constant):

� (2.244)

This suggests that the Helmholtz energy plays the role of the free energy potential 
in the CE.

To prove this statement we return from the thermodynamic considerations to 
statistical physics. First, we want to understand how inequality (2.240) is associated 
with inequality (2.70). Is one a consequence of the other?

∆S Q
T res≥

←δ ,

F T S Eres≡ − + .

∆ ∆ ∆F T S Eres= − + .

∆E Q= ←δ .

∆F ≤ 0.
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To answer this question let us return to the “big” system Σ consisting of two sub-
systems, our system and the thermal reservoir (Fig. 2.8). The system Σ is isolated 
and, therefore, obeys the rules of the MCE.

To investigate its behavior, we should construct somehow nonequilibrium fluc-
tuations p{ }{ }, where p is some set of system’s fluctuating parameters. In Sects. 2.4 
and 2.5, as p we utilized the fluctuations of concentration of the ↓-spins. But we 
are free in the choice of the type of fluctuations because fluctuations are just a tool 
helping us to investigate system’s behavior.

Being consistent with the previous discussions of the CE, we choose p to repre-
sent the energy of our system in contact with the thermal reservoir. In other words, 

for the system Σ we construct MCE fluctuations as macrostates E E E, Σ Σ
−{ }{ }  when 

our system has energy E  while the thermal reservoir has energy E E Eres = −Σ . We 
define these fluctuations with the aid of the following nonequilibrium probability 
distribution:

�
(2.245)

The statistical weight Γ
Σ Σ

Σ

E E E, −{ }{ }
 of the fluctuation E E E, Σ Σ

−{ }{ }  equals the 

number of microstates of the system Σ when our system has energy E while the 
reservoir has energy E E Eres = −Σ :

�
(2.246)

and for the entropy S
E E E, Σ Σ

Σ

−{ }{ }
 of this fluctuation we find

�
(2.247)

We have specifically constructed fluctuations E E E, Σ Σ
−{ }{ }  of the isolated sys-

tem Σ in such a way that they correspond to fluctuations E{ }{ } of our system in the 

CE. Considering now the latter, the entropy S E{ }{ } of the fluctuation E{ }{ } is
�

(2.248)

Similarly, for fluctuations Eres res{ }{ }  of the thermal reservoir we have

� (2.249)
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Substituting (2.248) and (2.249) into (2.247), we find that the entropy of the 
system Σ is additive over its subsystems:

�
(2.250)

We have to mention that we have been able to obtain the property of additivity here 
only because we considered the stroboscopic approximation of virtual isolation for 
the heat exchange properties when during the brief periods of isolation two subsys-
tems become, in fact, independent. Otherwise, the rule of additivity would not be 
applicable.

Equality similar to (2.250) should be valid and for increments of these quantities:

�
(2.251)

But the system Σ is isolated. Therefore, following inequality (2.70), the incre-
ment of its entropy is positive (or zero):

�
(2.252)

Earlier, in (2.137), we have already expanded the entropy S
E E

res
resΣ −{ }{ }

 of the ther-
mal reservoir:

�

(2.253)

Since the first term in the right-hand side of (2.253) is some constant which does not 
depend on fluctuations, for the increment of the entropy of the reservoir we obtain

�
(2.254)

Following the law of conservation of energy, we have

�
(2.255)

where the left-hand side is the amount of heat received by the thermal reservoir. 
Substituting −∆E into (2.254), we find

� (2.256)
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We have found that for the thermal reservoir, inequality (2.240) happens, in fact, 
to be always the equality. From thermodynamics we know that inequality (2.240) 
turns into equality only when all processes of heat exchange are quasistatic. This 
is indeed the case for the thermal reservoir because it difficult to expect something 
else from a system that has to provide the constancy of the boundary constraint 
T constres = . Therefore, the heat exchange could be not quasistatic for our small 
system but it is always quasistatic for the reservoir.

Substituting (2.254) into (2.252), we find

�
(2.257)

which proves that inequality (2.240) is the consequence of inequality (2.70). And 
we indeed see that this inequality should contain the temperature of the reservoir but 
not the temperature of our system.

Let us now define nonequilibrium Helmholtz energy. For energy fluctuations 
E{ }{ } in the CE, we utilize thermodynamic definition (2.241) to obtain

� (2.258)

Substituting into this expression entropy (2.130) of fluctuations E{ }{ }

� (2.259)

and normalization constraint w E
E

{ }
{ }
∑ =1, we transform definition (2.258) into

� (2.260)

where the probability distribution w E{ } is the probability distribution (2.128), non-
equilibrium with the CE.

Generalizing (2.260) to the case of an arbitrary ensemble and arbitrary probability 
distribution w{ } of microstates { }, we obtain the “stochastic” definition of the 
Helmholtz energy:

� (2.261)

Of course, this definition is valid as long as there is such a quantity as temperature 
of the thermal reservoir in the ensemble. With the exception of this limitation, defi-
nition (2.261) is completely equivalent to Gibbs definition (2.21) of entropy and 
could be used instead of (2.21) as a “cornerstone” for all our formulae. It can be 
even further generalized to the case when the statistical operator (quantum density 
matrix) is not diagonal:

� (2.262)
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which is again valid in any ensemble providing that the quantity T res  makes sense.
Similar to how we have found the entropy (2.228) of the CE, we can find the 

Helmholtz energy of the CE by substituting Gibbs probability distribution (2.139) 
into (2.261):

� (2.263)

This equality is often treated as the definition of the Helmholtz energy. However, 
we should always remember that it defines only the equilibrium value of the Helm-
holtz energy corresponding to the equilibrium probability distribution (2.139). To 
be valid for nonequilibrium values of the Helmholtz energy as well, equality (2.263) 
should be modified as we will see below.

Earlier we introduced the partition function ZCE of the ensemble as the nor-
malizing constant of Gibbs probability distribution (2.139). Now we see that this 
distribution can also be normalized by the Helmholtz energy of the ensemble:

�
(2.264)

We expect the Helmholtz energy to be the free energy potential of the CE. Let us 
now prove this statement by finding the connection of the Helmholtz energy with 
the probability distribution W E

CE
{ }{ } of fluctuations E{ }{ }. Considering again the MCE 

of the system Σ with fluctuations E E E, Σ
Σ

−{ }{ } , for the probability of a fluctuation 
in accordance with (2.73) we have

�
(2.265)

Substituting (2.250) and (2.253) into this expression and also recalling that fluctua-
tions E E E, Σ

Σ
−{ }{ }  of the MCE of the system Σ correspond to fluctuations E{ }{ } 

of the CE of our system, for the probabilities of latter we find

� (2.266)

Transforming (2.258) into

�
(2.267)

we can easily normalize the probability distribution (2.266):

�
(2.268)
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We have utilized here the MCE of the system Σ only to illustrate how the prob-
ability of fluctuations in the CE happens to be the consequence of the probability 
distribution (2.73) of the MCE. However, a much simpler way to obtain formula 
(2.268) is just to substitute (2.258) in its form (2.267) into (2.143):

�
(2.269)

From equality (2.268) we see that the probabilities of energy fluctuations in the 
CE exponentially decrease with the increase of the Helmholtz energy of these fluc-
tuations. To emphasize this association, we transform (2.268) into

� (2.270)

This expression can also serve as a definition of the Helmholtz energy and we will 
call it the “probabilistic” definition.

The logarithm is the monotonically increasing function. Therefore, the increase 
of the probability always leads to the decrease of the Helmholtz energy in the CE. 
This proves that the Helmholtz energy is indeed the free energy potential of the CE 
and that its minimum corresponds to the equilibrium state.

Let us now obtain the last definition of the Helmholtz energy. But first we need to 
define a partial partition function as the sum of terms e E T res− /  not over all system’s 
microstates { }E  but only over microstates corresponding to a particular energy 
level (to a particular group of microstates):

�
(2.271)

And since each energy fluctuation E{ }{ } corresponds to a particular energy level 
(group of microstates), the sum in (2.271) can be treated as if over the microstates 
{ }E  of this fluctuation E{ }{ } and, therefore, we can call (2.271) the partial partition 
function of this fluctuation E{ }{ }:

� (2.272)

The difference between two definitions, (2.271) and (2.272), is just a matter of 
notation.

Substituting (2.272) into (2.143), we find that the probability of an energy fluc-
tuation E{ }{ } is just the ratio of the partial partition function of this fluctuation 

E{ }{ } to the partition function of the ensemble:

�
(2.273)

W w
Z

e
Z

eE
CE

E E
CE

E CE
E T

CE

F Tres E
res

{ }{ } { }{ } { }{ }
− −

= = = { }{ }Γ Γ{ }
/ /1 1 ..

F T Z WE
res CE

E
CE

{ }{ } { }{ }= − ln( ).

Z e g eE
CE E T

E E E
E

E Tres res

≡ =−

=

−∑ 

 

/

{ }:

/ .

Z e eE
CE E T

E E E
E

E Tres res

{ }{ }
−

∈ { }{ }
{ }{ }

−≡ =∑ 

 

/

{ }:{ }

/ .Γ

W
Z

ZE
CE E

CE

CE{ }{ }
{ }{ }≡



124 2  Ensemble Theory in Statistical Physics: Free Energy Potential

which clearly reminds us (2.43) of the MCE. We see that while in the MCE the 
probability of a fluctuation is the ratio of the statistical weight of the fluctuation to 
the statistical weight of the ensemble, in the CE the probability of a fluctuation is 
the ratio of the partial partition function of the fluctuation to the partition function 
of the ensemble. In other words, the statistical weight in the MCE plays the role 
similar to the partition function in the CE. We will return to this similarity later.

The quantity Z WCE
E

CE
{ }{ } in (2.273) is just what defines the Helmholtz energy 

in (2.270). Therefore, we obtain the last, “partition” definition of the Helmholtz 
energy:

� (2.274)

We see that this definition differs from (2.263) only by the fact that under the sign of 
the logarithm is the partial partition function of this fluctuation but not the ensemble 
partition function. But the partition function of the CE is the sum (2.142) of partial 
partition functions of energy fluctuations:

�
(2.275)

Since the partition function of the ensemble is equal with logarithmic accuracy to 
its maximal term

� (2.276)

the ensemble Helmholtz energy approximately equals the Helmholtz energy of the 
equilibrium macrostate E0{ }{ }:

�
(2.277)

2.13 � Free Energy Minimization Principle

For the Helmholtz energy as the free energy potential, we will utilize the stochastic 
definition (2.261)

� (2.278)

acting as a functional on the function space of all possible probability distributions 
w E{ }. Since the probability distribution is always normalized,

� (2.279)
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we add this constraint into our functional by the method of Lagrange multipliers:

�
(2.280)

To follow the free energy minimization principle, we should find the equilibrium 
distribution w E

CE
{ } corresponding to minimal value of functional (2.280). To do that, 

we find when the derivatives of (2.280) become zero.
Differentiation with respect to λ returns us to constraint (2.279),

�
(2.281)

while the differentiation with respect to the probability w E{ }′ of microstate { }E ′ 
provides

� (2.282)

or

� (2.283)

Substituting (2.283) into (2.279), we find

�
(2.284)

which is equivalent to (2.139).
We have found the equilibrium distribution of probabilities for the case when 

the statistical operator (quantum density matrix) of the system was diagonal. In the 
opposite case, we should utilize the definition (2.262):

� (2.285)

subject to constraint

� (2.286)

which provides the functional

� (2.287)

Differentiation with respect to λ returns us to (2.286) while the variation with 
respect to ρ  provides

Ψ[ ] ln .{ } { } { }
{ }

{ }
{ }

w w T w E wE E
res

E
E

E
E

= +{ }+ −








∑ ∑λ 1

0 1=
∂
∂

= −∑Ψ
λ

w E
CE

E
{ }

{ }
,

0 = ∂
∂

= + + +
′

′
Ψ
w

T T w E
E

res res
E
CE

{ }
{ }ln λ

w eE
CE

T
T

E
T

res

res res

{ } .′ =
−

+
−

λ

w
Z

eE
CE

CE

E
T res

{ }′ =
−1

Ψ Η[ ] Tr ln  



ρ ρ ρ= +{ }( )T res

Tr ρ( ) =1

Ψ Η[ ] Tr ln Tr .  



ρ ρ ρ λ ρ= +{ }( ) + ( ) −( )T res 1



126 2  Ensemble Theory in Statistical Physics: Free Energy Potential

� (2.288)

Since (2.288) should be valid for an arbitrary variation δρ , we find

� (2.289)

The solution of (2.289) is the operator

� (2.290)

where 


1 is the unity operator. Substituting (2.290) into (2.286), we finally find the 
equilibrium statistical operator:

� (2.291)

where the partition function is now defined by

�
(2.292)

2.14 � Other Ensembles

First let us consider as an example the case of the μ–P–T-ensemble when the 
system is maintained at constant chemical potential µ res const= , constant pressure 
P constres = , and constant temperature T constres = . Therefore, fluctuating param-
eters are the system’s number of particles (degrees of freedom) N , volume V , and 
energy E.

Microstates of the system now are the eigenfunctions not only of the Hamilto-
nian of the system but also of the volume operator and the operator of the number of 
particles: N V E, ,{ }. Being more correct, the energy spectrum of the system depends 
now on the system’s volume and number of particles: N V E V N, , ( , ){ } but we will 
utilize simpler notation N V E, ,{ } just for the purpose of the simplicity.

Our system interacts with the reservoir by heat exchange δQ← ≠ 0, “volume 
exchange” δW ← ≠ 0, and particle exchange δΠ← ≠ 0, where δQ← is the amount 
of heat supplied to our system, δW ←  is the work of external forces performed on 
our system, and δΠ← is the energy gain of our system due to the particle exchange.
The total system Σ, including our system and the reservoir as subsystems, is 

again isolated in the MCE:

� (2.293a)

� (2.293b)

� (2.293c)

Tr ln .δρ ρ δρ λδρ 



 T Tres CE res+{ }+ +( ) =Η 0

T Tres CE resln .




ρ λ+ + +( ) =Η 1 0









ρ
λ λ

CE T T T Te e eres res res res= =
− +





 − − +






 −1 1 1Η Η

,





ρCE
CE

T

Z
e res=
−1 Η

,

Z eCE T res≡










−
Tr .



Η

N N N constres+ = =Σ ,

V V V constres+ = =Σ ,

E E E constres+ = =Σ .
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Applying the stroboscopic approximation of brief periods of virtual isolation, we 
construct microstates of the system Σ as combinations of microstates of our system 
and the reservoir:

� (2.294)

In other words, the choice of a particular microstate N V E, ,{ } of our system and a 
particular microstate N V Eres res res res

, ,{ }  of the reservoir forms the particular mi-

crostate N V EΣ Σ Σ Σ
, ,{ } of the system Σ.

We define a nonequilibrium fluctuation N V E, ,{ }{ } (a macrostate N V E, ,{ }{ }) in 
the system as a macrostate with the energy E , volume V , and number of particles N . 
In other words, we define a fluctuation by the nonequilibrium probability distribution

�
(2.295)

Obviously, the statistical weight Γ N V E, ,{ }{ } of the fluctuation N V E, ,{ }{ } is the 
statistical weight of this energy level (this group of microstates) when the volume 
and the number of particles in the system correspond to the given values:

� (2.296)

Substituting (2.295) into the definition of entropy (2.21), we find that the entropy 
of the fluctuation N V E, ,{ }{ } follows Boltzmann’s rule and equals the logarithm of 
the fluctuation statistical weight:

� (2.297)

The behavior of any physical system is determined by two sets of factors: ex-
ternal influence and the structure or the properties of the system itself. In the case 
of a thermodynamic system, the external influence consists of the rules dictated to 
the system by the reservoir while the properties of the system itself are represented 
by the structure of its energy spectrum, gE N V( , ). Let us, with the aid of the consid-
ered μ–P–T-ensemble, understand what part in system’s behavior is dictated by the 
reservoir and what part is determined by the properties of the system.

Firstly, the reservoir dictates the boundary conditions µ res res resP T const, , =  to 
the system. This boundary constraint provides for the system at least three fluctuat-
ing parameters: N V E, , . The fluctuating behavior of the system is much more rich 
than these three parameters (for example, the density of the gas could fluctuate from 
one point to another within the volume which would be described by the additional 
set of fluctuating parameters p). However, in our study we restrict ourselves to 
fluctuations (2.295) only of these three fluctuating parameters N V E, ,  and ignore 
the rest of other possible fluctuating parameters p.

N V E N V E N V Eres res res resΣ Σ Σ Σ
, , , , , , .{ } = { }⊗{ }

{ }{ }

{ }{ }

, , ,, ,
{ , , }

, ,

1 / , and and
.

0,
N N V V E EN V E

N V E
N V E

N N V V E E
w

otherwise

δ δ δ Γ = = = = = 
Γ  

  

  

  

Γ N V E E N Vg, , ( , ) .{ }{ } =

S w wN V E N V E N V E
N V E

N V E, , { , , } { , , }
{ , , }

, ,ln ln{ }{ } { }= − =∑      

  

Γ{{ }.
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Secondly, the reservoir dictates the equilibrium probability distribution of sys-
tem’s microstates

�
(2.298)

without regard to which system it is dealing with (without regard to the spectrum 
gE N V( , ) of the system considered).

For quasistatic processes, we define temperature, pressure, and chemical 
potential as

� (2.299a)

� (2.299b)

� (2.299c)

Expanding the reservoir’s entropy in (2.298) and applying (2.299) (because all pro-
cesses are quasistatic for the reservoir), we return to the exponential dependence 
similar to the case of the CE with the exception that now we have three fluctuating 
parameters in it,

� (2.300)

where Z P Tµ− −  is the partition function of the μ–P–T-ensemble:

� (2.301)

So far the properties of the system itself have influenced only the last expression 
for the partition function as a normalization constant and, therefore, we may say 
that the probability distribution of system’s microstates was dictated almost entirely 
by the reservoir. However, the energy spectrum gE N V N V E( , ) , ,≡ { }{ }Γ  of the system 
becomes indeed important when we consider the probability distribution not of sys-
tem’s microstates N V E, ,{ } but of system’s fluctuations N V E, ,{ }{ }:

w N V E
P T N N V V E E

res

MCE N N V V E

res
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, , ,

µ− − − − −{ }{ }
− −

= ∝
Γ

Γ
Γ

Σ Σ Σ

Σ ΣΣ ΣΣ

Σ Σ Σ

−{ }{ }
= − − −

E

res S
res

N N V V E E res
res

e {{ , , }}

1
T

S

E
N V E

N V

≡
∂

∂













{ }{ }, ,

,

,

P
T

S

V
N V E

N E

≡
∂

∂













{ }{ }, ,

,

,

− ≡
∂

∂













{ }{ }µ
T

S

N
N V E

V E

, ,

,

.

w
Z

eN V E
P T

P T

N
T

V
T P

E
Tres res res res res

{ , , }
( / ) ( / ) ,µ

µ
µ− −

− −

−
−

− −

=
1
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�

(2.302)

The energy spectrum works here as one of two multipliers with the exponential 
dependence on N V E, ,  whose “clash” determines the narrow probability maximum 
around the equilibrium macrostate N V E0 0 0, ,{ }{ }. The relative width of this maxi-
mum is again inversely proportional to N0  and, therefore, is very small in the 
thermodynamic limit:

� (2.303a)

� (2.303b)

� (2.303c)

At the point of the maximum, three equilibrium equalities are valid,

�
(2.304)

when temperature, pressure, and chemical potential of our system are equal to 
T Pres res res, , µ  , respectively.

Let us now discuss thermodynamic considerations about what quantity could 
serve as the free energy potential for our ensemble. One inequality (2.240) we al-
ready know,

�
(2.305)

which states that the entropy of the system grows not only due to the heat supplied 
to the system but also due to the internal processes leading the system into its equi-
librium macrostate.

To find the second inequality we should consider the case when pressure P 
inside the system differs from the value Pres dictated by the reservoir. Illustrative 
examples are the expansion of a gas into a vacuum and a weight dropped on a piston 
of a volume containing gas. When the boundary of the system moves, the performed 
work is determined by the least of two pressure values:

� (2.306)

W N V E
P T

N V E N N V V E E

res

MCE

res

, ,

, , , ,

,{ }{ }
− −

{ }{ } − − −{ }{ }
= =µ

Γ Γ

Γ

Σ Σ Σ

Σ ΓΓ N V E N V E
P Tw, , , , .{ }{ } { }

− −µ

δ N
N N0 0

1
∝ ,

δV
V N0 0

1
∝ ,

δ E
E N0 0

1
∝ .

1 1
T T

P
T

P
T T Tres

res

res

res

res= = − = −, , and µ µ ,

δ
δQ T S S Q
T

res
res

←
←

≤ ≥∆ ∆ or ,

δW P P Vres← = − ( )min , .∆
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For example, for the gas expanding into a vacuum the work is zero because no force 
counteracts the expansion:

�
(2.307)

On the contrary, when a weight is dropped upon a piston, the work is determined by 
the nonequilibrium gas pressure while initially the weight pressure is much higher:

�
(2.308)

Therefore, if the system’s pressure were higher, P Pres> , the system would ex-
pand, performing work δW P Vres→ = ∆  on the reservoir. On the contrary, if the 
system’s pressure were lower, P Pres< , the system would contract and the reservoir 
would perform work δW P V P Vres← = <| | | |∆ ∆  on the system. For both cases, 
the following inequality is valid:

�
(2.309)

which we consider to be fundamental, no less than inequality (2.305).
Considering heat exchange leads us to inequality (2.305), and considering 

“volume exchange” leads us to inequality (2.309). For particle exchange, when the 
chemical potential µ  of the system differs from the chemical potential µ res   of the 
reservoir, similar considerations provide

�
(2.310)

But all three considered inequalities characterize the change of energy of the 
system. Applying the law of conservation of energy, we find

�
(2.311)

Developing this inequality, we have utilized thermodynamic considerations. Let 
us now prove the last inequality from the point of view of statistical physics. We 
again consider the isolated system Σ. Only now as its fluctuations we employ mac-

rostates ( , , ); ( , , )N V E N N V V E EΣ Σ Σ Σ
− − −{ }{ }  when our system has energy E , 

volume V , and the number of particles N  while the reservoir has E E Eres = −Σ , 

V V Vres = −Σ , and N N Nres = −Σ .
These fluctuations we define by the nonequilibrium probability distribution:

δW P Vres← = − =∆ 0.

δW P V← = − ∆ .

δ
δW P V V W
P

res
res

←
←

≤ − − ≥∆ ∆ or .

δ µ
δ
µ

Π ∆ ∆
Π←

←

≤ ≥res
resN N or .

∆ Π ∆ ∆ ∆E Q W T S P V Nres res res= + + ≤ − +← ← ←δ δ δ µ .
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�

(2.312)

The statistical weight Γ
Σ Σ Σ Σ

Σ

( , , ),( , , )N V E N N V V E E− − −{ }{ }
 of the fluctuation N V E, , ;( ){{  

N N V V E EΣ Σ Σ
Σ

− − − }}( ), ,  is the number of microstates of the system Σ when our 

system has fluctuating parameters E V N, , :

� (2.313)

where gE N V( , ) is the statistical weight of the energy level (group of microstates) E  
of our system when its volume is V  and the number of particles is N . Respectively, 
gE E N V
res
Σ − ( , )

 is the statistical weight of the energy level (group of microstates) E EΣ −  
of the reservoir when its volume is V VΣ −  and the number of particles is N NΣ − .

The entropy S
N V E N N V V E E( , , );( , , )Σ Σ Σ Σ

Σ

− − −{ }{ }
 of the fluctuation is the logarithm of 

the fluctuation’s statistical weight:

�

(2.314)

We have specifically constructed fluctuations N V E N N V V, , ; , ,( ){{ −( −Σ Σ  
E EΣ

Σ
− )}}  of the system Σ in such a way so they could represent fluctuations 

N V E, ,{ }{ } of our system in the μ–P–T-ensemble. Considering the latter now, the 
entropy S N V E, ,{ }{ } of a fluctuation N V E, ,{ }{ }  is

� (2.315)

while for fluctuations N V Eres res res res
, ,{ }{ }  of the reservoir we have

�
(2.316)
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Substituting (2.315) and (2.316) into (2.314), we prove the additivity of the en-
tropy of the system Σ over its subsystems:

�
(2.317)

We have been able to prove this property of additivity only because we consider the 
stroboscopic approximation when during the brief periods of virtual isolation two 
subsystems become, in fact, independent. Otherwise, the rule of additivity would 
not be valid.

Differentiating (2.317), for the increments of entropies we find:

�
(2.318)

Since the system Σ is isolated, in accordance with inequality (2.70) the increment 
of its entropy is positive (or zero):

� (2.319)

Expanding the entropy S
N N V V E E

res
resΣ Σ Σ− − −{ }{ }, ,

 of the reservoir in an assumption 

that N V E, ,  are infinitesimal relatively to N V Eres res res, , , we find

�

(2.320)

Here the first term in the right-hand side is some constant, not depending on fluctua-
tions. Therefore, for the increment of the entropy of the reservoir we obtain

�
(2.321)

Substituting here the law of conservation of energy

�
(2.322)

along with (2.293) into (2.321), we find

� (2.323)
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Comparing (2.323) with (2.311), we see that for the reservoir all processes are 
indeed quasistatic. It would be difficult to expect something else from the sys-
tem which has to provide constant boundary conditions µ res res resP T const, , = . 
To maintain the temperature constant, no matter what are the processes within the 
system in contact, the reservoir has to possess the superior heat conductance. To 
support constant pressure, when there is an arbitrary pressure at the other side of 
the boundary, the reservoir has to possess the superior “pressure conductance.” To 
provide constant chemical potential, “particle conductance” has to be superior also.

Substituting (2.321) into (2.319), we find

� (2.324)

which proves that (2.311) is the consequence of inequality (2.70).
Inequality (2.311) means that under the ensemble boundary conditions 

µ res res resP T const, , =  the following potential would be always decreasing (or stay-
ing constant but not increasing) for arbitrary processes in the system:

� (2.325)

Therefore, we thermodynamically define the Υ-energy of the μ–P–T-ensemble as

� (2.326)

The important fact here is that this definition contains parameters of the reservoir 
µ res res resP T, ,   but not parameters µ, ,P T   of the system.
Inequality (2.325) suggests that the Υ-energy plays the role of the free energy 

potential in the μ–P–T- ensemble.
To prove this, we define the Υ-energy of a fluctuation N V E, ,{ }{ } as

� (2.327)

which provides the stochastic definition:

� (2.328)

Substituting (2.297) into (2.327), we obtain the probabilistic definition connect-
ing the Υ-energy with the probabilities of fluctuations in the system

� (2.329)

which finally proves that Υ-energy is indeed the free energy potential of the μ–P–T-
ensemble.

Introducing partial partition functions of fluctuations as

∆ ∆ ∆ ∆E T S P V Nres
N V E

res res≤ − +{ }{ }, , µ

∆( ) .− − + + ≤T S N P V Eres res resµ 0

Υ ≡ − − + +T S N P V Eres res resµ .

Υ N V E
res

N V E
res resT S N P V E, , , ,{ }{ } { }{ }≡ − − + +µ

Υ[ ] ln .{} {} {} {} {} {}
{}

w w T w N P V Eres res res≡ − + +{ }∑ µ

Υ N V E
res P T

N V E
P TT Z W, , , ,ln{ }{ }

− −
{ }{ }
− −≡ − ( )µ µ
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�

(2.330)

we find the last, partition definition of the Υ-energy:

� (2.331)

Now, when we already understand how to generalize the free energy formalism 
for the case of an arbitrary ensemble, let us briefly summarize formulae for different 
ensembles. We will consider the following sets of boundary conditions:

�
(2.332a)

� (2.332b)

� (2.332c)

� (2.332d)

� (2.332e)

where GCE is the grand canonical ensemble, P–T-E is the P–T-ensemble, and μ–P–
T-E is the μ–P–T-ensemble.

The probability distribution for system’s microstates is dictated by the reservoir:

� (2.333a)

� (2.333b)

� (2.333c)

� (2.333d)

� (2.333e)
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where each ensemble has its own partition function as a normalization constant for 
this distribution:

� (2.334a)

� (2.334b)

� (2.334c)

� (2.334d)

� (2.334e)

In Sect. 2.12, we have already seen the analogy between the statistical weight of the 
MCE and the partition function of the CE. To emphasize this symmetry, we here 
call the statistical weight ΓMCE

p
≡ ∑1

{ }
 of the MCE by the term the partition func-

tion of the MCE  Z eMCE

p

MCE≡ =−∑ 0

{ }
Γ . The meaning of the quantity remains the 

same—it is the number of equiprobable microstates in the ensemble. But the change 
of terminology has allowed us to symmetrize the formulae above. We will utilize a 
similar definition and for the partial partition functions of the MCE which are just 
the statistical weights of fluctuations: Z ep

p p p
p{ }{ }

−

=
{ }{ }≡ =∑ 0

{ }: 
Γ .

For the entropy of fluctuations, Boltzmann’s rule is applicable

� (2.335a)

� (2.335b)

� (2.335c)

� (2.335d)

� (2.335e)

while for the probability of fluctuations we find

�
(2.336a)

Z eMCE

p
≡ −∑ 0

{ }
,

Z eCE
E

T

E

res≡
−

∑
{ }

,

Z eGCE
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T
E

T

N E

res res res
≡

−
−

−

∑ ( / )

{ , }
,µ

Z eP T
V

T P
E

T

V E

res res res−
− −

≡ ∑ ( / )

{ , }
,

Z eP T
N

T
V

T P
E

T

N V E

res res res res resµ µ− −
−

−
− −

≡ ∑ ( / ) ( / )

{ , , }
.

S p p{ }{ } { }{ }= ln ,Γ

S E E{ }{ } { }{ }= ln ,Γ

S N E N E, ,ln ,{ }{ } { }{ }= Γ

S V E V E, ,ln ,{ }{ } { }{ }= Γ

S N V E N V E, , , ,ln{ }{ } { }{ }= Γ

W
Z

Z Z
ep

MCE p
MCE MCE

S p
{ }{ }

{ }{ }= = { }{ }1 ,
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� (2.336b)

� (2.336c)

� (2.336d)

� (2.336e)

Next, for each ensemble we introduce its free energy potential,

� (2.337a)

� (2.337b)

� (2.337c)

� (2.337d)

� (2.337e)

which are called

�
(2.338a)

� (2.338b)

� (2.338c)

� (2.338d)

� (2.338e)

Definition (2.337) can be presented in a more universal form as

� (2.339a)

� (2.339b)

W
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TN V E re
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{ }{ }
− − { }{ }
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{ }{ }µ
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1 ss res res res res
V

T P
E

T/ ) ( / ) .µ
− −

Ψ p pS{ }{ } { }{ }≡ − ,

Ψ E
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ET S E{ }{ } { }{ }≡ − + ,

Ψ N E
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N E
resT S N E, , ,{ }{ } { }{ }≡ − − +µ

Ψ V E
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V E
resT S P V E, , ,{ }{ } { }{ }≡ − + +

Ψ N V E
res

N V E
res resT S N P V E, , , , ,{ }{ } { }{ }≡ − − + +µ

negative entropy (X-energy), Χ ≡ −S ,

the Helmholtz energy, F T S Eres≡ − + ,

Ω Ω-energy, ≡ − − +T S N Eres resµ ,

the Gibbs energy, Φ ≡ − + +T S P V Eres res ,

Y-energy, Υ ≡ − − + +T S N P V Eres res resµ .

Χ[ ] ln ,{} {} {}
{}

w w w≡ ∑

F w w T w Eres[ ] ln ,{} {} {} {}
{}

≡ +( )∑
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� (2.339c)

� (2.339d)

� (2.339e)

If the statistical operator (density matrix) ρ  is not diagonal, (2.339) transforms into

�
(2.340a)

� (2.340b)

�
(2.340c)

� (2.340d)

� (2.340e)

To prove that (2.337) is the free energy potential, we substitute (2.337) into 
(2.336) and see that probabilities of fluctuations indeed depend exponentially on 
(2.337):

�
(2.341a)

�
(2.341b)

� (2.341c)

� (2.341d)

�
(2.341e)

Ω[ ] ln ,{} {} {} {} {}
{}

w w T w N Eres res≡ − +( )∑ µ
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−
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Inverting (2.341), we find

�
(2.342a)

� (2.342b)

�
(2.342c)

� (2.342d)

� (2.342e)

Substituting the equilibrium distribution of probabilities (2.333) into (2.339), we 
find the free energy potential of the ensemble:

�
(2.343a)

� (2.343b)

� (2.343c)

� (2.343d)

� (2.343e)

We see that the difference between (2.342) and (2.343) is that in the former we used 
partial partition functions while in the latter we used ensemble partition functions. We 
can utilize (2.343) to normalize the probability distribution (2.341) which provides

�
(2.344a)

� (2.344b)

�
(2.344c)

� (2.344d)

�
(2.344e)

Ψ p
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−
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In expressions (2.341)–(2.344), we see the asymmetry of the MCE which, in con-
trast to other ensembles, does not contain in its formulae the temperature of the res-
ervoir. However, as we will see in Sect. 2.16, it is not the MCE that is asymmetrical 
but, on the contrary, other ensembles lack the symmetry.

Since the partition function of any ensemble equals with logarithmic accuracy 
its maximal term

� (2.345a)

� (2.345b)

� (2.345c)

� (2.345d)

� (2.345e)

probabilities (2.344) we can normalize by the free energy of the most probable 
macrostate:

�
(2.346a)

�
(2.346b)

� (2.346c)

�
(2.346d)

� (2.346e)

2.15 � Fluctuations as the Investigator’s Tool

Fluctuations are a very convenient tool allowing us to investigate system’s behavior. 
And as for any other tool, a particular choice of a particular type of fluctuations is 
the investigator’s prerogative allowing her/him in her/his studies focusing on this or 
that particular type of system’s behavior.
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For the MCE we considered fluctuations p{ }{ } of concentrations of the ↓-spins 
along the model length (fluctuations of gas density in the volume). But instead we 
could consider any other fluctuations. For example, as a fluctuation we could con-
sider a vortex of gas particles, or fluctuations in the distribution of particle veloci-
ties, or energy fluctuations from one point within the volume to another, and so on.

In the CE, we have chosen fluctuations to be energy fluctuations E{ }{ } when our 
system took away from the reservoir this or that amount of energy. But, in addition 
to energy fluctuations, we also could consider, for example, fluctuations of gas den-
sity within its volume or something else. Our choice was based on the wish to study 
energy exchange with the reservoir. If we wanted to study another type of behavior, 
we would choose a different type of fluctuations.

However, one concept has remained constant when we have moved from one 
type of fluctuation to another—the probabilities of all fluctuations have depended 
exponentially on the free energy of these fluctuations:

�
(2.347)

(We consider here all ensembles but the MCE which lacks the concept of tempera-
ture. Removing temperature from (2.347) would generalize this equation and for the 
case of the MCE. We will discuss it in more detail in the following section.)

Fluctuations always represent deviations from the equilibrium macrostate 0{ }{ }. 
Therefore, the free energy of fluctuations is always higher than the free energy of 
the equilibrium macrostate: Ψ Ψ{ }{ } { }{ }≥ 0  (Fig. 2.12). And the probability of fluc-
tuations decays as the exponential dependence on this difference.

To illustrate that the choice of fluctuations is merely a tool we return to the case 
of the CE. Earlier in the CE we constructed an energy fluctuation E{ }{ } as a system 
having a particular value of energy E:

� (2.348)

On the contrary, now we will construct a fluctuation as a system being in its particu-
lar microstate { }{ } ≡ { }E :
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Fig. 2.12   Fluctuations 
always have higher free 
energy than the equilibrium 
macrostate
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�
(2.349)

The statistical weight of such a fluctuation is always unity,

� (2.350)

and the entropy of the fluctuation is zero:

� (2.351)

The probability to observe a fluctuation E{ } in the CE,

�
(2.352)

is just Gibbs probability (2.139) of a microstate E{ }.
Substituting the nonequilibrium probability distribution (2.349) into the stochas-

tic definition (2.261), we obtain the Helmholtz energy of fluctuations:

� (2.353)

Substituting (2.353) into (2.352), we see that the probability of a fluctuation decays 
as the exponential dependence on the free energy of this fluctuation:

�
(2.354)

But simultaneously, in accordance with (2.352), it depends exponentially on the 
energy of the fluctuation:

� (2.355)

This coincidence has happened only because we have so constructed the fluc-
tuations that their entropy (2.351) was always zero. If it were not the case, the 
probability of fluctuations would be always the exponential dependence (2.347) on 
the free energy of fluctuations, not on the energy of them.

Simultaneously we can conclude that Gibbs probability distribution (2.139) 
depends exponentially on the energy of microstates only because the entropy of one 
microstate is zero. If it were not the case, Gibbs probability distribution would also 
depend on free energies, not energies.
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2.16 � The Action of the Free Energy

For illustrative purposes, we consider the μ–P–T-ensemble when the equilibrium 
equalities (2.304) for our system in contact with the reservoir are

�
(2.356)

The equilibrium probability distribution of microstates is given by (2.333e):

�
(2.357)

where the partition function of the ensemble is

�
(2.358)

To find the entropy of the ensemble S P Tµ− −  we substitute the equilibrium prob-
ability distribution (2.357) into the entropy functional (2.21):

� (2.359)

However, this time let us explicitly substitute expression (2.357) only under the sign 
of the logarithm function, keeping the probabilities in front of it in their original 
form:

�
(2.360)

The right-hand side of this equation represents ensemble averaging with the equilib-
rium probability distribution w N V E

P T
{ , , }
µ− − :

�
(2.361)

Expressing Z P Tµ− −  from this equation and substituting it into (2.343e),

�
(2.362)

we find the connection of the ensemble free energy with the averaged energy, 
volume, and number of particles:

� (2.363)
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The equality we have obtained merely represents the averaging of the free energy 
definition (2.337e).

Quasistatically changing the boundary conditions of the ensemble, we can 
change the averaged fluctuating parameters of the system. Differentiating (2.363), 
we obtain

�

(2.364)

Recalling that for quasistatic processes the change of the energy equals

� (2.365)

for the increment of the free energy we finally find

� (2.366)

We see here three differentials of the boundary conditions. For two of them, d resµ   
and dPres, we see in front of them the corresponding fluctuating parameters, 
N P Tµ− −  and V P Tµ− − , respectively. But in front of the third differential dT res we 

see not the corresponding fluctuating parameter, the energy, but the entropy. There-
fore, our formulae are not completely symmetric.

Where has the asymmetry come into the above expressions? If we consider the 
equilibrium equalities (2.356) and the probability distribution (2.357), we see that 
there are, in fact, three independent “effective” temperatures in our ensemble,

�
(2.367)

and three equilibrium equalities (2.356) transform into

�
(2.368)

Why then in (2.362), (2.342e), and (2.343e) we have made a choice in favor of 
the first temperature, Θ1

res resT= , putting it ahead of the logarithm? This was the 
very asymmetry which we have introduced into our formulae. Let us recall, for ex-
ample, the case of multifractals (1.126). There were K temperatures in that system, 
and none of them could be chosen as a favorite.

But it is easy to remove this asymmetry from all expressions above. We need 
only to divide all formulae for the free energy Ψ  by the reservoir’s temperature T res 
to obtain the action of the free energy potential A. Thereby, (2.337e) transforms into 
the action of a fluctuation:
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�
(2.369)

Definitions (2.339e) and (2.340e) transform into the stochastic definition of the 
action:

�
(2.370)

�
(2.371)

Definitions (2.342e) and (2.343e) transform into the partition definition of the 
action:

�
(2.372)

� (2.373)

Finally, (2.341e) and (2.344e) transform into the probabilities of a fluctuation:

�
(2.374)

� (2.375)

Dividing (2.363) by the reservoir’s temperature T res, we find

�

(2.376)

Since the differential of energy (2.365) transforms into

�

(2.377)

for the differential of action (2.376), we find
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�

(2.378)

We see that differential (2.378) of the action is more symmetric than differential 
(2.366) because in the right-hand side of (2.378) each differential of the inverse 
temperature is coupled to the corresponding fluctuating parameter staying ahead of 
this differential.

Let us return to probabilities (2.344) of fluctuations for different ensembles:

�
(2.379a)

� (2.379b)

�
(2.379c)

� (2.379d)

�
(2.379e)

For the MCE, we define action of the free energy potential as the free energy itself. 
For the rest of the ensembles, we divide the free energy by the temperature of the 
reservoir:

� (2.380a)

� (2.380b)

� (2.380c)

� (2.380d)

� (2.380e)
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Then probabilities (2.379) transform into

�
(2.381a)

� (2.381b)

� (2.381c)

� (2.381d)

� (2.381e)

We see that it was not the MCE that was asymmetric but the rest of the ensembles. 
Removing the asymmetry of the temperature Θ1 = T  from our formulae, we have 
come to the symmetric expression

�
(2.382)

for the case of an arbitrary ensemble.
Looking backward from the position of our current understanding, we see that 

it would be reasonable to consider the concept of the action of the free energy from 
the very beginning instead of references to the free energy potential itself. However, 
this seems to be impossible because the majority of the studies in the literature con-
sider the free energy, not its action.

We have already seen a similar situation earlier when in (2.334a) we have in-
troduced the partition function of the MCE. It seems to be reasonable to unite both 
concepts of the statistical weight of the MCE and of the partition functions of other 
considered ensembles by introducing the common term “statistical sum.” However, 
the current terminology is applied in so many publications that it seems almost 
impossible to change it. For this particular reason, in this chapter we followed the 
“common practice” terminology but at the end of the chapter demonstrated its pos-
sible flaws.
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Chapter 3
The Ising Model

Abstract  In the previous chapter, we have discussed the formalism of statistical 
physics. A big help for us was the Ising model which provided the very intuitive 
understanding for all the concepts considered.

However, the Ising model serves even better as an illustration of phase-transition 
phenomena. Therefore, in this chapter, we study the behavior of this model in detail.

3.1 � Definition of the Model

There are many magnetic lattice models: the Heisenberg model (Heisenberg 1928), 
the O(n)-vector model, the X–Y model (Matsubara and Matsuda 1956), the Potts 
model (Potts 1952), the spherical model (Berlin and Kac 1952), the Ising model 
(Lenz 1920; Ising 1925), etc. In all these models, magnetic moments (or spins) 
are located at the lattice sites and interact with an external field h and with each 
other. Primarily, the models differ by the rule, what projections on coordinate axes 
a magnetic moment can have? For example, in the classical O(n)-vector model, 
magnetic moments are assumed to be classical and their projections are arbitrary, 
limited only by the module of the vector. On the contrary, the quantum Heisenberg 
model (Heisenberg 1928) considers spins as quantum operators whose projections 
are determined by the laws of quantum mechanics. In the Ising model, we consider 
a spin projection only on the axis of a magnetic field h, and there are, generally, only 
two possible values, σ = +1 and σ = −1.

Phase-transition phenomena can be illustrated with the aid of any of these mod-
els, both quantum and classical. However, the simplest approach would be to con-
sider the Ising model. This model possesses the quantum discreteness of its energy 
spectrum because spin projections are discrete: σ = +1 or σ = −1; and it is much 
simpler to work with a discrete spectrum than with a continuous spectrum. On the 
other hand, spin projections, other than on the axis of the magnetic field, are not 
considered in this model which allows avoiding the complications of matrix cal-
culations. Therefore, the Ising model can be considered as the most convenient 
example, illustrating the phenomena of phase transitions.

© Springer International Publishing Switzerland 2015
S. G. Abaimov, Statistical Physics of Non-Thermal Phase Transitions, 
Springer Series in Synergetics, DOI 10.1007/978-3-319-12469-8_3
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The Ising model was invented by Wilhelm Lenz (Lenz 1920) and has been named 
after his student Ernst Ising who in his doctoral dissertation obtained a solution and 
proved the absence of a phase transition for the one-dimensional case. The question 
whether there is a phase transition in higher dimensions, which was elusive at the 
beginning, was answered positively by Lars Onsager (Onsager 1944) who found the 
exact solution for the two-dimensional model.

Initially, the Ising model was intended to serve as a crude but efficient descrip-
tion of ferromagnetic phenomena. However, later the model has become popular 
due to the exemplariness of its phase transition. Nowadays, the latter is considered 
to be the main merit of the model; and similarly to the models of an ideal gas, 
van der Waals gas, etc., the Ising model has become canonical in the sense that its 
properties are worth investigating as such, without association with particular, real 
physical systems.

We consider N magnetic moments μ located at the sites of the lattice. The limit 
N →+∞ of an infinite system is called the thermodynamic limit. The geometrical 
form and dimensionality of the lattice can be arbitrary (Fig. 3.1). Boundary condi-
tions are usually considered to be either free or periodic. In the last case, the oppo-
site sides of the lattice are “glued” together, forming a ring in the one-dimensional 
case and a torus in the two-dimensional case.

Spins σ i  are enumerated by numbers i of the lattice sites. Only spin projections 
on the axis of the magnetic field h are considered. These projections can be equal 
only to +1 or −1. These two possible values represent the two possible projections, 
σ = +1 2/  and σ = −1 2/ , of an electron’s spin on the axis of a magnetic field. For 
the purpose of convenience, the multiplier 1/2 has been moved inside of the con-
stants of interactions, leaving two spin projections σ i = +1 and σ i = −1.

In the case σ i = +1, we will say that spin i is oriented along the magnetic field h, 
and we will denote this spin orientation as ↑. In the opposite case σ i = −1, we will 

a

bc

d e

Fig. 3.1   A schematic 
representation of different 
geometrical forms of lattice: 
a one-dimensional chain of 
spins; b two-dimensional 
square lattice; c three-
dimensional cubic lattice; 
d two-dimensional triangular 
lattice; e Bethe lattice
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say that spin i is oriented against the magnetic field h, and we will denote this spin 
orientation as ↓.

The energy of spin σ i in the magnetic field h is −µ σh i, where μ is the value of 
the spin’s magnetic moment. If there were no other interactions, due to the interac-
tion with the magnetic field h, each spin could have only two possible values of 
the energy: −µh and +µh. In this case, the system would be a two-level system. 
However, besides the interaction with the magnetic field h, the exchange interaction 

,
( , )σ σ

< >

− ∑  

i j i j
i j

J r r  of spins in pairs is also usually considered, where the sum 
< >
∑
i j,

 

goes over all pairs < >i j,  of spins on the lattice.
Positive sign of J corresponds to the ferromagnetic case when two spins have 

lower mutual value of the energy if they are both oriented in the same direction: 
E E↑↑ ↑↓< . In other words, if J > 0, any spin in the ferromagnet attempts to rotate 
all its neighbors so that their orientations become coincident with its own and the 
interaction energy decreases. On the contrary, J < 0 corresponds to the antiferro-
magnetic case when the energy is lower, when two spins have opposite orientations: 
E E↑↓ ↑↑< . So, in the antiferromagnet, any spin attempts to rotate its neighbors so 
that they have their orientations opposite to its own.

The dependence of J Ri j( ),  on the distance Ri j i j, ≡ −
 r r  between two spins in 

a pair can be arbitrary. Often a power-law or exponential decay of J Ri j( ),  on Ri j,  is 
assumed. Also, often two extremes are considered. The first extreme ( long-range 
interactions) assumes that J does not depend on the distance Ri j,  between two spins 

in a pair: −
< >
∑J i j
i j

σ σ
,

.

The second extreme ( short-range interactions), on the contrary, considers only 
the interactions of the nearest neighbors, when Ri j,  equals the lattice constant a and 
neglects interactions of spins over longer distances: −

< >
∑J i j
i j n n

σ σ
, . .

. Here, notation 

“n.n.” means that the sum goes over only those pairs whose spins are nearest neigh-
bors. This type of the Ising model is often called the n.n. Ising model.

A particular realization of spin projections on the lattice is called a microcon-
figuration { }σ . In other words, prescribing to each spin on the lattice its particular 
orientation (σ i = +1 along the magnetic field or σ i = −1 against the field), we form 
a particular microconfiguration { }σ . The Hamiltonian of the system is defined as

� (3.1)

The lattice of the model is assumed to be absolutely rigid. So, neither the volume 
nor the number of particles can change in the system. Therefore, the system can 
only belong to either the microcanonical ensemble (MCE), when it is isolated, or 
to the canonical ensemble (CE), when a fluctuating parameter is the energy of the 
system.

{ }
1 ,

( , ) .σ µ σ σ σ
= < >

= − −Η ∑ ∑  

N

i i j i j
i i j

h J r r
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3.2 � Microstates, MCE, CE, Order Parameter

Hamiltonian (3.1) is written in terms of spin projections. But to find the microstates 
of the system, we should start with its predecessor, the quantum operator

� (3.2)

which corresponds to (3.1), only now instead of spin projections it contains the 
quantum operators.

Microstates E p,{ } of the system can be found as the solutions of the quantum 
Schrödinger equation,

� (3.3)

where E is the eigenvalue of the energy corresponding to the eigenvector E p,{ } of 
the operator Η



.
A quantum vector of state of the system will be the eigenvector E p,{ } of this 

Hamiltonian if it is the common eigenvector for all spin operators σ i:

� (3.4)

Indeed, substituting (3.2) and (3.4) into (3.3), we immediately prove (3.3) to be 
valid.

This means that the system’s microstates E p,{ } are just the system’s microcon-
figurations { }σ , where the role of the set of parameters p, distinguishing microstates 
with equal energy one from another, is played by the eigenvalues σ i of the spin 
projections.

In other words, to specify a particular microstate E p,{ } of the system, we should 
prescribe particular projections for all spins on the lattice. Flipping one of the spins, 
we create a new microstate, and so on. Then, Hamiltonian (3.1) becomes the eigen-
value E{ }σ  of the operator 



Η

�
(3.5)

corresponding to the given microstate { }σ .
As an example, we consider the Ising model with N = 3 spins. There are eight 

possible microconfigurations σ{ } of spin orientations on the lattice: ↑↑↑{ }, ↑↑↓{ }, 
↑↓↑{ }, ↓↑↑{ }, ↑↓↓{ }, ↓↑↓{ }, ↓↓↑{ }, and ↓↓↓{ }. If there are no interactions among 

spins in our model, J = 0, the microstates, corresponding to these microcon-
figurations, are E h p= − =↑↑↑{ }3µ , , E h p= − =↑↑↓{ }µ , , E h p= − =↑↓↑{ }µ , , 

E h p= − =↓↑↑{ }µ , , E h p= =↑↓↓{ }µ , , E h p= =↓↑↓{ }µ , , E h p= =↓↓↑{ }µ , , and 

1 ,
( , ) ,σ σ σµ

= < >

= −Η −∑ ∑


   

N

i i j i j
i i j

h J r r
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E p E E p
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E h p= =↓↓↓{ }3µ , . Further, we may utilize simpler notations for these microstates: 
−{ }3µh , −{ }µh , −{ }µh , −{ }µh , µh{ }, µh{ }, µh{ }, and 3µh{ }. The energy spectrum 

of such a system is presented in Fig. 3.2.
In the future, we will sometimes refer to the microstates of the system by the 

notation “{ }σ ” when we want to distinguish them by spin orientations on the lat-
tice. This is the most convenient notation when we want to count the number of 
these microstates. However, when the energy of microstates becomes important, we 
will utilize another notation “ E p,{ },” where the energy of the microstate is shown 
explicitly and p represents particular spin orientations on the lattice corresponding 
to the given value of the energy. Finally, in the CE, only the energy of a microstate 
plays a significant role, and in this case, we will use the notation “ E{ }.” All three 
different types of notation are equivalent and refer to the same set of microstates. 
In the future, we will use that type which will be the most convenient in a given 
situation.

In the MCE, all microstates, corresponding to the given value of the energy, are 
equiprobable (2.20):

�
(3.6)

where ΓMCE is the statistical weight of the ensemble. So, if the system from Fig. 3.2 
is isolated with the energy −µh, the probabilities of three microstates, ↑↑↓{ }, 
↑↓↑{ }, and ↓↑↑{ }, corresponding to this value of the energy, will be 1/3 while the 

probabilities of other microstates are zero.
In the CE, we consider a fluctuation E{ }{ } as the macrostate of the system when 

it has the energy E. While the probability (2.139) of microstates E p,{ } is

� (3.7)
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Fig. 3.2   The energy spec-
trum of the ideal Ising model 
with N = 3 spins
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the probability (2.143) of energy fluctuations is

� (3.8)

where the statistical weight Γ E{ }{ } of the fluctuation is just the statistical weight gE 
of this energy level (of this group of microstates), and the partition function ZCE 
serves as the normalization constant of the probability distribution:

� (3.9)

Probability (3.8) has a very narrow maximum at the point E0 which corresponds 
to the averaged value E EwCE E

CE

E
≡∑ { }

{ }
 of the system’s energy in the CE. The point 

E0 of the maximum is given by the equation

� (3.10)

which is the equation of state of the system.
As we will see later, the nonideal Ising model with interactions of spins in pairs 

possesses a phase transition. The magnetization of the system,

� (3.11)

plays the role of the order parameter, distinguishing phases. Instead of full magne-
tization (3.11), it is often more convenient to work with the specific magnetization,

� (3.12)

as the full magnetization M divided by N, the total number of spins, and μ, the mag-
netic moment of one spin.

The specific magnetization is convenient because it always changes from −1, 
when all spins are against the field, to +1, when all spins are along the field. It is, 
in fact, the spin projection averaged over the spin orientations on the lattice for a 
particular microstate { }σ :

� (3.13)
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To emphasize that the averaging goes over the spin orientations of one microstate 
and not over the ensemble, we have used the subscript … { }σ .

The magnetization is called the long-range order parameter, because it repre-
sents the interactions of the system as a whole with the external magnetic field or 
with the mean field generated by the spins themselves.

Besides the long-range order parameter, a short-range order parameter is also 
introduced as we will see later.

Let us assume that we have found the ensemble partition function ZCE  of the 
system. Differentiating it with respect to magnetic field h, we find

� (3.14)

The equilibrium value of any quantity f σ{ } in the CE of our model is found by 
averaging with Gibbs distribution of probabilities:

� (3.15)

We see that (3.14) resembles (3.15), we only need to divide the exponential function 
by the value of the partition function. Thereby, (3.14) transforms into averaging of 
the magnetization:

� (3.16)

Therefore, if we have found the ensemble partition function, then the equilibrium 
value of the magnetization is as follows:

� (3.17)

3.3 � Two-Level System Without Pair Spins Interactions

As the first and simplest example, let us consider the Ising model without interac-
tions of spins in pairs: J = 0. The Hamiltonian of such a system is

� (3.18)

The system is the two-level system when the energy of the system is the sum of the 
energy of separate spins and each spin can have only two possible values of the 
energy: −µh along the field and hµ  against the field.
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Let us consider a particular microstate { }σ . If, in this microconfiguration, the 
number N↑ represents the number of spins along the field while N↓ is the number 
of spins against the field, then the energy of this microstate is

� (3.19)

Recalling that the number of spins is conserved,

� (3.20)

from (3.19), we can find the numbers N↑ and N↓ for our system:

� (3.21)

Simultaneously, for the specific magnetization (3.12) we obtain

� (3.22)

So, if we know the energy of the microstate, we know the number of spins along the 
field h and the specific magnetization of the system; and vice versa, knowing the 
specific magnetization, we find

� (3.23)

and

� (3.24)

because the correspondence between the energy and magnetization is bijective.
We should emphasize here that the obtained correspondence is valid for an arbi-

trary microstate. If we consider an ensemble, MCE or CE, similar correspondence 
will, of course, appear for the averaged quantities as well. However, the reader 
should always distinguish equalities valid for microstates from equalities valid only 
on average in the ensemble—the former are more basic and cause the appearance 
of the latter.

In the MCE, the system is isolated with energy E. So, in accordance with (3.21) 
and (3.22), we immediately find the numbers N↑ and N↓. The statistical weight 
ΓMCE of the ensemble is the number of microstates corresponding to this energy 
level. In other words, it is the number of microconfigurations { }σ , when among 
N spins, we should choose N↑ spins along the field and N↓ spins against the field:

� (3.25)
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By applying Stirling’s approximation, we find

� (3.26)

where

� (3.27)

In the MCE, all microstates corresponding to the given value of the energy are 
equiprobable,

� (3.28)

while all other microstates have zero probabilities.
In the CE, the statistical weight Γ E{ }{ } of the fluctuation E{ }{ } is just the statisti-

cal weight gE  of the given energy level,

� (3.29)

which is provided by (3.26) and (3.27). The probability of a microstate is deter-
mined by Gibbs probability distribution as follows:

� (3.30)

while to find the probability of the fluctuation E{ }{ } we have to multiply this quan-
tity by the statistical weight Γ E{ }{ } of the fluctuation as follows:

� (3.31)

Let us find the partition function (3.9) of the CE. The sum 
{ }E
∑  over all micro-

states of the system’s energy spectrum is just the sum …
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microconfigurations { }σ . For the partition function, this provides

� (3.32)
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where we have factorized the partition function, transforming it into the product of 
N identical multipliers, each of which is the one-spin partition function.

The method of the factorization of the partition function works for any ideal 
system. Therefore, no wonder it works for our two-level system as well, which is 
ideal. If we are going to consider the nonideal systems in the future, we should have 
a method to calculate the partition function when the method of factorization is not 
applicable.

For this purpose, in Chap. 2, we have developed the method of steepest descent. 
Although applying this method to the two-level system is like crushing a fly upon a 
wheel, let us still do it for the illustrative purposes.

We know that the distance 2 hµ  between two adjacent energy levels in our system 
corresponds to one-spin flip. Transforming sum (3.9) into the integral,

� (3.33)

we use this distance to normalize dE. Applying the method of steepest descent, we 
find that the integral equals its maximal term (the partition function equals its maxi-
mal partial partition function):

� (3.34)

where the point of the maximal term is determined by

� (3.35)

which, when divided by ZCE, is equivalent to the equation of state (3.10).
Substituting (3.26) and (3.27) into (3.35), we find

� (3.36)

Substituting in turn (3.36) into (3.34), we return to (3.32).
Instead of integrating over E, it is much simpler to integrate over m which is 

bijectively connected with E by equality (3.27). If the distance between two adja-
cent energy levels is 2 hµ , the distance between corresponding values of m is 2 / N . 
Integral (3.33) transforms into

� (3.37)

where

� (3.38)
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Again, in accordance with the method of steepest descent, the integral equals its 
maximal term

� (3.39)

where m0 is provided by

� (3.40)

The solution of (3.40) is the equation of state

� (3.41)

which returns us to (3.36) and (3.32).

3.4 � A One-Dimensional Nonideal System with Short-
Range Pair Spin Interactions: The Exact Solution

Let us obtain an exact solution for the one-dimensional Ising model with spin inter-
actions in n.n. pairs.
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Problem 3.4.1

Consider the one-dimensional n.n. Ising model in the absence of magnetic 
field. For simplicity, consider the periodic boundary conditions σ σN+ ≡1 1 
when the model is a one-dimensional chain of spins closed into a ring. Find 
the ensemble partition function of the system.

σ

+

σσσσσ −
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Solution: The Hamiltonian of the system is

� (3.42)

The partition function of the CE is determined by

� (3.43)

Let us define the so-called transfer matrix T (Kramers and Wannier 1941a, 
b) by

� (3.44)

where the matrix indices σ σi j,  can take the values +1 or −1. So, this is the 
2 2×  square matrix

� (3.45)

where the first row/column corresponds to +1 while the second row/column 
corresponds to −1:

� (3.46)

Returning to (3.43), we can substitute (3.44) into that expression:

� (3.47)
Here,

� (3.48)
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� (3.49)

we obtain that partition function (3.47) equals the trace of T N :

� (3.50)

We assume that T has two independent eigenvalues, λ1 and λ2. Let us prove 
this assumption. To find these eigenvalues, we should solve the characteristic 
equation:

� (3.51)

This equation, indeed, provides two independent eigenvalues:

� (3.52)

� (3.53)

From linear algebra, we know that the trace of the Nth power of a ma-
trix with independent eigenvalues equals to the sum of the Nth powers of its 
eigenvalues:

� (3.54)

But comparing (3.52) and (3.53), we see that

� (3.55)

Therefore, in the thermodynamic limit → +∞N , we can neglect the second 
eigenvalue in (3.54) to find

� (3.56)

1 1 1 1

1 11 1

( ) ( ) Tr( ),σ σ σ σ
σ σ

+
=± =±

= =∑ ∑N

N N NT T T

Tr ( ).CE NZ T=

det .
e e

e e

J
T

J
T

J
T

J
T

−

−

=
−

−

λ

λ
0

λ1 2= + =
−

e e J
T

J
T

J
T cosh ,

λ2 2= − =
−

e e J
T

J
T

J
T sinh .

ZCE N N= +λ λ1 2 .

λ λ1 2> .

1 .λ≈CE NZ

Problem 3.4.2

Consider the model of Problem 3.4.1 in the presence of magnetic field. Find 
the equilibrium magnetization m

CE
.
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Solution: The Hamiltonian of the system is

� (3.57)

The transfer matrix in this case is

� (3.58)

� (3.59)

which provides again

� (3.60)

The eigenvalues of the transfer matrix are

� (3.61)

In the thermodynamic limit, only the greater eigenvalue participates in the 
partition function:

� (3.62)

Differentiating the logarithm of the last expression with respect to the mag-
netic field h, we in accordance with (3.17) find the equilibrium magnetization:

� (3.63)

For nonzero temperature T > 0, in the absence of magnetic field, h = 0, the 
magnetization (3.63) is zero

� (3.64)

However, when the limit of zero temperature, T → 0, is taken before the limit 
of zero magnetic field, we find
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We have proved that the one-dimensional Ising model with short-range interac-
tions possesses the phase transition only at zero temperature and has at this point 
the exponentially diverging susceptibility. As we will see later, for longer ranges 
of interactions and in higher dimensions, the critical point is expected to be not at 
the zero temperature while the divergences are expected to be the power law, not 

� (3.65)

The appearance of nonzero magnetization in the zero field is called the 
spontaneous magnetization, which generally corresponds to the presence of 
a phase transition. We now see that in the one-dimensional case, the phase 
transition is present only at zero temperature, when the critical point is deter-
mined by  C 0=T , C 0=h .

The magnetic susceptibility is defined by the response of the averaged 
magnetization to the change in the magnetic field:

� (3.66)

Differentiating (3.63), we find

� (3.67)

Let us approach the critical point along the isofield curve C=h h . First, we 
take the limit h → 0, and only then the limit T → 0. For this case, we find

� (3.68)

We see that the susceptibility diverges exponentially.
Second, we consider the isotherm C=T T . We take the limit T → 0 while h 

remains either finite or the limit h → 0 is taken after the limit T → 0. For the 
susceptibility, we find

� (3.69)

We see that along the critical isotherm C=T T , the susceptibility remains zero. 
Indeed, for any value of the magnetic field, the magnetization is either +1 or 
−1 in accordance with (3.65) and does not depend on the field.
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exponential. Therefore, the one-dimensional case of short-range interactions can be 
considered as “degenerate.”

But why this case is “degenerate”? To answer this question, let us compare two 
n.n. ferromagnets: one, on the two-dimensional square lattice, and another, on the 
one-dimensional lattice. We consider zero magnetic field, h = 0, and temperature 
near zero, T → 0.

In the n.n. ferromagnet, all spins are attempting to reorient their nearest neigh-
bors in their own direction. So, the ground state is achieved when all spins are 
oriented in the same direction, which is “up” in Fig. 3.3.

Although we consider the temperature to be low, it is still higher than zero. This 
means that there are thermal fluctuations which are attempting to disorder the sys-
tem by disaligning the spins randomly.

On the square lattice, the orientation “up” of each spin is supported by q = 4 
nearest neighbors; and it is problematic for thermal fluctuations to flip the spin be-
cause they need to increase the energy of four spin pairs from −J  to +J .

But let us assume that a thermal fluctuation has managed to flip one of the spins 
(Fig. 3.3a). This spin is now oriented “down” and is, in turn, attempting to rotate its 
nearest neighbors “down” also. On the contrary, these neighbors are attempting to 
restore the previous orientation of this spin.

So, what will happen next? Will the spin flip its nearest neighbors? Or will these 
neighbors flip the spin? To answer this question, we should compare the energies 
of the possible outcomes. From Fig. 3.3a, we see that restoring the spin orientation 
will reduce the energy of the system. On the contrary, orienting “down” more and 
more spins will require more and more energy.

Therefore, the preferable outcome is for the nearest neighbors to reorient the 
considered spin “up,” restoring the order in the system (all spins are “up” again). 
That is why the n.n. systems in dimensions higher than one can possess the nonzero 
spontaneous magnetization at temperatures above zero.

Next for comparison, let us consider the n.n. Ising model in one dimension 
(Fig. 3.3b). Now only q = 2 nearest neighbors are keeping the spin’s orientation 
“up.” Therefore, it is easier for thermal fluctuations to flip the spin.

But this is not all. The main difference with higher dimensions is that when one 
spin is aligned “down,” no more energy is required to rotate “down” its neighbors! 
When in Fig. 3.3b, the nearest neighbor to the right rotates “down” also, the energy 
of one pair increases but simultaneously the energy of another pair decreases. So, 
the total change in the energy is zero!

E1 < E2

E1 = E2

a

b

Fig. 3.3   The two-dimen-
sional n.n. Ising model on 
square lattice versus the one-
dimensional n.n. Ising model

 



3.5  Nonideal System with Pair Spin Interactions: The Mean-Field Approach 165

Then, the next neighbor to the right can flip, then the next, and so on. In the re-
sult, the whole right half of the lattice can become oriented “down.”

We see that just one-spin flip can cause the succession of flips along the lattice, 
forming a domain, oriented “down.” But in the middle of this domain, thermal fluc-
tuations can disorient another spin, so it rotates “up.” It causes a new succession 
of flips, this time orienting the spins “up,” and the domain oriented “up” appears 
right in the middle of the domain oriented “down.” And so on, and so on while no 
spontaneous magnetization is left.

In the result, even the tiny thermal fluctuations, equivalent only to one-spin flip, 
are capable to break the spontaneous magnetization of the one-dimensional Ising 
model with short-range interactions. As we will see later, the spontaneous magneti-
zation represents the appearance of a phase transition in the system. Therefore, we 
can conclude that the phase transition in the one-dimensional n.n. Ising model is 
possible only at zero temperature.

We intend to study the “full-blown” phase transitions; and the “degenerate” case 
is of little interest to us. What can be done to improve the situation? One possibility 
we already know is to increase the dimensionality of the system so that more spins 
would support their mutual orientation. The case of higher dimensions is considered 
in the following sections.

But there is another way also. Instead of increasing dimensionality, we can make 
the spin interactions long-ranged. More spins would be attempting to keep the com-
mon orientation unchanged, so it would be harder for thermal fluctuations to break 
the order. The extreme of this scenario, when the amplitude of interactions does 
not depend on the distance between spins in a pair, is considered in Problem 3.7.4.

3.5 � Nonideal System with Pair Spin Interactions: 
The Mean-Field Approach

In the model with interactions among spins, 0J ≠ , the exact analytical solutions can 
be obtained only in the rare cases of some lattices. Indeed, in the previous section, 
we were able to find the exact solution for the one-dimensional case. It is gener-
ally true that a one-dimensional case of a system can be solved exactly. However, 
the one-dimensional case is “degenerate.” It has a phase transition only at zero 
temperature and instead of common power-law dependencies in the vicinity of a 
critical point it generally demonstrates exponential dependencies. Therefore, the 
one-dimensional model can hardly be considered as a general representative of a 
system with a phase transition, and we have to look at higher dimensions.

But in higher dimensions, the possibility to obtain the exact solution is rare. So, 
while the exact solution of the two-dimensional Ising model on square lattice has 
been found by several ingenious methods (Kramers and Wannier 1941a, b; Onsager 
1944; Kac and Ward 1952; Potts and Ward 1955; Hurst and Green 1960; Vdovi-
chenko 1965a, b; Glasser 1970), the three-dimensional case remains a mystery even 
nowadays.
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Thereby, for an arbitrary lattice type of an arbitrary dimensionality, it is usually 
necessary to apply some approximations. In Chap. 7, we will consider the approxi-
mation of the renormalization group. However, there is also another approxima-
tion—the mean-field approximation which we discuss in the following paragraphs.

The mean-field approach has appeared much earlier than the renormalization 
group approach. It does not work always, sometimes only for the given range of pa-
rameters. However, this approximation has become canonical due to its capability 
to crudely but exemplarily illustrate the phase-transition phenomena.

Why can we not find the exact solution for the case of an arbitrary lattice? The 
reason is that for the nonideal system the energy of microstate { }σ  depends already 
not only on the averaged spin over the lattice, σ σi { }, but also on the orientations 
of one spin relative to another. Therefore, the energy spectrum of the system be-
comes much more complex in comparison with the ideal system. The number of 
microstates, corresponding to the given value of magnetization, is still determined 
by (3.38)

� (3.70)

but it is very difficult to find the number gE of microstates, corresponding to the 
given value of energy.

In addition to the long-range order parameter, another parameter emerges in a 
nonideal system—the short-range order parameter, which is responsible for the 
local orientations of one spin relative to another. For simplicity, further, we will 
generally consider only the n.n. Ising model. For this model, the short-range order 
parameter is introduced as

� (3.71)

Here, we average the interactions between spins, σ σi j , over the nearest-neighbor 
spin pairs, < >i j n n, . ., of a microstate { }σ . The total number of the n.n. pairs on the 
lattice is Nq / 2, where q is the lattice coordination number (the number of neigh-
bors of a spin; q = 2 in Fig. 3.1a; q = 4 in Fig. 3.1b; q = 6  in Fig. 3.1c, d; and q = 3 
in Fig. 3.1e.

In terms of two order parameters, we can rewrite Hamiltonian (3.1) for the n.n. 
case as

� (3.72)

The mean-field approach is introduced as an approximation which substitutes 
the exact behavior of the short-range order parameter by some equivalent behavior 
depending on the long-range order parameter. Let us assume that from some a priori 
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considerations for every microstate { }σ , we have been able to approximate the exact 
value of S{ }σ  by some function of m{ }σ . In this case, Hamiltonian (3.72) becomes a 
function only of the long-range order parameter:

� (3.73)

Equality (3.73), like for the case of the ideal system, provides the correspon-
dence between the energy of a microstate and its magnetization. So, the energy level 
of the system again determines the numbers N↑ and N↓, and the statistical weight 
of this energy level is

� (3.74)

To find the partition function of the CE, we can now transform the sum (3.9) into 
the integral

� (3.75)

where Emin  and Emax are the minimal and maximal energies in the spectrum and E∆  
is the energy shift corresponding to one-spin flip. The particular dependencies of 
these three quantities are not important because the integral equals again its maxi-
mal term (the partition function equals its maximal partial partition function),

� (3.76)

which is determined by

� (3.77)

If we divide (3.77) by ZCE , we return to the equation of state (3.10).
However, it is again much easier to integrate not over the energy but over the 

magnetization:

� (3.78)

where the point m0 of the maximal term is determined by
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Substituting (3.70) into (3.79), we find the equation of state

� (3.80)

Once we have obtained m0 from this equation, we substitute it into (3.78) to find 
the value of ZCE and, correspondingly, the equilibrium free energy of the system:

� (3.81)

Substituting (3.70), (3.73), and (3.78) into (3.81), we find

� (3.82)

The term “mean field” appears because dependence (3.73) is generally assumed 
to be the result of the approximation when the interactions of spins in pairs are 
substituted by the interactions of separate spins with the effective field created by 
all spins together:

� (3.83)

where the effective field is some function h meff
{ } { }( )σ σ  of the specific magnetization 

of this microstate { }σ . The difference between (3.73) and (3.83) is just a matter of 
notation. Meanwhile, (3.80) transforms into

� (3.84)

As an example, we consider further the mean-field approach for a ferromagnet 
that is applied often and often. In this approach, it is assumed that the effective field 
is proportional to the magnetization of a ferromagnet:

� (3.85)

For this simple case, the equation of state (3.84) transforms into

� (3.86)

Let us consider the model in the absence of the external magnetic field, h = 0:

� (3.87)
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If the magnetization is present when the external magnetic field is zero, this magne-
tization is called spontaneous.

The easiest way to obtain the solution of (3.87) is to find graphically when the 
linear dependence intersects with the hyperbolic tangent function (Fig. 3.4).

As we see from Fig. 3.4, two different situations are possible. If in the vicinity of 
the point m = 0 the linear dependence is steeper than the hyperbolic tangent,

� (3.88)

there is only one solution m0 0= , corresponding to the absence of spontaneous mag-
netization.

On the contrary, if in the vicinity of the point m = 0 the linear dependence is less 
steep than the hyperbolic tangent,

� (3.89)

there are three points of intersection: −m m0 00, , � . Two of them, −m0 and m0, are 
nonzero which correspond to the presence of the spontaneous magnetization.

In the absence of magnetic field, the orientation “up” is no more or less prefer-
able than the orientation “down.” It is said that there is the symmetry in the model 
for these two orientations. However, we see that below the critical point, the system 
chooses one of the two directions to align spins along it. This is called the spontane-
ous symmetry breaking.

The third point of intersection for T A< 2µ , corresponding to zero magnetiza-
tion, is not, in fact, a solution. It is easy to see that if we return to (3.79). To find the 
maximal term of the partition function, we differentiated it and equated the deriva-
tive to zero. But a zero derivative returns all extrema, both maxima and minima. 
The point of zero magnetization corresponds to a minimum. Therefore, it should be 
discarded.

Comparing inequalities (3.88 and 3.89), we see that the temperature

� (3.90)
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Fig. 3.4   The graphical solu-
tion for the value of the equi-
librium magnetization 0m  in 
the absence of magnetic field
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plays the role of the critical temperature of a ferromagnet. Above the critical tem-
perature, C>T T , there is only one phase corresponding to zero magnetization. 
Below the critical temperature, C<T T , there are two solutions, −m0  and m0 , cor-
responding to two different phases. The point C=T T , C 0= =h h  is called the criti-
cal point.

From Fig. 3.4, we see that in the vicinity of the critical point (when the linear 
dependence is almost tangent to the hyperbolic tangent) the magnetization is small. 
This gives us an opportunity to investigate the neighborhood of the critical point in 
detail.

3.6 � Landau Theory

3.6.1 � The Equation of State

Let us return to the general case of a ferromagnet in the nonzero magnetic field h. 
If we consider the close proximity of the critical point, we can assume that the field 
h, specific magnetization m0, and relative deviation of temperature from its critical 
value

� (3.91)

are small. Therefore, we can expand the hyperbolic tangent (3.86) in these small 
parameters to find the equation of state of a ferromagnet:

� (3.92)

where� (3.93)

Here, we have introduced two parameters, a and b, whose true purpose will become 
clear later. Let us now abstract away from the particular system discussed in the 
previous section and in the future consider an arbitrary magnetic system whose 
equation of state is (3.92) and whose mean-field approximation is (3.73).

The equilibrium value of spontaneous magnetization is the solution of the equa-
tion of state (3.92); and in zero magnetic field, C 0= =h h , we find

� (3.94)

� (3.95)

Above the critical point ( C>T T ), there is only zero solution (3.94) because for 
t > 0 both square roots provide only complex numbers. The nonzero spontaneous 
magnetization (3.95) appears only below the critical point (t < 0).
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In fact, the zero spontaneous magnetization m0 0=  formally remains the solu-
tion of the equation of state (3.92) and below the critical point. However, later we 
will prove that this solution is not genuine, leaving only the nonzero magnetization 
at C<T T

� (3.96)

� (3.97)

This behavior is illustrated in Fig. 3.5 by a dotted line. The part of the critical iso-
field curve C 0= =h h  for temperatures below critical is called the coexistence curve 
or binodal curve. The filled dot in Fig. 3.5 represents the critical point.

The appearance of the spontaneous magnetization in the zero magnetic field is 
sometimes called as self-organization, because of the appearance of the nonzero 
order parameters in the system when the field parameter is zero. In other words, 
there is no external magnetic field which would prescribe for spins their directions. 
Instead, the spins themselves choose one of two possible directions as preferable 
and align themselves along it.

We see that below the critical point the dependence of the spontaneous magneti-
zation on t  along the binodal curve C 0= =h h  is a power law with exponent 1/2. 
If we introduce a critical index Cβt  as

� (3.98)

then, we immediately find that Landau theory provides for spontaneous magnetiza-
tion critical index C 1/ 2β =t . In turn, Landau theory is the consequence of the mean-
field approach. So, we attribute the critical index, which is just a simple rational 
number (simple rational fraction), to the properties of the mean-field approxima-
tion.

Next, instead of the critical isofield curve of zero magnetic field, we consider the 
critical isotherm C=T T . On this isotherm, the equation of state (3.92) provides the 
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following power-law dependence of the magnetization on the value of the magnetic 
field:

� (3.99)

If we define the second critical index Cβh  by

� (3.100)

we see that the mean-field approach determines C 1/3β =h .

3.6.2 � The Minimization of Free Energy

As we already know, the equation of state (3.92) must follow from the free energy 
minimization. To illustrate this principle for our particular system, we should inves-
tigate closer the free energy behavior.

Since we are working in the CE, the free energy potential of this ensemble is the 
Helmholtz energy. From (2.274), we know that the Helmholtz energy of a fluctua-
tion E{ }{ } is provided by

� (3.101)

Here, Z E
CE
{ }{ } is the partial partition function:

� (3.102)

or� (3.103)

where in the last equation we have again decided that it is more convenient to work 
with the magnetization than with the energy. Substituting (3.70) and (3.73) into 
(3.103), we find the dependence of the nonequilibrium free energy on the nonequi-
librium value of system’s magnetization m (the magnetization which does not obey 
the equation of state (3.92)):

� (3.104)
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Remarkable is that this is the same functional dependence as (3.82). Only differ-
ence is that there we were looking for the equilibrium value of the Helmholtz en-
ergy; and, correspondingly, the dependence was on the equilibrium value m0 of the 
magnetization which obeys the equation of state (3.92). On the contrary, energy 
(3.104) is nonequilibrium, and the dependence is on the nonequilibrium value m of 
the magnetization.

Similar to how we have expanded the hyperbolic tangent (3.86) to obtain the 
equation of state (3.92), we now expand dependence (3.104) in small parameters h, 
t, and m for the close proximity of the critical point:

� (3.105)

Here, −2 2Aln  is a constant, and therefore, it can be easily removed by the shift of 
the free energy. Further, we will neglect this term as not influencing behavior of the 
system.

Functional dependence (3.105) represents Landau theory, developed for our 
magnetic system, while a and b, introduced earlier in (3.93), are, in fact, the coef-
ficients of the free energy expansion.

We already know that to find the equilibrium state we should minimize the 
free energy over all nonequilibrium states. To do this, we differentiate dependence 
(3.105) with respect to m and equate the derivative to zero

� (3.106)

This returns us to the equation of state (3.92), and we see that this equation is indeed 
the consequence of the free energy minimization principle.

Let us now investigate the system’s behavior with the aid of expression (3.105) 
obtained for nonequilibrium states in the vicinity of the critical point. If we look 
at the definition (3.85), we see that constant A, as the constant of proportionality 
between the effective field and magnetization, is expected to be positive for a fer-
romagnet. Therefore, in accordance with (3.93), both coefficients, a and b, are also 
positive.

Let us consider first the system in the absence of magnetic field, h = 0. The 
sketch of the free energy dependence on nonequilibrium magnetization m is pre-
sented in Fig. 3.6. For temperatures higher than critical (t > 0), both the quadratic 
dependence and the fourth-order dependence in (3.105) have minima at the point of 
zero magnetization. Therefore, their sum also has a minimum at m = 0.

At critical temperature (t = 0), the quadratic dependence disappears, and the 
minimum becomes flatter, following the fourth-order dependence. Below the criti-
cal point (t < 0), the fourth-order dependence has again a minimum at zero mag-
netization while the quadratic dependence turns upside down and has a maximum 
at m = 0. For small values of m, the free energy dependence is dominated by the 
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quadratic term while in the infinity the fourth-order dependence becomes in turn 
dominant. This “wrestle” of the quadratic dependence and the fourth-order depen-
dence causes the appearance of two minima at the nonzero values of spontaneous 
magnetization, −m m0 0, , which correspond to solutions (3.95) we obtained earlier. 
Between these two minima, there is a maximum at zero magnetization.

Now, we can answer the question why in (3.97) we discarded zero solution (3.94) 
of the equation of state (3.92) below the critical point. To find equilibrium states, 
we should minimize the free energy potential. We did this by finding its derivative 
and equating it to zero (3.106). But this procedure returns not only minima but also 
maxima, and maxima do not correspond to equilibrium solutions. In accordance 
with Fig. 3.6, the zero magnetization below the critical point corresponds precisely 
to the maximum and, therefore, is not an equilibrium solution.

We see now the beauty of Landau theory. We kept only first terms in the free 
energy expansion (3.105), and in zero magnetic field only two of them influenced 
the system’s behavior. But these two terms were enough to illustrate the behavior 
of criticality.

However, this is not all what Landau theory is capable of! Besides the second-
order phase transitions, it can also illustrate the first-order phase transitions. To be 
applicable, the theory requires only that the system should still be in the vicinity of 
the critical point. However, both the coexistence curve and spinodal curve originate 
just at the critical point. Therefore, in its vicinity we are still able to consider the 
first-order phase transitions.

We consider the temperature below critical. In Fig. 3.7, we first draw the curve 
for h = 0 similar to Fig. 3.6. Let us now increase the value of the field h. Due to the 
term −hm in the free energy expansion (3.105), the left minimum becomes local 
(less deep) in comparison with the right, global minimum.

Following the free energy minimization principle, the system would prefer to 
move to the global minimum. However, if it is initially in a state close to the local 
minimum, a potential barrier between two minima prevents the system to leave. 
Therefore, the system will stay in a quasi-equilibrium, metastable state, corre-
sponding to the fluctuations in the vicinity of the local minimum.

Fig. 3.6   The nonequilibrium 
free energy in the absence of 
magnetic field
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Because of these fluctuations, the system performs many attempts to climb out 
of the local minimum. If we studied dynamic phenomena of phase transitions, for 
the linear response, we would find to be valid the time-dependent evolution equa-
tion ( the Ginzburg–Landau–Langevin equation for the nonconserved order param-
eter): 1

� (3.107)

Here, ζ  is the noise which constantly generates fluctuations in the vicinity of the 
system’s current state. However, when due to the presence of this noise, the system 

“jumps” up the slope of the potential barrier, the gradient 
∂

∂
{ }{ }F

m
m  of the free energy 

at the minimum’s “wall” “rolls it down.” The system “jumps” again, but the free 
energy gradient returns it back again, and so on.

Saying that the system performs “many attempts” to climb out of the local mini-
mum, we mean really many. The reader can imagine an ant in a sand cone. While 
the ant tries to climb up, the sand avalanches constantly drop it back to the bottom.

After a large number of attempts, it could so happen that a very improbable fluc-
tuation would take place, so the system could climb up to the top of the potential 
barrier. After that, it slides down to the bottom of the right, global minimum, cor-
responding to the stable state, by the “explosive,” nonequilibrium process.2

At further increase of the magnetic field, the left minimum becomes shallower 
and shallower and finally disappears at the spinodal point. The disappearance of 

1  Unfortunately, to avoid confusion with the relative deviation t of temperature from its critical 
value for the derivative with respect to time we have to use here the notation / ( )∂ ∂ time .
2  Once during a lecture, when I colorfully described how it is difficult for the system to climb up 
to the top of the potential barrier and how many attempts it would require, a student asked a ques-
tion: “What if at the top of the potential barrier the system would reel not to the “right” but to the 
“left,” back into the local minimum?” “In this case we will call it a looser!” was the only answer 
I could then come up with.
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Fig. 3.7   The nonequilibrium 
free energy in the presence of 
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the left minimum is caused by its coalescence with the maximum of the potential 
barrier.

“After” the spinodal point, there is no potential barrier, only one, global mini-
mum is left, and therefore, there are no metastable states. This means that for any 
initial state the gradient of the free energy leads the system directly into the equilib-
rium state at the bottom of the single minimum left.

3.6.3 � Stable, Metastable, Unstable States, and Maxwell’s Rule

We already know that the equation of state (3.92) corresponds to the minimum of 
the free energy potential. Now, we also see that it represents not only stable states, 
corresponding to the global minimum of the free energy, but also metastable states 
of the local minimum. The stable and metastable isotherms, corresponding to the 
equation of state (3.92), are presented in Fig. 3.8.

Above the critical point ( C>T T ), these isotherms are continuous curves with 
zero spontaneous magnetization in zero field, and they represent only stable states. 
There is only one phase here which is called paramagnetic.

The critical isotherm C=T T  is tangent to the abscissa axis (recall (3.99) and 
(3.100)) and, therefore, has an infinite derivative, dm dh0 / = ∞ , at the zero mag-
netic field h = 0. This can be considered as an inheritance of the spinodal curve 
disappearing at the critical point. We will discuss the spinodal curve in detail later.

Below the critical temperature ( C<T T ) the isotherms intersect with the ab-
scissa axis at two nonzero values which represent two phases of spontaneous mag-
netization. These phases are called ferromagnetic. The isotherms are stable while 
the sign of the magnetic field coincides with the sign of the magnetization. If the 
field changes its sign, the isotherms are continued as metastable until the spinodal 
point.

In Fig. 3.7, the spinodal point corresponded to the field at which the local mini-
mum disappeared. In Fig. 3.8, the spinodal can be found as a point on the isotherm 

Fig. 3.8   The equation of state 
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at which the derivative of the magnetization with respect to the field becomes in-
finite, dm dh0 / = ∞ . After the spinodal point (Fig. 3.9), this derivative is negative, 
dm dh0 0/ < , which corresponds to unstable states. Therefore, the spinodal point 
dm dh0 / = ∞ delimits the metastable states with positive derivative dm dh0 0/ >  
from the unstable states with negative derivative dm dh0 0/ < . A similar situation 
takes place in liquid–gas systems, for example, in the case of a van der Waals gas, 
when spinodal corresponds to the infinite derivative of concentration with respect to 
pressure dn dP/ = ∞ and delimits stable dn dP/ > 0 and unstable dn dP/ < 0 parts 
of the van der Waals equation of state.

If we continued analogy with the liquid–gas systems, we would recall that for 
these systems there is such an important concept as Maxwell’s rule. For the pres-
sure, that at given temperature coincides with the Clausius–Clapeyron pressure of 
the liquid–gas phase transition, Maxwell’s rule introduces heterogeneity into the 
system when the volume of the system is divided into separate domains ( clusters) 
of liquid and gas phases.

For magnetic systems, similar rule is illustrated in Figs. 3.8 and 3.9 as a horizon-
tal line at zero magnetic field h = 0, which connects two stable parts of an isotherm. 
In the absence of magnetic field, the lattice breaks up into a set of separate domains 
with positive and negative magnetizations. The system’s spontaneous magnetiza-
tion equals the domain’s magnetizations averaged over the lattice and can take any 
value between two homogeneous solutions (3.97)

� (3.108)

We have built Fig. 3.5 to correspond to the case of a homogeneous system. To in-
clude heterogeneous Maxwell’s rule into this figure, we should allow the system to 
be in any state inside of the coexistence curve (Fig. 3.10). That is why this curve is 
called the coexistence curve; it delimits the one-phase region from the two-phase 
region of phase coexistence.

In liquid–gas systems, we know that at given temperature any deviation of the 
pressure from the Clausius–Clapeyron pressure immediately transforms the het-
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Fig. 3.9   The equation of state 
below the critical point
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erogeneous system into one of the homogeneous phases. In magnetic systems, the 
appearance of a nonzero field, no matter how small, immediately transforms a het-
erogeneous state into one of the homogeneous phases as well. In other words, the 
appearing field breaks the phase coexistence. It keeps domains of one phase as 
favorable but breaks domains of another phase, transforming them into the favor-
able phase.

Therefore, minor changes in the magnetic field around its zero value transfer 
the system from one phase to another along Maxwell’s rule. Stronger changes in 
the field lead to the appearance of a hysteresis loop along the metastable parts of an 
isotherm (Fig. 3.11). We observe similar phenomena in liquid–gas systems when we 
transform one phase into another not by means of Maxwell’s rule but through the 
region of metastable states.

In Fig.  3.8, we plotted the equation of state (3.92) by means of separate iso-
therms. But the equation of state is, in fact, a three-dimensional surface; and iso-
therms represent merely its two-dimensional cross-sections. Therefore, it would be 
much more illustrative to plot this equation in three-dimensional space as a three-
dimensional surface (Fig. 3.12).

The behavior of the system significantly depends on whether we consider it be-
low or above the critical point. Below the critical point, the surface of stable states 
consists of lateral one-phase sheets for nonzero field and a piece of the two-phase 

Fig. 3.10   The equation of 
state in zero magnetic field
 

Fig. 3.11   The hysteresis loop 
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plane inside of the coexistence curve. Two sheets of metastable states continuously 
extend the lateral sheets up to the spinodal curve. Above the critical point, there is 
only one sheet, presenting the stable paramagnetic states.

The first important curve—the coexistence curve ( binodal curve)—is deter-
mined by the spontaneous magnetization (3.97) of the homogeneous system. This 
curve delimits the one-phase and two-phase regions for magnetic systems as well 
as for liquid–gas systems.

The equation of the second important curve—the spinodal curve—we can find 
by the condition that at the spinodal point in Fig. 3.7 the minimum and maximum 
of the free energy coalesce. In other words, we should find when the determinant of 
cubic equation (3.92) becomes zero. Or, differentiating this equation, we could find 
when the derivative of the magnetization with respect to the magnetic field becomes 
infinite: ∂ ∂ =m h0 / ∞ . In both cases, the solution is given by

� (3.109)

Recently, it was discovered that in the vicinity of the spinodal point physical 
dependences are also power-laws similar to the behavior of the system in the vicin-
ity of the critical point. Expanding the equation of state (3.92) in small parameters 

0 S−m m  and S−t t  while the magnetic field is kept equal to its spinodal value, 
S=h h , we find

� (3.110)

The spinodal index Sβt  is defined as

� (3.111)
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So, the mean-field approach of Landau theory provides S 1/ 2tβ = .
On the contrary, expanding the equation of state (3.92) in small parameters 

0 Sm m−  and Sh h−  while the temperature is kept unchanged, we find

� (3.112)

The spinodal index  S
hβ  is defined as

� (3.113)

and we immediately find S 1/2hβ = . This parabolic dependence is obvious from 
Fig. 3.9.

3.6.4 � Susceptibility

We define the magnetic susceptibility as the response of the equilibrium magnetiza-
tion to the change in the magnetic field:

� (3.114)

In more detail, the importance of this quantity will be discussed in Chap. 6. Here, 
we investigate only the divergence of the susceptibility in the vicinity of the critical 
and spinodal points.

Differentiating the equation of state (3.92) with respect to the magnetic field h, 
we find

� (3.115)

First, we approach the critical point along the isofield curve, C 0h h= = , which 
below the critical temperature corresponds to the binodal curve. Substituting (3.96) 
and (3.97) into (3.115), we obtain

� (3.116)

� (3.117)
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We see that if we define the critical index C
tγ  by

�
(3.118)

the mean-field approach provides C 1tγ = .
Second, we approach the critical point along the critical isotherm CT T= . Substi-

tuting (3.99) and t = 0 into (3.115), we find

�
(3.119)

For the critical index C
hγ , defined by

�
(3.120)

we obtain C 2 / 3hγ = .
Next, let us consider the proximity of the spinodal point. For the isofield Sh h=  

approach, we expand (3.115) in small parameters 0 Sm m−  and St t−  while keep-
ing Sh h= :

� (3.121)

Here, we should recall that along the spinodal isofield curve we have relationship 
(3.110) between 0 Sm m−  and St t− . Substituting it into (3.121), we find

� (3.122)

For the spinodal index, defined by

� (3.123)

this provides S 1/ 2tγ = .
Finally, we approach the spinodal point along the isotherm St t= . Expanding 

(3.115) in small parameter 0 Sm m−  while keeping St t= , we find

� (3.124)

χ
γ

∝
1

| |
,

t t
C

χ =
1

3 43 2 3bh / .

χ
γ

∝
1

| |
,

h h
C

S
S 0 S

1 .
2 ( ) 24 ( )

6
at

a t t b m m
b

χ =

− − − −

S S S S S

1 1 .
2 ( ) 4 4a t t a t t t a t t t

χ = ≈
− + − − − −

χ
γ

∝
−

1

| |
,

t t t
S

S

S
0 S

1 .
24

6
at

b m m
b

χ =

− −



3  The Ising Model182

Recalling that along the isotherm St t=  we have found earlier relationship (3.112) 
between 0 Sm m−  and Sh h− , we obtain

� (3.125)

So, for the critical index

�
(3.126)

we find S 1/ 2hγ = .
Earlier we have discussed that the stable and metastable states are distinguished 

from the unstable states by the sign of the derivative ∂ ∂m h0 / . Now, we see that 
this derivative represents the susceptibility (3.114) of the system. This behavior is 
presented in Fig. 3.13. In more detail, we discuss the susceptibility in Chap. 6.

3.6.5 � Heat Capacity

The heat capacity is defined by

� (3.127)

where the ensemble Helmholtz free energy is given by (3.82). In the vicinity of the 
critical point, (3.82) can be expanded as

� (3.128)
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� (3.129)

differentiating (3.128), we find

� (3.130)

The last term in the right-hand side of this expression is zero due to the equation of 
state (3.92):

� (3.131)

Simultaneously, we differentiate the equation of state (3.92) to find the derivative of 
the equilibrium magnetization:

� (3.132)

which we substitute into (3.131):

�
(3.133)

If we approach the critical point along the isofield curve C 0h h= = , substituting 
(3.96) and (3.97) and h = 0 into (3.133), we find

� (3.134)

� (3.135)

Recalling from (3.90) and (3.93) that 
2
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We see that the heat capacity does not have a singularity when we approach the 
critical point along the binodal curve. Therefore, the critical index C

tα , defined by

�
(3.138)

is zero: C 0tα = .
Next, we consider the approach of the critical point along the critical isotherm 

CT T= . Substituting (3.99) and t = 0 into (3.133), we obtain

�
(3.139)

Again, the critical index C
hα , defined by

� (3.140)

is zero: C 0hα = .
Above we have found that C 1/ 2tβ =  and C 1tγ = . Therefore, we prove that

� (3.141)

If we considered an arbitrary magnetic system, this equality would transform into 
the Rushbrooke inequality (Essam and Fisher 1963; Rushbrooke 1963):

� (3.142)

We return to this relation for the critical isotherm indices in Chap. 8.
Now, let us investigate the vicinity of the spinodal point. Approaching the spi-

nodal point along the isofield Sh h=  curve, we expand (3.133) in small parameters 
0 Sm m−  and St t−  while keeping Sh h= :

� (3.143)

Recalling (3.110), we find

�
(3.144)
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So, for the spinodal index  S
tα , defined by

�
(3.145)

we find S 1/ 2tα =  which provides the relation analogous to (3.141), only this time 
formulated for the spinodal indices:

� (3.146)

The Rushbrooke inequality arises from the general considerations of positivity of 
the heat capacity. Therefore, there is no reason why this inequality should not be 
applicable for spinodal indices as well.

Finally, we approach the spinodal point along the isotherm St t= . Expanding 
(3.133) in small parameters 0 Sm m−  and Sh h−  while keeping St t= , we find

� (3.147)

Recalling (3.112), we find

� (3.148)

For the spinodal index S
hα , defined by

� (3.149)
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Fig. 3.14   The sign of the 
heat capacity distinguishes 
stable and metastable states 
from unstable states
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we find S 1/ 2hα = .
We see that the heat capacity, similar to the magnetic susceptibility, diverg-

es in the vicinity of the spinodal point and becomes negative for unstable states 
(Fig. 3.14). Therefore, the heat capacity, as well as the magnetic susceptibility, can 
be considered as an indicator determining the stability of the states. Positive values 
correspond to the stable or metastable states while negative values indicate the pres-
ence of instability.

3.6.6 � Equilibrium Free Energy

In Figs. 3.6 and 3.7, we have considered the dependence of the free energy (3.105) 
on nonequilibrium values m of magnetization. Let us now turn our attention to the 
free energy of equilibrium states. In other words, let us return to the equilibrium 
free energy (3.82), which depends on the equilibrium values m0  of magnetization 
as solutions of the equation of state (3.92).

In Fig. 3.15, we present the sketch of the equilibrium free energy as an epure 
covering the curve of the equation of state. The free energy grows in one-phase re-
gion with the decrease of the absolute value of magnetic field. In zero field, the free 
energy of the heterogeneous system remains constant along Maxwell’s rule, and 
therefore, its values at the beginning and at the end of this rule are equal. In contrast, 
the free energy of the metastable states continues to grow in the metastable region 
and achieves its maximum at the spinodal point.

We already discussed above that although the equation of state (3.92) is sup-
posed to provide only equilibrium, stable states, it, in fact, does not distinguish 
local and global minima and, therefore, its solutions could not only be stable but 
also metastable. From the free energy minimization principle, we know that meta-
stable states must have higher values of the free energy than stable states. This can 
be clearly seen from Fig. 3.15, where the metastable states have higher free energy 
than both the heterogeneous states along Maxwell’s rule and the states along the 
stable parts of the isotherm.

Fig. 3.15   The values of the 
equilibrium free energy, pre-
sented as an epure over the 
curve of the equation of state
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In Fig. 3.16, we present the dependence of the equilibrium free energy on the 
magnetic field h for a given value of temperature below critical. The one-phase 
branches of the stable states are the lowest in the figure. The two-phase region of 
Maxwell’s rule degenerates here into the point at the intersection of these branches. 
From this point, two metastable branches disperse upward which transform at the 
spinodal points into the unstable branch.

Again, Fig. 3.16 is only an isothermic cross-section of some three-dimensional 
surface. This surface itself is presented in Fig. 3.17. Above the critical point, it has 
only one sheet. Below the critical point, additional sheets of metastable and unstable 
states appear which are located higher than the stable sheet. The two-phase region 
of Maxwell’s rule collapses into the coexistence curve. The metastable sheets are 
separated from the unstable sheet by two spinodal curves.

The reader should clearly distinguish Figs. 3.16 and 3.17 for the equilibrium free 
energy from Figs. 3.6 and 3.7 for the nonequilibrium free energy. In Figs. 3.6 and 
3.7, for the given values of field and temperature, we were looking for the minimum 
of the free energy over all possible nonequilibrium values of m. On the contrary, 
in Figs. 3.16 and 3.17, magnetization is already a solution of the equation of state 

Fig. 3.17   The equilibrium 
free energy
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(3.92), and metastable states, overlooked by it, are the only remnants of nonequi-
librium states. Therefore, in Figs. 3.16 and 3.17, the free energy minimization prin-
ciple degenerates into the choice between the stable and metastable branches when 
we choose the lower sheet.

3.6.7 � Classification of Phase Transitions

The critical point is generally considered to represent a continuous (second-order) 
phase transition while the binodal and spinodal curves, originating at this point, are 
representatives of a first-order transition. Classification defines that at the point of 
a continuous phase transition the derivatives of the equilibrium free energy (or a 
quasi-equilibrium free energy of metastable states) with respect to field parameters 
of the system should be zero. On the contrary, a nonzero derivative indicates the 
presence of a first-order phase transition.

There are two field parameters in Landau theory: the magnetic field h and the 
relative deviation t of the temperature from critical. So, we should investigate when 
two derivatives, ( / )∂ ∂F hCE

t  and ( / )∂ ∂F tCE
h , are zero, where the ensemble free 

energy is

� (3.150)

Differentiating, we find

	
(3.151)

and

� (3.152)

where the derivatives ∂ ∂m h0 /  and ∂ ∂m t0 /  we obtain by differentiating the equa-
tion of state (3.92):

�
(3.153)

We consider the states at the binodal curve. The binodal curve is determined by 
(3.97) when h t= ≤0 0, . Substituting these equations into (3.151) and (3.152), we 
find that the continuous phase transition takes place only at t = 0. In other words, 
the critical point represents the continuous phase transition in our system while the 
rest of the binodal curve is the first-order transition.
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This could be easily illustrated with the aid of Fig. 3.16. For simplicity, we in-
vestigate only the behavior of the derivative ( / )∂ ∂F hCE

t . Let us suppose that we 
consider a point at the binodal curve below the critical point: h t= <0 0, .

The meaning of the derivative ( / )∂ ∂F hCE
t  is how the equilibrium (or quasi-

equilibrium) free energy would change if we introduced a nonzero magnetic field. 
One phase would slide downward along the stable branch while another phase 
would climb up the branch of metastable states (two small arrows in Fig. 3.18). We 
see that well below the critical point the difference is pronounced; the metastable 
free energy is clearly higher than the free energy of the stable phase.

However, when we approach the critical temperature, the phase branches be-
come less and less steep (Fig. 3.18). Exactly at critical point the metastable and 
unstable branches disappear leaving only the single continuous stable branch with 
zero derivative at zero magnetic field. So, this is how in practice the first-order 
phase transition transforms into the continuous phase transition in the proximity of 
the critical point.

We see now that the first-order phase transition differs from the continuous phase 
transition by the presence of metastable states whose free energy is higher than the 
free energy of stable states. Therefore, we can add to the rule of the classification 
of phase transitions that the presence of metastable states clearly indicates that the 
phase transition is of the first order.

3.6.8 � Critical and Spinodal Slowing Down

Let us study in more detail the processes of relaxation of fluctuations. First, we 
consider the system above the critical point (t > 0) in the absence of magnetic field 
(h = 0). We assume that a noise term in the Ginzburg–Landau–Langevin equation 
(3.107) has created a fluctuation that has “tossed” the system up along the slope of 
the free energy potential (Fig. 3.19). Next, we remove the noise from this equation,

� (3.154)∂
∂

= −
∂

∂
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time
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m
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,
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Fig. 3.18   The free energy 
difference between stable and 
metastable states
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and observe how the relaxation process returns the system back to the bottom of the 
free energy minimum.

The steeper the slope of the free energy “wall,” the higher the derivative 
| / |∂ { }{ }F mm , and the faster the relaxation process (3.154) is. However, when the sys-
tem approaches the bottom of the minimum, the value of the derivative | / |∂ { }{ }F mm  
decreases, and so does the speed of the relaxation process.

In the vicinity of the point of the minimum m0 0= , the dependence of F m{ }{ } on 
m is parabolic:

� (3.155)

Substituting (3.155) into (3.154), we obtain the ordinary differential equation

� (3.156)

whose solution is

� (3.157)

where ( )time ref  is

�
(3.158)

We see that fluctuations decay exponentially with the characteristic time of the de-
cay provided by (3.158).

We can generalize this case for the nonzero field h > 0 as well. This time the 
equilibrium value of magnetization is not zero but some value m0 0> , which is 
provided by the solution of the cubic equation of state (3.92). Expanding the free 
energy (3.105) in the vicinity of this point, we return to the parabolic dependence 
which is obvious from Fig. 3.20:
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Fig. 3.19   The relaxation 
process attenuates the fluc-
tuation, returning the system 
back to the bottom of the free 
energy minimum
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� (3.159)

But in accordance with (3.115), the susceptibility,

�
(3.160)

represents the inverse coefficient we see in the expansion of the free energy (3.159):

� (3.161)

Next, we again consider a fluctuation “tossing” the system up the slope of the 
free energy potential (Fig. 3.20). Substituting (3.161) into the Ginzburg–Landau–
Langevin equation (3.154), we obtain the ordinary differential equation

� (3.162)

whose solution is

� (3.163)

where ( )time ref  is

� (3.164)

The decay of fluctuations is exponential with time again.
As a next example, let us consider fluctuations in the vicinity of the local mini-

mum of the free energy when the system is below the critical point (t < 0) and mag-
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netic field is nonzero (h > 0). To find the point of the local minimum, we consider 
the solution m0 0<  of the cubic equation of state (3.92). Expanding the free energy 
(3.105) in the vicinity of this point, we return to the parabolic dependence (3.161), 
which is obvious from Fig. 3.7. Considering a relaxation process in the vicinity of 
the local minimum (Fig. 3.21), we obtain the solution which is identical to (3.163) 
and (3.164).

One more time we see that the decay of fluctuations is exponential with time. 
Why does this happen again and again? Is this tendency general?

Above we have considered the vicinity of the free energy minima, where the 
dependence of the free energy on the deviations of magnetization from the equilib-
rium value was parabolic. It is obvious that substituting the parabolic dependence 
into the Ginzburg–Landau–Langevin equation (3.154), each time we will obtain the 
exponential decay of fluctuations. Therefore, this tendency is quite general for the 
near-equilibrium fluctuations in Landau theory with the exception of some special 
cases we consider below.

Let us return to the relaxation process (3.163) valid both above and below the 
critical point. From (3.164), we see that the characteristic time of the decay of the 
relaxation process is proportional to the susceptibility of the system. But the suscep-
tibility diverges in the vicinity of the critical and spinodal points. Therefore, so does 
the characteristic time of the decay (with the same values of critical and spinodal 
indices). This phenomenon is called the (critical or spinodal) slowing down.

However, considering the system at the critical or spinodal point, we can no lon-
ger rely on the formulae above. Indeed, at these points, the dependence of the free 
energy (3.105) in the vicinity of its minimum is no longer parabolic.

So, at the critical point, substituting t = 0 and h = 0 into (3.105), we should con-
sider the fourth-power dependence:

� (3.165)

Considering a fluctuation (Fig. 3.22), we substitute (3.165) into the Ginzburg–
Landau–Langevin equation (3.154) to obtain the ordinary differential equation:

F N A bmm{ }{ } = − + +…µ( ln ).2 2 4

Fig. 3.21   The relaxation pro-
cess below the critical point 
attenuates the fluctuation, 
returning the system back 
to the bottom of the local 
minimum
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� (3.166)

The solution is

� (3.167)

In the limit of long relaxation time, ( )time →+∞, the decay (3.167) becomes a 
power-law decay:

� (3.168)

If we define the critical index Cτ  by

�
(3.169)

Landau theory determines C 1/ 2τ = .
Finally, we consider the system at the spinodal point. Substituting (3.109) into 

(3.105), we find the dependence of F m{ }{ } on the nonequilibrium value of m to be 
cubic which is obvious in the vicinity of the point of inflection:

� (3.170)

Next, as usual, we consider a fluctuation. Only this time the fluctuation is not 
required to return the system back to the metastable state (Fig. 3.23); so the process 
will not attenuate fluctuation but, on the contrary, will lead the system to the bottom 

3 4 · ( ).dm BN b d time
m

µ= −

1| | .
8 ·( )

m
BN b time constµ

=
+

1| | .
8 ·( )

m
BN b timeµ

=

C

1| | ,
( )

m
time τ

=

{ }{ } { }{ }S

3
S S

22 ( ) .
3m mF F N abt m mµ

 
= + − − − +…  

Fig. 3.22   The relaxation 
process at the critical point
 



3  The Ising Model194

of the global minimum. Nevertheless, we can discuss the speed of this process in the 
vicinity of the point of inflection.

Substituting (3.170) into (3.154), we find the ordinary differential equation,

�
(3.171)

whose solution is

� (3.172)

This solution can be interpreted in two different ways. If initially S( (0) ) 0m m− <  
so that the fluctuation has “tossed” the system to the left from the inflection point in 
Fig. 3.23, we observe the relaxation process toward the inflection point:

�
(3.173)

which in the limit of long relaxation times

�
(3.174)

provides the power-law decay of the fluctuation. For the spinodal index:

�
(3.175)

this returns S 1τ = .
On the contrary, if we consider S( (0) ) 0m m− >  initially so that the fluctuation 

has “tossed” the system to the right in Fig. 3.23, toward the global minimum, the 
difference S( )m m−  continue to increase as

S2
S

2 6 · ( ),
( )

dm BN abt d time
m m

µ= −
−

S
S

1( ) .
2 6 · ( )

m m
const BN abt timeµ

− = −
+ −

S
S

1| |
2 6 · ( )

m m
const BN abt timeµ

− =
+ −

S
S

1| |
2 6 · ( )

m m
BN abt timeµ

− =
−

S

1| |
( )

m
time τ

=

Fig. 3.23   The dynamical 
process at the spinodal point
 



3.6  Landau Theory 195

�
(3.176)

leading the system to the stable state at the bottom of the global minimum. The 
time necessary to reach this state is inversely proportional to the initial difference 

S( (0) )m m− :

� (3.177)

so that the bigger the initial fluctuation is, the sooner the system will reach the stable 
state.

3.6.9 � Heterogeneous System

So far, in all our formulae, the value of magnetization m has not depended on the 
coordinates within the system; and the only heterogeneous states we considered 
were provided by Maxwell’s rule. Even when we minimized the free energy over 
all possible nonequilibrium states in Figs. 3.6 and 3.7, we considered, in fact, only 
homogeneous states with the uniform magnetization over the lattice.

But the homogeneous system is just an idealization that helps us to find the so-
lution. Systems in nature are heterogeneous when magnetization (or density in the 
liquid–gas systems) is not required to be uniform over the space of a system.

What would happen if we were looking at a heterogeneous system? And first, 
how do we build a heterogeneous system? We should divide the lattice into mag-
netic domains ( clusters). For simplicity, we consider that inside each domain the 
magnetization is uniform but it changes when we move from one domain to another. 
Then, the free energy will be the sum of the domain’s free energies.

But how does it happen in practice? In Fig. 3.24, we consider one of the iso-
therms of the homogeneous system below the critical point in nonzero magnetic 
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field. What we want is to use this curve to build the domain’s uniform magnetiza-
tions and then to mix these domains in the volume of the heterogeneous system.

Let us first build the simplest heterogeneous state when we choose a priori two 
different values of magnetization, and the domain’s magnetizations in the hetero-
geneous system may be equal only to one or another of these two values. Empty 
circles in Fig.  3.24 represent the separate homogeneous domains, which we are 
mixing, while dotted lines, connecting empty circles into pairs, are the mixing itself.

The magnetization of the heterogeneous system equals the domain’s magnetiza-
tions averaged over the lattice. Let a vertical dashed line represent the desired value 
of the averaged magnetization. Then filled circles which we build at the intersec-
tions of the dotted lines and the vertical dashed line are the results of the mixture. 
An ordinate of any of these filled circles equals the total free energy of the hetero-
geneous system provided by the domain’s free energies averaged over the lattice.

Following the free energy minimization principle, we are looking for the mixture 
with the minimal free energy. This is the lowest filled circle when the dotted mixing 
line is tangent to the homogeneous isotherm at two different points. After we have 
built this line, we can remove the part of the isotherm above it as having higher 
values of the free energy and, therefore, as “less equilibrium.”

The final result of our work is presented in Fig. 3.25. It represents those mixtures 
which have the minimal free energy for the given value of the averaged over the lat-
tice magnetization. However, so far the free energy has not been minimized yet by 
the value of the averaged magnetization itself which is still nonequilibrium.

We should mention that although we have considered the simplest case when the 
domain’s magnetizations had values only of two possible, it has lead us to the cor-
rect dependence of the free energy of the heterogeneous system. If we considered 
mixing domains with arbitrary magnetizations, this would not do us any better. 
Indeed, the reader can consider mixing not just two empty circles in Fig. 3.24 but 
three, four, or any number of circles lying on the homogeneous curve. In any case, 
the lowest value (for the given averaged magnetization) of the free energy of the 
mixture will still correspond to Fig. 3.25.

Let us minimize the free energy of mixture for all isotherms in Fig. 3.7. The 
result is presented in Fig. 3.26. In all cases, the “straightening” line has been drawn 
as a tangent to the curve at two points.

Fig. 3.25   Maxwell’s rule for 
the case of nonzero magnetic 
field
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For the zero magnetic field, this line is horizontal. It starts from the bottom of 
one minimum and ends at the bottom of another minimum. This, in fact, is Max-
well’s rule we have introduced before. It represents the line, along which the free 
energy potential degenerates and instead of a discrete point of global minimum 
provides a continuous range of minimal values. Each point on this line represents a 
stable heterogeneous state as a mixture of phases (3.97) with positive and negative 
magnetizations.

For the nonzero field, the “straightening” lines start and finish not at the points 
of minima. On the contrary, from Fig. 3.26, it is easy to see that they all start and 
finish at the same values of magnetization which are shown by vertical dashed lines. 
These two values of magnetization are easy to be found because we already know 
that in the absence of magnetic field they coincide with the equilibrium solutions 
(3.97).

However, here we have come to a contradiction. If we look at Fig. 3.26, we see 
that for all isotherms the “straightening” lines have removed the potential barri-
ers between two minima. Now nothing prevents the system, which “follows” the 
“slope” of these lines, to “roll down” from any initial state into the stable state 
of the global minimum. In other words, the introduction of the heterogeneity has 
eliminated local minima and made the existence of metastable states impossible.

But although almost all systems in nature are heterogeneous (like a liquid–gas 
system which consists of the mixture of liquid and gas domains), this does not pre-
vent the possibility for these systems to be metastable (like a superheated liquid or 
a supercooled gas).

Therefore, a system, that is described mathematically as heterogeneous, still can 
possess metastable states, provided by some local minima behind some potential 
barrier. But what causes this potential barrier, dividing metastable and stable states, 
to appear in a heterogeneous system?

To answer this question, we should look back at what we have overlooked in our 
previous analysis. We introduced the heterogeneity as the system’s lattice divided 
into domains with different magnetizations. Then, we built the rule how to mix 
these domains by connecting them with dotted lines in Fig. 3.24. Simultaneously, 
we assumed that the total free energy of the system is the sum of the domain’s free 

Fig. 3.26   Maxwell’s rules 
for different values of the 
magnetic field
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energies, and therefore, the ordinates of our filled circles, built at dotted lines, pro-
vide correct values for the total free energy of the heterogeneous system.

This was our mistake because the theory developed above has correctly taken 
into account the volumetric free energy of separate domains but overlooked the 
interactions of domains at their boundaries. Indeed, at the boundary between two 
phases, adjacent spins have presumably opposite orientations. This leads to the ad-
ditional free energy, necessary to create the boundary. This additional energy is the 
most known in liquid–gas systems as the concept of surface tension.

Let us consider the appearance of a bubble belonging to the stable phase inside a 
metastable medium. Inside the bubble’s volume, the system gets a benefit of lower 
free energy because the new phase corresponds to the global minimum and, there-
fore, has lower volumetric free energy than the metastable medium. However, the 
appearance of the bubble requires some energy to create its surface. The “wrestle” 
of these two factors leads to the appearance of a new potential barrier dividing local 
and global minima of the free energy.

A system in a metastable state can easily produce only small nuclei of stable 
phase because only small fluctuations are probable. Creation of these nuclei is 
equivalent to that the system jumps due to a fluctuation up the slope of the barrier 
toward the global minimum.

But small nuclei are disadvantageous because their volumetric benefit in lower 
free energy of stable phase is negligible in comparison with the surface energy. 
Therefore, the system “rolls down” from the wall of the potential barrier back into 
the local minimum by dissolving all created nuclei. Then, the system experiences 
another fluctuation, again jumps up the slope, and returns back to the bottom. And 
so on, and so on.

The system would not return back to the local minimum if a created nucleus were 
big enough, when the loss in the volumetric energy would overcome the gain in the 
surface energy. But the big nucleus means a large fluctuation which is improbable.

The nucleus, when the volumetric loss equals the surface gain of the energy, cor-
responds to the peak of the potential barrier and is called a critical nucleus.

Therefore, for the long time, the system fluctuates around the local, metastable 
minimum until an improbable fluctuation creates a nucleus with the size larger than 
critical. In other words, until the improbable fluctuation tosses the system to the top 
of the potential barrier or even farther. Then, the quick, “explosive” process follows, 
transferring the system to the stable state at the bottom of the global minimum. By 
“rapid boiling or precipitation,” the total system almost instantaneously transforms 
into the stable phase.

We say here “almost instantaneously” in contrast with the long lifetime of the 
metastable state. The difference between these two timescales may be of many or-
ders of magnitude. As an illustration, we could imagine a bomb stored on a military 
base. For the long decades or centuries, the bomb remains latent although energeti-
cally it would be beneficial to split the complex chemical compound into simpler 
substances. But the potential barrier of self-ignition prohibits the bomb to do that. 
Finally, after multiple attempts, thermal fluctuations create the local heat increase 
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equivalent to the critical nucleus. The consequence is an explosion whose duration 
is negligible in comparison with the previous long life in warehouse.

For the stable, one-phase parts of the isotherms below the critical point, the sys-
tem always returns to the stable state, no matter how huge the fluctuations are. 
Therefore, the size R of the critical nucleus has no physical meaning for these states 
or can be considered to be infinite.

When entering the metastable region, the size of the critical nucleus continu-
ously decreases and becomes almost zero at the spinodal point, where very small 
fluctuations (like a flip of one spin or a collision of a couple of molecules) can 
trigger the collapse of the metastable state. This behavior of the critical radius is 
schematically shown in Fig. 3.27 as an epure over the equation of state.

As we said, in the vicinity of the spinodal point, the radius of the critical nucleus 
is very small, and even small fluctuations are capable to toss the system behind 
the very small potential barrier. This makes the experimental investigations dif-
ficult and the spinodal itself is often unreachable in experiments. For this particular 
reason, the spinodal power-law scaling was discovered much later than its critical 
analogue.3

The described phenomena of nucleus birth are studied by the theory of nucle-
ation. Generally, this theory requires functional (field) description of heterogeneous 
phenomena and takes into account the shape of nuclei (Gunton and Droz 1983; 
Kashchiev 2000). But this discussion lies beyond the scope of our book.

At the end of this chapter, we would like to say that it is wonderful how such 
complex and beautiful phenomena as criticality and spinodal are described only by 
the first three terms of the free energy expansion in Landau theory!

3  However, there are systems (generally with long relaxation times) in which it is quite possible 
to observe in experiment the spinodal point and even the behavior of unstable states. The classical 
example is binary alloys which below the critical point split into phases of separate metals. The 
relaxation times in such systems can be of the order of days or months. Therefore, it is quite pos-
sible to observe these systems in the vicinity or inside of the unstable region.

Fig. 3.27   The epure of the 
critical nucleus radius
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3.7 � Mean-Field Approach

Problem 3.7.1

For the ferromagnetic n.n. Ising model, develop the mean-field approach by 
replacing the interactions of spins in pairs by the effective field generated by 
all spins together (the Weiss theory of ferromagnetism (Weiss 1907)). Find 
the ensemble partition function, the ensemble Helmholtz energy, and the 
equation of state.

Solution: We should replace the interactions −
< >
∑J i j
i j n n

σ σ
, . .

 of spins in pairs 

by some effective field. Every spin has q neighbors on the lattice, where q 
is the lattice coordination number. Let us replace one of spins in the product 

i jσ σ  by its value averaged over the lattice:

� (3.178)

where …
{ }σ

 denotes averaging over the spin orientations on the lattice of 
the microstate σ{ }  and

� (3.179)

Multiplier 1/2 appears due to that summing over all spins, 
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, we have 
counted each n.n. pair twice.

This provides the following approximation for the Hamiltonian:

� (3.180)

Substituting (3.180) into (3.80), we find the equation of state:

�
(3.181)

For the critical temperature, this equation provides:
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Problem 3.7.2

For the ferromagnetic n.n. Ising model, develop the mean-field approach by 
neglecting spin correlations (the Bragg–Williams theory of ferromagnetism 
(Brag and Williams 1934, 1935)). Find the ensemble partition function, the 
ensemble Helmholtz energy, and the equation of state.

Solution: Let us consider the correlation of two n.n. spins on the lattice of a 
microstate σ{ }:

� (3.183)

Neglecting spin correlations in (3.183),

� (3.184)

we find
� (3.185)

or
� (3.186)

Each spin has q nearest neighbors, so there are Nq / 2 n.n. pairs on the lat-
tice. Multiplier 1/2 appears here because summing over q nearest neighbors 
for each of N spins, we have countered each pair twice. The averaged over the 
lattice correlation of two neighboring spins is defined by

� (3.187)

while the magnetization, averaged over the lattice of a microstate σ{ }, is 
defined by

� (3.188)

Substituting (3.187) and (3.188) into (3.184–186), we find
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Problem 3.7.3

For the ferromagnetic n.n. Ising model, find the equation of state with the aid 
of the Gibbs–Bogolyubov–Feynman inequality. Find the ensemble partition 
function and the ensemble Helmholtz energy.

Solution: Let Η{ }σ  be the exact Hamiltonian of a model. For the case of the 
n.n. Ising model, the exact Hamiltonian is given by

� (3.190)

We approximate the exact Hamiltonian (3.190) with a model Hamiltonian 
Η{ }σ .

The exact partition function is defined as

� (3.191)

Let us perform the following transformations

� (3.192)
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So, neglecting spin correlations, we have been able to express the short-range 
order parameter in terms of the long-range order parameter. The rest of the 
solution is straightforward and follows the discussion of Sect. 3.5. As a result, 
we obtain the effective field and the equation of state coinciding with (3.179) 
and (3.181), respectively.
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� (3.193)

In (3.192), the sum represents the averaging of the quantity e T− −( )Η Η{ } { } /σ σ

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CE
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Η{ } /σ

, corresponding to Gibbs probabilities of the sys-

tem with the model Hamiltonian { }σΗ . In other words, it is averaging over the 

CE of the model Hamiltonian:

� (3.194)

Again, we apply some simple transformations to the last expression:

� (3.195)

Next, we utilize the algebraic inequality

� (3.196)

Applying this inequality to (3.195), we find

� (3.197)

Since the logarithm is the monotonically increasing function, we find the 
Gibbs–Bogolyubov–Feynman inequality (Gibbs 1902; Bogoliubov 1947a, b, 
1962a, b; Feynman 1972) for the ensemble Helmholtz energy:

� (3.198)

In other words, the equilibrium value of the free energy of the real system is 
always less than (or equal to) the right-hand side of (3.198); and this state-
ment is valid for an arbitrary model Hamiltonian Η{ }σ . Therefore, minimizing 
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over the functional space of all possible model Hamiltonians, we will approx-
imate the exact value of the free energy of the real system.

To obtain the exact value FCE of the free energy, we should consider all 
possible functional dependencies Η{ }σ . But it is very difficult. Instead, we 
could consider only some simple functional dependencies of model Hamil-
tonians and minimize functional (3.199) only over them. This would not, of 
course, provide the exact value FCE  of the free energy but it would give us at 
least some approximation.

The functional dependencies of model Hamiltonians, over which we will 
minimize functional (3.199), should be rather simple so that we could per-
form all calculations analytically. But the simplest dependence is the Hamil-
tonian (3.18) of the ideal system. Only now, to represent the nonideal system, 
we should add the effective field to this Hamiltonian:

� (3.200)

So, we are going to minimize functional (3.199) not over all possible func-
tional dependencies of the model Hamiltonians but only over the simplest 
dependences presented by (3.200). These functional dependencies are param-
eterized by values heff  of the effective field. So, our purpose is to substitute 
(3.200) into (3.199) and to minimize the obtained functional over the values 
of the effective field heff  as if over the values of a fitting parameter. This will 
provide the approximation of the exact value of the free energy FCE .

The partition function of the model Hamiltonian (3.200) has been found 
before in (3.32):

� (3.201)

The equilibrium magnetization is also already known from (3.41):

� (3.202)

The problem is to find the value of the real Hamiltonian averaged over the 
ensemble of the model Hamiltonian: Η
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. Not of our own will, but we 
have to return here to the previous approximation of Problem 3.7.2 when we 
neglected the correlations among spins:
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Problem 3.7.4

Find the equation of state, the ensemble partition function, and the ensemble 
Helmholtz energy for the ferromagnetic Ising model with spin interactions in 
pairs which do not depend on the distance between spins in a pair.

Solution: So, every spin i interacts with any other spin j with the energy 
−J i jσ σ  which does not depend on the distance between these two spins on 
the lattice. The Hamiltonian of the model is determined as

� (3.205)

where multiplier 1/2 has appeared in front of the last sum due to the fact that 
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Let us move the peculiarity i j≠  from this sum into a separate term:
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where m0  depends on heff  in accordance with (3.202).
The averaging of the model Hamiltonian over the ensemble of the model 

Hamiltonian can be found in a similar way:

� (3.204)

Substituting (3.201)–(3.204) into (3.199) and minimizing the obtained func-
tional over the values of heff , we return to (3.181).
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In the first half of the twentieth century, the mean-field approach was the only 
known approach to investigate phase transitions analytically. However, the experi-
mental results (e.g., Ley-Ko and Green 1977; Pittman et al. 1979) suggested that the 
mean-field solution is far from being accurate—for some systems it is very crude 
(e.g., value 0.32 of the critical index versus 1/2 predicted by the mean-field). And 
what was even worse, there were no means to make the solution more accurate.

It suggests that there is something very wrong with the mean-field approach. 
Something, that in some cases, makes this approach completely inapplicable. 
Therefore, many attempts had been made to develop alternative approaches that 
would lead to different results.

However, the mean-field approach often acts as a catch-22 rule. In Problem 3.7.3, 
we tried to develop a different approximation, alternative to the mean-field solution. 
But to solve the problem analytically we had to consider only the simplest model 
Hamiltonians. In addition, we had to neglect the correlations again. Altogether, this 
returned us back to the mean-field solution.

And this problem is not attributed only to our solution in Problem 3.7.3 but is 
quite typical. We can develop an approximation that would be alternative to the 
mean-field approach. This approximation could be very complex—it could con-
sider, for example, the heterogeneous magnetization as a field over the lattice of the 
model. But to find an analytical solution, we have to make some further approxima-
tions like neglecting correlations or considering only long-wave approximations. In 
any case, these approximations lead us back to the crude mean-field solution.

As we will see in Chap. 7, only the approach of the renormalization group is 
able to break this “catch-22” rule and to lead us towards a new understanding of 

We see that spin interactions in pairs, which do not depend on the distance 
between spins, return us to the Hamiltonian depending only on the long-range 
order parameter:

� (3.209)

However, we should emphasize that in this case this is not an approximation—
Hamiltonian (3.209) is exact. And we see that the system with infinite-range 
interactions behaves exactly as if its behavior were determined by the mean-
field approximation. Therefore, we can assume that the longer interactions in 
the system, the better it is described by the mean-field approach. In detail, we 
will return to this question in Chap. 6.

Also, we should mention here that when the amplitude of interactions does 
not depend on the distance between two spins in a pair, the shape or dimen-
sionality of the lattice plays no role in the behavior of the system. Therefore, 
our results are applicable to all possible lattices, of all possible shapes and 
dimensions.

Η{ } { } { } .σ σ σµ
µ

= − +








 +h J Nm Nm NJ

2 2



3.8*  Antiferromagnets 207

the problem. That is why the appearance of the renormalization group approach has 
caused such a boom of new discoveries in the second half of the past century.

3.8* � Antiferromagnets

In the previous sections, we have studied the ferromagnetic systems, J > 0, in which 
a pair of interacting spins has lower energy if the orientations of the spins coincide. 
In other words, each spin in a ferromagnet attempts to make the orientations of its 
neighbors coinciding with its own. This behavior is the most transparent when we 
consider two ferromagnetic phases of the spontaneous magnetization at tempera-
tures below critical in zero magnetic field (Fig. 3.28a).

In this section, we turn our attention to antiferromagnetic systems, J < 0, whose 
behavior is richer than the behavior of ferromagnets. In an antiferromagnet, the en-
ergy of a spin pair is lower if orientations of the spins are opposite. In other words, 
each spin now attempts to make orientations of its neighbors opposite to its own.

The most illustrative is the bipartite lattices. The lattice is called bipartite if it is 
possible to divide it into two sublattices, A and B, when each spin of one sublattice 
is surrounded only by spins of another.

a

b

c

Fig. 3.28   Ferromagnets 
versus antiferromagnets on 
square lattices. a Two fer-
romagnetic phases below the 
critical temperature in the 
absence of magnetic field. 
Filled and empty dots repre-
sent spin orientations + 1 and 
− 1, respectively. Each spin is 
surrounded by neighbors with 
primarily the same orienta-
tion. b Sublattices of a square 
bipartite lattice. c Two anti-
ferromagnetic phases below 
the critical temperature in the 
absence of magnetic field. 
Filled and empty dots repre-
sent spin orientations + 1 and 
− 1, respectively. Each spin 
is surrounded by neighbors 
with primarily the opposite 
orientation

 



3  The Ising Model208

Two examples of bipartite lattices are the two-dimensional square (Fig. 3.28b) 
and three-dimensional cubic lattices. At temperatures below critical in the absence 
of magnetic field, there are two antiferromagnetic phases (Fig. 3.28c). In one phase, 
almost all spins of sublattice A have orientations +1 while almost all spins of sub-
lattice B have orientations −1. In another phase, orientations of spins of sublattice A 
are primarily −1 while on sublattice B spin orientations are primarily +1. Again, it 
corresponds to the self-organization of spins; only now the preferable spin orienta-
tions are divided between the sublattices.

Introduction of nonzero magnetic field h in the ferromagnet below the critical 
point breaks one of the phases, keeping only the phase with spin orientations pri-
marily along the field. In the antiferromagnet, the situation is different. Both phases 
below the critical point have spins in both directions; so, a nonzero magnetic field h 
does not break any of them, at least while this field is small.

Problem 3.8.1

Prove that an n.n. antiferromagnet and an n.n. ferromagnet on the square lat-
tice have equal ensemble free energies in the absence of magnetic field.

Solution: For both the n.n. antiferromagnet and n.n. ferromagnet, the Hamil-
tonian in the absence of magnetic field is

� (3.210)

where index iA enumerates spins of sublattice A while index iB—of sublat-
tice B. Here, we have shown explicitly that in the case of the n.n. model on 
the bipartite lattice the spins of one sublattice interact only with the spins of 
another sublattice.

From the functional dependence (3.210), it follows that

� (3.211)

In other words, the inversion of the sign of J is equivalent to the inversion of 
spin orientations on one of the sublattices. The antiferromagnet corresponds 
to the inversion of the sign of J relative to the ferromagnet:

� (3.212)
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Problem 3.8.2

Develop the mean-field approach for the n.n. antiferromagnet on square lat-
tice in nonzero magnetic field h.

Solution: In nonzero magnetic field, the Hamiltonian of the system is

�
(3.214)

Let us carry out the following change of spin variables:

� (3.215)

In terms of the new spin variables, each spin again tries to reorient its neigh-
bors so that their orientations would coincide with its own, and the Hamilto-
nian is

� (3.216)

Now, the external field interacts with each sublattice differently, but the inter-
actions of spins in pairs transformed into usual ferromagnet interactions.

The antiferromagnet requires two separate long-range order parameters, 
A

A
{ }S

m  and B
B
{ }S

m , one for each sublattice:

� (3.217)
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Since the first sum 
A{ }σ

∑  goes over both spin orientations, +1 and −1, the 

partition function does not depend on the inversion of spin orientations of one 
of the sublattices:

� (3.213)

Thereby, we have proved that the ensemble partition function of the antifer-
romagnet in the absence of magnetic field equals the ensemble partition func-
tion of the ferromagnet.
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If we neglect the correlations among nearest neighbors, the Hamiltonian 
transforms into

� (3.218)

Instead of fluctuations m{ }{ } of one order parameter, the energy fluctuations 
E{ }{ }  in the CE are now equivalent to fluctuations { }{ }A B,m m . The statisti-

cal weight of a fluctuation { }{ }A B,m m  is

� (3.219)
To find the partition function, we should now integrate over two order 

parameters:

� (3.220)

Application of the method of steepest descent proves that the integral equals 
its maximal term

� (3.221)

where the point of the maximum is determined by

� (3.222)
A solution of (3.222) gives us the equations of state:

� (3.223)
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� (3.224)

or

� (3.225)

� (3.226)

In the absence of magnetic field, the equations of state transform into

� (3.227)

� (3.228)

Solving these equations graphically, we find that the left- and right-hand 
sides of (3.227) and (3.228) always intersect at m = 0, which provides the 
solution above the critical temperature:

� (3.229)

When temperature decreases, the nonzero solutions appear first when the 
tangents to the left- and right-hand sides of (3.227) and (3.228) coincide at 
m = 0. For the value of the critical temperature, this provides:

� (3.230)
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which coincides with mean-field approximation (3.182) of the critical tem-
perature of the ferromagnet.

Let us consider a variable x obeying the equation

� (3.231)

Multiplying this equation by α and taking tanhs of both sides, we obtain

� (3.232)

Substituting here tanh( )α x  from (3.231), we find

� (3.233)

The obtained equation is equivalent to the equations of state (3.227 and 
3.228) we are trying to solve in the absence of magnetic field. Applying the 
equivalent representation (3.231) to (3.227) and (3.228) and recalling the con-
nection (3.223 and 3.224) between two order parameters, we immediately 
find that the solution for each of the sublattices is equivalent to the zero-field 
case of the ferromagnetic equation of state (3.181):

� (3.234)

� (3.235)

� (3.236)

But for the ferromagnetic case, we utilized the graphical solution of Fig. 3.4. 
Therefore, the equations of state can be solved in both ways, by the graphical 
solution in the figure above or by the graphical solution of Fig. 3.4.

Next, we return to the case of nonzero magnetic field h and the equations 
of state (3.223 and 3.224). Let us prescribe the direction of the field: h > 0. 
First, we consider the limit T → 0 of low temperatures. In this limit, the argu-
ments of the tanh functions are infinite which transforms the tanh functions 
into the sign functions

� (3.237)

� (3.238)
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where

� (3.239)

Since A
0 sgn( )m = … , B

0 sgn( )m = … , the order parameters A
0m  and B

0m  can be 
equal only to 0 or ± 1. Zero solution below the critical temperature is unstable; 
therefore, we do not consider it further.

To find the solution of (3.237) and (3.238), we should consider four pos-
sible situations: A

0 1m = +  and B
0 1m = + , A

0 1m = +  and B
0 1m = − , A

0 1m = −  and 
B
0 1m = + , A

0 1m = −  and B
0 1m = − .

For the case A
0 1m = +  and B

0 1m = +  to be true, both sign functions in (3.237) 
and (3.238) should have positive arguments which (for the considered h > 0) 
provides the following inequality:

� (3.240)

Similar inequality we obtain for A
0 1m = −  and B

0 1m = − .
On the contrary, for A

0 1m = +  and B
0 1m = −  we find

� (3.241)

The last case, A
0 1m = −  and B

0 1m = + , requires

� (3.242)

which is impossible for the considered h > 0.
We see that

� (3.243)

plays the role of the critical field.
If the magnetic field h is less than its critical value, Ch h< , there are two 

antiferromagnetic phases in the system: A B
0 0 1m m= = +  and A B

0 0 1m m= = − . 
Here, for both phases, one sublattice has spins along the field while another—
against the field. The phases differ one from another by the choice which 
sublattice has spins along the field while spins of another are against the field.

On the contrary, if the magnetic field h exceeds its critical value (3.243), 
the strong field rotates the spins which were oriented against it, so that both 
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sublattices are now oriented along the strong magnetic field. Only one para-
magnetic phase corresponds to this situation: A B

0 0 1m m= − = + .
Finally, let us consider the case of finite temperatures. For any value of 

temperature T below critical, there is the corresponding value C ( )h T  of the 
critical magnetic field which breaks the coexistence of two antiferromagnetic 
phases. And vice versa, for each value of the magnetic field below (3.243), 
there is also the corresponding value C ( )T h  of the critical temperature, break-
ing the self-organization of spins. So, in contrast to the critical point of a 
ferromagnet, in the case of the antiferromagnetic system, we have not a criti-
cal point but a critical curve. This curve delimits two regions, one with two 
antiferromagnetic phases, another with one paramagnetic phase.

T

h

TC(h)

TC(0)

hC(0)
↑↑↑↑

↑↑↑↑

↑↓↑↓ ↑↓↑↓

We see here the main difference between a ferromagnet and an antifer-
romagnet. In the ferromagnet, even a small magnetic field breaks the coexis-
tence of ferromagnetic phases and transforms one of them into another, which 
is more preferable. In the antiferromagnet, the introduction of the small mag-
netic field does not make one of the phases more preferable than another. In 
Fig. 3.7, both minima of the free energy would have equal depth in the case of 
an antiferromagnet, even in the presence of the small nonzero magnetic field. 
Only the strong field breaks the antiferromagnetic phases. It does not keep 
one of the phases as favorable like in the ferromagnetic system. Instead, the 
field breaks both phases to create a new paramagnetic phase, in which both 
sublattices have spin orientations along the field.

Let us find the dependence C ( )T h  of the critical curve on a small magnetic 
field in the proximity of the point C (0) | |T J q=  given by (3.230). First, we 
take the atanh function from both sides of the equations of state (3.223 and 
3.224):

� (3.244)

� (3.245)
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Second, we notice that in the vicinity of the point C (0)T  both order param-
eters, A

0m  and B
0m , are small. So, we can expand atanh functions in (3.244) and 

(3.245) in a power series of these small parameters:

� (3.246)

� (3.247)

Instead of considered sublattice magnetizations, A
A
{ }S

m  and B
B
{ }S

m , next we 
change the order parameters by introducing another two:

� (3.248)

� (3.249)

Here, parameter m S{ } is the specific magnetization of the lattice in whole 
which represents interactions of the model with the external magnetic field. 
On the contrary, parameter ϕ{ }S  represents the antiferromagnetic interactions 
and is called the staggered magnetization.

Adding (3.246 and 3.247) one to another and subtracting them one from 
another, we find the equations of state for the new order parameters:

� (3.250)

� (3.251)

These equations are valid on both sides of the critical line. But on the one 
side, the staggered magnetization ϕ0 is zero while on the another side, it has 
two nonzero values. Equation (3.251) can represent such behavior only if the 
coefficient 1 0

2+ −m J q T| | /  at the term, linear in ϕ0, is zero when we cross 
the critical line. This is similar to the ferromagnetic case when in the equa-
tion of state (3.92) the coefficient at the term, linear in m0, was zero when we 
moved across the critical point.

So, the coefficient 1 0
2+ −m J q T| | /  is zero at the critical line. Substituting 

here the magnetization from (3.250), we find the equation of the critical line:
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� (3.252)

Since we are working in the close neighborhood of the point C (0) | |T J q= , 
we can expand here C ( )T h  in a power series of h:

� (3.253)

This is the dependence we have been looking for. We see that the decrease of 
the critical temperature along the critical line is parabolic.

2
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Problem 3.8.3

For the n.n. antiferromagnetic Ising model on square lattice, find the equation 
of state with the aid of the Gibbs-Bogolyubov-Feynman inequality. Find the 
ensemble partition function and the ensemble Helmholtz energy.

Solution: The exact Hamiltonian of the model is determined by (3.216). The 
model Hamiltonian we choose to have the following functional dependence:

�
(3.254)

Here, A
effh  and B

effh  are two fitting parameters, over which we will minimize the 
free energy functional.

The partition function of the model Hamiltonian is

�
(3.255)

and in the ensemble of the model system the equations of state are

�
(3.256)

To find the averaged value of the exact Hamiltonian in the ensemble of the 
model Hamiltonian, we neglect correlations of n.n. spins:
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3.9* � Antiferromagnet on a Triangular Lattice. Frustration

Again, as the simplest example, we consider the n.n. antiferromagnetic Ising model. 
However, now we consider not square but triangular lattice.

The triangular lattice is not bipartite—we cannot divide this lattice into two sub-
lattices so that each spin of one sublattice would be surrounded only by the spins 
of another sublattice. But we can divide the triangular lattice into three sublattices 
(Fig. 3.29) so that each spin of one sublattice is surrounded only by the spins of 
other sublattices. Such lattices are called tripartite.

The fact that the lattice is no longer bipartite significantly changes the behavior 
of the system. Let us consider, for example, the ground state of the model at zero 
temperature and zero field. The energy of the system is minimal in the ground state.

The ferromagnet on any lattice is able to reach the minimum energy of spin inter-
actions for all spin pairs by just aligning all spins in one direction. This corresponds 
to the twofold degenerate ground state—all spins are “up,” ↑↑↑↑↑, or all spins are 
“down,” ↓↓↓↓↓.

The antiferromagnet on square lattice is also capable to minimize the energy of 
spin interactions for all spin pairs at once by just aligning one sublattice “up” and 
another “down.” The ground state is again twofold degenerate; and these two 
ground microstates differ by which sublattice is “up” and which sublattice is 

“down”:
↑ ↓ ↑
↓ ↑ ↓

↑ ↓ ↑

 or
↓ ↑ ↓

↑ ↓ ↑

↓ ↑ ↓

.

� (3.257)

where m S
i0

A
A=
Η
 and m S

j0
B

B=
Η
 are the solutions (3.256).

Similarly, averaging the model Hamiltonian in its own ensemble, we find

� (3.258)

Substituting these expressions into functional (3.199) and minimizing this 
functional over the fitting parameters A

effh  and B
effh , we return to the mean-field 

solution (3.223 and 3.224), in detail discusses in Problem 3.8.2.
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However, on triangular lattice, the antiferromagnet cannot minimize the energy 
of all spin pairs at once. Indeed, let us consider one triangular cell with three spins 
at the corners: 

 

. If one pair has been able to minimize its energy, its spins are 

oriented in opposite directions: 
↑

↓ 

. Choosing now an arbitrary orientation for the 

third spin, 
↑

↓ ↑ or 
↑

↓ ↓, we see that it must have coinciding orientation with one 

of the previously assigned spins. Therefore, it is not possible to minimize the energy 
of all spin pairs at once. This is valid both for one triangular cell and for the whole 
triangular lattice. Therefore, the antiferromagnet on triangular lattice is called geo-
metrically frustrated.

As we have seen above, both the ferromagnet on an arbitrary lattice and the anti-
ferromagnet on square lattice have the twofold degenerate ground states. Let us now 
estimate the degeneracy of the ground state of the antiferromagnet on triangular lat-
tice. We consider microstates when the spins on sublattice X are oriented “up,” the 
spins on sublattice Y are oriented “down,” and the spins on sublattice Z are oriented 
arbitrarily. All such microstates correspond to the ground state because two spins in 
any cell have minimized their pair energy, and the energy of the cell cannot become 
lower. But the orientations of the spins on sublattice Z are arbitrary. Therefore, the 
degeneracy of the ground state is at least 2 3N /  and depends exponentially on N.

At zero temperature and zero magnetic field, each cell of the antiferromagnet 
on triangular lattice has one spin oriented “up,” one spin oriented “down,” and the 
last spin oriented arbitrarily. If this third spin were oriented “up,” the cell would 
have positive magnetization which could be considered as a phase. If this spin were 
oriented “down,” the magnetization of the cell would be negative, and we could 
consider it as another phase.

So, one homogeneous phase is when all cells on the lattice have exactly two 
spins oriented “up” and exactly one spin “down.” Another homogeneous phase is 
when all cells have exactly one spin “up” and two spins “down.” The introduction 
of a small magnetic field will break the phase coexistence and will make one of the 
phases preferable.

But let us return back to the case of zero magnetic field. Earlier we considered 
ground microstates with the spins on sublattice X oriented “up,” spins on sublat-
tice Y oriented “down,” and spins on sublattice Z oriented arbitrarily. So, any typi-
cal ground microstate is the heterogeneous system consisting of domains of two 
phases.

Never before we saw a system that could be heterogeneous in its ground state. 
The reason was that the heterogeneity generally requires additional surface energy 

Fig. 3.29   Sublattices of a 
tripartite triangular lattice
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which makes it not a ground state a priori. For example, the ferromagnet in a het-
erogeneous state requires additional surface energy at the boundaries among phase 
domains. This state cannot be ground a priori because there are states with lower 
energy.

But this is not true for the antiferromagnet on triangular lattice. Let us consider 
the homogeneous phase when the spins on sublattices X and Z are oriented “up” 
while the spins on sublattice Y are oriented “down.” If we now divide the lattice into 
domains and within some of the domains invert the orientations of the spins of sub-
lattice Z, we will form the heterogeneous system. But the energy will not change—
we will still obtain one of the ground microstates! We have formed a heterogeneous 
microstate from a homogeneous, but it has not required additional energy.

The reason is that the surface energy on the domain boundaries is zero. Each cell 
on triangular lattice is frustrated and already possesses the encapsulated, irremov-
able energy of spin interactions. This energy can be transformed into the form of the 
surface energy between two domains, and any additional energy is not necessary.

First, this leads to the possibility for a heterogeneous microstate to be ground. 
That is why the degeneracy of the ground state is so high. Second, zero surface en-
ergy leads to the appearance of domains in all shapes and sizes—starting from the 
lattice size and ending by the size of a cell.

3.10* � Mixed Ferromagnet-Antiferromagnet  

Problem 3.10.1

Develop the mean-field approach for the mixed n.n. ferromagnet-antiferro-
magnet on square lattice in nonzero magnetic field h.

Solution: The Hamiltonian of the mixed n.n. ferromagnetic-antiferromag-
netic Ising model is

� (3.259)

where J > 0. Parameters ηi , defined a priori for each lattice site i, have fixed 
values +1 or −1, randomly distributed over the lattice. Since these parameters 
are defined a priori and do not change their values during the system’s evolu-
tion, this type of disorder, introduced into a system, is called quenched. The 
presence of the disorder transforms the Ising model into the mixture of fer-
romagnetic and antiferromagnetic spin pairs.

The change of spin variables is introduced as:

� (3.260)
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Next, we divide the lattice into two sublattices, X and Y. Sublattice X con-
tains only sites with ηi = +1 while sublattice Y—only sites with ηi = −1. For 
the sublattices, the change of spin variables (3.260) goes in accordance with

� (3.261)

Let us look closer at the interaction ηη σ σi j i j of spins in a pair. We see that 
in terms of the new spin variables it transforms into simple ferromagnetic 
interaction:

� (3.262)

Therefore, in terms of the new spin variables, the Hamiltonian of the system is

� (3.263)

where XN  and YN  are the total numbers of sites in sublattices X and Y, 
respectively.

The following solution is similar to Problem 3.8.2 when we replace the 
short-range order parameter by the function of the long-range order param-
eters. Or to Problem 3.8.3 when we apply the Gibbs–Bogolyubov–Feynman 
inequality. The difference with the previous solutions is that sublattices X and 
Y are no longer bipartite. Therefore, the averaged product n.n. { }i j S

S S  of spins 
in a pair does not mean already that one spin belongs to sublattice X while 
another—to sublattice Y:

� (3.264)

In other words, both spins in a pair could belong to the same sublattice.
Instead, to solve the problem, we have to account for the randomness of 

the disorder. The probability for both spins in a pair to belong to sublattice X 
is X 2( / )N N . The probability for both spins in a pair to belong to sublattice Y 
is Y 2( / )N N . The probability that one spin in a pair belongs to sublattice X 
while another—to sublattice Y is X Y 22 /N N N . The sum of these probabilities 
is unity, as it should be.
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Averaging with these probabilities, we find

� (3.265)

� (3.266)

We should mention here that the mixed ferromagnet-antiferromagnet is 
not frustrated even on the triangular lattice. Indeed, in a triangular cell for an 
arbitrary assignment of parameters ηi at three cell’s sites all three spin pairs of 
the cell can minimize their energy simultaneously.

However, even the square lattice becomes frustrated if we assign param-
eters ηi not to lattice sites but to connections between n.n. sites, i.e., to n.n. 
spin pairs:

� (3.267)

It is easy to see that the square lattice in this case is frustrated. Let us consider 
a square cell. If three of its “edges” (three spin pairs) were ferromagnetic 
while the fourth “edge” were antiferromagnetic, then this cell would be frus-
trated. And if one cell is frustrated—the whole lattice is frustrated.
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Chapter 4
The Theory of Percolation
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Abstract  In the previous chapter, we have considered the phase transition phenom-
enon in the Ising model. May we call this system “complex?” In the literature there 
is no settled definition of what we call “complex.”

The theory of phase transitions is generally attributed to thermodynamic sys-
tems. However, in the second half of the last century many nonthermal systems 
have been discovered whose behavior resembled the theory of phase transitions in 
statistical physics. However, these systems belong to such diverse sciences—bi-
ology, geology, engineering, chemistry, mathematics, economics, social sciences, 
etc.—that their unified classification seems to be impossible. Examples include but 
not limited to the percolation of petroleum oil in a rock, polymerization, damage of 
engineering structures, earthquakes, forest fires, snow avalanches and landslides, 
traffic jams, chaotic systems, strange attractors, informational processes, self-orga-
nized criticality, etc.

To distinguish such systems from the classical examples of phase transition phe-
nomena (like the Ising model), the term “complex” has appeared. However, beyond 
the fact that all these systems obey the rules of phase transitions and, therefore, can 
form universality classes, their common rigorous classification is deemed to be cur-
rently impossible.

We see that the term “complex” is collective and, therefore, may describe a great 
variety of phenomena. But what does this term mean? First, as we have said, calling 
a system complex, one generally assumes that this complexity is the consequence of 
a phase transition (or a bifurcation, catastrophe, nonanalyticity, etc.) present in the 
system. Second, the term “complex” is generally used to distinguish the nonthermal 
systems from their thermodynamic analogues.

Summarizing, we call a system complex if it possesses a phase transition but 
is nonthermal. In the sense of this definition, the Ising model is only partially 
complex—it possesses a phase transition but is thermal. In this chapter, as a first 
example of a “completely complex” system, we consider a phenomenon of per-
colation.

The fact that the system is supposed to be nonthermal means that fluctuat-
ing behavior is no longer described by thermodynamic fluctuations. Instead, the 
system must possess another source of stochastic behavior, forming nonthermal 
fluctuations.
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Once the nonthermal fluctuations are generated, our main purpose is to map these 
fluctuations on their thermodynamic analogs so that the well-developed formalism 
of the theory of phase transitions in statistical physics may become available for 
their description.

4.1 � The Model of Percolation

The name “percolation” is generally attributed to the percolation of petroleum oil 
through the pores in a rock. When the rock containing petroleum oil possesses a 
system of pores connected one to another, the oil may flow through these pores to 
form oil clusters. The main question of the petroleum industry is that, on drilling a 
well, how much oil we can pump out of this cluster.

In spite of its name, the problem was originally formulated not in the petro-
leum industry but in chemistry as a model describing the process of polymerization 
(Flory 1941a, b, c; Stockmayer 1943). During gelation, separate molecules form 
bonds organizing them into clusters. The question then transforms into how big 
these clusters are.

Besides these two examples, many other phenomena are described by the for-
malism of percolation theory. E.g., the formation of a conducting cluster may cause 
the breakdown of a dielectric, the cluster of defects may cause the failure of a struc-
ture, the formation of a big cluster of trees in a forest leads to the possibility for a 
significant part of the forest to be destroyed by a fire, etc.

The name “percolation” and the mathematical formulation of bond percolation 
appeared in 1957 (Broadbent and Hammersley 1957). The scaling of the system 
was first discussed by Essam and Gwilym (1971). Here we consider only the basic 
concepts of this theory. For further details, we refer the reader to Stauffer and Aha-
rony (1994) and other brilliant textbooks given in the list of references.

Similar to the Ising model, a model in the theory of percolation is based on a lat-
tice. The shape of the lattice may be arbitrary (Fig. 4.1): one-dimensional, square, 
triangular, cubic, or the Bethe lattice (Cayley tree). The lattice is composed of sites 
connected by bonds.

There are two different types of percolation models: site percolation and bond 
percolation. In both cases, a field parameter p is introduced. In site percolation, p is 
the probability for a site to be occupied (independently of the states of other sites). 
Correspondently, ( )1− p  is the probability for a site to be empty. Thereby, on an 
average, p represents the fraction of lattice sites that are occupied. So, if N is the 
total number of sites on the lattice, there are Np occupied sites and N p( )1−  empty 
sites on average.

Similarly, for the case of bond percolation, the field parameter p represents the 
probability for a bond to be occupied while ( )1− p  is the probability for a bond to 
be empty.
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For both types, 0 1p≤ ≤ , where p = 0 corresponds to a completely empty lattice 
while p = 1 corresponds to a completely occupied lattice.

The occupied sites or bonds (depending on the type of percolation considered) 
form clusters. Two sites are united into a common cluster if they are nearest neigh-
bors and both are occupied. Two bonds are united into a cluster if they are connected 
by their ends and both are occupied.

Examples of clusters on square lattice for the case of site percolation are present-
ed in Fig. 4.2a. Here, filled dots represent occupied sites while empty dots represent 
empty sites. If the distance between two occupied sites equals the lattice constant 
(the length of the edge of a square cell), we consider these sites to be the nearest 
neighbors and unite them into the common cluster (black lines represent this proce-
dure; each cluster is surrounded by a dashed curve to separate it visually from the 
neighboring clusters).

We present similar examples of clusters on square lattice for the case of bond 
percolation in Fig. 4.2b. Here black lines represent the occupied bonds while dotted 
lines represent the empty bonds. Each cluster is surrounded by a dashed curve to 
separate it visually from other clusters.

a

bc

d e

Fig. 4.1   A schematic 
representation of different 
geometrical forms of a lattice. 
a  The one-dimensional chain 
of sites. b The two-dimen-
sional square lattice. c The 
three-dimensional cubic lat-
tice. d The two-dimensional 
triangular lattice. e The Bethe 
lattice

 

a b

Fig. 4.2   Cluster formation 
for a site percolation, and 
b bond percolation
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Comparing Fig. 4.2a and b, we see that the behavior of clusters for the site per-
colation differs from the case of bond percolation. In Fig. 4.2b, two clusters are 
separated only by the lattice constant (edge of a square cell) while in Fig.  4.2a, 
such a situation is, obviously, impossible—the clusters must be separated at least by 
“the diagonal of a square cell” ( 2 times the lattice constant)—otherwise these two 
clusters would be united into one. This comparison suggests that the behavior of the 
site percolation should differ from the case of bond percolation.

Although the case of bond percolation is no less interesting than the site percola-
tion, the majority of studies are devoted to the latter. Therefore, we will primarily 
consider the site percolation and will return to the bond percolation only in Chap. 7, 
where it will present a beautiful example of the renormalization group (RG) trans-
formation.

The size of a cluster is, obviously, measured by the number s of sites belonging 
to this cluster. Instead of saying “a cluster of size s,” we further say “s-cluster,” 
which makes explanations much less cumbersome. We call separate occupied sites 
surrounded only by empty sites as 1-clusters.

The edges of the whole lattice play crucial role in the formulation of the per-
colation problem. The cluster is called a percolating cluster when it connects the 
opposite edges of the model. For example, the very percolating cluster (composed 
of the conducting sites) provides the breakdown of a dielectric. Since we generally 
consider the case of an infinite lattice, a percolating cluster generally contains an 
infinite number of sites.

As an example, we suggest the reader to imagine a square lattice. This lattice has 
left, right, top, and bottom edges. Generally, the left–right percolation is considered 
when a cluster should connect the left and right edges of the model (or, on the con-
trary, the top–bottom percolation when a cluster connects the top to bottom).

As usual, there are many modifications of the model formulation when, for ex-
ample, the periodic boundary conditions are imposed, transforming, e.g., a square 
lattice into a torus. In this case, a percolating cluster is expected to form a ring 
around the torus (to go over one of the two torus dimensions and to reconnect to 
itself).

Many other modifications are possible. However, for simplicity we consider 
only the “canonic” formulation of the model with free boundary conditions when a 
percolating cluster should connect two opposite sides of the model.

Obviously, the possibility for a percolating cluster to exist depends on the field 
parameter p. When p is small ( p → +0), almost the whole lattice is empty and a 
percolating cluster is, obviously, impossible. In the opposite case, when p → −1 0, 
almost the whole lattice is occupied and a percolating cluster certainly exists.

Between these two extremes, the field parameter p changes in the range 0 1< <p . 
If we are increasing p from zero to unity (adding more and more occupied sites to 
the lattice), the point pC, when a percolating cluster appears for the first time, is 
called a percolation threshold. This point plays the role of a critical point of a con-
tinuous phase transition in the model.

A system is said to be below or above the percolation threshold if Cp p<  or 
Cp p> , respectively.
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Also, we should mention that the case of an infinite system N → +∞ is mainly 
considered. The name thermodynamic limit for N → +∞ stays in spite of the fact 
that we no longer consider a thermal system. The case of a finite system will be 
discussed in Chap. 8,which leads to the appearance of the so called finite-size effect.

4.2 � One-Dimensional Percolation

Problem 4.2.1

For the one-dimensional case, find the percolation threshold, the probability 
for a percolating cluster to exist, the cluster-size distribution, and the mean 
cluster size.

Solution: In the one-dimensional case, a percolating cluster is supposed to 
connect two opposite ends of the chain of sites. When 1p < , empty sites 
would always be present on the infinite lattice (  p may be close to unity but its 
value is fixed while we consider the limit N → +∞), and there is no percolat-
ing cluster.

Therefore, the percolating cluster exists only when all sites of the lattice 
are occupied:

� (4.1)

So, the probability for a percolating cluster to exist is

� (4.2)

We see that the one-dimensional percolation resembles the one-dimen-
sional Ising model from Problem 3.4.2. There the phase transition took place 
only at zero temperature because one spin oriented opposite to others could 
break the spontaneous magnetization. In the one-dimensional percolation, the 
phase transition appears only when the total lattice is occupied because one 
empty site breaks the percolating cluster.

Next we consider the system below the percolation threshold: C 1p p< = . 
We choose a particular site on the lattice and intend to find the probability 

( )sn p  that this site happens to be the first site on the left of an s-cluster.
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For example, as shown in the figure, we have built a 3-cluster. The chosen 
site is marked by an arrow. It is occupied (a big filled dot) as well as two more 
sites to the right to form a 3-cluster so that the left end of this cluster would 
correspond to the chosen site.

However, to finally form the cluster, we should not only prescribe the 
occupied sites belonging to this cluster but also surround the cluster with 
empty sites (so that our cluster would not spread further). For this purpose, 
we employ two big empty circles in the figure to denote the presence of empty 
sites.

Having formed the cluster of occupied sites and its perimeter of empty 
sites, we no longer care whether the rest of the lattice is occupied or not. The 
sites whose status is unknown are represented by small dots in the figure.

Since the probability for an arbitrary site to be occupied is p while the 
probability for a site to be empty is (1 )p− , the probability of given figure (that 
the chosen site is the first on the left of the 3-cluster) is

� (4.3)

For an s-cluster, we similarly obtain:

� (4.4)

Talking about that the left end of an s-cluster corresponds to the chosen 
site, we are, in fact, talking about the probability to find an s-cluster at a 
particular place on the lattice. Summing probabilities (4.4) over all N sites on 
the lattice, we sum the probabilities to find an s-cluster at different locations. 
Therefore, the total averaged number of s-clusters on the lattice is expected 
to be ( ).sNn p  Here ( )sn p  plays the role of the cluster-size distribution and is 
often called a normalized cluster number because it represents the number of 
s-clusters on the lattice per lattice site.

Expanding (4.4) in the vicinity of the percolation threshold (4.1), 
C 0p p− → − , we find

� (4.5)

As we will see later, in the case of an arbitrary lattice, the good approxima-
tion is provided by the hypothesis that

� (4.6)

where

� (4.7)
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Here τ , σ , and ζ  are critical indices. From (4.5), we immediately find 
0τ = , 1σ = , and 1ζ = .

Next, let us find the probability P ps ( ) for an arbitrary site to belong to an 
s-cluster. It is not equal to n ps ( ) since this time we do not require from the 
given site to be located at the left end of the cluster. Instead, the site can be at 
any point along the length of the s-cluster.

Before we have found n ps ( ) as a probability for a site to be the first on the 
left of an s-cluster. Obviously, the probabilities for this site to be the second, 
the third, the sth site on the left of the s-cluster are all the same and all equal 
n ps ( ). Summing these probabilities over different positions of the chosen 
site along the s-cluster length, we find the probability for an arbitrary site to 
belong to an s-cluster,

� (4.8)

which is just s times higher than n ps ( ).
So far, we did not know in advance whether the chosen site is itself occu-

pied or empty. However, if we know that this site is occupied, we should 
divide (4.8) by p:

� (4.9)

We have obtained probability (4.8) for the system below the percolation 
threshold, C 1p p< = . At the percolation threshold C 1p p= = , there are no 
finite s-clusters

� (4.10)

because the whole lattice is occupied by the infinite percolating cluster. 
Therefore, for the probability of this cluster to exist, we find

� (4.11)

By definition, p is the probability for an arbitrary site to be occupied. But 
if a site is occupied, it belongs either to a finite cluster or to an infinite per-
colating cluster. Summing the respective probabilities, we obtain the law of 
conservation of probability1:

1  This equation resembles very much the law of conservation of particles in the case of the 
Bose–Einstein condensation. In both cases, after the critical point, one term of the discrete 
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� (4.12)

This statement can be easily proved directly. Substituting (4.10 and 4.11) into 
(4.12), we find

� (4.13)

For Cp p< , the sum over s can be transformed as

� (4.14)

Substituting this result, we immediately prove (4.12).
There are several ways to determine the mean cluster size for the system. 

If on the lattice with N sites we counted all s-clusters, their number would be 
( )sNn p  on average. So, one way to define the mean cluster size is to average 

s with probabilities ( )
( )

s

s
s

Nn p
Nn p∑

:

� (4.15)

However, we may average clusters in a different way. Let us point randomly 
a finger at the lattice sites. If the site we have hit is occupied and belongs to an 
s-cluster, we register the size of the cluster s. Later, when we have repeated this 
procedure several times, we average the obtained cluster numbers.

The probability that a site belongs to an s-cluster is ( ) ( )s sP p sn p= . Point-
ing K times at the lattice, we hit s-clusters ( )sKsn p  times. So, averaging s with 

probabilities 
( )

( )
s

s
s

Ksn p
Ksn p∑

, we find

� (4.16)

sum begins to represent the number of degrees of freedom which is comparable with N. So, 
in the case of the Bose–Einstein condensation, the number of particles in the condensate 
becomes comparable with the total number of particles in the system while in percolation 
the number NPPC (p) of sites belonging on average to a percolating cluster occupies a sig-
nificant part of the lattice. In both cases, the considered term is separated from the sum to 
emphasize its outstanding role and not to lose it when the sum is substituted by an integral.
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4.3 � Square Lattice

Let us discuss the cluster-size distribution in the case of a square lattice. If we con-
sider the probability to find a 1-cluster at a particular place on the lattice, first, we 
need to take into account that this site is itself occupied. Second, we should provide 

The difference between two methods of determining the mean cluster size 
is better illustrated with an example. Let us consider a lattice with one-thou-
sand 1-clusters and one 1000-cluster. Then, following the formulae above, we 

find 1·1000 1000 ·1 2
1000 1

+
= ≈

+
S  and 

2 21 ·1000 1000 ·1 500
1·1000 1000 ·1

+
= ≈

+
S .

It is easy to explain the difference: there are many 1-clusters on the lat-
tice and just one 1000-cluster. Averaging all clusters by (4.15), we obtain the 
mean cluster size close to 1s = . On the contrary, the 1000-cluster is much 
bigger than 1-clusters and occupies a significant part of the lattice. Therefore, 
pointing randomly at the lattice, we hit this cluster very often; in fact, as often 
as all 1-clusters together. Therefore, the second method of averaging (4.16) 
returns the result close to 1000s = .

Drilling a petroleum well, we, in fact, almost randomly point at the rock 
and thereby follow the second method. Thus, it is probable that we hit the 
1000-cluster. Thank God! because it is much better to pump out 500 barrels 
of oil than only 2.

For the one-dimensional case below the percolation threshold, we can find 
( )S p  and ( )S p  directly:

� (4.17)

� (4.18)

As we will see in Chap. 6, ( )S p  provides more interesting results than ( )S p . 
In particular, in the vicinity of the percolation threshold, we define the critical 
index γ by

� (4.19)

A comparison with (4.18) determines 1γ =  for the one-dimensional case.
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that four neighboring sites at the cluster perimeter are empty (Fig. 4.3(a)), which 
would guarantee that the considered cluster is indeed a 1-cluster:

� (4.20)

The case of the probability to find a 2-cluster at a given place on the lattice is 
more difficult. This time we have to take into account that a 2-cluster may be “ori-
ented horizontally” (Fig. 4.3(b)) as well as “vertically” (Fig. 4.3(c)). For both cases, 
we should provide two occupied sites of the cluster itself and six empty sites for its 
perimeter:

� (4.21)

The case of 3-cluster is even more difficult. There are two configurations with 
eight empty sites at the perimeter (Fig. 4.3(d–e)) and four configurations with seven 
empty sites at the perimeter (Fig. 4.3(f–i)). The corresponding probability is

� (4.22)

For 4-clusters, there are two configurations with ten empty sites at the perim-
eter (Fig.  4.3(j–k)), eight configurations with nine empty sites at the perimeter 
(Fig.  4.3(l–s)), and nine configurations with eight empty sites at the perimeter 
(Fig. 4.3(t–◊)):

� (4.23)

Different configurations of an s-cluster on a lattice are called lattice animals. The 
problem is that different lattice animals, in spite of the fact that they all have the 
same size s, have different perimeters. Therefore, to find the normalized cluster 
number n ps ( ) for an arbitrary s, we have to sum these configurations with different 
numbers of empty sites:

� (4.24)

Here, the sum goes over different perimeters st , and stg  is the degeneracy of this 
value of perimeter. Since the perimeter means the corresponding number of empty 
sites surrounding the cluster and separating it from other clusters, it represents not 
only the cluster’s “external surface” but also the surface of “internal holes” within 
the cluster.

4
1( ) (1 ) .n p p p= −

2 6
2 ( ) 2 (1 ) .n p p p= −

n p p p p p3
3 8 3 72 1 4 1( ) ( ) ( ) .= − + −

4 10 4 9 4 8
4 ( ) 2 (1 ) 8 (1 ) 9 (1 ) .n p p p p p p p= − + − + −

( ) (1 ) .= −∑ s
s

s

ts
s t

t
n p g p p

Problem 4.3.1

Find the normalized cluster number for 5s = .
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When s increases, the corresponding number of lattice animals also increases 
very fast. Besides, different animals have different perimeters. All this makes exact 
analytical calculations of sn  impossible for high s; and the problem of percolation 
on square lattice has not been solved exactly yet.

a

b

d e f g h i

p q r s t u

v w x y z

j k l m n o

c

Fig. 4.3   Lattice animals on square lattice
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The main difficulty is that the perimeter is different for different lattice animals 
corresponding to the same s. If the number of empty sites at the perimeter were 
fixed for fixed s, this would drastically simplify the problem and probably provide 
the possibility of an analytical solution.

But how can we achieve that? On square lattice, the animals have complex con-
figurations due to the possibility for the clusters to form loops. A lattice which 
prohibited loops would significantly simplify the problem.

One way to avoid loops would be to increase the dimensionality of the system 
(to consider cubic or d-dimensional hypercubic lattices instead of the square lat-
tice). Indeed, the higher the dimensionality of the system, the more the variety of 
lattice animals, which is provided by that the animals settle the multiple dimensions 
instead of forming loops.

For example, in Fig. 4.3(j–◊), we consider 4-clusters on square lattice. Among 
them there is only one loop (Fig. 4.3(◊)). Let us increase the dimensionality of the 
system to see that the role of the loops will be, indeed, diminishing.

If we added one more dimension to the lattice, transforming the square lattice 
into the cubic lattice, there would appear two more 4-loops in two appearing planes. 
In d dimensions of the hypercubic lattice to form a 4-loop, we choose one axis of 
d and then the second axis of the remaining ( 1)d − . Having chosen two axes, we 
form the plane for the 4-loop. However, this way we have counted all planes twice. 
Therefore, the total number of the 4-loops on the d-dimensional hypercubic lattice 
is ( 1) / 2d d − .

But in parallel with the increase of the dimensionality of the system, the number 
of other lattice 4-animals would increase more significantly because now the ani-
mals may “wriggle” in the high-dimensional space.

Let us calculate, for example, the number of lattice 4-animals, “wriggling” only 
in the positive direction of every axis (considering only the positive direction we 
avoid mixture with the animals at neighboring locations). On square lattice, we 
choose the given location as the initial site. Then the 4-animal, to form the second 
site, can “wriggle” to the east or to the south only. One more step to the east or south 
forms the third site, and then the last step to the east or south forms the fourth, last 
site. The number of configurations 2 2 2 8⋅ ⋅ =  includes lattice animals (j), (k), (m), 
(o), (p), (r), (x), and (□) from Fig. 4.3. We have counted not all “wriggling” lattice 
4-animals but those that are quite enough for our proof.

In d dimensions, similar considerations allow us to count d d d d· · = 3 lattice 
4-animals “wriggling” from the given location only in the positive directions of all 
axes.

In the limit d → +∞, the number of 4-loops increases as d 2 2/  and becomes neg-
ligible in comparison with the rest of the lattice 4-animals whose number increases 
at least as d 3. So, one way to simplify the system is to increase its dimensionality or, 
better, make it infinite. But besides the infinite-dimensional lattices, are there other 
lattices without loops?
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4.4 � Bethe Lattice

A lattice without loops is the Bethe lattice (Fig. 4.1e). The procedure to build this 
lattice is the following. We create a seeding site of the 0th generation. This site 
emits Z bonds of the 1st generation to create Z neighboring sites of the 1st genera-
tion (Z = 3 in Fig. 4.1e). Each site of the 1st generation emits Z −1 bonds of the 2nd 
generation to create the sites of the 2nd generation. And so on, any site of the nth 
generation emits Z −1 bonds to create the ( n + 1)th generation. In the result, we ob-
tain the infinite lattice, spreading like the branches of a tree (called Cayley tree). 
Each site has Z neighbors, and since the bonds do not intersect, the lattice has no 
loops. Therefore, the Bethe lattice is often called the infinite-dimensional lattice.

Let us calculate the number of sites on the Bethe lattice located within the vol-
ume of radius R. We should sum 1 for the central site (0th generation), Z  for the sites 
of the 1st generation, Z Z( )−1  for the sites of the 2nd generation, ..., Z Z R( )− −1 1  for 
the sites of the Rth generation:

� (4.25)

The surface of this volume is formed by the last term in the sum:

� (4.26)

hence, the ratio of the surface to the volume surrounded by it

�
(4.27)

does not depend on the radius R. In other words, the surface of a volume is compa-
rable with the volume itself, which resembles the infinite-dimensional hypercubic 
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The percolation threshold is very easy to find in the case of the Bethe lattice. 
Let us consider a branch of a percolating cluster. This branch is supposed to bear 
a stretched to infinity chain of occupied sites (further we may say that the branch 
leads to infinity).

Each site generates Z −1 daughter sites. By the definition of the field parameter 
p, only ( )Z p−1  of these sites are occupied. If ( )Z p− <1 1, each site generates less 
than one occupied site, and the chain of occupied sites will end sooner or later 
(Fig. 4.4a) so that there is no percolating cluster and our system is below its perco-
lation threshold.

V Z Z Z Z Z

Z Z
Z

Z
Z

Z

R

R
R

= + + − + + −

= +
− −
− −

→
−

−

−1 1 1

1 1 1
1 1 2

1

1( ) ... ( )
( )
( )

( ) forr R>>1

S Z Z R= − −( ) ;1 1

S
V

Z Z
Z

Z
Z

Z
Z

R
R

R
→

−

−
−

=
−
−

>>
−( )

( )
,1

2
1

2
1

1
1

for



238 4  The Theory of Percolation

If we are increasing p, the percolating cluster appears only when ( )Z p− =1 1 so 
that one of the generated sites would be occupied on average (Fig. 4.4b) to be able 
to continue the chain. This determines the percolation threshold

� (4.28)
C

1 .
1

p
Z

=
−

Problem 4.4.1

Each site generates Z −1 daughter sites of the 1st generation and ( )Z −1 2 sites 
of the 2nd generation. For the given value of p, only ( )Z p−1 2  sites of the 2nd 

generation are occupied. If (similar to the previous discussion) we required 
that on an average only one site of the 2nd generation should be occupied, 
( )Z p− =1 12 , this would lead to the incorrect value 2

C 1/ ( 1)p Z= −  of the 
percolation threshold. Explain what went wrong.

Solution: One occupied site of the 2nd generation does not guarantee the pres-
ence of a percolating cluster since the corresponding site of the first genera-
tion may happen to be empty (see figure).

a

b

Fig. 4.4   The formation of a 
percolating cluster. a Below 
the percolation threshold, 
each site generates less than 
one occupied site and the 
chain of occupied sites ends 
sooner or later and does not 
lead to infinity. b Only at the 
percolation threshold each 
site generates one occupied 
site on average and the perco-
lating cluster appears
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Next, for the Bethe lattice, we find the probability P pPC ( ) for a site to belong to 
a percolating cluster. Since the percolating cluster represents the appearance of a 
new phase above the percolation threshold (like the spontaneous magnetization ap-
pearing below the critical point), this probability will play the role of the order 
parameter.

We choose an arbitrary site on the lattice to serve as the 0th order site (site A in 
Fig. 4.5). Z bonds ( a, b, and c in Fig. 4.5 for the case Z = 3) of the 1st generation 
emanate from this site to form Z branches of the lattice. Let us first find the prob-
ability Q that one of these branches (branch a) does not contain a stretching to infin-
ity chain of occupied sites (does not lead to infinity). Thereby, this branch will not 
belong to a percolating cluster.

The chosen bond of the 1st generation (bond a) leads to one of the sites of the 1st 
generation (site B). If this site is empty with probability 1− p, the branch a does not 
lead to infinity without regard to whether other sites along the branch are occupied 
or empty.

On the contrary, if site B is occupied with probability p, we consider its Z −1 
daughter bonds ( d and e) of the 2nd generation. These bonds start their own branches 
serving as the subbranches for the parent branch a. Due to the symmetry of the lat-
tice and the symmetry of the choice of the initial site A, the probability for any of 
these daughter branches ( d or e) not to lead to infinity is Q. The probability that they 
all do not lead to infinity is then QZ−1. In the result, the probability Q that branch 
a does not lead to infinity is provided when either site B is empty with probability 
1− p or it is occupied with probability p and its branches do not lead to infinity:

� (4.30)Q p pQZ= − + −( ) .1 1

Instead, we should require that one of ( )Z −1 2 chains leading from the ini-
tial site to the sites of the 2nd generation would be occupied:

� (4.29)

which would return us to the correct answer (4.28).
Therefore, on average we need not only one occupied site but 

2
C( 1) ( 1)Z p Z− = −  occupied sites of the 2nd generation so that only one of 

them would support a stretching to infinity chain of occupied sites.

2 2
C( 1) 1Z p− =

A a
b

c

B

d

e

Fig. 4.5   An illustration how 
we find the probability for a 
site to belong to a percolating 
cluster
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For the particular case Z = 3, this equation is quadratic and has two solutions:

� (4.31)

In accordance with the law of conservation of probability, an occupied site be-
longs either to a finite cluster or to an infinite percolating cluster:

� (4.32)

The probability that the initial site A belongs to a finite cluster equals the prod-
uct of the probability p that it is occupied and the probability QZ that none of its Z 
branches ( a, b, or c) lead to infinity. Substituting this result into (4.32), we find the 
probability for this site to belong to an infinite percolating cluster:

� (4.33)

where Q is provided by (4.31).
The obtained result (4.33) is obvious if we consider it from a different point of 

view. The probability P pPC ( ) for site A to belong to an infinite percolating cluster is 
the product of the probability p that it is occupied and the probability ( )1−QZ  that 
one or more branches ( a, b, or c), emanating from it lead to infinity. The last prob-
ability is unity minus the probability QZ  that none of the branches a, b, or c lead to 
infinity.

For Z = 3, we have obtained two solutions (4.31) for Q. The first solution, Q = 1, 
substituted into (4.33) returns ( ) 0PCP p = , which represents the absence of a perco-
lating cluster below the percolation threshold. The second solution, Q p p= −( ) /1 , 
corresponds to the system above the percolation threshold when the probability for 
a site to belong to a percolating cluster is

�
(4.34)

In the vicinity of the percolation threshold C
10 0
2

p p→ + = + , we expand (4.34) 
to find

� (4.35)

Since this probability represents the order parameter of the system, we define the 
critical index β by

� (4.36)
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Comparison with (4.35) immediately provides 1β =  for the Bethe lattice.
Next, let us find the mean cluster size S  below the percolation threshold. We as-

sume that an arbitrary branch (branch a in Fig. 4.5 for the case Z = 3) on average 
bears a bunch of T occupied, connected one-to-another sites.

If site B is empty with probability 1− p, then T = 0. If site B is occupied with 
probability p, then we have to consider its ( )Z −1  daughter branches ( d and e). 
Due to the lattice symmetry and the arbitrary choice of site A, each of the daughter 
branches ( d and e) on average bears a bunch of T occupied, connected sites again. 
Therefore, the averaged number T of occupied and connected sites born by branch 
a equals zero with probability 1− p and 1 1+ −( )Z T  with probability p:

� (4.37)

The solution of this equation is

�
(4.38)

In the result, the size of a cluster to which site A belongs is zero if site A is empty 
with probability 1− p or 1+ ZT  and if site A is occupied with probability p:

� (4.39)

In the limit C 0p p→ − , expanding (4.39), we find

�
(4.40)

which returns 1γ =  for the Bethe lattice.
Next, let us find the cluster-size distribution. For 1-clusters, we easily obtain

� (4.41)

as the probability for the site to be occupied while all its neighbors are empty 
(Fig. 4.6a).

For a 2-cluster, two sites are occupied while the remaining ( )Z −1  neighbors of 
each of these sites are empty (Fig. 4.6b):

� (4.42)

Here, the degeneracy g2 represents possible configurations of a 2-cluster.
For the Bethe lattice, it is also easy to find the perimeter for a cluster of an arbi-

trary size. We assume that s-cluster in Fig. 4.6c has perimeter ts. Occupying one site 
of this perimeter (site A), we transform our s-cluster into the ( s + 1)-cluster. Thereby 
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the perimeter loses site A that has been occupied but gains the outer ( )Z −1  neigh-
bors of this site (sites B and C for the case Z = 3 of Fig. 4.6).

� (4.43)

Since

�
(4.44)

by induction, we find

� (4.45)

which determines the perimeter ts for a cluster of an arbitrary size s. We see that in 
the case of the Bethe lattice, the perimeter of a cluster is the same for all clusters of 
the same size, which simplifies further calculations drastically.

For the cluster-size distribution in comparison with (4.24), we may omit the sum 
over the different perimeter values:

� (4.46)

where gs is the total number of lattice animals of size s. To avoid complications of 
finding gs analytically, we normalize the cluster-size distribution (4.46) by its value 
at the percolation threshold:

�
(4.47)

where

� (4.48)

t t Zs s+ = − + −1 1 1( ).

t Z t Z1 2 2 1= = −and ( ),

t s Zs = + −2 2( ).

n p g p p g p ps s
s t

s
s s Zs( ) ( ) ( ) ,( )= − = − + −1 1 2 2

C CC C

22 ( 2)
( )

2 ( 2)
( ) (1 ) 1 ,

( ) 1(1 )

s s Z
c p ss

s s Z
s

n p p p p e
n p pp p

+ −
−

+ −

 − −
= =  −−  

2
C C

2 2
C C

2

1 1( ) ln ln
(1 ) (1 )

(1 )
ln .

(1 )

Z

Z ZZ

p
c p

p p
p

p pp p− −

−

−

−
−

=
−

=−
−

a

c

b

s-cluster
(s+1)-cluster

AB
C

Fig. 4.6   Normalized cluster 
number. a A 1-cluster. b A 
2-cluster. c When we are 
increasing the size of a clus-
ter, its perimeter loses site A 
that becomes occupied but 
gains the outer neighbors B 
and C of this site
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For the case Z = 3, we find

�
(4.49)

� (4.50)

The dependence of ns on p for different values of s is presented in Fig. 4.7. When 
p is increasing from zero, the number of s-clusters on the lattice is also increasing 
because more and more sites become occupied. In the vicinity of the percolation 
threshold, ns reaches its maximal value and then decays back to zero, due to the fact 
that the lattice becomes more and more consumed by a percolating cluster leaving 
less and less space for finite clusters.

In the vicinity of the percolation threshold Cp p→ , we expand (4.50) as

� (4.51)

If, similar to (4.6 and 4.7), we introduce the hypothesis:

�
(4.52)

� (4.53)

comparison with (4.49–4.51) immediately provides 1/ 2σ =  and 1ζ =  for both cas-
es below and above the percolation threshold.

The critical index τ cannot be determined from (4.49–4.51) because, normal-
izing the cluster-size distribution by its value at the percolation threshold, we have 
excluded this power-law decay from the dependence (4.47).
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Fig. 4.7   Normalized cluster 
number for the case Z = 3
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To find τ we should return to hypothesis (4.52 and 4.53). At the percolation 
threshold Cp p= , the exponential decay transforms into unity, leaving only the 
power-law decay:

� (4.54)

From Chap. 1, we recall that power-law dependences indicate the presence of frac-
tal scale invariance in a system. Experiments support this assumption—at the per-
colation threshold, clusters on a lattice become fractal.

This implies that on all scales, from the lattice constant to the size of a system 
as a whole, there is no characteristic length or characteristic cluster size so that the 
structure of clusters on the lattice becomes scale invariant. But a single possible de-
pendence which does not possess a characteristic size is the power-law dependence 
(4.54). The critical index τ serves here as an exponent of the cluster-size distribution 
decay and is called the Fisher exponent (Fisher 1967a, b).

We should also mention that assumption (4.54) of scale invariance at the percola-
tion threshold allows us to find the numbers gs  of lattice animals. Indeed, substitut-
ing (4.54) into (4.46), we obtain

�

(4.55)

We see that, neglecting the “slow” power-law dependence s τ− , the number of lattice 
animals grows exponentially “fast” with s increasing: ·

ln
const s

sg e≈ .
For the Bethe lattice, it is possible to find the numbers gs analytically. Let us re-

turn to the law of conservation of probability (4.32) below the percolation threshold:

	 2 ( 2)

1 1
( ) (1 ) .s s Z

s s
s s

p sn p sg p p + −

= =

= = −∑ ∑ � (4.56)

Rewriting this equation as

	 { } 12

1
(1 ) (1 ) ,

sZ Z
s

s
p sg p p

−− −

=

− = −∑ � (4.57)

we introduce a new parameter

	 2(1 )Zp pξ −≡ − � (4.58)

in terms of which our equation transforms into a power series:

	 1

1
(1 ( )) .Z s

s
s

p sgξ ξ− −

=

− = ∑ � (4.59)
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−

= = −
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Considering ξ  as a complex number, we observe that by Cauchy’s theorem the coef-
ficients of this power series are given by

	 1 ,
2 (1 ( ))s Z s

C

dsg
i p

ρ

ξ
π ξ ξ

=
−∫ � (4.60)

where Cρ  is the contour of integration of radius 0ρ → +  encircling the point 0ξ = .
Substituting the variable change (4.58) into (4.60), we find

	 { }
( 2) 3

1 ( 1)1 ,
2 (1 )s s Z s

C

p Z dp
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i p p
ρ

π − +

− −
=

−∫ � (4.61)

where Cρ is still the contour of integration encircling the point 0p = ; however, now 
it is no longer a circle.

To find the integral we need to find the residue at point 0p = :
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		� 

(4.62)

Thereby, for the number of lattice animals we find

	 { }
{ }

( 1) !
.

! ( 2) 2 !s
Z Z s

g
s Z s

−
=

− +
� (4.63)

It is easy to verify the validity of this formula for small clusters. When 1s = , a 
1-cluster can occupy any site of the lattice, and 1 / 1g N N= = .

When 2s = , a 2-cluster can occupy any bond of the lattice. Each site has Z at-
tached bonds; thereby, there are / 2NZ  bonds on the lattice with N sites (where 2 
comes from the fact that, counting bonds in this manner, we will count each bond 
twice). To find 2g  we should divide the total number / 2NZ  of possible 2-clusters 
on the lattice by the total number N of sites, 2

/ 2
2

NZ Zg
N

= = , which coincides with 
the result provided by (4.63).
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In the limit of big clusters 1s >> , applying Stirling’s approximation for (4.63), 
we do obtain the exponential dependence on s:

	 { }( 1)ln( 1) ( 2)ln( 2)
ln .s Z Z Z Z

sg e − − − − −≈ � (4.64)

However, keeping other multipliers as well, we find

	 { }( 1)ln( 1) ( 2)ln( 2)
5/2 5/2

1 1 1 o(1) .
2( 2)

s Z Z Z Z
s

Z Zg e
Z sπ

=
− − − − −−  

= +  −
� (4.65)

For the cluster-size distribution this provides:
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 
× +  

	�  (4.66)

At the percolation threshold (4.28) this expression transforms into the power-law 
dependence representing the fractal scale invariance in the system:

	 s c 5/23

1( ) 1 o(1) .
2 ( 2)( 1)

Zn p
sZ Zπ

= 
= +  − −

� (4.67)

Comparing (4.66) with hypothesis (4.52), we see that this hypothesis is valid for 
the Bethe lattice. Besides, we find 5 / 2τ = .

All critical indices we have found for the Bethe lattice are simple integers or 
rational fractions. As we already know, such indices are characteristic for the mean-
field approach. However, many indices we have obtained exactly; and no approxi-
mation has been employed. Why then is the behavior of the Bethe lattice similar to 
the mean-field approach?

The reason is that the Bethe lattice is equivalent to the infinite-dimensional lat-
tice. As we will see in Chap. 6, in high dimensions, if a dimensionality of a system 
exceeds the upper critical dimension, the system’s exact behavior generally obeys 
the mean-field rules. For cluster behavior this happens because the higher the 
dimension of a system is, the less its behavior is influenced by clusters with loops.

Unfortunately, in nature we are surrounded by two- and three-dimensional sys-
tems whose dimensionality is below the upper critical dimension. Thereby, the 
mean-field approximation is crude for these systems, and their critical indices are 
no longer simple integers or fractions.
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4.5  An Arbitrary Lattice

Now we consider the case of an arbitrary lattice. First, we should say that the law of 
conservation of probability was derived from the basic principles and is, therefore, 
lattice-independent:

	 ( ) ( ).s PC
s

p sn p P p= +∑ 	� (4.68)

Besides, the hypothesis that at the percolation threshold the structure of clusters 
becomes scale invariant,

	 n p
ss ( ) ,C ∝
1
τ � (4.69)

also follows from general considerations only and may be accepted for an arbitrary 
lattice as well.

For the mean cluster size S  we utilize the previous definition (4.16):

�
(4.70)

However, in contrast to the one-dimensional percolation when the system above the 
percolation threshold was impossible, now we need to discuss whether we include 
or do not include a percolating cluster in sums of (4.70) when Cp p> . If we do so, 
the percolating cluster will participate as an additional term with s = +∞ in both 
sums. This may lead only to the trivial result S = +∞ when the mean cluster size is 
determined by the percolating cluster.

For us such a description of the system’s behavior is not interesting because 
above the percolation threshold we expect the mean cluster size to represent the 
size of finite clusters. Therefore, we do not include the percolating cluster in both 
sums of (4.70).

The denominator of the right-hand side of (4.70) is a number between zero and 
unity as a part of the law of conservation of probability (4.68). Hence, the singular 
behavior of the mean cluster size S  is determined only by the numerator 2 ( )∑ s

s
s n p  

of (4.70). Substituting hypothesis (4.52) into (4.70) and replacing the discrete sum 
by an integral, we find

�

(4.71)

where Γ( )ν ν> ≡ ∫
+∞

− −0
0

1x e dxx  is the gamma function whose argument does not de-
pend on p.
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Substituting (4.53) into (4.71), we find the divergence of the mean cluster size in 
the vicinity of the percolation threshold

� (4.72)

that corresponds to the following relation among the critical indices:

�
(4.73)

Recalling that for the Bethe lattice 1γ = , 1 / 2σ = , and 5 / 2τ = , we immediately 
prove the validity of this relation for the Bethe lattice. 

Let us find other relations or inequalities among the critical indices valid in the 
case of an arbitrary lattice. At the percolation threshold C( ) 0PCP p =  so that the law 
of conservation of probability transforms into

�� (4.74)

Substituting here (4.69), we find

�
(4.75)

The left-hand side, pC, is the probability and, therefore, has a value between zero 
and unity. The last integral in the right-hand side does not diverge only if

� (4.76)

which is the first inequality for the Fisher exponent valid on an arbitrary lattice.
Let us now consider the system above the percolation threshold, Cp p> . From 

(4.68), we find

� (4.77)

Substituting here (4.74),

� (4.78)

and then hypothesis (4.52 and 4.53), we obtain

�

(4.79)
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Performing a variable change ( ( ) )z c p s ζ=

� (4.80)

and integrating by parts, we find

	
2

C
2( ) ( )p p const c pτ τ ζ

ζ
−  − +

≈ − + ⋅ Γ   

�  
(4.81)

In the vicinity of the percolation threshold, we may substitute c p( ) in (4.81) 
from hypothesis (4.53) that returns another relation among the critical indices of an 
arbitrary lattice:

�

(4.82)

Obviously, this relation is true for the found above critical indices of the Bethe lat-
tice.

In the vicinity of the percolation threshold, we expect that the order parame-
ter tends to zero, P pPC ( )→ +0, while the mean cluster size diverges, S p( ) .→ +∞  
This implies that 0β >  and 0γ > . Comparing these two inequalities with (4.73 and 
4.82), we see that they are possible only when

� (4.83)

These are the first and second inequalities for the Fisher exponent.
The power-law dependence P p p pPC ( ) ( )∝ − C

β  has important consequenc-
es. Since P pPC ( ) is the probability for a site to belong to a percolating cluster, 
NP p N p pPC ( ) ( )∝ − C

β  is the number of sites on the lattice belonging to the perco-
lating cluster on average.

We see that for Cp p> , a finite fraction of the total number N of sites on the lat-
tice belongs to the percolating cluster. Therefore, above the percolation threshold 
the percolating cluster has the dimension d of the embedding lattice and is not a 
fractal with a fractal dimension.

However, at the percolation threshold Cp p= , we obtain P pPC ( ) = 0. In the 
meantime, the percolating cluster already exists and percolates the infinite system! 
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Thereby it contains an infinite number of occupied sites. However, the fraction of 
these sites relative to the total number N of sites on the lattice is zero. Hence, this 
allows us to hypothesize that at the percolation threshold the percolating cluster is 
fractal with a fractal dimension D which is less than the dimension d of the embed-
ding lattice. The scaling of the number of sites belonging to the percolating cluster 
may be schematically represented as

�

(4.84)

where L is the linear size of the lattice: N Ld= . At the percolation threshold, this 
dependence provides

� (4.85)

which in the thermodynamic limit N → +∞ indeed transforms into

� (4.86)

This statement may be illustrated with the aid of the petroleum clusters in a rock. 
Let us assume that these clusters are formed at the percolation threshold. We drill 
a well and, if we are lucky, we hit not a finite cluster but the infinite percolating 
cluster. Then we might pump out LD barrels of petroleum, where L is the linear size 
of the oil field. Meantime, the total amount of petroleum in the rock is Np LdC ∝  
barrels. Since D d< , we have pumped out only a negligible part of the total amount 
of petroleum!

We have hypothesized that the normalized cluster number obeys the hypothesis 
(4.52):

� (4.87)

For small s, the exponential function ( ( ) )c p se
ζ−  is of the order of unity, and the 

cluster-size distribution decays as a power law:

� (4.88)

On the contrary, for large clusters s c>>1/ , the exponential function dominates the 
decay:

� (4.89)

What values are typical for the exponent ζ ?
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If we consider the limit p → +0, almost the whole lattice is empty. On the empty 
lattice there is no need to care about forming ( )1− p ts  empty sites at the perimeter 
of an s-cluster because in the limit p → +0, the probability ( )1− p ts is almost unity. 
Therefore, to form an s-cluster we should only form s-occupied sites:

�
(4.90)

This returns us to the value 1ζ = :

� (4.91)

Experiments show that 1ζ =  may be a crude but reasonable approximation not 
only in the limit p → +0 but also for Cp p< . Similar decay we have already ob-
served in the one-dimensional case and for the Bethe lattice. If our results were 
directly applicable to nucleation in liquid–gas or magnetic systems, we would say 
that (4.91) describes the nucleus-size distribution above the critical point.

Next, let us consider the opposite extreme p → −1 0 when almost the whole 
lattice is occupied. This time, on the contrary, there is no need to care to form s oc-
cupied sites for an s-cluster because the probability ps is almost unity in the limit 
p → −1 0. Instead, we should care about the empty sites of a perimeter which “cuts” 
the required s-cluster from the percolating cluster.

A perimeter can be arbitrary. One cluster might be compact having a smooth 
surface while another could resemble a snowflake with a fractal perimeter. But the 
more complex the perimeter is, the more sites must be empty so that the lower is the 
probability ( )1− p ts . Therefore, the most probable are the clusters with the simplest, 
smooth, better spherical surface which cuts from the occupied lattice a d-dimensional 
“chunk.”2 While such a cluster of size s has the dimension of the embedding lattice, 
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2  While the statement is valid, the reasoning behind it is oversimplified. Further, we apply the 
logarithmic accuracy in the limit of big clusters, 1/s c>> . To find the probability for a cluster pe-
rimeter to be smooth instead of being more complex (fractal), we should compare the part of the 
normalized cluster number that comes from the lattice animals with smooth perimeters, 

1 1
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∆ = Ο − ≈ −  with the share of the normalized cluster number be-
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 and the exponential dependences Cse  on s for t Bss ∝ . In the limit 1 0p → − , com-
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negative sign, { } { }
1

... 0 ... 0
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ds s
−

< << < . In other words, the number of complex lattice animals 

are much bigger than the number of animals with smooth perimeters, but the improbability to have 
larger perimeters cancels this advantage, leaving the leading role to smooth, non-fractal, compact 

clusters,
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ln (1 )
d
ds As
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−

≈ − , which proves the statement above.
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its smooth surface is ( )d −1 -dimensional and contains s
d
d
−1

 empty sites. Thus, the 
cluster-size distribution is

�
(4.92)

Comparison with (4.89) provides 
11
d

ζ = −  and

�
(4.93)

Here for the first time we encounter an exponent ζ that is not unity.
From (4.84), we see that the percolating cluster is fractal only at the percolation 

threshold; however, above the percolation threshold it loses its fractal properties 
and gains the dimensionality of the embedding lattice. The same statement seems to 
be valid for big pieces of this cluster as well. Thereby we may assume the cluster-
size distribution (4.92) to be valid not only in the limit p → −1 0 but, crudely speak-
ing, for Cp p>  as well.3

However, from (4.90), we recall that 1ζ =  for the Bethe lattice for the cases both 
below and above the percolation threshold. This is due to the fact that in accordance 
with (4.27) on the Bethe lattice the surface of a volume is of the order of the volume 
itself. So, if we need to “cut” a cluster of size s, its minimal perimeter is also of the 
order of s. In the limit p → −1 0, this provides

�
(4.94)

with 1ζ =  as expected.
The Bethe lattice serves as an analogue of the infinite-dimensional hypercu-

bic lattice. Thus, similar results are valid for a hypercubic lattice as well in the 
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3  The argument in the footnote on the previous page is no longer valid when we consider p to be 
well below unity. In this case ln(1 )C B p+ − can become positive, transferring the leading role to 

complex clusters, ln (1 )Cs s Bs
sn e p p≈ − , whereas the compact clusters are neglected now. The tran-

sition occurs at /
0 1 C Bp e−= − , where C can be estimated with the aid of the total number sg  of 

lattice animals with s sites. Indeed, neglecting the number of compact lattice animals in compari-
son with their more complex counterparts, ln( ) Cs Cs

sg s e eα= Ο + ≈ , we find ln /sC g s= .
Thereby, for p0 < p < 1 the normalized cluster number represents the behavior of smooth peri

meter clusters, 
1

ln (1 )
d
ds As

sn p p
−

≈ − . On the contrary, for pC < p < p0 the cluster-size distribution is 
determined by complex clusters with st Bs∝ : ln (1 )Cs s Bs

sn e p p≈ − . The constant B, here we can 
estimate from the requirement that ns  has a maximum in the vicinity of the percolation threshold, 
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limit d → +∞ when 11 1
d

ζ = − →  so that the cluster-size distribution (4.94) is the 
limit of (4.92) for d → +∞.

4.6 � The Moments of the Cluster-Size Distribution

The last in this chapter, we discuss the moments

� (4.95)

of the cluster-size distribution for an arbitrary lattice. We should mention at once 
that the sum here does not include the term of the infinite percolating cluster again 
for the reasons similar to the derivation of formulae (4.70–4.73).

Initially, we consider 1k τ> − . Similar to how we have found 2 ( )∑ s
s

s n p  earlier, 
for the general case of the kth-moment we find
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∝
+ −







 ∝ −− −

− −

c p k p pk
k

τ
τ

στ
ζ

1
11( ) | | .CΓ

This formula is valid for any integer k with the exception of k = 0 and k = 1. In 
the special cases k = 0 and k = 1, the inequality 1k τ> −  is no longer valid so that 
the argument of the gamma function becomes negative.

To find the first moment M1, we differentiate (4.95) with respect to c:

� (4.97)

For k = 1, this equation transforms into

�
(4.98)

Since for all known lattices 2 (2 )τ ζ< < +  and thereby (1 ) ( 1)ζ τ+ > − , to find 
1M ζ+  we may utilize (4.96):

� (4.99)

Integrating this equation with respect to c, we obtain
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(4.100)
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In other words, in the vicinity of the percolation threshold, the first moment is not 
singular (its critical index is zero). This result is expected because the first moment 
is the probability for a site to belong to a finite cluster:

� (4.101)

so that at the percolation threshold

� (4.102)

The zeroth moment M0 is also found by differentiating (4.95) with respect to 
c. First, we consider the case when 2 1ζ τ≥ − . Differentiating (4.95) once, we find 
how the derivative of M0 is associated with Mζ :

�
(4.103)

and how the derivative of Mζ  is associated with 2M ζ :

�
(4.104)

Since we consider 2 1ζ τ≥ − , to find 2M ζ , we apply (4.96):

� (4.105)

Integrating (4.104) and then (4.103), we obtain:

� (4.106)

� (4.107)

This result we have found for the case when 2 1ζ τ≥ − . If, on the contrary, 
2 1ζ τ< −  but 3 1ζ τ≥ −  (which might be possible on the two-dimensional lattice), 
we add one additional equation to (4.103 and 4.104):

�
(4.108)

and find 3M ζ  in accordance with (4.96):

� (4.109)

M p sn p p P ps
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1 C C( ) .M p p=

− ∝ −dM
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c M0 1ζ
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c Mζ ζ
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1
2 .
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2 1

ζ
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1
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− −= +

1
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− ∝ −dM
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c M2 1
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ς ζ
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M c3
3 1

ζ
τ ζ∝ − − .
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Integration returns:

� (4.110)

� (4.111)

� (4.112)

Both results, (4.107 and 4.112), tell us that M0 is not singular (its critical index 
is zero):

� (4.113)

In the vicinity of the percolation threshold, we have assumed (4.53) that c be-
haves as c p p∝ − →| | /C

1 0σ . Thus, the last term in (4.107 or 4.112) represents a 
power-law dependence:

� (4.114)

Defining a critical index α by

� (4.115)

we see that the new critical index obeys the following inequality:

�

(4.116)

We will discuss in more detail the index α in Chap. 6.
Earlier we considered two methods to determine the mean cluster size, (4.15 and 

4.16):

�
(4.117)

�
(4.118)
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but later we have studied only S . Now we can answer the question why the behavior 
of S is more interesting than the behavior of S—because (with the exception of the 
one-dimensional case (4.17) S  does not diverge generally at the percolation thresh-
old. Indeed, from (4.117) we see that S is the ratio of the first moment to the zeroth 
moment. Both these moments are not singular at the percolation threshold (with the 
exception of the one-dimensional case).

On the contrary, while the denominator of S  is not singular, its numerator diverg-
es as (4.71). Therefore, the behavior of S is more interesting; the more so since the 
very S represents on average the size of a cluster which we discovered while drilling 
a petroleum well. As we will see in Chap. 6, S  plays the role of the susceptibility in 
the theory of percolation.

In this chapter, we have become acquainted with the percolation model and have 
considered several quantities that obey power-law dependencies in the vicinity of 
the percolation threshold. We may consider this threshold to be a critical point of the 
model while with the mentioned quantities we may associate their analogues from 
the Ising model (this association may be traced by the fact that the critical indices of 
two corresponding quantities are denoted by the same Greek letter).

However, the analogy with statistical physics developed so far is incomplete—
indeed, besides the mentioned power-law dependencies we have not discussed other 
similarities. We return to this question in details in Chap. 6 and further chapters.

But before discussing analogies with statistical physics, in the next chapter we 
should consider one more complex system that will participate in future compari-
sons also.
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Chapter  5
Damage Phenomena

Abstract  The problem of percolation, studied in the previous chapter, might be 
called complex. The system was not thermal; and the concept of thermodynamic 
temperature was absent. The structure of the model allowed the possibility of non-
thermal fluctuations which, in turn, lead to the presence of a continuous phase 
transition and a critical point in the system. We saw many similarities with the 
thermal systems of statistical physics; however, the completely developed analogy 
was absent. So, we introduced a set of parameters, such as the order parameter, the 
field parameter, and the averaged cluster size S ; but so far we have not found the 
counterparts of these quantities in statistical physics. In more detail, we return to 
this question in Chap. 6, where these analogies will be found. However, at first we 
need to consider one more complex, nonthermal system whose mapping on the 
phenomena of statistical physics will be more transparent.

The model considered represents damage phenomena. The thermodynamic tem-
perature is absent in the system; however, the stochastic distribution, as an “input” 
of the model, generates fluctuations, perfectly described by the laws of statistical 
physics.

In fact, the analogy with statistical physics will be so complete and the model 
will be so illustrative that the discussion of the concepts of statistical physics itself 
in Chap. 2 could be illustrated with the aid of this system instead of the thermody-
namic systems.

5.1 � The Parameter of Damage

The classical mechanics is formed by two separate sciences: theoretical mechanics 
and statistical mechanics. Similarly, there are two separate sciences, describing the 
destruction of solids: fracture mechanics and damage mechanics. Fracture mechan-
ics is a deterministic discipline studying the behavior of separate (a few) flaws or 
defects much like when theoretical mechanics studies the deterministic behavior of 
separate (a few) degrees of freedom. On the contrary, damage mechanics describes 
the behavior of very many microdefects stochastically and resembles, therefore, 
statistical physics, studying stochastically the behavior of many degrees of freedom.

© Springer International Publishing Switzerland 2015
S. G. Abaimov, Statistical Physics of Non-Thermal Phase Transitions, 
Springer Series in Synergetics, DOI 10.1007/978-3-319-12469-8_5
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Since our intention is to build analogies between complex systems and statistical 
physics, we will concentrate our study on the phenomena of damage mechanics in 
particular.

Damage mechanics is a very young science which emerged after Lazar’ Kacha-
nov had published his book (Kachanov 1986). Also, we refer the reader to another 
two brilliant textbooks: (Lemaitre 1996) and (Krajcinovic 1996). Besides, the equa-
tions containing the parameter of damage as an additional variable are included in 
many textbooks on continuum mechanics (e.g., a brilliant textbook (Narasimhan 
1993)).

During the last decade of the twentieth century a new promising idea appeared 
in the literature: to consider the process of damage development as a phase transi-
tion phenomenon (Rundle and Klein 1989; Sornette and Sornette 1990; Blumberg 
Selinger et al. 1991; Sornette and Sammis 1995; Buchel and Sethna 1996; Andersen 
et al. 1997; Buchel and Sethna 1997; Zapperi et al. 1997; Sornette and Andersen 
1998; Zapperi et al. 1999a, b). However, although the similarity of phase diagrams 
was impressive, the mechanism connecting damage mechanics with statistical 
physics has not been built completely. While the behavior of thermal fluctuations is 
well described by statistical mechanics, the nonthermal stochasticity requires devel-
oping separate approaches. Only recent studies began to overcome this difficulty by 
mapping nonthermal fluctuations on their thermal analogs (Abaimov 2008, 2009). 
In the following sections, we reproduce the results of these studies.

The main parameter in damage mechanics is the parameter of damage D. In the 
literature, its definition is not settled completely. However, since we will consider 
only a one-dimensional case, the simplest and the most illustrative definition will 
be sufficient for our needs.

Let us consider a solid containing many microdefects which may be microcracks, 
microflaws, microvoids, etc. If we passed a section perpendicular to the direction 
of the applied force, in the cross-section, we would see multiple holes representing 
these defects (Fig. 5.1).

We define damage D as the ratio of the cross-sectional area of the defects to the 
total cross-sectional area of the solid:

� (5.1)D
S
S
defects

total
≡ .

 Fig. 5.1   The cross-section of 
a solid revealing the presence 
of microdefects
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In the absence of defects (undamaged solid), when the total cross-section carries 
the load, the damage is zero: D = 0. When the defects coalesce and occupy the 
total cross-sectional area, the solid is broken and no longer supports the load. 
In this case, we have D = 1. Between these two extremes the solid is damaged 
partially, and only some fraction of its cross-sectional area carries the load, and 
0 1< <D .

5.2 � The Fiber-Bundle Model with Quenched Disorder

For simplicity, we will study not the three-dimensional continuum medium but a set 
of one-dimensional fibers (springs) connecting two absolutely rigid plates which 
transfer the load (Fig. 5.2). Some fibers (like the second from the left in Fig. 5.2) 
may be broken and do not carry the load while the intact fibers support the load 
transferred by the rigid plates. This model is called the fiber-bundle model (further, 
FBM) (Pierce 1926; Daniels 1945). Although in the following sections, we consider 
in detail only the original version of the FBM, there are many modifications of the 
model which we have briefly discussed in Sect. 5.7.

The number N of fibers in the FBM is considered to be infinite in the thermo-
dynamic limit N → +∞ (our system is not thermal, but the limit of infinite system 
size is often called the thermodynamic limit by analogy with statistical physics). We 
assume each fiber to be elastic while its Hooke’s law is linear

� (5.2)

right up to the point of the fiber’s failure (brittle type of failure). Here σ i  is the stress 
of the fiber, ε i —the strain of the fiber, and E—Young’s modulus which does not 
depend on the strain and is the same for all fibers.

Since all fibers are loaded by means of the absolutely rigid plates, they all have 
the same strain coinciding with the strain of the model as a whole:

� (5.3)

σ εi iE=

ε εi ≡ .

 Fig. 5.2   The fiber-bundle 
model
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A fiber breaks when its stress exceeds the strength threshold of this fiber: σ i is≥ . 
We assume that the strength si  of each fiber i is chosen a priori and does not change 
during the model evolution. This type of noise introduced into a system is called 
quenched disorder because once defined, deterministically or stochastically, it stays 
further unchanged.

Quenched disorder is generally introduced as the variability of fiber strengths, 
not Young’s moduli, since to find elastic constants of a fiber, we average local elas-
tic properties while fiber’s strength is represented by the weakest point along the 
fiber and has, therefore, much higher variability.

We assume that the strengths of fibers are assigned in accordance with a stochas-
tic probability density function p s( ) (further, strength PDF): p s s( )d =

+∞

∫ 1
0

. Here, 
we implicitly involve the concept of an ensemble. For each particular system in the 
ensemble, we prescribe to each fiber its strength in accordance with the PDF p s( ). 
We load this system, observe how many fibers are broken, and move on to a new 
system.

So, each particular system behaves deterministically under the loading in accor-
dance with the particular realization of strengths of its fibers, inherited at the begin-
ning of its evolution from the PDF p s( ). However, the ensemble in whole behaves 
stochastically, exhibiting fluctuations of broken fibers. And these fluctuations are 
the very subject of our investigation.

Instead of the PDF p s( ), we will generally refer to the cumulative distribution 
function (further, CDF),

�
(5.4)

because, while the PDF determines whether a fiber would break now, the CDF de-
termines whether a fiber has been broken. So, if a fiber i is required to carry stress 
σ  now, P( )σ  is the probability for this fiber to have been broken. On the contrary, 
1− P( )σ  is the probability for a fiber to stay intact if its stress is σ .

After a fiber has been broken, it can no longer support the load and, therefore, 
redistributes its loading to other fibers. Similar to the Ising model, there are short-
range and long-range types of the FBM which are different by how far the loading 
spreads. For example, in the nearest-neighbor version of the model, only the nearest 
neighbors of the broken fiber obtain from it an additional loading. On the contrary, 
in the mean-field type of the FBM (called the democratic FBM or DFBM) a broken 
fiber distributes its loading evenly among all still-intact fibers. We further consider 
only the last, mean-field version of the model.

The definition of the parameter of damage D is, obviously, straightforward in our 
model—it is a share of broken fibers. Then the numbers of broken and intact fibers 
are determined by

� (5.5)

P p s ds( ) ( ) ,σ
σ

= ∫
0

N N D N NDintact broken= − =( ), .1
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Microstates { }D  in our model are the particular microconfigurations of intact and 
broken fibers over the model. In other words, prescribing for each fiber to be intact 
or broken, we form one particular microstate { }D  of the system. So, if, for example, 
the model consists only of N = 3  fibers, its possible microstates are |||{ }, ||¦{ }, | |¦ ,{ }  
¦||{ }, |¦¦{ }, ¦ ¦|{ }, ¦¦|{ }, and ¦¦¦{ }, where the symbol ‘|’ represents an intact fiber while the 

symbol ‘¦’—a broken fiber.
Fluctuation D{ }{ } is then a macrostate of the system when its damage is D. 

For example, for the system with N = 3 fibers three microstates, ||¦{ }, | |¦{ }, and ¦||{ }, 
represent  fluctuation D ={ }{ }1 3/ . So, the statistical weight of this fluctuation is 
Γ D={ }{ } =1 3 3/ . For general case of an arbitrary number N of fibers, the statistical weight 
of a fluctuation D{ }{ } is determined as the number of microconfigurations when there 
are N N Dintact = −( )1  intact fibers and N NDbroken =  broken fibers:

� (5.6)

5.3 � The Ensemble of Constant Strain

First, we consider the ensemble of the constant strain of the system when the bound-
ary condition of the ensemble is ε = const  (further, ε-ensemble or “ε−E”). Since the 
strain ε i  of each fiber i equals in accordance with (5.3) the strain of the total model, 
the stress (5.2) is constant for all intact fibers:

� (5.7)

The probability for a fiber to have been broken in the ε-ensemble is P E( )ε . On 
the contrary, the probability for a fiber to stay intact in the ε-ensemble is 1− P E( )ε . 
Therefore, the probability to observe a microstate { }D  in the ε-ensemble is

� (5.8)

where we have raised P E( )ε  to the power of N NDbroken =  and 1− P E( )ε —to the 
power of N N Dintact = −( )1 .

Since the probability (5.8) depends only on the value of D and does not depend 
on a particular microconfiguration of broken and intact fibers, all microstates { }D , 
corresponding to the given value of D, have equal probabilities. The probability to 
observe the fluctuation D{ }{ } in the ε-ensemble (to observe damage D) equals then 
the sum of these probabilities of corresponding microstates:

� (5.9)

Substituting (5.6) into (5.9), we see that this is the binomial distribution

Γ D
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N N
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−
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� (5.10)

Similar to statistical physics, the probability of a fluctuation is the product of two 
“fast” dependencies, Γ D{ }{ } and w D{ }

ε −E. These dependencies are “fast” because they 
can be presented in a form
� (5.11)

� (5.12)

when the dependence on D in the exponent is multiplied by N → +∞. This provides 
a very narrow maximum of the probability distribution (5.9).

To find the point D0  of this maximum, we should find when the derivative of the 
probability distribution is zero (or, since the logarithm is a monotonically increasing 
function, when the derivative of the logarithm of this distribution is zero):

� (5.13)

Solving this equation, we find the equation of state

� (5.14)

As it could be expected, the share D0  of the broken fibers equals the probability 
P E( )ε  for a fiber to be broken.

Similar to Chap. 2, we can demonstrate that the most probable macrostate D0{ }{ } 
corresponds to the value of damage D ε −E averaged in the ensemble. Indeed, in the 
definition

� (5.15)

two functions, Γ D{ }{ } and w D{ }
ε −E, are “fast” since they depend exponentially on N. On 

the contrary, the function ND is “slow” since it depends on N only as a power-law. 
Therefore, the product W wD D D{ }{ }

−
{ }{ }

−=ε εE EΓ { } , whose integral is normalized by unity:

�
(5.16)

forms a δ-function for the “slow” function ND:
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�
(5.17)

For more details of the proof of this equality, we refer the reader to Chap. 2.
Let us now return to the probability distribution (5.8) of microstates { }D . We 

rewrite this expression as

�
(5.18)

What does this formula remind us of? We encourage the reader not to look further 
but first to answer this question herself/himself.

First, the boundary condition of the ε-ensemble is ε = const. Therefore, P E( )ε  is 
also some parameter kept constant. Let us introduce two new parameters defined by

� (5.19)

and
� (5.20)

Then probability (5.18) can be presented in the form

� (5.21)

This expression is analogous to Gibbs probability of the canonical ensemble, 
where the new order parameter, instead of energy, is ND.

The parameter T eff  is the effective temperature and represents a new field param-
eter, replacing ε . Indeed, if ε = const, then T eff , given by (5.19), is also maintained 
constant in the ensemble to represent the new boundary condition T eff = const. This 
new boundary condition replaces the original ε = const; so, instead of calling our 
ensemble the ε-ensemble, we could call it the effective-canonical ensemble.

The parameter Z ε −E, given by (5.20), is the partition function of the ensemble. 
We can prove this statement directly by considering the definition of the partition 
function:

� (5.22)

How many different fluctuations D{ }{ } are there? When a fiber breaks, the damage 
increases by ∆D N=1/ . In other words, in sum (5.22), the damage changes from 0 
to 1 with the step ∆D N=1/  corresponding to the failure of a fiber:

� (5.23)
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This is the binomial sum which returns us to (5.20):

� (5.24)

Obviously, we could obtain nothing else, since, the partition function is the normal-
ization constant of the probability distribution.

Summarizing, the introduction of the quenched disorder in the form of the fiber 
strength distribution P allowed us to build fluctuations D{ }{ } in the ε-ensemble. 
These fluctuations were not thermal but generated by the stochasticity of the dis-
tribution P itself. However, considering a nonthermal system, we have obtained a 
complete analogy with the canonical ensemble of a thermodynamic system.

This has happened because we have been able to map the nonthermal fluctua-
tions D{ }{ } on their thermal analogs. Thereby, Chap. 2 as a whole has become ap-
plicable to our system. We only need to substitute energy E by damage ND in all 
formulas and to talk about “damage spectrum” instead of the energy spectrum. Then 
the statistical weight (5.6) becomes the statistical weight of the “damage level.” 
Two adjacent “damage levels” in the spectrum are separated by ∆D N=1/ . The 

relative width of the probability maximum is δ δ( ) ( ) ,ND
ND

D
D N0 0

1
= ∝  and so on.

For example, transforming sum (5.22) into the integral,

� (5.25)

and applying the method of steepest descent, we prove that the partition function of 
the ensemble is equal, with logarithmic accuracy, to its maximal term,

� (5.26)

where the most probable macrostate D0{ }{ } is determined by

� (5.27)

which, when divided by Z ε −E, is equivalent to (5.13).
Let us develop the analogy of the free energy for our system. While the equilib-

rium free energy of the ε-ensemble is determined by the logarithm of the ensemble 
partition function,

� (5.28)

Z P ET
N Neffε ε− − −

= +( ) = − ( )( )E e 1 1 1/ .

Z dD
N

eD
ND Teffε −

{ }{ }
−= ∫E

10

1

/
,/Γ

Z eD
ND Teffε −

{ }{ }
−≈E

ln
/ ,Γ

0
0

∂ ( )
∂

=
∂ ( )

∂
=

{ }{ }
−

{ }{ }
−Γ ΓD D

D

D D

D

w

D

w

D
{ } { }lnε εE E

or

0 0

0 0

F T Zeffε ε− −≡ −E Eln ,



2675.4 � Stresses of Fibers�

the nonequilibrium free energy of a fluctuation D{ }{ } is determined by the loga-
rithm of the partial partition function of this fluctuation:

�
(5.29)

where

� (5.30)

The behavior of the nonequilibrium free energy is presented in Fig. 5.3. The free 
energy potential has one minimum corresponding to the obtained earlier equation 
of state (5.14).

Why is it so important to build an analogy (5.21) with statistical physics instead 
of describing the system by law (5.8) of damage mechanics? What does this analogy 
provide us with? There are two possible answers to this question. First, the well-
developed formalism of statistical physics becomes suddenly applicable to damage 
phenomena providing us with alternative descriptions and solutions. Second, this 
gives us a completely different point of view on the problem. As we will see later, 
this new point of view, appearing by means of comparison, can highlight what has 
been overlooked in damage mechanics itself. In particular, statistical physics allows 
us to look at a damage phenomenon as at a phase transition, as we will see in the 
following sections.

5.4 � Stresses of Fibers

In the previous section, we have considered the ensemble when the strain of the mod-
el is maintained constant: ε = const. However, while all systems in the ε-ensemble 
have the same strain, the external force F, acting on the rigid plates, obviously, var-
ies from system to system in the ensemble due to the fluctuations of fiber strengths.

Dividing the external force F, acting on a plate, by the area of the plate, we obtain 
the stress σ  in the plate. Considering for simplicity the model packed tightly with 
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Fig. 5.3   The dependence 
of the nonequilibrium free 
energy on the nonequilibrium 
value of damage
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fibers, we will assume further that the area of the plate coincides with the sum of the 
cross-sectional areas of fibers. Then, the stress σ  would be the stress in the fibers if 
they all were still intact. This particular stress σ  is assumed to be acting within the 
model by an external observer, who perceives the system as a “black box” and do 
not see that some fibers are broken.

However, within the model, some fibers may break and redistribute their load to 
still intact fibers. Thereby only N D( )1−  intact fibers carry the applied load, so their 
stresses σ i are higher than σ :

� (5.31)

Further for simplicity, we will assume that the area of the rigid plate is unity, so we 
will not distinguish the external force F and the stress σ , e.g., we will refer to σ  as 
to the external force.

Equation (5.31) demonstrates us that for the given value of the strain ε  in the 
ε-ensemble, the external force σ  varies from system to system, depending on the 
fluctuating share D of broken fibers. On average, we have

� (5.32)

As an example, we consider a particular probability distribution of fiber strengths,

� (5.33)

�
(5.34)

when the strengths of fibers are distributed uniformly from s1 to s2 (Fig. 5.4).
We are still considering the ε-ensemble when the strain of the model is main-

tained constant. However, now we quasi-statically change this boundary condition, 
increasing strain ε  from zero until the whole model fails.

When E sε < 1, all fibers are intact, and the external force increases linearly with 
the increase of the strain. When E sε ≥ 1, the weakest fibers begin to break, so the 
dependence of σ ε −E on ε becomes nonlinear. When E sε > 2, all fibers are broken, 
so the external force is zero. Substituting (5.14) into (5.32) and utilizing (5.34), for 
the described above tendencies we find an analytic expression:

� (5.35)
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This dependence is presented in Fig. 5.5. We consider here only the nondegener-
ate case s s2 12>  when after the failure of the weakest fibers, the external force still 
increases with the increase of the strain.

From Fig. 5.5, we see that when the strain is increasing, the averaged external 
force σ ε −E indeed increases first linearly, then—nonlinearly. Later, it reaches its 
maximal value after which it decreases to zero.

Substituting CDF (5.34) into the equation of state (5.14), we find the dependence 
of the strain ε  on the equilibrium value of damage D0:

� (5.36)

Substituting (5.36) into (5.35), we find the dependence of σ ε −E on D0:

� (5.37)

This dependence is presented in Fig.  5.6. When D0 is increasing, the external 
force initially leaps to the value s1, corresponding to the first fiber failures. Then it 
increases, has a maximum, and finally decreases to zero at the point D0 1=  when 
the whole model fails.

E s D s s Dε = + − < <1 0 2 1 00 1( ) .when 

σ ε − = − + − < <E when( )( ( )) .1 0 10 1 0 2 1 0D s D s s D

σFig. 5.5   The dependence of 
the averaged external force 
on the strain of the model

 

Fig. 5.4   The uniform 
distribution of fiber strengths 
from s1  to s2
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5.5 � The Ensemble of Constant Stress

So far, we have considered only the ensemble of constant strain: ε = const. In the ε-
ensemble for the given value of ε , there is only one solution of the equation of state 
(5.14) which is always stable and can easily be achieved experimentally (Fig. 5.7).

However, the behavior of the system changes drastically when instead of the 
constant strain we require the boundary condition of the constant external force: 
σ = const (further, σ-ensemble or σ-E).

While the external force is the same for all systems of the σ-ensemble, the strain 
now varies from system to system in accordance with (5.31). On average, we expect 
to find

� (5.38)

The probability of a microstate { }D ,

�

(5.39)
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σFig. 5.7   One solution of 
the equation of state in the 
ε-ensemble
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can no longer be transformed into the form of Gibbs probability. While the probabil-
ity of a fluctuation D{ }{ }  is still provided by the product of the statistical weight 
and probability of a microstate,

� (5.40)

its maximum generates the new equation of state:

� (5.41)

Since we have built our model as a mean-field system when a broken fiber redis-
tributes its stress uniformly among all intact fibers, the behavior of the equation of 
state (5.41) should resemble the mean-field solution of the Ising model or the van 
der Waals equation. Below indeed, we will see many similarities.

In contrast to the previous ensemble, for the given value σ  of the boundary 
condition, the equation of state (5.41) has not one but two solutions presented in 

Fig. 5.8. One of them, D0 1, , corresponds to positive derivative 
dD
d

0 0
σ

>  while an-

other, D0 2, —to negative derivative 
dD
d

0 0
σ

< . When σ  quasi-statically increases, 

two solutions approach one another while the derivatives dD
d

0

σ
 of these solutions 

keep their signs but diverge (Fig. 5.9).

To understand what the derivative 
dD
d

0

σ
 represents, we should differentiate (5.38) 

with respect to σ  to find the derivative of the averaged strain with respect to the 
stress:
�

(5.42)
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From this equality, it is obvious that when the derivative 
dD
d

0

σ
 tends to plus or minus 

infinity at point S in Fig. 5.9, the derivative 
dE

d
ε

σ
σ −E  has the same sign and also 

diverges.

But what does it mean that 
dD
d

0 0
σ

>  and 
dE

d
ε

σ
σ − >E 0 simultaneously? The 

first inequality, 
dD
d

0 0
σ

> , says us that when the external force increases, some fibers 

break so that the damage also increases. Simultaneously, 
dE

d
ε

σ
σ − >E 0 means that 

the increase of the load causes the strain to also increase.
These two derivatives resemble the conditions of stability (metastability) for a 

gas–liquid system, ∂
∂

>
ρ0 0
P

, and for a magnetic system, ∂
∂

>
m
h

0 0 . Therefore, the 

negative values of these derivatives, dD
d

0 0
σ

<  and dE
d
ε

σ
σ − <E 0, correspond to the 

branch of unstable solutions.
So, we may conclude that point S in Fig. 5.9 separates two branches of the equation 

of state, one of which (to the left) is stable or metastable while another (to the right) is 
unstable. For example, the macrostate D0 2,{ }{ }  is unstable; so, if the system happens 
to be in this macrostate, the fibers continue to break until the whole model fails.

The presence of the unstable branch of the equation of state indicates here the 
presence of a phase transition in the system. But if we are talking about a phase 
transition, what are the phases? One of them we know—it should be the stable 
or metastable part of the equation of state to the left from point S. Another phase 
should be separated from the first by the unstable branch; so, the second phase is 
supposed to represent the completely broken model.

The first phase—the intact model—is transparent and easy to imagine. However, 
this cannot be said about the second phase, the broken model. We do not see here 
any dependencies on the boundary conditions—only a discrete point D0 1= , σ = 0. 
This “degeneracy” of the second phase in damage phenomena for many years con-
cealed from scientists the fact that these phenomena can be considered as a phase 
transition from the intact to the broken solid.

→ →+ −

Fig. 5.9   When σ increases, 
two solutions approach one 
another while their deriva-
tives keep signs but diverge
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Let us now consider the first phase represented by the branch of the equation of 
state to the left from point S. What would happen if in this system we, by means of 
some external forces, break very many fibers at once? Common sense suggests that 
the fibers, remaining still intact, may not be able to support the applied load which 
causes new fiber’s failures and the failure of the whole model.

But broken fibers represent the second phase. So, by breaking with the aid of 
external forces very many fibers at once, we, in fact, include a nucleus of the bro-
ken phase within the intact phase. If the size of this nucleus (the number of broken 
fibers) exceeds the critical size, the nucleation process transfers the system across 
the potential barrier into the stable state of the broken phase.

Obviously, to the right of point S, the critical size is zero, since, the states there 
are all unstable and transform into the second phase on their own (Fig. 5.10). The 
zero critical size is always typical for the unstable branch without regard to what 
particular system we consider.

Also, we now know that the critical size may exist to the left of point S although 
here it is not zero—we need to break many fibers so that the model would fail. Does 
the critical size exist all along the equation of state to the left of point S? Does it ex-
ist even along the vertical part where D0 0=  and the external force is small?

To answer this question, let us imagine a model when σ  is small and even the 
weakest fibers are all still intact. In the thermodynamic limit N → +∞ , we may (by 
means of external forces) break all fibers but one which, left alone, would not be 
able to support the applied force σ , no matter how small this force is (σ  is small but 
constant while we consider the limit N → +∞). Therefore, the critical size exists all 
along the equation of state, even along its vertical part (Fig. 5.10), although it may 
become big here—proportional to N.

But the very possibility of existence of a critical nucleus clearly indicates that the 
states we consider are not stable but metastable. Indeed, in a stable state the critical 
nucleus does not exist at all, and any possible fluctuation, no matter how big it is, 
cannot lead to a transition into a different phase.

So, we may conclude that the equation of state to the left of point S represents not 
stable but metastable states. Point S as a point where the metastable branch trans-
forms into the unstable branch must, therefore, be the spinodal point.

In Fig. 5.11, we compare the phase diagrams for three systems: (a) a damage 
phenomenon, (b) a liquid–gas system, and (c) a magnetic system. The similarity 
of these diagrams has prompted the hypothesis that a damage phenomenon can be 
described as a phase transition.

 Fig. 5.10   The size of the 
critical nucleus schematically 
presented as the epure over 
the equation of state
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Liquid–gas and magnetic systems possess a hysteresis loop when a transition 
into the second phase takes place not along Maxwell’s rule but originates from a 
metastable branch. For the damage phenomenon, we present the beginning of the 
hysteresis loop in Fig. 5.12.

However, contrary to other systems, damage is an irreversible phenomenon: 
once broken, the model cannot become intact again. This makes some aspects of 
the damage phase transition special, specific only to this type of phenomena. The 
simplest example—the hysteresis loop in Fig. 5.12 cannot be closed. Also, recent 
studies demonstrated that the irreversibility significantly modifies the lifetime of a 
metastable state, drastically changing the statistical distribution of nucleation times 
(Abaimov and Cusumano 2014).

From Fig. 5.9, we see that at the spinodal point the dependence of the external 
force σ  on D0  is parabolic. More rigorously, we should consider the expansion

�
(5.43)σ σ

σ σ
= + − + − +…S
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 Fig. 5.11   The analogy of 
phase diagrams for three 
systems: (a) a damage phe-
nomenon, (b) a liquid–gas 
system, and (c) a magnetic 
system
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By definition of the spinodal point the first derivative is zero:

� (5.44)

To find the second derivative, we differentiate the equation of state (5.41):

� (5.45)

Expressing from this equation the derivative ′P ,

� (5.46)

with the aid of (5.44) for the spinodal point we find

� (5.47)

Next, we rewrite (5.45) as

� (5.48)

and differentiate it with respect to D0 :

� (5.49)
At the spinodal point, this equality transforms into
�

(5.50)

d
dD
σ

0
0

S

= .

dD d
D

dD
D

P0
0

0

0
21 1

=
−

+
−









 ′σ σ

( )
.

′ =
−

+
−











−

P
D

d
dD D

1
1 10 0 0

2

1
σ σ

( )
,

P
D

′ =
−

S
S

S

( )
.

1 2

σ

1 1
1 10 0 0

2=
−

+
−









 ′

D
d
dD D

Pσ σ
( )

0 1
1 1

1
1

2
10 0 0

2

2

0

2

0
2

0
2=

−
+

−









 ′′ +

−
+

−D
d
dD D

P
D

d
dD D

d
d

σ σ σ σ
( ) ( ) DD D

P
0 0

3
2

1
+

−









 ′σ

( )
.

0
1

1 1
1

2

12

2 2 2

0
2=

−( )













′′ +
−( )

−
+

−( )
σ

σ
σ σS

S

S

S S S

S

SD
P

D
D

d
dD D

|s 33













 Fig. 5.12   The beginning of 
the hysteresis loop
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or

� (5.51)

Since P is some arbitrary cumulative distribution functional dependence, its sec-
ond derivative ′′P  is not expected to have some particular value at the spinodal 
point. Therefore, the right-hand side of (5.51) is expected to be nonzero so that the 
second order term in expansion (5.43) is also nonzero. In the result, in the close 
proximity of the spinodal point we find

� (5.52)

Considering D0  to be the order parameter while the role of the field parameter 
seems to be played by σ , we may define the spinodal index βσ

S  by

� (5.53)

From (5.52), we immediately see that βσ
S =1 2/ . However, as we will find in 

Chap. 6, this choice of the order parameter and field parameter is not correct. There-
fore, the obtained spinodal index is also incorrect.

Concluding this section, we should say that the main purpose of fracture or dam-
age mechanics is to predict the failure of a structure: a geological fault, a building, 
an aircraft, etc. The mapping of the formalism of statistical physics on damage 
phenomena provides us with wide prospects for these investigations.

From the theory of the first order transitions, we know that the transition happens 
when a nucleus with a size higher than critical becomes available in a metastable 
state. The damage phenomenon is especially dangerous in this sense because its 
nuclei grow irreversibly. So, to avoid the catastrophic consequences of a structure 
failure, fracture mechanics suggests detecting possible nuclei well ahead of the time 
when they would become dangerous. This purpose is fulfilled generally by periodic 
inspections, whether it is the ultrasound diagnostic of rails or visual inspection of 
the skin of an aircraft. A found defect is repaired, thereby suppressing fluctuations 
to the level below critical.

The approach of the spinodal point is especially dangerous in this sense because 
then the critical size tends to zero. In this case, any inspections are useless since 
even tiny defects may cause the cascade of total failure. Therefore, the peak loads 
are generally restricted to be much lower than the spinodal values.

The most complex problem arises when the experimental control of nucleus 
sizes in a structure becomes impossible. This happens not only when the direct 
inspections are impossible (like in the case of the bowels of the Earth). Another 
important case is when the accumulation of small nuclei fulfills the role of the pres-
ence of one big defect with the size higher than critical. The help comes here from 
statistical physics and nucleation theory which are capable to predict this situation 
by the anomalous behavior of a structure in the vicinity of the failure point. How-
ever, the detailed discussion of these approaches lies beyond the scope of this book.
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5.6 � Spinodal Slowing Down

The phenomenon of critical slowing down, when the relaxation times of nonequi-
librium processes diverge in the vicinity of the critical point, is well known in the 
literature. On the contrary, the spinodal slowing down has been discovered only re-
cently and is much less understood. The damage phenomenon helps us here again—
it illustrates this phenomenon (Pradhan et al. 2002, 2008, 2010; Bhattacharyya et al. 
2003; Abaimov 2009) as easy as it has recreated the formalism of statistical physics 
in Sect. 5.3.

Earlier in Fig. 5.4, we have considered an example of the PDF for fiber strengths 
which was uniform in the specified range of values. However, such perfectly uni-
form distribution is a mathematical idealization which never exists in nature. In 
real systems, there is always noise which can be considered as a divergence from 
the perfect mathematical idealization. The amplitude of this noise may be small; 
however, taking it into account allows us to consider such important phenomenon 
as avalanches of broken fibers.

In Fig. 5.13 we consider the same uniform PDF, only now it is disturbed by the 
noise. The noise, together with the PDF itself, serves as a model input for all sys-
tems in the ensemble and, therefore, represents the quenched disorder (which varies 
from system to system as a particular realization of this PDF).

The presence of the noise influences the equation of state also. We present this 
disturbance schematically in Fig. 5.14 as the “waviness” of the curve. Important 

here is that due to this “waviness,” the derivative 
dD
d

0

σ
 fluctuates locally and can 

even become negative. As we recall from Sect. 5.5, this causes the small interval of 

the curve, where dD
d

0 0
σ

< , to become unstable, leading to the appearance of a local 

cascade of fiber failures (horizontal arrows in Fig. 5.14).
Thereby, when we quasi-statically increase the external force σ , the system no 

longer responds by the quasi-static increase of damage. Instead, it may reach its 
new equilibrium state in the result of a nonequilibrium process as a cascade of fiber 
failures called an avalanche. Since the noise is supposed to be small, the avalanches 
are also small except the last one, beginning at the spinodal point and leading to the 
total model failure.

 Fig. 5.13   The PDF of fiber 
strengths in the presence of 
noise
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Let us consider what happens during a cascade of fiber failures. If at time t dam-
age is D t0, , how many fibers will break at the next stage of the cascade? For the 

given σ  and D t0,  the probability for a fiber to have been broken is P
D t

σ
1 0−











,
. 

This probability determines the damage parameter at the next step of the cascade:

�

(5.54)

In other words, we utilize the equation of state (5.41) as an iteration equation to 
form the consecutive stages of the cascade of fiber failures.

Initially, we consider an avalanche which is located far from the spinodal point 
(point A in Fig. 5.14 serves as a point of the cascade destination). Since we consider 
the avalanche to be small, as a small parameter we will consider the difference of 
the current value D t0,  of damage from its value D0,A at the point of the cascade des-
tination: ∆D D Dt t0 0 0, , ,( )≡ − A . Linearizing (5.54), we obtain

�
(5.55)

Substituting (5.46), we find

�
(5.56)

or

� (5.57)

Approximating the discrete time variable by a continuous time variable, we 
transform (5.57) into the ordinary differential equation:
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Fig. 5.14   The equation of 
state in the presence of noise. 
The horizontal arrows present 
avalanches of fiber failures
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�
(5.58)

The solution of this equation is the cascade of fiber failures decaying exponentially:

� (5.59)

with the characteristic decay time

�
(5.60)

We have considered point A to be located far from the spinodal point. On the 
contrary, if point A approaches the spinodal point, the behavior of avalanches 
changes drastically. Indeed, from (5.60), we see that in accordance with (5.44) the 
characteristic time of the cascade decay diverges:

� (5.61)

This phenomenon is called the spinodal slowing down.
Let us first crudely estimate the divergence of the characteristic time  tref . 

Thereby, we should estimate the divergence of the derivative 
dD
d

0

σ A
 in the close 

proximity of the spinodal point:

� (5.62)

As we have proved in (5.51), the second derivative d
dD

2

0
2

σ  is not expected to be 

singular at the spinodal point. Substituting (5.62) into (5.60), we find the divergence 
of the characteristic decay time:

� (5.63)

Defining the spinodal index θσ
S  by

�
(5.64)

for the case of the mean-field stress redistribution, we obtain θσ
S =1 2/ .
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Let us consider the vicinity of the spinodal point more rigorously. From the pre-
vious discussion, we see that the linear approximation (5.55) of the iteration equa-
tion (5.54) is no longer sufficient in the vicinity of the spinodal. Instead, we should 
keep terms at least of the second order:

� (5.65)

Substituting here (5.47) and (5.50), we obtain

� (5.66)

or

� (5.67)

The solution of this ordinary differential equation,
�

(5.68)

is well known Omori’s law (Omori 1894; Kagan and Knopoff 1978; Utsu et  al. 
1995; Sornette and Ouillon 2005; Sornette 2006, and ref. therein) representing the 
decay of the cascade of aftershock earthquakes after the occurrence of a mainshock. 
Associating mainshocks with avalanches while aftershocks—with separate fiber 
failures, we may conclude (as far as our simple model is applicable to the real 
earthquake occurrence in the Earth crust) that the mainshocks happen to be gener-
ated in the vicinity of the spinodal point when the external tectonic force reaches 
its maximal value.

In the limit of long relaxation times, we can neglect the constant in (5.68) to 
obtain

� (5.69)

where the mean-field value of the spinodal index is τσ
S =1.

Comparing (5.59) and (5.69), we see that in the proximity of the spinodal point 
not just only the characteristic time tref  diverges, but the whole functional depen-
dence of the decay changes—the exponential decay (5.59) is substituted by the 
power-law decay (5.69).

D D P
D

D

P
D

P

t t0 1 0
0

2 0

2

0
4

1

1
2 1

2

, ,
,

,

,

( )

( ) (

+ = + ′
−

+ ′′
−

+ ′

S S
S

S

S
S

S
S

S

σ

σ σ

∆

11 0
3 0

2

−











D
D t

,
,)
.

S
∆

∆ ∆ ∆D D
D d

dD
Dt t t0 1 0

0
2

0
2 0

21
2, ,

,
,+ = −

− S

S S
σ

σ

d D

D

D d
dD

dtt

t

∆

∆
0

0
2

0
2

0
2

1
2

,

,

, .= −
− S

S S
σ

σ

| | ,,
,∆D

D d
dD t constt0

0
2

0
2

1
1
2

1
=

−











 +

−

S

S S
σ

σ

| | ,,∆D
t

t0
1

∝
τσ
S



2815.7 � FBM with Annealed Disorder�

5.7* � FBM with Annealed Disorder

In the previous sections of this chapter, we have considered the FBM in its original 
form formulated by (Pierce 1926; Daniels 1945) when the noise was introduced by 
means of quenched disorder representing the variability of fiber strengths (Coleman 
1958a; Suh et al. 1970; Phoenix and Taylor 1973; Sen 1973a, b; Krajcinovic and 
Silva 1982; Daniels and Skyrme 1985; Daniels 1989; Sornette 1989, 1992, 1994; 
Hemmer and Hansen 1992; Krajcinovic et al. 1993; Hansen and Hemmer 1994a, b; 
Lee 1994; Andersen et al. 1997; Kloster et al. 1997; da Silveira 1998, 1999; Moreno 
et al. 1999, 2000; Pride and Toussaint 2002; Bhattacharyya and Chakrabarti 2006). 
After a fiber breaks, the distribution of its load among intact fibers was assumed to 
be mean-field. Besides, the plates transferring the external load to the fibers were 
supposed to be absolutely rigid.

Many other modifications of the FBM have been considered. Instead of mean-
field load distribution, other load-sharing rules can be introduced (Gómez et  al. 
1993; Duxbury and Leath 1994; Hansen and Hemmer 1994a, b; Leath and Duxbury 
1994; Zhang and Ding 1994, 1996; Kloster et al. 1997; Wu and Leath 1999; Moreno 
et al. 2001b; Hidalgo et al. 2002). Instead of rigid plates, the load to fibers can be 
transferred by a coupling to an elastic block (Delaplace et al. 1999; Roux et al. 1999; 
Batrouni et al. 2002). Plastic behavior can be simulated in the so called continuous 
FBM by fibers that are healed after their failure (Curtin and Takeda 1998; Kun et al. 
2000; Hidalgo et al. 2001). More complex structures, like a chain of bundles (Har-
low and Phoenix 1978; Phoenix 1979b; Smith 1980; Harlow and Phoenix 1981a, b, 
1982, 1991; Smith and Phoenix 1981; Smith 1982; Phoenix and Smith 1983; Harlow 
1985; Sornette and Redner 1989; Phoenix and Raj 1992), can be formed.

In the case of quenched disorder, the nonthermal fluctuations are represented by 
the variability of the sample distribution of fiber strengths in the ensemble. How-
ever, after we have assigned fiber strengths for a particular system in the ensemble, 
the behavior of this system is deterministic—for the given value of load, we can 
always foresee which fibers will be broken. Once the load has been applied, having 
caused the predicted fiber failures, nothing changes in the system further—the in-
tact fibers will remain intact forever (unless, of course, we would decide to increase 
the applied load). Therefore, quenched disorder is called “frozen” since it occurs in 
space and does not depend on time.

Another type of disorder often considered is annealed disorder. It differs from 
quenched disorder very much. First of all, the strengths of all fibers of all sys-
tems in the ensemble are assumed to be the same, generally equal to unity, which 
completely excludes the previous type of nonthermal fluctuations from the model. 
Instead, to generate the fluctuating behavior we consider thermal fluctuations of 
statistical physics.

Contrary to the case of quenched disorder which occurs in space, annealed fluc-
tuations occur in time—they are not “frozen” but represent a time-dependent noise 
introduced into the model. General approach to consider these fluctuations is to 
assume that the stress carried by a fiber also fluctuates with time. When it exceeds 
the unit value of the fiber’s strength, the fiber breaks leading to load redistribution.



282 5  Damage Phenomena

Originally (Coleman 1956, 1957a, b, 1958b, c, d; Birnbaum and Saunders 1958; 
Phoenix 1978a, b, 1979a; Phoenix and Tierney 1983; Gómez et al. 1998; Vázquez-
Prada et al. 1999; Zhang 1999; Moral et al. 2001a, b; Moreno et al. 2001a; Newman 
and Phoenix 2001; Turcotte et al. 2003; Yewande et al. 2003; Turcotte and Glasscoe 
2004; Nanjo and Turcotte 2005; Sornette and Andersen 2006; Phoenix and New-
man 2009) annealed disorder was introduced by considering the phenomenological 
expressions for the rate of fiber failures. So, if all fibers have the same stress σ f  
(equal to Eε  in the ε-ensemble or σ

1− D
 in the σ-ensemble with the mean-field load 

redistribution), the relative rate ρ ≡ =
1
N

dN
dt

d N
dt

| | | ln |
 of fiber failures is assumed 

to be the function of fiber stress:

�
(5.70)

Two phenomenological dependencies are generally considered: the power-law de-
pendence ρ σ σ κ( )f f∝  leading to the Weibull distribution and the exponential 

dependence ρ σ σ σ( ) /
f e f∝ 0  representing Gibbs probability of thermal fluctuations 

(Phoenix and Tierney 1983).
In later modifications of the model (Guarino et al. 1999b; Roux 2000; Ciliberto 

et  al. 2001; Scorretti et  al. 2001; Politi et  al. 2002; Saichev and Sornette 2005; 
closely related model Sornette and Vanneste 1992; Sornette et al. 1992; Vanneste 
and Sornette 1992), to avoid introduction of phenomenological dependences, ther-
mal noise ξ was added directly to fiber stress:

� (5.71)

Due to the presence of noise, the stress of a fiber fluctuates around its mean value, 
and a big enough fluctuation can exceed the threshold of the unit strength causing 
the failure of the fiber. In this model modification, we obtain the rate of fiber fail-
ures as the characteristic of the ensemble considered.

However, experimental studies (Pauchard and Meunier 1993; Bonn et al. 1998; 
Sollich 1998; Guarino et al. 1999a, 2002) discovered that thermal noise is not nearly 
enough to cause the observed rupture of materials under constant loading. To pro-
vide the desired level of fluctuations, the temperature within solids would have to 
be of the order of several thousands kelvin. Therefore, the annealed disorder alone 
cannot describe the phenomena observed experimentally.

To explain the difference between experimental and theoretical results, it was as-
sumed (Guarino et al. 1999a, 1999b; Roux 2000; Arndt and Nattermann 2001; Cili-
berto et al. 2001; Scorretti et al. 2001; Politi et al. 2002; Saichev and Sornette 2005; 
Sornette and Ouillon 2005) that it is not thermal noise that causes damage growth 
but the interaction of this noise with the quenched disorder also present in the sys-
tem (i.e., the presence of defects can amplify thermal fluctuations). For example, 

− = ( ) ( )( )dN N t t dtfρ σ .

σ σ ξf f⇒ + .
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one possibility is to associate this phenomenon with the influence of thermal fluctu-
ations on the unstable, frustrated parts of defects (e.g., crack tips) at the microscopic 
level (Abaimov and Cusumano 2014). Although these fluctuations are spatially and 
quantitatively microscopic, and influence only microscopic parts of cracks, their 
presence causes damage growth on the mesoscopic level. Thus, a “sensitive” crack 
tip works in this case as an amplifier, causing the microscopic thermally induced 
fluctuations to influence the mesoscopic growth of damage nuclei.

In the FBM, we cannot model the behavior of crack tips. However, we can dis-
cuss how the presence of defects interacts with thermal noise in general. Now, we 
should consider both annealed and quenched disorders present in the FBM. Thermal 
noise we introduce by (5.71), where ξ is white noise whose variance is determined 
by the temperature of the system:

� (5.72)

Quenched disorder is still introduced as the variability of fiber strengths. For sim-
plicity, the distribution we assume also to be Gaussian with variance Θ:

�
(5.73)

It was demonstrated (Roux 2000; Scorretti et al. 2001) that when both annealed and 
quenched disorders are small, the effective temperature of fluctuations in the system 
is the sum of the thermodynamic temperature T and the variance Θ of quenched 
disorder:

� (5.74)

however, other studies (Ciliberto et al. 2001; Politi et al. 2002; Saichev and Sornette 
2005) proposed for the amplification of thermal fluctuations to obey a more com-
plex dependence.

Therefore, the presence of defects does amplify thermal fluctuations signifi-
cantly increasing their temperature. So, Guarino et al. (Guarino et al. 1999a, 2002) 
estimated experimentally that instead of 300 K, the effective temperature is about 
3000 K. Nowadays, it still remains a mystery which part of this temperature in-
crease can be attributed to the variability of strength distribution and which to the 
interactions of thermal fluctuations with frustrated parts of defects (crack tips).
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Chapter 6
Correlations, Susceptibility, and the 
Fluctuation–Dissipation Theorem

Abstract  In the previous chapters, we were acquainted with three complex sys-
tems. For each system, our primary interest was to find its equation of state. This 
is quite reasonable because the equation of state provides us with the averaged sys-
tem’s response to the change of external field parameters. For example, if we know 
the dependence of the equilibrium magnetization on temperature and magnetic field 
for the Ising model, this knowledge is generally sufficient for practical applica-
tions. The equation of state, which represents the equilibrium state averaged over 
the ensemble, does not take into account the possibility of system’s fluctuations 
in the vicinity of this equilibrium state. But generally, we can neglect fluctuations 
because large fluctuations are improbable.

However, the situation changes drastically in the proximity of the critical point. 
The fluctuations become so large that they begin to dominate the system’s behavior, 
disguising the details of microscopic interactions of the system’s degrees of free-
dom. The laws of the system’s behavior no longer depend on what particular system 
we consider and become similar (universal) for very different systems. It no longer 
matters whether we consider the Ising model, percolation, or damage—any of these 
systems in the vicinity of its critical point forgets its own (specific for this particular 
system) laws of behavior and begins to obey the universal power-law dependencies.

It happens because the fluctuations become fractal in the vicinity of the critical 
point. Fractality means that fluctuations consume all possible scales of behavior—
from the lattice constant to the size of a system in whole. The fluctuations become 
macroscopic.

Far from the critical point, large fluctuations are improbable. So, generally we 
observe nothing more than just a collision of several particles or several spin flips. 
But at the critical point, very large fluctuations become probable, so large that we 
can observe them even with the naked eye. For example, the phenomenon, which 
is called the critical opalescence, corresponds to the opalescence of a liquid–gas 
system when it is transferred through its critical point. Inasmuch as the volume of 
the system is divided into phase clusters whose size becomes comparable with the 
size of the whole system, the light refracts at cluster boundaries creating the opal-
escence effect.

As we saw in Chap. 1, fractality disregards the structure of the initial set and gen-
erates the universal power-law dependencies (compare, for example, fractals from 
figures (a) and (d) of Problem 1.2.1. So do the fractal thermal fluctuations as well 
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disregarding the microscopic laws of the system’s behavior and substituting them 
by power-law dependencies containing critical indices.

However, as we saw in Chap. 1, the fractality does not mean that everything of 
the initial generations is lost; the final power-law behavior of a fractal is determined 
by the rules of how we generate iteration n = 1 on the base of iteration n = 0. In other 
words, what influences the behavior of the system is the structure not of a parent 
branch but of the generator that transforms this branch, i.e., the laws of scaling.

Similarly, thermal fluctuations do disguise some microscopic features of a sys-
tem, making it universal; however, they do not discard all of them; the scaling laws 
are preserved by means of fractal scale invariance and are transferred from the mi-
croscale to the meso- and macroscale by the succession of generations. Much like 
family relics, transferred from one generation to another and thereby kept intact for 
hundreds of years.

In Chap. 7, we will learn about the influence of scale invariance on the proper-
ties of a system. In this chapter, we study the first part of the phenomena discussed 
above when fluctuations lead to universal power-law behavior.

First, we consider correlations. Then, we introduce the susceptibility as the sys-
tem’s response and prove the fluctuation–dissipation theorem. Comparing these 
concepts for all three systems considered, the Ising model, percolation, and dam-
age, we find the similarities behind the “curtain” of the behavior of fluctuations. 
Finally, we discuss a special role played by the susceptibility in the theory of phase 
transitions.

6.1 � Correlations: The One-Dimensional Ising Model 
with Short-Range Interactions

We start by considering correlations. Let a function X ( )R  be defined on a 
d-dimensional space R. Further, we assume that the mean X  and variance 

X X X X−( ) = −
2 2 2 do not depend on R.

The autocovariance function is defined as

� (6.1)

To find the autocorrelation function, we should normalize the autocovariance func-
tion by the value of variance:

�
(6.2)

Physicists, as it sometimes happens, do not follow the rigorous mathematical 
definitions. Usually, the autocovariance function is called the correlation function. 

g X X X X X X X( , ) ( ) ( ) ( ) ( ) .R R R R R R′ ≡ −( ) ′ −( ) = ′ − 2

G
X X X X

X X

X X X

X X
( , )

( ) ( )

( )

( ) ( )
.R R

R R

R

R R
′ =

−( ) ′ −( )
−( )

=
′ −

−2

2

2 2
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For example, in the case of the Ising model, the spin correlation function is defined 
as

� (6.3)g i j i j i j( ) .,R ≡ −( ) −( ) = −σ σ σ σ σ σ σ 2

Problem 6.1.1

Consider the one-dimensional ferromagnetic nearest-neighbor (n.n.) Ising 
model with pair (bi-spin) interactions. For simplicity, consider the periodic 
boundary conditionsσ σN + ≡1 1 when the model is the one-dimensional chain 
of spins closed into a ring. Find the correlation function of the system.

Solution: We apply here the solution similar to Problem 3.4.2 of Chap. 3. For 
details, we refer the reader to that problem.

First, let us find the averaged spin orientation in the canonical ensemble 
(CE). By definition

�
(6.4)

Here, we see again the product of transfer matrices (3.58–3.59), but now one 
of the indices is present as a multiplier:

�
(6.5)

To transform this expression into the matrix product, we should introduce 
the Pauli matrix

�
(6.6)

σ σ σσ
σ

µ σ σ σ

σσ
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h
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J
Tw

Z
e

i
i

N

i i
i
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≡ = …
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{ }
{ }
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∑ ∑ =
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1
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1
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2 1==±=±
∑∑

111σ

.

σ σ σ σ
σσσ

j CE CE j
i

N

Z
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i i
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= …
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==±=±=±
∏∑∑∑1
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21 1111

.

S z ≡
−
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It is easy to see that the following equality is valid:

� (6.7)

Substituting this equality into (6.5), we find

�
(6.8)

Since the trace is invariant under cyclic permutations (cyclic property of the 
trace operation), we can move the Pauli matrix ahead of the transfer matrices:

� (6.9)

Let us now assume that transformation F TF−1  diagonalizes the transfer 
matrix (3.58) and (3.59):

� (6.10)

where the eigenvalues λ1 and λ2 are provided by (3.61). From (6.10), it is 
easy to see that the matrix F is composed of the eigenvectors of the transfer 
matrix:

� (6.11)

� (6.12)

Next, we apply the diagonalization procedure to all transfer matrices in 
(6.9). This is easy to accomplish because we can substitute the unit matrix 

FF − =1 1 0
0 1

 as many times as we need:

�

(6.13)

T T T S T
j j j j

j
j j j j j j

jj

j
z

σ σ σ σ
σ

σ σ σ σ σ σ
σσ

σ
− + − +

=± =±=±
∑ ∑∑=

1 1 1 1
1 11

 



..

σ j CE CE
j z N j

Z
T S T= ( )− − −1 1 1Tr ( ) .

σ j CE CE
z N

Z
S T= ( )1 Tr .

F TF D− = ≡1 1

2

0
0
λ

λ
,

T  x x1 2 1 2 1 2, , , ,= λ

F =
 x x1 2 .

( )

( ) ( )

1 1 1 1

1 1

1 Tr

1 1 TTr .r

z
j CECE

z N z N
CE CE

S FF TFF T FF TFF
Z

S FD F F S FD
Z Z

σ − − − −

− −

= …
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It is easy to find that

� (6.14)

�

(6.15)

where K is some lengthy expression whose exact form is not important. Mul-
tiplying matrices, we find

�

(6.16)

where we have also utilized (3.62). In the thermodynamic limit N → +∞, we 
can discard one of the eigenvalues which returns us to (3.63):

�

(6.17)

Second, to find the correlation function, we have to find the averaged prod-
uct of spins separated by some distance along the chain:

� (6.18)

In this case, the product of transfer matrices is “sandwiched” already not by 
one but by two Pauli matrices:

� (6.19)
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By consideration, similar to the previous case, we find

�

(6.20)

Substituting and multiplying matrices, and also recalling (3.62), we obtain

�

(6.21)

In the thermodynamic limit N → +∞, we find

�

(6.22)

Here, k is finite while N k−  is infinite. So, we can neglect the second term:

�

(6.23)

This is the correlation function of two spins at distance ka, where a is the 
lattice constant. Therefore, we finally find

�
(6.24)

The correlation length ξ is defined as a characteristic distance at which the 
correlation function decays to zero. In our case, it is just the distance of the 
exponential decay:

� (6.25)
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In the absence of magnetic field, h = 0, we find

� (6.26)

The critical point of the one-dimensional model is TC = 0, hC = 0. If we 
approach this point by decreasing the temperature, T → 0, along the isofield 
curve h = 0, then (6.26) diverges exponentially:

�
(6.27)

As we see later, the exponential divergence of the correlation length gener-
ally corresponds only to the “degenerate” one-dimensional case with short-
range interactions and is substituted by a power-law divergence in higher 
dimensions.

However, if we consider the limit T → 0 first and only then the limit 
h → 0, we will approach the critical point along the critical isotherm TC = 0. 
In this case, we find:

� (6.28)

For the divergence of the correlation length along the critical isotherm, the 
special critical index is introduced:

� (6.29)

We see that the mean-field approach provides ν h
C =1.

Let us integrate the correlation function (6.23) along the length of the model:

�

(6.30)
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6.2 � Correlations: The Mean-Field Approach for the Ising 
Model in Higher Dimensions

As we have seen in Chap. 3, the mean-field approach

�
(6.32)

means that we neglect spin correlations

�
(6.33)

However, the very mean-field approach can be used to find the correlation func-
tion. Further, we consider the ferromagnetic Ising model with pair (bi-spin) in-
teractions whose amplitude depends on the distance between two spins in a pair, 
J Ji j i j( ) (| |),, ,R R≡  and somehow decays when this distance increases. The Ham-
iltonian of the model is

� (6.34)

For simplicity, we consider the system in the absence of magnetic field, h = 0. 
The mean-field approximation for the Hamiltonian (6.34) of the homogeneous 
system is

� (6.35)

σ σ σ
σ σi j { } { }≈ 2

σ σ σ σσ σ σ
i j−( ) −( ) ≈{ } { } { }

.0

H{ } ,
,

.σ µ σ σ σ= − − ( )
= < >
∑ ∑h Ji
i

N

i j i j
i j1

R

H{ } { } ,σ σµ σ= − ∑heff R
R

where we have taken into account that due to symmetry, the correlations for 
negative k are equal to the correlations for positive k. The sum we have found 
as the sum of the geometric progression.

Comparing (6.30) with (3.67), we see that the magnetic susceptibility is 
proportional to the integral of the correlation function:

�
(6.31)

This result is called the fluctuation–dissipation theorem.

χ
µ

= ( )+
=−∞

+∞

∑T
g j j k

k
R , .
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where the effective field heff{ }σ  is determined by

�
(6.36)

The equation of state is

� (6.37)

The critical point corresponds to the temperature when the spontaneous magne-
tization appears

� (6.38)

If we returned to the case of the n.n. Ising model, the obtained expressions would 
transform into the formulae of Problem 3.7.1 considered in Chap. 3.

Above the critical point, there is no spontaneous magnetization. For this case, the 
correlation function (6.3) in the CE of the Ising model is

�

(6.39)

Next, we separate the sum over spin σ i and expand this sum explicitly:

�

(6.40)

If for a microconfiguration { }: ,σ σ i = +1  we invert the orientations of all spins, 
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corresponds to each microconfiguration { }: .σ σ i = +1
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of the second sum. In the denominator, the term e i− =+β σ σH{ }: 1 of the first sum cor-
responds to the term e i− − =−β σ σH{ }: 1 of the second sum.

In the absence of the magnetic field, h = 0, Hamiltonian (6.34) does not depend 
on the inversion of all spins:

� (6.41)

Thereby all terms, for which we have built the bijective correspondence, become 
equal to one another, and for the correlation function we find:

�

(6.42)

Here, in the last expression, instead of averaging just over the CE,  CE ,, we aver-
age over the probabilities of the ensemble … =+CE i, .σ 1  It is the same CE but with an 
additional boundary condition; the orientation of spin σ i is maintained permanently 
“up” by external forces.

But what is the meaning of the quantity σ
σj CE i, =+1

? We consider the CE when 
the orientation σ i = +1 of spin σ i is “frozen.” This can be considered as a distur-
bance of the usual CE; we introduce a fixed magnetic moment into the system and 
observe how the system would respond to its presence.

In the ferromagnet, spin σ i attempts to reorient its neighbors also “up.” Spin 
σ j is located at some distance | |,Ri j  from spin σ i. Averaging σ j in the ensemble, 
we find the averaged magnetization σ

σj CE i, =+1
 induced by the presence of the 

fixed magnetic moment σ i = +1. The farther spin σ j is located from spin σ i , the 
lower, probably, is the influence. Therefore, we expect the induced magnetization 
σ

σj CE i, =+1
 to decay with the distance from σ i .

We see that equality (6.42) presents an important result: the spin correlation 
function above the critical point equals the decay of the system’s response to the 
presence of the external magnetic moment. Equality (6.42), when correlations are 
determined by the system’s response and vice versa, is, in fact, the representative of 
the fluctuation–dissipation theorem studied in detail later.

To find the quantity σ
σ

Ri j CE i
, ,

,( )
=+1

 we apply the mean-field approach. Now 
we consider the ensemble when external forces support σ i = +1. Let this spin be 
located at R = 0. The mean-field approximation of the Hamiltonian is
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(6.43)
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where heff{ }( )σ R  is determined by

�
(6.44)

and the equation of state is

�
(6.45)

For R = 0, by definition, we have

� (6.46)

The induced magnetization is small, so we expand the tanh function:

�
(6.47)

This equation of state is valid far from R = 0.  At the point R = 0,  spin σ i  acts as 
the source of disturbance:

�
(6.48)

With the aid of the δ function, we have allowed here for the solution singularity, 
which is present due to constraint (6.46).

We assume the interactions of spins in pairs to be long-range. Then, we can sub-
stitute the discrete sum 

′ ′≠
∑

R R R:
 by the integral:

�

(6.49)

where we have normalized d d R by the volume ad of the lattice cell (with a being 
the lattice constant).

We define the Fourier spectrums of the induced magnetization and of the ampli-
tude of pair (bi-spin) interactions by

�
(6.50)

� (6.51)
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� (6.52)

� (6.53)

For the so-defined Fourier transform, the spectrum of the δ function equals 1:

�
(6.54)

Applying the Fourier transform to (6.49), we find

�
(6.55)

Splitting the exponential function under the sign of the integral, we obtain two in-
dependent Fourier transforms:

�
(6.56)

For the spectrum of the induced magnetization, this provides

�
(6.57)

Now, we have to recall some features of the spectrum analysis. The Fourier 
transform of the δ function provides unity (a constant, equation (6.54), Fig. 6.1a). 
The Fourier transform of a constant is the δ function (Fig. 6.1b). The constant and 
the δ function are two extremes of a “bell”-shaped dependence. The Fourier trans-
form of a “bell” of width R∆  returns also the “bell”-shaped dependence of width 
∆ ∆k R∝1/  (Fig. 6.1c). The brightest examples of this principle are the wave packet 
theory in acoustics/radiophysics and the Heisenberg uncertainty principle in quan-
tum mechanics.

The amplitude J ( )R  of pair (bi-spin) interactions decays with the distance 
R between spins. Assuming the characteristic length of decay to be ,R∆  for the 
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characteristic length of the spectrum’s decay, we find ∆ ∆k R∝1/ . The crude ap-
proximation of the spectrum’s “bell” can be represented by the parabolic decay:

� (6.58)

We have obtained this equation from intuitive considerations. Let us now de-
velop it in a more rigorous way. The Fourier spectrum of the interaction amplitude 
is provided by (6.52). For small k ( the long-wave approximation), we expand the 
exponential function under the sign of this integral and consider only three terms in 
this expansion:

�
(6.59)

Substituting this expansion into (6.52), we obtain

�
(6.60)

The first term of the expansion provides 


J ( )k = 0 :

�
(6.61)

The second term returns zero due to the spherical symmetry of the interaction am-
plitude, J J( ) (| |)R R≡ :

�
(6.62)

For the third term, again due to the spherical symmetry, we choose k to be ori-
ented along the nth-component of  R:

�
(6.63)
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Fig. 6.1   General features of 
the Fourier transform. (a) The 
spectrum of the δ function 
is unity. (b) The spectrum 
of unity is the δ function. 
(c) The “bell” of width R∆  
transforms into the “bell” of 
width ∆ ∆k R∝1/
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where Rn is the mentioned nth-component of R. Since for any n, the right-hand side 
of (6.63) returns the same value of the left-hand side, not depending on n, we find

�
(6.64)

We define the root-mean-square radius of pair (bi-spin) interactions by

�

(6.65)

Substituting it into expansion (6.60), we, indeed, return to (6.58):

�

(6.66)

Recalling (6.38), we can express 


J ( )k = 0  in terms of the critical temperature:

�
(6.67)

Substituting it into (6.66), and then (6.66) into (6.57), for the spectrum of the in-
duced magnetization, we find

� (6.68)

where in the last equality for small relative deviations of temperature from critical
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(6.69)

we have introduced a new parameter
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Later, we prove that this parameter is a correlation length. For a correlation length 
of an arbitrary system, its own critical index ν t

C is defined as

�
(6.71)

From (6.70), we see that the mean-field approximation of the correlation function 
provides for the correlation length the simplest rational fraction, ν t

C =1 2/ , as the 
critical index.

In accordance with (6.42), the spectrum m( )k  of the induced magnetization in 
the “CE, +1” ensemble is the spectrum g( )k  of the correlation function in the usual 
CE:

�
(6.72)

To find the correlation function itself, we have to apply the inverse Fourier trans-
form:

�
(6.73)

This integral is tabulated by the modified Bessel function Kα ( )x :

�
(6.74)

The modified Bessel function has the following asymptotes:
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Substituting them into (6.74), we find the asymptotes of the correlation function:
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We have obtained another important result—on scales larger than ξ, the correla-
tions decay exponentially. The exponential decay is a very “fast” decay. Therefore, 
as a crude approximation, it is often assumed that on scales larger than ξ there are 
no correlations at all. The characteristic length ξ delimiting scales with and without 
correlations is called the correlation length.

On scales smaller than the correlation length ξ, the correlations decay as the 
“slow” power-law (6.78). From Chap. 1, we know that power-law dependencies 
often indicate the presence of fractal mathematics. This is also the case for the 
considered Ising model. On scales smaller than the correlation length, the phase 
clusters become fractal. Fractality means the absence of both characteristic length 
and characteristic cluster size. On these scales, the clusters are present in all shapes 
and sizes, limited only by the lattice constant on one side and by the correlation 
length on another.

Far from the critical point, the correlation length is small. However, when a sys-
tem approaches its critical point, the correlation length (6.71) diverges. This means 
that above the critical point, the fractality is in its embryonic state, and only small 
clusters are present. The closer the system to its critical point, the larger the sizes of 
these clusters, and the larger scales are dominated by the fractality.

When the correlation length reaches the size of the system, the whole system 
becomes fractal. The fractality has now occupied all possible scales from the lattice 
constant to the size of the system. The clusters are now present in all possible shapes 
and sizes, including macroscopic.

Asymptote (6.78) is not valid when d = 2. For this case, the asymptote is

�
(6.79)

The decay here is logarithmic which is even “slower” than the power-law decay.
For our three-dimensional space, d = 3, the modified Bessel function is found in 

quadratures:

�
(6.80)

For the correlation function, this provides

�
(6.81)

The asymptotes of this expression are the same as (6.77) and (6.78). On larger 
scales, the correlations decay exponentially. On scales smaller than the correlation 
length ξ, the correlations decay as a power-law:

� (6.82)
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The critical index of the correlation function is defined by

�
(6.83)

From (6.78), we see that the mean-field approach provides ηC = 0.

C2

1( )  for .
d

g R R
R η

ξ
− +
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Problem 6.2.1

Find the correlation function of the ferromagnetic n.n. Ising model above the 
critical point in the absence of magnetic field by the method of sources (Green 
1828; Kadanoff 1976, 2000).

Solution: The Hamiltonian of the n.n. Ising model is defined as

�
(6.84)

Following the method of sources, we introduce the model Hamiltonian 
when the magnetic field is nonuniform over the model space:

�
(6.85)

Later, we return to the real Hamiltonian (6.84) by just assuming the field of 
being uniform again.

The mean-field approximation of the model Hamiltonian is

� (6.86)

where the mean-field heff
{ } ( )σ R  is defined as
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Then the equation of state is
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(6.88)
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This expansion is valid when σ ′R CE is a “slow” function of ′R . In other 
words, we consider the long-wave approximation. Here, we keep only the 
first three terms which is equivalent to (6.59) and (6.60).

Next, we substitute this expansion into (6.88). The second term returns 
zero due to the symmetry of the lattice:

�

(6.90)

For the third term, we write its definition explicitly:

�

(6.91)

Due to the lattice symmetry, the expression under the sign of the sum is non-
zero only if n k= :

�

(6.92)
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where C is some constant depending on the lattice considered.
Finally, for the third term of the expansion, we find

�

(6.94)

( ) ( )
: . . : . .

′ −








 = ′ −









′ ′
∑ ∑R R

R R
R R

R
R

R R

R

R R R

d
d

d
dCE

n n

CE

n n
σ

σ




= 0.

1
2

1
2

2

2

( )

( )(

: . .

′ −










≡
∂

∂ ∂
′ − ′

′
∑ R R

R R
R

R R

R

R

d
d

R R
R R

CE
n n

CE

n k
n n

σ

σ
RR Rk k

n nk

d

n

d

−
′==
∑∑∑ ).
: . .R R11

1
2

1
2

2

2

2
2

( )

( )

: . .

:

′ −










=
∂

∂
′ −

′

′

∑ R R
R R

R
R R

R

R R

d
d

R
R R

CE
n n

CE

n
n n

σ

σ

nn nn

d

. .
.

R
∑∑

=1

( ) ,
: . .

′ − =
′
∑ R R Can n
n n

2 2

R R

1
2 2 2

2 2 2

2
1

2

( )
: . .

′ −








 =

∂

∂
=

′ =
∑ ∑R R

R R
R

R R

R

R

d
d

Ca
R

Ca
CE

n n

CE

nn

d

σ
σ

∆∆ σR CE
.



6.2  Correlations: The Mean-Field Approach for the Ising Model in Higher Dimensions 307

Here, ∆ ≡ ∇∇( ) is the Laplace operator. Substituting this expression into 
(6.89), we find the approximation of the equation of state:

�
(6.95)

where q is the lattice coordination number.
In the proximity of the critical point, we expand the tanh function:

�

(6.96)

Here, in the expansion we have kept only the terms, linear in the magnetic 
field, and have neglected the terms with higher powers of the magnetic field. 
Also in the long-wave approximation, we neglected the terms containing the 
products of magnetization and its derivatives.

Introducing the relative deviation (6.69) of temperature from its critical 
value T JqC = , we obtain

�
(6.97)

This is the equation of state which almost corresponds to the equation of 
state (3.92) of Landau theory considered in Chap. 3. Only now, we consider a 
heterogeneous system instead of a homogeneous system. Therefore, the addi-
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magnetization changes from one lattice site to another. While other terms 
are responsible for the representation of the volumetric free energy, the term 
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∆ R  represents, in fact, the surface energy of the boundaries of 

phase clusters.
Let us find the response of the equation of state (6.97) to the change of the 
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The quantity ∂
∂ ′

σR

R

CE

h
 represents here the appearance of the magnetization 

at point R due to the appearance of the field at point ′R , i.e., the correlation 
function:

�
(6.99)

Choosing ′ =R 0 in (6.98), we obtain

�
(6.100)

Now, we can return from the model Hamiltonian (6.85) to the external 
magnetic field, which is uniform over the lattice. Meanwhile, (6.100) remains 
valid for this particular case as well. Above the critical point, the magnetiza-
tion of the system is zero, σR CE

= 0, in the zero magnetic field:
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Next, we multiply (6.101) by eikR and carry out summation over all sites:
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Integrating by parts twice and taking into account that the correlation func-
tion and its derivatives are zero in the infinity, we find:
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This returns us to (6.72).
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Let us return to the differential equation (6.100) for the correlation function. Since 
in Problem 6.2.1 we considered the system above the critical point in the absence of 
magnetic field, we substituted the zero solution for the spontaneous magnetization,  
σR CE

= 0, into (6.100) to obtain (6.101), whose very solution we found later.
Let us now discuss a more general case, when we may consider the system ei-

ther below or above the critical point, either in the absence or in the presence of 
the uniform magnetic field h. In this case we can no longer discard the value of the 
magnetization σ R CE  in (6.100). However, this does not complicate further analy-
sis because in the case of the uniform field the equilibrium magnetization σ R CE

 

does not depend on R and, thereby, we obtain the solution by substituting t CE
+ σ 2  

instead of t in all formulae:

	 { }22 2
2 2

( )  or  ( ) ,2 1
CE

const constg gqk t k
Ca

σ
ξ

= =
+ + +

k k 

� (6.104)

where the correlation length is now defined as
�

(6.105)

Solution (6.105) allows us to investigate the scaling behavior of the correlation 
length. Let us consider first the proximity of the critical point which we approach 
along the critical isofield curve h h= =C 0. Above the critical point, the spontaneous 
magnetization is zero, and we return to an analogue of expression (6.70):

�
(6.106)

Below the critical point, we should substitute the spontaneous magnetization (3.97) 
together with particular values of coefficients (3.93),

� (6.107)

into (6.105) to find:

�

(6.108)

Defining the critical index ν t
C by

�
(6.109)
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CE
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we see that above and below the critical point the mean-field approach provides for 
this critical index the value ν t

C /=1 2 .
Next, we approach the critical point along the critical isotherm t = 0. Here, the 

magnetization is determined by (3.99), and we obtain:

� (6.110)

Defining another critical index ν h
C  by

�

(6.111)

we immediately find ν h
C /=1 3.

Now, let us consider the proximity of the spinodal point. For the isofield ap-
proach h h= S , utilizing (3.109) and (3.93), we obtain

�
(6.112)

Recalling (3.110), we find:

�
(6.113)

Thereby, for the spinodal index ν t
S, defined by,

�
(6.114)

the considered mean-field approach provides ν t
S /=1 4 .

At last, we approach the spinodal point along the isotherm t t= S . With the aid of 
(3.109) and (3.93), we find:

�
(6.115) 

Substituting (3.112) into this expression, we obtain the sought scaling:

�
(6.116) 

Defining the spinodal index ν h
S by
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�
(6.117)

for the value of this index we find ν h
S /=1 4.

Summarizing the obtained results of scaling, provided by the considered mean-
field approach, we may say that the correlation length diverges in the vicinity of the 
critical point as well as spinodal point.

6.3 � Magnetic Systems: The Fluctuation–Dissipation 
Theorem

In the previous section, we considered the behavior of correlations of the Ising 
model in the vicinity of its critical point. However, correlations are just one side of 
phenomena described by the fluctuation–dissipation theorem. Another side is the 
susceptibility of the system whose behavior we investigate in this section.

In Problem 6.2.1, we have assumed that quantity (6.99) serves as a correlation 

function. The derivative 
∂

∂ ′

σR

R

CE

h
 is, in fact, the response of the system to the 

change of the external field parameter.
Let us return to the case of the ferromagnetic Ising model with the magnetic field 

h which is nonuniform over the lattice. The equilibrium magnetization is defined as

�
(6.118)

Varying this magnetization with respect to the magnetic field, we find

�
(6.119)

For the uniform magnetic field, all variations δ hj equal the change of the uni-
form field, δ δh hj = :

�
(6.120)

The magnetic susceptibility of a magnetic system is defined by

�
(6.121)
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In other words, it is the response of the equilibrium order parameter m0 to the change 
of the field parameter h. From (6.120), we see that the susceptibility of the Ising 

model is determined as the quantity 
∂

∂ ′

σR

R

CE

h
 averaged over the lattice:

� (6.122)

Recalling that in (6.99), we assumed that the derivative 
∂

∂ ′

σR

R

CE

h
 serves as a 

correlation function, we find the relationship between the correlations in the system 
and the system’s response to the external disturbance:
�

(6.123)

Since we now consider a uniform field, due to the symmetry on the lattice, the cor-
relation function g i j( ),R  depends only on the distance between two sites but not on 
the explicit locations of these sites. Therefore, one of the sums and the multiplier 
1/ N  cancel each other out:

�
(6.124)

We have found that the susceptibility is proportional to the integral of the corre-
lation function over the lattice. This statement is called the fluctuation–dissipation 
theorem serving as a connection between the system’s correlations and system’s 
responses.

The quantity 
∂

∂ ′

σR

R

CE

h
 is often called not the correlation function but the local 

susceptibility as the system’s response at site R to the external disturbance at site ′R . 
In this case, the fluctuation–dissipation theorem transforms from the integral form 
(6.124) into the local form
�

(6.125)

while the integral over the lattice connects now the local and the integral suscepti-
bilities:

�
(6.126)

Earlier, we obtained an analogue of (6.125) when the correlation function (6.42) 
was equal to the response of the system to the external disturbance.
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Since in (6.99) we only assumed that the quantity 
∂

∂ ′

σR

R

CE

h
 plays the role of 

the correlation function but did not prove this statement rigorously, we now verify 
directly the applicability of the fluctuation–dissipation theorem to the Ising model. 
We consider arbitrary pair (bi-spin) interactions (6.34). The partition function of 
the CE is

� (6.127)

where we go through all microstates by considering all possible microconfigura-
tions σ{ } of spin orientations on the lattice.

Let us differentiate the partition function with respect to the magnetic field:

�
(6.128)

Here, we have the sum of quantities m e{ }
{ }

σ
β σ− H  over all microstates σ{ }. If we trans-

formed the exponential functions e−β σH{ } into Gibbs probabilities w
Z

eCE
CEσ

β σ
{ }

−=
1 H{ } 

of microstates, the sum over microstates would transform into the averaging of m{ }σ  
in the CE:

�
(6.129)

�
(6.130)

Differentiating for the second time, we find

�
(6.131)

� (6.132)

The susceptibility is defined as the response of the averaged order parameter 
(6.130) to the change of the external field:

�
(6.133)
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“Moving” the logarithm in (6.133) to the left through two derivatives and utilizing 
(6.129–6.132), we find that the susceptibility is proportional to the variance of the 
order parameter in the CE:

�
(6.134)

The coefficient of proportionality βµ / N  is not singular at the region of the phase 
transition at nonzero temperature and, therefore, does not influence the singular 
behavior of the right-hand side.

Next, we substitute the definition of the magnetization:

�
(6.135)

into the right-hand side of (6.134):

�

(6.136)

Under the signs of the sums, we see here the definition (6.3) of the correlation func-
tion:

�
(6.137)

Again, due to the fact that the correlation function for the uniform magnetic field 
depends only on the distance between two sites but not on the numbers of the sites 
themselves, we substitute one of the sums by N to prove the fluctuation–dissipation 
theorem:

�
(6.138)

In comparison with (6.124), we see here the additional multiplier βµ which is again 
not singular in the region of phase transitions at nonzero temperature. Therefore, 
our assumption (6.99) was valid with the accuracy of unimportant coefficient of 
proportionality.
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We see now that the susceptibility (6.133) is a very interesting quantity. Firstly, 
by definition, it is the response of the averaged order parameter to the change in the 
field parameter. Secondly, it represents the variance of the order parameter in the 
ensemble. Thirdly, it equals the integral of the correlation function.

More importantly, since the susceptibility is proportional to variance (6.134) of 
the order parameter in the ensemble, it is always positive (or zero):

� (6.139)

As we have seen in Chap. 3, at the spinodal point, the susceptibility becomes in-
finite. More rigorously, the susceptibility changes from +∞ to −∞ when we pass 
across the spinodal point (Fig. 6.2). Therefore, negative values of the susceptibility 
correspond to the branch of unstable states.

Comparing (6.133) and (6.139), we see that the positivity of the susceptibility 
in the stable or metastable state requires that the second derivative of the logarithm 
of the ensemble partition function with respect to the magnetic field also remains 
positive:

�
(6.140)

From Chap. 2, we recall that the negative logarithm of the ensemble partition func-
tion is the ensemble action of the free energy:

�
(6.141)

Hence, inequality (6.140) transforms into the requirement that the second derivative 
of the action of the free energy with respect to the magnetic field is always negative 
along the stable and metastable parts of the equation of state:

�
(6.142)
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Since the free energy potential differs from its action only by the temperature as 
a multiplier:

� (6.143)

and since this multiplier is not singular at the critical or spinodal point, inequality 
(6.142) is valid for the free energy itself as well:

�

(6.144)

This clearly can be seen from the dependence of the equilibrium free energy on the 
magnetic field (Fig. 6.3) when the second derivative of this dependence is positive 
in stable and metastable states and is negative in unstable states.

Earlier, we assumed that in the vicinity of the critical point, the correlation func-
tion decays as

�
(6.145)

while for R ξ>>  the decay is exponential. Since exponential decay is very “fast,” 
we can assume that the integral of the correlation function in the fluctuation–
dissipation theorem (6.138) can be approximated by the integration only over the 
distances of the order of the correlation length:

�
(6.146)

Substituting (6.145) into (6.146) and integrating, we find

� (6.147)
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But in the vicinity of the critical point, both the susceptibility and correlation 
length diverge. Along the isofield curve h = 0, these divergences are

�
(6.148)

� (6.149)

while along the critical isotherm

�
(6.150)

� (6.151)

Substituting these divergences into (6.147), we find the relations among the critical 
indices:

� (6.152)

� (6.153)

Earlier, we have obtained that the mean-field approach provides γ t
C =1, γ h

C = 2 3/ , 
ηC = 0, ν t

C =1 2/ , and ν h
C =1 3/ . Obviously, these values satisfy (6.152–6.153).

Relations (6.152 and 6.153), which for our particular system happen to be equal-
ities, are a particular case of the Fisher inequality (Fisher 1969):

� (6.154)

which is expected to be valid for an arbitrary magnetic system in the vicinity of its 
critical point.

In (6.145), we have defined the critical index η C  of the correlation function for 
the vicinity of the critical point. In a similar manner, for the proximity of the spi-
nodal point, we define the spinodal index ηS  of the correlation function by:

�
(6.155)

Analysis, identical to the considered above, provides similar relations for the spi-
nodal indices as well:
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� ,                                         (6.156)

� .                                         (6.157)

Therefore, the Fisher inequality again transforms into the equality for the spinodal 
indices.

For the Ising model, the mean-field approach provided zero values for both criti-
cal and spinodal indices of the correlation function: ηC = 0  and ηS = 0. Thereby, 
the indices of the susceptibility are just twice the indices of the correlation length. 
The reader can notice that the solution (3.115) we obtained for the susceptibility is 
proportional to the squared expression (6.105) of the correlation length:

�
(6.158)

Therefore, in Sect. 6.2 we could avoid investigating the scaling behavior of the cor-
relation length saying that it is just the square root of the susceptibility. However, 
we did not do that for the sake of systems whose indices of the correlation function 
were not zero.

6.4 � Magnetic Systems: The Ginzburg Criterion

In Chap. 3, we applied the mean-field approach to find the approximate solution of 
the Ising model. But, we have not yet developed a criterion when this approxima-
tion is applicable because this criterion would require the knowledge of the behav-
ior of correlations in the system. Now, we turn our attention to this question.

We consider the ferromagnetic Ising model in the proximity of its critical point 
when we approach the critical point from below (t < 0) along the binodal curve 
(h h= =C 0). In Chap. 3, we demonstrated that the mean-field approach is equiva-
lent to the case when we can neglect correlations (3.183–3.185) in comparison with 
the order parameter:

�
(6.159)

This inequality is called the Ginzburg criterion (Ginzburg 1960).
To estimate the left-hand side of this inequality, we should estimate the value of 

the correlation function g. Since the correlation length is the characteristic length of 
the decay of correlations, we can estimate the correlation function as being of the 
order of g within the volume ξ d and zero outside of this volume. For the susceptibil-
ity, this estimation provides
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�
(6.160)

Expressing g from this equation, we obtain

�
(6.161)

Both the susceptibility and the correlation length diverge when we approach the 
critical point along the binodal curve. Substituting the critical indices of these di-
vergences into (6.161), we find

�
(6.162)

Next, we should estimate the right-hand side of criterion (6.159). This is also easy 
since along the binodal curve the spontaneous magnetization has its own critical 
index:

� (6.163)

Substituting (6.162) and (6.163) into (6.159), we see that the Ginzburg criterion 
transforms into

�
(6.164)

Applying a similar logic for the case when we approach the critical point not 
along the binodal curve but along the critical isotherm t = 0, we find

�
(6.165)

� (6.166)

� (6.167)

For the mean-field approach, we have γ t
C =1, γ h

C = 2 3/ , ν t
C =1 2/ , ν h

C =1 3/ , 
βt
C =1 2/ , and βh

C =1 3/ . Substituting these values into (6.164) and (6.167), we 
obtain

�
(6.168)
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�
(6.169)

When t → 0 and h → 0, these inequalities require that d > 4. Therefore, if the di-
mensionality of our system is higher than four, the mean-field approach is valid in 
the close proximity of the critical point, providing the exact values of the critical 
indices (but only the approximation of the critical temperature).

However, we are living in the three-dimensional space; and dimensions d < 4 are 
of more interest to us. But for d < 4, inequalities (6.168 and 6.169) show that the 
mean-field approach is no longer valid in the very proximity of the critical point.

What does this mean? Our purpose is to study the critical indices of a system. 
But far from the critical point, the behavior of the system is determined by the laws 
specific for this particular system. The universal power-law dependencies appear 
only in the close proximity of the critical point. But the close proximity of the criti-
cal point is the very region where the mean-field approach does not work for d < 4! 
Therefore, although the mean-field approximation is always very illustrative, it is of 
little help to us in the most interesting three-dimensional or two-dimensional cases. 
To study models in these dimensions, we should invent new approaches.

Dimension dUC = 4 is called the upper critical dimension of the ferromagnetic 
Ising model. In dimensions higher than dUC = 4, the mean-field approach works in 
the vicinity of the critical point and provides the exact values of the critical indices. 
In dimensions lower than dUC = 4, the mean-field approach is no longer valid in the 
close proximity of the critical point. Therefore, the critical indices, predicted by this 
approach, do not correspond (and are not even close!) to the real values measured 
experimentally or found analytically (for example, mean-field βt

C =1 2/  versus ex-
act βt

C =1 8/  for the two-dimensional n.n. Ising model and numerical βt
C = 0 325.  

for the three-dimensional n.n. Ising model).
Let us now consider the case d < 4. Criterion (6.159) is no longer valid. Instead, 

the correlations become comparable with the order parameter:

� (6.170)

This leads to the following relations for the critical indices:

�
(6.171)

� (6.172)

These relations are called the hyperscaling relations because they “glue” together 
two different scales. At scales less than the correlation length, the behavior of the 
system is determined by correlations (6.162, 6.165)—fractal behavior of small-
phase clusters. At larger scales, we see the scaling (6.163, 6.166) of the order pa-
rameter, determined for the whole system—large-phase cluster of the size of the 
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system. Joining these two different types of behavior at the scale of the correlation 
length provides the hyperscaling relations.

For d > 4, inequality (6.159) is valid no matter how close the critical point is. 
Therefore, in these dimensions, the correlations never become comparable with the 
order parameter, and the hyperscaling (6.171 and 6.172) is not valid.

This can be explained from another point of view. The mean-field approach is 
dimensionless; so far, we have never seen the mean-field approach being directly 
influenced by the dimensionality of the system. Therefore, while the mean-field 
approach determines the critical indices for d > 4, the dimensionality of the system 
cannot be part of the relations among the critical indices. Only when the mean-field 
approach stops to work for d < 4, the hyperscaling relations become valid, and the 
dimensionality of the system begins to influence the critical indices.

Earlier, when in Sect. 3.4, we discussed the absence of phase transitions at non-
zero temperatures in the one-dimensional system with short-range interactions, we 
saw two ways to improve the situation: To increase the dimensionality of the sys-
tem or to increase the range of interactions. So far, we have investigated only the 
influence of the dimensionality of the system on the applicability of the mean-field 
approach. Let us next turn our attention to the second aspect—the range of pair 
interactions.

The range of interactions is represented by the root-mean-square radius (6.65) of 
pair (bi-spin) interactions. When we substituted (6.161) into criterion (6.159), we 
did not take into account that the correlation function (6.73) is proportional to 21/ .∆  
Modifying (6.164) and (6.167), we find

�
(6.173)

� (6.174)

The higher Δ, the stronger these inequalities. In other words, the longer the interac-
tions in the system, the better the system is described by the mean-field approach.

For simplicity, let us consider again the ferromagnetic Ising model of dimen-
sion d < 4. Substituting the mean-field exponents γ t

C =1,  γ h
C = 2 3/ ,  ν t

C =1 2/ ,  
ν h
C =1 3/ ,  βt

C =1 2/ ,  and βh
C =1 3/  into (6.173) and (6.174), we find that the 

mean-field approach is still valid even for d < 4  when

�
(6.175)

� (6.176)

Since we consider d < 4, it is more convenient to rewrite these inequalities as

�
(6.177)

C C C2 2| | ,t t tdt ν β γ− − << ∆

C C C2 2| | .h h hdh ν β γ− − << ∆
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� (6.178)

The nearest vicinity of the critical point

�
(6.179)

� (6.180)

is called the critical region. So, we have proved that the mean-field approach is ap-
plicable even for d < 4 outside of the critical region. However, within the critical 
region, it is replaced by the hyperscaling relations (6.171 and 6.172).

There are systems (like the three-dimensional weak-coupling superconductors) 
when the critical region is very narrow (of the order of t ≤ −10 16) and is not observ-
able experimentally. In these cases, even in low dimensions, the observed behavior 
is described by the mean-field critical indices.

For the particular case d = 3, the size of the critical region depends strongly on 
the range of interactions:

�
(6.181)

� (6.182)

So, when the interactions are long-ranged, the critical region can be very narrow 
leaving almost all proximity of the critical point to the zone of the mean-field de-
scription. As we already know from Chap. 3, Problem 3.7.4, in the limit of infinite 
interaction range, the mean-field solution is exact for an arbitrary dimensionality of 
the system.

Another important result to observe from (6.179) and (6.180) is that the lower 
the dimensionality of the system, the weaker the dependence of the size of the criti-
cal region on the range of interactions. So, by lowering the dimensionality, we in-
crease the size of the critical region, pushing the zone of the mean-field validity 
away from the critical point.

The reasoning (6.159–6.169) we discussed for the critical point will not work 
in the proximity of the spinodal point. Indeed, while the divergencies of the sus-
ceptibility and correlation length are with respect to the deviations of the field pa-
rameters from their spinodal values, |t-tS| and |h-hS|, the appearance of the order 
parameter (6.163) should still be attributed to the critical point.
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6.5 � Magnetic Systems: Heat Capacity as Susceptibility

The heat capacity is somewhat similar to the magnetic susceptibility. Firstly, it is the 
response of the energy of the system, which is a fluctuating parameter, to the change 
of the temperature as a field parameter:

�
(6.183)

Secondly, the heat capacity is directly connected with the energy fluctuations in 
the system. To see that we consider the partition function of an arbitrary thermal 
system:

� (6.184)

Differentiating the partition function with respect to ( ) ,− ≡ −β
1
T

 we find

�
(6.185)

�
(6.186)

Differentiation for the second time with respect to ( )−β  provides

�
(6.187)

�
(6.188)

The formulae here are very similar to (6.128–6.132). To obtain the variance of 
the energy, we should be looking for the second derivative of the logarithm of the 
partition function:

�

(6.189)

Now, when we have the variance of the energy at the right-hand side, we should 
transform the left-hand side into the response of some fluctuating parameter to the 
change of the field parameter ( )−β :
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�
(6.190)

where in the last equality we have utilized (6.186). We see that the fluctuating pa-
rameter, which we have been looking for, is the energy of the system.

What is the physical meaning of quantity (6.190)? Substituting β ≡1/T  explic-
itly, we find

�

(6.191)

So, the parameter, we have been looking for, is proportional to the heat capacity 
C with the coefficient of proportionality T 2 which is not singular at the critical 
point. Therefore, this is the heat capacity that plays the role of the response function 
(6.190) and variance (6.189).

We should add here that since variance (6.189) is expected to be always positive 
(or zero), we expect the heat capacity to be positive (or zero) also:

�
(6.192)

When this inequality is not valid, the considered state of a system cannot be stable 
or metastable. Therefore, as we saw in Chap. 3, the positivity of the heat capacity 
can serve as a criterion distinguishing stable and metastable states from unstable 
states (Fig. 6.4).

Comparing (6.192) with (6.191), we see that when we consider stable or meta-
stable states, the positivity of the heat capacity determines the sign of the following 
second derivatives:

�
(6.193)
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�

(6.194)

�
(6.195)

This can easily be observed from the dependence presented in Fig. 6.5.
Summarizing, we have proved that heat capacity is the response of the energy of 

the system (as a fluctuating parameter) to the change of the field parameter ( )−β . 
Also, it is the variance of energy fluctuations. What we have not proved is that the 
heat capacity obeys some kind of a fluctuation–dissipation theorem.

If we proved that, we would be able to refer to the heat capacity as to the heat 
susceptibility. But can we expect that the heat capacity will also obey the fluctua-
tion–dissipation theorem?

So far, we have considered the heat capacity of an arbitrary thermal system. 
There is a huge variety of different systems, with strong correlations and without 
correlations. Therefore, from an arbitrary system it is difficult to expect that the 
integral of its correlations would correspond to the heat capacity.

Correlations can be absent in a system at all. The reader should recall here the 
two-level Ising model from Sect. 3.3 when all spins were independent one from 
another, meaning that there are no correlations in the system. However, the heat 
capacity of such a system was nonzero. Therefore, considering an arbitrary thermal 
system, we cannot expect the fluctuation–dissipation theorem to be valid for the 
heat capacity of this system.

Does this mean that the heat capacity cannot be considered as a susceptibility of 
the system?

To answer this question, let us summarize the criteria by which we define the 
quantity to be a susceptibility:
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1.	 The susceptibility must be the response of some fluctuating parameter φ to the 
change in some field parameter π :

�
(6.196)

There are two field parameters in the CE of a magnetic system: the magnetic field h 
and the temperature T (or the inverse temperature β). For the magnetic susceptibil-
ity, the fluctuating parameter was the magnetization while for the heat capacity, the 
fluctuating parameter was the energy of the system. Therefore, both quantities cor-
respond to this requirement.

2.	 The susceptibility must be equal to the variance of the fluctuating parameter φ:

� (6.197)

At first glance, this requirement makes it more difficult to choose the appropriate 
quantity. However, this is not generally true. For both the magnetic susceptibility 
and heat capacity above, we were looking at the second derivative of the logarithm 
of the partition function with respect to the field parameter:

�
(6.198)

We did that because the exponential functions in the partition function contained the 
product of the field parameter and the fluctuating parameter:

� (6.199)

Therefore, if we see that the exponential function in the partition function con-
tains linear product of a field parameter π  and some expression, we choose this 
expression to be the fluctuating parameter:

�
(6.200)

This guarantees that the susceptibility, defined as (6.196), equals the variance of the 
so-chosen fluctuating parameter.

So, for the Ising model the Hamiltonian contains the term hNmµ  which is lin-
ear in the magnetic field h. Therefore, we have chosen Nmµ  to be the fluctuating 
parameter.

In the case of the CE of an arbitrary thermal system, the partition function is de-
fined as the sum of the exponential functions of −βE. We see that this expression is 
linearly proportional to the field parameter ( )−β . So, we have chosen the energy of 
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the system to represent the fluctuating parameter. This automatically provided that 
the heat capacity equaled the variance of energy fluctuations.

3.	 The last requirement is that the susceptibility must obey the fluctuation–dissipa-
tion theorem.

We have proved this statement for the magnetic susceptibility, but we were not able 
to prove it for the heat capacity in the case of an arbitrary thermal system. Does this 
mean that the heat capacity cannot be considered as a susceptibility?

In fact, we were just one step away from a possible answer. Let us recall how we 
have managed to prove the fluctuation–dissipation theorem for the magnetic sus-
ceptibility. We substituted magnetization (6.135) as the sum over the spins into the 
variance (6.134) of the magnetization and immediately obtained the required result!

Why cannot we do the same for the heat capacity? Because in the case of an 
arbitrary thermal system with arbitrary interactions among the system’s degrees of 
freedom, the Hamiltonian is no longer additive. And, we cannot split the energy into 
the sum over the degrees of freedom.

However, what is not possible in the general case can be quite possible for a 
particular system. Let us consider, for example, the ferromagnetic n.n. Ising model 
in the zero magnetic field. The Hamiltonian of the system is

� (6.201)

We still cannot split this Hamiltonian into the sum of the energies of separate 
spins because of the pair (bi-spin) interactions. However, we can introduce new 
variables ε σ σ< > = −i j i jn n

J, . .
, one for each n.n. pair of spins, corresponding to the 

energy of interactions. In terms of these new variables, the Hamiltonian becomes 
additive

� (6.202)

Substituting Hamiltonian (6.202) into (6.189), we find

�
(6.203)

Due to the lattice symmetry over the choice of the interacting pairs, we can 
remove one sum, replacing it with the total number of the n.n. pairs Nq / 2 on the 
lattice
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�
(6.204)

where q is the lattice coordination number.
This is the result we have been looking for—the fluctuation–dissipation theorem 

is valid for the heat capacity of the n.n. Ising model. And, we can now refer to the 
heat capacity of this particular system as the heat susceptibility.

Looking back, we see that all that was required to prove the heat capacity to 
be the susceptibility was to find some quantities, making the Hamiltonian addi-
tive. However, we should always remember that the correlations in that case were 
correlations among the new variables ε σ σ< > = −i j i jn n

J, . .
 but not among the initial 

degrees of freedom of the system. So, for our particular system, the heat capacity 
was associated with the correlations not among the spins but among the energies of 
the spin pairs.

In other words, for many systems, the heat capacity can be proved to be the heat 
susceptibility. However, it no longer equals the integral of correlations among the 
degrees of freedom of the system. Instead, we should look for some new quantities, 
in terms of which the Hamiltonian can be made additive. Thereby the heat suscepti-
bility will correspond to the correlations among these new quantities.

6.6 � Percolation: The Correlation Length

Next, we consider the fluctuation–dissipation theorem for percolation.
We define the correlation function G( )



R  (also known as a pair connectedness) as 
a probability that if it is known that the initial site is occupied (and, thus, belongs to 
a cluster), then a site at distance 



R is also occupied and belongs to the same cluster. 
Since for 



R = 0 the correlation function is always unity, G( ) ,0 1=  in contrast to the 
Ising model the correlation function in the theory of percolation is always normal-
ized and is, therefore, the autocorrelation function (6.2).

The correlation length is defined as a characteristic length of the decay of the 
correlation function. The percolation problem is unique in the sense that it provides 
a very illustrative representation of the behavior of clusters in the system.

What does correlation length represent? By definition, it is the characteristic 
length of the decay of the correlation function. But the correlation function is itself a 
probability that a site at distance 



R belongs to the same cluster. Thus, the correlation 
length represents, crudely speaking, the linear size of clusters.

More rigorously, the correlation length is defined as the root-mean-square dis-
tance between two sites belonging to the common cluster:

�

(6.205)

C Nq
i j i j CE i j CE i jn n n n n n n n

∝ −< > < ′ ′> < > < ′ ′>2 0 0 0 0
ε ε ε ε, , , ,. . . . . . . . CCE

i j n n

( )
< ′ ′>
∑
, . .

,

ξ ≡
∑
∑

R G

G

2 ( )

( )
,

R

R
R

R



6.6  Percolation: The Correlation Length 329

where the correlation function plays the role of the probability distribution. In fact, 
averaging (6.205) represents the ensemble averaging of squared distances between 
sites belonging to the common cluster:

�

(6.206)

Here, 
< >
∑

i j connected,
 denotes the sum over all pairs of occupied sites on a lattice which 

are connected by the common cluster. Averaging p−E is the averaging over all pos-
sible realizations of clusters on a lattice for the given value of the field parameter p.

In other words, we consider the ensemble of identical systems with the bound-
ary condition p const=  ( p-ensemble, p-E). For each system in the ensemble, we go 
over its sites, one by one, and for each site we decide whether it will be occupied 
(with probability p) or empty. So, each system will represent a particular realization 
of the cluster distribution. Then, we go over all pairs of connected occupied sites in 
the ensemble and average the distance in accordance with (6.206).

But in expression (6.206) for the correlation length, the averaging of distances 
over all pairs of connected occupied sites may be separated into groups where in a 
particular group we average only those pairs that belong to s-clusters:

�

(6.207)

The radius of gyration for a given s-cluster is introduced as the root-mean-square 
distance between the sites of this cluster:

�

(6.208)

What does this radius represent? If the center of mass of the cluster is located at 
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�
(6.209)

where the sum goes over the sites of the cluster, then for the radius of gyration we 
find

�

(6.210)

We see that the radius of gyration of the cluster is the root-mean-square radius 
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1
s

s −
.

Instead of considering the radius of gyration for a particular s-cluster, we may 
average it (root-mean-square averaging) over all s-clusters on a lattice:

�

(6.211)

But the expression in the numerator is exactly what we see in the numerator of the 
correlation length (6.207). Substituting, we find

�

(6.212)
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In the limit of big clusters, 1,s >>  this expression is simplified as

�

(6.213)

This result is easily interpreted. Let us return to (6.205) when it is known that the 
site at 



R = 0 is occupied. The probability that this occupied site belongs to an s-
cluster is sn p ps ( ) / . Thus, with this probability, this site will form ( )s −1  pairs with 
other sites of this cluster. Meanwhile, the square length of these pairs, averaged in 
the ensemble, is R ps

2 ( ) so that our expectation for the correlation length (6.205) is:

�

(6.214)

which returns us to (6.212).
That is why we have said that the percolation problem is unique; observing the 

structure of clusters, we immediately find the correlation length as equivalent to the 
(root-mean-square) linear size of the clusters which is very illustrative. Let us now 
see what conclusions this may lead to.

Below the percolation threshold, everything is straightforward: The correlation 
length is the averaged linear size of finite clusters. The higher p (which still remains 
below pC), the larger correlation length and clusters. When the system tends to 
the percolation threshold from below, the correlation length diverges in accordance 
with

� (6.215)

So does the size of the clusters since they are supposed to give rise to an infinite 
percolating cluster.

But above the percolation threshold a new length appears—the length of a perco-
lating cluster—which coincides with the size of the whole system. So the question 
arises—does probability G( )



R  also predict the size of the percolating cluster? When 
in accordance with (6.213), we sum all the sizes of clusters, should we average the 
percolating cluster as well?

The situation resembles the case of magnetic systems. Above the critical point, 
the correlation length also represents the linear size of clusters (magnetic domains). 
Below the critical point, two phases arise. A homogeneous system, represented by 
one of the phases, may be considered as one big cluster, occupying the whole system.

But for magnetic systems, the question whether the correlation length represents 
the linear size of magnetic domains below the critical point does not arise. The rea-
son is that in the correlation function (6.3), we subtract the averaged magnetization 
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so that the correlation function represents the heterogeneous response to an external 
disturbance instead of representing a homogeneous phase.

For example, let us consider the ferromagnetic Ising model below the critical 
point. Besides, we consider the system in the presence of magnetic field h > 0 so 
that the majority of spins in the system are oriented “up.”

The external disturbance is then represented by a spin which is oriented “down” 
and this orientation is fixed by some external forces. The correlation function is then 
the response of the surrounding spins to this disturbance; and the correlation length 
is the characteristic length of the decay of this response. The correlation length does 
diverge at the critical point, but far from this point it is small and definitely not of 
the size of the magnetic domain which for h > 0 occupies the whole system.

Returning back to percolation, if we included the percolating cluster in the prob-
ability G( ),



R  the correlation length would be always infinite above the percolation 
threshold. We would definitely not want that. Instead, we prefer that power-law 
(6.215) would represent the divergence of the correlation length for both sides of the 
percolation threshold so that above the percolation threshold the correlation length 
would be finite and would represent the linear size of only finite clusters. We will be 
able to achieve all this if G( )



R  represented only the finite clusters and the percolat-
ing cluster did not participate in averaging (6.213).

As we have already discussed, the correlation length plays the role of the charac-
teristic length, dividing the scales. First, we consider the system below the percola-
tion threshold. On scales smaller than the correlation length, the behavior is domi-
nated by scale-invariant fluctuations. If we were looking at the lattice through a 
“window” with the linear size smaller than the correlation length, we would observe 
that clusters are fractal and that there is no characteristic length on all these scales, 
beginning from the lattice constant and ending by the size of the window.

So, in Fig. 6.6, the two smallest squares (A and B) represent the scales smaller 
than the correlation length. Each of these windows contains small clusters whole 
and parts of big clusters which may percolate the window. Obviously, the bigger 
window may contain bigger clusters. But the structure of clusters is scale invari-
ant—if we shrank window B together with its clusters to match the size of window 
A, the structure of clusters of window B would transform into the clusters of win-
dow A (on average).

On the contrary, if we are looking at the system through the window of the 
size larger than the correlation length, we see the appearance of the characteristic 
length—the correlation length. The fractality breaks on these scales, and the struc-
ture of clusters is no longer scale invariant.

So, in Fig. 6.6, the correlation length, representing the averaged linear size of 
clusters, is of the order of the size of window B. Looking at the system through 
bigger windows, C, D, or F, we no longer see the fractal, scale-invariant structure 
of clusters. Instead, we see the presence of a characteristic length—indeed, we visu-
ally observe that sizes of clusters are limited from above and there no longer present 
parts of big clusters that are able to percolate the window.

Above the percolation threshold, almost the whole lattice is occupied by the 
percolating cluster (the area filled by pattern in Fig. 6.7). The finite clusters exist 
only within the holes of this cluster. Since the correlation length represents here the 
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averaged linear size of the finite clusters only, it should be of the order of the size 
of window B.

If we are looking at the system through a window with size less than the correla-
tion length (windows A and B), we again see the fractal, scale-invariant structure 
of finite clusters and parts of percolating cluster. For bigger windows (C, D, and F) 
the fractality, obviously, no longer exists. The main part of the window (D and F) 
is occupied now by the nonfractal, d-dimensional mass of the percolating cluster.

6.7 � Percolation: Fluctuation–Dissipation Theorem

The role of the susceptibility in percolation is played by the mean cluster size:

�

(6.216)

We will prove this to be true later in this section. For now, we may rely on the intui-
tive understanding that the numerator 2 ( )s

s
s n p∑  (the very quantity that is diverging 

S p
s n p

sn p

s
s

s
s

( )
( )

( )
.≡

∑
∑

2

Fig. 6.6   Schematic represen-
tation of clusters below the 
percolation threshold

 

Fig. 6.7   Schematic represen-
tation of clusters above the 
percolation threshold. The 
pattern, occupying almost 
the whole lattice, represents 
the percolating cluster. Finite 
clusters exist only within 
the holes of the percolating 
cluster
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at the critical point and determines the scaling of the mean cluster size) represents 
the averaged square of a fluctuating parameter s. As we have seen above, the sus-
ceptibility of a system should correspond to the variance of a fluctuating parameter.

Problem 6.7.1

Find the correlation function, correlation length, and the critical index ν for 
the case of the one-dimensional percolation. Prove the validity of the fluctua-
tion–dissipation theorem.

Solution: We consider the system to be below the percolation threshold, 
p p< =C 1. When we determine the correlation function, we know about the 
initial site 0=R



 that it is occupied. The probability G( )1  that the neighboring 
site to the right belongs to the same cluster is just the probability p that this 
site is occupied also: G p( )1 = .

Similarly, the probability G R( ) that the site at distance R to the right be-
longs to the same cluster is the probability pR that this site and all the inter-
mediate sites at distances 1, 2, …, R −1 are occupied:

� (6.217)

� (6.218)

At the percolation threshold p p= =C 1, we, obviously, have

� (6.219)

In the vicinity of the percolation threshold, p p→ −C 0, we expand (6.218),

�
(6.220)

to find ν =1.
In Chap. 4, we considered two methods to find the mean cluster size. In 

the vicinity of the percolation threshold, both quantities are of the order of the 
correlation length:

�
(6.221)

� (6.222)

G R p eR R p( ) ,/ ( )= = − ξ where

ξ ( ) / ln .p p= −1

G R( ) ( ) .≡ = +∞1 1 and ξ

ξ ( ) ,p
p

∝
−
1

1

S p
p

( ) ,=
−
1

1

S p p
p

( ) .=
+
−

1
1



6.7  Percolation: Fluctuation–Dissipation Theorem 335

For an arbitrary lattice, the correlation function G( )


R  is defined as the probability 
that if the site at 



R = 0  is occupied, the site at distance 


R  is also occupied and 
belongs to the same cluster. If we know that the site at 



R = 0 is occupied, the prob-
ability for this site to belong to an s-cluster is sn p ps ( ) / .

But if this site belongs to an s-cluster, it is connected with other ( )s −1  sites of 

this cluster. Thereby, on average this site is connected to 
1

( )
( 1) s

s

sn p
s

p

+∞

=

−∑  sites.

In comparison, by the definition of the correlation function, this site is connected 
to G G G G( ) ( ) ( ) ( )

  

  

R R R
R R R≠
∑ ∑ ∑= − = −

0

0 1 sites. Equating these two results, we 

prove the fluctuation–dissipation theorem for an arbitrary lattice:

�

(6.224)

� (6.225)

Thereby, S  is indeed the susceptibility of the system.
We expect the fluctuation–dissipation theorem to be valid both below and above 

the critical threshold since in both cases it represents only the properties of finite 
clusters. Above the percolation threshold, we include the percolating cluster s = +∞ 
neither in the correlation function nor in the sums of the susceptibility (6.216).
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This is expected because in the one-dimensional case, the size s of a cluster 
equals the length of this cluster.

To obtain the analogue of the fluctuation–dissipation theorem, we inte-
grate the correlation function:

�
(6.223)

Thereby we prove that the integral of the correlation function equals the mean 
cluster size S. So, S  does indeed play the role of the susceptibility in the one-
dimensional case.
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6.8 � Percolation: The Hyperscaling Relation and the 
Scaling of the Order Parameter

The correlation length serves as a characteristic length, dividing the scales. On 
scales smaller than the correlation length clusters are scale-invariant with the fractal 
dimension D whilst on larger scales the fractality is broken by the appearance of the 
correlation length as a characteristic length.

So, for the s-clusters whose linear size R ps ( ) is less than the correlation length, 
Rs < ξ , by the definition of the fractal dimension D we have

� (6.226)

as a connection between the measure s and the linear size R ps ( ) of the fractal set.
Meanwhile, the condition Rs < ξ transforms into

� (6.227)

where sξ-cluster is a cluster whose averaged linear size corresponds to the correla-
tion length.

Let us return to the correlation length (6.213). When the system tends to the 
percolation threshold, the correlation length diverges in accordance with (6.215) so 
that the fractality occupies larger and larger scales. Thus, more and more clusters 
obey (6.226) with the exception only for the biggest clusters.

As an approximation, we consider that (6.226) is valid for all clusters, even the 
biggest. Substituting (6.226) into (6.213), we find

�

(6.228)

The singular behavior of the correlation length is accumulated in (6.215). The 
singular behavior of the sum 2

s
s

n s∑  determines the divergence of S . The sum 

n ss
D

s

2 1 1( / )+∑  represents the moment Mk with k D= +2 1 1( / ) whose singular behav-

ior we find with the aid of (4.96):
�

(6.229)

Substituting all these results into (6.228), we find the relation among the critical 
indices and the fractal dimension D of small clusters:

�
(6.230)
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� (6.231)

What does this relation mean physically? Let us return to hypothesis (4.52 and 
4.53):

� (6.232)

� (6.233)

Substituting σ from (6.231) into (6.233), in the vicinity of the percolation threshold 
we find

�
(6.234)

This transforms hypothesis (6.232) into

� (6.235)

We see that for clusters whose linear size R ps ( ) is less than the correlation length 
(s s< ξ ) the exponential function is of the order of unity, and the cluster-size distri-
bution decays as a power-law:

� (6.236)

This is expected since all clusters on scales smaller than the correlation length are 
fractal.

On the contrary, for big nonfractal clusters (s s> ξ), the decay is dominated by 
the exponential function. Although big clusters are not fractal, their parts, cut by a 
window with the size smaller than the correlation length, are still fractal with the 
same dimension D along with all small clusters. So, the big clusters are not fractal 
as a whole but their internal structure is fractal.

Below the percolation threshold, p p< C , there is no percolating cluster while the 
correlation length is much smaller than the size of the system: 1/ .dL Nξ << =  When 
the system tends to the percolation threshold, the correlation length diverges, and 
the fractality occupies larger and larger scales. The percolating cluster appears when 
the correlation length becomes comparable with the linear size of the system, ξ ∝ L 
(or a bit earlier since the correlation length represents the averaged linear size of all 
clusters on a lattice while extremes of this statistics are larger).

If we continue to increase p, the correlation length exceeds the linear size of the 
system, ξ > L, and becomes infinite at the percolation threshold. The fractality, in 
the meantime, occupies all possible scales. In particular, the appearing percolat-
ing cluster, cut by the size of the system as if by Procrustes’ bed, is also fractal: 
s LPC

D∝ .

σν D =1.

( ( ) )( ) ,  wherec p s
sn p s e

ζτ− −∝

c p p p p p( ) | | ./∝ − →C C for 1 σ
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By definition, the order parameter NPPC is the number of sites belonging to the 
percolating cluster. Equating it to s LPC

D∝ , we find
� (6.237)

If we continue to increase p already above the percolation threshold, p p> C , the 
correlation length decreases. While it is still larger than the system size, ξ > L, the 
percolating cluster remains fractal as a whole whilst (6.237) remains valid.

But if, while we are increasing p, the correlation length becomes smaller than 
the system size, ξ < L, only the internal structure of the percolating cluster remains 
fractal on scales smaller than the correlation length. However, the percolating clus-
ter as a whole is no longer fractal but gives rise to the scaling of the appeared order 
parameter:

� (6.238)

The transformation of (6.237) into (6.238) must happen when the correlation 
length passes the size of the system: L p p∝ ∝ − −ξ ν| |C . Equating (6.237) to 
(6.238) and substituting L p p∝ − −| | ,C

ν  we obtain the hyperscaling relation, which 
associates the critical indices with the dimensionality of the system:

�
(6.239)

The origin of this relation is that we “glue” together two types of behavior when one 
of them is transformed into another.

In fact, we “glue” together different scales. Due to the importance of this dis-
cussion, let us again consider the system slightly above the percolation threshold 
p p→ +C 0. Since p is close to the percolation threshold but does not equal it, the 
correlation length is large but finite.

Above the percolation threshold, the percolating cluster exists and percolates the 
infinite system. Let us consider its structure through the windows of different size L.

When L < ξ , the window cuts a piece of the percolating cluster which is fractal: 
s Lpart of PC

D
  ∝ . However, such small scale L < ξ  does not represent the behavior of 

the infinite percolating cluster. Since the scaling dependence P p p pPC ( ) | |∝ − C
β is 

defined for the infinite cluster, we do not expect that the small piece of this cluster 
would represent this scaling.

When L > ξ , the piece of the percolating cluster, cut by the window, is no longer 
fractal but is already big enough to represent the scaling behavior of the order pa-
rameter: s L p ppart of PC

d∝ −| |C
β . “Gluing” these two scales, as two sides of one 

coin, together at L = ξ , we obtain the hyperscaling relation (6.239).
In Chap. 4, we hypothesized that the number of sites in the percolating cluster 

scales as

P LPC
D d∝ − .

C( ) | | .PCP p p p β∝ −

d D d D− = = +
β
ν

βσ or ( ) .1
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�

(6.240)

when there is no percolating cluster below the percolation threshold, it is fractal at 
the percolation threshold, and inherits the dimensionality of the embedding lattice 
above the percolation threshold. However, we should always remember that this 
hypothesis was introduced for the case of the infinite system.

So, if we consider an infinite system above the percolation threshold, the whole 
percolating cluster is not fractal and has the dimension d, but its structure on scales 
smaller than the correlation length is fractal with the dimension D. But how is it 
possible? How can a union of sets with the dimension D form a set with the dimen-
sion d?

To illustrate this transition of the dimensionality, let us consider a system of size 
L above the percolation threshold. If L < ξ , the percolating cluster is fractal and 
contains s LPC

D∝  sites.
If, on the contrary, L > ξ , we divide the system of linear size L into cells of size 

ξ. The part of the percolating cluster within each cell is fractal and consists of ξ D  
sites. Since there are ( / )L dξ  cells, the total number of sites in the percolating cluster 
is ξ ξD dL( / ) .

Summarizing these tendencies, we obtain

�

(6.241)

� (6.242)

We see that on different scales, the order parameter has, indeed, different dimen-
sionalities. The transformation of one dimensionality into another happens similar 
to fractals considered in Chap. 1 when the dimension of a fractal did not depend on 
the dimension of the initial branch but, instead, was determined by the properties of 
the fractal generator.

Considering the infinite lattice, ξ < = +∞L , from (6.242) we find

�
(6.243)

But the scaling of the order parameter in the case of the infinite lattice is de-
fined as P p L p pPC ( , ) | |= +∞ ∝ − C

β while the scaling of the correlation length 
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is ξ ν∝ − −| |p pC . Substituting these power-law dependencies into (6.243), we re-
turn to the hyperscaling relation (6.239).

Functional dependence (6.241 and 6.242) may be written as

�

(6.244)

representing the finite-size effect in the system. The role of the scaling parameter is 
played by the ratio L / ξ whose value chooses one of two possible scaling asymptotes 
of the system’s behavior. We will return to the finite-size effect in Chap. 8 in more 
detail.

In the case of magnetic systems, the hyperscaling relation (6.171 and 6.172) was 
valid only below the upper critical dimension. A similar situation is observed in per-
colation, only now the upper critical dimension is d = 6. In higher dimensions, the 
dimensionality d of the system does not influence the values of critical indices be-
cause in these dimensions they are determined by the mean-field approach and are 
equal to the critical indices of the infinite-dimensional system (the Bethe lattice).

For magnetic systems, we saw situations when the hyperscaling relation was not 
valid even below the upper critical dimension. These cases corresponded to sys-
tems with long-range interactions. Similar behavior can be observed in percolation 
as well when we introduce long-range interactions by connecting into a common 
cluster not only the occupied nearest neighbors but also occupied sites separated by 
larger distances.

When τ
σ
−

≤
2 1 and 6,d ≤  with the aid of the hyperscaling relation (6.239) we 

obtain

�
(6.245)

This transforms the divergence (4.96) of the moment Mk, found in Chap. 4, into

�

(6.246)

This expression illustrates that the logarithm of the moment is proportional to k:

�
(6.247)
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6.9 � Why Percolation Differs from Magnetic Systems

Considering percolation, we have built several quantities, ns, PPC , S , G( )


R , ξ, which 
resemble the quantities of magnetic systems but have no direct relations with them. 
For example, the correlation function and the susceptibility required specific defini-
tions and were not built on the base of the formalism of statistical physics.

Why is the problem of percolation special? To answer this question, let us com-
pare the principles lying behind correlation functions in percolation and in magnetic 
systems.

Problem 6.9.1 demonstrates that if we decided to define the correlation function 
in percolation similar to magnetic systems, it would make no sense since whether 
a site is occupied or not does not depend in percolation on whether other sites are 
occupied or not.

That is why we have employed a different definition of the correlation function 
G( )


R  for percolation—as the probability that if the initial site is occupied, the site 
at distance 



R is also occupied and belongs to the same cluster.
The key phrase here is belongs to the same cluster. For magnetic systems, we 

did not care whether two spins at distance 


R were or were not connected by a chain 
of spins with the same orientation. For spins what was important is how many spins 
are “up” or “down.”

Problem 6.9.1

Consider percolation on an arbitrary lattice. Introduce spin variables σ i  when 
σ i = +1 for an occupied site and 0iσ =  for an empty site. Find the correlation 
function (6.3):

�

(6.248)

Solution: By definition, σ i = +1 with probability p for an occupied site and 
σ i = 0 with probability ( )1− p  for an empty site. Since the probability for a 
site to be occupied or empty does not depend on whether other sites are occu-
pied or empty, each spin is independent of the state of other spins:

� (6.249)

This immediately provides that the correlation function defined in accordance 
with (6.248) is always zero when 0ijR ≠ .
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On the contrary, in percolation first we care about how occupied sites are con-
nected to one another. The origin of this specific request arises from the criterion 
we employ to represent a phase transition. In particular, we associate the percolation 
threshold with the appearance of a chain of occupied, connected to one another sites 
which connect the opposite edges of a lattice.

While statistical physics cares about the states of sites so that the ensemble 
assigns probabilities for a site to be in this or other state, percolation studies the 
connectivity among sites when the ensemble deals with probabilities for sites to 
form clusters.

The simplest example is when we try to build a microcanonical or canonical 
ensembles for percolation. Let us imagine a lattice which contains exactly N•

 occu-
pied sites (which is isolated with N• occupied sites). As a microstate, we may con-
sider a particular configuration of occupied sites on the lattice. For example, for the 
lattice with N = 3 sites, two of which are occupied ( 2N• = ), the possible micro-
states are { } ,• •   { } ,• •  and { }.• •

The diversity of all microstates represents the microcanonical ensemble with the 
boundary condition N const• = . The statistical weight of the ensemble corresponds 
to the number of ways to distribute N•

 occupied sites among N sites:

� (6.250)

Here, we even comply with the requirement of statistical physics for all microstates 
to be equiprobable:

�
(6.251)

To build the canonical ensemble, we should substitute the boundary condition 
N const• =  by the boundary condition p const= . We imagine a small system to be 
in contact with a big reservoir of occupied sites. Our system may consume as many 
occupied sites from the reservoir as it wishes so that we may consider fluctuations 
{ }{ }N•  of the number N• of occupied sites in our system.

In the canonical ensemble, the reservoir dictates the equilibrium probability dis-
tribution for microstates { }N• :

�
(6.252)

which resembles Gibbs probability in statistical physics with the effective tempera-
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Nothing is wrong in the presented approach of statistical physics to the phe-
nomena of percolation with the exception that this approach neither can predict the 
appearance of a percolating cluster nor knows anything about clusters in the system. 
The problem is that ensembles of statistical physics do not master the connectivity 
of occupied sites within clusters.

6.10 � Percolation: The Ensemble of Clusters

Since we cannot describe the connectivity of clusters with the traditional means of 
statistical physics, the direct analogy between percolation and statistical physics is 
not possible. Instead, we should seek an approach in which the ensemble would be 
based not on the probabilities of states of sites but on the probabilities of connectiv-
ity among the sites. In other words, the partition function of the ensemble should 
sum not the probabilities of states but the probabilities of clusters:

�
(6.253)

Since the partition function is supposed to be the normalization constant of the 
distribution of probabilities, these probabilities are

�
(6.254)

so that an averaged value of quantity fs in the ensemble we define by

�
(6.255)

For simplicity, as an example we consider further the Bethe lattice below the per-
colation threshold when into hypothesis (4.52 and 4.53) we should substitute ζ =1:

� (6.256)

� (6.257)

Differentiating the partition function with respect to the field parameter ( )−c :

�
(6.258)
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we find that the ensemble averaging of the cluster size is equivalent to the mean 
cluster size S defined in Chap. 4 by (4.117):

�
(6.259)

Differentiating the partition function for the second time with respect to the field 
parameter ( )−c :

� (6.260)

for the averaged squared cluster size we find

�
(6.261)

Thereby the second derivative of the logarithm of the partition function equals 
the variance of the cluster sizes in the ensemble:

�
(6.262)

From another point of view, this derivative represents the response of the averaged 
cluster size s E  to the change in the field parameter ( )−c :

�
(6.263)

Thus, it seems to be reasonable to define the susceptibility by

�
(6.264)

In the vicinity of the percolation threshold, the mean cluster size S is not singular 
whilst the mean cluster size S  diverges to determine the divergence of the suscep-
tibility:

�
(6.265)

We define the equilibrium action of the free energy as the minus logarithm of the 
partition function:

� (6.266)
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By definition (6.253), the partition function is the 0th moment M0 whose value 
(4.107) for the case ζ =1 we have found in Chap. 4 in the vicinity of the percolation 
threshold:

� (6.267)

� (6.268)

Expanding (6.266) in the vicinity of the percolation threshold, we find

� (6.269)

Differentiating this expression twice with respect to p and assuming that for the 
Bethe lattice σ =1 2/ , we obtain an analogue of the heat capacity:

�
(6.270)

Let us now discuss the developed approach. In (6.254), we have assumed that 
the cluster-size distribution ns plays the role of the probability W s

E
{ }{ } of fluctuations 

s{ }{ }. In other words, we consider each lattice s-animal as a microstate s{ } with the 
probability
� (6.271)

This probability resembles Gibbs probability with the effective temperature

�
(6.272)

Since we consider p const=  to be the condition of the model, the requirement 
T consteff =  may be considered as the boundary condition of the ensemble so that 
we may call our ensemble the effective canonical.

The number gs of lattice s-animals plays the role of the statistical weight of the 
fluctuation s{ }{ }. Thereby, the probability of this fluctuation is

� (6.273)

which we have hypothesized by (6.254).
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�
(6.274)

Therefore, if we neglect the multiplier ( )1 2− p  in (6.271), derivatives (6.258) and 
(6.260) with respect to ( )−c  can be considered as the derivatives with respect to the 
field parameter  −( )1/ ( )T peff  similar to our previous formulae (6.185 and 6.187) 
for magnetic systems.

Taking into account the multiplier ( )1 2− p  in (6.271) makes the derivatives more 
complex since, differentiating with respect to −( )1/ ( ) ,T peff  we, in fact, are differ-
entiating with respect to p and should differentiate ( )1 2− p  as well.

But this is not the main difficulty. Considering (below the percolation threshold) 
an arbitrary lattice instead of the Bethe lattice, we can no longer use hypothesis 
(6.256 and 6.257) with ζ =1.

Indeed, let us consider the formulae above as if they were applicable in the case 
of an arbitrary lattice as well. The mean cluster size

�

(6.275)

can be presented in the form

�
(6.276)

But in accordance with the law of conservation of probabilities below the percola-
tion threshold, the sum ( )s

s
sn p∑  equals p:

�
(6.277)

Since p is not singular at the percolation threshold, the divergence S p p∝ − −| |C
γ  of 

the mean cluster size must come from the denominator of (6.277) as the differential 
of the singular dependence (6.257):

�
(6.278)

Comparing the exponents, we find the relation between the critical indices

�
(6.279)
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Although this relation is valid for the mean-field critical indices of the Bethe 
lattice, the exact or experimental values of critical indices below the upper critical 
dimension do not obey this relation. This clearly indicates that hypothesis (6.256 
and 6.257) cannot be applied for lattices below the upper critical dimension.

To avoid this difficulty, other approaches have been developed. So, we may, for 
example, instead of (4.24) consider the cluster-size distribution in the form (Fisher 
and Essam 1961):

�
(6.280)

where q is a parameter, we initially consider it to be independent of p.
Utilizing the definition (6.253) of the partition function again, for its derivatives 

with respect to p we find

�
(6.281)

� (6.282)

which would return us to the previous formalism if we substituted q p= −1  in all 
formulae later.

Another approach is called an approach of a ghost field (Griffiths 1967; Kaste-
leyn and Fortuin 1969; Coniglio 1976; Reynolds et al. 1977). Similar to magnetic 
systems, the cluster-size distribution is assumed to contain interactions of each clus-
ter site with the external magnetic field h:

� (6.283)

Defining the partition function by (6.253) and differentiating it with respect to the 
field, we find

�
(6.284)

� (6.285)

Substituting then h = 0, we return to the previous formulae.
These approaches seem to be self-consistent. Why should we not accept the de-
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reasons for criticism. To illustrate it, let us return to the simple example of the Bethe 
lattice below the percolation threshold.

Firstly, in statistical physics we get used to the situation when the probability 
of fluctuations is determined by the “clash” of two “fast” multipliers, depending 
exponentially on N in the thermodynamic limit N → +∞. The product of two “fast” 
dependences generates a very narrow maximum of probability, corresponding to the 
most probable macrostate of a system.

Probability (6.273) imitates this type of behavior. Here, the number gs of lattice 
s-animals, provided by the Bethe lattice result (4.55) from Chap. 4, is the function 
increasing very “fast” with the increase of s in the limit s → +∞:

�
(6.286)

On the contrary, the probability w s
E
{ } of microstates, given by (6.271) for the Bethe 

lattice, decreases very “fast” with the increase of s in the limit s → +∞.
However, as we have said, probability (6.273) only imitates the expected behav-

ior. Indeed, there is no narrow maximum of this probability. Instead, the dependence 
W ns

E
s{ }{ } ∝  monotonically decreases with the increase of s (the point of maximum 

is s = 0)!
Why has this happened? Such a situation is possible only if one exponential de-

pendence on s completely cancels out another. In other words,

�

(6.287)

leaving no narrow maximum but only the decaying dependence on s. Thereby, max-
imum of the obtained probability distribution W s

E
{ }{ } corresponds to s = 0 and returns 

no interesting results.
Therefore, the product of two “fast” dependences is not enough to guarantee 

the applicability of the formalism of statistical physics. In addition, one of these 
dependencies (generally, the statistical weight) must be complex enough not to be 
cancelled immediately by the second dependence.

The statistical physics would also no longer work if the statistical weight of 
a thermodynamic system were determined by a simple exponential dependence 
g E eE

const E∝ O( ) ·α  on the energy of a system. If const T<1/ , the statistical weight 
would be canceled by Gibbs probability, leading to the maximum of probability at 
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“clash” of two exponential dependencies on E but by the product of one exponential 
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accuracy. Therefore, it would fail to describe such a “degenerate” case, and we 
would have to start to develop the new formalism from the beginning.

Secondly, returning to the question why we do not consider the developed ap-
proach (6.253–273) to be a complete analogy with statistical physics, we see that 
for susceptibility (6.264) the fluctuation–dissipation theorem is valid only in the 
vicinity of the percolation threshold when Sχ ∝  . Beyond this neighborhood, the 
true susceptibility is S , not χ.

But S  is not the second derivative of the logarithm of the partition function, de-
fined by (6.253). Instead, it is determined by

�

(6.288)

In other words, instead of putting the logarithm under the sign of the second de-
rivative, we should put it between the differentiating operators. This indicates that 
the averaged order parameter is not the derivative of the logarithm of the partition 

function but the logarithm of the derivative of the partition function: not d Z
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Eln
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,
−

 

but ln
( )

.dZ
d c

E

−
= lnp

Although we have developed some analogy with statistical physics, the complete 
solution of the problem remains a mystery. We leave the solution of this problem to 
the reader as an exercise.

6.11 � The FBM: The Fluctuation–Dissipation Theorem

Next in this chapter, we consider the fluctuation–dissipation behavior of the fiber-
bundle model (FBM) representing damage phenomena (Abaimov 2009). In the ε-
ensemble, it is easy to define the susceptibility of the system. Let us recall expres-
sion (5.22) for the ensemble partition function,

�
(6.289)

�
(6.290)
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then defined as the response of the specific averaged order parameter to the change 
in the field parameter:

�
(6.291)

Differentiating the partition function (6.289) twice with respect to the field pa-
rameter, we find

�

(6.292)

� (6.293)

Comparing (6.291) and (6.292), we see that the susceptibility is the second de-
rivative of the logarithm of the partition function:

�
(6.294)

Substituting the partition function here, we find the susceptibility of the system:

� (6.295)

However, we are more interested not in finding the susceptibility but in proving 
the fluctuation–dissipation theorem. Differentiating the logarithm twice, we find the 
connection of the susceptibility with the fluctuations of the order parameter:

�

(6.296)

We have proved the first part of the fluctuation–dissipation theorem: The suscep-
tibility, as the response of the order parameter to the change in the field parameter, 
equals the variance of the order parameter. To prove the second part of the theorem, 
we should build the correlation function whose integral would be equal to the sus-
ceptibility.

It is also easy to accomplish—we need only to define the effective spin variables 
σ i. We substitute each fiber i by a spin σ i which equals +1 if the fiber is intact and 0 
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if the fiber is broken. Then, in terms of the new spin variables the damage parameter 
D is defined by

�
(6.297)

Substituting this parameter into variance (6.296), we find

�

(6.298)

Due to the symmetry of choice of site i on the lattice, we substitute one of the sums 
by N:

�
(6.299)

which provides the sought relation between the susceptibility and the integral of the 
correlation function:

�
(6.300)

In the σ-ensemble, the probability (5.39) of a microstate D{ } no longer obeys the 
functional dependence of Gibbs probability (the distribution of probabilities is not 
Gibbsian). Thereby we can define neither the partition function of the ensemble nor 
the susceptibility as the second derivative of the logarithm of this partition function.

How then can we define the susceptibility? Damage D0 seems to be a good can-
didate to play the role of the order parameter while the reasonable choice of the field 
parameter is the external force σ  as the boundary condition of the ensemble. The 
susceptibility is then naturally defined as the response of the order parameter to the 
change in the field parameter:

�
(6.301)
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Recalling the parabolic dependence (5.52) of the stress σ  on D0  in the vicinity 
of the spinodal point, we immediately find

�
(6.302)

where the spinodal index γσ
S =1 2/  coincides with the spinodal index (3.126) of the 

magnetic system, γ h
S =1 2/ , and with the spinodal index θσ

S =1 2/  of (5.63).
However, in spite of the fact that hypothesis (6.301) is beautiful and returns the 

reasonable value of the mean-field spinodal index, it is, in fact, wrong! The reason 
of such a harsh conclusion is that hypothesis (6.301) does not obey the fluctuation–
dissipation theorem.

How can we prove that? Defining the susceptibility in this chapter, we have 
discussed its role in the fluctuation–dissipation theorem. However, what we have 
not discussed yet is a special role played by the susceptibility in the theory of phase 
transitions. We overcome this drawback in the following sections. Simultaneously, 
it will help us to answer the question about the susceptibility definition in the σ-
ensemble.

6.12 � The Ising Model

First, we consider the mean-field approach (3.85) of the ferromagnetic n.n. Ising 
model:

� (6.303)

The probability of a fluctuation m{ }{ } is
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corresponds to the equilibrium magnetization m0 determined by the equation of 
state (3.86):

� (6.308)

In the vicinity of the critical point T AC = 2 µ, we expand this equation as

�
(6.309)

�
(6.310)

Let us expand the logarithm of (6.304) in powers of fluctuating m in the vicinity 
of m0:

�

(6.311)

For the second derivative, expanding in small t, h, and m, we find

�

(6.312)

where we have utilized (3.115) for the magnetic susceptibility.
In a similar manner, we find the third and fourth derivatives:
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Substituting (6.312) into (6.311) and exponentiating the obtained expansion, we 
find the Gaussian probability distribution of fluctuations in the vicinity of the point 
m0:

�
(6.315)

where, as we already know, the susceptibility plays the role of the variance of the 
distribution and determines the amplitude of the relative fluctuations of the mag-
netization:

�
(6.316)

We have seen similar expression (2.151) before, in Chap.  2. In addition to that 
result, now we find that the numerator of this expression is not just unity but the 
square root of the susceptibility.

As we know from Chap.  3, the magnetic susceptibility diverges in the vicin-
ity of both the critical and spinodal points. Thereby the second derivative (6.312) 
becomes zero. This means the divergence of fluctuations (6.316) which become 
infinite at the critical or spinodal points.

Let us firstly approach the critical point mC = 0, hC = 0. The third derivative 
(6.313) is also zero at the critical point while the fourth derivative remains nonzero. 
The probability distribution W m

CE
{ }{ } stops being Gaussian. Instead, there emerges the 

probability distribution determined by the 4th-order term in expansion (6.311):

�
(6.317)

For the relative fluctuations of the magnetization this provides:
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,  the third derivative (6.313) is not zero. This means that the 

local Gaussian maximum of the probability distribution is broken leaving the point 
of inflection leading to the global maximum of probability. Therefore, it is meaning-
less to discuss small fluctuations at the spinodal point.

Finally, we should recall that in accordance with (2.269) and (2.270), the defi-
nition of the free energy potential is to be equivalent to the minus logarithm of 
the probability distribution. Therefore, instead of maximizing probability for the 
Ising model, we could minimize the Helmholtz free energy. In this case, we would 
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again invoke Figs. 3.6 and 3.7 of Chap. 3. So, we would discuss, for example, the 
inflection point not of the probability distribution but the inflection point of the free 
energy in Fig. 3.7. However, we have preferred to consider in this chapter the prob-
ability distribution and not the free energy with the purpose to compare the results 
later with the FBM under the constant force boundary condition which possesses 
neither a partition function nor a free energy potential.

6.13 � The FBM: The ε-Ensemble

For the FBM, we consider the ε-ensemble first. The probability of a fluctuation 
D{ }{ } is provided by (5.9) and (5.10). The point of a maximum of this probability 

distribution is determined by

�
(6.319)

generating the equation of state (5.14):

� (6.320)

Similar to the previous section, we expand the logarithm of the probability distri-
bution W D{ }{ }

−ε E  in a series of small fluctuations of D in the vicinity of the equilibrium 
value D0:
�

(6.321)

For the second derivative we find again the connection with the susceptibility, 
given by (6.295):

�

(6.322)

With the exception of trivial points D0 0=  and D0 1= , susceptibility (6.295) is 
always nonsingular. Therefore, the distribution of probabilities W D{ }{ }

−ε E  is always 
Gaussian:

�
(6.323)

∂

∂
=

{ }{ }
−ln

,
W

D
D

D

ε E

0

0

D P E0 = ( ).ε

ln ln
ln

( )W W
W

D
D DD D

D

D

{ }{ }
−

{ }{ }
− { }{ }

−

= +
∂

∂
− +…ε ε

ε
E E

E

0

0

1
2

2

2 0
2

1 1
1

1
2

2
0 0

0

N

W

D D D
D

D

∂

∂
= −

−
= −

{ }{ }
−ln

( )
.

ε

χ

E

W eD

ND ND
N

{ }{ }
−

−
−

∝ε χE
( )

( ) .
0

2

2



6  Correlations, Susceptibility, and the Fluctuation–Dissipation Theorem356

Again, the susceptibility plays in this distribution the role of the squared standard 
deviation due to its association with the variance of ND. For the relative fluctuation 
of ND we, therefore, find

�
(6.324)

6.14 � The FBM: The σ-Ensemble

In the σ-ensemble, the distribution of probabilities is not Gibbsian, the partition 
function is not defined, and therefore, we cannot find the susceptibility as the sec-
ond derivative of its logarithm.

However, there is no need to define the susceptibility by means of the deriva-
tives of the partition function. Instead, we can utilize the fluctuation–dissipation 
theorem and define the susceptibility by its connection with the variance of the 
order parameter:

� (6.325)

We can find directly this variance by averaging D and D2 in the σ-ensemble. 
However, it is much easier to look again at the squared standard deviation of the 
probability distribution W D{ }{ }

−σ E  itself.

The distribution of probabilities W D{ }{ }
−σ E  in the σ-ensemble is given by (5.40). The 

point of maximum

�
(6.326)

determines the equation of state (5.41):

�
(6.327)

Next, we again expand the logarithm of the probability W D{ }{ }
−σ E  in a series of small 

fluctuations of D in the vicinity of the equilibrium value D0:
�

(6.328)
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For the second derivative, we find

�
(6.329)

or, applying (5.46):

�

(6.330)

Being consistent with the previous discussions, we define the susceptibility as 
the squared standard deviation of the probability distribution which represents the 
variance of D:

�

(6.331)

� (6.332)

When the susceptibility is not divergent, exponentiating (6.328), we return to the 
case of the Gaussian distribution:

�
(6.333)

The relative fluctuations of D are determined by the previous dependence:

�
(6.334)

In the vicinity of the spinodal point susceptibility (6.332) diverges as

�
(6.335)

in contrast to our previous hypothesis (6.301).
Recalling (5.52), for the spinodal index γσ

S , defined by

1 1
1

1
1

2

2
0 0 0

2

2

0

0N

W

D D D D
P

D

D

D

∂

∂
= −

−
−

−
′











{ }{ }
−ln

( ) ( )

σ
σ

E

1 1
1

1
1

2

2
0 0 0

0
2

0

N

W

D D D D
dD
d

D

D

∂

∂
= −

−
+

−










{ }{ }
− −ln

( )
.

σ
σ

σ

E

1 1
2

2

0

N

W

D
D

D

∂

∂
≡ −

{ }{ }
−ln σ

χ

E

 or

χ
σ σ

σ
≡ − −

−
′









 = − +

−





−

D D
D

P D D
D

dD
dD0 0

0
2

2

0 0
0

01 1
1

1 1
10

( )
( )

( )





2

.

W eD

ND ND
N

{ }{ }
−

−
−

∝σ χE
( )

( ) .
0

2

2

δ χND
ND N

∝ .

χ
σ

∝ 







dD
d

0
2



6  Correlations, Susceptibility, and the Fluctuation–Dissipation Theorem358

�
(6.336)

we find the mean-field value γσ
S =1 which is quite different from the wrong value 

γσ
S =1 2/  predicted by hypothesis (6.301).

Susceptibility (6.332) corresponds to the variance (6.325) of D just by definition. 
To prove that it also equals the integral of the correlation function, we introduce the 
effective variables σ i and substitute (6.297) into (6.325). The rest of the proof fol-
lows formulae (6.297–6.300).

The last relation we have to build for the susceptibility is to prove that it is a re-
sponse of some order parameter to the change in some field parameter. The sought 
order parameter has been, in fact, already chosen implicitly to be ND by our deci-
sion that the distribution of probabilities W D{ }{ }

−σ E  should depend on D (and not, e.g., 
on some function of D). Hence, we built fluctuations D{ }{ } and expanded W D{ }{ }

−σ E  in 
a series of these small fluctuations. This led to the definition (6.332) of the suscep-
tibility (as the squared standard deviation of W D{ }{ }

−σ E) to represent the variance of the 
already chosen order parameter ND.

Therefore, the order parameter is proposed to be D by all our formulae above. On 
the contrary, the choice of the field parameter π is much more ambiguous. Writing 
the susceptibility as the response of D0 to the change in π,

�
(6.337)

we find the last by integration

�

(6.338)

where we have substituted σ  from the inversion of the equation of state (5.41):

� (6.339)
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After integrating (6.338), we should find the dependence D0 ( )σ  from the equation 
of state and substitute it into the result of integration, leaving the dependence of the 
field parameter π only on the value of σ .

Unfortunately, it is impossible to perform integration (6.338) analytically for an 
arbitrary strength CDF P.

Problem 6.14.1

Find the field parameter π for the particular case of the strength distribution 
(5.33 and 34).

Solution: Substituting (5.34) into (5.41), we find the equation of state:

� (6.340)

�
(6.341)

Differentiating (6.340) with respect to D0, we find the derivative

�
(6.342)

Substituting this derivative and (6.340) into the definition of susceptibility 
(6.332), we obtain:

�
(6.343)

To find the field parameter π, we should integrate this dependence

�
(6.344)

� (6.345)

Integrating, we find the functional dependence π π= ( )D0 . Substituting here 
D0 from (6.341), we obtain the connection of the field parameter π with the 
external force, π π σ= ( ), which is cumbersome and, therefore, not presented 
here.
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Why does quantity (6.332), which we have proved to be the susceptibility of the 
system, differ from our earlier hypothesis (6.301)? The one reason that we already 
know is that hypothesis (6.301) does not correspond to the variance (6.325) of the 
order parameter.

But hypothesis (6.301) was indirectly supported by our expectations that the 
characteristic time (5.60) of the decay of relaxation processes should be propor-
tional to the susceptibility of the system and, thereby, in the vicinity of the spinodal 
point should diverge with the same exponent. In Chap. 5, we found θσ

S =1 2/  which 
coincides with γσ

S =1 2/  but not with γσ
S =1. This supports hypothesis (6.301) but 

not the true susceptibility (6.332). Why?
To answer this question, we should understand that susceptibility (6.332) rep-

resents the probability distribution W D{ }{ }
−σ E  in the ensemble. This probability distri-

bution is responsible for differences of the quenched strength disorder among the 
systems of the ensemble; however, it cannot represent the evolution of fiber failures 
during a relaxation process for one particular system.

For magnetic systems, this question did not arise because in Chap. 3 the probabil-
ity distribution W m

CE
{ }{ }  represented the statistical properties of reversible fluctuations 

m{ }{ } and was responsible for both the differences among the systems in the ensem-

ble and evolution (3.107) of one particular system since
ln

.−
∂
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Thereby, the susceptibility determined both the variance of fluctuations and charac-
teristic time of relaxation processes.

In the case of damage phenomena, this logic is no longer applicable since we no 
longer consider reversible phenomena. Damage is irreversible.

Unfortunately, in our model the probability W D{ }{ }
−σ E  does not take into account 

the irreversibility. Thereby, the probability distribution W D{ }{ }
−σ E  does represent the 

fluctuations of the quenched disorder in the ensemble; but we cannot rely on it to 
describe the dynamical evolution of avalanches in one particular system.

Instead of applying the Ginzburg–Landau–Langevin equation, in Chap.  5 we 
considered the irreversible iteration equation (5.54). This equation directly em-
ployed the probabilities to fail for each fiber separately if this fiber was supposed 
to carry the prescribed load. Since the iteration equation is not associated with sus-
ceptibility (6.332), we can no longer expect the critical indices to be equal to one 
another.

Why is the Ginzburg–Landau–Langevin equation (3.107) not valid for the irreversible 
processes? Because this equation employs the probability W D{ }{ }

−σ E , describing the 
ensemble, not the evolution of a particular system. Imagine, for example, that the 
current microstate of the system is { }¦¦¦||  when the first three fibers are broken. 
Let us suppose that at the next state of the system the Ginzburg–Landau–Langevin 
equation recommends us to break one more fiber. But this equation employs the 
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probability W D{ }{ }
−σ E  which is the product W wD D D{ }{ }

−
{ }{ }

−=σ σE EΓ { } . Here, the statistical 
weight  Γ D{ }{ } considers all possible microstates, including those when some of 
the first three fibers are still intact. Therefore, generating its recommendation, the 
Ginzburg–Landau–Langevin equation considered microstates with arbitrary distri-
bution of broken fibers as possible outcomes. For example, one of the considered 
outcomes, when we break one more fiber, was not necessarily {¦¦¦||} {¦¦¦¦|}⇒  or 
{¦¦¦||} {¦¦¦|¦}⇒ , but may be {¦¦¦||} {|¦¦¦¦}⇒ .

But damage is irreversible. Therefore, our system cannot heal the broken fibers, 
and the majority of microstates, contained in the statistical weight Γ D{ }{ } ,  are not 
suitable for its further evolution. For the Ising model, we did not have such a prob-
lem since nothing prevents for all spins to flip at once. However, we may encounter 
similar difficulties for heterogeneous gas–liquid systems when, for example, a void 
within the volume of the liquid cannot disappear or appear immediately but only 
through a chain of intermediate states. In other words, the system becomes par-
tially irreversible and, applying the Ginzburg–Landau–Langevin equation here, we 
should consider not the total set of microstates as possible outcomes, but only some 
subset of them.

As we have mentioned above, for the general case of an arbitrary distribution P, 
we cannot find the field parameter π analytically. However, we can find its scaling 
in the vicinity of the spinodal point. Indeed, considering definition (6.337) applied 
in the close proximity of the point S,

�
(6.346)

and recalling (5.52), we obtain

�
(6.347)

But for the susceptibility, we have found divergence (6.336) with γσ
S =1. Substitut-

ing it into (6.347), we find the scaling of the field parameter π in the vicinity of the 
spinodal point:

�

(6.348)

The new field parameter π is a “true” field parameter, coupled to the order param-
eter D0  by the standard deviation of the probability distribution; and we should 
reconsider all scaling dependencies, recreating them with respect to this parameter 
instead of the previous field parameter σ. With the aid of (5.52) and (6.336), we find 
the scaling of the order parameter,
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�
,                                    (6.349)

and of the susceptibility,

�
(6.350)

with two new spinodal indices: βπ
S /=1 3  and γπ

S /= 2 3.
But let us return to the fluctuations in the ensemble. The divergence of suscep-

tibility (6.332) at the spinodal point leads to the divergence of fluctuations (6.334). 
Thereby the second derivative (6.331) becomes zero, transferring the leading role 
in expansion (6.328) to higher-order corrections.

The third derivative at the spinodal point is zero also

�
(6.351)

but the fourth derivative happens to be nonzero:

�

(6.352)

Substituting these derivatives into expansion (6.328), we obtain the distribution 
of probabilities in the vicinity of the spinodal point:

�

(6.353)

The fact that the third derivative is zero at the spinodal point indicates that our 
model (as well as, e.g., the van der Waals equation) does not contain a mechanism to 

operate with the unstable states 
∂
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D0 0
σ

. In particular, the model provides maxima 

of probability W D{ }{ }
−σ E  for both the unstable state D0 2,  and stable state D0 1,  from 

Fig. 5.9, not taking into account the fact that in the unstable state D0 2,  the fibers 
continue to fail leading to lower values of the supported force σ . The correct model 
should possess the nonzero third derivative to generate the point of inflection.
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Instead, in our model we see two maxima of the probability distribution W D{ }{ }
−σ E , 

one at D0 1, , another at D0 2, , which coalesce when the external force σ  approaches 
its spinodal value. This is very similar to the critical behavior and has led several 
studies to the conclusion that this is not the first-order phase transition but a con-
tinuous phase transition.

The question whether point S in Fig. 5.9 is a spinodal point or a critical point still 
remains open in the literature (Rundle and Klein 1989; Sornette and Sornette 1990; 
Blumberg Selinger et  al. 1991; Sornette and Sammis 1995; Buchel and Sethna 
1996; Andersen et al. 1997; Buchel and Sethna 1997; Zapperi et al. 1997; Sornette 
and Andersen 1998; Zapperi et al. 1999a, b; Kun et al. 2000; Moreno et al. 2000, 
2001; Pradhan et  al. 2002; Bhattacharyya et  al. 2003; Sornette 2006; Abaimov 
2008; 2009; and ref. therein) and requires further investigation.
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Chapter 7
The Renormalization Group

Abstract  In the previous chapters, we saw that the mean-field approach always 
determines the critical or spinodal indices as simple integers or rational fractions, 
like 1 or 5/2. Even more, such indices are considered to be an indicator that the 
behavior of a system is dominated by the mean-field approach. If the exact solution 
of a problem provided such simple numbers, the dimensionality of the considered 
system would probably be above the upper critical dimension, when the mean-field 
approach represents the exact critical indices, or interactions in the system would be 
long-range which would lead to the same result.

However, as we know from Chap.  6, the Ginzburg criterion states that if the 
dimensionality of a system with short-range interactions is lower than the upper 
critical dimension (which generally corresponds to our three-dimensional space), 
the mean-field approach is too crude to describe the behavior of the system within 
the critical region. The mean-field approach may still be considered as a good il-
lustration of a phase transition, but the predicted values of the critical indices are far 
from being accurate.

Besides, as we discussed in Chap. 6, the mean-field approach is not at all capable 
to explain the influence of the dimensionality of a system on its behavior—there 
would be much poorer diversity of the critical indices if all systems obeyed the 
mean-field approach exactly.

And what is even worse, it is not possible to improve the accuracy of the mean-
field approach within the method itself. Only the introduction of newer approaches, 
within the mean-field approach as well as independent, can improve the situation.

In this chapter, we consider the renormalization group (RG) of coarse graining 
as an alternative approach to the mean-field approximation. The critical indices 
determined by this technique are no longer simple integers or fractions. And what is 
more important is that the RG approach contains, within its formalism, the recipes 
of how to make calculations more accurate so that the predicted results would be 
closer to the experimental values.

That is why the RG has been met with such general approval in the literature. Even 
for the critical indices themselves, to distinguish them from the “habitual” mean-field 
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values, a special term anomalous dimension has been introduced which represents 
the difference between the real index and its value provided by Landau theory1.

7.1 � Scaling

As we saw in Chap. 6, the topological behavior of clusters depends significantly on 
the scale considered. The characteristic length dividing two types of behavior is the 
correlation length ξ which diverges at the critical point.

On scales less than the correlation length, the fluctuations are probable so that 
they dominate the behavior of a system. These scales could be called the scales of 
fluctuation foam (similar to the term “quantum foam” with very close meaning). 
There is no own characteristic length on these scales, so the clusters are fractal 
(scale invariant) and come in all shapes and sizes, from the lattice constant to the 
correlation length.

Scale invariant is not only the distribution of clusters but also the inner structure 
of these clusters. An example is shown in Fig. 7.1 where we plot a cluster near the 
percolation threshold.

In Fig. 7.1a, we consider the finest scale of linear size L = 31. Increasing the size 
of the window through which we are looking at the system, we see in Fig. 7.1b that 
although for L = 62 the piece of the cluster is four times bigger, the fractal structure 
of the cluster remains the same—if we distinguished only the cluster perimeter and 
were not able to distinguish separate sites, we would not see any difference between 
Figs. 7.1a and b.

In Fig. 7.1c, we again increase the scale twice—now the linear size of the win-
dow is L =125. And again, nothing changes in the fractal structure of the piece cut 
from the cluster by the frame of the window.

We observe the first changes when the scale becomes L = 250 (Fig. 7.1d). The 
gaps in the cluster are now wider, while the “external” boundary of the cluster is 
less fractal and starts to resemble a perimeter of a nonfractal compact set. What has 
happened? Probably, we have crossed the scale of the correlation length.

1  Here, we have oversimplified the definition of the term “anomalous dimension.” It can be dem-
onstrated by dimensional analysis that the mean-field critical indices are the consequence of the 
presence of a characteristic length in the system—the correlation length. However, the anomalous 
“additions” on top of the mean-field values can be explained only by the presence of another 
characteristic length in the system beside the correlation length. This new characteristic length is 
generally associated with the lattice constant. However, as we see in this chapter, the lattice con-
stant does not survive the coarse graining. Therefore, we support the point of view that this new 
characteristic length of the system is associated not with the lattice constant but with the properties 
of scale invariance. So in Chap. 1, we saw that the dimensionality of a fractal depended not on 
the properties of the initial branch but on the properties of the fractal generator. Something similar 
happens during the coarse graining as well when critical indices depend not on the lattice constant 
but on the correspondence we build between the initial and new models during the RG transforma-
tion. We return to this question, in more detail, in the next chapter where we will find that the RG 
transformation can explain the scaling appearing in a system in the vicinity of its critical point.
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Fig. 7.1   The structure of a cluster near the percolation threshold
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These changes become even more apparent for L = 500 and L =1000  in 
Figs. 7.1e and f. On scales larger than the correlation length, the structure of the 
cluster is no longer fractal.

The fractality (scale invariance) of the system’s fluctuations on scales smaller 
than the correlation length is the physical property itself. And since it is a physical 
property, it should be described by some physical laws. It would be very important 
to find these laws because they presented something new in the description of our 
system; something that we have not studied in the previous chapters.

The scale invariance means that if we know the behavior of the system in 
Fig. 7.1a, we should be able to derive the system’s behavior in Fig. 7.1b just by 
simple analogy. Would it be possible to develop the laws of the system’s behavior 
just from the concept that the system is scale invariant?

Such a technique does exist and is called coarse graining. The mathematical for-
malism of this technique is based on the renormalization group (RG). Initially, the 
RG was developed in quantum field theory but nobody suspected then that it is also 
applicable in statistical physics. The first ideas of coarse graining were postulated 
by Leo Kadanoff (Kadanoff 1966). Later, the mathematical formalism of the RG in 
application to critical phenomena in statistical physics was developed by Kenneth 
Wilson (Wilson 1971a, b; Wilson and Kogut 1974) who, in 1982, was awarded the 
Nobel Prize for this discovery.

The appearance of the RG caused a boom of new discoveries in the literature. 
The RG has happened to be applicable not only to thermal systems but also to sys-
tems which have never been considered by statistical physics. This has led to the 
hope that the formalism of statistical physics is able to describe not only thermal but 
also complex phenomena.

The RG transformation can be formulated in both momentum and real (coordi-
nate) space. In our book, we consider only the real-space RG because this approach 
has been applied to a wide variety of complex systems. Besides, the real-space 
renormalization seems, to us, to be the most illustrative.

We start our discussion with the approach that we consider to be the most rigorous.

7.2 � RG Approach of a Single Survivor:  
One-Dimensional Magnetic Systems

To study RG, we start from the simplest example—the canonical ensemble (CE) 
of the one-dimensional ferromagnetic nearest-neighbor (n.n.) Ising model with the 
periodic boundary conditions (a chain of spins forms a ring). The Hamiltonian of 
the model is

�
(7.1)

Here, σ σN+ ≡1 1 due to the periodicity of the boundary conditions.

H{ } .σ µ σ σ σ= − −
=

+
=

∑ ∑h Ji
i

N

i i
i

N

1
1

1
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For convenience, we rewrite Hamiltonian (7.1) as

�
(7.2)

The partition function of the CE is

�
(7.3)

while Gibbs probability distribution of microstates σ{ }  is

�
(7.4)

We see that neither temperature nor interaction constants are included in the prob-
ability distribution (7.4) separately but form two combinations:

�
(7.5)

which are called the coupling constants. In terms of these coupling constants, Gibbs 
probability distribution is

�
(7.6)

Coarse graining means that, investigating the system’s behavior, we do not 
want to see all the microdetails of how one spin interacts with another. Indeed, why 
should we, when at rougher scales the behavior is the same?

Therefore, we are going to coarse grain our model by half. In other words, we are 
going to halve the number of degrees of freedom in the system so that the remaining 
half would represent the same behavior. Therefore, we consider the number N of 
spins in the chain to be even.

To perform the coarse graining, we divide the chain of spins into cells with b = 2 
spins in each cell (Fig. 7.2, top). Then, we build a new model when each cell of the 
initial model generates only one spin in the new model (Fig. 7.2).
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Fig. 7.2   The RG in action: 
Each cell of the initial model 
( top) generates one spin in 
the new model ( bottom)
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The new model contains twice less spins: N N′ = / 2 . The lattice constant of the 
new model is twice larger. However, we intend the new lattice to look exactly like 
the initial one with the same lattice constant. Therefore, we rescale the length of the 
new model twice so that the RG does not change the lattice constant but the length 
of the model shrinks twice. To put it in a different way, we always measure the 
length of the model in units of the lattice constant. Our RG transformation has the 
parameter b = 2. We see now that r b=1/  is the scale factor which determines how 
the size of the lattice shrinks.

Each cell of the initial model contains two spins. Possible microconfigurations 
of spin orientations for a cell are ↑↑{ }, ↑↓{ }, ↓↑{ }, and ↓↓{ }. To form a microstate 
σ{ } of the initial system, we should prescribe to each cell of it one of these four 

microconfigurations.
The new model has its own microstates σ ′{ }. Somehow, we should build the 

correspondence between the initial microstates σ{ } and the final microstates σ ′{ }.
There are no explicit rules how we do that. This is the subjectivity introduced 

into the formalism by an investigator (very much like a hypothesis in Bayesian 
analysis). Even more, as we will see later, this is the measure of the skillfulness of 
the investigator. The more ingenuous the investigator was inventing the rule of cor-
respondence, the more accurate results the RG would return.

Another side of this concept is that since the investigator introduces some sub-
jectivity into the formalism, the RG cannot provide exact results. We should under-
stand that the RG is merely a tool helping us to investigate the system’s behavior; 
and it returns not exact but approximate results.

Our purpose is to keep the behavior of the system unchanged during the coarse 
graining. What if, for microstates σ ′{ } to represent microstates σ{ }, we would keep 
the orientations of some spins untouched, while not paying attention to the orienta-
tions of the rest of the spins?

In other words, we look at the orientation of the first spin in a cell and make 
the orientation of the spin on the new lattice the same. Simultaneously, we com-
pletely disregard the orientation of the second spin in the cell (Fig. 7.3). We call it 
the single-survivor approach since only the first spin in the cell “survives” the RG 
transformation and is transferred onto the new lattice with its orientation intact. The 
second spin “disappears.” Therefore, this procedure is also called decimation.

As a result, two cell microconfigurations, ↑↑{ } and ↑↓{ }, provide the new spin 
oriented “up,” while another two cell microconfigurations, ↓↑{ } and ↓↓{ }, provide 
the new spin oriented “down.” Thereby, we have built the rule of the correspon-
dence between the initial microstates σ{ } and the new microstates σ ′{ }. Also, we 
see that there are many initial microstates σ{ } corresponding to the same final mi-
crostate σ ′{ }—these initial microstates σ{ } differ from each other by the orienta-
tions of the second spins in the cells.

Fig. 7.3   The single-survivor 
approach
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To keep the behavior of the system unchanged, we should require that the prob-
ability to observe a microstate σ ′{ }  on the new lattice would equal the probability 
to observe the corresponding microstates σ{ } on the initial lattice. In other words, 
for each particular σ ′{ }, we should sum Gibbs probabilities (7.6) of the correspond-
ing σ{ }—this provides the very probability of σ ′{ }:

�

(7.7)

Here, we keep the “surviving” spins unchanged, σ σ2 1i i− = ′ , while summing over 
the orientations of the “disappearing” spins σ 2i. Equality (7.7) is the rule of invari-
ant probabilities of our RG transformation.

Our purpose is that the new system would resemble the initial one in all respects. 
Under the term “resemble,” we understand that the lattice shape and the functional 
form of the Hamiltonian (spins interact with the external field and in pairs) should 
be exactly the same for the initial and final systems. The systems similar in this 
sense are said to belong to the same universality class.

Therefore, the new Hamiltonian H′ ′{ }σ  and Gibbs probability w CE′ ′{ }
′

σ  should have 
the same functional dependences, (7.1) and (7.6), on spin orientations:

� (7.8)

�
(7.9)

However, both coupling constants, K ′1 and K ′2, can change. In other words, coarse 
graining of our system may change its field parameters, T and h, or interaction 
constants, μ and J, for the sake of keeping unchanged both the lattice shape and 
the functional form of the Hamiltonian. This was the purpose of introduction of the 
coupling constants as quantities that “absorb” all parameters which may change.

Substituting (7.6) and (7.9) into (7.7), we find

�

(7.10)
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This equality should be valid for arbitrary orientations of spins σ ′i  and σ ′ +i 1:

�

(7.11)

There are three independent equations here and three independent variables: K ′1, 
K ′2, and Z CE′ ′. The solution is

� (7.12)

�
(7.13)

� (7.14)

These equations associate the new coupling constants with the initial coupling 
constants. We see that the RG transformation has created a system identical to the 
initial one, but supported at different values of the field parameters and interaction 
constants. The initial and final systems, connected by the RG transformation, are 
said to belong to the same universality class.

From the third equation, we see that for any values of the coupling constants, 
the logarithm of the partition function always decreases, at least by the quantity 
N ln 2  (when all cosh functions equal unity). This happens because the coarse 
graining reduces the degrees of freedom so that the partition function must de-
crease. The minimal decrease,

�
(7.15)

corresponds to the case when both coupling constants are zero (when temperature is 
infinite). This result could be foreseen. When the temperature is very high, the ex-
ponential functions e−β σH{ }  in the partition function all equal unity without regard 
to the energies of particular microstates. The partition function, as the sum of these 
exponential functions over the energy spectrum, transforms into the total number 
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2N  of microstates in the Ising model. Therefore, by reducing the number of degrees 
of freedom twofold, we should divide the partition function by 2 2N / .

The RG transformation is not always built in a manner similar to the approach 
presented above. Often, an additional coupling constant K0  is introduced in Gibbs 
probability (7.6):

�
(7.16)

The purpose of this coupling constant is to keep the partition function unchanged:
�

(7.17)

while
� (7.18)

For thermal systems, the difference between the two approaches is just a matter 
of notation or convenience. However, we do not consider the introduction of K0 to 
be expedient for several reasons. First, the coarse graining must reduce the number 
of degrees of freedom which requires the decrease of the partition function. Intro-
ducing K0, we replace intuitively understandable decrease of the partition function 
by the change of the new coupling constant K0.

Second, in the future, we will pay attention to the fixed points, K K ii i′ = ∀ , of 
the RG transformation on the space of coupling constants. In other words, we will 
be looking for the values of coupling constants which the RG transformation does 
not change. Obviously, the partition function cannot have a fixed value and always 
decreases. Thereby, the new coupling constant K0 must always increase during the 
RG transformation and cannot have a fixed value either. And after the introduction 
of K0, the RG cannot have a fixed point on the space of coupling constants! So, 
we would have to say constantly that K0  is not a true coupling constant, that it is 
a “white crow” among other coupling constants, and that we are looking for the 
fixed points of the RG on the reduced space of coupling constants when K0 is not 
included in this space. So, finally, we will have to exclude K0 from consideration.

What was the reason of introduction of K0 in the literature? This coupling con-
stant appears inevitably when instead of considering rule (7.7) of invariant prob-
abilities, we build our RG transformation on rule (7.18) of invariant partition func-
tion. In other words, instead of equating probabilities (7.7) of corresponding states, 
we equate the partition functions (7.18) to guarantee that the behavior of the new 
model represents the behavior of the spins on the initial lattice. This means that to 
keep the behavior of the system unchanged, as unchanged we transfer from the ini-
tial system to the final system not the probabilities but the partition function!

For thermal systems, both approaches appear to be valid and return exactly the 
same results due to the fact that they differ only by the variable change. So, for 
thermal systems, this is just a matter of notation.
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However, if we study complex systems like percolation or damage, these sys-
tems often do not possess the partition function as such. To find the susceptibility of 
the fiber-bundle model (FBM) under the constant load condition, we had to return 
in the previous chapter from the partition function formalism to the probability 
distribution itself.

Similarly, the RG transformations cannot be built on the base of rule (7.18) for 
these systems. Instead, we have to return to the probability distribution itself and to 
consider rule (7.7) when we keep invariant the probabilities of the corresponding 
states. Therefore, the rule (7.7) of invariant probabilities is more fundamental than 
the rule (7.18) of invariant partition function.

Here, we encounter that particular case when the application of the formalism of 
statistical physics to complex systems demonstrates in the result of the comparison 
analysis what is imperfect in statistical physics itself! Obviously, equating the prob-
abilities appears much more reasonable and understandable intuitively than equat-
ing partition functions. Therefore, in future, as the rule of the RG transformation, 
we will always utilize (7.7).

Problem 7.2.1

In the absence of magnetic field, build the RG transformation for the one-
dimensional ferromagnetic n.n. Ising model with the periodic boundary con-
ditions when the cell of the RG transformation contains an arbitrary number 
b of spins.

Solution: The Hamiltonian of the system is

� (7.19)

the partition function of the CE is

� (7.20)

and Gibbs probability is

� (7.21)

There is only one coupling constant in this case:

� (7.22)

so Gibbs probability transforms into

�
(7.23)
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We divide the chain of spins into blocks of size b (assuming that N is a 
multiple of b). The first spin of each cell “survives” the RG transformation 
keeping its orientation in the new model ( the approach of a single survivor). 
The rest of the spins in the cell “disappears” ( decimation). For example, for 
b = 3, the initial cell microconfigurations ↑↑↑{ }, ↑↑↓{ }, ↑↓↑{ }, and ↑↓↓{ } 
result in the spin oriented “up” on the new lattice. The rest of the cell micro-
configurations transform into the spin oriented “down.”

This is our subjective rule of microstate correspondence. After we have 
hypothesized it, the next step is straightforward—applying the rule (7.7) of 
the RG, we guarantee that the probabilities of the corresponding states are 
unchanged by the transformation:

� (7.24)

In other words, for the given orientation of the “surviving” spin σ σib b i− − = ′( ) ,1  
we sum the orientations of the “disappearing” spins σ σib b ib− − …( ) , ,2 :

�

(7.25)

Noticing that equality

�
(7.26)

is valid for arbitrary spin orientations σ i = ±1, σ j = ±1, we transform (7.25) into

�

(7.27)
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Removing the brackets in the right-hand side, we obtain terms, containing 
the “disappearing” spins in the 0th, 1st, and 2nd powers. Since the sums go over 
two projections σ i = ±1, all terms, linear in the “disappearing” spins, cancel 
themselves out.

So, in the right-hand side, only the terms with the 0th or 2nd powers of 
the “disappearing” spins remain. If a “disappearing” spin σ i  is in the 2nd 
power in a particular term, this term must have been formed as the product of 
σ σi i K−1 tanh  and σ σi i K+1 tanh . Therefore, this term contains σ i−1  and σ i+1 
also. For this term not to be cancelled out, σ i−1  and σ i+1  must be in the 2nd 
powers. But then this term must also contain σ i−2

2  and σ i+2
2 . And so on by 

induction.
As a result, we conclude that when the brackets in the right-hand side of 

(7.27) are removed, almost all terms are cancelled out leaving only two terms: 
the first is formed only by unities from all brackets, the second is formed only 
by σ σi i K+1 tanh  from all brackets:

�

(7.28)

The solution of this equation is

� (7.29)

� (7.30)
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Problem 7.2.2:

In the absence of magnetic field, build the RG transformation for the one-
dimensional ferromagnetic n.n. Ising model with the periodic boundary 
conditions when the spins can have three possible values of projections: 

1, 0, 1σ   = − +i  ( the spin-1 model also known as the Blume–Capel model, 
(Blume 1966; Capel 1966)).

Solution: The Hamiltonian of the system is (7.19), the partition function of 
the CE is (7.20), and Gibbs probability is (7.21). Introducing the coupling 
constant (7.22), we transform Gibbs probability into (7.23).

For simplicity, in this problem, we consider the cell consisting of b = 2 
spins ( N is assumed to be even). For the rule of correspondence, we again 
utilize the approach of a single survivor: The first spin of each cell “survives” 
keeping its orientation, and the second spin“disappears.” Equating probabili-
ties in accordance with (7.7), we find

�
(7.31)

In other words, for the given value σ σ2 1i i− = ′  of the “surviving” spin, we sum 
orientations of the “disappearing” spin σ 2i:

�

(7.32)

This equality should be valid for arbitrary orientations of spins σ ′i and σ ′ +i 1:

�

(7.33)
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There are four independent equations here but only two unknown variables, 
K ′ and Z CE′ ′. There is no possible solution of this system of equations.

For the first time, we have encountered the case when the RG seems to be 
inapplicable. However, such difficulties are usually easily overcome. What 
is the reason of the absence of a solution? That the number of the coupling 
constants is less than the number of the RG equations. If we introduced new 
coupling constants, the transformation would become possible.

What is the role of the coupling constants? We see that each coupling con-
stant is responsible for its own type of spin interactions: one for interactions 
of spins with the external magnetic field, and another for the pair bi-spin 
interactions among spins.

Therefore, we may conclude that in the considered model, some interac-
tions are overlooked. That is why we were not able to find another system 
belonging to the same universality class.

Next, we consider three coupling constants instead of one:

� (7.34)

The first coupling constant K1, as before, is responsible for the pair spin inter-
actions, the second coupling constant K2 is responsible for the interactions 
of the second powers of spin projections with some effective field, and the 
third coupling constant K3 is responsible for the second power of pair spin 
interactions:

�
(7.35)

�
(7.36)

Why have we chosen these particular forms of interaction? Why not con-
sider, for example, triple-spin interactions, quadro-spin interactions, or some 
other kind of interactions?

The most honest answer is: “Why not?”! We are trying to build the uni-
versality class for our particular system, but we do not know what this uni-
versality class is. If we were able to build the RG for some particular type of 
interactions, we would prove that our system belongs to the universality class 
of these interactions. Choosing other interactions, we may prove that it also 
belongs to a different universality class.

We again divide the lattice into cells of size b = 2 and again apply the 
approach of a single survivor. Substituting (7.36) into (7.31), we find
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�

(7.37)

This equality should be valid for any values of spin projections σ ′i and σ ′ +i 1:

�

(7.38)

There are four independent equations and four independent variables: K ′1, 
K ′2 , K ′3 , and Z CE′ ′ . The solution of this system of equations exists; but we do 
not adduce it here because it is cumbersome.
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In the examples considered above, we have built the RG transformation which has 
transformed the initial system into the new system, belonging to the same universal-
ity class (with the same lattice shape and the same interactions, but having different 
values of coupling constants). But for the new system, we could again perform the 
RG transformation with the aid of the same equations, connecting the second gen-
eration of the coupling constants with their values at the end of the first RG trans-
formation. This new system would again belong to the same universality class. And 
so on, we can perform the RG transformation very many times, creating succession 
of systems, inheriting properties from one another.

In the result, we obtain a chain of systems with the same interactions (with the 
same functional form of the Hamiltonian, with the same lattice shape, with the same 
behavior). These systems differ only by the values of their coupling constants repre-
senting field parameters and interaction constants.

If on the space of coupling constants we draw the succession of RG jumps as a 
curve, this curve is called the RG flow curve (Fig. 7.4). We obtain a new flow curve 
by slightly changing the coupling constants of the initial system. Since the lattice 
and the spin interactions are still the same, the new flow curve belongs to the same 
universality class.

How long can we continue the succession of the RG transformations? Can we 
do it infinite number of times? Obviously not, because the initial system is scale 
invariant only on scales less than the correlation length ξ, but on larger scales there 
is no scale invariance.

Performing coarse graining with r b=1/  being the linear-scale factor, we move 
from a detailed system to the less detailed system, reducing the “excessive” degrees 
of freedom. To keep the lattice invariant, we measure all distances in units of the lat-
tice constant. Obviously, the new lattice constant is b times larger than the old one. 
Therefore, all distances in the model shrink b-fold. So does the correlation length:

� (7.39)ξ ξ ξ′ = =r b/ .

Fig. 7.4   The RG flow curves 
form a universality class 
 

So, we have proved that the initial system and the final system belong to 
the same universality class with interactions (7.35 and 7.36). For the initial 
system, these interactions were not obvious because they were disguised by 
zero values of the coupling constants.
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Performing the RG transformation many times, we sometime reach the state when 
the linear size of the RG cell becomes comparable with the correlation length: b ∝ ′ξ
. Obviously, further transformations are impossible since there is no more scale in-
variance in the system. We have reached the limit of maximal coarse graining when 
we have reduced all “excessive” degrees of freedom. The number of the remaining 
degrees of freedom is the minimal number required to represent the system’s behavior 
correctly; and any further reductions will no longer reproduce the same behavior.

The coarse graining is the physical process; and (7.39) is the law representing 
this process without regard to a particular system under consideration.

Since the RG transformation always decreases the correlation length, this law 
has two important consequences. First, because shorter correlation length means 
larger distance from the critical point, we may conclude that the RG transformation 
always moves the system away from the critical point.

Second, the correlation length diverges at the critical point. Therefore, if the final 
system of the RG transformation is at its critical point, it corresponds to the infinite 
correlation length, ξ′ = +∞. In accordance with (7.39), this means that the correlation 
length of the initial system was also infinite, ξ = +∞, and the initial system was also 
at its critical point. So, only the critical point can transform into the critical point.

The opposite statement is generally not true—the critical point can transform 
into a noncritical point. However, in accordance with (7.39), we see that each time 
the correlation length decreases only b-fold. Therefore, to obtain the finite value of 
the correlation length from the initial infinite value may require an infinite number 
of transformations.

These tendencies of the RG transformation are presented in Fig. 7.5a—the flow 
curve originating at the critical point goes through a succession of critical points. 
This curve is called the critical flow curve or the critical manifold (or a part of this 
manifold if it has dimensionality higher than one). Adjacent flow curves with near-
critical coupling constants diverge away from the critical flow curve.

However, in advance, we should say that the critical flow curve does not always 
exist. Very often, this curve shrinks into a point to represent a critical fixed point 
of the RG transformation. In particular, this is true when there is only one coupling 
constant (Fig. 7.5b). Since the RG transformation tends to move systems away from 
the critical point, this fixed point must be a repeller.

7.2 � RG Approach of a Single Survivor: One-Dimensional Magnetic Systems�

>

<

=
a

b

Fig. 7.5   The RG transforma-
tion moves the system away 
from the vicinity of a critical 
point. Only a critical point 
can transform into a critical 
point
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Figure  7.5b illustrates that the flow curve, emerging from the critical point, 
not necessarily generates critical points also—there is only one critical point in 
Fig. 7.5b, and two-flow curves, spreading from it to the left and to the right, take the 
system farther and farther away from the critical state.

7.3 � RG Approach of a Single Survivor: Two-Dimensional 
Magnetic Systems

As we have seen in Chap. 3, the one-dimensional n.n. Ising model cannot have a 
phase transition at nonzero temperature. Therefore, we move to the two-dimension-
al systems and consider first the ferromagnetic n.n. Ising model on square lattice in 
the absence of magnetic field. The Hamiltonian of the system is

� (7.40)

the partition function of the system is

�
(7.41)

and Gibbs probability of microstates σ{ } is

�
(7.42)

If we introduced the single-coupling constant K J1 = β , similar to Problem 7.2.2, 
the number of equations would be higher than one, and we would not be able to 
build the RG again. This suggests that the universality class of our system has more 
complex spin interactions that are disguised in the particular case of our initial sys-
tem by zero values of coupling constants.

In particular, we consider bi-spin n.n.n. interactions and quadro-spin interactions 
of cells:

� (7.43)

� (7.44)

Here, < >∑ i j n n, . .  is again the sum of bi-spin interactions over the n.n. spin pairs. 
For site 5 in Fig. 7.6, this sum goes over the n.n. spin pairs σ σ5 2 , σ σ5 6 , σ σ5 8 , 
and  σ σ5 4 . The sum < >∑ i j n n n, . . .  represents also bi-spin interactions and goes over 
the next-nearest-neighbor (n.n.n.) spin pairs. For site 5 in Fig. 7.6, this sum goes 
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over the n.n.n. spin pairs σ σ5 1, σ σ5 3, σ σ5 9, and σ σ5 7 . The sum ∑
cells

 represents the 

quadro-spin interactions inside separate cells. For cell 1–2–5–4, this sum contains 
the term σ σ σ σ1 2 5 4.

Our initial system is the “degenerate” case of this universality class when two of 
three coupling constants become zero:

� (7.45)

Again, there has been no reason to consider these particular types of interactions. 
We just assume that our system may belong to this particular universality class. And 
if we will be lucky to build the RG transformation for these types of interactions, 
we will prove this statement. However, nothing prevents our system to belong to 
another universality class also as a “degenerate” case when some other coupling 
constants of that class are zero.

Let us look at the lattice of the initial model in Fig. 7.6. We will apply the same 
rule of a single survivor. “Surviving” spins σ 2, σ 4, σ6, and σ8 are presented as filled 
circles while “disappearing” spins σ1, σ3, σ5, σ7, and σ9 are represented by empty 
circles.

From Fig. 7.6, we see that the linear-scale factor of the RG transformation is 
r b= =1 1 2/ /  since the lattice constant (the length of the cell’s edge) increases by 
multiplier 2 (Fig. 7.7).

Applying the rule of invariant probabilities, we find

�

(7.46)

Here, we have shown explicitly only spins enumerated in Fig. 7.6. Contrary to the 
previous examples, we have kept the site numbers unchanged so that “surviving” 
spins have the same numbers on the initial and final lattices: σ σ′ =2 2, σ σ′ =4 4, 
σ σ′ =6 6, σ σ′ =8 8.
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Fig. 7.6   The RG on square 
lattice
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The sum goes over the projections of all “disappearing” spins σ1, σ3, σ5, σ7, 
σ9 ,… Let us, in this expression, keep only multipliers significant for the sum over 
the projections of the central spin σ5:

�

(7.47)

We see that in comparison with the one-dimensional systems, we can no longer 
separate the sum σ5 1=±∑  so that it would contain only σ5 and the surviving spins. 
Indeed, the bi-spin n.n.n. interactions, like σ σ1 5, or the quadro-spin interactions, like 
σ σ σ σ1 2 5 4′ ′ , would not allow that. Therefore, it is not possible to perform the sum-
mation analytically for the general case.

However, our initial system contained neither the bi-spin n.n.n. interactions nor 
the quadro-spin interactions: (7.45). Therefore, if we return to the particular case 
of our initial system, this will significantly simplify the summation. However, we 
should remember that in this case, we will build only one step of the RG transfor-
mation, from the initial system to the next system in the universality class. The 
obtained solution will not describe the following RG steps because these steps will 
start from systems with nonzero K2 and K3. So, having only one step of the RG, we 
would only guess what the whole flow curve is.

Substituting (7.45) into (7.47), we find

�

(7.48)

Summation over the projections of other “disappearing” spins leads to the ap-
pearance of similar multipliers 2 1cosh( { })K   on the right-hand side of (7.48):
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Fig. 7.7   A cell of the initial 
lattice versus a cell of the 
final lattice
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�

(7.49)

where the numbers of sites are presented in Fig. 7.8.
Equality (7.49) is formulated for the whole lattice. Instead, we can formulate an 

analogue of this equality but now only for just one cell. To move to the case of a 
separate cell, we notice that multipliers, associated with K1, K ′2, and K ′3 in (7.49), 
belong to a particular cell of the new model. However, multipliers, associated with 
K ′1 in (7.49), belong each to an edge between two adjacent cells of the new lattice. 
To reformulate (7.49) for the case of a separate cell, we, therefore, should take the 
square root of the last multipliers:

�

(7.50)

Here, we have used the fact that the number of new cells equals the number of new 
spins: N N b N′ = =/ /2 2.

Equality (7.50) should be valid for arbitrary spin projections σ ′2, σ ′4, σ ′6, σ ′8. If 
all spins have the same orientation, (7.50) transforms into

� (7.51)

If one spin is oriented opposite to three others:
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�
(7.52)

If one cell’s edge has spins oriented “up,” while the second edge is “down”:

�
(7.53)

If one cell’s diagonal is “up,” while the second diagonal is “down”:

�
(7.54)

There are four independent equations and four independent variables, K ′1, K ′2, 
K ′3, and Z CE′ ′. Therefore, the solution exists but is valid only for the first RG step 
when in the initial system we have K2 0=  and K3 0= .

7.4 � RG Approach of Representation: Two-Dimensional 
Magnetic Systems in the Absence of Magnetic Field

Considering the RG approach above of a single survivor for the n.n. Ising model on 
square lattice, we were able to build only the first step of the RG transformation.

Due to the introduction of a subjective rule of microstate correspondence, the 
RG does not represent a physical process exactly. Strictly speaking, the subjectivity 
does not make it an approximation either2. Instead, we consider an investigator’s 
hypothesis as a subjective rule of microstate correspondence. Similar to the Bayes-
ian analysis, this hypothesis is just our “lucky guess” that may be right or wrong. 
Therefore, the RG is just a tool that helps us to investigate particular systems.

As any tool, it is not unique. There are many possible approaches, each useful for 
a specific system. The validity of these approaches is determined by how accurately 
they can predict the exact or experimental results.

So far, we have built the “subjective” rule of microstate correspondence only with 
the aid of the single-survivor approach. Let us consider now a different approach (Nie-
meijer and van Leeuwen 1974, 1976) which we call the approach of representation.

We consider the two-dimensional ferromagnetic n.n. Ising model on a triangular 
lattice in the absence of magnetic field. The Hamiltonian, partition function, and 
Gibbs probability of the system are identical to (7.40–7.42) of the square lattice. 
There is a single-coupling constant, K J= β .

2  We are talking right now about the RG in real space when we consider the subjective rule of 
correspondence among initial and final microstates. In momentum space, the RG is generally built 
by truncating the spectrum from above since, truncating high frequencies, we are discarding fine 
details. In this case, the RG can be considered to be the approximation.
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We divide the lattice into triangular cells with three spins in each cell (Fig. 7.9). 
The linear-scale factor is r b= =1 1 3/ / .

In the single-survivor approach, we chose the spins which would “survive” with 
their orientations intact and then summed initial probabilities over the orientations 
of the rest of the spins.

In the approach of representation, we consider all spins as “disappearing,” and 
we sum the microstate probabilities over all spins without exclusions. We consider 
the new spins to be appearing in the centers of the RG cells. So, spins σ1, σ 2, and 
σ3 in Fig. 7.9 “disappear,” giving birth to spin σ ′1 in the middle of the cell.

Now, we have to state the subjective rule of microstate correspondence. In other 
words, knowing orientations of spins σ1, σ 2, σ3, we should prescribe a particular 
orientation to the new spin σ ′1. We do not have “surviving” spins now; all spins are 
“disappearing.”

The order parameter of magnetic systems with spin interactions is the spontane-
ous magnetization. So, to keep the behavior of phase transitions invariant, we may 
require the orientation of the new spin to represent the magnetization of the initial 

cell. In other words, if three or two spins at the corners of the cell are oriented “up”  

i.e.,
↑

↑ ↑












 , 

↓
↑ ↑









, 
↑

↑ ↓









, 
↑

↓ ↑












 , the new spin will also be oriented “up.” 

Otherwise, if only one or none of the spins is “up,” the new spin is “down.”
Having built the rule of correspondence, we require the invariance of the cor-

responding probabilities:

� (7.55)

where, { }:{ }σ σ ′∑  is the sum over the initial microstates σ{ } corresponding to the 
final microstate σ ′{ }  considered by the left-hand side of (7.55).

Let us consider further the orientations of all new spins σ σ′ … ′1 3, , /N  to be fixed. 
When the new microstate σ ′{ } is given, the set of the possible original microstates 
σ{ } is limited by the correspondence to the final microstate: { }:{ }σ σ ′ . In other 

words, if a spin on the new lattice is “up,” we should consider only those microstates 
σ{ } of the initial lattice when the corresponding cell is
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Fig. 7.9   The RG transformation on triangular lattice
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For the initial model, let us consider a CE with an additional boundary condition 
that our system can only be in one of the microstates { }:{ }σ σ ′  while other original 
microstates σ{ } are prohibited either by the external forces or by the model formu-
lation. Then the properties of this ensemble should represent the properties of the 
given microstate σ ′{ }.

Similar to the n.n. Ising ferromagnet on square lattice, we see that we cannot 
separate the sum over the orientations of one cell from the spins of other cells. In-
deed, each spin of a cell interacts with two spins of its own cell and with four spins 
of three adjacent cells.

To overcome this difficulty, we divide the Hamiltonian into two parts:

� (7.56)

where, the first term H  is responsible for spin interactions within the cells. For the 
spins enumerated in Fig. 7.10, H  contains

� (7.57)

The second term V in (7.56) represents spin interactions across the boundaries 
of the cells:

� (7.58)

We consider an approximation of small interactions among the cells when V can 
be considered small so that we can apply the perturbation theory.

Further, we consider the CE of the unperturbed Hamiltonian  H  with the addi-
tional boundary condition{ }:{ }σ σ ′ , when the system can visit only those original 
microstates σ{ } which correspond to the given σ ′{ }. Let us denote this ensemble 
as “CE of overH σ σ{ } ′{ }: ” or, simpler, as “H : ′{ }σ .” Then the averaging of an 
arbitrary quantity A{ }σ  over this ensemble we define as

� (7.59)
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Choosing A V T{ } { }exp( / )σ σ= − , we transform (7.55) into

�

(7.60)

The sum,

�
(7.61)

is the partition function of the unperturbed Hamiltonian. Exponential functions under 
the sign of the sum contain spin interactions only within the cells. So, the spins, enumer-
ated in Fig. 7.10, provide exp( )exp( ( )) exp( ( ))… + + +…K Kσ σ σ σ σ σ σ σ1 2 2 3 3 1 5 6 .

If σ ′ =↑1 , then the sum { }:{ }σ σ ′∑  goes over the following orientations of spins 

σ1 , σ 2 , σ3  of the considered cell: 
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. For the 

partition function (7.61) this provides

�
(7.62)

If σ ′ =↓1 , analogous considerations lead to exactly the same result, so expres-
sion (7.62) is valid for an arbitrary orientation of σ ′1. Performing the summation 
for all other cells, we find

� (7.63)

This transforms (7.60) into

� (7.64)

The last quantity to be found is exp /{ } :
−( )

′{ }
V Tσ σH

. Assuming the perturba-

tion V being small, we expand the exponential function in its powers:

� (7.65)
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Taking logarithm on both sides of this equation, expanding the logarithm of the 
right-hand side,

� (7.66)

and exponentiating, we find3

� (7.67)

Since perturbation V is small, we keep only the first term in the right-hand side 
of this equation:

� (7.68)

The perturbation V contains interactions, (7.58), of adjacent cells. Averaging per-
turbation in the ensemble H : ′{ }σ  of the unperturbed Hamiltonian H , we find

� (7.69)

But the unperturbed Hamiltonian H  is responsible for spin interactions within the 
cells. In the ensemble of this Hamiltonian two spins, belonging to different cells, 
are independent, so the averaging of their product is the product of independent 
averaged values:

� (7.70)

To find the averaged spin value, e.g., σ σ2 H: ′{ } , we utilize averaging (7.59):

�

(7.71)

3  Generally two operations, taking the logarithm and exponentiation, performed consecutively, 
make students smile. This is quite unmerited since it has helped us to transfer averaging from 
outside of the exponential function under the sign of this function.
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For σ ′ =↑1 , we find

� (7.72)

while for σ ′ =↓1 ,

� (7.73)

These two expressions differ only by the sign of σ ′1, so for the general case of the 
orientation of spin σ ′1, we have

� (7.74)

To find

�
(7.75)

we should take into account that each pair of adjacent cells has always two pairs of 
interacting spins (Fig. 7.11):
�

(7.76)

Here, we are counting all pairs of adjacent cells by counting the n.n. pairs of the new 
spins. For each pair of cells, we are taking into account two pairs of interacting spins 
by introducing multiplier 2.
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Fig. 7.11   Spin interactions 
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Substituting this result into (7.68) and (7.64), we finally find

�
(7.77)

This equation provides the connection between the coupling constants and partition 
functions of the initial and final lattices:

�
(7.78)

� (7.79)

The set of coupling constants Ki  is often represented by a vector 


K . In future, 
we will choose the notation that will be the most convenient for the particular case 
considered.

A point on the space of coupling constants, transforming into itself, 
 

′ =K K , is 
called the fixed point 



K* of the RG transformation. Since each RG transformation 
changes the correlation length in accordance with (7.39), fixed points correspond to 
either ξ = 0  or ξ = +∞ .

The first type of fixed points, ξ = 0, generally corresponds to a singularity of 
boundary conditions or interaction constants (zero or infinite values of field param-
eters or interaction constants). These fixed points are called trivial. Since the RG 
transformation decreases the correlation length in accordance with (7.39), a trivial 
fixed point always possesses some incoming manifold of flow curves, attracted by 
this point. If this manifold occupies all neighborhood of the fixed point, the trivial 
fixed point attracts all flow curves in its vicinity (Fig. 7.12) and becomes an attrac-
tor ( a sink).

However, this is not necessarily the case. There are systems when flow curves 
emerge from one trivial fixed point to be consumed by another trivial fixed point. 
In this case, the first trivial fixed point is the hyperbolic ( saddle) fixed point (or an 
even more complex formation) and has an outgoing manifold which plays the role of 
the incoming manifold for the second trivial fixed point (Fig. 7.13). Since along the 
manifold, connecting two trivial fixed points, the correlation length can only decrease 
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while it has been already zero at the first fixed point considered, we may conclude 
that the correlation length is zero everywhere along this manifold (Fig. 7.13).

The reader should understand that Figs. 7.12 and 7.13 are schematic at best be-
cause we drew them only to illustrate the most general considerations. In reality, the 
trivial fixed points correspond to a singularity of boundary conditions or interaction 
constants. This means that the values of coupling constants are zero or infinite also. 
Therefore, the trivial fixed points are often located at the boundaries of the con-
sidered space of coupling constants and do not possess both sides of the incoming 
manifold. So, we treat Figs. 7.12 and 7.13 only as schematic illustrations and will 
see what is going on in reality with the aid of particular examples discussed later.

The second type of fixed points with ξ = +∞  represents critical phenomena, and 
these points are called critical. From (7.39), we know that the RG transformation al-
ways decreases the correlation length. This leads to important consequences. When 
there is only one coupling constant (Fig. 7.5b) and the critical manifold degenerates 
into the fixed point of the RG transformation, this critical fixed point is expected to 
be a repeller.

However, in the case of higher dimensionality of the space of coupling constants, 
the situation may become more complex. The critical manifold ends up at the criti-
cal fixed point which in this case becomes the hyperbolic ( saddle) fixed point or an 
even more complex formation.

We are looking for the fixed points in the space of the coupling constants. Ob-
viously, the RG transformation (7.79) of the partition function cannot have fixed 
points because the RG transformation is intended to decrease the number of degrees 
of freedom in the system.

Let us find fixed points of (7.78):

� (7.80)

We immediately see that the trivial fixed points are K* = 0  and K* = +∞. In ac-
cordance with the definition of the coupling constant K J= β , the first trivial fixed 
point K* = 0  corresponds to an infinite temperature or the absence of the pair spin 
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Fig. 7.13   Hyperbolic trivial 
fixed point
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interactions. The second trivial fixed point K* = +∞  corresponds, on the contrary, 
to zero temperature or the infinite amplitude of the pair spin interactions.

However, the RG transformation in (7.80) possesses also a critical fixed point:

� (7.81)

In comparison, the exact solution provides (Onsager 1944; Houtappel 1950):

� (7.82)

We see that the RG transformation returns not the exact but only the approximate 
value. However, the approximation is accurate enough to rely on it as on an illustra-
tion of the system’s behavior.

The evolution of the coupling constant K is presented as the dependence on the 
number of RG transformations in Fig. 7.14. We see that the system moves away 
from the critical fixed point K C (repeller) towards one or another trivial fixed point 
(attractors). Since the correlation length is infinite at the critical fixed point, an in-
finite number of steps of the RG transformation is required for the system to leave 
this point because at each step the correlation length decreases only by the linear-
scale factor r b= =1 1 3/ / .

The flow curves of the system are presented in Fig. 7.15, where, for illustrative 
purposes, we have put ahead of the axis the trivial fixed point K* = +∞  also.

When there is only one coupling constant, its evolution is often illustrated by 
a map (mapping transformation). In Fig. 7.16, we plot the dependence K K′( ) as 
well as the diagonal line K K′ =  of the square area of the plot. To build the RG 
transformation, we choose a particular value of K and draw a vertical arrow up to 

KC = + ≈
1
4

2 2 1 0 34ln( ) . .

KC = ≈
1
4

3 0 27ln . .

Fig. 7.15   The flow curves of the RG transformation

 

Fig. 7.14   Evolution of the 
coupling constant K
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the dependence K K′( ) to find K ′. For the second RG step, we need to project K ′ on 
the abscissa axis (horizontal arrow up to the diagonal); and then for the found value 
of K ′ , we need to find ( )K ′ ′ by drawing the vertical arrow again. And so on. In the 
result, the succession of the RG steps is presented by the succession of horizontal 
and vertical arrows.

If initial K is less than K C, the succession of arrows moves the system to the left, 
to the region of lower Ks, away from K C. If initial K is higher than K C, the system 
moves again away from K C, in this case to the right, to the region of higher Ks. 
From Fig. 7.16, it is easy to see that the critical fixed point K C is the repeller, while 
both trivial fixed points are attractors.

In the vicinity of the critical fixed point K C, the RG transformation can be lin-
earized:

� (7.83)

where

�
(7.84)

is the eigenvalue of the linearized RG transformation. Subscript “K” here empha-
sizes that this eigenvector corresponds to the coupling constant K. The exact solu-
tion provides the close value λK = ≈3 1 73. .

Let us return to the most general statement (7.39), determining the transforma-
tion of the correlation length:

� (7.85)

We consider one step of the RG transformation in the vicinity of the critical point 
(in our system with just one coupling constant, the critical state is represented by 

RG K K K KK( ) ( )= + −C Cλ

λK
K

K
K

≡
∂ ′
∂

= + − + ≈
C

1 1
2
8 5 2 2 2 1 1 62( ) ln( ) .

ξ ξ ξ′ = =r b/ .

Fig. 7.16   A map of the RG 
transformation
 

7.4  RG Approach of Representation in the Absence of Magnetic Field



396 7  The Renormalization Group

the critical fixed point K C). The correlation lengths of the initial and final models 
are diverging in accordance with

� (7.86)

First, the scaling of the system is determined by the coupling constant 
K J J T= ≡β / . Therefore, let us express these divergences as

�
(7.87)

Second, the critical points of the initial and final models are represented by the same 
critical fixed point of the RG transformation:

� (7.88)

and we transform (7.87) into

and�

(7.89)

So, the divergences are the divergences with respect to the relative deviations of 
the coupling constant from its critical value. Therefore, instead of the subscript “t” 
in the critical index ν t

C, we could use the subscript “K” of the coupling constant, 
corresponding to the field parameter t: ν K

C . However, the change of notation would 
introduce confusion, so we will keep the original notation ν t

C.
The RG transformation keeps the lattice shape and the functional dependence of 

the Hamiltonian invariant. Therefore, critical indices of the initial and final systems 
must coincide, so we can omit apostrophes at the notation of the critical index:

� (7.90)

ξ ξ
ν

ν

ν

ν

∝ ≡
−

′ ∝
′

≡
′ − ′
′

−

′

− ′

′

′1 1

| | | |
.

t

T T
T t

T T
Tt

t

t

t

C

C

C

C

C

C

C

C
and

ξ ξ

ν ν

∝
−

′ ∝

′
′
−

′
′

′
′

− − ′ ′T
J

T
J

T
J

T
J

T
J

T
J

t t
C

C

C

C

C C

and .

K J
T

J
T

C

C C
= =

′
′

,

ξ

ξ

ν
ν ν

ν

∝
−

=
−

≈
−

′ ∝ ′
−

=
′

−
− −

− ′ ′

1 1

1

1 1

1

K K

K

K K
K

K K
K

K K

K

K

t

t t

t

C

C

C C

C

C

C

C

C C

C

−−
′

≈
′ −

− ′ − ′′ ′K
K

K K
K

t tC C

C

C Cν ν

.

ξ ξ
ν ν

∝
−

′ ∝
′ −

− −
K K
K

K K
K

t tC

C

C

C

C C

and .



397

Substituting these divergences into (7.85), we find

�
(7.91)

But the left-hand side of this equation is the eigenvalue, (7.84), of the RG transfor-
mation:

� (7.92)

So, for the critical index ν t
C, we find

� (7.93)

The exact value is ν t
C =1 . So, we see that the RG transformation we have built pro-

vides the approximate value of the critical index which is close to the exact value.
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Problem 7.4.1

Build the RG approach of representation for the ferromagnetic n.n. Ising 
model on the square lattice in the absence of magnetic field.

Solution: The solution of the problem is similar to the considered above case 
of the triangular lattice. The main difference is in the subjective rule of the 
microstate correspondence. For the triangular lattice, the sign of a new spin 
was determined by the majority of spin orientations in the cell. However, 
for the square lattice, this rule cannot be applied directly because in a square 
cell half of the spins can be oriented “up,” while another half—“down,” like 
↑ ↓
↑ ↓









. In this case there is no majority that would suggest us the orientation 

of the final spin.
What should we do in such a case? The answer is very simple: We should 

divide the “undetermined” configurations in two, prescribing for the first half 

to generate the spin oriented “up,” 
↑ ↓
↑ ↓











↑ ↑
↓ ↓









 ⇒↑, , while for the second 

half, the spin is oriented “down” 
↓ ↑
↓ ↑











↓ ↓
↑ ↑









 ⇒↓, .
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7.5 � RG Approach of Representation: Two-Dimensional 
Magnetic Systems in the Presence of Magnetic Field

In the previous section, we have discussed the ferromagnetic n.n. Ising model on 
the triangular lattice in the absence of magnetic field. In this section, we consider a 
more complex case when the magnetic field is nonzero.

Gibbs probability

�
(7.94)

contains now two coupling constants:

� (7.95)

So, the rule of invariant probabilities transforms into

�

(7.96)

We include the interactions of spins with the magnetic field in the unperturbed 
Hamiltonian H , while the perturbation is exactly the same as in the previous sec-
tion. For the partition function of the unperturbed Hamiltonian,

� (7.97)

whose exponential functions contain exp ... exp ( ) (( ) + +( + +K K1 1 2 3 2 1 2σ σ σ σ σ
σ σ σ σ2 3 3 1+ )) , we should consider again two possibilities: σ ′ =↑1  and σ ′ =↓1 . If 
σ ′ =↑1 , we have

�

(7.98)
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If σ ′ =↓1 , we obtain

�

(7.99)

In the result for the partition function of the unperturbed Hamiltonian, we find

�
(7.100)

The average

�

(7.101)

we find in a similar way. If σ ′ =↑1 ,

�

(7.102)

while for σ ′ =↓1 ,

�

(7.103)
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Finally, for σ σ2 H: ,′{ }  we obtain

� (7.104)

which provides for V{ } :σ σH ′{ }
 the following expression

� (7.105)

Substituting (7.100 and 7.105) into (7.96), we find

�

(7.106)

This relationship is formulated for the spins of the whole new lattice with 
′
= =

N q N N
2

3 6
2

( / )  spin pairs. To transform it into the relationship, formulated for 

a separate spin pair, we notice that each separate spin participates in six spin pairs. 
Therefore, each multiplier of a separate spin in (7.106) belongs simultaneously to 
six pairs, while for each of them it provides only 6  of its total value:

�

(7.107)

This equality should be valid for arbitrary projections of σ ′ ′i  and σ ′ ′j :

�

(7.108)
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Dividing (7.108) by (7.110) and dividing (7.108) by (7.109), we find:

�

(7.111)

�

(7.112)

The trivial fixed points of this RG transformation are 


K* =
0
0

 (zero field, infinite 

temperature), 


K* =
+∞
0

 (zero field, zero temperature), and 


K* =
±∞
0

 (infinite 

field, infinite temperature). The critical fixed point is the critical fixed point of the 
system in the absence of magnetic field:

�
(7.113)

The behavior of flow curves is presented in Fig. 7.17. When the magnetic field 
is zero, K1 0= , the space of the coupling constants degenerates into the abscissa 
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axis whose flow curves we have studied in Fig. 7.15. When the magnetic field is 

nonzero, two additional trivial fixed points appear, 


K* =
±∞
0

, which correspond to 

the case of infinite field and are working like attractors.
The appearance of the new trivial fixed points transforms two previous trivial 

fixed points, 


K* =
0
0

 and 


K* =
+∞
0

, into saddle points. The manifold, leaving 



K* =
0
0

 and arriving at 


K* =
±∞
0

, corresponds to zero correlation length. Similar 

manifold connects 


K* =
+∞
0

 with 


K* =
±∞
0

. To see that the reader may consider 

an alternative space of coupling constants when K2  is substituted by 1 2/ K .
Linearizing the RG transformation in the vicinity of the critical fixed point, we 

find

�
(7.114)

� (7.115)

We see that the increments of two coupling constants are independent from one 
another. This means that the linearized matrix of the RG transformation is diagonal 
in the axes of coupling constants,

� (7.116)
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
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8 5 2 2 2 1C C( ) ln( ) ,
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
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−( )2 2 2 21 1
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8 5 2 2 2 1C C( ) ln( ) .
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Fig. 7.17   Flow curves of 
the ferromagnetic n.n. Ising 
model in nonzero magnetic 
field
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with two eigenvalues,

� (7.117)

� (7.118)

and two corresponding eigenvectors,

� (7.119)

Considering the critical isofield curve similarly to Sect. 7.4, we find

�
(7.120)

Substituting into this expression λK2
 from (7.118), we find

�
(7.121)

If, instead of the approximate value of λK2
, given by (7.118), we substituted the ex-

act eigenvalue λK2
3= , we would obtain the exact value of the critical index ν t

C:

�
(7.122)

To find the second critical index ν h
C of the correlation length, we consider the 

critical isotherm t = 0. By definition

� (7.123)

Since after the RG transformation, the system has the same value of the critical 
index ν h

C and the same value of the critical field hC = 0 , for the new system we have

�
(7.124)
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For the critical isotherm

�
(7.125)

From these equalities, we obtain

� (7.126)

Substituting (7.126) into (7.123) and (7.124), we find

� (7.127)

So, the divergences are the divergences with respect to the deviations of K1 from its 
critical value K1 0C = . Therefore, instead of the subscript “h” in the critical index 
ν h

C , we could use the subscript “K1 ” of the coupling constant, corresponding to 
the field parameter h: ν K1

C . However, we will keep the original notation ν h
C to avoid 

confusion.
Substituting (7.127) into (7.85), we obtain

� (7.128)

The left-hand side of this equation is the eigenvalue (7.117) of the RG transforma-
tion:

� (7.129)

For the critical index ν h
C, this provides

� (7.130)

Substituting the RG approximation (7.117), we find the approximation of the 
critical index ν h

C:

� (7.131)
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We see that indeed the eigenvalues of the RG transformation, linearized in the 
vicinity of the critical fixed point, provide the critical indices of the system. We will 
discuss this question in Chap. 8 in more detail.

Since the RG transformation is merely an approximation, it is always reasonable 
to compare its results with exact or experimental values. The exact solution pro-
vides λK1

315 16= / . Substituting this eigenvalue into (7.130), we find the exact value 
of the critical index ν h

C,

� (7.132)

to which the RG value (7.131) serves as a good approximation.
In higher dimensions of the space of coupling constants, the criticality of the 

system may no longer be described by a single critical fixed point of Figs. 7.15 
and  7.17. There could exist the critical manifold, ending up at the critical fixed 
point. In Fig. 7.18, the critical manifold is plotted schematically by the succession 
of filled dots which ends up at the critical fixed point “*.” The manifold, emerging 
from the critical fixed point, is not necessarily critical; however, it would require an 
infinite number of the RG steps to make the correlation length finite.

The near-critical system in Fig. 7.18 is moved away from its critical point by the 
RG transformation. This is demonstrated by the dotted lines, schematically repre-
senting the distance from the critical point (how far the coupling constants are from 
their critical values).

As an example of such behavior, we present in Fig. 7.19 the flow curves on the 
space of coupling constants for the case of zero magnetic field of the ferromagnetic 
Ising model with spin interactions in n.n. and n.n.n. pairs. There are two coupling 
constants, K Jn n1 = β . . and K Jn n n2 = β . . . , where the first coupling constant is respon-
sible for the n.n. interactions, while the second is for the n.n.n. interactions.

If we consider K2 0=  in the model, we return to the n.n. Ising model. On its 
space of coupling constants (which is the abscissa axis of Fig. 7.19), we see the 

ν h
C = = ≈

ln

ln
. ,3

15
8

3

8
15

0 533

Fig. 7.18   Flow curves of the 
RG transformation in high 
dimensions of the space of 
coupling constants
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flow curves of Fig. 7.15. We see a similar behavior for the n.n.n. Ising model with 
K1 0=  which is represented in Fig. 7.19 by the ordinate axis.

For the n.n.–n.n.n. mixture model, we should consider particular values of the 
interaction constants Jn n. .  and Jn n n. . . . This corresponds to the particular value of the 
ratio K K2 1/  of the coupling constants. Then the model is represented by one of the 
dotted lines in Fig. 7.19; and its critical point is formed by the intersection of this 
dotted line with the critical manifold.

Why are we so interested in the critical fixed points of the RG transformation? 
Because they perform the role of the “capacitors” of criticality. The RG transforma-
tion keeps invariant the functional form of the Hamiltonian and the lattice shape. 
Therefore, all systems of the universality class possess the same critical indices 
which are invariant also.

So, critical indices are the same in the initial system and in the system at the criti-
cal fixed point. But it is much easier to find critical indices in the vicinity of the criti-
cal fixed point by linearizing the RG transformation there. We have already seen two 
examples, (7.120) and (7.130): In the vicinity of the critical fixed point, we were able 
to find the critical indices ν t

C and ν h
C from the general considerations and from the 

eigenvalues (7.117) and (7.118) of the linearized RG transformation. A similar proce-
dure can be performed for other critical indices as well, as we will study in Chap. 8.

Of course, if for a one-dimensional space of coupling constants a critical mani-
fold degenerates into the critical fixed point—repeller (Fig. 7.15), the critical point 
of the initial system is just the fixed point of the RG transformation; and the invari-
ance of critical indices becomes trivial in this case.

7.6 � Percolation

Let us now consider how the RG transformation is built for the percolation 
phenomena.

Fig. 7.19   Flow curves of 
the ferromagnetic n.n.–n.n.n. 
Ising model in zero magnetic 
field
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As the first example, we consider the one-dimensional site percolation. We di-
vide the one-dimensional chain of sites into cells of size b (b = 3 in Fig. 7.20a). 
Each cell of the initial system generates a site of the new system.

How should we build the rule of correspondence of microstates? In Chap. 6, we 
saw that direct, thoughtless application of statistical physics to percolation phenom-
ena does not provide the desired results.

Indeed, the primary concern in percolation is the connectivity of sites within clus-
ters. The percolation threshold itself represents a situation when the opposite edges 
of the lattice become connected. Therefore, the subjective rule of correspondence of 
microstates should be built keeping invariant the connectivity within clusters.

To keep the percolating properties of the cluster structure unchanged, the initial 
cell which is percolated should transform into the percolating (occupied) site on the 
new lattice. On the contrary, if the initial cell is not percolated, it should be trans-
formed into non-percolating (empty) site.

The one-dimensional cell is percolated only when all its b sites are occupied 
(Fig. 7.20b). Therefore, applying the approach of representation, we say that only a 
completely occupied cell is transformed into an occupied site, while the rest of the 
microstates generate an empty site (Fig. 7.20c).

After we have built the rule of correspondence of microstates, it is easy to create 
the rule of invariant probabilities:

� (7.133)

where the probability p′ for the new site to be occupied is generated only by the 
completely occupied cell. If we decided to sum instead the probabilities for the new 
site to be empty (to sum the probabilities of microstates from Fig. 7.20c), we would, 
obviously, obtain the complementary equality 1 1− ′ = −p pb.

We see that in percolation, the role of a coupling constant is fulfilled by the field 
parameter p which “absorbs” all that changes during the RG transformation.

Since the lattice and model are invariant, the point of the percolation threshold 
stays unchanged, p p′ = =C C 1, and plays the role of the critical fixed point of the 
RG transformation. The trivial fixed point is p = 0.

p pb′ = ,

a

b

c

Fig. 7.20   The approach of 
representation for the one-
dimensional percolation. (a) 
The RG transformation with 

3=b . (b–c) The rule of 
correspondence of micro-
states. Only a completely 
occupied cell transforms into 
the occupied site. The rest of 
microstates transform into an 
empty site
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Again, since, in percolation, there is always only one coupling constant, the most 
illustrative way to study the flows of the RG transformation is to represent the so-
lution (7.133) graphically as a map (Fig. 7.21). The map clearly demonstrates that 
the critical fixed point is a repeller, and the system moves away from it towards the 
trivial fixed point.

As we have already discussed in (7.39), the RG transformation decreases the 
correlation length b times:

� (7.134)

Since the critical index ν stays unchanged, for the divergences of the initial and new 
correlation lengths in the vicinity of the percolation threshold we have:
�

(7.135)

Substituting them into (7.134), we find:

� (7.136)

Substituting (7.133) into this equation, for the one-dimensional percolation we 
find:

�
(7.137)

which complies with the exact result (6.220).
Above, we have discussed that the rule of correspondence of microstates should 

take into account the connectivity of sites within clusters. Let us, with the aid of the 
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Fig. 7.21   The map represent-
ing flows of the one-dimen-
sional RG transformation

 



4097.6 � Percolation�

following problem, demonstrate what happens when we applied the techniques of 
statistical physics thoughtlessly.

Let us now consider the RG transformation for two-dimensional site percolation; 
first, on triangular lattice. We divide the lattice into triangular cells. Each cell gen-
erates a site on the new lattice. The geometry of transformation is analogous to the 
geometry of magnetic system in Fig. 7.9.

Next, we should formulate the rule of correspondence of microstates. Following 
the general rule to transform a percolated cell into an occupied site and not perco-
lated cell into an empty site, we need only to formulate the criterion for a triangular 
cell to be percolated. We will consider a triangular cell as percolated when at least 
two of its three sites are occupied (Fig. 7.22a) so that at least one edge of the cell 
percolates. Otherwise, we consider the cell not to be percolated (Fig. 7.22b).

Problem 7.6.1

Apply the approach of a single survivor to the one-dimensional percolation.

Solution: To employ the approach of a single survivor, we should divide the 
chain of sites into cells of size b and require that the first site of each cell sur-
vives the RG transformation to keep its state (occupied or empty) on the new 
lattice. The rest of the sites in the cell disappear:

�
(7.138)

where the probability for the new site to be occupied equals p times the sum 
of the probabilities for other sites within the cell to have arbitrary states. 
Obviously, this sum equals unity so that p p′ = . The situation resembles the 
RG transformation (7.12–7.14) for the magnetic system when in the absence 
of interactions among spins, K2 0= , the RG transformation becomes trivial: 
K K′ =1 1, K K′ = =2 2 0.

From one point of view, the model transforms into itself exactly, keeping 
even the value of the field parameter unchanged. Therefore, the correlation 
length must stay unchanged also. But from another point of view, the RG 
transformation must decrease the correlation length b times.

This contradiction clearly shows that the built RG transformation is incor-
rect. In particular, what is wrong is the rule of correspondence of microstates 
which we introduced subjectively. This example clearly demonstrates that, 
coarse graining our system, we must take into account the primary concern in 
percolation—the connectivity within clusters. The correlation length in per-
colation is the direct representative of the connectivity; and paying no atten-
tion to the latter, we have lost the correct behavior of the former.

p p b
k b k

p p p p p p
k

b
k b k b′ =
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The rule of invariant probabilities sums the probabilities of microstates from 
Fig. 7.22a:

� (7.139)

where p3 is the probability for all three sites to be occupied and 3 12p p( )−  repre-
sents three microstates, each bringing the probability p p2 1( )−  for two sites to be 
occupied, while one site is empty.

Similarly, we can sum the probabilities from Fig. 7.22b to obtain the probability 
for the new site to be empty:

� (7.140)

However, this equation does not contain any new information and returns us to 
(7.139).

Again, the behavior of the RG flows is better illustrated by a map presented 
in Fig. 7.23. The critical fixed point pC =1 2/  serves as a repeller so that the RG 

p p p p′ = + −3 23 1( ),

1 3 1 12 3− ′ = − + −p p p p( ) ( ) .

a

b

Fig. 7.22   The rule of cor-
respondence of microstates 
on triangular lattice

 

Fig. 7.23   A map of the flows 
of the RG transformation for 
the percolation on triangular 
lattice
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transformation moves the system away from it towards one of the two trivial fixed 
points: p = 0 or p = 1.

The predicted value pC =1 2/  of the percolation threshold coincides with the 
exact solution of the system. This is one of those cases when the RG transformation 
returns not an approximate but the exact result which proves us to be “lucky” (or 
“skilful” if one prefers) in the formulation of the subjective criterion for the rule of 
correspondence of microstates.

In the vicinity of the percolation threshold, we substitute (7.139) and b = 3 into 
(7.136) to find the critical index

� (7.141)

It is close to the exact value ν = =4 3 1 333/ . .

ν → ≈
ln

ln
. .3

3
2

1 355

Problem 7.6.2:

Build the RG transformation for site percolation on square lattice.

Solution: We divide the square lattice into cells of linear size b = 2 when each 
cell generates a site of the new lattice (part a of the figure).

a

b

c

To formulate the rule of correspondence of microstates, we, similar to the 
case of the triangular lattice, as a percolated cell, consider a cell, at least one 
edge of which is occupied. This cell transforms into the occupied site (part b 
of the figure). Such a choice seems to be reasonable—one occupied edge of 
the cell means that this cell can percolate along this edge to form a percolat-
ing cluster.
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Thereby, for the rule of invariant probabilities we find:

� (7.142)

where the first term represents the completely occupied cell, the second—four 
microstates with three occupied sites, and the third—four microstates with two 
occupied sites. However, the critical fixed point of this RG transformation:

� (7.143)

does not approximate the experimental value C 0.59p ≈ .
Why the predicted value of the percolation threshold was so crude? As we 

will see below, there is a technique to improve the accuracy of the RG trans-
formation. However, in our case, the prediction is so crude that it indicates we 
have not been “skilful” enough (or “lucky” if one prefers) in our formulation 
of the subjective criterion for the rule of correspondence of microstates.

Returning to the second row of microstates (part b of the figure), we see 
that as percolated we have considered all four microstates when one edge of 
the cell is occupied, while another is empty. But filling the lattice randomly 
with these four microstates, we would never obtain a percolating cluster, con-
necting, for example, the left and the right sides of the model—one cell would 
percolate horizontally, another vertically, and a chain of occupied sites would 
end sooner or later.

For a percolating cluster to connect the left side of the model to the right 
side, we expect all cells to percolate horizontally on average. Instead, we 
have considered cells, percolating vertically, as also helping this cluster to be 
formed. Thereby, we significantly weakened the criterion of percolation and 
obtained the percolation threshold much lower than the real value.

To improve the situation, we keep only two of the discussed four micro-
states, corresponding to the cell percolated horizontally (part c of the figure). 
Now, all microstates, forming the occupied site on the new lattice, contain at 
least one occupied horizontal edge to form the percolating cluster from the 
left to the right of the model.

The corrected rule of invariant probabilities,

� (7.144)

possesses a critical fixed point

�
(7.145)

p p p p p p′ = + − + −4 3 2 24 1 4 1( ) ( ) ,

pC = − ≈
1
2

3 5 0 38( ) . ,

′ = + − + −p p p p p p4 3 2 24 1 2 1( ) ( ) ,

pC = − ≈
1
2

5 1 0 62( ) . ,
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Problem 7.6.3:

Build the RG transformation for bond percolation on the square lattice.

Solution: In this problem, we, for the first time, consider not the site but 
bond percolation. Again, we divide square lattice into cells of linear size b = 2 
when each cell generates two bonds of the new lattice (part a of the figure).

a

b

We intend to study percolation from the left to the right of the model. The rule 
of correspondence of microstates is presented in part b of the figure, where the 
occupied horizontal bond on the new lattice is generated only by cells percolat-
ing from the left to the right. Solid lines represent the occupied bonds, absent 
lines represent empty bonds, and dotted lines are bonds whose state (occupied 
or empty) is undetermined since it does not influence the left–right percolation.

The rule of invariant probabilities is

� (7.146)

The predicted value of the critical fixed point,

�
(7.147)

p p p p p p p p′ = + − + − + −5 4 3 2 2 35 1 8 1 2 1( ) ( ) ( ) .

pC =
1
2
,

which approximates the experimental value C 0.59p ≈  much better. This 
problem illustrates that the RG transformation in real space is merely a tool 
whose accuracy depends on the skillfulness of the investigator who formu-
lates the subjective criterion for the rule of correspondence of microstates.
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7.7 � Damage Phenomena

In previous sections, we considered coarse graining in the vicinity of a critical point, 
where the divergence of the correlation length provided the possibility to consider 
flow curves of the RG transformation. However, in Chap. 6 we found that the corre-
lation length diverges in the proximity of the spinodal point as well. The divergence 
of the correlation length leads to scale invariance which allows us to build an RG 
transformation in the vicinity of the spinodal as well. As an example, we consider 
the fiber-bundle model (FBM) again (Allegre et al. 1982; Smalley et al. 1985; Sor-
nette 1989a, b; Narkunskaya and Shnirman 1990; Newman and Gabrielov 1991; 
Newman et al. 1994; Sornette and Sammis 1995; Shnirman and Blanter 1998, 2003; 
Sornette 2006). However, this time, the model will not be formulated as a mean-
field system—a broken fiber will not redistribute its loading uniformly among all 
intact fibers. Instead, we will consider the nearest-neighbor stress redistribution.

In contrast to the FBMs considered earlier, this time we arrange the ends of all 
fibers along an imaginary line, so the model becomes plane like a ply of a composite 
material (Fig. 7.24). This makes our model a one-dimensional chain of fibers which 
will further simplify the organization of fibers into the RG cells.

The load is transferred to fibers in such a way that when all fibers are intact, the 
stress of each of them is σ . We again consider the strength CDF P( )σ  as a prob-
ability for a fiber to have been broken when it is supposed to carry the stress σ .

To form the RG cells, we divide the chain of fibers into cells with b = 2 fibers in 
each. The RG transforms each cell of the initial model into a fiber of the final model.

The primary concern in damage phenomena is the behavior of the damage pa-
rameter. Therefore, to keep the behavior of the system unchanged, the state of the 

Fig. 7.24   All fibers are 
arranged in pairs forming the 
RG cells

 

coincides with the exact value.
For the critical index ν from (7.136), we find:

�
(7.148)

while the exact solution provides a close value ν = =4 3 1 333/ . .

ν → ≈
ln

ln
. ,2

13
8

1 43
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new fiber (broken or intact) should represent the initial cell. If both fibers or at least 
one fiber are still intact in the initial cell, ||{ }, |¦{ } , or ¦|{ }, we consider this cell 
as still able to carry the load, and the new fiber should also be intact: |{ }. On the 
contrary, if both fibers are broken, ¦¦{ }, the new fiber also has to be broken: ¦{ }.

Let us consider all these cases and situations leading to them separately:

•	 If both initial fibers are intact, ||{ }, when the stress in both fibers is σ , the prob-
ability of such a case is ( ( ))1 2− P σ . The new fiber is also intact.

•	 One fiber is broken while another remains intact. Then the first fiber breaks 
when its stress is σ  so that the probability of this is P( )σ . Considering the 
nearest-neighbor stress redistribution, we assume that the broken fiber transfers 
its stress σ  to the second fiber in the cell so that the stress in the second fiber 
becomes 2σ . Therefore, the probability for the second fiber to still remain intact 
is ( ( ))1 2− P σ . Since two microconfigurations, |¦{ }  and ¦|{ }, correspond to this 
case, the total probability of such a situation is 2 1 2P P( )( ( ))σ σ− . The initial cell 
transforms into an intact fiber.

•	 Both fibers of the initial cell break at once when their stresses are equal to σ : 
||{ }⇒{ }¦¦ . The probability of this case is P2 ( )σ ; and the new fiber is also broken.

•	 One fiber breaks at once, when its stress is σ , with probability P( )σ . The second 
fiber, when its stress was σ  also, stayed intact but breaks when the first fiber trans-
fers its stress so that the stress in the second fiber becomes 2σ : || |{ }⇒{ }⇒{ }¦ ¦¦ .  
The corresponding probability for the second fiber is ( ( ) ( ))P P2σ σ− . Again, due 
to the presence of an alternative scenario, ||{ }⇒{ }⇒{ }|¦ ¦¦ , leading to the same 
outcome, in the total probability 2 2P P P( )( ( ) ( ))σ σ σ−  of such a situation, we 
should use the multiplier 2 again. The new fiber is broken.

Summarizing these possible outcomes, for the probability of the new fiber to be 
broken, we find:

� (7.149)

Here, the role of a coupling constant is fulfilled by the stress σ  which is trans-
formed by the RG into σ ′. Since we build the RG transformation so that the be-
havior of the system would remain invariant, the functional dependence of P′ ′( )σ  
on σ ′ should be the same as the functional dependence P( )σ  on σ . However, the 
strength CDF P contains some parameters that can change. For example, the two-
parameter Weibull distribution

�
(7.150)

contains two parameters, s0 and β . These parameters may, in principle, also serve 
as coupling constants. Therefore, we rewrite (7.149) as

� (7.151)

P P P P P P P P′ ′ = + − = −( ) ( ) ( )[ ( ) ( )] ( )[ ( ) ( )].σ σ σ σ σ σ σ σ2 2 2 2 2

P s e
s
s( ) ,= −

−










1 0

β

P a b P a b P a b P a b( , , , ) ( , , , )[ ( , , , ) ( , , , )].σ σ σ σ′ ′ ′ … = … … − …2 2
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However, since we have only one equation, connecting the previous and the new 
values of the coupling constants, we expect that there is only a single-coupling con-
stant in this equation. Therefore, the parameters of the strength CDF P are usually 
kept invariant, leaving only σ  to change:

� (7.152)

7.8 � Why does the RG Transformation Return 
only Approximate Results?

For almost every model, we saw that the RG transformation returns not exact but 
approximate results. Often the culprit is our misjudgment within the subjective cri-
terion which does not represent the real behavior of the system. But what if it were 
absolutely correct? Are there other factors influencing the accuracy of the results of 
the RG transformation?

The most illustrative is to discuss this question with the aid of clusters in the 
theory of percolation. In Fig. 7.25 we apply the RG transformation to the triangular 
lattice in accordance with the rule of correspondence of microstates from Fig. 7.22. 
Small filled and empty circles represent initial occupied and empty sites, respec-
tively. Big circles are the new sites. Dashed lines connect the initial occupied sites 
from one to another to form clusters.

In Fig. 7.25a, we see that the RG transformation unites two clusters, which have 
been separate as yet, into one common cluster. On the contrary, in Fig. 7.25b, the 
RG transformation breaks a cluster in two.

Therefore, even if the subjective criterion keeps the behavior of the system un-
changed within cells, on the cells’ boundaries the RG transformation does not man-
age to keep the connectivity invariant.

Thereby, the standard technique to improve the accuracy of the RG predictions is 
to make the cells bigger. The larger the volume bd  of a cell, the less is the influence 

of its surface b
d
d
−1

. However, increasing the size of the cell, we drastically increase 

P P P P( ) ( )[ ( ) ( )].σ σ σ σ′ = −2 2

Problem 7.7.1:

Build the RG transformation for the model considering the Weibull distribu-
tion to be the strength CDF.

Solution: Substituting the Weibull distribution (7.150) into (7.152), we find:

� (7.153)σ
σ

β σ σβ
β

β

′ =








 − − +

− −








 − −






s
s

e es s
0

0

2 1 2 2

2 1 2 20 0ln
( ) ( )






























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β β1/

.
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the complexity of analytical calculations since we should take into account more 
and more microstates. Thus, the obtained values generally represent a compromise 
between the complexity of calculations and the accuracy of the results.

For example, in percolation, we consider a new site to be occupied if the initial 
cell is percolated. Similar to Chap. 4, we can write this condition with the aid of the 
probability Π( , )p L  for a system of size L b=  to be percolated at the given value 
of p:

� (7.154)

All previous rules of invariant probabilities represented, in fact, this equation.
Since the percolation threshold is the critical fixed point of the RG transforma-

tion, it obeys the equation:

� (7.155)

The larger the size of the cell is, the more accurate results this equation returns. As 
we will find in the following chapter, the percolation threshold of a finite system 
differs from the percolation threshold of an infinite system by the value of the order 
of L−1/ν . Thus, b−1/ν  is the accuracy of the RG transformation.

Increasing the size of the cell step-by-step, we would obtain more and more ac-
curate results of, e.g., the percolation threshold pC . Often, we do not even need to 
consider very big cells. Instead, knowing the dependence p bC ( )  of the approximate 
result on the cell’s size, we could forecast this dependence for larger b or even find 
the exact solution.

It is the knowledge of scaling,

p p b′ = Π( , ).

p p bC C= Π( , ).

a

b

Fig. 7.25   The RG transfor-
mation does not represent 
the real behavior of a system 
at the cells’ boundaries. (a) 
The RG transformation unites 
two clusters which have 
been separate as yet. (b) The 
RG transformation breaks a 
cluster in two
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� (7.156)

that helps us. Substituting a linear-scale factor of the RG transformation, r b≡1/ , 
into (7.156), we obtain

� (7.157)

Taking the logarithm of both sides of this equation

�
(7.158)

we find that ln( ( / ) )p r pexact
C C1 −  should be proportional to ln r.

If we correctly guessed the value  pexact
C , the dependence of ln( ( / ) )p r pexact

C C1 −  
on ln r  should become a straight line. Thereby, the sought pexact

C  is provided as the 
value straightening dependence (7.158).
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Chapter 8
Scaling: The Finite-Size Effect 
and Crossover Effects

Abstract  In the previous chapter, we have considered different approaches to build 
the renormalization group (RG) transformation. The behavior of a system in the 
vicinity of its critical point is scale invariant. This allows us to build relationships 
among different systems of the universality class.

However, in the previous chapter, our primary concern was to study how we 
can build the RG transformation, and we did not spend much time investigating the 
emerging scaling.

We overcome this drawback in the current chapter. Initially, we consider the 
basic principles of scaling (Widom 1965a; Widom 1965b; Domb and Hunter 1965; 
Patashinski and Pokrovskii 1966; Kadanoff 1966). Then we see that scaling leads 
to such important concepts as a finite-size effect and crossover effects. Finally, we 
study the origins of scaling and find that it is described by the formalism of general 
homogeneous functions. In turn, we demonstrate that the last formalism originates 
from the scaling hypothesis of the RG transformation.

8.1 � Percolation: Why Is the Cluster-Size 
Distribution Hypothesis Wrong?

Let us first consider percolation. In Chap. 4, we have obtained the critical index 
(4.82) of the order parameter. Assuming the presence of a nonzero order param-
eter, it was understood that we were considering the system above the percolation 
threshold: p p> C.

However, if we take a look at formulae (4.74–4.82) again, we would find nothing 
that would prevent us to apply them also for the system below the percolation 
threshold: p p< C. But this would mean the presence of a nonzero order parameter 
(a percolating cluster) for p p< C, which makes no sense just by the definition of 
the percolation threshold itself.

What went wrong? Our single assumption was the hypothesis (4.52 and 4.53) for 
the cluster-size distribution:
�

(8.1)n p s es
c p s( ) ,( ( ) )∝ − −τ ζ
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where
� (8.2)

Therefore, this hypothesis is the first to be suspected.
Let us look closer at the hypothesis (8.1 and 8.2). We know that the real cluster-

size distribution n ps ( ) is determined by the sum of probabilities of all lattice animals 
corresponding to the given s:

�
(8.3)

where the sum goes over the possible values ts  of perimeters of s-clusters. Here gts 
is the number of lattice s-animals corresponding to the given value of the perimeter.

Let us choose some particular value of s that is large, s >> 1, but finite. Then the 
sum (8.3) contains large but finite number of lattice animals. Thereby, this sum is 

the finite-order polynomial of p, all derivatives ∂
∂
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 ∝ − −p p k
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1
σ , which in the limit p p→ C diverges 

for high values of k when 1/σ  is not an integer. For lattices below the upper critical 
dimension, 1/σ  is generally not an integer so that hypothesis (8.1 and 8.2) turns out 
to be, indeed, too crude.

But what is wrong with hypothesis (8.1 and 8.2)? What should be corrected? 
Let us consider the case when τ

σ
−

<
2 1 so that we can neglect the term ( )p p− C  in 

(4.78):

� (8.4)

Due to the symmetry of the function c p p p( ) /∝ − C
1 σ  in the vicinity of the 

percolation threshold, the dependence of our hypothesis (8.1 and 8.2) on p (for fixed 
s) is symmetric (returns the same value for p pC ± ∆ ) and has a maximum exactly at 
p p= C. Therefore, the difference n p n ps s( ) ( )C −  is positive both above and below 
the percolation threshold which leads to the nonzero value of P pPC ( ) for p p< C as 
well.

Let us transform statistics (8.1 and 8.2) as

� (8.5)

Replacing the particular dependence exp | |−{ }const z ζ  on parameter

c p p p p p( ) ./∝ − →C C
1 σ for

n p g p ps t
s t

t
s

s

s

( ) ( ) ,= −∑ 1

P p s n p n pPC s s
s

( ) ≈ − ( )( )( )∑ C .

n p
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const p p s p p ss ( ) exp | | , ./∝ − −( ){ } → >>
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C Cfor
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� (8.6)

by more general functional dependence f z( ), we obtain

�
(8.7)

� (8.8)

Parameter z is called the scaling parameter while f z( ) is called the scaling func-
tion of one variable. This name comes from the fact that if we drew curves (8.5) for 
a particular lattice in the vicinity of its percolation threshold, for example, as depen-
dences on s for fixed p, for each value of p, we obtain its own curve. However, if we 
plot quantities s n ps

τ ( ) as dependences on z, all curves collapse onto one common 
functional dependence f z( ). This very technique is generally utilized to discover 
the presence of a scaling dependence for experimental results while the quality of 
the “collapse” characterizes the applicability of the scaling hypothesis in the model.

Of course, each particular lattice may have its own functional dependence f z( ).  
However, there are some features of behavior that characterize all lattices in com-
mon, and even the dependence f z( ) can become universal.

So, there are two asymptotes of the functional dependence f z( ) when we know 
in advance what to expect from a system. As we will see later, relation (6.231),

� (8.9)

can be proved for the case of an arbitrary scaling dependence f z( ) as well. This 
relation suggests that the limit  z << 1 corresponds to the case s s p pD<< ≡ξ ξ( ) ( ) 
when we consider clusters whose average linear size is smaller than the correlation 
length. In this limit from statistics (8.7 and 8.8), we expect that the function f z( ) 
depends weakly on z to provide the power-law decay n p ss ( )C ∝ −τ  of the cluster-
size distribution:

� (8.10)

This is one asymptote of the scaling.
On the contrary, in the limit z >> 1 , when we consider big clusters with the 

linear size larger than the correlation length, s s D>> ≡ξ ξ , we expect the exponen-
tially “fast” decay of statistics (8.7 and 8.8) which is provided by the exponentially 
“fast” decay of the function f z( )  to form another asymptote of the scaling.

z p p p p s= − −sign C C( ) /1 σ

n p
s

f zs ( ) ( ) or∝
1
τ

n p n p f zs s( ) ( ) ( ).= C

σν D =1,

f z z( ) | | .∝ ( ) <<Ο 1 1for

Problem 8.1.1

Find the scaling function of the cluster-size distribution for the one-dimen-
sional percolation.
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How does the introduction of scaling change our results from Chap.  4 obtained 
for an arbitrary lattice? Repeating almost to the letter formulae (4.71–4.73) for the 
mean cluster size, we find

�

(8.16)

The integral in the right-hand side is some nonsingular constant. Thereby, the intro-
duction of scaling does not change the relation among the critical indices:

�
(8.17)

Next, we repeat formulae (6.228–6.231). The difference is that now, to find the 
divergence of the moment M p

D
2 2

+
( ) , we can no longer use hypothesis (8.1 and 

8.2). Instead, we should employ scaling (8.7 and 8.8):
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Solution: The cluster-size distribution (4.4) for the one-dimensional 
percolation has been found in Chap. 4:

� (8.11)

In the vicinity of the percolation threshold p p→ −C 0 , we transform this 
dependence into the scaling form:

� (8.12)

Introducing the scaling parameter z by

� (8.13)

for the cluster-size distribution, we obtain the scaling

�
(8.14)

where τ = 2 , and the scaling function is defined by

� (8.15)

For z >> 1, this function decays exponentially “fast” with the increase of 
z . However, for z << 1, contrary to the previous discussion, it is not of the 

order of unity and tends to zero as z2. This is the special case of the presence 
of the so-called dangerous coupling constant which we discuss in Sect. 8.11.
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�

(8.18)

Substituting this result into (6.228), we prove the validity of relation (8.9).
At last, let us consider the scaling of the order parameter. Almost repeating 

(4.77–4.82), we find

�

(8.19)

Again, the integral in the right-hand side does not influence the scaling so that we 
return to the second relation among the critical indices:

�

(8.20)

For simplicity, let us consider the case τ
σ
−

<
2 1. Then we can neglect the term 

( )p p− C  in the right-hand side of (8.19):

�
(8.21)

This equation is supposed to be valid both above and below the percolation 
threshold. However, for p p< C, the order parameter P pPC ( ) by definition is ex-
pected to be zero. It is possible only when the integral in (8.21) is zero:

�
(8.22)

We know that the above function f z( ) for z << 1  is of the order of unity 
but decays exponentially for z >> 1  so that it is zero in the infinity: f ( )±∞ = 0. 
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Thereby, the difference ( ( ) ( ))f z f− 0  is zero when z = 0  and equals − f ( )0  when 
z = ±∞  (Fig. 8.1).

But the integral in (8.22) can be zero only if the difference ( ( ) ( ))f z f− 0  is posi-
tive somewhere for negative z and, thereby, has a maximum at some point z0 0<  
(Fig. 8.1).

This means that for a fixed value of s, the cluster-size distribution n ps ( ), as a 
dependence on p, has a maximum at point

� (8.23)

The point p0 of the maximum depends on s and tends to pC when s → +∞ . But 
the very fact that it only tends to pC but does not equal pC exactly provides the 
absence of a percolating cluster below the percolation threshold!

If we return to the exact result, (4.49) and (4.50) for the Bethe lattice with Z = 3,

�
(8.24)

where� (8.25)

we see that the point of the maximum has been moved away from pC toward lower 
values of p only by the presence of the multiplier ( )1 2− p . This multiplier does not 
participate in scaling, only in corrections to scaling:

�

(8.26)

Therefore, the situation may be more complex than we considered in Fig. 8.1: The 
dependence that moves the maximum of the cluster-size distribution away from the 
percolation threshold toward lower values of p may be not in scaling function f z( )  
itself but in corrections to scaling.

Let us now return to the definition (8.6) of the scaling parameter z. Where has 
the critical index σ come into this dependence from? Initially, it appeared in (8.2) 
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Fig. 8.1   The maximum 
of the scaling function 
provides the absence of a 
percolating cluster below 
the percolation threshold
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as a parameter of the exponential decay (8.1). But later, we have substituted this 
decay with more general functional dependence f z( ). Thus, the origins of the index 
σ have disappeared from the formalism, while the index is still present in the defini-
tion of the scaling parameter.

Thereby, defining the scaling parameter (8.6), we define in parallel the index 
σ. Does it mean that its value is arbitrary? No, it does not, because the value 
of the index σ is determined by relations (8.9, 8.17, and 8.20). In other words, 
we hypothesize the presence of this index within the scaling parameter and are 
attempting to develop the scaling of the cluster-size distribution. In the result, we do 
obtain the desired scaling, but it requires from us that the so-defined index σ should 
obey relations (8.9, 8.17, and 8.20).

The presence of an index within the scaling parameter is, in fact, quite general, 
although, as we will see later, for magnetic systems, Greek letter Δ is usually uti-
lized while the index is called the critical crossover index. But why do we need an 
index?

We have to generate two asymptotes of the scaling function. To this purpose, 
we need to compare a large integer s with a small quantity p p− C  (which are both 
present in definition (8.6)) to say, for example, that s is so large that it overpowers 
the small multiplier p p− C .

But we cannot compare s with p p− C  directly because they represent dif-
ferent physical quantities. Instead, we introduce index σ to compare s with 
p p p p sD D− = − = ≡− −

C C
1/σ ν

ξξ  which is the characteristic cluster size. There-
by, the scaling parameter (8.6) transforms into ratio

�
(8.27)

The reader should not think that only the cluster-size distribution possesses the 
scaling behavior. Generally, it is quite the opposite—whichever quantity we choose, 
it is expected to generate the scaling behavior.

For example, let us consider the radius of gyration R ps ( )  above the percolation 
threshold. Small clusters, s s<< ξ , are fractal so that their radius of gyration depends 
on the cluster size s as R p ss

D( ) /∝ 1 . On the contrary, big clusters, s s>> ξ , lose 
their fractality and, similarly to the percolating cluster, acquire the dimension d of 
the embedding lattice: R p ss

d( ) /∝ 1 .
These are two asymptotes of one scaling dependence,

� (8.28)

generated by the asymptotes of the scaling function ΞR z( ) :

� (8.29)

� (8.30)

We have seen one more example of scaling behavior in Chap.  6 when the 
correlation function was considered. The correlation function G( )



R  is itself the 
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scaling dependence when the role of the scaling parameter is played by the ratio of 
the distance R to the correlation length ξ:

�
(8.31)

where ΞG z( ) ( )∝ O 1  for z << 1  and exponentially decays for z >> 1.

8.2 � Percolation: The Finite-Size Effect

So far, we have generally discussed only infinite systems in the thermodynamic lim-
it N → +∞. What would happen if we considered a finite system of size L N d= 1/ ?

In this case, the finite-size effect takes place which drastically changes the behav-
ior of the system. To distinguish results we have obtained for the infinite lattice, we 
will further use for them the superscript “∞.”

On the infinite lattice for p p< ∞
C

, there are clusters of all sizes, as big as we are 
looking for; however, their fraction on the lattice is exponentially small in compari-
son with smaller clusters.

For the finite lattice, in turn, this statement is already not true. By definition of 
the cluster-size distribution ns, the product Nns represents the number of s-clusters 
on the finite lattice of size N Ld= . If we increase s, the number Nns decreases until 
it reaches unity,

� (8.32)

when there is only one such cluster on the lattice. Thus, s0  represents the size of 
the biggest cluster present on average on the finite lattice. For even bigger clusters, 
s s> 0 , we have Nns < 1  so that, although such s-clusters are possible as extremes 
of the statistics, there are no such clusters on average.

For simplicity, we again consider hypothesis (8.1 and 8.2) as an approximation 
of the real cluster-size distribution:

�
(8.33)

We are considering the system below the percolation threshold when the linear 
size L of the system is finite but is still much larger than the correlation length: 
L >> ∞ξ  (where ξ∞  is the correlation length in the infinite system). Since we are 
considering big clusters with the linear size much larger than the average size repre-
sented by the correlation length, the exponential decay dominates the statistics, and 
we can neglect the power-law multiplier:

�
(8.34)
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Problem 8.2.1

Consider a d-dimensional hypercubic lattice with d > 1. One possible micro-
state is when pLd  occupied sites on the lattice form a straight chain which 
is a cluster of size s pLd=  and length pLd . Since L L>> ln , the size of the 
considered cluster is much larger than (8.34). Besides, the considered cluster 
starts to percolate the lattice at the value of p

� (8.35)

which is much less than the percolation threshold. Explain the contradiction.

Solution: The considered cluster represents an extreme event of the cluster-size 
distribution. The normalized cluster number of this animal is the probability 
p pLd  for pLd sites to be occupied times the probability ( ) ( )1 2 1 2− − +p d pLd  for the 
required perimeter:

� (8.36)

By definition of the normalized cluster number, there are

� (8.37)

such clusters on average on the lattice.
Applying the logarithmic accuracy, we find that the possibility to encounter 

such a cluster in the ensemble is very improbable:

� (8.38)

However, we are generally interested not in extremes of the statistics but in 
the behavior on average. Expression (8.34) represents the size of the biggest 
on average cluster on the finite lattice.
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Let us now consider the vicinity of the percolation threshold when the power-law 
divergences of the correlation length and quantity c become applicable:

� (8.39)

But still we consider the case when the correlation length has not reached yet the 
size of the system: L > ∞ξ . Substituting (8.39) into (8.34), we find

� (8.40)

If p tends to pC
∞ − 0, the correlation length diverges together with s D

ξ ξ≡ ∞( ) . 
Thereby, s0 diverges also. Since s0 represents the size of the biggest on average 
cluster, this cluster is first on average to reach the system size and to form a perco-
lating cluster, but in accordance with (8.40) s s0 >> ξ  because ln Ld >>1. Thereby, 
when the percolating cluster appears, the correlation length is still smaller than the 
system size: L > ∞ξ . Therefore, the percolating cluster in the finite system appears 
earlier than in the infinite system (when ξ∞ = +∞) and even earlier than when the 
correlation length reaches the size of the system ξ∞ ∝( )L .

Since the correlation length is still less than the system’s size when the percolating 
cluster appears first on average, the whole s0-cluster is not fractal with dimension D. 
But still we may say that its logarithm should be proportional to the logarithm of L 
(times some constant representing the averaged dimensionality):

� (8.41)

Taking logarithm of both sides of (8.40), we find

� (8.42)

Substituting (8.41) into (8.42),

� (8.43)

we see that in the right-hand side of (8.43), we may neglect not only ln lnd L<<  
but also ln ln lnL L<< :

� (8.44)

Thereby, when we are increasing p and the biggest cluster for the first time percolates 
the finite system, the correlation length is, indeed, smaller than the system size but 
differs from it only by the corrections that we can neglect with logarithmic accuracy:

� (8.45)

Another display of the finite-size effect is the hyperscaling relation (6.239) 
found in Chap. 6. To obtain this relation, we glued together two scales. Above the 
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percolation threshold, p p> ∞
C , on scales smaller than the correlation length, L < ∞ξ , 

the piece of the percolating cluster is fractal, s Lpart of PC
D∝ . On scales larger than 

the correlation length, L > ∞ξ , it, on the contrary, represents the appearing scaling of 
the order parameter: s P p Lpart of PC PC

d∝ ∞ ( ) . By gluing these two types of behavior 
at the scale of the correlation length, L ∝ ∞ξ , we obtain the hyperscaling relation 
(6.239).

With the aid of this relation, the scaling of a piece of the percolating cluster, cut 
by different scales, can be presented in the form:

�

(8.46)

to be represented by a scaling function

� (8.47)

which has two asymptotes,

� (8.48)

� (8.49)

So far, we have discussed only the order parameter P pPC
∞ ( )   on the infinite lat-

tice as the probability for a site to belong to an infinite percolating cluster. On the 
finite lattice, we define the order parameter P p LPC ( , ) as the probability for a site to 
belong to a cluster percolating the finite lattice.

Multiplying P p LPC ( , ) by the number Ld  of sites on the finite lattice, we obtain 
the number L P p Ld

PC ( , ) of sites which belong to the cluster percolating the finite 
lattice.

But we can consider our finite lattice as a window through which we are looking 
at the infinite lattice with its infinite percolating cluster. Does L P p Ld

PC ( , ) represent 
the volume spart of PC  of the infinite percolating cluster cut by the finite lattice as if 
by Procrustes’ bed and determined by scaling (8.46–8.49)?

The answer is, obviously, negative because the finite lattice may be percolated 
not only by the infinite cluster of the infinite lattice but also by finite clusters of the 
infinite lattice with the linear size larger than our finite lattice (Fig. 8.2). In other 
words, decreasing the size of the window, we see that it is still percolated by the 
infinite cluster. But, besides the infinite cluster, it is also percolated now by other 
clusters that were earlier enclosed entirely by the larger window (Fig. 8.2).

Thereby, the order parameter P p LPC ( , )  of the finite lattice is higher than its in-
finite analogue P pPC

∞ ( ) . This can also be illustrated from a different point of view: 
if we see a cluster that percolates our finite system, we do not know whether it is 
infinite (Fig. 8.2) or finite (Fig. 8.3) beyond the window of our system.
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Problem 8.2.2

Consider the one-dimensional finite lattice with free boundary conditions 
(part a of the figure below) below the percolation threshold pC

∞ =1 of the infi-
nite lattice: p <1. Find the exact expression for the scaling function of the 
mean cluster size S .

Solution: Let us first find the cluster-size distribution. Far from the bound-
ary, the probability to find s-cluster at the given place on the lattice is still the 
probability p ps ( )1 2−  to have s occupied sites and two empty perimeter sites.

Here, by “far from the boundary,” we mean that the cluster touches neither 
left nor right boundaries (part b of the figure). There are ( )L s− −1  different 
locations for such s-clusters on the finite lattice with L sites.

Two more locations appear when the cluster touches the left or the right 
boundary (part c of the figure). The corresponding probability is p ps ( )1−  
because we have to require for only one perimeter site to be empty.

a

b

c

d

–

Fig. 8.2   The finite system 
(as a window through 
which we are looking at 
the infinite system) can be 
percolated not only by the 
infinite percolating cluster 
but also by finite clusters on 
the infinite lattice

 

Fig. 8.3   If a finite lattice 
(as a window through 
which we are looking at the 
infinite system) is perco-
lated by a cluster, we do not 
know whether this cluster 
is finite or infinite on the 
infinite lattice
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The last lattice animal we should count is the percolating cluster s L= . The 
probability of this cluster is the probability pL for the lattice to be occupied 
completely (part d of the figure).

This probability pL is nonzero for p < 1, and therefore, the finite lattice is 
percolated at values of p lower than the percolation threshold pC

∞ =1 of the 
infinite lattice. In other words, for the finite lattice, the percolation threshold 
pC is lower than the percolation threshold pC

∞ =1 of the infinite lattice:
�

(8.50)

Summarizing the probabilities we discussed above, we find the cluster-
size distribution (as the number of s-clusters per one lattice site):

�
(8.51)

On the infinite lattice, we have defined the mean cluster size S ∞  by (4.118). 
For the finite lattice, we utilize a similar expression

�
(8.52)

As it was discussed in details in Chap. 6, we must not include the term s L= , 
corresponding to the percolating cluster, into both sums of (8.52):

�

(8.53)

We find the sum in the denominator by utilizing the trick already known to us 
when we replace s with the derivative ∂ ∂/ p:

�

(8.54)
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The obtained equation is already known to us as the law of conservation of 
probability, especially if we rewrite it as

�
(8.55)

The right-hand side is the probability for a site to be occupied. The first term 
of the left-hand side is the probability for the site to belong to a finite cluster 
while the second term represents the percolating cluster.

For the sum in the numerator of (8.53), we similarly find

�

(8.56)

Substituting (8.54) and (8.56) into (8.53), we obtain the exact expression for 
the mean cluster size:

�

(8.57)

Far from the percolation threshold pC
∞ =1, this expression does not 

obey scaling. However, when the system tends to pC
∞ − 0, expression (8.57) 

transforms into

�

(8.58)

where we have expanded (8.57) in small parameter ( )1− p  but so far have not 
assumed anything about the order of the product L p( )1− .

Let us recall from Chap. 6 that in the vicinity of the percolation threshold, 
the correlation length diverges as (6.220):

� (8.59)
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so that the product L p( )1−  plays the role of the scaling parameter z L= ∞/ξ . 
Thereby we can transform (8.58) into a scaling function

�
(8.60)

�
(8.61)

When L >> ∞ξ  (and, correspondingly, z >> 1), the scaling function (8.61) 
is of the order of unity, ΞS z( ) ∝1, to recreate the divergence S p p∞ ∞ −

∝ − C

γ
 

of the susceptibility on the infinite lattice:

�
(8.62)

This is the first asymptote of the mean cluster size.
The second asymptote appears when L << ∞ξ  (and, correspondingly, 

| |z <<1). The expansion of (8.61) in the small parameter | |z  demonstrates 
that in this limit the scaling function behaves as

� (8.63)

which cancels the divergence (8.62) to provide constant asymptote:

�
(8.64)

Let us now discuss the obtained results. We assume that a scientist in-
vestigates percolation on a lattice of large but finite size L. The scientist is 
interested in the critical indices; therefore, she/he, step by step, tends p to Cp∞ 
from below.

First, when the system is far from the percolation threshold, the scientist 
observes complex behavior (8.57) which is specific for this particular system.

But the closer the percolation threshold is, the larger the correlation length 
becomes, and therefore, the previous complex behavior (8.57) transforms into 
the power-law divergence (8.62).

The best way to measure the critical index γ is to approach the percolation 
threshold closer and closer, following the power-law divergence (8.62) for 
several orders of S . Thereby the scientist could plot ln S  versus ln p p− ∞

C ; 
the slope of this line will provide the unknown critical index γ.

C

2( , ) ( / ),  where 1 and
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1

p

a

b
1

p

S~S~

S~S~

L

But due to the logarithmic dependences, one step of ln p p− ∞
C  requires, 

roughly speaking, one order of magnitude of p p− ∞
C . Therefore, the 

equipment the scientist is utilizing has to provide very precise measurements 
in the very close proximity of the percolation threshold.

As the system approaches the percolation threshold, the correlation length 
diverges according to (8.59) and sometime achieves the size of the system 
L. The scaling switches from asymptote (8.62) to asymptote (8.64). Thus, 
as the scientist tries to approach the percolation threshold closer and closer, 
instead of the expected power-law divergence, she/he observes the tendency 
to a constant with respect to p value (part a of the figure above). The value of 
this constant is proportional to the system size L in accordance with (8.64).

The experiment was designed to provide high-accuracy measurements at 
low values of Cp p∞−  and probably required a lot of funding and efforts. But 
all efforts were in vain because scaling (8.64) limited the range of the power-
law validity, and the finite-size effect camouflaged the expected divergence.

The way to suppress the finite-size effect is to increase the system’s size. 
This idea is presented in the figure (part b) as a sketch. The larger the size of 
the system is, the farther the last will follow the power-law dependence, and 
later the mean cluster size will approach the constant value.

But for numerical calculations, the increase in system size requires much 
higher computer resources and calculation time. Unfortunately, there is no escape.

Nowadays, the number of degrees of freedom in computer models of 
complex systems is often higher than 106–109 which is already difficult to 
call small. In the near future, this number will be probably equal to or exceed 
the Avogadro constant 1023 which is generally associated with the infinite 
number of particles in the thermodynamic limit.
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Problem 8.2.3

Similar to Problem 8.2.2, find the scaling function of the mean cluster size S  
if the boundary conditions are periodic.

Solution: For the one-dimensional lattice, the periodic boundary conditions 
mean that the chain of sites is closed in a ring (part a of the figure below).

The probability for a small s-cluster to be at a given place on the lattice still 
equals p ps ( )1 2− , and the number of possible locations is L (part b of the figure).

a

b

c

d

But for ( )L −1 -clusters (part c of the figure), whose number of possible loca-
tions is still L, only one empty perimeter site is required, and therefore, the 
probability equals p pL− −1 1( ).

For the percolating cluster, which again occupies all sites on the lattice 
(part d of the figure), the probability is pL.

Summarizing these probabilities, we find the cluster-size distribution:

�

(8.65)

Calculating the mean cluster size, we should again exclude the percolating 
cluster from the sums of (8.53). The denominator sum we find as follows:
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�

(8.66)

while the numerator sum equals

�

(8.67)

Therefore, the mean cluster size we obtain as follows:

�
(8.68)

Far from the percolation threshold, this expression does not possess any 
scaling properties. In the vicinity of pC

∞ , we expand (8.68) in a small param-
eter ( )1− p , while we do not assume anything about the order of the product 
L p( )1− , keeping it as it is:

�
(8.69)

Thereby, we have found the scaling function

�
(8.70)

� (8.71)

In the limit | |z >>1, this scaling function is of the order of unity, ΞS z( ) ∝1, 
while in the limit | |z <<1, it becomes a power-law dependence ΞS z z( ) /∝ 2. 
For the mean cluster size (8.70), this provides two scaling asymptotes:
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� (8.72b)
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As we saw in Problems 8.2.2 and 8.2.3, the finite-size effect cancels singular diver-
gences by replacing them with a finite value depending on the size of the system. For 
the mean cluster size, this result is obvious and could be foreseen in advance: The 
closer the percolation threshold is, the larger scales are occupied by the fractality, 
and the bigger the clusters on the infinite lattice are; however, the finite size of the 
finite system, like Procrustes’ bed, limits the size of the clusters, not allowing them 
to grow to the size they would have on the infinite lattice.

For the one-dimensional case, the size of a cluster equals its length; therefore, 
S p L( , ) was limited by L. For the d-dimensional lattice, we expect that S p L( , ) would 
be limited by L raised to some power. Let us assume the following scaling dependence:

�
(8.73)

where the first asymptote of the scaling function is

� (8.74)

to provide the power-law divergence of the mean cluster size on the infinite lattice.
From the second asymptote, we, on the contrary, expect to cancel the singular 

behavior C| |S p p γ−−

`~ . This is possible only when this asymptote is the power law:

� (8.75)

Indeed, substituting (8.75) into (8.73), we find

�

(8.76)

We see that the scaling itself suggests us that L should be raised to the power γ /v  
to represent the finite value replacing the divergence. By utilizing all relations we 
have obtained before (including the hyperscaling relation which is valid below the 
upper critical dimension), we find

� (8.77)

Similar behavior is observed for other quantities, including the correlation length 
itself. So far, we have referred only to the value ξ∞ of the correlation length on the 
infinite lattice. However, we may apply expression (6.206) as a definition for the 

C
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We see that, similarly to Problem 8.2.2, when approaching the percolation 
threshold, the power-law divergence is replaced with the constant asymptote 
of the order of the lattice size L.
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correlation length ξ ( , )p L  on a finite lattice. The first asymptote of the so-defined 
correlation length determines the divergence of the correlation length ξ∞ on the 
infinite lattice:

�
(8.78)

Assuming the scaling

�
(8.79)

where (8.78) is provided by the first asymptote of the scaling function,

� (8.80)

we see that the second asymptote of the scaling function must be

� (8.81)

to cancel the power-law divergence on | |p p− ∞
C  and generate the finite value:

�
(8.82)

We have obtained one more result that could be predicted from the beginning: 
While L > ∞ξ , the correlation length ξ ( , )p L  of the finite system repeats the be-
havior of its counterpart ξ∞ on the infinite lattice. However, the correlation length, 
defined by (6.206) as the averaged root-mean-square distance between sites within 
clusters, cannot, obviously, exceed the size of the system. Therefore, when ξ ( , )p L  
reaches L, it stays at this limit, not able to grow farther.

So far, we have considered only how the finite-size effect can cancel the power-law 
divergences. But the power-law divergences are just one type of possible singular 
behavior. Another type is represented by the singular power-law dependences, 
tending to zero at the percolation threshold. An example is the order parameter:

� (8.83)

How does the finite-size effect influence this type of behavior?
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Problem 8.2.4

For the one-dimensional percolation on the finite lattice, find the scaling of 
the order parameter.
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For an arbitrary lattice, the finite-size effect cancels the singularity of P p L( , ) by 
“smoothing” the tendency to zero at the percolation threshold Cp∞ (Fig. 8.4). There-
by, the probability to observe the percolating cluster becomes nonzero for p p< ∞

C . 
For the scaling of P p L( , ), we may assume

� (8.86)

where the asymptotes of the scaling function are

�
(8.87)

� (8.88)

� (8.89)

At last, we consider the probability Π for the system to be percolated. On the 
infinite lattice, since the percolation threshold pC

∞  is defined as the point of appear-

P p L p p p p LP( , ) | | ( ) / ,( )= − −∞ ∞ ∞
C Csignβ ξΞ

ΞP ( ) ,−∞ = 0

ΞP z z( ) ( ) ,∝ >>O for and1 1

ΞP z z z( ) | | | | ./∝ <<−β ν for 1

Solution: The order parameter P p LPC ( , )  on the finite lattice is defined as the 
probability for a site to belong to a cluster percolating the finite lattice. For the 
one-dimensional chain of sites, we immediately find

�
(8.84)

where for ξ ∞, we utilized (6.220).
We see that the order parameter is not zero for p p< ∞

C . Instead, it obeys 
the scaling

� (8.85)
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size effect for the order 
parameter
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ance of a percolating cluster, this probability is, obviously, zero below pC
∞  and unity 

above pC
∞  (Fig. 8.5, the dotted line):

� (8.90)

On a finite lattice, the dependence Π( , )p L  “smoothes” the singularity at pC
∞  

(Fig. 8.5, the solid line).
There was no question how to determine the percolation threshold on the infinite 

lattice—it is the point of the singular step of Π∞ from zero to unity. On the contrary, 
on a finite lattice, the dependence Π( , )p L  changes from zero to one continuously so 
that there is no particular point that can be associated with the percolation threshold. 
To choose the value pC of the percolation threshold on a finite lattice, we initially 
should specify what value of Π( , )p L  we attribute to the appearance of a percolating 
cluster. Choosing Π( , ) /p L eC =1  in Fig. 8.5, we see that pC may be not equal to pC

∞ .
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Fig. 8.5   The finite-size 
effect for the probability for 
a system to be percolated

 

Problem 8.2.5

Find the percolation threshold pC for the one-dimensional percolation on the 
finite lattice.

Solution: The probability for the one-dimensional lattice of size L to be per-
colated is

�
(8.91)

where for ξ ∞, we utilized (6.220).
Choosing Π( , ) /p L eC =1  to represent the percolation threshold, we find

� (8.92)

We see that on the finite lattice, the percolation threshold is lower than on the 
infinite lattice.
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The general expectation is that C Cp p∞< , i.e., when we are increasing p, the finite 
system is percolated earlier than the infinite system. We expect this statement to be 
true because to percolate the infinite system, we need an infinite percolating cluster 
ξ∞ = +∞( ), while the finite system is percolated by a finite cluster with linear size 

of the order of the system size ξ ∝( )L  which happens at lower values of p.
For an arbitrary lattice, we may assume the presence of scaling:

� (8.93)

with two asymptotes:

� (8.94)

The scaling function ΞΠ ( )z  and its scaling parameter z are dimensionless. There-
fore, we expect ΞΠ ( )z  to change from zero to unity when its argument z also chang-
es by the order of unity:

�
(8.95)

Substituting here the divergence of ξ∞, we find that the probability Π( , )p L  
changes from zero to one when p changes by

� (8.96)

For the percolation threshold pC  on the finite lattice, this provides

� (8.97)

8.3 � Magnetic Systems: The Scaling of Landau Theory

We now turn our attention to magnetic systems, in particular to Landau theory of 
the Ising ferromagnet, which was considered in Chap. 3. The minimization of the 
specific Helmholtz free energy (3.105)

�
(8.98)

provides the equation of state (3.92):

� (8.99)

and the equilibrium Helmholtz energy
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� (8.100)

By rearranging multipliers, we present the equation of state in the form:

�
(8.101)

Considering the isofield approach h = 0  of the critical point,

�
(8.102)

we expect that (8.102) should provide the equilibrium value of the homogeneous 
spontaneous magnetization (3.98):

� (8.103)

In Chap. 3, we had βt
C =1 2/  in particular. That is why the magnetization partici-

pates in (8.102) in the form of the ratio m t0 / | |. For more general case, we expect 
in (8.102) the presence of the ratio m t t

0 /| |β
C
:
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(8.104)

For the magnetic field (8.101), this provides

�

(8.105a)

� (8.105b)

Differentiating (8.105b) with respect to m0, we find the susceptibility of the 
system:
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(8.106)
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�
(8.107)

when we approach the critical point along the isofield curve h = 0. Comparing 
(8.106) and (8.107), we see that

� (8.108)

which is, indeed, correct for the mean-field indices γ t
C =1 and βt

C =1 2/ . However, 
this relation between the critical indices is not complete yet, so we will discuss it in 
more detail later.

For more general case, we can improve (8.105) as

�

(8.109a)

� (8.109b)

Comparing (8.109b) with (8.99), we see that for the general case, we should modify 
the initial expression of the Helmholtz energy (8.98) as

�

(8.110a)

�
(8.110b)

Substituting scaling (8.109a) of the magnetic field into (8.110b), we find

�

(8.111)

From Chap. 3, we know that along the isofield curve h = 0, the critical index of 
the heat capacity is defined by

�
(8.112)
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which means that the singular part of the specific Helmholtz energy scales as

�
(8.113)

Comparing (8.112) with (8.111), we find the relation among the critical indices:

�
(8.114)

which is, obviously, valid for the mean-field exponents αt
C = 0, βt

C =1 2/ , and 
γ t
C =1. The generalization of this equality is the so-called Rushbrooke inequality 

(Essam and Fisher 1963; Rushbrooke 1963):

�
(8.115)

So far, we have dealt only with the divergences along the critical isofield curve. 
Next, we consider the critical isotherm t = 0 when h ≠ 0:

� (8.116)

�
(8.117)

For the magnetization on the critical isotherm, we introduced in Chap. 3 its own 
critical index,

� (8.118)

which happened to be equal to βh
C =1 3/ . Again, substituting the ratio m h0

3/  in 
(8.117) by the more general expression m h h

0 /
βC

, we find
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Returning to (8.109), we need to decide how we should modify this equation. We 
cannot modify the exponent of the h like

�
(8.120)

F
N

A t
CE

t

µ
α+ ∝ −2 2 2ln | | .
C

α β γt t t
C C C+ + =2 2,

α β γt t t
C C C+ + ≥2 2.

0 4 0
3= − + +…h bm  or

3
0

3
1 4

m
b

h
 

= +… 
 

m h h
0 ∝

βC
,

C

3

01 4
β

 
= +…   h

m
b

h

h t a
m

t
t b

m

t
h t t

t t

3 0 02 4β γ β
β β

C C C

C Csign≠












+












+| |
| | | |

33

+…














8.3  Magnetic Systems: The Scaling of Landau Theory� 447

because well above the critical temperature | |t >>1 for small values of the field h, 
we expect the magnetization to be linearly proportional to the field. Therefore, there 
is only one way to modify (8.109)—to tune the exponent of the second term in the 
right-hand side:

�

(8.121a)

�
(8.121b)

Simultaneously, we have modified the coefficient at this term because this equation 
of state is supposed to be generated by differentiating the Helmholtz free energy:

�
(8.122a)

�
(8.122b)

But, by comparing (8.121) with (8.99), we find that the absence of the tempera-
ture dependence at the second term of the right-hand side is possible only when

�
(8.123)

This relation among the critical indices (consuming (8.108) as a particular case) is, 
in turn, a particular case of the more general inequality:

�
(8.124)

called the Griffiths inequality (Griffiths 1965, 1972).
Differentiating (8.121b),

�

(8.125)

we find that for the susceptibility at the critical isotherm t = 0, the explicit tempera-
ture dependence disappears in the limit t → 0:
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�
(8.126)

leaving only the scaling with respect to the magnetic field. Comparing this scaling 
with the definition of the critical index γ h

C,

�
(8.127)

we find the relation

� (8.128)

which is obvious due to the fact that the susceptibility is just the derivative (8.125) 
of the magnetization with respect to the field. However, with the aid of (8.128), 
equality (8.123) can be generalized as

�
(8.129)

which, in turn, generalizes the Griffiths inequality:

�
(8.130)

Finally, we investigate the scaling behavior of the equilibrium Helmholtz energy 
(8.122b) on the critical isotherm. In the limit t → 0, we see that the explicit tempera-
ture dependence disappears from (8.122b),

�
(8.131)

leaving only the scaling with respect to the field:

�
(8.132)

This scaling is, again, obvious because the negative derivative of the Helmholtz 
energy with respect to h should return us to the scaling of the magnetization:

�
(8.133)
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However, it seems that Landau theory allows us to generalize the critical indices 
not for every quantity. Let us discuss, for example, the scaling of the heat capacity 
along the critical isotherm. Differentiating twice the Helmholtz energy (8.122) with 
respect to T, one of the terms we obtain is

�
(8.134)

whose temperature divergence γ γ
t t tC C
−( ) −1 2  cannot be canceled or neglected in the 

limit t → 0 unless we consider only the mean-field value of the critical index γ t
C =1. 

Therefore, it seems that in accordance with Landau theory, the scaling of the heat 
capacity is possible only when the critical indices are determined by the mean-field 
approach. In more detail, we will return to this question in Sect. 8.5.

After we have generalized the equation of state (8.99) by associating its expo-
nents with critical indices, let us study the behavior of the obtained equation of state 
(8.121). Far from the critical point, expansion (8.122) is not valid and the magnetic 
field h depends on T and m0 in accordance with some laws, specific for the given 
system. However, when we approach the critical point, we see that (8.121) gener-
ates a scaling function for the magnetic field (Widom 1965a):

�
(8.135)

where the superscript “ ± ” means that there are two separate scaling functions: 
(“ + ”) above the critical point and (“–”) below the critical point. The scaling pa-
rameter here is

� (8.136)

Comparing (8.121) and (8.135), we find that the scaling function is

�
(8.137)

It is not convenient to work with the magnetic field as a function of the magne-
tization, since the magnetic field is the external field parameter, supported constant 
by the boundary conditions, while the magnetization is the fluctuating parameter. 
Therefore, by inverting the magnetic field scaling function, we find the scaling of 
the magnetization,

�
(8.138)
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� (8.139)

as the dependence on the new scaling parameter

�
(8.140)

which now contains only the field parameters.
The scaling function (8.139) has two asymptotes:

�
(8.141)

� (8.142)

which are obvious from (8.121). However, an easier way to prove these asymptotes 
is to see what scaling dependencies they generate for magnetization (8.138).

The first asymptote,  | |y <<1, corresponds to the critical isofield curve h = 0. 
For this case, the scaling function (8.139) provides the asymptote of magnetization 
(8.138)

� (8.143)

which is just the scaling (8.103) of the magnetization along the critical isofield 
curve.

The second asymptote (8.142) of the scaling function represents the critical 
isotherm t = 0. For magnetization (8.138) in this case, we find

�

(8.144)

The zero deviation of the temperature from critical t = 0, would cause singular-
ity (zero or infinity) in this expression unless the temperature dependence, coming 
from the asymptote (8.142) of the scaling function, canceled out the previous scal-
ing (8.143). But this is exactly what is happening due to the relationship (8.123) 
among the critical indices! So, we find

� (8.145)

which is just the scaling (8.118) of the magnetization at the critical isotherm.
What we have seen here is the typical example of how the scaling works. The 

scaling function, depending on one scaling parameter, has two asymptotes. One of 
them provides the scaling of the corresponding quantity along the isofield curve 
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h = 0. The second asymptote is built in such a way that it cancels out the previous 
scaling on t and generates the new scaling on h for the critical isotherm.

Differentiating (8.138) with respect to h, we find the susceptibility:

�
(8.146)

This expression can also be represented by scaling:

�
(8.147)

where the scaling function has two asymptotes again:

�
(8.148)

� (8.149)

To prove these asymptotes valid, we could find the susceptibility by differentiating 
(8.121) with respect to m0. However, it is much easier to verify these hypotheses by 
looking at the scaling they generate.

The first asymptote, | |y <<1, provides the scaling along the isofield curve h = 0,

�

(8.150)

while the second asymptote, | |y >>1, cancels the previous scaling (8.150) to gener-
ate the new scaling along the isotherm:

�

(8.151)

In the vicinity of the critical point, the singular part of the specific Helmholtz 
energy also exhibits scaling:
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(8.152)
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with the scaling function having two asymptotes:

�
(8.153)

� (8.154)

This provides two scaling asymptotes for the Helmholtz energy:

�
(8.155)

�
(8.156)

Scaling functions should not necessarily have only one scaling parameter. For 
example, in Chap. 6, we obtained the following expression for the correlation func-
tion:
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� (8.158)

This scaling is represented by the scaling function of two scaling parameters:

�
(8.159)

where the scaling function is of the order of unity when the first scaling parameter 
is small,

� (8.160)

and decays exponentially when x1 1>> .
Let us, for example, consider the system in the absence of magnetic field. In 

accordance with the fluctuation–dissipation theorem, the magnetic susceptibility 
equals the integral of the correlation function:
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�

(8.161)

Let us perform the change of variable x R t t
C

= | |ν  under the sign of the integral:

�
(8.162)

Comparing this divergence with (8.107), we obtain the relation among the criti-
cal indices:

� (8.163)

The generalization of this equality is the Fisher inequality (Fisher 1969):

�
(8.164)

In conclusion of this section, we should say that although we have considered 
here only the critical scaling of the Ising model, similar results can be found for the 
proximity of the spinodal point as well. In particular, dependencies (3.92), (3.115), 
(3.133), and (6.105) are the scaling functions whose asymptotes allowed us in 
Chaps. 3 and 6 to find all spinodal indices. In more detail we return to this question 
in Sect. 8.12.

8.4 � Magnetic Systems: Scaling Hypotheses

We have considered the scaling of a ferromagnetic system in the approximation 
of Landau theory. However, very similar scaling dependencies are valid for more 
general, nonmean-field case as well since the scaling follows from the most basic 
assumptions.

When the magnetic field is nonzero, a system of linear size L has two scaling 
parameters:

� (8.165)

where by the subscript “h t↵ ” we have specified that this index Δ belongs to the 
comparison of h with 
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| | h tt ↵∆  and is called the critical crossover index of this 

comparison.
In the thermodynamic limit L → +∞, the singular part of the equilibrium Helm-

holtz energy divided by the total number N Ld=  of spins is intensive and can 
depend, therefore, only on the intensive scaling parameter y:
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� (8.166)

If we had several extensive parameters, we could consider their combinations. 
However, in (8.165), we have only one extensive parameter x−1  and one intensive 
parameter y, which leaves no alternatives to (8.166).

The multiplier Ld  in (8.166) seems to be the inheritance of the extensive scaling 
parameter x, so we can assume that

�
(8.167)

Recalling that along the critical isofield curve in the vicinity of the critical point, 
the correlation length diverges as (6.149),

� (8.168)

we obtain

� (8.169)

If we assume the asymptote of the scaling function

� (8.170)

this generates the following asymptote for the singular part of the Helmholtz energy 
along the critical isofield curve:

� (8.171)

Recalling the divergence (8.113),

� (8.172)

we obtain the hyperscaling relation, containing explicitly the dimension of the 
model:

� (8.173a)

which is a particular case of the Josephson inequality (Josephson 1967a, b):

� (8.173b)
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To find the magnetization, we should differentiate the Helmholtz energy with 
respect to h:

�
(8.174)

Assuming

� (8.175)

in the limit 
C

| | h th t ↵∆<<  of the critical isofield curve, we find

� (8.176)

Comparing this result with scaling (8.103),

�
(8.177)

we obtain another relation among the critical indices:

� (8.178)

The susceptibility is the derivative of the magnetization with respect to h:

�
(8.179)

Again, assuming

�
(8.180)

for the critical isofield curve, we find

� (8.181)

Comparing this power-law dependence with divergence (8.107),

� (8.182)

we find the new relation among the critical indices:
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� (8.183)

Excluding C
h t↵∆  and the dimensionality d of the system from (8.173), (8.178), 

and (8.183), we return to the particular case (8.114) of the Rushbrooke inequality 
(Essam and Fisher 1963; Rushbrooke 1963):

� (8.184)

The scaling hypotheses above should be considered as illustrative rather than 
rigorous. Even more so, a scaling assumption, which happens to be valid for a par-
ticular case, may provide incorrect results when applied in a different way. For 
example, we based the scaling of the Helmholtz energy on the hypothesis that the 
Helmholtz energy is an extensive quantity and, therefore, should depend as x d−  
on the extensive scaling parameter x. However, both the nonspecific magnetization 
and nonspecific susceptibility are also extensive. If we applied the same scaling 
hypothesis to these quantities, we would obtain incorrect relations among the criti-
cal indices.

Another example is that we have obtained the hyperscaling relation (8.173) for a 
system of an arbitrary dimensionality. However, above the upper critical dimension, 
we do not expect this relation to be valid because in this case, the critical indices are 
determined by the mean-field values.

Therefore, we consider the scaling theory itself as a good illustration of already 
obtained experimental or exact data rather than the independent technique to find 
the critical indices. However, as we will see below, some hypotheses of the scaling 
theory can be justified by the properties of the renormalization group (RG) transfor-
mation which provides much more fundamental foundation for this theory.

Above, we have considered the scaling of quantities along the critical isofield 
curve, h t h t<< ↵| |

C∆  and | |y <<1. Let us now turn our attention to the critical isotherm.
The critical isotherm corresponds to the limit h t h t>> ↵| |

C∆  when | |y >>1. Assum-
ing in this limit the power-law asymptote of the scaling function,

� (8.185)

for the asymptote of magnetization (8.174), we find

�
(8.186)

On the critical isotherm, the deviation of the temperature from its critical value 
is zero exactly: t = 0. To avoid singularities in (8.186), we expect that asymptote 
(8.185) should cancel out the previous scaling (8.177) of the critical isofield curve. 
Besides, we expect the new scaling to be in accordance with (8.118):

�
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This is possible only when

� (8.188)

Removing C
h t↵∆  and the dimensionality d of the system with the aid of the pre-

viously found relations, we return to the particular case  (8.123) of the Griffiths 
inequality (Griffiths 1965, 1972):

� (8.189)

Summarizing, we expect the magnetization to obey the scaling (Widom 1965a)

�
(8.190)

where two asymptotes of the scaling function,

� (8.191)

� (8.192)

provide two asymptotes of the magnetization:

� (8.193)

� (8.194)
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Problem 8.4.1

Find the scaling of the susceptibility along the critical isotherm.

Solution: Assuming the power-law asymptote for the scaling function

�
(8.195)

for the asymptote of susceptibility (8.179), we obtain

�
(8.196)
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Problem 8.4.2

Find the scaling of the singular part of the Helmholtz energy along the critical 
isotherm.

Solution: Similar to the previous discussion, we find

However, we expect this asymptote to be (8.127):

�
(8.197)

It is possible if only

� (8.198)

Excluding C
h t↵∆  and the dimensionality d of the system with the aid of the 

previously found relations, we return to the trivial relation (8.128), connect-
ing the critical indices of the magnetization and the susceptibility which is the 
derivative of the magnetization with respect to the field:

� (8.199)

So, the susceptibility obeys the scaling

� (8.200)

where two asymptotes of the scaling function

� (8.201)

� (8.202)

provide two asymptotes of the susceptibility:

�
(8.203)

�
(8.204)
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8.5 � Magnetic Systems: Superseding Correction

In Sect. 8.3, we were not able to build the scaling of the heat capacity along the 
critical isotherm. Let us return to this question.

To find the heat capacity, we differentiate (8.169) twice with respect to temperature:

�

(8.211)

Considering the critical isotherm, we should substitute asymptotes (8.208, 8.185, 
and 8.195) into this expression:
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(8.205)

which provides the following scaling:

�
(8.206)

where two asymptotes of the scaling function are

�
(8.207)

� (8.208)

and two asymptotes of the Helmholtz energy are

� (8.209)

� (8.210)
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�

(8.212)

We have here three unknown constants of proportionality since the utilized asymp-
totes are proportionalities but not exact equalities.

Recalling relation (8.188), the first term in the right-hand side of (8.212) provides

�
(8.213)

Contrary to our expectations, the temperature dependence has not disappeared 
and is singular at the critical isotherm t = 0. Does it mean that the scaling is not 
valid for the heat capacity?

To see what has happened, we should return to the example of Landau theory. We 
consider the simplest form of the equilibrium Helmholtz energy when all critical 
indices equal their mean-field values:

� (8.214)

We consider the system below the critical point when magnetic field is positive or 
zero. The equation of state

� (8.215)

is a cubic equation. When

�
(8.216)

it has one real solution

�
(8.217)

When

� (8.218)

there are three possible solutions, but we consider only the stable magnetization
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�
(8.219)

This is clearly the scaling dependence on the scaling parameter 
C

/ | | h th t ↵∆ , where 
the mean-field approach provides the value of the crossover index ∆h t↵ =C /3 2:

� (8.220)

with the scaling function

�
(8.221)

� (8.222)

The scaling function has two asymptotes:

�
(8.223)

� (8.224)

providing two asymptotes of the magnetization:

� (8.225)

� (8.226)

Here in the inequalities, we no longer pay attention to the constant of proportionality 
(as well as in all other scaling inequalities in other sections).

Substituting solution (8.220) into (8.214), we see the scaling of the Helmholtz 
energy:

� (8.227)
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� (8.228)

The scaling function has two asymptotes:

�
(8.229)

� (8.230)

which provide two asymptotes of the Helmholtz energy:

�
(8.231)

�
(8.232)

Since we intend to investigate the behavior of the heat capacity along the criti-
cal isotherm, let us investigate the behavior of the scaling function (8.228) in the 
proximity of this curve. Considering h t>> | | /3 2, we first improve the accuracy of 
asymptote (8.224), adding several corrections to scaling:

� (8.233)

This allows us to improve the accuracy of asymptote (8.230):

�
(8.234)

Also formula for (8.211) requires the knowledge of the first and second derivatives 
of this scaling function:
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� (8.236)

Let us now find the heat capacity by differentiating the Helmholtz energy (8.227):

�

(8.237)

Substituting asymptotes found above, we group the terms by their powers of the 
scaling parameter y:

� (8.238)

where the leading bracket in front of each group explicitly shows three separate 
numbers, coming from three different terms of the right-hand side of (8.237).

From this result, we see that the leading scaling term (8.230) indeed provides 
C y t∝ ∝ −| | | |/4 3 2 which is singular at the critical isotherm t = 0. However, the 
coefficient 6 9 3− +{ } at this term is exactly zero! Therefore, the divergence | |t −2 
does not affect the heat capacity.

The first correction to the main scaling returns singularity C y t∝ ∝ −2 3 1/ | |  
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 is zero again!

Only the second correction to the main scaling, which we call the superseding 
correction, provides the nonzero value of the heat capacity, while all further correc-
tions are exactly zero at the critical isotherm t = 0:

� (8.239)

In the result, the heat capacity is constant along the critical isotherm in the vicinity 
of the critical point which corresponds to zero value of the critical index αh

C = 0 .
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We see that the leading term of the scaling does not always determine the behavior 
of the system. Corrections to this term often influence experimental results also. 
Besides, as it has happened in the example considered above, sometimes the coef-
ficient at the leading term becomes exactly zero. In this case, the superseding cor-
rection completely “usurps” the leading role in determining the scaling behavior!

8.6 � Crossover Effect of Magnetic Field

In Sect. 8.4 for the magnetization, we have found scaling (8.190–8.194):

� (8.240)

where two asymptotes of the scaling function,

�
(8.241)

� (8.242)

provide two asymptotes of the magnetization:

� (8.243)

� (8.244)

This scaling behavior is called the crossover effect which should always be taken 
into account during experimental or numerical studies. Let a scientist investigate the 
behavior of a magnetic system in the vicinity of its critical point. The main purpose 
of this study may be to measure the critical index βt

C at the binodal curve. For this 
purpose, the scientist isolates the system from external fields and allows the tem-
perature to tend step by step to its critical value from below.

Far from the critical point, there is no scaling, and the investigator observes some 
complex behavior, specific for this particular system. However, when the tempera-
ture more and more approaches the critical value, the fractality tends to occupy larg-
er and larger scales, leading to the appearance of the scaling when the dependence 
of the magnetization on temperature transforms into power-law (8.243).

This is what the scientist has wanted to achieve. To find the critical index βt
C 

she/he needs only to measure the magnetization m0 when | |t → 0. Then the sought 
critical index would be provided by the slope of the dependence of lnm0 on ln | |t .
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The more points along this curve the investigator would be able to measure, the 
more accurate the final value of the critical index would be. However, each unit 
step of ln | | ln | |t t⇒ −1 requires to decrease | |t  e times: | | | | /t t e⇒ . Therefore, the 
scientist employs the most sensitive equipment capable to perform finest measure-
ments in the close proximity of the critical point. But will the scientist obtain the 
desired result?

Even if the system has been isolated from external fields, a small but nonzero 
magnetic field h0 is always present. So, we actually can talk only about how small 
its magnitude is, but not about the complete absence of the field.

But the presence of even small field distorts the behavior of the system drasti-
cally! Let us look at Fig. 8.6. The small magnetic field h0 is presented here by the 
dotted arrow. The scientist believes that when the system tends to the critical point, 
it follows the abscissa axis of the zero field h = 0. However, in reality, the system 
follows the dotted arrow and finally arrives not at the critical point but at the point 
with the critical temperature t = 0, but nonzero value of the field h h= ≠0 0.

When h t h t
0 << ↵| |

C∆ , i.e., to the right of the curve h t h t= ↵| |
C∆  in Fig. 8.6, the mag-

netization follows the asymptotic power-law dependence (8.243) on temperature 
which is singular (zero) at the critical point. However, when the investigator allows 
the system to tend to the critical point, the system follows the dotted arrow and 
crosses the curve h t h t= ↵| |

C∆ . The corresponding temperature | | / C

t h h t= ↵1 ∆  is called the 
crossover temperature.

But to the left of this curve, the present nonzero field breaks the singular depen-
dence (8.243) on temperature to generate the new scaling (8.244) when the magne-
tization tends to a finite value m h h

0 0∝ βC
 instead of the zero value which it would 

achieve at the critical point. This dependence is presented schematically in Fig. 8.7.
Therefore, preparing the experiment, the scientist should take care not only 

about how sensitive the equipment is but also about the better isolation from the 
external field. Otherwise, the crossover effect would break the desired power-law 
temperature dependence.

Similar to the crossover effect of magnetization, behavior is exhibited by other 
quantities: Helmholtz energy, susceptibility, and heat capacity. Let us consider, for 
example, the heat capacity. We expect that, when approaching the critical point, 
the small but nonzero field should break the temperature divergence C t t∝1/ | |α

C
 

Fig. 8.6   The crossover 
effect due to the presence of 
small magnetic field
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at both sides, t → +0  and t → −0 , of the critical point to generate the finite value, 
depending on the magnetic field:

�
(8.245)

where two asymptotes of the scaling function,

�
(8.246)

� (8.247)

provide two asymptotes of the heat capacity:

� (8.248)

�
(8.249)

We have assumed this scaling to be valid just from the general considerations. 
But let us look what results this assumption can generate. First, to cancel out the 
temperature dependence in (8.249), we should assume the following relation among 
the critical indices:

� (8.250)

which, with the aid of the relations obtained above, we transform into

�
(8.251)

C t h
t

t

h t
C=










− ±

↵
| |

| |
,

C

C
α Ξ

∆

ΞC y y± ∝ <<( ) ( ) | | ,O for1 1

ΞC y y yh± −∝ >>( ) | | ,αC
for 1

C t h tt h t∝ <<− ↵| | | | ,
C Cα for ∆

C t h
t

h h tt

h t

h

h h t∝








 ∝ >>−

−

−

↵

↵| |
| |

| | .
C

C

C

C Cα

α

α

∆

∆for

α αt h t h
C C C= ↵∆

α
α

β
β

γ
γ

t

h

t

h

t

h
h t

C

C

C

C

C

C
C ,= = = ↵∆

Fig. 8.7   Due to the cross-
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� (8.252)

Obviously, the mean-field exponents αt
C = 0 , αh

C = 0 , βt
C =1 2/ , βh

C =1 3/ , 
γ t
C =1 , γ h

C = 2 3/ , and  ∆h t↵ =C /3 2  obey these relations.
Second, scaling (8.249) tells us that when the system tends to its critical tem-

perature, the temperature divergence (singularity) is substituted by some transient 
dependence (Fig. 8.8), leading to a finite value of the heat capacity at t = 0.We also 
know this finite value—scaling (8.249) predicts from general considerations that 
C h h∝ −αC.

From Fig. 8.8 we see that, theoretically, nothing prevents the point of maximum 
of the heat capacity to be not exactly at critical temperature t = 0. But how far the 
point of the maximum can go?

Surprisingly, this question is also answered by the scaling itself. Let us suppose 
that the maximum C h h∝ −αC

 is achieved at point t0 . This maximum has been pro-
vided by the maximum of the function ΞC y y h± −( )/

Cα  at some value y0 of the scaling 
parameter y. So, by definition, we have

� (8.253)

Here | |y0 1>> , but y0  is still a some finite value. This provides the assessment how 
much the point of the maximum can deflect from tC = 0 :

� (8.254)

If we decided to find the critical temperature experimentally as the point at which 
the heat capacity diverges, this expression would give us the possible experimental 
error present due to the crossover effect.

We should mention here that the presented discussion has been intended only to 
illustrate the general concepts, following from scaling hypotheses, and should not 
be considered as rigorous. Each particular system has its own symmetries, posi-
tively determined quantities, and model rules, dictating the behavior of the system. 
For such a system, the presented concepts may illustrate the obtained experimental 
or numerical results; however, they may also happen to be inapplicable, in which 
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case the scaling hypotheses should be modified to suite the particular system under 
consideration.

8.7 � Magnetic Systems: Crossover Phenomena

So far for magnetic systems, we have studied the crossover effects caused only by 
the magnetic field. However, similar phenomena can arise due to many other pa-
rameters, for example, weak interactions.

We approximate any real system by a model whose Hamiltonian includes terms 
which we are holding responsible for the observed behavior. However, any model is 
just an idealization. The real system may possess more complex interactions that are 
missed in the model Hamiltonian due to their small amplitude ϕ . For example, in 
the Ising model, we may take into account only pair (bi-spin) interactions while the 
real system may possess very weak but nonzero triple-spin interactions, quadrospin 
interactions, etc.

These unknown interactions are weak and, far from the critical point, may not be 
observable experimentally. However, when the system approaches its critical point, 
the amplitude ϕ of these interactions may become comparable with the relative 
deviation of temperature from its critical value, causing the appearance of the new 
order parameter

� (8.255)

Here we have introduced a new critical crossover index ∆ϕ↵t
C  responsible for the 

comparison of the weak amplitude ϕ  with | |
C

t t∆ϕ↵ .
In this case, for an arbitrary quantity a, we obtain the scaling

� (8.256)

where two asymptotes of the scaling function,

� (8.257)

� (8.258)

provide two asymptotes of the scaling:

� (8.259)

� (8.260)
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Here we assume that the temperature dependence is canceled to provide scaling on 
the amplitude ϕ  with a new critical index θϕ

C.
Scaling (8.256–8.260) generates the crossover effect similar to the effect of the 

small but nonzero magnetic field considered in the previous section. Namely, when 
the temperature of the system tends to its critical value, the small amplitude ϕ  of 
unknown interactions breaks the singular (i.e., tending to zero or infinity) tempera-
ture dependence to generate the finite value of a depending on the amplitude ϕ. The 
temperature | | /t t= ↵ϕ ϕ1 ∆C

 is, again, called the crossover temperature.
Real interactions may not have an amplitude that can be “tuned”; however, in the 

mathematical model, describing the system, everything is possible. Therefore, the 
new scaling (8.260) can be considered as a singular power-law dependence again, 
however in this case, this dependence is on the amplitude ϕ.

All scaling dependencies considered so far broke the scaling on temperature to gen-
erate the new scaling on magnetic field or on amplitudes of weak interactions. How-
ever, the reader should not think that this is generally the case. It is also possible for 
the scaling to transform one scaling dependence on temperature into another scaling 
dependence also on temperature, changing only the critical index of this dependence.

The typical example is, again, the presence of weak interactions. Let us consider 
scaling (8.256) when in the limit | |z >>1, the power-law dependence (8.258) does 
not cancel out the existing temperature power-law dependence:

� (8.261)

In this case, the presence of unknown weak interactions changes the critical index 
θt

C:

� (8.262)

A scientist who does not know that weak interactions are present in the system 
is observing the change of the temperature power-law dependence from (8.259) to 
(8.261). She/he is lucky if the scaling (8.259), relevant to the theoretical model, de-
scribing the experiment, has been registered first. Otherwise, if only the second scal-
ing (8.261) has been observed, the scientist may blame the mathematical model for 
crude predictions of the critical index, not knowing that the culprit is not the model.

8.8 � Magnetic Systems: The Finite-Size Effect

When we considered the finite-size effect in percolation, we saw that the correla-
tion length of the infinite system, exceeding the size of the finite system, caused the 
break of the existing power-law dependence on | |p p− C , leading to the finite value 
(not zero and not infinite) of a quantity at the critical point. But this is exactly the 
description of a typical crossover effect: Break the singularity on temperature and 
generate a new scaling. Therefore, we expect the finite-size effect to be the cross-
over effect as well.
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Let us consider the finite-size effect in the case of magnetic systems. First, for 
simplicity, we consider the critical isofield curve when h = 0 strictly. We consider 
a model of linear size L N d= 1/  whose behavior deviates from the behavior of the 
infinite system. To distinguish the quantities belonging to the infinite system from 
their analogues in the finite system, we will use the superscript “∞.”

The scaling behavior of the finite system is built on the base of the scaling 
parameter

� (8.263)

Since we are considering the zero magnetic field, the second scaling parameter 
y h t h t≡ ↵/ | |

C∆ , is zero and will not participate in the scaling.
The new scaling parameter (8.263) can be transformed into the form identical to 

already considered scaling parameters. Indeed, substituting into (8.263) the diver-
gence ξ ν∞ −∝| |t t

C
 of the correlation length of the infinite system, we find

�
(8.264)

Introducing the new critical crossover index

� (8.265)

we obtain

�
(8.266)

Let us consider the behavior of the extensive quantity A and of the intensive 
quantity a. For the infinite system in the vicinity of the critical point, we have 
power-law dependencies

� (8.267)

� (8.268)

For the finite system, the scaling dependencies are

� (8.269)
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where the scaling functions have asymptotes

�
(8.271)

� (8.272)

providing the scaling

� (8.273)

�
(8.274)

� (8.275)

The singular dependencies on temperature are substituted by some transient 
dependencies, leading to the finite values, depending on the size of the finite system 
(Figs. 8.9 and 8.10). Again, the scaling predicts the finite values (8.274 and 8.275), 
replacing singularities of the quantities at the critical point.

If we decided to measure the critical temperature as the point of singularity, the 
considered scaling would return the estimate with the accuracy

� (8.276)
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8.9 � The Illusory Asymmetry of the Temperature

So far, we have considered the crossover phenomena generated by a system, tending 
to its critical point along the binodal curve.

Far from the critical point, the fractality occupies only the finest scales. The rest 
of the scales is described by the laws specific for this particular system so that the 
behavior of the system is not universal. The scaling is also absent.

When the system approaches its critical point, the fractality occupies larger and 
larger scales, causing the scaling to appear. This scaling manifests itself for a quan-
tity a as a power-law temperature dependence | |t tθC

.
Further approach to the critical point makes the temperature comparable with a 

small but nonzero amplitude ϕ  of some interactions. This amplitude is unknown 
but is considered to be fixed (to be supported constant while the system tends to 
its critical point). The presence of this amplitude breaks the temperature scaling, 
while the value of this amplitude dictates the value of the considered quantity a at 
the critical point.

Since the majority of the scaling studies is devoted to the crossover phenomena 
along the binodal curve, it may seem that the temperature plays an asymmetric role 
in all crossover phenomena; that it is always the temperature scaling that is broken 
by other field parameters or interaction constants.

However, this impression is not true. The temperature is neither more nor less 
than any other field parameter or interaction constant. To demonstrate this, we re-
write scaling (8.256) as

�
(8.277)

Inside the square brackets, we see here the new scaling function

�
(8.278)

Here the superscript index “ ±” differentiates functions already not above or below 
the critical isotherm but the cases ϕ > 0 and ϕ < 0. Two asymptotes of the scaling 
function,
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provide two asymptotes of the scaling:

� (8.281)

�
(8.282)

In this case, instead of fixing | |ϕ , we are fixing | t | ≠ 0 as a small but nonzero 
deviation from the critical temperature about which the scientist does not know. The 
scientist assumes that she/he tends the system to its critical point along the critical 
isotherm t = 0 by decreasing the amplitude | |ϕ  (for example, by decreasing the 
magnetic field | |h ). However, when | t | ≠ 0 becomes comparable with | |

C

ϕ ϕ∆t↵ , the 
small but nonzero deviation of the system from its critical temperature breaks the 
singular scaling on | |ϕ  to tend the measured quantity to a finite value, determined 
by the fixed value of | t | ≠ 0.

So, any crossover effect has “two sides of a coin.” In the above example, the 
temperature scaling may be considered as broken by the amplitude | |ϕ . Or, on the 
contrary, the scaling on | |ϕ  may be considered as broken by the temperature.

We see that the role of the temperature is not special, and the temperature is nei-
ther more nor less than just one of many field parameters. In fact, the temperature 
can disappear from the scaling at all!

To demonstrate this, let us support a system at exactly t = 0. In this case, the tem-
perature is always less than all other field parameters or interaction constants and do 
not participate in scaling. Then we can consider, for example, the crossover effect be-
tween the magnetic field and the finite size of the system along the critical isotherm.

The scaling parameter we consider in this case is

� (8.283)

We consider an extensive quantity A and an intensive quantity a whose scaling 
on the magnetic field in the infinite system is provided by

�
(8.284)

� (8.285)

For the finite system, we assume that the scaling dependencies are

�
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� (8.287)

where the scaling functions have asymptotes

�
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�
(8.289)

providing the scaling
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�
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and

� (8.292)

So, we obtain the crossover effect between the magnetic field and the finite size of 
the system along the critical isotherm when the temperature does not participate in 
the scaling.
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Problem 8.9.1*

Demonstrate how crossover effect (8.261 and 8.262) can change not only the 
index of the temperature scaling of the heat capacity but also the value of the 
critical temperature.

Solution: Let us return to scaling (8.278):

� (8.293)

When | | | |
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t t>> ↵ϕ ϕ∆ , this scaling should provide the usual divergence of the 
heat capacity:

� (8.294)
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8.10 � The Formalism of General Homogeneous Functions

The mathematical apparatus, lying in the foundation of scaling, is the formalism of 
homogeneous functions. The pth-order general homogeneous function depending on 
n variables, x x xn1 2, , , , is defined as a function for which the equality

� (8.298)

is valid for an arbitrary λ. Further, we assume that this function depends slowly on 
its arguments when the absolute values of those are much less than unity. In other 
words, f x x x xi n( , , , , , )1 2    does not almost depend on xi  when | |xi <<1.

Next, we associate each variable xi  with a particular coupling constant of the 
system (with a particular field parameter or interaction constant). In accordance 
with the definition of the general homogeneous function, each coupling constant xi  
has its own index qi . Next, for each xi , we find xi

qi1/ , and then find the maximum 

among these quantities: i x
i i

qimax /: max 1 .

f x x x f x x xq q q
n

p
n

n( , , , ) ( , , , )λ λ λ λ1 2
1 2 1 2… = …

It is possible if

� (8.295)

When | | | |
C

t t<< ↵ϕ ϕ∆ , we can no longer assume that the scaling function is of 
the order of unity. Instead, we should consider the following asymptote:

� (8.296)

For the heat capacity, this assumption provides

� (8.297)

This is the result we have been looking for. First, for the close proximity 
of the critical point, when the crossover effect | | | |
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t t<< ↵ϕ ϕ∆  is in action, the 
temperature divergence of the heat capacity has a different critical index α .
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of the scaling parameter the scaling function is no longer of the order of unity. 
Such dependencies are called dangerous and are considered in Sect. 8.11.
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Choosing λ =
−

xi
q
i

max
max/1

, we substitute it into (8.298):

� (8.299)
In the right-hand side of this equality, all arguments for i ≠ i max are less than unity: 

x

x
i

i

q qi i
max

max/ <1. Therefore, the function does not depend on them. For i i= max, 

the argument is exactly unity, so its participation in scaling is also weak. Thereby 
the scaling of the right-hand side is provided only by the power-law dependence 
xi

p q
i

max
max/

:

� (8.300)

And what is even more important is that this scaling is determined by the maximal 
of quantities xi

qi1/ .
If, during an experiment, we were decreasing the coupling constant ximax, keep-

ing other coupling constants unchanged, sometime the quantity xi
q
i

max
max/1

 would no 
longer be the maximal among xi

qi1/ . Thereby the scaling function f would choose 
the new “leader” among the coupling constants, providing now the scaling on this 
variable.

The formalism of general homogeneous functions provides us with a perfect 
opportunity to look for the relations among the critical indices. Let us consider the 
magnetization as the scaling function of three arguments:

� (8.301)

when initially imax =1. In other words, we assume that initially

� (8.302)

For imax =1, the scaling function is supposed to provide the scaling on 
temperature:

� (8.303)
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�
(8.304)

Next, we assume that during the experiment, the temperature tends to its critical 
value, so that sometime it happens that

� (8.305)

Thereby the scaling function transforms into the scaling on magnetic field:

� (8.306)

� (8.307)

When we further tend the temperature to its critical value, it may stop to partici-
pate in the scaling, leaving only the crossover effect between the magnetic field and 
the size of the system:

� (8.308)
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function provides
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� (8.310)

Comparing (8.304) and (8.310), we find the relation among the critical indices:

� (8.311)

Substituting this equality into (8.251), we find

� (8.312)
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8.11 � The Renormalization Group as the Source of Scaling

The scaling behavior appears in the vicinity of the critical point. As we know, the 
critical point can be the result of the RG transformation only if the initial system 
was also in the critical state. So, one critical point replaces another along the critical 
manifold which is the chain of critical states in the space of coupling constants. The 
critical manifold ends at the critical fixed point which we may consider to be the 
“capacitor” of the critical scaling behavior.

Besides, since the RG transformation keeps the lattice and the model invariant, 
it also keeps the critical indices of the system invariant. So, all systems along the 
critical manifold have the same values of the critical indices. Therefore, to find the 
scaling behavior of the initial system, there is no need to look for the exact solution 
of this system. Instead, we may investigate the system at the critical fixed point 
which is much easier in comparison, as we will see now.

Problem 8.10.1

Prove the relation

� (8.313)

by considering the scaling of the heat capacity.

Solution: For | | | |
C

h t h t<< ↵∆  where ∆h t t h↵ =( )C C C/β β , we expect that

� (8.314)

� (8.315)

For | | | |
C

h t h t>> ↵∆ :

� (8.316)

� (8.317)

Comparison of (8.315) and (8.317) immediately provides (8.313).
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We assume that the RG transforms the vector of coupling constants 


K  into the 
vector 

 

′ =K KRG( ) . The critical fixed point 


K C  of the RG transformation is de-
termined by

� (8.318)

Considering small deviations of the coupling constants from their values at the 
fixed point,

� (8.319)

we linearize the RG transformation in the vicinity of its fixed point by expanding 
the right-hand side of (8.319):

� (8.320)

or
�

(8.321)

where n is the dimensionality of the space of coupling constants.
In Sect. 7.5, when we considered the RG transformation for the ferromagnetic 

Ising model on triangular lattice, all eigenvalues and eigenvectors of the matrix 
∂ ′
∂
K
K

i

j K C

 happened to be independent. For simplicity, now we also assume that this 

is the case: the matrix 
∂ ′
∂
K
K

i

j K C

 is symmetric, diagonalizable, and has n independent 

eigenvalues λi  and eigenvectors 


iκ :

� (8.322)

On the basis of these eigenvectors, we introduce coordinates ui  and ′ui  to repre-
sent vectors 



k  and 


′k , respectively:

� (8.323)

Then from (8.321), we immediately find that each coordinate is transformed inde-
pendently:

� (8.324)

Obviously, the behavior of the linearized RG transformation in the vicinity of the 
critical fixed point depends drastically on whether the absolute values of eigenval-
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ues λi  are more or less than unity. If | |λi >1, during the chain of the RG transfor-
mations, the absolute value of the coordinate ui  will grow so that in the direction 
of this eigenvector κκi , the system will move away from the critical point. Such an 
eigenvalue is called relevant since it determines the flow curves of the RG trans-
formation in the vicinity of the critical manifold and thereby influences the scaling.

Since in the direction of the relevant eigenvector κκi , the system moves away 
from the critical manifold, this eigenvector cannot be parallel to the critical mani-
fold and is said to form the codimension of this manifold. The temperature and mag-
netic field represent relevant coupling constants of the magnetic systems because, 
as we have seen, the RG transformation moves these quantities away from their 
critical values (Fig. 8.11).

On the contrary, the eigenvalue | |λi <1  is called irrelevant because, as we will 
see later, these eigenvalues do not influence the scaling (with the exception of the 
so-called dangerous irrelevant eigenvectors which we will also discuss later). Dur-
ing the chain of the RG transformations, the corresponding coordinate ui  disap-
pears. The irrelevant eigenvector κκi  must, therefore, belong to the critical manifold.

In Fig. 8.11, we considered the flow curves in the space of the coupling constants 
but drew the eigenvectors in terms of the field parameters, the temperature and 
magnetic field. We did that out of simplicity, recalling the example of the previous 
chapter when we considered the ferromagnetic nearest-neighbor (n.n.) Ising model 
on triangular lattice. It happened that there were two eigenvectors (7.119) parallel 
to the axes of the space of coupling constants so that the first eigenvector corre-
sponded to the change in K1  while the second to the change in K2 .

Recalling the definitions (7.95) of the coupling constants,

� (8.325)

for small deviations 


k  and 


′k  in the vicinity of the critical fixed point,

� (8.326)

we find

� (8.327)
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resentation of the behavior 
of relevant temperature and 
magnetic field eigenvectors
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Therefore, in the case of the example from Chap. 7, the first eigenvector κκ1  and 
the first coordinate u1  do correspond to the change of the magnetic field along the 
critical isotherm, while the second eigenvector κκ2  and the second coordinate u2  do 
correspond to the change of the temperature along the critical isofield curve.

For simplicity, in a general case, we may assume similar situation—each coor-
dinate ui  is determined by the deviation of the corresponding field parameter or 
interaction constant. Returning to the case of the ferromagnetic Ising model, we will 
consider the first coordinate u1  to correspond to the magnetic field while the second 
coordinate u2  to the temperature.

As we know from Chap.  7, the RG transformation decreases the correlation 
length b times, i.e., with the scaling factor r b=1/ :

� (8.328)

Since the RG transformation keeps both the lattice and the model invariant, here the 
functional dependence of the correlation length on the values of field parameters is 
the same for both sides of the equation.

Substituting into (8.328) the connection (8.324) of the new coordinates with the 
old ones, we obtain

� (8.329)

Next, we consider the critical isofield h = 0. In this case, the correlation length 
diverges as ξ ν(| |, ) | |t t t0 ∝ − C

. Substituting this scaling into both sides of (8.329), we 
find the critical index ν t

C:

� (8.330)

� (8.331)

We have obtained at first sight a strange result—the critical index ν t
C  depends 

on the linear size b of the cell of the RG transformation. The RG transformation is 
merely a tool, so we have expected that the size of the cell should not influence the 
found behavior of the system.

How can we exclude b from (8.331)? There is only a single way—to hypothesize 
that ln | |λt  is proportional to lnb . This assumption is supported by the fact that the 
RG transformation is a semigroup.1 We expect from two consecutive RG transfor-
mations with linear cell sizes b1  and b2  to be equivalent to the RG transformation 
with cell size b b2 1:

1  The RG transformation is a semigroup since, after we have reduced the number of degrees of 
freedom in the system, there is no inverse transformation that would restore these degrees of 
freedom.

ξ ξ(| |,| |) (| |,| |) / .′ ′ =h t h t b

ξ λ λ ξ(| || |,| || |) (| |,| |) / .h th t h t b=

1 1
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.
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� (8.332)

Since the eigenvectors κκi  depend on the field parameters but not on the cell size, 
we expect that only the eigenvalues λi  may depend on b. Performing transforma-
tion (8.324) of coordinates twice, we find

� (8.333)

But for arbitrary b1  and b2 , this equality is possible only when

� (8.334)

where yi  are some indices, corresponding each to its own eigenvalue λi.
Substituting (8.334) into (8.331), we find

� (8.335)

We see that the dependence on the cell size is no longer present in the formula and 
that the critical index ν t

C  is determined by the index yt , corresponding to the co-
ordinate u t2 ≡ .

Let us now see how the RG transformation determines the scaling of the correla-
tion length. Substituting (8.334) into (8.329), we obtain

� (8.336)

After n consecutive RG transformations, this equality transforms into

� (8.337)

� (8.338)

where the first multiplier of the right-hand side is the scaling ξ ν(| |, ) | |t t t0 ∝ − C
 of the 

correlation length on the temperature.
So far, we have not specified the value of b. Considering it as a parameter, we 

choose

� (8.339)

In this case, (8.338) transforms into

� (8.340)
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which is the scaling function, depending on the scaling parameter

� (8.341)

Choosing another value of b for (8.337),

� (8.342)

we obtain the scaling on magnetic field

� (8.343)

which immediately provides values of the following critical indices

� (8.344)

Substituting these indices and (8.335) into (8.312), we find

� (8.345)

Applying relations among the critical indices in the presence of hyperscaling 
relations, we obtain

� (8.346)

� (8.347)

� (8.348)

� (8.349)

� (8.350)

There is an easy way to verify these expressions: For d = 4, they should transform 
into the mean-field values of the critical indices which we can prove to be true by 
direct substitution.
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Let us consider the RG transformation of an arbitrary intensive quantity a. In 
comparison with (8.328), we hypothesize that we would find another power-law 
dependence on b:

� (8.351)

This provides

� (8.352)

� (8.353)

� (8.354)

Substituting (8.339) and (8.342) into (8.353) and (8.354), respectively, we find the 
scaling

� (8.355)

and

� (8.356)

Defining critical indices for quantity a by

� (8.357)

� (8.358)

by comparison with (8.355) and (8.356), we immediately find

� (8.359)

or

� (8.360)

For example, for indices (8.348) of the specific magnetization, these relations 
provide
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� (8.361)

� (8.362)

So, the specific magnetization transforms as

� (8.363)

If we consider the RG transformation of an arbitrary extensive quantity A, we 
hypothesize the power-law dependence on b again:

� (8.368)

But each extensive quantity is a product of its intensive counterpart and the number 
of degrees of freedom:

� (8.369)
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Problem 8.11.1

Find relations similar to (8.363) for the singular part of the specific Helmholtz 
energy, specific susceptibility, and specific heat capacity.

Solution: Since all specific quantities χ
χ

specific N
≡ , f

F
Nsingular

CE singular
CE

≡ , and 

c C
Nspecific ≡  are intensive parameters, from considerations similar to (8.351–

8.363), we obtain

� (8.364)

� (8.365)

� (8.366)

The last two dependencies are obvious consequences of the first dependence

� (8.367)

when we differentiate it twice with respect to the magnetic field or temperature.
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where we know that the number of degrees of freedom in a system in transformed as

� (8.370)

Substituting (8.369) and (8.370) into (8.368) and taking into account (8.351), 
we find

� (8.371)

For example, utilizing (8.364), for the singular part of the nonspecific Helmholtz 
energy, we find

� (8.372)

In other words, the singular part of the Helmholtz energy remains invariant under 
the RG transformation.

The presence of other field parameters or interaction constants leads to simi-
lar formulae. For example, returning to the scaling dependence of the correlation 
length, we may have

� (8.373)

This assumption, obviously, returns similar relations for the indices, e.g.,

� (8.374)

For example, if we are going to take into account the finite-size effect, we expect 
to obtain

� (8.375)

The finite-size effect represents the special case when the value of index y L1/  we 
can foresee from general considerations. Indeed, coarse graining our system, we 
decrease its linear size b times:

� (8.376)

This immediately provides

� (8.377)

or

� (8.378)
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Problem 8.11.2

Find relations similar to (8.363) for the correlation function.

Solution: Assuming

� (8.379)

in accordance with ′ =R R b/ , we find

� (8.380)

which leads us to scaling

� (8.381)

Here we expect the scaling parameters to be

� (8.382)

� (8.383)

so we can rewrite scaling (8.381) as

� (8.384)

Since for R << ξ , we expect to obtain the scaling

� (8.385)

which leads us to

� (8.386)

Substituting (8.350) into this relation, we obtain

� (8.387)

g h t R g h t R b(| |,| |, / ) (| |,| |, / ) / ,′ ′ ′ =1 1 κ

g b h b t b R g h t R bny ny n nh t( | |, | |, / ) (| |,| |, / ) / ,= 1 κ

g h t R R g h
R

t
Ry yh t

(| |,| |, / ) | |
( / )

, | |
( / )

, .1
1 1

1=










κ

| |
( / ) | |

,
/

h
R

R
h

R
y

y

h h

h h

1

1

=








 =









−ν

ν

ξC

C

| |
( / ) | |

,
/

t
R

R
t

R
y

y

t t

t t

1

1

=








 =









−ν

ν

ξC

C

g h t R R g R Rh t

(| |,| |, / ) , , .
/ /

1 1
1 1

=


































κ
ν ν

ξ ξ

C C

g
Rd

∝
− +

1
2 ηC ,

κ η= − − +( ).d 2 C

κ = −2( ).y dh



8  Scaling: The Finite-Size Effect and Crossover Effects488

Let us now answer the question why only the relevant eigenvalues influence the 
scaling of the system while the irrelevant eigenvalues do not participate in the scal-
ing. We assume that in scaling

� (8.395)( | |, | |, | |) (| |,| |,| |) /h t yy yb h b t b h t bϕξ ϕ ξ ϕ=

So far for the correlation function, we have considered the single critical 
index η C which, following the introduced notation, would be better to call 
ηR

C . However, we see that the obtained scaling (8.380):

� (8.388)

can generate two more scaling dependencies:

� (8.389)

� (8.390)

which for the critical isotherm and critical isofield curves provide

� (8.391)

� (8.392)

respectively. This allows us to introduce two more critical indices in the limit 
R >> ξ :

� (8.393)

and

� (8.394)

where we explicitly demonstrate only proportionalities of the field parameters 
of the system. Besides these power-law dependencies, the asymptotes of 
the scaling function, of course, contain also the dependence exponentially 
decaying with the increase of R. Both critical indices (8.393 and 8.394) are 
obvious if we recall the connection between the correlation function and 
magnetization.
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parameters h and t are relevant as always while an amplitude ϕ  is irrelevant. 
Substituting (8.339), we generate the scaling on temperature:

� (8.396)

This scaling dependence demonstrates the principal difference between relevant 
and irrelevant variables. The field parameter h has the eigenvalue whose absolute 
value is higher than unity: | |λh >1 . In accordance with (8.334), this requires that 
the corresponding index yh  must be positive: yh > 0 . The corresponding scaling 

parameter | | | |
| | /y h
t y yh t

≡  is the ratio of two small quantities and, therefore, can take 

values from zero, | |y <<1, to infinity, | |y >>1. These two asymptotes generate two 
asymptotes of the scaling function, representing diversity of the crossover phenom-
ena we have discussed above.

On the contrary, if the amplitude ϕ  is irrelevant, the absolute value of the 
corresponding eigenvalue is less than unity, | |λϕ <1 , which, in turn, provides 

yϕ < 0. In this case, the scaling parameter z
t

ty y
y y

t

t≡ =
| |

| |
| || |/

| |/ϕ
ϕ

ϕ

ϕ  is the product 

of two small quantities and, therefore, is always small by itself, | |z <<1. Thereby the 
scaling parameter z does not participate in the scaling because generally the scaling 
function does not depend on small parameters.

The exception is the case of the irrelevant amplitude ϕ  when the scaling func-
tion does depend on the small scaling parameter z as a power law:

� (8.397)

Such irrelevant coupling constants are called dangerous coupling constants. We 
have seen an example of the irrelevant dangerous parameter in Problem 8.1.1.

Substituting (8.397) into (8.396), we find

� (8.398)

So, the irrelevant dangerous amplitude ϕ always influences the scaling.
Finally, we should discuss the question about the presence of additional char-

acteristic length (besides the correlation length) in a system in the vicinity of its 
critical point. To begin the discussion, we should return to the definition of the term 
“anomalous dimension.”

So far, we have discussed two approaches to find the critical indices of a system: 
The mean-field approach and the RG transformation. It could be demonstrated that 
the mean-field values of the critical indices can be found just from the dimensional 
analysis when a single characteristic length in a system is the correlation length.
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This hypothesis claims that when a system tends to its critical point, the correla-
tion length diverges, and thereby the fractality occupies all scales, from the lattice 
constant to the size of the system, forming a “fluctuation foam.” Fluctuations, oc-
cupying all possible scales, begin to dictate the behavior of the system.

But the stochastic behavior of fluctuations is generally universal for an arbitrary 
system regardless of the nature of this system: thermal, complex, biological, geo-
logical, informational, social, etc. The fluctuations suppress the microscopic nature 
of a system and dictate their own probabilistic tendencies. Therefore, there is no 
surprise in the fact that in the vicinity of a critical point, the specific for a particular 
system behavior is substituted by universal power-law dependencies.

This discussion would be perfectly sound if the critical indices were indeed de-
termined by their mean-field values. However, this is not always so. The studies, 
either experimental, or numerical, or exact, demonstrate that the real critical indices 
are often very different from the mean-field suggestions. Besides, if we decided to 
find the nature of these indices with the aid of the dimensional analysis, it happens 
that the value of an index splits into two parts: the mean-field value and some “ad-
dition” called the anomalous dimension. While the presence of the mean-field part 
is explained by the correlation length, the anomalous part has to be determined by 
the presence of some additional characteristic length besides the correlation length.

This leads to the belief that something of the microscopic properties of the fin-
est scale survives the fluctuations occupying this and larger scales. Some studies 
suggest that this may be the lattice constant as the representative of the finest scale.

However, we do not share this belief. As we have seen, the process of coarse 
graining erases all memory in a system about what was the lattice constant of the 
very initial system. To illustrate this, we may refer to the example of fractals. Let 
us return to Chap. 1. Comparing parts (a) and (d) of figure given in Problem 1.2.1 
of Chap. 1, we see that the dimensionality of the initial branch does not affect the 
dimension of the developed fractal set. Even more so, nothing of the initial branch 
survives the process of coarse graining.

But what then determines the fractal dimension? The number of branches K and 
the scale factor r. In other words, the properties of the generator. We see similar situ-
ation in scaling generated by the RG transformation: In accordance with (8.334), 
the critical index yi  is determined by b as the size of the cell of the RG transfor-
mation and by the eigenvalue λi  of this transformation. Both are the properties of 
the “RG generator.” Therefore, we believe that the additional characteristic length 
responsible for the appearance of the anomalous dimensions appears not from the 
properties of the initial system but is determined by the laws of scale invariance.

8.12* � Magnetic Systems: Spinodal Scaling

In previous sections, we paid attention mostly to critical phenomena for two rea-
sons. First, initially the scaling was investigated for the proximity of the critical 
point. Second, the most of studies are devoted to critical phenomena which allow us 
to present a set of illustrative examples.
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However, as we saw in Chap. 6, the correlation length diverges in the vicinity 
of the spinodal point as well, thereby, providing that the same scales are occupied 
again by fractal scale invariance. This guarantees that many concepts of critical 
scaling considered above are applicable to spinodal phenomena as well.

Let us return to the equation of state (8.121):

�
(8.399)

To find the spinodal curve, we should investigate when the derivative ∂
∂









m
h t

0  is 

infinite. Differentiating (8.399) and utilizing (8.128) and (8.129), we find:

�

(8.400)

�

(8.401)

Then, expanding the equation of state (8.399) in the vicinity of the spinodal point, 
we obtain:

�

(8.402)

We see that even in the most general case of the equation of state presented by 
(8.399), the expansion still provides the mean-field values of the spinodal indices: 
βt

S /=1 2  and βh
S /=1 2.

Equation (8.402) represents the scaling function of the magnetization:

�

(8.403)

where ∆h t↵ =S 1.
Differentiating (8.402), we find that the susceptibility,
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�
(8.404)

is inversely proportional to the deviation of magnetization from its spinodal value, 
which provides the following spinodal indices: γ βt t

S S /= =1 2 and γ βh h
S S /= =1 2.

In general case, the RG transformation can be applied in the vicinity of the spi-
nodal point as well as in the vicinity of the critical point. Therefore, the RG will 
generate the relations among the spinodal indices, similar to (8.345):

�
(8.405)

Besides, many other relations, valid for the critical indices, can be proved for the 
spinodal indices as well (as we, for example, saw in Chap. 6). The reason is again 
that the divergence of the correlation length, followed by the fractal scale invari-
ance, provides the similarity between critical and spinodal phenomena.
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