Tania Tomé
Mario J. de Oliveira

Stochastic
Dynamics
and
[rreversibility

@ Springer



Graduate Texts in Physics



Graduate Texts in Physics

Graduate Texts in Physics publishes core learning/teaching material for graduate-
and advanced-level undergraduate courses on topics of current and emerging fields
within physics, both pure and applied. These textbooks serve students at the
MS- or PhD-level and their instructors as comprehensive sources of principles,
definitions, derivations, experiments and applications (as relevant) for their mastery
and teaching, respectively. International in scope and relevance, the textbooks
correspond to course syllabi sufficiently to serve as required reading. Their didactic
style, comprehensiveness and coverage of fundamental material also make them
suitable as introductions or references for scientists entering, or requiring timely

knowledge of, a research field.

Series Editors

Professor Kurt H. Becker

Vice Dean for Academic Affairs

Professor of Applied Physics and

of Mechanical and Aerospace Engineering
Editor-in-Chief, European Physical Journal D
NYU Polytechnic School

of Engineering

15 Metro Tech Center, 6th floor

Brooklyn, NY 11201, USA

kurt.becker @nyu.edu

Professor Richard Needs
Cavendish Laboratory

JJ Thomson Avenue, Cambridge
CB3 OHE, UK

rnll1@cam.ac.uk

Professor William T. Rhodes

Department of Computer and Electrical
Engineering and Computer Science

Imaging Science and Technology Center
Florida Atlantic University

777 Glades Road SE, Room 456

Boca Raton, FL 33431, USA

wrhodes @fau.edu

More information about this series at
www.springer.com/series/8431

Professor Susan Scott
Department of Quantum Science
Australian National University
Canberra, ACT, 0200, Australia
susan.scott@anu.edu.au

Professor H. Eugene Stanley

Center for Polymer Studies

Department of Physics

Boston University

590 Commonwealth Avenue, Room 204B,
Boston, MA, 02215, USA

hes@bu.edu

Professor Martin Stutzmann
Technische Universitit Miinchen
Am Coulombwall,

Garching, 85747, Germany
stutz@wsi.tu-muenchen.de


mailto:kurt.becker@nyu.edu
mailto:rn11@cam.ac.uk
mailto:wrhodes@fau.edu
mailto:susan.scott@anu.edu.au
mailto:hes@bu.edu
mailto:stutz@wsi.tu-muenchen.de
www.springer.com/series/8431

Tania Tomé  Mario J. de Oliveira

Stochastic Dynamics
and Irreversibility

@ Springer



Téania Tomé Mario J. de Oliveira

Institute of Physics Institute of Physics
University of Sao Paulo University of Sdo Paulo
Séo Paulo, Brazil Sao Paulo, Brazil

ISSN 1868-4513 ISSN 1868-4521 (electronic)

ISBN 978-3-319-11769-0 ISBN 978-3-319-11770-6 (eBook)

DOI 10.1007/978-3-319-11770-6
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014955664

© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)


www.springer.com

Dedicated to

Maria Roza, Wilson Tomé
Natalina, Jodo Batista
and Pedro






Preface

Erratic or irregular movements, which we call unpredictable or random, occur
spontaneously and are essential part of microscopic and macroscopic worlds. When
superimposed to the predictable movements, they make up the random fluctuations
sometimes called noise. Heat and temperature are macroscopic manifestations of
these fluctuations at the microscopic level, and statistical physics constitutes the
discipline that studies the systems affected by these fluctuations. According to this
discipline, the states of thermodynamic equilibrium are described by the Boltzmann-
Gibbs distribution, from which we may obtain the thermodynamic properties and,
in particular, the phase transitions and critical phenomena. The states out of ther-
modynamic equilibrium, on the other hand, do not have such a general description.
However, there are very well known laws that describe out of equilibrium or near
equilibrium systems, such as the Fourier’s law, the Boltzmann H theorem, the
Onsager reciprocity relations and the dissipation-fluctuations theorems.

This book presents an introduction to the theory of random processes and an
exposition of the stochastic dynamics as a contribution to development of non-
equilibrium statistical physics and, in particular, to the irreversible phenomena.
The contents of Chaps. 1-8 comprise the fundamentals of the theory of stochastic
processes. In addition to the basic principles of probability theory, they include the
study of stochastic motion or processes in continuous spaces, which are described by
Langevin and Fokker-Planck equations, and in discrete spaces, which are described
by Markov chains and master equations. Chapter 9 presents the fundamental
concepts used in the characterization of the phase transitions and critical behavior in
reversible and irreversible systems. Chapter 10 concerns the stochastic description
of chemical reactions. Starting from Chap. 11, topics related to the non-equilibrium
statistical physics are treated by means of the stochastic dynamics of models defined
on lattices. Among them, we study models with inversion symmetry, which include
the Glauber-Ising model; models with absorbing states, which include the contact
process; and models used in population dynamics and spreading of epidemics. We
analyze also the probabilistic cellular automata, the reaction-diffusion processes, the
random sequential adsorption and percolation.

vii



viii Preface

An important part of the book concerns the phenomenon of irreversibility,
which occurs both in systems that evolve to equilibrium and in out of equilibrium
stationary states. According to our point of view, the irreversible macroscopic
phenomena are treated by means of a microscopic description that contains in itself
the irreversibility. This means that the descriptive level which we consider is the one
in which the microscopic irreversibility can be clearly displayed. We cannot refrain
from being interested in irreversibility, because it may be the enigma and the key to
unveil the phenomena of nature.

Sao Paulo, Brazil Tania Tomé
June 2014 Mario José de Oliveira
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Chapter 1
Random Variables

1.1 Probability

Natural phenomena to which we assign a random character occur with great
frequency. They are commonly characterized as unpredictable, irregular or erratic,
and happen not only in the macroscopic world but also in the microscopic world.
They are clearly distinguished from movements that we characterize as predictable,
as with the fall of a compact solid body. An apple, for example, dropped a few meters
from the ground, from the rest, will hit the ground at a point situated vertically below
the point where it was released. If we observe the fall of a compact solid body,
no matter how many times, we can see that the body will always fall at the same
point. On the other hand, if we observe the fall of a body as light as a leaf, many
times, we see that the leaf reaches different points of the ground, despite of being
released from the same point, even in the complete absence of winds. The planar
shape of the leaf associated with its small weight increase considerably the friction
with the air, making the motion of the leaf irregular. The first trial, represented by
the falling apple, is a predictable phenomenon, while the second, with the leaf, is an
unpredictable erratic phenomenon, which we call random.

At first sight, one might think that a random phenomenon does not have a
regularity and therefore would not be liable to a systematic study. However, after a
careful observation, we see that it is possible, indeed, to find regularities in random
phenomena. As an example, we examine the test in which a coin, biased or not, is
thrown a number of times. The test is performed several times and for each test, that
is, for each set of throws, we annotate the frequency of occurrences of heads, which
is the ratio between the number of heads and the total number of throws. We can see
that the frequencies obtained in different tests are very close to one another and the
difference between them decreases as the number of throws in each test is increased.

Probability theory and its extensions, the theory of stochastic processes and
stochastic dynamics, constitute the appropriate language for the description of

© Springer International Publishing Switzerland 2015 1
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2 1 Random Variables

random phenomena. They are based on two fundamental concepts: probability and
random variable. The definition of probability is carried out by constructing the
set of all outcomes of a given experiment, grouping them into mutually exclusive
subsets. If, to each subset, one assigns a nonnegative real number such that their
sum is equal to one, then we will be facing a probability distribution defined over
the set of possible outcomes. We emphasize that this definition is very general
and therefore insufficient for determining the probability to be associated with a
particular experiment. The determination of the probability distribution that must
be assigned to the results of a specific experiment is a major problem that must be
solved by the construction of a theory or a model that describes the experiment.
The concept of probability, as well as any other physical quantity, has two basic
aspects: one concerning its definition and the other concerning its interpretation. For
most physical quantities, the two aspects are directly related. However, this does not
happen with probability. The interpretation of probability does not follow directly
from its definition. We interpret the probability of a certain outcome as the frequency
of occurrence of the outcome, which constitutes the frequentist interpretation. In
the example of the throw of a coin, we see that the probability of occurrence of
heads is interpreted as being the ratio between the number of heads and the total
number of throws. As happens to any experimental measurement, we should expect
a difference between the frequency obtained experimentally and the probability
assigned to the experiment. This difference however is expected to decrease as the
number of throws increases and must vanish when this number grows without limits.

1.2 Discrete Random Variable

Consider a numerical variable £ which takes integer values and suppose that to each
value of £ is associated a real nonnegative number py,

pe =0, (1.1)

such that

Y ope=1, (1.2)

4

which is the normalization condition. If this happens, £ is a discrete random variable
and py is the probability distribution of the random variable .

Example 1.1 The Bernoulli distribution refers to a random variable that takes only
two values, that we assume to be O or 1. It is defined by

Po = a, p1=0b, (1.3)

where a is a parameter such that ) <a < landb =1 —a.



1.2 Discrete Random Variable 3

Example 1.2 Geometric distribution,
pe =a'b, (1.4)

where a is a parameter such that 0 < @ < 1 and » = 1 — a. The random variable ¢
takes the integer values 0, 1, 2, . .. The normalization follows from the identity

o0
‘ 1
E a” = . (L.5)
1—a
=0

Example 1.3 Poisson distribution,

pe=e o (1.6)
where « is a parameter such that & > 0. The random variable £ takes the values
0,1,2,3,.... The normalization is a consequence of the identity

© ¢
Y= (1.7)
2!
=0
Example 1.4 Binomial distribution,
N
pe= ( )a‘bH, (1.8)
{
where a is a parameter such that0 <a < 1,b = 1 —a, and
N _ N! (1.9)
2 T ‘
The random variable £ takes the values 0,1,2,..., N — 1, N. The normalization is
a direct consequence of the binomial expansion
Y (N
+b)N = EpN—L, 1.10
(a+b) ; ( . )a (1.10)

Example 1.5 Negative binomial or Pascal distribution,

_(N—-1+0)! (pN

Pe= "= 4 (1.11)
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valid for nonnegative integer £, where 0 < a < 1, b = 1 — a. The normalization
comes from the negative binomial expansion

N —1+0)!
—a)y N = Z((N_;)FW) . (1.12)

1.3 Continuous Random Variable

A continuous random variable x can take any value on the real line. In this case we
associate a probability to each interval on the line. The probability that the random
variable x is in the interval [a, b] is

b
/ p(x)dx, (1.13)
a
where p(x) is the probability density, which must have the properties

p(x) =0, (1.14)

/00 p(x)dx = 1. (1.15)

The cumulative probability distribution F(x) is defined by

F(x) = /_  p(y)dy (1.16)

(o]

and is a monotonically increasing function. As p(x) is normalized, then F(x) — 1
when x — oo.

Example 1.6 Exponential distribution,
p(x) = de™, (1.17)
valid for x > 0. Integrating p from x = 0, one obtains the cumulative distribution
F(x) =1—e*. (1.18)

Example 1.7 Gaussian or normal distribution,

ex/207, (1.19)
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a b
0.5 12
04 J L
0.8
03 F 4
p F 06|
02} 4
04
0.1 1 02 L
0 1 1 L 0
4 2 0 2 4 4
X X

Fig. 1.1 (a) Gaussian probability distribution p(x) of zero mean and variance equal to one.
(b) Corresponding cumulative distribution F(x)

shown in Fig. 1.1. The normalization is a consequence of the identity

o0
2
/ e 2y = [T (1.20)
oo o
The cumulative distribution
1 * —y2)202
F(x) = Norrs e dy, (1.21)
o —00

shown in Fig. 1.1, is known as the error function when o = 1.

Example 1.8 Lorentz distribution,

a
= , 1.22
p(x) 2@ 1) (1.22)
also known is Cauchy distribution. The cumulative distribution is given by
1 1
F(x) = - + — arctan x, (1.23)
2 n

obtained by integrating (1.22).

By resorting to the use of the Dirac delta function, a discrete probability
distribution p, can be described by the following probability density,

p) =D pedx = 0). (1.24)
4



6 1 Random Variables

With this resource, the notation employed for continuous random variable may also
be used for discrete random variables, when convenient.

1.4 Averages and Moments of a Distribution

Consider a function f(x) and let p(x) be the probability density associated to x.
The average ( f(x)) is defined by

(f()) = / F)p(x)dx. (1.25)

The moments pu, are defined by
wn = (x") = /x”p(x)dx. (1.26)

The first moment /¢, is simply the average of x. The variance o is defined by
o = ((x = (x))?) (1.27)
and is always nonnegative. It is easy to see that
0? = (¥*) = (x)* = pa — 7. (1.28)
It suffices to use the following property of the average

(af(x) +bg(x)) = a(f(x)) +b(g(x)), (1.29)
where a and b are constant. Indeed, starting from (x — u1)* = x* — 21 x + pu3, we
see that ((x — 1£1)?) = (x?) =21 (x) + uf = po — pf since (x) = p;.

Example 1.9 Moments of the Gaussian distribution. Consider the following identity

o0
/ e 2y = N2ma™1?, (1.30)

o0

valid for @ > 0. Deriving both sides of this equation m times with respect to o, we
get

o0
/ XM g = 1.3.5. .. 2m — 1)V2ra 2o, (1.31)

—00
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Dividing both sides by +/27ra~'/? and making the replacements ¢~ = o2 and
2m = n, we obtain

1 2 /92
_ n ,_ —x-/20 _ n
Uy = —— x"e dx=1-3-5-...-(n—1o", (1.32)
\/27‘[02/;00

valid for n even. In particular,

Uy =02, s = 304, we = 150°. (1.33)
The odd moments vanish.

Example 1.10 The Gaussian distribution

e~ 0mw?/20 (1.34)

1
p(y) = 5

has average  and variance o2, Indeed, defining the variable x = y — u, we see that

(x) = 0 and that (x?) = o from which we get (y) = u and (y?) — (y)? = (x?) =
2

o°.

Example 1.11 Log-normal distribution. This distribution is given by

e~ (ny?/20%, (1.35)

p(y) = m
valid for y > 0. The average and variance are, respectively,
() =72, ()= () =& = (1.36)
Example 1.12 Gamma distribution. This distribution is defined by

xc—le—x/a

W, (1.37)

p(x) =

valid for x > 0, where a > 0 and ¢ > 0 are parameters and /'(c) is the Gamma
function defined by

o0
I'(c) =/ ez, (1.38)
0
The moments are obtained from

1 * n+c—1,—x/a F(n + C)
= dx = ——=a", 1.39
o acr(c)/o YT e (139

where we used the definition of the Gamma function.
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1.5 Characteristic Function

The characteristic function g(k) of a random variable x is defined as the Fourier
transform of the probability density associated to x, that is,

glk) = /,o(x)e”“dx = (™). (1.40)

It has the following properties,

g(0) =1, lg(k)] = 1. (1.41)

The characteristic function is useful in obtaining the moments p, since the
expansion of g(k) in Taylor series, when it exists, give us

(i)
gy =1+3" (’n') . (1.42)
n=1 '

This expression is obtained directly from (1.40) through the expansion of e in
powers of x. The characteristic function always exists. However, it is not always
possible to expand it in Taylor series, which means that the probability distribution
has no moments.

Example 1.13 Characteristic function of the Gaussian distribution. When all
moments of a distribution are known, we may use them to get the corresponding
characteristic function. This is what happens to the Gaussian distribution (1.19)
whose moments are given by (1.32). Replacing 1, given by (1.32), into (1.42) and
keeping in mind that the odd moments vanish, we get

2(k) = Z " 3 s am— o™ (1.43)
(2 )' . .
Taking into account that
2m)!
=2"m!, (1.44)
1-3:5-...-2m—1)
we may write
k2 2\m
Z RO _ pwo, (1.45)
2" m

to that

gk) = ™82, (1.46)
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As we see, the characteristic function of the Gaussian distribution is also Gaussian.

The result (1.46) is valid for the distribution (1.19), which is a Gaussian
distribution with zero mean. The characteristic function of the Gaussian (1.34) with
nonzero mean is obtained from

glk) = (™), (1.47)

where the average is performed with the use of (1.34). Carrying out the change of
variable y = u + x, we may write

g(k) = e™(e™), (1.48)

where the average is made by using the Gaussian distribution with zero mean, given
by (1.19). Using (1.45), we reach the result

g(k) = enka*/2, (1.49)

which is therefore the characteristic function of the Gaussian distribution (1.34) with

mean y and variance o2

Example 1.14 Laplace distribution,
L e
p(x) = Ee . (1.50)
It has the following characteristic function

1
k)= ————. 1.51
glk) =1 e (1.51)
Example 1.15 The Lorentz probability distribution (1.22) has the following charac-
teristic function,

g(k) = e™¥. (1.52)

It is clear that g(k) is not differentiable around k = 0 and therefore it has no
expansion in Taylor series.

Example 1.16 Characteristic function of the Gamma distribution. Replacing p,,
given by (1.39), into (1.42), we get

. I'(n+c)

n=



10 1 Random Variables

If |k|a < 1, the sum converges and the result gives
gk)y = (1 —ika)™ . (1.54)

However, by analytical continuation this result becomes valid for any value of k,
and is therefore the characteristic function of the Gamma distribution.

The characteristic function is also useful in the generation of the cumulants «,
which are defined through

(’:')n K. (1.55)

g(k) = exp{)
n=1

Taking the logarithm of the right-hand side of (1.42), expanding it in a Taylor series
and comparing it with the right-hand side of (1.55), we get the following relations
between the cumulants and the moments,

Ky = W1, (1.56)

K = o — 43, (1.57)

K3 = p3 — 3o + 243, (1.58)

Ko = o — 4ptapun — 35 + 120007 — 6411, (1.59)

etc. Comparing (1.49) and (1.55), we see that all cumulants of the Gaussian
distribution, from the third on, vanish.

Two combinations of the cumulants are particularly relevant in the characteriza-
tion of the probability distributions. One of them is called skewness and is defined
by

K3

ks
The other is called kurtosis and is defined by
K
2= . (1.61)
k5

For symmetric distributions, whose odd moments vanish, the skewness vanishes and
the kurtosis is reduces to

s — 313

(1.62)
13

Y2 =
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Consider the case of a discrete random variable which takes the values xy. Then

p(x) = pib(x — x0), (1.63)

L

from which we conclude that the characteristic function of a discrete variable is
given by

glk) = pee™. (1.64)
14

Example 1.17 A discrete random variable takes the values +1 and —1 with
probabilities equal to 1/2. Using the above notation, we have xo = 1 and x; = —1
and py = p; = 1/2 so that the characteristic function is

g(k) = cosk. (1.65)

To obtain p(x) from g (k) we take the inverse Fourier transform, that is,

o(x) = L/g(k)e_""‘"dk. (1.66)
2

1.6 Generating Function

For probability distributions corresponding to discrete variables that take the values

0,1,2,..., sometimes it is convenient to make use of the generating function G(z)
defined by
o0
Gk =) p. (1.67)
(=0

The series converges at least for —1 < z < 1. Deriving the generating function
successively, we see that it has the following properties

G'(1) = tpe = (0). (1.68)
=1
G"(1) =Y L= Dpe = (%) = (£). (1.69)
=2

Therefore, the moments can be calculated from the derivatives of the generating
function determined at z = 1.
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Example 1.18 The generating function of the binomial distribution, Eq. (1.8), is
given by
Y (N
G(z) = Z(Z)a‘bN“’ ' = (az+ b)". (1.70)

{=0

After determining the derivatives G’(z) and G”(z) and using the formulas (1.68)
and (1.69), we get the average

() = Na, (1.71)
and the variance
(€%) — (£)* = Nab, (1.72)

of the binomial distribution.

Example 1.19 The generating function of the Pascal distribution, Eq.(1.11), is
given by

v WN—-1+0 , d-a)V

where we used the identity (1.12) and b = 1 — a. From the derivatives G’(z) and
G"(z) and using (1.68) and (1.69), we obtain the average

() = Nab™!, (1.74)
and the variance

(€% — (£)> = 2Na*b™2, (1.75)

of the Pascal distribution.

1.7 Change of Variable

Consider two random variables x and y such that y = f(x). Suppose that the
probability density of the variable x is p; (x). How does one obtain the probability
density po(y) of the variable y? The answer is given by the formula

pa(y) = / 5(v — () (). (1.76)
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whose demonstration is given below,
Let g (k) be the characteristic function corresponding to the variable y. Since x
and y are tied by y = f(x), then we may write

ga(k) = (™) = (V™) = / e py (x)dx. (1.77)

On the other hand,

1 .
Py =5 / e ™ gy (k)dk, (1.78)
T

from which we get

1 .
0 (y) = 2—//e_’k[y_f(")]pl(x)dkdx. (1.79)
b4

Using the representation

§(z) = % / e gk (1.80)

of the Dirac delta function, we obtain the desired relation.
The integration of p,, given by (1.76), in a certain interval of the variable y, give
us

Y2 X2 X4
/ pa(y)dy = / pr(x)dx + / o1 (x)dx, (1.81)
Yy

1 X X3

where [x1, x,] and [x3, x4] are the intervals of the variable x that are mapped into
the interval [y, y»] of the variable y, as can be seen in Fig. 1.2. We are considering
the case in which only two intervals of x are mapped into the same interval of y.

Fig. 1.2 Example of
transformation

x =y = f(x). The
intervals [xy, x»] and [x3, x4]
are mapped into the interval
[y1, ¥2] by the transformation
x—=>y=f(x)
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When the intervals become infinitesimal, the expression (1.81) is reduced to

"

1 .
+ p1(x") dy

dx’

, 1.82
dy (1.82)

p2(y) = p1(x)

where x’ and x” denote the two branches of f(x) that are mapped in y. If f(x) is
monotonic increasing, we may write

p2(y)dy = pi(x)dx. (1.83)

If f(x) is monotonic decreasing, we should introduce a minus sign in one side of
the equation.

Example 1.20 Let y = x? and suppose that p;(x) is an even function. The two
branches that we should consider here are x” = —,/y and x = /. For both cases,
|dx' /dy| = |dx" /dy| = 1/2./y so that

1 1 1
p2(y) = mpl(—\/@ + Zﬁpl(ﬁ) = ﬁ

where we have taken into account that p; (x) is an even function.
Alternatively, we may use (1.76) directly,

p2(y) = /_ 8(y — x2)p1 (x)dx = 2 /0 8(y — x2)p1 (x)dx, (1.85)

so that

S| 1
pa(y) = /0 20 = VPP = i (V). (1.86)

If p;(x) is the probability distribution such that p;(x) = 1/2 for |[x| < 1 and
zero otherwise, then

1
p2(y) = m, (1.87)
for 0 < y < 1 and zero outside this interval.
If p; (x) is the Gaussian distribution (1.19), then
! —y/20?
p2(y) = \/ﬁe , (1.88)
Vo

valid for y > 0.
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In numerical simulation of stochastic processes, the generation of random
numbers with a certain probability distribution is an absolute necessity. The simplest
and most used example is the generation of numbers with equal probability in the
interval [0, 1]. Denoting by £ a random variable with this property, the probability
density p(§) of £ is p(§) = 1. However, in some situations, it is desirable to
generate random numbers with other probability distributions, say with a probability
density p(x) defined in an interval ¢ < x < b. If we manage to determine the
relation x = f(§) between x and &, then we can generate x from & by using this
relation.

We will analyze here only the case in which p(x) corresponds to a biunivocal
function f(£). In this case, using the expression (1.81), we get

3 X
/ p(E)dE = / p(x')d. (1.89)
0 a

Taking into account that p(§) = 1, then

£ = / o(x")dX = F(x), (1.90)

where F(x) is the cumulative probability distribution associated to the variable x.
Therefore, f(£) is the inverse function of F(x), thatis, x = f(§) = F~'(§).

Example 1.21 Suppose that p(x) = 2x and 0 < x < 1. Then F(x) = x? so that
x=[f( = V&

The method described above is interesting only when F(x) and its inverse can
be obtained in closed forms. This is not the case, for example, of the Gaussian
distribution. Later we will see how to avoid this problem for the Gaussian case.

1.8 Joint Distribution

Suppose that x and y are two random variables. The probability that x is in the
interval [a, b] and y in the interval [c, d] is

b pd
//p(x,y)dxdy, (1.91)

where p(x, y) is the joint probability density of x and y. It has the properties

p(x,y) >0, (1.92)

//,o(x,y)dxdy =1. (1.93)
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From them we obtain the marginal probability densities p; (x) of x and p,(y) of y,
given, respectively, by

p(x) = / p(x. v)dy. (1.94)

p2(y) = /p(x, y)dx. (1.95)

The random variables x are y independent of each other if p(x, y) = p1(x)p2(y).
In this case, the average of the product of x and y equals the product of the averages,

thatis, (xy) = (x)(»).
A measure of the dependence between the variables x and y is given by the
correlation or covariance C defined by

C=((x—({xDH» -, (1.96)
which can be written in the form
C = (xy) = {x){y). (1.97)

If the variables x and y are independent, the covariance vanishes, C = 0.
Given p(x, y), the probability distribution p3(z) of a third random variable z that
depends on x and y through z = f(x, y) can be obtained by means of the formula

pi@) = [ [ 86— fer ot sy (198)
If two random variables u# and v depend on x and y through the transformation

u = fi(x,y) and v = f,(x,y), then the joint probability density p;»(u, v) of the
variables u and v is given by

praa,v) = / / 81— fi(x. y)S( — f(x. 7)pCr. y)dxdy. (1.99)

Both formulas (1.98) and (1.99) can be demonstrated by using a procedure
analogous to that seen in the previous section.

The integration of pjp, given by expression (1.99), over a region # of the
variables (u, v) give us

/,olz(u,v)dudvz/ p(x, y)dxdy, (1.100)
2 o

where 7 is the region of the variables (x,y) that is mapped into % by the
transformation of variables. If the transformation is biunivocal, we may write

p12(u, v)dudv = p(x, y)dxdy, (1.101)
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if the Jacobian of the transformation is positive. If the Jacobian is negative, we
should introduce a minus sign in one side of the equation.

A very useful example in employing the transformation of variables is found in
the following algorithm used to generate random numbers according to a Gaussian
distribution from random numbers that are identically distributed in the interval
[0, 1]. Let £ and ¢ be two independent random variable that are uniformly distributed
in the interval [0, 1] and consider two random variable r and 6 defined by

r= ,/;Un(l — ), 0 = 2n¢, (1.102)

where « is a positive constant. Their probability densities are
pi(r) = are™’/?, (1.103)
1
p(0) = —, 0<0 <2nm. (1.104)
2w
Next we define the variables x and y by
X =rsinf, y =rcosé. (1.105)
The joint probability distribution p. (x, y) of these variables are
pe(x, y)dxdy = p1(r)p2(0)drd6. (1.106)

Since dxdy = rdrd0, then
pe(x.y) = Zie“’“‘z*yz’”, (1.107)
4
so that p.(x, y) = p(x)p(y), where

o) = (55) e (1.108)
2

is the Gaussian distribution. Notice that x and y are independent random variables.

Thus, from two random numbers & and ¢ uniformly distributed in the interval [0, 1],

we can generate, using Eqgs. (1.102) and (1.105), two independent random numbers

x and y, each one distributed according to the Gaussian distribution (1.108).

Example 1.22 The Maxwell distribution of velocities is given by

,Bm 32 2 402 4402)/2
p(x,y,2) = (—2 ) e Pmlntvy+:)/2. (1.109)
T
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where vy, v, and v, are the Cartesian components of the velocity of a molecule, m
is the mass of a molecule and B = 1/kgT, where kg is the Boltzmann constant
and T is the absolute temperature. We wish to determine the probability distribution
pv(v) corresponding to the absolute value v of the velocity of a molecule, given by
v = (v} +v3 +2)!/2 To this end, we determine first the joint probability density
p3(v, 0, ¢), where 6 and ¢ are the polar and azimuthal angle, respectively. From

03(v,0,0)dvd0de = p(vy, vy, v )dvidy,dv, (1.110)

and using the relation dv,dv,dv, = v?sinfdvdfdg between the Cartesian and
spherical coordinates, we get

Bm 3/2 X
03(v. 0, ) = 1*sinf (2—) e P72, (1.111)
T
Therefore,
T 2 3/2
pv(v) :/ / p3(v, 0, 9)dOdp = 4mv? (i—m) e Fm?2, (1.112)
0o Jo T

To obtain the probability density p.(E) of the kinetic energy E = mv?/2 of a
molecule, it suffices to use the relation p.(E)dE = py(v)dv, from which we get

E\ /2

pe(E) =28 (ﬂ—) e PE. (1.113)

/4
Example 1.23 The Chi-squared distribution is defined as the probability distribu-
tion of the random variable z = x7 + x3 + ... + x%, where x; are independent
random variables with the same probability distribution, a Gaussian with zero mean
and variance o2, To find it, we determine first the probability distribution of the

variable r = (x} + x3 + ... 4+ x%)!/?, called Chi distribution. According to the
formula (1.98),

p(r)://.../S(r—(xf+x§+...+va)1/2)
x (2702) N2 et N20% o v | d, (1.114)

expression that can be written as

—r2 /207

WSN, (1.115)

p(r) =
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where Sy is the integral

SN=i//i~/}0“-@%+x§+”.+x§fﬂy&ﬂm”.mw, (1.116)

This N -dimensional integral is nothing but the area of an N -dimensional spherical
surface of radius r and thus proportional to rV ™!, thatis, Sy = Anr"~!. Therefore

rN—le—rZ/za2

Next we should determine Ay . To this end, it suffices to use fooo p(rdr =1,
which follows directly from (1.114), from which we get

L foertlerir I Y r(v/2)
—_— = — /2—1 —z —
AN /o Qro)N2 ar 2nN/2/0 diterdi= = 5 (L)

where we performed the change of variables z = r2/202 and used the definition of
Gamma function. Thus, Ay = 27/2/I"(N/2), from which we obtain

ZI.N—le.—rz/Za2

BTN (1.119)

p(r) =
which is the Chi distribution, and also the area of the N-dimensional spherical
surface of radius r,

2 N/2

_ N—1
=t (1.120)

N

It is worth mentioning that the volume Vy of the N -dimensional sphere of radius r
is related to Sy by dVy /dr = Sy so that

27[N/2

=vraa (1.121)

Vy

To get the distribution of the variable z, if suffices to remember that z =
2. Performing the change of variables from 7 to z, we obtain the Chi-squared
distribution

Z(N—Z)/Ze—z/Zoz

(202N (N/2)’ (1122

p1(z) =

When N = 3, the Chi distribution (1.119) becomes the distribution (1.112) of
the absolute value of the velocity of a particle and the Chi-squared (1.122) becomes



20 1 Random Variables

the distribution (1.113) of the kinetic energy of a particle. When N = 2, the Chi
distribution (1.119) reduces to

pr) =~z (1.123)
o

which is called Rayleigh distribution.

Example 1.24 The Student distribution is defined as the distribution of the variable

x = ~/Ny//z, where y has a Gaussian distribution with zero mean and variance
2

O— 9

1 127252
p(y) = =", (1.124)
o

and z has the Chi-squared distribution (1.122). It is given by

o0 o0 N
p(x) = /_OO/O 8(x — %)pl(z)pz(ﬁdzdy. (1.125)

Replacing p,(y) and integrating in y,

1 o
p(x) = W/ VZp1(R)e I gz, (1.126)
o 0

Replacing the distribution (1.122) and performing the change of variable z — u,
where u = z(1 + x?/N)/20?2, we obtain the expression

1 1 X2 —(N+1)/2 o0 ( y
X)= ————|1+ — / uN=D12=u gy 1.127
P = R TN ( N) 0 (20

After the integration in u, we reach the Student distribution

p(x) = (1.128)

I TN +1/2) (1 N x_z)‘“v“’/z
VNm  I'(N/2) .

N
When N = 1, it reduces to the Lorentz distribution p(x) = 1/ (1 + x?) and when
N — 00, it reduces to the Gaussian distribution p(x) = e 12 /N2m.

Exercises

1. Obtain the Poisson distribution from the binomial distribution by taking the
limits N — oo and a — 0 such that a N = «, constant.
2. Obtain the cumulative distribution of the Laplace and Lorentz distribution.
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10.

11.

12.

13.

14.

15.
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. Determine the mean and variance of Bernoulli, binomial, Poisson, geometric

and Pascal distributions.

. Find the mean and variance of the following probability distributions: (a)

rectangular,
{0, |x| > a,
p“)‘{(mn—% x] <a.
(b) triangular,
. 0, |x| > a,
plx) = % a=*(a — |x|), |x| < a,

(c) exponential, (d) Laplace, (e) log-normal and (f) Gamma.

Determine all the moments of the distributions of the previous exercise.
Obtain by integration the characteristic functions corresponding to the rectan-
gular, triangular, exponential and Laplace distributions. Expand in Taylor series
and get the moments. Compare with the results of the previous exercise.

From all the moments of the Gamma and Laplace distributions, find the
respective characteristic functions.

. Determine by integration the characteristic function of the Gaussian distribution

of mean y and variance o2, and also of the Lorentz and Gamma distribution.
Determine the characteristic function of the Poisson distribution. Show that all
cumulants are equal.

Determine the probability distribution and the moments corresponding to the
characteristic function g(k) = a + bcosk, wherea + b = 1.

Determine the generating function and from it the mean and the variance of the
following probability distributions: (a) Poisson, (b) geometric and (c) Pascal.
Show that the log-normal distribution can be obtained from the normal
distribution by the transformation y = e*.

The probability density of the random variable x is given by p;(x) = 1 for
0 < x < 1and pi(x) = 0 otherwise. Obtain the probability density p»(y)
of the variable y = f(x) for the following cases: (a) f(x) = —cos(mx), (b)
f(x) = —1In(1 —x).

A particle has equal probability of being found in any point of the surface of
a disc of radius R whose center coincides with the origin of a system of polar
coordinates (r, ¢). Find the probability density of these variables. Determine
the probability of finding the particle inside the sector defined by the angles
¢ = ¢ and ¢ = ¢».

A particle has equal probability of being found in any point of a spherical
surface of radius R whose center coincides with the origin of a system of
spherical coordinates (r, 8, ¢). Find the probability density of these variables.
Determine the probability of finding the particle between the two latitudes
described by 6 = 0, and 6 = 6,.
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16.

17.

18.
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Determine an algorithm to generate random numbers that are distributed
according to the exponential distribution from random numbers £ that are
equally distributed in the interval [0, 1]. Generate the numbers from these
algorithm, make a histogram and compare it with the analytical expression.
Do the same with the Laplace and Lorentz distributions.

Generate random numbers that are distributed according to the Gaussian
distribution with width 0 = 1. Make a histogram and compare with the
analytical curve.

The numerical calculation of the area of a plane figure contained inside a square
can be made as follows. Generate points equally distributed inside the square.
An estimate of the ratio between the area of the figure and the area of the square
is given by the ratio between the number of points inside the figure and the total
number of points generated. Use this method to determine the area of a quarter
of a circle and thus a numerical estimate of pi. The same method can be used to
determined the volume of a solid figure contained inside a cube. Determine the
volume of an eighth of a sphere of unit radius and again a numerical estimate
of pi.



Chapter 2
Sequence of Independent Variables

2.1 Sum of Independent Variables

Many random phenomena are made up by a set or by a succession of independent
trials and therefore described by independent random variables. One example is
the random walk, which serves as a model for several random phenomena. At
regular intervals of time, a walker takes a step forward or backward at random and
independent of the previous steps. There are two basic theorems concerning the
behavior of a sequence of independent random variables, valid when the number of
them is very large: the law of large numbers and the central limit theorem.

Consider a random variable y which is a sum of two independent random
variables x; and x;, whose characteristic functions are g;(k) and g,(k),
respectively. The characteristic function G(k) corresponding to y is related to
g1(k) and g, (k) through

G(k) = gi1(k)ga2(k). 2.1

That is, the characteristic function of a sum of independent random variables equals
the product of the corresponding characteristic functions. To show this result it
suffices to use the relation

p(y) = /S(y — X1 — x2)p1(x1) p2(x2)dx1 dxs, (2.2)

obtained in Chap. 1, where p;(x;), p(x2) and p(y) are the probability densities
corresponding to xi, x, and y, respectively. Multiplying both sides by e and
integrating in y, we get the result (2.1). Alternatively, we may start from the
definition of the characteristic function and write

Gk) = / P p()dy = () = (e, 2.3)
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But the variables are independent, so that
(eikxleikxz) — (ei/cn)(eikxz)’ (24)

from which we get the result (2.1) since
010 = () = [ e py(ran, @3)

ga(k) = (") = /eikxzpz(xz)dxz- (2.6)

Suppose now that the variable y is a sum of N independent variables, that is,
N
y:x1+x2+x3+...+xN:ij. 2.7
j=1

Then the above result generalizes to

G(k) = gi(k)g2(k)g3(k) ... gn (k). (2.8)

Denoting by k,, the n-th cumulant of y and by /c,(,j ) the n-th cumulant of x i, then,

from (2.8),
N
kn =Y ki) (2.9)
j=1

To get this result it suffices to take the logarithm of both sides of (2.8) and compare
the coefficients of the n-th power of k. Two important cases of this general result
correspond to n = 1 (mean) and n = 2 (variance). Whenn = 1,

N
()= (x)), (2.10)
j=1
and, whenn = 2,
N
() = ()2 =) 1) — (x)7 Q.11)
ji=1

These results may also be obtained in a direct way. Taking the average of both
sides of (2.7), we get the relation (2.10) between the means. Taking the square of
both sides of (2.7) and the average, we get

N

() =D ) +2) () ), (2.12)

j=1 j<k
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where we have taken into account that the random variables are independent.
Taking the square of both sides of (2.10) and comparing with (2.12), we get the
relation (2.11) between the variances.

If the N independent variables have the same probability distribution and
therefore the same characteristic function g(k), then

G(k) = [g(k)]" (2.13)
so that
Ky = Nk, (2.14)
In particular, when n = 1,
(y) = N{x;) (2.15)
and, when n = 2,
(V%) = (n)> = N{x3) — (x;)%. (2.16)

That is, the mean and the variance of y are equal to N times the mean and variance
of x;, respectively.

Example 2.1 Bernoulli trials. Consider a sequence of N independent trials. In
each trial, only two mutually exclusive events A and B may occur, which we call
success and failure, respectively. Below we show examples of ten trials in which six
successes occur

ABAABABAAB AABABABBAA AAABAABBBA

Let p be the probability of the occurrence of A and ¢ = 1 — p the probability
of occurrence of B. We wish to determine the probability Py (£) of occurring A ¢
times in a sequence of N trials. For each trial define a random variable & (i =
1,2,..., N) that takes the value 1 when A occurs and the value O when B occurs.
Therefore, the probability of & = 1 or 0 equals p or ¢, respectively. We want to
determine the probability distribution Py (£) of the random variable

C=§+&E+.. .+ &y, (2.17)

which counts how many times the event A has occurred in a sequence of N trials.
The characteristic function G (k) of the variable £ is, by definition, given by

N
G(k) =Y Py()e™. (2.18)

=0
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On the other hand, since the variables & are independent and have the same
probability distribution, then the characteristic function G (k) of the random variable
£ is given by

G(k) = [g(k)]", (2.19)

where g (k) is the characteristic function of each one of the random variables £; and
given by

glk) = (%) = pe* + 4. (2.20)
Thus
G(k) = (pe* + q)V. (2.21)
Using the binomial expansion, we get
N € ikl N—{
G(k)z%(ﬁ)pe gV, (2.22)

which, when compared to the expression (2.18), gives us

Py(0) = @/)p‘qw, (2.23)

which is the binomial probability distribution.

Example 2.2 Negative binomial or Pascal distribution. The distribution (2.23) gives
the probability of occurrence of £ successes in a sequence of N trials. The
probability of occurrence of £ successes in N trials such that a failure occurs in
the N -th trial is therefore

N —1
Py_i1()q = ( . )p‘qN“. (2.24)

Since the number of failure is r = N — £, we interpret this expression as the
probability P(€) of occurrence of £ successes before the occurrence of r failures,
and that we write in the form

P(t) = (r +ﬁ - l)p‘q’. (2.25)
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It is called negative binomial distribution because of the identity

> (-1
> (r " ) )p‘ =(1-p. (2.26)

=0

which guarantees the normalization of P ({), recalling thatg = 1 — p.

2.2 Law of Large Numbers

We analyze here a sequence of N independent random variables &, &, . .., £y that
are identically distributed, that is, with the same probability distribution. The law of
large numbers asserts that

N

1

NZ@ —a, N — oo, (2.27)
=1

where a = (£;) is the mean of the common distribution. The only condition for the
validity of this theorem is that the mean exists. This theorem allows us to use the
frequentist interpretation of probability of an event. Suppose that we are interested
to know the frequency of an event A in a sequence of N trials. If we denote by &;
the variable that takes the value 1 if the event A occurs and the value 0 if it does not
occur, then £ = (&, + & + ...+ &x) will count the number of times the event A has
occurred and the frequency will be thus £/N. On the other hand, a = (§;) = p,
where p is the probability of occurrence of A. Therefore, the law of large numbers
guarantees that {/N = p when N — oo.

The result (2.27) means that, in the limit N — oo, the only possible result of the
variable y is a, which is equivalent to say that y takes the value a with probability
one or yet that the probability density associated to y is

p(y) =48(y —a). (2.28)

This result is shown as follows.
Let Gy (k) be the characteristic function corresponding to the random variable y
defined by

1 N
v=v ;é‘; (2.29)

and g(k) the characteristic function of each one of the variables ;. Thus,

N
) . k
Gy(k) = (e®) = [T(e"™) = g(;)1". (2.30)

J=1
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Since the mean exists, we may write
g(k) =1+ ika + o(k), (2.31)
where o(x) means that o(x)/x — 0 when x — 0. Thus

ika

N

SO = [+ N o) — e, Noooo @)

so that
Gy(k) = e, (2.33)

The probability distribution p(y) of y is obtained by the inverse Fourier transform,
which is the density given by expression (2.28).

As mentioned above, the condition for the validity of the law of large numbers
is that the mean exists. The existence of the mean means not only that integral
J xp(x)dx should be finite but also that the integral [ |x|o(x)dx should be finite.
A counterexample is the Lorentz distribution for which this integral diverges.

2.3 Central Limit Theorem

The central limit theorem asserts that a random variable z, defined by

1 N
= — i — Naj, 2.34
Z m{; S] a} ( )

where &; are identically distributed random variables with mean a and variance b,
has the Gaussian probability distribution

1
me—zzﬂ, (2.35)

in the limit N — oo. For the theorem to be valid, it suffices the existence of the
mean a and the variance b. Notice that this is not the case, for example, of the
Lorentz distribution.

Let g(k) be the characteristic function of each one of the random variables &;
and consider the cumulant expansion. We should have

g(k) = expfiak — %bkz + o(k?)}. (2.36)
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The characteristic function G, (k) corresponding to the variable z is given by

G, (k) = (%) = (expti —— Z(&, ), (2.37)
or by
N
Gu(k) = [ J(e'™9)e ™ = {g(K)e™*1}¥ (2.38)
j=1

since the variables are independent and have the same probability distribution, and
the variable K is defined by K = k/+/Nb. Using the cumulant expansion of g(k),
expression (2.36), we get

G,(k) = exp{—%Nsz + No(K?)}. (2.39)

Now NbK? = k? and being 0o(K?) = o(N '), then No(N ') — 0 when N — oc.
Therefore,

G,(k) = e ¥/, (2.40)

which corresponds to a Gaussian distribution

p(z) = e /2, (2.41)

1
2
For N large enough, this result constitutes a good approximation so that, in terms
of the variable £ = & + & + ... + £y = ~/Nbz + Na, it is written as

1
PN (Z) = me_(é_Na)z/ZNb (242)

since p(z)dz = Py (£)d{ and d{ = «/Nbdz.

Example 2.3 In the Bernoulli trials of Example 2.1, the probability of §; taking
the value 1 (occurrence of event A) is p and taking the value O (occurrence of
event B) is ¢ = 1 — p. We may use the central limit theorem to obtain the
probability distribution Py (£) for a large number N of trials. To this end, it
suffices to know the mean and the variance of &;, given by a = (§;) = p and

= (§7) — (&;)*> = p — p* = py, respectively. According to the central limit
theorem, the probability distribution of the variable £, which counts how many times
the event A has occurred, is

1 2
Pv(f) = —— ¢~ (t=Np) /ZNPq’ 2.43
N (£) N (2.43)
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which is a Gaussian of mean Np and variance Npgq, the same, of course, of the
original binomial distribution.

Example 2.4 Consider a paramagnetic crystal comprised by N magnetic ions. In
the presence of an external magnetic field, the component of the magnetic dipole
of each ion along the field, can be in two states: in the same direction of the field
(state A) or in the opposite direction (state B). According to statistical mechanics,
the probability of the occurrence of A is p = e /(e + ¢7PH), and of B is
g = e PH J(ePH 4 ¢=PH) where B is proportional to the inverse of the absolute
temperature and H is proportional to the magnetic field.

Define the magnetization M as the number £ of ions in state A subtracted form
the number N — £ of ions in state B, that is, M = 2{ — N. If we use the variable
o; which takes the values +1 or —1 according to whether the j-th ion is in state A
or B, respectively, then M = o7 4+ 032 + ... 4 on. These variables are independent
and have the same probability distribution. The probability of 6; = +1is p and of
0; = —11is g so that the mean is

m = (0;) = p—q = tanh BH (2.44)
and the variance is
x=1(07)—(0j)> =1—m’ =1—tanh’ BH. (2.45)

For large N, the probability distribution &y (M) of the variable M is thus

1 - —INm
Py(M) = N (M—Nm)® /2Ny (2.46)

Itis clear that (M) = Nm and that (M 2) — (M )?> = Ny, or, in other terms, not only
the mean but also the variance of M are proportional to the number N of magnetic
ions that comprises the crystal, that is, they are extensive quantities.

2.4 Random Walk in One Dimension

A walker moves along a straight line, starting from the origin. At each time interval
7, the walker takes a step of length £ to the right with probability p or to the left
with probability ¢ = 1 — p. To describe the walk, we introduce independent random
variables 01, 02, 03, . . . that take the values +1 or —1 according to whether the step
is to the right or to the left, respectively. The variable o; indicates whether the j-th
step is to the right or to the left and thus it takes the value +1 with probability p and
the value —1 with probability g. The position of the walker after n steps, that is, at
timet = ntis x = hm, wherem = o1 + 02 + ... + 0,.
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The mean and variance of o; are
a={0j)=p—q, (2.47)
b=(0})—(0;) =1—(p—q)° = 4pg, (2.48)
respectively. The characteristic function g(k) of the variable o; is
g(k) = (e™) = pe* + ge™*. (2.49)

To obtain the probability P,(m) of the walker being at the position x = hm after n
steps, that is, at time ¢ = nt, we determine first the characteristic function

Gu(k) = [g(R)]" = (pe™ + ge™*)", (2.50)
Performing the binomial expansion
y
Gulk) =3 ( e)p‘q”“e’””‘”) (2.51)
=0

and comparing it with the definition of G, (k), given by

n

Gulk) = ) Pu(m)e™. (2.52)
where m takes the values —n, —n + 2,...,n — 2, and n, we see that
n! (n+m)/2  (n—m)/2
Py(m) = —————p q . (2.53)

(!

To accomplish the comparison it is convenient, first, to change variable, in the sum,
passing from £ to m = 2{ — n. The mean and variance of m are

(m) =na=n(p—q), (2.54)
(m?) — (m)? = nb = 4npq. (2.55)

If we wish to obtain the probability distribution for n >> 1, it suffices to use the
central limit theorem since the variables o1, 02, 03, ... are independent. From the
result (2.42), we get

Pn (m) — e—(m—na)z/an , (256)

2mnb

valid forn >> 1.
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The probability density p(x,¢) = P,(m)/h of x at time ¢ is

1
o(x,1) = mf“*”””ﬁ (2.57)
where
ha  h(p—
el _tp=—q) (2.58)
T

hb  h?2,
p= b _ g

=5 = (2.59)

We get in addition the results,
(x) = ct, (2.60)
(x2) — (x)? = 2D, 2.61)

that allow us to say that ¢ is the mean velocity of the walker. If the random walk is
interpreted as the random motion of a particle in a certain environment, then D is
called diffusion coefficient.

We consider next a generic one-dimensional random walk. Suppose that at each
time step t the walker displaces a value x; from the present position. Assuming
that the walker starts from the origin, then the position at time t = tn is x =
X1 4+ x2 + ...+ x,. Let P(x;) be the probability density of x; and let g(k) be the
corresponding characteristic function, that is,

g(k) = (e™) = / P(x;)e™idx;. (2.62)
The characteristic function G (k) corresponding to the variable x is

G(k) = [g(k)]". (2.63)
To get the probability density of the variable x for large n, we employ the same
technique used to show the central limit theorem. This technique amounts to expand

the characteristic function g(k) in cumulants up to second order, that is,

__ iAk—BI*)2

gk)=e : (2.64)

provided the mean A and the variance B of x; exist. Therefore

G(k) = einAk—nBk*/2 (2.65)
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Recalling that = nt and defining c = A/t and D = B/2t, then
G(k) — eictk—Dtkz’ (266)

which is the characteristic function of a Gaussian distribution of mean ct and
variance 2Dt, so that the probability density p(x, ¢) of x is

e—(x—Ct)2/4Dt' (267)

px,t) = Jinh:

The result (2.67) can be understood more clearly if we examine a system
composed of many particles performing independent random motion and if we take
into account that the density of particles is proportional to the probability density
p given above. Thus, if we imagine that at the initial time all particles are found
around the origin, after some time they will be spread according to the distribution
above. For large times, the density of particles is a Gaussian centered at x = ct with
width A = /2Dt

It is important to notice that p(x, ¢) fulfills the differential equation

ap ap ?p
— =—Cc—+D—. 2.68
o~ Cax U oxz (2.68)
When ¢ = 0, this equation reduces to the form
dp ?p
=D, 2.69
ot 0x? (2.69)

which is the diffusion equation. Equation (2.68) is a diffusion equation with drift.
Both are particular cases of the Fokker-Planck that will be studied in Chaps. 4 and 5.

2.5 Two-Dimensional Random Walk

We consider now a random walk in a two-dimensional space. The walk in three or
more dimensions can be treated similarly. At each time interval 7, the walker moves
from the present position to a new position. At the j-th time step we denote the
displacement by r; = (x;, ;). Assuming that at the initial time the walker is at the
origin of a coordinate system, the position attime t = nrisr =r;+r;+...+1,.
The variables ry, r5, . .., r, are thus considered to be independent random variables,
or rather independent random vectors, with a given probability distribution P(r;) =
P(x;,y;). The corresponding characteristic function g(k) = g(k1, k») is given by

g(k) = (™77 = (e!Freithar)y (2.70)
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or yet, by

g(k) =//e“"f.fP(r,-)dx,-dyj. 2.71)

Notice that x; and y; may not be independent.
The characteristic function G (K) corresponding to the vector r = (x, y) is given
by

G(k) — (eikq‘) — (eik~(l‘1+r2+...+r,,)) — (eik-r‘/ )n — [g(k)]n (272)

To get the probability density of the random vector r we employ the same technique
used to show the central limit theorem. This technique amounts to use the expansion
of g(k) in cumulants up to order k2, that is,

. 1
g(k) = expli(aik; + azks) — E(bllklz + 2b1okiky + byk3)}, (2.73)
where
ay = ()Cj) and a; = (yj> (274)

are the cumulants of first order and

bu = (x7) = (x;)%, (2.75)
bio = (x;y;) — (x;{y;), (2.76)
by = (y7) = (y,)? (2.77)

are the cumulants of second order. Thus, for large ¢t = nt we get
n
G (k) = expiin(a ki + arks) — E(bukl2 + 2bpokiky + bnk3)}. (2.78)

The probability density P,(r) = P,(x,y) of the random vector r = (x,y) is
obtained from

P,(r) = (2;)2 / / e KT G (K)dk, dky (2.79)
and is a two-dimensional Gaussian given by
Pu(x,y) = S —
27/n22D
x exp{—ﬁ[bzz(x — nay)? + 2biy(x — nar)(y — naz) + biy (y — nax)*]},

(2.80)

where D = (by1by — b?,)/2.
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Example 2.5 Suppose that, at each time interval 7, a walker moves a distance % in
directions 4+x, —x, +y or —y with equal probability. In this case

1 1
P(xj,y;) = ZS(xj —h)é(y;) + ZS(xj + h)s(y;)
1 1
38080y =) + 288y + ). (2.81)
The corresponding characteristic function is

g(klkZ) — (ei(klxj'-i-kzyj)) — %(eihkl 4 e—ihkl 4 eihkz 4 e—ihkz)’ (282)

or
1
gk ky) = E(COS hky + cos hky). (2.83)

To get results valid for large 1, we use the expansion in cumulants up to order k2,
given by

gk k) = e KITR/A, (2.84)
Therefore
Gk, ko) = e~ (kitk)/4, (2.85)

so that, taking the inverse Fourier transform,

1
Po(x,y) = ——e T/, (2.86)
nnh

Defining the diffusion coefficient D = h?/4z, then the probability density p(x, y, )
of x and y at time ¢ is

1
p(x, v, Z) = —4nDte_(X2+y2)/4DT' (287)

It is easy to see that (x?) = (y?) = 2Dt so that (r?) = (x*> + y?) = 4Dt

Example 2.6 Suppose that, at each time interval tr, a walker moves the same
distance / in any direction with equal probability. Using polar coordinates, then

1
P(r;)dr;do; = E(S(rj — h)dr;do;. (2.88)
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The corresponding characteristic function is

g(k) — (ei(klxj'+k2yj)> — (ei(klrj cos 0 +kor; sinﬁj)>’ (289)

or
1 2 ) )
g(k) — 2_/ ezh(k10039j+kzsm9j)d9j. (290)
7 Jo

Defining k and ¢ such that k; = kcos¢ and k; = ksing are the Cartesian
coordinates of Kk, then

1 2 ) ] 1 2 ) '
g(k) — Z/ ezhkcos(&;—q&)d@j — E ethkcos&; d@j (291)
0 0

so that g(k) depends only on the absolute value k = (k7 + k%)l/ 2. To obtain the
behavior of the probability density for large n, we need only the cumulants of first
and second order. In this case a; = a, = 0,

oo p2m 1
bll = (X]2> = / / I‘ZCOS2 HjP(rj)drdej = Ehz, (292)
0 0
b12 = 0 and b22 = b11~ Thus

g(k) = e T/ (2.93)

so that again we obtain the same probability distribution of the previous example.

2.6 Multidimensional Gaussian Distribution

We saw in the previous section that the random walk in two dimensions is described
by a probability distribution which is an exponential of a quadratic form in two
random variables. Here we examine probability distributions p(xy, x2,...,Xg)
which are exponential of quadratic forms in several random variables, called
multidimensional Gaussian distributions, and given by

1
o(x1,x2,...,xq) =82 exp{—z zlj: Bijxix;}, (2.94)

where 2 is a normalization factor, to be determined later, and B;; are constants
such that B;; = Bj. It is convenient to define the vector x = (x1,x2,...,Xq)
and interpret B as the elements of a square matrix B of dimension d. The
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multidimensional Gaussian distribution can then be written in the compact
form

p(x) = e, (2.95)

where x in this equation is understood as a column matrix whose elements are x;,
and x is the row matrix whose elements are x; or, in other terms, x is the transpose
of x.

We now wish to determine not only £2 but also the characteristic function
glky, ..., kgq), defined by

g(k) = (M) = / 5 p(x)dx, (2.96)

where kT is the matrix transpose of the column matrix k whose elements are k;, and
dx = dxidx; ...dx,. Replacing p,

g(k) = 2 / ek x—x"Bx/2 gy (2.97)

Let U be the matrix that diagonalize B, that is, the matrix such that
U™'BU = A, (2.98)

where A is the diagonal matrix whose elements are the eigenvalues A; of B, which
we assume to be nonzero. Since B is symmetric, then U~! = UT and U is a unitary
matrix. Defining new variables y;, which comprise the vector y = U~ !x, then
x = Uy and x" = yTU ™. These relations lead us to the equalities

x'Bx=yiUT'BUy = yTAy =) " A;y7, (2.99)
J

ka:kTUy:qu:quyj, (2.100)
J

where ¢ is defined by ¢ = U~'k, so that g7 = kTU.
Replacing these results into (2.97), g(k) becomes a product of d Gaussian
integrals,

2 gy 2T _ 20,
g= .QH/_ooe MV g = 9]‘[ 3¢ aj/2; (2.101)
J J



38 2 Sequence of Independent Variables

From this expression, we can determine the normalization factor £2. To this end we
recall that the normalization of the probability distribution is equivalent to impose
g = 1 when k = 0, that is, when g = 0. Therefore,

A . detB
g:]:[,/g_ /W’ (2.102)

where we have taken into account that the product of the eigenvalues of a matrix
equals its determinant. We may conclude that

g =exp{— Y q3}/24;}. (2.103)
j

Taking into account that the matrix AL the inverse of A, is diagonal,

2
Z % =q¢' A7 g =k UAT' Uk = kT, (2.104)
P J
J

where C = UA™'U™!. We remark that the matrix C = B~! because, being B =
U~' AU, the product of C and B results in the identity matrix.
The characteristic function can thus be written in the form

glk) = e—k*ck/z, kick = Z Cijkik ;. (2.105)
T

Replacing the normalization factor £2 into (2.94), the multidimensional Gaussian
probability distribution is written as

detB
p(x) = (2‘; < o2, x'Bx=")" Byx;x;. (2.106)

)

The characteristic function (2.105) allows us to determine the moments of the
variables x; concerning the distribution (2.106). The derivative dg/dk; taken at
k = 0 is identified with the average (x;). The derivative d>g/0k;dk; taken at
k = 0 is identified with twice the average (x;x;). From this, we conclude that
the distribution (2.106) has zero means and covariances equal to Cy;,

Cij = (X,’Xj). (2107)

It is still possible to construct Gaussian distributions with nonzero means.
Performing the transformation x; — x; — a;, we get the following distribution

| detB
p(x) = _(;;)d e—(x*—aT)B(x—a)/z’ (2.108)
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where a is a column matrix with elements a; and a' is the transpose of a. The
respective characteristic function is given by

g(k) = el k—KICk/2, (2.109)

By construction, the multidimensional Gaussian distribution (2.108) has means
equal to a;, that is,

a; = ()C,'). (2110)

We remark that the elements Cj; are identified as the covariances of x; and not with
the second moments,

Cijz(x,-xj)—(x,-)(xj). (2.111)

We see therefore that a and C define completely the multidimensional Gaussian
distribution since B is the inverse of C.

2.7 Stable Distributions
According to the central limit theorem, the probability distribution of the variable

1
x=W($1+$2+...+§N) (2.112)

is a Gaussian if each probability distributions of the variables &; has the second
moment, and as long as N is large enough. Here we are assuming only distribution
with zero mean. If the distributions of the variables §; are already Gaussian it is
not necessary that N to be large. For any value of N, the distribution of x will
be Gaussian if the distribution of &; are Gaussian. We say thus that the Gaussian
distribution is a stable distribution with respect to the linear combination (2.112).

Other stable distribution can be obtained if we consider the following linear
combination,

1
xzm(&-ﬁ-&—i—...—f—&v), (2.113)

where § > 0, which reduces to the form (2.112) when f = 1/2. Given the
distribution p(§;), which we consider to be the same for all variables £;, we wish
to obtain the distribution p*(x) of x. Denoting by g* (k) the characteristic function
associated to the variable x, then

g* (k) = (™) = [J(e™/N") = (Ma/N)N, 2.114)
j
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so that
g (k) = [g(,kN ")V, (2.115)

where g (k) is the characteristic function associated to the variables &;.
Assuming that the resulting distribution p* (x) is the same distribution p(x; ), then

glk) = [gkN~F)N, (2.116)

which is the equation that gives g(k). The corresponding probability distribution
is generically called stable distribution. Taking the logarithm of both sides of this
equation,

Ing(k) = N Ing(kN~#), (2.117)

so that In g (k) is a homogeneous function in k. A possible solution of this equation
is given by

Ing(k) = —alk|®, (2.118)
where « = 1/8 and a > 0, or yet
glk) = =", (2.119)

When @ = 2, and therefore § = 1/2, the corresponding distribution is the Gaussian
distribution. When 0 < a < 2 they are called Levy distributions. The Lorentz
distribution is a particular Levy distribution corresponding to @ = 1, and therefore
tof = 1.

The probability distribution p(x) is obtained from the characteristic function by
means of the inverse Fourier transform

1 . «
p(x) = — / e~ thalkl® g, (2.120)
21 J s
Figure 2.1 shows these distributions for the cases ¢ = 2 (Gaussian), ¢ = 1

(Lorentz) and @ = 0.5. It is worth to note that, for 0 < a« < 2, these distributions
decay algebraically when x — oo. The behavior of p(x) for sufficient large x is
given by

Ay
p(x) = W, (2.121)

where A, = sin(zra/2)I"(1 + «)/m. Taking the logarithm

Inp(x) =InA, — (1 + «)In|x|, (2.122)
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Fig. 2.1 Three stable distributions, defined by (2.120), corresponding to « = 2 (Gaussian), @ = 1
(Lorentzian) and o = 0.5. (a) Probability density p versus x. (b) Same plot, with p in logarithm
scale

from which follows that the plot of In p versus In |x| has a linear behavior.

The algebraic behavior (2.121) leads us to an important result: the stable
distributions with 0 < « < 2 have infinite variances. They do not obey the
hypotheses of the central limit theorem.

Exercises

1. Generate a sequence of random numbers £, &, &3, ... that take the values —1
or +1 with equal probability. Plot the frequency f, = (&, + & + ... + &) /n
versus the number n. Confirm that f, — 0. Repeat the procedure for random
number generated according to the Lorentz distribution given by 1/[m(1 + £2)].

2. Generate a sequence of N random numbers &1, &, ..., £y that take the values
0 or 1 and calculate z = (£, + & + ... + &y — Na)/~/Nb, where a = 1/2
is the mean and b = 1/4 is the variance of the numbers generated. Repeat the
procedure L times and make a histogram of the values of z. Compare it with the
Gaussian distribution (277)~"/2 exp{—2z?/2}.

3. Consider a sequence of N independent and equally distributed random variables
01,02,...,0y, that take the values +1 or —1 with equal probability 1/2, and
let x be the variable x = (0] + 02 + ...+ 0oy)/N. Determine the averages (x),
(|x|), and (x?) for large N.

4. Use Stirling formula

—n

n!=n"e 27n,
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valid for n >> 1, which gives an excellent approximation for n!, to show that
the binomial probability distribution, expression (2.23), is given by

1/2 ¢ N—¢
Py =( ) exp{—In— — (N —€{) In——},
N (£) pt Np ( ) Ng }

274(N —0)

for large N and £. Expand the expression between braces around its maximum,
£ = Np, to reach the result (2.42), derived by means of the central limit
theorem.

. Show by substitution that the probability density (2.67) fulfills the differential

equation (2.68).

Use Stirling formula to obtain the probability density (2.67) from the
result (2.53), valid for the random walk. The appropriated definitions are
x =hm,t =nt, D = h?b/2t,¢c = ha/t,a = p—q and b = 4pq.

. Consider the one-dimensional random walk described by the sequence of

independent random variables o1, 03, 03, . .., 0, that take the values +1 (step
to the right), —1 (step to the left) and 0, (remaining in the same position). The
probability of remaining in the same position, o; = 0, is p while the probability
of taking a step to the right, o; = +1 is ¢/2 and to the left, 0; = —1, is also
q/2, where ¢ = 1 — p. Determine the probability P, (m) of finding the walker
at position m after n time steps. Find the probability distribution for large n.

. Consider the one-dimensional random walk described by the sequence of

independent random variables o1, 03, 03, . .., 0, that take the values +1 (step
to the right) and —1 (step to the left). Suppose, however, that the probability of
o; = +1is pif j isodd and g if j is even, where p + g = 1. Consequently,
the probability of 0; = —11is ¢ if j is odd and p if j is even. Determine, for
large n, the probability distribution of the position x = h(oy + 02 + ... 4+ 0,)
of the walker, for large n.

A walker makes a two-dimensional random walk. At each time interval t the
possible displacements are (£4, +-h) all with the same probability. Determine,
for large n, the probability of finding the walker at position r = (hmy, hmy)
after n intervals of time, for large n.

A gas molecule moves a distance /& between two collisions with equal probabil-
ity in any direction. Denoting the j-th displacement by r; = (x;, y;,z;), then
the total displacement from the origin after n collisions, isr = ri+r>+...41,.
Determine the average square displacement (r?) of the molecule. Find also the
characteristic function G(k) = (exp(ik-r)) of the variabler = (x, y, z) and the
probability distribution of r. Find the expression of this probability for large 7.



Chapter 3
Langevin Equation

3.1 Brownian Motion

According to Langevin, a particle performing a random movement, which we call
Brownian motion, is subject to two forces. One dissipative, which we assume to be
proportional to its velocity, and another of random character due to the impact of
the particle with the molecules of the medium. Considering the simple case of a
one-dimensional motion along a straight line, the equation of motion for a particle
of mass m is given by

d
mj‘; = —av+ F(1), G.1)
where
dx
= — 3.2
V= (3.2)

is the velocity and x the position of the particle. The first term on the right-hand
side of Eq. (3.1) is the friction force and hence of dissipative nature, where « is the
friction coefficient, and F,(¢) is the random force that has the following properties,

(F(1)) = 0. (3.3)
since in the average the force due to collisions with the molecules is zero and
(Fa(t)Fa(t)) = BS(t —1') (34

because we assume that the impacts are independent. Equation (3.1), supplemented
by the properties (3.3) and (3.4), is called Langevin equation.
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Dividing both sides of Eq. (3.1) by m, the Langevin takes the form

dv
<=0, (3.5)

where y = «/m and {(t) = F,(t)/m. The noise {(¢) is a stochastic variable, that
is, a random variable that depends on time, with the properties,

(@) =0, (3.6)
(C@O¢@)) =T -1, (3.7

where I' = B/m?>.

Mean-square velocity The generic solution of the differential equation (3.5) is
obtained as follows. We start by writing v(¢) = u(¢)e™"", where u(¢) is a function
of ¢ to be determined. Replacing in (3.5), we see that it fulfills the equation

du
— =e’L(1), 3.8
ik () (3.8)
whose solution is
4 ’
U= Uy +/ e’ ¢()Hdr. 3.9
0
Therefore
! 7
v=nvee V" + e_yf/ e’ ¢(tHdr', (3.10)
0

where vy is the velocity of the particle at time ¢+ = 0. This solution is valid for any
time function ¢ (¢). Next, we use the specific properties of the noise to determine the
mean and the variance of the velocity.
Using the property (3.6),
(v) = voe™ . (3.11)

Therefore

v— () =e / e’ e (el (3.12)
0
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from which we get

=) =" /0 /0 c@)e"yer arar’ (3.13)

(0= ()2 = e / re?ar, (3.14)
0

where we used the property (3.7). Performing the integral, we get the velocity
variance

r
(%) = ()2 = —(1—e™). (3.15)
2y
For large times, that is, in the stationary regime, (v) = 0 and the mean-square
velocity becomes
r
W = —. (3.16)
2y

From the kinetic theory, we know that

1, 1

—m = —kpT, 3.17
5m{v’) = ks (3.17)
where kp is the Boltzmann constant and 7 is the absolute temperature. Comparing
these two equations, we get the relation between the coefficient I" and the
temperature,

_ ZkaT
= . .

r (3.18)

Recalling that B = I'm? and that @ = ym, we reach the relation between B and
the temperature,

B = 2akpT. (3.19)

Mean-square displacement Next we determine the mean-square displacement of
the particle. To this end, we calculate first x(¢), given by

1
X =xo+ / v(t"dt, (3.20)
0
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¢ r t r

Fig. 3.1 Two equivalent ways of carrying out the integration over the hatched area. We may
integrate first in " and then in ¢/, as illustrated in (a), or we may integrate first in ¢/ and then
in ¢, as illustrated in (b)

where X is the position of the particle at time # = 0 or, in view of Eq. (3.10),

t t t
X = X0+ vo / e"al + / e / c@"er" ar'dr . (3.21)
0 0 0

Performing the first integral and changing the order of the integrals of the last term,
according to the illustration in Fig. 3.1,

1 ! 4 ! 7
x=x0+vo—(1—e")+ / (e / e’ drdr. (3.22)
14 0 1%

4

Integrating in ¢/, we get the result
1 —yt L[ " " —1)\ 4!
x=xo+vo—-(1—e")+—[| ¢@")(1—-¢" )dt”, (3.23)
14 vV Jo

valid for any time function {(¢). Using the property (3.6), we get the mean
displacement of the particle

(x) = xo + voi(l —e ). (3.24)

The mean-square displacement is calculated by first determining, from (3.23)
and (3.24), the difference

x—(x) = % / @)1 — e’ "Nay", (3.25)
0
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from which we get

(x = (x))? = % / | | L =1 - Data. (.26)
0 JO

Next, using the property (3.7), it follows that

r [t /
(=) = 5 ==y (327)
0
from which we obtain, after performing the integral,
r 2 _ 1 _
(x?) — (x)? = F{z — ;(1 —e "y 4 5(1 —e ), (3.28)

For large times, the dominant term is the first one so that, in this case, the mean-
square displacement is proportional to ¢, that is,

(x?) — (x)? = 2Dr, (3.29)

where D = I'/2y* = B/2d? is the diffusion coefficient. Using relation (3.18),
we can write the following relation between the diffusion coefficient and the
temperature,

 ksT
==

D (3.30)

Although we have derived the relation (3.30) for the one-dimensional case, it is
also valid in two and three dimensions. For spherical particles of radius ¢ immersed
in a liquid of viscosity coefficient u, the constant « is given by the Stokes law,

o = brua, (3.31)
so that
kgT
D= """ (3.32)
6rua

which is the Sutherland-Einstein relation. The knowledge of the diffusion coefficient
D, obtained through the measurement of the mean-square displacement (x?) — (x)?,
and of the quantities 1 and a allows for the determination of the Boltzmann constant
k. In fact, such an experiment was performed by Perrin examining the Brownian
motion of particles suspended in a liquid.

The observation of the Brownian motion of a particle immersed in a liquid
is possible because it is much larger than the molecules with which it collides.
The molecules also perform Brownian motion, but according to Perrin (1913),
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“I’agitation moléculaire échappe a notre perception directe comme le mouvement
de vagues de la mer a un observateur trop éloigné. Cependant, si quelque bateau
se trouve alors en vue, le méme observateur pourra voir un balancement que lui
révélera I’agitation qu’il ne soupgonnait pas.”

Energy The random impact of the molecules of the medium on the particle
transfers kinetic energy from the molecules to the particles. The particle, in turn,
dissipates energy due to the friction force and, at the same time, has its kinetic
energy modified. The rate at which the energy is transferred to the particle is equal
to the sum of the rate at which energy is dissipated and the variation of the kinetic
energy of the particle. The energy balance is obtained as follows. We multiply both
sides of the Langevin equation by v and use the equality vdv/dr = (1/2)dv*/dt
to get

md , )
EEV = —av° +vF, (3.33)
or
d m
d_t(fvz) + vF4is = VFa, (3.34)

where Fys = av is the dissipative force.
Taking the average,
dE.
dt

+ Pgis = P, (3.35)

where E. = m(v?)/2 is the average kinetic energy, Pgis = (vFais) = (av?) is the
rate of dissipation of energy, or dissipated power, and P = (vF,) is the rate at which
energy is transferred to the particle, or transferred power.

Each term on the left side of Eq.(3.35) can be obtained in an explicit way
as functions of time using the expression for (v?) given by (3.15). Doing the
calculations, we reach the result

r B  aksT
p="" 2 BT (3.36)

that is, the transferred power is independent of time.

We remark that, although Py;s > 0, the variation of the kinetic energy dE. /dt can
be positive, zero or negative. This last case occurs when the initial kinetic energy of
the particle, mv% /2, is great than the average kinetic energy of the stationary state,
kpT/2. In the stationary regime, however, the variation in kinetic energy vanishes,
dE./dt = 0, so that Pgs = P and therefore all energy transferred to the particle is
dissipated.
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Langevin’s solution The solution of Eq. (3.1) originally done by Langevin is as
follows. Defining the variable z = (d /dt)x?, its derivative with respect to time is

dz 5 dv
— =2 2x—. 3.37
dt v xdt ( )

Replacing (3.1) in this equation, and taking into account that 2xv = 2xdx/dt = z,
we get the result

d
mzj = 2mv* — az + 2xF,(1). (3.38)

Next, Langevin assumes that (xF,) = 0, to get the equation

d

md—t(z) =2m{*) — a(z). (3.39)

In the stationary estate, we use the equipartition the energy, m (v?) = k3T, to get

2kpgT
(z) = =2~ =2D. (3.40)
o
Since z = (d /df)x?, then
d, 5
- =2D, 3.41
) (341)
whose integration gives the result
(x%) — (xg) = 2D, (3.42)

valid for large times and obtained by Langevin in 1908.

3.2 Probability Distribution

Velocity distribution We have seen that the velocity v(¢) of a free particle in a
viscous medium and subjected to random forces varies according to the Langevin
equation (3.5) where {(¢) is a stochastic variable, that is, a time-dependent random
variable. Likewise, the velocity v(¢) is also a stochastic variable. The difference
between them is that the probability distribution of {(¢) is known in advance
whereas that of v(¢) we wish to determine.
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To find the probability distribution of v(¢), we start by discretizing time in
intervals equal to t, writing ¢ = nt. Thus, Eq.(3.5) is written in the approximate
form

Vg1 = avy, + V1§, (3.43)
where a = (1 — ty) and the random variables £; have the properties
(§;) =0, (§jk) = . (3.44)

From (3.43), it follows the relation

n—1
v = wi. (3.45)
£=0
where wy is defined by
we =a' Vg, (3.46)

and we consider the initial condition vg = 0. Thus v,, becomes a sum of independent
random variables.
Denoting by g, (k) the characteristic function related to the variable v,,,

n—1

gn(k) = (e*) = [J(e™) (3.47)

=0

because the variables wy are independent. Assuming that the probability distribution
of the variable &, is Gaussian of zero mean and variance 1, it follows that the
probability distribution of the variable wy is also Gaussian of zero mean, but with
variance a2!tI". Therefore,

(eikwg> — e—aﬂrrkz/z’ (348)
from which we get
gu(k) = k)2, (3.49)

where

2n

n—l1

1 _

by=<I'y ¥ = 1 _‘;2 T (3.50)
=0
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The probability density of the variable v, is obtained by calculating the inverse
Fourier transform of (3.49), that is,

1
Py(vy) = We—vﬁ/%ﬂ. (3.51)

Taking the limits Tt — 0 and n — oo with nt = ¢ fixed, the probability density
(v, t) of the variable v at time ¢ is

1
p(V,t) = —e_VZ/Zb(t)s (352)

V27h(0)

where b(t) is the limit of b,, given by

kgT

b0 = %(1 —e )= o m( e, (3.53)

In the stationary regime, that is, when t — oo, b(t) — kpT/m, and we reach the
result

p(v) = " e/ 2ksT (3.54)

which is the Maxwell velocity distribution, for the one-dimensional case.

Position distribution To obtain the probability distribution of the position, we
proceed in the same way as above. Using the same discretization we write

Xn+1 = Xp + TVp, (355)
from which follows the relation
n—1
Xe =Ty v, (3.56)
=1
in which we have set xo = 0 and vo = 0. Notice that the variables v, are not
independent. However, if we use Eq. (3.45) we may write
n—1

Xo =y e, (3.57)

=1
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where
1 ¢
e = ~(1—a )il (3.58)
14
to that now x,, is a sum of independent variables u;.

Denoting by G, (k) the characteristic function related to the random variable x,,,

n—1

Gu(k) = (") = [ J(e™). (3.59)

(=1

Since the variable & has a Gaussian distribution of zero mean and variance 1, then
the variable i, also has the the same distribution, but with variance (1 —a®)?tI"/y>.
Hence

G, (k) = e~ k12, (3.60)
where
7 N2 l—a" 1—a*
= 2 (-a) = =20 ) (3.61)
(=1

In the limits t — 0 and n — oo with nt = ¢ fixed, we get the probability density
p1(x,t) of the variables x in the Gaussian form

1 2
X 1) = ———— ¢ /20 (3.62)
p1(x,1) rrd(t)
where d(¢) is the limit of d,,, given by
r 2 1
d(t) = p{z - ;(1 —e ) + 5(1 —e P}, (3.63)

which in turn is the variance of x(¢) given by Eq.(3.28). In the regime where ¢ is
very large d(t) — 2Dt, where D = I"/2y?, and thus

1
p1(x,1) = D e (3.64)

which coincides with the expression seen previously in Sect. 2.4.
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3.3 Time Evolution of the Moments

In this section we study a generic Langevin equation in one variable, that we write
in the form

dx
== f0 20, (3.65)

where f(x) is a function of x only, which we merely call force, and {(¢) is the
stochastic variable, or noise, whose properties are known. It has zero mean

(¢@®)=0 (3.66)

and, in addition,
(C()5()) = T8 —1), (3.67)

that is, the variables {(¢) and {(¢') are independent for t # ¢’. The random
variable that has this property is called white noise because the Fourier transform of

(¢(0)¢(2)), given by
/ei“”(é(o)i(t))dt =T (3.68)

is independent of the frequency .

Example 3.1 In the Brownian motion, seen in Sect. 3.1, a free particle moves in a
viscous medium and is subject to random forces. Suppose that in addition to these
forces it is subject to an external force F(x). The equation of motion is

d’x dx
S = F(x)—a— + F(1). .
m 7 x)—« 7 + Fu(t) (3.69)

For cases in which the mass of the particle is negligible, this equation reduces to

a% = F(x) + F,(1). (3.70)

Dividing both sides by «, this equation becomes of the type (3.65) with f(x) =
F(x)/a,and {(t) = Fy(t)/a.

The Langevin equation may be called stochastic equation because each of the
variables entering in this equation is a stochastic variable, which means that each
has a time-dependent probability distribution. Therefore, to solve the Langevin
equation means to determine the probability distribution P(x, ) at each instant of
time ¢ > 0, given the probability distribution P(x,0) at ¢t = 0. If at the initial
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time the particle is located at the point xo, then P(x,0) = §(x — xo). Alternatively,
we can determine all the moments f1¢(t) = (x’) as functions of time, given the
moments at the initial time. Later, we will see how to derive from the Langevin
equation, a differential equation for P(x, ), called Fokker-Planck equation, which
is in this sense equivalent to the Langevin equation. In this section we derive
evolution equations for the moments of x.

We start by discretizing time in intervals equal to 7. The position at time t = nt
is x, and the Langevin equation in the discretized form is

Xnt1 = Xy + Tfy + VTI'E,, (3.71)

where f, = f(x,) and &, has the properties

(Sn) =0, (SnéW) = Snn’- (372)

The discretized Langevin can be viewed as a recurrence equation. Notice that the
random variable x,y; is independent of &,4;, although it depends on &,, &,_;,

&, etc.
Next, we see that

(Xn+1) = () +7(fa). (3.73)

Taking into account that ({x,+;) — (x,})/7 is identified with the derivative d (x)/dt
when T — 0, then

d

S = (£, (374)

which is the equation for the time evolution of the average (x).
Squaring both sides of Eq. (3.71), we get

X2 =X+ 2VTLEx, + TLE + 2t fo + TVTTE Sy + T f 1. (3.75)

Using the property that x,, and &, are independent, and that (£,) = 0 and (£2) = 1,
we reach the result

(o) = () + o + 20l fu) + (). (3.76)
Taking into account that ({x2, ) — (x2))/t — d(x?)/dt when t — 0, then

10y =1 423/ ), 3.77)

which gives the time evolution of the second moment (x?).
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To determine the equation for the time evolution of the £-th moment of x, we
raise both sides of Eq. (3.71) to the £-th power

xby =L+ ofy + VIDEN (3.78)

Neglecting terms of order greater than 7, we obtain
1
xb = xb Vg e+ Sie=ntr 2xt=2, (3.79)
Taking into account that ({x! ;) — (x!))/t — d(x%)/dt when T — 0, we get

(xf) = (b + e ) + %z(z — el {(x'72) (3.80)

so that

%(x@) = (x" f(x)) + %e(e — DIx"?), (3.81)
which gives the time evolution of the moment (x*).

Equation (3.81) is actually a set of equations for the various moments of the
random variable x. The equation for the first moment may depend on the second
moment and thus cannot be solved alone. Thus, we need the equation for the second
moment. However, the equation for the second moment may depend on the third
moment so that we have to use the equation for the third moment. Therefore, the set
of equations (3.81) constitutes a hierarchical set of equations. In some cases it may
happen that the equation for a certain moment has only moments of lower order. In
this case, we have a finite set of equations to solve.

Example 3.2 1f f(x) = c,

%(x) =c, %(xz) =2c(x)+ I, (3.82)
whose solutions for the initial condition (x) = x and (x?) = x2 at7 = 0 are

(x) = xo + ct, (x%) = xg + (I" + 2cx0)t + *t%. (3.83)
From these two moments, we get the variance

(x%) — (x)2 =Tt (3.84)

This example is identified with the problem of the random walk seen in Sect. 2.4.
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Example 3.3 Suppose that f(x) = —vx. In this case, the two first equations give us
93 = o) (3.85)
'l ’ '
d, 5 2
d_t<x )y = =2v{x") + I (3.86)

Therefore, by integration of these two equations we may get the two first moments.
With the initial condition (x) = xj and (x*) = x3 at¢ = 0 we get the following
solution,

(x) = xpe™"", (3.87)
(x?) = % + (x2 - ZF—U)e—M. (3.88)

From them we get the variance
(x?) — (x)? = %(1 —e ), (3.89)

When ¢ — oo, (x) — 0 and (x?) — I'/2v. This example can be understood as
the original Langevin equation seen in Sect.3.1. To see this, it suffice to make the
replacements x — v, v — y.

3.4 Simulation of the Random Motion

The motion of a particle that obeys the Langevin equation

dx
- = S+, (3.90)
where ¢ (¢) has the properties
(@) =0, (3.91)
(L)) =rse—r), (3.92)

can be simulated as follows. We discretize the time in intervals equal to T and denote
by x, the position of the particle at time # = nt. The Langevin equation becomes
thus,

Xnt1 = Xy + Tfy + VTTE,. (3.93)



3.4 Simulation of the Random Motion 57

where f, = f(x,) and &, &, &, ... comprise a sequence of independent random
variables such that

(&) =0, (&) =1 (3.94)

Thus, if a sequence of random numbers is generated &, &1,&,,... and if the
initial position X is given, we can generate the sequence of points x, x2, X3, ...,
which constitutes the discretize trajectory of the particle. The variables & must be
generated according to a a distribution with zero mean and variance equal to unity.

Suppose that we wish to know the average position of the particle as a function
of time. We should generate several trajectories starting from the same point x(. An
estimate of the average (x) at time ¢ = nt is

L
_ 1 :
=T § X0, (3.95)

J=1

where L is the number of trajectories and x,(,j ) denotes the position of the particle at
time ¢ = nt belonging to the j-th trajectory. In an analogous manner, we can obtain
an estimate x_ﬁ of the second moment (x2). From the first and second moment we
obtain an estimate of the variance, x_,% — (Xn)%

The simulation of the L trajectories may be understand as being the trajectories
of L noninteracting particles that move along the straight line x, all starting at the
same point xo at time ¢ = 0. At each time step t, each particle moves to a new
position according to the discretized Langevin equation. At each instant of time 7
we can also construct a histogram of x, which is proportional to the probability
distribution P(x, ). To this end, we make a partition of the x-axis in windows of
size Ax and for each window [x,x + Ax] we determine the number N(x,?) of
particles whose positions are inside the window.

In the stationary state, we may use just one trajectory because the probability
distribution becomes invariant. Therefore, an estimate of the average (x) is

X=—> x (3.96)

where M is the numbers of values used to determine the average, along the
trajectory, inside the stationary regime. In an analogous way, we can obtain an
estimate x2 of the second moment (x?). From this single trajectory we can also
determine an histogram of x, which is proportional to the stationary probability
distribution P (x).
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3.5 Fokker-Planck Equation

Let P,(x,) be the probability distribution of the variable x, and g, (k) its corre-
sponding characteristic function, given by

gn(k) = (e) = / e Py (x,)dx,. (3.97)
Using the discretized Langevin equation, given by (3.71),
gnr1(k) = (e™nt1y = (eik[xn+ffn+\/ﬁ§n]>’ (3.98)
where f, = f(x,), or, taking into account that x,, and £, are independent,
gur1 (k) = (M) i), (3.99)

Next, we perform the expansion of g,,41(k), up to terms of first order in t. The first
term of the product gives

(e™ {1 +iktf,}) = (™) + ikt (fe™™) (3.100)
and the second,
1 1
1 + kTl (E,) — Ek%r(g,f) =1- Eszr, (3.101)

where we used the properties (£,) = 0 and (£2) = 1. Therefore,

r, .
T2 ety (3.102)

gn+1(k) = gul(k) + ikf(fneikxq - B

Taking into account that (g,+1 (k) — g, (k))/t — dg(k)/dt we get the equation

%g(k) = ik( f(x)e™) — §k2(e"’“). (3.103)

We use now the following properties,
. ikx d i it 0
ik(f(x)e™) = (f(x)——e™) = — [ ™ —[f(x) P(x)]dx (3.104)
dx ox
and

2 2
— k(™) = (d—eik") = /e"k"%P(x)dx (3.105)
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which together with

g(k) = / P(x)e™dx, (3.106)

allows us to reach the equation

9 9 r
S P =~ (@) P0] + 55 P.0). (3.107)

which is the time evolution equation for the probability distribution P(x, ). This
equation is called Fokker-Planck equation.
Up to linear order in 7, Eq. (3.102) can be written in the equivalent form

gu1(k) = (et =Tk /2]y, (3.108)

Suppose that at time n = 0, the particle is at position x’. Then at n = 0, the
probability is Py(x) = §(x — x’) so that

g1(k) = eikx’+r[ikf(x’)—1“k2/2]' (3.109)

which must be understood as the characteristic function related to the probability
distribution P;(x) at time t, that is, as the conditional probability distribution
K(x,t;x’,0) of finding the particle in position x at time f = 7 given that it was in
position x” at time 1 = 0. But (3.109) can be understood as the Fourier transform of
a Gaussian distribution of mean x’ + 7 f(x’) and variance I" so that

1 ! !
K(x,7:x',0) = ﬁe[H —T /NPT (3.110)
T

This expression can also be understood as the solution of the Fokker-Planck
equation for small values of time and initial condition such that the particle is in
the position x’. Notice that when T — 0, in fact K(x, 7; x, 0) — §(x — x’).

3.6 Set of Langevin Equations

In the previous sections we studied the Langevin equations in one variable. Here
we analyze a system described by a set of several variables. We consider a system
described by N stochastic variables x1, X7, x3, ..., Xy whose time evolution is given
by the set of equations

dx,- _

o = fi(x1,x2,...,xn) + & (1), (3.111)
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fori = 1,2,..., N, where the stochastic variables ¢, (¢), {2(¢), ..., {n(z) have the
properties

(i) =0 (3.112)

and
(Ci(0)¢; (1)) = Ii8yd(r — 1), (3.113)

where I, I, ..., 'y are constant.

The Langevin equations (3.111) constitute, in general, a set of coupled equations.
The simplest example of a coupled set of equations occur when the functions f; are
linear, that is, when

N
fi =" Ayx;. (3.114)
=1
In this case the Langevin equations are given by

d N
i :ZAM + & (3.115)

j=1

and can be written in the matrix form

%X =AX + Z, (3.116)

where X and Z are column matrices with elements x; and {;, respectively, and A4 is
the square matrix whose elements are 4;;.

To solve the matrix equation (3.116) we determine, first, the matrix M that
diagonalize A, that is, we determine M such that

M7AM = A, (3.117)

where A is the diagonal matrix whose elements A; are the eigenvalues of A. The
matrix M is constructed from the right eigenvector of A and the matrix M ~', the
inverse of M, is constructed from the left eigenvector of A. Next, we set up the
square matrix R(z), defined by

R(t) = MD(t)M ™, (3.118)
where D(t) is the diagonal matrix whose elements are Dy (f) = e*'. Notice that

at time ¢ = 0 the matrix R(¢) reduces to the identity matrix, R(0) = I, because at
t = 0 the matrix D(¢) is the identity matrix, D(0) = 1.
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Deriving both sides of (3.118) with respect to time, we get
d ~1
ER(Z) = MAD@E)M ™. (3.119)

But, given that M A = AM, the right-hand side of this equation becomes equal to
AR(t) so that R(¢) fulfills the equation

d
—R() = AR(). (3.120)

The general solution of (3.116) is obtained with the help of R(¢). For the initial
condition X(0) = Xy, the solution is given by

X(@t) = R()Xo+ /0, R(t —tZ({t"dt, (3.121)

which can be checked by direct substitution into (3.116), using the property (3.120)
and bearing in mind that R(0) = /. From this solution we can obtain the various
moments of x;.

Define the square matrix C whose elements are given by

Ci = ((xi — (xi)(x; — (x;))), (3.122)
which can be written as
Cij= (x,-xj)—(x,-)(xj). (3.123)
The element Cj; is called the covariance between the stochastic variables x; and x;
and the matrix C is called covariance matrix. From the definition of the column
matrix X, whose elements are the stochastic variables x; and defining X T as the
transpose of X, that is, the row matrix whose elements are x;, we see that
C=(X—- (X)X —(xM). (3.124)
Using the general solution (3.121), we observe that

(X) = R(1)Xo, (3.125)

where we have taken into account that (Z) = 0 so that

X —(X) = /Ot R(t —1)Z(t)dr . (3.126)
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Multiplying by its transpose X — (XT), we get the following result for the
covariance matrix, after taking the average

C(t) = / R(:)TR'(t"dr . (3.127)
0

where we used (3.112) and the result (Z(¢)ZT(t")) = I'§(t' — t"), coming
from (3.113) and here I” is the diagonal matrix whose elements are I;d;;.

3.7 Harmonic Oscillator

In the first sections of this chapter we have analyzed the Brownian motion of a free
particle. Here we study the Brownian motion of a confined particle, that is, subject
to forces that restrict its movement in a given region of space. Thus, we consider
a particle of mass m that moves along the x-axis and subject to a force F(x) that
depends only on the position x. The motion equation is

d
md_: = F(x) —av+ F,(0), (3.128)

where v is the particle velocity,

dx
= —, 3.129
i ( )
« is the friction coefficient and F,(¢) is the random force that has the property given
by Egs. (3.3) and (3.4). Dividing both sides of Eq. (3.128) by m, it is written in the
form
dv
i Sx)—yv+L@), (3.130)
where y = a/m, f(x) = F(x)/m and {(t) = F,(t)/m. The noise {(¢) has the
properties given by Eqs. (3.6) and (3.7).
The simplest type of force that we may imagine is the elastic force derived from

the harmonic potential, that is, F(x) = —Kx where K is the elastic constant. In this
case f(x) = —kx, where k = K /m and Eq. (3.130) reduces to

d

?: = —kx— v+ £(0). (3.131)

With the purpose of solving the set of Egs.(3.129) and (3.131), we start by
writing them in matrix form

(%2) - (_2 _;) (f) + (?) (3.132)
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Defining the matrices

0 1 X 0
) O

Eq. (3.132) reduces to the compact form

d
EX=AX+7, (3.134)

which is identified with Eq. (3.116) so that we may use the method presented in the
previous section.
We start by determining the eigenvalues of the matrix A, which are the roots of
equation
M+yd+k=0 (3.135)

and are given by

1 1
A= 5(—)/ + Vy?—4k), Ay = 5(—)/ — Vy?—4k). (3.136)
Notice that AjA, = kand A + A, = —y.

The matrix M is constructed from the right eigenvector of 4 and its inverse M !
is obtained from the left eigenvectors of A and are given by

11 1 1 A 1
M = , M= . 3.137
(M /\2) 11—/\2( A1 —1) ( )

Using the expression for M and M ', we obtain R = MDM ™, keeping in mind

that D is the diagonal matrix whose elements are e*!’ and e*?. Performing the
product,
1 A’lelzt _ A’zel]t ellt _ elzt
R(t) = ——— 3.138
@) Al — Ay (Alkz(ekzt — eklt) Ale“ — Azé‘)‘zt ( )

Using Eq. (3.121), and considering the initial conditions such that the position
and velocity are zero, x(0) = 0 and v(0) = 0, recalling that the elements of Z(¢)
are 0 and £(¢), we get the following expressions for the position and velocity

1

x(t) = PR

t
/ (ell(t—t’) _ g/b(t_t/))é'(l/)dl/, (3.139)
0

v(t) =

t
A / (A=) — Qe e (¢t (3.140)
- 0
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From these expressions we can determine the moments (x2), (xv) and (v?). To this
end, we use the property (3.7) to get the following results

F 82)‘1[ —_ 1 e_)’t — 1 ezkzt _ 1
= 4 : 3.141
o) 2(A1—A2)2( ottt ) (3.141)
r
(o) = m(ek” — by, (3.142)
r k
(vz) = m (Al(eZ/ht _ 1) + 4;(6_}/[ _ 1) + /\2(62/121‘ _ 1) i
(3.143)
where we used the equalities A; + A, = —y and A;A, = k. Alternatively, these

results can be obtained directly from (3.127).
To get the results for large times, we take the limit # — oo and use the equality

A — Ay = y? — 4k,

I kT

(x2) = T BT (3.144)
I kT

() = 3= —; , (3.145)

and (xv) = 0. These results lead us to the equipartition of energy

moay - Kooy 1
S %) = 5 (%) = SksT. (3.146)

valid in equilibrium.

3.8 Linear System

We analyze again the system described by the set of Langevin equations given
by (3.111). The time evolution of the moments of the variables x; can be obtained
by means of the discretization method used in Sect. 3.3. This method leads us to the
following equation for first moments

d

o i) = (/i) (3.147)

and to the following equation for the second moments

d
E(xixj) = (xi]’j) + (Xjfi) + Fi&j. (3.148)
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Equations for the time evolution for the moments of higher order can also be
obtained. The equations for the various moments of x; constitute a set of hierarchic
coupled equations which are equivalent to the set of Langevin equations (3.111).

Again, we consider the simplest example, namely, that for which the forces f;
are linear,

N
fi =" Ayx;. (3.149)
j=1

In this case, Egs. (3.147) and (3.148) reduce to

d N

Sl =2 Aylx;) (3.150)
i=1
and
d N N
—(xxg) =3 Aulxixe) + 0 Aulxix) + D63, (3.151)
k=1 k=1

Equations (3.149) and (3.150) constitute two sets of linear differential equations of
first order that can be solved. They are particularly interesting for determining the
stationary properties, that is, the properties that one obtains in the limit # — co.

From the definition of the covariance Cy;, given by (3.123), and using Egs. (3.150)
and (3.151), we reach the following equation for Cj;,

d N N
EC,‘]’ = Z CikAjk + Z Aikaj + Fl&j, (3.152)
k=1 k=1
which can be written in the compact form
d i
—C =CA" +AC+ T, (3.153)

dt

where AT is the transpose of A4 and in this equation I" is the diagonal matrix whose
elements are I';4;. The time-dependent solution C(¢) of this equation together with
the solution for (x;) give us therefore the solution for {x;x;). But C(¢) has already
been found and is given by Eq. (3.127). That the expression in the right-hand side of
Eq. (3.127) is in fact the solution of (3.153) can be checked by its direct substitution
into (3.153). To this end, is suffices to recall that dR/dt = AR and that R(0) = 1,
the identity matrix.
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Example 3.4 The equations of motion of a particle performing a Brownian motion
are given by (3.2) and (3.5). Using the result (3.148), we obtain the following
equations for the second moments of x and v,

d, 5
E(X ) = 2(x), (3.154)
d 2
d—t(m = (V") — y{w), (3.155)
d 2 2
E<V ) ==2y() + T (3.156)

Example 3.5 From Egs. (3.129) and (3.131), valid for a particle performing Brow-
nian motion and subject to an elastic force, we get, using the result (3.148), the
following equations for the second moments of x and v,

d

E(xz) = 2(x), (3.157)
d
E(xv) = (1?) —k(x?) — y(xv), (3.158)
d, , 2
E(V )y = —2k{xv) =2y (v?) + T. (3.159)

In the stationary state, the left-hand side of these equations vanish, from which we
conclude that in this regime (xv) = 0 and that (v*) = I'/2y and (x?) = I'/2yk,
results obtained previously, as shown by Eqgs. (3.144) and (3.145).

3.9 Electric Circuit

Consider an electric circuit comprising a resistor of resistance R, an inductor of
inductance L and a capacitor of capacitance C, where we assume the occurrence of
fluctuations both in tension and in electrical current. The equations for the charge
O of the capacitor and the current / in the circuit are given by

d

EQ =—y0 + 1+ 1,(0), (3.160)
Lil——iQ—RHV(z) (3.161)

a  C e ’
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where I, (¢) and V, (¢) are the random current and random tension, respectively, con-
sidered to be independent, and called Johnson-Nyquist noise. These two stochastic
variables have zero means and the following time correlations

(I,(O).(t") = A8(t — 1), (3.162)
(V,()Ve(t") = Bs(t —1') (3.163)

Equations (3.160) and (3.161) are written in the form

d
EQ =—y0 +1+4(), (3.164)

d

1 R
E[ = —EQ — z1 + §a(0), (3.165)

where the noises ¢;(¢) = I,(¢) and &,(¢) = V,(¢)/ L have the following properties

{Ci(0) =0, (3.166)

(Gi(); () = Li88( — '), (3.167)

for i : Jj = 1,2. The coefficients I; are related to A and B by I = A and I, =
B/L".

From these equations, and using the results (3.148), we get the following
equations for the second moments of Q and 7,

C%(QZ) = 2y(0% +2(QI) + I, (3.168)
d 1 R
E(QD = _E(Q2> - (Z + )/) (oI + (1%, (3.169)
dioy_ 5L iopn B2
E(l ) = ZLC(QI) 2L(1 )+ D (3.170)

Next, we consider only the stationary solution and assume that in this regime the
average energy stored in the capacitor and inductor are equal to one another, that is,
we assume the equipartition of energy in the form

1

3007 =) (3.171)

This relation together with the equations valid in the stationary regime make up four
equations in three variables, (Q2), (Q1) and (I?). To find a solution, we assume that
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I and I are not independent constants. Using Eq. (3.171), we see that a solution
for the stationary state is

F] LF2
I) =0, =, %) = =—=, 3.172
(1) (%=1 (17 = = (3.172)
and that I} and I are related to one another by
I cr?
o (3.173)
I R

Taking into account that the energy stored in the capacitor and in the inductor are
(1/2)kpT, we get the following relations between I and I and the temperature

Fl = 2C)/kBT, (3174)
2RkpT
= (3.175)

Since I; = B/ L2, then we reach the following relation between the coefficient B
and the temperature

B = 2RkpT, (3.176)

which is the result due to Nyquist.

3.10 Kramers Equation

We saw in Sect. 3.5 that the Langevin equation (3.65) is associated with an equation
for the time evolution of the probability distribution, called Fokker-Planck equation.
A set of equations such as that given by Eq.(3.111) may also be associated to a
Fokker-Planck equation in several variables. In this section, we present a derivation
of the Fokker-Planck equation for the set of Eqgs. (3.129) and (3.130). To this end,
we discretize these two equations in the form

Xn+1 = Xn + TV, (3.177)

Vil = Vp + Ty — Ty + VTIE, (3.178)

where f, = f(x,).
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Proceeding in a manner analogous to what we did in Sect. 3.5, we denote by
P, (xy, v,) the probability distribution of the variables x, and v, and by g, (k, q) the
corresponding characteristic function

gu(k.q) = (e™ntiam) = / M P (X, vy )dxy dvy. (3.179)

Using the discretized Langevin equations, given by (3.177) and (3.178), we write

gnr1(k,q) = (eMntevmtigntTi—tyu /il (3.180)

or, given that ¢, is independent of x,, and v,,

gn+l(ks(I) — (eik(xn+wn)+iq(vn+tf,,—ryvn)>(eiqﬁ&). (3181)

Next, we perform the expansion of g,+1(k, ¢) up to terms of first order in t, to get

2
gnv1(k.q) = gu(k, q) + (" (iktvy + iqt fo —iqryve — %tf))- (3.182)

Taking into account that (g,+1(k,q) — g.(k,q))/t — dg(k,q)/dt, we get the
equation

d . 2
g(k.q) = (" (kv + igf (x) — iqyv - %F)). (3.183)
Now we use a procedure similar to that the one that led us to Eq.(3.107) from

Eq. (3.103), to find the following equation

0 a0 0 r ¢
EP(X’V’ t) = —a[vP(x,v,t)] - 5[(]’()6) —yv)P(x,v,t)] + 5WP(x,v,t),
(3.184)

which is the time evolution equation for the probability distribution P(x, v, t). This
equation is called Kramers equation.
Up to linear order in 7, Eq. (3.102) can be written in the equivalent form

gn+l(ks(I) — (eikx,,+iqv,,+ikw,,+iqrf,,—iqryvn—rl“q2/2>. (3185)

Suppose that at time n = 0, the particle is in position x” with velocity v'. Then, at
n = 0, the probability distribution is Py(x,v) = §(x — x")§(v — V') so that

gl(k,Q) — eik(x'+w’)+iq(v’+rf(x’)—ryv’)—r1"q2/2. (3.186)
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which should be understood as the characteristic function of the probability
distribution P;(x,v) at time 7, or, as the conditional probability distribution
K(x,v,t;x’,V,0) of finding the particle in position x with velocity v at time ¢t = 7
given that it was in position x” with velocity v at time ¢ = 0. The inverse Fourier
transform of (3.186) leads us to the result

1 / ’ /
K(x, v, 7: X'V, 0) = §(x — x" — 1) —m eV~ CFep /2l (3 187)
2t l’

This expression can also be understood as the solution of the Fokker-Planck
equation for small time and with the initial condition that the particle is in position
x" with velocity v'.

Exercises

1. The original Langevin’s solution for the Brownian motion of a particle is based
on the result (xF,) = 0, where x is the position and F, is the random force. Prove
this result.

2. Show that the time correlation of velocities of a free particle performing
Brownian motion whose equation of motion is the Langevin equation (3.5), is
given by

(v(to)v(to + 1)) = (V(*))e ™!,

where t* =ty if t > OQort* = tg+ ¢ if t < 0. Determine, from it, the time
autocorrelation in equilibrium K (¢) defined by

K@) = lim {v(to)v(to +1))

and the Fourier transform K () = [ e!“' K(t)dt. Show that the diffusion
coefficient D is given by

D = /OOO K(t)dt.

3. Determine explicitly, as functions of time, the variation of the kinetic energy
dE./dt and the average dissipated power Pgs for a free particle performing a
Brownian motion. Show that the sum dE./dt + Pgs = P where P is the
transferred power is a constant. Make a plot of these three quantities versus ?.
For what values of the initial velocity the average kinetic energy E. decreases?

4. For the ordinary Brownian motion, the evolution equations for the second
moments are given by (3.154)—(3.156). Solve these equations to get {x2), (xv)



3.10 Kramers Equation 71

and (v?) as functions of time. Suppose that at time ¢ = 0 the position and velocity
are xo and vy, respectively.

5. Consider a particle that performs a Brownian motion along the x-axis, subject
to an elastic force, whose equations for the second moments are given by
Egs. (3.157)—(3.159). Solve directly these equation and show that the solutions
are given by (3.141)—(3.143). Suppose that at time ¢ = 0, x(0) = 0 and v(0) = 0.

6. Consider the set of Langevin equations,

d.
% = —cx; —axy + ¢1(1),
d.
% = —cxy — bxy + §(1),

where (¢1(1)) = (£(1)) = 0 and (£ (1)¢; (")) = I'8;8(1 —t'). Determine (x?),
(x%) e (x1x;) as functions of time. Solve for: i) b = a, ¢ > a > 0 and (ii)
b=-a,a>0,c>0.

7. Simulate the random motion defined by the Langevin equation (3.5)—(3.7),
discretizing time ¢ = nt in intervals equal to t. For large times, make the
histogram of the velocities. Determine also the time correlation (v(#o)v(to + t))
of the velocity. This can be done from the time series v,, generated from the
simulation as follows. Fix a certain value of # = nt and calculate the arithmetic
mean of the product v,,v,,+, obtained from various values of m along the series.
Repeat the procedure for other values of n. Make a plot of the correlation versus ?.

8. Simulate the random motion of a particle that obeys the Langevin equation
defined by (3.65)—(3.67), for: (a) f(x) =c > 0forx <0, f(x) =0forx =0,
and f(x) = —c forx > 0; (b) f(x) = —vx, v > 0;and (¢) f(x) = ax — bx>,
b > 0 and a any value. Make histograms of x in the stationary state, for several
values of the parameters.



Chapter 4
Fokker-Planck Equation I

4.1 Equation in One Variable

We saw in Sect. 3.5 that the Langevin equation in one variable

dx
= =T+, (4.1)
t
where the noise ¢ (¢) has the properties
(@) =0, 4.2)
(L)) =rse—1), (4.3)
is associated to the Fokker-Planck equation in one variable, or Smoluchowski
equation,
2

ad ad rJ
EP(X’I) = —g[f(x)P(x,t)] + 3WP(X,I), 4.4)

which gives the time evolution of the probability density P(x, ). This association
means that the probability distribution of the stochastic variable x obtained by
means of the Langevin equation is identified with the solution of the Fokker-Planck
equation.

Example 4.1 The Langevin equation above can be interpreted as the equation of
motion of a particle of negligible mass that moves in a highly dissipative medium
and subject to an external force. Indeed, the equation of motion of such a particle is

d*x dx
m—s- = —a— + F(x) + F,(t), 4.5
3= F@) R (45)
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where the first term in the right-hand side is the friction force, proportional to the
velocity; the second is an external force and the third is a random force. When the
mass is very small and the friction is very large, we can neglect the term at left and
write

dx
aZ = F(x) + F,(1). (4.6)
Dividing both sides of these equation by the friction coefficient «, we get Eq. (4.1).
Thus, the quantity f(x) in Eq.(4.1) is interpreted as the ratio between the external
force and the friction coefficient, and the noise {(¢) is interpreted as the ration
between the random force and friction coefficient.

Example 4.2 When f(x) = c, a constant, the Langevin equation (4.1) describes the
diffusion of particles subject to a constant force. The Langevin and Fokker-Planck
equations are

dx
= = 4.7
ik (), 4.7
aP oP I 9°P
S T2 @9

respectively. The characteristic function G(k, t) obeys the equation

G I
— = ikeG — —k*G 4.
o itkc 2 s 4.9)

which is obtained from the Fokker-Planck equation by integration by parts and
assuming that P and dP /dx vanish when |x| — oco. The solution of this equation is

G(k,t) = G(k,0)ee—Tk/2 (4.10)

Using the initial condition that the particle is in x = xj at time ¢t = 0, P(x,0) =
8(x — xo) and G(k,0) = e The solution becomes

Gk, 1) = eik(x0+ct)—1"tk2/2. .11

We see that G(k, t) is the characteristic function of a Gaussian distribution of mean
Xo + ct and variance I't, so that

P(x,t) = e~ (xmxo—en?/2rt (4.12)

V2nl't
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X

Fig. 4.1 Probability distribution P(x,t) versus x for various instants of times, for the Brownian
motion, (a) symmetric (¢ = 0) and (b) asymmetric with drift to the right (¢ > 0). Initially, the
particle isat x = 0

as seen in Fig. 4.1.

Example 4.3 When f(x) = —vx, the Langevin equation describes the diffusion of
particles subject to an elastic force. In this case, the Langevin and Fokker-Planck
equations are

Z—): = —vx 4+ {(t), (4.13)

9P d(xP) I PP

a dx 2 2

(4.14)

respectively. This last equation is also known as Smoluchowski equation. The
characteristic function G (k, t) obeys the equation

G oG I ,
- = _Vka_k _ ?k G, (4.15)

which is obtained from the Fokker-Planck equation by means of integration by parts
and assuming that P and dP/dx vanish when x — Fo00. Supposing a solution of
the type

G(k, t) — eia(l‘)k—b(t)kz/Z’ (416)
we see that a(¢) and b(¢) should fulfill the equations

da db
i —va, i —2vb + T, 4.17)
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which must be solved for the initial condition such that the particle is in x = Xxg
at time ¢+ = 0. This initial condition is equivalent to P(x,0) = §(x — x¢) so that
G(k,0) = e, This characteristic function tell us that at time t = 0, a = x, and
b = 0. The solution of Eqgs. (4.17) with this initial condition is

a(t) = xpe ", b(t) = £(1 —e™ ), (4.18)
2v

The function G(k, t) is a characteristic function of a Gaussian probability distribu-
tion of mean a(¢) and variance b(t) so that

Pr.1) = —— a0 /200, (4.19)

V27b (1)

It is worth noticing that, unlike what happens in the previous example, in
this, P(x,t) reaches a stationary distribution when ¢t — oo because the variance
b(t) — I'/2v in this limit. The stationary distribution, which we denote by P(x),

is given by
P(x) = | —= &7, (4.20)
nl’

4.2 Stationary Solution

Next, let us see how one can find the stationary solution of the Fokker-Planck
equation (4.4), in the general case. To this end, we write the equation in the form

0 0
EP(X,I) ——g](x,l), (421)

where J(x, t) is given by

J(x,t) = f(x)P(x,t) — Q%P(x,t). (4.22)

In the form (4.21) the Fokker-Planck equation becomes a continuity equation, and
J(x, 1) is the probability current. We suppose that the variable x takes values in the
interval [a, b].

If we integrate both sides of Eq. (4.21) in x, we get

b
dit/ P(x,t)dx = J(a,t) — J(b,1). (4.23)
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Since the probability density P (x,¢) must be normalized at any time, that is,

b
/ P(x,t)dx =1, (4.24)

then the left-hand side of Eq. (4.23) should vanish, from which we may conclude
that the boundary conditions are such that J(a,t) = J(b,t). Thus, the conservation
of total probability (4.24) is not only consequence of the Fokker-Planck equation
but also of the boundary conditions. We will treat in this section only the case in
which the probability current vanishes at the ends, x = a and x = b, at any instant
t, thatis, J(a,t) = J(b,t) = 0. The boundary condition such that the probability
current vanishes is called reflecting.

There are other boundary conditions for the Fokker-Planck equation, which we
choose according to the problem we wish to solve. The periodic boundary conditions
are such that P(a,t) = P(b,t) and J(a,t) = J(b,t) so that in this case the total
probability is also conserved. However, unlike the reflecting boundary condition,
the probability current at the boundaries is, in general, nonzero. The boundary
condition, called absorbing, is such that only P vanishes at the boundary. The
derivative dP /dx as well as the probability current are nonzero. If the currents are
distinct at the ends, the condition (4.24) is not fulfilled.

In the stationary state, the probability density is independent of ¢ so that, taking
into account Eq.(4.22), the probability current is also independent of ¢. Since
the left-hand side of Eq.(4.21) vanishes, hence the probability current is also
independent of x. Therefore, it must have the same value for any x. But since it
vanishes at the ends of the interval [a, b], it must be zero in the whole interval,
that is,

J(x) =0, (4.25)

which is to be understood as the microscopic reversibility condition. Therefore, the
stationary distribution P (x) obeys the equation

f(x)P(x) — EiP(x) =0, (4.26)
2 dx
or yet
% In P(x) = %f(x). 4.27)

Denoting by V(x) the potential corresponding to the force f(x), that is,

fx) = _c;ix V(x), (4.28)
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then
2
In P(x) = T V(x) + const, (4.29)

from which we get
P(x) = Ae 20/, (4.30)

where A is a normalization constant.

Example 4.4 1f in Example 4.1 we denote by U(x) the potential energy associated
to F(x), we see that U(x) = al/(x). According to statistical mechanics, the
equilibrium distribution is

1
P(x) = Z e U ket (4.31)

where kp is the Boltzmann constant, 7' is the absolute temperature and Z is a
normalization constant. Comparing with (4.30), this expression gives the following
relation between the intensity of the noise I" and the temperature, I = 2kpr/«.

4.3 Evolution Operator

We saw in Sect.4.2 how to obtain the stationary solution of the Fokker-Planck
equation in one variable. Here we show that the solution P(x,t) approaches the
stationary solution P(x) when ¢t — oo. We also study the behavior of P(x,¢) for
large times.
The Fokker-Planck equation in one variable
9 P 9 P re P 4.32
5 Pt == [f(OP(x.O] + 555 Plx.1). (4.32)

where f(x) is a real function, can be written in the form
d
gP(x,t) =W P(x,t), (4.33)

where 7 is the evolution operator, that acts on functions ¢ (x), defined by

2

P9() =~ S + 5

5530, (4.34)
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The stationary probability distribution P (x) fulfills the equation
W P(x)=0. (4.35)
The class of functions over which the operator % acts comprises the functions

¢ (x) such that — f(x)¢(x) + (I'/2)¢'(x) has the same value at the boundaries
x = a and x = b. That is, such that

~ @@ + 54'@) =~ fOIB) + 54 B). 436)

For these functions, the following property is valid

b
/ W (x)dx = 0. 4.37)

This is a fundamental property because from it we conclude that the probability
distribution P (x,t), which fulfills the Fokker-Planck equation (4.33), is normalized
at any time ¢ > 0, once it is normalized at ¢t = 0. To perceive this, it suffices to
integrate both sides of (4.33) to find

d b
< / P(x.t)dx = 0. (4.38)

The introduction of the evolution operator % allows us to write the solution of
the Fokker-Planck equation in the form

P(x,t) = e P(x,0), (4.39)

where e'” is the operator defined by
2 3
e’W=1+tW+5W2+§W3+... (4.40)

Indeed, deriving both sides of Eq.(4.39) with respect to time and using the
definition (4.40) we see that (4.33) is fulfilled. Suppose next that 7 has a discrete
spectrum, that is, assume that

Wpe(x) = Agpe(x), (4.41)

for = 0,1,2,..., where ¢;(x) are the eigenfunctions and A, are the eigenvalues
of #, and also that P(x, 0) has the expansion

P(x,0) = > argi(x). (4.42)
=0
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Then, Eq. (4.39) gives

P(x,t) = Zagemfdng(x). (4.43)

=0

The eigenfunctions must meet the boundary conditions given by Eq. (4.36) and
fulfill the following equation

b
A, / $e(x)dx = 0, (4.44)

which is obtained by using the property (4.37) in Eq. (4.41).

It is easy to see that one of the eigenfunctions of " must be P (x), the stationary
probability distribution. Indeed, examining Eq.(4.35), we see that P(x) is an
eigenfunction with a zero eigenvalue, which we set to be ¢y, that is, ¢o(x) = P(x)
so that A9 = 0. Thus, we may write

P(x.1) = P(x)+ Y _are™¢i(x), (4.45)
(=1

where we have taken into account that ap = 1, which can be shown by integrating
both sides of Eq. (4.42) and using the result (4.44).

We will see later, in Sect. 4.5, that the other eigenvalues are strictly negative
so that all terms in the summation vanish when ¢ — oo. Therefore, in this limit
P(x,t) — P(x). The behavior of P(x,) for large times is thus exponential and
characterized by the second dominant eigenvalue Ay, that is,

P(x,1) = P(x) 4+ ay¢ (x)e "Ml (4.46)

as long as a; # 0, otherwise it suffices to consider the next term whose coefficient
ay is nonzero. The quantity T = 1/|A;] is then the relaxation time to the stationary
solution. In many situations, such as that of Example 4.5 below, the probability
P(x,t) vanishes when ¢ — oo, although the integral is always finite, and therefore
the stationary distribution, in this sense, does not exist. It may also happen that
T — 00, as can be seen in the Example 4.5 below, case in which the relaxation is no
longer exponential and becomes algebraic.

Example 4.5 Consider a particle confined in the interval —L /2 < x < L/2, in the
absence of external forces. In this case, f(x) = 0 and therefore we should solve the
eigenvalue equation

I d?
3@915()5) = A¢(x), (4.47)
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with the boundary conditions ¢'(—L/2) = ¢’(L/2) = 0. The solutions that obey
these conditions are

L~ cos(kx), £=0,2,4,...

de(x) = L1 sin(kx), {=1,3,5,...

r
Ay = —Ekz, (4.48)

where k = £ /L and we choose the normalization such that ¢o(x) = P(x). If the
particle is at the origin at t = 0, that is, if P(x,0) = §(x), then the solution of the
Fokker-Planck equation is

o0
e TR cos (k). (4.49)
{=2(even)

=~ o

1
P()C,Z):Z—‘r

As long as L is finite the relaxation time is T = 1/|A,| = (2/I')(L/2m)?. This
time diverges when L — oo. In this case, however,

1 o0 ) 1 )
P 1) = — —tI'k=/2 kx dk = —x=/2I't 4.50
(=) ﬂ/o ¢ o 27rFte ( )

and therefore the decay is algebraic, P(x,t) ~ t~'/2.

4.4 Adjoint Equation
To the Fokker-Planck in one variable,
0
gP(x,t) =W P(x,t), (4.51)
we associate the adjoint equation
9 i
gQ(x,t) =W"0(x,1), (4.52)

where # T is the adjoint operator #, defined by

b b
/ 6" (W p)dx = / AV ) . 4.53)

a

for functions ¢ (x) that obey the boundary conditions (4.36) and for function y(x)
that obey the boundary conditions

x' (@) = Y (b). (4.54)
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In correspondence with the theory of matrices, Eq. (4.53) tell us that the adjoint
operator is analogous to the adjoint matrix, which is a conjugate transpose matrix.
From the definitions of % and 7T we conclude that

; r
V) = f0-- X(x)+ 5 3 X (4.55)

a result that is obtained by replacing (4.34) into (4.53), integrating by parts the
right hand side of (4.53) and using the boundary conditions (4.36) for ¢(x) and the
boundary conditions (4.54) for y(x). Comparing (4.34) with (4.55), we see that in
general # # W7, thatis, # is not Hermitian (self-adjoint), except when f = 0.
Explicitly, the adjoint Fokker-Planck equation in one variable is given by

206 = [0 + 5 2 0w, (4.56)

2 8 2
Denoting by y¢(x) the eigenfunctions of #T, we may write
P pe = Aexe (4.57)

since the operator 77, given by (4.55), must have the same eigenvalues of %, given
by (4.34), what may be understood by noting first that % is a real operator, that is, it
has the following property, (# ¢)* = # ¢*. Second, using this property in (4.53),
we find

b b
/ ¢ y)dx = / x(H p)dx. (4.58)

a

In correspondence with the theory of matrices, this equation tell us that the operator
# is analogous to a transpose matrix, which has the same eigenvalues of the
original matrix.

We have seen that ¢o(x) = P(x) is the eigenfunction with eigenvalue Ay = 0.
To this eigenfunction we associate the adjoint eigenfunction yo = 1. That yo = 1
is an eigenfunction with eigenvalue zero can be checked replacing it into Eq. (4.55),
giving # T yo = 0.

Example 4.6 For f(x) = —vx, the eigenfunctions are related to the Hermite
polynomials H(x), which fulfills the relation

H/(x) — 2xH)(x) = —2L Hy(x). (4.59)

Comparing with Eq. (4.57), we may conclude that y,(x) = a¢H¢(x/v/I") and that
A( = —{v.
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We assume that the sets {¢¢} and {y,} of the eigenfunctions of the operators #
and 7T comprise a bi-orthonormal set, having the following properties,

b
/ e (X)pe(x)dx = 814, (4.60)
> g xe(x) = 8(x — x). 4.61)
J4

We have seen in Sect.4.3 that the expansion of the probability distribution
P(x,t) in the eigenfunctions ¢ (x) is given by (4.43), where the constants ay are the
coefficients of the expansion (4.42) of the initial distribution P(x,0). Multiplying
both sides of (4.42) by y, and integrating in x, we find the following formula for
the coefficients ag,

b
ap :/ xe(x)P(x,0)dx, (4.62)

where we used the orthogonality relation (4.60). Setting this result into (4.42), we
reach the following expression for the probability distribution at any time 7,

b
P(x,t) = / K(x,t,x',0)P(x’,0)d¥, (4.63)

where

K(x,t,x',0) = Zem“qbg(x))(g(x/). (4.64)
¢

If P(x,0) = §(x — xp), then P(x,t) reduces to the expression

P(x.1) = K(x,1,x0.0) = > "y (x) xe (o). (4.65)
12

4.5 Hermitian Operator

We have seen in the previous section that, in general, % is not Hermitian. However,
when microscopic reversibility, expressed by relation (4.26), occurs, it is possible to
perform a transformation on % to obtain a Hermitian operator, which we denote by
J , that holds the same eigenvalues of 7.

We define the operator JZ by

HP(x) = [Yo ()] A [ () ()], (4.66)
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where ¥o(x) = /P(x) and P(x) is the stationary probability, that fulfills the
relation (4.26). The eigenfunctions of %" are Y (x) = [Yo(x)] ™ ¢¢(x) because

H e =Yg W = Y5 Avpe = Ay, (4.67)
from which we conclude that the eigenvalues are Ay, the same ones of %. To obtain

an explicit form of J#°, we apply the operator on any function ¥ (x) and use the
definition of 7, that is,

r
HY =¥ W Go¥) = Vo {——(fvfm/f)+ > o - (4.68)
Afterwards we use the equality
ad 10
a In W() Ea— In P(X) —f(x), (469)
to obtain the desired form
__1of _‘”
H Y = 49y + = f}l/f T (4.70)

Equation (4.70) reveals that the operator J#" can be formally written as propor-
tional to the Hamiltonian operator .77, given by

h 9
HY = 5 1'/2/ + V)Y (4.71)

that describes the motion of a particle of mass m subject to a potential V(x).
Choosing the proportionality constant in such a way that 5 = —m I JZ, we see
that the constant I” must be proportional to the Planck constant, I = #/m, and
that, moreover, the potential is given by

d
V() = TS f@) + /0P (472)
X
Example 4.7 For f(x) = —vx, we see that
H = —(v——=v2x%) + > 4.73)

and V(x) = m(—I"v +v2x?)/2. On the other hand, quantum mechanics tell us that

K &

1 1
- %WW + Emaﬂxzw = ho(l + E)W’ (4.74)
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for £ = 0,1,2,..., where y, are the eigenfunctions of the harmonic oscillator.
Performing the replacements #2/m = I', and @ = v and therefore mw?/h = v2/T",
we get

r 9 1 p2
S gV tvsve- ﬁxzw = —vlyy, (4.75)

from which we conclude that
Ji/w( = —V@?,W. (4.76)

Therefore A; = —v{, and the eigenvalues are negative, except Ag = 0.

When microscopic reversibility, given by relation (4.26), occurs, there is yet a
simple relationship between the eigenfunctions of % and of #T, given by ¢, (x) =
P(x) x¢(x). Indeed, replacing this expression in # ¢y = Ay, using the definition
of W, given by (4.34), and the equality # P(x) = 0, we get

b2 OP Oy,

r
—P P r—-2-=TAP 4.77
f et TPt oo ePye. (4.77)

Using the relation (4.26), that is, 2 fP = I"'dP/dx, we obtain

0 r

Fogret 3k = Ao (4.78)

which is the eigenvalue equation for the adjoint operator %/

It is worthwhile to notice that the expression (4.70) tell us that ¢ is in fact
Hermitian. The Hermitian operators hold the following properties: the eigenvalues
are real, the eigenfunctions are orthogonal and can form a complete set, as is the
case of the second order differential operator defined by (4.70). The last property
justify the expansion made in (4.42). Using the correspondence with the theory
of stochastic matrices, we may state in addition that the dominant eigenvector,
which corresponds to the largest eigenvalue, is strictly positive and nondegenerate.
Therefore, we may identify it with the stationary probability density P(x). The
corresponding eigenvalue being zero and nondegenerate, all the other eigenvalue
must be strictly negative.

Let us show, explicitly, that the eigenvalues are negative or zero. To this end it
suffices to show that

b
/ Y (x) Y (x)dx < 0, (4.79)

for any function ¥ (x). We start by writing Eq. (4.68) in the form

T, YN Ty,
%w—z(vf %0)— w(%(w)) (4.80)
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where we use Eq. (4.69) to get rid of f. Thus

b * _ F b W* 2 w / '
[ v =7 [ (i) ax @81)

and, performing an integration by parts, we find

/abl//*ﬁifl//dxz —gfab

where the integrated part vanishes by taking into account the boundary conditions,
that is, the condition J(a) = J(b) = 0.

2

(l)’ Yidx < 0, (4.82)
Yo

4.6 Absorbing Wall

In this section we analyze the movement of a particle that performs a Brownian
motion along the positive semi-axis x and is under the action of a constant force
f(x) = ¢, which can be positive, negative or zero. At x = 0 there is an absorbing
wall so that, when the particle reaches the point x = 0, it remains forever in this
point. The Fokker-Planck equation that describes the evolution of the probability
distribution P(x, ) of x at time ¢ is given by

opP P I 3*P
— =+ =, 4.83
o - “ox T2 a2 (4.83)
which can be written in the form
JoP aJ
—_— = ——, 4.84
ot ox ( )
where J(x, t) is the probability current, given by
I oP
J=cP— ——. 4.85
¢ 2 dx ( )

A time ¢t = 0, we are assuming that the particle is found at x = x¢ so that the initial
condition is P(x,0) = §(x — xo).

Since the wall is absorbing, the probability distribution at x = 0 must vanish
at any time, P(0,¢) = 0, which constitutes the boundary condition for solving the
Fokker-Planck equation. The absorption of the particle by the wall is described by a
nonzero probability current at x = 0, which means that the probability distribution
P(x,t) is nonconserving, that is, the integral

/oo P(x,t)dx = P(t) (4.86)
0
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is distinct from unit and is understood as the permanence probability of the particle
up to time . When performing this integral, we assume that the current vanishes
when x — oo. The integration of Eq. (4.84) in x leads us to the following relation
between Z(t) and the probability current at x = 0,

d
S0 = 0.0, (4.87)

The absorbing probability of the particle up to time ¢ is simply equal to 1 — Z(¢).
The absorbing probability of the particle between the time ¢ and ¢ 4+ At is therefore
—P(t+ A)+ ZP(t). Defining the quantity @(¢) such that @ (¢) At is this probability,
then @(t) = —d Z(t)/dt so that

®(1) = —J(0,1). (4.88)

In other terms, @ () is the absorption probability of the particle at time ¢ per unit
time.

Here we determine P(x,) through the calculation of the eigenfunctions of the
evolution operator % and by using the result (4.65). The eigenvalue equation is
given by

Wy = —c— + ——2 = Ay, (4.89)

and should be solved with the absorbing condition ¥(0) = 0. The eigenvalue
equation related to the adjoint operator is given by

dp I ¢
Wip=c—+—— =21¢, (4.90
¢ dx 2 dx? ¢ )
As can be seen, the evolution operator % is not Hermitian. The determination of
the eigenfunctions becomes easier if the evolution operator is transformed into a
Hermitian operator. In fact, this can be done by means of the transformation ¥ (x) =

@(x)eI" or of the transformation ¢ (x) = ¢@(x)e~*/!". Both transformations lead
us to the following eigenvalue equation
c? I ¢
- ——T =)o, 491
arf T T @90

which is to be solved with the absorbing boundary condition ¢(0) = 0. To this end
we assume solutions of the type

Pr(x) = \/22_n sin kx, (4.92)
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which substituted in the eigenvalue equation give us the eigenvalues

2 r
M= ———— —k? 4.93
k T3 (4.93)
The eigenfunctions ¢, are orthonormalized according to
o0
[ oo as = s -, (4.94)
0
and obey the relation
o0
| oontran = s - ). (495)
0

The eigenfunctions ¥ (x) of % and the eigenfunctions ¢ (x) of the adjoint
operator T are related to the eigenfunctions ¢y (x) through

Vi (x) = e (), ¢ (x) = e i (x). (4.96)

For the initial condition P(x,0) = §(x — xp), and according to (4.65),

o0
Perny = [ Mg (op (o @97)
0
Substituting the expression for the eigenvalues and eigenfunctions,

o0
P(x,t) = 2 pele=xo)/ I g=t? /21 / e TR 12 sin ke sin ko dk. (4.98)
T 0

Performing the integral, we reach the following expression for the probability
distribution

1
V2nl't

P(x,t) = ec(x—xo)/re—tcz/zr (e—(x—x0)2/21"t . e—(x+x0)2/21"t) ’ (4.99)

valid for x > 0.

From P(x, t) we obtain the probability current by means of the definition (4.85).
In particular, we obtain J(0,¢) and @(z) = —J(0, t), the probability of absorption
at time 7 per unit time,

X0 _ 2
D(t) = ————¢ (oFe?/2l't, (4.100)
® t2nl't
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Fig. 4.2 Brownian motion with absorbing wall. (a) Probability of permanence &2 up to time ¢ as a
function of ¢, for several values of . When t — 00, & behaves according to (4.102) and vanishes
forc < 0. (b) Plotof Y = Z2¢'/2 versus X = ¢ t'/2 for small values of |c| and large values of 7.
The curves collapse into a universal function ¥ = #(X)

from which, and using the result @(¢) = —d Z(¢)/dt, we obtain the probability of
permanence up to time ¢,

P)=1- e—(xo-l—ct’)z/ZFt'dt/‘ (4.101)

| 7
o t'A2nl't
In Fig. 4.2 we show the probability of permanence Z(¢) as a function of ¢ for sev-
eral values of time 7. The total probability of permanence &7* = lim, oo Z(t) is

1 —e20/T s
P* = ’ ’ 4.102
{ 0, ¢ =<0, ( )

result obtained by the use of the equality
© 2
/ g2 (1Ha8 2 g — o e=@tlaD, (4.103)
0

We see therefore that a particle that performs a Brownian motion with negative or
zero bias will be absorbed by the wall no matter what the initial position is. In other
terms, whatever may be the initial position the particle will reach the point x = 0
and will be absorbed. On the other hand, if the bias is positive, the probability of the
particle being absorbed is smaller that one and therefore there is a probability that
the particle will never reach the wall.

When ¢ = 0, we perform a transformation of integration variable to find

&o
P(t) = %/O e FdE, (4.104)
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where & = xo/+/2I"t. For large times, the probability of permanence up to time
tis
2)C()

\/ZJTFI’

which decays algebraically to its zero asymptotic value.
It is worthwhile to notice that around ¢ = 0 and for large times the probability
of permanence & holds the following scaling form

P(1) = (4.105)

P =172 F(ct"?). (4.106)

This means to say that the curves of & versus ¢ collapse into one curve when
plotted in a plane in which the horizontal axis is X = c¢¢'/? and the vertical axis
is Y = 22t'/2, as shown in Fig.4.2. The curve Y = .Z(X) is called universal
function. At X = 0, #(0) = 2x¢/~/27I". When X — ocoandc¢ > 0, #(X) —> X
so that & = ¢ when t — oo. In the opposite limit, X — —o0, .#(X) — 0, so that
& — Owhent - ooandc < 0.

4.7 Reflecting Wall

Here we study again the movement of a particle that performs a Brownian motion
along the positive semi-axis x and is under the action of a constant force f(x) = c,
that may be positive, negative or zero. Now there is a reflecting wall at x = 0. The
Fokker-Planck equation that describes the evolution of the probability distribution
P(x,t) of x at time ¢ is given by (4.83) and must be solved with the boundary
condition such that the probability current J(x, t), given by (4.85), vanish at x = 0,
J(0,¢) = 0. This condition and assuming that the current vanishes when x — oo
lead us to the conservation of probability P(x,¢) at any time.

In the stationary state we assume that the probability current vanishes at all
points, what leads us to the following equation for the stationary distribution P, (x)

I op. =0 (4.107)
2 ax ’

cP,

from which we determined the stationary distribution

r .
P.(x) = mem/f, (4.108)

valid for ¢ < 0. When ¢ > 0 there is no nonzero solution for Eq. (4.107).
Here again we determine P (x, ) through the calculation of the eigenfunctions
Y and ¢ of the evolution operator % and its adjoint operator and by the use of the
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result (4.65). The eigenvalue equations are given by (4.89) and (4.90). Using the
transformation ¥ (x) = @(x)e /" or the transformation ¢(x) = @(x)e " we
reach the eigenvalue equation

>y
< S = A (4.109)

2r 0x2 ’
which must be solved with the reflecting boundary condition, that is, in such a way

that co — (I"/2)d¢/0dx vanishes at x = 0.
Assuming solutions of the form

@(x) = Ae™ + Be™*, (4.110)
we find
c? r
M= ——= — —k? 4.111
k T3 ( )

The reflecting boundary condition leads to the following relation between A and B
(c —ik)A = —(c + ik)B. (4.112)

There is only one constant to be determined, what is done by the normalization of
@, leading to the result

1
or(x) = ———=(c sinkx 4+ 'k cos kx), 4.113)
7| Akl

valid for k # 0. When ¢ < 0, in addition to these eigenfunctions, there is an
eigenfunction corresponding to the stationary state, ¢o(x) = a'/2e“/"" related to
zero eigenvalue.

The eigenfunctions are orthonormalized according to (4.94) and obey the
relation (4.95). The eigenfunctions ¥ (x) of # and the eigenfunctions ¢ (x) of
the adjoint operator #T are related to the eigenfunctions ¢y (x) through (4.96). For
the initial condition P(x,0) = §(x), particle placed on x = 0 at time t = 0, and
according to (4.65),

P(x,t) = P.(x) + / ” e Y (x) ¢y (0)dk, (4.114)
0

where P, (x) is given by (4.108) when ¢ < 0 and vanishes when ¢ > 0. Substituting
the expression for the eigenvalues,

. 00 pthk dk
P(x,t) = P.(x) + e”‘”/o m(cksinkx+ szcoskx);, (4.115)
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1.5 0 0.5 1 1.5 2
X X

Fig. 4.3 Brownian motion with a reflecting wall at x = 0 for: (a) bias to the left, ¢ < 0, and
(b) bias to the right, ¢ > 0. Probability distribution P (x, ) versus x for several instants of time.
Initially, the particle is found at x = 0. When ¢ < 0, P(x, t) approaches the stationary distribution
P,(x) given by (4.85). When ¢ > 0, P(x,t) develops a bump that moves to the right

Using its definition (4.85), the probability current can be determined from
P(x,1),

o0
J(x,t):e”/f/ k sin kx dk. (4.116)
0

Substituting the eigenvalue Ay, the integral can be carried out with the result

X 1 2
J(x,1) = = ——==e TN/, 4.117
1) =7 5= (4.117)

It is clear that it vanishes at x = 0 and in the limit x — oo.
Another representation of P(x,?) can be obtained by replacing the result (4.117)
into (4.85) and integrating (4.85). We get

zeZCx/F
FIVZJTFI X

where we have taken into account that P(x,?) must vanish in the limit t — oo.
Figure 4.3 shows the probability distribution P(x,?) as a function of x for several
values of . When ¢ < 0, P(x,t) approaches its stationary value, P,(x), given
by (4.108). When ¢ > 0, P(x,t) develops a bump which moves to the right with
an increasing width, as can be seen in Fig. 4.3. For large times the bump acquires a
constant velocity equal to ¢ and a width equal to /T"¢. Therefore, we are faced with
two very distinct regimes. When ¢ < 0, the particle is bound to the wall, moving
next to it. When ¢ > 0, it detaches from the wall, moving away from it permanently.
We notice, in addition, that in the regime where the particle is bound, the eigenvalue
spectrum is composed by an single eigenvalue, equal to zero and corresponding

P(x,t) = x e~ Fe?/2Tt gyt (4.118)
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to the stationary state, and a continuous band. The difference between the single
eigenvalue and the top of the continuous band equals ¢?/2I" and vanishes when
¢ = 0, that is, at the threshold of the regime in which the particle detaches from the
wall.

When ¢ = 0, we may integrate (4.118) to get

2 2
P(x,t) = ————e ¥ /21, 4.119
(x.1) 5T, ( )

In this case, the bump does not move, but its width increases with time.
The mean particle velocity v = (d/df)(x) is determined from

v:/ xa—de. (4.120)
0 ot

Using the Fokker-Planck equation (4.83) and integrating by parts
r
v(it) =c+ 5P(0,t). (4.121)
We see therefore that the mean velocity is related to the probability density at x = 0.
When t — oo, P(0,t) — P,(0) = 2|c|/I" for ¢ < 0 and the terminal velocity

v* = v(o0) vanishes. For ¢ > 0, P(0,7) — 0 and v* = c.
Using (4.84), Eq. (4.120) is written as

V= —/ X—dx = / Jdx. (4.122)
0 dax 0

Substituting J, given by (4.117), in this expression, we reach the result

V(t) —(e=en?/ar't gy (4.123)

1 o0
= — xe
t/2xl't /0

Figure 4.4 shows the velocity v as a function of ¢ for several instants of time 7.

2
1.5 - —
1% 1+ B
Fig. 4.4 Mean velocity v of a
particle that performs a
- . . 05 - i
Brownian motion with
reflecting wall as a function
of ¢, for several values of 7. 0 |

When t — 00, v = ¢ for -1 0 1 2
¢>0andv=0forc <0 Cc
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Notice that, when ¢ = 0 the integral in (4.123) can be done, with the result

r
v(t) = , (4.124)
V2n It
and the velocity decays algebraically with time. Integrating in time we see that
2r
(x) = —1"2, (4.125)
2"

which characterizes the diffusive motion.

4.8 Transition Probability

We have seen in Sect. 4.3 that the Fokker-Planck equation can be written in the form
0
gP(x,t) =W P(x,t), (4.126)

where # is the evolution operator, that acts on functions ¢(x), and is defined
by (4.34). If the distribution P(x,?’) is known at time ¢/, then the distribution
P(x,t) at time ¢ > ¢’ can be obtained by

P(x,t) =7 P(x,1), (4.127)

which is the solution of the Fokekr-Planck equation in the form (4.126). Introducing
a Dirac delta function, this solution can be written in the form

P(x,t) = / T §(x — XY P(x',¢")d¥ . (4.128)
Defining the transition probability K(x,¢; x’,¢’) by
K, t;x, 1) = 7 §(x — X'), (4.129)

the solution of the Fokker-Planck equation, given by (4.128), can be written in the
integral form

P(x,t) = /K(x,t;x’,t’)P(x’,t’)dx’. (4.130)

The transition probability K(x,7;x’,t’) must be understood as a conditional
probability density. More precisely, K (x,t; x",t")Ax is the conditional probability
of finding the particle that performs the random motion in the interval between x
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and x + Ax at time 7, given that it was in position x’ at time ¢’. Integrating both
sides of Eq. (4.129) in x, we conclude that the transition probability is normalized,

/K(x,t;x’,t’)dxz 1, (4.131)

at any time, as we should expect for a conditional probability density. From (4.129)
we conclude that

lim K(x,t;x",¢t") = 8§(x — x). (4.132)

t—t’

Deriving both sides of Eq. (4.129) with respect to time ¢, we see that the transition
probability also fulfills the Fokker-Planck equation

0
EK(x,t;x/,t/) =WK(x,t;x,t). (4.133)

In other terms, the transition probability is the solution of the Fokker-Planck
equation for ¢ > ¢’ complied with the condition given by (4.132).

It is worth mentioning that the transition probability K(x,¢;x’,¢") also fulfills
the adjoint Fokker-Planck equation, but with respect to the second variable x’. To
show this result it suffices to rewrite Eq. (4.129) in the equivalent form

K, t;x',t) = e("‘_'/)ywé’(x —x), (4.134)
where here #T acts on functions of x’. This result is a consequence of the equality
Wi(x —x') = #E(x — X)), (4.135)

where here we should understand that #T acts on functions of x’ and # on
functions of x. This equality follows directly from the definition of adjoint operator,
given by Eq. (4.53). Deriving both sides of Eq. (4.134) with respect to time, we see
that K(x, ¢; x’, ¢') fulfills the equation

0
gK(x,t;x’,t’) =WTK(x,t;:x', 1), (4.136)
which is the adjoint Fokker-Planck equation. We remark that in this equation the
adjoint operator # T acts only on functions of the variable x’.

Using the following representation of the delta function,

k.

4.137
T ( )

8(x _x/) — /e—ik(x—x
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in the definition of the transition probability, Eq. (4.129), we see that it has the
following representation

o oy o dk
K(x,t:x',t) = /e‘l"‘ et We—l’“z—, (4.138)
4

We should notice that % acts on functions of variable x. If the representation of the
delta function (4.137) is used in (4.134), we see that the transition probability can
also be written in the form

‘ not oo dk
K(x,t;x',t") = /e—l"xe“—”’”el’“ 7 (4.139)
T

bearing in mind that in this equation the adjoint operator acts on functions of the
variable x’.

Another representation of the transition probability is obtained by using the
representation of the delta function in terms of the eigenfunctions of %, given

by (4.61). Introducing this representation in the definition of the transition prob-
ability, Eq. (4.129), we obtain the representation

K(x.:x' 1) =Y e gy (x) o (x). (4.140)
l

Notice in addition that the definition (4.129) of the transition probability shows
us that it depends on ¢ and ¢’ only through the difference ¢ — ¢’. From its definition
we see that

K(x,t;x',t) = K(x,t —t';x',0), (4.141)
so that K(x, ¢; x’, ') can be obtained from K(x, ¢; x’,0) by replacing ¢ by t —t'.
For the initial condition P (x,0) = §(x — x’), the probability distribution P (x, )

is simply

P(x.1) = K(x,1:x,0) = Y " epy(x) o (x). (4.142)
l

Example 4.8 For a free particle that performs a Brownian motion, the operator %
is given by

r o
=2 (*143)
so that
—ikx I' o i
W e = ——k“e ™™, (4.144)
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Inserting into (4.138), we find

o dk
K(x,t;x',0) = /e”‘“ —X>e—’”€2/22—. (4.145)
T

Just integrate in k to get

K(x.1:x',0) = X/l (4.146)

1
N2t Im

Example 4.9 Consider a particle that performs a Brownian motion and is subject to
an elastic force f(x) = —vx. The transition probability fulfills the Fokker-Planck
equation

r ¢
2 0x2

3K = vi(xK) +
ox

K, 4.147
5 ( )

and must be solved with the initial condition K = §(x — x’). Using the solution
presented in the Example 4.3, we get

K(x,t;x',0) = L e CWP/2b() (4.148)

V27mh(t)

where ¢ and b depend on ¢ according to

c(t)y=e™"", b(t) = %(1 —e ). (4.149)

4.9 Chapman-Kolmogorov Equation
Using the identity e~ = (=) o("=)7" iy Eq. (4.129) we find
K@, t;x', 1) = eV K(x, 1" X, 1), (4.150)

which is the solution of the Fokker-Planck equation. Next, we insert a Dirac delta
function §(x — x”), in a manner analogous to that made when deriving (4.130)
from (4.127), to reach the following relation

K(x,t;x',t) :/K(x,t;x”,t”)K(x”,t”;x’,t/)dx”, (4.151)

which is the Chapman-Kolmogorov equation for Markovian stochastic processes.
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The iterative application of relation (4.151) leads us to the multiple integral

K(xn,tn; X0, t0) = /K(XN,IN;XN—l,lN—l)---K(Xz,lz;xl,ll)
XK(Xl,Zl;Xo,Zo)de_l ...dxdxy, (4.152)

validforfy <t <t <... <ty—; < ty.Inserting (4.146) into this equation results
in the Wiener integral.

The multiple integral (4.152), which relates the transition probability correspond-
ing to two instants of time 7y < fy with the transition probability calculated at
several intermediate instants of time #p < #; < f, < ... < fy can be used to
determine the transition probability itself. To perceive how this can be done, we
divide the interval 1y —# in N equal parts Az. In addition we setfp = O andty = ¢
so that t = NAt. Using (4.152), the transition probability K(x, ¢; x¢, 0) reads

K(XN,I;X(),O)=/K(XN,AZ;XN_l,O)...K(XQ,AZ;)C],O)
XK(X], At x0,0)dxy—1 ...dxdx;. (4.153)

Next, we take N to be a very large number so that Ar will be very small. Once the
transition probability K (x, At; x’,0) is known for small values of the interval At,
we can determine K(x, f; xo, 0) by performing the integral (4.153). This approach
requires thus the knowledge of the transition probability for small values of the time
interval, which can be obtained either from the Fokker-Planck equation, as we will
see below, or from the corresponding Langevin equation, as seen in Sect. 3.5.

To determine the transition probability for small values of At = ¢ — ¢/, we use
the result (4.139)

o o dk
K(x, At;x',0) = /e_’k”emwe’k" 7 (4.154)
4

where #T acts on functions of x’. For small values of Az,

Py WTeikx/ _ eik[x’+At_f(x’)]—AtFk2/2’ (4.155)
where we used (4.55) and therefore

K(x,At;x’,O) _ /eik[—x+x’+Atf(x’)]—At1"k2/2j_k' (4.156)
T

Performing this integral

1 At x —x’
K(x,At; x',0) = ——exp{——[—— — f(x’ 2, 4.157
( )= —mr Pl — SO (4.157)
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which inserted into (4.153) results in the Kac integral,

1

K(xy,t;x0,0) = Qr Al

/ eT AN XX gy dxodxy,  (4.158)

where A is given by

1= [ e (A ()]
(4.159)

where we use the notation f, = f(x,).

Fourier space The Chapman-Kolmogorov equation can be written in the alterna-
tive form in the Fourier space. To this end we define the Fourier transform of the
transition probability

Glk,t:k', 1) = / e MK (x, 1 x, 1) dxdy . (4.160)

The inverse transformation is

—ik’x’ ﬁ d_k/

. 4.161
2w 2w ( )

K(x,t;x',t') = / e®Gk,t: k' e
Using this relation in (4.151), we obtain the Chapman-Kolmogorov equation in the

Fourier space,

k//
Gk, t;k',t) = /G(k,t;k”,t”)G(k”,t”;k’,t’)‘;—. (4.162)
T

The iterative application of relation (4.162) leads us to the multiple integral

Gllew t: ko fo) = /G(kN,zN;kN_l,zN_l)...G(kz,tz;kl,m

dkn—1 dks dk,

Gk, t1: ko, t e — , 4.163
X(llOO)Zn Py ( )
valid forty <t; <t <... <tny—1 < ty, from which we get the result
Gl tka.0) = [ Glk Atiky-1.0)....Gllks, Atk 0)
dky_— dk, dk
xG(ky, At: ko, 0)—2—L 2271 (4.164)

2 2w 2@
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To determine the Fourier transform of the transition probability for small values
of At =t —t’, we use the result (4.139) or (4.154) to write

Gk, At:k',0) = / X QA ik gy (4.165)

where # acts on functions of x’. For small values of Az, we use the result (4.155)
to get

Gk, At: k', 0) = e~ 41Tk /2 / Y KX AN g (4.166)

Once integrated in x’, the result is inserted in (4.164).

Harmonic oscillator We apply the above result to determine the transition proba-

bility corresponding to the harmonic oscillator, for which f(x) = —vx. Although
the result has already been presented before, as in the Example 4.9, here we will do
a derivation of that result. For f(x) = —vx,

Gk, At:K',0) = e=4TK/2 / 'K g = 2 (k' — ak)e ATKN2,
(4.167)

where a = 1—vAt. Replacing this result into (4.164) and performing the integration
inki, ko, ... ky_1, we get

Gk, t:ko,0) = 278(ko — cky)e kv /2, (4.168)
where
1—a?N
b=AI(1+a*+a*.. . +a*V7V) = At]“ﬁ, (4.169)
c=aV. (4.170)

Bearing in mind that At = ¢/ N, then in the limit N — oo
r
bh=—(1—e2"), c=e", 4.171)
2v

what leads us to the following result

G(k,t:ko,0) = 278 (ko — ck)e %12, (4.172)



4.10 Escape from a Region 101

from which we obtain the transition probability, using (4.161),

, , dk
K(x,t:x0,0) = / elk“—«‘me—”kz/zz—. (4.173)
v

Finally, integrating in k,

K(x,1:%0,0) = e~(r=x00)?/2b (4.174)

b

which is the result presented before in Example 4.9.

4.10 Escape from a Region

In this section we will give an interpretation for the solution Q(y, t) of the adjoint
Fokker-Planck equation,

r 9

ad d

studied in Sect.4.4. To this end, we notice, as seen in Sect. 4.8, that the transition
probability K(x,t|y,0) fulfills the adjoint Fokker-Planck equation in the second
variable y. Therefore, the integral of K(x, |y, 0) in a certain interval of the variable
X, say, in the interval [x;, x;], also fulfills the same equation and can thus be
identified with Q(y, 1), that is,

0(y.1) = /xz K(x,t|y,0)dx, (4.176)

Bearing in mind the meaning of the transition probability K(x,?|y,0), we may
interpreted Q(y,t), given by (4.176), as the probability that, at time #, the particle
that performs the Brownian motion is in the interval [x;, x;], given that it was in the
position y at the initial time t = 0.

We examine here the problem of determining the time a particle takes to escape
from a given region [x;, x,] assuming that it is in position y at time ¢t = 0. It is clear
that y must belong to this interval otherwise the particle is already out of the region.
To solve this problem we should determine the probability Q(y, ¢) that the particle
is inside this region at time ¢, given that it was at position y at time ¢ = 0. This can
be done by solving the adjoint Fokker-Planck (4.175). However, we should know
which initial condition and which boundary condition we should use.

Since K(x,0|y,0) = §(x — y) then at time ¢ = 0, we should have Q(y,0) =1
for y inside the interval [x;, x;] and Q(y,0) = 0 for y outside it, a result that
follows directly from Eq.(4.176). This is therefore the initial condition. Now,
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suppose that, at initial time, the particle is at the boundary or outside the region
[x1,x2]. We wish that the particle remains outside this region forever, what may
be done by setting Q(x;,7) = Q(x2,¢) = 0 at any time ¢ > 0, which are the
desired boundary conditions. The boundary condition for which Q(y,¢) vanishes
corresponds to an absorbing boundary. When dQ(y, t)/dy vanishes at the boundary,
it is reflecting.

The function Q(y,?) can also be understood as the probability that the time
of permanence of the particle inside the region [xy, x,] is larger than z. Then, the
probability that the time of permanence in this region is between #; and #, is

n g
00n.1) — Q(r.12) = — / 2 00 @.177)

n

We see thus that —dQ /9t is the probability density corresponding to the time of
permanence in the region [x, x»]. We assume that Q(y,t) — 0 when 1 — oo, that
is, that the particle will leave the region for times large enough.

The mean time of permanence in the interval [x], x,] of a particle that was at the
position y at time ¢ = 0 is then

/°° aQ(y 1)
0

O®) = — =D = / Oy, t)dt, (4.178)

where we performed an integration by parts and use the property Q(y,o00) = 0.
Integrating both sides of Eq.(4.175) in ¢, from zero to infinity, and taking into
account that Q(y, 00) — Q(y,0) = —1, we reach the following equation for ®(y)

9 r
f(y)@@(y) t 590 (4.179)

valid in the interval x; < y < x,. At the boundaries of the interval we should have
O(x1) = O(x2) = 0.

Example 4.10 Suppose that a particle performs a Brownian motion along the x-axis
and that it was in position y at time t = 0. We wish to determine the mean time
O(y) it takes to escape from the region [x, x]. To this end, it suffices to solve the
equation

Fa
29

(4.180)

The solution is

2
Oy) = F(y—)ﬁ)(n—y)‘ (4.181)
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Fig. 4.5 (a) Double well potential V', one shallow and the other deep. The minima occur in x = a
and x = ¢ and the maximum in x = b. (b) Corresponding force, f = —dV/dx

It is clear that the maximum time of permanence will occur when, at the initial time,
the particle is in the middle point of the interval, that is, when y = (x; + x2)/2.

Escape from a metastable state Consider a particle subject to a force f(x)
associated with a bistable potential V' (x), as shown in Fig. 4.5, with two wells, one
shallow and the other deep. The shallow well represents a metastable while the deep
well represents a stable state. At the initial time the particle is at the bottom of the
shallow well. We wish to know the mean time that the particle takes to leave the
shallow well and reach the other well. To this end, we focus on the region [x}, x»],
shown in Fig.4.5. The point x; is such that V(x) — oo when x — x; so that the
physical region corresponds to x > x;. The point x, must be between b and c¢. To
be precise, we choose x; such that V(x,) = V(a). The mean time of permanence
©®(x) in this region, of a particle which initially was in the point x inside the region,
obeys the equation

f()O'(x) + %@”(x) =-1, (4.182)

where f(x) = —V’(x). One boundary condition is @(x;) = 0. Since the potential
diverges in x = xj, the particle will not escape through this end. At this end, which
corresponds to a reflecting boundary, we should impose the condition ®'(x;) = 0.

The solution of (4.182) is obtained by means of the auxiliary function @(x)
defined by

O'(x) = —P(x)e2VW/T, (4.183)

inserting this in the differential equation, we obtain the result

2
' (x) = Fe—”(x)/‘“, (4.184)
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from which it follows, by integration, that

2 (" ,
P(x) =+ / e VDT gy | (4.185)

X1

where we chose the integration constant as to fulfill the boundary condition in x =
x1. Therefore, replacing this result in

X2 ,
O(x) = / @ (x")e?V T gy (4.186)
X

where we choose the integration constant as to fulfill the boundary condition in
X = X,, We obtain

2 (Y v
Ox) = = / / AV CD=VEONT gy’ gy (4.187)
X X1

An approximation for ®@(a), the mean time the particle takes to leave the
metastable state starting at the bottom of the shallow well, can be done as follows.
First, we note that the absolute maximum of the function [V (x") — V(x”)] in the
integration region, which is defined by x; < x” < x’ and a < x’ < x,, occurs
when x’ = b and x” = a. Next, we observe that the relevant contribution for the
integral comes from a small region around the maximum of the function. Thus, we
expand this function around the maximum of the function up to quadratic terms.
The integral becomes equivalent to the product of two Gaussian integrals which can
thus be integrated leading to the result

O@a) = i PV e-v@yr, (4.188)

L YIVIB)[V(a)

which is the Arrhenius formula. Since I" is proportional to the temperature we
see that @ ~ e4E/k8T where AE is the difference between the maximum of the
potential energy and the metastable minimum of the potential energy.

4.11 Time Correlation

The values of a stochastic variable x calculated at a certain time ¢ may be correlated
with the values of the same variable at an earlier time ¢’. The time correlation of the
variable x between two instants of time ¢ and ¢’ such that ¢ > ¢’ is denoted by

(x()x (), (4.189)
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where ¢’ is called waiting time and ¢, observation time. The transition probability
K(x,t;x’,t"), which is the conditional probability density of the stochastic variable
x(t), allows us to define with precision the autocorrelation (4.189). It is defined by

(x(O)x(")) = //xK(x,t;x/,t/)x/P(x/,t’)dxdx’. (4.190)

Using the result (4.129), we can write the time correlation in the following form

(x()x (1) = / / xe™7 xP(x,t)dx. (4.191)

Notice that the average (x(¢)) of x at time ¢ is given by

(x()) = /xP(x,t)dx. (4.192)

If the waiting time is large enough, then P(x,t’) approaches the stationary
distribution P(x) so that the time correlation of x in the stationary regime depends
only on the difference t — ¢/, that is, {(x(¢)x(¢’)) = {x(¢ — ¢')x(0)) and is given by

{x(1)x(0)) = //xK(x,t;x’,O)x’P(x’)dxdx’. (4.193)

which can yet be written as
(x()x(0)) = / xe'” xP(x)dx. (4.194)
Moreover, the average of the variable x,

(x(0)) = /xP(x)dx, (4.195)

in this regime is independent of ¢. Notice that, in formulas (4.193) and (4.195),
the origin of times was moved inside the stationary regime. In other words, the
waiting time occurs inside the stationary regime and, as a consequence, also the
observation time. In the stationary regime, we see thus that the average of a state
function becomes independent of time and the time correlation of two functions
depends only on the difference between the waiting time and the observation time.

Example 4.11 We determine the correlation (x (¢)x(0)) in the stationary regime for
the situation of Example 4.5, where f(x) = —vx. Using the transition probability
presented in this example, we have

o~ (—x'a(0)2/2b(1) x/;e—@")z/ 200 gy .

W (x(0) = / NZZ0) b(t /27b(0)

(4.196)
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Integrating first in x,

(x()x(0)) = a(r) / (x’)Z;e_("/)z/Zb(o)dx/, (4.197)

v27b(0)

and then in x’,

(x(1)x(0)) = a(t)b(0) = %e_‘”. (4.198)

Exercises

1. Show that the solution (4.99) of the Fokker-Planck Eq.(4.83), related to the
Brownian motion of a particle subject to a constant force ¢ and absorbing wall in
x = 0, can be constructed as follows. We start by observing that the probability
distribution (4.12), which we denote by P(x,1; xo), solves the Fokker-Planck
Eq. (4.83) for any value of xy. A possible solution can then be constructed by
the linear combination P(x,t) = AP(x,t;x9) + BP(x,t, x;). Determine A,
B and x| so that P(x,t) vanishes in x = 0 and with the initial condition
P(x,0) = 8(x — xp).

2. Consider the Brownian motion of a free particle along the x-axis restricted to the
region x > 0, that is, there is a wall in x = 0. At the initial time # = 0 the
particle is in x = Xxp. Show that the probability distribution is given by

P(.x, [) — {e—(X—X())z/ZFt :i: e—(X+X())2/2Ff}’

1
V2rl't

where the + sign is valid for the reflecting wall and the — sign for the absorbing
wall. In both cases, use the method of the previous exercise attending the
boundary conditions. That is, J(0,¢) = O for the reflecting wall and P(0,7) =0
for the absorbing wall.

3. Determine the eigenfunctions and the eigenvalues of the evolution operator %
given by (4.34), and related to the force f(x) = ¢ > 0 for x <0, f(x) = 0 for
x =0,and f(x) = —c forx > 0.

4. Determine the stationary distribution corresponding to the Fokker-Planck equa-
tions associated to the Langevin equations of the Exercise 8 of Chap. 3. Compare
them with the histogram obtained in that exercise.

5. Use the Fokker-Planck Eq. (4.4) to derive Eq. (3.81), which gives the time evolu-
tion of the moments (x*). To this end, multiply both sides of the Fokker-Planck
equation by x* and integrate in x. Next, do an integration by parts, assuming that
the probability distribution an its derivatives vanish at the boundary of x.



Chapter 5
Fokker-Planck Equation I1

5.1 Equation in Several Variables

In the previous chapter we studied the Fokker-Planck equation in just one variable.
In this chapter we analyze the Fokker-Planck equation in several variables. We
consider a system described by N variables x;, x», x3, ..., xy. The equation of
motion for this system is given by the set of equations

dx,- _ r ]
o fi(x) + & (1), (5.1

fori =1,2,..., N, where x = (x1, x2,...,Xy), and the stochastic variables £;(?),
&(t), ..., ¢ (2) have the following properties

(¢i()) =0, (5.2)
(Ci(0)¢; (1)) = Ii8yd(r — 1), (5.3)

where I, I, ..., 'y are constants.

We want to determine the time evolution of the probability distribution P (x,?) =
P(x1,x2,...,xn,t) of the variables xi, xz, ..., xy. Using a procedure analogous
to that used for the case of one variable, seen in Chap. 3, we can shown that this
probability distribution obeys the equation

P Y9 1L &P
5=—Za—m(ﬁP)+EZEW, (5.4)
i=1 i=1 i

which we call Fokker-Planck equation in several variables.
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Example 5.1 Diffusion equation. When f; = 0, the Fokker-Planck equation (5.4)
is called diffusion equation and is given by

P " P
— =Dy —, 5.5
ot ; axf (5-5)

where I'; = 2D and D is the diffusion constant and » is the number of variables.
The solution of this equation is obtained from the characteristic function

Gk,1) = / e** P(x,1)dx, (5.6)

where k = (ky,...,k,). Deriving G(k, t) with respect to ¢ and using the diffusion
equation, we get the equation

G
T —DK*G, (5.7)

where k? = Y, k7, whose solution is
G(k,t) = e "% G(k,0). (5.8)

Asinitial condition, we use P(x,0) = []; 8(x;—a;), which givesus G(k, 0) = e,
where a = (ay,...a,), and

G(k,1) = e*a Dk (5.9)

This condition means that the particle is in the position x = a at t = 0. As is well
known G (k, t) is the Fourier transform of the multidimensional Gaussian

1 2
P(x,1) = i —a)”/4Dr (5.10)
(x.7) 17[«/471Dt

The variables x; are independent, with variance

(x2) — (x;)? = 2D1. (5.11)

1

The Fokker-Planck equation can still be written in the form of a continuity
equation

L —Z% (5.12)
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where J;, the i-th component of the probability current, is given by

I aP
Ji :ﬁP——L. (5.13)

The solutions of the Fokker-Planck equation have to be determined according
to the boundary conditions given a priori. These conditions concerns the surface
that delimits the region of the space defined by the variables x;, x, ..., xy. Here
we consider boundary conditions such that, in the points of the surface, the normal
component of the probability current vanish. In addition, we will consider natural
boundary conditions, that is, such that the boundary are placed at infinity. In this
case, the probability distribution and its derivatives vanish rapidly when |x;| — oo
so that J; — 0 in this limit.

In the stationary regime, the probability density is time independent and fulfills
the equation

N N

9 1 PP
SN P+ == =o, 5.14
Zax"(f HZ; 0x? 19

i=1
which can be written in the form

N

> i _ 0, (5.15)

0x;
i=1 """

For just one variable, as we have seen previously, this equation implies a position
independent probability current which therefore must vanish. For more than one
variable, however, this might not happen. The fact that the normal component is
zero at the points of the surface is not sufficient to guarantee that the current is
zero everywhere. In fact, the currents might be circular and tangent to the boundary
surface.

Next, we examine the conditions that the forces must satisfy so that, in the
stationary regime, the current vanishes everywhere, that is,

Ji(x) = 0. (5.16)
When the current vanishes in all points, the stationary regime corresponds to the

thermodynamic equilibrium and the condition (5.16) expresses the microscopic
reversibility. If J; = 0, then Eq. (5.13) gives us

fi= = mp, (5.17)
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We assume that the constant I is the same for all particles, I; = I'. From this
equation follows the condition sought

o _ o

= 5.18
8xj axi ( )

which must be fulfilled for any pair i, j.
If the condition (5.18) is satisfied, then f; must be the gradient of a potential
V(x), that is,

av

fi = B (5.19)
Xi
After V is determined, we may write
2
InP = —FV + const, (5.20)
or yet
P(x) = Ae ?VWIT (5.21)

where A is a constant that must be determined by the normalization of P.
Summarizing, when the stationary solution of the Fokker-Planck equation is such
that each component of the probability current vanishes, we say that the system
holds microscopic reversibility. The condition for this to occur is that the forces are
conservative, that is, they are generated by a potential. In this case, the stationary
probability distribution has the form of an equilibrium distribution, that is to say,
a Boltzmann-Gibbs distribution, given by (5.21), and we say that the system is
found in thermodynamic equilibrium. Due to this result, we can say that the system
described by the Langevin equation (5.1) or equivalently by the Fokker-Planck
equation (5.4) is in contact with a heat reservoir at a temperature proportional to I".

5.2 Solenoidal Forces

When the forces f; are conservatives, that is, when they obey the condition (5.18),
and I'; = I', we have seen that the stationary solution is of the form (5.21). In this
section we examine the special case in which, in spite of f; be nonconservative, it is
still possible to write the stationary solution in the form (5.21). To this end, we start
by writing the force f; as a sum of two parts

fi=fC+ £P. (5.22)
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where fic is the conservative part, which fulfills the condition

A
= , 5.23
8xj 8x,~ ( )
for any pair (i, j) and therefore can be generated by a potential 1/, that is,
av
f&=——. (5.24)
axi

The other part f;” is nonconservative, that is, df;” /dx; # af” /dx; for at least one
pair (i, j) and has null divergence (solenoidal force)

N
3f;P
- =0. 5.25
g T (5.25)
In addition, we assume that the two parts are orthogonal, that is,
YRR =o. (5.26)
i

If the conditions (5.23), (5.25) and (5.26) are fulfilled, then the stationary solution
has the form

P(x) = Ae 20T (5.27)

where V is the potential of the conservative force fic. To show this result, we start
from the Fokker-Planck equation which in the stationary regime is given by

N »

—Z—(f” )—Z—(fc )+ — ZaazP 0. (5.28)

Inserting in this expression the distribution P(x) given by (5.27) we find that the
two last terms of (5.28) vanish remaining the equation

N 2
,E=1(axifl + 1_,f, f5)=0, (5.29)

which in fact is satisfied in virtue of the properties (5.25) and (5.26).

As an example of a system that satisfy the condition (5.23), (5.25) and (5.26),
we examine the electrical circuit, studies in Sect. 3.9, composed by a resistor of
resistance R, a capacitor of capacity C and an inductor of inductance L, in which we
suppose there are fluctuations in both the voltage and the current. The fluctuations
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in the voltage are due to the contact with a heat reservoir whereas the fluctuations in
the current arise from the contact with a charge reservoir, electrically neutral. The
equations for the charge Q of the capacitor and for the current / in the circuit are
given by

d
7Q =0+ 1 +00), (5.30)
t
dl 1
L— =-5Q—RI+V,(). (5.31)

where ¢;(¢) and V,(¢) are the random current and random voltage, respectively,
considered to be independent. These two stochastic variables have zero mean and
time correlation with the following properties

(Lia@)) =Tré@e 1), (5.32)
V@)V, () = Bs(t —1"). (5.33)

Equation (5.30) is already in the form (5.1). To transform Eq.(5.31) into the
form (5.1), we divide both sides of (5.31) by L to get

dil 1 R
i —EQ - ZI + &(1), (5.34)

where {, = V,. /L. Compelling {,(¢) to have a time correlation of the form
(L2()6a(th)) = T8t — 1), (5.35)

and to have zero mean, then B and I" must be related by B = L>I".
Making the identification x; = Q and x, = I, we see that the forces are given by

1 R
fi=—-y0+1, fz:_EQ_ZI‘ (5.36)

The conservative and solenoidal parts are given by

R

fE=-v0Q. f==1l (5.37)
1

P=1 P = 2 (5.38)

In the stationary regime, we postulate that the probability distribution is the equi-
librium distribution, given by (5.27). For this, we assume that the condition (5.26)
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is fulfilled, what leads us to the following relation y = R/ CL?. Therefore, the
stationary distribution is given by (5.27) with a potential V' (x) given by

Y 12 R, R 1 > L,
Vv =2°< — Y === ~7%), 5.39
2Q+2L L2(2CQ+2 (5.39)
that is,
2R (1 L
P=A | —=0%+ =1 ), 5.40
ewi-25 (560 + 577); (5.40)

where we have taken into account the relation B = L>I". Comparing with the Gibbs
distribution

P=depl-— (Lo2+ Lpr); (5.41)

=Aexpl——— | — - , .
T 20 2

we reach the following relation between the coefficient B and the temperature

B = 2RkpT, (5.42)

which is a result due to Nyquist.

5.3 Linear System

We study here the general solution of the Fokker-Planck equation such that the
functions f; are linear,

N
fi =" Ayx;. (5.43)
j=1

The coefficients A; are understood as the entries of a N x N square matrix. If the
forces f; are conservatives, A is a symmetrical matrix. The Fokker-Planck equation
reads

3 al 3 1Y 2
Pp=-NAj—x;P)+=-5S TP, 5.44
dt i,zgl Y 0x; O P)+ 2; x} G4

whose solution is obtained by means of the characteristic function G(k,?)
defined by

Gk,t) = /eik*XP(x, t)dx, (5.45)
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where x is a column matrix with entries x; and kT is the transpose of the column
matrix k whose entries are k;. Deriving G with respect to time and using the Fokker-
Planck equation, we obtain the following equation for the characteristic function

G & 3G 1
5 = > ki =5 Y LkG. (5.46)
J

ij=1 i=1

Each term to the right is obtained by integration by parts and assuming that P and its
derivative vanish in the limits of integration. The solution of this equation is reached
by assuming the following form for G,

G(k,t) = ea'k=K'Ck/2, (5.47)

where a' is the transpose of the column matrix @ whose entries are a; and C is
the square matrix with entries C;;. Both, a and C depend on ¢. The characteristic
function G corresponds to the N -dimensional Gaussian distribution

1 _
P(x,t) = ——— @'=aNCT (xma), (5.48)

V@m)Ndet©
where a; and Cj; are the means and the covariances,
ai = (x;), Cy = (xix)) — (%)) (5.49)
Inserting the form (5.47) into (5.46), we get the following equations for @ and C

dai
= > Aya;. (5.50)
J

dcy

5= Ciudje+ ) AuCy; + 1160, (5.51)
4 4

which can be written in the matrix form

da
— = Aa, 5.52
o a (5.52)
ac
= CAT+AC+ T, (5.53)

where I" is the diagonal matrix whose elements are I;4;. This last equation
coincides with Eq. (3.153) of Sect. 3.8.
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5.4 Entropy and Entropy Production

Here we study the time evolution of the entropy of a system described by the Fokker-
Planck equation (5.4). The entropy S of a system described by the probability
distribution P(x, t) is defined by

S(@t) = —/P(x,t)lnP(x,t)dx, (5.54)

where dx = dxdx; . ..dxy. Using the Fokker-Planck equation in the form (5.12),
we determine the time variation of entropy, which is given by

= Z/l P—dx (5.55)

Performing an integration by parts,

> - _Z/ 1nde (5.56)

From the definition (5.13) of the probability current, it follows that
— Inp=24_ 20 (5.57)
Therefore,
das 2 2 [ J?
E:_Zi:ﬁ/ﬁj,-dx—i-zi:Fi/?x. (5.58)

The second term is nonnegative and we identify as the entropy production rate I7,
given by

= Z / L dx. (5.59)

The other term is the entropy flux @,

2
@ = ZE/ﬁjidx, (5.60)
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so that we may write the time variation of the entropy in the form advanced by
Prigogine

s

— =11—-. 5.61
o (5.61)

Next, we multiply the current density, defined in (5.13), by f; and integrate to get

/f,-J,-dx:/f,-dex—%/ﬁ%dx. (5.62)

Integrating the last term by parts, we reach the result

I; I;

/f,-J,-dx = /f,-dex—f— > / filPdx = (f2) + = (f), (5.63)
where f;; = df;/dx;. From this result we obtain the following expression for the
entropy flux

o =Y (20 + (5.64
: E i ii . .

It is important to remark that in the stationary state dS/dt = 0 so that @ = I1.
If, in addition, there is microscopic reversibility, J; = 0, then @ = IT = 0 as can
be seen in Eq. (5.59).

5.5 Kramers Equation

In this section we analyze the Fokker-Planck in two variables, called Kramers
equation. A particle performs a Brownian motion along the x-axis and is subject
to an external force F(x), in addition to a dissipative force and a random force. The
Newton equation for this particle is

m% = —av + F(x) + F,(1). (5.65)

The random force F,(¢) has the properties
(Fa()) =0, (5.66)

(F,(t)F,(t")) = BS(t —1'). (5.67)
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Equation (5.65) together with

dx

- = 5.68
7= (5.68)

constitute the equation of motion of the particle. Dividing both sides of Eq. (5.65)
by m we get the equation

dv

i —yv+ f(x)+ (@), (5.69)

where y = a/m, f(x) = F(x)/m and {(t) = F,(t)/m. The noise {(¢) has the
properties

(@) =0, (5.70)
(C@)¢h)y =Trs@—1). (5.71)

with I' = B/m?>.
Using a procedure analogous to that used in Chap. 3, it is possible to show,

from (5.68) and (5.69), that the probability distribution P(x, v, ) of x and v obeys
the following equation

P 0 d r P
- _—_—_(yP)=— — — P _— 72
i A MU AN W 672
or yet
P P FoP a0 B 9*P
= mey T T e e

which is called Kramers equation.
The Kramers equation can be written in the form of a continuity equation

op  9J* I

9t ax v’

(5.74)

where J* and JV are the probability current in directions x and v, respectively, and
given by

J* =P, (5.75)

. rap
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We should notice that the real current J(x) is obtained by integrating J*(x, v) over
the velocities, that is,

J(x) :/Jx(x,v)dv. (5.77)

Next we determine the stationary solution P(x,v) of Kramers equation, which
satisfies the equation

aJ* aJV
=0 5.78
dax + av ( )

In the present case we cannot assume, as we did before for the case of one
variable, that the currents J*(x,v) and JV(x,v) vanish. In the stationary regime
the microscopic reversibility is expressed by the conditions

JX(x,—v) = =J*(x,v), (5.79)
JV(x,—v) = JV(x,v). (5.80)

The first condition implies the property
P(x,—v) = P(x,v), (5.81)

that is, P(x, v) must be an even function in v. This property implies J(x) = 0, that
is, the real current vanish in the stationary state.

The second condition together with this last property gives us the following
equation

I oP _ (5.82)
Y 2 9y '
whose solution is
P(x,v) = O(x)e /T, (5.83)

where Q(x) depends only on x. Replacing this result into the stationary equa-
tion (5.78), we obtain an equation for Q (x),

Q- ———=0. (5.84)

Defining V(x) as the potential associated to the force f(x), thatis, as the function
such that f(x) = —dV(x)/dx, then the solution is

1
o =~ e VT, (5.85)
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so that
1 2y 1,
P(x,v) = —exp{——[=v" + V(x)]}, 5.86
(x.) = Zexp{="E 502 + V(I (5.:86)
where Z is a normalization constant, which is equivalent to

1 1 1
P(x,v) = 7 exp{—kB—T[Emv2 + U(X)]}, (5.87)

where U(x) = mV(x) is the potential associated to the force F(x), thatis, F(x) =
—dU(x)/0x, and I is related to the temperature by

_ 2kaT
= —

r (5.88)

and therefore B = 2akpT. This last result and the result (5.87) allow us to
interpret (5.65) as the equation that describes a particle subject to a force F(x)
and in contact with a heat reservoir at temperature 7. Both forces, —«v and F,
describe the coupling to the heat reservoir. This interpretation is valid as long as B
is proportional not only to temperature but also to ¢, or y, which is the quantity that
describes the intensity of the coupling of the particle to the reservoir. It is worth to
note that the equilibrium probability distribution (5.87) does not depend on «. In
other terms, the thermodynamic equilibrium occurs no matter what the intensity of
the coupling with the reservoir. The quantity « is related only to the relaxation to
equilibrium.

5.6 Kramers Equation for Several Particles

In this section we enlarge the idea of microscopic reversibility to include the cases
in which the system of particles presents as stochastic variables not only the position
of the particles but also their velocities. We denote by x the set of positions, that is,
x = (x1,X2,...,xy) and by v the set of velocities, thatis, v = (vi,va,...,vy). We
assume the following equations of motion

dV,‘ _

mz Fi(x) —avi + FA(1), (5.89)
dx;
7; =, (5.90)

where F(¢) are random forces with the properties

(FA(1) =0, (5.91)
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(FM)F}(t") = B;§;s(t —1"). (5.92)

and F; (x) depends only on x.
Dividing both sides by the mass m of the particles, we get the following Langevin

equation
dV,’
o = SO =y + G, (5.93)

where fi(x) = Fi(x)/m,y = a/m and {;(t) = Fj(t). The noise {; has the
properties

(¢i()) =0, (5.94)
(i ()¢ (1)) = Ii8yd(r — 1), (5.95)

where I; = B; /m>.
The Fokker-Planck equation associated to the Langevin equations (5.93)

and (5.90), which gives the time evolution of the probability distribution P(x,v,t),
is given by

oP Z_Zajif_ZaJ,.-v 5.96)

W axz aVl '
where
JX=vP, (5.97)
I; 0P
J'=(fi—yvi)P — ——, (5.98)
2 avi

are the components of the probability current related to the positions and velocities,
respectively.

Next, we determine the conditions that we should impose on the forces f; so
that in the stationary regime the system is found in thermodynamic equilibrium. We
assume that the system of particles is in contact with the same heat reservoir so that
It = TI', independent of i. We admit that in equilibrium the components of the
probability current have the properties
J(x,—v) = =J(x,v), (5.99)

TV (x,—v) = JY(x,v), (5.100)

which constitute,in the present case, the expression of the reversibility in the
place of those given by (5.16). The property (5.99) combined with (5.97) implies



5.6 Kramers Equation for Several Particles 121

P(x,—v) = P(x,v), that is,the stationary probability distribution must be an even
function of the velocity. The property (5.100) combined with (5.98) entail

r op
)/V,'P + EW =0, (5101)
i

where we have taken into account that P(x,v) is an even function in v. Equa-
tion (5.101) can be solved leading to the result

P(x,v) = 0(x) exp{—z %v? . (5.102)

To determine Q(x), it suffices to insert this form into

aJx oy
: L =0. 5.103
axi + 8v,~ ( )

First, however, if we use the result (5.101) we see that J;* given by (5.98) is reduced
to J' = f; P, so that (5.103) is equivalent to

P
via_ + i(fip) =0. (5.104)
axi 8v,~

From this we get the following equation for Q(x)

0 2y
-2 0 =0. 1
o, fio=0 (5.105)
or
ad 2y
—1 = —fi. 1
o, nQ (5.106)

Again this equation entails the property

o, _

= , 5.107
axi an ( )

which must be valid for any pair (i, j). Therefore, f; must be generated by a
potential, V' (x), that is,

£ = - v, (5.108)
B.X,'
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so that
Q(x) = %e‘w‘“")/ r. (5.109)
Finally
P(x,v) = —exp{——[V( )+ - sz]} (5.110)
which is equivalent to
P(x,v) = ! exp{—— U(x) + — sz]} (5.111)

where we use the relation I" = 2ykpT/m between I and the temperature 7', or
yet, B = 2akpT.

5.7 Kramers Linear System

We study now the set of Kramers coupled equations such that the forces f; are
linear,

fi=" Ayx;. (5.112)
J

The Fokker-Planck equation that gives the time evolution of the probability
distribution P(x, v, t) is the one given by

; 0°
———Za (i P)— ZAUa (x,P)+Zy, (v,P)+ZI;a—v§.
(5.113)

We assume that the dissipation coefficients y; are distinct and that the intensity of the
random forces I are also distinct. The Fokker-Planck equation can be understood
as the equation that describes a set of harmonic oscillators, each one in contact with
a heat reservoir at a certain temperature, provided [I; is proportional to the product
yi T;, where T; is the temperature of the heat reservoir at which the i-th particle is
coupled and y; is understood as the intensity of the coupling with the reservoir.

To solve the Fokker-Planck equation (5.113), we start by defining the character-
istic function G(k, q,1),

Gk,q.t) = / el KHaY p(y y dxav, (5.114)
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where ¢ is the transpose of the column matrix ¢ whose entries are g;. Deriving
G with respect to ¢ and using the Fokker-Planck equation, we get the following
equation for G

0G 0G 0G G 1
— =) ki— Aigi —— — i— —= Y [q’G. 5.115

Each term to the right is obtained by an integration by parts and assuming that P
and its derivatives vanish in the limits of integration.
Next, we assume the following form for the characteristic function

1
G(k,t) = exp{—z(kTXk +2k"2q + ¢ vq)}. (5.116)

where X, Y, and Z are square matrices that depend of ¢, X and Y being symmetric.
This form is the characteristic function of a multidimensional Gaussian distribution
in the variables x; and v; such that (x;) = 0 and (v;) = 0 and

Xy = (x;x;), Yy = {(viv), Zij = (xivj). 6.7

Replacing the form (5.116) into (5.115), we get the following equations for X, ¥
and Z,

dx
—=Z+7Z, 5.118
yr + ( )
dy
E:AZT+ZAT—BY—YB+F, (5.119)
dz
- = Y +XA" — 7B, (5.120)

where B is the diagonal matrix defined by B;; = y;6;; and I" is the diagonal matrix
whose entries are 5.
Defining the 2N x 2N matrices C, M and 2 by

X Z 0 I 00
CZ(ZTY) M:(A_B) .Q:(OF), (5.121)

then Eqgs. (5.118)—(5.120) can be written in compact form as

dc
— =MC+CM' + Q2. (5.122)
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5.8 Entropy Production

Now we determine the production of entropy for a system described by the Fokker-
Planck seen in the previous section. We assume that the probability distribution and
its derivatives vanish at the boundaries of a region R of the space (x, v). We start by
the expression for the entropy of this system, given by

S@) = —/ P(x,v,t)In P(x,v,t)dxdv. (5.123)
Deriving with respect to time, then

ds P
- = / In P ~—dxdv, (5.124)
dt ot

and using the Fokker-Planck equation in the form (5.96), we get

ds
E:ZA,-JFZB,-, (5.125)
where
X
A = / 1nPaJ" dxdv (5.126)
axi
and
EYA
B, = / In P =L dxdv. (5.127)
avi

Performing the integral by parts, the quantity A; becomes

dxdv = 0, (5.128)

_d op
Ai :—/Jl-glndedv:— V,‘g

where we use the definition J* = v; P and the fact that P vanishes at the boundary
of R. Integrating by parts, the quantity B; becomes

9
B = — / J} 5~ n P dudv, (5.129)

where we use the fact that P vanishes at the boundary of R. Defining the current
Ji(x,v) by

Ji = —yyp - 0P (5.130)
T T S '
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we see that J¥ = f; P + J;, which inserted in the integral gives

J; oP
-=——/f asav— = [ 22 aa, (5.131)

The first integral vanishes since f; depends only on x. Using the definition of J;,

= —/—d dv+ — /V;J,-dxdv, (5.132)

Using again the definition of J;, the second integral becomes

i

2 I o L
viJidxdv = —y [ vi P dxdv + ) P dxdv = —y(v;) + ER (5.133)

where the second integral on the right-hand side was obtained by an integration by
parts. Therefore,

2y? 2 [ J?
B; = —TI(V?> +y+ F, / ?dxdv. (5.134)

Thus, we conclude that the entropy variation can be written in the form
introduced by Prigogine

ds

— =119, 5.135
dt ( )

where [T is the entropy production rate, given by

2 [ J?
= Z T / —dxdv, (5.136)

a nonnegative quantity, and @ is the flux of entropy, given by

2
® = Z (Zrli(v?) - )/) . (5.137)

It is worth to note that if f; is conservative, the current J; vanishes in the
stationary regime, as seen when we introduced the equilibrium distribution (5.110)
in the definition of J;, given by (5.130). Therefore the entropy production rate I7
vanishes and, since dS/dt = 0, the entropy flux @ also vanishes in equilibrium.
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5.9 Dissipated Power

Here we analyze the relation between the power dissipated by the nonconservative
forces and the production of entropy. We assume that the system is in contact with
only one heat reservoir so that I; = I'. The variation of the average kinetic energy
of the particles,

1 1
E = E Em(vlz) = Em E /V?dedv, (5.138)
is given by
dE 1 , 0P
= Em Ei /vi dedv. (5.139)

Using the Fokker-Planck equation in the form (5.96) and integrating by parts, we
obtain the result

dE .
—=m Z / v; J.Y dxdv. (5.140)
1

Using now the definition of current J;*

_mZ/v, (fP yv,P——g—P) dxdv. (5.141)

Integrating the last term by parts, we get

dE r
— :mzi:((viﬁ>—y(v,?>+5). (5.142)
The power dissipated by the force F;(x) is given by
P = (Fvi)=m» (fiv). (5.143)
i i
Therefore,

(5.144)

dE )
E=9+m2i:(—y(v

_|_
|
N
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Using this result we can write the entropy flux in the form

1 dE
O=—P——), 5.145
kBT ( dl‘) ( )

where we use the following relation between I”, y and the temperature 7', previously
obtained, I'm /2y = kgT.
In the stationary regime, dS/dt = 0 and dE/dt = 0 so that

I=o = —_—Z ﬂdd (5.146)

If the forces are conservative, then in the stationary regime the system exhibits
microscopic reversibility J; = 0 and is described by the equilibrium distribution.
In this case IT = @ = 0 since J; = 0. We can show yet explicitly that the power
& vanishes in equilibrium. To this end, we use the result that the equilibrium is
established if the forces are conservative, that is, if they are generated by a potential
V(x). Therefore

d
V) = _Xi:fi(x)vi, (5.147)
and we see that the power is
d
P = —m—(V(x)). (5.148)

But in the stationary state the right-hand side vanishes so that & = 0.

Exercises

1. Show that the stationary solution of the Kramers equation (5.73) is of the type
P = Aexp{—B[V(x) + mv*/2]}, where V(x) is such that F = —dV/dx.
Determine the constant 8. For the elastic force F(x) = —Kx, normalize P and
find the constant A.

2. Show that the time-dependent solution of the Kramers equation (5.73) for
F(x) = —Kx is of the type P = Aexp{—ax?/2 — bv*/2 — cxv}, where a, b,
¢ and A depend on time. Show that for this probability density,

b a —c

2 _ 2 _
(x>_ab—c2’ () ab—c?’
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To determine a, b and ¢ as functions of time, invert these equations to find @, b
and c in terms of (x?), (v?) and (xv). Next, use the time dependent expressions
of these last quantities obtained in the Exercise 5 of Chap. 3.

3. Show explicitly that in the stationary regime the right-hand side of Eq. (5.64)
vanishes for conservative forces, that is, when the stationary state is a state of
equilibrium.



Chapter 6
Markov Chains

6.1 Stochastic Processes

A random variable that depends on a parameter ¢ is called a random function or,
if ¢ stands for time, a stochastic variable. We consider here stochastic processes at
discrete time and such that the stochastic variable is also discrete. Suppose that a
stochastic variable x; takes integer values and that ¢ takes the values 0, 1,2, 3,....
A stochastic process becomes entirely defined up to time £ by the joint probability
distribution

Py(ng,ni,ny, ..., ng) (6.1)

of x; taking the value n( at time ¢ = 0, the value n; at time ¢ = 1, the value n, at
time t = 2, ..., and the value n, at time t = £.
Next, consider the conditional probability

Pyi1(nes1|no,ni,na, ..., ng) (6.2)

of x, taking the value n,4 at time ¢t = £ + 1, given that it has taken the value n( at
time ¢ = 0, the value n; at time ¢ = 1, the value n, attime ¢t = 2, .. ., and the value
ng at time ¢ = £. If it is equal to the conditional probability

Prr1(ne+1|ne) (6.3)

of x, taking the value nyy; at time t = £ 4 1, given that it has taken the value ny
at time ¢t = ¥, then the stochastic process is a Markovian process. In other terms,
a Markovian process is the one for which the conditional probability of x; taking
a certain value, in a given time, depends only on the value that it has taken in the
previously instant of time.
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From the definition of conditional probability, we obtain the following formula
Py(ng,nina, ... .ng) = Pe(ng|ne-r) ... Z2(na|ny) Pi(nilng) Po(no).  (6.4)

We see thus that the Markovian process becomes entirely defined by the conditional
probabilities given by (6.3) and by the initial probability & (ny).

We define now the probability P,(n,) that the variable x; takes the value n, at
time ¢t = { independently of the values it has taken in the previous instants of time.
It is given by

Py(ng) =Y Pi(no.ni.na.....np), (6.5)

where the sum is over ng, ny,...,n¢—; but not over n,. If we use Eq. (6.4), we get
the following recurrence equation

Pe(ne) = ) Pe(nelne—1) Peoi (ne-1). (6.6)

ng—1

Therefore, given Py(n(), we can obtain Py(n,) at any time.

The conditional probability &2 (n¢|ne—;) is interpreted as the probability of
transition from state n,—; to state ny. In principle it can depend on time. That is,
given two states, the transition probability between them could be different for
each instant of time. However, we will consider only Markovian processes whose
transition probability do not vary in time. In this case we write

94(n4|n4_1) = T(n[,ng_l), (6.7)

so that Eq. (6.6) becomes

Py(ng) = Z T(n¢,ne—1) Pe—1(n¢—1). (6.8)

ng—1

6.2 Stochastic Matrix

We have seen that a Markovian process becomes completely defined by the
transition probability and by the initial probability. Writing the previous equation
in the simplified form

Pe(n) =Y | T(n.m)Pry(m) (6.9)
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we interpret T (n, m) as the entries of a matrix 7. It has the following properties
T(n,m) >0, (6.10)

since T'(n, m) is a (conditional) probability, and

ZT(n,m): 1 (6.11)

due to normalization. That is, the entries of the matrix 7 must be nonnegative and
the sum of the entries of any column must be equal to unity. Note that the summation
is done over the first variable, which denote the row index of a matrix. Any square
matrix that possesses these two properties is called a stochastic matrix.

The simplest example of a Markov chain consists in a sequence of two states,
denoted by the letters A and B. A possible sequence is ABBABABAABB. In the
table below, we show the transition probabilities. Each entry of the table corresponds
to the probability of occurrence of one letter, shown in the first column, given the
occurrence of a letter in the preceding position, shown in the first row:

A |B
A |p1 | p
B g1 |q2

where the sum of the entries of a column equals one, p; + ¢; = 1. From this table
we determine the stochastic matrix 7' given by

T = (pl pz). (6.12)
q1 42

Note that the sum of the entries of the same column is equal to unity.
If we define the matrix P, as the column matrix whose entries are Py¢(n), then
Eq. (6.9) can be written in the form of a product of matrices, that is,

Py =TPy,. (6.13)
Thus, given the initial column matrix Py, we get P, through
P =T'P, (6.14)

and the problem of determining Py (n) is reduced to the calculation of the £-th power
of the stochastic matrix 7'. This equation can be written in the form

Py(n) =Y T (n.m)Py(m). (6.15)
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where the matrix entry 7'(n, m) is interpreted as the transition probability from the
state m to state n in £ time steps, that is, it is the probability of the variable x; to
take the value n at time ¢ given that it has taken the value m at a previous time ¢ — £.

6.3 Chain of Higher Order

In the previous sections we considered Markov chains in which the conditional
probability of state ng,

9{(”['”05”17”25---sné—l)v (6'16)
depends only on n¢—; and is therefore equal to
Pi(ne|ne-1). (6.17)

We may imagine Markov chain in which the conditional probability depends not
only on ny—; but also on n,—;. In this case the conditional probability becomes
equal to

Py(nelne—1,ne-2). (6.18)

and we say that the Markov chain has range two. It is possible to consider Markov
chains of range three, four, etc. Here we focus on those of range two.

For range two, the probability & (n¢+1,n¢) of occurrence of state ny4; at time
£ + 1 and state n at time £ can be obtained recursively from the equation

Po(ng,ne—1) = Z Py(ng|ne—1,n—2) Po_1(ng—1,n¢-2). (6.19)

ng—2

If the conditional probability does not depend on time we can write this equation in
the form

Py(n,n') = Z3”(n|n’,n”)94_1(n’,n”), (6.20)

n//

which gives the probability of two states at consecutive instants of time in a recursive
manner. Being a conditional probability & (n|n’, n”’) has the properties

Y P’ ") =1, Pnln’,n") > 0. 6.21)
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The probability of state n at time £ is obtained from

Pi(n) =Y Pu(n.n'). (6.22)

Next we introduce the quantity T (n,n’; m, m’), defined by
T(n,n';m,m") = 8(m,n)Pnn’,m'), (6.23)
so that the recurrence Eq. (6.20) can be written in the form

Py(n,n') = Z Tm,n';m,mYPy_(m,m'). (6.24)

mm’

Interpreting T'(n,n’; m, m’) as the entries of a square matrix 7 and ;(n,n’) as the
entries of a column matrix &, the above equation can be written in the form of a
product of matrices

Py =TPy_,. (6.25)
The entries of the matrix T have the properties

Z Tm,n';m,m) =1, T(n,n';m,m’) > 0. (6.26)

n,n’

which follow directly from (6.21).

In the table below, we present an example of a Markov chain of range two
consisting of a sequence of two states, denoted by the letters A and B. Each entry
of the table corresponds to the probability of the occurrence of the letter, show in
the firs column, given the occurrence of two letters in the two preceding positions,
shown in the first row:

AA |AB |BA BB

A |pt |p | p3 | Ps
B lqgi |92 |9 |4qa

where the sum of the two entries of a column is equal to one, p; + ¢; = 1. From
this table we determine the stochastic matrix 7 given by
P10 p3 0

q1 0 g3 0
T = . (6.27)
0 p 0 p4

0 g2 0 g4

Note that the sum of the entries of the same column is equal to unity.
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6.4 Irreducible Matrices

Given two states n and m of a Markov chain, we may ask whether n can be reached
from m or, in other terms, whether the probability of reaching n from m is nonzero.
In one step, this probability is simply the entry 7 (n, m) of the stochastic matrix. In
£ steps this probability is 7*(n,m). Therefore, n can be reached from m if there
exists £ such that T*(n, m) # 0, that is, if the entry labeled (1, m) of any power of
the stochastic matrix is nonzero.

A Markov chain can be represented by a transition diagram, as shown in Fig. 6.1,
where a transition probability from m to n is represented by an arrow from m to
n. The two transition diagrams of Fig. 6.1 correspond to the two Markov chains
comprising four states, denoted by 1, 2, 3, and 4, and described by the following
matrices

0001 0pOa
0010 1010

C = , R = , 6.28
1000 000b (6:28)
0100 0g00

where p, ¢, a and b are positive, p + g = 1 and a + b = 1. The existence of a
path formed by consecutive arrows between two states, indicates that a state can be
reached from another. The number of arrows along the path equals the number of
steps. For example, in the C process the state 4 is reached from state 1 in three steps
through the path 1 — 3 — 2 — 4, and in the R process, in two steps through 1 — 2
— 4.

In the two examples shown above, we can verify by inspection that any state
can be reached from any other state. Equivalently, we can say that for each pair
(m, n) there exists a power £ such that T*(m, n) > 0. The exponent £ need not be
necessarily the same for all pairs. However, this property is not general. It is valid

PN

O, @ OO

@ © W G
C R

Fig. 6.1 Transition diagrams related to the irreducible matrices C and R, defined in (6.28), which
are examples of cyclic and regular matrices, respectively. Each arrow represents a transition
between two states and corresponds to a nonzero entry of the stochastic matrix



6.4 Trreducible Matrices 135

only for the Markov chain described by stochastic irreducible matrices. A reducible
matrix has the form

X Z
T = (0 Y), (6.29)

or can be put in this form by permutation of the indices. Here we denote by X and
Y square matrices and by Z and O rectangular matrices, the matrix O being the
null matrix, that is, with all entries equal to zero.

Any power of the matrix 7" has the same form of the original matrix 7', that is,

Xtz
Tt = , 6.30
( ¢ Y{) (6.30)

From this result, we conclude that there always exists a pair (n,m) such that
Tf(n, m) is zero for any £. In other terms, the state n cannot be reached from m,
in any number of steps. Therefore, if a matrix is such that any state can be reached
from any other state, then the matrix is irreducible. On the other hand, if a matrix is
irreducible it is possible to show that any state can be obtained from any state.

Among the irreducible matrices we distinguish those called regular. A stochastic
matrix is regular if all elements of some power of 7" are strictly positive. That is, if
there exists £ such that 7¢(n,m) > 0 for any n and m. Notice that all the entries
must be strictly positive for the same £. An example of a regular matrix is the matrix
R of (6.28) whose transition diagram is shown in Fig. 6.1. We can check that the
sixth power of this matrix has all the entries strictly positive. It is worth to note that
an irreducible matrix that has at least one nonzero diagonal entry is regular.

The irreducible matrices that are not regular constitute a class of matrices called
cyclic. The matrix C of (6.28) is an example of a cyclic stochastic matrix with
period four. A regular matrix is equivalent to an irreducible acyclic matrix.

Next, we analyze the reducible stochastic matrices. Examples of reducible
matrices are

100a 100a 0pO0a
0010 0l poO 14q00

A= , B = , C = , 6.31
0p0b 0005b 000b ( )
0g00 00q0 0010

where p, ¢, a and b are positive and p + g = 1 and a + b = 1. The transition
diagrams are shown in Fig. 6.2. As we see, the three matrices are of the type (6.29).

The matrices A and B exhibit states called absorbing states. The absorbing states
are such that once we reach them it is not possible to escape from them. If » is
an absorbing state, then 7'(n,n) = 1. The matrix A has only one absorbing state
whereas the matrix B has two absorbing states. The others are transient. Starting
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e —
@O o) o @’

@V @m@ @@
A B C

Fig. 6.2 Transition diagram related to the reducible matrices A, B and C, defined in (6.31). In
A, the state 1 is absorbing and the others are transient. In B and C, only the states 3 and 4 are
transient. In B, the state 1 and the state 2 are absorbing

from a transient state, the absorbing state is always reached, or in other terms, the
probability of reaching the absorbing state in £ steps approaches 1 when £ — oo.
It is worth to note that this result is valid for Markov chains with a finite number of
states.

6.5 Perron-Frobenius Theorem

The fundamental problem of Markovian processes is to determine the properties of
the stochastic matrix 7" such that

lim P, = P, (6.32)

{—00

where P is the stationary solution, that is, the one that obeys the equation
TP = P. (6.33)

With this purpose, we present some general properties of the stochastic matrices.

1. The stochastic matrix has an eigenvalue equal to unity.

2. Any eigenvalue A of T fulfills the condition |A| < 1, that is, in the complex plane,
the eigenvalues are located in the disk of radius equal to one.

3. To the eigenvalue A = 1 corresponds an eigenvector with nonnegative entries.
Notice that in general the eigenvalues can be complex and that the eigenvalue
A = 1 may be associated to more than one eigenvector, that is, the eigenvalue
A = 1 can be degenerate.

4. Perron-Frobenius theorem. The eigenvalue A = 1 of an irreducible matrix is
nondegenerate. Moreover, the corresponding eigenvector has all entries strictly
positive. This theorem states that the stationary solution of (6.33) is unique and
that P(n) > 0. It is worth mentioning that it is possible to have eigenvalues such
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that [A| = 1 in addition to the eigenvalue A = 1. This in fact happens with the
cyclic matrices.

5. With the exception of the eigenvalue A = 1, the absolute values of all eigenvalues
of a regular matrix are strictly less than unity, that is, |A| < 1.

6. When £ — oo, T converges to a matrix whose columns are all equal to P. From
this, we conclude that P, = TP, converges to P for any Py.

For the limit P, to exist when £ — oo, it is necessary that there is no complex
eigenvalue on the circumference of unit radius, except A = 1. However, for the
limit to be independent of the initial probability, the stationary probability must be
unique, that is, the eigenvalue A = 1 must be nondegenerate. This occurs with the
regular matrices. However, there may be matrices that are not regular but fulfill this
property. An example of a matrix of this type is the one corresponding to a stochastic
process with an absorbing state.

Example 6.1 The stochastic matrix
00p

T=|10q]. (6.34)
010

where p 4+ g = 1, has the following eigenvalues

1 1
=1 h=sC1+yT-4p).  h=s(-1-JT-4p). (635

The eigenvalues are found on the disk of unit radius as seen in Fig.6.3. If p # 0
and g # 0, the matrix is regular and the eigenvalues are found inside the disk except
the eigenvalue Ao = 1. If p = 1, the matrix is cyclic of period three and the three
eigenvalues are found at the circumference of unit radius.

O<p<li/4 1/4<p<l1

Fig. 6.3 Eigenvalues, represented by full circles, of the stochastic matrix (6.34) in the complex
plane x = ReA, y = ImA. The circumference has unit radius and the dashed line represents the
straight line x = —1/2



138 6 Markov Chains
6.6 Microscopic Reversibility

For a Markov chain whose transition probabilities are time independent, the
probability of the trajectory ng — n; — ... — ny is given by

Pno,ny,...,ng0) =T(me,ne—y) ... T(ny,ng)P(ny). (6.36)

Here we assume that 7 is a regular matrix and we consider a trajectory occurring in
the stationary regime so that the probability at time #; is the stationary probability
P(n), that obeys the equation

P(n) =Y T(n.m)P(m). (6.37)
Next, we consider the reverse trajectory ny — ... — n; — ng. The probability of
this trajectory is
P(ng,ng—y,...,n1,n0) = T(no,ny) ... T(ng—1,n¢) P(ny), (6.38)
which can be written in the following form
P(ne,ne,...,n1,no) = T(ng,ne—1)...T(n1,no)P(no). (6.39)

where

P(n)

T(n,m) = T(m,n) Pm)’

(6.40)

Equation (6.39) tell us that the reverse trajectories of a Markovian process are
also Markovian processes with transition probabilities given by f"(n, m). However,
this statement is valid only if T is a stochastic matrix. Using the condition (6.37),
we see that

> T(n.m)=1. (6.41)

Taking into account that T(n,m) > 0 since T(n,m) > 0 and P(n) > 0, we
conclude that 7 is indeed a stochastic matrix.
A Markovian process has microscopic reversibility when
T(n,m) = T(n,m), (6.42)

that is, when

T(n,m)P(m)=T(m,n)P(n), (6.43)



6.6 Microscopic Reversibility 139

for any pair m,n of states. The left hand side is interpreted as the transition
probability from m to n, while the right hand side is the transition probability from
ntom.

The stationary probability P (n) satisfies Eq. (6.37), which can be written in the
form

> AT (n.m)P(m) — T(m.n)P(n)} = 0. (6.44)

since ), T'(m,n) = 1, which we call global balance. If the Markovian process is
reversible, than the condition (6.43) implies that each term in Eq. (6.44) vanishes.
For this reason the microscopic reversibility (6.43) is called detailed balance
condition. In this case, we say that P(n) is the probability of thermodynamic
equilibrium. However, the microscopic reversibility is a property of the stochastic
matrix and therefore of the stochastic process we are considering. Some stochastic
processes have microscopic reversibility at the stationary state, others do not.

In principle, it is possible to know if reversibility takes place without determining
the stationary probability P(n). Consider any three states n, n’, and n”. In the
stationary regime, the probability of occurrence of the trajectoryn — n’ — n” — n
is given by

T, n"YT(",n )T (' ,n)Pn), (6.45)

while the probability of occurrence of the reverse trajectory n — n” — n’ — n is
given by

T, nYT (' ,n")T (n",n)Pn). (6.46)

If microscopic reversibility takes place, these two expressions must be equal,
implying

Tn,n YT ,n"T(" ,n) = Tn,n"YT@", 0T, n). (6.47)

Therefore, a process with microscopic reversibility must satisfy these equation for
any triplets of states. Analogous expressions can be written also for four or more
states.

An important property of the stochastic matrices that possess microscopic
reversibility is that their eigenvalues are all real. Define the matrix T by

T(m,n) = ﬁT(m,n)X(n), (6.48)

where y(n) = /P(n). If we divide both sides of Eq.(6.43) by y(n)y(m), we
see that the matrix T is symmetric. Being symmetric (Hermitian), it has real
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eigenvalues. It suffices to shown now that T has the same eigenvalues of 7. Indeed,
let ¥ be an eigenvector of T and A, the corresponding eigenvalue, that is,

> Tn.m)yc(n) = Ay (m). (6.49)
Dividing both sides by y(m), we get

DT nm s = D). (6.50)

Therefore, vy (n)/ x(n) is an eigenvector of T with the same eigenvalue Ay of T'.

6.7 Monte Carlo Method

According to statistical mechanics, the properties of a system in thermodynamic
equilibrium are obtained from the Boltzmann-Gibbs probability distribution P (),
which gives the probability of occurrence of the microscopic states n of the system.
It is given by

P(n) = - e PEM, (6.51)

where B is proportional to the inverse of the absolute temperature and Z is the
partition function,

Z =Y e PEm, (6.52)

The Monte Carlo method provides an estimate of the average

=Y f(n)P(n). (6.53)

of any state function f(n) and consists in the following. Suppose that a certain
number M of states are generated according to the probability P(n). Then, we can
say that the arithmetic mean,

1 M
o7 2 f@), (6.54)

i=1
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is an estimate of ( f), where ny, n,, ..., ny are the states generated. The estimate
will be better the larger the number M of states generated. Next, we should solve
the problem of generate states with the desired probability P(n). The solution is
found in the construction of a Markovian process whose stationary probability is
P(n), that is, in the construction of a stochastic matrix such that

> T@m.n)P(n') = P(n). (6.55)

This problem is the opposite of that which is usual in Markovian processes. In
general T is known and we wish to determine P. Here P is known and we want
to know 7. In general there are more than one solution for this problem, which is
convenient from the computational point of view.

The approach commonly used in the construction of the stochastic matrix is by
the use of the detailed balance condition,

T(n,nYP(n')=Tn , n)Pn). (6.56)

Once this condition is fulfilled, Eq. (6.55) becomes satisfied provided

> T@'.n)=1. (6.57)

One of the algorithms used to build the stochastic matrix is the Metropolis
algorithm. For each state n we define a set of neighboring states such that
T(n’,n) = 0 when n’ does not belong to the neighborhood of n. This means to
say that the transition from n to a state out of the neighborhood is forbidden. It
is important to define the neighborhoods so that if one state n’ does not belong
to the neighborhood of n, then n does not belong to the neighborhood of n’. All
neighborhoods are chosen with the same number of states, which we denote by N.

The stochastic matrix is defined by

1 ,
T(n' n) = ~ e PLEG)=Em)] if  E@®)> E®), (6.58)

T(n’,n):%, it  E@)<E(n), (6.59)

for a state n’ that belongs to the neighborhood of n, provided n’ is distinct from .
The diagonal entry is given by

T(.n)y=1- > T .n). (6.60)
n’(#n)
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To show that the detailed balance condition (6.56) is fulfilled, consider two states
ny and n, such that E(n;) > E(n,). In this case, according to Eqs. (6.58) and (6.59),
we have

1 1
T(n,m) = & e PLEMD=Em)] T(n2,m) = - (6.61)
On the other hand,
P(ny) = L sy P(n,) = L s (6.62)
Z ’ Z

Replacing these results in (6.56), we see that the detailed balance condition (6.56)
is satisfied. We remark that in the construction of T'(n’, n) we do not need to know
Z but only the difference between E(n') and E (n).

If the neighborhoods are chosen so that any state can be reached from any other
state, we guarantee that the stochastic matrix is regular and therefore for £ large
enough, the state ny will be chosen with the equilibrium probability P (ny).

Computationally, we start from any state no. From this state, we generate a
sequence of states ny, ny, ns, ... as follows. Suppose that at the £-th time step the
state is n. In the next step we choose randomly a state in the neighborhood of ny,
say the state . We then calculate the difference AE = E(n}) — E(ng).

(a) If AE < 0, then the new state will be nj, that is, n¢4; = nj.

(b) If AE > 0, we calculate p = e P4F and generate a random number £
uniformly distributed in the interval [0, 1]. If § < p, then ng4; = n/[, otherwise
ne4+1 = ny, that is, the state remains the same.

After discarding the first D states, we use the following M states to estimate the
average ( f) of any state function by means of

1 M
-7 2 f ). (6.63)
(=1

As an example of the application of the Monte Carlo method, we examine here
the thermal properties of a one-dimensional quantum oscillator, whose equilibrium
probability distribution is given by (6.51) with

E(n) =an, n=0,1,2,..., (6.64)

where « is a constant. The neighborhood of state n is composed by the states 1 + 1
and n — 1, with the exception of state n = 0 which will be treated shortly. The
Metropolis algorithm is constructed as follows. Suppose that at a certain time step
the state is n. In the next step:

(a) We choose one of the states n 4 1 or n — 1 with equal probability, in this case,
1/2.
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(b) Ifthestateisn + 1,then AE = a(n + 1) —an = o > 0. This state will be the
next state with probability e 7%

(c) Ifthe stateisn — 1, then AE = a(n — 1) —an = —a < 0 and the new state
will be the state n — 1.

Thus, the corresponding stochastic matrix is given by

1
T(n+1,n) = Eq, (6.65)

1
T(n—1,n) = 5 (6.66)
where ¢ = e~#%. The diagonal entry is
1
T(n,n):1—T(n+1,n)—T(n—l,n)=Ep, (6.67)

where p = 1 — ¢. These equations are valid forn = 1,2,3,....
When n = 0, the neighborhood is simply the state n = 1. To satisfy the detailed
balance condition, we should have

T(1,00P(0)=T(0,1)P(1), (6.68)
from which we get
1
T(1,0) = Eq. (6.69)
Therefore, when n = 0, the new state will be n = 1 with probability ¢ /2, that is,
1
T0,00=1- Eq. (6.70)

Equations (6.65)—(6.67), (6.69) and (6.70) define the stochastic matrix 7 (m, n)
which has as the equilibrium probability distribution the expression (6.51) with
E(n) = an.

6.8 Expansion in Eigenfunctions

Given the transition matrix 7 and the initial probability Py, we can obtain P; by
Py = T*P,. To this end we should determine 7'¢, what we will do by the use of a
method that consists in the determination of the eigenvectors and eigenvalues of 7.

We examine the situation in which the eigenvalues of 7" are nondegenerate. Since
T is in general not symmetric, we should bear in mind that the components of right
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and left eigenvectors of the same eigenvalue might be distinct. Let {y } and {¢}
the right and left eigenvectors, respectively, and {1, } the corresponding eigenvalues,
that is,

Ty = Axr, (6.71)
o T = Axr. (6.72)

Notice that ¥ is a column matrix and that ¢ is a row matrix. The eigenvectors
form a complete and orthonormalized set, that is,

Vi = ik, (6.73)
D ik =1, (6.74)
k

where [ is the identity matrix.

It is worth to note that P is a right eigenvector with eigenvalue equal to one. We
write then ¥y = P. The corresponding left eigenvector ¢ is the row matrix with
all entries equal to unity, that is, ¢o(n) = 1 for any n. Indeed, the equation

> T(n.m) =1, (6.75)

written in the form

Y ¢o(mT(n,m) = go(m), (6.76)

n

implies ¢poT = ¢o. The normalization P = Y gives us ¢oyp = 1.
Consider now the power T'¢ of the matrix 7. Multiplying both sides of Eq. (6.74)
by T'* and taking into account that 7%y = AL, we get the following expression

TC =3 Avid. 6.77)
k

Using (6.14), P, = T* Py, we get

Po=Y Mt Po= P+ > Mo Po (6.78)
k k#0

since Ag = 1, Yo = P, the stationary probability, and ¢y Py = 1 since Py is
normalized. As the eigenvalues fulfill the inequality |Ax| < 1 for k # 0, then
[Ax|* — 0 when £ — oo so that all terms of the summation vanish. Then P, — P
when £ — 0o, no matter what is the initial probability distribution Py.
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Example 6.2 Consider the 2 x 2 stochastic matrix

_(1-? «q
T—( ) 1—q)' (6.79)

The eigenvectors and the eigenvalues are

do=(11), %zqﬁ(i), Ao =1, (6.80)
#1=——(b—q). 1/f1=(_1), M=1-b—q. (6.81)
q+b 1
Thus we get
T' = Aiyodo + AYagr, (6.82)
or,
— g —h)¢ _
SR e

For the initial probability

Py = (pl), (6.84)
P2
we get
1 (1—q—b)" ( bp,—gp
P =T'Py= —— ‘1)+— 17 4P ) 6.85
‘ ’ q+b(b q+b —bp, + qp, (0:83)

If g + b # 0, then, in the limit £ — oo, P, approaches the stationary probability o
no matter what the initial condition.

6.9 Recurrence

We have seen that the entry 7¢(n,m) of the {-th power of the stochastic matrix
gives us the probability of occurrence of state n after £ steps, from the state m. This
probability is determined by taking into account the several trajectories that start at
m and reach n in £ steps. The intermediate states can be any state including the final
state n, that is, the trajectories may pass through n before they reach n at time £.
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Now we are interested in determining the probability of occurrence of the state n
after £ steps, starting at m, taking into account only trajectories that have not passed
through the state n. Or, in other terms, the probability of occurrence of the state n,
after £ steps, starting from m, without the occurrence of n at intermediate time steps.
This probability of first passage we denote by R, (n,m). According to Kac, there is
arelation between the stochastic matrix 7" and the probability of first passage, which
is given by

¢
Te(n,m) = ZTg_j(n,n)Rj(n,m), (6.86)
j=1

valid for £ > 1, where T} (n,m) = T/ (n,m) for j # 0 and To(n,m) = §(n,m).
This relation can be understood as follows. Starting from the state m, the state n can
be reached, in £ time steps, through £ mutually excluding ways. Each way, which
corresponds to one term in the summation (6.86), is labeled by the index j that
indicates the number of steps in which 7 is reached for the first time. Thus, the state
n will occur after £ steps if the state n occurs for the first time in j steps and going
back to state n after £ — j steps.

Before solving Eq. (6.86) we present some properties of R; (1, m). Assigning the
value £ = 1 in (6.86), taking into account that Ty(n,n) = 1 and that T\ (n,m) =
T (n,m), then

Ri(n,m) =T{n,m), (6.87)

which is a expected result. From (6.86) we obtain the following relation

Royi(n,n) = Z Re(n,m)T (m,n), (6.88)
m(#n)

valid for £ > 1.
To solve Eq. (6.86), we begin by defining the generating functions

G(n,m,z) = Z Ty(n,m)z" + 8(n, m), (6.89)
=1
H(n.m.2) =Y Re(n.m)". (6.90)
=1

Multiplying Eq. (6.86) by z*, summing over £ and using the definitions above, we get

G(n,m,z) = G(n,n,2)H@n,m,z) + 6(n, m), (6.91)



6.9 Recurrence 147

so that, for n # m,

G(n,m,z)
Hn,m,z) = ——, 6.92
(n,m,z) Gun.o) (6.92)
and, form = n,
H( ) =1 ! (6.93)
nn,z) =1——. .
2z G(n,n,2)

It is worth to note that this last relation can also be obtained from relation (6.88) and
using (6.92).

From H(n,m, z) we obtain R, (n, m). However, what interest particularly us here
is to determine the recurrence probability of state n, which we denote by Z(n), and
given by

R(n) = ZRg(n,n) = H(n,n,1), (6.94)
=1

that is,

1

(6.95)

If G(n,n, 1) diverges, then Z(n) = 1 and the state is recurrent. In this case, we can
define the mean time of recurrence (£) by

0y = ;ZR((H,H) = }E}d—zH(n,n,z). (6.96)

If G(n,n, 1) is finite then the probability Z(n) is less than one and the state n may
never be reached.
Using relation (6.77) in the form

Te(n,m) =) Ay (m)di (m), (6.97)
k

and the definition (6.89), we get

o V()i (m)
G(n,m,z) = Xk:—l - (6.98)
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To know if 7 is recurrent we should look at G(n, n, z), which we write as

Gnn) =2+ I/Ikl(’i)‘p;(”) (6.99)
P Ak

since A9 = 1, Yo(n) = P(n), which is the stationary probability, and ¢(n) = 1.

Aslong as P(n) > 0, which occurs when the number of states is finite (recall the
Perron-Frobenius theorem), then G(n,n,z) — oo when z — 1. We conclude that
Z% = 1 and the state n (or any other) is always recurrent. For values of z around one,
G(n,n,z) is dominated by the first term and we write G(n,n,z) = P(n)(1 —z)~',
sothat H(n,n,z) = 1 — (1 — z)/ P(n). Therefore (£) = 1/P(n).

6.10 Ehrenfest Model

Consider two urns A and B and a certain number N of balls numbered from 1 to N.
Initially, the balls are placed on urn A. Next, one of the balls is chosen at random
and transferred to the other urn. This procedure is then repeated at each time step.
We wish to determined the probability Py (n) of having n balls in urn A at time £.

Suppose that at a certain time step urn A has n balls. The probability of the
decreasing the number to n—1 is equal to the probability of choosing one of the balls
of urn A (which is taken off from A and transferred to B), thatis, n/ N . Similarly, the
probability of increasing the number of balls in A to n + 1 is equal to the probability
of choosing one of the balls of urn B (which is transferred to A), thatis, (N —n)/N.
Therefore, the transition probability 7' (m, n) from n to m is

n
Tn—1,n) = —, 6.100
(n—1m) = (6.100)
N —
Tn+1,n) =~ (6.101)
N
n=20,1,2,..., N.In other case, T (m,n) = 0. The transition diagram is shown in
Fig.6.4.
1 5/6 4/6 3/6 2/6 1/6
A _—~ A _— XA _— X e N
0 1 2 3 4 5 6
1/6 2/6 3/6 4/6 5/6 1

Fig. 6.4 Transition diagram of the Ehrenfest urn model for 6 balls. The states numbered from
0 to 6 represent the number of balls in one of the urns. The fractions are the transition probabilities



6.10 Ehrenfest Model 149

Here however we study the more general case in which we permit that the number
of balls in urn A may not change. The probability that the number remains the same
is p. Therefore,

n
T(n—1,n)=q—, 6.102
(n—1Ln)=q (6.102)
T(n,n) = p, (6.103)
N —
T(n+1,n) = g—2, (6.104)
N
whereq = 1—pandn =0,1,2,..., N. The original Ehrenfest model is recovered
when p = 0.
Inserting 7'(m, n) into the time evolution equation
N
Peyi(m) = ) T(m.n)Pe(n), (6.105)
n=0

we get

Peii(n) = g(1 = "D Pin = 1) pP () + g("E D P+ 1), (6.106)

equation valid forn = 0,1,2,..., N, provided we set P((N + 1) = 0 and
Py(—1) = 0. This equation will be solved for the initial condition Py(n) = §, n
which corresponds to having all balls in urn A.

The stationary probability P (n) fulfills the equation

P(n)=(1- HN;I)P(n -1+ ("NLI)P(n +1), (6.107)

whose solution is
N
P(n) = 2—N( ) (6.108)
n

Before we determine Py (n), we set up the equation for the time evolution of the
average number of balls in urn N, given by

N
Xe = nPu(n). (6.109)
n=0
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From Eq. (6.106), we get

2
Xey1 =X +q(1— NXIZ), (6.110)

which must be solved with the initial condition Xy = N. The solution is

N N
Xe=—+0 ——q)/Z (6.111)

Therefore, X, approaches exponentially the stationary solution N/2.
Similarly, we can determine the second moment, defined by

N
Y, = anPg(n). (6.112)
The time evolution of the second moment is given by
4
Yer1 = (1—Nq)Yz+2qX[+q (6.113)

which must be solved with the initial condition Yy = N?2. Using the solution X,
we get

y, N(N4+1) _(1 2 )‘+

NN=1), 4
— (=" (6.114)

From the previous results we get the variance

N N? 2 N(N —1 4
Ye—Xi =3 - (1-50"+ %(l—ﬁq)‘, (6.115)

which also approaches its stationary value N/4, exponentially.
Next, we obtain the detailed solution of the Ehrenfest model defined by the
matrix given by Egs. (6.102)—(6.104). Consider the right eigenvalue equation

N
> T(m.n)y(n) = Ay (m), (6.116)

n=0

or yet

g1 =" =)+ pyn + gDy = g, 1)
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valid forn = 0,1,2,..., N, provided we set Y (—1) = O and (N + 1) = 0. Next,
define the function f(x) by

N
) =) vmx", (6.118)
n=0

which is a polynomial of degree N. Multiplying both sides of Eq. (6.117) by x" and
summing over n, we conclude that f(x) must obey the equation

q(1=x>) f'(x) = N(A — p — qx) f(x), (6.119)
whose solution is
f(x) = A0 + )V 7F 1 - x)f, (6.120)

where A is a constantand k = —N(A — 1)/2q.

As the function f(x) must be a polynomial of degree N, it follows that k has
to be an integer greater or equal to zero and less or equal to N. Therefore, the
eigenvalues are given by

2q

ho=1-7

k, k=0,1,2,...,N. (6.121)

To each eigenvalue A; corresponds an eigenvector ¥, whose entries are the
coefficients of f; (x), given by

N
fe) =) yr(m)x", (6.122)
n=0

Since the eigenvector ¥y must be identified as the stationary probability vector P,
which is normalized, then we should have fy(1) = 1, from which we obtain 4 =
27N Thus

fe(x) =271 4+ x)V R = x)k, (6.123)

which is the generating function of the eigenvectors of 7. In particular fy(x) =
27N (1 + x)V whose expansion gives the stationary distribution P(n) shown by
Eq. (6.108).

Using relations (6.73) and (6.74) between the right eigenvectors v and left
eigenvectors ¢y, we obtain the following relation,

o (n) = 2Ny, (k). (6.124)

Notice the change between k and 7.
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Suppose that initially all balls are in urn A. Then Py(n) = 8,5 so that

N
Py(n) =Y T (n.m)Po(m) = T*(n. N), (6.125)

m=0

or, using the spectral theorem (6.77),

N
Pe(n) = ) Ay (m)gi(N). (6.126)
k=0

If we wish to determine (x"), we multiply this equation by x”, sum over n and use
the generating function. The result is

N N
(x") =Y X" Pen) = Y A S (N). (6.127)
n=0 k=0
Using the result ¢ (N) = (—=1)¥(}) and Eq. (6.123), we get

N
(x"y =21 +x)" + kz::lxﬁ(—nk (Z)z—fv(l + )N Fa=x)k.  (6.128)

Deriving this equation with respect to x and setting x = 1, we get

N N N N 2
=—+AM==4+01-=9" 6.129
(=3 +SH=7+70-1a) (6.129)
which is the result obtained previously. Similarly, we obtain the other moments.
Suppose that we are in the stationary regime and that at time £ there are n balls
in urn A. The probability of having n — 1 balls in urn A at time £ — 1 and the same
number of balls at time £ + 1 is given by

_ T(n—1,mTn,n—1)Pn—1) n?

P P(n) TON?

(6.130)

In same manner, the probability of having n — 1 balls in urn A at time £ — 1 and
n + 1 at the previous time £ 4 1 is given by

_Tn+1,m)T(n,n—1)Pn—1)
N P(n)

n

N

P, - %(1 _ (6.131)
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The probability of having n 4+ 1 balls inurn A attime £ — 1 and n — 1 at time £ + 1 is

_Tn—=1,mT(n,n+1DPn+1)

Fa- P(n)

n n
S5 (6.132)

Finally, the probability of having n 4 1 balls in urn A at time £ — 1 and the same
number of balls at time £ + 1 is given by

_Tn+1,mT(n,n+1DPn+1) N,
= Pa) =(1 N) . (6.133)

Pyy

Therefore, if n is around N, the larger of these four quantities is P—_. This has
the following meaning. Do a series of simulations of the Ehrenfest model and plot
the number of balls of urn A as a function of time. Of all curves that pass through n
at a certain time £, the ones with greatest frequencies are those that at previous time
£ — 1 and that at later time £ + 1 pass through n — 1, that is, those in the form of a
“A” at point (£, n).

6.11 Random Walk

Let us return to the problem of a random walk introduced in Chap.2 and recast it
in terms of a Markov process. At each time step, a particle, which moves along a
straight line, jumps a unit distance to the left or to the right with equal probability.
The possible positions of the particle are n = 0,1,2,..., N — 1. To simplify the
problem we use periodic boundary conditions meaning that, when the particle is in
position n = N — 1, it may jump to n = 0 and vice-versa. The probability of the
transition 7' (m, n) fromntomis T(n—1,n) = T(n+1,n) = 1/2and T(m,n) =0
otherwise.

Here however we permit that the particle may remain in the same place with a
certain probability p. In this case, the stochastic matrix is

1
Tm—1,n)=Tm+1,n) = Eq, (6.134)

T(n,n) = p, (6.135)

where ¢ = 1 — p. In other cases, T'(m,n) = 0. Replacing this in the equation

Pepr(n) = ) T(n,m)Pe(m), (6.136)
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which gives the evolution of the probability P;(n) of finding the particle at position
n at time £, then

1 1
Pypi(n) = ECIPZ(” + 1) + pPy(n) + EqPZ(” -1, (6.137)

wheren = 0,1,2,..., N —1 and we are using periodic boundary conditions so that
Py(N + n) = Py(n). Notice that the stationary probability is P(n) = 1/N.

The stochastic matrix above is an example of a Toeplitz matrix, whose entries of
a certain diagonal are all equal. That is, a Toeplitz matrix 7" has the property

T(n,m)= f(n—m), (6.138)

where f(n) is periodic, f(n + N) = f(n). Notice that f(n) has the properties
f(n) > 0and

Y Sy =1 (6.139)

For the case under consideration, f(1) = f(—=1) = ¢/2, f(0) = p and zero
otherwise. The evolution equation for Py(n) is thus

Pepi(n) =) f(n—m)Pe(m). (6.140)

Any Toeplitz matrix has the following eigenvectors

1. 2
wk(n)zﬁe’k", k:%j, j=012...,N-1. (6.141)

To see this, it suffices to replace these eigenvectors into the eigenvalue equation

3T, m) i (m) = A (). (6.142)

Taking into account the properties of f(n), we get
Ak = Zeik"f(n) = p+qcosk. (6.143)

The left eigenvectors are given by ¢y (n) = e~*".

Using relation (6.77) in the form

Te(n,m) = ) Ay (m)di(m), (6.144)
k
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we get

1 .
T'(n,m) = 5 Z ALekn=m), (6.145)
k

Assuming that at time zero the particle that performs the random motion is at the
origin, then Py(n) = §,0 and

Py(n) =Y T'(n,m)Po(m) = T*(n.0). (6.146)
m
Therefore the probability distribution is given by
1 L ikn 1 L ikn
Pi(n) = N;Akek = N;(p—i-qcosk) e, (6.147)

In the limit N — oo, the summation becomes an integral,
1 g L ikn
Py(n) = oy (p + gcosk) e™dk. (6.148)
T

-

For { large enough, we obtain the result

1 © )
Pun) = 5~ / o4k 12 gikn g (6.149)
T J-co
which gives us
1 —n2/2q

6.12 Recurrence in the Random Walk

Next, we study the recurrence related to the random walk. According to the analysis
made in Sect. 6.9, as long as N is finite any state is recurrent and the mean time of
recurrence is ({) = 1/P(n) = N. When N — oo, the first term in (6.99) vanishes
and the integral

1 (" dk 1 (" dk
Gn,n,z) = — _— . 6.151
(n.m,2) Zn/_,,l—zkk Zn/_,,l—z+zq(1—cosk) ( )




156 6 Markov Chains

Performing the integral,

1
G(n,n,z) = . (6.152)
VU —2)(1 —z+2q2)
We recall that the probability of recurrence of state 7 is
1
Zn) =1— ———. 6.153
(n) Gorn D) (6.153)

When z — 1, the integral diverges according to G(n,n,z) ~ (1 — z)~"/2. Thus,
Z(n) = 1 and any state is recurrent. However, the mean time of recurrence is
infinite. To see this, it suffices to use the formula (6.96).

Next, we study the recurrence of the random walk in two dimensions. A particle
moves in a plane and at each time step it can jump a unit distance east, west, north
or south with equal probability. We denote thus the position of the particle by the
vector n = (ny, ny). The nonzero transition probabilities are

1
T(n,m)= Zq if ni=m£1 or ny=mp=+1, (6.154)

T(n,n) = p, (6.155)

where we used periodic boundary conditions in both directions. The function
f(n) = f(ni,ny)isthus f(n) = iq, if [n| = 1 and f(0) = p, and zero otherwise
so that the eigenvalues are given by

. 1
Ax = Ze”"”f(n) =p+ Eq(cos ki 4 cosky), (6.156)

where k = (k1, k2). The function G(n, n, z) for a finite system is now given by

1 T (" dkidk,
Gn,n,z) = —— . 6.157
mnd = [ 25 (137
or
1 S dkydk;
G(n,n,z) = . 6.158
(n.m.2) (2m)? /_,, /_n 1 —z+ gz(2 —cosk; + cosky)/2 ( )

When z — 1, this integral also diverges. To see this, we analyze the integral in a
neighborhood of the origin. We choose a neighborhood defined by |k| < €, where
€ < 1. The integral above, determined in this region, is proportional to

/ dkdk, /€ 2mkdk ¢ + €2 6.159)
————= —— =gxln , .
a+ki+ki Jo a+k? a
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where a = (1 — z)/qz. We see thus that this integral diverges when z — 1 and the
integral (6.158) also diverges according to G(n,n,z) = m|In(1 — z)|. Therefore,
Z(n) = 1 and, in the plane, any state is recurrent. Here, also, the mean time of
recurrence is infinite. To see this it suffices to use formula (6.96).

In three or more dimensions we should analyze the following integral

/ / diydk . .. dka (6.160)
(2m)? _7, 1—m ' ’

where d is the space dimension in which the random walk takes place and

G(n,n,z) =

1
Ak =p+ Eq(coskl 4+ cosky + ...+ cosky), (6.161)

When z — 1, this integral becomes

d /”/” /” dk\dk, . .. dky
q@m) J_. ). J_rd—(cosky +cosky+ ...+ cosky)

(6.162)

G(n,n,1) =

and again we should look at the behavior of the integral in a certain region |k| <
€ < 1 around the origin. The integral in this region is

dkydks . . . dkg / ckd™! / i3
= dk=c | k'3dk, (6.163)
/k%+k§+...+k§ 0 k2 0

which is finite for d > 3, where ¢ is a constant. Thus, Z < 1, ford > 3.

The above results allow us to make the following statements due to Pélya: in one
and two dimensions any state is recurrent (% = 1), that is, the particle comes back
to the starting point with probability one; in three or more dimensions however this
does not occur; in these cases, the recurrence probability is smaller than one (#Z < 1)
and the particle may never return to the starting point.

In three dimensions

1 Mg /g Mg 3
Gn,n, 1) = dkdkydks.
(.. 1) q(2n)3 /_ﬂ /_7, /_ﬂ 3 — (cosk| + cosky + cosks) 1A
(6.164)
Performing the integral,
1
G(n,n,1) = —1.516386... (6.165)
q

which gives # = 1 — 0.659462...q < 1, while ¢ > 0. Forq = 1,.%Z =
0.340537.. ..
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Exercises

1. A very long chain is constructed by a succession of three types of atoms, A, B,
and C. In this chain, two atoms of the same type never appear together. An atom
of type B succeeds one of type A with probability 1/3 and an atom of type A
succeeds one of type B with probability 1/3. After an atom of type C always
comes an atom of type A. Determine the concentration of each type of atom and
the fraction of the possible pairs of neighboring atoms.

2. A Markov chain is defined by the stochastic matrix 7 and by the initial
probability vector P, given by

0 1/31 1
T=|1/30 o], Py=1|0
2/32/30 0

Determine the eigenvectors and the eigenvalues of 7" and from them find the
probability vector P, at any time .

3. The nonzero entries of a stochastic matrix 7', corresponding to a Markov chain
among three states n = 1,2,3, are given by 7(2,1) = 1, T(3,2) = 1,
T(1,3) = pand T(2,3) = ¢ = 1 — p. Determine the probability P;(n) at
any time £ for any initial condition.

4. A very long chain is constituted by a succession of atoms of two types, A and
B. In this chain, a pair of equal atoms are always succeeded by a distinct atom.
A pair AB is succeeded by an atom A with probability 1/2 and a pair BA is
succeeded by an atom B with probability 1/3. Determine the probabilities of the
pairs of neighboring atoms AA, AB, BA, and BB as well as the probabilities of
A and B.

5. A written text can be understood as a succession of signs, which we consider
to be the letters of the alphabet and the space between them. The text can be
approximated by a Markov chain of several ranges by determining the number
N(x) of each sign x, the number of pairs N(x, y) of neighboring signs xy, the
number of triplets N(x, y, z) of signs in a row xyz, etc. Show that the stochastic
matrices of various ranges can be obtained from these numbers. Use a text of
your choice, for example, Pushkin’s Eugene Onegin, to determine the stochastic
matrix of the Markov chain of range one, two, etc. From the stochastic matrix
generate a text by numerical simulation.

6. Simulate the Ehrenfest model with N balls considering as initial condition that
all balls are in urn A. Do several runs and determine the average number of balls
(n) in urn A as a function of time £. Make a plot of (n)/N versus £/N. From
a single run, build the histogram /A (n) of the number of balls in urn A, in the
stationary state. Make a normalized plot of the histogram versus n/N .

7. Use the Monte Carlo method to determine the average energy and the heat
capacity of a quantum harmonic oscillator. Do the same for a quantum rotor.



Chapter 7
Master Equation I

7.1 Introduction

Consider the stochastic matrix 7'(n,m) of a Markov chain. Suppose that the
transitions occur at each time interval t and that the stochastic matrix is given by

T(n,m)=tWmn,m), n#m, (7.1)
T(n,n)=1-—182(n). (7.2)

Suppose moreover that t is small so that the probability of permanence in the same
state is very close to unity. The property

Z T(m,n) =1 (7.3)
implies
Q)= Y W(m.n). (7.4)
m(F#n)

Next, we examine the evolution of the probability P,(n) of the system being at
the state n at the £-th time interval, which we write as

Pipi(n) = Y T(n.m)P(m) + T(n.n)P(n), (7.5)
m(Fn)
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160 7 Master Equation I
or yet, using Egs. (7.1) and (7.2),

Pei(n) = © Y W(n.m)Pe(m) + Py(n) —t2(n) Pe(n). (7.6)
m(F#n)

Defining the probability of state n at time ¢t = £t by P(n,t) = Py(n), then
P(n,t +7)—P(n,t) _

= Z W(n,m)P(m,t) — 2(n)P(n,1). (1.7)
m(F#n)

T

In the limit T — 0, the left-hand side becomes the time derivative of P(n,) so that

ditP(n,t) = %;)W(n,m)P(m,r)—Q(n)P(n,r). (7.8)

Using Eq. (7.4), we can still write

%P(n,t) = %;){W(n,m)P(m,t) — W(m,n)P(n,1)}, (7.9)

which is the master equation. The quantity W(n,m) is the transition probability
from m to n per unit time, or yet, the transition rate from m to n.

The results above show us that a Markovian stochastic process in continuous time
in a discretized space becomes defined completely by the transition rates W(n, m),
in addition to the initial probability distribution P (7, 0). Given the transition rates,
our aim is to determine the probability distribution P(n, ), solution of the master
equation (7.9), and in particular determine the stationary solution P,(n), which
fulfills the equation

> AW (n.m)Po(m) — W(m.n)Pe(n)} = 0. (7.10)
m(n)

7.2 Evolution Matrix

Examining the right-hand side of the master equation (7.9), we notice that the
summation extends only over the states m distinct from n. Since the element
W(n,n) does not take part of this equation we can use it according to our
convenience. We define W(n, n) so that

> W(m.n) =0, (7.11)
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that is.

W(n.n)=— Y W(m.n)=-2(n). (7.12)
m(n)

Taking into account that, now, all the elements of W(n, m) are determined, we
define the square matrix W, called evolution matrix, as the one whose entries are
W(n, m). It has the following properties:

(a) Any non-diagonal entry is great or equal to zero,
W(n,m) > 0, n#m, (7.13)

(b) The sum of the entries of a column vanishes, Eq. (7.11).

It is clear that the diagonal entries must be negative or zero.
Let ¢ be a column matrix whose entries are v (7). Then, using Eq. (7.12), we see
that

S We.myy(m)y = Y AW (n.m)y(m) — W(m.n)y (n)}. (7.14)
m m(F#n)

Thus, the master equation can be written in the form
Lty = 3 W myPm, 1) (7.15)
—P(n,t) = n,m)P(m,t), .
dt —~

or yet,

d
EPU) = WP(), (7.16)

where P(t) is the column matrix whose entries are P(n,t). The solution of
Eq. (7.16) with the initial condition P (7, 0) is given by

P(t) = " P(0), (7.17)

where P(0) is the column matrix whose entries are P(n,0). These results follow
directly from the definition of the matrix 'V, given by

w 2o Pos o
wo_ W w W
e =1+1tW+ o + 3 + m + ... (7.18)

where [ is the identity matrix.
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The vector P,, corresponding to the stationary probability distribution P, (), is
the solution of

WP, = 0. (7.19)

Given the transition rates, that is, the evolution matrix W, we wish to determine the
conditions that we should impose on W so that the solution P, is unique and

lim P(t) = P, (7.20)
—>00

that is, so that P(¢) approaches the stationary solution for large times. To this end,
we discretize the time t = £ At in intervals equal to At and define the matrix

T =1+ AW, (7.21)

where [ is the identity matrix. For A¢ small enough, T is a stochastic matrix an
therefore it defines a Markov chain so that P(¢) is given by

P(t) = T'P(0) = (I + AtW)*P(0), (7.22)

which reduces to Eq. (7.17) when At — 0.

If the matrix T fulfills the requirements of the Perron-Frobenius theorem, the
stationary solution is unique and it will be reached in the limit ¢ — oo for any
initial condition. Applying the results of Sect. 6.5 to the matrix 7', given by (7.21),
we can make the following statements of general character:

1. The evolution matrix W has zero eigenvalue.

2. The real part of any eigenvalue of W is negative or zero.

3. To the zero eigenvalue corresponds an eigenvector with components non-

negative.

If any state can be reached from any other state, then 7 is irreducible. Being
T irreducible, it is also regular since it always have nonzero diagonal entries, a
result that follows from (7.21) because AT is small enough. Applying the results
of Sect. 6.5 concerning the regular matrices 7', we can make still the following
statements about the matrix W:

4. The zero eigenvalue is non-degenerate and the corresponding eigenvector has all
components strictly positive. In other words, the stationary state is unique and
P,(n) > 0.

. All the other eigenvalues have real part strictly negative.

6. When ¢t — oo the probability P(n,t) converges to P,(n) no matter what is the

initial condition P (n, 0). Notice that this result is valid for finite matrices.

9]

Define the matrix K(z,¢’) by

K(t,1') = ™"V, (7.23)
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The probability distribution at time ¢ is related to the probability distribution at an
earlier time ¢’ < ¢ by

P(t) = K(t.1")P(t) (7.24)
or explicitly

P(n.t) =Y K(n.t:n' .1\ P(n'.1). (7.25)

The element K(n,t;n’,t") of the matrix K(¢,t) is interpreted as the conditional
probability of occurrence of state n at time ¢, given the occurrence of state n’ at time
t', and which we call transition probability. Notice that K(n,t;n’,t") — §(n,n’)
when ¢ — ¢t'. It is worth to note that K(n,¢;n’,t") fulfills the master equation
related to the variables n and 7. Indeed, deriving (7.23) with respect to 7,

d
gK(t,t/) = WK(,1'), (7.26)
or in explicit form
ad
gK(n,t;n’,t’) = Z Wn,n"YKn",t:n' 1), (7.27)

which is the master equation. Therefore, a way of obtaining the transition probability
K(n,t;n’,t") consists in solving the master equation with a generic initial condition,
that is, such thatn = n’ att = ¢'.

Taking into account that WK(¢,t") = K(¢,t")W, then

a%K(z,t’) = K(t,t")W, (7.28)
or explicitly
%K(n,t;n’, )= K@.t;n".(h)Wa".n'). (7.29)
Y
From (7.23) we see that

K@t =K@t t"K1", 1), (7.30)

or in explicit form,
K, t;n't) = Z Km,t;n" YK, t";n', 1), (7.31)

n//
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which is the Chapman-Kolmogorov equations for Markovian processes with dis-
crete states.

7.3 Expansion in Eigenvectors

The solution of the master equation can be obtained from the eigenvectors and
eigenvalues of the evolution matrix W. Denote by {y} and {¢} the right and left
eigenvectors, respectively, and by {1, } the corresponding eigenvalues, that is,

Wi = A, oW = Aoy (7.32)

We assume that the eigenvectors form a complete and orthogonalized set, that is,
they have the following properties

¢ =8k, > g =1, (7.33)
k

where [ is the identity matrix.

We point out some fundamental properties of W. The stationary probability P, is
an eigenvector with zero eigenvalue. Denoting by ¥ the eigenvector corresponding
to the zero eigenvalue Ay = 0, we see that they coincide, ¥y = P,. Moreover, the
corresponding left eigenvector ¢ is a row matrix with all entries equal to unity.
Indeed, Eq. (7.11) can be written as

> po(m)W(n.m) =0, (7.34)

or yet ¢oW = 0. The normalization of P, gives us ¢ P, = 1 thatis ¢oyo = 1.
Consider now the following expansion

eV =Vl =¢" Z Vi = Ze”k Vi, (7.35)
k k

from which we obtain

P(t) =) ™ gy P(0). (7.36)
k

Since one of the eigenvalues is zero, we can still write

P(t)y=P.+ Y ™y P(0). (7.37)
k(z£0)
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where we used the fact that ¢y P(0) = 1 since P(0) is normalized. We have seen
above that the eigenvalues of the matrix W are negative or zero. We have also
seen that one class of matrices W has non-degenerate zero eigenvalue. From these
properties, it follows that lim P(t) = P, when ¢t — oo.

In explicit form, Eq. (7.37) is written as

P(n.1) = Pe(n)+ Y e™yi(n) Y gu(n) P(n'.0). (7.38)
k(s£0) n

If at the initial time P (n,0) = 8,,,, then

P(n.1) = Pe(n) + Y e™yi(n)i(no). (7.39)
k(#0)

Using the expansion in eigenvectors, given by (7.35), we obtain an explicit form
for the transition probability K(n,t;n’,t"). From (7.35), and the definition (7.23),
we get

K(t.t') =) ey, (7.40)
k

Taking into account that ¥ is a column matrix and ¢y is a row matrix, then we may
conclude that the elements of K(n,t;n’,t’) are given explicitly by

K(n.oin' 1) = 3 ey (mypic (). (7.41)
k

Example 7.1 Consider the evolution matrix W given by

W = (_Z _Z) , (7.42)

where a and b are transition rates. The eigenvectors and eigenvalues are given by

1 b
¢o=(11), %—aer(a), Ao =0, (7.43)
- — b =( ! A= b 7.44
¢l_a+b(a_)’ Wl—(_l), 1 = —(a+b). (7.44)

The eigenvector ¥ represents the stationary probability. From

e™ = e yopo + ey g, (7.45)
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we get

1 bb e—t(a-‘rb) a—b
W __
¢ _a+b(aa)+ a+b (—a b)' (7.46)

For the initial probability

P(0) = (p‘), (7.47)
P2
we reach the result
1 b e—t(a+b) 1
14 — _
P(t) =™ P((0) = P (a)+ PR (ap, bpz)(_l), (7.48)

which gives the probability of the two states at any time. When t — oo, we obtain
the stationary probability.

7.4 Recurrence

Here we analyze the problem of first passage and recurrence. That is, we are
interested in determining the probability that a state is reached for the first time
starting from a certain state. More precisely, starting from the state m att = 0, we
want to determine the probability of the occurrence of state n between ¢ and r 4 At,
without it having been reached before time 7. The ratio between this probability and
At we denote by R(n,t;m,0). Extending formula (6.86) of Sect. 6.9 to continuous
time, we get the following equality, valid for n # m,

t
K(n,t;m,O):/ K@, t;n,tYR(n,t';m,0)dr, (7.49)
0

where K(n,t;m,t') is the conditional probability of occurrence of state n at time

t given the occurrence of state m at time ¢’. We have seen in Sect.7.2 that it is the

solution of the master equation with the initial condition n = m at time ¢ = ¢'.
Defining the Laplace transforms

o0
K(n,m;s):/ K(n,t;m,0)e "dt, (7.50)
0

o0
R(n,m;s):/ R(n,t;m,0)edt, (7.51)
0
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then Eq. (7.49) becomes

Ie(n,m;s) = I%(n,n;s)lé(n,m;s), (7.52)
from which we get
A KA' ) 5
Rin.m:s) = K@.m:s) (1.53)
K(n,n;s)

a result valid for n # m.
To determine R(n,t';m,0) when n = m, we extend formula (6.88) of Sect. 6.9
to continuous time, which becomes

a(n)R(n,n;t) = Z R(n,m;t)W(m,n), (7.54)
m(#n)

where a(n) = Zm(#) W(m, n). Taking the Laplace transform

a(n)lé(n,n;s) = Z W(m,n)ﬁ(n,m;s). (7.55)
m(#n)

Using (7.53) and the result (7.29), we reach the following formula

. 1 1
Rn,n;s =1- — — 5. (7.56)
( ) a(n) (K(n,n;s) )
The probability of recurrence Z(n) of state n is
o0 A
R(n) = / R(n,n,t)dt = R(n,n,0), (7.57)
0
and therefore
1
Zmn)=1-— (7.58)

a(n)Ie(n,n;O)'

If If'(n, n;0) — oo, then Z(n) = 1 and state n is recurrent.

7.5 Absorbing State

Consider a stochastic process described by the evolution matrix W(n, m) such that,
if W(n,m) # 0, then W(m,n) # 0. In other terms, if the transition m — n
is allowed, so is the reverse n — m. The conditional probability K(n,m,t) of
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occurrence of state n at time #, given the occurrence of sate m at time zero, is the
solution of the master equation

d ,
EK(n,m,t) = Z Wn,nYK@n',m,1), (7.59)
where
Wn,n) =— Z W', n), (7.60)
n’(F#n)

and recall that K(n,m,0) = §(n, m).

Consider now another process, that differ from the previous only through the
transition that involves a single state, which we choose to be the state n = 0. The
rate of transition from n = 0 to any other is zero, which means that the transitions
from n = 0 to any other state are forbidden and therefore the state n = 0 is
an absorbing state. The master equation, that governs the time evolution of the
probability P*(n,t) of occurrence of state n at time ¢, is given by

d , .
P = %;O) W(n,n')P*(n',1). (7.61)

Notice that the probability P*(0,¢) do not appear in any equation except in
equation for n = 0, which we rewrite as

d * *
P00 = %;O) W(0,n")P*(n’, ). (7.62)

Therefore the probabilities P*(n,t), for n # 0, can be obtained using only
Eqgs. (7.61), for n # 0. With this purpose, we introduce a set of auxiliary variables
P(n,t), that coincide with the probabilities P*(n,t), except P(0,t), which we
choose as being identically zero. The equation for P (n, ) is given by

%P(n, 1) = Z Wn,n')P(n',t) — 8(n,0)®(1), (7.63)

where @ () is a parametric function that should be chosen so that P (0, t) = 0. With
this restriction, we see that Eqgs. (7.63) and (7.61) are indeed equivalent for n # 0
and hence

P*(n,t) = P(n,1) n # 0. (7.64)
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Moreover, the application of restriction P(0,¢) = 0 into Eq.(7.63), forn = 0,
shows us that @(¢) becomes identified with the right-hand side of (7.62) entailing
the result

d ., _
d—tP 0,1) = &(1), (7.65)

which tell us that @(¢) must be interpreted as the flux of probability to the absorbing
state, that is, the rate of increase of the absorbing state probability.

The next step is to solve Eqs. (7.63). The initial condition we choose is P(n,0) =
P*(n,0) = &(n,m), where m # 0. To this end, we start by taking the Laplace
transforms of Egs. (7.59) and (7.63),

sK(n,m,s)—8(m,m) = ZW(n,n/)Ie(n/,m,s), (7.66)
sP(n.s)—8(n.m)=> Wn.n )P s)—58n. 0)d(s). (7.67)

With the help of (7.66), we see that the solution of (7.67) is given by
P(n.s) = K(n,m,s)— ®(s)K(n,0) (7.68)

what can be verified by substitution. It remains to determine qﬁ(s)_ Recalling that
P(0,s) = 0, since we should impose the restriction P(0,¢) = 0, we find

. K(0,m,s)
D(s) = —— . 7.69
(s) 20.0.5) (7.69)

The probabilities P*(n,t), for n # 0, are determined since, in this case,
P*(n,s) = P(n,s), which is given by (7.68). To determine P*(0,¢) we take the
Laplace transform of (7.65), to get

P*0,5) = qjgs), (7.70)

recalling that P*(0,0) = 0 since the initial state is distinct from the state n = 0.
When we compare formulas (7.69) and (7.53) we see that the problem of first

passage through a certain state of a stochastic process is equivalent to the same

stochastic process in which this state is converted into an absorbing state.
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7.6 Time Series Expansion
We have seen that the solution of the master equation in the matrix form

d

d_tP(t) = WP(2), (7.71)

with the initial condition P (0), is given by

P(t) = " P(0), (7.72)
or in explicit form
P SN
P(f)={1+tW+5W + W +...}P(0). (1.73)

If W is determined for any ¢, then (7.73) gives the solution of the master equation
in the form of a time series.

Example 7.2 Consider the simplest case of a system with two states n = 1, 2 with
the evolution matrix W given by

—y/2v/2 )
W = ) (7.74)
(V/ 2 —y/2
It is easy to see that
Wt = (—y)='w, 0=1,2,3,..., (7.75)

so that
N tt 1t 1
wo_ Pt LN A (1 oty
e _I+Z€!W _I+WZ€!( V) _1+y(1 eTNW,  (1.76)
(=1 =1
where [ is the 2 x 2 identity matrix. Hence
1
P(t) = P(0) + —(1 — e ")WP(0), (7.77)
4
or, explicitly,

P(1,1) = %(1 —e )+ e P(1,0) (7.78)
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and
1 —t —t
PQ2,t) = 5(1 —e )y +eVP(2,0). (7.79)

In the limit ¢ — oo, we get P(1,¢) — 1/2 and P(2,t) — 1/2 no matter the initial
condition.

In the example above all terms of the time series could be calculated explicitly.
However, in many cases, it is impossible from the practical point of view to calculate
all terms. If a certain number of them can be calculated, then the truncated series
may be extrapolated by other means. If this is possible, then the time series becomes
a useful tool to obtain the time dependent properties. This approach requires that the
relevant properties may be developed in time series.

To determine the time expansion of the average

(F)=>_Fm)P(n.1). (7.80)

of a state function F(n), we proceed as follows. We start by introducing the row
matrix £2, which we call reference vector, whose components are all equal to one,
£2(n) = 1. Then, the matrix product £2 P(¢) is given by

QP =) QmPn.1)=Y Pn.1) =1 (7.81)

An important property of the reference vector £2 is
W =0, (7.82)
which is obtained from the property (7.11).

Next, we define a square matrix ' whose nondiagonal entries vanish and the
diagonal entries are F(n). With this definition, the average (F') can be calculated
by the formula

(F) = QFP(1) (7.83)

since

QFP(t) =Y 2m)F(n)P(n.1) =Y Fn)P(n.1). (7.84)
Using the time expansion (7.73) of P(¢) in (7.83), we get

t? 3
(FY=QF{I +tW + 5W2 + §W3 + ... }P(0). (7.85)
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Therefore

(F) = fo+ Y ' fi, (7.86)

=1
where the coefficients are given by
Jo = 2FP(0), (7.87)
which is the average of F at time f = 0, and

1
fi = EQFW‘P(O), 0> 1. (7.88)

Now we examine the Laplace transform of P (¢) given by

P(z) = / ” P(t)e “dr. (7.89)
0

Using the time expansion (7.73) and taking into account the identity

L[ gy = L 7.90
E A te = F, (7.90)
then
. 1 1 Lo, 1o,
P(Z):{EI+Z_2W+Z_3W +Z_4W +...;P(0). (7.91)

But the sum between brackets is identified with the inverse of the matrix (zI — W),
which we denote by (zI — W)™!, that is,

o 1 1 I, 1 3
@[=W)y" =-1+ZW+ W+ W +... (7.92)
z Z z Z
so that
P(2) = — W) P(0). (7.93)
Similarly, we obtain the Laplace transform of the average ( F') given by
oo A
/ (Fle™@dt = QFP(z) = QF @ — W)™ P(0), (7.94)
0

which is obtained by using Eqs. (7.83) and (7.92). The stationary probability P(c0)
is determined by means of the formula lim,—, oo P(¢) = lim,— 2P (2).
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7.7 Perturbation Expansion

Suppose that we wish to calculate the stationary vector P corresponding to the
evolution matrix W, that is, we want to know the solution of

WP = 0. (7.95)
To do a series expansion, we imagine that W can be written in the form
W =W+ AV, (7.96)

where W, is the nonperturbed evolution matrix and AV the perturbation. We intend
to obtain the properties of the system described by the operator W as power series
in A. We suppose that the sets of the right eigenvectors {v, }, the left eigenvectors
{¢,} and the eigenvalues { A, } of the evolution matrix W, are known. They obey the
equations

Wo% = An an ¢n WO = An¢n- (797)

We denote by Ay = 0 the zero eigenvalue of W,. The corresponding right
eigenvector o is identified as the stationary vector Py of W, and the left
eigenvector ¢y as the reference vector £2, that is,

Yo = Po, Po = £2. (7.98)

In addition, we have the following properties

PV = Sy D Uutn =1, (7.99)

where [ is the identity matrix. From these results, it is easy to see that Wy has the
expansion

Wo =Y Yulnn. (7.100)
n(#0)

where the term n = 0 has been excluded since Ay = 0. To see this, it suffices to
use the identity Wy = W, I and the properties contained in the expressions (7.97)
and (7.99).

Next, we assume that P can be developed in a power series in A, that is,

P=Py+ AP+ AP, + X3Py +.... (7.101)
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Inserting this in (7.95) and taking into account (7.96), we obtain the following
equation

(Wo + AV)(Po+ AP, + 2P, + A3P; +..) = 0. (7.102)
As the coefficients of the various powers of A must vanish, we conclude that
WoPy = —VPy_y, {>1. (7.103)

Multiplying both sides of Eq. (7.101) by 2 and taking into account that 2P = 1
and that £2 Py = ¢pyp = 1, we obtain one more property

QP, =0, € #0. (7.104)

Next, we define the matrix R by

1
R= D Yugtn. (7.105)
n(7#0)
which has the property
RWo = WoR =1 — Yoo = I — PyS2. (7.106)

That is, the matrix R is the inverse of the matrix W, inside the subspace whose
vectors are orthogonal to the vector . To check this property, is suffices to multiply
the expression of the definition of R by the expansion of W), given by (7.100), and
use the orthogonality (7.99) among the eigenvectors of Wj.
Multiplying both sides of Eq.(7.103) by R and using the property (7.106), we
get
(I — Py§2)P; = —RVPy_4, L>1 (7.107)
But, from (7.104), 2P, = 0 for £ > 1 so that
Py = —RVP,_,, £>1. (7.108)
which is the equation that gives P, recursively. From this equation, we get
Py = (=RV)(—=RV)...(=RV)Py = (—=RV)" Py, (7.109)
which gives Py from Py. Replacing in the expansion (7.101), we finally obtain

o0
P =Py+ Y (=ARV)'P,. (7.110)
(=1
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In view of

o0
(I +ARV)™ =1+ (—=ARV)
(=1

we may write
P = (I +ARV)"'P,.
The average (F'), given by
(F) = Q2FP,

can be calculated by using expression (7.110) for P, that is,

(F) = QFPy+ Y _ QF(-ARV)'P,.

(=1
or
o0
(F)=fo+ D A fi,
=1
where
fo = Q2FPy, fi = QF(—RV)‘P,.
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(7.111)

(7.112)

(7.113)

(7.114)

(7.115)

(7.116)

Thus, if we are able to determine the coefficients f;, we have the development of

the average (F') in powers of A.

7.8 Boltzmann H Theorem

Define the function H (¢) by

Pu(1)
Pe

n

3

H(t) =) P f(x), (1) =

(7.117)

where f(x) is a differentiable and convex function such that f(x) > 0, what implies
H(t) > 0. We use the notation P,(t) and P¢ in the place of P(n,t) and P,(n),

n
respectively.
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Deriving the function H(¢), we get

dH , dp,
o 7.118
" Z 1)~ (7.118)
and therefore
dH , . .
dr - Z 1) Z {WamXm Py — Wonxn P} (7.119)
" m(F#n)

Multiplying both sides of Eq. (7.10) by an arbitrary function A, and summing in n
we obtain

> Ay D WPl = W P} =0, (7.120)
n m(En)

which added to the previous equation results in

dH
0= 2 A S Ca) + A Wan Py = (6 f () + AW P}, (7121)
n,m(n#m)
or
dH , / e
0= 2 4GS Ca) A = Conf (o) + An)iWan Py (7.122)
n,m(n#m)

If we choose A, = f(x,) — x, f'(x,) we obtain

" - D A = xa) £ (X)) + ) = f )} Wom P (7.123)

dt n.m(n#m)

For a convex function, the expression between brackets is always strictly negative,
if x,, # x,,. If x,, # x,, for some pair m, n such that W(n, m) # 0, then dH/dt < 0
and the function H (¢) must decrease. Since H is bounded from below, H(¢) > 0, it
must approach its minimum value, that is, it must vanish when ¢ — co, what occur
if, for any pair n, m such that W,,, # 0, we have x, (c0) = x,,(c0). If the evolution
matrix W is such that any state can be reached from any other state, then x,,(co)
must have the same value for all possible values of n, from which we conclude that
P, (o0) is proportional to P¢. Since P, (o0) is normalized, then P, (00) = Py.

The choice f(x) = x Inx —x + 1 results in the function H originally introduced
by Boltzmann,

Py(t)
Pe

H(t) =) P,(1)In (7.124)
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7.9 Microscopic Reversibility

When the transition rates W(n,m) are such that the stationary probability P,(n)
fulfills the equation

W(n,m)P,(m) — W(m,n)P,(n) =0, (7.125)

for any pair of states m and n, we say that they obey detailed balance. In this case, we
say that P, (n), in addition to be the stationary probability, is also the thermodynamic
equilibrium probability. However, we should remark that the fulfillment of the
detailed balance is a property of the evolution equation W. Some matrices, that
is, some processes obey detailed balance, others do not.

The detailed balance condition is equivalent to microscopic reversibility. The
transition probability m — n in a small time interval At¢, in the stationary state,
is equal to (At)W(n,m)P,(m), while the probability of the reverse transition
n — m is equal to (At)W(m,n)P,(n). If Eq.(7.125) is satisfied, then these two
probabilities are equal for any pair of states m and n.

We can in principle establish whether a certain process obey the microscopic
reversibility without appealing to Eq. (7.125), that is, without knowing a priori, the
stationary probability. Consider any three states n, n’, and n” but distinct. In the
stationary state, the probability of occurrence of the closed trajectory n — n’ —
n"” — nis

AtW(n,n"YAW ", n ) AtW (@', n) P, (n), (7.126)
while the occurrence of the reverse trajectory is
AtW(n,nYAtW (@', n")AtW(@n" ,n) P, (n). (7.127)
If reversibility takes place, these two probabilities are equal, so that
W, n"YWm", 0 YWn',n) = Wh,n Y Wn',n"YWhn", n), (7.128)
which is the sought condition.

An important property of the evolution matrices W that fulfills the detailed
balance is that their eigenvalues are all real. Defining the matrix W by

W(m,n) = LW(m,n)X(n), (7.129)
x(m)

where y(n) = /P.(n), we divide both sides of Eq.(7.125) by x(m)y(n) and
conclude that W is symmetric. Now, dividing both sides of the eigenvalue equation

> W(m.n)yi(n) = Ay (m) (7.130)
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by y(m) and using Eq. (7.129), we get

- Vi(n) . Yi(m)
Xn:W(m,n) i Ak o) (7.131)

that is, W has the same eigenvalues of W and its eigenvectors have components
Y (n)/ x(n). Since W is symmetric and real, its eigenvalues are real. Therefore, the
eigenvalues of W are real.

7.10 Entropy and Entropy Production

One way of characterizing the systems that follow a stochastic dynamics can be
done by means of the averages of the various state functions such as, for example,
the energy of the system. Denoting by E,, a state function, for example the energy,
its average U = (E,) is

U(t) =Y E,P,(1). (7.132)

Another quantity, that may also be used to characterize the system, but cannot be
considered as an average of a state function, is the entropy S, defined according to
Boltzmann and Gibbs by

S() =~k > Pu(t)In P, (). (7.133)

where k is the Boltzmann constant.
We determine now the time average of the quantities above. First, we have

du d
— :ZEnd—tPn. (7.134)

In the stationary state we see that dU/dt = 0 so that the average of a state function
remains constant in the stationary state. Using the master equation,

du
- = En I/Vnum - WmnPn s 7.135
— Zm { } (7.135)

or

dU
o= > (En = Ep)Won P (7.136)
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Next, we determine the time variation of entropy,
ds d
- =k Zn:(ln Pu) 2 Po- (7.137)

There is a second term ), dP,/dt which vanishes identically since P, is normal-
ized. In the stationary state we see that dS/df = 0 and hence the entropy remains
constant in the stationary sate. Using the master equation,

ds
= —k %ﬂ:ln Pou{ W Py — Wy P}, (7.138)
which can be written as
ds P,
o= —k > " Won Py 1nP—m. (7.139)

nm

According to the laws of thermodynamics, the energy is a conserved quantity.
The variation in energy of a system must be, thus, equal to the flux of energy from
the environment to the system. Therefore, we write Eq. (7.136) in the form

du
-0, 7.140
o ( )

where

P, = Z(En — En)Won Py (7.141)

nm

and we interpret @, as the flux of energy per unit time from the system to the
environment.

On the other hand, still in accordance with the laws of thermodynamics, the
entropy is not a conserved quantity. It remains constant or increase. Therefore, the
variation of entropy must be equal to the flux of entropy from the environment plus
the internal production of entropy. Therefore, we write Eq. (7.139) in the form

§ =11—-9, (7.142)
dt
where @ is the flux of entropy from the system to the environment and I7 is the
entropy production rate.

The entropy production rate 7 is a part of the expression on the right-hand side
of (7.139). According to the laws of thermodynamics, the entropy production rate /7
must have the fundamental properties: (1) it must be positive or zero; and (2) it must
vanish in the thermodynamic equilibrium, which we assume to be the regime for
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which microscopic reversibility holds. Thus, we assume the following expression
for the entropy production rate

W P,
M=k) WyPyln " (7.143)

I/1/}1]‘)1 Pm

Comparing the right-hand side of (7.139), which must be equal to IT — &, we get
the following expression for the flux of entropy from the system to the environment

I/an
D=k Z Won Py In 2 (7.144)

nm

Expression (7.143) has the two properties mentioned above. To see this, we
rewrite (7.143) in the equivalent form

k Won P
nm=3 %;{WmnPn — Wy P} 1n W—m (7.145)

Each term of the summation is of the type (x — y) In(x/y), which is always greater
or equal to zero so that /T > 0. In thermodynamic equilibrium, that is, when
microscopic reversibility takes place, W,,, P, = W,,, P,, for any pair of states and
therefore IT = 0. As a consequence, @ = 0. The flux of entropy & can also be
written in a form similar to the entropy production rate given by (7.145),

k WWIV!

In the stationary state, that is, when
Z{WmnPn - I/Vnum} =0, (7.147)
m

then [T = @ since dS/dt = 0. If the system is in a stationary state which is not
equilibrium, then the entropy production rate is strictly positive, IT = @ > 0.

A system in contact with a heat reservoir at a certain temperature 7 is described
by the following transition rate

Wim = Anme_(E”_Em)/ZkTa (7.148)
where A,,, = A, so that

Wom _ q=EEwi (7.149)
I/an
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In this case, the entropy flux is

1 1

Using the relations (7.140) and (7.142), we reach the result

du das
——-T—=-TII 7.151
dt dt ( )

Defining the free energy F = U — T'S we see that

aF =-TII, (7.152)
dt
from which we conclude that dF/dt < 0 so that F(¢) is a monotonic decreasing
function of time.

For systems that in the stationary state are found in thermodynamic equilibrium,
the equilibrium probability is given by the Gibbs distribution

e 1 -
P¢ = ~e En /KT (7.153)

In this case, the Boltzmann H function is directly related with the free energy F' =
U — TS. Indeed, from (7.124), we see that

1
H :Zn:Pn(t)lnPn—i—ﬁZn:PnEn—i—an, (7.154)
and therefore
S U F F
H=-"4 " 4InZ=——-2, 7.155
Kk T T YT T (7.155)

where Fy = —kT In Z is the equilibrium free energy. Therefore H = (F — Fy)/kT
and the property dH /dt < 0 follows directly from dF/dt < 0, as shown above.

7.11 Transport Across a Membrane

A model for the molecular transport across a cellular membrane is sketched in
Fig.7.1. There are two types of molecules that cross the membrane: molecules of
type A, represented by a large circle, and molecules of type B, represented by a
small circle. The transport is intermediated by complex molecules, which we call
simply complexes. These complexes are found in the membrane and can capture or
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Fig. 7.1 Mechanism of transport of molecules across a cellular membrane according to Hill
(1977). The large and small circles represent two types of molecules. In conformations 1, 2, and 3,
the molecules communicate with the inside (/) and in conformations 4, 5, and 6, with the outside
(O) of the cell. The possible transitions between the six states are indicated at the right

release molecules of both types that are inside or outside the cell. A complex can be
found in two states, as shown in Fig.7.1. In one of them, which we call state I, the
complex faces the inside of the cell and therefore the complex captures and releases
molecules found inside the cell. In the other, which we call O, the complex faces
the outside of the cell and therefore the complex captures and releases molecules
found outside the cell. We assume that the rate of I—0 is equal to the rate of O—1.
According to the Fig. 7.1, a complex cannot hold a molecule of type B that is alone.
This property means that a molecule of type B can be captured only if the complex
holds already a molecule of type A and that a molecule of type A can only be
released if the complex does not hold a molecule of type B.

It is convenient to identify the membrane, constituted by the complexes and
by the captured molecules, as being the system object of our analysis. We also
assume that this system is open, that is, the system exchanges molecules with
the environment, composed by the inside and outside of the cell. The inside and
outside of the cell act like two reservoirs of molecules, which we call reservoir I
and O, respectively, with chemical potentials distinct for each type of molecule.
Assuming that the outside and the inside are diluted solutions with respect to
both components A and B, then the concentrations of these components can be
considered as proportional to e*/*T where  is the chemical potential of the
component considered, k is the Boltzmann constant and 7" the absolute temperature.

According to the rules above, the model of the transport of molecules across
the membrane is described by the six states shown in Fig.7.1 and by the rate of
transitions among these states. The rate of transition i — j is denoted by aj;. The
rates ayj, a2, ax and ays are assumed as being those describing the contact with
the reservoir I so that they fulfill the relations

a 1 a I
2L oHh/AT D32 _ onp/kT (7.156)
ain an3
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where ,uﬁl and p,g are the chemical potentials of molecules A and B with respect to
reservoir I. Similarly, ase, aes, ass and a4s describe the contact with the reservoir O
and fulfill the relations

ase [ ass 0
2 = ehalkT —= = eHs/kT (7.157)
aes asy

where 1§ and 1§ are the chemical potentials of molecules A and B with respect to
reservoir O. As to the other rates, which describe the movement of the complex, we
assume that the inversion of the complex occur with the same rate. Thus, we adopt
the following relation between these rates

a6 _ s _ . e (7.158)
aegl asy ags

The master equation that describes the evolution of the probability P;(f) of
finding the system in state i is given by

dP;
Ttl = ;{a,jpj —a;P;}. (7.159)

Defining J;; by
Jij = ayP; —a; Py, (7.160)

the master equation can be written as
dpP;
— = > Uy (7.161)
J

The number of complexes in conformation i is proportional to the probability P;.

The flux of molecules across the membrane can be written in terms of the
quantities J;;. The flux of molecules of type A from the system to I is denoted by
J ! and from the system to O, by J AO . These fluxes are given by

Ji = Jn, J9 = Jss. (7.162)
In the stationary state, J /{ +J AO = 0. Similarly, the flux of molecules of type B,
from the system to I is denoted by J é and from the system to the outside of the cell,
by J BO . These fluxes are given by

Ji = T, I = Jsa. (7.163)

In the stationary state, J} + J§ = 0.
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As long as the chemical potentials are distinct, the system will be found out of
thermodynamic equilibrium and there will be entropy production even in the sta-
tionary state. The difference between the entropy production rate I7 and the entropy
flux @ equals the variation in entropy of the system, dS/dt = I1 — ®. According
to (7.146), the entropy flux from the system to the environment is given by

k aij
d = E;J"'lna_ﬁ' (7.164)

Using the relations that exist between the transition rates, we reach the result

1
@ == (il + Ty wp +I7 G+ T 1), (7.165)
In the stationary state —J ¢ = J! = Jyand —J¢ = J} = Jp. Moreover, [T = &
and therefore we obtain the following formula for the entropy production rate in the
stationary state

IT=JsX4+ JpXp, (7.166)
where X4 and Xp, given by

ma — 1 MG — 1
X4 = i Xp = T (7.167)
are called generalized forces. Notice that J4 and Jp are the flux of molecules A and
B, respectively, from the outside to the inside of the cell. Notice yet that X4 > 0
and X g > 0 favor the flux of molecules from the outside to the inside of the cell.

The model that we are analyzing is able to describe the flux of molecules of type
B against its concentration gradient. To see this, we consider that the concentration
of B is larger inside than the outside the cell implying % > ,ug or Xp < 0. We
wish to have a flux of B from the outside to the inside, Jg > 0. This situation
can occur provided the product J4 X 4 is larger than Jp|X | since IT > 0. Thus, it
suffices that the concentration gradient of A is large enough. This situation is shown
in Fig. 7.2, where the fluxes, obtained numerically, are shown as functions of X p for
a given value of X4 > 0. The values of the rates are fixed at certain values. There is
an interval where, although Xp < 0, the flux Jz > 0. In this figure, we show also
the entropy production rate /1 versus X . As expected, IT > 0.

In thermodynamic equilibrium, both the forces X 4 and X and the fluxes J4 and
Jp vanish. Around equilibrium we assume that the fluxes can be expanded in terms
of the forces. Up to linear terms,

Ja=LaaXs+ LapXp, (7.168)

Jp = LpaX4 + LpgXp, (7.169)
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Fig. 7.2 Fluxes and entropy production related to the model represented in Fig. 7.1. (a) Fluxes of
molecules J4 and Jp as functions of Xz = Apup/T for a fixed value of X4 = Ap,/T. Notice
that there is an interval in which Aug < 0 and Jp > 0. In this situation, the flux of molecules
of type B occurs in opposition to the concentration gradient. (b) Entropy production rate IT as a
function of X . The minimum entropy production occurs for X p corresponding to Jz = 0

where the coefficients Laa, Lap, Lpsa and Lpp are the Onsager coefficients. These
relation show that the flux of molecules of a certain type can be induced not only
by the force related to this type but also by the force related to the other type, as
long as the cross coefficients Lps and L4p are nonzero. However, if one coefficient
vanishes so will the other because, according to Onsager, the cross coefficients are
equal

Lga = Lag (7.170)

which is called Onsager reciprocity relation.

Exercises

1. One way of solving numerically a Fokker-Planck equation is to discretize
it. The spacial discretization of a Fokker-Planck equation results in a master
equation. Show this result for the Smoluchowski equation using the following
approximations for the first and second derivatives of the spacial function F(x):

F(x + Ax) — F(x)
Ax '

F(x + Ax) —2F(x) + F(x — Ax)
(Ax)? '

Find the transition rates.
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2. Consider the following evolution matrix W corresponding to a system of two

states 1 and 2:
W = ,
(b —61)

where b is the rate of the transition 1 — 2 and q is the rate of transition 2 — 1.
Determine the powers W ¢ and from them obtain the matrices " and (z/—W)~!.
Determine then the probability vector P(¢) and its Laplace transform P (z), using

the initial condition
P(0) = (p ! ) .
P2

Determine P (oo) through P(00) = lim,—¢ <P (2).
3. Consider a system with two states described by the evolution matrix of the
previous exercise. Choosing

11 01
Wy = b . v= . A=q-—bh.
0 (1 —1) (0—1) 1

determine the eigenvectors of Wy and from them calculate R. Obtain then the
expansion of the stationary probability vector P of W in powers of A. Next,
perform the summation.

4. Use the property RWy = I — Py£2 and the equation W = W, 4+ AV to show that
Py = (I + ARV) P and thus arrive at Eq. (7.112).
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8.1 Creation and Annihilation Process

We study here the processes that can be understood as a random walk along a
straight line, but with transition rate that depend on the position where the walker
is. The possible positions of the walker along the straight line are the non-negative
integers. At each small time interval Az, the walker at position n jumps to the right,
to the position n + 1, with probability (At)a,, or to the left, to position n — 1, with
probability (A¢)b,. Therefore, the transition rates W,,, are given by

Wn+l,n = dap, Wn—l,n = b,. (8.1)

The other transition rates are zero. The master equation becomes

d
EPn(t) = bn+1Pn+1(t) + an—an—l(t) - (an + bn)Pn(t) (82)

When a,, and b, are independent of n and equal, we recover the ordinary random
walk. The stochastic process described by this equation is called creation and
annihilation process because, if we imagine a system of particles and interpret the
variable n as the number of particles, then the increase in n by one unit corresponds
to the creation of a particle and the decrease of n by one unit as the annihilation of
one particle. Sometimes, the process is also called birth and death process.

The time evolution of the average ( f(n)) of a function of the stochastic variable
n is obtained by multiplying both sides of Eq. (8.2) by f(n) and summing over 7.
After rearranging the terms, we get

d
) ={fn+ D= fmlan) +([f(r = 1) = f(m)]bn). (8.3)
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From this formula we obtain the time evolution of the first moment,

%(”) = (a, — by). (8.4)
and of the second moment,
%(Iﬂ) = Z(n(an - bn)) + ((an + bn)) (8.5)

If the transition rates a,, or b, are not linear in n, the equation for a certain moment
will depend on the moments of higher order. From these two equations we get the
evolution of the variance

40— 007 = 200 — (@)~ o+ B+ (@ + b)) 66)

Example 8.1 Consider a process such that

a, = a(N —n), 8.7
b, = bn, (8.8)
where a and b are positive constants and n = 0,1,2,..., N. When a = b this

process is the continuous time version of the Ehrenfest urn model seen in Sect. 6.10.
If a # b, the process can also be understood as a continuous time version of
the Ehrenfest model such that one of the urns has preference over the other. The
equation for the average X = (n) is given by

ax N —cX (8.9)
— = alN —cX, .
dt

where ¢ = a + b. The solution of these equation for the initial conditionn = N at
t=0is

X =N(p+qe™), (8.10)

where p = a/c andq = b/c = 1 — p. The time evolution of Y = (n?) is given by

dy
- =aN+ (2aN —a +b)X 2. 8.11)

From this equation for ¥ and the equation for the average X, we get the following
equation for the variance Z = (n?) — (n)> =Y — X?

7
le_t =—-2¢Z+aN —(a —b)X, (8.12)
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whose solution is
Z =Ng(l —e ") (p + ge™). (8.13)

When p =g = 1/2,

Z = %(1 — e, (8.14)

8.2 Generating Function

In some cases, the solution of the master equation can be obtained by the use of the
generating function. Consider the following master equation

%Pn(t) = b(n + 1) Puy1(t) — bnPy (1), (8.15)

valid forn = 0,1,2..., where b is a parameter. It describes a process in which
there is only annihilation of particles. As a consequence, if initially » = N, then the
possible values of n are n = 0,1,2..., N, only. The generating function G(z,?) is
defined by

N
G@1) = (") =) P,()2". (8.16)
=0

The approach we use consists in setting up a differential equation for G(z,t) from
the master equation. Solving this equation, the expansion of the generating function
in powers of z gives the probability distribution P, ().

Deriving both sides of Eq. (8.16) with respect to time and using (8.15), we get

G G
b= 17
ot b1 -2) 0z @17

This equation is solved by the method of characteristics, which consists in compar-
ing (8.17) with

0G 0G
—dt+ —dz=0. 8.18
ot + 0z ¢ ( )

The equations becomes equivalent if

dz 4+ b(1 —z)dt = 0, (8.19)
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whose solution is (1 — z)e™” = const, which is the characteristic curve. Along the

characteristic curve G is constant because (8.18) tell us that dG = 0. Therefore,
defining

E= (-2 (8.20)
the solution of Eq. (8.17) is of the form

G(z.1) = @(§). (8.21)
where the function @(£) must be determined by the initial conditions. Since, at
time t = 0,n = N, then P(n,0) = §, 5 and the generating function becomes

G(z,0) = zV. But Egs.(8.20) and (8.21) tell us that G(z,0) = ®(1 — z), from
which we get @(1 — z) = z" and therefore

o) =(1-§", (8.22)

from which we conclude that
G(z.t) =[1 — (1 —ge V. (8.23)
The probability distribution is obtained from the expansion of the right-hand side

in powers of z. Performing the expansion and comparing with the right-hand side
of (8.16), we reach the result

N
P, = ( )(1 _ e—bt)N—ne—nbt' (8.24)
n
From this result, we obtain the average number of particles
(n) = Ne™" (8.25)
and the variance
(n*) = (n)*> = Ne™"(1—e™"). (8.26)

Next, we consider the following master equation

dp,
prale b(n+ 1)P,y1+a(N —n+ 1P,y — (bn+a(N —n))P,, (8.27)
valid forn = 0,1,2,..., N, where a and b are parameters, with the boundary

conditions: P_; = 0 and Py4+; = 0. When a = 0, we recover the problem seen
previously. When a = b, the master equation (8.27) can be also be understood as
the continuous time version of the Ehrenfest urn model, studied in Sect. 6.10.
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To solve Eq. (8.27), we start by defining the generating function

N
G@1)=) P (8.28)

n=0
Deriving G with respect to time and using Eq. (8.27),

G _ 1-2)0b+ az)a—G —a(l —z)NG. (8.29)
ot 0z

Assuming as solution of the form
G@z.1) = (b+a)V H(z.1), (8.30)
we see that H(z, t) fulfills the following equation

OH dOH
e 1-2)0b+ “Z)a_z' (8.31)

This equation can be solved by the method of characteristics with the solution

1—z

et 8.32
b+ aze ( )

H(z.1) = @(§). §=

where ¢ = a + b and ®@(£§) is a function to be determined.
To find @(£) we use as initial condition n = N. Thus, G(z,0) = z" so that
H(z,0) = [z/(b + az)]". Therefore

z N 1—z
o) = (b+az) , £ = b (8.33)

and the sought function is

_ N
() = (16—%) . (8.34)

From this result we get the solution

G(z.t) = (¢ +pz—q(1 —2)e™)" (8.35)

where p =a/candqg = b/c =1— p.
The expansion of G(z, t) in powers of z gives the probability distribution

N
Py(t) = (n)(q —qe” )V (p + g™ )", (8.36)
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From the probability distribution we get the average and the variance

(n) = N(p +qe™), (8.37)
(n*) = (n)* = Nqg(1 —e~")(p + ge~"). (8.38)

In the limit 1 — oo
P, = (ij)qN_”p”, (8.39)

and the detailed balance b(n+1) P,+; = a(N —n) P, is fulfilled, that is, the systems
is in thermodynamic equilibrium. The average and variance are

(n) = Np, (8.40)

(n*) — (n)* = Npq. (8.41)

8.3 Poisson Process

Suppose that an event occurs with a certain rate a, that is, with probability a At in a
small time interval Az. We wish to determine the probability P(n,t) of occurrence
of n such events up to time ¢. To this end, it suffices to observe that P(n,t) obeys
the master equation

d
EP(O, t) = —aP(0,1), (8.42)
d
EP(n, t)=aP(n—1,t) —aP(n,t), (8.43)
for n = 1,2,.... These equations must be solved with the initial condition

P(0,0) = 1 and P(n,0) = 0 for n # 0 since no events has occurred before
t = 0. The process so defined is called Poisson process. It can also be understood
as random walk completely asymmetric with transition rate to the right equal to a
and transition rate to the left equal to zero.

To solve these equations, we defined the generating function

gz1) =Y Pz, (8.44)

n=0
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and next we set up an equation for g. The equation must be solved with the initial
condition g(z,0) = 1 which corresponds to P(n,0) = §,0. Once the equation is
solved for g, we get P(n,t) from the expansion of g(z,¢) in powers of z. Deriving
the generating function with respect to time and using Egs. (8.42) and (8.43), we get
the equation for g(z,t),

d
Eg(z, 1) = —a(l —2)g(z,1), (8.45)
whose solution for the initial condition g(z,0) = 1 is
g(z.1) = e7@0791, (8.46)

The expansion of g(z,t) gives

o0
t n
ger) = e = o 3 (8.47)
n=0 :

from which we obtain

—ar (D"

P(n,t)=e ,
n!

(8.48)

which is the Poisson distribution. From this distribution we get the average number
of events occurring up to time ¢,

(n) = at, (8.49)
which grows linearly with time and the variance,
(n*) = (n)* = ar, (8.50)

which also grows linearly with time.

8.4 Asymmetric Random Walk

Here we analyze a random walk along the x-axis. The possible positions of the
walker are discretized and given by x = n. From the present position n, the walker
may jump to the right, to position n + 1, with transition rate a, or to the left, to
position n — 1, with transition rate b. Therefore, when @ = b, the random walk is
symmetric and when a # b, it is asymmetric. We use periodic boundary conditions,
which amounts to say that positions n and N + n are the same. The elements of the
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evolution matrix W are W(n + 1,n) = a, W(n — 1,n) = b, and the time evolution
of the probability P(n, ) of finding the walker at position  at time ¢ is given by

d
EP(H’I) =aP(n—1,t) + bP(n +1,t) — (a + b)P(n,1). (8.51)
The characteristic function,

G(k,t) = (") =Y ™ P(n.1), (8.52)

n

obeys the equation
d ik —ik
EG(k’ t) = (ae”™ +be™™ —a —b)G(k,1). (8.53)

Which is obtained deriving (8.52) with respect to time and using (8.51). The
solution is

G(k, l) — G(k, O)et(F cosk—icsink—a—b)7 (854)

where I’ = a + b and ¢ = a — b. Assuming that the walker is in position n = 0 at
t = 0, then P(n,0) = §,¢ so that G(k,0) = 1 which gives

G(k,t) — et(l"cosk—icsink—u—b)' (855)

The probability distribution is obtained by taking the inverse Fourier transform,

e—tF T o )
P(n,t) — 2 / etFCOSk—ltL'Slnk"rlkndk' (856)

T J—xn

For large times, the integral can be approximated by

1 © o
P(n, t) —_ e—l‘rkz/z—ltck-Hkndk’ (857)
27 J_oo

whose integral gives

P(n,t) = e~ (n=ec)?/2r't (8.58)

1
2nIlt

from which we obtain the average and the variance,

(n) = ct, (n*) — (n)> =rt. (8.59)
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The probability distribution for large times is a Gaussian with a width that grows
according to +/I"t and with a mean that displaces with a constant velocity equal to
¢. When ¢ = 0, the mean remains stationary.

8.5 Random Walk with an Absorbing Wall

We analyze here the random walk along the x-axis but with the restriction x > 0. A
particle jumps to the right with rate a and to left with rate b,

W+ 1,n) =a, Wn—1,n) =b, n=1,2,3,... (8.60)

except when the particle is at x = 0. Since the movement is restrict to the positive
semi-axis, W(—1,0) = 0. As to the rate W(1,0), it must vanish because once the
particle is at the point x = 0, it cannot escape from this point. In other terms, the
state x = O is absorbing. We may say that there is an absorbing wall at x = 0.
Figure 8.1 shows the corresponding transition diagram.

The probability P(n,t) of finding the particle in position x = n at time ¢ fulfills
the master equation

d
—P0.0) = bP(L1), 8.61)
%P(l,t) =bP(2,t) — (a + b)P(1,1), (8.62)
%P(n,t) =aP(n—1,1) +bP(n + 1,1) — (a + b)P(n.1), (8.63)

the last one valid for n > 2. The stationary state is P,(0) = 1 and P,(n) = 0 for
n # 0, which describes the localization of the particle at x = 0. The initial state is
assumed to be the one in which the particle is at the position x = ng distinct from

a a a a a
7 X~ A _— A/ A _ /)
0 1 2 3 4 5
N W W S A S W
b b b b b b

Fig. 8.1 Transition diagram for the random walk with an absorbing state. The jumping rate to the
right is @ and to the left is b, for any state, except n = 0, which is an absorbing state. When a < b,
the particle will reach the absorbing state if the waiting time is large enough. When a > b, there is
a nonzero probability that the particle never reaches the absorbing state
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zero. As we will see shortly, when a > b there is a probability that the particle never
reaches the point x = 0, that is, that the particle will never be absorbed.

It is worth to note that the equations corresponding to the probabilities P(n,1),
forn = 1,2,... do not include P(0,¢). Thus, the procedure that we use consists
in solving equations n = 1, 2, ... to determine these probabilities. The probability
P(0,¢) can be obtained afterwards by the normalization or by the time integration
of Egs. (8.61),

t
P(0,1) = b/ P(1,¢)dfl (8.64)
0

According to this scheme, we start by writing the eigenvalue equations for n =
1,2,...

—(a+b)y()+by(2) = Ay (1), (8.65)
ay(n—1)—(a+b)yy(n) +by(n+1) = Ay(n), (8.66)

the last one valid for n > 2. With the aim of rendering the equations symmetric, we
define the quantities ¢(n) by

Y(n) =r"e), r = +a/b. (8.67)

The equations become

—(a+ b)p(1) + Vabe(2) = rp(1), (8.68)
Vabp(n —1) — (a + b)e(n) + Vabe(n + 1) = Ap(n). (8.69)

The solution is
oc(n) = «/i_n sin kn, 0<k<m, (8.70)

what can be checked by inspection and which yields the eigenvalues
Ak = —(a + b) +2+abcosk, (8.71)

and is orthonormalized in such a way that

/ ox(M)gx(n")dk = 8. (8.72)
0
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In addition they obey the relation

D oempr(n) = 8k — k). (8.73)

n=1

The right eigenvectors, ¥, and the left eigenvalues, ¢y, are given by

Vi(n) = r'"or(n), (n) =r"gr(n), n=12... (874

Replacing the eigenvectors into Eq. (7.39), we reach the following result for the
probability distribution

2 T
P(n.1) = —r"" / '™ sin kn sin kno dk, (8.75)
0

valid for n # 0.

The probability P(0,7), which is the probability of finding the particle in the
absorbing state at time ¢, is obtained by means of (8.64). It can also be understood as
the probability of the particle being absorbed up to time ¢. Therefore, the probability
of permanence of the particle up to time ¢, which we denote by Z(¢), is equal to
P(t) = 1 — P(0,t). Using (8.64) and the result (8.75) for P(1,7) we get the
following expression

tAk

Ak

2 T
P(t)=1——~ab r_"O/ sin k sin kng dk. (8.76)
T 0

The total probability of permanence Z7* = lim;_, o, Z(¢) is thus

2 T sin k sin kny
P* =1—"~ab r_”"/ dk. (8.77
3 o a-+b—2ab cosk )

Performing the integral, we get

i
0, a <b, 878)

From the result (8.78), we can draw the following conclusions. When a < b
the particle is absorbed by the wall no matter what the initial position, that is, for
times large enough the particle will be at position n = 0. When a < b, there is
a probability that the particle will not be absorbed by the wall, that is, the particle
will remain forever outside the point n = 0. We call this state, an active state. The
probability of occurrence of the active state is nonzero and proportional to a — b for
a near b, 2* = no(b — a)/a.
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Another quantity that characterizes the random walk with an absorbing state is
the probability of absorption at time ¢ per unit time, which we denote by @(¢). In
other terms, @(t) = dP(0,t)/dt or yet @(t) = —d (t)/dt. Deriving (8.76) with
respect to time, we get

2 T
@&(t) = —~ab r_’“’/ e sin k sin kng dk, (8.79)
T 0
which can also be obtained directly from R(t) = bP(1,t), which follows

from (8.61) and R(z) = dP(0,t)/dt. Taking into account that dA;/dk =
—2+/absin k, an integration by parts leads us to the result

d(t) = o r_n"/ e cos kng dk. (3.80)
wt 0
For large times
o0
®(1) = ”—Ot e (WA / e~ VR cos kng dk. (8.81)
4 0

Performing the integral

e
D) = —L WAV (8.82)

tv At ab

which gives the probability of absorption of the particle at time 7 per unit time, being
the particle at position x = ng at time t = 0.

Inserting the expression for Ay, given by (8.71), into (8.75), we get the following
result for large times

2 o0
P(n,1) = Zpn—me=(a=vb ) / e IVBR i kg sin kn dk. (8.83)
T 0

Performing the integral, we reach the expression

P(n,t) = rn—noe—(ﬁ—ﬁ)zt 1 (e—(n—no)z/znm _ e(n+n0)2/4tm)

2+ ntab
(8.84)

This formula is similar to (4.99) for the probability distribution related to the
problem of a Brownian particle with absorbing wall, seen in Sect. 4.6.
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8.6 Random Walk with a Reflecting Wall

Now we examine the random walk along the x-axis but with the restriction x > 0.
A particle jumps to the right with rate a and to left with rate b,

Wn+1,n) =a, W(n—1,n) = b, n=1273,... (885

except for x = 0. Since the motion is restrict to the positive semi-axis,
W(—1,0) = 0. Unlike the absorbing case, the particle may leave the point x = 0
jumping to the right with rate b, that is, W(1,0) = b. We may say that there is a
reflecting wall at x = 0. Figure 8.2 shows the corresponding transition diagram.

The probability P(n,t) of finding the particle at position x = n at time ¢ obeys
the master equation

%P(O, t) = bP(1,t) — aP(0,1), (8.86)
%P(n, t)y =aP(n—1,t) + bP(n+ 1,t) —(a + b)P(n,t), (8.87)

valid for n > 1. The stationary probability P, () is such that bP.(n + 1) = aP.(n).
The normalization is possible only if @ < b. When a > b, there is no stationary
probability distribution.

The eigenvalue equation reads

—ay(0) + byr(1) = Ay(0), (8.88)
ay(n—1)— (a + b)) +by(n + 1) = Ay ). (8.89)

for n > 1. To render the equations symmetric, we define the quantities ¢(n) by

V(n) =r"e(n), r=+a/b. (8.90)
a a a a a a
e N N N N
0 1 2 3 4 5
N 7 7 N <
b b b b b b

Fig. 8.2 Transition diagram for the random walk with a reflecting state. The rate of jump to right
is a and to the left is b, for any state, except n = 0, which is a reflecting state. When a < b, the
particle remains next to the reflecting state. When a > b, the particle moves to the right with a
finite velocity. When a = b, the motion is purely diffusive
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The eigenvalue equations become

—ag(0) + Vabp(1) = A¢(0), (8.91)
Vabp(n — 1) — (a + b)p(n) + Vabe(n + 1) = Ap(n). (8.92)

for n > 1. The solutions are of the form
ox(n) = A (Vasink(n + 1) — Vb sinkn), 0<k<m, (8.93)

which can be checked by substitution, giving the eigenvalues

Ak = 2/abcosk — (a + b). (8.94)
The orthogonalization
/ QM) pr(n') = Suw (8.95)
0

leads us to the result 1/A42 = \/m/2(a + b — 2+/abcosk) = /m/2 ||, which
gives the normalization constant Ay. Thus

(Vasink(n +1)— V/bsinkn), 0<k<m (8.96)

2
wk(n) = m

The right eigenvectors, ¥, and left eigenvectors, ¢y, of W are given by

Yi(n) = ror(n), dr(n) = r"er(n), n=0,12,...
(8.97)

In addition to these eigenvalues, there is also the eigenvalue corresponding to the
stationary state P,(n) = (1 — r?)r?» = vyp(n), as long as r < 1, with zero
eigenvalue. The left eigenvector is ¢o(n) = 1.

Replacing the eigenvector into Eq. (7.39) and considering that at the initial time
the particle is at n = 0, thatis, P(n,0) = §,0, we reach the following result for the
probability distribution

27n b4 ekkt
P(n,t) = P,(n) + / 7 l(\/asink(n + 1) — Vb sinkn) /a sink dk,
T Jo k
(8.98)
with the understanding that P,(n) = 0 when a > b. Inserting this expression for
A in this equation, we obtain, for large times, an expression similar to Eq. (4.115),

obtained in Sect. 4.7 for the Brownian motion with a reflecting wall. In analogy to
that case, we draw the following conclusions. When a < b, P(n,t) approaches
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the stationary distribution, which means that the particle is found near the reflecting
wall. When a > b, the particle moves away from the wall with finite velocity. The
probability distribution has a bump that moves away from the reflecting wall. When
a = b, the particle performs a pure diffusive movement.

8.7 Multidimensional Random Walk

We study here a random walk on a hypercubic lattice of dimension d. The possible
states are denoted by the vector n = (ny,n,,...,ny), where n; takes the integer
values. For convenience we define unit vectors e; as the ones having all components
zero except the i-th which is equal to one. Thus, the vector n can be written as
n= Zi n;e;. The possible transition are those such that n — n =+ e; with all rates
equal, which we take to be equal to «. The master equation, which governs the time
evolution of the probability distribution P(n,t) of state n at time ¢, is given by

%P(n, ) =a Zi:{P(n +ei 1)+ P(n—ei 1) —2P(n,1)}, (8.99)

where the sum in i varies from 1 to d.
The characteristic function G (k, t), where k = (ky, ks, ..., kq,t), is defined by

Gk,1) = Ze”"”P(n, 1), (8.100)
and obeys the equation
d
561 = 9 Glk.1), (8.101)
where
ye = =2 Y (1—cosk;), (8.102)

and whose solution is given by

G(k,t) = "' G(k,0). (8.103)
Supposing that initially the particle that performs the random walk is at n; = m;,,
then P(n,0) =[], 8(n; —m;) and G(k,0) = e*™ where m = (m,,...,m4). The

characteristic function is thus

G(k,t) = efmtw (8.104)
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The probability distribution is obtained by means of the integral

P(n,t) = / e %Gk, t)dk, (8.105)

1
(2n)?
where dk = dk,dk; . . . dk; and the integral is performed over the region of the space
k defined by —m < k; < m. Therefore, we get the solution of the master equation
in the form

P(n,1) = / ek (=mFid g (8.106)

(2)

We see that the distribution is a product,
1 (" _
P n,t — e_lkj(nj_m'/)_za(l_COSk'/)tdk' 8107
(n.1) |j| 7 /_ ] J (8.107)

For large times, each integral is dominated by the region in k; around k; = 0.
The solution for large times is obtained thus by expanding the exponent in the
integrand up to order ka and extending the limits of the integral, that is,

1 [ 0
P(n,t) = ]_[E/ o™i (1 =m )= e (8.108)
j —00

Each integral is a Gaussian of mean m; and variance 2a.1,

e—(nj —m‘/)2/4at

Pn,t)=1]|——F—. 8.109
(n,1) U — (8.109)

8.8 Multidimensional Walk with an Absorbing State

Now we consider a random walk such that the state n = 0 is absorbing. This means
to say that the probability of occurrence of the state n = 0 at time ¢, which we
denote by Py(t), obeys the equation

d 1
PO =~ Z{P(ei, 1)+ P(—e;, 1)} (8.110)

For convenience, we set « = 1/2d which can be done by rescaling the time. The
probability P(n,t) of state n # O at time ¢ obeys the equation

%P(n,t) = ﬁ Zi:{P(n +ei, 1)+ P(n—ei,t) —2P(n, 1)}, (8.111)



8.8 Multidimensional Walk with an Absorbing State 203

which is valid only for n # 0 and with the proviso that P (0, ¢) = 0 at the right-hand
side. We remark that the probability of occurrence of the state n = 0 is Py(¢), which
obeys (8.110), and not P (0, ¢#) which is set as being identically zero.

Since Py(t) does not enter into Egs. (8.111), these can be solved without the use
of Eq. (8.110). The solution can be obtained more easily by the introduction of the
variable @(t), defined by

o(1) = % Z{P(e,-,t) + P(—e;, 1)} (8.112)

With the introduction of this variable we can write the equations for the probabilities
in the form

%P(n,t) = % Z{P(n+ei,t)+P(n—ei,t)—2P(n,t)}—q§(t)8(n), (8.113)

which is valid for any value of n including n = 0. The solution of these equations
depends on @(¢), which must be chosen so that P(0,¢) = 0, since in this case the
equation for n = 0 becomes equivalent to Eq. (8.112).

Comparing (8.112) with (8.110), we see that the variable @(¢) is related to the
probability Py(¢) of state n = 0 by

d
EPOU) = @(1) (8.114)

so that @(¢) is interpreted as the flux of probability to the absorbing state.
Using the master equation (8.113) we get the following equation for the Fourier
transform of P(n,t)

d

50k D) =Gk.1) — D). (8.115)
where yy is given by

1
ve=-—- Z(l — cosk;), (8.116)
Next, defining the Laplace transform of G(k, t),
n o0
Gk,s) = / G(k,t)e "dt, (8.117)
0

we conclude that it obeys the equation

sG(k,s) — G(k,0) = yG(k,s) — D(s). (8.118)
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where
N o0
D(s) = / D(t)e"dt, (8.119)
0

Assuming the initial condition P(n,0) = §(n; — 1)8(n2) ...68(ng), then G(k,0) =

e and

ek — B (s)
S—vk

Gk, s) = (8.120)
The initial condition we use is the one in which the walker is the closest possible to
the absorbing state.

Now it is convenient to define the integral

Gn.s) = — /e_ikvn dk (8.121)
n,s) = - .
el | s

where the integral in the space k is over a region defined by —m < k; < & for each
component. With the help of this definition we can write

P(n,s) =% —es)— D)9 (n,s), (8.122)

where P (n, s) is the Laplace transform of P(n,t),
N o0
P(n,s) = / P(n,t)e "dt. (8.123)
0

We notice that P (n, s) is not determined by Eq. (8.122) because we do not yet know
@(s). To obtain this quantity, we recall that @(¢) must be determined by requiring
that P(0,¢) = 0, what amounts to impose P(0,s) = 0. Inserting this condition into
Eq. (8.122), we reach the desired result

P(s) = ——~. (8.124)

From the definition (8.121), we can check that the following relation is correct,
Y (—er,s) = (1 4+5)¥9(0,s) — 1, so that

d(s) =1— (8.125)

1
—g(o,s) + 5.

Integrating (8.61) and taking into account that Py(0) = 0,

Po(o0) = /0 - @(1)dt = D(0). (8.126)
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Therefore, to determine Py(co), which is the probability of finding the walker at
n = 0 in any time, we should look to the behavior of 4 when s — 0. Ford = 1

1 4 dk 1
4(0,5) = —/ = , (8.127)
2w J_ps+1—cosk 25+ 2

and therefore ¢ diverges when s — 0 so that 43(0) = 1 and we conclude that in
d =1 the walker will enter the absorbing state if we wait enough time. Explicitly,

D(s) =1+s5— 25+ 52, (8.128)

which takes us to the following expression for @(¢),
e—t g
o(t) = —/ 'k cos k dk. (8.129)
tm Jo

For large times,

1 T

(1) = —/ e %2 cosk dk = (8.130)

tm Jo t/2mt

For d = 2, we should consider the integral
1 T dkydk,

G(ni,ny,s) = —— : 8.131
(n1.m2.8) = 553 /_7, /_J, s+ 1— (cosks + coska)/2 (8.131)
For small values of s, this integral behaves as ¢4 = |Ins|/m and diverges when

s — 0. Therefore, Py(c0) = 43(0) = 1 and we conclude that in d = 2 the walker
will also enter the absorbing state if we wait enough time.
For d > 3, the integral ¥ (n, 0) is finite and hence

1

(8.132)

We conclude that for d > 3 there is a probability that the walker will never reach
the absorbing state. This probability is equal to 1 — Py(oc0) = 1/%4(0,0).

As a final comment to this section, we remember that the problem of first passage
of a stochastic process is equivalent to the same stochastic process with an absorbing
state, as seen in Sect. 7.5. Therefore the results obtained here can be restate in the
following terms. In one and two dimensions the walker returns to the starting point
with probability one. In three or more dimensions the probability of returning is
strictly less than one, what means that the walker can never return. This result is the
same seen in the random walk in discrete time, studied in Sect. 6.12.



Chapter 9
Phase Transitions and Criticality

9.1 Introduction

The water, when heated at constant pressure, boils at a well defined temperature,
turning into steam. To each value of the pressure imposed on the water, there
corresponds a boiling temperature. The water-steam transition temperature increases
with pressure and, in a temperature-pressure diagram, it is represented by a line with
a positive slope. On the transition line the liquid and vapor coexist in any proportion.
However, the liquid and the vapor present well defined and distinct densities that
depend only on the transition temperature. As we increase the temperature, along
the coexistence line, the difference between the densities of the liquid and vapor
becomes smaller and vanishes at a point characterized by well defined temperature
and pressure. At this point, called critical point, the liquid and vapor becomes
identical and the line of coexistence ends. Beyond this point there is no distinction
between liquid and vapor.

Other types of phase transition occur in condensed matter physics. A ferromag-
netic substance, when heated, loses its spontaneous magnetization at a well defined
temperature, called Curie point, becoming paramagnetic. In the paramagnetic phase,
the substance acquires a magnetization only when subject to a magnetic field. In the
ferromagnetic phase, in contrast, the magnetization remains after the magnetic field
is removed.

The zinc-copper alloy undergoes an order-disorder transition as one varies the
temperature. Imagine the crystalline structure as being composed by two intertwined
sublattices, which we call sublattice A and sublattice B. At low temperatures,
the copper atoms are located preferentially in one of the sublattices, while the
zinc atoms are located preferentially in the other sublattice. At high temperatures
however a zinc atom can be found in any sublattice with equal probability. The same
happens with a copper atom. Increasing the temperature, the alloy passes from an
ordered phase to a disordered phase when a critical temperature is reached. Below
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the critical temperature, there are two possible ordered states. In one of them the
zinc atoms are located with greater probability in the sublattice A, and in the other,
in B. Above the critical temperature, there is a single state such that a zinc atom
has equal probability of being found in any sublattice. The symmetry is higher in
the disordered state and lower in the ordered state. Thus, when the temperature is
decreased, there is a spontaneous symmetry breaking at the critical temperature.

To describe the phase transitions, it is convenient to introduce a quantity called
order parameter, whose most important property is to take the zero value at the
disordered phase, which is the phase of higher symmetry, and a nonzero value
at the ordered phase, which is the phase of lower symmetry. In the liquid-vapor
transition, it is defined as the difference between the densities of the liquid and
the vapor in coexistence. In ferromagnet systems, the order parameter is simply the
magnetization, called spontaneous. In a binary alloy discussed above, we may define
it as the difference between the concentrations of the zinc in the two sublattices. In
all three cases discussed above, the order parameter vanishes at temperatures above
the critical temperature.

9.2 Majority Model

To illustrate the transition between a disordered and a ordered phase with two
coexistence states, we begin by examining a simple model which consists in an
extension of the Ehrenfest model. In the Ehrenfest model, we imagine a system of N
particles each of which can be found in state A or B. A configuration of the system is
defined by the number of particles 7 in state A. The number of particles in state B is
N —n. At each time interval, one particle is chosen at random and change its state. If
initially all particles are in one state, after some time, the two states will have, in the
average, the same number of particles. The stationary probability distribution of the
number of particles in state A has a single peak, similar to a Gaussian distribution.
In the extension of the Ehrenfest model that we will present shortly, the change
of states is done with a certain probability defined a priori, which depends on the
number of particles in each state. As we will see, this modification can result in a
stationary probability distribution with two peaks and therefore qualitatively distinct
from that corresponding to the Ehrenfest model.

The model we consider can be understood as a model that describes the system
zinc-copper, if we interpret the number of particles in states A and B as the number
of atoms of zinc in the sublattices A and B, respectively. When one particle passes
from A to B, this means that a zinc atom passes from sublattice A to sublattice B
and, as a consequence, a copper atom passes from sublattice B to A. The model
can also be used to describe a ferromagnetic system in which each magnetic dipole
takes only two values of opposite signs. The numbers of particles in A and B are
interpreted as the numbers of dipoles in a certain direction and in the opposite
direction, respectively. When a particle passes from one state to the other, it means
that a dipole changes sign. From these associations, we see that the Ehrenfest model
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predicts only the disordered state for the binary alloy and only the paramagnetic
state for the magnetic system. The model that we introduce next, on the other hand,
can predict also the ordered state for the former and the ferromagnetic state for the
latter.

In the Ehrenfest model, at each time interval one particle is chosen at random
and changes state. Denoting by n the number of particles in state A and defining the
transition rates W, 41, = a, fromn — n + 1 and W,_;, = b, fromn — n — 1,
then the master equation, that governs the evolution of the probability P,(¢) of n at
time ¢, is given by

d
EPn = ap—1 Pyt + byt 1 Pry1 — (an + by) Py 9.1)

As seen before, the rates of the Ehrenfest model are
a, = (N —n), 9.2)
by, = an, (9.3)

where « is a positive constant and N is the total number of particles. The stationary

probability is given by
1 (N

This distribution has a maximum when the state A has half the particles. When N
is large, the distribution approaches a Gaussian. The presence of a single peak in
the distribution indicates that the system presents only one thermodynamic phase,
in this case, a disordered phase.

Now we modify this model in such a way that the stationary distribution might
have two peaks instead of just one. At regular intervals of time, we choose a particle
at random and next we check in which state it is. If it is in a state with a smaller
number of particles, it changes its state with probability g. If however it is in a state
with a larger number of particles, it changes its state with probability p = 1 — ¢. If
q > p,these rules favor the increase in the number of particles in the state with more
particles. According to these rules, the transition rates Wy, 1, = a, fromn — n+1
and W,_,,, = b, fromn — n — 1 are given by

a, =a(N —n)p, n<N/2, 9.5
a, = a(N —n)q, n>N/2, (9.6)
b, = ang, n<N/2, 9.7)

b, = anp, n>N/2. (9.8)
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Otherwise, the transition rate is zero. The process is governed by the master
equation (9.1), which must be solved with the boundary condition P_; = 0 and
Pyy1=0.

It is possible to show that the stationary probability is

1 (N N
P, = E(n) exp{2C|n — ?|}, 9.9

where Z is a normalization constant and the constant C is related to p through

e—C

—_— 9.10
e€ +e € ©-10)

p =
Notice that the probability distribution has the symmetry Py_, = P,, thatis, it is
invariant under the transformationn — N — n.

If p = 1/2, that is, C = 0, the stationary distribution has a single peak that
occurs at n = N/2 because in this case we recover the Ehrenfest model. If p >
1/2, it also has a single peak at n = N/2. However, if p < 1/2, the probability
distribution presents two peaks, what can be checked more easily if we examine the
case in which N and n are very large. To this end, it is convenient to consider the
probability distribution p(x) of the variables x = n/N . Using Stirling formula and
taking into account that p(x) = NP,, we get

= , 9.11
px) Z 2ax(1—x) ¢ ©-1h

where
Fx)=xlnx+ (1 —x)In(l —x) —C|]2x —1]. 9.12)

Figure 9.1 shows the function F(x) and the probability distribution p(x) for several
values of C. When p < 1/2, this function has minima at x = x4 and x = x_,
where

xy=1-—p e X_ =p. (9.13)
When p > 1/2, the function F(x) presents just one minimum located at x = 1/2.
The probability distribution p(x) has maxima at those points as seen in Fig. 9.1.

Some features must be pointed out. First, the distance between the maxima,
given by

Xy —x—=1-2p, (9.14)
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Y

0 1 X 0 1 X

Fig. 9.1 Majority model. (a) Plot of Fi(x) = F(x) 4 In2 versus x, where the function F(x) is
given by (9.12), for p < p., p = p. and p > p.. (b) Probability density p(x) versus x according
to (9.11) for the same values of p. The maxima of p correspond to the minima of F(x)

vanishes when p — 1/2. When p = 1/2, we have seen that the probability
distribution has a single maximum atn = N/2 or x = 1/2. Therefore, there are two
regimes: one characterize by two maxima, when p < 1/2, and the other by just one
maximum, when p > 1/2. Around x = x4 and x = x_, the probability distribution
p(x) has a shape similar to a Gaussian with width proportional to \/pg/N .

Second, in the limit N — oo and for p < 1/2, the height of the maxima
increases without bounds while the value of the probability distribution at x = 1/2
vanishes. Therefore, in this limit, the probability distribution of the variable x is
characterized by two Dirac delta functions symmetric located at x = x4 and
x = x—_. This means that, in the limit N — oo, the system exhibits two stationary
states. Depending on the initial condition, the system may reach one or the other
state.

The order parameter m of this model is defined as the difference between the
concentrations x4 and x_ of the two states, that is,

m=1-2p, (9.15)

valid for p < 1/2. Thus, in the ordered phase, m # 0, while in the disordered
phase, m = 0.

Spontaneous symmetry breaking To characterize the spontaneous symmetry
breaking, we consider a phase transition described by the model we have just
presented. We have seen that the stationary distribution p(x) passes from a regime
with a single peak, which characterizes the disordered state, to one with two peaks,
which characterizes the ordered state. If the two peaks are sharp so that around
x = 1/2 the distribution is negligible, then it is possible to find the system in only
one of the two states defined by each one of the two peaks.

The emergence of the two stationary states, characterized each one by one peak,
indicates the occurrence of the spontaneous symmetry breaking. It is necessary thus
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to examine the conditions under which the stochastic process can have more than
one stationary state. If the stochastic process, governed by a master equation, has
a finite number of states and if any state can be reached from any other, there will
be no spontaneous symmetry breaking. It suffices to apply the Perron-Frobenius
theorem to the corresponding evolution matrix to conclude that there is just one
stationary state. Thus, as long as the number of states is finite, there is just one
stationary state and, therefore, no symmetry breaking. For the occurrence of a
symmetry breaking, that is, the existence of more than one stationary state, it is
necessary, but not sufficient, that the number of states is infinite.

To understand in which way the system will reach one of the two stationary
states and therefore present a spontaneous symmetry breaking, let us examine the
stochastic process defined above and consider N to be very large. Suppose that the
stochastic process is simulated numerically from a initial condition such that all
particles are in the state A, that is, initially » = N and therefore x = 1. During
a certain time interval, which we denote by t, the fraction of particles x in A will
fluctuate around x4 with a dispersion proportional to y/pg/N. The time interval t
will be the larger, the larger is N. When N — oo, the dispersion vanishes so that
the state A will always have a larger number of particles than the state B. In this
case T — oo and we are faced to a spontaneous symmetry breaking.

In general the numerical simulations are performed with a finite number of
particles so that 7 is finite. If the observation time is much greater than z, then
the probability distribution which one obtains from simulation will be symmetric.
However, if the observation time is smaller or of the same order of 7, the probability
distribution might not be symmetric. If the observation time is much smaller than t,
then we will get a distribution with just one peak and a symmetry breaking.

9.3 Ferromagnetic Model

In the model introduced in the previous section, the probability of changing the
state does note take into account the number of particles in each state. In the present
model, if the particle is in a state with a smaller number of particles, it changes state
with a probability which is the larger, the larger is the number of particle in the
other state. If it is in a state with a larger number of particles, it changes state with
a probability which is the smaller, the smaller is the number of particles in the other
state. Various transitions can be set up from these considerations. Here we present
one of them.

The transition rates W,4+1, = a, fromn — n + 1 and W,—,, = b, from
n — n — 1, which should be inserted into the master equation (9.1), are written as

ap, = a(N —n)p,, (9.16)

b, = ang,, (9.17)
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where p, and g, are given by

1 K
Dn = 5{1 + tanh N(Zn — N + 1)}, (9.18)

1 K
qn = 5{1 — tanh N(Zn —N-1)}. (9.19)

where K is a parameter. The simulation of the model can be performed as follows.
At each time step, we choose a particle at random and check its state. If the particle
is in state A, it changes to state B with probability g, . If it is in state B, it changes
to A with probability p,,.

The dependence of p, and g, on n was chosen so that the stationary probability
P, corresponding to the stochastic process defined by the transition rates above is

1 (N 2K N,
P, = (n) exp{ N (n 2) 1, (9.20)
which is the probability distribution corresponding to the equilibrium model called
Bragg-Williams, used to describe binary alloys, where the constant K is propor-
tional to the inverse of the absolute temperature. The probability distribution (9.20)
can also be interpreted as that corresponding to a ferromagnetic system whose
energy is

27 N
E=-""(n->2), 9.21
N (n 2) 9.21)

where J is a parameter. The constant K is related to J by K = J/kT, where
k is the Boltzmann constant and 7 the absolute temperature. According to this
interpretation, 7 is equal to the number of dipoles that point to a certain direction.
We can verify that the expressions of p, and g,, given by (9.18) and (9.19), are
such that the detailed balance a, P, = b,+1 P,+1 is obeyed, guaranteeing that P, is
indeed the stationary distribution.

The stationary probability (9.20) has two maxima as long as the parameter K is
larger that a certain critical value K. and a single maxima otherwise. To determine
the critical value K., we examine the probability distribution P, for the case in
which N is very large. Again, we consider the probability distribution p(x) of the
variable x = n/N. Using Stirling formula, we get

_1_ N —NF(x)
p(x) = = me .

(9.22)

where

F(x) =xInx 4+ (1 —x)In(1 —x) —2K(x — %)2. (9.23)
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Fig. 9.2 Ferromagnetic model. (a) Plot of Fix(x) = F(x) + In2 versus x, where the function
F(x) is given by (9.23), for T > T,, T = T, and T < T,. (b) Probability density p versus x
according to (9.22) for the same values of 7'. The maxima of p correspond to the minima of F(x)

The two maxima of p(x) occur at the minima of F(x). The function F(x) has the
aspect shown in Fig. 9.2 and the probability density is shown in the same figure.

To analyze the behavior of the function F(x), we determine its derivatives,
given by

F'(x) =Inx —In(1 — x) —4K(x — %), (9.24)
” 1 1
F'(x)=—+ —4K. (9.25)
x l—x

Since F’(1/2) = 0 and F"(1/2) = 4(1 — K), then the function F(x) has a

minimum at x = 1/2 as long as K < 1, as shown in Fig.9.2. When K > 1, the

function F(x) has a local maximum at x = 1/2 and develops two minima located

symmetrically with respect to x = 1/2, as can be seen in Fig.9.2. Therefore, the

stationary probability distribution p(x) has a single maximum for K < K, = 1 or

T > T, = J/k, and two maxima for K > K, or T < T, as seen in Fig.9.2.
These two minima are solutions of F’(x) = 0, which we write as

X

2K2x—1)=1In
1—x

(9.26)

When K approaches the critical value K., these minima are located near x = 1/2.
Therefore, to determine the minima for values of K around the critical value, we
expand the right-hand side of (9.26) around x = 1/2. Up to terms of cubic order in
the deviation, we obtain the equation

(K —1)(x — %) = g(x — %)3. (9.27)
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The minima occur for

Xy = % + %,/3(1{ —1). (9.28)

The order parameter m is defined in the same way as was done in the previous
section so that m = x4 — x_, that is,

m= 3K —1), K>l (9.29)

For K < 1 the order parameter vanishes.

A system described by the ferromagnetic model presents, therefore, a phase
transition when the external parameter K reaches its critical value K. = 1. When
K < K, there is a single stationary state corresponding to the disordered or
paramagnetic phase. When K > K,, there are two stationary states corresponding
to the two ordered or ferromagnetic phases.

Order parameter To determine the time dependence of p(x, t), we start by writing
the evolution equation for p(x, ). From the master equation (9.1) and remembering
that x = n/N, we get

a%p(x,t) = é{a(x —e)p(x —&,1) +b(x +e)p(x +&,1) —[a(x) +b(x)]p(x. 1)},

(9.30)

where e = 1/N and
ax) = %(1 — )1 + tanh K2x — 1)}, 9.31)
b(x) = %x{l — tanh K(2x — 1)}, (9.32)

For small values of &,

g 02
——Ja(x) + b(x)]p(x,1). (9.33)

d d
pl1) = —o—la(x) — b()lp(x.1) + 5 55

We see thus that the master equation is reduced, for sufficiently large N, to a
Fokker-Planck equation, which gives the time evolution of p(x, t).

For convenience we use from now on the variable s defined by s = 2x — 1. The
probability distribution p(s,?) in terms of this variable obeys the Fokker-Planck
equation

0 0 9?
3 PG 1) = =5 f($)p(s.1) +e558(s)p(s. 1), (9.34)
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where f =2(a —b) and g = 2(a + b) or
f(s) = a(—s + tanh Ks), (9.35)
g(s) = a(l — s tanh Ks). (9.36)

It is worth to note that to the Fokker-Planck (9.34) we can associate the following
Langevin equation

ds
i f(s) +8(s,1), (9.37)
where ¢ (s, ¢) is a multiplicative noise with the properties
{C(s,0)) =0, (9.38)
(C(s.0)¢(s, 1)) = 2eg(s) 8(t — 1"). (9.39)

From the Fokker-Planck equation, we get the equation that gives the time
evolution of the average (s),

i(S> = (f(s)), (9.40)

dt
a result that is obtained by an integration by parts and taking into account that p
and dp/ds vanish in the limits of integration. Taking into account that ¢ is small (N
very large), we presume that the probability distribution p(s, #) becomes very sharp
when s takes the value m = (s) so that, in the limit ¢ — 0, it becomes a Dirac delta
function in s = m. In this limit, { f(s)) — f(m), and we arrive at the following
equation

dm

— = f(m), 9.41

= fm) 941)
which gives the time evolution of the order parameter. In explicit form,

d
7:"1 = a(—m + tanh Km). (9.42)

Before searching for a time-dependent solution, we notice that the solution for
large times obeys the equation

m = tanh Km, (9.43)
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0 . T 0 T, T

Fig. 9.3 Ferromagnetic model. (a) Order parameter m and (b) variance y as functions of the
temperature T

which can be written as

1+m
2Km = In , (9.44)
1—m

which is equivalent to Eq.(9.26). It suffices to use the relation m = 2x — 1.
Therefore, the stationary values of m coincide with those obtained from the location
of the peaks of the stationary probability distribution. In addition to the trivial
solution m = 0, Eq.(9.44) also has, for K > K. = 1 or T < T, the nonzero
solutions m = m* and m = —m™. The solution m = m™* is shown in Fig.9.3.
When t — oo, we expect that m (¢) approaches one of these solutions.

The time-dependent solution of Eq.(9.42) can be obtained explicitly when m
may be considered sufficiently small so that the right-hand side of (9.42) can be
approximated by the first terms of its expansion in m. Indeed, this can be done as
long as K is close to K. Up to terms of cubic order in m,

d
—m = —am— bm’, (9.45)

where @ = (1 — K) and b = «/3 > 0. Multiplying both sides of Eq. (9.45) by m
we arrive at the equation

—Zm? = —am® — bm®, (9.46)
which can be understood as a differential equation in m2. The solution of (9.46) for
the case a # 0 is shown in Fig. 9.4 and is given by

m?= — 2 (9.47)

ce?@ —p’

where c is a constant which should be determined from the initial condition.
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0 t 0 t

Fig. 9.4 Order parameter m of the ferromagnetic model as a function of time ¢ for several initial
conditions. (a) T < T, in this case m approaches a nonzero value when t — o0o. (b) T > T, in
this case m — 0 in this limit. In both cases the decay to the final value is exponential

When ¢ — oo we get distinct solutions depending on the sign of the parameter a.
Ifa > 0 (K < 1), then m — 0, which corresponds to the disordered state. If a < 0
(K > 1), thenm — £m*, where m* = \/|a|/b = /3(K — 1), which corresponds
to the ordered state and is identified with the solution (9.29).

When K < K, = 1(a > 0) we see, from the solution (9.47), that, for large
times, m decay exponentially to its zero value. Writing

m = moe”"/7, (9.48)
then the relaxation time t = 1/a . Hence t behaves as
T~ |K—1]7", (9.49)

and diverges at the critical point.

Similarly when K > K. = 1 (a < 0), m decays exponentially to its stationary
nonzero value, for large times. Indeed, taking the limit # — oo in (9.47) and
taking into account that @ < 0, we obtain m> — |a|/b a hence m — m* or
m — —m™ depending on the initial condition. The relaxation time also behaves
according to (9.49).

When K = K. = 1 (a = 0), the decay is no longer exponential and becomes
algebraic, From equation

dm

== —bm?, (9.50)

valid for @ = 0, we see that the solution is m = 1/+/2bt + c¢. The asymptotic
behavior of m for large times is thus algebraic

2at —1/2
m= (%) , 9.51)

remembering that b = «/3.
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The order parameter decays exponentially out of the critical point with a charac-
teristic time, the relaxation time 7, whose behavior is given by (9.49). Close to the
critical point, the relaxation time increases without bounds and eventually diverges
at the critical point. At the critical point, the time behavior of the order parameter is
no longer exponential and becomes algebraic as given by expression (9.51).

Variance Here we determine the time evolution of the variance y, defined by
x = N[(s*) = (5)7]. (9.52)
From the Fokker-Planck equation (9.34),

d

47“2) =2(sf(s)) + 2&(g(s)), (9.53)

a result obtained by integrating by parts and taking into account that p and dp/ds
vanish in the limits of integration. Next we use the result (9.40) to obtain

U= 2y — 0+ 240) ©0.54)
t &

When ¢ is very small (N very large), we assume that the probability distribution
p(s, 1) becomes sharp at s equal to (s) = m so that the variance is of the order of
¢ and that the other cumulants are of higher order. In the limit ¢ — 0 it becomes
a Dirac delta function in s = m. In this limit (g(s)) — g(m) and in addition
(sf) — () f) = f'(m)[(s?) — (s)?] = f'(m)ey. With these results we get the
equation for y,

d
7); = 2f"(m)x + 2g(m). (9.55)
Before searching for the time-dependent solution, we determine the stationary

solution, given by

glm) 1 —m?
S ffm) T 1=K —-m?)’

(9.56)

and shown in Fig. 9.3. The second equality is obtained recalling that m = tanh Km
at the stationary state. When K < 1, we have seen that m = 0 so that

1
= —, K < 1. 9.57
1=1% 9.57)

When K > 1, we have seen that around K = 1, m? = 3(K — 1) and hence

1

= 5X=D" K>1. (9.58)

X
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To determine y as a function of time we use the time dependence of m. At the
critical point, K = 1, we have seen that m = (2at/3)~"/? for large times. Since m
is small, then, at the critical point, f’(m) = —am? and g(m) = « and the equation
for y becomes

dx 3
2 =4 4. 9.59
dt t + e ( )

whose solution is

= —, 9.60
= (9.60)

and y diverges at the critical point when t — oco.

Time correlation The behavior of a stochastic variable at a certain instant of time
may related to the same variable at an earlier time. The relation is measured by the
time correlation, defined for the variable s as

{s(@)s(0)) = {s()){s(0)). (9.61)

We choose arbitrarily the previous instant of time as being zero.
The correlation (s(¢)s(0)) is defined by

(s(t)s(0)) = /S/K(s’,s,t)sp(s)ds/ds, (9.62)

where K(s’,s,t) is the conditional probability density of the occurrence of s’ at
time ¢ given the occurrence of s at time zero and p(s) is the probability distribution
at time zero. The distribution K(s’,s,t) is the solution of the Fokker-Planck
equation (9.34), with the initial condition such that at ¢ = 0 it reduces to a §(s’ —s).
Therefore, K(s’, s, t) is a Gaussian whose mean m(¢) is the solution of (9.41) with
the initial condition m(0) = s. To explicit this property, we write m(s,) as a
function of s and ¢. Taking into account that K(s’,s,t) is a Gaussian in §’, we
integrate (9.62) in s’ to obtain

(s(2)s(0)) = /m(s,t)sp(s)ds = (ms). (9.63)
Moreover,

(s()) = /sK(s’,s,t),o(s)ds’ds = /m(s,t),o(s)ds = (m), (9.64)

(5(0)) = / sp(s)ds = (s). 9.65)



9.3 Ferromagnetic Model 221

so that the correlation (9.61) is given by

{ms) — (m)(s) = ((m — (m))(s — (s))). (9.66)

In this equation, we should understand that the averages are taken using the initial
distribution p(s) and that m is a function of s.

Next we suppose that p(s) has variance y/N so that for N large enough the
right-hand side of (9.66) becomes ((s — (s))?)dm/ds, where the derivative is taken
at s = (s). Defining the time correlation function as

(ms) — (m)(s)

C(ry = TR 9.67)
(s2) = (s)(s)
we reach the following result
0
cay=2" (9.68)
ds

where the derivative should be taken at s = (s), which is the average of s taken by
using the initial distribution p(s).

The correlation function can be determined deriving both sides of (9.41) with
respect to s. Carrying out the derivation, we obtain the following equation for the
correlation function

dc ,
— = C. 9.69
= 1m) 9:69)
Knowing m as a function of time, which is the solution of (9.41), we can solve
Eq.(9.69) and get C(t).
For large times, we replace m in f’(m) by the equilibrium value, which is
independent of time. The solution of (9.69) in this regime is

C(t) ~e /7, (9.70)

where 1/t = f'(m) = a(1 — K(1 —m?)). For K < K. = 1, m = 0 and we
get the result 7 = 1/a(K — K.). For K > K, close to K. we have seen that
m? = 3(K — K.) so that t = 1/20(K, — K). In both cases

T~ |K—-K| (9.71)

When K = K. = 1, we have seen that, for large times, m? =3 /2at so that the
equation for C becomes
ac 3

—=—_-_C, 9.72
dt 2t ( )
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whose solution is

C ~1732 (9.73)

9.4 Model with Absorbing State

We consider now another modification of the Ehrenfest model such that one of the
possible configuration is an absorbing state. Here we choose the absorbing state as
the configuration in which all particles are in the state B or equivalently that the state
A has no particles. At regular times, a particle is chosen at random. If it is in state
A, it passes to state B with probability ¢. If it is in state B, it passes to state A with
probability p = 1 — ¢ times the fraction n/N of particles in state A. Therefore,
if there is no particle in state A, the process ends. According to these rules, the
transition rates W, 41, = a, fromn — n+1and W,_;, = b, fromn — n —1 are

n
n =o' (N —n)—p, 9.74
an = o (N =n)wp (9.74)

b, = a'ng, (9.75)

which would be inserted into the master equation (9.1). For convenience we choose
a’q = 1 so that

n
a, = (N —n)/lﬁ, (9.76)
b, =n, (9.77)

where A = p/q. We see clearly that the state n = 0 is absorbing.
It is possible to show by inspection that the distribution

_ KNN—n A"

P - TaAr N\
" (N —n)hn

(9.78)

forn # 0 and Py = 0, where K is a normalization constant, is stationary. Another
stationary distribution is obviously P, = 0 forn # 0 and Py = 1. With the purpose
of examining the properties of the stationary probability distribution (9.78), we will
consider a large value of N and focus on the probability density p(x) of the variable
x = n/N. Using Stirling formula, we get

X)= ——— ¢ MW, (9.79
P) x~/ 2N x )
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Fig. 9.5 Model with an absorbing state. (a) Plot of Fix(x) = F(x) 4+ In2 versus x, where the
function F(x) is given by (9.80), for three different values of A < A, A = A, and A > A.. (b)
Probability density p(x) versus x according to (9.79) for the same values of A. The maxima of p
correspond to the minima of F(x)

where
F(x)=—-xInA—(1-x)4+ (1 —x)In(1 —x). (9.80)

The function (9.80) has the aspect shown in Fig. 9.5. The probability density (9.80)
is shown in the same figure. The maxima of p occur at the minima of F.

To analyze the behavior of the function F(x), we determined its derivatives,
given by

F'(x) = —InA —In(1 — x), (9.81)

F’(x) = ; (9.82)
1—x
The function F(x) has a single maximum, which we denote by xo. For A > 1, it is
obtained from F’(xp) = 0 and gives us xo = (A — 1)/A. Notice that F"(xp) = A >
0 and therefore x( corresponds indeed to a minimum. When A < 1, the function
F(x) is an increasing monotonic and therefore the minimum occurs at x = 0 as
seen in Fig. 9.5.

We see thus that the model has two behaviors. When A < 1, the probability
density has a peak located at x = 0. When A > 1, it has a peak located at x = x¢ >
0, which moves as A varies. Therefore we identify A, = 1 as the critical value of
A, which separates the two behaviors. We identify x, as the order parameter, which
varies around the critical point according to

X0 = A —Ac. (9.83)

When A < A, the order parameter vanishes.
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Time correlation From the master equation (9.1) for P,(¢), we get the equation
that gives the time evolution of the distribution p(x, ¢) of the variable x = n/N,

%p(x,t) = é{)&(l —x+e)(x—¢e)plx—et)+ (x +e)p(x +¢,1)
—[Ax(1 —x) + x]p(x,1)}, (9.84)

where ¢ = 1/N. For small values of ¢,

d d £ P
3P0 = —af(X)p(x, B+ 55.28Xpx.1). (9.85)
where
f(x) = Ax(1—x) —x, (9.86)
g(x) = Ax(1—x) + x. (9.87)

We see thus that the master equation is reduced to a Fokker-Planck equation.
It is worth to note that the Fokker-Planck equation (9.85) is associated to the
Langevin equation

& = @+, 9.38)
t
where ¢ (x, t) is a multiplicative noise with the properties
(C(x,0)) =0, (9.89)
(CCx. ) (x. 1)) = eg(x)8(1 = 1'). (9.90)

From the Fokker-Planck equation we find the equation which gives the time
evolution of the average (x),

d
2= (). 9.91)
aresult that is obtained by means of integration by parts and taking into account that
p and dp/dx vanish in the limits of integration. Considering that ¢ is very small (N
very large) we presume that the probability distribution p(x,#) will become very
sharp when x takes the value r = (x) so that, in the limit ¢ — oo, it becomes a
Dirac delta function in x = r. This allows us to say that in this limit { f(x)) — f(r)
and to arrive at the following equation for r

dr
tz = f(r), (9.92)
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Fig. 9.6 Model with an absorbing state. (a) Order parameter r and (b) variance y as functions of

a=1/A

or yet

d

Z: =Ar(1—r)—r. (9.93)
Before determining the time-dependent solutions of (9.93), we calculate r for

large times, which is the solution of

r=Ar(l—r). (9.94)

This equation admits one trivial solution » = 0, which we identify as the absorbing
state, and a non trivial solution r = (A4 — 1)/A, that corresponds to the state
called active. As the parameter A varies, there occurs a phase transition at A =
Ao = 1 between the active state, characterized by r # 0, and the absorbing state,
characterized by r = 0. The quantity r, which is the fraction of particles in state A,
is the order parameter, shown in Fig. 9.6, and behaves close to the critical point as

F= (= A). (9.95)

Next we move on to the time-dependent solution of (9.93). When A # 1, this
equation is equivalent to

dt
A= =_- -, (9.96)

where ¢ = (A — 1)/A. Integrating, we get

c

where b is determined by the initial condition. We see thus that, if A < 1 we reach
the trivial solution r = 0 when ¢ — o00. On the other hand, if A > 1, we reach the
non trivial solution 7 = ¢ # 0. In both cases, the decay to the stationary value is
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exponential with a relaxation time t which behaves as
T~ A=A (9.98)

and hence diverges at the critical point A, = 1.
If A = 1, Eq.(9.93) is reduced to equation dr/dt = —r? whose solution is
r = 1/(c + t). The behavior for large times is thus algebraic and given by

r=1"" (9.99)
Variance Here we determine the time evolution of the variance y defined by
X =N[(x*) = (x)7] (9.100)
Using the Fokker-Planck equation (9.85),

d
207 =20/ () + e(g (), ©.101)
a result that is obtained by integrating by parts and taking into account that p and

dp/dx vanish in the limits of integration. Next, we use the result (9.91) to get

= 2y — N+ o) 0,102
e
When ¢ is very small (N very large), we assume that the probability distribution
p(x,t) becomes sharp in x equal to (x) = r so that the variance is of the order &
and that the other cumulants are of higher order. In the limit ¢ — 0 it becomes a
Dirac delta function in x = r. In this limit (g(x)) — g(r) and in addition (x f) —
(xX)(f) = f'(r)[{x?) — (x)?]. With these results, we get the equation for y,

dx
s 21" (r)x + g(r). (9.103)
Before searching for the time-dependent solution, we determine the stationary
solution which is given by

__&n
2f'(r)’

When A < 1, r = 0 and therefore y = 0. When A = 1, r = 0 and we get y = 1/2.
When A > 1,7 = (A — 1)/A and we obtain the result

(9.104)

1
1= A> 1. (9.105)
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Therefore, the variance is finite and has a jump at the critical point, as seen in
Fig.9.6.

To find y as a function of time, we use the time dependence of r. At the critical
point, A = 1, f’/(r) = —2r and for large times, we have seen that r = 1/¢. Since r
is small, then, at the critical point, g(r) = 2r and the equation for y becomes

dy 4y 2
L =24 9.106
dt t + t ( )
whose solution is
1 —4
X = E +at 7, (9107)

where a is an integration constant.

Time correlation The time correlation function C(¢) is obtained by the same
procedure used before in the case of the ferromagnetic model. The equation for
C(t) is given by dC/dt = f'(r)C or

dc
— = 0—1-2AnC. (9.108)

which we will solve for large times. When A > 1, we have seen that r approaches
its stationary value r = (A — 1)/A so that

dc
—=—-QA-1C, 9.109
—=—G-1) ©9.109)
whose solution is C ~ /7 with
b (9.110)
T = . .
A—1

When A < 1 we have seen that r approaches the zero value so that

dc
— =a-nc. ©.111)

whose solution is C ~ e¢~*/7 with
r=— 9.112)

When A = 1, we have seen that # = 1/¢ for large times so that in this case

dc 2
—=_Zc, 9.113
dt t ( )
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whose solution is
C ~172, 9.114)

and therefore the correlation function decays algebraically.

Exercises

1. Perform a simulation of the majority model defined in Sect. 9.2 for several values
of p and N. Construct the histogram /(n) of the number n of particles in state
A and make a normalized plot of / versus n/N. Determine also the average and
the variance of n. Make the plots of (n)/N and [(n?) — (n)?]/N versus p.

2. Perform a simulation of the ferromagnetic model defined in Sect. 9.3 for several
values of K and N. Construct the histogram /(n) of the number n of particles in
state A and make a normalized plot of /2 versus n/ N . Determine also the average
and the variance of n. Make the plots of (n)/N and [(n?) — (n)?]/N versus
T=1/K.

3. Perform the simulation of the model with an absorbing state defined in Sect. 9.4
for several values of A and N. Construct the histogram A (n) of the number n of
particles in state A and make a normalized plot of / versus n/N . Determine also
the average and variance of n. Make the plots of (n)/N and [(n?) — (n)?]/N
versus o = 1/A.



Chapter 10
Reactive Systems

10.1 Systems with One Degree of Freedom

Extension of reaction Here we study the kinetics of chemical reactions from
the stochastic point of view. We consider a system comprised by a vessel inside
which several chemical species transform into each other according to certain
chemical reactions. The thermochemical process caused by the chemical reactions
is understood as a stochastic process. The stochastic approach which we use here
corresponds to the description level in which the chemical state is defined by
the numbers of molecules of the various chemical species. The reaction rates,
understood as the transition rates between the chemical states, are considered to
depend only on the numbers of molecules of each species involved in the reactions.
A microscopic approach, that takes into account the individuality of the constitutive
units and not only the number of them, will be the object of study later on.

We start our study by considering the occurrence of a single reaction and its
reverse, involving ¢ chemical species and represented by the chemical equation

q q

D ovjAi = A 10.1)

i=1 i=1

where A; are the chemical formula of the chemical species, vi/ > ( are the
stoichiometric coefficients of the reactants and vi” > ( are the stoichiometric
coefficients of products. If a chemical species does not appear among the reactants,
the corresponding stoichiometric coefficients v/ vanishes. Similarly, if a chemical
species does not appear among the products, the corresponding stoichiometric
coefficients v{/ vanishes. We remark that if a certain chemical species, which we
call catalytic, may appear as among the reactants as among the products. In this
case, both stoichiometric coefficients v/ and v” of the chemical species are nonzero.
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Equation (10.1) tell us that in the forward reaction, v/ molecules of species 4;
disappear and v/ molecules of species A; are created so that the number of the
molecules of type A; increases by a value equal to

v, = v — . (10.2)

We denote by n; the number of molecules of the i-th chemical species, consid-
ered to be a stochastic variable. Due to the chemical reactions, the quantities n; do
not remain constant along the thermochemical process. However, their variations
are not arbitrary but must be in accordance with the variations (10.2), dictated by
the chemical reaction represented by (10.1).

With the purpose of describing the changes in n; prescribed by the chemical
reaction (10.1), we introduce the quantity ¢, called extension of reaction, and defined
as follows. (i) The quantity £ takes only integer values. (ii) When £ increases by one
unit, there occurs a forward reaction, that is, n; undergoes a variation equal to v;.
(iii) When £ decreases by one unit, there occurs the backward reaction that is, n;
undergoes a variation equal to —v;. (iv) When the variables n; takes pre-determined
values, which we denote by N;, the extension of reaction takes the zero value. We
see thus that n; is related with £ by

n; = N; +v;L. (10.3)

Since the variations in #; must be in accordance with (10.3), then the chemical state
of the system in consideration is determined by the variable £ only and the system
has only one degree of freedom.

Reaction rate The stochastic process that we consider is that in which £ varies
by just one unit. The rate of the transition £ — £ + 1, which we denote by ay, is
identified with the rate of the forward reaction (from reactants to the products) and
the rate of the transition £ — £ — 1, which we denote by by, is identified with the
backward reaction (from the products to the reactants). The probability P (¢) of the
occurrence of the state £ at time ¢ obeys the master equation

d
d_tPé = ag—1 Po—1 + b1 Pet1 — (a¢ + be) Py. (10.4)

From the master equation we obtain the time evolution of the average of £

d

d—t(ﬁ) = (a¢) — (be), (10.5)

and of the variance of £

%((52) —()%) = 2((¢ — (€))(ac — b)) + {ae) + (be). (10.6)
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To establish the reaction rates, related to the reactions (10.1), we assume that they
obey detailed balance

@ _ P (10.7)
bl+1 Pge '

with respect to the probability distribution P/ that describes the thermodynamic
equilibrium. Assuming that the system is weekly interacting, then, according to
statistical mechanics of equilibrium systems, the probability distribution has the
form

zi V)"
P = Cl—[(n—‘) (10.8)

where C is a normalization constant, V' is the volume and z; is a parameter, called
activity, that depends only on temperature and on the characteristics of the i-th
chemical species. Recalling that n; is connected to the extension of reaction £ by
means of (10.3), then

PZ+1 ni 1z V)Vl
10.
o (163)

The rates of forward and backward reactions, a, and by, respectively, are assumed
to be

.
_ .+ n-
ar =k VU—(ni o (10.10)

by =k~ Vl_[ e //),Vu (10.11)

where kt and k~ are parameters called constants of reaction or specific transition
rates. As we will see below they satisfy the detailed balance as long as the constants
of reaction are connected to the activities by a certain relation to be found. Notice
that the transition rates depend on the extension of reaction because the variables
n; are related to £ according to (10.3). We point out that if a chemical species does
not belong to the reactants, then v} vanishes and the corresponding term on the
product of (10.10) is absent. Similarly, if a chemical species does not belong to the
products of the reaction, then v }’ vanishes and the corresponding term on the product
of (10.11) is absent.

To determined by from by we should remember that the variation £ — £ 4 1
entails the variation n; — n; + v;. Thus the expression for by is that obtained
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from (10.11) by the substitution of n; by n; + v;. Taking into account that
v/ —v; = v, we get

ag kT n;\yvi
= — —_— (10.12)
Comparing with (10.9), we see that the detailed balance (10.7) is obeyed if
K [Tz (10.13)
k_ — i Zi . .

The right-hand side of this equation [ ], z;* = K is called equilibrium constant. The
rates of reactions are adopted as being those given by (10.10) and (10.11) and such
that the constant of reactions satisfy (10.13).

When n; is large enough, we may approximate

(n; :'Ui)! =0+ D +2)...(n +v1) (10.14)

by n}" so that the reaction rates in this regime are given by

ac =k V] (HV) , (10.15)

b=k V] ("V) . (10.16)

Thermodynamic limit The thermochemical properties are obtained, according
to the stochastic approach that we use, from the master equation (10.4) and, in
particular, from Egs. (10.5) and (10.6). The appropriate properties in the description
of a thermochemical system are those obtained considering the number of particles
and the volume as macroscopic quantities. This means to say that both quantities,
number of particles and volume, must be sufficiently large. More precisely, we
should take the thermodynamic limit, defined as the limit where the volume and
the numbers of particles of each species grow without limit in such a way that the
concentrations 1; / V' = x; remain finite. As a consequence, the ratios £/ V = & and
N;/V = a; also remain finite because from (10.3) the concentrations x; and the
extension of reaction £ are related by

X; = a; + v;€. (10.17)



10.1 Systems with One Degree of Freedom 233

In the thermodynamic limit the quantities a;/V = A and b/ V = w, which are
the reaction rates per unit volume, are finite and given by

A =k @ =k [ (10.18)

Notice that A(§) and w(§) must be considered functions of & due to the rela-
tion (10.17).

When the volume is large, we assume that the probability distribution Py(t),
solution of the master equation (10.4) with transition rates given by (10.10)
and (10.11), or equivalently by (10.15) and (10.16), becomes a Gaussian distribution
such that the average of the variable £/ V and the variance of the variable £/+/V
are finite in the thermodynamic limit. In other terms, we assume that (£)/V and
x = [(£?) — (£)?]/ V are finite in the thermodynamic limit.

To proceed in our analysis it is convenient to use the stochastic variable £ = £/ V
and focus on the probability distribution p(£,¢) of this variable. The average of &
we denote by £, that is, £ = (€)/ V. According to the assumptions above § is finite
in the thermodynamic limit. Moreover, the variance of £, which is given by (£2) —
(€)> = x/V, is inversely proportional to V' and vanishes in the thermodynamic
limit because y is finite in this limit. We may conclude therefore that for V' large
enough, p(&, 1), is a Gaussian with mean £ finite and variance y/ V', which becomes
thus a Dirac delta function in the limit V' — oo.

Using Egs. (10.5) and (10.6), we see that the time evolutions of (£) and y obey
the equations

d

d—t(é) = (A(§)) — (u(®)), (10.19)
d
= 2VA{(E — (ED(AE) — () + (A®)) + (n(8)), (10.20)

where A(§) and w(§) are given by (10.18).

Taking into account that the probability distributions p(&, ¢) becomes a Dirac
delta function when V' — oo, then we may conclude that in this limit the average
(f(§)) of any analytical function of £ approaches f(£). From this result we get

d€ . .
o = A6 @), (10.21)
t
which gives the time evolution of § . In this limit, the following result holds

Jim V(€ =€) /) = f/(ENx, (10.22)
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for any analytical function of f(&). Using this result, Eq.(10.20) becomes the
equation

d _ _ _ _
2= 2[A(8) — W )y + AE) + n(d). (10.23)

which gives the time evolution of y. From § , the concentrations are determined by
means of

X; =a; + \)ig. (10.24)

Stationary state In the stationary state A(E) = w(€), what leads us to the result
KT =k [T (10.25)
i i

which can be written in the form

i+
.
[[5"=—. (10.26)
. k=
1
bearing in mind that v; = v — v/. We assume that the reaction constants k* and

k™ are both nonzero. This expression constitutes the Guldberg-Waage law. _
To calculate the variance, we should first determine A’(§) and u/(£).
From (10.18) and using (10.24), we get

NE =2 Y WE=n@ Y . (10.27)

Taking into account that in the stationary state A(E) = w(§), then, from (10.23), we
reach the following expression for the variance in the stationary state

1 ;
= o) - V;);_, (10.28)
i

i

Since v; = v/’ — v/, then Eq. (10.28) takes the form
1 2
—=y (10.29)
X X

To determine the variance y; = V({(x?) — (x;)?), we use the relation (10.17) to
reach the result

Xi =iy (10.30)
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Fokker-Planck equation The Gaussian form of p(&, ¢), assumed above when V' is
large enough, can be obtained from the transformation of the master equation into a
Fokker-Planck equation. For this, we start by writing the master equation (10.4) in
terms of the probability distribution p(§, ¢),

0
SPED) = —AE —0lE — 1) + RlE + o D)
“MEPE. 1) — mEPE 1), (1031)

where € = 1/ V. For small values of &

2
D —peen + £2

0E 53 MO +r@lpE 0, (1032)

0
5 PED =

which is a Fokker-Planck equation. From this equation we see that the variance
of £ is proportional to ¢ and that the other cumulants are of order higher than e.
Therefore, for ¢ small enough, p(£,¢) behaves as a Gaussian with variance
proportional to . From the Fokker-Planck equation we get immediately Eqs. (10.19)
and (10.20) by integration by parts and eventually Eqgs. (10.21) and (10.23) by using
the properties we have just mentioned.

It worth to notice yet that the Fokker-Planck equation has as the associate
Langevin equation the following equation

d
7§ = A(E) — n(®) + {e[A () + n@N ¢ 0), (10.33)

where ¢ (¢) has the properties ({(¢)) = 0 and (¢ (£)¢(t))) = 6(¢t —1).

10.2 Reactions with One Degree of Freedom

Next, we apply the results above to a system consisting of one or two chemical
reactions involving a certain number of chemical species. We assume that the system
is large enough in such a way that it can be characterized only by the quantities § and
x whose evolution equations are given by (10.21) and (10.23). From &, we obtain
the concentrations x; by means of (10.24). To simplify notation, from here on we
write & in the place of £ and x; in the place of x;. Thus the equation for the evolution
of the extension of reaction are given by

d
ZE=2- 10.34
dté M, (10.34)
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where

A=k w=kTTx" (10.35)

and x; is related to £ by
Xi =a; + l),'ég'. (10.36)

It is possible to determine x; directly from their evolution equations. They are
obtained from (10.34) using (10.36) and are given by

d
d_tXi =v,(A—p), (10.37)
i =1,2,...,q. Notice however that these g equations are not independent because

the concentrations x; are not independent but are connected by (10.36).

If the constants of reaction kT and k~ are both nonzero, then, in the stationary
state A(§) = wu(§), equation that determines & in the stationary state, and the
variance y is given by (10.29), that is,

1 vl-z
= Z - (10.38)
X X

In the following, we will solve Eq. (10.34) or Egs. (10.37) for reactive systems
consisting of two or more chemical species. When convenient, we will use the
notation x, y and z in the place of x, x; and x3.

Example 1

We start by examining the chemical reactions represented by the chemical
equation

A= B, (10.39)

with forward and backward constants of reaction k| and k,. We denote by x and
v, the concentrations of the chemical species A and B, respectively, and by & the
extension of reaction. As initial condition we set x = 0 and y = a so that, according
to (10.36), x = —§, y = a + &, from which we get the constraint x + y = a. The
forward and backward rates are A = k;x and u = k,y. The evolution equation of
x, according to (10.37), is given by

dx

x = —k1x + ky(a — x) = kya — kx, (10.40)

where k = k| + k», whose solution with initial condition x = 0 is

k
x = %(1 Y (10.41)
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from which we get
a —kt
y = E(kl + kye ™). (10.42)

When 1 — oo, we get the equilibrium concentrations

== =, 10.43
X= Y= ( )
Therefore, in equilibrium, y/x = k;/k,. Still in equilibrium, the variance y is
obtained from (10.38) and is
kik,
X=a-5 (10.44)

Example 2

Now, we examine the reaction
2A = B, (10.45)

with forward and backward reaction constants k; and k,. We denote by x and y
the concentrations of the species A and B, respectively, and by £ the extension of
reaction. As initial condition we set x = 0 and y = a so that x = —2§ and
y = a + £, from which we get the constraint x + 2y = a. The forward and
backward rates are A = k;x?> and = k»y. The time evolution of x, according
to (10.37), is given by

d

Z): = —2kyx? + 2ka(a — 2x), (10.46)
which can be written in the form

d

E): — 2k (x — o) (x — 1), (10.47)

where ¢y and ¢, are the roots of the right-hand side of (10.46), given by

1
=1 (—k2 + k2 + klkza) , (10.48)

1

1 /
c1 = k_1 (—k2 — k% + klkza) . (1049)
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Equation (10.47) can then be written in the equivalent form

dt 1 1
—o— = - , (10.50)
dx x—cy Xx-—c¢
where & = 2k (co — c¢1). Integrating, we get
gt = I 0 (10.51)
(x —c1)eo

where the integration constant was chosen according to the initial condition, x = 0
at t = 0, from which we reach the result

1—e™
X = coCq (10.52)

c1 — coe™ ¥ '

When t — o0, y — c¢o since ¢ > 0. The decay to the stationary value is
exponential. The concentrations of the two species are

X =a—2cp, y = ¢y, (10.53)
which are the equilibrium result and are in accordance with the equilibrium
condition, which is y/x* = k;/k,. In equilibrium, the variance y is obtained
from (10.38) and is

Co (a — 26’0)
= — 10.54
X 3co+a ( )
Example 3

We examine now the reaction
A+ B =C. (10.55)

The rate of forward and backward reaction are k1 and k,. We denote by x, y and z the
concentrations of the species A, B and C, respectively, and the extension of reaction
by &. As initial conditions we set x =0, y = 0andz = a sothatx = y = —§ and
z = a + &. The concentrations obey therefore the restrictions z = @ — x and y = x.
The rate of forward and backward reactions are given by A = kjxy = k;(a — z)?
and u = k,z and the equation for x, according to (10.37), is given by

d

d_f = —kxX* + ka(a — x), (10.56)
which can be written in the form

d

Z o k- —c), (10.57)

dt
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where ¢y and ¢ are the roots of the right-hand side of Eq. (10.56), given by

1 /
co = — _k2 + k% + 4klk2a s (1058)
2k
1 2
g =— | —ky— \/k2 + 4kksa | . (10.59)
2k

Employing the same method used previously, we get the solution

1— e—at

X = coCy (10.60)

¢ —coe™t’
where @ = ky(cop — ¢1) and the integration constant was chosen according to the
initial condition, x = 0 at # = 0. The decay to stationary value is exponential.

When t — 00, x — c¢o because @« > 0, and the concentrations of the three
species are

X =y =co, z=a— cp, (10.61)

which are the equilibrium values and are such that z/xy = ky/k;. In equilibrium,
the variance y is obtained from (10.38) and is

cola — cop)
= —, 10.62
X 2a + ¢y ¢ )
Example 4
We examine now the reaction
A+ B = 2C. (10.63)

The constants of the forward and backward reactions are, respectively, k1 and k.
We denote by x, y and z the concentrations of species A, B and C, respectively,
and the extension of reaction by £. As initial condition we set x = y = 0 and
z=asothatx = y = —§ and z = a + 2§. The concentrations are restricted to
z=a —2x and y = x. The rates of forward and backward reactions are A = kxy
and = kyz%.

The time evolution of x, according to (10.37), is given by

d
d—: = kx4 kala — 2x)2, (10.64)

which we write as

d.
= =~k — 4k2) (v — co)x — ). (10.65)
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where
vk k
co = #, ¢ = a—\/_z' (10.66)
2k + Vi 2Vky = Vi
Using the same approach used previously, we obtain the following solution
1—e
X =cpci—, (10.67)
c1 — coe™ ¥

where o = (k1 — 4k3)(co — ¢1).
When ¢t — 00, x — ¢ because o > 0. The decay to the stationary value is
exponential. The concentrations of the three species are

y =a —2c¢, X =z = ¢y, (10.68)

which are the results for equilibrium and are in accordance with z?/xy = ki /k>. In
equilibrium, the variance y is obtained from (10.38) and is

cola — 2cp)
= —. 10.69
X 5a — 9¢y ( )

Example 5

We consider now an autocatalytic reaction,
A+ B = 2A. (10.70)
We denote by x and y the concentrations of A and B, respectively. The equation
for x, according to (10.37), is given by

d
j); = kixy — kox?. (10.71)

Taking into account that x 4+ y = a is constant, then we can write

D (x— o) (10.72)
= = X —c), .

where k = k| + k, and ¢ = ka/k. Writing this equation in the form

dt 1 1
—ck— = - —, (10.73)
dx« x—c Xx

we can integrate to get

ac

X=——
a—(a—c)e <k’

(10.74)

where the integration constant was chosen so that x = g att = 0.
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Whent — o0, x = c and y = a — ¢, that s,

aky aky
X =—, y = e (10.75)

which fulfills the condition x/y = k;/k,, and therefore the equilibrium solution is
the same solution obtained for the reaction B = A. We conclude that the catalyst
does not modify the thermochemical equilibrium. However, it can accelerate the
process of approaching equilibrium. To perceive this effect it suffices to compare the
relaxation times given by Eq. (10.74) with those given by Eq. (10.41). We notice in
addition that the variance is the same as that corresponding to the reaction B = A,
given by (10.44).

Example 6

Now we examine an example in which the reverse reaction is forbidden,
vA — B, (10.76)

where v can be 1, 2, ... We denote by x and y the concentrations of A and B,
respectively, and by £ the extension of reaction. As initial condition we choose x =
a and y = 0 so that, according to (10.36), x = a — v€ and y = &, from which we
get the constraint x + vy = a. Denoting by k the reaction constant, then the rate of
reaction is A = kx” and the equation for x, according to (10.37), is given by

dx kx” (10.77)
— = —VKX . .
dt

Initially, we examine the reaction represented by the equation A— B, correspond-
ing to v = 1. The reaction rate is A = kx and the equation for x is given by

dx
T = —kx, (10.78)
whose solution is x = ae. Therefore,
y=a(l —e™), (10.79)

We see that the decay to the solution x = @ and y = 0 is exponential.
Next, we examine the reaction 2A— B, corresponding to v = 2. The reaction
rate is A = kx* and

X ok, (10.80)

whose solution is

-_* 10.81
YT Skar+ 1 (1081)
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valid for the initial condition x = a. We see that the decay becomes algebraic. For
large times x ~ ¢!,
The solution of (10.77) for v > 1 is given by

x =afp(v — Dka" "'t + 1]7Y/07D, (10.82)

and the decay is algebraic. For large times, x ~ ¢~!/(=D,

10.3 Systems with More that One Degree of Freedom

Reaction rate The results obtained previously for reactive systems with one degree
of freedom can be generalized to reactive systems with more than one degree of
freedom. Generically, we suppose that a vessel contains g chemical species that
react among them according to r chemical reactions. The chemical reactions are
represented by the chemical equations

q q
D vpdr =Y vj4 (10.83)
i=1 i=1
j =12,...,r,withr < g, where vi/j > ( are the stoichiometric coefficients of

the reactants and vi/.’ > 0 are the stoichiometric coefficients of the products of the
reaction. Equation (10.83) tell us that in the j-th forward reaction, Vz/, molecules of
species A; disappear and vi/j’ molecules of species A; are created so that the number
of molecules of type A; increase by an amount

vj = vy — V. (10.84)

For each chemical reaction and its reverse, described by the chemical equa-
tion (10.83), we define a extension of reaction £ ; such that the number of molecules
n; of the several chemical species are given by

ni = N; + Z viil;, (10.85)
=1

where N; are predetermined values of n;, which we may consider as those occurring
at a certain instant of time. Notice that the number of variables {; is equal to the
number r of chemical reactions and the number of variables n; is equal to the
number g of chemical species. Since r < g, the variables n; are not independent but
have constraints whose numberis g —r.
The r chemical reactions taking place inside the vessel among the g chemical
species are understood as a stochastic process whose state space we consider to
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Fig. 10.1 Tllustration of the possible states of a system with two chemical reactions involving three
chemical species. (a) Space of the number of molecules 71, 1, and n3 of the chemical species. The
transitions occur along the straight lines belonging to the plane that cuts the three axis. (b) Space
of the extensions of reaction £, and ¢,. The arrows represent the possible transitions from a state
represented by a full circle. The occurrence of the reaction j correspond to a displacement e; and
its reverse to a displacement —e;

be the vector £ = (£1,{»,...,£,), as shown in Fig. 10.1. From {; we obtain n; by
means of (10.85). The stochastic process that we adopt here is defined by a transition
rate consisting by various rates, each one corresponding to a chemical reaction. We
assume that the transitions in space £ are such that only one component of £ changes
its value, which means that the chemical reactions occur independent of each other.
In other terms, the allowed changes of the vector £ are those parallel to the axis in
space £, as seen in Fig. 10.1. In analogy to the case of one degree of freedom, the
allowed transitions are such that the variations in £; equals plus or minus one, that
is, £; — £; £ 1, as seen in Fig. 10.1.

Here it is convenient to define the unit vector e; that has all components equal to
zero except the j-th which is 1. Thus we write

L= tje;. (10.86)
j=1

In terms of the unit vectors e}, the possible transitions are those such that { —

€ +e;. Denoting by a; the transitionrate £; — £; + 1 and by bg the transition rate
{; — £; — 1, then the time evolution of P;(¢) is governed by the master equation

d ) . ) .
b= Y Aaj_y Pe—e; + by, Pere; = (a] +b])Pe}. (10.87)
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The rate of the forward reaction ag and the rate of backward reaction b({ are
adopted in a way similar to that done previously,

_ .+
al = k] Vl_[ —v)'V"U (10.88)

bl = k |4 (10.89)
¢ l_[ (n; — v”)'V”‘/

where kj»' and kj_ are the constant of reaction corresponding to the j-th reaction.
Notice that the rate of reactions depend on the extension of reaction because the
variable n; are related with £; according to (10.85). The constants of reaction
are adopted in such a way that the detailed balance is obeyed with relation to the
probability distribution (10.8), what results in the following relations

=1z (10.90)

These relations can always be fulfilled because the number of reactions is smaller
or equal to the number of chemical species.
When V is large enough, the rates are given with good approximation by

al =k;rVH(n—Vi)V;j, (10.91)
ol =k V] (”V)’ , (10.92)

Thermodynamic limit In the thermodynamic limit the ratio £; = &;/V,n;/V =
x; and N;/V = a; are finite and, according to (10.85), are related by

.
xi=ai+ Yy vk (10.93)

The ratios A; = al /Vand pu; = b / V are also finite in the thermodynamic limit
and are given by

1) =k [« wi & =k [Ix" (10.94)

where we denote by & the vector £ = (£, & ...,&,). Notice that A;(§) and p; (§)
must be considered functions of £ in view of the relation (10.93).
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Now we must consider the probability distribution p(£, 7) of the variable £. When
V is large enough, the master equation is transformed in the Fokker-Planck equation

2[/1 &) + 1 ElpE, 1),
(10.95)

d
o PED = }jaém.@) i EpE.0) + 5 }: 5

where e = 1/V and A;(§) and u; (§) are given by (10.94).
It is worth to note that the Fokker-Planck equation is associated to the following
Langevin equation

d .
5%:*ﬂ@—ﬂﬂ®+wMA@+ux@wﬂgm, (10.96)

where {; (¢) has the properties (¢;(¢)) = 0 and (£; (£)¢;/(t")) = 8;;/6(t —1').

From the Fokker-Planck equation we obtain the equations for (§;),

d
E(S") = (4;8) — (n;(®), (10.97)
and for y; = V[(§}) — (£;)*],

d
2% = 2VAE = (E DA ) — i () + (A5 () + {u; (€))- (10.98)

In the thermodynamic limit V' — oo, using the notation é_] = (&),

d

ZE=5E -6, (10.99)

d

7%= (85, () - E; ) (5)) X+ A + wi6). (10.100)

Notice that the averages X; of the concentrations are obtained from é i by
r -
S=ai+ ) vk (10.101)

In the stationary state A ; €)= pn j (€) so that from (10.94),

+

[1x" =-%. (10.102)
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where we have taken into account that v; = vjj — v;. The right-hand side of this
equation is the equilibrium constant related to the j-th reaction.

To determine the variance y; in the stationary state, we proceed as we have done
in the case of one degree of freedom to obtain the following result

1 v
—=> 2 (10.103)
Xi X

To determine the variance ¥ = V({x?) — (x;)?), we use the relation (10.93) to
reach the result

=Y vix. (10.104)
J

10.4 Reactions with More than One Degree of Freedom

Example 1

We start by the set of reactions
A<= B, B=2C. (10.105)

We denote by x, y and z the concentrations A, B, and C, respectively. The extension
of the first reaction we denote by £ and the second by 7. Suppose that at the initial
instant of time x = a and y = z = 0, then according to (10.93), x = a — §,
y = & — np and z = 1. The equation for the extension of reaction § and z are

d

= kil —§) — kat. (10.106)
e _ k 10.107
o 3(§ —2) — ksz. (10.107)

The first equation is independent of the second and its solution for the initial
condition § = 0 at¢ = 0 is given by

£= %kl(l —e™), (10.108)

where k = k| + k». Replacing in the second

dz _ ak1k3

i (1—e™)y—k'z, (10.109)
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where k' = k3 + k4, whose solution for the initial condition z = 0 is

k k ’ ! / 14
7= ue—k’/ (1—e ek gt | (10.110)
k 0
or, performing the integral,
akiky [1—e Kt o=k _ o=k
T= ( o T . (10.111)

When ¢ — oo, we get the solutions £ = ak;/k and z = ak k3 /kk/, from which
the following equilibrium concentrations follow,

aks akiky aki ks
==, = = —_, 10.112
k Y T T (10.112)
In equilibrium, the variances y; are obtained from (10.103) and are
kikok kiksk
o= AKk1K2K4 ’ XZZal 324' (10.113)
k(kiks + k'k>) k(k’)
Example 2
Next we examine the reactions
A — B, B — C, (10.114)

which can be understood as the reactions (10.105), with k, = 0 and k4 = 0, so that
the solutions for £ and z are reduced to

E=a(l—eh"), (10.115)
t=a-- a (ke — ke, (10.116)
1 —R3
from which we obtain
x = ae ¥, (10.117)
k
y= kl“_lk3 ekt — g~hity, (10.118)

In Fig. 10.2 we show the concentrations x, y and z as functions of time for k; = 1
and k3 = 0.5 and for initial conditions x = 1, y = 0 and z = 0. The concentrations
x and y of species A and C have monotonic behavior. The concentration of A
decreases and eventually vanishes. The concentration of C increases and eventually
reaches the saturation value. The concentration y of species B, on the other hand,
increases at the beginning, reaches a maximum value and eventually decreases to its
zero value. The maximum of y occurs at ty,x = In(ks/k1)/ (ks — k).
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Fig. 10.2 Concentrations x, 1 T
y and z of the chemical
species A, B and C as 0.8 z i
. . . X
functions of time ¢
corresponding to the
reactions (10.114) with v 0.6 1 B
constants of reactions k| = 1 >:
and k3 = 0.5. The initial = 04 L _
conditions are x = 1 and
=z7= 0 y
Y 0.2 4
0 ‘ .
0 2 4 6 8 10

Catalytic oxidation of the carbon monoxide Here we examine the reaction of
oxidation of the carbon monoxide on a catalytic surface. In the presence of the
catalytic surface, the carbon monoxide and the oxygen are adsorbed and react
forming the carbon dioxide, which leaves the surface. The reaction mechanism
presumes that the catalytic surface is composed by sites, which can be occupied
either by an oxygen atom or by a carbon monoxide molecule. The reactions are the
following

C—>A, 20 —>2B, A+ B-—2C. (10.119)

In the first reaction, of constant k;, an empty site (C), is occupied by a carbon
monoxide (A) molecule. In the second reaction, of constant k;, two empty sites
are occupied by two oxygen (B) atoms, coming from the dissociation of an oxygen
molecule. In the third reaction, of constant k3, an oxygen atom reacts with a
carbon monoxide molecule forming the carbon dioxide, leaving two sites empty. We
assume further that the carbon monoxide can leave the catalytic surface according
to the reaction

A= C, (10.120)

with constant k4, which is identified with the reverse of the first reaction. Denoting
by x, y and z the concentrations of A, B and C, respectively, then

d
& kiz— ksxy — kax, (10.121)
dt
dy _ )
E = 2k22 - k3xy, (10.122)
dz 2
= = —kiz— 2k + 2y + K. (10.123)

These equations are not independent because x + y + z = a, a constant.
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Next we analyze the stationary state, given by the equations

ki(a—x—y) = kaxy + kqx, (10.124)
2kr(a — x — y)* = kaxy, (10.125)

and treat the case in which there is no desorption, k4 = 0. In this case, a solution is
x =a,y = 0and z = 0. The otheris z = r/2,

1 r r 2k,r?
_, _ Ty 2t 10.12
x=5fa=3 + \/(a 2) Lo | (10.126)
1 r r 2kor?
e —_——— —_—— 2 _
y=5l9-3 \/(a 2) oo | (10.127)

where r = ky/ k,, valid for r < ry, where

~1
ro =4a ( 2k2/k3 + %) . (10128)
Figure 10.3 shows x and y as functions of k/ k,. As we see the concentrations has
ajump at r = rg. Above ry, the concentration x = a and y = 0, what means that
the catalytic surface is saturated by the carbon monoxide.

When k4 # 0, the stationary solutions for x and y are obtained by solving
numerically the evolution equations starting from the initial condition such that
z = 0, y is very small and x = a — y. The results are shown in Fig. 10.3. For

a b
1 1
0.8 - 0.8 - -
0.6 - 0.6 - 4
X y
04 04 | -
021 02 .
0 0 : :
0 0 0.2 0.4 0.6 0.8 1
r r
Fig. 10.3 Concentrations x, y of the chemical species A, B as functions of r = ki/k,

corresponding to the reactions (10.119) of the catalytic oxidation of the carbon monoxide for
k3/k, = 1,a = 1 and for the following values of k4/ k,, from left to right: 0, 0.05, 0.08, 0.12 and
0.2. The full circle indicates the critical point
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small values of k4/k,, the concentrations have a jump at a certain value of r,
characterizing a discontinuous phase transition. At a certain value of k4/k; this
jump vanishes characterizing the appearance of a critical point. Above this value of
k4/ ko there is no phase transition.

10.5 Open Systems

The contact with a reservoir of particles of type A; may be understood as the
occurrence of the reaction O == A;, where O represents the absence of particles.
According to this idea, the rate of addition of a particle, n; — n; + 1, is adopted
as kz; V' and of removal, n; — n; — 1, as kn;. The transition rates per unit volume
corresponding to the addition and removal of particles are given by

o = kz, (10.129)

Bi = kxi, (10.130)

where x; = n;/V. The average flux of particles of species 7, per unit volume, is
thus

d),' = k(Zi —)_Ci). (10131)

Here we consider a system that consists of a vessel where a set of reaction take
place and that particles are exchange with the environment. Thus, the variation in
the number of particles is not only due to the chemical reaction but also to the flux
from the environment. The equation for the time evolution of x; is given by

d :
x’ —Zv,,R + i, (10.132)

i =1,2,...,q, where R; = A/ — i/ and ¢; is the flux per unit volume of particles
of type i from the environment to inside the vessel.
The entropy flux @ is given by

@ = ZR ln—+Z¢, 1n—. (10.133)

In the stationary state, x; is constant so that

~ > wiR;, (10.134)

J=1

valid fori = 1,2,...,4.
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When the number of chemical species is larger than the number of reactions,
q > r, the fluxes cannot be arbitrary but must hold a relation between them. Let a;,

i,j =1,2,...,r,the elements of a matrix which is the inverse of the matrix whose
entries are the stoichiometric coefficients vy, i, j = 1,2, ..., r, thatis,
r
> awvi = 8. (10.135)

i=1
Using this relation we get
Rj ==Y ajs;. (10.136)
i=1

valid only for j = 1,2,...,r, which replaced in (10.134) gives ¢ — r constraints
among the fluxes, given by

¢ =) viapdk, (10.137)
j=lk=1

validfori =r +1,...,q.
Example 1

We start by examining the reactions
A<= B. (10.138)

Denoting by x and y the concentrations of A and B, respectively, the evolution
equations are

dx

& = —kix+ oy + 4. (10.139)
dy
Y —kix—kay + . (10.140)
where
¢ =z — x), ¢y =Pz2—y). (10.141)
In the stationary state ¢, = —¢, = k1x—k»y, from which we obtain the solution

_ Bkazy + akazi — afzy
T Bkt aks—af

(10.142)

_akizi + Bkizo —afz

10.143
Bk + ak; — o ( )



252 10 Reactive Systems

The fluxes ¢, and ¢, are given by

kizi — kozo
y=—¢y =af . 10.144
o} ¢y = af Bki + aky —ap ( )
The entropy flux, which is identified with the entropy production rate,
kix 21 22
®=RIn— +¢sIn—+ ¢, In—, (10.145)
kay x y
where R = k1x — kyy, is
kizi — k k
o = P — k) | ak (10.146)

 Bki + aks —af n%.

In equilibrium the fluxes vanish so that z1k; = 72k;, which is identified with the
equilibrium condition (10.13) and the entropy flux vanishes. In this case, x = z;
and y = 2.

Lindemann mechanism The reactions
2A = A+ B, B — C, (10.147)

correspond to the transformation of molecules of type A in molecules of type C
by means of an intermediate process in which A is transformed into B, which is
interpreted as an activated A molecule, which in turn is transformed into C. This
transformation of A in C is called Lindemann mechanism.

We denote by x, y and z the concentrations of A, B, and C, respectively. We
assume the existence of flux of particles of type A and C so that the equations for
the concentrations are

d
E): = —kix? + koxy + ¢y (10.148)
dy _ 2
= kyx? — koxy — k3, (10.149)
d
E lay+ ¢ (10.150)
dt
In the stationary state
kix?
br = —¢. = k3. y ! (10.151)

- kox + ks’
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Eliminating y, we reach the following relation between the flux ¢, and the
concentration Xx,

k1k3x

= — 10.152
kox + k3 ¢ )

¢)X:kx5

If kox >> ks, then k = kik3/k, and ¢, is proportional to x. If kox << k3, then

k = kx and ¢, is proportional to x>.

Michaelis-Menten mechanism In the reactions
A+ B = C, C —>B+D, (10.153)

molecules of type A are transformed in D by means of the Michaelis-Menten
mechanism, in which A is transformed into a complex C by means of a catalyst
(enzyme) B. The complex can be broken, which corresponds to the backward of
the first reaction, or yield the product D, which is the second reaction. We denote
by x, y, z and u the concentrations of species A, B, C and D, and we assume the
existence of flux of particles of type A and D. The equations for the concentrations
are therefore

d
E); = —kixy + kaz + ¢x. (10.154)
dy
i —kixy + krz + ksz, (10.155)
d
é = kixy — koz — ksz, (10.156)
du
&k .. 10.157
o 32+ ¢ ( )

Notice that y 4+ z = yo is a constant.
In the stationary state,

dx = —Pu = kz, 7= —, (10.158)

where K, is the Michaelis constant, given by

_k2+k3

Ky
ki

(10.159)
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Since y = yp — z, then, using (10.158), we get the following relation between z
and x,

= , 10.160
. K, +x ( )
and therefore
k3yox
= , 10.161
O K, 1 x ( )

which is the Michaelis-Menten equation. The saturation flux (obtained when x —
00) 18 ¢, = k30 so that the Michaelis-Menten equation is written in the equivalent
form

bo_
P

(10.162)

Schlogl first model The Schlogl first model is defined by the set of reactions
A+ B = 24, A=2C, (10.163)

with the reaction rates k1, k», k3 and k4, respectively. The first is a catalytic reaction
and the second is a spontaneous annihilation and spontaneous creation. We denote
by x, y and z the concentrations of the species A, B and C, respectively. The
equation for x is given by

% = kixy — kox? — kax + kyz, (10.164)
@ — _k 2
o = kot kax? + ¢y, (10.165)
%: k3x — kaz + .. (10.166)
In the stationary state,
O = —¢. = kixy — kox? = k3x — kyz. (10.167)

Denoting by a and b the solutions of these equations for y and z, respectively, then
the solution for x is the root of

kox?* = (kia — k3)x — kab = 0, (10.168)
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Fig. 10.4 Concentration x of chemical species A as a function of @ = k3/k, corresponding to
the Schlogl first (a) and second (b) model. In both cases, xo = kja/k,. The full circle represents
the critical point

and is given by

1
x=— (kla ks + Vkia—ks)? + 4k2k4) . (10.169)
2ky
In Fig. 10.4, we show x as a function of « = k3/k, for several values of k4. When
ks = 0, the solutionis x = 0 or

kla—k3
X =————,

10.170
o ( )

as shown in Fig. 10.4. Therefore, there is a phase transition, that occurs at k3 =
kia, or at « = a, = kja/k,, between a state characterized by x # 0 to a state
characterized by x = 0. Notice that the transition is continuous because x vanishes
continuously when k3 approaches ka.

Schlogl second model The Schlogl second model consists of the equations
2A+ B = 34, A= C. (10.171)

Using the same notation as in the case of the Schlogl first model, now we have the
following equations for the concentrations

d
E); = kix2y — kax — kax + kaz, (10.172)
dy _ 2 3
Z = —K1xX°y + kzx + ¢)y, (10173)
d
L kax —kaz + ¢ (10.174)

dt
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In the stationary state,
br = —¢, = kix’y —kox® = kax — kuz. (10.175)

Denoting by a and b the solutions of these equations for y and z, respectively, then
the solution for x is the root of

kox® — kix%a + ksx — ksb = 0, (10.176)

whose solution is shown in Fig. 10.4 as a function of & = k3/ k, for several values
of k4.

When k4 = 0, one solution is x = 0. The other solution, that occurs for k3 >
k3 = (k1a)?/4k,, is characterized by x # 0. Therefore, there is a phase transition
that occurs at k3 = kj. When k3 approaches k3, x has a jump, characterized by
a discontinuous phase transition. The transition occurs at @ = «g = (kja/2k»)>.
When k4 # 0 the concentration x has a jump as shown in Fig. 10.4 for small values
of ks. When ky = (kja)*/27k3 this jump vanishes characterizing a continuous
phase transition that occurs at k3 = (kja)?/3ks or o, = (k1a/ k»)?/3.



Chapter 11
Glauber Model

11.1 Introduction

In this chapter we consider systems with stochastic dynamics, governed by master
equations and defined on a lattice. The system to be studied comprises a lattice with
N sites. To each site one associates a stochastic variable that takes discrete values.
Here we consider the simplest example in which the variables take only two values:
+1 or —1. We denote by o; the variable associated to the site i, so that 0; = +1.
The total number of configurations or states of the system is 2V. A possible state of
the system is a vector

0'2(0'1,0'2,...,0',',...,0'1\/), (111)

whose 7-th component is the state o; of site 7.
The time evolution of the system is governed by the master equation

iP(o,t) = Y {W(0.0")P(c'.1) = W(0'.0) P(0.1)}. (11.2)
dr o’/ (F#0)

where P(o,t) is the probability of occurrence of configuration o at time ¢, and
W(o, o) is the transition rate from ¢’ to o. We can say also that W(o, 0”’) At is the
conditional probability of transition from ¢’ to ¢ in a small time interval At.

Similarly to what we have seen previously, we may here also define the 2V x 2V
matrix W, whose nondiagonal entries are W(o, ¢”) and the diagonal entries W(o, 0)
are defined by

W(o.0)=— Y W(o.0). (11.3)
o’(#0)
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Thus the master equation can also be written in the form
iP(a 1) =Y W(.0")P(d'.1) (11.4)
dt 9 G/ 9 bl bl .
in which the sum is unrestricted, or yet, in the matrix form

d
PO =WPQ). (11.5)

where P(t) is the column matrix whose elements are P (o, t). The solution of this
equation is

P(t) = ¢ P(0). (11.6)
In this and in the next chapter we will treat only the case in which the transitions

occur between configurations that differ only by the state of one site. Accordingly,
we write

W(o'.0) =) 8(0].01)8(0%.02) ...8(c].—07)...8(cy.on)wi(0),  (11.7)

where S(Uj,(f]’-) is the Kronecker delta, that takes the value 1 or 0 according
to whether o; and 0]’- are equal or different, respectively. The factor w; (o) is
interpreted as the rate of changing the sign of the state of the i -th site, that is the rate
of 0; to —o;. Thus the master equation reads

d N . .
P = Y twi@")P(o' 1) —wi(0) P(0.1)}, (11.8)

i=1

where the configuration ¢’ is that configuration obtained from configuration o by
changing o; to —o;, that is, it is defined by

O-i:(0—170-27"'7_0-1'7---70-N)- (119)

The time evolution of the average ( /(o)) of a state function f(c), defined by

(f(o)) = Z f(o)P(0.1), (11.10)

is obtained by multiplying both sides of (11.7) by f (o) and summing over o,

N
f( ) = Z ({f(") = f(@)}wi(0)). (IL.11)
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In particular, the time evolution of the average (o;) is

d
E(aj> =—2(Ujo(CT)), (1112)
and the two point correlation (0 0%), j # k, is

d
E(Ujak) = —2(ojow;(0)) — 2(0jokwi (0)). (11.13)
Other correlations can be obtained similarly.

A quantity particularly important in the characterization of the system we are
studying is the variance y, defined by

() = (), (11.14)

1
X_N{

where .# = ) ,0;,. When (.#) = 0 and assuming that the correlations are
invariant by translation, it can be written as

X = _(o00;). (11.15)

i

11.2 One-Dimensional Glauber Model

We begin by studying the one-dimensional model introduced originally by Glauber
and defined by the inversion rate

o 1
we(o) = 5{1 - EJ/Uz(Uz—l + 0e+1)}, (11.16)
with periodic boundary condition, that is, oy4+¢ = oy, where N is the number of
sites in the linear chain. The Glauber rate has two parameters, « and y. The first
defines the time scale. The second will be considered later.

The Glauber rate fulfills the detailed balance

we(0') _ P(o)
we(o) — P(a?)’

(11.17)
for the stationary distribution

1
P(0) = ef et (11.18)
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provided y = tanh2K. Indeed, replacing P (o) and w¢(0) in the detailed balance
condition, we see that it is obeyed when oy+; = —o¢—;. It suffices to check the
cases in which 0,41 = 0y—; = £0y. In both cases we get the relation

1
Y ek (11.19)

-y
which is equivalentto y = tanh2K.
The stationary distribution P (o) is the Boltzmann-Gibbs distribution corre-
sponding to the one-dimensional Ising model with interaction between neighboring
sites, whose energy is given by

E(0) =—=J ) 010011, (11.20)
l

where J is a parameter, and that is found in equilibrium at a temperature 7" such that
K = J/kT, where k is the Boltzmann constant. Therefore, the Glauber dynamics
may be interpreted as a dynamic for the one-dimensional Ising model.

Using Eq. (11.12), we write the time evolution of the magnetization m, = (o¢) as

d o
e = —ame + 5)’('”:3—1 + myyy). (11.21)

Assuming that at # = 0 the magnetization is the same for any site, that is, m, = mO,

then the solution is homogeneous, m, = m, and

d
Zm = —a(l — , 11.22
dtm o y)m ( )
whose solution is
m = me 1=V, (11.23)

We see thus that the magnetization m vanishes when t — oo, as long as y # 1
(T # 0). The relaxation time 7 is given by 7! = «(1 — y) and diverges when
y — 1 (T — 0) according to

T~0—y)"L (11.24)

The solution of Eq.(11.21) for a general condition is obtained as follows. We
define

gy =Y e*my, (11.25)
L
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from which one obtains m, by means of the Fourier transform

T

1 .
myg=— | g(k)e ' dk. (11.26)
2w J_,

Deriving g (k) with respect to time and using (11.21),
d
d_tg(k) = —a(l —ycosk)g(k), (11.27)
whose solution is
g(k) = go(k)e(17reoshr, (11.28)

where go(k) must be determined by the initial conditions. Considering the generic
initial condition mY, then

golk) =Y e™*'m. (11.29)
l

Replacing g (k) into the expression for my, we get

me =Y Appm, (11.30)
{/
where
1 T
Agpy = 2—/ e—@(1=reoshrt cog k(€ — £')dk, (11.31)
T —T

an expression which can be written in the form
Ay = e_“”‘l‘g_g/‘(ayt), (11.32)

where [;(z) is the modified Bessel function of order ¢, defined by

1 T
Ii(z) = 2—/ e*°*k cos kd dk. (11.33)
JT -7

For large times, that is, for large values of the argument, the Bessel function behaves
as I¢(z) = e*/+/2mz. Therefore, if y # 1, the quantity A, ¢ vanishes exponentially
in the limit # — oo and the same occurs with m, for any initial condition.

Static pair correlation Using Eq.(11.13), we may write the evolution equation
for the correlation ¢y = (0p0¢) between the site 0 and the site £. Assuming that the
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correlations have translational invariance, {0y 0y +¢) = (000¢), which is possible if
the initial conditions have this property, then

d
d—tw = —20¢; + ay(Pe—1 + Po+1). (11.34)

which is valid for £ = 1, £2, 43, ... with the condition that ¢y = 1 at any time.
In the stationary state the correlation ¢, obeys the equation

—2¢¢ + V(=1 + ¢e41) =0, (11.35)

whose solution is ¢y = Al with

1
A= —{1-+/1—-y2} =tanh K. (11.36)
14
Notice that the correlation decays exponentially with distance. Indeed, writing
¢y = e 1/E, (11.37)
we see that £ = 1/|In A|, so that, for values of y close to 1, we get
E~(1—yp)~ 12 (11.38)

The variance y is obtained from (11.15), that is,

o0
1+ A I+vy
— =14+2) Al = = , 11.39
X E{ e =1+ ;=1 - ‘ll—y ( )

from which we conclude that y behaves near y = 1 as

x~ 1=y (11.40)

Replacing the result A = tanh K in the expression for the variance, we conclude that
x = e*X, which is the result one obtains directly from the probability distribution
of the one-dimensional Ising model.

Time pair correlation Next we obtain the general solution of (11.34), that is, the
time-dependent solution. However, instead of looking for solution to this equation,
we solve the equation for ¢; = d¢y/dt, given by

d
d—t¢2 = 2a¢; + ya(p;_, + iy (11.41)
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valid for £ = 1,2, 3, ..., with the condition ¢>(’) = 0 for any time. Defining
o0
ap =Y _ ¢sinkl, (11.42)
=1
then y, is obtained from a; by the use of the following Fourier transform
/ 2 i .
¢y = — ay sin kldk, (11.43)
T Jo
and we see that ¢; = 0 is satisfied. The coefficients a depend on time and fulfills

the equation

d
Eak = —)Lkak, (11.44)

where
Ar = 2a(1 —y cosk), (11.45)
which is obtained by deriving (11.42) and using (11.41). The solution is
ar(t) = bre ™. (11.46)

The coefficients by must be determined by the initial conditions. Here we con-
sider an uncorrelated initial condition, that is, such that ¢, (0) = 0. Equation (11.34)
gives us ¢, = —2a¢y + ay(Pe—1 + Pe+1), so that ¢;(0) = 0, except ¢;(0) = ay
since ¢p = 1. Replacing in (11.42), and bearing in mind that by is the value of a; at
t = 0, we see that by = ay sink and therefore

ar(t) = ay sink e ™!, (11.47)
which replaced in (11.41) yields

2ay [T

¢, = e M sin k sin kLdk, (11.48)

T Jo

The correlation ¢, is obtained by integrating this equation in time.
The time derivative of the variance is given by

—x=2) ¢ (11.49)
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from which we get

d 2 o
5= %/ (1 + cosk)e ™ dk. (11.50)
0

The variance y is obtained by integrating this expression in time.

To get the asymptotic behavior of y for large times, if suffices to bear in mind
that, in this regime, the integrand will be dominated by small values of k, so that we
may replace A; by 2a(1 — y) + ayk? and extend the integral over the whole axis
to get

d 2 o 4
Sx==L e‘2”<1—y>’/ ek = (|2 =12 (s
dt b4 —c0 T

We should now consider two cases: (a) y # 1 and (b) y = 1. In the first, we see
that dy/dt decays exponentially. It is clear that y also approaches its stationary
value with the same exponential behavior. In the second case, y = 1, the behavior
ceases to be exponential and becomes algebraic, that is, dy/dt ~ t~'/2. Therefore,
integrating in ¢, we reach the following asymptotic behavior for the variance

g = %(m)lﬂ. (11.52)

For y = 1 (T = 0) the variance diverges in the limit f — oo as y ~ t!/2.

11.3 Linear Glauber Model

The one-dimensional Glauber model can be extended to two or more dimensions
in various ways. One of them is done in such a way that the transition rate obeys
detailed balance with respect to a stationary distribution which is identified with
the Boltzmann-Gibbs distribution corresponding to the Ising model. This extension
will be examined in the next chapter. Here we do a generalization which we call
linear Glauber model, defined in a hypercubic lattice of dimension d (linear chain
for d = 1, square lattice for d = 2, cubic lattice for d = 3, etc.) The inversion rate
wr(0), corresponding to a site r of the hypercubic lattice, is defined by

(07
we(0) = S{1 - %or Y orrs), (11.53)
§

where the sum is performed over the 2d neighbors of site r, « is a parameter that
defined the time scale and y is a positive parameter restricted to the interval 0 <
y < 1. The case y = 1 corresponds to the voter model which will be seen later
on. The linear Glauber model is irreversible in two or more dimensions. In one
dimension we recover the model seen in Sect. 11.2 and is therefore reversible. The
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model has the inversion symmetry because the rate (11.53) remains invariant under
the transformation o, — —oy.

From Eq. (11.12) and using the rate (11.53), we obtain the following equation for
the magnetization m, = (oy),

d Y
d_tmr = a{—m, + > ZS: Myts}. (11.54)

For the case of homogeneous solutions, such that m, = m, we get

d
Em = —a(l —y)m, (11.55)
whose solution is
m = m® e @1, (11.56)

Therefore, the magnetization decays exponentially to zero with a relaxation time t
given by 77! = (1 — ) similar to the one-dimensional case.

Next, we study the correlation {oy0;) between two sites. To this end, we use
Eq. (11.13) to derive an evolution equation for the correlation ¢, = (0p0,) between
site 0 and site r. Taking into account the translational invariance, we get the equation

d,  _ y
- =2ei—¢r + XS:@H}, (11.57)

which is valid for any r except r = 0 and with the condition ¢y = 1, which must be
obeyed at any time.
The stationary solution obeys the equation

1
57 2 Gess = d0) — e =0, (11.58)
8

which is valid for r # 0, with the condition ¢pp = 1, where ¢ = (1 —y)/y. To solve
the difference equation (11.58), we start by introducing a parameter a such that

1
57 (B8 = 90) — e = —a. (11.59)
)

With this proviso we may write an equation which is valid for any site r of the
lattice,

1
57 2 Gevs = d0) — e = —abo, (11.60)
b

where the parameter @ must be chosen in such a way that ¢y = 1.
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We define the Fourier transform of ¢, by

d= e, (11.61)

where the sum extends over the sites of a hypercubic lattice. Multiplying Eq. (11.60)

by ¢’*T and summing over r we get
Axdx = a, (11.62)
where
1
Ak:s—l—ﬁZ(l—cosk'S). (11.63)
§
The inverse Fourier transform is
o ddk
¢ = / ¢ke""f—(2n) ., (11.64)

where the integral is performed on the region of space k defined by —7 < k; < x
for each component and therefore

eik-r ddk
¢ = a/BZ A (11.65)

The parameter a is obtained by setting the condition ¢y = 1. Hence

! —/ L a® (11.66)
a ] AcQ@n)d’ '
Defining the function G (g) by
oikr d
Gr(e) = , 11.67
() / e+ (2d)7' Y 5(1 —cosk-8) 2m)? ( )

then the pair correlation in the stationary state is given by

_ Ge(o)

¢ = Go(e)’

(11.68)

since a = 1/Gy(¢).
Summing each side of Eq.(11.60) over r and using expression (11.15) for the
variance,

X=Y ¢r (11.69)
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we find the following relation y = a /¢ from which we reach the result

1
1= G (11.70)

The function G(¢), given by (11.67), is finite for & > 0. In the limit ¢ — 0 it
diverges for d < 2, but is finite for d > 2. Formula (11.70) implies therefore that
the variance diverges, in this limit, in any dimension. For small values of &, we use
the following results

Go(e) = Ae™/?, d=1, (11.71)
1

Go(e) = ——Ineg, d =2, (11.72)
T

where A is a constant. Replacing in (11.70), we obtain the asymptotic behavior of
the variance

x~e'2 d=1, (11.73)
5—1
x=n—|1n€|, d=2. (11.74)

Since G¢(0) is finite for d > 2, we get

x~el d>?2. (11.75)
Therefore, the variance diverges as y ~ & /2
correctionind = 2,and as y ~ ¢! ford > 2.
From the solution (11.68) it is possible to get the asymptotic behavior of ¢, for
large values of r. However, we use here another approach to get such behavior. The
approach consists in assuming that the variable ¢; changes little with distance. With
this assumption, we substitute the difference equation (11.58) by the differential
equation

for d < 2, with logarithmic

d

1 &%
—€¢+QZW—O’ (11.76)

v=1 v
where x, are the components of the vector r. Moreover, we choose solutions that are
invariant by rotations, that is, such that ¢ (r, ¢) depends on x, through the variable
r=(x}+x3+...+x2)"2 so that

2 —
¢ (@d=1)dp _

ar? roor

—2de¢ + 0. (11.77)
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In d = 1, the solution is
$(r) = A"k, (11.78)

where £ = /1/2d¢e and A, is a constant. For d > 1, the solution for large values
of r is given by

e_r/g
¢(r) =Adm, (11.79)

where A, is a constant that depends of dimension. We see thus that the pair
correlation decays exponentially with the distance with a correlation length that
behaves near ¢ = 0 according to

Ee2 (11.80)

It is worth to note that expressions (11.79) are valid only for ¢ # 0. When e = 0
the linear Glauber model reduces to the voter model that we will study in the next
section.

11.4 Voter Model

Imagine a community of individuals in which each one holds an opinion about a
certain issue, being in favor or against it. With the passage of time, they change
their opinion according to the opinion of the individuals in their neighborhood. A
certain individual chooses at random one of the neighbors and takes his opinion.
In an equivalent way, we may say that the individual takes the favorable or the
contrary opinion with probabilities proportional to the numbers of neighbor in favor
or against the opinion, respectively.

To set up a model that describes such a community, we consider that the
individuals are located at the sites of a lattice. We imagine this lattice as being a
hypercubic lattice of dimension d. To each site r we associate a variable o, that
takes the value 1 if the individual located at r if he has a favorable opinion and the
value —1 if he has a contrary opinion. The time evolution of this system is governed
by the master equation (11.8) with the following inversion rate

o 1
we(0) = ﬁ;z(l — 0¢0r15). (11.81)

where o is a parameter that defines the time scale and the sum extends over all
the 2d neighbors of site r. Notice that each term in the summation vanishes if the
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neighbor has the same sign as the central site and equals one if the neighbor has
opposite sign. The rate of inversion can also be written in the form

(o) = 541 - 5 -on Dornah (1182)
from which we conclude that the linear Glauber model, defined by the inversion rate
(11.53), reduces to the voter model when y = 1.

The linear Glauber model can be interpreted as the voter model with a noise.
At each time step a certain individual chooses at random a neighbor and takes his
opinion with a probability p = (1 + y)/2 and the contrary opinion with probability
q = (1 —y)/2. The parameter g can then be interpreted as a noise. When ¢ = 0,
y = 1, the linear Glauber noise reduces to the voter model.

The voter model has two fundamental properties. The first is that the model
has inversion symmetry. Changing the signs of all variables, that is, performing
the transformation o, — —o,, we see that the rate of inversion (11.82) remains
invariant. The second is that the rate (11.82) has two absorbing states. One of them
is the state o, = +1 for all sites. The other is the state o, = —1 for all sites. An
absorbing state is the one that can be reach from other states, but the transition from
it to any other state is forbidden. Once the system has reached an absorbing state, it
remains forever in this state. In the present case, if all variables are equal to +1, the
rate of inversion (11.82) vanish. The same is true when all variables are equal to —1.

From Eq. (11.12), and using the rate given by Eq. (11.82), we get the following
equation for the magnetization m, = (o),

d 1
S = Q= o ;mr+5}, (11.83)

which can be written in the form
L= 2 D= m) (11.84)
The average number of favorable individuals is equal to Y .(1 + m,)/2.

In the stationary regime a solution is given by m, = 1 and another is m, = —1,
which correspond to the two absorbing states. We show below that in one and two
dimensions these are the only stationary states. In three or more dimensions however
there might exist other stationary states such that m, = m can take any value. In
this case the stationary value depends on the initial condition.

For each one of the absorbing states, the correlation (0,0,) between any two
sites takes the value 1. If this correlation takes values distinct from one, than other
states might exist. Thus, we will determine the correlation (0,0, ) in the stationary
state. From Eq. (11.13), using the rate given by Eq. (11.82) and taking into account
the translational invariance, we get the following equation for the correlation ¢, =
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(000r) between site 0 and site r,

d o

a” =

D (pers — o). (11.85)
§
which is valid for any r, except r = 0, and with the condition ¢y = 1 at any time.
In the stationary regime we get

> (frss — ) = 0. (11.86)
$

We remark that these equations are homogeneous, except those for which r
corresponds to a site which is a neighbor of the origin. In those cases, the following
equation is valid

> Gers—¢0) + (11— ) =0, (11.87)

8(r+85£0)

since ¢ = 1.

It is clear that a solution is ¢ = 1 for any r. The other possible solutions must
be inhomogeneous since, otherwise, that is, if they are of the type ¢ = const, this
constant must be equal to 1 in order to satisfy Eq. (11.87) so that we get the solution
¢ = 1.

Assuming that for sites far away from the site r = 0 the variable ¢, changes
little with distance, we may replace the difference equation above by a differential
equation, as we did before. Taking into account that the linear Glauber model
reduces to the voter mode when ¢ = 0, we may use the result (11.77). Setting
¢ = 0 on this equation, we get the differential equation for the correlation,

¢ N (d—-1)0d¢p
or? rooor

0. (11.88)

valid in the stationary regime and for ¢ invariant by rotation. Defining ¢’ = d¢ /dr,
this equation is equivalent to

dg' , d~1

o - ¢ =0, (11.89)

whose solutionis ¢’ = A, ford = 1,and ¢’ = Ar—“=D ford > 1.

Therefore, for d = 1, the solution is ¢(rr) = Ar + B. Since ¢ (r) must remain
bounded in the limit » — oo, we conclude that the constant A must vanish so that
¢ = const. Hence, the only stationary states are the two absorbing states for which
¢ =1

Ford = 2 we get ¢’ = A/r, from which we obtain ¢(r) = Alnr + B. In same
way, since ¢ (r) must remain bounded in the limit r — oo, we conclude that the
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constant A must vanish so that ¢ = const. Again, the only stationary states are the
two absorbing states for which ¢ = 1.
For d > 3, we get

C
¢(r) =B+ 5 (11.90)

which is a non-homogeneous solution. Thus, for d > 3 there is another stationary
solution in addition to the two absorbing states corresponding to ¢ = 1.

Recalling that the consensus (all individuals with the same opinion) corresponds
to an absorbing state, it will occur with certainty in one and two dimensions. In three
or more dimensions the consensus may not occur since in these cases there are other
stationary states in addition to the absorbing ones.

11.5 Critical Exponents

We have seen in the previous section that the linear Glauber model becomes critical
when the parameter y — 1, when the model is converted into the voter model.
Around this point some quantities have singular behavior of the type *, where u is
a critical exponent and ¢ = 1 — y. We have seen, for example, that the variance y
behaves as

x~¢e7, (11.91)
withy = 1/2ford = 1 and y = 1 for d > 2 with logarithmic corrections in
d = 2. The magnetization m vanishes except at the critical point when it takes a
nonzero value. Writing

m ~ &P, (11.92)

we see that we should assign to § a zero value.
Other critical exponents may be defined. The spatial correlation length behaves as

§~ le|™", (11.93)
with v; = 1/2. The relaxation time, or time correlation length, behaves as
T~ lg[7", (11.94)

with v = 1. Defining the dynamic exponent z by the relation between the spatial
and time correlation lengths

T~ &, (11.95)



272 11  Glauber Model

Table 11.1 Critical exponent

d v v 4

of the linear Glauber model by = ESLELY
1 0 (12 (12 |1 |2 |1 12
>2 10 |1 172 |1 |2 |0 |1

we see that z = v /v so thatz = 2.
At the critical point, the pair correlation decays according to

1
)~ o (11.96)

for r large enough. From the results obtained for the voter model, we see that n = 0
ford > 2and n = 1 for d = 1. Still at the critical point, the variance grows
according to the algebraic behavior

x~t°. (11.97)

with{ =1/2ind =land{ =1ind > 2.Ind = 2, = 1, but the behavior of y
has logarithm corrections.

The values of the critical exponents of the linear Glauber model are shown in
Table 11.1.



Chapter 12
Systems with Inversion Symmetry

12.1 Introduction

In this chapter we study systems governed by master equations and defined in a
lattice. To each site of lattice there is a stochastic variable that takes only two values
which we choose to be +1 or —1. The system have inversion symmetry, that is,
they are governed by dynamics that are invariant by the inversion of the signs of
all variables. In this sense they are similar to the models studied in the previous
chapter. However, unlike them, the models studied here present in the stationary
state a phase transition between two thermodynamic phases called ferromagnetic
and paramagnetic. The transition from the paramagnetic to the ferromagnetic is
due to a spontaneous symmetry breaking. We focus our study in two models of
this type: the Glauber-Ising model, which in the stationary state is reversible or,
equivalently, obeys the detailed balance condition, and the majority vote model
which is irreversible.

We analyze here systems that have symmetry of inversion with inversion rates
that involve only the sites in a small neighborhood of a central site. Such systems,
reversible or irreversible, have the same behavior around the critical point and
form therefore a universality class concerning the critical behavior. The principal
component of this class is the Glauber-Ising model, that we will treat shortly. The
universality of the critical behavior means that the critical exponents of such systems
are the same and those of the Glauber-Ising model.

We denote by o; the stochastic variable associated to site i so that o; = £1. The
global configuration of the system is denoted by

0 = (01,02,...,0N), (12.1)

where N is the total number of sites. We consider a dynamic such that, at any time
step, only one site has its state modified. Thus the time evolution of the probability
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P(o,t) of state o at time ¢ is governed by the master equation

N
C%P(o,t) = ;{wi (6" )P (c',t) —wi(0)P(0,1)}, (12.2)

where
o = (01,002,...,—0Ci,...,0ON). (12.3)

and w; (o) is the rate of inversion of the sign of site i. Unlike the rates used in the
preceding chapter now they are not necessarily linear in ;.

For later reference in this chapter, we write below the evolution equations for the
average

d
d_t(0i> = —2(oiwi(0)), (12.4)
and for the pair correlation
d
E(Oiaj) = —2(0;0;w;(0)) — 2{oi0;w;(0)), (12.5)

which are obtained from the master equation (12.2).

The numerical simulation of the process defined by the master equation (12.2) is
carried out by transforming the continuous time Markovian process into a Markov
chain through a time discretization. To this end, we discretize the time in intervals
At and write the transition rate in the form

wi(0) = a pi(0), (12.6)

where « is chosen so that 0 < p; < 1, which is always possible to do. The
conditional probability T(0?,0) = w;(0)/At = (a/At)p;(o) related to the
transition 0 — o' is constructed by choosing Az = (aN)~!, what leads us to
the formula

: 1
T, 0)= N pi(0). (12.7)

The Markovian process is performed according to this formula, interpreted as
the product of two probabilities corresponding to two independent processes, as
follows. (a) At each time step, we choose a site at random, what occurs with
probability 1/N. (b) The chosen site has its state modified with probability p;.

In numerical simulations it is convenient to define a unit of time, which we call
Monte Carlo step, as being equal to the interval of time elapsed during N time steps.
Therefore, a Monte Carlo step is equal to NA¢ = 1/«. This definition is appropriate
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when we compare results coming from simulations performed in systems of distinct
sizes because from this definition it follows that, in » Monte Carlo steps, each site
will be chosen n times, in the average, independently of the size of the system.

12.2 Ising Model

Certain magnetic materials, known as ferromagnetic, have a natural magnetization
that disappears when heated above a critical temperature, called Curie temperature.
At low temperatures, the system is found in the ferromagnetic phase and, at
high temperatures, in the paramagnetic phase. The simplest description of the
ferromagnetic state and the ferromagnetic-paramagnetic phase transition is given
by the Ising model.

Consider a lattice of sites and suppose that at each site there is a magnetic atom.
The state of the magnetic atom is characterized by the direction of the magnetic
dipole moment. In the Ising model the magnetic dipole moment can be found in
only two state with respect to a certain z axis: in the direction or in the opposite
direction of the z axis. Thus, the magnetic dipole moment w; of the i-th atom is
given by u; = yo;, where y is a constant and the variable o; takes the values 41 in
case the dipole moment is in the direction +z and —1 in the direction —z.

Consider two neighbor sites i and j. They can be in four configurations, in
two of them the dipoles are parallel with each other and in the other two they are
antiparallel. To favor the ferromagnetic ordering, we assume that the situation with
the least energy is the one in which the dipole are parallel. Hence, the interaction
energy between these two atoms is given by —Jo;0;, where J > 0 is a constant
that represents the interaction between the magnetic dipoles. The total energy E (o)
corresponding to the configuration o is thus

E=-J])Y oic;—h) o (12.8)

(&) i
where the first summation extends over all pairs of neighboring sites and the second

summation describes the interaction with a field. In addition to the energy, another
state function particularly relevant is the total magnetization

M=o (12.9)

In thermodynamic equilibrium at a temperature 7', the probability P(o) of
finding the system in configuration o is

1
P(o) = - e PE@), (12.10)
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where B = 1/kT, k is the Boltzmann constant and Z is the partition function
given by

Z = Z e PE@) (12.11)
o

where the sum extends over all the 2"V configurations.
Among the thermodynamic properties that we wish to calculate, we include:

(a) The average magnetization,

1
m = () (12.12)
(b) The variance of the magnetization
1 2 2
X = A = () (12.13)
(c) The average energy per site,
! (E) (12.14)
u=—(E), .
N
(d) The variance of energy per site
1 2 2
c=—={{E°)—(E)}. (12.15)

N

From the equilibrium distribution (12.10) and the energy (12.8) we can show
that the susceptibility y* = dm/0dh is related with the variance of magnetization
by means of y* = y/kT, and that the specific heat ¢* = du/dT is related to the
variance of energy by ¢* = ¢/kT>.

Metropolis algorithm Next, we present the Monte Carlo method to generate
configurations according to the probability given by (12.10). To this end, we use the
stochastic dynamics called Metropolis algorithm. We start from an initial arbitrary
configuration. From it, other configurations are generated. Suppose that, at a certain
instant, the configuration is . The next configuration is chosen as follows.

A site of the lattice is chose at random, say, the i-th site. Next, we calculate the
difference in energy AE = E(c') — E(0), which is given by

AE =20i{J ) oiys + h}. (12.16)
8

where the summation extends over the neighbors of site i.
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(a) If AE < 0, then the variable o; changes sign and the new configuration is o .
(b) If AE > 0, then we calculate p = e #4F and we generate a random number &
uniformly distributed in the interval [0, 1].

(bl) If &€ < p, then o; has its sign changed and the new configuration is o' .
(b2) If £ > p, the variable o; does not change and the configuration remains
the same, that is, it will be o.

Using the procedure, we generate a sequence of configurations. For each
configuration we calculate the desired state functions, such as, .#, .# 2 E and
E’. The estimate of the averages are obtained from the arithmetic means of these
quantities, after discarding the first configurations

The Metropolis algorithm defined above is equivalent to a stochastic dynamics
whose rate of inversion w; (g) is given by

—BlE(6")~E(0)] i
wi(o) =% o El@)>E(0), (12.17)
a, E(0') = E(0).
It is straightforward to show that this rate obey detailed balance
(o P
wile) _ P@) (12.18)
wi(o)  P(o')

with respect to the equilibrium probability (12.10) of the Ising model. The dynamics
so defined can be interpreted as the one describing the contact of the system with a
heat reservoir. At zero field, & = 0, the rate has the inversion symmetry, w; (—o) =
Wi (CT )

12.3 Glauber-Ising Dynamics

The Glauber-Ising stochastic dynamics is defined by the Glauber rate

wi (o) = %{1 — oy tanh[K 3 0y + HI}. (12.19)
§

where o is a parameter that defines the time scale and the sum extends over all
neighbors of site i. The sites comprise a regular lattice of dimension d. The Glauber
rate, as the Metropolis rate, describes the interaction of the Ising system with a
heat reservoir. In other terms, the Glauber rate obeys detailed balance (12.18) with
respect to the probability distribution of the Ising model

|
P(o) = — explK ;mo,» +H Zm}, (12.20)
ij i
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where the sum extends over the pairs of neighboring sites. To show detailed balance
it suffices to write the Glauber rate in the equivalent form

ae o Ei

_— 12.21
T (12.21)

W,'(CT) =

where E; = K Y s0i4+5 + H and take into account that P(0)/P(c") = e*iEi,
Therefore, the Glauber-Ising dynamics describes, in the stationary state, an Ising
system whose energy is given by (12.8), in equilibrium at a temperature 7' such
that K = J/kT and H = h/kT. Notice that at zero field, H = 0, the rate has an
inversion symmetry, w; (—o’) = w; (o).

To set up an algorithm for numerical simulation of the Glauber-Ising model,
we proceed as follows. We start with an arbitrary initial configuration. Given a
configuration o, the next one is obtained as follows. A site of the lattice is chosen at
random, say, the i -th site. Next we calculate

1
p={l—o;tanh[K Y oiys + H]}. (12.22)
2 8

and generate a random number £ uniformly distributed in the interval [0, 1]. If
£ < p, then the variable o; has its sign changes and the new configuration is o".
Otherwise, that is, if £ > p, then the variable o; remains unchanged and the new
configuration is o.

An alternative algorithm, but equivalent, consists in choosing the the new sign of
the variable o; independently of its present sign as follows. If ¢ < p, theno; = —1,
otherwise, 0; = +1. In this case, the algorithm is called heat bath.

The algorithm for the simulation of the Glauber-Ising model can also be
understood as a Monte Carlo method for the simulation of the equilibrium Ising
model. For large times, the configurations are generated according to the equilibrium
probability (12.20).

Figures 12.1 and 12.2 show the results obtained by the simulation of the Ising
model defined in a square lattice with N = L x L sites and periodic boundary
conditions using the Glauber rate at zero field, H = 0. The critical temperature is
known exactly and is kT./J = 2/In(1 + +/2) = 2.269185.... We use a number
of Monte Carlo steps equal to 10° and discarding the first 10° steps. Instead of
the average magnetization defined above, we calculated the average of the absolute
value of the magnetization,

m = %(|///|). (12.23)

Similarly, we determine the variance defined by

1
¥ = N(‘///2> — (. ])*. (12.24)
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Fig. 12.1 (a) Magnetization m and (b) variance y versus temperature 7 for the Ising model in
a square lattice obtained by the Glauber-Ising dynamics for various values of L indicated. The
susceptibility y* = dm/dh is related to y by means of y* = y/kT. The dashed line indicates the
critical temperature, kT./J = 2.269...
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Fig. 12.2 (a) Energy per site « and (b) variance of energy per site ¢ versus temperature 7" for the
Ising model in the square lattice obtained by the Glauber-Ising dynamics for several values of L
indicated. The specific heat ¢* = du/dT is related to ¢ by ¢* = ¢/kT?. The dashed line indicates
the critical temperature, kT./J = 2.269...

Figure 12.1 shows m and y as functions of the temperature for several sizes L
of the system. As we can see, the magnetization is finite for any value of 7', but for
T > T., m — 0 when L increases without bounds. The variance is also finite, but
at T = T, it diverges when L — oo. Figure 12.2 shows the average energy per site
u and the variance of energy per site ¢ as functions of temperature also for several
values of the size of the system. The specific heat is finite, but diverges at T = T,
when L — o0. In this same limit the slope of u at T = T increases without bounds
when L — oo because du/d T is proportional to c.
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a b
: ; : 8 ; : ; : ; -
—20 or I
— 40 |
— 380
P P 4t -
2 = -
| ff h
0
0 0.5 0 0.5
m m

Fig. 12.3 Probability density P (m) of the magnetization for the Ising model in the square lattice
obtained by the Glauber-Ising dynamics for several values of L indicated. (a) kT/J = 2.2, (b)
kT/J = 2.8

Table 12.1 Critical parameters T, and K, = J/kT. of the Ising model for various lattices of
dimension d and number of neighbors z. For the two-dimensional lattices shown, the values are
exact. For the cubic and hypercubic lattice, the errors are in the last digit

Lattice d z kT./J K, kT./Jz
Honeycomb 2 3 1.51865% 0.658478 0.506217
Square 2 4 2.26918° 0.440686 0.567296
Triangular 2 6 3.64095°¢ 0.274653 0.606826
Diamond 3 4 2.7040 0.3698 0.676
Cubic 3 6 4.5116 0.22165 0.7519
Hypercubic 4 8 6.682 0.1497 0.8352
12/1n@2 + v/3)

*2/1In(1 + +/2)

©2/1n+/3

Figure 12.3 shows the histograms of the magnetization for two temperatures,
below and above the critical temperature. Above the critical temperature, there are
two peaks located symmetrically, which characterize the ferromagnetic state. When
L increases without bounds the same occurs with the height of the peaks.

The critical temperature of the Ising model with nearest neighbor interaction
obtained by several methods is shown in Table 12.1 for several regular lattices.
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12.4 Mean-Field Theory

An exact solution of the Glauber-Ising model can be obtained when the number of
neighbors is very large and the interaction is weak. More precisely, we assume that
the summation in (12.20) extends over all pair of sites and make the replacement
K — K/N.The Glauber rate (12.19) becomes

wi(0) = %{1 — o tanh(Ks + H)}, (12.25)

where s is the stochastic variable defined by
1
s = sz:aj. (12.26)

For N large enough we assume that s is distributed according to a Gaussian with
mean m and variance y/N,

VN e—N(s—m)z/Z)(,

P(s) = —— 12.27
(5) Neis (12.27)

where m and y depend on ¢. Notice that
x = N{(s?) = (s)%}, (12.28)

and hence y coincides with the definition (12.13) since .# = N's.
Next, we use Eq.(12.4) which gives the time evolution of the magnetization.
Replacing the inversion Glauber rate, given by (12.25), in (12.4), we get

——(07) = —(0;) + (tanh(Ks + H)). (12.29)

In the limit N — oo, the distribution P(s) becomes a Dirac delta function and
(tanh(Ks + H)) — tanh(Km + H) and we reach the following equation for the
average magnetization

1d
4 tanh(Km + H), (12.30)
o dt

where we have taken into account that (0;) = m, independently of i. At zero field,
when there is symmetry of inversion, it reduces to

dm
—— = —m + tanh Km. (12.31)
o dt
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The stationary solution is given by
m = tanh Km. (12.32)

which is the mean-field equation for the magnetization of the Ising model. For K <
1, the only solution is m = 0, which corresponds to the paramagnetic state. For K <
1, there is another solution m # 0, corresponding to the ferromagnetic state. Thus
when K = K, = 1, the system undergoes a phase transition. Since K = J/kT, the
critical temperature 7, is given by 7, = J/k.

For large times and temperatures close to the critical temperature, the magneti-
zation m is small so that we may approximate the right-hand side of Eq. (12.31) by
an expansion in power series. Up to cubic terms, we get

1 dm 1 5 (12.33)
—— =—em——-m’, .
o dt 3
where ¢ = (K, — K) = (T — T.)/ T. Multiplying both sides of Eq. (12.33) by m,
we arrive at equation

1 dm? 1
Z—d—n: = —8m2 — §m4, (1234)
o
whose solution, for & # 0, is
3e
2 _
m- = m, (1235)

where ¢ is a constant which must be determined by the initial condition.

When ¢ — oo, we get distinct solutions depending on the sign of ¢. If ¢ > 0
(T > T,), then m — 0, what corresponds to the paramagnetic state. If ¢ < 0
(T <T.),thenm — m™* = \/ﬂ so that the order parameter m™* behaves as

m* ~ |e|'/2. (12.36)

From Eq. (12.35), we see that for temperatures above the critical temperature,
¢ > 0, and for large times the magnetization m decays to zero exponentially,

m=ae 2%, (12.37)
with a relaxation time given by t = 1/(2«¢). Similarly, for temperatures below
the critical temperature, ¢ < 0, and for large times the magnetization m decays

exponentially to its stationary value

m = £tm* + be 2l (12.38)
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with a relaxation time given by t = 1/(2«|¢|). In both cases, the relaxation time
behaves as

T~ |e|7h (12.39)

At the critical point, & = 0 and Eq. (12.33) becomes

1d 1
-l (12.40)
o dt 3
whose solution is
3
m = L (12.41)
J2at + ¢

and the decay ceases to be exponential. For large times we get the algebraic behavior
m~t"'2, (12.42)

Susceptibility and variance of magnetization Now, we determine the suscepti-
bility x* = dm/dh at zero field. Deriving both sides of Eq. (12.30) with respect to
h, we get

1dy*
o dt

= —x* + (Kx* + B) sech’Km. (12.43)

aresult valid for zero field. In the stationary state and at zero field, it is given by

. Bd-m?
= TRA (12.44)

where we used the result sech’Km = 1 — m?, obtained from (12.32).

When K < 1 (T > T.),m = O and hence y* = 8/(1—K). When K > 1, we use
the result m? = 3(1 — K), valid near the critical point, to obtain y* = 8/2(K — 1).
In both cases, the susceptibility diverges according to

X5~ el ™" (12.45)

At the critical point the susceptibility diverges in the limit # — co. To determine
the behavior of y at T = T, for large times, we introduce the solution m? = 3/2at
into Eq. (12.43) at zero field and K = 1 to get

*

1dy*
o dt

3x
2ut’

=p-

(12.46)
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where we have retained in the right-hand side only the dominant terms when 7 is
large. The solution of this equation is y* = 28at /5. Therefore y* behaves as

1~ (12.47)

for large times.
Next, we determine the variance of the magnetization, given by (12.28). To this
end, we first note that

1 1 1
szszgigj :mZGin-FN. (12.48)
Using (12.5) and the rate (12.25), at zero field,

——(CT,'CT]') = —2(0,‘01') + ((CT,' + aj)tanth), (12.49)

valid for i # j. From this result, we get

1d 2 2(N —1
— (Y = 2(sD) + = + g(s tanh Ks). (12.50)
o dt N
On the other hand,
1d 2md
—L 2 =2 52 4 o (tanh Ks). (12.51)
o dt o dt
Therefore,
1 dy
Yo + 1 — (stanh Ks) + N ((s — m) tanh Ks). (12.52)
o

But, in the limit N — o0, the Gaussian distribution (12.27) leads us to the results
(s tanh Ks) — m tanh Km and N ((s — m) tanh Ks) — y Ksech?Km from which we
get the equation which gives the time evolution of the variance

1 dy

— = —x + 1 —mtanhKm + y Ksech’Km. (12.53)
200 dt

In the stationary state we see that

1 — m?

= TR (12.54)

X

where we used the result m = tanh Km valid in the stationary state. Comparing with
(12.44), we see that y* = By = y/kT which is the result expected in equilibrium.
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Therefore, the critical behavior of y in equilibrium is the same as that of y*, that is,
% ~ |e|”". At the critical point and for large times Eqs. (12.43) and (12.53) become
identical so that y has the same behavior as y*, that is, y ~ ¢.

The results obtained above within the mean-field theory show that the Ising
model presents a phase transition from a paramagnetic phase, at high temperatures,
to a ferromagnetic phase, at low temperatures. Since the results refer to a model in
which each site interacts with a large number of sites, although weak, they cannot
be considered in fact as an evidence of the existence of a phase transition, at a
finite temperature, in models in which a site interacts with few neighbors. The one-
dimensional model, as we have seen, does not present the ferromagnetic state at
finite temperatures. However, it is possible to show, using arguments due to Peierls
and Griffiths, that the Ising model with short range interactions indeed exhibits a
phase transition at finite temperatures in regular lattices in two or more dimensions.
The mean-field theory, on the other hand, gives the correct critical behavior in
regular lattices when the number of neighboring sites is large enough, a situation
that occurs in high dimensions. For the Ising model it is known that this occurs
above four dimensions.

12.5 Ciritical Exponents and Universality

As we have seen, the various quantities that characterize a system that exhibits
a critical point behave around the critical point according to power laws and are
characterized by critical exponents. In general, we distinguish the static exponents,
which are those related to the behavior of quantities at the stationary state, from
those that we call dynamic exponents. Below we list the more important quantities
used in characterizing the critical behavior, together with their respective critical
exponents.
Specific heat (and variance of energy)

c~¢g ", (12.55)
where ¢ = |T — T,|. Magnetization, which is identified with the order parameter,
m~ &P, (12.56)

valid at temperatures below the critical temperature. Susceptibility (and variance of
magnetization)

x~e&’. (12.57)
Magnetization as a function of time, at the critical temperature,

m~ h'/3. (12.58)
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Correlation length,
&~ eVt (12.59)

Pair correlation function,

p(r) ~ ,d_—lm (12.60)
at the critical point. Time correlation length or relaxation time
T~e "l (12.61)
The relation between £ and t is characterized by the dynamic critical exponent z,
T ~ £, (12.62)

from which follows the relation z = v/v_. Time decay of the magnetization at the
critical point

m ~ =P, (12.63)
Time increase of the variance at the critical point
x o~V (12.64)

Time increase of the correlation Q = (.# (t).# (0))/N starting from an uncorre-
lated configuration,

0 ~19 (12.65)

at the critical point. Time increase of the time correlation C(z) = (o;(¢)0;(0))
starting from an uncorrelated configuration

C ~ t*. (12.66)
at the critical point.
Magnetization of a finite system at the stationary state determined at the critical

point

m~ L7P/ve, (12.67)
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Table 12.2 Critical exponents of the Glauber-Ising model, according to compilations of Pelissetto
and Vicari (2002) (static exponents) and Henkel and Pleimling (2010) (dynamic exponents). The
errors in the numerical values with decimal point are less or equal to 107", where n indicates the
decimal position of the last digit

d o B y ] vy n V| z 0 A

2 0 1/8 7/4 15 1 1/4 217 |217 (019 |0.73
3 0.110 0326 |1.237 [479 |0.630 |0.036 |[1.28 |2.04 |0.11 |14
>4 |0 1/2 1 3 1/2 0 1 2 0 2

where L is the linear size of the system. Here we should understand the magnetiza-
tion in the sense given by Eq. (12.23). Variance of a finite system at the stationary
state at the critical point

g~ LYV, (12.68)

Here we should understand the variance in the sense given by Eq. (12.24).

Table 12.2 shows the values of several exponents of the Glauber-Ising model
determined by various methods. Taking into account that the stationary properties
of the Glauber-Ising model are the same as those of the Ising model, the static
critical exponents coincide with those of the Ising model. In two dimensions they
are determined from the exact solution of the model. In particular, the specific heat
diverges logarithmically, that is, ¢ ~ In|T — T,|, and is therefore characterized by
a=0.

The exponents determined in the previous section, calculated within the mean-
field theory, are called classical exponents and become valid, for the case of the
Glauber-Ising model, when d > 4. In d = 4, the critical behavior may exhibit
logarithmic corrections. Notice that the specific heat according to the mean-field
theory presents a discontinuity and is therefore characterized by o« = 0.

It is worth to note also that the behavior of the quantities for finite systems
is particularly useful in the determination of the critical exponents by numerical
simulations. The numerical results shown in Figs. 12.1 and 12.2 can therefore be
used to determine the critical exponents. For example, a plot of Inm at the critical
point versus In L gives the ratio —f /v with the slope of the straight lined fitted to
the data. Similarly, the plots of In y and In ¢ at the critical point as functions of In L
give the ratios y /vy and /v .

It is worth noticing that systems of different nature present values for the critical
exponents that are similar to each other and consistent with those corresponding
to the Glauber-Ising model in d = 3. These equalities among the exponents of
distinct systems is a manifestation of the principle of the universality of the critical
behavior. According to this principle, the critical behavior depend only on a small
number of properties. These include (a) the dimensionality of the system, (b) the
dimensionality of the order parameter, and (c) the symmetry. In the present case of
the Glauber-Ising model, the system has inversion symmetry, that is, the inversion
rate (12.19) is invariant under the transformation 6; — —o; and the order parameter
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is a scalar (one dimensional). All systems that have these properties must have the
same critical exponents no matter what is the physical nature of the system. The
set of these systems comprises the class of universality of the Glauber-Ising model.
We should add also that the universal properties do not depend on the details of the
microscopic interaction as long as they are of short range or on the details of the
inversion rate as long as they involve sites on a small neighborhood.

12.6 Majority Vote Model

The majority vote model is a stochastic model defined on a lattice, which is
irreversible, has the inversion symmetry and presents a transition between a
paramagnetic phase and a ferromagnetic phase. Let us imagine a community of
individuals each one holding an opinion about a certain issue, being in favor or
against it. As the passage of time, the individuals change their opinion according
to the opinion of the individuals in their neighborhood. In an easily receptive
community, an individual would take the opinion of the majority of the individuals
in the neighborhood. However, we face a community of hesitating individuals, that
is, the individuals sometimes act contrary to the opinion of the majority. Thus, we
introduce a positive parameter ¢ which gives a measure of the hesitation of the
individuals, which is understood as the probability of a certain individual to take the
opposite opinion of the majority.

To set up a model that describes such a community, we assume that the
individuals are located at the sites of a regular lattice. To each site i we associate a
stochastic variable o; that takes the value +1 in case the individual at i is in favor
and the value —1 otherwise. The number of individuals with favorable opinion is
givenby Ny = >, (1 +0;)/2.

The dynamics of the majority vote model, governed by the master equa-
tion (12.2), is analogous to the Glauber-Ising with the exception of the rate of
inversion which in the present model is

wi(0) = SH1 =07 (Y oi40)}. (12.69)
8

where ¥ (x) = —1,0,+1 incase x < 0, x = 0 and x > 0, respectively, and
the sum extends over the neighbors of site i. The parameter y is restricted to the
interval 0 < y < 1. Notice that, if we perform the transformation o; — —o;, the
rate of inversion (12.69) remains invariant, that is, w; (—o) = w; (0).

The simulation of the majority vote model is done as follows. At each time step,
we choose a site at random and look to its neighborhood. The chosen site changes
sign with probability equal to ¢ = (1 —y)/2 if the majority of the neighbors has the
same site of the chosen site and with probability p = (1+y)/2 if the majority of the
neighbors has the opposite sign. Equivalently, the chosen site takes the sign of the
majority of the neighbors with probability p and the opposite sign with probability
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Fig. 12.4 (a) Magnetization m and (b) variance y versus ¢ for the majority vote model in a square
lattice obtained by simulation for various values of L indicated. The dashed line indicates the
critical value g, = 0.075

q. When the number of plus and minus signs are equal the chosen site takes either
sign with equal probability. Figure 12.4 shows the results obtained from simulation
for the magnetization m and variance y as defined by (12.23) and (12.24).

In the stationary regime, in a way similar to what happens to the Glauber-Ising
model, the majority vote model exhibits a phase transition in two or more dimen-
sions. For small values of the parameter g, the model presents a ferromagnetic phase
characterized by the presence of a majority of individuals with the same opinion.
Above a critical value g, of the parameter g, the model presents a paramagnetic
state with equal number, in the average, of individuals with distinct opinions. Results
from numerical simulations show that g, = 0.075 £ 0.001 for the model defined on
a square lattice.

In one dimension the majority vote model becomes equivalent to the one-
dimensional Glauber model. Indeed, in one dimension

1
L(0i—1 +0i41) = E(Ui—l + 0it1), (12.70)

so that the rate of inversion (12.69) becomes equal to the rate of inversion of the
one-dimensional Glauber model. Thus in the stationary regime the majority vote
model does not have a ferromagnetic phase, except at y = 0.

Results of numerical simulations of the majority vote model on a square lattice,
indicate that the critical behavior is the same as that of the Glauber-Ising model,
what leads us to say that both models are in the same universality class. Notice,
however, that the Glauber-Ising is reversible in the stationary state whereas the
majority vote model is not. The similarity of the critical behavior between the two
models is due to the fact that both models hold the inversion symmetry o; — —o0;.

The absence of microscopic reversibility in the majority vote model can be seen
in a very simple way. But, before, we will make a brief exposition of a procedure
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used to check if a certain model does or does not hold microscopic reversibility (or
detailed balance). Consider a sequence of states and suppose that the sequence is
walked in the direct way and in the reversed way. If the probability of occurrence
of the direct sequence is equal to the probability of the reverse sequence, for any
sequence, then the model presents microscopic reversibility. If these probabilities
are different for at least one sequence of states, then the model does not hold
microscopic reversibility.

Consider the sequence of four states A, B, C and D, as shown below. Only the
central sites change states when one moves from one state to another, while the other
remains the same,

++ ] + +
A=|+++- B=|++--
++ + +
++ ] + +
C=|+--- D=|+—-+-
++ + +

According to the transition probabilities, the probability of the trajectory A — B —
C — D — Ais given by

@G (P@PA) = 394 P(A) (1271

where P(A) is the probability of state A in the stationary regime, and of its reverse
A— D — C — B — Aisgivenby

(P)@)G)(P)P(A) = 5 pgP(4). (12.72)

Comparing the two expressions, we see that they are different and therefore the
microscopic reversibility is not observed in the majority vote model. In other words,
the model has irreversible local rules, which do not obey detailed balance.

By way of comparison, we do the same calculation for the case of the
Glauber-Ising model. According to the transition probabilities of the Glauber-Ising
model, the probability of the trajectory A - B — C — D — A is given by

M) P(A) = e P(4), (12.73)
and of its reverse A - D — C — B — A is given by

(e YD) P(A) = e 3 P(A). (12.74)
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The two expressions are identical. This identity per se does not guarantee the
microscopic reversibility. However, we know that the Glauber transition rates obey
detailed balance.

12.7 Mean-Field Approximation

We consider here an approximation solution for the majority vote model on a square
lattice, where each site has four nearest neighbors. From Eq. (12.4) and using the
rate (12.69), we get the following evolution equation for (0y),

——(00) = —({00) + y(FL (01 + 02 + 03 + 04)), (12.75)
where the site 0 has as neighboring sites the sites 1, 2, 3, 4. Using the identity

3
y@+@+@+m=§@+@+@+m

— %(010203 + 010204 + 010304 + 0,0304). (12.76)
we arrive at
L9100y = ~ou) + L ((o1) + (02) + (05) + (o)
- g((CTleU:’,) + (010204) + (010304) + (020304)). (12.77)

Next, we use the following approximation
(010203) = (01)(02)(03), (12.78)

called simple mean-field approximation. Moreover, we use the translational invari-
ance so that (0;) = m, independently of any site, what allows us to write

Ld Yo (12.79)
——m=—em—=m’, .
o dt 2

where

e=1-2y. (12.80)
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Multiplying both sides by m, we reach the equation
——m-=—cm‘—=m", (12.81)

which can be considered a differential equation for m?. This differential equation
can be solved exactly. For the initial condition m(0) = my, the solution is

) 2mie
m-= 2\ p2ast 2"
(2e + ymg)e>*s — ymg

(12.82)

When ¢t — oo the solutions are: (a) m = 0, corresponding to the paramagnetic
or disordered state, for ¢ > 0 and (b) m = +m™ corresponding to the ferromagnetic
or ordered state for ¢ < 0, where

2 3y —2 1-6
mt = |2l =2 1 (12.83)
14 14 1—-2q

that is, the order parameter behaves as

m* ~ (qc —q)" "2, (12.84)

where g, = 1/6 = 0.1666. . ..
Notice that the order parameter m is related to the average number of individuals
in favor by

(NF) = %(1 +m), (12.85)

where N is the total number of individuals. Thus, for values of ¢ above the critical
value g, there is, in the average, half of individuals in favor and half against. Below
this critical value, there might occur a predominance of individuals in favor, or a
predominance of individuals against.

Entropy production The majority vote model is irreversible as we have seen
and hence is found in continuous production of entropy. Here we are interested
in determining the production of entropy in the stationary state. In the stationary
state we have seen in Chap. 8 that he rate of entropy production IT can be written in
terms of the transition rates. For models defined by the rates of inversion w; (o) it is
written as

Wi(CT)
= k;Xi:wi(a)P(a)ln e (12.86)
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Fig. 12.5 Rate of entropy production per site ¢ versus g for the majority vote model, according to
Crochik and Tomé (2005). (a) Result obtained by simulation in a square lattice for several values
of L indicated. (b) Result obtained by mean-field approximation. The dashed lines indicate the
critical value g,

which can be written as the average

=k Z<w,~ (o) In 1) > (12.87)

wi (o)

This last formula is particularly useful because it can be used in simulations.
Figure 12.5 shows the entropy production obtained from simulations of the majority
vote model for several values of lattice size. A way to calculate it consists in
obtaining the average of the expression between brackets. Another equivalent way
consists in calculate s; (0) = In[w; (6)/w; (0)] in any time step in which the change
in sign of the variable o; is performed with success. The arithmetic average of s;
along the simulation will give an estimate of I1. Notice that s; takes only two values
of opposite signs, which are In(g/ p) or In(p/q). The first occurs when o; has the
same sign of the majority of its neighbors and the second, when o; has the opposite
sign.

As seen in Fig. 12.5, the entropy production has an inflexion at the critical point
that is analogous to what occurs with the energy, or entropy, of the Glauber-Ising
model at the critical point. From this analogy we presume that the slope of /7 at the
critical point grows without limits when L — oco. According to this analogy, the
critical behavior of IT must be the same as that of u of the Glauber-Ising model.]

To determine I within the mean-field approximation, we observe first that

wi(0)

I LA
@)

R ATES (12.88)
p
where . = (3 0i+s) and we recall that

wi(0) = (1= yo.5%). (12.89)
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Therefore

wio)In 2@ _ (mf’i ) ln%. (12.90)

wi(0")

Using the identity (12.76), valid for a central site i = 0 and its neighbors j =
1,2, 3, 4, and the mean-field approximation, we get

(00.%) = %(3m2 —m*), (12.91)

1
(2 = §(5 + 6m* —3m*). (12.92)
Therefore, the rate of entropy production ¢ = I1/N per site is

1
¢ =ka(-Gm?—m* =L +6m*—3m*) | mL. (12.93)
4 16 p

We should distinguish two cases. In the first, ¢ > g, = 1/6 and hence m = 0 so
that

¢ = kocl—56(1 —2¢)In - (12.94)

where we have taken into account that y = p — g and p + ¢ = 1. In the second,
g <q.=1/6andm? = (1-6q)/(1 —2q) so that

p=kglU=9 174 (12.95)

1—-2¢q q

Figure 12.5 shows the production of entropy ¢ as a function of g. As we can see, it
is continuous in g, but the derivative of ¢ has a jump at the critical point.



Chapter 13
Systems with Absorbing States

13.1 Introduction

In this chapter we continue our study of systems defined on a lattice and governed by
master equations. However, we address here systems with absorbing states, which
are intrinsically irreversible. The transition rates that define the dynamics forbid
them to obey detailed balance. An absorbing state is the one such that the transition
from it to any other state is forbidden, although the transition from other state to
it might occur. Once in the absorbing state, the system cannot escape from it. All
models that exhibit continuous transition to an absorbing state have the same critical
behavior, that is, they comprise a universality class. This conjecture, advanced by
Janssen (1981) and Grassberger (1982), has been verified by several numerical
studies in a great variety of models.

The models studied in this chapter have no analogy with equilibrium models
in the sense that they are intrinsically irreversible. No equilibrium model (obeying
detailed balance) belongs to this universality class. The simple fact that a model
has an absorbing state shows clearly that it cannot obey detailed with respect to the
probability distribution of the active state, and therefore they are not described by
a Hamiltonian known a priori. The systems are defined in lattices where to each
site i we associate a stochastic variable 7;. The total configuration of the system is
denoted by

=000 N IN), (13.1)

where N is the total number of sites in the lattice. We will consider dynamics such
that, at each time step, only one site is updated. We examine first the models for
which the variable n; takes two values: 1, meaning that the site is occupied by a
particle, or 0, meaning that the site is empty.
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The systems are governed by master equations with transition rates w; (1) from
n; — 1 — n; that comprise the mechanisms that give rise to absorbing states.
The time evolution of the probability P (7, ) of state n is governed by the master
equation

d , .
P00 =3 wi ) P 0) = wi(n) P(n. 1)}, (132)

where 1’ denotes the configuration

=0, =0, ... 0N). (13.3)

The evolution equation for the average (7;) is obtained from the master equation
(13.2) is given by

d
d—t(m) = {(1 = 2n)wi(n)). (13.4)

The evolution equation for the correlation (1;7;) can also be obtained from the
master equation (13.2) and is given by the expression

d
E(m nj) = ((1—=2n)n;wi(m) + (n:(1 —2n;)w; (n)). (13.5)

13.2 Contact Process

The contact process is defined as a stochastic model with an absorbing state and time
evolution governed by a master equation. It is possibly the simplest model exhibiting
a phase transition in one dimension. The model was introduced by Harris (1974)
who showed that, in the thermodynamic limit, the model presents an active state
in addition to the absorbing state. This is a relevant result if we bear in mind that
for finite systems, studied in numerical simulations, the absorbing state is always
reached if we wait enough time. This time is smaller the closest the system is to the
point that determines the transition from the active to the absorbing state.

The contact process can also be viewed as a model for an epidemic spreading.
The process is defined on a lattice where at each site resides an individual that
might be susceptible (empty site) or infected (occupied site). The susceptible
individuals becomes infected, if at least one individual in the neighborhood is
infected. The rate of infection is proportional to the number of infected individuals
in the neighborhood. In addition to the process of infection, there is a process related
to the recovery of the infected. They cease to be infected spontaneously and become
susceptible, that is, the recovery does not provide immunity to the individuals. As
we see, it is a dynamic process in which the individuals are infected and recover
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continuously. However, in the time evolution the system may reach a state in which
there is no infected individual anymore, all individuals had become susceptible.
In this case, the epidemic does not have any means to spread and this state is a
stationary absorbing state. The system may also evolve to a stationary state in which
the epidemic never ceases completely but also does not contaminate the totality of
the individuals because they always can recover spontaneously. Next, we formally
present the model.

The contact process consists in a system of interacting particles residing on the
sites of a lattice and evolving according to Markovian local rules. Each site of the
lattice can be in two states, empty or occupied. At each time step, a site of the lattice
is chosen at random.

(a) If the site is empty, it becomes occupied with a transition rate proportional to
number 7, of neighboring occupied sites. In a regular lattice of coordination
number z, the transition rate is assumed to be An,/z, where A is a positive
parameter. Thus, in the one-dimensional case, if only one neighboring site is
occupied, the rate is A /2. If the two neighboring sites are occupied, the chosen
site become occupied with rate A. If there is no neighboring site occupied, then
the site remains empty.

(b) If the chosen site is occupied, it becomes empty with rate one.

The first process corresponds to an autocatalytic creation process and the second
to a spontaneous annihilation process. For A large enough, the system presents an
active state such that the density of particles is nonzero. Decreasing A, we reach a
critical value of A, below which the system will be found in the absorbing state.

The simulation of the contact process defined on a regular lattice of coordination
z, with N sites can be preformed as follows. At each time step we choose a site
at random, say site i. (a) If i is occupied, than we generate a random number
& uniformly distributed in the interval [0,1]. If § < o = 1/A, the particle is
annihilated and the site becomes empty. Otherwise, the site remains occupied. (b)
If i is empty, then one of its neighbors is chose at random. If the neighboring site is
occupied then we create a particle at site ;. Otherwise, the site i remains empty. At
each Monte Carlo step we calculate the total number of particles n = Y, n; from
which we determine the average density of particles

and the variance in the number of particles.

x = —{(n*) —(n)*. (13.7)

1
n
We used the algorithm presented above to simulate the one-dimensional contact
process whose results are shown in Fig. 13.1 for several system sizes. To avoid that
the system fall into the absorbing state, we forbid the last particle to be annihilated.
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With this requirement it is possible to simulate systems of any size as shown in
Fig. 13.1. Notice that with this requirement the density p is always finite, but for
A < Ac (@ > a) it vanishes in the limit N — oo, characterizing therefore the
absorbing state.

Another way of studying the contact model is done by starting from a single
occupied site on an infinite lattice. A better way to perform the simulation is to use
a list of active sites, that is, a list of sites that may have their states modified. At each
iteration, one site of the list is chose at random and the time is increased by a value
equal to the inverse of the numbers of sites in the list. Next, the list is updated, with
some sites leaving the list and others entering the list. A simulation performed at the
critical point according to this prescription for the one-dimensional model is shown
in Fig. 13.2. At the critical point the clusters have a fractal structure with fractal
dimension dp = 0.748. If we use this prescription for an ordinary simulation, in

a b, —
3r — 40
L — 80 ]
7 — 160
L — 320
p X 2
1 - —
0 n 1 n 1 n
0.1 0.2 0.3 0.4 0.5
(03
Fig. 13.1 (a) Density p and (b) variance y versus « = 1/A for the contact model in a one-

dimensional lattice obtained by simulations for various values of L indicated. The dashed line
indicates the critical point, o, = 0.303228
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Fig. 13.2 Sites occupied i as functions of time ¢ for the one-dimensional contact process.
Simulation performed at the critical point, o, = 0.303228, starting from a single particle located
at i = 0. The clusters has fractal dimension dr = 0.748
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which one of the N sites is chosen at random, we see that the increment in time
equals 1/ N and therefore one unit of time coincides with a Monte Carlo step.

The contact model has a conservative version whose rules are such that the
number of particles remain invariant. The rules of this version are as follows. At
each time step a particle and an empty site i are chosen at random and independently.
The particle is transferred to the empty site with a probability equal to the fraction
r; of particles belonging to the neighborhood of site i. If the empty site has no
neighboring particles, the chosen particle remains where it is. In this version, the
number of particles works as an external parameter and the rate « is determined as
follows. Define n, as being the weighted number of active sites. An active site is
an empty site with at least one neighbor occupied. The weight of an active site i is
equal to the fraction r; so that

ng = ri(1—=1). (13.8)

The rate « is calculate as the ratio between the average weighted number of active
sites and the number of particles n,

(na) )

n

o= (13.9)
The critical rate is determined as the limit of « when n — o0, in an infinite lattice.
Using this procedure we can determine the critical rates of the contact model for
various lattices, as shown in Table 13.1.

Evolution equations for the correlations According to the rules above, the
transition rate w; (1) of changing the state of site i, that is, n; — 1 — n;, of the
contact model is given by

A
wi(m) = ~(1=n:) Y mives + 1. (13.10)
$

Table 13.1 Critical parameters A, and o, = 1/A, of the contact model for various lattices of
dimension d and coordination number z, according to Jensen and Dickman (1993) and Sabag and
Oliveira (2002). The errors are in the last digit

Lattice d z Ae o

Chain 1 2 3.29785 0.303228
Square 2 4 1.64872 0.60653
Cubic 3 6 1.31683 0.75940
Hipercubic 4 8 1.19511 0.83674
Hipercubic 5 10 1.13847 0.87837
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where the summation is over the z nearest neighbors of site i. The first term, in this
equation, is related to the autocatalytic creation, which is the process (a) defined
above; and the second, to the spontaneous annihilation, which is the process (b)
above. Replacing (13.10) into the evolution equation for the average (n;), given by
(13.4), we get

d A
2 =2 2 (= mmies) = (). (13.11)

8

and therefore the evolution equation for (7;) depends not only on (#;) but also on
the correlation of two neighboring sites.

The time evolution related to the correlation of two neighboring sites, (1;7n;), is
obtained from (13.5). Replacing the rate (13.10) into this equation, we get

d A A
—(min;) = —=2(min;) + 2 Z((l — NN Ni+s) + 2z Z((l = 0)MiMj+5)-

dt S S
(13.12)

We should bear in mind that the first sum in § contains a term such thati + § = .
In this case, n;n;+5 = n; so that

Z((l — NN Ni+s) = Z (X =n)n;nivs) + ((L—n)n;) (13.13)

$ 8 +38#£))

Similarly

DUU=npmingas) = Y A =npminjes) + (L =npn).  (13.14)

$ 8(j +38%i)

We see that the evolution equation for the correlation of two sites depend on
the correlation of three sites. The evolution equation for the correlation of three
sites will depend on the correlation of four sites and so on. The equations for
the various correlations form therefore a hierarchy such that the equation for a
certain correlation depend on correlation involving a larger number of sites. An
approximate form of solving this hierarchy of equations consists in a truncation
scheme, as we will see next.

13.3 Mean-Filed Approximation

Assuming a homogeneous and isotropic solution, then (1;) = p and (1;1;+s) = ¢,
independently of i and 8, and Eq. (13.11) becomes

d
P =Mo=¢)—p. (13.15)
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Employing the simple mean-field approximation, which amounts to use the approxi-
mation P(n;,1;) = P(n;)P(n;), and therefore, ¢ = p2, Eq. (13.15) can be written
in the following form

d
—p=A—=1p—2Ap> (13.16)
dt
The stationary solutions of these equations, which characterize the stationary states
of the model, are p = 0, the trivial solution, which refers to the absorbing state, and

p=""", (13.17)

valid for A > 1, which is related with the active state, characterized by a nonzero
density of particles. Figure 13.3 show p as a function of the parameter « = 1/A.
As seen, in the stationary state, there is a phase transition between an active state,
characterized by p # 0, which is identified with the order parameter, and an
absorbing state, characterized by p = 0. Close to the critical point, A, = 1, p
behaves as

o~ (A—2A). (13.18)

Equation (13.16) can be exactly solved with the following solution for the case

A# L

A—1

T oo G Di’ (13.19)

p =
where ¢ is a constant which must be determined by the initial conditions. When
t — oo, the stationary solution p = 0, corresponding to the absorbing state, is
reached if A < 1, while the solution p = (A — 1)/A, corresponding to the active
state, if A > 1. In the first case, A < 1, the density p decays to zero exponentially,

o = ae 17, (13.20)
a b, c
p x : x
1 3 ¥ ‘
| :
1 | |
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Fig. 13.3 (a) Density p, (b) susceptibility y*, and (c) variance y versus @ = 1/A for the contact
model according to the mean-field theory, o, = 1/A,
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Similarly, in the second case, the density relaxes to the nonzero solution exponen-
tially,

A—1
p=""- be~ Pt (13.21)

In both cases, the relaxation time t is given by
T~ A=A (13.22)

where A, = 1.
At the critical point, A, = 1, the relaxation time diverges and the relaxation
ceases to be exponential. The time evolution of the density becomes

o _

= 0%, 13.23
o P ( )

whose solutionis p = 1/(z+c), so that for large times the decay becomes algebraic,
p~1tl. (13.24)

Now, we modify the transition rate so that the absorbing state is absent. This is
carried out by introducing a spontaneous creation of particles in empty sites. The
transition rate becomes

b
wi(m) = —(U=m) D mis +mi+ (L= m0), (13.25)
$

where / is a parameter associated to the spontaneous creation. Using this rate and
within the simple mean-field approximation, the equation for the evolution of the
density of particles becomes

d
P = (A —1p—Ap*+ k(1 —p). (13.26)

From this equation we get the following equation for the susceptibility x* = dp/dh,

d
d_tX* =—1=A+200) "+ (1—)p), (13.27)
valid for & = 0.

The stationary solution is given by

* l_p

= ——, 13.28
1 -2+ 2pA ( )

X
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and is shown in Fig. 13.3. When A < A, = 1, p = 0 and y* = 1/(1 — 1). When
A>A,p=(A—-1)/Aand y* = 1/A(A — 1). In both cases the susceptibility
diverges as

1 =1A=A]N (13.29)

At the critical point, A = 1, and for large times, the equation for the susceptibility
is reduced to

d , 2

—xF=1——y" 13.30

! o ( )
whose solution is y* = ¢/3. Therefore, for large times the susceptibility has the
following behavior at the critical point

X~ (13.31)

To obtain an approximation of the second order, we use the time evolution
equation related to the correlation of two neighboring sites, (n;n;), given by
(13.5). The mean-field approximation of second order, called pair mean-field
approximation, is that in which the correlation of three sites is determined by using
the approximation

P(nj,ni)Pmi,nk)
P(ni) ’

Py, ni,ne) = (13.32)

where j and k are distinct neighbors of site i. Through this procedure, Eqs. (13.4)
and (13.5) become closed equations for (n;) and (n;7;). Assuming isotropy,
Eq. (13.12) is transformed into the following equation

d, _De-De-9P A
a’= T ao,y TLe -2 (13.33)

which together with Eq. (13.15) constitute a close set of equations for p and ¢. A
stationary solution is given by p = ¢ = 0, which corresponds to the absorbing
state. The other stationary solution, corresponding to the active state, is given by

Az=1)—z
=, 13.34
P Az—1)—1 ( )
and ¢ = (A — 1)p/A, valid for A > A., where
A = — (13.35)
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is the critical rate in the pair approximation. The critical behavior of the order
parameter, p ~ (A — A.), remains the same as that of the simple mean-field
approximation, although the critical rate has a different value.

13.4 Mean-Field Theory

An exact solution of the contact model can be obtained when the number of
neighbors is very large. According to this idea we modify the rate (13.10) so that
the sum extends over all sites,

wi(n) = A(1 —ni)x + n;, (13.36)

where the stochastic variable x is defined by
1
x = N;”f" (13.37)

For N large enough, we assume that x is distributed according to a Gaussian of
mean p and variance y/N,

VN -Ne—p2/2r

P(x) = 13.38
(xx) Tng ( )

where p and y depend on 7. Notice that
X = N{(x?) = (x)?}), (13.39)

and hence y coincides with the definition (13.7) since n = Nx.
Next, we replace (13.36) into Eq. (13.4), which gives the evolution of the density
of particles, and use the definition of x to get

d

- X =A(x) - (x%) — (x), (13.40)

In the limit N — oo, the distribution P(x) becomes a Dirac delta function and
(x?) — p? and we arrive at the following equation for the density of particles,

d
—p=Ap—p?)— 13.41
5P (o —p")—ps (13.41)

which is Eq. (13.16) obtained previously.



13.4 Mean-Field Theory 305

Next, we determined the time evolution of y. To this end, we observe first that
2 ! _ ! a 13.42
X —mzniﬂj—mthm-i-ﬁ- (13.42)
ij i#j
Using the rate (13.36) and Eq. (13.5),

d

E("f nj) = —=2(min;) —2A(min;x) + A{(n; +n;)x), (13.43)

valid for i # j. From this result, we get

i(xz) =21 —1){x?) =21 (x%) + i[/\p(1 —p) + pl. (13.44)
dt N
On the other hand
L = 20 L ey = 20— 17— 200 () (13.45)
dt dt ’ ’

where we used the result (13.40). From these results we get the time evolution of
the variance

d

7); =20 = Dy + Ap(1 = p) + p— 2AN ((x — p)x2). (13.46)
But in the limit N — oo, the Gaussian distribution (13.38) leads us to the following
result N ((x — p)x2) — 2py from which we get

d
7); =2 —1—2Ap)y + Ap(1 = p) + p. (13.47)
In the stationary state
Ap(1—
p(1—p) +p (13.48)

T2+ 1+2Ap)

which is shown in Fig. 13.3. We distinguish two cases. In the first, A < A, = 1 and
p = 0 from which we conclude that y = 0. In the second case, A > A., we get
o= (A —1)/A so that

1

=—, 13.49
=7 ( )
and therefore y remains finite when A — A.. It is worth to note that,at A = A, = 1,
we get y = 1/2. Therefore, the variance is finite but has a jump at the critical point
equal to 1.
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The variance y is distinct from the susceptibility y*, defined as follows. The
transition rate (13.36) is modified by the addition of a spontaneous creation of
particle in empty sites, given by k(1 — ;) similarly to what we have done in (13.25).
From this new rate we see that the time evolution of p, given by (13.41), is modified
and become identical to Eq. (13.26). The susceptibility is defined by y* = dp/oh
and therefore in the stationary state it is given by formula (13.28), which is distinct
from y, given by formula (13.48). Notice that the susceptibility y* diverges at the
critical point whereas the variance y remains finite, as seen in Fig. 13.3.

13.5 Ciritical Exponents and Universality

It is worth to note that the contact process undergoes a phase transition in any
dimension, including in one dimension as revealed by the simulations whose results
are shown in Fig. 13.1. In this aspect, it has a behavior distinct from the Ising
model and other equilibrium models with short range interactions, which do not
present a phase transition, at finite temperature, in one dimension. Table 13.1 shows
the values of the critical parameter A, of the contact model for various regular
lattices.

The behavior around the critical point of the various quantities related to the
contact model is characterized by critical exponents, which are the same as those of
the directed percolation, to be studied later on. These two models, and others having
the same exponents, comprise the universality class of the directed percolation,
whose exponents are shown in Table 13.2.

The most important quantities that characterize the critical behavior and their
respective exponents are presented next. Density of particles, which is identified as
the order parameter,

p~ &P, (13.50)
where A — A.. Susceptibility,
X~ (13.51)
Variance,
y~e". (13.52)

Unlike what happens to the Glauber-Ising model, the exponents y’ and y are
distinct. Spatial correlation length,

E gV, (13.53)
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Table 13.2 Critical exponents of models belonging to the universality class of directed perco-
lation, which includes the contact process, according to compilations by Mufioz et al. (1999),
Hinrichsen (2000) and Henkel et al. (2008). The errors in the numerical values with decimal point
are less or equal to 10™", where n indicates the decimal position of the last digit

d B y y v | z ) 0

1 0.27649 |2.27773 | 0.54388 | 1.09685 |1.73385 |1.58074 |0.15946 |0.31369
2 0.583 1.59 0.30 0.73 1.30 1.766 0.451 0.230

3 0.81 1.24 0.13 0.58 1.11 1.90 0.73 0.11
>4 |1 1 0 172 1 2 1 0

Relaxation time or time correlation length,
T ~¢g "l (13.54)

Some exponents are defined from the time behavior of certain quantities at the
critical point. These quantities are calculated by assuming that at the initial time
there is a single particle, placed at the origin r = 0 of a coordination system. From
this seed, a cluster of particles grows. We define the average number of particles by

ny = (m). (13.55)

r

where the sum extends over the sites of the lattice. At the critical point, the average
number of particles grows according to

n,~t’ (13.56)

The spreading of particles is defined by

1 )
R? = - > (). (13.57)

r

At the critical point, it behaves as

R~ '3, (13.58)
At the critical point the surviving probability &7 behaves as

P~ 17, (13.59)

In the limit 1 — oo and out of the critical point the surviving probability &2* is
finite and behaves around the critical point according to

Pp* ~ P (13.60)
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For the contact model, the surviving probability coincides with the density of
particles so that 8 = B. Later on, we will analyze a model for which this relation
is not valid. The fractal dimension dF is defined as the number of particles n, that
are found inside a region of linear size L, determined at the critical point, that is,

n, ~ LI, (13.61)

13.6 Evolution Operator

The master equation (13.2) related to the contact process can be written in terms of
operators. To this end, we start by building a vector space whose basis vectors are
given by |n) = |n1m2 ... ny). Next, we define the probability vector |¥(¢)) by

W(0) =) P(n.0)ln), (13.62)
n

where the sum extends over all basis vectors. Using the master equation (13.2), we
determine the time evolution of the probability vector. Deriving this equation with
respect to time and using the master equation, we get

d ‘
ZIwO) =323 witnPe.odn’) = I}, (13.63)

n

where |7') = |mn2... 1 —n; ...ny). Defining the operator .%; by

Ziln) = In'). (13.64)
and the operator Z; by
Ziln) = wi(m)n), (13.65)
then, from (13.63), we get
d
ZYO) = (T = DA (). (13.66)

Therefore, we may write

d
EI‘P(I)) = JW(@). (13.67)
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where the evolution operator . is

N
S =Y (Fi- 1. (13.68)

i=1

Using the rate w; (1), given by (13.10), the operator 25 is defined by

A
Ziln) = (;(1 —ni)Zni+s+ni) In). (13.69)
8

The operators .%; and Z; can be written in terms of creation and annihilation
operators 7 and .7, defined by

i) = niln'), A7) = (1 —n)n). (13.70)
We see that
Fi = o + AT, (13.71)
and hence
% = &(1_/%)Zc/1{+8+=/%, (13.72)
< 8
where
N = AT o, (13.73)

is the number operator. Therefore, the evolution operator reads

S = %Z(M +~e4+—1><1—m);m+5+l2m. (13.74)

1

Using the property o7 " o/ + .o/ = 1 we get

A
S = ;a — )T AL gl g+ ,Z(l — ). (13.75)

Notice that . is an operator which is not Hermitian. This expression for the
evolution operator is the starting point for obtaining time series and perturbation
series for various quantities that characterize the critical behavior of the contact
process.
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With the aim of comparing the evolution operator . of the contact process
with the evolution operator associated to the Regge field theory, and which is not
Hermitian, we do the following unitary transformation

H=—y SV (13.76)
with

v =110+ %), =110 - ). (13.77)

Hence the operator 7 defined in (13.76) is given by

A
H =5 P A AT VEATES Z,szf,hzz,-. (13.78)

i.6 i

This operator is related with the evolution operators that describe processes in the
Regge field theory. The correspondence of the operator .77 and the spin models of
the Regge field theory was shown by Grassberger and de la Torre within a formalism
similar to the one presented here.

13.7 Creation by Two or More Particles

The interaction mechanisms contained in the contact process, which are those of the
first Schlogl model, studied in Sect. 10.5, provide the basis for the formulation of a
variety of lattice models used to describe epidemic spreading, population dynamics,
and chemical reactions. Moreover, several models based on the contact process have
been used to study the microscopic ingredients that are relevant in characterizing
the kinetic phase transitions in models with absorbing states. The very development
of a lattice model, comprising the reactions of the first Schlogl model, led to the
conjecture mentioned in Sect. 13.1.

The second Schlogl model has the same mechanisms of the first, but involves an
autocatalytic creation by pairs. In the analysis by Schlogl, based on the equations
of chemical kinetics and seen in Sect. 10.5, a discontinuous transition is predicted.
In the construction of a lattice model that evolves according to local Markovian
rules that comprises the reactions of the second Schogl model, fluctuations are
implicit introduced. This formulation allows to observe that in one-dimension the
model indeed exhibit a phase transition, but the transition is continuous, with a
critical behavior in the same universality class of the ordinary contact model.
Therefore, the introduction of local rules with stochastic evolution changes in
a sensible way, in the one-dimensional case, the predictions of the chemical
kinetics.
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Possible generalizations of the contact process, inspired in the second Schlogl
model, consist therefore in considering that the autocatalysis can only occur when
there is a certain minimum number of particles taking part in the reaction. In the
contact process, the minimum number of particles is equal to one. Models with pair
creation correspond to a minimum of two, triplet creation, a minimum of three,
and so on. In addition to the autocatalysis and to the spontaneous annihilation, it
is also possible to include the diffusive process. In general one does not add a
diffusive process in the ordinary contact process because it has already a proper
diffusion. This intrinsic diffusion occurs when an autocatalytic process is followed
by a spontaneous annihilation as in the example: 01000 — 01100 — 00100. All
these generalizations are models of one component, which have an absorbing state
corresponding to the complete absence of particles.

The generalization of the contact model which we study here consists in the
pair-creation model. The creation of a particle requires the presence of at least two
particles in the neighborhood. When there is just one particle or none the creation
is forbidden. The annihilation of particles is spontaneous. Various models can be
defined with these properties. Here we consider only those such that the creation
of particles is proportional to the number of pairs of occupied sites of a certain
neighborhood. To each site of a regular lattice, we denote by V; the set of pairs of
sites (j, k) belonging to a certain neighborhood of site i. The transition rate w; (1)
from n; to 1 — n; is defined by

A
wi(n) = ;(1 — i) Z njnk + ni, (13.79)
(jh)ev;

where 7' is equal to the number of pairs of sites in the neighborhood, that is, of
elements of the set V;, which we consider to be the same for all sites.

The model so defined is quite generic since we did not specify the neighborhood
V;. For the one-dimensional case, we consider the neighboring pairs of site i as the
pairs (i —2,i — 1) and (i + 1,i + 2). In this case, the rate is

A
wi(n) = 5(1 — i) (Mi—2Mie1 + Ni+1Mi+2) + Nis (13.80)

Numerical simulations show that this model shows a phase transition that occurs
at A, = 7.45. When A < A., the model shows an absorbing state. When A > A,
the state is active. As we said above, the critical behavior is the same as that of the
ordinary contact model.

In a regular lattice of dimension larger or equal to two, we may consider a
neighborhood formed by sites that are nearest neighbors of a certain site. In a regular
lattice of coordination number z, we consider the model defined by the transition rate

A
wi(n) = 27(1 —nini(ni — 1) + n;, (13.81)
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where 77 = z(z — 1)/2 is the number of pairs of neighboring sites and n; is the
number of neighboring sites occupied, given by

ni = tits, (13.82)
8

where the summation is over the nearest neighbors.

Mean-field theory The solution of the pair-creation model defined by the rate
(13.81) can be obtained when the number of neighbors is very large. According
to this idea, the transition rate that we will regard, in the place of the rate (13.81)
and in analogy with the rate (13.36), is the following

wi(n) = A1 —n)x* + ;. (13.83)

where the stochastic variable x is defined by

1
x = NZ’“' (13.84)
J

Proceeding in a way analogous to that followed in Sect. 13.4, we get

d

= A((x%) = (x%) = (x). (13.85)

In the thermodynamic limit, we obtain the following equation for p = (x),

dp
2
I (p

2_p’)—p. (13.86)

In the stationary state p = 0 or p?> — p + a = 0, that is,
1
p= 5{1 + V1 —4a} = po, (13.87)

where @ = 1/A. Using the initial condition p = 1, the stationary solution is shown
in Fig. 13.4. When @ > o9 = 1/4,0r A < A9 = 4, then p = 0. Otherwise, the
stationary solution is that given by (13.87), p = po.

To determine the behavior for long times, we expand the right-hand site of
(13.86) around the stationary solution. For A < A¢, up to linear terms, dp/dt = —p

and hence the decay is exponential, p ~ e~ with a relaxation time t = 1. For
A > A(),

d
P = —2(A = 20)"2po(p — po). (13.88)
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Fig. 13.4 (a) Density p, (b) susceptibility y*, and (c) variance y versus &« = 1/A for the pair-
creation model, according to the mean-field theory, o, = 1/A,

whose solution is exponential

p=py— Ke'/7, (13.89)
with a relaxation time equal to

T~ (A —Xo)"V2 (13.90)

When A = Ay and close to the stationary solution, for which p = py = 1/2,

d 1
—p=—2(p— )" (13.91)

whose solution for large times is algebraic,
p—po~tl. (13.92)

To determine the susceptibility we proceed as previously, that is, we add a rate of
spontaneous creation #(1 — 7;) in (13.83), which results in the following equation
for p

d

P = A(p*> = p*) — p+ k(1 — p). (13.93)
Deriving with respect to the parameter s, we get an equation for the susceptibility
x* = dp/oh,

d * * *
AT =22p=3p"))" ="+ (1= p), (13.94)

valid for & = 0. The stationary solution is given by

* l_p

= 13.95
e YeTE ) (1399

X
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and is shown in Fig. 13.4. When A < Ao, p = 0 and y* = 1. When A > A¢, p = po
and close to Ay,

X~ (A =2) (13.96)

The variance y = N[{x?) — (x)?] is calculated as follows. We begin by writing

%(xz) = =22 (x*) +24(x’) —2(x?) + % (=A%) + A(x%) + (x)). (13.97)
42 =200 x) = 206 (M) = 106 — (1) 13.98
2107 =200 2 (0) = 2(x) (A7) = A(x7) = (x). (13.98)

Subtracting these equations and multiplying by N,

ditx =2NA{(x — p) (x> = x*)) =2y — A(x3) + A {x?) + p. (13.99)

In the limit N — oo, N ((x — p)(x?> — x%)) = x(2p — 3p?) and

d
= 2[Ap(2 —3p) — 1]y + Ap*(1 — p) + p. (13.100)

In the stationary state

= Ap*(1—p) +p
2[1 = 2p(2=3p)]

(13.101)

When A > 4, p = 0 and hence y = 0. When A < 4, p = py and therefore

1 1

= = ) 13.102
L= Xem-1) ~ Jio-9 ( )

Therefore near A = Ay = 4,
¥ =M= "2 (13.103)

13.8 Models with Two Absorbing States

Here we analyze models with two absorbing states. We imagine a community of
individuals, each one holding a opinion about a certain issue, being in favor or
against it. The opinion of an individual changes with time according to certain
rules that involve the opinion of the neighbors. At each time step an individual
chooses at random one of his neighbors. If the neighbor’s opinion is different from
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his, the opinion is accepted with a certain probability to be specified later. If the
opinions are the same, the individual’s opinion does not change. According to this
rule, if all individuals of the community are favorable, there will be no change of
opinion anymore and this state is absorbing. Similarly, if all individuals are against
the issue, there will be no change of opinion. Therefore, the model so defined has
two absorbing states.

Next we specify the probability of opinion acceptance when the opinions are
different. (a) If the individual is against and the neighbor is favorable, then the
individual becomes favorable with probability p and therefore remains against
with probability ¢ = 1 — p. (b) If the individual is in favor and the neighbor
is against, then the individual becomes against with probability ¢ and therefore
remains favorable with probability p. These rules indicate that it will be a bias to
the favorable opinion if p > 1/2 and a bias against the opinion if p < 1/2.

With the purpose of describing the model in an analytical way, we consider the
individuals to be located on the sites of a regular lattice. Each site has a stochastic
variable o; that takes the value 4-1 or —1 according to whether the individual at site
i is favorable or against, respectively. According to the rules above, the probability

of the transition 0; = —1 — 0; = +1 is pn;/z, where z is the number of neighbors
and n; is the number of neighbors in state 4-1. Similarly, the probability of the
transition 0; = +1 — o0; = —1 is gm;/z, where m; = z — n; is the number of

neighbors in state —1. Introducing the parameter p such that p = (1 4+ ©)/2, and
therefore ¢ = (1 — p)/2, and taking into account that

1 1
ni=3 5 (1+0it), mi =3 5 (1=0ity), (13.104)
8 8

where the sum extends over the neighbors of i, then the transition rate w; (o) from
0; to —0; can be written as

1
wi(0) = a1 = poy)5- 3 (1= 0i01+s). (13.105)
8

where « is a parameter that defines the time scale. Indeed, when o; = —1, the rate
is 2apn;/z and when o; = +1, the rate is 2agm; /z. The parameter p is restricted
to the interval —1 < u < 1. When pu = 0, the model is reduced to the voter model
seen in Sect. 11.4.

If u # 0, and for long times, the system approaches one of the two absorbing
states. If u > 0, the stationary state is the absorbing state in which all sites are in
state +1. If i < 0, the stationary state is the absorbing state in which all sites are in
state —1. Thus the model presents, in the stationary state, a phase transition between
two absorbing states. At = 0, the system is found at the critical state, which we
had the opportunity to study in Sect. 11.4 when we studied the voter model. Here
we focus only on the situation in which p # 0.



316 13 Systems with Absorbing States

We start by considering the one-dimensional case for which the transition rate is
given by

wi(0) = a(l = o)1 — 301071 + o141 (13.106)

Consider an infinite lattice and suppose that initially only the site i = Ois in state —1
while all the others are in state +1. After a while the system will have several sites
in state +1, but, according to the transition rate, theses sites form a single cluster
of contiguous sites in state —1. Denoting by P, (¢) the probability of occurrence, at
time 7, of a cluster with r sites in state —1, then according to the transition rates, we
get the following equation

dP,
= —ap, 13.107
pralmkad ( )
dpP
Ttl = —(a +b)P, + aP, (13.108)
dp,
a =an_1 —(a+b)Pn +61Pn+1, (13109)

forn > 2, where @ = 2ap and b = 2aq. Notice that P, is the probability of the
absorbing state in which all sites are in state +1.

These equations are identical to the model of the random walk with an absorbing
state, seen in Sect.8.5. One of the results obtained in that section is that the
probability of entrance in the absorbing state at time #, per unit time, starting from
the state ny, is given by

B(t) = Ar¥2e~(Wa—Vb )t (13.110)

where A = bnogr="°//m(ab)**. Therefore, the decay to the absorbing state is
exponential with a relaxation time

t=(Ja—vb)?2 (13.111)

We see thus that for this model the exponent vy = 2 in d = 1. Table 13.3 shows
this exponent and other critical exponent for this model. The universality class of
this model is called compact direct percolation.

Table 13.3 Critical
exponents of compact direct
percolation, according to
Henkel et al. (2008)

d BB vy v |z |8 0 |dr
1 0|1 |1 2 (2172 |0 |1
>2 /0 |1 |12 |1 |2 |1 0 (2
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A cluster of sites in state —1 can grow forever or it can grow up to a certain
point and then shrink. The surviving probability is identified as the probability of
permanence of the particle that performs the random walk with absorbing state. As
we have seen in Sect. 8.5, the probability of permanence, starting from the state ny,
is

b\"™
P =1-— (—) , (13.112)

a

for a > b. Around the critical point, which occurs at a = b, the probability of
surviving behaves as

P* ~ (a—b), (13.113)
which gives an exponent 8’ = 1.

At the critical point, @ = b, the absorbing rate Z(t) behaves as Z(t) ~ t=/2.
Recalling that the surviving probability 2 (t) is related to the absorbing rate through
dP(t)/dt = —%(t), then

P(t) ~ 1712, (13.114)

which leads us to the exponent § = 1/2.



Chapter 14
Population Dynamics

14.1 Predator-Prey Model

Within the context of population dynamics, a variety of models has been proposed
with the purpose of describing the mechanisms of competition between biological
populations. Among these models the most known is the Lotka-Volterra, used in
describing the time behavior of populations of two biological species that coexist
in a certain region. One of them is prey and the other is predator. The prey feed on
plants, considered abundant. The predators live at the expense of prey. Suppose that
at certain moment the number of predators is large. This implies that the prey are
annihilated quickly, not even having the chance to reproduce. The decline in prey
population, in turn, causes the decrease in the number of predators. Having no food,
many do not reproduce and disappear. When this occurs, conditions are created for
the prey reproduction, increasing, thus, the prey population. As a consequence, the
predator population increases again. And so on. With the passage of time, these
situations repeat periodically in time. Under these conditions, the system predator-
prey presents auto-organization. The predator and prey populations oscillate in time
with a period determined by parameters inherent to the predator-prey interactions.
In other terms, we face an auto-organization in the sense of Prigogine, which is
expressed here by means of time oscillations in the prey and predator populations.
The Lotka-Volterra model is defined through the equations

dx

x = kijax — kaxy, (14.1)
dy

D _ oy — ks, 14.2
o 2Xy — K3y (14.2)

where x and y represent the densities of prey and predator respectively, and a is
the density of prey food, considered to be constant because it is abundant. Preys
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reproduce with rate k. Predators reproduce with rate k;, as long as there are preys,
and disappear spontaneously with rate k3. One solution of these equations predicts
time oscillations of preys and predators.

The description of population dynamics can also be done by the introduction of
stochastic models defined on a lattice, as we have been studying so far. We describe
below a model of this type for the predator-prey system, that was introduced by
Satulovsky and Tomé (1994). In the construction of this model, it is aimed the
microscopic description of the process inherent to the dynamics of the Lotka-
Volterra. To do so, one proposes a stochastic model defined on a lattice, that
describes the predator-prey dynamics by means of local Markovian rules, which
simulate interactions similar to those of the contact process. Therefore, the model
comprehends mechanisms of local interactions that take into account the spatial
structure.

We consider a square lattice with N sites, each one being occupied by a prey,
occupied by a predator or empty. To each site we associate a stochastic variable 7;
that takes the values 1, 2, or 0, according to whether the site is occupied by a prey,
occupied by a predator or empty, respectively.

The master equation, that governs the time evolution of the probability distribu-
tion P(n,t) of state

n= (NN N), (14.3)

at time ¢, is given by

d N
S P00 =Y wi (R P(Ren, 1) = wi () P(1,1)}, (14.4)

i=1

where w;(n) is the transition rate related to the transformation 0 — 1, 1 — 2,
2 — 0 according to whether n; = 0, 1, 2, respectively, and R; makes the inverse
transformation, that is,

Rin=1,....n....0N), (14.5)

where 7! = 2,0, 1 according to whether n; = 0, 1, 2, respectively.
The transition rate w; (1) comprehends the following processes of interaction
between species:

(a) Creation of prey. If a site 7 is in empty state (; = 0), then a prey can be created
in this site with a rate equal to an; /4, where a is a parameter and n; is the
number of prey in the neighborhood of site i. That is, a prey is born if there is
at least one prey in the neighborhood of the chosen empty site. Moreover, the
probability of birth is proportional to the number of neighboring preys.

(b) Creation of predator and annihilation of prey. If a site i is occupied by a prey
(n; = 1), then a predator will occupy site i, with an instantaneous annihilation
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of prey, with a rate bm;, where b is a parameter and m; is the number of
predators in the neighborhood of site i. Thus a predator is created only if
there is at least one predator in the neighborhood of the prey. Since the prey
“becomes” a predator for being next to the predator, the model may be viewed,
pictorially, as a model for “vampire predators”’. Moreover, the rate in which the
preys disappear and the predators are created is proportional to the number of
neighboring sites occupied by predators.

(c) Annihilation of predator. If a site i is occupied by a predator (n; = 2), then
the site will become empty with rate ¢ independently of the neighborhood. The
disappearance of predator is spontaneous.

According to the rules above, the rate w; related to site i of a regular lattice of
coordination ¢ is written in an explicit form as
n; m

: +b8(ni,1)?i+c8(ﬂf,2), (14.6)

where n; is the number of prey and m; is the number of predators present in the
neighborhood of site i, which are given by

wi(n) = ad(n:,0)

= 25(’7"+e’ D. m; = ZS(m+e,2), (14.7)

where the sum in e extends over the neighbors of site i.

These rules of evolution are similar to the rules of the contact process. The first
two are in full analogy with the autocatalytic creation of particles in the contact
model and the last one is analogous to the annihilation process in the contact model.
The difference between the models resides in the fact that the contact process is a
model with two states per site whereas the predator-prey model has three states per
site. In addition, only one species is annihilated spontaneously.

This system can also be interpreted in terms of a generic epidemic as follows:
preys are interpreted as susceptible individuals and predators as infected. The empty
sites are interpreted as recovered individuals.

14.2 Numerical Simulations

The model has two absorbing states. One in which all sites of the lattice are
occupied by prey and the other where all lattices are empty. The system also exhibits
stationary active states with nonzero densities of predators and preys.

From the point of view of population dynamics, one of the most relevant results
predicted by the model is a stationary active state with oscillations in time and
space. The stationary active states are those in which the predators and prey
are continuously being created and annihilated. In a certain region of the phase
diagram defined by the parameters a, b and c, the active states are characterized
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Fig. 14.1 Results of numerical simulations of the predator-prey model on a square lattice for the
parameters: a = b = 0,45 and ¢ = 0, 1, according to Tomé et al. (2009). (a) Density of preys
and predators as functions of time, for a lattice of size 40 X 40. (b) Time correlations between prey
and predator (xy), prey and prey (xx) and predator and predator (yy) for a lattice of size 100 x 100

by a constant densities of prey and predator. In another region of this diagram,
the densities of prey and predator oscillate in time and in space. The oscillations
obtained by numerical simulations, as those shown in Fig. 14.1, are very similar to
the actual time oscillations in the number of animals belonging to the two competing
populations reported in statistical data registered along several years.

As seen in Fig. 14.1 the oscillations are not deterministic, but are characterized by
the presence of a stochastic noise which induce the phase loss of these oscillations.
The phase loss can be distinguished by the time correlation function as shown in
Fig. 14.1. The time correlation function between two stochastic variables A and B
is defined by

C(1) = (A + 5)B(5)) — (A(5))(B(5)). (14.8)

where s is the waiting time, which we consider to be large enough, and ¢,
the observation time. When the observation time is large enough, we expect an
exponential decay of the correlation, except when the system displays a critical
behavior. The exponential decay can be pure or oscillatory, as those shown in
Fig. 14.1, called phase-forgetting oscillations.

The oscillations observed in this model, when defined on a square lattice,
seems to be local. That is, for systems large enough, these oscillations are not
global but cover small regions in space. Thus, the system appears to be divided
into uncorrelated subsystems. This supposition is based in the observation of the
behavior of the amplitude of the oscillations in the number of prey and predator,
which decays as 1/ VN , where N is the number of sites of the lattice.



14.3 Epidemic Spreading 323
14.3 Epidemic Spreading

Other models defined on a lattice, similar to the predator-prey model, can be set
up. The model called susceptible-infected-removed-susceptible (SIRS) describes
the epidemic spreading in a community of individuals that lose the immunity and
can become susceptible again. Each site of a lattice can be occupied by a susceptible
(S), by an infected (I) or by a removed (R). This last state can also be understood as
immune. The rules of the model are as follows. At each time interval an individual
is chosen at random. (a) If the individual is susceptible, he becomes infected if there
is at least one infected in the neighborhood. The transition rate is equal to b times
the fraction of infected individuals present in the neighborhood. (b) If the individual
is infected, he becomes removed spontaneously with rate c. (c) If the individual is
removed he becomes susceptible, that is, loses the immunity, spontaneously with
rate a. Denoting by n; = 1, 2, 0 the occupation of site i by a susceptible, infected
and removed, respectively, and using the previous notation, then the transition rate
w; (n) related to site i is given by

wi(n) = a8(n;.0) + b 8(ni. 1)% +c8(mi.2), (14.9)

where n; is the number of susceptible and m; is the number or infected present in
the neighborhood of site i.

We see that the SIRS is constituted by three states and three reactions and in this
sense it is similar to the predator-prey model. However, the SIRS model has one
autocatalytic and two spontaneous reactions whereas the predator-prey model has
two autocatalytic and one spontaneous reactions. When the parameter a vanishes,
the SIRS model reduces to a model called susceptible-infected-removed (SIR)
model, that corresponds thus to the case in which an individual remains immune
forever. The transition rate for this model is thus

wi () = b8, 1)% +e8(ni,2), (14.10)

where m; is the number of infected individuals present in the neighborhood of site
i. It is worth to note that the same model is obtained from the predator-prey model
whena = 0.

The contact process seen previously can also be interpreted as a model for the
epidemic spreading called susceptible-infected-susceptible (SIS). In this model,
each site can be occupied by a susceptible (S) individual or by an infected (I)
individual. At each time interval a site of the lattice is chosen at random. (a) If
the individual at the site is susceptible, he becomes infected if there is at least one
infected individual in the neighborhood. The transition rate is equal to b times the
fraction of infected present in the neighborhood. (b) If the individual is infected he
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becomes susceptible spontaneously with rate ¢. Using the notation 1; = 0 for a site
S and and n; = 1 for a site I, then the transition rate is

m;
Wi(’?):b(l_ni)?l-‘rc’ Mis (14.11)
where m; = ), 4. is the number of infected present in the neighborhood of

site 7.

14.4 Mean-Field Theory

The models defined above can be analyzed within the mean-field theory. We start
by the predator-prey model whose transition rate is modified so that

wi(n) = a S(ni,O)% + b 8(n:, 1)% +e8(ni.2), (14.12)

where 7 is the number of preys, m is the number of predators and N is the number
of sites. With this modification, we see that the system can be described by means
of the stochastic variables n and m only. For convenience, we define the auxiliary
variable k = N —n—m, which is the number of empty sites. The three subprocesses
are described by means of these variables as follows. (a) Creation of a prey in an
empty site, n — n + 1, k — k — 1; (b) annihilation of a prey and simultaneous
creation of a predator, n — n — 1, m — m + 1; (c) spontaneous annihilation
of a predator leaving a site empty, m — m — 1, k — k + 1. The rates of these
subprocesses are, respectively,

Oy = ak%, Bum = bn%, Vum = CHL. (14.13)

Numerical simulations performed according to these rates are shown in Fig. 14.2.

Denoting by P, ,,(¢) the probability of the occurrence of n preys and m predators
at time ¢, then the master equation that governs the evolution of this probability
distribution is given by

d
dt
+,3n+1,m—1 Pn+l,m—1 - ,Bnman + )/n,m+1Pn,m+1 - )/nman- (1414)

an = an—l,mPn—l,m — 0y an
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Fig. 14.2 Results obtained for the predator-prey from the transition rates (14.13), according to
Tomé and de Oliveira (2009). (a) Densities of prey and predator as functions of time for N = 100,
a = b = 0475 and ¢ = 0.05. (b) Corresponding time correlations, prey-predator (xy) and
prey-prey (xx)

Next, we consider an expansion of this equation for large values of N. To this end,
it is convenient to look at the probability density p(x, y,t) of the variables x =
n/N and y = m/N. The expansion up to order ¢ = 1/N results in the following
Fokker-Planck equation

dp 0 0

Pyl —g(fl,o) - @(fzp)

e 32 e 32 32
- — - — — , 14.15
532 8uP) + 3 52 (822p) + € oxay (g120) ( )

where

Sfi=ax(1 —x —y)—bxy, fo = bxy — ¢y, (14.16)
gu = axy + bxy, g2 = bxy + ¢y, g12 = bxy. (14.17)

The Fokker-Planck equation is associated to the following Langevin equations

dx

i fi+¢@), (14.18)
dy

= H+EQ), (14.19)

where ¢ and £ are stochastic noises with the properties

(¢@®) =0, (@) =0, (14.20)
(€@L") = gud —1), (14.21)
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(EMEE") = gnd(t —1'), (14.22)
(CDEEN) = gnad(t —1'). (14.23)

Averages The evolution of the averages (x) and (y) is given by

S = (ite ), (1424)
SO0 = (e, (1425)

When N is very large we may replace { f; (x, y)) by f;(x1, x2), where x; = (x) and
x, = (y), to get the equations

d

% = ax; (1 — x| — X2) — bx1 X2, (14.26)
d
% = bx1xy — cxp. (14.27)

According to the theory of reactive systems, seen in Chap. 10, these equation
describe the reactions

C + A 24, A+ B — 2B, B - C, (14.28)

where A, B and C represent, respectively, a prey, a predator and an empty site.

For large times we assume that x; and x, reach stationary values. The stability
of the stationary solution is obtained by means of the Hessian matrix H, constituted
by the elements H;; = df;/dx;, that is,

_ (a1l =2x1) —(a+b)xy —(a + b)x;
H = ( by by — ¢ ) . (14.29)

If the real part of each eigenvalue is negative, then the solution is stable. A trivial
stationary solution of Eqs.(14.26) and (14.27) is x; = 0 and x, = 0. The
corresponding Hessian matrix has an eigenvalue equal to a and therefore this
solution is unstable and does not occur. The other trivial solution is x; = 1 and
x; = 0 and corresponds to a lattice full of prey and complete absence of predator.
In this case the Hessian matrix has an eigenvalue equal to —a and the other equal to
b — c. Therefore, this solution is stable when b < c.
The nontrivial stationary solution is given by

c _ab—o)
i Xy = —b(a s (14.30)

X1 =
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and corresponds to the coexistence of the two species. Since x, > 0, then this
solution exists as long as » > ¢. The Hessian matrix is

—ac/b —(a+b)c/b
H = , 14.31
(a(b—c)/(a+b) 0 ( )
and the eigenvalues are the roots of the equation
bA* + acA + ac(b —¢) = 0. (14.32)

Since b > c, then the product of the roots is positive. The sum of the roots being
negative, then (a) if the roots are real they are both negative, (b) if the roots are
complex the real parts are negative. In both case, the solution is stable.

According to the results above we see that there is a phase transition between
the absorbing and the species coexisting phases occurring when b = c. In Fig. 14.3
we show the phase diagram for the case where the parameter hold the relation a +
b + ¢ = 1, in which case it is convenient to use another parameter p such that
a=(0—-p-—c)/2and b = (1 + p — c)/2. The transition line in space (c, p) is
described by ¢ = (1 + p)/3.

Fluctuation and correlation The densities x and y of the two species as functions
of time are determined by the Langevin equations and hence they present fluctua-
tions. They are not characterized only by their averages but also by their covariances.
To characterize the behavior of x and y as functions of time we should also consider

a 1 T T b 1 T T
0.8 - 0.8 -
06 | abs 06 | abs
C
7
04 ord /// 04 ///
0.2 | e 0.2 p
g osc ord / 0sc
Z - I I 0 I . ( -r”\——_ -
-1 -0.5 0.5 -1 -0.5 0.5

Fig. 14.3 Phase diagram of the predator-prey (a) and SIRS (b) models according to mean-field
theory, in the plane ¢ versus p, obtained by Satulovsky and Tomé (1994) and Souza and Tomé
(2010), respectively. The solid line separates the absorbing (abs) phase and the species coexistence
phase. In this phase, the time behavior can be ordinary (ord), with pure exponential decay of the
correlations, or can be oscillatory (osc), with oscillatory decay of the correlations. Along the right
side of the triangle, both models reduce to the SIR model, with a phase transition at the point
represented by a full circle
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their time correlations. The covariances predator-prey is defined by

X2 =N ((xy) = (x)}(y)). (14.33)

Similarly, we define the covariances yi1, y22 and y»;. Notice that y2; = yi12. The
time correlation predator-prey is defined by

yiz = N ((x(1)y(0)) — {(x(0))(y(0))). (14.34)

Similarly, we define y11, y2; and ;.
Defining the matrix X whose elements are the covariances y; and the matrix G
whose elements are g;;, then the following equation determines the covariances

d
d—tX =HX+XH' +G, (14.35)

where HT is the transpose of H.
Defining the matrix I" whose elements are the correlations y;;, then the following
equation determines the correlations

I =cCX, (14.36)

where C is the matrix whose elements Cj;, called correlation function, are defined as
the derivatives of x; with respect to the initial conditions. Denoting by x the initial
conditions, then C; = dx; /dx. From dx; /dt = f; we see that the matrix C obeys
the equation

dC
— = HC. 14.37
o ( )

In the stationary state, the elements of the Hessian matrix Hj; are time indepen-
dent. Denoting by A the dominant eigenvalue of H, that is, the eigenvalue with the
largest real part, then for large times

Cj~ e, (14.38)

For the state x; = 1 and x, = 0, which correspond to a lattice full of preys and
total absence of predators, and that occurs when b < ¢, the largest eigenvalue is real
and negative so that the correlation function has exponential decay. For the state in
which the species coexist, and that occurs when b > ¢, A is the root of (14.32). The
discriminant of Eq. (14.32) is

A = a*c® — 4bac(b — ¢). (14.39)
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Therefore, if A > 0, then A is real and negative and the decay of the correlation
function is pure exponential. This result says that x and y, the densities of prey and
predators, fluctuate stochastically around their mean value and become uncorrelated
with a characteristic time equal to 1/|A|.

If A < 0, then A has an imaginary part. Writing A = —« £ i w, then

Cj ~ e ¥ cos(wt + ¢y). (14.40)

This result means that the densities of prey and predators, x and y as functions of
time, present an oscillation with angular frequency w = \/m superimposed to the
noise that causes the loss of phase. The time it takes for the phase loss is equal to
1/w. The line that separates the two behaviors, ordinary and oscillating, is described
by A = 0, that is, by ac = 4b(b — c) and shown in Fig. 14.3.

SIRS model In this case, the equations similar to Eqgs. (14.26) and (14.27) are

dx

i a(l —x —y) —bxy, (14.41)
d
j); = bxy — cy. (14.42)

Here, we denote by x and y the mean densities of susceptible and infected, in the
place of x; and x,. According to the theory of reactive systems seen in Chap. 10,
these equations describe the reactions

R— S, S+1—2I, I - R. (14.43)

The first reaction occurs with rate a, the second with rate b and the third with rate c.
The Hessian matrix H is

—a — by —a — bx
H = . 14.44
( by bx—c ) ( )

A stationary solution of Eqs. (14.41) and (14.42)is x = 1 and y = 0 and correspond
to a lattice full of susceptible and complete absence of infected. The corresponding
Hessian matrix has an eigenvalue equal to —a and the other equal to b—c. Therefore,
this solution is stable as long as b < c.

The non-trivial stationary solution is given by

¢ _ab—o)
- Y= et (14.45)
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and correspond to the coexistence of susceptible and infected individuals. Since
y > 0, then this solution exists when b > c. The Hessian matrix is

_(—al@+b)/(a+c)—(a+c)
o ( a(b—c)/(a+c) 0 ) ’ (14.46)

and the eigenvalues are the roots of the equation
(a+c) 2 +a(@+b)r+ab—c)(a+c)=0. (14.47)

Since b > c¢, then the product of the roots is positive. Being the sum of the roots
negative, then (a) if the roots are real then they are negative, (b) if the roots are
complex the real parts are negative. In both cases, the solution is stable. We see,
therefore, that there is a phase transition between the absorbing state and a state
where the susceptible and infected individuals coexist, which occur when b = ¢ as
shown in the phase diagram of Fig. 14.3 in the variables p and c¢. Again, we consider
a + b + ¢ = 1 and the parametrizationa = (1—p—c)/2andb = (14 p—c)/2.
The discriminant of Eq. (14.47) is

A=a*a+b)?—4ab—c)a+c) (14.48)

If A > 0, then A is real and negative and the decay of the correlation function is
pure exponential. If A < 0, then A has a imaginary part and the decay is of the
type (14.40). The separation between the two behaviors occurs when A = 0 or
a(a + b)?> = 4(b — c)(a + ¢)? and is shown in Fig. 14.3.

SIR model The predator-prey and SIRS models are reduced to the SIR model when
the parameter @ = 0. Thus, within the mean-field theory the evolution equations for
x, y and z, which are the density of susceptible, infected and removed, respectively,
are given by

dx
= = —bxy, 14.49
I Xy ( )
d
_d>t) = bxy — ¢y, (14.50)
d
Loy, (14.51)
dt

which are the Kermack and MacKendrick equations that describe the epidemic
spreading in which the individuals acquire perennial immunity. It is clear that only



14.4  Mean-Field Theory 331

two equations are independent. According to the theory of reactive systems seen in
Chap. 10, these equations describe the reactions

S+1—2I, I - R. (14.52)

The first reaction occur with rate b and the second with rate c.

When ¢ — o0, the density of infected y vanishes. To determine the density of
susceptible and removed in this limit, we proceed as follows. Dividing the second
equation by the first, we obtain the equation

dy c
=1+ -, 14.53
dx bx ( )
which can be solved, with the solution
¢ x
=l—-x+-In——r, 14.54
y ;T ( )
where the constant of integration was obtained according to the initial condition,
which we consider to be y = /& and z = 0 so that x = 1 — /. Since in the stationary
state y = 0, then x, in the stationary state, is given by

x = (1 —h)e P0=9/c, (14.55)
As z =1—x, since y = 0, then the equation for z is
1—z=(1—h)e . (14.56)

Figure 14.4 shows the final concentration z as a function of b/c for several values
of h. The concentration z grows monotonically with b /c. When h — 0,

1 —z=e "%, (14.57)

and we see that z — 0 for b/c < 1. For b/c > 1, the final concentration is nonzero.
Therefore, at b/c = 1, there is a change in behavior, which can be understood as a
phase transition.

SIR model with spontaneous recovery We study now a modification of the model
that we have just studied in such a way that an infected may become susceptible
instead of becoming recovered. In this case, the equations are the following

dx b (14.58)
— = ay — bxy, .
L =ay—by

d
j); = bxy — cy — ay. (14.59)
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Fig. 14.4 (a) Final density z of removed as a function of ¢ for various values of /, obtained from
Eq. (14.56). The curves, from bottom to top, correspond to the values & = 0, h = 0.01, 2 = 0.05,
h = 0.1. (b) Infection curve or density of susceptible individuals that is converting into infected
per unit time, y = —dx/dt, versus t, obtained from the solution of (14.49) and (14.50). The values
of ¢ are indicated and & = 0.001

These equations describe the reactions
I -8, S+1—2I, I - R. (14.60)

The first equation occurs with rate @ and correspond to the spontaneous recovery of
an infected. The second occurs with rate b and the third with rate c.
Dividing the second by the first, we get the equation

dy c
= =1 , 14.61
dx + bx—a ( )
whose solution is
¢, bx—a
=1— —1 , 14.62
y x + b n P ( )

where we used as initial condition y = 0 and x = 1. In the stationary state, y = 0
and x is given by

bx —
RIS (14.63)
b—a
or,intermsof z = 1 — x,
_ bz b (14.64)
b—a

Thus we see that, if b < ¢ + a, the only solution is z = 0. When b > ¢ + a, there
appears a nontrivial solution z # 0. Therefore, there is a phase transition that occurs
when b = ¢ + a. We should notice that the transition is similar to the case of the
strict SIR model (¢ = 0) except when ¢ = 0. In this case, the model reduces to the
SIS model.
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SIR model with reinfection Next, we consider another modification of the SIR
model in such a way that the removed individuals may lose their immunity
becoming infected by a catalytic reaction. The equations are as follows

a_ (14.65)
— = —DX s .
dt Y
dy
i bxy—cy+a(l—x—y)y, (14.66)
and they describe the reactions
R+1 — 21, S+1—2I, I — R. (14.67)

The first reaction occurs with rate a and correspond to a catalytic reinfection. The
second occurs with rate b and the third with rate c. When b = 0, the model becomes
a contact process with rate of infection a/c.

Dividing the second by the first, we obtain the equation

dy a-—b a—c+ay
dc« b bx bx’

(14.68)

To solve it, we use an auxiliary variable ¥ definedby y = —x + (@ —¢)/a + Y.
Replacing in (14.68), we get the equation dY/dx = aY/bx whose solution is ¥ =
Kx “/®_ Using the initial condition y = 0 and x = 1, we determine the constant of
integration K and we find the following relation between y and x,

a—c ¢
y=—x+ + —x4/?. (14.69)

a a

In the stationary state, y = 0 and x is given by
x=47C _ Cyan, (14.70)

a a
or,intermsof z =1 — x,

e (14.71)

In the interval a < ¢, we conclude from this equation that there is a phase transition
that occurs when b = ¢. When b > c, the state is characterized by z # 0 and when
b<c,byz=0.



Chapter 15
Probabilistic Cellular Automata

15.1 Introduction

Probabilistic cellular automata are Markovian processes in discrete time described
by a set of stochastic variables that reside on the sites of a lattice. At regular time
interval, all variables are updated simultaneously according to probabilistic rules.
We may say that a cellular automaton has a synchronous update, which should
be distinguished from the asynchronous update of the continuous time Markovian
processes, described by a master equation, as, for example, the Glauber-Ising
model.

To each site i of a lattice of N sites one associates a stochastic variable 7;. The
microscopic configurations of a probabilistic cellular automaton are described by
the set of stochastic variables n = (11, 72,...,7;,--.,ny) and the system evolves
in time through discrete time steps. The evolution of the probability Py(n) of state
n, at time step £, is governed by the equation

Pepi(n) = Y Wnln) Pe(r), (15.1)
n/

where W(n|n') is the (conditional) probability of transition from state 7’ to state 7
and therefore must obey the following properties

W(nln') = 0, (15.2)

> W) = 1. (15.3)
n

In a cellular automaton, all sites are updated in an independent and simultaneous
way, so that the transition probability W(n|n’) must be expressed in the form of a
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product, that is,

N
W'y = [ [wi(niln). (15.4)

i=1

where w; (;|n') > 0 is the (conditional) transition probability that the state of site
i attime £ + 1, is n;, given that, at time £, the state of the system is 7, and has the
following property

> winiln) = 1. (15.5)
ni

what implies that the conditions (15.2) and (15.3) are fulfilled.

A probabilistic cellular automaton is simulated by starting from any initial
configuration. From this configuration a sequence of configurations is generated,
each one obtained from the previous one through a synchronous update of all
sites. The i-th site is updated according to the transition probability w;. That is,
the site i takes the value 7; with a probability w; (n;|n"), where 1’ is the previous
configuration. The explicit form of w; (n;|7") and the values taken by the variables
depend on the specific model that we wish to study. A model very well known is
the probabilistic cellular automaton of Domany and Kinzel which we will study in
the next section. In this automaton, the discrete variables take only two values and
reside on the sites of a one-dimensional chain.

15.2 Domany-Kinzel Cellular Automaton

The cellular automaton introduced by Domany and Kinzel (1984) is defined by
irreversible local transition probabilities. It has two states per site, is defined in one-
dimensional lattice and has an absorbing state. In the stationary state, it displays
a phase transition from an active state to an absorbing state which belongs to
the universality class of the models with an absorbing state, as the ones seen in
Chap. 13.

From the viewpoint of statistical mechanics of nonequilibrium phase transitions,
this automaton and the contact process (studied in Chap. 13) are as fundamental as
the Ising model to statistical mechanics of equilibrium phase transitions. They are
models with local rules, that involve the sites in a small neighborhood and contains
the basic elements of irreversibility. In addition, they exhibit phase transitions even
in one dimension. Phase transitions in one dimension are not observed in the Ising
model nor in any other equilibrium model with short range interactions.

The Domany-Kinzel automaton is defined in a one-dimensional lattice of N
sites, each one being associated to a stochastic variable 7; that assumes two
values: n; = 0 or n; = 1, according to whether the site i is empty or occupied
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by a particle, respectively. The evolution of the probability P,(n) of state n =
n1,m2, ..., Mi,...,ny) at time step £ is given by the evolution equation (15.1).
Since the sites are updated in an independent an simultaneous way, the transition
probability W(n|n’) is given as a product of the transition probability per site as in
(15.4).

The transition probabilities per site of the Domany-Kinzel cellular automaton are
the same for any site and have the form

wji(nj|n') = wox(nj [0 —1, 1 40)- (15.6)

The state of site j at time step £ + 1 depends only of the states of the sites j — 1 and
J + 1, which are the nearest neighbors of site j, at time step £. The transition
probabilities wpg are summarized in Table 15.1, where p; and p, are the two
parameters of the automaton such that0 < p; < 1and0 < p, < 1. From Table 15.1
we see, for instance, that wpg(1|1,0) = p;. The last column of Table 15.1 implies
the existence of an absorbing state where all sites of the lattice are empty, n; = 0
for any site 7, and called frozen state. If all sites are empty, it is not possible for a
site to be occupied by a particle because wpg (1]0,0) = 0.

To analyze the time evolution of the automaton (for N even) it is convenient to
do a partition of the space-time lattice in two sublattices, as shown in Fig. 15.1.
We observe that the rules of the Domany-Kinzel cellular automaton allows the
separation in two systems residing in distinct sublattices and evolving in an
independent way. This property permits to write the transition probability wpg for
one of the sublattices as wpx (1; |7}, 0} ,), where the sites are reenumerate so that
i =(j —{)/2,mod N/2. From now on, we will refer always to one sublattice.

Table 151 Transition 1.1 1.0 0.1 0.0
probability of the ] 0
Domany-Kinzel cellular P2 Pi Pi

automaton 0 |I=py |[1=p1 |1=p |1

5 ¢} ) ¢} ° ¢} ° ¢} °
6 ° o ° o ° o ° o

Fig. 15.1 Space-time lattice for the Domany-Kinzel probabilistic cellular automaton
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Denoting by P¢(n;) the probability distribution related to a site and using
Egs. (15.1) and (15.4), we get

Peyi(ni) = > wokiln} ) Pe(nfmfgy) (15.7)
n; '7,{+1

where Py(n;,n;, ) is the probability distribution related to two consecutive sites.
Using the transition probability given on Table 15.1, we get

Ppy1(1) = p2 Pe(11) + 21 Pe(10). (15.8)
The equation for P;(0) is not necessary since
Pi(0)+ P(1) =1 (15.9)

The evolution equation for the probability distribution Py (7;, n;+1) related to two
neighboring sites can be obtained by a similar procedure and gives

Per1(i, mit1)

=33 wor (i |0} 1y )Wok i1 41 i3 0) Pe(n) iy i), (15.10)
n; ’71{+1 ’71{+2

where Py(n;, 7} .1, ,,) is the probability distribution related to three consecutive
sites. Replacing the rules in Table 15.1 in the equation above, one obtains the
evolution for Py(11)

Prypi(11) = plng(OlO) + 2p1p2 Pe(110) + p%Pg(lOl) + p%Pg(lll), (15.11)

The evolution equation for P;(10) is not necessary since this quantity can be
obtained from the equality

Pi(10) + Py(11) = Py(1). (15.12)

The evolution equation for the probabilities related to three sites P;(111), which
appear in Eq.(15.11), involve probabilities related to four sites. The evolution
equation for these probabilities involve the probability of five sites and so on, so
that an infinite set of equations is generated. This hierarchic set can be analyzed by
means of a truncation scheme that results in approximations called dynamic mean
field.

The treatment of these equations, by mean-field approximations, will be given
here at the level of one and two sites. Within the one-site or simple mean-field
approach, we use the approximation

Pe(mi,ni+1) = Pe(ni) Pe(Mi+1), (15.13)
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so that Eq. (15.8) becomes
Pr1(1) = pa Pe(1) Pe(1) + 2p1 Pe(1) P(0),
Using the notation x; = P¢(1), then P;(0) = 1 — x; so that
Xe1 = paxi + 2pixe(l — xp).
In the stationary regime
x = pax? +2pix(1 —x),

whose solutions are x = 0 and

_ 2p1 -1
2pi—pa

339

(15.14)

(15.15)

(15.16)

(15.17)

The first of these equations correspond to the frozen phase and the second to the
active phase. The transition from the frozen phase to the active phase occurs at

p1 = 1/2, in this approximation.

Within the mean-field approach at the level of two sites, we use the approxima-

tion

Pe(n1,1m2) Pe(n2, 13)
Py(n2)

Pe(n1,m2.1m3) =

that inserted into (15.11) gives

2 P OH P A0) PO P (1)

Py (11) = p3 Pol) D1D2 D)
L PAI)P(11)  , Py(10)P(01)
P Prp,0)

Using the notation z; = P¢(11), we write Eq. (15.8) as

Xeq1 = paze + 2p1(xe — 20)

since P¢(10) = x; — z¢, and Eq. (15.19) as

5 (e —20)? (x¢ —ze)ze , 2 5 (e —20)?

Ukt =PI +2P1PZT +sz—€ + pi —x,

(15.18)

(15.19)

(15.20)

(15.21)
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In the stationary state,

X = paz+2pi(x —2), (15.22)
2 2 2
X—z X —2)z z X —z
z= pl( ) +2p1p2( ) +p3= + p%g. (15.23)
X X 1—
From Eq. (15.22), we get the result
1-2
g= Py (15.24)
P2—2p
which, replaced into Eq. (15.23), gives
3p1—2 —1)?
_ Bp1=2)p1+(p1— D p2 (15.25)
2p1—=D@2p1—p2)
The transition line is obtained when x — 0, that is, for
(2=3p)p:
== =7 (15.26)
PE A=y

We see that when p, = 0, then p; = 2/3, when p, = 1, then p; = 1/2 and, along
P2 = pr.we get py = p1 = (v/5—1)/2 = 0.61803.

Close to the transition line, the order parameter, which is identified as the particle
density x, has the same behavior along the whole line, except around the region
around the point p; = 1/2 and p, = 1. For example, for p, = 0 we get;

Bp1—2)
=1 = 15.27
20m - 1) (1527
or
x ~ (p1— pe), (15.28)

where p, = 2/3, implying the critical exponent § = 1.

15.3 Direct Percolation

The model for direct percolation is constructed by considering a lattice composed
by layers with a certain number of sites in each of them. The layers are labeled by
an index £ from top to bottom by the numbers 0, 1,2, 3, .. .. Each site of a certain
layer is connected to sites belonging to the upper and lower layers, but not to sites of
the same layer. Each site can be active with probability p or inert with probability
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1 — p. In same manner, each bond between two neighboring sites can be intact with
probability ¢ or broken with probability 1 — q.

Given a configuration with active sites and intact bonds, we wish to know the
probability that at a site of a certain layer is connected to a site of layer 0, the top
layer. Before that, we should define what we mean by connection between any two
sites and in particular between two neighboring sites.

(a) Two neighboring sites are connected if they are active and if the bond between
then is intact.

(b) Any two sites are connected if there is at least one path between them (i) formed
by pairs of neighboring connected sites and (ii) that the path is always upward
(or downward).

Notice that two sites belonging to the same layer are never connected because it
is impossible to exist an upward (or downward) path between them.

To each site i of a layer £, we associate a variable 7;, that indicates whether the
site is connected or not to the top layer. We set n;¢ = 1 in case it is connected and
ni¢ = 0 otherwise. We denote by Py(n) = P¢(n1, 12, --.,ny) the probability that
site 1 of layer £ is in state 1y, the site 2 of the layer £ is in state 7, the site 3 of layer
£ is in state n; etc.

From P¢(n) we can determine the marginal probabilities P;(n;) related to one
site, and P¢(n;, n;+1) related to two consecutive sites. The relation between these
two probabilities is

Pepi(ni) = > wilng ) P migy) (15.29)
771{ Wh{+1

where w(n; [0}, ;) is the probability that site i of layer £ + 1 is in state 7;, given
that site i and i + 1 of layer £ are in sates 7; and n;_, |, respectively.

We notice that w(1|11) is understood as the conditional probability that a site is
connected to the top layer, given that the two neighbors are connected to the top
layer. We see then that

w(l|11) = 2pg(1 — q) + pq* = pq(2 — q). (15.30)

In same manner w(1|10) or w(1|01) are understood as the conditional probabilities
that a site is connected to the top layer, given that one of the two neighbors at the
upper layer is connected to the top layer and the other is not. Therefore,

w(1]10) = w(1|01) = pgq. (15.31)

Taking into account that a site can never be connected to the top layer if the two
neighbors at the upper layer are not connected, then

w(1]00) = 0. (15.32)
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The quantity P¢(1) = Pe(n; = 1) is the probability that the site i of layer £
is connected to the top layer. We wish to determine the behavior of Py(1) in the
limit £ — oo. To this end, we define P = limy_, o, P¢(1). Thus, if P # 0, then
a site infinitely far from the top layer is connected to the top layer and we face a
percolating state. If P = 0, there is no percolation. Therefore, the probability of
percolation P can be considered as the order parameter of the direct percolation
model.

Generically we may write

Pepi(m) = Y Wnln) Pe(r), (15.33)
r’/

where

waln') = [ [wonilni.niq ). (15.34)

so that the problem of direct percolation is mapped into the Domany-Kinzel
probabilistic cellular automaton. The parameters p; and p, of the automaton are
related to p and g by

P1 = pq, P2 =pq2—q). (15.35)

The inverse transformation is given by

ri _2p1—p2
qg=—".

=_n (15.36)
2p1—p> D1

It is worth to note that the mapping is not biunivocal since there are values of p;
and p, that correspond to values of p and ¢ that are outside the interval [0, 1].

The case of site percolation corresponds to ¢ = 1, so that we get the relation
P> = pi1, whereas the bond percolation corresponds to p = 1, from which we get
p2=2p1 — pi.

With this correspondence, we see that the percolation probability P is identified
with the variable x of the previous section. Using the results of the simple mean-
field approximation, we see that one solution is P = 0 and the other is obtained
from (15.17) and is given by

2pg — 1
p="1__ (15.37)
pq
valid for 2pg > 1. For site percolation (g = 1), we get
2p—1
p="L"" (15.38)

p
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from which we get p. = 1/2, and for bond percolation (p = 1), we get

_2q-1

P 7

, (15.39)

from which we obtain g, = 1/2.
Using the pair mean-field approximation, we get a solution P = 0 and the other
is obtained from (15.25) and is given by

—1?
p=p_ i (15.40)
2pg—1
For the site percolation (¢ = 1), we get
pP+p—1
p=="-° (15.41)
2p—1

which gives p. = (+/5—1)/2 = 0.61803. For the case of bond percolation (p = 1),
we get

_ —q* 449 -2
o 2g—1

P , (15.42)

implying g, = 2 — +/2 = 0.58579.

From this procedure, the correspondence between the Domany-Kinzel cellular
automaton and direct percolation becomes well established. Due to this correspon-
dence, it becomes clear that the two models are in the same universality class which
is the same as the models with an absorbing state studied in Chap. 13, which includes
the contact model.

15.4 Damage Spreading

Suppose that the Domany-Kinzel cellular automaton is simulated for certain values
of the parameters p; and p, starting from a given initial configuration. Suppose that,
at the same time, the automaton is simulated using the same sequence of random
numbers, that is, with the same noise but distinct initial condition. The second
automaton is a replica of the original one. The initial configuration of the replica
is similar to the initial configuration of the original with a certain number of sites in
distinct states, which we call a damage. The original and the replica evolve in time
simultaneously according to the same noise. We may then ask if they will remain
forever in the distinct states or will eventually reach the same state. In other words,
if the damage will spread of not.
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The measure of the damage spreading can be done through the Hamming
distance, which will be defined below. If it is distinct from zero, there is a damage
spreading. If the Hamming distance vanishes, there is no damage spreading. The
results from simulations shows that the phase diagram of the Domany-Kinzel with
its replica exhibits three phases: frozen, active without damage and active with
damage.

In the description of the stationary states with damage, it is necessary to consider
configurations for both the system and the replica. These two must evolve under the
same noise, but must keep their identities. Thus, if 0 = (01,07,...,0y) and T =
(11,72, - . ., Ty) denote the configurations of the system and replica, respectively,
then the site i of the system must be updated according to wpk (0|0}, 07, ) and
the site i of the replica according to wpk (7;|7/. 7/ ), which are the replicas of the
Domany-Kinzel cellular automaton. The fact that the evolution of the system and
replica are ruled by the same noise or by the same sequence of random numbers,
requires an analytical formulation, to be introduced below. The Hamming distance,
which characterize the phase with damage, is an example of a quantity that needs
to be evaluated by the establishment of a prescription of the joint evolution of the
system and replica.

The Hamming distance v is defined by the expression

1
Ve =5((o; = )%, (15.43)

where the average considered here is performed using the joint probability distribu-
tion Py(o; 1), defined as the probability of the system and replica being in state o
and 7, respectively, at time . It is clear that if, at time £, the configurations ¢ and t
are identical, then ¥, = 0.

To obtain the time evolution of vy, we need to known the evolution equation for
Py(o; 7). The evolution equation for the joint probability distribution P;(o; 1) is
written through the expression

Pepi(0:0) = ) Y W(oitlo':7) P(o’i 7)), (15.44)
where
W(o;tlo';7) = Hw(m; tilof, ol it Tt 4) (15.45)

is the joint transition probability, that is, the probability that the system and the
replica are in states ¢ and t at time £ + 1, respectively, given that they were in states
o’ and 7/, respectively, at time £. It is worth to observe that the joint dynamic of the
system and replica must be understood as a dynamics of an enlarged system with
twice the number of sites of the original system.
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The evolution equation for ¥, obtained from the definition (15.43) and using
(15.44) and (15.45), is

Vir1 = Pey1(1;0) = (w(1;0l0], 043 1/ T4 0) ) e (15.46)

This equation can be evaluated once we have the expressions for the joint transition
probabilities.

The problem we face now concerns the establishment of the prescription that will
lead us to the joint transition probability or, in other terms, to the construction of a
prescription for w(o;: 7;|o], 0/ |: 7/, T/ ) which is capable to take into account the
evolution of the system and replica under the same noise. The following properties
should be observed:

(a) The probability w(o;: z;|0], 0/ : 7/, 7/ ) must be normalized, that is, the sum
over o; and t; must be equal to one;

(b) The marginal probability obtained from the sum of w(o;: 7;l0}. 0/, i 7/, 7/ )
over the replica variables t; should reproduce the probabilities wpg
(0ilo{. 0], ) and vice-versa;

(c) The rules must reflect the symmetry of the lattice and of the original model; and

(d) The system and replica must be updated with the same noise.

Taking into account these properties, the rules are given in Table 15.2, where
a+ b+ c+d = 1. The choice of the parameters a, b, and ¢, which takes into
account the fact that the joint evolution is under the same noise, is given by the
prescription of Tomé (1994),

a = p, b=p,—pi, c=0, d=1-p,, p1 < p2, (15.47)
a = p, b =0, ¢ = pi—p d=1-p, p1> pa. (15.48)

The evolution equation for the Hamming distance ¥, = P;(1;0) can then be
evaluated by using the prescription above in Eq. (15.46)

Pi+1(1;0) = pa Pe(11;00) + 2py Pe(10;00) + 2(b 4 ¢) P¢(11;10). (15.49)

Using the simple mean-field approximation, that is, the approximation such that
Py(o1,02: 11, 12) = Pe(01: 1) Pr(02: 12), we get

Pyy1(1;0) = pa Pe(1;0) Pe(1;0)

+2p1 Pe(1;0) Pe(0;0) + 2(b 4 ¢) Pe(1; 1) Pe(1;0). (15.50)
Table 15.2 Transition 1511 1010 [00:00 [11:00 [10:00 | 11;10
probabilities of the 1 0 0 0
Domany-Kinzel probabilistic | P2 P1 a
cellular automaton with 150 10 0 0 P2 P1 b
damage spreading 0;1 |0 0 0 0 0 c
0;0 1-[)2 1—[71 1 l—pz 1-[]1 d
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In the stationary state we arrive at the equation
P(1;0) = p>P(1:0) P(1:0)
+2p1 P(1;0)P(0;0) +2(b + c)P(1; 1) P(1;0). (15.51)
To solve this equation, we need the equations for P(1; 1) and for P (0; 0). In view of
P(1;1) + P(1;0) = P(1), (15.52)
and that
P(1;0) 4+ P(0;0) = P(0)=1— P(1), (15.53)

then P(1;1) = x — ¢ and P(0;0) = 1 — x — ¢, where x = P(1), so that the
Hamming distance at the stationary state, ¥, is given by

v = pay? +2p1y (1 —x =) +2|p1 — pal(x — )V (15.54)

Using the simple mean-field solution for x, we can draw the following conclusions.

(a) For p; < 1/2, we have x = 0 and ¥ = 0, which describes the frozen phase.

(b) For p; > 1/2,and p, > 2p;/3, we have x # 0 given by (15.17) and ¢y = 0,
which describes the active phase without damage.

(c) For p; > 1/2,and p, < 2p;/3, wehave x # 0 givenby (15.17) and ¢ given by

_ 2p1 —1D)@2p1 —3p2)
(2p1 — p2)(4p1 = 3p2)’

(15.55)

which describes the active phase with damage.

The critical behavior around the transition line between the active phase without
damage to the active phase with damage of the Domany-Kinzel cellular automaton
belongs to the universality class of direct percolation. When the system and replica
reach the same configuration, the evolution of both system and replica become
identical, that is, the configurations o and t will be forever identical. This is a
consequence of the fact that they are subject to the same noise. In other terms, from
the moment in which o and t become identical, the trajectory is confined into the
subspace o = 1, which is thus an absorbing subspace.

15.5 Model for the Immune System

Models defined on a lattice has been used in the analysis of biological systems
for some years. The first model proposed in this context has been introduced
by Kauffman (1969) and is known as the Kauffman automaton. From this, there
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followed several lattice models which aimed to describe distinct biological systems.
Particularly, the several parts of the immune system have been studied, with success,
by lattice models.

Next we present a probabilistic cellular automaton to study the part of the
immune system comprised by the T-helper cells, also known as T . The simulation
of this system by an automaton leads us to consider a simple model that has up-down
symmetry. The model, defined on a square lattice, displays kinetic phase transitions
which occur via symmetry breaking. From the viewpoint of nonequilibrium statis-
tical mechanics, the model is able to contribute to the understanding of the critical
behavior of irreversible models. From the viewpoint of immunology, the proposed
mechanisms for the study of the T through cellular automata seems to give a good
description of this part of the immune system since the Ty are found packed in the
lymph nodes and communicate by short-range interactions. In this case the spatial
structure seems to be really important in predicting the type of immune response
given by the system. Lattice models, like the one to be explained below, are able
to show that, when the parasitic infection is high enough, the immune system is
able to self-organize as to provide complete immunity or susceptibility with respect
to certain parasites. This process, called “polarization” of the Ty cells, may be
considered in the analysis of the immune status for various parasitic infections. Next
we move on to the analysis of the specific model.

We consider a probabilistic cellular automaton in which three types of cells, Tx0,
Ty 1 and Ty2, occupy the sites of a lattice. Each site is associated to a stochastic
variable o; which takes the values 0, 1, or —1, according to whether the site i is
occupied by a cell of type Ty0, Ty 1, or T2, respectively. The dynamic rules that
describe the interactions among the Ty cells are stochastic and local rules defined
through the transition probabilities w; (0; |0/, 5/), such that

wi(1]ol, ) = pS(al, 0){8(cl, £1) + %5(0;, 0} + (1 —rs(al, £1),  (15.56)
and
w; (0]oy, s)) = (1 — p)8(o],0) + r{d(a!, 1) + (], —1)}. (15.57)

with s/ given by
s = S(Z ol s)s (15.58)
5

where S(§) = 1if & > 0, S(¢) =0ifé§ = 0,and S(§) = —1if & < 0. The
summation is over the nearest neighbors of a site i of the lattice.

The evolution of the probability P,(c) is given as in (15.1) and the transition
probability W(c|o”) is given through the product of the probabilities w; (o; |0/, S/)
as in (15.4) because the sites are updated simultaneously.
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The densities of the Ty 1, Ty 2 and TyO cells, at step £, are defined through the
expressions

x¢ = (807, 1)), ye = (8(0i,—1))¢, ze = (8(07,0))e. (15.59)

The evolution equations for the densities of each type of cell are obtained by the
definition of these quantities and by the use of the evolution equation for P;(o)
given by (15.1). These equations are given by

Xe+1 = Peyi(1) = (wi(l]o”))e. (15.60)
yer1 = Pepi(=1) = (wi(=1]o"))e. (15.61)
241 = (1 — p)ze + r(1 — zp). (15.62)

The equation for the evolution of the correlation of two nearest neighbor sites i
and j, that are occupied by Ty 1 and Ty 0 cells, respectively, is given by

P[_H(l,()) = (W,’(—llCTi, Si)Wj (OICT]/, Sj))(. (1563)

Similar equations can be derived for the other correlations of two or more
neighboring sites.

On observing the above equations, we see that the rules of the model has
invariance by the change of signs of all variables used in the definition of the
transition probability w; (o;|o/, S/). However, the interaction mechanisms among
the cells contained in the model, through the transition probabilities are such that
the states —1 and +1 are symmetrical. Thus, the three-state model here examined
has the up-down symmetry, that is, the transition probability is invariant by the
transformation o; — —o; applied to all sites of the lattice. This symmetry also
occurs in the Blume-Emery-Griffiths equilibrium model, which is also a model with
three state per site.

The up-down symmetry allows us to obtain a subjacent dynamics from which we
may get some exact results. The subjacent dynamics is defined over a reduced space
of configurations, described by the dynamic variables {7;} related to the variables

o; by n; = o?. The marginal probability distribution of the reduced variables
{n;} obeys also an evolution equation of the type (15.1), which we call subjacent
dynamics.

The subjacent dynamics has simple rules such that the reduced state of a site
is modified independently of the others. The transition probabilities wg(n;|7;) of
the subjacent dynamics are wg(1|0) = p, wsg(0]0) = 1 — p, ws(0|]1) = r and
ws(1]1) = 1 — r. We may say that wg(n;|n}) are the elements of the stochastic
matrix

wsz(l_p " ) (15.64)
p l1—r
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whose stationary probability is

— r — —p
P(0) = T P(1) Pt (15.65)

From the definition of z;, we see that z; = (6(1;,0))¢ = P¢(1) so that
Ze+1 = ws(0]0)zg + ws (0]1)(1 — z¢), (15.66)
that is,
241 = (1= p)ze +r(1 —20). (15.67)

The stationary density of 750 cells is obtained from this last equation and is given
by

2= P(0) = ——, (15.68)
p+r

which is an exact result. Since x + y + z = 1, then the sum of the stationary
concentrations of the cells of type Ty 1 and T2 is given by

p

x4y =P+ P =

(15.69)

It is also possible to determine exactly the probability of finding clusters having K
cells of type TH0, given by

K
P(0,0,...,O):( r ) . (15.70)
p+tr

The above mentioned results, as well as the subjacent dynamics itself, are
relevant in the description of the stationary states. They are important, for instance,
in the study of the behavior of the cell concentrations as functions of the parameter
of the model, inasmuch as the Monte Carlo simulations cannot provide definite
results.

The model has a trivial stationary solution where the concentration of Ty 1 cell is
equal to the concentration of 752 cells, thatis, x = y. Using (15.69), we conclude
that in this state x = y = (1/2)p/(p + r). Thus, we have an exact description of
this phase which we call disordered.

By means of dynamic mean-field approximation and Monte Carlo simulations in
a square lattice, we see that the disordered phase (x = y) ceases to be stable for
values of r less that a critical value r., for a fixed values of p. For r < r., the stable
phase is the ordered phase for which x # y. Defining the order parameter « as the
difference between the densities of the Ty 1 and Ty 2 cells, that is, « = x — y, then
in the ordered phase (¢ # 0) there is a polarization of the Ty cells, that is, there
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is a majority of one type of cells: either Ty 1 or Ty 2. Since the transition rules has
up-down symmetry, the transition from the ordered phase to the disordered phase
belongs to the universality class of the Glauber-Ising model. This result is confirmed
through the estimates of the critical exponents obtained by numerical simulations.

From the viewpoint of immunology, these results can be interpreted in terms
of distinct immune responses. The difference between the concentration x of the
Ty 1 cells and the concentration y of the Ty 2 cells determine the type of immune
response that the organism may exhibit. The parameter r is related with the inverse
of the infection rate (the smaller r the greater the infection rate). For a fixed p
and for r > r., we have x = Yy, so that the immune response is undifferentiated.
An organism can have immune responses of the type Ty 1 or type Ty2. From the
point where there occurs the spontaneous symmetry breaking (r = r, for fixed p),
states arise in which a type of cell predominates over the other (« # 0), that is, in
which the immune response of the system is differentiated. Therefore, from a critical
threshold of infection, the organism becomes immune (or susceptible) with respect
to certain parasites depending of the type of Ty cells that, in this regime (r < r.),
predominates over the other. The immunity and the susceptibility, granted by the
predominance of one type of T cells, depend of the type of parasite to which the
individual is exposed.



Chapter 16
Reaction-Diffusion Processes

16.1 Introduction

The reaction-diffusion processes occur in systems comprising particles, atoms or
molecules of various types which diffuse and can react with each other. However, we
will study only systems constituted by particles of a single type. Thus the possible
reaction involve the annihilation or creation of particles of the same type. The
particles are located on the sites of a regular lattice, moving at random from one
site to another, and capable of react when next to each other. We will restrict to the
case in which each site can be occupied by at most one particle. Thus, we associate
to each site i an occupation variable 1; which takes the value 0 when the site is
empty and the value 1 when the site is occupied. The state of the system is defined
by the vector n = (11, N2, ..., NN )-

The process of reaction-diffusion is defined as follows. At each time step two
neighboring sites, say i and j, are chosen at random. The states 7; and n; of these
two sites are modified to 7} and n/j according to certain transition probabilities pro-
portional to the transition rate w(;, n/j ;mi» n;j). The time evolution of the probability
P(n,t) of occurrence of state 7 at time ¢ is governed by the master equation

d - ~
PO, =0 Y g PG’ 1) =G, nji e ) Pn 0},
@) i
(16.1)
where the first summation extends over the pair of neighboring sites. The state 7’ is

defined by 7' = (1, 2, Moo Mjs e I,
The possible processes are:

1. Creation of two particles, with rate w(11, 00),
O+0— A+ A, (16.2)
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2. Diffusion, with rates w(10,01) and w(01, 10),
A4+0—-> 0+ A and O+A— A+ 0O, (16.3)
3. Annihilation of two particles, with rate w(00, 11),
A+A4—- 0+ O, (16.4)
4. Creation of one particle, with rates w(10, 00) and w(01, 00),
O+0—A+0 and O+0— 0+ A4, (16.5)
5. Annihilation of one particle, with rates w(00, 10) and w(00, 01),
A+0—-0+0 and O+A—0+0, (16.6)
6. Autocatalysis, with rates w(11,01) and w(11, 10),
O+A—> A+ A and A+0 — A+ A, (16.7)
7. Coagulation, with rates w(01, 11) and w(10, 11),

A+A—->O+ A and A+A— A+ O. (16.8)

An empty site is denoted by O and a site occupied by a particle by A.

16.2 Models with Parity Conservation

We study models that include only the processes 1-4 above. These processes are
such that the two sites i and j are modified simultaneously, that is, such that n; —
n; = 1—mn;andn; — n; = 1 —n;. Definingw(n;,n;) = w(;,7;:ni,7n;), where
we use the notation 7; = 1 — 7,, the master equation becomes

d "
Lm0 = D (@ 1) PO 1) — wniny) P(n, 1)}, (16.9)
(&)

where w(n;, ;) is the transition rate (1;, ;) — (7;,7;), and the state nY is defined

by 17 = (N1, M2+ oo T TN,
The most generic form of symmetrical transition rate is given by

w(nin;) = Aninj + CO7; + Dy + Dnid, (16.10)

where the parameters A, C, and D are respectively the annihilation, creation and
diffusion rates, and therefore must be such that A > 0, C > 0 and D > 0. However,



16.2  Models with Parity Conservation 353

we analyze here only the case in which D is strictly positive, case in which the
detailed balance is satisfied. The cases in which D = 0 include the models called
random sequential adsorption to be studied in the next chapter.

The model defined by the rates (16.10) conserves parity, which means that at
any time the number of particle is always even or always odd. If, at t = 0, the
configuration has an even (odd) number of particles, then at any time ¢ > O the
number of particle will be even (odd). We may say that the evolution matrix splits
into two sectors. One involving only configurations with an even number of particles
and the other configurations with an odd number of particles.

To determine the stationary probability P.(n), we use the detailed balance
condition

w(@;.7,) Pe(n”) = w(ni.n;) Pe(n). (16.11)

Assuming solutions of the type

P = Tem). (16.12)
then
w(@;. )¢ @) () = w(ni.n;)p i) (n;). (16.13)
Setting ; = 1 and 7; = 1, we get
Alp(P? = ClpO)F. (16.14)
which has two solutions
$(0) =g, (1) = p, (16.15)
$(0) =g, (1) = —p, (16.16)
where
q= \/Z%A\/?’ p= %. (16.17)
We can thus set up two stationary solutions that are
POy =4 p", (16.18)
PR ) = ¢ (=p)", (16.19)

where N is the total number of sites and n = ) _; n;. Summing and subtracting these
two solutions, we find the stationary probabilities Pe(+)(77) and Pe(_)(n) with even
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and odd parities, respectively, given by
1
P = o1+ (=1)"lg" ™" p", (16.20)
Nt
where N1 and N_ are normalization factors given by
Ni=1%x(q-p". (16.21)
From them we determine the particle densities p = (n;), which is given by
1 -
p=x1F@=p""p, (16.22)
+

where the upper sign is valid for even parity and the lower sign for odd parity. In
both cases we obtain, in the limit N — oo, the result

C

p=p= L’ (16.23)
VA+JC

which is independent of the diffusion rate D, as long as it is nonzero. The extremal

cases occur when A = 0, which gives p = 1 and when C = 0, which gives

p = 0. Notice moreover that the formula above ceases to be valid when 4 and C
are both zero, corresponding to pure diffusion. In this last case, the particle density is
a constant because the number of particles is a conserved quantity in pure diffusion.

16.3 Evolution Operator

We start by a change of variables from 7; to o;, where o; = 2n; — 1. The new
variables o; are such that, if site i is occupied, then o; = 1; if the site is empty,
o; = —1. Replacing the inverse transformation ; = (1 + 0;)/2 in (16.10), we get
the transition rate in the form

w(0i,0;) =a + b(o; +0;) + coioj, (16.24)

where
a= %(A +C +2D), (16.25)
b= i(A -0), (16.26)

1
¢=7(A+C-2D). (16.27)
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The master equation becomes then

d N
S P©.0) = Y tw(=01.~0,) P(0".1) = w(o1.0)) P(o.1)}: (16.28)
(i)
where 0 = (01,0,...,0y) and 0¥ = (01,02,...,—0Ci,...,—0j,...,0N).

Next, we set up a vector space whose basis vectors |o) are given by |o) =
|o102 ... on). On this space we define the Pauli operators o7, ojy and 0 by

oilo) = lo7), ajylcr) =iojlo’), oilo) =ojlo). (16.29)
where in these equation i is the pure imaginary number and we use the notation

lo7) = |0102...(=0})...0oN).
Consider now the vector

|P(1)) =) P(o.1)|o). (16.30)

Deriving both sides with respect to time and using the master equation (16.28), we
get the evolution equation

d
d—tIP(t)) = W|P(1)), (16.31)
where W, the evolution operator, is given by

W =Y (o}0f —1)Z;. (16.32)
(i)

and the operator Z;; is defined by
Zijlo) = w(oi,0))|o), (16.33)
that is, it is given by
Zj=a+b(of +0;)+ cojoj. (16.34)
In explicit form, the evolution operator is given by

W = Z(o,-"oj’.‘ —D(a + bo; + bo; + cojoj). (16.35)
(i)
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Using the property a}’.‘oj = —ia; between the Pauli operators, we can write the
evolution operator in the form

Wo=>" W (16.36)
@)

where
W; = aoj o} —c(o’.y(f; +o0})— ib(U’.yU}V + 0;‘0;) —b(of +o07)—a. (16.37)

In the case of pure diffusion A = C = 0, the transition rate is given by

1
W(CT,',CTJ') = ED(l — CT,‘CT]') (1638)
sincea = D/2,b = 0 and ¢ = —D/2, so that the evolution operator is
W= 4 Z(a"a" +00) +0f0i—1) (16.39)
=5 i 0j i 0j i0j > .

(i)
which can be written in the form
D N
W= %:(oi G —1), (16.40)
ij

where G; is the vector operator 6; = (07", 07, 67).
It is worth to note that the operator W is identical, except by an additive constant,
to the antiferromagnetic Heisenberg Hamiltonian

H=1JYS§-5; (16.41)
(i)

where S; = 6;/2and J > 0.

16.4 Models with Diffusion and Reaction

We consider particles moving in a regular lattice. The time evolution of (n;) is
obtained from the master equation (16.9) and is given by

d

2 (m) =D (G = nwni, mivs)). (16.42)
8
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where the sum extends over the neighbors of site i or
d
E(’]i) =) {C—=(C+D){(mi)—(C = D)(niys)+(C—A)(niniss)}.  (16.43)
$

where we used the rate (16.10). This equation per se cannot be solved because it
involves the pair correlations. The equation for the pair correlations involve the
three-site correlations. The equation for three-site correlations involve the four-site
correlations and so on. We have a hierarchy set of coupled equations to be solved. An
approximative form of solving the set of equations is by truncation at a certain order.
Here we use the simplest truncation which consists in using only Eq. (16.43) and
approximate the pair correlations (1;7,) by (1;)(n;). Using the notation p; = (n;),
we get

d

2P =D _AC—(C+D)pi =(C = D)pivs + (C = Apipiss}.  (1644)
8

Searching for homogeneous solutions p; = p, independent of the site, we get

d
= 2{C —2Cp + (C — A)p?}, (16.45)

where z is the coordination number of the regular lattice, that is, the number of
neighbors of a site. The stationary solution is given by

C —2Cp+ (C — A)p* =0, (16.46)

whose solution is

e
Pe=JA+ VT

We now perform an expansion around the stationary solution. To this end, we
define x = p — p, which satisfies the equation

(16.47)

d
= —27V/ACx + 2(C — A)x?, (16.48)

whose solution for AC # 0 is

‘= 2z4/AC
keXVAC L o(C — A)

(16.49)
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where the constant k is determined from the initial conditions. For large times, we
get

x = xge EVACH (16.50)

so that the decay of p to the stationary value is exponential with a relaxation time ©
given by

1
T =—(AC)"V2, (16.51)
2z
Notice that t diverges when either A or C vanish.

Next, we consider the case in which C = 0. In this case the stationary density
vanishes and we get the equation

d
—p = —zAp>, 16.52
P ZAp ( )
whose solution is
= ! (16.53)
p= At + o’ ’

where o is a constant. The decay ceases to be exponential and for large times it
becomes algebraic, p ~ L

16.5 One-Dimensional Model

We examine here the one-dimensional model for which it is possible to determine in
an explicit form the density of particles when the restriction A+C = 2D is fulfilled.
To this end, we use a formulation in terms of the variable o; which takes the value
+1 if site i is occupied and the value —1 if site i is empty. Using the restriction
A 4+ C = 2D, we see that the transition rate (16.24) is written in the form

w(oi,0;) =a+b(o; +0}) (16.54)

because the constant ¢, given by (16.27), vanishes. The other two constants are
1
a=D, b= Z(A - C). (16.55)

The time evolution for (o) is given by

d

d—t(Gl) = —2(ow(09, 01)) — 2{o1w(01, 02)), (16.56)
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or
d
E(O-n = —4p — 4a(01) — 4b(0’10’2), (1657)
where we used the translational invariance to make the substitutions (cpo;) =
(0102).
Next, we write the time evolution for the correlation (6107 ...0¢) = ¢¢. For
{> 2, we get
d
d—tqﬁg = —2(0103...0w(09,01)) — 2{0103 ... o¢w(0¢, O¢+1)). (16.58)

Using the rate (16.54) and the translational invariance, we obtain the equation

d
Ed’z = —4a¢y — 4bpy—1 — 4bpyy1, (16.59)

which is valid for £ > 2. Defining ¢y = 1, Eq. (16.57) is written as
d
d_t¢1 = —4a¢) — 4bdo — 4b¢, (16.60)

so that we may consider Eq. (16.59) also valid for £ = 1.
The equation is similar to that seen in Chap.1l in the study of the one-
dimensional Glauber model. Using the same technique, we arrive at the solution

d 2Dy (¥
b= 22V sink sin ke~ *P0=y coski g (16.61)
T Jo

where

C—A
=—__. 16.62
14 D ( )

Now, the density p = (1) = (1 4 {(o1)) = (1 + ¢1)/2 so that

d D 2 '
—p = X (sink)2e 4Py cosht g (16.63)
T Jo

Performing the time integral, we get an expression for the density.
Now, we study the asymptotic behavior for large times. In this regime the
integrand is dominated by small values of k so that

ip _ ﬂe—w(l—y)r /Oo K2e—2DVR g — Dy =201 (2 Dy )32,
dt 7 00 27
(16.64)
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Therefore, as long as y # 1, thatis, C — A # 2D, the derivative dp/dt decays
exponentially to zero. The density in turn also decays exponentially to its stationary
value. Wheny = 1,or C — A = 2D, we get

d 2D _
P = m(zm) 32, (16.65)
so that
1 —1/2
P =Pe— ﬁ(ZDt) ; (16.66)

and the density decays algebraically to its stationary value with an exponent 1/2.



Chapter 17
Random Sequential Adsorption

17.1 Introduction

In this chapter we study the random sequential adsorption of atoms or molecules
on a lattice. Whenever an atom is adsorbed on a site of the lattice, it prevents the
neighboring sites to absorb atoms, which become blocked forever. At each time
step a site is chosen at random. If the site is empty and all its neighbor sites are
empty, then an atom is adsorbed at the chosen site. This process is repeated until
there is no sites where an atom can be adsorbed, as can be seen in Fig. 17.1 for the
one-dimensional case.

We may also imagine other types of adsorption. In the adsorption of dimers (a
molecule of two atoms), two neighboring sites are chosen at random. If they are
empty, then a dimer is adsorbed in these two sites. The process is repeated until when
there is no more pairs of neighboring empty sites. We may also consider the case
of trimers (three atoms), quadrimers (four atoms), etc. Here, however, we consider
only the adsorption of single atoms, defined above. Notice that in one dimension,
the adsorption on an atom that blocks the two neighboring sites is equivalent to the
adsorption of dimers, as can be seen in Fig. 17.1.

Starting from an empty lattice, we wish to determine the density p(¢) of atoms
as a function of time and in particular to find the final density p*. It is clear that the
final density will not be equal to the maximum possible density because there will
be many empty sites that cannot be filled with an atom, as seen in Fig. 17.1.

Consider a regular lattice of N sites, where to each site i we associate a stochastic
variable 7; that takes the values 1 or 0 according to whether the site is occupied or
empty, respectively. The time evolution of the probability P(n,?) of occurrence of

configuration n = (11, N2, ..., Ny ) at time ¢, is governed by the master equation
d i i
P00 =3 ()P0 = wi ) P10}, (17.1)
i
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Co X XX o T o

Fig. 17.1 Final configuration of a random sequential adsorption of dimers on the one-dimensional
lattice

where n' = (1, m2,...,7;,...,ny) and 7, = 1 —n;. The transition rate w; () from
state 7; to state 7; is given by

wi() =7 [ [Wies: (17.2)
$

where the product extends over all neighbors of site i. Notice that the rate is nonzero
only when the site i is empty and all neighbor sites are also empty
To determine the time evolution equation of the correlation

Ca=([]m)) (17.3)

jeA

where the product extends over the sites of a cluster A, we proceed as follows. From
Eq. (17.1), we get the equation

d
ST ==(17 2w (17.4)
jeA jeAd  ied

Defining A; as the cluster A with the addition of all neighbors of site i (which
already belongs to A), we get

d
=X a7

jed i€A jed;

Notice that, if all neighbors of site i belong to the cluster A, then A; = A.

17.2 One-Dimensional Case

We analyze here the adsorption of atoms on a one-dimensional chain. The adsorp-
tion of an atom in a site blocks the two nearest neighbor sites. The transition rate is
then given by

wi () =07 4171 (17.6)
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The evolution equation of (7j,) is given by

d _ _
- E(W) = (M1 MeMe41) (17.7)

and that of (7,7, ) is given by

d

- E(ﬁ[ﬁl+l) = M1 MeMe41) + MeMe1 7042 (17.8)

and that of (77,7,,,7,,,) is given by

d __  _ __
- d—t(’IMHl’IHz) = (MNe1Me+42)
F (M1 WMo 1Me2) + Moot 1Me427043) - (17.9)

The evolution of the other correlations can be obtained similarly.
We introduce next the following notation

cr = (7). (17.10)
2 = (M) (17.11)
= (MMTs. - M) (17.12)

Using the translation invariance, the evolution equations for the correlation reads

d (17.13)
— —c1 =3, .
7! 3
d ¢ =2¢ (17.14)
dt 2 = 3 .
dc =c3+2c (17.15)
P 4. .
For k > 2, we can show that
d
— d_tCk = (k —2)cr + 2¢k+1, (17.16)

These equations must be solved with the initial condition such that all sites of the
lattice are empty. This means that at t = 0 we should have ¢, (0) = 1 forany k > 1.

Equations (17.13) and (17.14) imply c2(¢) = 2c1(¢) + C. Using the initial
condition, we see that the constant C = —1 so that ¢2(¢#) = 2¢;(¢) — 1. The density
of atoms pis givenby p = (n;) =1—(n;) =1 —c1 = (1 —¢2)/2.
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Next, we solve the set of equations given by (17.16). To this end, we assume a
solution of the form

cr(t) = up(t)e (=2 (17.17)
The equation for u is thus
k= —2Uj+ ! (17.18)
_u —_— u e . .
dt !

Defining the auxiliary variable y by
y=e", (17.19)

we get the following equation for ux (y),

d
—Uup = 2uk+1, (17.20)
dy

valid for k > 2. Assuming that u; (y) is independent of k, we conclude that
ue(y) = Ce®, (17.21)

where the constant C must be determined by the initial conditions. From (17.17),
(17.19) and (17.21), we arrive at the solution

cx(t) = Ce k=D exploe™}. (17.22)
Since ¢x(0) = 1, then C = e~2 so that
cr(t) = exp{2e™ —2 — (k —2)t}. (17.23)
In particular
(1) = exp{e™ — 2}, (17.24)
from which we get the density p = (1 — ¢,)/2, given by
o(t) = %{1 —exp(Re™ —2)}, (17.25)

so that p* = p(o0) is given by

1
o = 5(1 —e72) =0.43233... (17.26)
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a result obtained by Flory. This density is smaller then 1/2, which is the result that
we would obtain if the atoms were placed in an alternate way.

17.3 Solution on a Cayley Tree

A Cayley tree, can be understood as a lattice of sites formed by concentric layers as
follows. To a central site we connect z sites, that constitute the first layer. To each
site of the first layer, we connect z — 1 new sites that, constitute the second layer.
To each site of the second layer, we connect z — 1 new sites, that constitute the third
layer. Using this procedure we construct other layers. Each site is connected to z — 1
sites of the outside layer and to one site of the inside layer, having thus z neighbors.

A Cayley tree with coordination number z has a fundamental property, which we
describe next. Consider a connected cluster of k sites and consider all sites that are
connected to any site of the cluster but do not belong to the cluster. The number 7nj
of these peripheral sites is

ne = (z—2)k + 2, (17.27)

and does not depend on the form of the cluster.

This property can be shown as follows. Consider a cluster Ay with k sites. To
form a cluster A4 with k + 1 sites from the cluster Ay, it suffices to include all
peripheral sites of Ay into the cluster Ax ;. In this process one loses one peripheral
site (which becomes part of the cluster) and we gain z— 1 peripheral sites (those that
are connected to the new site of the cluster, except the one that already belongs to
the cluster). Therefore, ny4+1 = ny + (z— 2), from which we getny = (z—2)k +c.
Since ny = z, the constant ¢ = 2.

Consider the correlation

-1 = ([ 7). (17.28)

where the product extends over all sites of a certain cluster of k sites. Here we
assume that the correlation above does not depend of the form of the cluster but
only on its size, that is, on k.

The evolution equation for (77;) = co is given by

d
— —¢o = cy. 17.29
L=a ( )
and the equation for ¢y, by
d
— —c| =1 + zc. (17.30)

dt
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For k > 1, we can show that

d
— Eck = kck + NkCi+1- (17.31)

Using the same scheme of the previous section, we suppose that the solution is
of the form

Ck(t) = uk(t)e ! (1 7.32)
T'he equation for Uy is, thus
- — = ! (1 33)
u niu e . /.
It k kUk+1

Again, we define a variable y by

y=e", (17.34)
from which we get
d
—— U = NUk+1, (17.35)
dy
or
d
—uk = [(z—2)k + 2Jup+1. (17.36)
dy
Assuming a solution of the type
we = Y K74, (17.37)
where a = 2/(z — 2) we see that
dy
— =—(z—-2), (17.38)
dy
whose solution is
Y =A4-(z-2)y, (17.39)

where A is a constant. To determine the constant A, we should use the initial
condition corresponding to an empty lattice. This condition implies the result
¢, (0) = 1, from which we get u;y = 1 when y = 1. We conclude thus that Y = 1
when y = 1, from whichwe get A =z—1sothatY =z—1—(z—2)y.
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Defining
y=2z2—-2, (17.40)
thenY =14y —yy and
we(y) = [1+y —yy| 7. (17.41)
Thus
()= +y—ye )y F2re™h (17.42)

which is valid for k > 1. In particular
aty=(0+y—ye ) 172re, (17.43)

from which we obtain, by integration of equation —dcy/dt = c1,

1 1
cot) = 514y —ye )+ (17.44)

57
where the constant was chosen so that ¢g(0) = 1. The density p = 1—cy is given by
1 1 =2/
o(t) = 5 5(1 +y—ye )T, (17.45)
The final density p* = p(0co) is thus
«_ 1 ~ay - L ~2/G-2)
p =§[1—(1+y) ]=§[1—(z—1) ]. (17.46)
For large values of z, we get the result p* = (Inz)/z. When z — oo the final density
p* — 0.
17.4 Adsorption on Regular Lattices

In regular lattices we have to resort to numerical simulations to determine the
density as a function of time. Starting from an empty lattice, the sites are being
occupied successively. At each time interval we choose a site at random. If it is
empty and the neighboring sites are also empty, then the site becomes occupied.
This procedure is repeated until there is no more sites to be occupied.
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*

Table 17.1 Final density for

! Lattice d |z |p

the random sequential Li hai 1 12 T0432332°

adsorption in which the inear chain :

adsorption of an atom blocks Honeycomb |2 |3 |0.379

the nearest neighboring sites. Square 2 4 1036413

The errors are in the last digit Triangular 2 16 1023136
Cubic 3 |6 |0.304
Hypercubic |4 |8 |0.264

A(1—e™2)/2

The algorithm can be improved as follows. In a regular lattice the sites occupied
by an atom are labeled by the number 1. The sites that are neighbors of an occupied
site, which are empty, are labeled by the number 2 and are called inactive. The
other empty sites are labeled by the number 0 and are called active. The difference
between the active and inactive empty sites is that the former can be occupied
whereas the latter remain forever empty. At each time step ¢, we update the number
N of occupied sites, the number N, of inactive sites and the number Ny of active
sites. The sum of these numbers remains constant and equal to the number N of
lattice sites, Ny + N, + Np = N.

At each time step of the numerical procedure, we choose at random one of
the Ny active sites and place an atom on it. Next, we determine how many active
sites becomes inactive and call this number Ny,. The new values of the number of
occupied sites, active and inactive sites will be

Nl/ =N; +1, (17.47)
Nz/ = Ny, + Noa, (17.48)
NO/ = Ny — Npp — 1. (17.49)

The time is updated according to ¢’ = ¢ + 1/Ny. This procedure is repeated until
Ny = 0. The density at a given instant of time ¢ is p = N;/N.

In Table 17.1 we show the results obtained from numerical simulation and other
methods, as time series expansion, for the final density of occupied sites p* for the
random sequential adsorption on a regular lattice, where each atom adsorbed blocks
the z nearest neighbors.



Chapter 18
Percolation

18.1 Introduction

Percolation means the passage of a liquid through a porous medium. It can be
understood as a random process, as much as diffusion is a random process. However,
there is a fundamental difference between the two processes. In diffusion, particles
with random motion spread in a deterministic medium, in percolation, particles with
deterministic motion spread on a random medium. Since the motion is deterministic,
the percolation models focus on the description of the medium through which the
particles move, understood as a porous medium. We imagine the porous medium as
a solid material inside which there is a certain number of porous localized randomly.
If the number of porous is large enough, they are connected and the medium is
permeable to the passage of the liquid. However, if the number is very small, they
are isolated and the passage of the liquid is blocked. Thus we identify two regimes
depending on the concentration of porous. In one of them there is percolation, in the
other there is not.

A simple model for percolation is constructed by assuming that the porous are
located in specific sites inside a solid block. We imagine the sites forming a regular
lattice inside the block, for example, forming a cubic lattice. In addition, the porous
are of a certain size so that they create a passage between them when they are
neighbors, but do not when they are not neighbors. The basic problem of percolation
is to find the minimum concentration above which there is a percolating state.
Alternatively, assuming that the probability of occurrence of a porous in a site is
p, we wish to know the minimum value of p for the occurrence of percolation.

To describe appropriately the location of the porous, we associate to each site
i a variable n; which takes the value 1 or 0 according to whether the site i has
or has not a porous. Using a more convenient language, we say that the site is
occupied or empty according to whether the variable takes the value 1 or 0. The
global configuration is defined by the vector n = (11,92, ...,1ny), where N is the
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370 18 Percolation

total number or sites of the lattice. The probability that n; takes the value 1 or 0 is p
org = 1— p, respectively, that is, it equals p” ¢'~" . The variables ; are considered
to be independent so that the probability £?(#) of configuration 7 is

2o =[]r"q" (18.1)

Notice that the average number n of occupied sites is p N what allows us to interpret
the probability p as the fraction of occupied sites.

18.2 Clusters

Given a configuration 7, we may partition it in clusters of occupied sites, as seen
in Fig. 18.1. Two sites belong to the same cluster if there is between them at least
one path made up by occupied sites. A path is defined as a sequence of occupied
sites such that two successive sites are nearest neighbors. There are several types
of neighborhood. Here we consider the case in which the neighborhood of a site is
formed by the nearest neighbor sites. For convenience, we assume that an isolated
occupied site constitutes a cluster of one site. Two occupied nearest neighbor sites
form a cluster of two sites.

The percolation model we considered above is called site percolation. We may
also define bond percolation. In this case each bond can be active with probability
p and inactive with probability 1 — p. A bond is a connection between two
nearest neighbor sites. The clusters are defined similarly and examples are shown in
Fig. 18.1. Two sites belong to the same cluster if there is between them a path made
up of sites such that two successive sites are connected by an active bond. Here,

[

however, we will consider only site percolation.
ﬂ‘

Fig. 18.1 (a) Site percolation and (b) bond percolation on a square lattice

! .1 L

O _
I I N
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The characterization of a percolating cluster is determined by the size distribution
of clusters. This distribution is described by the average number n; of clusters of size
s, that is, clusters having s sites. From n; we may obtain the following quantities.
The average number of clusters

E=>"ns (18.2)
the average number of occupied sites
n= an (18.3)
N
and the quantity

¢=> sn, (18.4)

Since n = pN, then

> sng=pN. (18.5)

It is convenient to define density type quantities to be used in the thermodynamic
limit, N — oo. Thus, we introduce the density p; = ny/N of clusters of size s
from which we define the quantities

=Y p. (18.6)

which is the density of clusters and

S =Y sp. (18.7)

interpreted as the average cluster size. Taking into account the relation (18.5), then
> spe=p. (18.8)

Up to this point we have considered lattices with a finite number of sites so
that we may have only finite clusters. In an infinite lattice we should consider the
possibility of the occurrence of a cluster of infinite size. Thus, a certain site may
belong to a finite size cluster, to the infinite cluster or may be empty. The probability
of a certain site to belong to a cluster of size s, finite, is spy, the probability to
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belong to the infinite cluster is denoted by P and the probability of being empty is
q. Therefore,

o0
Y ospetq+P =1, (18.9)

s=1

or

o0
> spo+ P =p. (18.10)

s=1

which replaces Eq. (18.8). The quantity P, called percolation probability, is inter-
preted as the fraction of occupied sites belonging to the infinite cluster and
Eq. (18.10) can be used to determine P once we know p,, now interpreted as the
density of finite clusters of size s.

Denoting by F the density of sites belonging to finite clusters, given by

o0
F = Zs,os, (18.11)
s=1
we see from (18.10) that
F+P=p. (18.12)

Increasing the parameter p starting from zero, the model passes from a state
in which there are only finite clusters (P = 0) to a state in which, in addition
to finite clusters, there is an infinite cluster (P # 0). The presence of an infinite
cluster characterizes the model as being in a percolating state, that is, in which there
occurs percolation. This transition is characterized as a phase transition in which
P plays the role of order parameter of the percolating phase. When p < p., the
order parameter P vanishes and F' = p, that is, all occupied sites belong to finite
clusters. When p > p., the order parameter becomes nonzero and only a fraction of
occupied sites belong to finite clusters. In Table 18.1 we show the critical parameters
p. of site and bond percolation for several lattices obtained by various methods. In
some cases the value of p. is known exactly.

For an infinite system, the density of clusters f is given by

f=>p (18.13)
s=1
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Table 18.1 Critical parameter for site and bond percolation for various lattices including the
simple cubic (sc), body centered cubic (bcc) and face centered cubic (fcc). The errors in the
numerical values with decimal point are smaller or equal to 10", where n indicates the decimal
position of the last digit (Source: ‘percolation threshold’, Wikipedia)

Lattice d z Site Bond
Honeycomb 2 3 0.69604 0.652703*
Square 2 4 0.592746 172
Triangular 2 6 12 0.347296°
Diamond 3 4 0.430 0.389
sC 3 6 0.311608 0.248812
bee 3 8 0.2460 0.18029
fec 3 12 0.19924 0.12016
Hypercubic 4 8 0.19689 0.16013
Hypercubic 5 10 0.14080 0.11817
Hypercubic 6 12 0.1090 0.09420

21 — 2sin(w/18)

b2 sin(7r/18)

and the average sizes of the finite clusters S is given by

o0
S=>"sp,. (18.14)

s=1

18.3 One-Dimensional Model

To determine the percolation properties of a one-dimensional chain, we start by
calculation the quantity p; from which other quantities can be determined. For a
linear chain, the quantity p,, which is the density of clusters of size s, is given by

ps = p'q’. (18.15)

This result is a consequence that a one-dimensional cluster of size s is defined by s
consecutive occupied sites and two empty sites at the border. Replacing into (18.13)
and performing the summation, we get

Jf=prd=p). (18.16)
Replacing into (18.11) and performing the summation we get, for p < 1,

F=p, (18.17)
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which, replaced into Eq. (18.12), that defines the percolation probability P, reveals
us that P = 0 for p < 1.

The result P = 0, for p < 1, show us that the one-dimensional model does not
have a percolating phase, except in the trivial case in which all sites are occupied
(p = 1). The absence of the infinite cluster for any p # 1 can be understood if we
recall that if p # 1, then there is a nonzero probability (¢ # 0) that a site is empty.
But being the lattice one-dimensional, the presence of empty sites is sufficient to
destroy a possible infinite cluster.

Replacing (18.15) into (18.14) and performing the summation, we get

1
S = u (18.18)
I=p
whose behavior close to p = 1 is
S~1-p~", (18.19)

which means that the size of the clusters diverges when p — 1.

18.4 Model in the Cayley Tree

A Cayley tree can be understood as a lattice of sites formed by concentric layers
and constructed as follows. We start from a central site to which we connect z sites
that constitute the first layer. Each site of the first layer is connect to z — 1 sites that
make up the second layer. Each site of the second layer is connected to z — 1 sites
that make up the third layer. And so on. Each site is connected to z neighbors, being
connected to one site of the inner layer and z — 1 sites of the outer layer. A site is
never connected to a site of the same layer.
On a Cayley tree, the average number of cluster of size s, per site, is

ps = byp*q o2 (18.20)

where 0 = z — 1 is the ramification of the tree and z is called coordination number
(number of neighbors). The constant b, is a numerical coefficient which must be
determined. The result (18.20) is a consequence of the fact that a cluster of size s
is defined by s occupied sites and by a certain number of empty sites located at the
border. In a Cayley tree this number depends only on s and is equal to (z — 2)s + 2.

The replacement of (18.20) into (18.13), (18.11) and (18.14) gives, respectively,

o0
f=¢) bp'q (18.21)
s=1
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o
F=q") sbp'q° ", (18.22)

s=1

o
S =q° Z §2by p*q s, (18.23)

s=1
The coefficients by must be such that F = p for p < p. since in this case P = 0.
Next, we define the generating function G(x) by

G(x) =) byx', (18.24)
s=1

from which we get the following relations

XG'(x) =) shox", (18.25)
s=0
xG'(x) + x*G"(x) = Zszbsxs. (18.26)
=0

Comparing the expressions (18.21)—(18.23), we get the expressions

f=4¢*Gx), (18.27)
F = ¢’°xG'(x), (18.28)
S = ¢*xG'(x) + x>G" (x)], (18.29)

where x = pg°~!.

Now, for p < p. we must have F' = p which, compared with (18.28), allows us
to write

G'(x) =¢q~th, (18.30)

The right hand side of this equation must be interpreted as a function of the variable
x which is obtained by inverting the equation x = (1 — ¢)¢°~' = ¢° ! — ¢°.
Deriving (18.30) with respect to x, we get

dq (c+1)g™%>

" _ 0299 _
G"(x) =—(0c+ g - CEy—— (18.31)
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Replacing the results (18.30) and (18.31) in (18.29), we get, after some algebraic
manipulations and recalling thatg = 1 — p,

_rd+p)

S 9
1—op

(18.32)

valid for p < p.. This expression diverges when p = 1/o0, marking the critical
point. Therefore, the critical concentration of occupied sites for the percolation
defined on a Cayley tree is

1 1
Pe=—=—". (18.33)
o z—1
Hence,
1
S = M (18.34)
o(pe—p)
and the behavior of S close to the critical point is given by
S~(p—p)~, (18.35)
for p < p., thatis, S diverges at the critical point.
To get f we start by integrating (18.30),
—(o+1) dx 1 -2 -1
Gx)= | ¢ @dq = —5(0 —g " 4+0q " +C, (18.36)

where C is a constant to be determined. Taking into account that G = 0 when
x = 0, that is, when ¢ = 1, then we conclude that C = —(1 4 0)/2. Hence,

G(x) = —%(a — g +oq ' - %(1 +0), (18.37)

which can be written in the form

2
11
g ) o (18.38)

G(x):_%(a_l)(é_o—l 201

From (18.27) and using this last result, we get

1
f=p- J;Upz- (18.39)

valid for p < p..
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Generating function To obtain explicitly the generating function G(x), we have
to invert the expression x = ¢! — ¢° and replace the result into (18.37). The
inversion, however, cannot be made in an explicit way for any value of o. Hence,
we will obtain G(x) for 0 = 2, in which case the inverse function can be found
explicitly. In this case, x = g — ¢, and the inversion gives two results

1
q= 5{1 + V1 —4x}. (18.40)
Before doing the replacement of this result into (18.37), we must decide which of
the two solutions we should use. Taking into account that the expression (18.37)

is valid for p < p,., that is, for ¢ > ¢, and that in the present case p. = 1/2 or
q. = 1/2, then we should use the result

q = %{1 + /1 —4x}. (18.41)

Replacing (18.41) into (18.37), we get

2
1 1 (1—+1—4
Glx)= -~ — = [ —X" "™ _») . (18.42)
2 2 2x
Similarly, we obtain G ’(x) substituting (18.41) in (18.30)
3
1-J1-4
G'(x) = (—x) , (18.43)
2x
and G”(x) substituting (18.41) in (18.31)
4
3 1—+/1—-4
G"(x) = al Iy (18.44)
V1 —4x 2x

Next, we will obtain f(p), F(p) and S(p) for p > p. = 1/2 since the results
for p < p. have already been obtained in the previous section. Taking into account
that x = pq, then v/1 —4x = /(1 —2p)> =2p — 1, for p > 1/2, so that

3 1 2

G(x) = 2ty (18.45)
G'(x) = %, (18.46)
G"(x) 3 (18.47)

TR
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Hence, using (18.27)—(18.29), we get

301 2
= (- —— + ), 18.48
S=a gt ) (18.48)

3
F=L (18.49)

p

3

qg° 2—p
=i 18.
S TR (18.50)

which are valid for p > p..
The order parameter P is obtained from (18.12), P = p — F, that is,

3 3

1
= F(Zp -1 —p+pd. (18.51)
for p > p.. Close to the critical point, we get

P =6(p— po). (18.52)

1

S=—-——,
|p — pel

(18.53)

oo | W

valid for p > p,.

Order parameter The percolation probability P, which plays the role of the order
parameter of the percolating phase, can be obtained by a another reasoning. This
is done by assuming that it is equal to the probability that the central site of the
Cayley tree is connected, through active bonds, to a site of the outermost layer of
the tree. An active bond is a connection between two nearest neighbor occupied
sites. Denoting by Qy the probability that the central site is not connected to the
outermost layer, then

Qo =q +p0Q;. (18.54)

where Q) is the probability that a site of layer 1 is not connected to the outermost
layer. Indeed, the central site is not connected to the outermost layer if it is either
empty (probability g) or, in case it is occupied (with probability p), if all the z sites
of layer 1 is not connected to the outermost layer (probability Q7).

Next, we take a site of layer 1 and repeat the same reasoning above to get

Q1 =q+p03. (18.55)
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where Q5 is the probability that a site of layer 2 is not connected to the outermost
layer. Notice that the exponent of Q, is o. As the number of layer increases, O,
approaches O and these two quantities become identical in the limit of an infinite
number of layers. Therefore, in this limit

01 =q +pQf. (18.56)

In addition, in this limit P = 1 — Q. Therefore, from (18.56) we can obtain Q(p)
as a function of p and next determine Q(p) using (18.54) and finally P(p).

A solution of (18.56) is O = 1, which is independent of p. This trivial solution
gives Qo = 1 so that P = 0. There is however another solution, that depends on p.
Taking into account that Q¢ = 1 — P, we can use (18.54) to write Q; in terms of
P and next replace in (18.56) to get

P P
(1- ;)l/z =1-p+p(- ;)"/Z. (18.57)

This is an equation whose solution gives P(p) as a function of p. To obtain the
behavior of P for values of p close to the critical point, we expand both sides of
this equation up to quadratic terms

2 1
P, yp=o. (18.58)
q (o}

Therefore, the non-trivial solution is given by

2zp

P="L0p- L (18.59)
q o

which is valid only for p > 1/0 because otherwise P will be negative. We see thus
that P indeed vanishes continuously when p = p, = 1/0. Being this expression
valid around the critical point, we may still write

o+

1
P =2—"—(p—po). (18.60)

o
thatis, P ~ (p — pc).

Density of clusters To determine the density of clusters p; we should calculate the
coefficient by, what can be done from the expansion of the generating function G (x)
in powers of x. This calculation can be done in an explicit way when o = 2. For
P < pe, the expression for G(x) is given by (18.42), which we write as

G(x) = ﬁ [(1—4x)? - (1 -6x + 6x7)]. (18.61)
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Using the binomial expansion, we get

o
3(2s)! o
Z A (18.62)
from which we get
3(2s)!
by = m, (18.63)

valid for s > 1. Therefore, the density of clusters p; = by p*q**+? is given by

3(2s)! g
G LI (18.64)
(s +2)!s!
valid for s > 1 and p < p. = 1/2. For large s,
3 s s
Ps = ﬁq s (4pq)’, (18.65)
valid for p < 1/2. Near the critical point
ps = 3 Sz (18.66)
S 4ﬁ k) .
where
c=4(p-— pc)z (18.67)

For p > p., we can show that the above expressions for p; are similar. It suffices to
exchange p and ¢.

18.5 Dynamic Percolation

In this section we analyze a stochastic model whose stationary distribution is
identified with percolation. More precisely, the stochastic process generates clusters
that are identified with the percolation clusters. The dynamic percolation model
is best formulated in the language of epidemiology and, in this sense, it can be
understood as a model for the spread of an epidemic. It is defined as follows. Each
site of a regular lattice, identified as an individual, can be found in one of three
states: susceptible (S), infected (I) or exposed (E). Infected and exposed individuals
remain forever in these states. A susceptible individual may become infected or
exposed according to the rules introduced next.



18.5 Dynamic Percolation 381

At each time step a site is chosen at random. If it is in state I or in state E, the
state of the site is not modified. If it is in state S, then (a) the site becomes I with
probability pn, /z, where n, is the number of neighbors in state I and z is the number
of neighbors or (b) the site becomes E with probability gn,/z, where ¢ = 1 — p.
Another equivalent way of defining the stochastic process, and more interesting for
our purposes, is as follows. At each time step, we choose a site at random, say site
i.Ifitis in state S or E nothing happens. If it is in state I, then one neighbor, say j,
is chosen at random. If j is in state I or E, nothing happens. If j is in state S, then
j becomes I with probability p and becomes E with probability g = 1 — p.

Consider now a lattice full of sites in state S except for a single site which is in
state I. Applying the rules above, we see that a cluster of sites in state I grows from
the original site. The growth process stops when there is no site in state I that has a
neighbor in state S. That is, if all neighbors of the sites in state I are found in state E.

To show that a cluster generated by the rules mentioned above is a possible cluster
of site percolation, we consider another lattice, which we call replica, with the same
structure and same number N of sites. Each site of the replica can be occupied with
probability p or empty with probability g = 1 — p. A possible configuration of
the replica is generated as follows. For each site i we generate a random number
& identically distributed in the interval between 0 and 1. If & < p, the site i is
occupied, otherwise it remains empty. In this way, several clusters are generated in
the replica. A cluster is defined as a set of occupied sites such that each site has at
least one site occupied.

Next we focus on a certain cluster of the replica and in a certain site of the cluster
which we call site 0. Now we look at the original lattice and at the growth of a cluster
from the site 0. Initially, all sites of the original lattice are in state S except site 0,
which is in state I. We choose a site at random, say site i. If site 7 is in state I,
we choose one of its neighbors, say site j. If j is in state S, then it becomes I if
&; < p and E otherwise. According to these rules, all sites in state I form a cluster
that contains the site 0. Moreover, the sites that are in state I correspond to occupied
sites in the replica and those sites that are in state E correspond to empty sites in
the replica. Since each site of the cluster was generated with probability p, then this
cluster is a possible cluster of the site percolation model. Figure 18.2 shows a cluster
generated by this dynamics in the square lattice at the critical point.

Critical exponents The critical behavior around the critical point for various quan-
tities is characterized by critical exponents. Next we list some relevant quantities
and the respective critical exponents. Order parameter, which is the fraction of sites
belonging to the infinite cluster,

P~ &P, (18.68)
where ¢ = |p — p.| Variance of the order parameter

x~ &7, (18.69)

Spatial correlation length



382

400

-600

-400 =200 0 200

400

18 Percolation

Fig. 18.2 Cluster with 82,062 sites, corresponding to site percolation on a square lattice, generated
at the critical point according to the rules of dynamic percolation. The cluster has fractal structure

of dimension dr = 91/48

E~ eVt
Time correlation length
§p~e .
Density of clusters
ps ~ 8 e, ¢~ gl
Number of active sites
Ny~ 1%,

at the critical point. Surviving probability

P~ 173,

(18.70)

(18.71)

(18.72)

(18.73)

(18.74)
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Table 18.2 Critical exponents of the universality class of dynamic percolation, according to the
compilation by Muiioz et al. (1999) and Henkel et al. (2008). The errors in the numerical value
with decimal point are found in the last digit

d B y v dp T v z 0 8

2 5/36 43/18 4/3 91/48 187/91 1.506 1.130 0.586 0.092
3 0.417 1.82 0.88 2.528 2.19 1.169 1.38 0.49 0.35
4 0.64 0.68 2.31 1.61 0.30 0.60
5 0.84 0.57 2.41 1.81 0.13 0.81
>6 1 1 172 4 52 1 2 0 1

The fractal dimension d is defined by
N ~ L%, (18.75)

where N is the number of occupied sites inside a region of linear size L. The
dynamic exponent z is defined by means of the following relation

£~ tl7 (18.76)

determined at the critical point.

In Table 18.2 we show the critical exponents obtained by various methods that
include exact and numerical for the dynamic percolation universality class. When
the dimension is larger than the upper critical dimension d = 6, the critical
exponents are those we have obtained from the solution in the Cayley tree. In two
dimensions the static critical exponents are known exactly.
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Absorbing wall, 77-80, 176-179 Critical exponents
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B dynamic percolation, 349
Bernoulli trials, 23, 27 Glauber-Ising, 258-259
Boltzmann H theorem, 159-160 linear Glauber, 245-246
Brownian motion, 39-43 percolation, 349
with absorbing wall, 77-80 Criticality, 187-206
with reflecting wall, 81-84 Critical parameters of models
contact, 275
Ising, 251
C percolation, 340
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probabilistic, 303-317
Central limit theorem, 25-27
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Chemical kinetics, see reactive systems
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first Schlogl model, 230
Lindemann mechanism, 228
Michaelis-Menten mechanism, 229

D
Damage spreading, 310-313
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Diffusion coefficient, 29, 32, 42
Direct percolation, 308-310
Dissipated power, 43, 123-124

oxidation of carbon monoxide, 224 E
second Schlogl model, 231 Eigenfunctions, 71, 73-74, 76, 78-79, 81,
Correlation function 130-132
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Equation
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Evolution matrix, 146-150
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F
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Glauber rate, 235, 251, 254
Guldberg-Waage law, 211

H
Harmonic oscillator, 55-57, 90, 110
Heisenberg Hamiltonian, 324
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Independent random variables, 21-37

K
Kac integral, 88
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L
Law of large numbers, 24-25
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Markov chain, 117-142
Matrix
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Mean-field approximation, 263-266, 272-275,
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Mean-field theory, 254-258, 275-277, 282-283,
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Metropolis algorithm, 128-129, 250
Model
Bragg-Williams, 193
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Ehrenfest, 134-138, 170, 172,
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for epidemic spreading, 268, 281, 292
ferromagnetic, 192-200
for the immune system, 314-317
Glauber, 233-246
Glauber-Ising, 247, 251-260
Hill, 165
Ising, 235, 249, 251
Kermack and McKendrick, 300
linear Glauber, 239-243, 246
Lotka-Volterra, 289
majority, 188-192
majority voter, 260-266
one-dimensional Glauber, 235-239
pair-creation, 281-283
predator-prey, 289-291, 294-299
reaction-diffusion, 319-327
Schlogl, 230-231, 281
SIRS, 292-298
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SIR with reinfection, 302
SIR with spontaneous recovery, 301
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N
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255, 258, 260, 264, 272, 2717, 309,
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P
Percolation, 337-349
in a Cayley tree, 341-347
compact direct, 286
direct, 277-278, 308-310, 313
dynamic 347-349
in one-dimension, 341
Perrin experiment, 43
Perron-Frobenius theorem, 123-125
Population dynamics, 289-302
Probability 1-2
conditional, 53, 62, 85, 94, 117-118, 120,
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definition and interpretation, 2
permanence, 77, 79-80, 91-93, 178, 287
transition, 84-91, 94-95, 118-119, 148, 150,
160, 303-305, 311-312
Probability current, 68-69, 77, 81-82, 98-100,
106
Probability distribution, 2
Bernoulli, 2
binomial, 3, 11, 24
Cauchy, see Lorentz
Chi-squared, 17-18
cumulative, 4, 5
exponential, 4
Gaussian, 6, 8, 13, 16, 26, 36, 67
geometric, 2
joint, 14-19, 117
Laplace, 9
Levy, 37
log-normal, 7
Lorentz, 5, 9, 19, 25-26, 36-37
Maxwell, 16, 46
multidimensional Gaussian, 33-35, 103,
111
negative binomial, see Pascal
normal, see Gaussian
Pascal, 3, 11, 24
Poisson, 3, 174
Rayleigh, 18
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393
Student, 18-19
triangular, 19
Process
contact, 268-272, 277-278
creation and annihilation, 169-170
Poisson, 173-174
reaction-diffusion, 319-327
R
Random number, 14-16, 51, 129, 250, 252,
269, 348

Random variable, 1-19, 21-26
Random sequential adsorption, 329-335
in a Cayley tree, 332-334
in one-dimension, 330-332
in regular lattices, 334-335
Random walk, 138-142
with absorbing wall, 176-179
asymmetric, 175-176
multidimensional, 181-185
one-dimensional, 28-30
with reflecting wall, 179-181
two-dimensional, 30-33
Reaction rate, 207-210, 218-221
Reactive systems , 207-232
Recurrence, 132-134, 140-142,151-152
Reflecting wall, 81-84, 179-181
Reversibility, 69, 100, 105-106, 109, 125-127,
160-161, 163, 262-263

S
Simulation of the random motion, 50-51
Skewness, 10
Solenoidal forces, 100-102
Spontaneous symmetry breaking, 188, 191-192
Stable distributions, 35-37
Stirling formula, 38
Stochastic variable, 39, 44, 47, 53, 65, 117,
233, 247, 267, 290, 303
Susceptibility, 250, 252, 256-258, 273-274,
277, 283-284
Sutherland-Einstein relation, 43
Systems with absorbing states, 267-287
Systems with inversion symmetry, 247-266

T
Thermodynamic equilibrium, 99-100, 107-108,
126, 162-164, 249
Transport across a membrane, 164-168
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U 211-212, 237-242, 250, 253,
Universality class, 247, 258-260, 267, 277-279, 256-262, 269, 274-271, 283-284
286, 304, 313, 316, 349

A\
Variance, 6-8, 11, 27-29, 40, 47, 50-51, w
98, 195, 198-199, 204-206, 208, Wiener integral, 88
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