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Supervisor’s Foreword

The insight by Orowan, Taylor and Polanyi in 1934 that dislocations are the agents
of crystal plasticity marked the beginning of the science of metallurgy. Since that
time dislocations have played a central role in almost all mechanisms put forward to
explain mechanical processes in crystalline matter. Dislocations are one of the ‘big
ideas’ of materials physics.

Dislocations experience a variety of forces. Undergraduates learn about the
Peach-Koehler force arising from the stresses acting on them. Much less attention is
paid to the buffeting dislocations experience as a result of thermal fluctuations.
These thermal forces are dominant when dislocation loops are at the nanoscale, and
they are responsible for the Brownian motion these loops display in a transmission
electron microscope. This is particularly significant in the context of radiation
damage where point defects in steels cluster forming small nanoscale loops, which
evolve into larger loops through this Brownian motion.

When they move dislocations experience friction from the crystal lattice. Earlier
theories of the frictional force treated the dislocation as a defect in an elastic
continuum interacting with phonons. More recently, molecular dynamics simula-
tions have explored the dependence of the frictional force on temperature and the
speed of the dislocation. The motivation for this work comes from a variety of
sources. The velocity–stress relationship for dislocations is a crucial input into
simulations of dislocation dynamics. However, current relationships are largely
phenomenological interpretations of experiments or atomistic simulation with little
theoretical understanding and thus predictive capability. The friction experienced
by dislocations also plays a key role in models of fatigue crack nucleation, and in
adiabatic shear where the intense heat generated by these frictional forces leads to
an instability of strain localization, and in many other mechanical processes in
crystals.

The frictional force and the thermal buffeting are two sides of the same coin.
They are directly related by the fluctuation-dissipation theorem of statistical
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mechanics. In this thesis Tom brings fresh insight into understanding the factors
controlling defect mobility, especially dislocation mobility:

(a) By applying Zwanzigs projection techniques Tom explains analytically in the
thesis the origin of the temperature-independent contribution to the lattice friction
experienced by highly mobile defects such as crowdions, kinks on screw disloca-
tions and small prismatic dislocation loops. His analysis resolved a long-standing
disconnect between molecular dynamics (MD) simulations, which showed there
was a contribution to the lattice friction experienced by nano-scale defects that was
temperature independent, and 60 years of theory denying the existence of a
temperature-independent contribution. Tom identified the terms responsible for the
temperature-independent mobility and evaluated them, finding perfect agreement
with his own MD simulations. As one referee of his Physical Review Letter [1]
noted:

This paper fills an important gap in computational physics, namely, the determination
of the origin of the temperature-independent friction coefficient from fundamental lattice
dynamics, by convincingly separating the localized nature of defect cores from canonical
vibrations. The theoretical arguments put forward by the authors are potentially applicable
to many other areas in defect dynamics, and that should make this paper of interest to the
general readership of PRL.

(b) In another original contribution Tom reproduced MD simulations of dislo-
cation motion using a popular physics model, a harmonic chain sitting in a periodic
potential agitated by random thermal forces [2]. This allowed dislocation simula-
tions 107 times faster than MD, but no less accurate. This tremendous speed-up
enabled him to simulate the kink motion of dislocations at realistic (experimental)
levels of applied stress—an unprecedented achievement because these levels of
stress are far too small to lead to any kink migration in standard MD simulations.
His model revealed a previously unrecognised discrete length scale in dislocation
dynamics, intermediate between that of the dislocation microstructure of conven-
tional dislocation dynamics, and the atomic length scale of MD. In addition, Tom
extended mathematical techniques of multi-scale analysis to gain new insight into
the asymptotic time behaviour of this widely-studied model, providing connections
between observed diffusion rates and the thermodynamic free energy barrier [3].

By any standards the originality and insight displayed in this thesis are excep-
tional. It is one of the finest examples of the work undertaken in the EPSRC Centre
for Doctoral Training on Theory and Simulation of Materials at Imperial College,
which was established in 2009 to attract physicists and engineers with a strong
theoretical and/or computational prowess into materials science. There are further
outstanding theses in the pipeline.

London Prof. Adrian P. Sutton
May 2015
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Abstract

The state of a deformed crystal is highly heterogeneous, with plasticity localised
into linear and point defects such as dislocations, vacancies and interstitial clusters.
The motion of these defects dictate a crystal’s mechanical behaviour, but defect
dynamics are complicated and correlated by external applied stresses, internal
elastic interactions and the fundamentally stochastic influence of thermal vibrations.

This thesis is concerned with establishing a rigorous, modern theory of the
stochastic and dissipative forces on crystal defects, which remain poorly understood
despite their importance in any temperature-dependent micro-structural process
such as the ductile to brittle transition and irradiation damage.

From novel molecular dynamics simulations we parameterise an efficient, sto-
chastic and discrete dislocation model that allows access to experimental time and
length scales. Simulated trajectories of thermally activated dislocation motion are in
excellent agreement with those measured experimentally.

Despite these successes in coarse graining, we find existing theories unable to
explain stochastic defect dynamics. To resolve this, we define crystal defects
through projection operators, without any recourse to elasticity. By rigorous
dimensional reduction we derive explicit analytical forms for the stochastic forces
acting on crystal defects, allowing new quantitative insight into the role of thermal
fluctuations in crystal plasticity.
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Chapter 1
Introduction

The plasticity of metals is a subject of critical importance and fundamental interest
in physics, engineering and materials science [1]. To understand how metals deform
one must investigate crystal defects- specifically, the motion of line-like defects
known dislocations, which are subject to intrinsic and extrinsic stresses, long range
elastic interactions with other dislocations and atmospheres of point defects, as well
as the stochastic influence of thermal vibrations. Whilst there has been sustained
effort in coarse graining and calculating the long range elastic interactions between
dislocations, the stochastic thermal force has received essentially no direct attention,
despite its rôle in driving an immense range of diffusive and thermally activatedmicro
structural processes. This thesis is concerned with modelling and understanding this
stochastic thermal force.

The most accurate method for investigating structurally significant (>106) num-
bers of atoms has been fully ‘atomistic’ molecular dynamics (MD) simulations,
which explicitly simulate point particles interacting through an empirical interatomic
potential.

In recent years increasing computational power has allowed material simulations
involving millions of point particles interacting through empirical potentials. These
simulations, which will be used extensively here, provide valuable insight at the
nanoscale but cannot be used beyond nanoseconds and micrometers, obscuring any
direct comparison to experiment. As a result, the dynamics from these atomistic
simulations must be ‘coarse grained’: the salient phenomenology must be extracted
and preserved as best as possible to be used and understood in treatments where the
full atomic structure is implicit, leaving only the crystal defects.

The vast majority of crystal defect modelling is performed with dislocation
dynamics (DD) codes [2] which use conservative forces from elasticity theory sup-
plemented with phenomenological forces derived from atomistic simulation. The
equations of motion are first order, deterministic viscous drag laws ẋ = − f/γ,
where γ is some friction coefficient. Whilst existing codes are extremely power-
ful, being able to simulate macroscopic dislocation networks, such a system has no
meaning of temperature as it violates the fluctuation-dissipation theorem and thus
cannot capture transient bound states or the highly stochastic defect motion widely

© Springer International Publishing Switzerland 2015
T.D. Swinburne, Stochastic Dynamics of Crystal Defects,
Springer Theses, DOI 10.1007/978-3-319-20019-4_1
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2 1 Introduction

observed in materials science. Consequently any temperature dependence, often the
predominant behaviour of interest in structural settings, can only be recreated in
an ad hoc manner through parameter fitting with little or no quantitative predictive
capability.

This failure of traditional DD codes to accurately capture the stochastic influence
of heat is a matter of great concern to the fusion power community, which has a
urgent need to understand the ageing of structural metals subject to extreme environ-
ments [3]. In these extreme environments and even at room temperature [4] nanoscale
defects are observed [5, 6] to have a highly stochastic motion due to the prominence
of fluctuating thermal forces. Low dimensional stochastic glide and shape fluctua-
tions, long range correlations due to the elastic field and non-conservative reaction
processes are clearly present and observable in real time. Such phenomenology can
only be captured through a detailed understanding of the stochastic thermal forces
acting on crystal defects.

Previous approaches to themodelling of thermally dominated dynamics all rely on
amaster equation approach [7–9]which attempts to assign probabilities to transitions
between state vectors characterising the entire system then realising this distribution
with a kinetic Monte Carlo (KMC) simulation. Such an approach has a better rela-
tionship with the underlying thermodynamics, typically assigning probabilities from
a Gibbs distribution. However, despite successes there are many limitations. The
‘dynamics’ are always constrained to be a set of independent discrete time ‘hops’
which may bear little relation to the physical processes modelled. Including anything
other than contact interactions requires a exponentially divergent state vector; even
if the spatial configurations may be coarse grained in a sensible manner enumerating
the possible states and assigning transition probabilities becomes extremely compli-
cated even for an isolated dislocation line without long range elastic interactions. On
short time scales or highly non-equilibrium situations the assignment of a Gibbsian
probability distribution becomes difficult or impossible to justify. The algorithm is
extremely difficult to parallelise, and whilst the logarithmic time scale employed
improves efficiency it obscures comparison to the real-time trajectories given by
experiment.

An alternative approach is the Langevin equation [10, 11], which includes heat
on a microscopic scale through the inclusion of fluctuation and dissipation forces,
drawn from an appropriate statistical distribution. The resulting system may then be
stochastically integrated and it can be shown that the ensemble statistics are Gibbsian
in the steady state, yielding equivalent results to a KMC simulation. As ensemble
averages are by definition over independent simulation runs, parallelising such a
method is trivial. The atomistic degrees of freedom of the defect cores are removed
through a localised coarse graining procedure which ideally does not affect the long
range interactions, in a similarmanner to conventional DD codes, thoughwe shall see
that the nodal discretisation required to reproduce thermal fluctuations differs sig-
nificantly. Given such a coarse graining procedure, the typically first order equations
of motion may be derived in a well defined manner from the established methods of
stochastic dynamics. The coarse grained system possesses a fluctuation-dissipation
theoremand therefore a statistically rigorous temperature.Wemay therefore calculate
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the long range elastic forces as in DD simulations but extract the thermal dynamics
KMC simulations approximate. These characteristics make the Langevin approach
an ideal tool to investigate thermally drivenmicro-structure evolution. However, as in
all such microscopic approaches, the coarse graining procedure is a challenging task.
We are attempting to integrate out the configurational complexity on atomistic length
scales whilst retaining the correct fluctuation statistics required to give practically
useful results. This latter point is essential for capturing the thermal dynamics.

This thesis is concerned with accurately modelling thermal defect dynamics and
establishing a rigorous, modern theory for the stochastic and dissipative forces on
crystal defects, which remain poorly understood despite their importance in any tem-
perature dependent micro-structural process. In order to unambiguously quantify the
effect of thermal fluctuations we primarily demonstrate the efficacy and accuracy of
the Langevin equation approach applied to the dynamics of isolated crystal defects.
Aside from internal elastic interactions we do not treat the long range elastic forces
which govern the interaction of dislocations as this large topic is essentially indepen-
dent to the stochastic thermal force. For specific test cases we focus in particular on
screw dislocation lines and edge dislocation loops, as these are commonly considered
to be the major arbiters of plastic deformation in (potentially irradiated) structural,
body centred cubic metals such as Iron and Tungsten, which are of central interest
to the fusion community.

The chapters are arranged in a fairly pedagogical manner. In Chap.2 we introduce
the concept of dislocations, concentrating on their topology, discrete crystallographic
structure and mechanisms of migration rather than their role as sources of long range
elastic deformation. We also give a brief overview of the phonon scattering tech-
niques used to produce predictions of the interaction between thermal vibrations and
dislocations. Whilst most texts concentrate on the elastic properties of dislocations
our rather unconventional introduction is essential here as we focus on the interaction
of thermal vibrations with the highly deformed core region of defects and disloca-
tions. Far away from the core region, where the deformation is sufficiently smooth
it may be represented as a linear continuum, the important predictions of elasticity
theory are valid. However, we do not cover elasticity theory here as it independent
to our main results and there are already many excellent works on the subject. The
classic by Hirth and Lothe [1] is now the standard text, though the mathematically
light introduction by Hall and Bacon [12] and, for those with a background in other
classical field theories, the succinct volume of Landau and Lifshitz [13] are also
highly recommended.

In Chap.3 we present a physical introduction to the mathematical treatment of
stochasticmotion and theLangevin equation, then showhowaLangevin equation can
be derived from a higher dimensional deterministic system by treating a subset of the
initial conditions statistically. This latter technique is fairly involved but central to the
main results of this thesis. For a comprehensive introduction to the Langevin equation
see the work by Coffey et al. [11] and references therein. For an introduction to the
derivation of Langevin equations from higher dimensional deterministic systems see
the foundational and classic work of Zwanzig [14]. Chapter 4 gives a brief overview
of general atomistic simulation methods before presenting results from simulations

http://dx.doi.org/10.1007/978-3-319-20019-4_2
http://dx.doi.org/10.1007/978-3-319-20019-4_3
http://dx.doi.org/10.1007/978-3-319-20019-4_4


4 1 Introduction

of thermally fluctuating crystal defects. The simulations focus on extracting drift
and diffusion coefficients from a wide range of defects and dislocations that are
commonly observed in post-irradiationmicrostructure.Whilst the techniques specific
to this thesis are discussed in somedetail, for a general overviewwe suggest the recent
work by Bulatov and Cai [2] and references therein. For an excellent introduction
to representing interatomic forces in classical simulations see Finnis [15], whilst the
documentation for the LAMMPS simulation code [16] at http://lammps.sandia.gov/
tutorials.html has extensive explanatory tutorials and technical support.

As simulating all the atoms in a crystal is computationally intensive, Chap.5 is
concerned with models for dislocations that only explicitly contain line or point-
like objects to represent the defects. The thermal vibrations of the bulk crystal,
which occupy the vast majority of the computational effort in atomistic simulation,
are treated implicitly by giving the line or point-like objects stochastic equations
of motion. We detail how these defect objects are extracted from the crystals in
atomistic simulation and how the effective Langevin equation is parametrised using
the results from Chap.4. We then study the Langevin dislocation model in more
detail, investigating the influence of long range kink interactions and deriving upper
and lower bounds for the expected dislocation velocity under an applied stress. These
latter results employ so-called homogenisation theories to extract the dynamics at
asymptotic time; whilst we provide an overview and introduction to these techniques
as they are employed here, for a more complete foundation we recommend the recent
book by Pavliotis and Stuart [17].

In Chap.6 we develop a new theory for the stochastic thermal force acting on
crystal defects using the Zwanzig projection technique detailed in Chap. 3. This
approach,which represents themain result of this thesis, yields analytical expressions
for the coupling of defects to thermal vibrations in quantitative agreement with
atomistic simulation. We discuss how this agreement is achieved by avoiding an
erroneous canonisation of defect co-ordinates implicit in all previous theories. An
efficient computational implementation is presented and the future prospects for the
developed formalisms are then discussed.

Throughout the thesis we aim to focus only on new results rather than give sum-
maries of well-established topics for which excellent treatises already exist. In this
manner we hope to maintain a brisk readability throughout, only deriving known
results when it is essential or at least very useful to the exposition of the ideas
developed here. We assume a strong undergraduate background in mathematics,
crystallography, statistical physics and thermodynamics.
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Chapter 2
Dislocations

A first attempt to understand how crystals deform was made by Frenkel [1], who
posited that under an applied shear stress a crystal undergoes the bulk shear strain
illustrated in Fig. 2.1, meaning that the shear stressσ between two crystal planesmust
vary periodically with the shear displacement strain, i.e. σ = σ0 sin(kε). Requiring
Hooke’s law σ = με to hold at small strain, whereμ is the shearmodulus, one obtains
a maximum shear strength of σ0 ∼ μ/5 [2]. Unfortunately for this elegant picture, it
was already known that the shear stress required to induce plastic deformation was
known to be at most μ/103, going down to μ/109 for ductile metals such as Copper.

After many attempts to explain this discrepancy a solution was proposed inde-
pendently by Taylor, Orawan and others in 1934 [3]. It was argued that in contrast
to the collective planar movement of Frenkel’s model, a real crystal localises its
deformation into linear regions known as dislocations. As shown in Fig. 2.2, when
the deformation is localised an ‘excess’ atomic plane can be transferred from one
side of a crystal to another without requiring the bulk motion of atoms, which has
a much lower energy cost compared to the collective motion required in Frenkel’s
theory. This was famously analogised by Bragg to the action of moving a carpet by
creating a ‘ruck’ or ripple at one end and then pushing the ruck rather than trying
to slide the whole carpet. As with anything that buckles rather than homogeneously
deforming, it is energetically cheaper to heavily deform a small amount of material
rather than lightly deforming a large amount of material. This phenomena is central
to dislocations and cannot occur in a harmonic system. The comparative ease of
dislocation motion was quantified in a seminal paper by Peierls [4], who showed that
a dislocation motion requires a shear stress exponentially smaller than Frenkel’s σ0.

It could be argued that Frenkel’s ground-breaking work was an attempt to keep
crystal plasticity in the realmof linear response, i.e. bulk deformationmust be a ‘long-
wavelength’ excitation requiring the collective motion of all the atoms in the system.
It is important to note that this did not work, showing immediately that dislocations
are intrinsically non-linear objects unsuited to interpretation by conventional field
theories. Furthermore, it is very difficult to construct a continuum field theory that
possesses both translational invariance and the ability to sustain static, localised
excitations [5], especially in more than one dimension. In contrast, this has been
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Fig. 2.1 A crystal deforming in Frenkel’s model

Fig. 2.2 A crystal deforming by dislocation motion

shown to be a generic property of non-linear discrete systems [6], which obviously
provide a better approximation to a crystal.

These observations strongly imply that dislocations should be treated as non-
linear, discrete objects. This is ill suited to the linear continuum of classical elasticity
theory, which treat dislocations as line singularities in a vector field of displacements
u(x) that are regularised either by ad-hoc cut-offs in traditional elasticity [2] or
more advanced non-singularmethods that suppress singularities through themapping
u(x) → u(x) + λ · ∇u(x) then applying the same linear field theory [7].

Despite such conceptual failings the predictions of elasticity theory are valid
in the far-field when the deformation induced by dislocations is weak and slowly
varying, and these interactions are essential to describe realistic dislocation networks.
However, in the current work we focus on accurately coarse graining the stochastic
forces acting on thermally fluctuating crystal defects, meaning that we need to be
explicitly aware of the non-linear, discrete structure of the dislocation core. This
investigation is essentially orthogonal to the valid and important far-field results of
elasticity theory. Whilst we will review the topology of dislocation formation and
motion, and briefly report initial work on combining the stochastic force with long
range elastic interactions, we do not give a review of elasticity theory as there already
exist many excellent works on the subject [2, 8, 9].

2.1 Topology and Burgers’ Vector

Dislocations are defined as line like defects in a crystalline material, as distinct
from point defects such as impurities, vacancies and self-interstitials atoms or areal
defects such as surfaces and grain boundaries. These defects are obviously not
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mathematically ideal entities, but their configurational space has topological restric-
tions which can be identified with the topology of points, lines and planes.

For example, a line of point defects do not form a line defect, as this linear cluster
of point defects can clearly be continuously transformed to any other cluster of
arbitrary shape, losing any topological definition. The topology of a line is defined
by Jordan’s curve theorem [10] in the plane, which states that a closed curve which
does not cross itself (either a loop or a line terminating on the boundaries of the
containing plane, which may be at infinity) divides a plane into two distinct regions.
An open curve can only be contained in the topology of lines if it is considered as
the limiting case of an infinitely thin loop. This two-dimensional construction can
be translated to three dimensions if we instead consider the continuous family of
concave surfaces bounded by a dislocation line [11] as opposed to the division of a
plane.

These considerations give our first main topological constraint, namely that for
a linear defect to be a dislocation, i.e. to have the topology of a line, it must either
form a closed curve or terminate on the boundaries of an areal defect.

For the dislocation to be a structural defect there must be some topologically
identifiable structural ‘charge’ associated with the line, which we will restrict to
be rigid translations by a vector b.1 In close analogy with Ampère’s law [13], the
appropriate operation to extract this ‘charge’ is any closed path around the line, known
as a ‘Burgers circuit’ after its creator. Starting from an arbitrary atom and taking steps
only to nearest neighbours, execute a closed path enclosing one or many dislocation
lines, in close analogy to an Ampère circuit. As we know the vectors representing
nearest neighbour atomic separations of a perfect crystal, for each step calculate the
vectorial difference between the ‘ideal’ vector and the actual step vector, then sum
all of these vectors around the path. In a perfect, dislocation-free crystal this would
give identically zero, meaning that dislocations are defined to be linear defects which
contribute a a non-zero result, giving the total displacement b induced by the defect
whichwill be independent of the details of the path taken.This independence is simple
to demonstrate by comparing two paths which both enclose the same dislocations.
First, if the paths do not overlap, add a closed loop to one path to give overlap with
the second path. The two paths now form a set closed loops which do not enclose
any dislocation and thus give no contribution to the net displacement (c.f. Fig. 2.3).
As these closed loops represent the transformation from one path to the other the
path independence is proved.

Crucially, if the Burgers vector b is not a symmetry operation of the host lattice, an
areal stacking fault equal in size to the minimal plane bounded by the dislocation line
would develop (the shaded area in Figs. 2.4 and 2.5), meaning that the dislocation
becomes a stacking fault and so can no longer be classified as a line defect. This

1There also exist rotational defects called disclinations, but as they can only appear where the
violation of bulk translational symmetry induced by this lattice rotation has a controllable energy
cost, such as in nanocrystalline metals [12] or liquid crystals [11] we do not consider them here.
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Fig. 2.3 Left An 〈100〉(010) edge dislocation in Iron. An edge dislocation is formed through
the insertion of an additional semi-infinite crystalline plane. Right A cartoon of the same edge
dislocation line with an example surface bounded by the line and a possible Burgers path, with the
line direction t and Burgers vector b shown

Fig. 2.4 A demonstration of Burgers path independence. The difference between two paths can
always be considered as a closed loop enclosing no defects which cannot therefore contribute to
the path integral

Fig. 2.5 Left A (11̄0) plane containing a 1/2〈111〉[11̄0] screw dislocation overlaid on an unfaulted
(11̄0) plane in Tungsten. We see that the ‘disregistry’ between the two planes eventually becomes
equal to b. Right A cartoon of the same dislocation

leads to the second main topological constraint on dislocations- the ‘Burgers vector’
b must be a vector of the host lattice.2

We now have all the topological elements to build arbitrary dislocations. For
straight dislocation lines, the relationship between the line direction t and the Burgers
vector b defines the character of a dislocation line; when b · t = 0 the dislocation is
of ‘edge’ character and the line represents the boundary of an inserted semi-infinite
crystallographic plane of normal b as illustrated in Fig. 2.3. When |b ∧ t| = 0 no
additional material is required and we say the line is of ‘screw’ character- the line
represents the centre of a spiralling displacement that translates the crystal by b
around one circuit; an overlay of a plane containing a screw dislocation and a perfect
lattice plane is shown in Fig. 2.5.

2Strictly, this restriction only applies to dislocation in the bulk. On surfaces this restriction does
not apply, meaning a different partial dislocations can exist depending on the coincident site lattice
[14] of grain boundaries or simply the crystallographic character of a free surface.
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Fig. 2.6 Illustration of a
dislocation core ‘unit’ for a
1/2〈111〉(11̄0) edge
dislocation in bcc Iron. The
atoms are coloured from blue
to ref by potential energy. We
see the core structure repeats
over the line direction lattice
vector t = [112̄]

2.2 Dislocation Core Structure

We have discussed how the non-linear discrete structure of a crystal localises defor-
mation into dislocations, such that the bulk of the inserted half plane, or spiral defor-
mation, is accommodated in a tight core region within which a line co-ordinate may
be defined. For a straight line dislocation lying along a lattice vector t, the core struc-
ture will be periodic with a period of t by the discrete translational symmetry of the
host crystal, as demonstrated in Fig. 2.6. This naturally leads to a definition of dislo-
cation core ‘units’, a concept which we find very useful to understand the dynamics
of dislocation cores. Whilst the picture of a compact core is always appropriate for
dislocation formation, in some close packed structures such as face centred cubic
metals3 it can be the case that a compact dislocation can be unstable to core dis-
association: an areal stacking fault band bound by two ‘partial’ dislocations where
only the total Burgers vector is a lattice vector [2]. As shown in Fig. 2.7, such an
arrangement can either be considered as an areal defect or, far from the stacking
fault band, a dislocation line.

Such an ambiguity is to be expected as the topological definitions only strictly
apply to ideal mathematical entities rather than real localised deformations. Nev-
ertheless, the two restrictions that a dislocation line must be closed and that the
(potentially total) Burgers vector must be a lattice vector remain valid as to violate
this would induce a stacking fault of a size only determined by the geometry of the
line rather than any ‘intrinsic’ energetic considerations that lead to a disassociated
core.

3Hexagonal close packed and face centred cubic crystal structures assume the optimal packing of
spheres, meaning in turn that they maximise inter-planar distances [16], which often leads to very
glissile dislocation structures with a low stacking fault energy [15].
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Fig. 2.7 Comparison of dislocation cores. Left a disassociated 1/2〈110〉(1̄12) edge dislocation in
fcc Nickel. The wide stacking fault can clearly be seen, though a line picture emerges far from the
core. Right the compact core of a 1/2〈111〉(11̄0) edge dislocation in bcc Iron. As bcc metals have
no metastable stacking faults dislocation cores never disassociate [15]

2.3 Dislocation Motion and the Kink Mechanism

As mentioned above, when t,b are not aligned the dislocation requires the addition
of material to the host crystal proportional to M |b ∧ t|, where b, t are lattice vectors
and L is the shortest distance from the dislocation line to the boundary of the crystal.
As the dislocation line itself can be thought of as the boundary of this additional
material, if the dislocation linemoves out of the plane defined by b∧t, M will change,
meaning that material will have to be added or removed. Such non-conservative
motion is known as climb motion and is typically facilitated by the biased diffusion
of vacancies to the dislocation core [17]. Whilst such a motion is certainly dependent
on stochastic thermal forces to drive vacancies over their large migration barriers,
these barriers are very large meaning that climb motion is extremely slow (and
consequently atomistic simulation becomes extremely expensive). In this thesis we
focus on glide motion, where dislocation motion is restricted to the glide plane of
normal t ∧ b. As glide motion is conservative it occurs much more readily and is
the dominant form of dislocation mediated deformation under typical mechanical
conditions. Such is the predominance of glide motion, dislocations are typically
characterised by their Burgers vector and glide plane in the form

〈BurgersVector〉{Glide Plane} Character, i.e. 〈100〉{010} Edge.

Glide planes are normally low index lattice planes, as these have the greatest atomic
density hence a larger interplanar separation [16]. However, although dislocation
glide is a conservative process, the discrete structure of a crystal breaks any con-
tinuous translational symmetry, meaning minimum energy configurations will only
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Fig. 2.8 A cartoon of the kink mechanism. The background gradient illustrates the variation of
dislocation core energy due to the discrete structure, which when aggregated into motion perpendic-
ular to the bulk line direction gives a one dimension periodic function known as the Peierls barrier,
as illustrated in the right hand strip. The red line illustrates the typical kink pair configuration a
dislocation line takes to migrate through the periodic landscape. This occurs because the barrier for
rigid migration scales linearly with the line length, whilst the kink pair energy is length independent

by invariant after rigid translation by a lattice vector. In between these positions the
energy varies periodically under rigid translation. This energy barrier to dislocation
motion is called the Peierls barrier and is a rate limiting process in transition metals
such as Iron and Tungsten, where the highly directional bonding accentuates this
discreteness effect. To see the influence of the Peierls barrier, consider an infinitely
long straight dislocation sitting in a minimum energy position. It is clear that the
magnitude of the energy barrier to rigid motion will scale linearly with the dislo-
cation line length (the Peierls barrier is defined by unit length) implying that an
infinitely long dislocation line has an infinitely large barrier between adjacent mini-
mum energy positions. Nevertheless, the dislocation can still migrate through the a
process known as the kink mechanism.

The kink mechanism can be pictured in direct analogy to a first order phase
transition, with the initial and final configurations as two phases. Rather than a
homogeneous change of state, a small region of the new phases is nucleated, then
grows through the motion of domain walls. The domain walls are short segments
known as kinks. A more physical picture of the kink mechanism is given in Fig. 2.8;
we shall explain the kink mechanism in more detail when investigating the atomistic
simulation of dislocations.

2.4 Dislocations and Phonon Scattering Theory

All treatments of dissipative defect forces have employed scattering theory to describe
the interaction between dislocations and thermal vibrations [2, 18, 19]. As we take
an entirely independent approach in this thesis we will only summarise the qualita-
tive results. Indeed, one disadvantage of scattering theory predictions is even under
drastic assumptions of dislocation core structures the resulting expressions involve
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Fig. 2.9 A diagrammatic picture of phonon scattering. The dislocations and phonons are assumed
to be well defined entities which to only interact through scattering processes which may be sys-
tematically evaluated. Higher order processes contribute terms of higher order in temperature. The
linear and quadratic dispersion relations mean the first order term vanishes for subsonic defect
speeds. The second process represents a simple ‘in-out’ scattering and represents the well-known
‘Phonon Wind’ mechanism

complicated integrals meaning quantitative predictions are sensitive to regularisa-
tion techniques such as infra-red/ultraviolet cut-offs or gradient approximations [20]
required by all continuum linear field theories [21].

Scattering theories assume that dislocations and phonons are canonical objects
which are non-interacting to quadratic order, meaning each have well defined energy
and momenta. One then perturbs this harmonic system with higher order terms giv-
ing an expression for γ which be evaluated in a series of scattering events. A cartoon
diagrammatic representation is shown in Fig. 2.9. Given that we expect the phonon
number to be proportional to temperature, it is not surprising that higher order scat-
tering events lead to higher order temperature dependence in γ. However, given the
simulation evidence we only consider the zeroth and first order terms γ0 and γwkBT.

As dislocations and phonons are assumed to be canonical in this scattering
approach each diagram is dependent on the phase space available for the scattering
process they represent. This means the temperature independent term γ0 is reliant
on a one-body absorption or emission, whilst γwkBT includes more typical ‘in-out’
process. Selection rules for these terms can be derived when noting that we are con-
cerned only with subsonic dislocations moving much slower than the wave speed.
Taking a linear phonon dispersion relation �ωph = �ck where c is the wave speed
(it turns out that more complicated dispersion relations do not qualitatively affect
the results) and a quadratic dislocation dispersion �ωdis = (�K )2/2m, we obtain the
balance

�ck + (�K )2/2m = (�K + �k)2/2m ⇒ c � �K/m. (2.1)

But we know that the dislocation speed is subsonic, i.e. �K/m 	 c, meaning that
the above balance cannot be met in the subsonic regime. This is universally invoked
in all scattering approaches to conclude that

γ0 = 0. (2.2)
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We will show, through the analysis of extensive atomistic simulations by ourselves
and many other researchers that this conclusion is false. This qualitative failure
is a manifestation of the erroneous canonisation present in all scattering theories.
The main result of this thesis is an entirely new approach that solves these shortcom-
ings.For higher order processes the phase space is not so restrictive and so continuum
theories in general predict that

γ � γwkBT, (2.3)

with the second term in Fig. 2.9 being the dominant contribution.
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Chapter 3
Stochastic Motion

3.1 The Langevin and Fokker-Planck Equations

The microscopic theory of heat was initiated after experiments in 1827 by Brown
[1], who observed that pollen grains floating in water were never stationary, but
constantly agitated by numerous weak collisions. In a famous 1905 paper Einstein
[2] quantified the observed dynamics, showing how although each grain received no
net momentum on average, they were nevertheless displaced by diffusion.

Consider observing a particle, submersed in some thermal bath, on a coarse
grained time scale τ over which the velocity and position undergo changes δx, δẋ .
Within τ the particle will experience a net impulse from thermal collisions Iτ and a
net impulse from any external forces −τ∂x V (x). Using these impulses we can write

mδẋ = −τ∂x V (x) + Iτ . (3.1)

Such an equation can only be defined on a coarse grained timescale τ in order to treat
thermal collisions statistically. The statistical properties of Iτ are defined through
an average over all possible dynamics of the bath, denoted by 〈. . .〉. By the central
limit theorem [3] we expect that the bath statistics will be entirely characterised
by the average 〈Iτ 〉 and covariance 〈Iτ Iτ ′ 〉 − 〈Iτ 〉〈Iτ ′ 〉.1 If the particle has a net
momentum, thermal equilibrium requires it give this to the bath (which has none).
For small velocities we assume that the rate at which momentum is given to the bath
is proportional to the particle momentum, giving an average impulse from the bath of

〈Iτ 〉 = −γτ ẋ + O(τ2) (3.2)

1The central limit theorem concerns the statistics of ensembles. To hold it requires the ensemble
constituents posses a finite standard deviation. In principle it is possible for the forces of some system
to have a vanishing or infinite standard deviation, which gives so-called anomalous diffusion [4].
We do not consider these cases as our heat bath is a vibrating crystal, which has well defined elastic
properties that demand a non-zero, finite standard deviation in the thermal force.

© Springer International Publishing Switzerland 2015
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where γ measures the impulse density of the bath.2 It is natural to take the rate of
thermal collisions to be constant and completely uncorrelated over different time
periods, as the bath should be completely incoherent to maximise its entropy. This
means we expect the uncertainty in the thermal impulse, characterised by the covari-
ance 〈Iτ Iτ ′ 〉−〈Iτ 〉〈Iτ ′ 〉 to only exist for τ = τ ′. In addition, we expect the uncertainty
to grow linearly with the coarse grained integral τ as we are free to construct this
interval from many shorter, completely uncorrelated intervals, meaning the variance
will increase linearly. These considerations mean the second moment of the thermal
impulse reads

〈Iτ Iτ ′ 〉 − 〈Iτ 〉〈Iτ ′ 〉 = 2�τδττ ′ + O(τ2) (3.3)

This last equation shows Iτ has a component of order
√

τ , meaning the associated
force limτ→0 Iτ/τ diverges, a mathematical restatement of the fact we must work on
a coarse grained timescale to treat the bath statistically and therefore introduce the
concept of temperature. Nevertheless, it is customary to use a force balance equation
though it is understood the time differentials are strictly finite differences.

This force balance equation is the celebrated Langevin equation [4], devised to
model a single realisation of a stochastic process as idealised thermal collisions
completely uncorrelated in time. It is derived from (3.1) using the expectation values
above. It reads

mẍ = −∂x V (x) + −γ ẋ + √
2�η(t), (3.4)

where η(t) is an idealised white noise, defined by the ensemble averages

〈η(t)〉 = 0 〈η(t)η(t ′)〉 = δ(t − t ′), (3.5)

where the delta function is understood to be a Gaussian of width ∼τ . To see how
temperature emerges in this picture, we look at the ensemble average dynamics.
Taking some function φ(x(t), ẋ(t)), where x(t), ẋ(t) solves a particular realisation
of (3.4), we define

�(x, ẋ, t) = 〈φ(x(t), ẋ(t))|x(0) = x, ẋ(0) = ẋ〉. (3.6)

Note that �(x, ẋ, t) depends on the past position and velocity x, ẋ . The evolution
equation of �(x, ẋ, t) may be evaluated using (3.4), recalling that η(t) is of order√
dt to write

∂t�(x, ẋ, t) = ẋ∂x� − (∂x V (x) + γ)/m∂ẋ� + �∂2
ẋ � (3.7)

= L̂�. (3.8)

⇒ �(x, ẋ, t) = eL̂t�(x, ẋ, 0) (3.9)

2For simplicity, we have neglected the possibility that γ depends on position. This is treated below.
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This is the so-called backwards Kolmogorov equation (BKE) for the evolution of
the ensemble average of a smooth function. An evolution equation for a function
which depends on the current time and position can be obtained by considering the
evolution of the probability density ρ(x, ẋ, t), which was initially ρ(x, ẋ, 0). We
average over all initial conditions with ρ0 allowing us to write

∫
ρ(x, ẋ, 0)�(x, ẋ, t)dxdẋ =

∫
ρ(x, ẋ, t)�(x, ẋ, 0)dxdẋ

=
∫

eL̂∗tρ(x, ẋ, 0)�(x, ẋ, 0)dxdẋ, (3.10)

where L̂∗ is the adjoint (in the space of square integrable functions, where ρ must
reside) of the functional operator L̂ . This holds for all smooth functions � and thus

ρ(x, ẋ, t) = eL̂∗tρ(x, ẋ, 0), meaning

∂tρ = L̂∗ρ, (3.11)

= ∂x (ẋρ) + ∂ẋ

(
(∂x V (x)/m + γ ẋ/m)ρ + �/m2∂ẋρ

)
(3.12)

which is the famous Fokker-Planck equation for the distribution function ρ. It can
be shown directly that the steady state equation ∂tρ∞ = 0 is solved by

ρ∞ = exp− γ

�

(m

2
ẋ2 + V (x)

)
/Z (3.13)

which becomes identical to Gibbs’ distribution if and only if

� = γkBT, (3.14)

a result known as the fluctuation-dissipation theorem.Using this relationship in (3.12)
we see that whilst the temperature T characterises equilibrium, the impulse density
γ characterises non-equilibrium. This statement is made even clearer if we rewrite
(3.12) in terms of the deterministic probability current j = (ẋρ,−∂x V (x)/mρ),

ρ̇ = ∂tρ + ∇ · j = (γ/m)∂ẋ (ẋρ + (kBT/m)∂ẋρ) (3.15)

showing that probability flux out of the system is proportional to γ.

3.1.1 Strong Damping Limit

It is often the case that the dynamics of a stochastically agitated particle can be
partially integrated, allowing a statistical description that depends only on position.
This strong damping regime is much easier to handle mathematically and thus very
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attractive for modelling purposes. Happily, it also happens to be legitimately applica-
ble in a wide range of cases where inertia is not observed to play an important role. To
obtain a condition for the strong damping limit, consider the variablew = x +mẋ/γ.
The dynamics of w follow

ẇ = −∂x V (x)/γ +
√
2kBT

γ
η(t). (3.16)

This would be a first order stochastic equation for w providing

∂x V (x) � ∂wV (w), (3.17)

which requires that the force does not vary significantly over the thermal mean
free path ∼mẋ/γ. As γ → ∞ this will be true for all potentials, hence the ‘strong
damping’ label, but in principle this can apply anywhere (3.17) holds. The associated
ensemble dynamics can be evaluated by working with the orthogonal coordinates
(w = x + mẋ/γ, z = ẋ − mx/γ). In these coordinates the Fokker-Planck equation
reads

(1 + m2

γ2 )∂tρ(w, z, t)

(
∂w − m

γ
∂z

) (
z + m

γ
w

)
ρ −

(
1

m
∂z + 1

γ
∂w

) (
∂w − m

γ
∂z

)
V ρ

= γ

m

(
∂z + m

γ
∂w

) (
mw

γ
+ z

)
ρ + γ

m

(
∂z + m

γ
∂w

)2

ρ, (3.18)

which upon integration over surfaces of constant w gives to leading order in 1/γ

∂tρ(w, t) = 1

γ
∂w (∂wV (w)ρ + kBT∂wρ) + O(1/γ2), (3.19)

which is commonly referred to as the Smolchowski equation. In the absence of any
external forces we obtain the Diffusion equation

∂tρ(x, t) = kBT
γ

∂2
x ρ(x, t) = D∂2

x ρ(x, t), (3.20)

demonstrating the Einstein relation D = kBT
γ

3.1.2 State Dependent Damping

We saw above how stochastic collisions can only strictly be defined as impulses. Fur-
thermore, it is not possible to unambiguously integrate (3.4) with standard methods
as a stochastic ‘force’ has unbounded variation, giving different continuum lim-
its depending on method of integration (rectangle, trapezium etc.) used. We have
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implicitly used the Îto interpretation throughout, where only initial values need be
used to propagate in time- the rectangle δτ x(τ ) is used for the interval τ , τ + δτ .
A more physical approximation is to use the Stratanovich interpretation which is
sensitive to both initial and final values (c.f. Hamilton’s principle) where the trapez-
ium δτ/2(x(τ ) + x(τ + δτ )) is used for the interval τ , τ + δτ . However, the strictly
Markovian form of the Îto interpretation is essential to safely convert between ensem-
ble dynamics and individual realisations of the Langevin equation. Thankfully, it can
be shown that the Stratonovich interpretation can be converted to an Îto Langevin
equation of the form [5]

mẍ = −∂x V (x) + ∂xγ(x)/2 − γ ẋ + √
2γ(x)kBTη(t), (3.21)

As is clear, this only affects the equation of motion when γ(x) depends on position.
It is simple to show that the appropriate distribution function in the strong damping
limit is

∂tρ(x, t) = ∂x

(
1

γ(x)
(∂x V (x)ρ + kBT∂xρ)

)
, (3.22)

and so does not affect the equilibrium distribution ρ∞. This emphasises the fact that
γ(x) is concerned with non-equilibrium (i.e. dynamical) system properties.

3.2 Projection Operators and the Mori-Zwanzig Technique

Liouville’s theorem states that the volume of phase space an isolated system fills
is conserved under Hamiltonian dynamics [6]. This is expressed in the continuity
equation ∂tρ + ∇ · j = 0, i.e. the Fokker-Planck equation (3.15) with γ = 0.

However, if we only determine the state of a partition of this system the phase
space volume of this partition does, and should, change under the Hamiltonian evo-
lution of the entire system. The motion of the undetermined variables can only be
treated statistically. It is typically appropriate to invoke the central limit theorem char-
acterised by two variables, kBT and γ. The effective microscopic evolution equation
for the degrees of freedom we measure evolves according to a stochastic equation of
motion possessing fluctuation and dissipation operators. This replacement of many
degrees of freedom by a statistical distribution is in essence is the nature of thermal
motion. Brown could only track the pollen grains, not the water. The grain’s motion
thus appeared stochastic but with well defined averages.

The theoretical techniques to derive a stochastic equation of motion for a few
degrees of freedom from a higher dimensional Hamiltonian were first developed by
Mori and Zwanzig. In the followingwe provide a fairly general derivation though in a
view to later application we focus on the case where the projected degrees of freedom
are ‘slow’ compared to the ‘fast’ undetermined variables, which will lead to a typical
Langevin equation. Such a separation of timescales is typical and physical; thousands
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of water molecule collisions were needed for Brown to observe any displacement in
the pollen grain.

The idea is to derive a formal solution for a set of ‘fast’ variables�, �̇which may
be substituted into the equation of motion for the ‘slow’ resolved co-ordinates xλ, ẋλ.
Our choice of notation anticipates that used in the final chapter, where the resolved
coordinates will be those of crystal defects. By considering only a distribution of
initial conditions for the fast variables we immediately go from themicrocanonical to
the canonical ensemble, introducing heat and stochastic fluctuations into the system.
To actually do this we use a projection operator. The projection of some function
A(xλ(t), ẋλ(t),�(t), �̇(t)) = A(t) is a conditional average over the fast variables
weighted by somedistribution functionρ; for systemswith awell defined temperature
(meaning the vibrations are to leading order harmonic) ρ is simply the partial Gibbs
distribution, giving a projection operator

P̂ A(t) ≡ 〈A; xλ(t), ẋλ(t)〉 ≡
∫

d�d�̇Aρ, (3.23)

wherewe integrate over the constraints (6.8). It is simple to show that P̂ is idempotent,
i.e. P̂ P̂ A(t) = P̂ A(t). The distribution function ρ (whose arguments we typically
suppress for clarity of presentation) is given by

ρ(xλ,�, �̇) = e−β
[
V (xλ,�)−F(xλ)+m�̇·�̇/2

]
, (3.24)

with the function eβF(xλ) providing normalisation; −∂λF(xλ) gives the projected
force −P̂∂λV (t) = 〈−∂λV ; xλ(t)〉.

To derive a closed equation for xλ, ẋλ, it is expedient to work with the anti-
Hermitian Liouvillian operator L̂ = −L̂†, which gives the time evolution of some
implicitly time dependent function of the system coordinates A through (d/dt)A =
L̂ A, where

L̂ A ≡=
(

−∂λV

m̃
∂ẋλ + ẋλ∂λ − ∇�V

m
· ∇�̇ + �̇ · ∇�

)
A, (3.25)

giving the formal solution A(t) = exp(t L̂)A(0). This may be used to evolve any
function, or projected function, of the system coordinates in time. Defining Q̂ ≡
I− P̂ , the remaining derivation is considerably quickened through use of the famous
Dyson identity

et L̂ = et Q̂ L̂ +
∫ t

0
dse(t−s)L̂ P̂ L̂es Q̂ L̂ , (3.26)

which can be verified by taking P̂ L̂ = L̂ − Q̂ L̂ then integrating the last term by
parts. With these definitions, we now consider the equation of motion m̃ẍλ = −∂λV ,
which may be trivially rewritten as

http://dx.doi.org/10.1007/978-3-319-20019-4_6


3.2 Projection Operators and the Mori-Zwanzig Technique 23

m̃ẍλ(t) = −et L̂∂λF(xλ(0)) + et L̂ [∂λF(xλ(0)) − ∂λV ] , (3.27)

separating the force into a force expectation that depends only on the resolved coordi-
nates and a remainderwhich clearly vanishes under the projection operation.Defining
a noise term

ηQ(t) ≡ et Q̂ L̂(∂λF(xλ(0)) − ∂λV ) (3.28)

that evolves due to exp t Q̂ L̂ in a subspace uncorrelatedwith the resolved coordinates,
we use the Dyson identity to write

m̃ẍ(t) = −∂λF(xλ(t)) + ηQ(t) +
∫ t

0
ds〈L̂ηQ(t); t − s〉, (3.29)

where for clarity of presentation we have used the abbreviation 〈L̂ηQ(t); t − s〉
for 〈L̂ηQ(t); xλ(t − s), ẋλ(t − s)〉. This equation is already reminiscent of a non-
Markovian Langevin equation with an expected force, noise term and memory term.
To complete the derivation for our purposes we need to put the integrand of the
memory term into more useful form. We use the definition of the projection operator
to write

〈L̂ηQ(t); t − s〉 =
∫

�,�̇

ρ(t − s)L̂ηQ(t), (3.30)

where ρ(t − s) is the distribution function in (3.24) with xλ(t − s), ẋλ(t − s). We
now use the anti-Hermitian property of L̂ = −L̂† to act on the distribution function
ρ(t − s) instead of ηQ(t). We do this in two stages for clarity. Using the definition
(3.25) of L̂ and the fact that 〈�̇〉 = 0 and ∂ẋλρ = 0 define a second ‘noise’ term

η(t) ≡ ρ−1(t)L̂ρ(t) = et L̂(∂λF(xλ(0)) − ∂λV ), (3.31)

which evolves under the full dynamical operator et L̂ unlike ηQ(t) which evolves

under the subspace et Q̂ L̂ . This allows the re-expression of (3.30) as

−
∫

�,�̇

ηQ(t)L̂ρ(t − s) = β〈ηQ(t)η(t − s)〉ẋλ(t − s), (3.32)

thereby giving the formally exact equation of motion for the resolved coordinates as

m̃ẍ(t) = −∂λF + ηQ(t) −
∫ t

0
dsβ〈ηQ(t)η(t − s)〉ẋλ(t − s), (3.33)

where we have suppressed the argument of ∂λF . In order to evaluate the various
terms in this equation it would be very convenient to eliminate the reduced evolution
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operator et Q̂ L̂ present in ηQ(t) in favour of the full evolution operator et L̂ , as it is
the latter that evolves the system under Hamiltonian dynamics (and, importantly for
practical calculation, in any classical simulation scheme) and thus may be readily
calculated.

Such an approximation is possible when the resolved dynamics occur on a slow
time scale τ over which the vibrational coordinates lose coherence. In this limit the
rate of change of the resolved variables is quantified by the small parameter τ−1,

meaning in particular that et Q̂ L̂ = P̂ L̂ + O(τ−1), ηQ(t) = η(t) + O(τ−3) and
〈ηQ(t)η(t − s)〉 = 〈η(t)η(t − s)〉 + O(τ−3). With these approximations we obtain

m̃ẍ(t) = −∂λF −
∫ t

0
dsC(s; xλ(t))ẋλ(t − s) + η(t), (3.34)

where we have again suppressed the argument of ∂λF and identified the memory
kernel

C(s; xλ(t)) ≡ β〈η(t)η(t − s)〉 (3.35)

we retain a dependence on xλ(t) in thememory kernel, alongwith η(t), as the friction
may depend on the defect position xλ(t). However, in later application we focus
on case where the resolved coordinates do not have any large migration barriers
and thus would not posses a position dependent frictional force. Regardless, the
definition of C(s; xλ(t)) is important as it provides a direct demonstration of the
non-Markovian fluctuation dissipation theorem, i.e. that the memory kernel is the
noise auto-correlation divided by temperature. Although we will take a Markovian
approximation below, Eq. (3.34) is the first main result of this section as all of the
expectation values may be directly evaluated from simulation trajectories of the
stochastic resolved force. We can take a time series average (conditional on xλ) to
obtain −∂λF(xλ) by ergodicity

− ∂λF(xλ) ≡ lim
t→∞

∫ t
0 −∂λV (t ′)δ(xλ(t ′) − xλ)dt ′∫ t

0 δ(xλ(t ′) − xλ)dt ′
, (3.36)

where δ(xλ(t ′)−xλ) selects onlymeasurements with the correct resolved coordinate.
In a periodic systemwe obviously consider this coordinate modulo the period, whilst
when the defect force varies little with position we average over the coordinate to
improve the statistics. The noise force η(t) = −∂λV (t) + ∂λF(t) is now simply the
fluctuations around the average value, which may similarly be evaluated by

C(s; xλ) = lim
t→∞

[∫ t
0 δ(xλ(t ′) − xλ)fλ(t ′ + s)fλ(t ′)dt ′∫ t

0 δ(xλ(t ′) − xλ)dt ′
− (∂λF(xλ))2

]
. (3.37)

To finish this section we take theMarkovian approximation, which invokes the slow-
ness of ẋλ to ‘deconvolve’ the time integral in (3.33), giving
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∫ t

0
dsβ〈η(t)η(t − s)〉ẋλ(t − s) �

∫ ∞

0
dsβ〈η(t)η(t − s)〉ẋλ(t) ≡ γẋλ(t). (3.38)

This last equality finally gives the second main result of this section, that the defect
drag parameter γ is given by the time integral of the defect force autocorrelation
divided by temperature. To satisfy the fluctuation dissipation theorem in thisMarkov-
ian limit, η(t) becomes delta correlated on the slow time scale τ , giving ensemble
averages

〈η(t)〉 = 0, 〈η(t)η(t − τ )〉 = 2γkBT. (3.39)

Putting all of this together we finally obtain a closed stochastic equation of motion
for the defect coordinates of

m̃ẍλ(t) = −γẋλ(t) − ∂λF + η(t). (3.40)

It is typical in dislocation dynamics to neglect the inertial term m̃ẍλ(t), which is
valid when the potential energy landscape is slowly varying over the thermal length√
kBT/m̃γ [4]. This equation still has an extremely large phenomenological reach

andwewill employ further techniques to both simulate its dynamics and theoretically
predict and interpret its results in later sections. The main result of this thesis will
be an explicit form for the force autocorrelation C(τ ) for a wide range of crystal
defects and dislocations, allowing direct evaluation of γ from the projected defect
force. However, we now return to the stochastic motion of dislocations in atomistic
simulation, which provide the physically important data that we wish to interpret
using the techniques outlined above.
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Chapter 4
Atomistic Simulations in bcc Metals

It is clear that numerical methods essential when trying to understand the detailed
atomic structure and dynamics. The most popular quantum mechanical approach
is density functional theory [1] (DFT), which exploits an isomorphism between
the ground state wave function and ground state electron density to approach the
many-body Schrödinger equation variationally, often allowing efficient evaluation
of complex structures and energy landscapes. However, even with significant simpli-
fications to the underlying Hamiltonian such techniques are currently limited to less
than 500 metallic atoms, meaning that they only be used to inform coarse grained
models of atomic interaction. At present, short segments of screw dislocation cores
can be simulated in DFT allowing accurate parametrisation of the Peierls barrier
and dislocation formation energies, along with similar properties for point defect
formation energies, as well as bulk properties such as the lattice parameter and bulk
modulus [2]. It is the aim of any coarse grained model to quantitatively reproduce
these features as accurately as possible.

Born and Oppenheimer [3] were the first to realise that much insight into atomic
rather than electronicmotion can be gained if oneworks on a coarse grained timescale
of femtoseconds, where the electronic co-ordinates are assumed to instantaneously
assume theminimumenergy configuration consistentwith the given atomic positions.
In this way one can argue that only the atomic positions need be retained along with
some phenomenological interaction potential which attempts to recreate the energy
landscape generated by the full quasistatic quantum mechanical system.

In practice, molecular dynamics (MD) simulation aims to use an interatomic
potential that best reproduces the features from DFT. The simplest choice is some
isotropic pair potential φ(r) such that

V =
∑

i j

1

2
φ(|xi − xj|), (4.1)

where the factor of 1/2 accounts for the exchange symmetry between i, j . Despite the
appeal of this simple and efficient form, it can be shown that this can only produce
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two independent elastic constants, meaning immediately that the elastic properties
of cubic crystals, which require three, cannot be captured. This is not surprising
as a simple pair potential has no concept of structure, and thus cannot be expected
to capture structural features such as anisotropy. However, including orientations
explicitly would require calculation of inverse trigonometrical functions at every
timestep which significantly increases the computational demand, so a central force
potential is still desired.

An answer inspired by tight-binding theory [4] was first given by Daw and Baskes
in 1984 [5]. They showed that a simple embedding function can capture the structure
surrounding an atom, by independently summing over each atomic site rather than
in the symmetric manner of (4.1). An embedded atom interatomic potential, used
exclusively here, is of the form

V =
∑

l

al

∑
i

⎛
⎝∑

j

ρl(|xi − xj|)
⎞
⎠

Cl

, (4.2)

where in general C = 1,0.5 and other higher (integral) powers. For C = 1 we obtain
the pair potential (4.1), but crucially when C �= 1 the contribution from each atom,
in particular the curvature, are sensitive to the proximity and arrangement of its
neighbours through

∑
j ρl(|xi − xj|).

After an interatomic potential is created, an initial atomic configuration is speci-
fied which is then dynamically integrated with Newton’s equations. Temperature is
typically introduced through some statistical procedure based on the Langevin equa-
tion or the Maxwell-Boltzmann distribution, but to extract intrinsic thermal results it
is physically more appealing to rely on the molecular chaos of a large system rather
than the often highly artificial connection of the system to an external heat generator.

We do not perform any interatomic potential development in this thesis, instead
using ‘state of the art’ potentials used widely across the atomistic modelling com-
munity. Our main aim is to use large scale atomistic simulations to understand the
complex nature of thermal fluctuations in such systems, which due to the complex
form of (4.2) and its derivatives (please see Appendix A.3) has so far resisted detailed
quantitative study.

4.1 The Drift and Diffusion of Kinks

Dislocation motion is limited by two general processes, the formation and migration
of kinks and pinning by impurities and other defects [6]. In this section we inves-
tigate the motion of kink-limited screw and edge dislocations in bcc Fe, where the
kink formation energy is much larger than the thermal energy. To obtain dislocation
motion on the time-scales accessible to molecular dynamics (MD) simulations some
researchers have resorted to inducing kink formation by applying stresses some six
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orders of magnitude greater than those pertaining experimentally [7, 8]. But dislo-
cation core structures and Peierls barriers are known to be highly stress-dependent
[9], making it difficult to relate simulation to the vanishingly low stress conditions
found in thermally activated evolution of dislocation microstructures.

The periodic potential in the slip plane of a crystal leads to stable positions for
a straight dislocation line separated by maxima in the potential energy known as
Peierls barriers. When the Peierls barrier is large compared to the available thermal
energy, the mobility of dislocations is limited by the discreteness of the crystal struc-
ture. In that case dislocation glide takes place by the thermally activated nucleation
and propagation of kinks [10], which are localized regions connecting dislocation
segments lying in adjacent valleys of the potential in the slip plane. The existence
of kinks is clearly exhibited in MD simulations reported here and in many other
investigations [8, 11, 12], and their movement effects the glide of the dislocations
on which they lie. To understand the kink mechanism it is necessary to investigate
both kink propagation and nucleation of pairs of kinks.

When the formation energy of kink pairs is large compared to the thermal energy it
becomes impossible to obtain statistically significant data on kink nucleation within
MD time scales without resorting to unrealistic applied stresses, typically six orders
of magnitude larger than those encountered in experiments [7]. As a result, while the
kink mechanism is well established in dislocation theory there is a sparsity of MD
data on the parameters controlling kink motion, without which it is impossible to
predict the velocity-stress relationship of the host dislocation for realistic stresses.

To circumvent the problem of kink nucleation in MDwe use boundary conditions
on the simulation supercell which enforce the existence of an isolated kink on the
dislocation line. We use the MD code LAMMPS [13] with a recently developed
potential by Gordon et al. [14] which gives the best available representation of the
screw dislocation core structure and bulk phonon dispersion. To avoid free surfaces,
periodic boundary conditions must be imposed. The dislocation supercell must con-
tain defects with no net Burgers vector to avoid a divergent elastic energy, and in
this work we use dislocation dipoles. Thus the supercell contains two dislocations
with equal and opposite Burgers vectors, and each dislocation has one kink in the
supercell.

Dislocation dipoles were introduced by removing an appropriate number of atoms
for an edge dislocation dipole or shearing the simulation supercell for a screw dis-
location dipole [15], and then applying the anisotropic elastic displacement field for
the dipole. The system was relaxed by a conjugate gradients algorithm, followed by
an annealing process which heated the system to 200K then back to zero temperature
over 100ps (100,000 timesteps) to ensure that the system was in the ground state. To
heat the system, atomic velocities were gradually rescaled according to a Maxwell-
Boltzmann distribution of increasing temperature. Once the desired temperature was
achieved the system was evolved microcanonically and data was taken. This has a
firmer statistical basis than using a thermostat because it relies on the real atomistic
heat bath of a large system rather than any particular thermostat algorithm. However,
unrealistic results can be obtained if there is significant heat generation or absorption
as this may affect the probability of other activated processes [7]. This is likely to be
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the case, for example, when a high energy kink pair annihilates or is created during
the simulation. However, due to their large activation energies such processes did not
occur during the simulations with the zero stress conditions investigated here, and
the system temperature was observed to be constant throughout the simulation runs.

4.1.1 The Kink Vector

A kink connects two straight dislocation segments both parallel to a lattice vector t
lying in the same slip plane. For the segments to be crystallographically equivalent
they must be separated by a lattice vector, which may be uniquely identified, modulo
t, with a lattice vector k which we call the ‘kink vector’. Some dislocations may
exist with a variety of core structures and there is a corresponding variety of atomic
structures of kinks [16, 17]. Nevertheless, the kink vector uniquely identifies any
kink on a dislocation line in a given slip plane with a given Burgers vector and the
same core structure on either side of the kink. We note in passing that a similar
classification may also be applied to jogs, the sessile equivalent of a kink [10], where
the ‘jog vector’ will be a lattice vector with a component normal to the slip plane.
While the term kink vector has already appeared in the literature [17, 18] there
has been no attempt to relate it to the host crystal lattice. To see the utility of our
definition, consider a relaxed straight dislocation dipole, parallel to a lattice vector
t, in a supercell formed from lattice vectors Nx m, Nyt and Nzn, where the Ni=x,y,z

are all integers. To impose the boundary conditions required for a kink on each
dislocation we create a new supercell from Nx m, Nyt + k and Nzn, as shown in
Fig. 4.1. In principle k may be any lattice vector modulo t lying in the slip plane, but
for high index lattice vectors the relaxed structure will possess multiple kinks as one
might expect if k spans many minima of the potential in the slip plane. The set of
low index lattice vectors lying in the slip plane quickly provides an enumeration of
the possible kinks a straight dislocation line may support, generalizing the approach
taken in previous work [18] to produce isolated kinks on dislocation lines. We have
used this procedure to generate the simulation supercell geometries employed here.
Each supercell contained approximately 700,000 atoms, with the dislocation line
either initially sharply kinked as in Fig. 4.1 or parallel to the Nyt + k supercell
vector. The relaxed configurations were independent of this initial preparation.

4.1.2 A Coarse Graining Procedure for Atomistic Simulation

Having obtained a relaxed configuration, the atoms were grouped into atomic planes
normal to the unkinked dislocation line direction t. The potential energy in each
plane has clearly defined peaks, the centres of gravity of which identify the positions
of the dislocation core, as illustrated in Fig. 4.2. The coarse grained representation
of the dislocation comprises a line threading nodes at each of these core positions.
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Nxb

Nzn

k

Nyt+k

Nxb

Fig. 4.1 Cartoon plan of the simulation supercell for an edge dislocation dipole, formed from
lattice vectors Nx b, Nyt + k and Nzn. The broken line in the left figure highlights one of the two
slip planes, which are separated by half the supercell height 1

2 Nz |n|

Fig. 4.2 Above An atomic plane normal to a screw dislocation dipole is exposed with the higher
energy atoms coloured progressively red. The dislocation cores are clearly identified.Below Plotting
only the highest energy atoms in successive atomic planes (red) along the supercell reveals a kinked
dislocation line

There is one node for each atomic plane normal to the dislocation line. The coarse
grained representation is well defined, independent of dislocation character, and it
yields the position of the dislocation with atomic resolution. The unique mapping
between the atomistic and coarse grained representations enables the energy of the
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Fig. 4.3 Illustration of the coarse grained data from atomistic simulation of a kink on a
(1/2)[111](12̄1) edge dislocation line at 0K (bottom) and 90K (top). The kink is clearly local-
ized as measured by the position of the core (red) and the core energy (green). Note the narrow
kink width in contrast to the screw dislocation kinks in Fig. 4.9

coarse grained representation to be determined at each time step of the simulation.
The position of each node on the dislocation line moves in one dimension, normal
to t and the slip plane normal n. The kink position and width were determined from
the center and width of the maximum in the core energy along the dislocation line,
with the trajectories of the two kinks in each supercell each forming a time series
{xn�t },n = 0, 1, . . . , N . The kink position is readily located graphically as shown in
Fig. 4.3, where the dislocation segments on either side of the kink are straight lines
at absolute zero. The dynamics of the kink positions are simulated with MD in the
following section and we aim to reproduce the dynamics with a coarse grained, many
body, stochastic model.

The effectiveness of the coarse graining relies on the uniformity of the poten-
tial energy of atoms in the bulk; however, at finite temperature it is expected and
observed that random fluctuations in atomic positions and energies due to thermal
vibrations obscure the dislocation position. To filter out this noise it is necessary to
average atomic positions and energies over a period of a few thermal oscillations.
The atomic coordinates and energies can then be processed in an identical fashion to
the relaxed zero temperature system, again yielding localized dislocation core posi-
tions. Kinks appear as localized geometric and energetic regions along the coarse
grained dislocation line, allowing the determination of the kink position, width and
formation energy by calculating the total deviation from the core energy of a straight
dislocation line.

Other techniques to determine the dislocation position are to calculate the devia-
tion of the atomic displacements from the anisotropic elastic field [18], or the bonding
disregistry across the slip plane [19].However,we found that the procedure employed
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Table 4.1 Kink vectors and fully relaxed kink formation energies (to 2 s.f.) on edge dislocations
at absolute zero, calculated using the potential developed by Gordon et al. [14] for bcc Fe

Burgers vector (b) Glide plane Tangent vector (t) Kink vector (k) Formation energy (eV)
1
2 [111] (12̄1) [101̄] 1

2 [111] 0.15

(1̄01) [12̄1] 1
2 [11̄1] 0.03
1
2 [13̄1] 0.02

[100] (001) [010] [100] 0.61

(011) [011̄] 1
2 [111̄] 0.25

The tangent vector t is the primitive lattice vector along the unkinked dislocation line

here gave better localization at finite temperature and is applicable to many different
dislocation geometries.

4.1.3 Diffusion Simulations

Table4.1 shows kink formation energies calculated for edge dislocations in bcc Fe.
These values were obtained by calculating the excess energy in a cylindrical slice
coaxial with the average dislocation line direction, relative to the energy of a slice
containing the same number of atoms for a straight dislocation. The slices contain
one atomic plane normal to the dislocation lines. The radius of the cylinder was
enlarged, using the periodic boundary conditions if necessary to generate atomic
coordinates outside the supercell, until the excess energy of the dislocation core in
the slice reached a constant asymptotic value. This excess core energy is plotted in
green in Fig. 4.3. The kink formation energy is the sum of these excess core energies
along the dislocation line. Convergence in the core energy per atomic plane was
typically achieved for a supercell length of thirty Burgers vectors for kinks on edge
dislocations. This implies that the interaction energy between a kink and its periodic
images along the line is not detectable at separations of more than thirty Burg-
ers vectors. The kink formation energies are in broad agreement with other studies
[8, 20, 21].

As [100](011) edge dislocations have not been directly observed in experiment
they are of little interest and we do not consider them further here.

The very low formation energy of 0.03eV for kinks on (1/2)〈111〉{11̄0} edge
dislocations indicates that the mobility of these dislocations is not limited by kinks
except possibly at the very lowest temperatures. Therefore we investigate isolated
kinks on (1/2)[111](12̄1) and [100](010) edge dislocations, whose motion is known
to be kink-limited, at temperatures up to which kinks remain isolated on MD time-
scales.

The kink formation energy for 1
2 [111](12̄1) dislocations is 0.1eV.At temperatures

below 300K it is possible to observe and analyse the stochastic motion of an isolated
kink forMD runs of several nanoseconds. Similarly, for [100](010) edge dislocations
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Fig. 4.4 Above a [100](010)
edge dislocation in the bulk.
Below a kink on this
dislocation with the bulk
atoms removed. The
non-planar core gives a large
kink formation energy of
0.61eV

no additional kinks are expected to be nucleated in MD runs of several nanoseconds
at temperatures up to 700K owing to their large formation energy of 0.61eV. This
large formation energy is due to the non-planar core, shown in Fig. 4.4. An isolated
kink is localized geometrically and energetically as shown in Fig. 4.3.

Figure4.5 shows the trajectories of the two kinks in a simulation supercell on a
(1/2)〈111〉(11̄0) edge dislocation dipole. The twokinks appear to bemoving indepen-
dently, butwe cannot be sure that there is no significant interaction between them.Any
correlation arising from their interaction may be eliminated by analysing the center
of mass x̄ , defined here to be the mean of the two kink positions, x̄ = (x (1) + x (2))/2.
It may be shown [22, 23] that such a quantity is independent of any interaction, and
it yields a diffusion constant one half that of a free kink, Dkink/2. Thus we construct
from the two kink positions a single time series {x̄n�t }, n = 0, 1, . . . , N for the
center of mass to ensure such correlation effects do not affect our results. We look
for diffusive behaviour in the mean squared displacement (MSD) 〈�x̄2〉 over a range
of intervals τ , defined as
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Fig. 4.5 The trajectories
of the two kinks on a
1
2 [111](12̄1) edge
dislocation dipole at
T = 90K
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which is the variance of the displacement. It is well known [23] that for diffusive
motion with a diffusion constant Dkink/2,

〈�x̄2〉(τ ) = Dkinkτ . (4.4)

Examples of the MSD are shown for the system of kinks on edge dislocations
considered above in Fig. 4.6. The MSD clearly shows the linear time dependence
characteristic of diffusive behaviour,with the diffusion constant as defined inEq. (4.4)
shown in Fig. 4.7 for kinks on 1

2 [111](12̄1) edge dislocations. Kinks on a[100](010)
edge dislocations exhibit similar behaviour. The diffusivity rises exponentially with

Fig. 4.6 The mean square
displacement as defined in
Eq. (4.3) for the kink center
of mass on a (1/2)[111](12̄1)
edge dislocation dipole. The
linear relationship with
time is in agreement with
diffusive behaviour, Eq. (4.4)
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Fig. 4.7 Arrhenius plot of
the diffusion constant D̄ for
the kink center of mass on a
(1/2)[111](12̄1) edge
dislocation dipole. A
two-parameter fit of Eq. (4.8)
gives a migration barrier of
74meV, comparable the
150meV kink formation
energy. The linear gradient
implies the dissipation
parameter γkink is
independent of temperature
(see text)
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temperature in both cases, indicating that the kink motion is thermally activated
across the kink migration barrier [10]. We therefore conclude that the kink performs
one dimensional stochasticmotion in a periodicmigration potentialV (x+a) = V (x)

whose amplitude Emig = VMAX−VMIN is large compared to the thermal energy.While
the traditional analysis for such data is to fit an Arrhenius form D0 exp(−Emig/kB T )

for the diffusion constant, in one dimension there exists an exact solution, given by
the Lifson-Jackson formula [24]

Dkink = kB T a2

γkink

(∫ a

0
e−V (x)/kB T dx

∫ a

0
eV (x)/kB T dx

)−1

, (4.5)

where kB is Boltzmann’s constant and γkink is the friction, or dissipation, parameter
[25], which measures the rate of momentum transfer from the diffusing object (here
a kink) to the heat bath. γkink plays a key rôle in the stochastic equations of motion
introduced in Sect. 5.2, defining the frictional force −γkinkv and it is the inverse of
the kink mobility. To gain insight into Eq. (4.5) we investigate limiting cases. When
the amplitude of the migration potential Emig = VMAX − VMIN is much greater than
thermal energy kB T , as for the case of kinks on edge dislocations here, we may
evaluate the integrals in (4.5) by the method of steepest descents. Denoting V ′′ for
the second derivative, (4.5) becomes

Dkink � a2

√
V ′′

MINV ′′
MAX

2πγkink
e−(VMAX−VMIN)/kB T , (4.6)

which is precisely the Arrhenius form given by Kramers [26] for thermally acti-
vated diffusive motion. We note that the traditional temperature independence of
the prefactor in (4.6) requires that γkink be independent of temperature. In the other
limit, when the thermal energy kB T is much larger than Emig, the integrals (4.5) are
constant, giving a diffusivity

Dkink � kB T

γkink
(4.7)

http://dx.doi.org/10.1007/978-3-319-20019-4_5
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Fig. 4.8 Diffusivity in a one
dimensional periodic
potential. Equation (4.8)
(blue), the appropriate
Arrhenius form (green) and
numerical data (red) are
compared across a wide
temperature range. At low
temperatures all three agree
but at intermediate to high
temperatures a linear
temperature dependence
emerges in simulation
and Eq. (4.8)
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as first described by Einstein [27] for a freely diffusing particle. We note that a linear
temperature dependence in the diffusivity (4.7) implies γkink is again independent
of temperature. We will see that kinks on screw dislocations exhibit the diffusive
behaviour of (4.7) due to their negligible migration barrier and thus the relation
(4.5) is able to capture the wide range of diffusive behaviour exhibited by kinks on
dislocation lines. A numerical illustration of (4.5) is shown in Fig. 4.8, where we
indeed see the failure of the Arrhenius law when kB T � Emig. In Sect. 5.2 we show
that to an excellent approximation the migration barrier for a kink is sinusoidal,
V (x) = Emig sin2(πx/a), allowing an exact expression of (4.5)

Dkink = kB T

γkink

1

I 20 (Emig/2kB T )
, (4.8)

where I0(x) is the zeroth order modified Bessel function [28].We thus perform a two
parameter fit of (4.8) to the kink diffusion constant with temperature to determine
γkink and Emig for the kink systems investigated here, the results of which are shown
in Table5.1.

There are two points of note in the MD results for kinks on edge dislocations
in Table5.1. Firstly, we find that the migration barrier is comparable to the forma-
tion energy, implying that the nature of the kink mechanism on edge dislocations
is complex, with double kink nucleation and kink migration occurring on similar
timescales. This agrees with previous simulations on edge dislocations [8] where the
mobility was found to be independent of the dislocation segment length. Secondly,
the linear gradient of the Arrhenius plot in Fig. 4.7 also implies, by Eq. (4.6), that the
dissipation parameter for the kink γkink is temperature independent.

We show in Sect. 5.2 that the dissipation parameter for a kink is proportional to
the dissipation parameter for the host dislocation line, which should therefore also be
temperature independent. Although this agreeswith several [7, 29–31], though not all
[32, 33], atomistic simulations of dislocations and other defect systems in bcc Iron,
decades of theoretical work [10, 34, 35] conclude that the dissipation parameter for
a dislocation should increase linearly with temperature due to the increasing phonon

http://dx.doi.org/10.1007/978-3-319-20019-4_5
http://dx.doi.org/10.1007/978-3-319-20019-4_5
http://dx.doi.org/10.1007/978-3-319-20019-4_5
http://dx.doi.org/10.1007/978-3-319-20019-4_5
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population. We return to this important issue concerning the coupling of dislocations
to the heat bath in the following section on screw dislocations, as the diffusive form
(4.7) they exhibit allows an even more direct investigation of γkink.

While edge dislocations may be thought of as an inserted half plane of atoms [10]
producing a bonding disregistry perpendicular to the dislocation line direction, screw
dislocations create a bonding disregistry along the dislocation line direction, which
does not require the addition or removal ofmaterial. Screw dislocations possess a non
planar core structure in bcc metals, which gives a large Peierls barrier [36, 37]. The
complex core structure is heavily influenced by the choice of interatomic potential
used in classical atomistic simulations. The vast majority of existing potentials pre-
dict a screw dislocation hasmultiple core structures [38, 39], leadingmany authors to
suggest that a screw dislocation may pass through a metastable core structure during
the kink nucleation process [37]. Under an applied stress this can produce a new kink
formation pathway leading to a discontinuity in the flow stress [6, 14, 30]. How-
ever, this discontinuity is not shown in experiment, and recent ab initio calculations
[40, 41] rule out any metastable core structure, with the nucleation pathway seen to
occur almost entirely in the {11̄0} slip planes. A recently developed potential by Gor-
don et al. [14] attempts to address these issues, concluding that while the metastable
core may be removed from the nucleation pathway, multiple core structures remain.
Using this potential, we introduce kinks with the core structure predicted from first
principles calculations, thereby minimizing unphysical effects due to the interatomic
potential.

A screw dislocation dipole requires a triclinic simulation cell to avoid spurious
image stresses; we refer the reader elsewhere for details of the simulation method
[11, 42, 43] which are well established. As before, the kink vector was added to the
supercell vectors to give the boundary conditions required for isolated kinks to form
on each dislocation under relaxation.

Previous zero temperature calculations of isolated kinks on screw dislocations in
bcc Iron [18] with the Mendelev et al. potential [39] found a noticeable difference
between the formation energies of ‘right’ and ‘left’ kinks, which correspond to kink
vectors kR = (1/2)[11̄1] and kL = [010]. They also found the kink formation
energy converged to a constant value when the supercell length was greater than the
widths of two kinks. The supercell length measures the separation between a kink
and its periodic images. These findings are inconsistent with elasticity theory of kink
interactions [44], according to which the far field interaction between kinks should
decrease with the inverse of the kink separation.

To investigate these discrepancies we performed similar calculations with the
improved potential by Gordon et al., extending the supercell length to 240 Burgers
vectors, more than double that used in [18]. In agreement with elasticity theory we
found that when the supercell length was greater than two kink widths the kink
formation energy decreased with the inverse of the supercell length, by 0.011eV for
both right and left kinks over a distance of 200Burgers vectors. The formation energy
for the right and left kinks was 0.604 and 0.13eV respectively, giving a double kink
formation energy of 0.734eV, in good agreement with [18].
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Fig. 4.9 Excess energy per
ABC stacking sequence (see
text) for right (blue) and left
(red) kinks on a
(1/2)[111](11̄0) screw
dislocation. The kinks
appear as peaks of similar
height with asymmetric tails.
The tails are removed under
averaging (black) as
described in the text. Note
the large kink width as
compared to the edge
dislocation kinks in Fig. 4.3

-0.01

0

0.01

0.02

0.03

-0.01

0

0.01

0.02

0.03

-0.01

0

0.01

0.02

0.03

40 60 80 100 120 140 160 180

Left Kink
kL=[010]

Right Kink
kR=(1/2)[11̄1]

Average

E
xc

es
s

E
ne

rg
y

[e
V

]

ABC Stacking Index (Spacing b=(1/2)[111])

We conclude that the long range kink interaction, while decaying inversely with
separation as predicted by elasticity theory [44], is a small perturbation to the kink
formation energy in the atomistic simulations performed here and in [18]. However,
the difference in formation energies of left and right kinks is still unexplained. To gain
insight into the kink structure, Fig. 4.9 shows the excess potential energy, relative to
a straight dislocation, per atomic plane normal to the line of a screw dislocation with
a right or left kink, obtained by the coarse graining procedure described above. The
kinks appear as well defined peaks of approximately the same height but also with
long range tails which differ markedly between the two kinks. These long range tails
are the source of the difference in the formation energies, with the ‘core’ of each
kink very similar in size and energy.

The nature of these tails may be understood by noting that the kinks may be
regarded formally as two short segments of dislocation with edge character. The
edge segments are of equal and opposite sign because their line senses are reversed,
which implies their fields cancel at long range. To test this we average the energy per
unit length for the left and right kinked screw dislocation lines, shown in Fig. 4.9,
where we indeed see a localized peak with a width of around 20|b|, much wider than
the sharp kinks of width 3|b| seen on edge dislocations. It is this core energy and
width which we take to define kinks on screw dislocations.
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Fig. 4.10 Diffusion constant
for left and right kinks. A
linear temperature
dependence is exhibited,
which implies the dissipation
parameter does not depend
on temperature
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At finite temperature, the kink trajectories were analysed in a similar manner to
that detailed above for edge dislocations. However, the temperature dependence of
the kink diffusivities, shown in Fig. 4.10, is markedly different. They exhibit a linear
temperature dependence, which by Eqs. (4.5) and (4.7) implies a negligible migra-
tion barrier, as found in static calculations [18]. It also implies that the dissipation
parameter γkink is independent of temperature.

The temperature independence is significant as all theories of dislocation damping
since Liebfried [34, 35] have concluded that the dissipation parameter for a disloca-
tion must increase linearly with temperature due to the increased phonon population.
We emphasize that the temperature independence of the dissipation parameter is
exhibited in both thermally activated diffusion, i.e. the prefactor of the Arrhenius
law is independent of temperature, and in essentially free diffusion, i.e. the gradi-
ent of the diffusion constant with temperature is independent of temperature. This
discrepancy between theory and simulation has remained unexplained but will be
addressed in the final chapter.

4.1.4 Drift Simulations

Whilst we have seen that kinks diffuse in equilibrium, they will also drift under an
applied stress [10]. To accurately test our parametrization of the kink mobility we
must therefore determine the kink velocity under applied stress. To apply a shear
stress of σ to a screw dislocation we apply a force of Aσ to each atom in two
bounding (11̄0) planes, where A is the area per atom, as illustrated in Fig. 4.11. As
opposed to the kink diffusion simulations, we now only have periodicity normal to
these bounding planes. For these simulations we studied kinks in bcc Tungsten, using
a recently developed potential by Marinica et al. [2] which gives the best available
representation of the screw dislocation core structure and bulk phonon dispersion.
The simulation output was time averaged and energy filtered in both zero and finite
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Fig. 4.11 Illustration of kink drift simulations. Kinks on a 1/2〈111〉{101̄} screw dislocation dipole,
characterized by a lattice ‘kink’ vector k, are subject to an applied stress on bounding (101̄) planes.
Under no applied stress with fully periodic boundary conditions the kinks diffuse freely. Inset:
Cartoon of the supercell along [101̄], illustrating the relation of the kink vector to a kinked dislocation
line

stress conditions to produce a series of kink positions from which a kink drift and
diffusivity were statistically determined.

The results of these simulations are displayed in Fig. 4.12. Kinks were observed
to freely diffuse with a diffusivity D = kBT/γkink under no applied stress with
fully periodic boundary conditions, whilst under stresses of 2–10MPa applied to
the bounding (101̄) planes kinks were observed to drift with a viscous drag law
Ẋ = |σ · b|/γkink. Although the two screw dislocations would eventually annihilate
under the applied stress, for a sufficiently wide and long supercell the kinks drift
independently for at least two supercell lengths (∼600Å) before any influence of
their mutual attraction could be detected.

The drift and diffusion simulations showed excellent agreement with the Einstein
relation D = kBT lim|σ·b|→0(Ẋ/|σ · b|), with the viscous drag γkink independent
of temperature and showing little variation between left and right kinks. The final
mobility laws were determined to be v = 0.037 Å/ps/MPa for k = 1/2[11̄1] (‘right’
or ‘interstitial’) kinks and v = 0.040 Å/ps/MPa for k = [010] (‘left’ or ‘vacancy’)
kinks.

We again see a violation of phonon scattering treatments [10] which predict that
γkink should increase linearly with temperature due to the increased phonon popula-
tion, meaning the observed temperature independence of γkink agrees with the kink
diffusion and other dislocation and defect simulations addressed below.

In this section we have reported the results from large scale molecular dynamics
simulations of isolated kinks on edge and screw dislocation lines in bcc iron. The
large simulation cells required significant computational power to obtain statisti-



42 4 Atomistic Simulations in bcc Metals

Fig. 4.12 Results of kink drift simulations for k = 1/2[11̄1] (right) kinks on 1/2〈111〉{101̄} screw
dislocations. We see a temperature independent [45] drift velocity v = |σ · b|/B in very good
agreement with γkink determined from zero stress kink diffusion simulations (green lines). Inset:
Results from kink diffusion simulations. We see the diffusivity D = kBT/γkink rises linearly with
temperature, meaning that γkink = kBT/D is independent of temperature

cally significant results; however the total real time simulated was still of the order
of nanoseconds. In subsequent chapters we will introduce a model which aims to
reproduce the coarse grained data from the full atomistic simulation at a fraction of
the computational cost, allowing access to experimentally relevant time and length
scales.

4.2 The Drift and Diffusion of Lines and Loops

Through procedures essentially identical to those employed to determine γ for kinks,
it is also possible to determine γ for any mobile crystal defect which can exhibit
stochastic motion on MD timescales. Although drift simulations can be performed
for extended dislocation lines under the application of a homogeneous applied stress,
any isolated crystal defects are either point defects or loops with no net line direction
they only respond to a stress gradients [10]. This means drift simulations would need
a highly heterogeneous applied stress which can confuse the analysis and is often
very difficult to accommodate within the periodic boundary conditions required for
dynamics without surface stresses. As a result zero stress diffusion simulations are
employed, allowing the extraction of a diffusion constant by analysis of the timeseries
of positions which may then be inverted to obtain γ through the Einstein relation
γ = kBT/D.
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Fig. 4.13 Representations of a single atom self interstitial atom defect known as a crowdion, and
a 37 atom SIA prismatic loop. From [29]

Due to their importance and predominance in radiation damage, previous calcu-
lations (e.g. [29, 31, 46]) have focused on the diffusion of single and multi atom
self interstitial atom (SIA) defects, illustrated in Fig. 4.13. Representative results are
presented in Figs. 4.14 and 4.15; in all cases we see that the diffusivity rises linearly
with temperature, implying that γ is temperature independent, i.e.

D = kBT

γ
∝ kBT ⇒ γ = γ0. (4.9)
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Fig. 4.14 D = kBT/γ for 19 and 37 atom SIA clusters in tungsten. The linear temperature
dependence implies γ = γ0 is independent of temperature. From [29]
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Fig. 4.15 D = kBT/γ for a single SIA (red), 7 (blue), 19 (green), 37 (pink) and 61 (light blue) atom
SIA clusters in vanadium. Again, the linear temperature dependence implies γ = γ0 is independent
of temperature. From [46]

Fig. 4.16 γ extracted from the estimated diffusivity D through the Einstein relation γ = kBT/D
for a b = 1/2[111] edge dislocation line and prismatic loop. We see γ = γ0 + γwkBT, but γw
dominates for the line whilst γ0 dominates for the loop

Wehave also extractedγ by drift and diffusionmethods for extendedb = 1/2[111]
edge dislocation lines in bcc iron and tungsten, which are known to be highly mobile.
As shown in Fig. 4.16 the drift diffusion law 〈ẋ〉/σ · b = D/kBT is obeyed, but we
see a markedly different temperature dependence as compared to prismatic loops.
We find that in general kBT/D = γ has the mixed dependence

γ = γ0 + γwkBT, (4.10)

in very good quantitative agreement with Gilbert et al. [7], though they did not
comment on the temperature independent offset γ0. Instead, in common with other
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Fig. 4.17 Left A ‘string’ of 1/2[111] crowdions, which has the configurational complexity of a line
but is in fact a loop of infinitesimal width, deforming a lattice much less than a true dislocation line
and without the long range elastic field. Right Measurements of γ for the string in comparison with
γ for a b = 1/2[111] edge dislocation line. We see the temperature dependent component γwkBT
disappears for the string, implying that the significant deformation of a dislocation line gives rise
to the long range elastic field and the ‘phonon wind’ term γwkBT

authors [33, 47] they focussed on the temperature dependent term γwkBT, as this
is in closer agreement with traditional phonon scattering theories (see Chap.2). The
origin of these different terms is a central point of this thesis and will be discussed
extensively in later chapters. Importantly, we found γ to be independent of line
length, providing very strong evidence that the frictional coupling is independent
of any long range correlations induced by vibrational modes of the line. To further
investigate the source of the different temperature dependence between dislocation
lines and loops, we also constructed a rather obtuse defect, a ‘string’ of 1/2〈111〉
crowdions. The intention was to determine the influence of a dislocation line’s core
in comparison to point defects or small loops. The asymmetry of an inserted half
plane inherent to a line significantly deforms the lattice and gives the long range 1/r
elastic field as compared to the 1/r2 field of a loop. In contrast, the crowdion string
may look like a line (see Fig. 4.17) and possess the same configurational complexity,
but there is no inserted half plane and no net line direction, meaning it will not
move under a homogeneous stress and is perhaps best thought of as the limiting
case of an infinitely eccentric loop. In this way we may unambiguously differentiate
between core and configurational influences on the temperature dependence of γ. The
results of these simulations are shown in Fig. 4.17. Interestingly, we see an almost
perfect temperature independence in γ for the crowdion string, strongly implying
that the significant core distortions that give rise to the long range elastic field are
also responsible for the temperature dependent γwkBT component of γ.

http://dx.doi.org/10.1007/978-3-319-20019-4_2
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Chapter 5
Properties of Coarse Grained Dislocations

There are two principal methods for simulating dislocation motion that avoid an
explicit treatment of atomic dynamics: dislocation dynamics and kinetic Monte
Carlo methods. In conventional dislocation dynamics codes the motion of dislo-
cations is entirely deterministic [1]; the stochastic dislocation dynamics observed in
MD simulations and experimentally cannot be simulated with such codes. The tradi-
tional technique to model thermally dominated motion is a master equation approach
[2–4]. This assigns probabilities from the canonical ensemble to transitions between
different system states, which are then implemented in a kineticMonte Carlo simula-
tion. However, the large state space available to even an isolated flexible dislocation
quickly renders the technique extremely cumbersome. The assignment of a canoni-
cal distribution is hard or impossible to justify in non-equilibrium environments and
while the logarithmic time scale employed improves efficiency it obscures compar-
ison to the real-time trajectories given by experiment and atomistic simulation.

In this section we introduce a model which aims to reproduce the results from
full atomistic simulation. The model we employ is the well known discrete Frenkel-
Kontorova-Langevin (FKL)model [5–7]which treats the dislocation line as a discrete
elastic string sitting in a periodic substrate potential. The representation of a dislo-
cation as an elastic line was first used to model pinning by trapping sites [8] and due
to its simplicity equivalent systems appear in many areas [9]. A discrete Langevin
equation approach has recently been used to model the thermal motion of (1/2)〈111〉
prismatic and vacancy dislocation loops in bcc Fe by Derlet et al. [10]. However,
the absence of a substrate potential rendered the model unable to capture any kink
mechanisms and the discreteness had no relation to the crystallography of the corre-
sponding atomic system. In contrast, the spacing of nodes of the elastic string in our
model is determined by the spacing of atomic planes normal to the dislocation line.
We find this is essential to reproduce the structure and dynamics of kinks seen in
atomistic simulations. While these discreteness effects have previously been inves-
tigated theoretically by Joós and Duesbery [7] in covalent materials there has been
no investigation, to our knowledge, of the dynamical behaviour they predict.

© Springer International Publishing Switzerland 2015
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First we obtain analytic expressions for the kink formation energy, width and
migration barrier in terms of the parameters defining the FKL model. We then intro-
duce the stochastic equations ofmotionwhich govern the systemdynamics, obtaining
an analytic expression identical in form to Eq. (4.5) for the kink diffusivity. By equat-
ing these analytic expressions to the values obtained for the kink formation energy,
width, migration barrier and diffusivity from MD, we may solve numerically for the
FKL model parameters.

Numerical integration of the stochastic equations of motion of the FKL model
produces data which may be processed identically to that from atomistic simulation,
allowing us to compare the statistical results obtained from both methods. We find
the transport properties of kinks in theMD simulations and their FKL counterparts to
be in excellent agreement over a wide range of temperature for different dislocations.
In Sect. 5.3 the parametrized FKLmodels are then used to investigate screw and edge
dislocationmobilities at applied stresses too low to induce dislocationmotion inMD.

We then move onto more general mathematical analysis of the FKL model in
Sect. 5.5, using modern homogenisation techniques to derive exact bounds on the
center of mass mobility for a dislocation line or loop. We show that the free energy
landscape always underestimates finite temperature migration barriers, and relate
these findings to common models such as transition state theory.

5.1 The Frenkel-Kontorowa Model

The FKLmodel treats a dislocation line as a discrete elastic string sitting in a periodic
substrate potential. Many different shapes of the substrate potential used in the FKL
model have been investigated [11]. However, the only qualitative change occurs in
the presence of deep metastable minima, which imply the existence of a metastable
core structure. As discussed above, even for the complex case of screw dislocations,
recent ab initio calculations show the kink formation process to take place in the slip
plane, with nometastable core structure. This allows us to take the substrate potential
in the FKL model as a simple sinusoid, and is consistent with the approximation of
taking a dislocation line to be a string of constant internal structure moving only in
the slip plane.

The string itself is constructed from a set of harmonically coupled nodes spaced by
a fixed distance a, which we set equal to the distance between atomic planes normal
to the dislocation line. The string sits in a substrate potential of period L P , which we
set equal to the projection of the relevant kink vector normal to the dislocation line,
often known as the kink height. As a result the two length scales of the model, a and
L P , are determined by the crystallography of the corresponding atomistic system.

Taking a co-ordinate system (x, y), where x̂ lies along the (unkinked) dislocation
line direction and ŷ is normal to x̂ in the slip plane, each dislocation is represented by
a discrete line of points {(na, un(t))}, where n = 0, 1, 2, . . . N and only the {un(t)}
vary with time. Each node is thus constrained to move only in the ŷ direction. The
potential energy is as follows:

http://dx.doi.org/10.1007/978-3-319-20019-4_4
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V ({un}) =
N∑

n=0

aVP sin2
(
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)2

, (5.1)

where VP is the amplitude of the substrate potential and κ is the harmonic coupling
strength, both in units of energy per unit length, with displaced periodic boundary
conditions to account for the presence of the kink

un+N (t) = un(t) + L P . (5.2)

To obtain an analytic expression for the shape of the static kink we first take
the continuum limit a → 0, N → ∞. In this limit, the system energy (5.1) with
boundary conditions (5.2) is minimized by the soliton kink

ukink(x − X) = L P

π

(
tan−1 sinh

(
x − X

w0

)
+ π

2

)
,

w0 = L P

2π

√
2κ

VP
, (5.3)

where X is the kink position and 2w0 is the kink width, which is proportional to√
κ/VP . The soliton kink (5.3) shape interpolates the numericallyminimized discrete

structure of (5.1) well. However, in the continuum limit the system energy (5.1) is
independent of the kink position, while in the discrete system the energy varies
periodically with the kink position as the continuous translation symmetry is broken,
in direct analogy to the Peierls barrier for a dislocation. This position dependent
energy produces the kink migration barrier discussed above. It may be shown [6, 7,
11] that substituting (5.3) into (5.1) gives

V ({ukink(na − X)}) = w0VP

4
+

∞∑
n=1

Ṽmig(n) cos

(
2nπ

a
X

)
,

Ṽmig(n) = VP

4a

nπw2
0

sinh (nπw0/a)
. (5.4)

The first few Ṽmig(n) are shown as functions of the equilibrium kink width 2w0
in Fig. 5.1. We see that for realistic kink widths of more than 2a the leading term
Ṽmig(1) dominates by a factor of at least ten, allowing us to approximate the migra-
tion potential as a sinusoid of period a. The kink energy (5.4) has a minimum when
the kink center of mass lies between two nodes, X = na + a/2, as in this configu-
ration no node lies at the maximum of the substrate potential. This minimum kink
energy, which should be equated to the formation energy from the relaxed atomistic
simulation, is thus
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Fig. 5.1 The magnitude of
the first three summands in
the kink energy (5.4) as a
function of the equilibrium
kink width w0. We see the
leading term Ṽmig(1)
dominates but all three
terms decrease rapidly
with increasing w0
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The form of the migration barrier Emig provides insight into the observed behaviour
of kinks in atomistic simulation. As can be seen in Fig. 5.1, Emig decreases rapidly
with the equilibrium kink width, in agreement with the observation that the narrow
kinks on edge dislocations have a significant migration barrier as compared to the
essentially free motion of the wide kinks on screw dislocations. These significant
effects would be entirely lost in any continuum model, emphasizing the importance
of atomistic resolution in modelling dislocation dynamics.

5.2 Langevin Simulation

We now introduce the stochastic equations of motion which govern the dynamics of
the FKL model (5.1). We recall that the atomistic data was time-averaged. Applying
the same procedure to our model is formally equivalent to taking a strong damping
limit [12, 13] and thus permits a first order equation of motion for the node displace-
ments. This approximation is supported by the absence of any ballistic motion, even
over short time intervals, in the simulation data. The output from the stochasticmodel
may thus be subjected to identical analysis as the output from atomistic simulation,
allowing us to determine whether the data produced is statistically equivalent.

The thermal behaviour of the system is investigated through the stochastic inte-
gration of first order Langevin equations [12], which balance a frictional force pro-
portional to the velocity, −γlinev, the conservative force −∂V/∂u and a ‘fluctuation
force’ which will be detailed below. This simplified equation of motion allows us
to integrate the system on a much coarser timescale. In addition, any notion of a
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dislocation mass is assigned to the dissipation parameter γline, which measures the
rate of momentum transfer from the dislocation to the heat bath. In this way we avoid
the controversial concept of dislocation inertia as inertial effects were not exhibited
in the atomistic simulations we wish to reproduce with this model. The first order
equation of motion for our discrete system (5.1), with boundary conditions (5.2), is

γline
dun(t)

dt
= − ∂

∂un
V ({um}) + ηn(t) (5.7)

where γline is the dissipation parameter for the dislocation line and the {ηn(t)} are
independent Gaussian random variables [14] representing the stochastic force from
the surrounding heat bath. They are defined under an ensemble average 〈...〉 of all
heat baths at a temperature T , possessing only an average and standard deviation by
the central limit theorem. These read

〈ηn(t)〉 = 0, 〈ηn(t)ηm(t ′)〉 = 2γlineT δnmδ(t ′ − t). (5.8)

The amplitude of the fluctuations
√
2γlineT is uniquely determined by the fluctuation-

dissipation theorem,which requires that the steady state solution to theFokker-Planck
equation associated with (5.7) is the canonical distribution [12]. The absence of any
spatial correlation in the noise forces reflects the chaotic atomic dynamics of the
surrounding heat bath and does not preclude any correlation in the dislocationmotion;
however the delta function δ(t ′ − t) is strictly the limiting case of a vanishingly small
correlation time in the atomic collisionswhich constitute the heat bath [14]. This limit
may be taken only when we operate on a sufficiently coarse timescale much longer
than an individual collision, which is indeed the case in the first order equations of
motion investigated here.

We now have a completely specified system; we will integrate the equations
stochastically (5.7), using a pseudorandom number algorithm [15] to generate the
stochastic forces (5.8). However, in order to have expressions for all the quantities
extracted from atomistic simulation in terms of the model parameters we must also
derive the kink diffusion constant.

To do this, we obtain first the kink equation of motion, assuming that the kink
position X (t) is slowly varying in time in comparison to the fluctuations of the {un},
and that the kink shape suffers only small perturbations due to these fluctuations
throughout its motion. It will be seen that these approximations still give excellent
agreementwith the results from stochastic integration, and allow us to equate the field
center of mass to the kink position X (t). To derive the kink equation of motion we
evaluate the total velocity projected along the dislocation line.We consider segments
connecting neighbouring nodes of the dislocation line and take the projection of the
nodal velocity along the segment normal. We then take the projection of this normal
along the line direction x̂ to obtain the contribution to the net projection from that
segment. A very similar calculation is used when calculating the driving force on a
ship’s sail [16] and is formally equivalent to the derivation of the field momentum
of (5.1) in the continuum limit [6]. It can be shown that this gives a kink velocity
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Ẋ(t) =
∑

n

dun(t)

dt

(
un+1(t) − un(t)

a

)
. (5.9)

Using (5.7), (5.4) and (5.3) we obtain the kink equation of motion

γkink Ẋ(t) = π

a
Emig sin

2πX (t)

a
+ η(t), (5.10)

where the kink dissipation parameter γkink is given by

γkink = L P

4πw0
γline, (5.11)

η(t) is a one dimensional Gaussian random variable with an average and standard
deviation

〈η(t)〉 = 0, 〈η(t)η(t ′)〉 = 2γkink T δ(t ′ − t), (5.12)

and Emig is given in Eq. (5.5). We note that Eq. (5.11) shows the dissipation para-
meter for the dislocation line, γline, to be directly proportional to the dissipation
parameter for the kink, γkink , and thus γline is also temperature independent. Equa-
tion (5.10) describes a point particle undergoing one dimensional stochastic motion
in a sinusoidal potential. Under an ensemble average the mean squared displacement
exhibits diffusive behaviour with a diffusion constant (4.8), where now Emig and
γkink are given explicitly in terms of the free model parameters VP , γline,κ and the
crystallographically determined L P , a. By inverting the relations (5.3), (5.5) and
(5.11) we may determine the model parameters for the dislocations considered here.
With these parameters, the system (5.1) was first relaxed by a conjugate gradient
algorithm, with the boundary conditions (5.2), to determine the formation energy
and kink width, then the equations of motion (5.7) were stochastically integrated.
The kink formed remains well defined at finite temperature. It can be seen that the
data is identical in form to that produced from atomistic simulation, shown in Fig. 4.3,
with the kink trajectories extracted and analysed in an identical manner. Table5.1
shows the results from these simulations as compared to the results from atomistic
simulation, displaying excellent agreement over a wide range of temperature.

It is emphasized that the discreteness of the model is essential to produce a kink
migration barrier. We also note that the discreteness, which is determined by the
underlying crystallography through a and L P , influences the kink formation energy
as well as the migration barrier, as can be seen in Eq. (5.5). As we simulate a line of
only ∼500 nodes on a coarse time step of 10ps, as opposed to the entire atomistic
system of 700,000 atoms on a very fine time step of 1 fs, we may generate data
sets equivalent to those produced from atomistic simulation at around ∼10−7 of
the computational cost. Therefore, despite the atomistic resolution along the line,
the model affords enormous computational savings as compared with a full MD

http://dx.doi.org/10.1007/978-3-319-20019-4_4
http://dx.doi.org/10.1007/978-3-319-20019-4_4
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Table 5.1 Formation energies, migration energies and dissipation parameters obtained from MD
and FKL simulations for kinks on the dislocations investigated here

Dislocation system Simulation method Ekink (eV) Emig (eV) γkink (mu ps−1)

1/2[111](12̄1) edge MD 0.150 0.074 1.79

FKL 0.148 0.072 1.74

[100](010) edge MD 0.510 0.222 2.61

FKL 0.505 0.218 2.58

1/2[111](11̄0) screw MD 0.367 – 1.83

FKL 0.367 – 1.82

The values were obtained by identical processing for each simulation technique. The MD data for
kinks on screw dislocations is the average between left and right kinks as detailed in the text. Very
good agreement between the MD and FKL parameters is seen

simulation. This significant efficiency gain allows us to simulate dislocation motion
at experimental strain rates, while retaining atomistic resolution and a statistically
rigorous temperature.

5.3 Comparison of Parametrised Models to Experiment

The parameters obtained from the kink diffusion simulations are now used to investi-
gate the motion of straight dislocations at experimental stress levels. This important
regime is not accessible to atomistic simulation for dislocations which have a large
kink formation energy. Therefore, this is an ideal application of the FKL model. For
a discrete dislocation segment of N nodes, we supplement the equations of motion
(5.7) with a force per node f to induce drift of the dislocation line,

γline
dun(t)

dt
= − ∂

∂un
V ({um}) + f + ηn(t), (5.13)

with periodic boundary conditions

un(t) = un+N (t). (5.14)

We then extract the position of the center of mass ū = ∑
n un/N at each timestep,

obtaining the ensemble average center of mass velocity 〈v̄〉 in an identical manner
to that shown in Eq. (4.4),

〈v̄〉 =
N−τ/�t∑

n=0

(ūn�t+τ − ūn�t )

τ (N − τ/�t)
. (5.15)

http://dx.doi.org/10.1007/978-3-319-20019-4_4
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To obtain the relationship between the force f and an applied stress, we recall the
Peach-Koehler formula [17] for the force per unit length fP K on a dislocation of
Burgers vector b and line direction t under an applied stress σ,

fP K = (σ · b) ∧ t̂. (5.16)

The nodal force f is then the projection of (5.16) along the displacement direction
of the {un}, û, multiplied by the segment separation a. We apply a shear stress across
the slip plane of magnitude |σ| in the direction of the dislocation Burgers vector b,
resulting in a force per node of

f = afP K · û = a|b||σ|. (5.17)

Weapply experimental stresses of 40MPa,which corresponds to a very small force
per node of∼10−3 eV/L P . To demonstrate phenomena this discrete model can treat,
we investigate the effect of segment length on dislocation velocity. Figures5.2 and 5.3
show typical center of mass trajectories of 1/2[111](11̄0) screw and [100](010) edge
dislocation segments. Extracting the center ofmass velocity through Eq. (5.15) over a
wide range of segment lengths gave a length independent velocity for edge segments,
whereas the velocity increased linearly with segment length as 0.013(4) s−1 at 300K
for screw dislocations. This is in good agreement with the linear relationship of
velocity with length of around 0.01 s−1 at 300K for screw dislocation segments that
has recently been observed experimentally [18]. We note that this gradient depends
exponentially on temperature due to the activated nature of the dislocationmigration.

We can understand these differences in terms of the discrete structure of the FKL
dislocation lines. We have seen that the wide kinks on screw dislocations have a
negligible migration barrier; as a result, once a double kink is formed it will move

Fig. 5.2 Center of mass positions for two 1/2[111](11̄0) screw dislocation segments, under an
applied stress of 40MPa, at a temperature of 300K. The highly stepped motion reflects directly the
nucleation of kinks, which then quickly propagate along the entire line due to the negligible kink
migration barrier. As a result longer lines, which have a greater number of nucleation sites, have a
velocity which increases linearly with segment length. The ensemble average velocities are in very
good agreement with experimental measurements of screw dislocation velocities [18]
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Fig. 5.3 Center of mass positions for two [100](010) edge dislocation segments, under an applied
stress of 40MPa, at a temperature of 600K. As the kink migration barrier is comparable to the
kink formation energy double kink nucleation occurs on the same timescale as kink migration and
thus the line propagates gradually. As a result the segment velocity is almost independent of the
segment length, as distinct from screw dislocation segments, a feature not captured by a continuum
line model

quickly under the applied stress until it meets another kink. For long segments we
therefore expect the dislocation velocity to scale linearly with segment length due
the increased number of possible locations for kink nucleation, as observed. In con-
trast, as the narrow kinks on edge dislocations have a large kink migration barrier,
comparable to the kink formation energy. As a result we expect the mobility always
to be independent of the segment length as kink migration and kink nucleation occur
on similar timescales. This behaviour, which is found only in a discrete line model, is
expected to have consequences in many aspects of dislocation behaviour, for exam-
ple the difference in the effect of impurities on the mobilities of edge and screw
dislocations [17].

5.4 Elastic Interactions in Double Kink Nucleation

A common criticism of the FKL model is its inability to capture the long range kink
interaction predicted from elasticity and the different formation energies of left and
right kinks seen in atomistic simulation. As the asymmetric kink formation energy
was seen to result from the long range fields of the kinks, the simplest term which
captures this behaviour is linear in the dislocation line gradient [5] and consequently
will not affect the equations of motion as it may be integrated out of the Lagrangian
[19]. Investigation of more complicated terms of cubic order in the line gradient is
in principle possible, though the additional complexity would significantly affect the
parametrisation procedure whilst very little difference was found in the diffusivities
of left and right kinks, meaning that interaction effects would have to be studied in
great detail. In effect the standard FKL model treats the localized, symmetric kink
‘cores’ shown in the lower panel of Fig. 4.9.

http://dx.doi.org/10.1007/978-3-319-20019-4_4
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Whilst the kink formation energy asymmetry is not immediately suited to the
FKL model, it is still possible to capture the long range interaction between kinks,
allowing a direct assessment of kink interaction effects on screw dislocation motion
in the physically important low stress, high temperature regime studied above. To
achieve this we modify the node interaction term in the original FK model beyond
nearest neighbours. In order to reproduce the observed 1/d kink-kink interaction
energy for large kink-kink separation whilst retaining a typical line tension we will
let the nodes interact through the following potential

VLR = a
κ

2

∑
i j

(u j+1 − u j )(ui+1 − ui )

a2
√
1 + (i − j)2/α2

+ aVP

∑
i

sin2
(

π
ui

L P

)
, (5.18)

where α controls the range of interaction. Some key differences from the standard
FK model are best seen by taking the continuum limit, obtaining

VLR → κ

2

∫
R�

u′(x)u′(y)√
1 + (x − y)2/a2/α2

dxdy + VP

∫
R

sin2
(

π
u(x)

L P

)
dx . (5.19)

We first calculate the dispersion relation in the free case (VP = 0) by taking a spatial
Fourier transform. For the standard FK model it clear that we have

ω2
FK(k) = κ

m
k2, (5.20)

which now becomes (using the convolution theorem)

ω2
LR(k) = κ

m
k2K0(k/α), (5.21)

where K0(k/α) is the zeroth hyperbolic modified Bessel function [20]. This function
rises sharply with k, meaning that high frequency modes have a much higher energy
cost in this model, meaning high temperature fluctuations will be markedly different.
We nowderive the interaction energy of twowidely separated kinks at x A, x B .Whilst
we do not know the exact functional form for the kink profile u(x −x A,B), in analogy
to the FK model we assume that on a coarse length scale the profile gradient can be
approximated by

u′(x − x A,B) 

√

Ek

κ
δ(x − x A,B). (5.22)

Substituting u(x) = u(x − x A) + u(x − x B) into (5.19) we obtain an approximate
far field interaction energy of

Eint(x A − x B) 
 Ek√
1 + (x A − x B)2/a2/α2

→ αaEk

|x A − x B | , (5.23)
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Fig. 5.4 Free energy
obtained through a histogram
method, see next section) of
various long range chains
and a FK chain. The long
range chains clearly show a
kink-kink interaction beyond
the FK model

which exhibits the desired 1/d dependence observed inMD simulation and predicted
by elasticity theory. This system may be stochastically integrated in an identical
method to that detailed above. Figure5.4 shows the free energy landscape (see the
next section) of double kink nucleation for the FK chain and the long range chain
for different values of α, both possessing a large κ/VP ratio which ensures highly
mobile, wide kinks. Whilst the free energy of the FK chain reaches a plateau quickly
after double kink nucleation, the long range chain clearly shows a long range kink-
kink interaction which can be determined to decay inversely with separation.

Fig. 5.5 Drift velocity for a FK and long range chains. We see the low stress mobility is unaffected
by the long-range kink interaction, a significant result
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Figure5.5 compares the drift velocity of a FK chain and a long range chain with a
strong kink-kink interaction. Significantlywefind that in the low stress regime,where
the experimentally comparable results above were taken, the two chain have very
similar drift velocities. This both challenges previous theories of screw dislocation
mobilitywhich rely on a kink-kink interaction to produce phenomenologicalmobility
laws and explains how the FK model can accurately capture the experimental data
even without the long-range kink interaction.

In the intermediate to high stress regime the two systems show quite distinct
behaviour; the investigation of this motion is a topic for future work.

5.5 Homogenisation of the Frenkel-Kontorowa Chain

We now will look at the FKL model in a more general setting, though one which
still has clear applications to dislocation theory. It is perhaps unsurprising that a
chain of harmonically coupled particles, each executing one dimensional stochastic
motion in a periodic potential, is one of the most extensively studied examples of
many-body, non-linear dynamics. First studied by Prandtl [21] and Dehlinger [22]
though often named after later work by Frenkel and Kontorova [23], the rich, kink
bearingphenomenologyhas found application in dislocation theory [24, 25], polymer
dynamics [26], molecular combustion [27], Josephson junctions [28], spin chains
[29], earthquakes [30] and many other areas for decades [31, 32]. In the general
case, illustrated in Fig. 5.6, a Frenkel-Kontorova (FK) chain of N particles with one
dimensional positions x = {xn}N

n=1 has a potential energy

Fig. 5.6 A Frenkel-Kontorova chain. At low temperature (left) the chain moves through the kink
mechanism, whilst at high temperature (right) internal fluctuations destroy any migration barrier
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U (x) = 1

2
x · K · x + V (x), (5.24)

where K is a positive semi definite matrix representing the harmonic interaction and
V (x) is simply a sum of one dimensional periodic potentials V1D(x) = V1D(x + L)

V (x) =
N∑

n=1

V1D(xn). (5.25)

The system is completed with chain boundary conditions, which will be periodic in
the following. As the FK chain traditionally models the collective motion of some
generalized charges, it is of central interest to know the transport properties of the
chain center of mass

x̄ =
∑

n
xn/N , (5.26)

in particular the diffusivity D and by Einstein’s relation the linear response mobility
βD, where β = 1/kBT . Whilst it is known [33] that the center of mass is diffu-
sive at asymptotic time, the actual value of the diffusion constant D has only been
approximately evaluated for some special cases, in particular for long, continuous
lines at low temperature, where the system has been considered as a dilute kink gas
[34, 35]. In contrast, many applications of interest are to highly discrete chains over
a wide temperature range which are often short due to either physical [10, 28] or
computational [25, 36] restrictions. In this section I derive rigorous upper and lower
bounds for D, giving important context for existing approaches such as transition
state theory [37] and providing rigorous results for many body diffusive transport.

Through comparing the bounds to the well known point particle result [38, 39]
it is shown that the upper bound represents diffusion in the free energy landscape
of x̄ . The free energy barrier is often used as the finite temperate migration barrier
[40]; these results show that this will always give an overestimate for the transport
properties of the FK chain, an important result given the generality of this widely
applied model.

The section is structured as follows. In Sect. 5.5.1 the adjoint Fokker-Planck equa-
tion [13] is recalled, then multiscale analysis is employed to perform a diffusive
rescaling in Sect. 5.5.2, deriving an one dimensional evolution equation for the cen-
ter of mass. The Cauchy-Schwartz inequality is then used to derive strict upper
and lower bounds for the effective diffusion constant D. In Sect. 5.5.3 I investigate
limiting cases of the exact bounds, present numerical results in Sect. 5.5.4 and pro-
pose a non-linear response through analogy to the famous point particle result of
Stratonovich [41, 42] in Sect. 5.5.5, where surprisingly accurate results are found.
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5.5.1 Adjoint Fokker-Planck Equation

For latermanipulations it will be beneficial to transform to a coordinate systemwhich
distinguishes the center of mass. This is achieved by diagonalising the interaction
matrixK, whichwill always have non-negative eigenvalues {λk}N

k=1 and an orthonor-
mal eigenbasis {v̂k}N

k=1. By the requirement that the interaction energy is unchanged
under a rigid translation, there will always be a zero eigenvalue, λ1 = 0, with the
corresponding eigenvector v̂1 having every element equal, projecting out the center
of mass x̄ . The chain configuration vector x becomes

x = x̄
√

N v̂1 +
N∑

k=2

ak v̂k, ak = x · v̂k, (5.27)

which defines the desired co-ordinate system (x̄, {ak}). The potential energy (5.24)
now reads

U (x̄, {ak}) =
N∑

k=2

1

2
λka2

k + V (x̄, {ak}), (5.28)

where the substrate potential is explicitly

V (x̄, {ak}) =
N∑

n=1

V1D

(
x̄ +

N∑
k=2

ak(v̂k)n

)
, (5.29)

which is clearly periodic in x̄ . One may now write down the adjoint Fokker-Planck
equation [13], which governs the expected time evolution of a smooth function
�(t; x̄, {ak}) from some initial values (x̄, {ak}). For the investigation of transport
properties, the adjoint Fokker-Planck equation is preferable to the Fokker-Planck
equation as it is concerned with observables rather than probability densities, but
any results may be rigorously transferred between the two presentations, in close
analogy to the Schrödinger and Heisenberg representations of quantum mechanical
operators [13]. For the system (5.28) the adjoint Fokker-Planck equation reads

Nβγ
∂�

∂t
= L̂aFP� ≡ −β

∂U

∂ x̄

∂�

∂ x̄
+ ∂2�

∂ x̄2

+ N
N∑

k=2

(
−β

∂U

∂ak

∂�

∂ak
+ ∂2�

∂a2
k

)
, (5.30)

where L̂aFP is the adjoint Fokker-Planck operator, U is given by (5.28) and γ is
the friction parameter, which measures the rate of momentum transfer to the heat
bath (a factor of Nβγ has been taken to the left hand side of (5.30) to simplify
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later notation). For the overdamped limit to be valid, which amounts to a ‘Born-
Oppenheimer’ decoupling of position and momentum, γ is required to be much
greater than the curvatures of U [14]. Familiar statistical mechanics arises upon
averaging over the initial conditions and asking for the steady state; the condition
for the probability density of states ρ∞(x̄, {ak}) is

0 =
∫

x̄,{ak }

(
L̂aFP�

)
ρ∞ =

∫
x̄,{ak }

(
L̂∗
aFPρ∞

)
�, (5.31)

where L̂∗
aFP is the L2 adjoint of L̂aFP [43], producing the overdamped Fokker-Planck

(or Smolchowski) equation. As is well known, the unique solution is Gibbs’ distrib-
ution

L̂∗
aFPρ∞ = 0 ⇒ ρ∞ = e−βU /Z , (5.32)

where Z is the partition function. Due to the periodicity ofU in x̄ , the Fokker-Planck
operator and thus any unique solution will also be periodic in x̄ ; however, for the
steady state (5.32) to exist in this case we require x̄ ∈ [0, L], which clearly forbids
diffusion. To extract a diffusion constant we will use multiscale analysis in the next
subsection to investigate the diffusive dynamics of a coarse grained center of mass
χ̄ ∈ [−∞,∞], which is asymptotically independent of x̄ ∈ [0, L] as the scale
separation diverges.

Throughout this section integrals over x̄ and the {ak} will be denoted as
∫

x̄,{ak },
with the bounds of integration being [0, L] for x̄ and [−∞,∞] for each ak . Integrals
over only the {ak} will be denoted as

∫
{ak }, again integrating over [−∞,∞] for

each ak . The proof [43–45] of ergodicity and the existence of an unique steady state
(5.32) for potentials of the form (5.28) follows from the quadratic confinement of∑

p λpa2
p/2 and the boundedness of V (x̄, {ap}).

5.5.2 Multiscale Analysis

The techniques used in the following are detailed in the recent book by Pavliotis and
Stuart [46], an accessible introduction which contains extensive references, though
it is believed that the present application to a many body system is new material.

The central idea behindmultiscale analysis is that at long times unbound variables
can have unbound expectation values,whichwill bemuch larger than any length scale
imposed by the potential environment. In the present case the unbound variable is the
center of mass x̄ , whose variance at asymptotic time diverges linearly and therefore
will be much greater than the potential period L . As a result, to extract an effective
diffusion constant one may work on a coarse grained time and length scale which
will be insensitive to details of the underlying potential. This is often what occurs in
simulation or experiment; it is achieved analytically through first rescaling time as

t → t

ε2
, 0 < ε � 1, (5.33)
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then identifying the ‘slow’ spatial variable

χ̄ = εx̄ . (5.34)

Such an approach was first used by Hilbert to investigate hydrodynamic limits of the
Boltzmann equation [47]. On a coarse time scale, of order one as ε → 0, the dynamics
of x̄ and the {ak}will be massively faster than those of χ̄. In particular, as x̄ moves in
a periodic potential it will fluctuate extremely rapidly, so that as ε → 0, χ̄ and x̄ are
scale separated and become independent variables. By this definition, the potentialU
only depends on (x̄, {ak}) as the fast variables will only have a homogenised affect on
the slow variable χ̄. Employing the transformations (5.33) and (5.34) and using the
chain rule, consider functions �ε(χ̄, x̄, {ak}) which solve the adjoint Fokker-Planck
equation [46]

Nβγ
∂�ε

∂t
= ∂2�ε

∂χ̄2 + 2

ε

∂2�ε

∂ x̄∂χ̄
− β

ε

∂U

∂ x̄

∂�ε

∂χ̄
+ 1

ε2
L̂aFP�

ε, (5.35)

where L̂aFP is defined in Eq. (5.30) and acts only on (x̄, {ak}). In the absence of any
potential landscape, Eq. (5.35) would represent free diffusion for χ̄, justifying the
scaling operations (5.33) and (5.34). By the aforementioned periodicity ofU ,�ε will
be periodic in x̄1 meaning x̄ can be constrained to take values in the interval [0, L].
To look for an explicit solution, perform a multiscale expansion of �ε in orders of
the small parameter ε,

�ε = �0 + ε�1 + ε2�2 + · · · , (5.36)

where at asymptotic time the solution will be given by �0. Substituting (5.36) into
(5.35) produces a hierarchy of equations in orders of (1/ε), reading

O

(
1

ε2

)
: L̂aFP�0 = 0, (5.37)

O

(
1

ε

)
: L̂aFP�1 − β

∂U

∂ x̄

∂�0

∂χ̄
+ 2

∂2�0

∂ x̄∂χ̄
= 0, (5.38)

O (1) : L̂aFP�2 + ∂2�0

∂χ̄2 + 2
∂2�1

∂χ̄∂ x̄

− β
∂U

∂ x̄

∂�1

∂χ̄
= Nβγ

∂�0

∂t
. (5.39)

To reduce these hierarchy of equations into a single effective equation for �0 it is
required to solve Poisson equations of the form

1To see the x̄-periodicity of any solution �(χ̄, x̄, {ap>0}), note that L̂aFP acts on (x̄, {ak}) and is
invariant under a shift in x̄ by nL , where n is an integer. For the solution �(x̄ + nL , {ap>0}) to be
unique we thus require �(χ̄, x̄ + nL , {ap>0}) = �(χ̄, x̄, {ap>0}), giving the desired result.
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L̂aFP f (χ̄, x̄, {ak}, t) = g(χ̄, x̄, {ak}, t), (5.40)

for two smooth functions f and g which satisfy the normalisation condition

∫
x̄,{ak }

ρ∞(x̄, {ak})| f (χ̄, x̄, {ak}, t)|2 < ∞, (5.41)

where ρ∞ is given by (5.32), and is a restatement of the requirement that the expec-
tation values are finite after a finite time. Due to the smoothness of the parabolic
operator L̂aFP, it is well known [43, 46, 48] that (5.40) has a unique solution (up to
constants) if and only if

∫
x̄,{ak }

ρ∞(x̄, {ak})g(χ̄, x̄, {ak}, t) = 0. (5.42)

This condition may be justified by considering acting on (5.40) with ρ∞ and inte-
grating over the support of the exponent, which as defined above is [0, L] for x̄
and (−∞,∞) for {ak}. Providing the normalisation condition holds, use (5.31) and
(5.40) to show

∫
x̄,{ak }

ρ∞g =
∫

x̄,{ak }
f L̂∗

aFPρ∞ = 0. (5.43)

Now apply the conditions (5.41) and (5.42) to the Eqs. (5.37)–(5.39), which are all
of the form (5.40). The first Eq. (5.37), acts on (x̄, {ak}) and thus by uniqueness �0
is a function only of χ̄ and t ,

�0(χ̄, x̄, {ak}, t) = �0(χ̄, t). (5.44)

Condition (5.41) requires that for a solution of (5.38) to exist

− β

∫
x̄,{ak }

ρ∞
∂U

∂ x̄

∂�0

∂χ̄
=

(∫
x̄,{ak }

∂ρ∞
∂ x̄

)
∂�0

∂χ̄
= 0, (5.45)

which is clearly satisfied as ρ∞ is periodic in x̄ . This allows one to try a separated
variable solution of the form

�1(χ̄, x̄, {ak}, t) = φ(x̄, {ak})∂�0

∂χ̄
, (5.46)

which when substituted into (5.38) gives

L̂aFPφ = ∂U

∂ x̄
. (5.47)
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Finally, apply the condition (5.41) to (5.39). Multiply (5.39) by ρ∞ and integrate
over all (x̄, {ak}). The �2 term disappears by (5.43), to that after an integration by
parts,

Nβγ
∂�0

∂t
=

(∫
x̄,{ak }

ρ∞
(
1 + ∂φ

∂ x̄

))
∂2�0

∂χ̄2 . (5.48)

Equation (5.48) is easily recognisable as an (adjoint) free diffusion equation in χ̄
with an effective diffusion constant

D = 1

Nβγ

∫
x̄,{ap>0}

ρ∞
(
1 + ∂φ

∂ x̄

)
. (5.49)

It simple to show that with �0 = 〈χ̄2〉 one obtains 〈χ̄2〉 = 2Dt . Digressing
briefly, the form of the reduced diffusivity can be understood by first considering the
operator identity L̂−1 = ∫ ∞

0 exp(−L̂t)dt , which in conjunction with (5.47) gives

φ = 1
Nγ

∫ ∞
0 exp(−L̂t)∂U

∂ x̄ dt (as L̂/Nγ is the propagation operator). This means
φ(x̄, {ap}) is the total impulse for a given initial configuration (x̄, {ap}). An integra-
tion by parts in (5.49) gives

D = 1

Nβγ
+ 1

(Nγ)2

∫ ∞

0

∫
x̄,{ap>0}

ρ∞
∂U

∂ x̄
exp(−L̂t)

∂U

∂ x̄
dt, (5.50)

whichmay be reconciled with the center of mass equation of motion ˙̄x(t) = −1
Nγ

∂U
∂ x̄ +

η(t)√
Nβγ

to give

D =
∫ ∞

0

∫
x̄,{ap>0}

ρ∞〈 ˙̄x(0) ˙̄x(t)|x̄, {ap>0}〉dt, (5.51)

which is the well-known Green-Kubo relation D = ∫ ∞
0 〈 ˙̄x(0) ˙̄x(t)〉dt .

We now return to finding bounds on D. To simplify the following presentation,
I work with the reduced diffusivity D̃ = NβγD. Using (5.47) and (5.30), D̃ may be
written

D̃ =
∫

x̄,{ak }
ρ∞

((
1 + ∂φ

∂ x̄

)2

+
N∑

k=2

(
∂φ

∂ak

)2
)

. (5.52)

I shall use both expressions (5.49) and (5.52) in the following subsection where
the Cauchy-Schwartz inequality [20] (CSI) is employed to obtain upper and lower
bounds for D̃. Using the normalisation condition (5.41), the CSI reads

(∫
x̄,{ak }

ρ∞ f g

)2

≤
(∫

x̄,{ak }
ρ∞ f 2

)(∫
x̄,{ak }

ρ∞g2
)

. (5.53)
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For the special case here, where the functions under consideration are smooth, peri-
odic and bounded in x̄ , one may again use (5.41) to write (See Appendix A.1)

(∫
{ak }

ρ∞ f g

)
≤

(∫
{ak }

ρ∞ f 2
) (∫

{ak }
ρ∞g2

)
, (5.54)

which holds for all x̄ ∈ [0, L]. To proceed, note that for any real function φ the
following inequality is always satisfied

D̃ =
∫

x̄,{ak }
ρ∞

((
1 + ∂φ

∂ x̄

)2

+
N∑

k=2

(
∂φ

∂ak

)2
)

≥
∫

x̄,{ak }
ρ∞

(
1 + ∂φ

∂ x̄

)2

. (5.55)

Also define the ‘harmonic chain’ partition function

Zλ =
∫

{ak }
e−β

∑
k λka2k /2 =

N∏
k=2

√
π

βλk
, (5.56)

allowing one to write a useful quantity, a conditional average of exp(±βV ) over all
configurations with a center of mass x̄ as

〈e±βV ; x̄〉 = Z−1
λ

∫
{ak }

e±βV (x̄,{ak })−β
∑

k λka2k /2, (5.57)

meaning in particular that

∮
x̄
〈e−βV ; x̄〉 = Z−1

λ

∫
x̄,{ak }

e−βU (x̄,{ak }) = Z

Zλ
, (5.58)

where U (x̄, {ak}) is given by (5.28) and Z is the full partition function. To obtain
a lower bound for D̃, use the fact that ρ∞ exp(βV ) is independent of x̄ and the
periodicity of φ in x̄ to give

∫
x̄,{ak }

(
1 + ∂φ

∂ x̄

)
ρ∞eβV = L

Zλ

Z
. (5.59)

Applying the Cauchy-Schwartz inequality (5.53)–(5.59), using (5.55), produces the
first main result, a strict lower bound for the center of mass diffusivity,

D ≥ DL = L2/Nβγ∮
x̄ 〈e−βV ; x̄〉dx̄

∮
ȳ〈eβV ; ȳ〉d ȳ

. (5.60)
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To derive an upper bound for D, multiply (5.47) by ρ∞ and integrate over all {ak},
but crucially not x̄ , to obtain

∫
{ak }

(
1 + ∂φ

∂ x̄

)
ρ∞ = D̃

L
, (5.61)

where I have integrated by parts and used (5.49). Applying the second Cauchy-
Schwartz inequality (5.53)–(5.61) and using (5.55) results in

D̃2

L2 ≤ D̃

L

〈e−βV ; x̄〉∮
ȳ〈e−βV ; ȳ〉d ȳ

. (5.62)

Whilst integration over x̄ simply shows that the reduced diffusivity D̃ ≤ 1, dividing
both sides by 〈exp(−βV ); x̄〉 then integrating produces the second main result, a
strict upper bound for the center or mass diffusivity,

D ≤ DU = L2/Nβγ∮
x̄ 〈e−βV ; x̄〉−1dx̄

∮
x̄ 〈e−βV ; ȳ〉d ȳ

. (5.63)

Both bounds benefit from a comparison to the well known diffusivity of a point
particle moving in an one dimensional periodic potential V1D(x) = V1D(x + L) [38,
39]

D1D = L2/γβ∫ L
0 e−βV1D(x)dx

∫ L
0 e+βV1D(y)dy

. (5.64)

Using (5.64) and the bounds (5.60) and (5.63) it is simple to show2 that to within
unimportantant constants, the lower (L) and upper (U) bounds are equivalent to the
diffusivity of a point particle moving in the periodic potential

FL,U(x̄) = ±kBT ln〈e±βV ; x̄〉. (5.65)

In particular, from the definition (5.57), 〈exp(−βV ); x̄〉 may be written as
Z−1

λ

∫
{ak } exp(−βU ), so that FU is the Helmholtz free energy landscape of the center

of mass [19]. As one may extract the free energy from simulation through a sim-
ple histogram method [40] it has become a popular measure of a finite temperature
migration barrier, so it is significant that these results show FU to be a lower bound
to the true energy barrier experienced by this many body system. I now investigate
limiting cases and present simulation results to validate the above analysis.

2For the analogy to be complete we associate Z = Zλ

∫
x̄ 〈exp(−βV ); x̄〉 for the chain with Z =∫

x exp(−βV1D(x)) for the point particle.
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5.5.3 Limiting Cases

In the low temperature limit β → ∞, one may evaluate the integrals over {ak} in the
definition (5.57) of 〈exp(±βV ); x̄〉 by the method of steepest descents [49]. These
evaluations can then be used in a steepest descents evaluation of the bounds (5.60)
and (5.63).

As it has been seen that 〈exp(−βV ); x̄〉 may be written as Z−1
λ

∫
{ak } exp(−βU ),

at each value of x̄ the integrand will be dominated by the set of coordinates {amin
k (x̄)}

which minimise U , with a set of N − 1 second derivatives3 {ωk(x̄)}N
k=2. As a result

the conditional average becomes

〈e−βV ; x̄〉 −−−→
β→∞

N∏
k=2

√
λk

ωk(x̄)
e−βUmin(x̄), (5.66)

where Umin(x̄) is the minimum energy of the system at a given value of x̄ . For a
sufficiently long and stiff chains (where the largest eigenvalue of K is much greater
than the magnitude of the on site potential, resulting in a wide, smooth kink profile)
this will be the kink anti-kink pair energy EDK for x̄ = x̄DK � 2wk/N , where wk

is the kink width, unless the structure of K will give a long range kink interaction
[31]. Additionally, one second derivative, say ωDK

2 , will become of order 1/N due
to the vanishingly small kink pair translation barrier [50]. At x̄ = 0 the chain will be
straight, with curvatures

ωk(0) = V
′′
1D(0) + λk . (5.67)

One may now evaluate the integrals of 〈exp(−βV ); x̄〉 and its inverse in the upper
bound (5.63), also by steepest descents at low temperature, which will be dominated
by the maximum and minimum values of (5.66) respectively. Letting the Goldstone
mode ωDK

2 vanish as 1/N and recognising that U
′′
min(0) = N V

′′
1D(0), the low tem-

perature upper bound reads

DU →
√

πV
′′
1D(0)|U ′′DK

min |
γ
√

β

∏N
k=2

√
λk + V

′′
1D(0)

∏N
k=3

√
ωDK

k

e−βEDK , (5.68)

where |U ′′DK
min | is the largest negative curvature of Umin (see inset (a) of Fig. 5.7).

This expression is exactly the Arrhenius result of Kramers’ transition state theory
[37, 51], with a length (N ) independent prefactor. As shown in Sect. 5.5.5, when
driving the chain with a homogeneous bias f the center of mass feels a force of

3We emphasise that the N − 1 positive curvatures will not in general be diagonal in the {ak}
coordinates.
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(a)

(b)

Fig. 5.7 Diffusivity of a 40 particle Sine-Gordon chain. The upper and lower bounds, Eqs. (5.63)
and (5.60), agreewith simulation and (5.72) at high temperature and capturemany important features
at intermediate temperature. The diffusivity rises sharply once the thermal energy is greater than
the particle barrier |V1D| (see main text). Inset a The free energy barrier at low temperature. After
a sharp nucleation period, the plateau represents kink pair separation. When the kink energy is
comparable to the particle barrier, the plateau energy oscillates with the kink migration barrier [24].
Inset b Arrhenius plot of the diffusivity along with the low temperature limits (5.68) and (5.70).
The upper bound gives the correct kink pair activation energy

N f , meaning that the linear response drift velocity N f βDU is proportional to the
length N , a recognised signature of the kink pair mechanismwhen the kinkmigration
barrier vanishes [24].

The lower bound (5.60) requires a steepest descents evaluation of

〈eβV ; x̄〉 = Z−1
λ

∫
{ak }

eβV (x̄,{ak })−β
∑

k λka2k /2, (5.69)

at each value x̄ , which as V > 0 is dominated by the straight line ak = 0, k =
2, 3, . . . N as β → ∞. As a result the low temperature limit for DL reads

DL →
√

V
′′
1D(0)|V ′′

1D(L/2)|
γ

e−βN |V1D|

×
N∏

k=2

√√√√
(
1 + V

′′
1D(0)

λk

) (
1 + |V ′′

1D(L/2)|
λk

)
, (5.70)
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as appropriate for essentially rigid motion. At high temperature, as β → 0, one
may perform an expansion of ±kBT ln〈exp(±βV ); x̄〉 in orders of β|V1D|, being
a cumulant expansion for the effective potential4 [52]. The real periodic on-site
potential is expanded in a Fourier series

V1D(x) = Re
∑
p∈Z

Ṽpei2π px/L (5.71)

and then use identities of Gaussian integrals and the definition (5.65) to write, to
order |βV1D|

FL,U(x̄) −−−→
β→0

NRe
∑
p∈Z

Ṽpei2π px/L e−p2σ, (5.72)

where σ = ∑
k 4π

2kBT/L2λk is the mean squared fluctuation of a free harmonic
chain [10]. As σ increases linearly with T , both bounds converge to an effective
migration potential which attenuates exponentially fast with increasing temperature.
The condition5 for convergence of this expansion is β|V1D| < 1 which can occur
at temperatures well below the kink pair energy ∼√

λmax|V1D|, where λmax is the
largest eigenvalue of K [5].

5.5.4 Stochastic Simulation

To test these limiting expressions, consider the Sine-Gordon chain, a special case of
(5.24),

U (x) =
N∑

i=1

κ

2a2 (xi − xi+1)
2 + |V1D| sin2

(π

L
xi

)
, (5.73)

where a is the horizontal spacing of nodes, xN+1 = x1 and λk+1 = 4
√

κ/a2 sin2

(kπ/N ) [31]. It is well known that equilibrium averages may be obtained by ergod-
icity from stochastically integrating the overdamped Langevin equation [13]

γ ẋi = −∂U (x)

∂xi
+ √

2γkBT ηi (t) (5.74)

4As the energy of the system can at most increase linearly with N , the nth term in the expansion
ln〈exp(±βV ); x̄〉 is of order N (β|V1D|)n , giving the convergence criteria β|V1D| < 1.
5As the energy of the system can at most increase linearly with N , the nth term in the expansion
ln〈exp(±βV ); x̄〉 is of order N (β|V1D|)n , giving the convergence criteria β|V1D| < 1.
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where the {ηi (t)}N
i=1 are Gaussian random variables of zero mean and variance

〈ηi (t)η j (t ′)〉 = δi jδ(t − t ′). Let a, L = 1 and choose γ for numerical stability.
To show agreement with traditional transition state theory, I set the line tension
κ = 300meV to be much larger than the particle barrier |V1D| = 15meV; when κ
and |V1D| are comparable, the discrete structure produces a significant kink migra-
tion barrier whose effects are reported in detail elsewhere [24]. Whilst the choice
of energy units makes these numerical values appropriate for a dislocation line the
phenomenology the model exhibits is general and widely reported [5]. In particular,
the exponential prefactor becomes inversely length dependent due to the lack of any
Goldstone mode.

Using a high quality random number generator [15] to produce trajectories of
∼1011 timesteps, the average value of a function f (x) was recorded for a value of
x̄ ∈ [0, L] to produce a Monte-Carlo evaluation of 〈 f (x); x̄〉. To evaluate the free
energy FU(x̄) a histogram of center of mass values x̄ ∈ [0, L] was populated to
produce Zλ〈exp(−βU ); x̄〉 = exp(−βFU(x̄)).

The results of these simulations are displayed in Fig. 5.7, showing that the dif-
fusivity is indeed bounded by (5.63) and (5.60). The free energy upper bound can
be seen to provide a reasonable and qualitatively accurate approximation to the dif-
fusivity at intermediate temperatures and, importantly, gives the correct activation
energy at low temperature. The high temperature expansion (5.72) also becomes
increasingly accurate once the thermal energy exceeds the particle barrier such that
the convergence criterion β|V1D| < 1 is satisfied.

5.5.5 Non-linear Response

To end, a DC bias f is applied to the FK chain, such that the one dimensional on-site
potential becomes V1D(x) − f x . The effect of this bias is to break the symmetry
of the system, meaning that the center of mass will drift with a velocity ˙̄χ. In the
absence of any on site potential, it is simple to show that the free drift velocity is
f/γ. Stratonovich [41, 42] found the response of an overdamped point particle to
such a bias to be

ẋ1D( f ) = L
(
1 − e−β f L

)
/βγ∮

e−β(V1D(x)− f x)
∫ x+L

x eβ(V1D(y)− f y)dydx
. (5.75)

The effective one dimensionalmigration potentials FL,U(x̄) implied by the diffusivity
bounds suggest bounds ˙̄χL,U( f ) on the non-linear response, through analogy to the
Stratonovich result (5.75)

˙̄χL,U( f ) = L
(
1 − e−βN f L

)
/βNγ∮

e−β(FU(x̄)−N f x̄)
∫ x̄+L

x̄ eβ(FL,U(ȳ)−N f ȳ)d ȳdx̄
, (5.76)
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Fig. 5.8 Non-linear response the same 40 particle Sine-Gordon chain as above at low temperature
kBT = 6meV. Inset: log plot showing the low bias response. Whilst the lower bound of (5.76), ˙̄χL,
only agrees at the highest bias, the ‘free energy’ upper bound ˙̄χU, is seen to show good agreement.
The applied bias is expressed in proportion to the maximum gradient of the sinusoidal substrate
potential, πV1D/L; when f > 1 in these units the biased on site potential has no stationary points
meaning a drift is expected even at zero temperature. As the bias increases further any affect of the
on site potential disappears and one recovers the free drift law ˙̄χ = f/γ

These bounds have been compared to stochastic simulation as before; typical results
are displayed in Fig. 5.8. At low temperature the true result is much closer to the ‘free
energy’ upper bound, which again agrees with the transition state theory approxima-
tion. At a given temperature, the properties of ˙̄χU are identical to the point particle
result, which is well documented [39]. This informative approximation to the low
temperature non-linear response can be calculated at zero temperature in regimes
where transition state theory is expected to apply, as the free energy landscape (5.66)
can be calculated from a constrained static minimisation [25].

The main result of this section was that for the simple and widely employed
model studied, the Helmholtz free energy landscape only gives a lower bound for any
migration barrier to bulkmotion. This result was obtained through diffusively scaling
the adjoint Fokker-Planck equation to isolate the long time limit and confirmed
through extensive numerical simulation. An analogous relationship was also seen
to hold for the non-linear response. Recalling that the free energy is an entropic
maximum, it is not altogether surprising that the free energy pathway provides an
upper bound on the diffusive transport; due to the simplicity and generality of (5.24),
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these results will hold for a wide range of physical systems. In future work, it would
be interesting, using the approach developed here, to quantify the affect of both inertia
and general particle interaction on many-body, non-linear, stochastic transport.
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Chapter 6
The Stochastic Force on Crystal Defects

In the course of this thesis we have seen that highly mobile crystal defects such
as crowdions, kinks on screw dislocations and prismatic dislocation loops exhibit
an anomalous temperature independent mobility unexplained by phonon scattering
analysis. In this final chapter we derive new analytical expressions for the mobility
of these defects, without any recourse to elasticity theory. We show how the expres-
sions may be efficiently evaluated in molecular dynamics simulation, giving quanti-
tative accuracy with traditional trajectory analysis, then discuss how a temperature
independent mobility arises due to non-integrable effects forbidden in continuum
approaches.

To recall the importance of γ we first recall the defect equation of motion

ẋ = γ−1 · (f + η(t)) , (6.1)

where 〈η(t)⊗η(t ′)〉 = 2kBTγδ(t−t ′). This over dampedLangevin equation reflects
that thermal defect motion is swiftly non-inertial and governed by the stochastic
force η(t) and Eshelby’s ‘configurational force’ f [1], which we derive in a new
setting below. Crucially, small dislocation loops and point defects only respond to
stress gradients [1] meaning the stochastic force is often more significant than the
configurational force. For more extended defects the converse usually holds. In both
cases γ controls the rate of important microstructural processes such as swelling and
post-irradiation annealing [2]. However, as mentioned extensively in the above, no
universal theory for γ exists.

Phonon scattering calculations (see end of Chap.2) and soliton models [3] predict
that γ should increase linearly with temperature in the classical regime (i.e. γ =
kBTγw where γw is a constant). Whilst this ‘phonon wind’ relationship is seen to
hold, with varying degrees of quantitative agreement, in molecular dynamics (MD)
simulations of extended glissile dislocation lines [4, 5], no theory has explained
the widely observed [6–10] temperature independent mobility (γ = γ0) of glissile
defects such as crowdions, kinks and prismatic dislocation loops, which exhibit the
highly stochastic trajectories particularly sensitive to γ.
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To resolve this issue we start from a more general conceptual framework than the
scattering theory approaches of the past. Using theZwanzig projection technique [11]
(see Chap.3), we find γ emerges as the time autocorrelation function of the projected
defect force. We provide an accurate and efficient scheme to calculate this function
in MD simulations and analytically evaluate γ without recourse to elasticity. In
quantitative agreement with MD simulations of defects and dislocations, we find
γ = γ0 + kBTγw, where γ0 and γw are given explicitly as tensorial derivatives
of the potential energy of the defective crystal. We show that γ0 arises because the
defect displacement vector is not an eigenvector of the Hessian, which is assumed
implicitly in all previous treatments. We relate the relative magnitudes of γ0 and γw
to properties of the defect core structure. This manifestation of discreteness and non-
integrability is reminiscent, though independent of, the Peierls barrier to dislocation
motion [12].

The chapter is structured as follows. We first introduce the concept of the pro-
jection operator and how it may extract the co-ordinates of a crystal defect. Having
defined the projection operator, the techniques of Zwanzig [11] are employed to
derive a generalised stochastic equation of motion for the defect co-ordinate. We
then describe how this effective equation of motion is expected to be Markovian
when the defect migration barrier is vanishingly small, and use this approximation to
derive an explicit form for γ. With a functional form obtained a prescription for effi-
cient implementation inmolecular dynamics simulation is detailed and demonstrated
for two test cases, a small prismatic dislocation loop inW and an 1/2〈111〉{11̄0} edge
dislocation in Fe. We finally discuss the origin of the temperature independent γ0
and relate are result to existing phonon scattering theories.

6.1 The Projection Operator and Defect Coordinates

A crystal is exactly described using a 3N-dimensional vector of atomic positions
X ∈ R

3N and velocities Ẋ ∈ R
3N. In this setting crystal defects are not elastic

singularities but localised deformations, which may be assigned a set of M � N
‘position’ labels xλ ∈ R

M and ‘velocity’ labels ẋλ ∈ R
M to characterize the state of

a defective crystal.Weemphasise thatxλ, ẋλ are labels rather than true co-ordinates as
they are additional degrees of freedom we have introduced to the system and as such
are not cannonical; whilst they may be chosen to feature in the total energy H , they
are not required to satisfy Hamilton’s equations ẍλ = ∂H/∂xλ, m̃ · ẋλ = ∂H/∂ẋλ,
meaning their dynamics may not conserve energy or momentum. This additional
freedom is very important when considering the interaction of defects with thermal
vibrations. We also allow these labels to have a reduced dimensionality, i.e. a single
defect may only have a one-dimensional position coordinate as it cannot perform
conservative motion in any other direction. The inclusion of non-conservative climb
motion in this framework is left for future work.

There is no unique technique for extracting or even defining the defect coordinates.
Common methods for determining xλ, ẋλ include analysis of the atomic disregistry

http://dx.doi.org/10.1007/978-3-319-20019-4_3
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[13] or an energyfilter [7], though in the following the only requirement is a repeatable
protocol. By definition, the zero temperature configurationsX = U(xλ) of the crystal
potential energy V (X) may be entirely characterised by the parameters xλ, while
variation of U(xλ) with xλ, the defect displacement tensor ∂λU(xλ) ∈ R

3N×M

can be determined through nudged elastic band calculations [14] or simply a finite
difference derivative in the case of a defect with a wide core. We now demonstrate
this latter point as it will be invoked extensively in the following. Consider two
neighbouring atoms at x01, x02 ∈ R

3 in a perfect crystal, whose connecting lattice
vector x02 − x01 = a. The full reference configuration X0 ∈ R

3N of the crystal is the
tensor sum of all positions, i.e. X0 = ⊕i x0i . In the presence of a single defect which
is assigned a single position label xλ, the positions of these atoms becomes

x0i → ui (xλ), (6.2)

where now the full crystal configuration U(xλ) ∈ R
3N is the tensor sum of the

deformed positions, i.e. U(xλ) = ⊕i ui (xλ). Now, by considering the symmetry of
the undeformed crystal, it is clear that the displacement of an atom originally at x01
due to a defect at xλ will be identical to the displacement of an atom originally at
x02 = x1 + a due to a defect at xλ + a. This means that, for any defect field, we have
the identity

u2(xλ) − u1(xλ) = u1(xλ + a) + a − u1(xλ). (6.3)

For the case considered here, where the defect deformation only varies slowly in
space, we make the Taylor expansion

u1(xλ + a) 
 u1(xλ) + a · ∂λu1(xλ), (6.4)

which upon substituting into (6.3) gives

(u2(xλ) − u1(xλ)) /a − â 
 â · ∂λu1(xλ), (6.5)

where â = a/a. The left hand side of this equation is nothing but the finite difference
derivative of the defect strain field in the direction a, whilst the right hand side is the
component of the defect displacement tensor ∂λU(xλ) ∈ R giving the displacement
of an atom with original position x1 due to defect motion along a. In all of the
followingwe consider the simple but overwhelmingly common casewhere the defect
is constrained to move only in one direction, giving the very useful result

∂λUλ(xλ) = (Uλ(xλ + a) − Uλ(xλ) − ⊕i a) /a, (6.6)

where the right hand side is simply the finite difference approximation to the strain
field of the defect. In all of the following we will calculate ∂λUλ(xλ), whose impor-
tance will become clear below, by evaluating this approximation to the strain field.
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To complete the discrete representation of a crystal at finite temperature we must
include displacements due to thermal vibrations � ∈ R

3N, giving the total crystal
configuration X at any given instant as

X = � + U(xλ), Ẋ = �̇ + ẋλ · ∂λU(xλ), (6.7)

where ∂λU = ∂/∂xλ ⊗ U(xλ) ∈ R
M×3N. By introducing a defect position and

velocity the coordinate set � ⊕ �̇ ⊕ xλ ⊕ ẋλ has 2M more dimensions than X ⊕ Ẋ.
To rectify this we require the vibrational displacements � to be independent to the
displacements caused by defect motion ∂λU, giving the 2M constraints [3]

∂λU · � = 0, ∂λU · �̇ = 0. (6.8)

To obtain a dynamical equation for xλ, it now suffices [15] to project the exact
equation of motion mẌ = −∇V (X) onto the direction orthogonal to the crystal
vibrations ∂λU. Defining an effective mass tensor m̃ = m∂λU · (∂λU)T, we exploit
the time invariance of (6.8) to obtain m̃ · ẍλ − ẋλ · ∂2

λU · �̇ = −∂λ(V + ẋλ · m̃ ·
ẋλ/2). Similar equations of motion are standard in dynamical quasiparticle theories
[3, 15] and in common with other authors we will neglect the ‘hydrodynamic’ term
−ẋλ · ∂2

λU · �̇ and the effective kinetic energy gradient −ẋλ · ∂λm̃ · ẋλ/2. This is
justified as we consider the motion of only subsonic defects, and it can be shown that
these terms are of order |ẋλ|/c � 1, where c is the speed of sound. As a result, the
defect coordinates evolve according to

m · ẍλ = fλ ≡ −∂λU · ∇V (X)

∣∣∣
X=U (xλ)+�

, (6.9)

where we have defined the instantaneous defect force fλ as the projection of
the total force −∇V in the direction of defect motion ∂λU. The vibrational
coordinates evolve in the subspace orthogonal to ∂λU, implying that m�̈ =
− (

I − m(∂λU)T · m̃−1 · ∂λU
) · ∇V ≡ −∇�V .

6.2 Derivation of Eshelby’s Configurational Force

In the presence of weak external tractions far from the defect core, fλ is precisely the
configurational force on a crystal defect first derived by Eshelby [16]. To see this,
we first vary the total energy

E = V (xλ) + F · U(xλ), (6.10)

to obtain fλ = F ·∂λU(xλ). The requirement that F is weak and applied far from the
defect core is to ensure the linearity in F of the total energy (6.10); if the perturbation
was non-linear the continuously parametrised set of minimum energy configurations
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U(xλ) would not be a global minimum in the presence of an external traction. We
note that equivalence between elasticity and a fully non-linear discrete treatment is
only expected to apply in this regime, but it is precisely these conditions that are
realised in the vast majority of experimental observations.

To explicitly apply a surface traction, let F represent a force of ±An̂ ·σ ∈ R
3 per

atom for two bounding planes �±, where A is the area per atom. The defect force is
now

fλ = A
∑

i∈�+,�−
n̂ · σ · ∂λui , (6.11)

which has a continuum limit

fλ =
∫

�+,�−
dS · σ · ∂λu(S), (6.12)

where ∂λu(S) is the continuum interpolation of ∂λui , in direct agreement with
Eshelby’s result.

6.3 Removing the Vibrational Coordinates

From the form of the potential energy V (U(xλ) + �), it is clear that the evolu-
tion of the defect and vibrational coordinates are coupled, as they must be for a
frictional force to exist. However, for highly mobile subsonic defects, which nec-
essarily possess a wide defect core [12], the defect coordinates may be considered
as slowly varying compared to the vibrational coordinates, a conclusion which will
be explicitly demonstrated in molecular dynamics simulation below. Over a Debye
period τD ∼ a/c ∼ 0.1ps, where a is the lattice parameter, the displacements of
any atom due to thermal vibrations will approximately average to zero, with an
oscillation amplitude of∼τD

√
kBT/m. Since the defect speed will be approximately

ẋλ ∼ √
kBT/m̃ � c, the displacement of any one atom due to defect motion in a

time interval τD will be at most τD‖∂λU‖∞
√
kBT/m̃, where ‖∂λU‖∞ is the largest

component of ∂λU. These calculations imply that if ‖∂λU‖∞ � |∂λU|, then the
displacement due to defect motion will be much less than the magnitude of displace-
ments due to thermal motions, which implies that the � are effectively ergodic over
a timescale ∼τD where the defect coordinates are essentially stationary. But the con-
dition ‖∂λU‖∞ � |∂λU| amounts to a requirement that the deformation associated
with the defect is spread over many atomic sites, which is always satisfied by highly
mobile defects with a wide core. We therefore assume that vibrational displacements
average to zero over periods of ∼0.1ps whilst the defect remains effectively sta-
tionary, an assumption that we will test explicitly when calculating the defect force
autocorrelation.

We can exploit this separation of timescales to remove thermal vibrations from the
defect equation of motion using the formalism of dimensional reduction by Zwanzig
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[11, 17]. As described in Sect. 3.2, in this formalism the solution of the ‘fast’ equation
of motion for� is substituted into the ‘slow’ equation of motion for xλ. It was shown
in Sect. 3.2 that to order τ3D, �, �̇ are adiabatic with respect to xλ, ẋλ and ergodic
over the partial Gibbs distribution

〈. . . 〉 ≡ Z−1(xλ)

∫
�,�̇

. . . e−β
[
V (U(xλ)+�)+m�̇·�̇/2

]
, (6.13)

where Z(xλ) = exp(−βF(xλ)) is the partial partition function and we integrate on
the hypersurface defined by (6.8). The defect coordinates now evolve on a coarse
timescale τD and follow the stochastic equation of motion

m̃ · ẍλ(t) = −γ · ẋλ(t) + 〈fλ〉 + η(t). (6.14)

It is usual in dislocation dynamics to neglect the inertial term m̃ · ẍλ(t), which is
valid when the potential energy landscape is slowly varying over the thermal length√
kBT/m̃|γ| [18]. In (6.14)we have introduced the expected force 〈fλ〉 = −〈∂λV 〉 =

−∂λF , the stochastic force η(t), where 〈η(t) ⊗ η(t ′)〉 = 2kBTγδ(t − t ′), and our
central quantity, the frictionmatrixγ. In this timescale separated regime it was shown
that γ is proportional to the time integral of the force autocorrelation C(τ ), namely

γ ≡ (kBT)−1
∫ ∞

0
C(τ )dτ , (6.15)

where by ergodicity C(τ ) ≡ 〈fλ(τ )fλ(0)〉 − 〈fλ(0)〉2 may be expressed as

C(τ ) = lim
t→∞

[∫ t

0

fλ(t ′ + τ )fλ(t ′)
t

dt ′ −
(∫ t

0

fλ(t ′)
t

dt ′
)2

]
. (6.16)

We evaluate C(τ ), and hence γ, in two ways: first by deriving in closed form the
thermal averages (6.13) and second by numerical calculation of fλ(t) in MD simu-
lation.

6.4 Analytic Derivation

To derive an expression for γ we expand the potential energy V and the defect force
fλ in powers of �. For the evaluation of the partition function the constraints (6.8)
and the requirement that the U(xλ) describes the zero temperature configurations
results in an expansion

V = V (xλ) + 1

2
� · ∇2

�V · � + 1

3!� · ∇3
�V : � ⊗ � + · · · , (6.17)

http://dx.doi.org/10.1007/978-3-319-20019-4_3
http://dx.doi.org/10.1007/978-3-319-20019-4_3
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where all inner products are with respect to� and all partial derivatives are evaluated
at X = U(xλ). Although ∇�V = 0 (so that m�̈ = −∇2

�V · � + O(�2)) there is
no restriction on the existence of mixed derivatives ∂λ∇n

�V �= 0. This is important
as these mixed derivatives couple the defect and vibrational coordinates, as can be
seen in the defect force expansion

fλ = ∂λV (xλ) + ∂λ∇�V · � + 1

2
∂λ∇2

�V : � ⊗ � + · · · , (6.18)

We now truncate V to quadratic order in � in the Gibbs distribution (6.13), allowing
us to explicitly evaluate the expectation values in terms of the 3(N-M) dimensional
vibrational eigenset {ωl , vl}, where ∇2

�V · vl=−mω2
l vl .

This truncation neglects any thermal expansion arising from the purely vibrational
anharmonicities∇3

�V ,∇4
�V . In Appendix A.2 we systematically include these terms

to produce an expression for γ up to linear order in temperature. it is shown that the
anomalous temperature independent mobility γ0 by these additional terms.

This quadratic approximation means we suppress any thermal expansion 〈�〉 ∼
kBT(∇2

�V )−1·∇3
�V : (∇2

�V )−1.While it is a straightforwardmatter to include these
terms, they cannot affect the temperature independent mobility and are in general
negligible for metals below the melting temperature [19]. Using a quadratic Gibbs
distribution, the expected force is found to be 〈fλ〉 = −∂λ(V − TS), where S is
the harmonic entropy kB

∑
l logωl [20]; to evaluate C(τ ) we evolve the vibrational

coordinates � from a given xλ. This is justified by the timescale separation and
achieved by evaluating propagator terms of the form

〈�(t) ⊗ �(0)〉 =
∑

l

kBT
mω2

l

vl ⊗ vl cos(ωl t). (6.19)

As appropriate for non-conservative dynamics, the propagator is evaluated using
only the initial conditions 〈�(0)⊗�(0)〉=∑

l kBT/mω2
l vl ⊗vl and consequently is

closely related to the retarded Green’s function G(t) = �(t)(kBT)−1〈�(t)⊗�(0)〉
[21]. All that now remains is to perform elementary Gaussian integrations to obtain
our main result

γ =
∫ ∞

0
∂λ∇�V · G(t) · ∂λ∇�V dt

+ kBT

2

∫ ∞

0
Tr

(
∂λ∇2

�V · G(t) · ∂λ∇2
�V · G(t)

)
dt

+ kBT

2

∫ ∞

0
∂λ∇�V · G(t) · ∂λ∇3

�V : G(t) dt (6.20)

We see that the friction coefficient takes the form γ = γ0 + kBTγw, with the
new temperature independent γ0 a function of the mixed quadratic derivative
∂λ∇�V , and the temperature dependent kBTγw a function of the mixed cubic and
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quartic derivatives ∂λ∇2
�V and ∂λ∇3

�V . These terms may in principle be evaluated
after diagonalising ∇2

�V to obtain {ωl , vl} and computing the tensorial derivatives
∂λ∇n

�V (See Appendix A.3). However, in common with modern methods to evalu-
ate dispersion relations [22], we have found dynamical measurement of the thermal
averages to be much more efficient than complete diagonalisation of the vibrational
Hessian ∇2

�V .

6.5 Numerical Evaluation

We have developed amethod to calculate fλ(t) byMD simulation, which yieldsC(τ )

and hence γ, yielding a numerical evaluation of the analytic expressions (6.20).
In an ensemble of MD runs, with no stress applied, we time average the output
for each run X(t) using a coarse grained time step between τD/4 and τD to give
〈X〉. To eliminate any errors we find the zero temperature configuration Uλ which
minimises |∂λ〈X〉 − ∂λU|2. The calculated ∂λU is then used to project out the
defect force fλ(t) = −∂λU · ∇V (X(t)) over the same averaging time interval that
produced 〈X〉. We have found this method to be robust to variation in the averaging
period and especially efficient for short line segments or nanoscale defects, where
the zero temperature structures are typically related by rigid translation [23]. A
demonstration of this proceedure is illustrated in Fig. 6.1 for a crowdion in W at
150K. An example of such calculations is shown in Fig. 6.2 for a 7 atom SIA cluster
in tungsten, which exhibits the anomalous temperature independent mobility γ = γ0
[10], and in Fig. 6.3 for a highly mobile edge dislocation in iron, which exhibits a
mixed temperature dependence γ = γ0 + kBTγw [8]. In both cases we see that
C(τ ) loses all coherence after the first zero at ∼τD/2 over which time the defect
is observed to be essentially stationary. This validates our assumption of timescale
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Fig. 6.1 Determination of the defect coordinate fromMD simulation of a crowdion in W at 150K.
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to the strain field at 150K (blue) and 0K (red). As might be expected, the 0K strain field is much
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separation between thermal vibrations and defect motion.We identify the subsequent
FAC signal as noise because it flattenswith the system and ensemble size, limiting the
integrationC(τ )only to thefirst zero.As shown in thefigures thismethodgives values
in excellent agreement with conventional trajectory analysis. We also calculated the
FAC for the 7-atom SIA (∂λ∇�V ·G(t) ·∂λ∇�V ) via full diagonalisation of ∇2

�V .
We find excellent agreement with the dynamical method, as shown in Fig. 6.2.

6.6 Discussion

Terms similar to (6.20) appear in phonon scattering predictions of γ, where they
may be interpreted diagrammatically, with ∂λ∇n

�V approximately representing a
vertex of one defect with n phonons [27, 28]. In this continuum picture, defects
and phonons are separable to harmonic order, conserving energy and momentum in
collisions. As a result each term in (6.20) becomes dependent on the phase space
available for the scattering process it represents. The anomalous term γ0 is forbidden
in suchmodels as it represents the pure absorption or emission of a phonon, a process
which has a vanishing phase space for subsonic defect speeds due to the linear
phonon dispersion relation [28]. It turns out that the second term in (6.20) dominates,
describing a two-phonon elastic scattering process known as the ‘phononwind’.With
a cubic anharmonicity parameter A [29] this term has an approximate magnitude
∼kBT(A/μ)2τD , where μ is the shear modulus, in agreement with more detailed
continuum treatments [27]. However, the predictionγ0 = 0 from continuum analysis
does not explain the observed simulation results.

To see how the present treatment allows an anomalous temperature independent
mobility, we expressγ0 in the eigenbasis {vk} of the vibrational Hessian∇2

�V . Using
(6.19) and the expansion ∂λ∇�V = ∑

k vk∂λ∇k V , where ∇k = vk · ∇�, the tem-
perature independent component γ0 reads

∫ ∞
0

∑
k(∂λ∇k V )2/(mωk)

2 cos(ωk t)dt .
For this term to vanish, as in all continuum theories, we require ∂λ∇k V = 0. But
this implies that the defect displacement operator ∂λU is an eigenvector of the total
Hessian ∇2V as the ‘off-diagonal’ terms ∂λ∇k V that mix ∂λU and the vibrational
modesmust vanish.We have explicitly demonstrated that this is not the case; it is pre-
cisely this effect, which relies on the weaker identification of a defect as a localised
deformation that is not an eigenvector of the Hessian, in contrast to a canonical quan-
tity separable from vibrations, that gives rise to γ0. Of course, anharmonic vibrations
still affect the dynamics in a manner which becomes analogous to typical scattering
theories in a continuum picture, giving the ‘phonon wind’ term kBTγw in (6.20).
These terms are appreciable for only extended line dislocations which significantly
deform the host lattice, while the anomalous γ0 is the leading term for nanoscale
defects which are typically elastically neutral in the far field. For some extended
dislocations in close packed crystals the defect translational operator is very nearly
an eigenvector of the Hessian, implying that the anomalous mobility vanishes and
γ ∼ kBTγw [4]. But in general we have found this not to be the case, with the mixed
dependence γ = γ0 + kBTγw occurring across a wide range of crystal defects.
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We believe our explict form for γ is a new result. It may be used to parametrise
accurately deterministic (ẋ = γ−1 · f) or stochastic (ẋ = γ−1 · (f + η(t))) defect
mobility laws. The result was obtained by identifying defects through a projec-
tion operator with no recourse to elasticity. An anomalous temperature independent
mobility γ ∼ γ0 arises because the displacement vector corresponding to defect
motion is not an eigenvector of theHessian, in violation of elasticity theory or soliton-
like models, where vibrations are canonical. This finding highlights the importance
of intrinsically discrete (i.e. atomistic) analysis to understand nanoscale crystal plas-
ticity. Finally, we note that the form of γ0 in (6.20) is closely analogous to the famous
Kac-Zwanzig heat bath formula [11]. But rather than a random array of harmonic
oscillators with a constant coupling strength we have here the vibrational modes of
the entire crystal coupling to a localised deformation through ∂λ∇�V .
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Chapter 7
Conclusions and Outlook

A primary goal of this doctoral project was to correctly coarse grain a dislocation to
include thermal fluctuations and understand the wide range of behaviour governed
by these fluctuations.

To achieve this coarse graining, it became clear that the dislocation line must
posses a crystallographically structured nodal discretisation, and no finer. This was
apparent as the emergent discreteness effects, such as kink migration barriers, could
be analytically calculated and explicitly compared to molecular dynamics simula-
tions.

This strongly showed thatwemust adopt a fundamentally discrete picture to under-
stand defects on the atomic scale. Once adopted, many ambiguities of dislocation
theory disappear, at the cost of a more complicated and novel conceptual framework.
For example, we found that the structure of a dislocation core is best thought of as
periodically repeating ‘units’- a concept that has no meaning in a continuum pic-
ture. This protocol proved essential to develop the concept of the kink vector and is
expected to play a crucial role in coarse graining the variety of dislocations present
in a given slip system [1].

In summary, the results, interpretation and coarse graining of a wide range of
molecular dynamics simulations shows that the conventional continuumfield theories
of elasticity are ill suited to capturing fluctuating nanoscale phenomena of thermal
dynamics. This was manifest in the inability of continuum theories to explain the
temperature independent mobility of many nanoscale defects.

To resolve this problem we developed a completely new approach, defining the
stochastic dynamics of crystal defects through the Zwanzig projection operator tech-
nique, with no recourse to elasticity. This technique allowed a first explicit expres-
sion for the defect mobility and explained the temperature independent mobility of
nanoscale defects, which arose because in all previous theories friction was intro-
duced as a perturbation to a quadratic Hamiltonian which already contained defects.
This implicitly assumed that defect motion is an eigenmode, an assumption we
explicitly showed to be false.

© Springer International Publishing Switzerland 2015
T.D. Swinburne, Stochastic Dynamics of Crystal Defects,
Springer Theses, DOI 10.1007/978-3-319-20019-4_7

89
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In future work we plan to extend this projection operator technique to defects
which have a large migration barrier. This is complicated as the timescale separation
essential to produce the effective defect Langevin equation cannot be made in the
largemigration barrier case, as the climbing of large barriers occurs at thewave speed.
This means the resultant motion will be not beMarkovian and the friction kernel will
depend on space and time. The general investigation of such non-Markovian model
represent an active area of current research [2].

Returning to the coarse grained models these atomistic techniques are designed
to inform, we also made a first rigorous investigation of the stochastic dynamics of
the non-linear discrete models which proved essential for thermal defects and have
additionally been used in a wide range of fields. Significantly, we found that the free
energy landscape with respect to a collective coordinate such as the center of mass
will always underestimate the actual mobility of the system with respect to the same
collective coordinate. This immediately raises the question ‘What reduced equation
of motion can give the correct mobility?’. Clearly the answer to this question is
closely related to the Zwanzig projection technique, but the relation to the free energy
landscape is at first sight unclear.

Future applications of the coarse grained dislocationmodel we have developed are
extensive. In particular, we plan to apply the model to thermally activated shear loop
growth in the presence of point defects such as carbon and vacancies, to gain a quan-
titative understanding of the brittle to ductile transition. More generally, it is hoped
the techniques developed in this thesis, in particular our explicit expression for γ and
the method of its evaluation, may be used to provide further connections between
analytic heat bath models and the stochastic thermal dynamics of real systems.
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Appendix

A.1 Proof of (5.54)

As ρ∞ and the test functions f, g are periodic and bounded in x̄ , we may always
expand

√
ρ∞ f (or

√
ρ∞g) as

√
ρ∞ f =

n=∞∑

n=0

f̃n({ak}) cos
(
2πn

L
x̄

)
+ f̃n+N ({ak}) sin

(
2πn

L
x̄

)
, (A.1)

where we have suppressed any χ̄ or t dependence as theymay be considered constant
in the following. The normalisation condition (5.41) may now be writen as

L

2

n=∞∑

n=0

(∫

{ak }
f̃ 2n ({ak}) + f̃ 2n+N ({ak})

)
< ∞, (A.2)

implying that the real f̃n({ak}) must be square integrable functions, i.e. that

∫

{ak }
f̃ 2n ({ak}) < ∞. (A.3)

This means the functions satisfy a Cauchy-Schwartz inequality of the form

(∫

{ak }
f̃n f̃m

)2

≤
(∫

{ak }
f̃ 2n

)(∫

{ak }
f̃ 2m

)
, (A.4)

where the arguments of the functions have been omitted for brevity. For each value
of x̄ ∈ [0, L] the trigonometric functions in (A.1) may be considered coefficients
in a linear sum of square integrable functions. As any linear combination of square
integrable functions is also a square integrable function, any two linear combinations
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will also satisfy a Cauchy-Schwartz inequality of the form (A.4). Taking
√

ρ∞ f and√
ρ∞g for these two linear combinations gives the desired proof of the pointwise

inequality (5.54). Note that (5.54) is not derived explicitly from (5.53).

A.2 Full Expression for the Defect Friction Including
Thermal Expansion Terms

In the main text it was assumed that the Gibbs distribution used to calculate thermal
averages was quadratic in the vibrational coordinates. This assumption allowed for
anharmonic terms in the defect-vibrational coupling, but did not allow for the purely
vibrational anharmonic terms that account for thermal expansion. In the following
we account for these additional anharmonic terms perturbatively, deriving expres-
sions for vibrational expectation values up to quadratic order in temperature. It is
shown that our main result, an analytic expression for the anomalous temperature
independent component of the defect mobility, is unaffected by the additional anhar-
monic vibrational terms and it is argued that in general these terms have a negligible
effect below the melting temperature. We recall from the main text that all reported
molecular dynamics simulations find the classical mobility of highly mobile crystal
defects takes the form

γ = γ0 + kBTγw. (A.5)

It was shown in the main text that γ is equal to the integral of the autocorrelation
function for the defect force

γ = (kBT)−1
∫ ∞

0
〈fλ(t)fλ(0)〉 − 〈fλ(t)〉〈fλ(0)〉dt, (A.6)

where the defect force is given by

fλ = ∂λV (xλ)+∂λ∇�V ·�+ 1

2
∂λ∇2

�V : �⊗�+ 1

3!� ·∂λ∇3
�V : �⊗�+· · ·

(A.7)
Our task is to evaluate the autocorrelation function for the defect force including all
possible terms up to quadratic order in temperature in order to produce an analytical
expression for the defect mobility up to linear order in temperature.

In principle, the thermal averages 〈...〉 are taken over all initial configurations
�0, �̇0 consistent with a fixed defect position xλ, namely

〈...〉 ≡ Z−1(xλ)

∫

�0,�̇0

... e−β
[
V (U(xλ)+�)+m�̇·�̇/2

]
, (A.8)
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where potential energy at fixed xλ reads

V (U(xλ)+�) = V + 1

2
�·∇2

�V ·�+ 1

3! (�⊗�) : ∇3
�V ·�+ 1

4! (�⊗�) : ∇4
�V : (�⊗�)+· · · (A.9)

We have suppressed the argument in V (U(xλ)) for clarity.

Beforemaking any assumptions about the nature of the thermal expectation values
it is straightforward to show that the autocorrelation function for the defect force is
given to quartic order in the vibrations by (using the shorthand�(t) = �t and 0 ↔ t
for repeated expressions with an interchange of 0, t)

〈fλ(t)fλ(0)〉 − 〈fλ(t)〉〈fλ(0)〉 = ∂λ∇�V · (〈�t ⊗ �0〉 − 〈�t 〉 ⊗ 〈�0〉) · ∂λ∇�V

+ 1

2
∂λ∇�V · (〈�t ⊗ �t ⊗ �0〉 − 〈�t ⊗ �t 〉 ⊗ 〈�0〉 + 0 ↔ t) · ∂λ∇2

�V

+ 1

4
∂λ∇2

�V : (〈�t ⊗ �t ⊗ �0 ⊗ �0〉 − 〈�t ⊗ �t 〉 ⊗ 〈�0 ⊗ �0〉) : ∂λ∇2
�V

+ 1

6
∂λ∇3

�V · : (〈�t ⊗ �t ⊗ �t ⊗ �0〉 − 〈�t ⊗ �t ⊗ �t 〉 ⊗ 〈�0〉 + 0 ↔ t) · ∂λ∇�V

(A.10)

In themain text we curtailed the vibrational potential to quadratic order in� allowing
analytical evaluations of thermal averages over themultivariate Gaussian distribution

〈...〉0 ≡ Z−1(xλ)

∫

�0,�̇0

... e−β
[
�·∇2

�V ·�/2+m�̇·�̇/2
]
, (A.11)

so that we can evaluate the retarded Green’s function G(t) in terms of the eigenset
{ωl , vl}:

G(t) ≡ �(t)(kBT)−1〈�t ⊗ �0〉0 = �(t)
∑

l

cos(ωl t)

mω2
l

vl ⊗ vl . (A.12)

Using Wick’s theorem to reduce all expectation values to products of Green’s func-
tions we can immediately write the defect mobility to linear order in temperature
under the harmonic vibration approximation as

γ = γ0 + kBTγw

γ0 =
∫ ∞
0

∂λ∇�V · G(t) · ∂λ∇�V dt

γw =
∫ ∞
0

1

2
Tr∂λ∇2

�V · G(t) · ∂λ∇2
�V · G(0) + G(0) : ∂λ∇3

�V · G(t) · ∂λ∇�V dt

(A.13)

which is precisely the result quoted in the main text.
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We are now in a position to account for the purely vibrational anharmonicities
analytically by expanding the full Gibbs distribution (A.8) to leading order in∇3,4

� V ,
resulting in an approximate thermal average in terms of quadratic averages (A.11)

〈...〉 �
(

〈...〉0 − β

3! 〈(�0 ⊗ �0) : ∇3
�V · �0...〉0 − β

4! 〈(�0 ⊗ �0) : ∇4
�V : (�0 ⊗ �0)...〉0

)

×
(
1 + kBT

8
G(0) : ∇4

�V : G(0)

)
, (A.14)

where the last term comes from the change in the partition function. This gives
expectation values of (again using Wick’s theorem)

〈�t 〉 = −kBT

2
G(0) : ∇3

�V ·G(t)− (kBT)2

16
(G(0) : ∇4

�V : G(0))G(0) : ∇3
�V ·G(t)+ O(T3),

(A.15)

〈�t ⊗ �0〉 = kBTG(t) − (kBT)2

2
G(t) ·

(
G(0) : ∇4

�V
)

· G(0) + O(T3) (A.16)

〈�t ⊗ �t 〉 = kBTG(0) − (kBT)2

2
G(t) ·

(
G(0) : ∇4

�V
)

· G(t) + O(T3) (A.17)

〈�t ⊗ �t ⊗ �0〉 = − (kBT)2

2

(
G(0) : ∇3

�V · G(t)
)

⊗ G(t)

− (kBT)2

8

(
G(0) : ∇3

�V · G(0)
)

⊗ G(0) + O(T3) (A.18)

〈�t ⊗ �0 ⊗ �0〉 = − (kBT)2

2

(
G(0) : ∇3

�V · G(0)
)

⊗ G(t)

− (kBT)2

8

(
G(0) : ∇3

�V · G(t)
)

⊗ G(0) + O(T 3) (A.19)

whilst higher order expectation values are unaffected by the additional terms to
quadratic order in temperature.

It is a straight forward matter to substitute these expressions in the formal result
(A.10) to obtain a complete expression for the defect mobility up to linear order in
temperature including the effects of thermal expansion. The rather lengthy resulting
expression reads

γ = γ0 + kBTγw + O(T2)

γ0 =
∫ ∞

0
∂λ∇�V · G(t) · ∂λ∇�V dt

γw =
∫ ∞

0

1

2
Tr∂λ∇2

�V · G(t) · ∂λ∇2
�V · G(0) + G(0) : ∂λ∇3

�V · G(t) · ∂λ∇�V
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− 1

2
∂λ∇�V ·

(
G(t) ·

(
G(0) : ∇4

�V
)

· G(0)

+ 1

2
G(0) : ∇3

�V · G(t) ⊗ G(0) : ∇3
�V · G(0)

)
· ∂λ∇�V

+ 1

4
∂λ∇2

�V :
(
3

4
G(0) ⊗ G(0) : ∇3

�V · G(0) −
(
1

4
G(0) + G(t)

)
⊗ G(0) :

∇3
�V · G(t)

)
· ∂λ∇�V dt (A.20)

We now highlight important points drawn from the above expressions that indicate
the additional thermal expansion terms have a negligible effect on defect mobilities
below the melting temperature.

Firstly, a central result of the main text is an expression for the anomalous temper-
ature independent component of the mobility γ0 that all existing theories of defect
mobility fail to capture. This expression is explicitly evaluated after diagonalising the
vibrational Hessian and quantitatively agrees with numerical results from molecular
dynamics simulation. As can be seen in the above, the additional thermal expansion
terms have strictly no effect on γ0 meaning this central result is unchanged.

In contrast, for the temperature dependent damping term kBTγw it can be seen
that there are are many additional terms due to thermal expansion. However, we
note that all of the additional thermal expansion terms are of at least cubic order
in the Green’s fuction G, meaning that they approximately represent a four body
interaction process (one body being the defect itself). If such high order interaction
processes were of appreciable magnitude we would expect to see significant thermal
expansion as well as a quadratic temperature dependence in the defect mobility (just
as three body processes contribute to kBTγw), neither of which was observed in our
simulations or in the large body of existing work. Consequently we believe that the
succinct form for γw presented in (A.13) and the main text captures all the relevant
physical processes.

A.3 Tensorial Derivatives of an Embedded Atom Potential

The potential energy for a set of atoms {xi } interacting through an embedded atom
potential are typically of the form

U ({xi }) = U1[λ] − U1/2[ω], UC [φ] =
∑

i

⎛

⎝
∑

j �=i

φ(r ij)

⎞

⎠
C

≡
∑

i

�C
i , (A.21)
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where r ij = |xi − x j | > 0 is the Euclidean distance between atoms i and j , λ is a
pair potential term and ω, the keystone of the embedded atommethod, represents the
electronic density. In practice these potential terms are neglected once r ij exceeds
some cut-off radius rmax.

A.3.1 Derivatives of the Pairing Function φ

The embedded atom potential (A.21) is built from pair-potential functions φ(|xi −
x j |) = φij between pairs ij. To simplify later notation, we nowdefine the first, second,
third and fourth derivatives, which by the translational invariance of the argument
will have permutation symmetry in the cartesian directions α,β, γ, ε ∈ (x, y, z)-

χij
α ≡ ∂φij

∂xi
α

= −∂φij

∂x j
α

= χ[ij]
α , ⇒ ∂�C

i

∂xk
α

= C�C−1
i

∑

m

χ[km]
α (δik + δim)

(A.22)

�
ij
αβ ≡ ∂χ

ij
α

∂xi
β

= −∂χ
ij
α

∂x j
β

= ∂χ
ji
α

∂x j
β

= �
(ij)
(αβ)

, ⇒ ∂χ
[ij]
α

∂xk
β

= (δik − δ jk)�
(ij)
(αβ)

(A.23)

ϒ
ij
αβγ ≡ ∂�

ij
αβ

∂xi
γ

= −∂�
ij
αβ

∂x j
γ

= ϒ
[ij]
(αβγ)

⇒ ∂�
(ij)
(αβ)

∂xk
γ

= (δik − δ jk)ϒ
[ij]
(αβγ)

(A.24)

�
ij
αβγε ≡ ∂ϒ

ij
αβγ

∂xi
ε

= −∂ϒ
ij
αβγ

∂x j
ε

= �
(ij)
(αβγε) ⇒ ∂ϒ

[ij]
(αβγ)

∂xk
ε

= (δik − δ jk)�
(ij)
(αβγε),

(A.25)

where [], () indicate the antisymmetric and symmetric permutation symmetry. Prac-
tically, the Cartesian derivatives χ, �,ϒ,� of φ(r) are evaluated in spherical polar
coordinates though we omit these standard results as there is quite enough algebra
already.

To aid the following, we also define the ‘reduced’ quantities

�̄C−n
i ≡ C !

(C − n)!�
C−n
i , χ̄i

α ≡
∑

m

χim
α , �̄ i

αβ ≡
∑

m

� im
αβ etc.

∂�̄ i
αβ

∂xk
γ

= δikϒ̄
i
αβγ − ϒ ik

αβγ etc. (A.26)
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A.3.2 First and Second Derivatives

With these definitions, we can immediately write

∂UC

∂xi
α

= C
∑

m

�C−1
m

∂�m

∂xi
α

= C
∑

m

�C−1
m

∑

n

χ[in]
α (δmi + δmn)

= C
∑

m

χ[im]
α

(
�C−1

i + �C−1
m

)
, (A.27)

∂2UC

∂xi
α∂x j

β

= C
∑

m

∂χ[im]
α

∂x j
β

(
�C−1

i + �C−1
m

)
+ C(C − 1)

∑

m

χ[im]
α

×
⎛

⎝∂�i

∂x j
β

�C−2
i + ∂�m

∂x j
β

�C−1
m

⎞

⎠

= C
∑

m

�
(im)
αβ (δij − δmj )

(
�C−1

i + �C−1
m

)

+ C(C − 1)
∑

mn

χ[im]
α χ

[ jn]
β (δij + δin)�C−2

i + χ[im]
α χ

[ jn]
β (δmj + δmn)�C−2

m

(A.28)

Which in our reduced notation reads

∂UC

∂xi
α

= χ̄i
α�̄C−1+

∑

m

χim
α �̄C−1

i ,

∂2UC

∂xi
α∂x j

β

= −�
(ij)
αβ

(
�̄C−1

i + �̄C−1
j

)
+

∑

m

χim
α χ

jm
β �̄C−2

m

+
∑

(pᾱ,qβ̄)∈P(iα, jβ)

χ
pq
ᾱ χ̄

q
β̄
�̄C−2

q + δij

(
�̄ i

αβ�̄C−1
i +

∑

m

� im
αβ�̄C−1

m + χ̄i
αχ̄i

β�C−2
i

)
,

(A.29)

where the index-coordinate permutation sum is explicitly

(pᾱ, qβ̄) = (iα, jβ), ( jβ, iα). (A.30)

As any analytic partial derivative must be invariant to the order of differentiation, it
will be advantageous to group terms in higher order derivatives as sums over such
index-coordinate permutations. The overbars on the Greek coordinate symbols are
used to distinguish them from the coordinate symbols outside of such sums.
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A.3.3 Third Derivative

The above expressions represent a more succinct representation of results derived
elsewhere.We now continue to higher derivatives, using the rules and notation devel-
oped above.Whilst the intermediate algebra is lengthy, it is straightforward and there-
fore omitted in the interest of clarity. The permuation operation will now generate
the six terms

P
3 : (pᾱ, qβ̄, r γ̄) = (iα, jβ, kγ), (iα, kγ, jβ), ( jβ, kγ, iα), ( jβ, iα, kγ),

(kγ, iα, jβ), (kγ, jβ, iα). (A.31)

This significant reduction in the number of terms allows us to write the third order
tensorial derivative as

∂3UC

∂xi
α∂x j

β∂xk
γ

= δijk

(
ϒ̄ i

αβγ�̄C−1
i +

∑

m
ϒ im

αβγ�̄C−1
m + �̄i

(αβχ̄i
γ)�̄

C−2
i + χ̄i

αχ̄i
βχ̄i

γ�̄C−3
i

)

+
∑

m
χim

α χ
jm
β χkm

γ �̄C−3
m +

∑

∀P3
�

pq
ᾱβ̄

χ
pr
γ̄ �̄C−2

p + 1

2! χ̄
p
ᾱχ

pq
β̄

χ
pr
γ̄ �̄C−3

p

+
∑

∀P3
1

2! δpq

(
−ϒ

pr
ᾱβ̄γ̄

(
�̄C−1

p + �̄C−1
r

)
+

∑

m
�

pm
ᾱβ̄

χrm
γ̄ �C−2

m + �
pr
ᾱβ̄

χ̄r
γ̄�̄C−2

r

)

− 1

2! δpq

(
�

pr
γ̄ (β̄χ̄

p
ᾱ)�̄C−2

p + �̄
p
ᾱβ̄

χ
pr
γ̄ �̄C−2

p + χ̄
p
ᾱχ̄

p
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, (A.32)

where δijk = δijδjk is a ‘rank three’ diagonal tensor. Parentheses around coordinates
imply expansions such as

− � pr
γ (βχ̄p

α)�̄C−2
p = −�

pr
γβχ̄p

α�̄C−2
p − � pr

γαχ̄
p
β�̄C−2

p , (A.33)

with similar expansions for (αβγ). In the above, every term inside a permutation sum
is degenerate under a single coordinate swap, and so have multiplicity of 2! (If we
included the other terms in a permutation sum, their complete permutation symmetry
would in this case give them a multiplicity of 3! = 6). This means that the total
permutation sum could be replaced by the cyclic permutation sum in this case of three
variables. However, when we go to the fourth derivative, the combination of higher
order delta functions and more complicated terms will destroy this equivalence.

A.3.4 Fourth Derivative

Clearly the longest expression, the fourth derivative reads



Appendix 99

∂4UC

∂xi
α∂x j

β∂xk
γ∂xl

ε

= δijkl

(
�̄i

αβγε�̄
C−1
i +

∑

m

�im
αβγε�̄

C−1
m +

(
ϒ̄ i

(αβγχ̄i
ε) + �̄ i

(αβ�̄ i
γε)

)
�̄C−2

i

)

+ δijkl

(
�̄ i

(
αβχ̄i

γχ̄i
ε

)
�̄C−3

i + χ̄i
αχ̄i

βχ̄i
γχ̄i

ε�̄
C−4
i

)

+
∑

∀P4

1

3! δpqr

(
−�

ps
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ᾱβ̄γ̄

χsm
ε̄ �̄C−2

m + ϒ
ps
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ᾱβ̄γ̄

χ
ps
ε̄ + �

ps
ε̄(ᾱ�̄
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ᾱβ̄γ̄ε̄

�̄C−1
p − ϒ

pr
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Phew. The last term can trivially be taken outside the sum, as it has full permutation
symmetry.

If you have read this far, we would like to point out that all of this was done by
hand as no symbolic algebra program could handle (a) the generic form of the pair
potential and (b) give the massive reduction afforded by the permutational sums.

Depressingly, the above expression cannot be evaluted formany popular empirical
potentials as they use cubic splines which have no fourth derivative. In general a
splined function does not satisfy Taylor’s theorem, but the complicated function
which populated the spline does, meaning that to produce the fourth order dynamics
in the spline we need knowledge of many different points up to the second derivative
rather than the knowledge of four derivatives at one point.

Nevertheless, we have written a code to evalutate the all the above terms via
a summing scheme which iterates the indicies of the tensor rather than the terms,
a technique which affords massive efficiency savings. This code has been tested
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on fully analytic potentials such as Sutton-Chen and Lenard-Jones [1]. We plan to
release a version of this code in the future these higher order tensorial derivatives have
potential application in the study of non-linear vibrational states (glasses,crystalline
polymers etc.). Thank you for reading.
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