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1 Introduction
In recent years, a new type of quantum matter has emerged in the field of
condensed matters physics, which adds a fundamental new class of materials
to the so far basic distinction between conductors and insulators. However,
the classification into systems which are able to conduct an electrical current
and systems which are not, is not complete. The discovery of the integer and
fractional quantum Hall effect in the 1980’s revealed that there exist systems
which are insulating in the bulk, but necessarily exhibit a gapless edge state at
the boundaries with the important characteristic that the boundary conduc-
tance is a requirement of the bulk properties of the system [1, 2]. These states
have been successfully deduced by topological band theory or even more ab-
stract topological arguments, taking into account concepts like Berry phases
and Chern numbers [3, 4].

In the integer quantum Hall effect, a magnetic field is required in order
to exhibit the quantized Hall conductance at the boundaries, however very
recently, examples of topological phases with an insulating bulk and con-
ducting boundary states without external magnetic field have been discov-
ered and referred to as topological insulators (TIs) [5, 6, 7, 8, 9, 10, 11]. This
new quantum state, which is also known under the terminology of quantum
spin Hall state, is invariant under time-reversal symmetry and exhibits a pair
of oppositely spin-polarized boundary states with spin-up and spin-down
propagating in opposite directions. The helical nature, i.e. the correlation
between the spin and the momentum of the edge states, is thereby due to
time-reversal symmetry and the topological character of the band gap, which
itself is caused by the strong spin-orbit (SO) interaction present within these
systems. In detail, the SO interaction modifies the energy gap between the
empty and the occupied states of insulators so that some of the states which
were initially located above the gap are now lying below the gap. Analogous
to the concept of the Möbius strip in mathematics, this partial inversion of the
band gap can not be simply unwound without closing the gap, introducing
the notion of topology into these specific insulators. From this topological
point of view, a band insulator with a partially inverted band gap is topolog-
ically distinct from a band insulator with a trivial band gap which is referred
to as non-trivial and trivial. The term topological here defines a bulk invari-
ant (an integer) which differentiates between these distinct insulating phases
and classifies them accordingly. In other words, the topological distinction

C. Pauly, Strong and Weak Topology Probed by Surface Science, MatWerk,
DOI 10.1007/978-3-658-11811-2_1, © Springer Fachmedien Wiesbaden 2015



2 1 Introduction

between a trivial insulator and a non-trivial insulator, i.e. a topological insu-
lator, persists in the fact that the band structure of a TI cannot be continuously
transformed into that of an ordinary insulator unless a closing and a reopen-
ing of the bulk band gap takes place as long as the fundamental symmetries of
the Hamiltonian describing the system remain intact. The appearance of the
metallic states at the boundary can be thought of as a consequence of this tran-
sition at the interface between a non-trivial and a trivial phase. The invariant
describing the different phases is a Z2

1 index ν and has been proposed by
Kane and Mele in 2005 [8]. This new approach of topological invariants has
become a powerful tool for understanding many-body phases which have
bulk energy gaps and has resulted in the discovery of interesting new phases.
Moreover, the new topological phases already serve as a platform for funda-
mental physics and might lead to technological applications like spintronics
or quantum computing in the near future.

Unlike the integer quantum Hall effect, the topological insulator state can
be generalized to three-dimensions (3D) with topologically protected spin-
polarized surface states surrounding the surfaces of the 3D material. How-
ever, in 3D, different to the 2D case, distinct topological phases can arise. The
Z2 topological analysis quantitatively distinguishes between materials which
exhibit topological protected surface states on all of their surfaces and materi-
als which only have surface states on some of the surfaces [12, 13]. The former
is referred to as strong TI whereas the latter is called weak TI. The term weak
here, however, is misleading as it is referring to the initial believe that the
topological states in this class of TIs would be unstable with respect to most
types of disorder [14, 13]. However recent theoretical work has found the op-
posite, namely that their surface conductivity is indeed robust with respect
to disorder [15, 16, 17, 18, 19, 20, 21], and can even be stabilized by disorder,
very similar to the quantum Hall effect. The identification of both topolog-
ical phases in specific materials and the characterization of their respective
topological properties is the major point of research within this work.

This work starts with a detailed introduction into the field of topological
insulators. The integer quantum Hall effect is introduced as a first example
of a topological insulator and further described in terms of topology. This
approach leads us to the quantum spin Hall effect which is the basic effect of
all systems studied within this work. By generalizing the quantum spin Hall
effect to three dimension, the notion of strong and weak topological insulators
together with their respective fundamental properties will be introduced. At
the end of this introductory chapter, an overview of the major experimental
research within the field is given.

1Z2 means that the index can only have two distinct values, e.g. 0 or 1.
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In the experimental method section, the different techniques which have
been employed in order to characterize the different systems will briefly be
introduced. Scanning tunneling microscopy (STM) and angle-resolved pho-
toemission spectroscopy (ARPES), which are both surface sensitive and very
powerful in terms of visualizing the electronic structure of materials from the
atomic to larger scale, will be described from a theoretical and experimental
point of view.

The experimental part of the thesis is subdivided into two main parts. The
first part deals with the identification of strong topological properties within
the well-known and technologically relevant phase change materials Sb2Te3
and Ge2Sb2Te5. In the field of new applications in nanoelectronics, phase
change materials are of tremendous technological importance ranging from
optical data storage to electronic memories. In particular, the phase change
alloy Ge2Sb2Te5 which is already widely applied for optical data storage me-
dia, such as CD’s and DVD’s, and might be used as non-volatile RAM in
the near future too, still has a huge portfolio of undiscovered potential for
further applications. The main property of these materials is the very fast
and energy efficient switching between a low conductance amorphous phase
and a high conductance crystalline phase on a nanosecond (ns) scale. Here,
spin-sensitive photoemission spectroscopy is used in order to demonstrate
the spin-momentum locking of the topological surface states of single crystal
Sb2Te3 and show that these states form a Dirac cone with the Dirac point lying
close the the Fermi level. The linear energy-momentum relation of the topo-
logical states as well as their surface character is further substantiated by the
Landau level spectroscopy in scanning tunneling spectroscopy (STS). In addi-
tion, a second topologically protected surface state at lower energy exhibiting
strong Rashba-type spin-splitting is identified and found to be located within
a SO gap away from the Γ-point. A case which has already been predicted
in 1975 and only rarely probed so far. Interestingly, the spin splitting is rela-
tively large, e.g., larger than for typical Rashba systems like Au(111) [22, 23]
or Bi(111) [24, 25, 26, 27], but lower than in Bi-based surface alloys [28]. In
the case of the most prominent phase change material Ge2Sb2Te5, which is
located at the center of the pseudobinary line between Sb2Te3 and GeTe, the-
ory predicts the alloy to be at the borderline of these phase change materials
which exhibit topological properties. Within the experimental study, the band
structure of epitaxially grown, metastable Ge2Sb2Te5 thin films has been ana-
lyzed by ARPES and STS, such that an inverted bulk valence band close to the
Fermi level could be identified confining a large band gap of 0.4 eV, which, in
combination with density functional theory calculations (DFT), points to a Z2
topological nature of Ge2Sb2Te5. In the special case of a phase change mate-
rial, this opens up the possibility of switching between an insulating amor-
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phous phase and a conducting topological phase on ns-time scales. Results
from this part of the thesis have been published in refs. [29], [30] and [31].

The second main part of the thesis focuses on the experimental character-
ization of the crystal and electronic structure of Bi14Rh3I9 [32], the first syn-
thesized so-called weak TI, which is a stacked material with graphene-like
layer structure but consisting of heavy atoms. Using STS at low temperature,
a sub-nanometer wide edge state has been observed on the step edges of the
topologically dark surface, which is the surface which exhibits no topological
surface states. The edge states mapped on the top surface hereby belong to
the topological surface states from the non-trivial side surfaces of the material.
Thus, these edge states are a direct fingerprint of a weak TI. In addition, this
particular edge state is revealed to be continuous in both energy and space
within a large band gap of 200 meV, thereby, evidencing its non-trivial topol-
ogy. The absence of these edge channels in the closely related, but topologi-
cally trivial insulator Bi13Pt3I7 further corroborates the channels’ topological
nature. In contrast to other topologically protected one-dimensional states,
the edge state is as narrow as 0.8 nm, making it extremely attractive to device
physics. Results from this part of the thesis have been published in ref. [33].



2 Fundamentals of Topological
Insulators

2.1 Introduction

In recent years, a new field in condensed matter physics has emerged, de-
scribing a novel class of bulk insulators with conducting states on their
boundaries [5, 6, 7, 8, 9, 10, 11]. The driving force within these materials,
which are referred to as topological insulators (TIs), is a strong spin-orbit
(SO) interaction under the conservation of time-reversal symmetry (TRS). In
this chapter, I will give an insight into the fundamental properties of two-
dimensional (2D) and three-dimensional (3D) TIs and stress how this new
class can be classified in terms of topology. This new approach of topological
invariants has become a powerful tool for understanding many body phases
which have bulk energy gaps, and has resulted in the discovery of interesting
new phases.

In contrast to a trivial band insulator, which has an energy gap separating
the valence and conduction band and thus is electrically inert, TIs have an in-
sulating bulk but necessarily highly conducting states at the boundary. These
two classes of materials are topologically distinct and are referred to as trivial
and non-trivial. The term topological here defines a bulk invariant (an inte-
ger) which differentiates between these phases of matter and classifies them
accordingly. In other words, the topological distinction between a trivial in-
sulator and a non-trivial TI persists in the fact that the band structure of a TI
cannot be continuously transformed by respecting the fundamental symme-
tries into that of an ordinary insulator unless a closing and a reopening of the
bulk band gap takes place. The invariant describing the different phases is a
Z2 index and has been proposed by Kane and Mele in 2005 [8]. The index is
ν0 = 1 for 3D TIs, i.e. for bulk insulators which necessarily have robust surface
states on all of their surfaces, and ν0 = 0 for all other insulators.

2.2 Insulators with metallic boundary states

A common insulator is described as a material with an energy gap separat-
ing a filled valence band and an empty conduction band. A more universal

C. Pauly, Strong and Weak Topology Probed by Surface Science, MatWerk,
DOI 10.1007/978-3-658-11811-2_2, © Springer Fachmedien Wiesbaden 2015



6 2 Fundamentals of Topological Insulators

a b c

Figure 2.1: 2D insulator phases. a) Trivial insulator with electrons bound in localized
orbitals. The energy gap separates the valence from the conduction band. b) In the
2D quantum Hall state, the electrons are forced into closed circular orbits by a strong
perpendicular magnetic field. The quantization of the electrons leads to an insulat-
ing state inside the system. Along the sample boundary, a 1D "one way" edge state
permits electrical conduction. c) The quantum spin Hall state at zero magnetic field
also has a bulk energy gap but spin-polarized edge states which allow conduction
at the boundary. Here, strong SO interaction plays the role of the external magnetic
field in quantum Hall systems. (Adopted from [34]).

definition was given by W. Kohn describing all electronic phenomena to be
local (Fig. 2.1 a)), so that the inner electrons are insensitive to perturbations
from the boundaries [35]. However, the view that the existence of an energy
gap guarantees the insensitivity to boundary conditions has changed with
the discovery of the integer quantum Hall effect (IQHE) in a 2D electron gas
(2DEG) by von Klitzing in 1980 [1]. In the quantum Hall state, the quantiza-
tion of the closed circular orbits of electrons in an external magnetic field re-
sults in a bulk energy gap whereas, however, at the boundaries of the system
a one-dimensional (1D) edge state appears (Fig. 2.1 b)). The unique character-
istic of this edge state is that the charge flows in one direction only, making
it insensitive to backscattering from impurities. Because both, band insulator
and IQHE, have a bulk band gap, they appear similar from the band struc-
ture alone. The distinction between the two is a topological property which
is based on the occupied bands and which is encoded in the Chern number
introduced by Thouless et al. in 1982 [3]. In the following, I will briefly intro-
duce the most important properties of the IQHE and its description in terms
of topology. This approach is more fundamental and immediately leads to
a similar phase, namely the quantum spin Hall effect (QSHE) which is the
matter of study in this work. In contrast to the IQHE, the QSHE has a pair of
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edge states with opposite spin propagating in opposite directions (Fig. 2.1 c)).
Materials which exhibit the QSHE are referred to as 2D topological insulators
and can be similarly described by a topological index, distinguishing it from
a trivial band insulator.

2.2.1 Integer quantum Hall effect

The quantum hall state appears when electrons which are confined to two
dimensions are placed in a magnetic field which points normal to their
confinement. The generated quantized orbital motion with cyclotron fre-
quency ωc of the electrons leads to quantized Landau levels with energy
ELL

n = (n + 1/2) · h̄ωc, where n is a natural number. The Landau levels are
highly degenerate and if n Landau levels are filled, there is an energy gap
separating the filled and empty states with the Fermi level EF lying within
the gap. The system is thus in an insulating state. Von Klitzing an coworkers
experimentally realized that in such a system, which includes disorder, the
longitudinal conductance σxx becomes zero while the Hall conductance σH,
which is measured perpendicular to the position of source and drain in the ex-
periment, exhibits quantized sequences of wide plateaus [1]. These plateaus
appear at integer multiples of a fundamental nature constant, νe2/h, where
ν is an integer and known as the filling factor. Thus, the Hall conductance is
independent of geometrical details, and is even stabilized by imperfections
of the materials. First, the quantization of the Hall conductance can be un-
derstood in a semi-classical picture. When the electron, which is forced on
the orbital path by the strong magnetic field, comes close to the boundary, it
is scattered and bounced forward along the boundary. As a consequence, it
creates a conducting edge channel along the boundary. These edge channels
are not affected by impurities or defects, as long as the defects are separated
by more than the diameter of the orbits, as after a scattering process their
sense of rotation is always the same (defined by the Lorentz force) and thus
are bounced back in the former forward direction (see Fig. 2.1 b)). The edge
state forms a perfect 1D conducting channel with a quantum conductance of
e2/h. Due to the fact that there is no backscattering along the boundary, the
longitudinal voltage Vxx becomes zero. As the discrete Landau levels form
the band structure in a quantum Hall system, each filled Landau level will
generate a conducting edge channel. Consequently, the number of filled Lan-
dau level, which corresponds to the filling factor ν determines the quantized
Hall conductance at the edge. Thus, a quantum Hall state with quantized
Hall conductance is defined, if an insulating bulk with localized electrons is
present, such that only the edges which have a series of perfectly propagating
edge channels conduct currents.
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2.2.2 The Hall conductance as a topological invariant

The pioneering work of Thouless et al. [3] (TKKN) and Laughlin et al. [36]
introduced a fundamental new understanding of this quantum state of mat-
ter, as the quantum Hall state provided the first example of a system which
is topologically distinct from all other states of matters known before. The
quantum Hall effect thus defines a topological phase in the sense that certain
fundamental characteristics, like the quantized Hall conductance or the num-
ber of perfectly propagating edge channels, are insensitive to smooth changes
in the parameter space. In mathematics, topological classification focuses
on the fundamental distinction of shapes. From this point of view, a coffee
cup and a donut are topologically equivalent, as both have exactly one sin-
gle hole and may be converted inside each other by a "smooth" deformation,
i.e., a deformation process which does not need the violent action of creat-
ing a hole. In physics, the analogy consists in the concept that Hamiltonians
H(k) describing states with gapped band structures are topologically equiv-
alent if H(k) can be continuously deformed into one another without closing
the gap. These classes are distinguished by a topological invariant called the
Chern number n (n ∈ Z).

Quantized Hall conductance by Thouless, Kohmoto, Nightingale and den
Nijs

Thouless et al. for the first time defined an invariant in their original
work, which describes the quantization of the Hall conductance in the non-
interacting IQHE in integer multiples, called the TKKN integer [3]1. They
considered a system of non-interacting electrons moving in an xy plane on a
lattice perpendicular to a uniform magnetic field B. The system is described
by the following Hamiltonian:

H =
1

2m
(p + eA)2 + U(r), (2.1)

where A is the magnetic vector potential and U(r) representing a periodic po-
tential of the lattice which satisfies U(x+a1,y) = U(x,y+a2) = U(r), with a the lat-
tice constant. However, the Hamiltonian is not invariant under a translation
along x or y because the vector potential A is not periodic within the lattice. A
translation operator T(R) = exp((i/h̄)R · p), which shifts an arbitrary function
by a lattice vector R = na1 + ma2, transforms the magnetic vector potential
into A(r+R), which is different to A(r). Thus, T(R) does not commute with H.

1The following derivation of the quantized Hall conductance as integer multiple is lean on
the work of Kohmoto [37] and Watson [38], which are both based on the original work of
Thouless et al. [3]
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Figure 2.2: a) Magnetic Brillouin zone (MBZ) constructed by the magnetic unit cell
(not shown here) through which a total of q quanta of magnetic flux passes. MBZ
is restricted by k ∈ [0, 2π/(qa1)]× [0, 2π/a2]. The arrows mark the direction of the
line integral in eq. 2.6 which moves around the boundary of the zone and which
is proportional to the conductance of one subband. b) Transformation of the MBZ
into a torus. A vector potential A’(k) (shaded area) is defined by a singularity of the
function uk(r) at k0. The phase mismatch line C between the vector potentials A’(k)
and A(k) is marked. (Adopted from [38]).

However, an appropriate gauge transformation can make the Hamiltonian
invariant. Consider magnetic translation operators of the form

TB(R) = exp((i/h̄)R · [p + e(r × B)/2])), (2.2)

which commutes with the Hamiltonian but do not commute with each other
since [37]:

TB(a1)TB(a2) = exp(2πiα)TB(a2)TB(a1). (2.3)

Thereby α = (eB/h) · a1a2 and equals the number of magnetic flux quanta
Φ0 passing through each unit cell of the lattice. Thus, when α is a ratio-
nal number, the magnetic translation operator commute with each other.
Consequently, one can define a new unit cell which contains an integer num-
ber of magnetic flux quanta and is built by an integer number of unit cells
without magnetic field. This so-called magnetic unit cell can be formed by
the vectors qa1 and a2 with the primitive lattice vector taking the form R =
n(qa1) + ma2 so that q magnetic flux quanta are in the unit cell. In this gauge,
the eigenstates ψλk(x,y) of the above Hamiltonian can be labeled by a dis-
crete band index λ and a momentum k in the magnetic Brillouin zone, which
is restricted by k ∈ [0, 2π/(qa)] × [0, 2π/a] (Fig 2.2 a)). These are the Bloch
wave-functions

ψλk(r) = eik·ruλk(r), (2.4)
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consisting of a plane wave eik·r and a function uλk(r) which is periodic in the
magnetic unit cell.

For a system of non-interacting particles like the one described by the
Hamiltonian in 2.1, Thouless et al. [3] derived a formula for the Hall con-
ductance σH which is based on the so-called Kubo formula. The expression is
deduced from a second-order perturbation theory as a linear response of the
system to a small applied electric field [39]. It follows from the Kubo formula,
that the transversal velocity of the particles in an electric field within the sys-
tem is a property of the periodic part of the Bloch wave-function (see ref. [37]
for a full derivation) so that the Hall conductance σH can be determined as a
property of the periodic function uλk(r):

σH =
e2

h ∑
∫

d2r
∫ d2k

2πi

(
∂uλk(r)∗

∂kx

∂uλk(r)
∂ky

− ∂uλk(r)∗

∂ky

∂uλk(r)
∂kx

)
, (2.5)

where the sum is over the occupied subbands indexed by λ, and the r and
k integrals over the magnetic unit cell and magnetic Brillouin zone, respec-
tively. Before I discuss the topological aspect of this equation, I first briefly
revise Thouless’ direct proof that the Hall conductance implies integer quan-
tization. For the sake of simplicity, one looks at the contribution of one single
occupied band to the Hall conductance which is defined by σλ. Together with
the observation that the integrand in 2.5 can be written as the z-component of
the curl of some vector field, it then follows:

σλ =
e2

h

∫
d2r
∫ d2k

2πi

(
∂uk(r)∗

∂kx

∂uk(r)
∂ky

− ∂uk(r)∗

∂ky

∂uk(r)
∂kx

)

=
e2

h

∫
d2r
∫ d2k

2πi
[∇k × (uk(r)∗∇kuk(r))]z

=
e2

h

∫
d2r
∮ dk

2πi
(uk(r)∗∇kuk(r)).

(2.6)

The third line uses Stokes’ theorem to rewrite the integral as a line integral
around the magnetic Brillouin zone. The integration contour is depicted in
Fig 2.2 a). Thus, one ends up with an expression for the Hall conductance
which depends on the change of the periodic function uk(r) along a closed
loop around the magnetic Brillouin zone. As corresponding points on the
boundary of the magnetic Brillouin zone represent the same physical state
(for example ky values differing by 2π/a2), the respective function uk(r) at
opposite points only differs by a total phase factor which is independent of r:

ukx,π/a2(r) = eiΘ(k)ukx,−π/a2(r),

uπ/(qa1),ky
(r) = eiΘ(k)u−π/(qa1),ky

(r),
(2.7)
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for the horizontal and vertical lines of the magnetic Brillouin zone, respec-
tively (Fig 2.2 a)). Further, as uk(r) is periodic within the magnetic unit cell,
the function can be normalized, with the r integral of uk(r) over the magnetic
unit cell set equal to unity: ∫

d2r |uλk(r)|2 = 1. (2.8)

It then follows for the Hall conductance σλ:

σλ =
e2

h

∮ dk
2πi

(i∇kΘ(k))

=
e2

h

∮ dk
2π

∇kΘ(k).
(2.9)

Thus, the total line integral corresponds to the total change of the phase Θ(k)
of the function uk(r) around the boundary of the magnetic Brillouin zone.
The change of the phase around a closed loop must be an integer multiple
of 2π, so that the Hall conductance for each completely occupied band must
consequently be an integer:

σλ =
e2

h
· ν. (2.10)

The integer ν is known as the TKKN integer and reflects the quantized value
of the Hall conductance.

In the following, the Hall conductance will be analyzed in terms of topol-
ogy and the integer found by Thouless et al. is shown to be equivalent to
the topological invariant of the class of U(1) fiber bundle, namely the Chern
number.

Equivalence of the TKKN invariant and the Chern number

Mathematically, topological invariants like the Chern number are associated
to distinct Chern classes which characterize specific fiber bundles, as for ex-
ample the U(1) fiber bundle. Topological invariant here means that equiva-
lent bundles are described by the same number. It was first recognized by
Avron et al. [40] that in the case of non-interacting electrons the periodic part
of the magnetic Bloch wave-functions uλk(r) in the TKKN description form
such a U(1) fiber bundle on the base manifold of a torus T2. An essential ob-
servation thereby is that the magnetic Brillouin zone is topologically a torus
T2, as two kx-values which differ by 2π/(qa1) are equivalent, as are also two
ky-values which differ by 2π/a2 (cf. Fig. 2.2). The integral in eq. 2.6 is then
equivalent to a surface integral over some curvature of the torus T2 and de-
fined as a topological invariant, namely the Chern number of the U(1) bundle
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[40, 41]. In order to substantiate the above considerations, let us go back to
the expression for the Hall conductance for a single band (2nd line of eq. 2.6):

σλ =
e2

h

∫ d2k
2πi

∇k ×
(∫

d2r · uk(r)∗∇kuk(r)
)

z
, (2.11)

and define a fictitious vector potential in momentum space which is based on
the functions uk(r) and has the form:

A(k) =
∫

d2r · uk(r)∗∇kuk(r) = 〈uk| ∇k |uk〉 . (2.12)

A(k) is also known as the Berry vector potential and F(k) = ∇k × A(k) the
corresponding Berry curvature. Thus, the Hall conduction can be written as
the surface integral of the Berry curvature:

σλ =
e2

h
· 1

2πi

∫
d2k (∇k × A(k))z . (2.13)

Applying Stokes’ theorem, the above equation is equivalent to the line inte-
gral over the Berry vector potential along the boundary of the magnetic Bril-
louin zone, which however is topologically a torus and thus has no boundary.
Consequently, σλ = 0 if A(k) is uniquely defined on the entire torus T2.

As the vector potential is completely defined by uk(r), A(k) is smooth over
T2 if there are no values of k where uk(r) vanishes. Hence a non-zero Hall
conductance appears when there is a zero somewhere in the functions k-
dependence. As the magnetic flux is always accompanied by a zero in the
wave function, there must necessarily be an integer number of zeros in the
magnetic Brillouin zone. So no matter how one tries to define a vector po-
tential, one must always end up with a singularity, which is the topological
equivalence of a non-trivial U(1) fiber bundle.

Hence, one looks at a single zero of uk(r) at some random point k0 on the
torus, and define a new vector potential A’(k) around k0. The situation is il-
lustrated in Fig. 2.2 b). As the functions uk(r) are defined only up to a phase
factor, there must necessarily be a phase mismatch line (marked by C in Fig.
2.2 b)) by the clash of phases coming from the zero (defined by A’(k)) and
from the periodic boundaries (defined by A(k)). As a consequence, the func-
tions of the two areas differ at the mismatch line by an r-independent phase
factor:

uk’(r) = eiΦ(k)uk(r), (2.14)

so that the corresponding vector potentials differ by:

A’(k) = i∇kΦ(k) + A(k). (2.15)
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The Hall conductance may now be written as the sum of the integrals of both
curvatures over their respective areas of the torus according to eq. 2.13. Ad-
ditionally applying Stokes’ theorem, it follows:

σλ =
e2

h
· 1

2πi

∫
U

d2k (∇k × A(k)) +
e2

h
· 1

2πi

∫
U′

d2k (∇k × A’(k))

=
e2

h
· 1

2πi

∮
C

dkA’(k)− A(k).
(2.16)

One can immediately see that by inserting eq. 2.15, the Hall conductance σλ

only depends on the change of the phase Φ(k) around the mismatch line
C. However, as the phase is a single-valued function of k, it follows that its
change around a closed loop is an integer multiple of 2π. Consequently, one
gets:

σλ =
e2

h
· n, (2.17)

with n being the integer Chern number. This shows that the IQHE can be
assigned to a non-trivial class of state and that the TKKN integer is indeed a
topological invariant. Moreover the value of n depends on the topology of the
mismatch line and only if the mismatch line is not contractible on the torus,
n is different from zero and the system thus non-trivial. One major conse-
quence of this result implies that the quantization of the Hall conductance is
insensitive to experimental details, such as material used or shape of the sam-
ple, as only geometrical considerations of the band structure of Landau levels
in a periodic potential have led to the above result. It can even be shown, that
the result remains robust, if weak disorder or electron-electron interaction is
included in the Hamiltonian.

Bulk-edge correspondence

An important consequence of the IQHE are the dissipationless edge states
which move in opposite directions for opposite boundaries. The non-trivial
nature of these states as well as their existence are deeply connected to the
topology of the bulk quantum Hall state. Imagine the interface between a
quantum Hall state (n = 1) and a trivial insulator, such as vacuum, which
Chern number is necessarily n = 0 since there are no occupied states. At some
point along the interface, the energy gap has to vanish in order for the Chern
number to change from trivial to non-trivial or vice-versa. Thus, the system
must exhibit exactly n transfers of extended states through EF bound to the
region where the energy gap passes through zero, as long as the symmetry
that protects the bulk insulating state is not broken by the boundary.
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A more rigorous argument, however, for the existence of edge states in the
quantum Hall state responsible for the Hall current is given by Laughlin [36].
In his original work, Laughlin describes a cylindrical quantum Hall sample
with an insulating bulk through which an integer multiple of flux quanta
passes. This flux drives a charge pump from one side of the sample to the
other without the introduction of energy to the system. Laughlin thereby
introduced the concept of charge polarization, which defines whether charge
is effectively transported through the system or not. In the case of the IQHE,
Laughlin found a charge transfer from one boundary to the other through the
insulating bulk sample, so that there must exist edge states at each boundary
at EF ready to receive or donate electrons. Moreover, the number of edge
states driving the Hall current at both boundaries must be different so that
a current is effectively flowing in the system. Thus, the difference between
left boundary states Nl and right boundary states Nr is determined by the
topological structure of the bulk states which define the Chern number [9]:

Nl − Nr = Δn, (2.18)

with Δn the difference of the Chern number across the boundary. This rela-
tion summarizes the bulk-edge correspondence. Note that in the topological
description of the QSHE (chapter 2.2.4), an analogous argument to the one
of Laughlin is used in order to explain the existence of the non-trivial spin-
polarized edge/surface states.

2.2.3 Quantum spin Hall effect or time-reversal invariant 2D
topological insulator

The disadvantage of quantum Hall systems are their demanding require-
ments, such as a strong magnetic field and very low temperature. The quest
in recent years was to find a class of materials having the same robust edge
states without the need of a magnetic field and stable up to room temperature.
Kane and Mele [8, 42] proposed in 2005 a spin version of the quantum Hall
effect, namely the quantum spin Hall effect (QSHE), with an intrinsic SO in-
teraction as the driving force, so that a non-trivial bulk energy gap is induced
in the material resulting in a pair of gapless spin filtered states at the bound-
ary. Whereas in the case of the IQHE, the time-reversal symmetry (TRS) is
explicitly broken by the presence of a magnetic field, this new quantum state
belongs to a class which is invariant under TRS. In contrast to the IQHE, the
edge states in the QSHE are spin-polarized, so that electrons with spin-up
propagate in one direction an electrons with spin-down move in the opposite
direction (Fig. 2.3 a)). The helical nature, i.e. the correlation between the spin
and the momentum of the edge states is thereby topologically required by the
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Figure 2.3: a) Scheme of the spin-polarized edge channels in a quantum spin Hall in-
sulator. Every edge hosts a pair of spin-polarized states with spin-up and spin-down
channel propagating in opposite directions. b) Scheme illustrating the absence of
backscattering of the edge states at a time-reversal invariant impurity. The electron
can take two possible paths around the impurity when scattered, either rotating its
spin clockwise or anticlockwise about 180°. A geometrical phase factor of the spin
between the two paths leads to a destructive interference, thus prohibiting backscat-
tering (adopted from [10]). c) Band structure of a model quantum spin Hall insulator
visualizing the effect of SO coupling. SO coupling pushes the p-type valence band
above the s-type conduction band so that an inversion of bands takes place at the
Fermi level EF for the center points in k-space. An interaction term leads to a sym-
metric and antisymmetric combination of the two bands at the crossing points. Thus,
a band gap occurs together with a changing of s/p character (as marked) of the two
bands.

spin Hall conductance, with the exact relative directions depending on the SO
interaction within the system. TRS requires that the quantized charge trans-
ported by each edge channel is equal (Hall conductance for one spin channel
σxy = e2/h and for the other σxy = -e2/h) so that the overall charge Hall con-
ductance is zero. However, spin charge is transported from one side to the
other so that the quantized spin Hall conductivity is nonzero. This means,
that even though the TKKN invariant ν for this system is zero (no Hall con-
ductance), the ground state of the QSHE is different from that of a trivial
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insulator. This implies that there must be a similar topological classification
for time-reversal invariant systems distinguishing systems with trivial spin
Hall conductivity and such with non-trivial one. This invariant is called a Z2
topological index ν [8] and can be calculated for the occupied Bloch states of
a system with a bulk band gap, analogous to the TKKN invariant, in order to
distinguish between a quantum spin Hall phase (ν = 1) and a trivial insulator
(ν = 0).

The outstanding property of a quantum spin Hall insulator, i.e. a 2D topo-
logical insulator (TI) is its perfect conductance transported by the edge states.
In contrast to ordinary conductors, which have both spin-up and spin-down
states moving in both directions and are thus susceptible to Anderson local-
ization [43, 44], the helical nature of the 2D TIs edge states prevents them
from localization [45]. A semiclassical argument for the lack of backscattering
in the case of time-reversal invariant impurities was given by Qi and Zhang
[10] as visualized in Fig. 2.3 b). A forward moving spin-up state at the edge of
the 2D TI can either make a clockwise or anticlockwise turn of its spin around
an impurity. As the electrons which propagate backward have a spin-down
state, the electron spin has to rotate adiabatically either by an angle of π or -π
when rotating around the impurity. As the two paths therefor differ by a 2π
rotation of the electron spin, changing the spin phase by π, the two paths in
Fig. 2.3 b) interfere destructively, thus leading to perfect transmission. Hence,
only a magnetic impurity which is able to break time-reversal symmetry, may
lead to localization. Thus, the spin-polarized edge states in the quantum spin
Hall insulator are protected from backscattering by TRS.

Beside TRS, it is obvious that in a system with spin-degenerate states where
the momentum, i.e. the movement of electrons, is opposite for two different
spin components, SO interaction plays an important role. SO coupling leads
to a splitting of spin states in energy and is strongest for bands where the
periodic part of the Bloch wave-function uλk(r) exhibits an orbital quantum
number, as for example in p-type or d-type bands, and does not exist for
bands without, e.g. pure s-type bands. As most of the semiconductors have
a p-type valence band and a s-type conduction band, it follows that the spin
components of the valence band shifts much more strongly than the conduc-
tion band. Thus, if the SO coupling is strong enough, a crossing of the p-type
valence band and the s-type conduction band may occur as displayed in Fig.
2.3 c). At the k-points where the bands cross each other, perturbation theory
demands the formation of a symmetric and antisymmetric combinations of
p- and s-type states with different energy, typically accompanied by a gap
opening at these points. Thus, the inversion of bands due to SO interaction
leads to a band gap where the band character of the inner part between the
anticrossing points is inverted with respect to the outer part. This has im-
portant consequences for the total inversion symmetry of the occupied states
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at specific k-points. Since the s-bands are even and the p-bands odd under
spatial inversion, the overall parity for the occupied bands in the inner part
differs from the parity in the outer part. Later, we will see that this change of
parity at only specific k-points in the Brillouin zone induces a phase transition
in which the Z2 invariant changes from trivial to non-trivial. This is the base
for the appearance of the topological protected boundary states.

The first experimental quantum spin Hall state in HgTe/CdTe quantum
well structures

Kane and Mele [42] proposed the QSHE for graphene [46, 47] but the weak-
ness of the SO coupling in the material made the suggestion fail, as the gap
opened by SO coupling turned out to be extremely small (of the order of
10−2 meV) [48]. As the strength of the SO coupling within a material increases
with the charge number of the atoms constituting the system, an approach for
the search of the first 2D TI was to look for semiconductor materials built by
heavy elements. The experimental hallmark for the discovery of the QSHE is
the quantization of the longitudinal conductivity σxx in integer multiples of
2e2/h. This results from the fact, that in contrast to the IQHE, if a current is
applied from left to the right in Fig. 2.3 a) both edges contribute to the current,
namely the spin-up channel on the upper edge and the spin-down channel on
the lower edge.

In 2006, Bernevig et al. [5] proposed quantum well structures of
Hg1−xCdxTe to exhibit the QSHE. The structure consists of a thin layer of
HgTe sandwiched between crystals of CdTe (Fig. 2.4 a)). HgTe and CdTe
and their alloys have strong SO interactions and are a well-studied family
of semiconductor materials. CdTe has a trivial band structure similar to other
semiconductors with a relatively large band gap (1.56 eV) formed by a p-type
valence band and a s-type conduction band. In HgTe, however, the strong
SO coupling which is induced by the heavy element Hg, leads to an inverted
band gap of 0.2 eV with the p-level lying above the s-level (right scheme in
Fig. 2.4 a)). Thus, HgTe was predicted to be a 2D TI and to exhibit a quan-
tized conductance of 2e2/h. In the experiment proposed by Bernevig et al.
[5] the thickness of the HgTe layer is chosen very small (d < dc = 6.3 nm) so
that confinement effects play a role. The additional confinement energy to the
bands is positive for the s-type band and negative for the p-type band, such
that the bands reinvert to the normal regime, with the p-type band forming
the valence band and the s-type band forming the conduction band. The nor-
mal regime is displayed in the left image of Fig. 2.4 a). If the thickness of the
HgTe layer exceeds dc, the system transforms again in the inverted topologi-
cal regime (right scheme in Fig. 2.4 a)).
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Figure 2.4: a) HgTe/CdTe quantum well structure with different thicknesses of the
HgTe layer. The corresponding valence and conduction bands are marked. For d <
6.5 nm, HgTe is in the normal regime with a p-type valence band and a s-type con-
duction band. For d > 6.5 nm, the bands cross and HgTe is in the inverted regime
which characterizes the quantum spin Hall state. b) Experimental longitudinal four-
terminal resistance R14,23 as a function of the gate voltage for the normal (d = 5.5 nm)
(I) and the inverted (d = 7.3 nm) (II, III and IV) quantum well structures measured at
zero magnetic field and T = 30 mK. The gate voltage tunes EF through the bulk gap.
The device sizes are (20.0 × 13.3) μm2 for sample I and II, (1.0 × 1.0) μm2 for sample
III, and (1.0 × 0.5) μm2 for sample IV. Sample I (d < dc = 6.3 nm) shows an insulating
behavior, while sample III and IV reveal a nearly perfect quantized conductance of
2e2/h of the QSHE. Inset shows a scheme of the sample layout in the original exper-
iment of König et al. [7] with the ohmic contacts labeled 1 to 6, respectively. Red
and blue arrows mark the counterpropagating spin-polarized edge channels of the
quantum spin Hall state. (Adopted from [7]).

It was only soon after this proposal that König et al. [7] provide the experi-
mental proof of the first quantum spin Hall insulator by measuring the low-
temperature ballistic edge transport for the two devices. Figure 2.4 b) shows
the resistance measurements for different samples as a function of gate volt-
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age tuning EF through the bulk energy gap. Sample I is a narrow HgTe quan-
tum well (d = 5.5 nm) that is in the normal regime, thus having no topological
edge states in the bulk band gap. And indeed, the measurement revealed a
very large resistance in the voltage range of the band gap, increasing up to
20 MΩ, which is the maximum resistance that could be detected within this
particular experiment. Sample II, III and IV are wider wells (d > 6.3 nm) and
thus are in the inverted regime. Sample III and IV indeed show the nearby ex-
act conductance of 2e2/h confirming the 2D topological nature of HgTe. Both
samples have the same length (L = 1 μm) but different widths (w = 0.5 and
1 μm), proving that the transport occurs at the edge (the geometrical details
of the measurement are displayed in the inset of Fig. 2.4 b)). Note that the
deviation of the perfect conductance value of 2e2/h for sample II (L = 20 μm)
is due to finite temperature scattering effects. The former experiment success-
fully demonstrate the existence of the quantized conductance of the boundary
states which is the fingerprint of the QSHE. The experimental results further
provide indirect evidence for the thesis that changing the topology indeed
requires that the gap between the inverted and normal region (Fig. 2.4 a))
of the band structure has to be closed. In the following chapter, the concept
of the time-reversal polarization, which characterizes time-reversal invariant
Hamiltonians and from which one can derive the Z2 topological invariant
will be introduced. Later, its generalization to three dimensions will be dis-
cussed.

2.2.4 Construction of Z2 invariant for 2D topological
insulators

In the course of the first prediction of the QSHE in graphene [42], a large num-
ber of mathematical formulations of the topological Z2 invariant have been
developed [8, 12, 49, 14, 50, 51, 52, 53, 54, 55]. One of these concepts was given
by Fu and Kane [12] and provides a rather physical meaning for the mathe-
matical construct of the Z2 topological index. It introduces the idea of time-
reversal polarization (TRP), which defines whether a net spin is transported
from one edge to the other or not, without adding energy to the system. This
requires that in an insulating bulk system, if a spin transfer takes place and
the bulk Hamiltonian is only changed adiabatically, i.e. ending with the same
Hamiltonian as at the beginning, there must necessarily be edge states at the
Fermi level EF. The time-reversal polarization by itself is not meaningful,
however changes in the time-reversal polarization due to adiabatic changes
in the bulk Hamiltonian are well defined and determine the Z2 invariant.

This way of looking at the Z2 invariant and its direct implication of a non-
trivial or trivial system is in close analogy to the approach of the charge po-
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Figure 2.5: Fu and Kane concept of a spin pump in the quantum spin Hall state.
a) A 2D cylinder with a circumference of a single lattice constant is threaded by a
magnetic flux Φ in x-direction. Φ plays the role of the edge crystal momentum ky in
a 2D band structure. b) The magnetic fluxes Φ = 0 and Φ = h/2e correspond to edge
time-reversal invariant momenta Λ1 and Λ2 with Λi being the projection of pairs of
the four bulk time-reversal momenta Γij originating from the 2D Brillouin zone as
marked. The lines c1 and c2 are used to calculate the time-reversal polarization in
the real space x-direction P��

x for the two time-reversal invariant point Λ1 and Λ2.
(Adopted from [14]).

larization which was used by Laughlin [36] to topologically define the quan-
tization of the Hall conductance in the IQHE. The change in the charge polar-
ization thereby characterizes the charge differences that is pumped from one
edge to the other describing whether a system is in the quantum Hall phase or
not. It thus provides a physical meaning to the Chern number. In Laughlin’s
gedanken experiment, a quantum of magnetic flux is adiabatically inserted
into a cylindrical quantum Hall sample, whereas the change in the magnetic
flux throughout the cylinder drives the quantum pump, as an increase of the
flux results in a transfer of charge from one side to the other in the cylindrical
sample. In general, the eigenstates of the system before and after the variation
of exactly one flux quantum Φ0 = h/e are identical so that the Hamiltonian
is gauge invariant under flux changes of integer multiples of Φ0 = h/e. It
thus describes a cycle of pump, i.e. a charge transfer without the introduction
of energy to the system. Laughlin derived that the total charge transported
through the cylinder during one pump can be interpreted as the change in
the charge polarization which is exactly an integer multiple of e. Thus, the
change in charge polarization is quantized and precisely characterized by the
Chern number.

Fu and Kane [12] adopted the idea of charge polarization and applied it
to a system with time-reversal symmetry, in order to define the QSHE. They
considered a system which consists of a two-dimensional cylinder with a cir-
cumference of a single unit cell in y-direction and a finite length in x-direction
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(Fig. 2.5 a)). The magnetic flux threading the cylinder along the x-axis gener-
ates the spin pump and plays the role of the wave vector ky in the 2D Brillouin
zone (Fig. 2.5 b)), as changing the flux by exactly one flux quantum Φ0 = h/e
introduces a phase shift of 2π per unit cell in y-direction and thus increasing
the wave vector by 2π/ay. The increase of magnetic flux from 0 → to Φ0 thus
corresponds to a full adiabatic cycle evolution and defines the change in the
so-called time-reversal polarization. If there is no change in the polarization,
no spin has effectively been pumped and the system is trivial. In the case of
a time-reversal invariant system, a flux quantum of Φ = 0 and Φ0/2 = h/2e
belongs to the two edge time-reversal invariant momenta ky = Λ1 and ky =
Λ2 which are the projections of pairs of the four bulk time-reversal invariant
momenta Γij of the 2D Brillouin zone as displayed in Fig. 2.5 b). These two
points define half of a spin pump cycle and decide whether there is a change
in the time-reversal polarization, i.e. a spin transported from one edge to the
other in the x-direction of the cylinder, when ky is moved from the center of
the Brillouin zone (Λ1) to the boundary (Λ2).

Time reversal symmetry and the Z2 invariant

In the following, the situation described above will be analyzed more for-
mally2. Fu and Kane proposed a time-reversal symmetric spin 1/2 electronic
model (detailed description in ref. [12]) in order to describe a 2D TI. Time-
reversal symmetry is represented by an anti-unitary operator and can be writ-
ten as Θ = exp( iπ

h̄ Sy) K, where Sy is the spin operator and K the complex
conjugation. The system is then described by:

H(−k) = ΘH(k)Θ−1, (2.19)

Since Θ2 = -1 for spin 1/2 electrons, Kramers’ theorem applies, which leads
to the important constraint that each eigenstate of the time-reversal invariant
Hamiltonian has a partner of opposite k and opposite spin with the same
energy, the so-called Kramers’ partner, which are at least two-fold degenerate.
However the strong SO coupling present in the 2D TI systems leads to a lifting
of the spin degeneracy of the states so that spin-up and spin-down states are
decoupled. Only at the time-reversal invariant points (Kramers’ points), the
degeneracy persists due to Kramers’ theorem and forms 2D Dirac points in
the band structure. The energy bands thus come in pairs and form Kramers’
partner (Fig. 2.6). In the Brillouin zone of a square lattice, there are 4 time-

2The following derivation of the time-reversal polarization as a topological index is based
on the original approach by Fu and Kane [12] and on the explanations given in ref. [56].
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Figure 2.6: One dimensional band structure E(k) with SO interaction along the kx-
direction as marked by the blue line (labeled c1) in Fig. 2.5 b). The energy bands
come in time-reversed pairs and cross at the time-reversal invariant points Γ = 0,
G1/2 (π/ax). (Adopted from [12]).

reversal invariant points Γi with Γi = ni G/2, where G is a reciprocal lattice
vector and ni = 0 or 1 [12, 14, 13]. These points satisfy the relation:

H(Γi) = ΘH(Γi)Θ−1. (2.20)

As discussed above, the goal is to deduce an expression reflecting the change
in the time-reversal polarization when ky is moved from the center of the
Brillouin zone to the boundary. The time-reversal polarization for each ky
thereby depends on the occupied states along the corresponding kx-direction
which projects onto the respective ky-momentum (cf. Fig. 2.5 b)). The 1D
band structure for the time-reversal system along the kx-direction is shown in
Fig. 2.6. The two bands which form a Kramers’ pair (labeled as (n, I) and (n,
II), respectively) are related to each other by a time reversal operation. The
situation is such that the two bands I and II have opposite spin and move in
opposite x-directions across the cylinder. Due to the connection of the states
by Kramers’ theorem, the 2N eigenstates of the system can be divided into N
pairs which satisfy the following relations:∣∣∣uI

n(-kx)
〉
= −eiXkx ,nΘ

∣∣∣uII
n (kx)

〉
∣∣∣uII

n (-kx)
〉
= eiX-kx ,nΘ

∣∣∣uI
n(kx)

〉
,

(2.21)

The second relation can be derived from the first together with the property
Θ2 = -1 which is valid for spin 1/2 electrons. Thus, time-reversal transforms
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eigenstates at kx of bands I into eigenstates at -kx of bands II, and vice versa,
but only up to an arbitrary phase Xkx,n, which does not influence the Kramers’
degeneracy. The importance of the topological analysis is to track this arbi-
trary phase, which is often neglected.

One can start the calculation by firstly determine the charge movement in
x-direction, i.e. deducing an expression for the charge polarization PI

x and PII
x

for each band I and II of a Kramers’ pair, as the spin movement is equivalent
to the movement of charge with different spin in different direction. Later,
the expression of the time-reversal polarization will be directly derived from
the partial charge polarizations PI

x and PII
x .

In general, the charge polarization of occupied bands may be deduced by
defining Wannier functions for each set of occupied bands n and each lattice
vector R in x-direction, so that the position of the occupied states in real space
can be tracked [57]:

|R, n〉 = 1
2π

∫ G/2

−G/2
dkx e−ikx(R−x) |un(kx)〉 . (2.22)

As was shown by King-Smith and Vanderbilt [58], the charge polarization
Px(ky) in x-direction for each ky, is then a function of the sum of the center of
charge of the Wannier state at R = 0, taken over all the bands n in kx-direction:

Px(ky) = ∑
n
〈R = 0, n| x |R = 0, n〉 = 1

2π

∫ π/ax

−π/ax
dkx i ∑

n
〈uv

n(kx)| ∇kx |uv
n(kx)〉 .

(2.23)
The first expression thereby describes if the center of mass of the charge of
this state is shifted to the left or the right with respect to R = 0. Analogous to
the description of the Chern number (section 2.2.2 and eq. 2.12) the integrand
in eq. 2.23 is defined as the Berry vector potential with:

A(kx) = i ∑
n
〈un(kx)| ∇kx |un(kx)〉 . (2.24)

Px(ky) as it is written in eq. 2.23 reflects the sum of the Wannier centers of all
of the occupied bands. As in the described system the Wannier states come in
Kramers’ degenerate pairs, one may calculate the partial charge polarization
for each sector I and II of all n Kramers’ pairs individually. Analogously to
eq. 2.24, one thus defines for the sector I (and the same for sector II):

AI(kx) = i ∑
n

〈
uI

n(kx)
∣∣∣∇kx

∣∣∣uI
n(kx)

〉
, (2.25)
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and obtain for the partial charge polarization PI
x :

PI
x =

1
2π

∫ π/ax

0
dkx AI(kx) +

∫ 0

−π/ax
dkx AI(kx)

=
1

2π

∫ π/ax

0
dkx AI(kx) +

∫ π/ax

0
dkx AI(−kx).

(2.26)

The term AI(−kx) can be rewritten to AI(−kx) = AII(kx) - ∑n
∂Xkx ,n

∂kx
by using

the time reversal constraint of eq. 2.21 and inserting it into eq. 2.25. Together
with the relation A(kx) = AI(kx) + AII(kx), which is the sum of the Berry
potential of sector I and II, one gets:

PI
x =

1
2π

∫ π/ax

0
dkx A(kx)− ∑

n
(Xkx=π/ax,n − Xkx=0,n). (2.27)

Since the path of integration only covers half of the Brillouin zone the two
remaining phases in eq. 2.27 may be different. However, the second term is
necessary to preserve gauge invariance. This term can be rewritten by intro-
ducing a unitary matrix wmn which relates the time reversed eigenstates at kx
with states at −kx from both sectors I and II:

wmn(kx) := 〈um(-kx)|Θ |un(kx)〉 . (2.28)

From the time reversal constraint of eq. 2.21 and the orthogonality of states, it
follows that the only nonzero terms are eiXkx ,n and −eiX-kx ,n on the off-diagonal.
Thus, the matrix does only contain the phase factors of degenerate pairs,
which are the time-reversal invariant points kx = 0 and kx = π/ax. Only
at these points, wmn is antisymmetric. At these points, one can define a
so-called Pfaffian Pf(w)3, which characterizes an antisymmetric matrix and
whose square is equal to the determinant. The second term in eq. 2.27 may
then be expressed in terms of Pf(w):

��[w(π/ax]

��[w(0)]
= exp

[
i ∑

n
(Xkx=π/ax,n − Xkx=0,n)

]
, (2.29)

3The determinant of skew-symmetric matrix A (skew-symmetric matrix is a square matrix
A whose transpose is its own negative, A = −AT) can always be written as the square of a
polynomial in the matrix entries, named the Pfaffian of the matrix Pf(A): det(A) = Pf(A)2.
Introduced by [59], the Pfaffian is nonvanishing only for 2n x 2n skew-symmetric matri-
ces, in which case it is a polynomial of degree n (adopted from ref. [56]). In particular, if
A =

{
ai,j
}

is the 2n x 2n skew-symmetric matrix, then the Pfaffian of A is defined by:

P f (A) =
1

2nn! ∑
σ

sgn (σ)
n

∏
i=1

aσ(2i−1),σ(2i).
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and thus,

PI
x =

1
2π

[∫ π/ax

0
dkx A(kx) + i ��

��[w(π/ax)]

��[w(0)]

]
. (2.30)

The same calculation can be performed for PII
x using the same arguments.

Hence, the total charge polarization for a specific ky is the sum of the charge
polarization from both sectors I and II, P�����

x = PI
x + PII

x . The time-reversal po-
larization, i.e. the relative polarization of the time-reversal partners, however
is defined as:

P��

x = PI
x − PII

x = 2PI
x − P�����

x (2.31)

In the following, it comes out that the relative polarization of time-reversal
partners P��

x is either one or zero. This goes back to the fact that P��

x is ex-
pressed in terms of Pfaffians which are related to the determinant by Pf(A)2

= det(A). This leaves two possible signs of the Pfaffians with respect to the
determinant, which later determine P��

x to be one or zero.
From eq. 2.31, the time-reversal polarization P��

x can be expressed in the
form:

P��

x =
1

2π

[∫ π/ax

0
dkx A(kx)−

∫ 0

−π/ax
dkx A(kx) + 2i ��

��[w(π/ax)]

��[w(0)]

]
.

(2.32)
This expression may be written in a more compact way by using the trace
Tr of the matrix wmn, which relates the Berry vector potentials A(kx) at the
momenta kx and −kx with the unitary matrix wmn in the following way (for a
detailed derivation, see ref. [60] and [57]):

��
[
w�∇kw

]
= (A(−kx)− A(kx)) /i, (2.33)

so that one obtains:

P��

x =
1

2π i

[∫ π/ax

0
dkx ��

[
w�∇kw

]− 2 ��
��[w(π/ax)]

��[w(0)]

]
. (2.34)

Using the unitary property of wmn, the first term can be written as:

��
[
w�∇kw

]
= �� [∇k ��w(kx)] = ∇k �� ��	 [w(kx)] , (2.35)

and P��

x expressed as:

P��

x =
1

2π i

[
��

��	[w(π/ax)]

��	[w(0)]
− 2 ��

��[w(π/ax)]

��[w(0)]

]

=
1

π i
��

(
±√��	[w(π/ax)]

±√��	[w(0)]
· ��[w(0)]
��[w(π/ax)]

)
.

(2.36)
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Hence, one ends up with an expression for the time-reversal polarization P��

x ,
which depends on the Pfaffians and determinants at the specific points kx = 0
and kx = π/ax in the corresponding Brillouin zone. These factors only include
the phase factors of the Kramers’ pairs at the two time-reversal invariant mo-
menta (TRIM) in one direction of the Brillouin zone. Since Pf(A)2 = det(A)
and due to the ambiguity of the logarithm of complex numbers by 2π, it fol-
lows that P��

x is an integer which is only defined modulo 2, thus is either 0 or
1. This means that a gauge transformation only changes the value of P��

x by
an even integer, such that even or odd values of P��

x will go to even or odd
values of P��

x under a gauge transformation. Whether the time-reversal polar-
ization P��

x of the system has an even or odd value depends on the branches
of the square root (+ or -) of the det(A). If the branches are chosen to be con-
tinuous along the way from kx = 0 to kx = π/ax, the ambiguity of the square
root is eliminated and the only question remains, whether the two fractions

of determinant and Pfaffian
(√

���[w(kx)]

��[w(kx)]

)
are the same at kx = 0 and kx =

π/ax or not. So, either the fractions have the same sign at both points or they
have a different sign at both points, leading to an even or odd value for the
time-reversal polarization.

This basic considerations of two possible outcomes for P��

x can be reformu-
lated into the following expression:

(−1)P��
x =

√
���[w(0)]
��[w(0)]

√
���[w(π/ax)]

��[w(π/ax)]
, (2.37)

which is then either zero or one. The question, if there is a time-reversal po-
larization in opposite directions for the two Kramers’ partners can therefore
be answered by yes (P��

x = 1) or no (P��

x = 0). However, it turns out that the
value of P��

x is not meaningful by itself as it depends on the chosen gauge of
the wave functions, so a gauge transformation changes its value. The change
in the time-reversal polarization, however, from ky = 0 to ky = π/ay is well de-
fined and leads to a topological classification of specific pumping processes.
In Fig. 2.5, the notion of a complete pumping cycle in terms of the introduc-
tion of exactly one flux quantum through a well defined cylinder was intro-
duced, corresponding to the movement of momentum ky from 0 to 2π/ay.
One can now argue that the change in the time-reversal polarization which
occurs in only half the cycle (from ky = 0 to π/ay) defines the topological in-
variant for a quantum spin Hall system.

Figure 2.7 a) provides a physical picture of the topological invariant by
considering the shift of the Wannier state centers in the course of one cycle.
At ky = 0 and ky = π/ay, time-reversal symmetry requires that the Wannier
states come in pairs, i.e. that the center of the occupied Wannier partners are
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Figure 2.7: a) Sketch reflecting the position of the occupied Wannier states after their
separation into two Kramers’ partner (solid and dashed lines) going between two
time-reversal invariant points ky = 0 and ky = π/ay. The partners move in opposite
x-direction accompanied with a change in the time-reversal polarization, which is
a sign that the Wannier states switch partners (Adopted from [12]). b) and c) One
dimensional E(k) band structures along the edge of a 2D ribbon of finite width and
infinite length. The electronic dispersion is shown between two Kramers’ degenerate
points Λ1 = 0 and Λ2 = π/ay. The shaded areas mark the projected bulk valence and
conduction bands of the 2D bulk, respectively. The edge states connect the Kramers’
points in two different ways, shown in (a) and (b), reflecting the change in time-
reversal polarization ΔP�� between those points. Case (c) occurs in topological insu-
lators and guarantees a necessary edge band crossing of the Fermi level EF inside the
bulk band gap. In (b), the edge states only cover parts of the bulk band gap and thus
can not be topological (Adopted from [9]).

equal. However as the states of each pair move in opposite x-direction be-
tween the two TRIMs, the Wannier states switch partners. In this course, the
time-reversal polarization is switched by one as it accounts for the difference
between the positions of the Wannier states. As a consequence, the switching
results in the appearance of an unpaired occupied Wannier state at ky = π/ay
for each end of the square (marked by circles in Fig. 2.7 a)), whereas in the
bulk only a relabeling of the Wannier states take place. If the cycle moves
on from ky = π/ay to ky = 2π/ay, one ends up with identical wave functions
as at the beginning. However the movement of the Wannier states in this
second half of the cycle is the same as in the first half of the cycle, as can be
shown by explicit calculation, so that a complete cycle moves all spins by two
lattice constants in opposite directions. Consequently, the system returns to
its former time-reversal polarization defined modulo 2, i.e. the time-reversal
polarization at ky = 0 and ky = 2π/ay is equal. Hence, the change in time-
reversal polarization which occurs due to the switching of Wannier partners
and which defines the Z2 topological invariant occurs on half the cycle be-
tween ky = 0 and ky = π/ay.
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Based on eq. 2.37 and together with the above considerations one can now
formulate an expression for the Z2 topological invariant in a 2D system. The
2D Brillouin zone with the four bulk TRIMs Γij of a 2D system was already
shown in Fig. 2.5 b). As discussed, two bulk time-reversal momenta at kx =
0 and π/ax (Γ11 and Γ12) may be projected into one point denoted by ky = 0
(Λ1) on the edge, while the other two bulk TRIMs at kx = 0 and π/ax (Γ21 and
Γ22) are projected onto one point on the edge denoted by ky = π/ay (Λ2). The
difference between the time-reversal polarization at these two edge TRIMs
finally defines the topological invariant. Using eq. 2.37, one may write for
each edge TRIM point Λi:

(−1)P��

Λi =

√
���[w(Γi1)]

��[w(Γi1)]

√
���[w(Γi2)]

��[w(Γi2)]

≡ δi1 · δi2

≡ πi = ±1.

(2.38)

Taking into account that the change in time-reversal polarization from Λ1 to
Λ2 is gauge invariant, the topological invariant for a 2D system is:

ν =
[

P��

Λ2
− P��

Λ1

]
���2, (2.39)

and finally:

(−1)ν =
2

∏
i,j=1

√
���[w(Γi,j)]

��[w(Γi,j)]

=
2

∏
i,j=1

δij.

(2.40)

Since det(w(Γi,j)) = Pf(w(Γi,j))
2, the right-hand side of eq. 2.40 is always +1 or

-1. Consequently, ν = 0 or 1, with ν = 0 denoting no change in the time-reversal
polarization from Λ1 to Λ2 and thus topologically trivial and ν = 1 denoting
a change in the time-reversal polarization and thus topologically non-trivial.

The major fingerprint of a non-trivial system is the spin-polarized, or more
precisely the time-reversal polarized edge states which cross the whole bulk
band gap, accounting for the spin transfer present in the system. This cross-
ing is a direct consequence of the change of the time-reversal polarization
between the two TRIMs. The corresponding 1D band structure for the non-
trivial case is depicted in Fig. 2.7 c). The edge states switch partners at the
TRIMs and cover the whole band gap. As a consequence, the Fermi level
EF intersects the edge state only an odd times whereas in the case of a triv-
ial insulator, EF cuts the edge states an even times (Fig. 2.7 b)). Moreover in
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the trivial case, there can always be an energy region present within the bulk
band gap at which EF is not intersecting any edge states. The system is thus
gapped.

The above calculations are all based on occupied wave functions of the bulk
only, such that the edge states are a direct consequence of some bulk property.
Since this property is not changed by moving EF within the bulk gap, there
have to be edge states at each energy within the gap. Further, the construction
of the Z2 invariant ν relies on time-reversal invariance. One can show that the
k-space representation is not required for the derivation. This implies that the
edge states in the quantum spin Hall insulator are robust against the effects
of interactions, even when spin conservation is broken [42, 8], as long as time-
reversal symmetry is intact in the system and the character of the bulk band
gap is not changed.

2.2.5 Generalization to three-dimensions

In this section, the approach of Z2 topological indices is applied to three-
dimension, just by replacing the four time-reversal momenta for 2D squares
by the eight TRIMs for 3D cubes. In general, in a 3D system, the TRIMs can
be expressed in terms of primitive reciprocal lattice vectors as Γi=(n1n2n3)

=
(n1b1 + n2b2 + n3b3)/2, with nj = 0, 1 [13]. In the case of a rectangular lattice,
for example, the 8 TRIMS then correspond to the corners of the irreducible
representation of the 3D Brillouin zone. For the sake of simplicity, the dis-
cussion is restricted to this rectangular unit cell. Analogous to the 2D case,
where the 4 bulk TRIMs have been projected to two edge momenta in order
to determine the time-reversal polarization of the two time-reversal invariant
momenta in ky-direction, one can now consider a slab with two surfaces cut
perpendicular to the reciprocal lattice vector G. Then, four time-reversal in-
variant points Λi remain. Their time-reversal polarization can be calculated
by projections of pairs of Γi perpendicular to the slab which differ by G/2

(see Fig. 2.8). One can again attribute a δi=(n1n2n3)
=
√

���[w(Γi)]

��[w(Γi)]
= ±1 to each

of the 8 TRIMs of the 3D bulk. From its sign, the time-reversal polarization
of each surface TRIM Λi can be determined by multiplying the related two
Γi. The time-reversal polarization associated to the surface momentum Λa is
then expressed by (similar to eq. 2.38 in the 2D case):

πa = δa1 · δa2

= ±1,
(2.41)

where δa1 and δa2 correspond to the bulk TRIMs which are projected onto the
surface TRIM Λa. The sign of πa for all a is not gauge invariant, however, the
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Figure 2.8: a) Sketches of four different phases indexed by ν0;(ν1ν2ν3). a) 3D Brillouin
zone with signs of δi marked at the corners which represent the 8 TRIMs Γi. Pairs
of TRIMs used for the projection in (b) are connected by thick red lines. b) Projected
surface Brillouin zone in the kz direction [(001)-surface] of each phase. The projected
surface TRIMs Λa are marked by open (closed) circles, depending on the resulting
time-reversal polarization deduced by the 2 corresponding TRIMs Γi of the projected
line. An open (closed) circle for Λa thus marks a +(-) for the product of the δi con-
nected by a thick red line (πa = δa1 · δa2 = +1(-1)). Thick black lines separating the
green from the white areas mark the Fermi lines of the surface state, which have to
be present at each path between a white and a black dot, as this path represents a
change in the time-reversal polarization requiring a surface state to be present at EF.
(Adopted from [13]).

product of πaπbπcπd which determines the change in time-reversal polariza-
tion between the four TRIMs of a distinct slab direction is gauge invariant.
As in the 2D case, the change in the time-reversal polarization determines
a Z2 invariant which can be attributed to a specific surface direction. The
corresponding bulk band structure of the system, normal to the surface in
question, necessarily has the same constraints as in the 2D case. Namely that
on any path between two TRIMs, which have opposite sign for πa there must
be a spin-polarized surface state crossing EF. If only one of the four surface
TRIMs has a (-) sign, the surface state forms a Fermi arc around this TRIM.
Completion of the surface state in k-space and time-reversal invariance re-
quire, that the opposite spin components meet at the TRIM, which, thus, form
a Dirac point surrounded by Dirac cones.

Now, a Z2 invariant can be attributed to each possible surface of the 3D
system which accounts for the different combinations of δi, however, due to
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the crystal symmetry, only three of the invariants are independent [12, 49].
Moreover, there is a more general topological invariant, which tells, if all pos-
sible surfaces necessarily have surface states. This is obvious for the case of
Fig. 2.8 a), labeled 1;(111), where only one of the eight TRIMs has δi = -1, while
the other seven have δi = +1, such that always one pair of TRIMs gives a mi-
nus sign while the other pairs give a +sign independent of the direction of
the surface. Consequently, a 3D system can be explicitly described by exactly
four Z2 invariants which are nominated as ν0;(ν1ν2ν3) [13, 14, 49, 54]. The first
invariant ν0 is expressed as the product of δi of all eight TRIMs:

(−1)ν0 =
8

∏
i=1

δi. (2.42)

The other three invariants are determined by the product of the four δi’s for
which the TRIMs Γi lay in the same plane:

(−1)νv = ∏
nk=1,nj �=k=0,1

δn1n2n3. (2.43)

(ν1ν2ν3) are clearly not independent of primitive lattice vectors bk. (ν1ν2ν3)
can be identified with a reciprocal lattice vector Gν = ν1b1 + ν2b2 + ν3b3 and
interpreted as Miller indices for Gν.

Figure. 2.8 shows four distinct combinations of the Z2 invariants ν0;(ν1ν2ν3)
with the corresponding signs of δi at the 8 TRIMs of the 3D Brillouin zone (Fig.
2.8 a)) along with the expected surface state spectrum for the (001)-surface
(Fig. 2.8 b)). Each TRIM Λa in the surface Brillouin zone corresponds to the
projection of two TRIMs Γi from the bulk Brillouin zone connected by the
red line. First one takes a look at eq. 2.42, which gives the value for the in-
variant ν0. If only one sign of δi is different from the other seven ones (Fig
2.8, most right), eq. 2.42 provides ν0 = 1 and all three linearly independent
planes have exactly one Fermi arc enclosing a surface TRIM Λa. As described
above, this follows from the fact, that every possible surface plane which is
built by a combination of parallel planes including bulk TRIMs Γi always has
one TRIM Λa with a different sign of πa = δa1 · δa2 than the other (one closed
circle and three open circles, or vice versa). Consequently, the time-reversal
polarization is changed on any path between two distinct points and there
must necessarily be surface states crossing EF on any possible surface. The
smallest size of the Fermi line is obviously a point located at the TRIM. This
point is called the Dirac point of the topological surface state. Thus, in the
case of ν0 = 1, every surface plane of the bulk insulator has surface states
connecting the bulk valence and conduction band. The surfaces are thus con-
ducting, if EF lies within the band gap. These materials are called strong 3D
TIs. As the name already suggest, the topological surface states of a strong 3D
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TI are robust against all time-reversal invariant perturbations and can only be
destroyed if time-reversal symmetry is broken (e.g. in proximity of an exter-
nal magnetic field or magnetic impurities) or if the band gap is closed and,
thereby, the system changes its topological invariants. Note, that in crystals
with inversion symmetry, the sign of δi is related to the inversion symmetry
of the occupied wave functions at Γi [14]. Each occupied state gets either a
factor -1 or +1 after the inversion and the product of these numbers defines
δi.4 This implies that, if one changes the parities of the occupied bands at a
particular TRIM, for example by exchanging an occupied p-type band with
an s-type band, one may change the sign of δi and thus changing the system
from non-trivial to trivial. For the inversion of bands, however, one has to
close the bulk band gap. Thus, the topological surface states are robust with
respect to changes of the Hamiltonian including disorder, which do not close
the gap. On the other hand, one can use this knowledge in order to create
a topological phase, namely by inverting the p- and s-type bands around EF
only at one TRIM and leaving the normal order at any other TRIM, such that
only one δi differs in sign from all the others. Later we will see, that this com-
prehension led to the theoretical discovery of many materials with inversion
symmetry to be strong 3D TIs. As already mentioned above, in a simple rep-
resentation of a strong 3D TI, the Fermi surface encloses only one Kramers’
degenerate Dirac point on the 2D surface. Close to the Dirac point ED, the
surface of the system can be described in terms of a Dirac Hamiltonian with
linear spectrum [9]:

Hsurf(k) = vFk · σ, (2.44)

where vF describes the Fermi velocity and σ the spin of the electron. Due to
time-reversal symmetry, the spin is locked to the momentum and thus rotates
around the Fermi surface (Fig. 2.9 a)). The corresponding E(k) dispersion
results in a Dirac cone, which is thus formed by a spin-polarized surface state
(Fig. 2.9 b)).

Beside the class of strong TIs, which reside from a specific combination
of δi’s, other combinations of δi’s lead to different topological phases. These
combinations are depicted in the first three sketches of Fig. 2.8. Here, the
sign of two δi’s differ from the other six, so that the topological invariant ν0
= 0. In any of these cases, a plane can be found where the corresponding
surface TRIMs Λa all have the same sign for πa = δa1 · δa2. These planes
thus have no change in the time-reversal polarization between TRIMs and
therefor no topologically protected surface state crossing EF. These are the
planes (001), (011) and (111) in the three first examples of Fig. 2.8 (from left to

4The parity numbers of the occupied wave functions are easily achievable in a theoretical
calculation, so that the determination of the Z2 invariants in the case of an inversion
symmetric crystal is highly simplified.
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Figure 2.9: a) Surface Brillouin zone of a strong 3D TI with inverted bands at Λa
such that a circular Fermi arc (marked by thick line) is formed around the TRIM
(occupied states are marked in green). Arrows mark a possible spin direction of the
states along the Fermi line. b) Corresponding E(k) dispersion showing a Dirac cone
which is formed by the spin-polarized edge states. The spin-polarized surface Dirac
cone is the fingerprint of a strong 3D TI. (Adopted from [8]).

right). However, there are other planes which have two TRIMs with opposite
sign, e.g. the (001)-surface in the second example of Fig. 2.8 (two open and
two closed circled). Consequently, there are surface states present crossing
the whole band gap but enclosing exactly two Dirac points. Materials which
only have topological surfaces states on distinct surfaces are called weak 3D
TIs. The term of weak 3D TIs (WTI) here results from the fact, that they always
have an even number of Dirac points on their non-trivial surfaces, whereas in
the case of a strong 3D TI (STI), there is always an odd number of Dirac points.
Fu and Kane [14, 13] argued that in the case of disorder, it is likely that the
two Dirac cones surrounding the Dirac points couple to each other and form a
symmetric and antisymmetric combination of the wave functions. This might
result in the opening of a gap within the topological surface states. The WTI
would then be equivalent to a trivial band insulator, whereas the STI remains
robust. However, in recent years it has been shown, that also the WTI has
rather robust conductance with respect to disorder (more detail in the next
chapter).

Regarding the consideration above, one is now able to explicitly classify
the different topological phases by the four topological invariants ν0;(ν1ν2ν3).
If the index ν0 = 1, then the system is a STI with an odd number of conduc-
tive surface states on any of their surfaces. However, if ν0 = 0, the system is
a trivial insulator or a WTI depending on the other three invariants (ν1ν2ν3).
If they are all zero, one has a trivial insulator without any topologically pro-
tected surface states at any of the surfaces. However, if (ν1ν2ν3) are non-zero,
then the triple marks the surface normal of the only surface without robust
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Figure 2.10: Schematic of a 3D weak topological insulator (right hand side) built by a
stack of 2D TIs with the Z2 topological classification of 0;(001). The top surface of the
WTI is gapped whereas the surrounding surfaces share topological protected surface
states. A monolayer high island on the top surface is sketched, facing a 1D edge state
at the step edge. The corresponding surface Brillouin zones for the top and the side
surfaces are marked.

conductivity. The other surfaces have an even number of topologically pro-
tected surface states and the system is called a WTI.

2.2.6 Weak topological insulators

Weak topological insulators have above been described as a 3D system with
an even number of topological surface states on only distinct surfaces of the
crystal. Moreover, they have been reported to be "weak" with respect to dis-
order in a sense that a perturbation might gap the surface states. However
in recent years, there have been several theoretical works claiming that the
surface states are highly robust with respect to any time-reversal invariant
perturbation [15, 16, 17, 18, 19, 20, 21].

Figure 2.10 shows the simplest way to create a WTI, namely by the stacking
of 2D TI layers with topological protected edge states. A 3D system is formed,
whereas the helical edge states of the layers then become anisotropic surface
states (left side of Fig. 2.10). In this construction, the top and bottom surfaces
(normal to the (001)-direction) of the WTI are the natural cleavage planes as
well as the surfaces, which are topologically trivial. The four perpendicu-
lar surfaces, however, are topological non-trivial facing topological surface
states which forms exactly two Dirac points. In the limit of completely de-
coupled layers, these surface states are the edge states of the stacked 2D TI.
Translation-invariant coupling between the layers gaps out most of the sur-
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face along kz, however, Kramers’ theorem ensures the two Dirac points to
remain [15]. The corresponding surface Brillouin zones for the top and side
surfaces are marked in the right hand side of Fig. 2.10 revealing a possible
surface Fermi distribution in the case of the side surface. This distinct WTI is
thus classified by the Z2 invariant of 0;(001).

As already mentioned above, the major reason why the WTI is considered
weak is, that the surface states might be destroyed without violating time-
reversal symmetry or closing the bulk gap. However, the first belief that any
type of random disorder would lead to a coupling of the two Dirac points
and thus to a gapping of the surface states everywhere in 2D k-space turned
out to be wrong. But, it was found that the way of coupling between the
stacked layers in a WTI plays an important role with respect to the presence
and robustness of the surface states. If one couples the layers into pairs, i.e.
if the layers are dimerized, a mass term appears which opens up a gap at
the Dirac point [15]. Hence, in the 3D limit of an even number of layers, all
the surfaces turned out to be generally insulating if ED = EF. Whereas if the
number of layers in a WTI is odd, there is no way to gap all the edge states
only by pairing of the layers alone, and thus the surface remains conductive.
As the dimerization of layers breaks the lattice-translation symmetry, it seems
as this symmetry is essential for the protection of the topological phase in a
WTI [15, 21].

However, disorder also breaks translation symmetry and one could think
that this perturbation might lead to an Anderson localization of the surface
states in a WTI in the presence of disorder as in a conventional metal [43].
Hence, Ringel et al. [15] showed in their work, using both a topological ap-
proach as well as a more quantitative perturbation analysis, that a non-trivial
surface of a WTI remains conductive, namely that the longitudinal conduc-
tance σxx remains higher than e2/h in the presence of disorder of arbitrary
strength. Thus, only a pairing of the 2D TI layers, which leads to a distinct
interaction of an edge state of a particular layer to a layer above than to a
layer below, together with an even number of layers results in a gapping of
the surface states at the non-trivial surfaces of a WTI [17, 16, 15]. Moreover, if
the disorder in the coupling to adjacent layers is larger than the preferential
coupling to one of the layers, the topologically protected conductance is re-
stored. Thus, an even number of 2D TI layers alone without any dimerization
of the layers or with a dimerization which is weaker than the disorder, is not
sufficient to break the conductance of the surface states. Hence, it turns out
that the WTI phase has a similar robust nature than the STI phase.

A very promising feature of the WTI is that any dislocation or step edge
present at the trivial surface (the so-called "dark" surface) of the WTI might
host a perfectly conducting spin-helical 1D edge mode which exhibits all the
advantages of a topological state, most notably a lack of back-scattering and
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localization. Imagine for example a monolayer high island on the top surface
of the WTI (right hand side in Fig. 2.10), then a closed loop of a perfectly
conducting edge state must form exactly at the step edge of the island [20].

In recent years, there have been a few theoretical proposals of potential ma-
terials to face the weak TI phase, but none of them has been realized experi-
mentally [61, 62, 63, 64]. It was only in 2013 that Rasche et al. [32] successfully
synthesized the first proposed weak TI, namely Bi14Rh3I9. It consists of layers
with honeycomb structure, being identified to be 2D TIs, which are stacked
and only weakly coupled by separating them by trivial insulator sheets in
order to form a weak 3D TI. So far, a direct experimental demonstration of
the weak TI properties is lacking. Within this work, I will demonstrate for
this particular material the presence of backscatter-free 1D electron channels
at the step edges of the gapped top surface, identifying the system as a weak
TI.

2.2.7 Experimental realizations of 3D topological insulators

After the theoretical prediction of this new class of quantum matters in three
dimensions and the first experimental verification of the QSHE in HgTe quan-
tum wells [7], the first real materials with STI properties have been discovered
soon. The starting point was to look for inversion symmetric materials with a
band inversion at only one TRIM in the Brillouin zone, preferentially at the Γ-
point, i.e. the center of the Brillouin zone. In that sense, a strong SO coupling,
which is present in heavy elements, is helpful as it pushes the bands towards
an inversion. Moreover, the materials should be insulating in the bulk and
thus have a bulk band gap. This requirement is preferentially present in al-
loys.

The first experimental discovery of a strong 3D TI material was the alloy
Bi1−xSbx [65, 66], but the surface band structure turned out to be relatively
complex with five topological surface states crossing EF. Soon after, Zhang et
al. [67] proposed the well-known thermoelectric materials Bi2Se3, Bi2Te3 and
Sb2Te3 to exhibit a STI nature with only one single Dirac cone at the Γ-point.
These materials are inversion symmetric, consist of heavy elements, and ex-
hibit a bulk band gap of approximately 200 meV. Zhang et al. showed that for
these three materials, the SO coupling is strong enough to induce a band in-
version only at the Γ-point, such that a state with positive parity exchanges
with a state of negative parity at EF, leading to the necessary change of sign
for δi at Γ [67]. The density functional theory (DFT) calculation of the surface
band structure of Bi2Se3 is depicted in Fig. 2.11 a) and reveals the topological
surface state at the Γ-point connecting the bulk valence band (BVB) with the
bulk conduction band (BCB) and forming a Dirac cone with a Dirac point.
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Figure 2.11: a) DFT calculation of the surface band structure of Bi2Se3 at the (111)
cleavage plane. The warmer colors represent higher LDOS. Surface states and bulk
bands are marked. (Taken from [67]). b) ARPES data of the same surface of Bi2Se3
along the ΓM-direction in k-space. (Taken from [68]). c) ARPES intensity map at EF
of the (111) surface of Bi2Te3. Red arrows mark the spin direction rotating around
the Fermi surface. d) Measured y-component of the spin polarization at E − EF = -
20 meV along the ΓM-direction. The spin polarization inverts for opposite k-values as
expected from time-reversal symmetry. The polarization is strongest in the in-plane
direction perpendicular to kx as visualized in the inset. ((c) and (d) are taken from
[69]). e) Left and right panel show the ARPES data and the stacking plot of the energy
distribution curves (EDCs) of a 16% Fe doped Bi2Se3 (111) sample, respectively. At
the Dirac point, a reduced ARPES intensity (left image) and a twin-peak structure in
the EDCs (right image) indicate a gap formation due to the breaking of time-reversal
symmetry by the magnetic impurities. (Taken from [70]).

Experimentally, the presence of such a Dirac cone in the surface band struc-
ture of Bi2Se3, Bi2Te3 and Sb2Te3 has been verified by angle-resolved pho-
toemission spectroscopy (ARPES)5 in several works [68, 71, 72]. The ARPES
spectrum of the (111) surface of Bi2Se3 is exemplarily shown in Fig. 2.11 b). It
reveals the experimental surface Dirac cone located at the Γ-point in the center

5ARPES probes the band structure E(k) of a particular surface. The angle of the emitted
photoelectrons is thereby directly related to the k-vector parallel to the surface. For a
detailed description of the technique, see chapter 3.2.
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of the Brillouin zone. It further shows nice agreement with the DFT calcula-
tion (Fig. 2.11 a)) except that the Fermi level in the experiment is not located at
the Dirac point but within the conduction band, indicating a strong n-doping
within the material. The same tendency is observed for Bi2Te3, and oppositely
for Sb2Te3, which is strongly p-doped and ascribed to vacancies and antisites
defects produced during the growth process of the crystal [73, 74]. Thus, the
predicted transport properties of the surface states are not expected for these
compounds, unless the Fermi level is tuned into the gap regime (e.g. by Ca
doping [69]).

Using spin-resolved ARPES, the spin information of the topological surface
states is directly accessible and provides a profound argument for the topo-
logical nature of the surface states. Figure 2.11 c) shows the Fermi surface of
the circular Dirac cone of Bi2Te3 together with the experimentally deduced
spin orientation. The corresponding measured y-component of the spin po-
larization is depicted in Fig. 2.11 d) and reveals the expected spin inversion
for opposite k-values. Hence, spin-resolved ARPES is a powerful tool in order
to map the spin helicity of the topological surface states [69, 66, 75].

As already discussed in the sections above, the topological nature of the
surface states remains intact as long as time-reversal symmetry is protected.
However, if an impurity which breaks the time-reversal symmetry is intro-
duced into the system, a gapping of the surface states is predicted. Exper-
imentally, it has been shown that magnetic doping indeed opens up a gap
within the crossing point of the Dirac cone [70, 76, 77]. Figure 2.11 e) shows
an ARPES spectrum of a Bi2Se3 crystal with 16 % of Fe incorporated. At the
Dirac point, a reduced ARPES intensity is visible. Together with the twin-
peak structure found in the corresponding energy distribution curves (EDCs),
the opening of a gap is obvious.

A different technique, which has proven its potential for the characteriza-
tion of 3D TIs is scanning tunneling spectroscopy (STS)6. It records the dif-
ferential conductivity dI/dV at a selected applied bias voltage between the
probing tip and the sample, which is a direct measure of the local density of
states (LDOS) of a particular region of the surface at a distinct energy. STS can
thus resolve the electronic structure of the TI surface on an atomic scale. The
electronic surface state properties can be made visible by scattering processes
at impurities or step edges, which then result in a standing wave pattern of
the surface states. A number of STS experiments has been done immedi-
ately after the experimental discovery of Bi2Se3, Bi2Te3 and Sb2Te3 as a 3D TI
[80, 78, 81, 74, 82]. Figure 2.12 a) shows a Bi2Te3 (111) surface with adsorbed
Ag trimers acting as scatters. The corresponding LDOS maps measured at
various energies are depicted in c)-g) of Fig. 2.12. The changing intensity is

6For a detailed description of the technique see chapter 3.1.3.
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Figure 2.12: a) STM image of Ag trimers adsorbed on the (111) surface of Bi2Te3. b)
Adsorption geometry of Ag trimer. c)-g) dI/dV maps of the same area as in a) at
various sample bias voltages recording the LDOS as a function of energy. The inter-
ference pattern is caused by the overlapping of standing electron waves scattered at
the Ag trimers. h)-l) Corresponding FFT spectra of the dI/dV maps in (c)-(g) reveal-
ing the possible scattering wave vectors q of the standing waves pattern. The surface
Brillouin zone is exemplarily superimposed in (h) in order to indicate the directions
of the k-space. m) E(k) dispersion derived from the FFT spectra. ((a)-(m) taken from
[78]). n) Local dI/dV(V) spectra measured on the (111) surface of Bi2Te3, represent-
ing the LDOS as a function of energy at different B-fields as marked. The numbers
n mark the consecutive Landau levels. o) Corresponding E(k) dispersion deduced
from the Landau levels. ((n) and (o) taken from [79]).

given by the standing waves of the electrons originating from the scattering at
the Ag trimers. The Fourier Transformation (FT) of the dI/dV maps (Fig. 2.12
h)-l)) reveal the possible scattering vectors q between two states (q = k1 - k2)
in the system. By superimposing the surface Brillouin zone to the FFT spec-
tra in Fig. 2.12 h), it gets obvious that the scattering vector in ΓK-direction
is absent. As described in more detail in ref. [78], this particular scattering
vector belongs to a direct backscattering between k and -k and is thus elimi-
nated from the standing wave pattern by destructive interference, i.e. by the
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helical nature of the topological surface states. Hence, STS provides a direct
confirmation of the lack of backscattering on the surface of a strong 3D TI.

The 2D nature as well as the cone structure of the topological surface states
can further be demonstrated by STS, measuring the Landau level quantiza-
tion on the surface of a 3D TI in a magnetic field [79, 83, 84]. Figure 2.12 n) and
o) show the appearance of Landau level quantization in the dI/dV(V) spectra
at different magnetic field strength B as well as the corresponding E(k) dis-
persion for the surface of a Bi2Se3 thin films [79]. It has been shown that the
distance between Landau levels decreases with increasing energy from the
Dirac point, which is located at the n = 0 Landau level at E − EF = -200 meV.
Moreover, the Landau levels in this measurement obey the relation E ∝

√
nB

(Fig. 2.12 o)), which is valid for Dirac fermions and thus directly confirms the
Dirac cone structure of the surface states.

Another STS work highlighting the special properties of the surface states
of a topological insulator have been done by Seo et al. [85] measuring their
transmission through atomic steps on a antimony (111) surface. In contrast to
trivial surface states of common metals (e.g. copper, silver or gold), which are
either fully reflected or absorbed by atomic steps, they found that the topo-
logical surface states of Sb possess a high probability (≈ 35% transmission) of
penetrating such barriers. This again reflects an unique property of a topo-
logical surface state.

In the meantime, other interesting topological phases, which can be clas-
sified by topological indices have been discovered experimentally, such as
topological crystalline insulators [86, 87] or the anomalous quantum Hall ef-
fect [88, 89]. As both being beyond the scope of this work, I will not describe
these classes in more detail.



3 Experimental Methods

In the framework of this PhD thesis, predominately two surface sensitive
techniques have been used in order to examine the atomic and electronic
structure of different topological insulator systems. Scanning tunneling mi-
croscopy (STM), on the one hand, is a very powerful method regarding the
imaging of the atomic arrangement of a conducting surface as well as its
electronic properties on a sub-nanometer length scale. On the other hand,
Angle-Resolved Photoemission Spectroscopy (ARPES) which also maps the
electronic properties of a system, but on a larger length scale, depending on
the spot size of the focused incident beam (10 μm to 1 mm). The big advan-
tage with respect to STM, is the momentum-dependent acquisition of the
electronic properties, rendering a complete picture of the band structure in
k-space. This chapter briefly discusses the basic physical principals of both
techniques, providing an overview of their particular strengths.

3.1 Scanning tunneling microscopy

STM has been developed in 1981 by Binnig and Rohrer [90]. In its opera-
tion mode, a sharp metallic tip is placed in front of a conducting surface in
a distance, that a tunneling current occurs if a voltage between the tip and
the sample is applied (mV to V) [91]. The distance between tip and sample
is typically of the order of a few Angstrom (Å) an can be realized by various
driving mechanisms based on piezo elements. The tunneling current thereby
depends exponentially of the tip-sample distance which is the main reason for
the extreme lateral and z-resolution, typically lying below the atomic length
scale. The potential scheme of the tip-sample configuration shown in Fig. 3.1
gives a first explanation for the tunneling process in the case of a planar tun-
neling contact. The states in the tip and sample are filled up to the Fermi level
EF, and if a voltage between the tip and the sample is applied, electrons from
the tip tunnel into empty states of the sample (positive sample bias in Fig. 3.1
a)) and vice versa (negative sample bias in Fig. 3.1 b)). In the approximation
of a constant density of states for the tip and sample, the tunneling current
can be described by:

I ∝ Ve−2κd (3.1)

C. Pauly, Strong and Weak Topology Probed by Surface Science, MatWerk,
DOI 10.1007/978-3-658-11811-2_3, © Springer Fachmedien Wiesbaden 2015
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Figure 3.1: Potential model of a planar tunneling contact between a metallic tip and a
sample with applied a) positive sample bias and b) negative sample bias. The dashed
area marks the occupied states and the potential heights are given by the work func-
tion of the tip ΦT and sample ΦS, respectively. The Fermi energies EF are shifted by
the value of the applied bias voltage e · V and electrons from this energy range may
tunnel into empty states. The tunneling probability depends on the energy of the
electrons as well as on the density of states (shaded area).

with

κ =

√
2m
h̄2 (Φeff − |eV|

2
), (3.2)

and Φeff, the average work function of the respective work functions of the tip
ΦT and the sample ΦS, which is typically of the order of a few electron volts.
In the case of a small bias voltage (mV regime), the relationship 3.1 between
the current and bias is close to linear, but if the bias increases, the dependence
of the exponent κ of the bias V gets dominant and there is a reduction of the
effective tunneling barrier Weff = Φeff − |eV|

2 , leading to a stronger increment
of the tunneling current I with bias. Furthermore, I exponentially depends
on the barrier width d, which already indicates the high spatial resolution of
an atomically sharp STM tip in z-direction. As not taken into account here
in this simple current-bias relationship, the tunneling current also depends
on the density of states in the energy range given by the applied bias voltage
e · V. A three dimensional and more quantitative description of the tunneling
process in an STM experiment will be discussed in the following section.

3.1.1 Tersoff-Hamann model

Based on the mathematical approach for the elastic tunneling between two
metallic layers by Bardeen [93], J. Tershoff and D. R. Hamann [94, 92] de-
veloped a theory for the tunneling process in STM, which included an exact
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Figure 3.2: Sketch reflecting the tunneling geometry according to the Tersoff-
Hamann model (after [92]). A spherical STM tip with radius R at a position �r0 in
a distance d to the sample (shaded area).

description of the tunneling current I in a 3D tunneling barrier. In the limit of
small bias voltages with respect to the work-function Φ (e · V 
 Φ) and low
temperature (T → 0 K), for which the broadening of the Fermi distribution
can be neglected, the tunneling current I can be written:

I ∝
∫ eV

0
|MTS|2ρT(EF,T − eV + ε)ρS(EF,S + ε)dε, (3.3)

with EF,T the Fermi energy of the tip and EF,S the Fermi energy of the sam-
ple, ρT and ρS the density of states of the tip and sample at a certain energy
and MTS the tunneling matrix element between the tip and sample wave-
functions (ΨT and ΨS, respectively), which accounts for the transition proba-
bility between states of tip and sample. According to Bardeen [93], the tun-
neling matrix elements can be determined by:

MTS =
−h̄2

2m
·
∫

d�S · (Ψ∗
T
�∇ΨS − ΨS�∇Ψ∗

T), (3.4)

where �S reflects an area within the tunneling barrier (see Fig. 3.2). As the ex-
act crystal structure of the endmost atoms of the tip is not accessible due to
spontaneous rearrangements, the wave-function ΨT can not be determined
accurately. Tersoff and Hamann therefore assume a spherical s-type wave-
function for the tip which then allows the determination of the tunneling ma-
trix elements. The tunneling current I from eq. 3.3 may then be simplified to
[94, 92]:

I ∝ Ve2κRρT(EF,T)ρS(EF,S, �r0), (3.5)
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where one assumes a constant density of states of the tip ρT at EF,T. ρS(EF,S, �r0)
is the local density of states of the sample at EF,S at the center position of the
s-type wave-function representing the tip �r0 (see Fig. 3.2). The decay constant

κ is given by κ =
√

2meΦeff
h̄ , with me being the electron mass and Φeff the

effective work function, described in first approximation by Φeff =
ΦT+ΦS

2 .
Since most STM measurements are done with W- or PtIr-tips, which typi-

cally do not have s-type wave-functions but mostly spatially extended d-type
orbitals, the resolution in the experiment can drastically increase. C. J. Chen
[95] therefor extended the Tersoff-Hamann-model for other tip orbitals deriv-
ing the so-called derivation rule, i.e. ΨS has to be replaced by dΨS

dz for pz-type

tip orbitals, by d2ΨS
dz2 for dz2-type orbitals, by dΨS

dx for px-type tip orbitals and
so forth. Notice, that only the high angular momentum orbitals at the tip
(i.e. p, d,...) are able to explain the lateral atomic resolution, which has been
achieved on close-packed metal surfaces, such as Al(111) [96] and Au(111)
[97]. The measured corrugation was thereby much higher than predicted
from the Tersoff-Hamann-model.

3.1.2 Scanning tunneling spectroscopy

As already stressed in the beginning of this chapter, STM is a very power-
ful tool for spectroscopic measurements, recording the electronic structure of
a surface on a very local scale (sub-nm). As a large part of this work has
been carried out by scanning tunneling spectroscopy (STS), the physical prin-
ciples of this mode will be described in this section. When doing STS, one is
usually interested in the density of states of a surface at a very distinct po-
sition ρS(�r, E). Based on the description of the tunneling current I from the
Tersoff-Hamann model, I can be simplified according to Selloni et al. [98]
with ε = E − EF to:

I ∝
∫ eV

0
ρT(EF − eV + ε) · ρS(�r, EF + ε) · T(ε, V, s)dε. (3.6)

T(ε, V, s) is a transmission coefficient deduced from the simple model of two
planar tunneling contacts based from the semi-classical WKB1-theory:

T ≈ e−2κ(ε,V)s (3.7)

with

κ(ε, V) =

√√√√√2m
h̄2

⎡
⎣Φeff +

eV
2

−
⎛
⎝ε −

h̄2k2
‖

2m

⎞
⎠
⎤
⎦. (3.8)

1Wentzel-Kramers-Brillouin
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Here, s = d + R is the distance between the surface and the center of the
tip s-orbital (see Fig 3.2) and Φeff = ΦT+ΦS

2 the averaged work function of
the tip and sample. Considering the decay constant κ in more detail, it gets
visible that κ depends on the applied bias voltage V and the band structure
of the sample at the surface ε(k), which is defined by the energy ε and the
momentum k of the tunneling electrons. According to equation 3.7 the trans-
mission T, and also the tunneling current I, increases if the decay constant κ
gets small, which is the case for an electron of a certain energy ε with a van-
ishing k-momentum parallel to the surface (k‖ = 0). This means that states
originating from the Γ-point, where k‖ = 0, contribute most to the tunneling
current I in the STS measurements [99]. Subsequent derivation of eq. 3.6 then
leads to:

dI
dV

|V ∝ e · ρT(EF,T) · ρS(EF,S + eV) · T(eV, V, s)

+
∫ eV

0
ρT(EF,T − eV + ε) · ρS(EF,S + ε) · d

dV
[T(ε, V, s)]dε

+
∫ eV

0

d
dV

[ρT(EF,T − eV + ε)] · ρS(EF,S + ε) · T(ε, V, s)dε.

(3.9)

The first term in eq. 3.9 contains the local density of states of the sample at
an energy of the applied bias voltage e · V with reference to the Fermi energy
EF,S. The second term is important in the case of higher bias voltage being
about 10 % of the first term at V = 200 mV. For moderate bias voltage however
(V 
 Φeff), which is the case for the STS measurements presented in this
work, this term is negligible. The third term represents variations of the tip
density of states with energy, and is negligible in case of dρT

dV · V < ρT. It
can be reduced by trial and error preparation of the individual microtip. It
follows that the acquisition of the differential conductivity dI/dV in the STS
experiment provides nearly direct access to the local density of states (LDOS)
of the sample surface at the applied bias voltage V.1

dI
dV

(V) ∝ ρS(EF + eV). (3.10)

In the STS experiment, the differential conductivity dI/dV can be measured
by lock-in technique. The applied bias voltage V is modulated by a sinusoidal
modulation voltage Vmod (few mV) at a frequency fmod of the order of 1-
2 kHz. The tunneling current is thereby used as the input signal of the lock-in
amplifier. The input signal is multiplied by the reference signal (Vmod) and

1Typically ρS(EF,S + eV) is the only factor of the first term of eq. 3.9 which depends on the
position of the tip with respect to the sample, while, however, a spatial dependence of the
vertical decay function T(ε, V, s) cannot be excluded a priori.
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integrated over a distinct time (time constant tc). The output amplitude of the
lock-in amplifier is then proportional to the differential conductivity dI/dV.
This technique amplifies the small tunneling current variations during an STS
experiment and leads to a better signal-to-noise ratio.

3.1.3 STM and STS experiments

In this work, topographic STM images down to the atomic scale have been
recorded using the constant current mode. At a defined tunneling current I and
bias voltage V, the tip of the STM scans an (x,y)-area of the sample surface
while adjusting the tip surface distance s in vertical z-direction in order to
keep I constant. The z-variation of the tip is pictured in a color plot z(x,y)
providing the so-called topography of a sample in the STM image, which
more precisely is a spatial contour of constant local density of states (LDOS)
integrated between the respective Fermi energies of tip EF,T and sample EF,S.

STS measurements have been predominately used in order to gain local
dI/dV(V) curves (LDOS curves) or dI/dV images, which are spatially re-
solved images of the LDOS at a particular energy E = e · V. The first method
is an important tool in order to gain knowledge about variations of the LDOS
with energy at a particular location. A dI/dV(V) curve is measured by stabi-
lizing the STM tip at a chosen position at the tunneling distance, defined by
a stabilizing voltage Vstab and current Istab. Then, a voltage ramp Vramp is ap-
plied and the lock-in output collected, providing the differential conductivity
with respect to the applied voltage ramp (dI/dV(V)). As described above,
this value can be interpreted as the local density of states in a distinct energy
range E, which is defined by the applied voltage ramp.

A dI/dV image, however, can be recorded by simultaneously measuring
the output of the lock-in amplifier while recording an STM image at a dis-
tinct bias voltage and tunneling current. The applied bias voltage during the
scanning defines the energy (e · V) at which the spatially resolved LDOS is
measured and is abbreviated in the following by Vstab. This method is the
fastest way to spatially resolve the LDOS of the surface but has the disad-
vantage that imaging in the energy regions of band gaps is not easy. Also
measuring the LDOS at EF (V=0) is not possible. In order to avoid this prob-
lem, a dI/dV map can be acquired. At each grid point of an STM image, a
dI/dV(V) curve is measured at a defined stabilizing voltage Vstab, providing
a spatially resolved image of the LDOS as a function of energy e · Vramp.

Besides the high spatial resolution of the STM, the energy resolution plays
an important role in the case of STS experiments. The energy resolution ΔE is
given by [100]:

ΔE ≈
√
(3, 3kBT)2 + (2, 5eVmod)2, (3.11)
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where the temperature T and the modulation voltage Vmod are the main pa-
rameter. The limit of ΔE due to finite temperature is predominately the main
reason of going to low temperatures in a STS experiment. In this work, the
STS data has mostly been collected at a temperature of T = 6 K and a modula-
tion voltage of Vmod = 4 mV (RMS), exhibiting an energy resolution of ΔE ≈
7 meV.

3.2 Angle-resolved photoemission spectroscopy

Angle-resolved photoemission spectroscopy (ARPES) is the most direct
method of studying the electronic structure of solids. It measures the sur-
face electrons when emitted by an incident photon of a particular energy hν.
Based on the escape angles and the kinetic energy of the photoelectrons, in-
formation of the electronic band structure E(k) of the material is accessible.
The angle of the emitted photoelectrons is hereby directly related to the k-
vector within the surface. The geometry of an ARPES experiment is depicted
in Fig. 3.3. It shows the incident photon which is a beam of monochromatic
radiation of a certain energy hν, either supplied by a gas-discharge lamp or by
a synchrotron beamline. The beam is focused on the sample and the electrons
are emitted based on the photoelectric effect with a kinetic energy:

Ekin = hν − Φ − Ebin, (3.12)

with Φ being the work function of the particular material (typically 4-5 eV in
metals) and Ebin the binding energy of the electrons inside the crystal mea-
sured with respect to the Fermi level EF. The emitted electrons are then col-
lected by an electron energy analyzer characterized by a finite entrance slit,
which selectively measures the electrons of a specific kinetic energy Eout

kin and
a given emission direction. The emission angle is fully characterized by the
polar angle Θ and azimuth angle ϕ and thus completely determines the mo-
mentum kout of the photoelectron outside the crystal. Its magnitude is given

by kout = 1
h̄

√
2mEout

kin . The component parallel and perpendicular to the sur-

face kout
‖ = kx + ky and kout

⊥ = kz, respectively, are obtained in terms of Θ and
ϕ [101]:

kx =
1
h̄

√
2mEout

kin sin Θ cos ϕ,

ky =
1
h̄

√
2mEout

kin sin Θ sin ϕ,

kz =
1
h̄

√
2mEout

kin cos Θ.

(3.13)
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Figure 3.3: Geometry of an ARPES experiment. A photoelectron e− is emitted from
a sample by an incident photon of energy hν. The momentum k of the electron is
encoded in its emission direction of the sample, given by the polar angle Θ and az-
imuth angle ϕ. A detector, which is situated behind an energy analyzer, captures
the photoelectrons angle- and energy-dependent, which then gives rise to the E(k)
dispersion of the sample.

The goal is to deduce the desired electronic dispersion E(k) of the solid, i.e.
the relation between the binding energy Ebin and the momentum k of elec-
tron states inside the crystal, based on the measured kinetic energy Eout

kin and
momentum kout of the emitted photoelectrons outside the crystal. Taking
advantage of the total energy conservation law in a non-interacting electron
picture between an initial and final state (Ef - Ei = hν), the binding energy of
a state inside the crystal can be deduced from the measured kinetic energy
according to eq. 3.12:

Ebin = hν − Φ − Eout
kin . (3.14)

The energetic relation between Ebin and Eout
kin is visualized in the energy sketch

of the photoemission process in Fig. 3.4 a).
However, gaining information of the full momentum kin of the initial states

is more complex. Here, one can take advantage of the so-called three-step
model [102], which is sketched in Fig. 3.4 b), and in which the photoemission
process is decomposed in three independent steps. It is the most common
model used in the interpretation of photoemission data, in particular when
photoemission spectroscopy is used as a tool to map the electronic band struc-
ture of solids. In the first step, the photoexcitation process is drawn as a tran-
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Figure 3.4: a) Energetic scheme of the photoemission process when an incoming
photon emits electrons from the solid. On the bottom left side, the energy distribution
of the crystal in terms of binding energy Ebin is depicted with the vacuum energy
Evac, Fermi energy EF and work function Φ as marked. The measured spectrum
as a function of the kinetic energy Eout

kin of the ejected photoelectrons is shown on
the top right side. b) Three-step model of the photoemission process reducing the
photoemission event into three independent steps. (1) optical excitation between the
initial Ei and final bulk Bloch eigenstates Ef, (2) travel of the excited electron to the
surface, and (3) escape of the electron through the barrier potential of the surface into
the vacuum. ((a) and (b) adopted from [103]).

sition from states of an occupied band into states of an unoccupied band. In
the ARPES experiment (hν = 5 to 100 eV) the momentum of the photon is rela-
tively small compared to the electron momentum, so that it can be neglected.
Thus, the total momentum conservation which must apply in the photoemis-
sion process, requires that transitions in the reduced-zone scheme between
the initial state with wave vector kin

i and the final state with wave vector
kin

f are necessary k-conserving or vertical (kin
i = kin

f ). In an extended-zone
scheme, which is the more realistic description for a photoemission process,
however, the transition from an initial state to a final excited state can also be
connected over a reciprocal lattice vector G, i.e. kin

f - kin
i = G. Thus the crystal

lattice provides the additional momentum an electron needs to reach the final
state. This representation highlights the fact that a direct optical interband
transition is a process involving diffraction against the lattice [39].
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Figure 3.5: Measured mean free path of electrons as a function of energy (dots) and
corresponding least square fit to the data (straight line). (Taken from [104]).

Resuming the three-step model, the transport of the excited electron to the
surface is often accompanied with a loss of kinetic energy due to inelastic
scattering processes. If the mean free path of the photoelectron (see Fig. 3.5)
is lower than the initial distance from the surface, the electron may not es-
cape the crystal. The dominant scattering event is hereby electron-electron
interaction. This scattering process also leads to the appearance of secondary
electrons, which only loose a part of their kinetic energy and may thus be
visible at different kinetic energies in the measured band structure.

Finally, transmission through the surface of the photoelectron is achieved
when the final state Bloch eigenstate matches to a free-electron plan wave
propagating into the vacuum. Moreover, the kinetic energy of the electron
normal to the surface, left after the transport to the surface, must overcome
the work function barrier of the material in order to escape from the bulk. The
total momentum of the photoelectron is not conserved as the electron crosses
the surface (kin �= kout). One reason is that the potential step at the surface re-
duces the component of the kinetic energy perpendicular to the surface. An-
other reason is that the periodic crystal potential is not existing in the vacuum
so that the dispersion of the electron in the solid is different from that in the
vacuum. Both facts apply on the perpendicular component of the wave vec-
tor k⊥, whereas the parallel component k‖ is conserved by passing through
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the surface as translation symmetry is not broken for this component. Hence,
kin
‖ = kout

‖ , which can be written as (see Fig. 3.6) [101]:

kin
‖ = kout

‖ =
1
h̄

√
2mEout

kin sin Θ. (3.15)

with Θ being the angle of emission (polar angle) normal to the surface. As kin
⊥

is not conserved but necessarily required for the determination of the elec-
tronic structure E(k), a different approach is needed. One has to make some
assumption regarding the dispersion of the final states in the crystal Ef(k). In
particular, a nearly-free electron description for the final bulk Bloch states is
adopted [101], and it follows according to the energy scheme in Fig. 3.4 a):

Ef(k) =
h̄2kin2

2m
− V0 =

h̄2(kin
‖

2
+ kin

⊥
2
)

2m
− V0. (3.16)

If Ef(k) is referenced to the vacuum level Ev, it is equal to Eout
kin . V0 is the

crystal potential as defined in Fig. 3.4 a) where E0 denotes the bottom of the
imaginary parabola defining the final states. With h̄2kin

‖
2/2m = Eout

kin sin2Θ

from eq. 3.15 it thus follows for kin
⊥ :

kin
⊥ =

1
h̄

√
2m(Eout

kin cos2 Θ + V0). (3.17)

If the crystal potential V0 is known, the corresponding value for kin
⊥ is thus

achievable. However, as the determination of V0 is often only given by theo-
retical calculations, the exact value of kin

⊥ is mostly uncertain.
For particular cases however, the kin

⊥ uncertainty is less relevant, as for ex-
ample in low-dimensional systems which are characterized by an anisotropic
band structure and negligible dispersion along the z-direction. The electronic
structure is then predominantly determined by the parallel component of the
wave vector. As a result, the simple tracking of the exit angle Θ of the pho-
toelectron, together with its kinetic energy provides a detailed picture of the
electronic dispersion E(k) when applying eq. 3.14 and 3.15. The same is, of
course, true for all surface states.

As already briefly discussed above, the photoemission results are often dis-
cussed within the three-step model (Fig. 3.4 b)), which has proven to be rather
successful [105, 106, 102]. The total photoemission intensity is thus given by
the product of three independent terms, i.e. the probability for the optical
transition, the scattering probability of the traveling electron and the trans-
mission probability through the surface barrier [101]. However, the major
information of the intrinsic electronic band structure is mainly encoded in the
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Figure 3.6: Evolution of the electron’s momentum k, when passing trough the surface
barrier. kin and kout describes the momentum of the electron inside and outside the
bulk, with k‖ and k⊥ its parallel and perpendicular components, respectively. Θ
denotes the polar angle at the exit of the crystal.

first step, where a transition probability Ti,f for an optical excitation between
an N-electron initial state

∣∣uN
i
〉

and a possible final state
∣∣uN

f

〉
can be deduced

using Fermi’s golden rule [101]:

Ti,f =
2π

h̄

∣∣∣〈uN
f

∣∣∣Hint

∣∣∣uN
i

〉∣∣∣2 δ
(

EN
f − EN

i − hν
)

, (3.18)

with EN
i and EN

f being the initial and final states energies of the N-particle sys-
tem and Hint, the Hamiltonian which considers the interaction between the
electron and the photon as a perturbation. The N-electron final state wave-
function uN

f is mostly fragmented into the wave-function of the photoelectron
φf(k) and the final wave-function of the (N-1)-electron system uN−1

f :

uN
f = Aφf(k)uN−1

f , (3.19)

with A, an operator which antisymmetrizes the N-electron wave-function in
a way that the Pauli principle is satisfied. The same decomposition is valid
for the N-electron initial state, such that the matrix elements from eq. 3.18 can
be written: 〈

uN
f

∣∣∣Hint

∣∣∣uN
i

〉
= 〈φf(k)| Hint |φi(k)〉

〈
uN−1

f |uN−1
i

〉
, (3.20)

and 〈φf(k)| Hint |φi(k)〉 ≡ Mi,f(k) is defined as the one-electron dipole matrix
element and the second term is the (N-1)-electron overlap integral. From this
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point, one can derive the total photoemission intensity as a function of a dis-
tinct Eout

kin at a particular momentum k as the overall transition probability, i.e.
I(k, Eout

kin) = ∑i,f Ti,f, which is proportional to [101]:

I(k, Eout
kin) ∝ ∑

i,f

∣∣Mi,f(k)
∣∣2 ∑

f

∣∣ci,f
∣∣2 δ
(

Eout
kin + EN−1

f − EN
i − hν

)
. (3.21)

∣∣ci,f
∣∣2 =

∣∣∣〈uN−1
f |uN−1

i

〉∣∣∣2 here denotes the probability that the transfer of an
photoelectron from an initial state i remains the (N-1)-electron system in the
excited final state f . The photoemission intensity thus mainly depends on the
one-electron matrix elements, for which special dipole selection rules apply,
identifying the possible transitions between initial and final energy bands for
each particular case. The selection rules deeply depend on the particular sym-
metry properties of bands in a crystal, so that contributions of specific bands
in the photoemission spectrum can be a-priori been ruled out.

A more rigorous approach for the determination of the photoemission in-
tensity is to consider the so-called one-step model where the whole photoe-
mission process (step 1 to 3) is treated as a single coherent step [39]. In that
way, contributions from bulk, surface and vacuum have to be considered in
common in the Hamiltionian from eq. 3.18, which massively complicates the
calculation of the photoemission event.

3.2.1 Spin-resolved ARPES

A very powerful property of the ARPES technique beside the acquisition of
the electronic band structure is, that it can be used in order to measure the
spin degree of freedom of particular bands in a solid. This mode is known
as spin-resolved ARPES (spin-ARPES). The requirement for the experimental
ARPES setup is the implementation of a Mott detector, which is able to detect
the specific spin component of each photoelectron. The setup is depticted in
Fig. 3.7. After the energy selective passing through the energy analyzer, the
electrons are accelerated and directed towards a heavy metal foil (Au foil in
the sketch) where they get scattered. Due to the strong SO coupling within the
foil, the scattering of the photoelectrons depend on their spin and results in a
separation of the distinct spin components. In Fig. 3.7 for example, the spin-
up component is deflected to the left, and the spin-down component to the
right. Special detectors which are placed in the different scattering directions
count the selected photoelectrons. After calibration of the foil, the net spin-
polarization in up-down direction can then be deduced from the difference
in the photoelectron current of the left and right detector. The same can be
done for the other spin directions. A typical data set from a spin-ARPES



54 3 Experimental Methods

e-
x

y

sample
Au foil

acceleration
optics (26kV)

Mott spin detector

detector S

detector S

z

h
spin-up

spin-down

Figure 3.7: Sketch of the experimental setup for spin-resolved ARPES. Same geom-
etry as for conventional ARPES (Fig. 3.3) but with a Mott detector placed behind
the energy analyzer. The Mott detector consists of a heavy metal foil, which scatters
the electrons depending on their spin orientation and thus leading to a separation of
the different spin components. Corresponding detectors count the respective spin-
polarized electrons whereas the difference in the photoelectron current between two
opposite detectors then provides the net spin-polarization for one particular spin ori-
entation.

measurement showing the resulting spin-polarization for a particular spin-
direction has already been visualized in Fig. 2.11 d) of section 2.2.7.

However, the intensity in the spin-ARPES is much smaller than in conven-
tional ARPES experiments, which is due to the low efficiency of the Mott
detector. The counting rate is thereby reduced up to a factor of ten with re-
spect to the counting rate in the ARPES experiment, necessarily leading to a
much longer acquisition time in order to gain meaningful statistics. A further
disadvantage of the spin-ARPES experiment is the insufficient instrumental
resolution typically used to increase the spin-ARPES intensity, especially in
measurements where different bands are relatively close to each other [75].
The measured spin-polarization may then be significantly reduced with re-
spect to the real one. Especially in the case of topological surface states, where
theory predicts a spin polarization of nearly unity [75], extrinsic factors in
the spin-ARPES experiment complicates a detailed view on this assumption.
However, by a rigorous analysis of the different bands and a reasonable sub-
traction of a non-polarized background from the spin-polarized data, a quan-
titative consideration of the real intrinsic spin-polarization is possible, at least,
at certain photon energies, as will later been shown in this work.
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Figure 3.8: Typical beamline equipment showing the radiation path from the exit
of the electron storage ring, where the radiation is produced, to the detector of the
ARPES device. (Taken from [107]).

3.2.2 Experimental details: ARPES at the synchrotron

The ARPES and spin-ARPES experiments shown in this work have been per-
formed at 300 K with electron analyzers Scienta R8000 and SPECS PHOIBOS
150 using linearly polarized synchrotron radiation from the beamlines UE112-
PGM-1 and UE112-lowE-PGM2 at BESSY II in Berlin. A typical radiation path
from the electron storage ring of the synchrotron, where the radiation is pro-
duced, to the detector in the ARPES chamber is visualized in Fig. 3.8. At the
exit of the storage ring, a beam of white radiation is produced by an undu-
lator and later momochromatized at the desired photon energy by a grating
monochromator. The beam is focused on the sample and the emitted photo-
electrons collected by the analyzer, where kinetic energy and emission angle
are determined [107]. The whole system is kept at ultra high vacuum (UHV)
at a base pressure of 1 · 10−10 mbar. The big advantage of synchrotron ra-
diation with respect to an ordinary gas-discharge lamp is, that the radiation
covers a wide spectral range, from the visible to the X-ray region with a high
intensity and switchable polarization. Typically, ARPES experiments are per-
formed at photon energies in the ultraviolet regime (hν < 100 eV), in which
the valence band structure of a material is accessible. In this energy range,
the measurement is very sensitive to the surface as can be deduced from the
energy dependence of the photoelectrons’ mean free path (a few Å) (see Fig.
3.5). The core levels, however, are measured by X-ray photoemission spec-
troscopy (XPS), which operates at photon energies above 100 eV. Both infor-
mation can be measured consecutively at the synchrotron only by changing
the beam energy through the monochromator.

The analyzer used in the ARPES experiment is a Scienta hemispherical an-
alyzer with, at the end, a two-dimensional position-sensitive detector, con-
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sisting of two microchannel plates and a phosphor plate in series, followed
by a charge-coupled device (CCD) camera2. The advantage of this arrange-
ment is, that it can be operated in angle-resolved mode and thus detecting the
photoelectrons of different emission angles simultaneously. In particular, an
angular window of photoelectrons, which is defined by the entrance slit and
the electron optics in front of the entrance slit, is focused on different lateral
positions on the detector (different colors correspond to different emission an-
gles in Fig. 3.8). It is thus possible to map multiple energy distribution curves
(EDCs) at the same time, generating a 2D picture of energy versus momen-
tum. This is in strong contrast to a conventional electron analyzer, in which
the momentum information is measured consecutively for adjacent k vectors
and thereby each time averaged over all the electrons within the acceptance
angle (typically 1 °). Hence, the acquisition time for a complete band structure
E(k) is much quicker and the angular resolution considerably higher.

The energy resolution in the ARPES experiment is basically given by the
hemispherical deflector of the analyzer. The deflector consists of two concen-
tric hemispheres of radius R1 and R2 with a potential difference of ΔV, so that
only electrons within a narrow energy range, adjustable by a so-called pass
energy Epass will pass trough the hemispherical capacitor and thus reaching
the CCD camera of the detector. The pass energy is given by:

Epass = eΔV
(

R1

R2
− R2

R1

)−1
. (3.22)

The energy resolution of the measured kinetic energy is then defined by [107]:

ΔE = Epass

(
w
R0

+
α2

4

)
, (3.23)

with R0 = (R1 + R2)/2, the width of the entrance slit w and the acceptance
angle α. Epass, w and α are all adjustable parameters which may be reduced
in order to improve the energy resolution in the experiment. However, as one
reduces these parameters, the intensity of the photon beam also decreases.
Consequently, the best adjustment for the measurement is always a compro-
mise between losing resolution and gaining beam intensity or vice-versa.

The momentum resolution of the experiment Δk‖ can be derived from eq.
3.15 and is given by [107] (without argument):

Δk‖ ≈
1
h̄

√
2mEout

kin cos Θ · α, (3.24)

thereby neglecting the contribution of the finite energy resolution. Thus, the
momentum resolution improves for lower photon energies (i.e. lower Eout

kin),

2For a detailed description see [107].
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larger emission angles Θ and smaller acceptance angle α of the electron ana-
lyzer, again accompanied with a loss in beam intensity.

Typical energy and momentum resolution of a Scienta analyzer are a few
meV and 0.2 °, respectively. However, the energy and momentum resolution
in the spin-ARPES experiment, which has been achieved with a Rice Uni-
versity Mott polarimeter operating at 26 kV in the conventional mode, are
100 meV and 1.4 °, respectively.

For more information of synchrotron radiation technology and the devel-
opment of the Scienta electrons spectrometers see references [108, 109, 110].



4 Identification of Tellurium based
Phase-Change Materials as
Strong Topological Insulators

Phase-change materials (PCMs) [111, 112] are a class of materials which have
become of tremendous technological importance over the last two decades.
Their ability of a fast and reversible phase transition between an amorphous
and crystalline phase makes them appropriate for the application in data
storage. PCMs based on Ge-Sb-Te (GST) alloys are characterized by a pro-
found change of optical reflectivity and electrical conductivity upon chang-
ing from the amorphous to the crystalline phase [113, 114]. As a consequence,
these alloys are already widely used in optical data storage, such as compact
discs (CDs) or rewritable digital video discs (DVDs). The resistivity change
upon crystallization, moreover, makes the GST alloys also a promising candi-
date for non-volatile electrical data storage, e.g. phase change random access
memories (PCRAMs) [115, 116].

Thus, the optical and electronic contrast between the amorphous and crys-
talline phase as well as the fast, reversible switching on the nanosecond (ns)
scale are the crucial requirements for materials to be a potential PCM for the
technological application in data storage. A significant number of phase-
change alloys built of different combinations of Ge-Sb-Te are mapped in the
ternary phase diagram in Fig. 4.1 [117]. This map is constructed on the base
of a fundamental understanding of bonding characteristics, as it was shown
that resonance bonding in the crystalline state of a material is a unique finger-
print of PCMs [118]. Some of these PCM alloys, e.g. Ge1Sb2Te4 (GST-124) and
Ge2Sb2Te5 (GST-225), lie on the so-called pseudobinary line between GeTe
and Sb2Te3.

In the course of the discovery of the TIs, phase-change materials from the
pseudobinary line have also been taken into consideration, as these materi-
als face the main requirements for TI nature, namely built out of heavy ele-
ments, and thus having a strong SO interaction, and being a semiconductor
with a band gap of several hundred meV. Sb Te was one of the first pre-2 3
dicted strong 3D TIs [67] (see section 2.2.7), and DFT soon after proposed a
similar TI behavior for particular ternary compounds on the pseudobinary

C. Pauly, Strong and Weak Topology Probed by Surface Science, MatWerk,
DOI 10.1007/978-3-658-11811-2_4, © Springer Fachmedien Wiesbaden 2015
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Figure 4.1: Ternary phase diagram of Ge, Sb and Te with PCMs marked by gray areas.
Three groups, all having phase-change characteristics can be identified (gray areas
surrounded by dotted lines). The most prominent group is the pseudobinary line
between GeTe and Sb2Te3 with materials such as Ge1Sb2Te4 and Ge2Sb2Te5. (Taken
from [117]).

line [119, 120, 121, 122, 123]. Within this chapter, an experimental view on
this proposals will be provided, using surface sensitive techniques, able to
map the topological fingerprints present in this particular phase change al-
loys. It starts with the already well-known material Sb2Te3 and follows up
the pseudobinary line, looking at the most prominent ternary PCM, namely
Ge2Sb2Te5. Identifying TI properties in classes of materials already in use
for electronic or storage applications is highly desirable and opens up new
possibilities towards the utilization of these fundamental new properties.

4.1 Fundamentals of phase-change materials

As already mentioned above, the fast reversible switching between an insu-
lating amorphous and a conducting crystalline phase is the main fingerprint
of a PCM used in data storage application. Both phases are thermodynami-
cally stable and can be switched repeatedly for a large number of cycles (more
than 105 [111]). The mode of principle of data storage is shown in Fig. 4.2. A
short laser or current pulse of high intensity locally (μm scale) anneals the
PCM above its melting temperature Tm, followed by a rapid cooling of the
area at 109 Ks−1. This brings the area into a disordered, amorphous phase
and marks the write-event in the storage process. The amorphous phase has
a different optical contrast than the surrounding crystalline state and is thus
detectable by a low-intensity laser beam (read-event). Adjusting a long laser
or current pulse of low intensity which locally anneals the PCM above its
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Figure 4.2: Scheme of the rewritable optical data storage process. From left to right:
a short, high laser pulse heats the PCM over its melting temperature Tm. Subse-
quent rapid cooling at rates higher than 109 Ks−1 quenches the state into a disor-
dered, amorphous phase. This step marks the write-event. A low-intensity laser
beam detects the different optical contrast between the crystalline and amorphous
phase and marks the read-event. The crystalline phase is restored by annealing the
PCM over the crystallization temperature Tg and marks the erase-event of the storage
process. (Adopted from [126]).

crystallization temperature, often called the glass temperature Tg, brings the
state back into the crystalline phase and marks the erase-event of the storage
process. The laser or electrical heat induced switching occurs within nanosec-
onds [114] or below [124] at a very low energy cost of only 1 fJ [125].

The first materials showing fast recrystallization and a good optical con-
trast were GeTe [127] and Ge11Te60Sn4Au25 [128, 129]. This led to the dis-
covery of pseudobinary alloys along the GeTe-Sb2Te3 tie line (Fig. 4.1), i.e.
GST-147, GST-124 and GST-225 [114]. The origin of the optical contrast be-
tween the amorphous and crystalline phase in GST alloys, however, is far
from being settled [130]. Measurements of the dielectric function ε of GST-124
using infrared spectroscopy and spectroscopic ellipsometry, reveal an optical
dielectric constant which is 70-200 % larger for the crystalline than for the
amorphous phases, depending on the excitation energy which ranges from
0.025 to 3 eV in the experiment [118]. This difference is attributed to a sig-
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nificant change in bonding between the two phases. In the crystalline phase
of GST alloys, resonance bonding occurs, which is due to a discrepancy be-
tween the number of electrons and the number of nearest neighbors engaged
in a bonding. The result is a necessary superposition of two covalent bond-
ing configurations with strongly delocalized electrons. As a consequence, a
significantly increased polarizability is present, which does not take place in
the amorphous phase, where resonance bonding is absent [118].

The atomic structure of the amorphous and crystalline phase, as well as the
structural changes upon switching between the phases are yet not fully un-
derstood. However, a huge amount of experimental analysis in recent years
have led to a better understanding, at least for the crystalline state in the GST
compounds. Generally, the crystalline phase consist of two slightly different
phases, i.e. a metastable cubic one, which is used for application [131], and
a stable hexagonal one. A fingerprint of the metastable cubic structure in
GST is the large amount of vacancies which is of the order of 10 % [111], and
which is not found in other materials. Matsunaga et al. [132] found by X-ray
diffraction (XRD) measurements that the metastable cubic phase of the GST
compound consists of a rocksalt structure with two different sublattices. One
sublattice only containing Te atoms and the other one built by statistically dis-
tributed Ge, Sb and vacancies. Matsunaga among others [133, 134] suggested
that these vacancies, also present in the amorphous phase, play an important
role in the fast switching between the two phases, namely by a movement of
the vacancies during the structural transition.

Moreover, EXAFS (Extended X-ray Absorption Fine Structure) measure-
ments [136] and DFT calculations [137] propose that the rocksalt structure in
the metastable crystalline phase differs slightly from the ideal rocksalt struc-
ture. DFT reveals pronounced local distortions for the nearest-neighbor Ge-
Te bonds, which lead to a splitting of those bonds in shorter and longer Ge-
Te bonds. A similar finding is observed for the Sb-Te bonds, even though
the splitting into shorter and longer bonds is less pronounced. Such a split-
ting into shorter and longer bonds is often denoted as a Peierls effect, a well-
known phenomenon in many binary chalcogenides [133]. The distortions are
smallest for GST-224 (10 pm in average) and largest for GST-124 (18 pm in av-
erage) [133]. The stable hexagonal phase of GST differs from the metastable
one mainly by its vacancy distribution, which forms an own vacancy layer
instead of being randomly distributed along the lattice. Matsunaga et al. [138]
proposed a hexagonal lattice, build by a 9-layer block along the c-axis which
are periodically spaced by van-der-Waals gaps (described in more detail in
section 4.3.1 and Fig. 4.23 d)). Similar models are proposed by Petrov et al.
(Petrov phase) [139] and Kooi et al. (KH phase) [140] but with Ge and Sb
atoms forming separate layers. Both, the Petrov phase and the KH phase dif-
fer by their respective stacking of the pure layers. We will later see that the
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Figure 4.3: a) and b) Temperature dependence of the sheet resistance of 80 nm GeTe
film and 100 nm GST-124 film measured in van der Pauw geometry, respectively.
Arrows mark direction of cooling or heating. c) Resistivity for different GST alloys
plotted during the cooling down for the region marked by dotted line in (b). At a
critical resistivity (ρ = 2-3 mΩcm) the behavior changes from non-metallic (dρ/dT <
0) to metallic behavior (dρ/dT > 0). (Taken from [135]).

specific stacking order of the layers is crucial for the appearance of TI proper-
ties [120, 123] (section 4.3.1).

Until now, the driving mechanism leading to the ultra-fast switching be-
tween the amorphous and crystalline phase is far from being settled. Several
models have been proposed, with most of them suggesting close structural
similarities in both phases so that only small bond-rotational movements over
a few relevant atoms are necessary to switch from the amorphous to the crys-
talline phase [136, 134, 141, 124]. This implies the presence of well structured
building blocks, switching as a whole during the transition, with an over-
all medium-range ordering of the atoms already present in the amorphous
phase. Welnic et al. [126] therefore proposed a spinel structure to be a suitable
candidate from DFT, with the Ge atoms occupying tetrahedral positions, and
the Te and Sb atoms occupying octahedral positions. An interesting proposal
which is sustained by EXAFS data is given by Kolobov et al., claiming that
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Ge atom switches from the tetrahedral position (amorphous phase) into a oc-
tahedral position (crystalline phase) just by adding sufficient energy to the
system. Such a structural transformation involves a change in the hybridiza-
tion from sp3-hybridization in the amorphous state to p-type bonding in the
rocksalt metastable crystalline state, also providing a possible explanation for
the strong electrical contrast [136]. Moreover, it has been observed that the
structural transition is accompanied by a significant reduction of the density
[142, 143, 144]. The volume of GST-124 has for example been documented to
decrease by about 5% upon crystallization [144].

Besides the strong optical contrast being present in PCMs, there is also a
significant electrical contrast present in GST alloys which may be used for
non-volatile electronic data storage (e.g. PCRAM) [115]. In many PCMs, de-
pending on the particular stoichiometry, the conductivity increases by more
than three orders of magnitude upon crystallization, ensuring a high signal-
to-noise ratio [113, 145]. Resistivity measurements on as-deposited thin films
of GeTe and GST-124 upon annealing from the amorphous to the crystalline
phase show different behavior, as depicted in Fig. 4.3 a) and b) [135]. For
GeTe, which is at the border of the pseudobinary line, the resistivity sharply
drops during the transition without showing further temperature depen-
dence in the crystalline phase. In contrast, the GST-124 film reveals a pro-
nounced annealing dependence, with a drop in resistance by a factor of 400
in the temperature range between 150 to 350 °C. Interestingly, the GST-124
alloy here changes from non-metallic to metallic after the achievement of a
critical resistance, as can be observed by the different slopes of the resistivity
(dR/dT < 0 or dR/dT > 0, respectively) upon cooling down (region marked
by dotted lines in Fig. 4.3 b)). The same behavior is also observed for other
GST alloys (Fig. 4.3 c)) and a critical resistivity of ρ = 2-3 mΩcm for the metal-
insulator transition (MIT) is extracted [135]. Siegrist et al. [135] suggest the
high degree of disorder [146] in the crystalline phase of GST alloys respon-
sible for the insulating behavior at low annealing temperature, despite the
high carrier concentration and the p-type conductivity, so that they behave
like an Anderson insulator [43]. GeTe, in contrast, lacks a comparable degree
of disorder, hence always being metallic. The transition from insulating to
conducting behavior in GST is finally explained by an increase of the charge-
carrier mobility upon annealing at almost constant charge-carrier density. A
similar result on as-deposited GST-124 is found by Subramaniam et al. [144].
In this work, STS measurements reveal a continuous decrease of the band
gap width with increasing temperature, and a closing of the gap in the stable
hexagonal phase. Moreover, the Fermi level EF is found to shift continuously
from midgap in the amorphous phase to the valence band edge in the stable
hexagonal phase, also indicating a transition from an insulating to a conduc-
tive state upon annealing. However in the STS experiment, possible band
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bending effects at the surface which could lead to a shifting of EF might play
a role. The resistivity measurement, in contrast, are rather bulk sensitive.

4.2 Identification of topological insulator
properties in crystalline Sb2Te3

The heavy element alloys Bi2Se3, Bi2Te3 and Sb2Te3 have been the first 3D
TIs proposed with the simplest electronic structure, namely with one single
spin polarized Dirac cone at the Γ-point [67] (see section 2.2.7). While the TI
properties of Bi2Se3 and Bi2Te3 are already well established, the phase change
material Sb2Te3 was rarely probed. First ARPES measurements on single-
crystal Sb2Te3 suggested that the Fermi level is within the bulk valence band
probably due to hole doping [72]. No sign of a surface Dirac cone has been
observed, however, the TI nature of the system has been indirectly deduced
from the presence of an inverted bulk valence band, namely a band with a
minimum at the Γ-point. This behavior is a hint for an inversion of bulk
bands around EF induced by strong SO coupling which thus often leads to
the required parity change at the TRIMs. Stronger evidence for the TI nature
of Sb2Te3 has been found by ARPES measurements on thin films grown by
molecular beam epitaxy (MBE) [147]. The data reveal the lower part of a Dirac
cone located around the Γ-point, and shows that the Dirac point is accessible
by doping the thin films with cesium. This leads to an electron doping of the
surface and a subsequent reduction of the p-type nature initially present due
to intrinsic defects. However, the spin chirality and the topological nature of
the Dirac cone has not been tackled.

4.2.1 STM and STS characterization of Sb2Te3

In this chapter, STM measurements on single crystal Sb2Te3 samples are
shown, which have been cleaved in UHV at a base pressure of 1 · 10−10 mbar
prior to the measurements, in order to obtain a clean and adsorbate-free sur-
face. The cleavage process includes a Cu-tape which is pressed on the surface
of the sample and which is holding a small wire forming a bow. The Cu-tape
can later be removed inside the UHV chamber only by pulling the bow by a
standard wobblestick leaving a freshly cleaved surface. The single crystal of
Sb2Te3 mounted to the sample holder is shown in Fig. 4.4 a), together with
the Cu-tape after a cleavage process. The STM measurements are performed
using an etched tungsten tip (Fig. 4.4 b)) inside a UHV insert within a he-
lium cryostat ensuring a sample temperature of 6 K and operating at B-field
strengths up to 7 T in z-direction and 3 T and 0.5 T in x- and y-direction, re-
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Figure 4.4: a) Image of the single crystal Sb2Te3 mounted to a tungsten sample holder.
Cu-tape holding a wire has been pressed on the sample surface and is removed in
UHV in order to cleave the sample prior to the STM measurements. The image shows
the sample after cleavage. b) Electron microscope picture of an etched tungsten tip
which is used for the STM measurements. ((b) taken from [148]).

spectively. A detailed description of the home-built UHV STM chamber and
its specific components can be found in the references [148] and [149]. More
information of the experimental details are found in section 3.1.3 and some of
the results of this section are published in ref. [31].

The crystal structure of Sb2Te3 consists of consecutive quintuple layers
(QLs), whereas one QL is built by the stacking sequence Te(1)-Sb-Te(2)-Sb-
Te(1). The different numbers in parentheses mark the different environments
of the Te layers. The atomic configuration is visualized in the sketch of the

quintuple
layer

(0001)

Te
Sb

a) b)

Figure 4.5: a) Sketch of the crystal structure of Sb2Te3; one QL is marked with dif-
ferent atoms in different colors as indicated. b) LEED pattern of the freshly cleaved
Sb2Te3 (0001) crystal verifying the hexagonal symmetry of the Te terminated surface.
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Figure 4.6: a) STM image of cleaved Sb2Te3 (0001) (V = 0.9 V, I = 50 pA) revealing
large terraces with width of several 100 nm. Inset: Line profile showing the step
heights which correspond to the height of one QL (≈ 1 nm). b) Atomically resolved
STM image (V = 0.4 V, I = 1 nA) recorded in the area marked by the dashed box in (a).
A hexagonally arranged pattern of the Te atoms is observed with an average atomic
distance of 0.42 nm, which is in agreement with the theoretic value [150]. Types of
defects are visible as triangular structures appearing dark and bright.

crystal structure in Fig. 4.5 a). The coupling within a QL is strong, whereas
the interaction between two QLs is predominantly of van der Waals type [67].
Consequently, cleavage leads to a Te terminated (0001) surface with hexago-
nal symmetry as has been verified by low-energy electron diffraction (LEED)1

(see Fig. 4.5 b)). Identically to Bi2Se3 and Bi2Te3, Sb2Te3 has inversion sym-
metry with the layer Te(2) containing the center of inversion. This simplifies
the calculation of the Z2 topological invariant considerably, which becomes
an analysis of states at the high symmetry points only, and, thus, leads to the
straightforward identification of a strong topological insulator [13, 67] (see
also section 2.2.5).

An STM overview image of the cleaved Sb2Te3 (0001) surface showing the
topography of the crystal is depicted in Fig. 4.6 a). It reveals large terraces
with width of several 100 nm separated by step edges of 1 nm in height, corre-
sponding to the theoretical height of one QL. Further, the atomic arrangement
of the surface is identified by zooming into a flat area on the terrace (dashed
area in Fig. 4.6 a)). The corresponding STM image is shown in Fig. 4.6 b) and
reveals an hexagonally arranged pattern of the Te-atoms with an atomic dis-

1LEED enables the determination of the symmetry of the surface structure of single-
crystalline materials by bombardment with a beam of low energy electrons (20–200 eV).
The diffraction pattern of the electrons is visible as spots on a fluorescent screen.
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Figure 4.7: a) STM topographic image (V = 0.9 V, I = 100 pA) revealing typical types
of defects for Sb2Te3. b) Zoom into the marked area of (a) showing a close up view of
the four different types of defects (marked by different colored ellipses).

tance of a = 0.42 nm, nicely agreeing with the theoretical value [150]. Even in
this small scale image, a significant amount of intrinsic defects states on the
surface can be observed, which has already been identified to be responsible
for the natural p-type conductivity of Sb2Te3 [73]. Especially defects, which
act as acceptors lead to the p-type nature of the system. First-principles cal-
culations in the work of Jiang et al. [73] identified the Sb vacancies (VSb) and
the Sb-on-Te antisites (SbTe) to be the primary source of the p-type nature,
whereas Te-on-Sb antisites (TeSb) act as a donor and lead to a natural n-type
conductivity. Figure 4.7 a) shows an overview image of the single crystal
Sb2Te3 surface, resolving four different types of defects. These defects are
exposed in the close-up view of Fig. 4.7 b) and are identified based on the
characterization by Jiang et al. [73]. Two types of Sb vacancies are present
(VSb), showing each a depression at positive sample voltage and sitting on
different atomic layers of the QL. The two antisite defects SbTe and TeSb show
a bright contrast and are marked accordingly. It gets obvious from the STM
data that the electron donor defects TeSb are significantly less present than the
acceptor defects, explaining the rather natural p-type nature of Sb2Te3. The
same tendency is found on other areas of the sample, always outnumbering
the acceptor defects. Obviously, the exact strength of the p-type conductivity
critically depends on the respective number of specific defects and may vary
on the local scale.

Before we have a look at the STS results which provide information about
the p-type nature of the sample, as well as possible hints for TI properties,
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Figure 4.8: Band structure of Sb2Te3 in Γ−K direction as calculated by DFT including
spin-orbit coupling; states resulting from a film calculation are shown as circles with
the color (blue or red) indicating different spin directions and the size of colored
circles marking the magnitude of the spin density (for absolute spin polarization
values see Fig. 4.14); shaded areas are projected bulk bands originating from a bulk
calculation. (Calculation by Gustav Bihlmayer).

the electronic band structure of Sb2Te3 as deduced from DFT calculation will
be introduced. The calculations are performed by Gustav Bihlmayer within
the generalized gradient approximation [151] to DFT, employing the full-
potential linearized augmented plane-wave method as implemented in the

code2. SO coupling is included in a non-perturbative manner [152].
Based on the optimized bulk lattice parameters, the surfaces are simulated by
films of a thickness of six QLs embedded in vacuum.

The band structure from DFT calculations including SO interaction is
shown in Fig. 4.8. It combines a surface calculation, which is deduced from
a six QL thick structure, and a bulk calculation, which is displayed as pro-
jected bulk bands painted as gray shaded areas. The overall calculation is
in good agreement with a recent calculation [153]. Small differences to ear-
lier calculations [67, 72] can be traced back to the sensitivity of the electronic
structure to small changes of the geometrical parameters. The spin-polarized

2for a program description, see http://www.flapw.de
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surface states resulting from the surface calculation are displayed as colored
circles being blue or red for the different spin orientations. Only the spin po-
larization perpendicular to the in-plane wave vector of the electrons k‖ and
the surface normal is shown. The varying radius marks the absolute value
of the k-resolved spin density at, and above the surface. The absolute spin
polarization of the states in comparison with the values from the experiment
is discussed in more detail in Fig. 4.14 of the section 4.2.2. A single Dirac cone
originating from topological protection is visible around Γ with Dirac point
at EF. The lack of a p-type conductivity results from the fact that defects are
not present in the calculation. Strikingly, an overlap of the occupied Dirac
surface states with the bulk states is observed, whereas the upper part of the
Dirac cone resides in the bulk band gap. Furthermore, the Z2 topological in-
variant was checked by DFT and found to be topologically non-trivial with
ν0;(ν1ν2ν3) = 1;(000). Interestingly, another bulk "band gap" region exists for
the projected bulk band in the calculation around E − EF = -400 meV and at
k‖-values between -0.3 Å−1 and +0.3 Å−1. It houses two spin-polarized sur-
face states exhibiting a Rashba-type spin splitting ΔE = α · |k‖| close to Γ
with the wave number parallel to the surface k‖. Further, the Rashba coeffi-
cient has been deduced from the calculation to be α � 1.4 eVÅ, at least, up to
k‖ � 0.05 Å−1. This α is larger than the value for Au(111) (α = 0.33 eVÅ) [22]
or Bi(111) (α = 0.55 eVÅ) [26], both consisting of heavier atoms, but lower
than the largest α-values so far found in Bi surface alloys (α = 3.8 eVÅ) [25].

Next, the electronic structure of Sb2Te3 is probed by STS as shown in the
inset of Fig. 4.9 a). As already described in section 3.1.3, STS records the
differential tunneling conductivity dI/dV which is proportional to the local
density of states (LDOS) of the sample [100]. A decrease of the dI/dV signal at
around 75 meV accompanied with a significant increase at around 230 meV is
observed in the spectrum. This energy range approximately marks the band
gap area and fits in size with the band gap found in the DFT (Fig. 4.8) and
in the theoretical predicted gap by Zhang et al. [67]. Thereby, a minimum
in the conductance which is approximately located around 170 meV above
EF is identified and attributed to the energy position of the Dirac point (ED).
Further, a considerable p-type nature of the single-crystal sample is observed,
which arises from the large amount of intrinsic defects as discussed above,
and which agrees with a recent STM study on MBE grown thin films [84].

The Dirac fermion nature of the topological surface states as shown in the
DFT calculation (Fig. 4.8) can be experimentally demonstrated by the appear-
ance of Landau levels in the dI/dV(V) spectrum in the vicinity of an applied
magnetic field Bz, pointing perpendicular to the sample surface. The energy
of the electrons are thereby quantized into discrete values En. In contrast to
the Landau levels of conventional electrons, a hallmark of Dirac fermions, is



4.2 Identification of topological insulator properties in crystalline Sb2Te3 71

50 100 150 200 250 300
0

6.7 T

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
100

140

180

220

260

6.7 T
linear fit

ED  

n=0

+1 +2

-1-2

...

sample voltage (mV)

vF = 4.2 x 105 m/s E
ne

rg
y 

(m
eV

)

sgn(n)   n B

50 150 250
0

sample voltage (mV)

0 T

dI
/d

V
 (a

rb
. u

ni
ts

)

dI
/d

V
 (a

rb
. u

ni
ts

)

b)a)

ED  

Figure 4.9: a) dI/dV(V) spectrum (Vstab = 0.3 V, Istab = 400 pA, Vmod = 4 mV)
showing Landau quantization of the topological surface states at 6.7 T. ED marks the
position of the Dirac point located at the n = 0 Landau level. Inset: dI/dV(V) spec-
trum (Vstab = 0.3 V, Istab = 50 pA, Vmod = 4 mV) of Sb2Te3 without magnetic field. b)
Landau level energies at Bz = 6.7 T plotted against sgn(n)

√|n|B. The line is a linear
fit to the data and the resulting Fermi velocity vF is marked.

that a field-independent Landau level appears at the Dirac point. Further-
more, the energy position of the nth Landau level En of Dirac fermions has a
square-root dependence with respect to the magnetic field and is expressed
by [47, 154, 79, 83]:

En = ED + sgn(n)
√

2eh̄v2
F|n|B, ���� n = 0,±1,±2, ... (4.1)

where vF is the Fermi velocity, e the electron charge and n the index of the spe-
cific Landau level. Figure 4.9 a) shows the dI/dV(V) spectrum measured at a
magnetic field of Bz = 6.7 T. A quantization of energy states into Landau lev-
els is clearly visible, accompanied with an nonequally spacing of the Landau
level peaks. A major peak is found at a sample voltage of about V = 166 mV,
which is identified to be the field-independent n = 0 Landau level and thus the
energy position of the Dirac point ED. This also agrees with the Dirac point
assignment in the dI/dV(V) spectrum at 0 T. Below the zero mode, three fur-
ther peaks can be identified, however with a nearly vanishing intensity. This
might probably be due to the coupling of the surface states of the lower Dirac
cone with the bulk valence band (BVB) as these states nearby overlap (see Fig.
4.8). This problem will be further discussed in section 4.2.2. On the other side,
the Landau levels with a positive index n are much more pronounced as the
corresponding surface states are located within the bulk energy gap, so that
the scattering probability is reduced significantly, and thus leading to a larger
lifetime.
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Figure 4.10: a) Large scale STM topography image (V = 0.3 V, I = 50 pA) showing
corrugations and surface defects. Inset: dI/dV(V) spectrum (Vstab = 0.3 V, Istab =
100 pA, Vmod = 2 mV) taken away from the defects and without magnetic field. b)
A series of dI/dV(V) spectra (Vstab = 0.3 V, Istab = 100 pA, Vmod = 2 mV) from
Bz = 0 to 7 T of a narrow energy range taken on the same area as the spectrum in
a). The vertical dotted line indicates the field-independent n = 0 Landau level at the
Dirac point. The spectra are shifted vertically for clarity. c) Landau level energies for
magnetic fields from 3 to 7 T plotted against sgn(n)

√|n|B. The dotted line is a linear
fit to the data and the resulting Fermi velocity vF is marked.

The Dirac fermion nature of the detected electron states can be proven by
plotting the energies of the peak positions En versus sgn(n)

√|n|B (eq. 4.1).
For this purpose, the peak positions of the Landau levels have been deter-
mined by fitting the different peaks by Lorentzian functions. The result is
plotted as single squares in Fig. 4.9 b) together with a linear fit to the extracted
data. For the first three Landau levels on each side of the n = 0 Landau level,
the straight line fits quite good, confirming the Dirac fermion type nature of
the surface state near the Dirac point. However, towards higher Landau level
indexes, the dispersion slightly deviates from linearity and moves into a con-
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vex function as also observed in the DFT calculation. The resulting Fermi
velocity is extracted to vF = 4.21 ± 0.13 · 105 m/s, which agrees reasonably
with vF = 3.2 · 105 m/s obtained by DFT (Fig. 4.8).

A further series of Landau level spectroscopy has been performed on a
different location of the sample (STM image in Fig. 4.10 a)) with a similar
defect density, however mostly of the VSb type, whereas other types of de-
fects are hardly visible. The corresponding dI/dV(V) spectrum which was
measured for a larger energy range and without magnetic field is displayed
in the inset, showing two local minima, namely at energies of ≈ 100 meV
and ≈ 225 meV. The dI/dV(V) spectra revealing the Landau levels for differ-
ent magnetic strengths are shown in Fig. 4.10 b). At a magnetic field of Bz
= 3 T, small quantization peaks get visible, which become more pronounced
with increasing field. A field-independent peak is found to be located at E
= 208 meV (vertical dotted line in Fig. 4.10 b)) again identified as the Dirac
point energy ED and implying an even higher p-type doping as in the mea-
surement before. Interestingly, the Dirac point is not found at the minimum of
the dI/dV(V) curve assuming that there are further contributions originating
from the specific probing micro-tip in this STS experiment. Another explana-
tion could be a possible overlapping of the Dirac point with the BVB so that
the Dirac point is not fully detached. In this case, the bulk would contribute
to an enhanced intensity at the Dirac point. However, from the DFT calcu-
lation, the BVB is overlapping with the lower part of the Dirac cone but not
with the Dirac point. Moreover, as the energy resolution of the experiment is
of the order of several meV (eq. 3.11), a bad resolution being responsible for
a smearing of the Dirac point and the BVB can at least be excluded.

The Landau level energies En for the different magnetic fields (Fig. 4.10
b)) are again plotted versus sgn(n)

√|n|B and linearly fitted. The resulting
plot is displayed in Fig. 4.10 c). The Dirac fermion nature of the surface state
electrons is reconfirmed and a Fermi velocity of vF = 4.44 ± 0.07 · 105 m/s
deduced, confirming the former value. Thus, the STS measurements on the
single crystal Sb2Te3 demonstrate the Dirac fermion nature of the topological
surface states by revealing the linear dispersion of the surface states as well
as the field-independent n = 0 Landau level of the Dirac point.

An important observation of the two Landau level measurements shown
above is, that the different energy position of the Dirac point differs when
measured on a different area of the sample. Between the two measurements,
ED differs about 40 meV, pointing to local potential fluctuations within the
sample surface, due to different types and amount of defects which vary on a
local scale throughout the sample surface. Moreover, the electrostatic induc-
tion by the electric field which reigns between the STM tip and the sample
also considerably shifts the bands on the surface as has been observed in 2D
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systems with low electron density [155]. Furthermore, it has been reported
in a previous work on the TI Bi2Se3 [79], that the effect critically depends on
the applied voltage between tip and sample which can lead to discrepancies
of 100 to 200 meV between Dirac point energies, measured either by STM or
ARPES.

4.2.2 Spin-resolved ARPES measurements of Sb2Te3

Characterization of the topological surface states in the fundamental gap

In the section above, I have already provided strong evidence for the presence
of surface states which behave like 2D massless Dirac fermions on the surface
of single crystal Sb2Te3. The major fingerprint of a TI however, namely the
spin-polarized nature of the surface states has not been tackled so far. It is its
special spin structure that characterizes a topological surface state (TSS). In
this section, spin-resolved photoemission spectroscopy (spin-ARPES) is used
in order to identify the spin nature of the states and thus provide final exper-
imental evidence for the presence of TI properties in Sb2Te3. The measure-
ments have been carried out at the synchrotron BESSY in Berlin in collabo-
ration with the group of Prof. Dr. Oliver Rader and the experimental details
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Figure 4.11: a) ARPES data of Sb2Te3 (0001) along Γ−K at an incident photon energy
hν = 50 eV; Dirac cone is marked. b) ARPES data at hν = 55 eV showing a close-up
view of the lower Dirac cone along Γ−K and the bulk valence band (BVB) as marked.
Straight line is a guide to the eye from which the Fermi velocity vF is deduced; dashed
lines mark the positions where the spin-resolved energy distribution curves (EDCs)
are measured (see Fig. 4.12 (a), (b) and (c)).
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have already been described in section 3.2.2. The results are largely published
in ref. [29].

Figure 4.11 a) shows a large energy scale ARPES image of Sb2Te3 after
cleavage in UHV at a photon energy of hν = 50 eV and along the Γ − K direc-
tion. The cut along a specific direction in k-space has been adjusted by LEED
prior to the ARPES measurements. Distinct bands are visible in the data, es-
pecially two bands forming a cone-like feature close to EF. If one zooms into
this feature by mapping a closer energy range below EF, two linearly disper-
sive bands crossing at Γ are found and which form a Dirac point exactly at EF.
This feature is most easily visible at hν = 55 eV, revealing a relatively strong
dependance of the bands on the specific photon energy. The observation of
the Dirac point close to EF indicates that in this case, the position of the sur-
face Fermi level is predominantly determined by the Dirac electrons and not
by intrinsic doping. This result deviate from our STM measurements of about
200 meV but can be explained by the strong local potential fluctuation on the
surface which alone may already lead to local differences of several tens of
meV [82]. Another reason for the discrepancy has already been discussed in
the previous section and might be due to the STM tip induced band bending
present for 2D systems with low electron density. However, our data also
deviates from previous ARPES results obtained on bulk Sb2Te3 [72], but is in
agreement with ARPES data from thin films grown by MBE [55]. This points
to a low defect density of the investigated crystal with respect to other single
crystal Sb2Te3 samples [73].

The linear dispersion of the Dirac cone in Fig. 4.11 b) is fitted by E − EF =
h̄vF|k‖| resulting in a Fermi velocity of vF = 3.8 ± 0.2 · 105 m/s (straight line).
This agrees reasonably with vF = 4.44 ± 0.07 · 105 m/s from the STM mea-
surements (Fig. 4.10 c)), as well as with vF = 3.2 · 105 m/s obtained by DFT
(Fig. 4.8). Moreover, the background of the bulk valence bands which has
been found in DFT is also nicely recovered in the ARPES data and reveals a
possible overlap with the bottom part of the Dirac cone.

In the following, we will have a closer look at the spin nature of the TSS in
order to verify the chiral spin polarization of the Dirac cone. Therefore, spin-
ARPES is applied, which, in the set-up that was used at the synchrotron, is
capable of measuring the spin component within the surface plane by record-
ing k-specific energy distribution curves (EDCs).

Figure 4.12 a), b) and c) show the spin-resolved EDCs, measured at op-
posite positions of the lower Dirac cone, namely at k‖ = −0.06 Å−1 and
k‖ = 0.06 Å−1 (as marked with dashed lines in Fig. 4.11 b)). The spin compo-
nent perpendicular to k‖ and the surface normal (Fig. 4.12 a) and b)) exhibits
an intensity difference between spin-up and spin-down component which re-
verses for the opposite momentum. In contrast, the spin component parallel
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Figure 4.12: a), b) Spin-resolved energy distribution curves (EDCs) at hν = 54.5 eV
for the spin component perpendicular to k‖ recorded at k‖-values as indicated and
marked by dashed lines in Fig. 4.11 b). The different colors mark different spin di-
rections. c) Spin-resolved EDCs at hν = 54.5 eV for the spin component parallel to
k‖.

to k‖ (Sx, Fig. 4.12 c)) shows no spin polarization. This leads to the spin mo-
mentum relation depicted in Fig. 4.13 b) for the in-plane spin component. The
spin is perpendicular to k‖ and rotates counterclockwise for the lower part of
the Dirac cone as also measured for Bi2Te3, Bi2Se3 [68, 71, 69, 72] or the tun-
able topological insulator BiTl(S1−δSeδ)2 [156]. The same sense of rotation is
also found by the DFT calculation (Fig. 4.8).

The resulting spin polarization for the spin component Sy perpendicular to
k‖ can be calculated according to:

Py = (S↑
y − S↓

y)/(S
↑
y + S↓

y), (4.2)

with S↑
y and S↓

y being the spin-resolved intensities perpendicular to k‖ from
Fig. 4.12 a) and b). The result for the two opposite momenta k‖ = −0.06 Å−1

and k‖ = 0.06 Å−1 is displayed in Fig. 4.13 a). The net polarization is found
to be Py � 20 % with opposite sign for opposite momenta. For surface states
well separated from the bulk states, it has been demonstrated that the spin
polarization reaches unity [75]. However, as the BVB in Sb2Te3 overlaps with
the lower part of the Dirac cone, a reduction of the spin polarization is likely.
In order to analyze this, we have a closer look at the net spin polarization of
the Dirac cone as predicted by DFT.

In this sense, the spin polarization of the Dirac cone in Sb2Te3 is calculated
by DFT and analyzed in terms of an in-plane and out-of-plane component.



4.2 Identification of topological insulator properties in crystalline Sb2Te3 77

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6 -k
+k

kII = -0.06 Å-1

kII = 0.06 Å-1

sp
in

 p
ol

ar
iz

at
io

n

y-component

0.0-0.2-0.4-0.6
E-E   (eV)F

kx

ky

K
MSy

Sy

kx

ky

Eb

a) b)

Figure 4.13: a) Resulting spin polarization perpendicular to the two different k‖ as
marked (EDCs from (a) and (b) in Fig. 4.12). b) Sketch of the lower Dirac cone with
the spin directions marked as deduced from spin-ARPES and in accordance with
DFT.

Only the in-plane component perpendicular to k‖ is considered, since no spin
polarization was found for the direction parallel to k‖. Figure 4.14 shows the
resulting spin polarization values with respect to the wavenumber integrated
over the first two atomic layers. This area approximately corresponds to the
penetration depth in the ARPES experiment at a photon energy of 55 eV (cf.
Fig. 3.5). While Py � 1 is found for free Dirac cones by DFT [157], a re-
duced polarization for the lower Dirac cone of roughly 80 % near the Γ point
is observed, which increases to about 90 % at k‖ = 0.06 Å−1. This is mostly
due to a penetration of the Dirac cone states into subsurface layers (Fig. 4.16)
where fluctuating electric fields lead to a complex spin texture. In contrast,
the in-plane polarization of the upper Dirac cone decreases towards higher
wavenumbers down to 60 %. Thus, the vicinity of the bulk bands seems not
to have an affect on the spin polarization of the lower Dirac cone, pointing to
the fact that both, the TSS and the BVB are rather decoupled. Note the consid-
erable out-of-plane polarization in Γ − K direction for higher wavenumbers,
which is in line with the warping of the Dirac cone at higher energies [71, 158].
This result agrees also qualitatively with the calculations of Yazyev et al. [159]
for Bi2Te3 and Bi2Se3. However, the polarization values in those materials are
typically smaller, reflecting the stronger spin-orbit entanglement caused by
the heavier Bi atom.
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The discrepancy in the in-plane spin polarization between calculation (Py �
90 %) and experiment (Py � 20 %) at k‖ = 0.06 Å−1 can thus be traced back
to the finite angular resolution of the spin-ARPES experiment leading to a re-
duced spin polarization of the TSS due to the contribution of the unpolarized
background of the BVB. Later, I will show that deconvolution from the BVB
reveals an estimated spin polarization for the lower Dirac cone which is in a
good agreement with the DFT result.

Characterization of the Rashba type surface state

The DFT calculation shown in Fig. 4.8 revealed a second spin-polarized state
originating from SO interactions located in a gap at higher binding energies,
which is of a Rashba type surface state (Rashba SS). It behaves similarly to the
TSS, e.g. one spin branch connects the upper bulk band with the lower bulk
band from -k‖ to +k‖ whereas the opposite spin branch acts in the opposite
way. Figure 4.15 a) shows ARPES data along Γ − K recorded at lower photon
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Figure 4.15: a) ARPES dispersion at hν = 22 eV of the Rashba type surface state
(Rashba SS) along Γ − K direction. The band structure of the Rashba surface states
from DFT is superimposed as blue and red lines. Dashed white lines mark the po-
sition of the EDCs in (b). b) Spin-resolved EDCs (points in red and blue for the two
spin directions perpendicular to k‖) at different momenta as indicated and marked
by dashed white lines in (a). The Lorentzian fits of the peaks are shown as solid lines
(red, blue) and the peak positions are marked by dashed lines. The spin splitting
energies between two bands ΔESO is indicated. c) Calculated spin splitting (Theo) of
the Rashba state in comparison with measured spin splitting (Exp). (Calculation in
(c) by Gustav Bihlmayer).

energy, i.e. hν = 22 eV. A prominent band is visible between -0.4 and -0.8 eV
and exhibits an excellent concurrence with the Rashba type band superim-
posed from DFT. Thus, one can conclude that the ARPES data at hν = 22 eV
are dominated by these bands, while the Dirac cone is barely visible. Beside
the specific symmetry of a band, the incident photon energy also plays an
important role whether the matrix elements of a band allow a transition from
an initial to a final state, which then leads to the detection of the band in the
ARPES experiment (cf. eq. 3.21 in section 3.2).
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By having a closer look at the Rashba state in the ARPES experiment, it
becomes apparent that the energy and momentum resolution is not sufficient
to resolve the different spin branches. However the two branches as well as
the energy width of the spin splitting between the two bands ΔESO get visi-
ble by mapping spin resolved EDCs at two distinct k‖-values (as marked by
dashed lines in Fig. 4.15 a)). The corresponding EDCs for the spin direction
perpendicular to k‖ are displayed in Fig. 4.15 b). The spin-up and spin-down
component are again colored in blue and red, respectively, using the same
color code as in the DFT calculation. Obviously, there is a spin splitting be-
tween the two components which can be quantitatively determined by fitting
the peak in each curve by a Lorentzian function as shown by the solid lines.
Spin splitting energies ΔESO which are of the order of 100 meV are found and
reasonably agree with the values found in the DFT. The comparison of spin
splitting energies between experiment and theory for different k‖ is plotted
in Fig. 4.15 c). Moreover, as expected for a Rashba-type spin splitting, the spin
direction for the upper and lower peak inverts by inverting the k‖ direction.
The spin direction parallel to k‖ was further checked but only negligible spin
polarization could be found. This implies that for the in-plane component,
the spin of the upper (lower) band rotates clockwise (counter-clockwise) with

Rashba SS lower upper 

Te 
Sb 

surface

Dirac cone 
Figure 4.16: Two-dimensional cut through the calculated local density of states for
the Rashba state and the lower and upper part of the Dirac cone at k‖ = 0.06 Å−1.
(Calculation by Gustav Bihlmayer).
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respect to k‖, which is in agreement with the spin direction in the DFT cal-
culation. As depicted in Fig. 4.14, DFT further reveals that the Rashba state
shows no pronounced out-of-plane polarization within the first two atomic
layers whereas in the in-plane direction, the different spin branches are nearly
fully polarized. From k‖ = 0.05 Å−1 to k‖ = 0.15 Å−1 the lower spin branch
shows a slightly lower in-plane polarization than the upper spin branch. This
is probably due to its proximity to the bulk bands. Although there is a small
reduction of the polarization, the coupling to the bulk band seems to be rather
low. Otherwise, the reduction should be more pronounced. Compared to the
DFT, the experimental spin resolved data reveal a net spin polarization of
Py � 45 % for the upper band and Py � 18 % for the lower band (Fig. 4.15 b)).
Most likely, the overlap of the two bands in the experiment as well as their
overlap with the bulk bands caused by the limited energy and momentum
resolution of the spin detector is responsible for the small numbers. More-
over, the fact that the peak at higher energy is sharper is probably related
to its larger separation from the bulk bands (see DFT in Fig. 4.8) leading to
longer lifetime.

The symmetry as well as the origin of the SO generated bands referred
to their position in the crystal structure is plotted for k‖ = 0.06 Å−1 in Fig.
4.16. It shows the particular charge density of states for the Rashba state and
the lower and upper Dirac cone within the first two QLs. Interestingly, the
Rashba SS exhibit predominantly Te pz character and is localized strongly
within the Te top surface layer. In contrast, the states of the Dirac cone are
more Sb pz like and penetrating more strongly into the bulk of Sb2Te3. The
different penetration depth also might be a reason why the Dirac cone is more
easily observed at higher photon energy, while the Rashba state dominates
the spectra at hν = 22 eV.

From the charge density of states, the electric field between the surface Te-
layer and the subsurface Sb-layer can be deduced from the calculated surface
core level shift and is found to be about 2 · 108 V/m. This corresponds to
a strong dipolar contribution between Teδ− and Sbδ+, which is probably re-
sponsible for the relatively large Rashba coefficient of α � 1.4 eVÅ, similar to
the findings in surface alloys [25] and layered bulk compounds [160].

Rashba spin-split surface state protected by a spin orbit gap

As already briefly mentioned before, the Rashba state present in Sb2Te3 be-
haves differently from the Rashba bands found so far [22, 23], as the dif-
ferent spin branches disperse into different projected bulk continuum bands
(cf. DFT in Fig. 4.8). Thus, each spin branch connects the upper and the
lower bulk band surrounding the gap by dispersing from k‖ = −0.28 Å−1 to
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Figure 4.17: a) ARPES data at hν = 54.5 eV including the Rashba state at higher |k‖|.
For better visibility, the derivative with respect to E is shown. The Dirac cone and
Rashba SS with superimposed E(k‖) curves of the Rashba states (colored lines) from
DFT calculation are marked. White dashed box indicate the same area as the dashed
box in Fig. 4.18 as well as the |k‖|-position of the EDC in (b). The width is given
by the angular resolution of the experiment. b) Spin resolved EDC measured at the
position of the SO gap (|k‖| as marked); hν = 54.5 eV; peak positions as determined
from Lorentzian fits (solid lines) are indicated by dashed lines; the resulting ΔESO is
marked.

k‖ = 0.28 Å−1. At Γ, the surface state is spin degenerate as requested by time
reversal symmetry.

Figure 4.17 a) shows the measured band structure close to the point where
the Rashba bands merge with the bulk bands according to DFT. Indeed, a
band moving upwards and a band moving downwards are discernible up to
about |k‖| = 0.27 Å−1 following the course of the overlaying Rashba bands of
the DFT (red and blue lines). The measured spin-resolved EDC, recorded at
|k‖| = 0.26 Å−1 (dashed box in Fig. 4.17 a)), which is close to the point where
merging of surface bands and bulk bands is obtained in the calculation, re-
veals that a spin splitting of about 81 meV is indeed still visible (Fig. 4.17 b)).
Thus, this result confirms the DFT calculation which foresees a spin splitting
of 80 meV. In order to explain this remarkable behavior, one can have a closer
look at the bulk band structure in this particular energy and momentum re-
gion. Again, SO interaction is the driving force as becomes obvious from
the band structure in Fig. 4.18 which is plotted with (gray background and
dashed black lines) and without (yellow background and solid black lines)
SO interaction. Obviously the SO interaction opens a gap (SO gap) between
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indicate the same area as the dashed box in Fig. 4.17 as well as the |k‖|-position of
the EDC in Fig. 4.17 b). (Calculation by Gustav Bihlmayer).

the projected bulk states originating from a band Γ(+) near the Fermi level and
a lower-lying Γ(−) band, where (+) and (−) marks the parity of the states at
Γ. The gap is found at k‖ = 0.26 Å−1 and E − EF = -0.5 eV along the line
Γ − Σ of the bulk band structure (Γ − K in terms of surface Brillouin zone).
So apparently, a similar situation as in the bulk band gap at EF, where the
non-trivial nature of the gap is due to the SO interaction inducing an inver-
sion of bands with different parities, is generated here. So the question arises
whether this SO generated gap, which is accompanied with a change in par-
ity, also exhibits some non-trivial properties, even if the gap is away from
a high symmetry point. In order to analyze this, I go back to a theoretical
argument given by Pendry and Gurman [161] in 1975. Independent of topo-
logical considerations and only based on numerical calculations of incident
and reflected Bloch waves, they provided general criteria for the presence of
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Figure 4.19: DFT band structure calculated for a slab without SO coupling. The sur-
face state (red dots) still exists, but is only connected to the lower bulk band exhibit-
ing Γ(−) character. The topological Dirac cone has vanished. (Calculation by Gustav
Bihlmayer).

surface states. One major criteria, which is important to our case, is that if
there is a SO generated gap present and not located at a high symmetry point
of the Brillouin zone, then there must necessarily exist at least one surface
state within that gap. In other words, if there is such a gap there must also be
a state. Thus, the observed Rashba split surface state, which was experimen-
tally resolved within the SO gap, must necessarily be there, i.e. it is protected
by this gap. Hence, even if the argument of the surface state protection by
Pendry and Gurman is also only based on bulk considerations, it is different
from the topological aspect as the parities of the bands obviously do not play
a role. Moreover from this Pendry and Gurman argument, the protection of
the Rashba state is only valid in the small area of the SO gap. Nonetheless, a
similar behavior to the topological Dirac cone is visible throughout the whole
gap-like area (from k‖ = −0.27 Å−1 to k‖ = 0.27 Å−1), as it connects the lower
and the upper bulk bands and is thus energetically present throughout the
whole area.

So far, there has been very little experimental proof of such a surface state
within a SO gap away from a high symmetry point. Feder and Sturm [162]
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report of a spin-orbit generated gap along the symmetry line ΓH in W(001)
by means of tight-binding calculation, in which a surface state is found ex-
perimentally [163]. Another example is a well defined surface state located in
the Γ − T direction in Bi(111) [24, 164]. First principle calculations by Gonze
et al. [165] resolved a SO gap on this symmetry line which is consistent in en-
ergy with the measured surface state. Differently from these states however,
our observation reveals a spin-splitted surface state with topological character,
which, moreover exists in parallel to a surface Dirac cone in the fundamental
gap. Thus, it adds a distinct example to Pendry and Gurman’s criteria.

The importance of the SO interaction for the unconventional behavior of
the Rashba SS is displayed in Fig. 4.19 which shows the band structure of
Sb2Te3 from DFT without SO interaction. The Rashba state becomes a spin
degenerate state and merges for positive and negative momenta with the
same bulk band. Hence, it does not connect the upper and the lower bulk
band anymore and it loses its protected character, however, it is still present.
This proves that the unconventional behavior towards higher wavenumbers
is only driven by SO coupling in line with Pendry and Gurman’s argument
[161]. The Dirac cone at the Fermi level, however, does not exist in this case
as the non-trivial nature of the gap is lifted, confirming the topological nature
of the surface Dirac cone.

Effective spin polarization of the lower Dirac cone deduced from
experiment

Here, I come back to the above described discrepancy between the experi-
mental and theoretical detected spin polarization of the TSS. Whereas calcu-
lation predicts an in-plane spin polarization of 90 % for the lower part of the
Dirac cone at k‖ = 0.06 Å−1 (Fig. 4.14), only a value of Py � 20 % was de-
tected in the experiment. In most experimental works, the reduction of the
spin polarization is due to extrinsic factors, like the insufficient instrumental
resolution in spin-ARPES measurements especially in the case where differ-
ent states are relatively close to each other [66, 69]. In our case, the unpolar-
ized background from the bulk valence band (BVB) states together with the
low resolution of the spin-ARPES technique considerably reduces the spin
polarization. Besides the background from the bulk bands, the spin-resolved
spectra feature a finite background from the Rashba-type surface state visible
as increasing intensity towards higher binding energies in the spin-resolved
spectra in Fig. 4.12 a) and b). After subtraction of this background by using a
Gaussian function, the spin polarization already slightly increases to a value
of Py � 27 % for k‖ = −0.06 Å−1 (Fig. 4.20). However, the major reduction
must thus originate from the unpolarized bulk bands.
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Figure 4.20: a), b) Spin-resolved EDCs for the spin component perpendicular to k‖
after subtraction of the Rashba state background (compare with Fig. 4.12 a) and b)).
c) Corresponding spin polarization as a function of energy deduced according eq.
4.2. The subtraction of the background increases the averaged spin polarization from
20 % to 27 %.

In this way, it is essential to evaluate the finite contribution from the spin-
degenerate BVB close to the lower Dirac cone to the ARPES intensity [166]
(Fig. 4.8 and Fig. 4.11 b)) in order to discuss the absolute spin polarization
more quantitatively. This is easiest achievable in the high-resolution ARPES
data (Fig. 4.11 b)), as there, one is able to clearly distinguish between the Dirac
cone peak and the BVB background. However, in order to do so, one must
firstly show that the measurements taken with the high-resolution apparatus3

are comparable with the data achieved by the spin-resolving detector4.
In Fig. 4.21 a) the close-up ARPES measurement of the Dirac cone recorded

with high-resolution is shown. The Dirac cone and the adjacent BVB are vis-
ible. If this data is convoluted with a two-dimensional Gaussian function
having the energy and momentum resolution of the spin-resolving detector
as FWHM in the two directions, the Dirac cone part strongly overlaps with
the BVB (cf. Fig. 4.21 b)). Indeed, a similar broadening of the structure is
found in the ARPES data recorded with the spin detector (Fig. 4.21 c)), albeit
with much weaker intensity due to the lower efficiency of the spin resolving
apparatus. Moreover, the corresponding constant-energy cuts from both the
convoluted ARPES data (Fig. 4.21 e)) and the spin-ARPES data (Fig. 4.21 f))
exhibit a similar distribution. Thus, both the data from the spin-ARPES (Fig.
4.21 c)) and the high-resolution ARPES (Fig. 4.21 a)) only differ by their differ-

3The energy and angular resolution are 20 meV and 0.2 °, respectively.
4The energy and angular resolution are 100 meV and 1.4 °, respectively.
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Figure 4.21: a) High resolution ARPES data of the Dirac cone (close-up view from
Fig. 4.11 b)) at an incident photon energy hν = 55 eV. b) data from (a) convoluted
with a Gaussian curve taking into account the energy resolution (FWHM: 100 meV)
and momentum resolution (FWHM: 0.09 Å−1) of the spin detector. c) ARPES data of
the Dirac cone measured with the spin detector, hν = 54.5 eV. d)−f) Constant-energy
cuts through the Dirac cone along the green line in the ARPES data aside. Constant
energy cuts in (e) and (f) show a similar distribution. In (d), the result of the two
component fitting to the spectrum is shown as marked Dirac cone and BVB. Ratio
of the spectral weight of the Dirac cone WDC to the total spectral weight Wtotal is
indicated.
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ent resolution, such that one can consider the data from Fig. 4.21 a) in order
to deduce the contribution from the BVB in the spin polarization of the TSS.

The quantitative analysis is shown in Fig. 4.21 d) highlighting the contribu-
tions of the Dirac cone and the BVB as fitting curves. I employed a Lorentzian
function for the Dirac cone and a tanh for the BVB. In the case of the Dirac
cone, the resulting peak is wider than the momentum resolution of the high
resolution detector. Thus, assuming a Lorentzian function, which takes into
account the lifetime broadening of the surface state, is justified. The BVB
contribution is approximated by a tanh function implying a BVB of constant
density within the Dirac cone as found in the DFT calculations and with no
bulk bands beyond the Dirac cone. The latter implies the additional restric-
tion within the fit that the reversal point of the tanh function matches the peak
position of the Lorentzian. Width and height of the two functions are used as
independent fitting parameters.

From the two fit curves, the spectral weight of the Dirac cone states with
respect to the total spectral weight within the spin-ARPES measurement is
estimated. Therefore, one determines the area of each fit curve in Fig. 4.21
d) within the width of the angular resolution of the spin-ARPES experi-
ment of 0.09 Å−1 around the probed k‖-value of 0.06 Å−1. The weights are

0.1

0.2

0.3

0.4

0.5

Fit in Fig 4.21 d)

Figure 4.22: Root-mean-square error (RMSE) for different fits of the spectrum of Fig.
4.21 d) leading to different WDC/Wtotal and, thus, to different spin polarization val-
ues of the Dirac cone states PDC. The RMSE increases by a factor of three for a spin
polarization below 80 %.
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called WDC and WBVB, respectively. I checked that the energy resolution
of the experiment is not relevant for the angular broadening. The result is
WDC/(WDC + WBVB) = 0.33 as indicated in the plot.

The resulting intrinsic spin polarization of the Dirac cone in-plane compo-
nent is then given by the experimentally measured spin polarization Py di-
vided by WDC/Wtotal leading to a value of PDC � 82 %. To check the accuracy
of the employed fitting procedure, the development of the root-mean square
error (RMSE) of the fitting was analyzed for fixed different relative heights of
the Lorentzian and the tanh function, which is equivalent to the outcome of
different PDC. The RMSE as a function of PDC is plotted in Fig. 4.22. The data
reveals that a fitting procedure with a reasonable RMSE ends with a spin po-
larization of 80-95 % for the Dirac cone states, so that one can conclude that
the real spin polarization is likely to be within that range. Notice that this
result also nicely agrees with the DFT result of PDC = 90 %. Moreover, the
energetic width of the Dirac cone peak in spin-ARPES (Fig. 4.20) is similar to
the total width of the BVB in the DFT calculation (Fig. 4.8), which supports
that our estimate of PDC is reasonable, i.e. that the BVB contribution leads to
a peak of similar width as the Dirac cone peak. In turn, high-resolution spin-
ARPES experiments are required to measure the intrinsic spin polarization of
the Dirac cone directly, i.e., without relying on any assumption.

Finally, in line with the STS data, spin-ARPES revealed the topological na-
ture of the Dirac cone within the fundamental gap of Sb2Te3, and character-
ized the spin texture of the surface state, which rotates counter-clockwise for
the lower part of the Dirac cone. A spin polarization of up to 90 % could be
detected. In addition, in accordance with DFT calculations, a novel, strongly
spin-split Rashba-type surface state was identified which is protected by a
SO gap away from Γ and connects an upper and a lower bulk valence band.
This state is similarly to the TI state protected by symmetry according to a
fundamental criterion given by Pendry and Gurman in 1975.

4.3 Characterization of crystalline Ge2Sb2Te5 in
terms of topological insulator

The last section dealt with the TI properties of crystalline Sb2Te3 which is at
the border of the so-called pseudobinary line (cf. Fig. 4.1). In the present
section, another PCM of the pseudobinary line will be analyzed, namely the
ternary compound GST-225, a prototype PCM, which is also predicted to be
a promising candidate for TI behavior [120, 123]. However, the question if
GST-225 is a TI is closely related to its stacking sequence [123]. Most of the
results of this section are published in ref. [30].
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Figure 4.23: a) Cubic rocksalt structure of the metastable GST-225 phase along the
[111] direction. b)-d) Three possible stacking sequences for the crystalline hexagonal
stable phase along [0001]. Ge, Sb, Te and vacancies (v) as marked. ((a) and (d) from
ref. [138]; (b) and (c) from ref. [120]).

4.3.1 Stacking order of Ge2Sb2Te5 in the crystalline phase

GST-225 emerges in two slightly different crystalline phases, i.e. a metastable
cubic one used for applications [131] and a stable hexagonal one, however
the stacking sequence of both phases is yet not fully determined. Figure
4.23 shows the cubic rocksalt structure for the metastable GST-225 phase,
along with three possible stacking sequences for the hexagonal phase. For
means of comparison with the stable hexagonal phase, the rock salt structure
is displayed along [111] exhibiting hexagonal layers with (Te−Ge/Sb/v)3 se-
quence, where Ge/Sb/v is a mixed layer of Ge, Sb and vacancies [138, 167]
(Fig. 4.23 a)). Figure 4.23 b)-d) shows three possible stacking orders for the
hexagonal phase which are built along [0001] and mainly differ on their re-
spective Ge and Sb layers. The sequences in b) and c) are deduced from trans-
mission electron microscopy (TEM) and are either Te-Sb-Te-Ge-Te-v-Te-Ge-
Te-Sb- (Petrov phase) [139] or Te-Ge-Te-Sb-Te-v-Te-Sb-Te-Ge- (Kooi-De Hos-
son or KH phase) [140]. The v denotes a vacancy layer where adjacent Te
layers are van-der-Waals bonded. In both stackings, each layer is a pure layer
of only one particular element and no mixture of layers as in the metastable
rocksalt structure takes place. DFT calculations imply that the KH phase is
slightly energetically favorable with respect to the Petrov phase [168]. How-
ever, more recent X-ray diffraction data suggest that some mixture of Ge and
Sb in the respective layers is present (Fig. 4.23 d)) [138]. Thus, the distribu-
tion of the Ge and Sb within the layers is still under discussion and it turns
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out that the exact occupation is a critical point for a possible TI nature of the
GST-225 compound. For the metastable rocksalt structure, TEM studies sug-
gest that the Ge/Sb/v layers exhibit some internal order [169] and DFT even
implies that Ge, Sb and vacancies might accumulate in separate layers [168].
From this perspective, the stable and the metastable phase could be much
closer than originally anticipated and the transition between them would be
a mere shift of blocks of (111) layers without atomic rearrangements within
the layers [168].

So far, there have been no calculations including SO interaction for the
metastable rocksalt phase, in contrast to the stable hexagonal phase which is
easier to simulate as the structure is much more regular. In the metastable
phase, the vacancies are randomly distributed whereas in the hexagonal
phase they occupy pure single layers, which is preferred for DFT. The first
prediction of topologically insulating GST-225 was made by Kim et al. for the
Petrov phase while the energetically favorable KH phase was shown to be
topologically trivial [120]. The KH phase can be considered as a short-period
superlattice consisting of the TI Sb2Te3 and the trivial band insulator GeTe
[121]. In this aproach, Kim et al. [121] revealed that a transition from a trivial
to a non-trivial phase occurs when the ratio of Sb2Te3 relative to that of the
insulating GeTe increases in the GST compound. Nonetheless, DFT showed
that even a GST composition which is in a trivial phase, e.g. the KH phase
of GST-225, can be transformed into a TI if the material is set under isotropic
pressure [170] or constant strain [171]. A transition from the Petrov to the KH
phase with a more disordered mixed-layer phase (structure as in Fig. 4.23 d))
in between has been investigated by Silkin et al. by DFT [123]. They consid-
ered a stacking sequence of Te-M1-Te-M2-Te-v-Te-M2-Te-M1- with a tunable
Ge/Sb ratio for the layers M1 and M2 (Ge2xSb2(1−x) in M1 and Ge2(1−x)Sb2x
in M2) and determined the Z2 topological invariant ν0 for well defined x. The
Petrov phase (x = 0) was found to be a semimetal and the KH phase (x = 1) a
trivial insulator, however in the mixed phase, a TI nature was observed for x
= 0.25 and x = 0.5. Thus, the value of ν0 crucially depends on the respective
Ge concentration within the mixed layer. Further, this result suggest that in
a real material, disorder within the layers will not prevent the existence of a
topological surface state [123]. Note, that the ν0 invariant could not be cal-
culated for the Petrov phase (x = 0) due to the lack of a real band gap in the
band structure.

As already mentioned above, there are no calculations of topological prop-
erties for the more disordered metastable rocksalt phase in the literature so
far. Thus, the results of the more disordered hexagonal phase by Silkin et al.
are closest to the experimentally studied metastable phase. Importantly, all
DFT calculations of GST-225 in the literature so far exhibit the valence band
maximum (VBM) away from Γ when revealed in the topologically non-trivial
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Figure 4.24: Calculated surface band structure including SO coupling for the a)
Petrov sequence and b) KH sequence with the Z2 topological invariant ν0 as marked.
In the non-trivial case (a), the valence band maximum (VBM) is away from the Γ
point, whereas in the trivial case (b) VBM is located at Γ. (Adopted from [120]).

phase [120, 121, 170, 171, 123]. However if the GST-225 compound is found
to be in the trivial phase (e.g. KH phase or x = 0.75 and x = 1 in ref. [123]) the
corresponding band structure always exhibit a VBM exactly at Γ. Both, the
surface band structure including SO for the non-trivial Petrov and the trivial
KH phase of GST-225 from ref. [120] are displayed in Fig. 4.24 demonstrat-
ing the described VBM character at Γ for the respective ν0 number. Thus, the
noted calculation all show the same clear tendency that for GST-225 the top-
most valence band course is directly connected to the topological invariant.
In the following, the differentiation of the topmost valence band course will
be taken as the central argument for the characterization of the experimental
data.

4.3.2 Preparation and characterization of metastable
crystalline Ge2Sb2Te5 samples

In order to study TI properties by ARPES, ideally single crystalline GST sam-
ples are desired. Typically, however, GST is sputter-deposited resulting in
polycrystalline films. Only recently, epitaxial films of superior crystalline
quality have been grown by molecular beam epitaxy (MBE) on GaSb, InAs,
and Si [172, 173, 174, 175, 176]. The metastable cubic, rhombohedrally dis-
torted GST-225 grows with a single vertical epitaxial orientation, well de-
fined interfaces, and atomically flat terraces only on (111)-oriented substrates
[172, 173].
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Figure 4.25: a) XRD measurement of the epitaxially grown GST-225 sample of 20 nm
thickness on a Si(111) substrate. The data reveals the metastable cubic phase along
the [111] direction. The respective peaks of GST-225 and the underlying Si(111) sub-
strate are labeled by their Miller indices, respectively. The additional peaks (not la-
beled) point to the presence of a superstructure. (XRD data recorded by Alessan-
dro Giussani). b) Tapping mode AFM under ambient conditions revealing the typ-
ical surface appearance of a MBE grown GST-225 sample with a roughness ≈ 5 nm
(RMS). Inset shows the height profile of the area marked by the straight line.

The GST-225 thin films (thickness 20-30 nm) measured in this work have
been grown by MBE on a Si(111) substrate by the group of Dr. Raffaella
Calarco at the Paul-Drude Institut in Berlin. The temperature of the effu-
sion cells in the MBE chamber was set to T = 250 °C so that the flux ratio
of Ge:Sb:Te is close to 2:2:5, as has been confirmed by X-ray fluorescence
[172, 173]. After preparation, XRD measurements have been used to confirm
the metastable cubic phase along the [111] direction of the GST films (Fig.
4.25 a)). The Bragg peaks of cubic GST-225 and of the underlying Si(111) sub-
strate have been detected. The presence of superstructure peaks in addition to
the Bragg reflections indicates a vacancy ordering in the Ge/Sb/v sublattice
along the growth direction [177]. Additional atomic force microscopy (AFM)
measurements show the large-scale topography of the GST-225 surface with
flat terraces of widths of several 100 nm (Fig. 4.25 b)). A roughness of ≈ 5 nm
(RMS) was found.

After growth, the samples have been transferred under ambient conditions.
Differently to the Sb2Te3 single crystal samples, a simple cleavage of the GST-
225 films prior to the ARPES measurements was not possible due to the small
thickness of the films and the stronger bonding between adjacent layers in the
[111] direction perpendicular to the surface. Hence, a different method which
effectively removes any kind of native oxides and adsorbants from the surface
has been applied. Zhang et al. [178] proposed a technique which implies the
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Figure 4.26: GST-225 sample after DI water dip and UHV annealing. a) XPS at hν =
110 eV revealing the Ge 3d, Sb 4d and Te 4d levels. b) Auger electron spectroscopy
(AES) revealing the peak positions of Ge, Sb, Te and O as marked. The straight lines
are Gaussian fits used to determine the stoichiometry to be: 18 % Ge, 21 % Sb, 57 %
Te and 4 % O. (Data by Jens Kellner [179]).

dipping of the GST-225 film into de-ionized (DI) water for 1 min, followed by
an immediate transfer of the de-oxidized sample into the UHV chamber. The
DI-water tackles above all the Ge- and Sb-oxide bondings so that a deficiency
of Ge and Sb is left after the cleaning. Moreover, after the dipping, the DI-
water remains on the surface and acts as a protecting film for several minutes
so that no new contamination of the surface takes place within this time. In
the UHV chamber, the de-oxidized sample is annealed to 250 °C so that Ge
and Sb can diffuse from the bulk to the surface and restore the stoichiometry
of 2:2:5. Zhang et al. confirmed the accuracy of the dipping method, namely
the cleanliness of the sample as well as the recovery of the stoichiometry, by
means of XPS, AFM and XRD [178].

Here in this work, XPS is used prior to the ARPES measurements in order
to verify the cleanliness of the sample surface after the DI water dip process.
And indeed, clear peaks were observed in the XPS spectrum which could be
assigned to the Ge 3d, Sb 4d and Te 4d levels [180, 181] as marked in Fig.
4.26 a). The peaks further showed no sign of distortion, implying a clean
and oxygen-free surface. The stoichiometry of the sample after the cleaning
process has been checked by means of Auger electron spectroscopy (AES)5

(Fig. 4.26 b)). The AES spectrum shows the peak position of the GST elements
as marked, as well as a small peak arising from remaining oxygen left on

5AES is based on the Auger effect which includes the emission of electrons from an ex-
cited atom after a series of internal collision events. The energy of the emitted electron is
element-specific and provides information about the composition of the sample. Typical
excitation energies are in the order of 1-3 keV.
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the surface. The stoichiometry has been calculated from the respective peak
intensities for each element [182] using the tabulated sensitivities for Ge, Sb,
Te and O. An amount of 57 % Te, larger than its initial stoichiometric part,
has been detected and is partly attributed to the Te termination of the surface
leading to larger AES intensities. Ge (18 %) and Sb (21 %) further confirm the
recovery of the stoichiometry after cleaning. Most notably, the oxygen content
of the surface is only 4 % [179].

We further checked that neither the measurement nor the preparation pro-
cess lead to an unintended phase transition from the metastable cubic phase
into the stable hexagonal phase. This transition is expected to take place at
≈ 340 °C [183]. For that purpose, XRD has been performed after the ARPES
measurements, revealing the same cubic structure with vacancy ordering as
was observed directly after the MBE growth. Note that a further heating of
the sample in UHV at ≈ 300 °C in order to create a phase transition was found
to cause considerable change in stoichiometry due to the different desorption
temperatures of atomic species. At the same time, a change in the peak struc-
tures of the Ge 3d and Sb and Te 4d levels in XPS was observed.

For a characterization of the epitaxially grown GST-225 samples, the topog-
raphy of the cleaned surface has been investigated at room temperature by
STM on the nm-scale [179]. Atomically flat terraces of up to 100 nm in width
are found (Fig. 4.27 a)). These terraces are separated by steps of ≈ 0.34 nm in
height, which corresponds to the expected Te-Te layer distance of 0.347 nm in
the [111] direction of cubic GST-225 [184, 185]. On the terraces, atomic resolu-
tion is achieved showing a hexagonal appearance (Fig. 4.27 c) and d)), most
likely originating from the Te layer [185]. The atomic distance is found to be
0.43 nm which nicely agrees with the expected atomic distance for the (111)
surface of the cubic phase (a = 0.42 nm) [184, 185]. Additionally, dI/dV(V)
spectra have been recorded showing the electronic structure of GST-225. A
band gap of ≈ 0.4 eV with EF situated at the top of the valence band is re-
solved (Fig. 4.27 b)), also indicating a strongly p-type nature of the material,
probably due to the large amount of vacancies.

4.3.3 Evidence for topological band inversion in metastable
crystalline Ge2Sb2Te5 measured by ARPES

Similar to the Sb2Te3 data, the ARPES measurements on the epitaxially grown
GST-225 has been preformed at the beamline of the synchrotron BESSY in
Berlin. Figure 4.28 a) displays a spectrum recorded with linearly polarized
light at hν = 22 eV in a direction determined to be Γ̄ − K̄ by comparison with
DFT calculations. Just below EF, the upper valence band shows maxima at
k|| = ±0.14 ± 0.02 Å−1 and drops to E − EF = −0.3 eV at Γ̄. Another band re-
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Figure 4.27: a) STM image of the cleaned GST-225 (111) (V = -0.3 V, I = 100 pA) at
room temperature reveals atomically flat terraces. Blue line marks the position of
the height profile in the inset. Average step height of ≈ 0.34 nm is observed. b)
dI/dV(V) curve (Vstab = −0.8 V, Istab = 100 pA, Vmod = 8 mV) of GST-225 (average
of 10 spectra) shows a band gap of ≈ 0.4 eV. Gray shaded areas mark the bulk valence
(BVB) and bulk conduction band (BCB), respectively. c) STM image with atomic
resolution (V = -0.5 V, I = 100 pA). d) Zoom into the area marked by a dashed box in
in (c). A hexagonally arranged pattern, most likely of the Te atoms is observed with
an average atomic distance of 0.43 nm. A triangular defect similar to the SbTe antisite
defect in Fig. 4.7 b) is visible. (Data by Jens Kellner [179]).

sides between -0.7 eV at k|| = ±0.23 Å−1 and −0.35 eV at k|| = ±0.1 Å−1.
Closer to Γ̄, these two bands lead to a broad peak in energy distribution
curves (EDCs) around −0.4 eV with a FWHM of 0.5 eV (Fig. 4.30 b)). Below
−1 eV, there are two more hole-like bands. Figure 4.28 b) shows a constant
energy cut of the ARPES data at EF displaying a nearly isotropic behavior of
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Figure 4.28: a) ARPES spectra at room temperature in Γ̄ − K̄ direction at hν = 22 eV
of metastable cubic GST-225 (111) after DI-water dip (Shirley-type background sub-
tracted). b) Constant energy cuts at EF with Γ̄ − M̄ being the horizontal direction as
marked.

the upper valence band with a clear intensity minimum at the Γ̄ point. From
this plot, the band structure in Γ̄ − M̄ looks essentially the same, however
with slightly more intensity at higher |k| values in the six Γ̄ − M̄ directions.
Fig. 4.29 a) shows a close-up view of the upper band around the Γ̄-point and
corresponding constant energy cuts (Fig. 4.29 b)-d)) at energies marked by
the dotted lines. A sixfold symmetry of the valence band at larger k|| val-
ues is visible with a clear distinction between the Γ̄ − K̄ and Γ̄ − M̄ direction.
Since DFT calculations of cubic metastable GST-225 do not show any bands at
higher k than 0.3 Å−1 down to −0.2 eV in Γ̄ − K̄ direction, but bands at such
high k values in Γ̄ − M̄ (see Fig. 4.31), the direction with intensity at high k
values in Fig. 4.28 b) has been attributed to the Γ̄ − M̄ direction.

In order to distinguish between surface bands and bulk bands, energy dis-
persions at different photon energies (Fig. 4.30 a)), which is equivalent to dif-
ferent kz-values (hν = 17− 26 eV) in the Brillouin zone, has been probed. The
upper valence band changes with photon energy revealing itself as a bulk
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Figure 4.29: a) Close-up view of the band structure at EF in Γ̄ − K̄ direction at hν =
22 eV. Dotted lines mark the energies of the constant energy cuts in (b)-(d). b)-d)
Constant energy cuts in k||-directions at energies as indicated. A sixfold symmetry is
visible at all energies displayed. Note the rotation of the star-like structure, i.e. the
maximum intensity, between (b) and (d) by 30°.

band, while the two bands below -1 eV do not. The corresponding EDCs at
the Γ̄-point and near the maximum of the highest band (k|| = 0.12 Å−1) which
are shown in Fig. 4.30 b) and c), respectively, confirm this tendency. Both plots
show a dispersive behavior of the upper valence band whereas the maxima
belov -1 eV show no dispersion in the surface normal direction. The topmost
maximum at Γ̄ shifts down by about 0.2 eV between hν = 22 eV and 26 eV,
indicating a kz dispersion. One can conclude that the topmost valence band
possesses a bulk-like character. Furthermore, the k|| position of the valence
band maximum (VBM) with respect to photon energy has been analyzed. For
determination of the VBM, EDCs for different k|| are evaluated. The k|| values,
for which the valence band peak is highest in energy, is taken as the position
of the VBM and defined as k||,max. This procedure is applied for the ARPES
spectra of 6 different photon energies (Fig. 4.30 a)) and entered into Fig. 4.30
d). Since only EDCs at constant k|| are used, variations in ARPES intensity
with detection angle, or k||, do not influence the outcome. One observes that
the VBM also shifts with photon energy revealing a small dependence on kz
as well. Thus, the ARPES peak at the VBM is, at least partially, a bulk band
with dispersion in kz-direction.

In order to analyze the measured ARPES band structure in terms of topo-
logical properties, it is useful to compare the ARPES with the STS data, as the
dI/dV(V) spectrum also provides information about the unoccupied states.
From the STS, it was shown that the Fermi level in the cubic GST-225 films lies
just at the edge of the valence band (Fig. 4.27 b)). This implies that the topmost
band in the ARPES measurement correspond to the valence band edge. From
this knowledge, one can now compare the course of the upper valence band
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Figure 4.30: a) Electronic dispersion mapped by ARPES in Γ̄ − K̄ direction at differ-
ent photon energies as marked. b) and c) EDCs for different photon energies (cuts
from (a)) at the Γ̄-point (b) and at k|| = 0.12 Å−1 (c), i.e. near the position of the va-
lence band maximum. Graphs are offset for clarity. d) k||-value of the valence band
maximum (Γ̄ − K̄ direction) for the different photon energies extracted from (a).

with the corresponding band in the DFT in order to find hints for topological
properties. As there have not been any DFT calculations of the metastable cu-
bic phase including SO interaction, a combined bulk and surface calculation
for the Petrov and KH stacking is provided here. Similar to the DFT calcula-
tions of the phase change compound Sb2Te3, the calculations have again been
performed by Gustav Bihlmayer within the generalized gradient approxima-
tion [151]. The full-potential linearized augmented plane-wave method in
bulk and thin-film geometry [186] as implemented in the ����� code6 has
been employed. SO coupling was included self-consistently and a basis set
cutoff of RMTkmax = 9 was used. As structural model for the cubic phases,
the atomic positions given by Sun et al. [168] have been adopted both for the
bulk and film structures. For the latter, films consisting of 27 atomic layers
terminating by a vacancy layer were used. Two different stacking sequences
were assumed for the cubic phase: a Petrov- and a KH-like sequence which

6for a program description, see http://www.flapw.de.
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Figure 4.31: DFT calculations of the band structures for cubic GST-225 with Petrov-
and KH-type (inset, same scale as main image) stacking sequence, as proposed in
ref. [168]. Bulk bands are given as white lines, states of the surface film calculations
with circles. The extension of the states into the vacuum (region above the topmost
Te layer) is indicated by the size of the circles. The calculations are superimposed
with the ARPES spectra (2nd derivative of intensity with respect to electron energy)
at 22 eV photon energy. Calculations are shifted upwards by 100 meV. (Calculation
by Gustav Bihlmayer).

are derived from the respective hexagonal phases by introducing a shift of
one part of the unit cell within the [0001] plane.

The resulting DFT band structure for the Petrov stacking of the cubic
metastable GST-225 along with the 2nd derivative of the measured band struc-
ture is shown in Fig. 4.31. The inset reveals the same calculation for the KH
stacking superimposed on the measured ARPES data. The gray shaded lines
in the DFT result from the bulk calculation whereas surface states are marked
by red circles. Again, as in the case of the hexagonal phase, the Petrov and the
KH sequence predominately differ by the course of the upper valence band.
Here, a qualitative agreement with the calculations of the hexagonal phase
[74, 123] is found with the KH sequence exhibiting a VBM at Γ for all kz while
the topological Petrov sequence shows the VBM away from Γ for all kz. A
reasonable agreement is obviously only achieved with the Petrov-like stack-
ing, including the minimum at Γ̄ of the upper valence band. Moreover, in the
Petrov stacking, the calculation shows the topological surface state (small red
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Table 4.1: k||,max positions of experimental and theoretical valence band maxima
given in Å−1, theoretical values from the literature are extracted from graphs in the
cited publications using only the topologically non-trivial phases. The percentages
(25 %, 50 %) denote the fraction of Ge in the M1 layer.

this work Kim et al.[74] Silkin et al.[123]
cubic Petrov 25% 50%

Γ − K (DFT) 0.19 Γ − K 0.18 Γ − K 0.29 0.30
Γ − M (DFT) 0.22 Γ − M 0.26 Γ − M 0.51 0.52

hν = 20 eV (exp., Γ̄ − K̄) 0.14 Γ̄ − K̄ 0.18 A − H 0.20 0.16
hν = 26 eV (exp., Γ̄ − K̄) 0.18 Γ̄ − M̄ 0.21 A − L 0.25 0.21

circles) crossing the Fermi energy in close vicinity of the upper valence band
at k|| ≈ 0.12 Å−1. This state obviously overlaps with the upper bulk valence
band within the ARPES data. The topological surface state is necessarily ab-
sent for the KH sequence (inset of Fig 4.31). The bands further down in energy
(around −0.6 eV at Γ̄) can be associated with a Rashba-type surface state, sim-
ilar to the one observed in Sb2Te3 (Fig. 4.8). In comparison to the topological
surface state, the Rashba state shows a stronger surface character (cf. size of
the red circles in the DFT). In the ARPES data, however, the Rashba-type sur-
face state is not visible which might be due to prohibited transitions for this
particular band in the ARPES experiment at the probed photon energy. Simi-
lar findings have already been discussed for Sb2Te3 in the previous section.

I finally compare the metastable cubic phase with previous DFT calcu-
lations of the very similar hexagonal phase. Most notably, a VBM away
from Γ̄ consistently indicates topologically non-trivial properties for GST-225
[120, 121, 170, 171, 123]. The experimental values of the VBM for the Γ̄ − K̄
direction with respect to calculations of the hexagonal stable phase and the
cubic metastable phase are displayed in Table 4.1. The calculated k||,max of
the bulk valence band in Γ̄ − K̄ direction (0.19 Å−1) for the metastable cu-
bic phase is slightly larger than the experimental one (0.14 − 0.18 Å−1). This
can be explained by the overlap of the bulk valence band with the surface
state which crosses EF at k|| ≈ 0.12 Å−1 and thus shifts the averaged band
maximum detected in the experiment towards smaller k||-values (Fig. 4.31).
Compared to the calculation of the hexagonal stable phase, best agreement
with the experiment is found with the slab calculation of the Petrov phase
[74] and with the mixed phase with equal distribution of Ge and Sb (x = 0.5)
[123]. Within the Brillouin zone of this phase, k||,max, the valence band maxi-
mum projected onto the (0001) plane, is closest to Γ̄ at the edge of the Brillouin
zone in z-direction (see cuts connecting the H − A − L points in ref. [123]).
For other phases or mixed distribution ratios, the measured k||,max is always



102 4 Phase-Change Materials as Strong Topological Insulators

smaller than the calculated k||,max of the bulk VBM of topologically non-trivial
hexagonal stable phases of GST-225 (0.16 − 0.52 Å−1) (cf. Table 4.1).

In-situ transfer of MBE grown Ge2Sb2Te5 samples to the ARPES chamber

In order to avoid the DI-water dipping method with a subsequent an-
nealing to 250 °C, a UHV transfer of the epitaxially grown samples to the
ARPES chamber has been implemented. A special UHV suitcase has been
constructed within our institute by Sven Just, ensuring a base pressure of
10−10 mbar during the transfer. The advantage is that no exposition of the
freshly prepared sample to ambient conditions takes place. As the previous
cleaning method still left some amount of oxygen on the surface sample (cf.
Fig. 4.26 b)), the UHV transfer is expected to avoid major contamination, re-
sulting in a better resolution of the ARPES spectrum.

Figure 4.32 shows the corresponding band structure measurements on the
in-situ transferred metastable GST-225 thin film. And indeed, a much sharper
ARPES dispersion is visible compared to the data in Fig. 4.28. Again, the
isotropic behavior of the upper valence band is revealed together with the
already observed sixfold symmetry in the constant energy cut. However, no
further features are resolved and the general trends of the band structure, as
e.g. the position of k||,max, are confirmed. For future measurements of samples
which can not be cleaved in UHV, this particular UHV transfer will be the
method of choice as the quality of the data strongly increases. The sample
shown in Fig. 4.32 has been used by J. Kellner et al. (to be published) to map
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Figure 4.32: a) ARPES spectra at room temperature in Γ̄ − K̄ direction at hν = 22 eV
of metastable cubic GST-225 (111) after in-situ transfer. b) Corresponding constant
energy cut at EF.
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the photon energy dependence in more detail, which, e.g. revealed a spin-
polarized surface state visible at hν = 50 eV with helical spin-polarization
close to 100%.

In summary, it was shown by ARPES and STS that metastable cubic
GST-225 epitaxially grown on Si(111) exhibits valence band maxima 0.14 −
0.18 Å−1 away from Γ̄ and a band gap of 0.4 eV. All DFT calculations of GST-
225 find a VBM away from Γ only for a Z2 topological invariant ν0 = 1. This
implies topological properties of GST-225, indicating that all phase change
materials on the pseudobinary line between Sb2Te3 and GST-225 are topolog-
ically non-trivial. Thus, this opens up the possibility of switching between
an insulating amorphous phase and a topological phase on ns-time scales.
In order to give a direct proof of the topological properties of GST-225, spin-
resolved ARPES as in the case of Sb2Te3 is required as has been done recently.
Moreover, a better resolution of the ARPES experiment would be helpful in
order to distinguish between the different surface states and the bulk valence
band. In the k||-range of 0 to 0.12 Å−1, the topological surface state lies below
the Fermi level and should be detectable in the ARPES experiment. Further,
STS at low temperature and in a magnetic field could be an appropriate tech-
nique in order to resolve the TI nature of the surface states by Landau level
spectroscopy. Then, it has to be proven that the topological properties of the
metastable phase survive several switching events, which is not clear a priori,
given the fact that the topology seems to depend in detail on the order within
the Ge/Sb/v layer.



5 Weak Topological Insulator

Within this chapter, I will switch from the class of strong topological in-
sulators to its counterpart, the class of weak topological insulators (WTIs).
As already discussed in the theoretical part of this work (cf. section 2.2.6),
the term weak is rather misleading as it is referring to the wrong, initial
believe that WTIs would be unstable with respect to any type of disor-
der [14, 13]. However recent theoretical work has suggested the opposite,
namely that their surface conductivity is even stabilized by random disor-
der [15, 16, 17, 18, 19, 20, 21]. Here, the first ever synthesized WTI, namely
Bi14Rh3I9 [32] is used in order to characterize the distinct topological prop-
erties of this particular class of materials experimentally. Namely, STS mea-
surements performed at 6 K will show that WTI exhibits helical and, thus,
back-scatter free edge states at each step edge of its cleavage plane. Since
such edge states can be intentionally created by AFM, this opens up unique
possibilities of a topological protected 1D quantum circuitry. Most of the data
described in this chapter are published in ref. [33].

5.1 General description of the first synthesized
weak topological insulator Bi14Rh3I9

As already reported in section 2.2.6, one way to create a WTI is the stacking
of 2D TIs with topologically protected edge states. The side faces of the 3D
system, formed by the step edges of the consecutive 2D TI layers then exhibit
anisotropic surface states. The top and the bottom surface, however, remain
dark, i.e. no surface states are present in the topological gap (cf. sketch in Fig.
5.1 c)). A material which has been proposed to be a candidate for a WTI and
which is built by a stacking of 2D intermetallic layers, is Bi14Rh3I9 [32, 187].
The crystal structure of the compound as derived from XRD is displayed in
Fig. 5.1 a). It shows a periodic alternation of two distinct layers, namely a
graphene-like honeycomb lattice formed by rhodium centered bismuth cubes
(red [(Bi4Rh)3I]2+ layer in Fig. 5.1 a)) and an insulating [Bi2I8]2− layer built by
I-Bi zigzag chains (blue layer in Fig. 5.1 a)). The latter is acting as an insulating
spacer layer, which reduces the coupling between two consecutive graphene-
like layers. The graphene analogues of the [(Bi4Rh)3I]2+ layer becomes vis-

C. Pauly, Strong and Weak Topology Probed by Surface Science, MatWerk,
DOI 10.1007/978-3-658-11811-2_5, © Springer Fachmedien Wiesbaden 2015
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Figure 5.1: a) Triclinic atomic model as deduced from XRD revealing the layer struc-
ture of Bi14Rh3I9. Insulating layers of [Bi2I8]2− (spacer layer) built by I-Bi zigzag
chains separates the intermetallic [(Bi4Rh)3I]2+ layers. b) Top view of the intermetal-
lic layer which consists of Rh centered Bi cubes (red cubes) which form a honeycomb
lattice and which is found to be a 2D TI by DFT [32]. The honeycomb lattice of
graphene scaled by a factor ∼ 3.8 is underlaid. c) Corresponding schematic of a WTI
with the Z2 invariant 0;(001). The top surface of the WTI is gapped whereas the sur-
rounding surfaces exhibit topological protected surface states. The surface Brillouin
zones for the top and the side surface are marked, respectively, with the time-reversal
polarization of the TRIMs marked as black (-) and white (+) dot and the resulting sur-
face state (black line) separating green and white areas. The protected edge state at
the rim of an island of the topologically trivial surface is also sketched. d) Energy
dispersion of Bi14Rh3I9 measured by ARPES, and revealing an energy gap at -170
to -370 meV below EF (ARPES from ref. [32]). (Models from (a) and (b) derived by
Bertold Rasche).

ible from Fig. 5.1 b), which shows a top view of the layer together with a
conventional graphene lattice scaled by a factor of ∼ 3.8 (gray structure). It
becomes apparent that each honeycomb of the [(Bi4Rh)3I]2+ layer is built by
six Rh centered Bi cubes including a central iodide atom. The nodes of the
graphene net are located in the centers of the prismatic voids originating from
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three conjoining Bi cubes. Unlike graphene, which has been suggested to be
a 2D TI [42], but has not been confirmed experimentally due to the lack of
strong SO coupling (band gap of only a few μeV [48]), the honeycomb lat-
tice in Bi14Rh3I9 is built by heavy elements, such that a strong SO coupling
is present within the layer. Thus, we are dealing with a graphene-like band
structure, however, in the presence of strong SO coupling, ingredients which
have been proposed to enable a topological non-trivial quantum spin Hall
state [42]. And indeed, a fully relativistic band structure calculation of the
[(Bi4Rh)3I]2+ layer reveals the presence of two gaps close to the Fermi level,
which, by calculating their corresponding Z2 invariants, are found to be topo-
logical non-trivial1 (Fig. 5.2 a)). Hence, from theoretical considerations, the
honeycomb lattice of Bi14Rh3I9 is a 2D TI. The calculations presented within
this chapter are done by K. Koepernik and M. Richter from the group of Prof.
J. van den Brink (IWF Dresden) and by B. Rasche from the group of Prof. M.
Ruck (TU Dresden).

The topological nature of the whole compound Bi14Rh3I9 has been ana-
lyzed in the work of Rasche et al. [32]. Owing to the weakly coupled stacking
of the honeycomb lattice which is a 2D TI, Bi14Rh3I9 is expected to be a WTI.
Scalar and fully relativistic band structure calculations which are plotted in
Fig. 5.2 d) and e) confirm this by showing the creation of a band gap of ∼
210 meV due to SO interaction. The Dirac cone, which is present in the cal-
culation without SO has been gapped out. Corresponding sketches of the
band structure without and with SO interaction are shown in Fig. 5.2 b) and
c). Again, the similarity to graphene when SO is effectively switched off be-
comes apparent. Note, that in the scalar relativistic calculation for Bi14Rh3I9,
the Dirac cone is located along ΓX and not at the K-point as in graphene.
This results from the alternate stacking of the highly symmetric 2D TI layer
and the low symmetric spacer layer which leads to a reduction of the over-
all crystal symmetry to the triclinic space group [32]. Moreover, Rasche et al.
observed that the Dirac cones in the scalar relativistic calculation only show
a minor dispersion perpendicular to the plane, rendering the calculated band
structure quasi-2D and pointing to a very weak coupling of the stacked layers
[32].

As in the case of a single [(Bi4Rh)3I]2+ layer, the direct calculation of the
four topological Z2 invariants ν0;(ν1ν2ν3) = 0;(001) for the the energy gap in
Fig. 5.2 e) classifies the material into the topological class of a WTI [32]. Inter-
estingly, a second non-trivial energy gap at higher positive energies appears
due to SO interaction as it is not visible in the calculation without SO. The
Z2 indices of ν0;(ν1ν2ν3) = 0;(001) imply that surfaces which are parallel to
the 2D TI layers (perpendicular to the normal (001)), i.e. the natural cleavage

1Details on the computation present in this chapter are described in section 5.2.6.
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Figure 5.2: a) Fully relativistic DFT band structure of a single 2D TI layer
[(Bi4Rh)3I]2+. The green areas mark the topological band gaps with the calculated
Z2 indices as marked (DFT by Bertold Rasche). b), c) Sketches of the Dirac cones in
the situation without SO coupling (similar to the graphene band structure) (b) and
the opening of the topological gap with SO coupling (c). d) DFT without SO cou-
pling for Bi14Rh3I9 with a Dirac cone present on the ΓX line. e) Fully relativistic band
structure of Bi14Rh3I9 where SO coupling opens up two topological band gaps with
the calculated Z2 indices as marked. ((b)-(e) from ref. [32]).

planes in Bi14Rh3I9, have no topological surface states and are the so-called
dark surfaces [20], whereas at any other surface an even number of Dirac
points appears (cf. sketch in Fig. 5.1 c)), each expecting to have a strongly
anisotropic dispersion around it due to the quasi-2D nature of the bulk band
structure.

Rasche et al. provided first photoemission data of the band structure of
Bi14Rh3I9 resolving a band gap at -170 to -370 meV below the Fermi level (Fig.
5.1 d)). Good agreement is found with the fully relativistic band structure
calculation, consistent however with a highly n-doped nature of the material,
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which is ascribed to a slight deficiency of iodine at the surface. An overall en-
ergy shift of ∼ 400 meV is found with respect to DFT [32]. The ARPES results
in combination with the DFT calculations already provides some experimen-
tal hints for the presence of weak topological nature in Bi14Rh3I9, however
a direct identification of WTI properties is lacking. Therefore, ARPES mea-
surements on surfaces which are perpendicular to the dark surface would be
required. Such faces, however, do not belong to the natural cleavage plane
of the crystal and are thus difficult to realize. On the contrary, a different ap-
proach for the experimental characterization of WTI properties is the detec-
tion of the surface states at the step edges of the natural cleavage plane (dark
surface). They then appear as topological edge states directly at the step edge
of the 2D TI layer [20] (cf. sketch in Fig. 5.1 c)) and are thus accessible by a
local microscopic technique like STS.

5.2 Edge states at the dark side of the weak
topological insulator Bi14Rh3I9 probed by STS

This chapter starts with the identification of the different layers in Bi14Rh3I9
by means of STM and STS. Each layer will be characterized by its atomic and
electronic structure, and bias-dependent structural variations of the morphol-
ogy which arises due to the coupling between the 2D TI layer and spacer layer
will be discussed. Further, first experimental measurements of the topolog-
ical edge states in a WTI as well as their unique properties which could be
favorable for possible novel types of information processing will be provided
by STS. Moreover, the tailoring of well defined step edges into the topologi-
cally dark surface of Bi14Rh3I9 using AFM is demonstrated, showing that the
material might be suitable for the construction of quantum networks exploit-
ing the protected nature of the edge state. Further, I will show in this chapter,
that an edge state is absent in the structural closely related, but topologically
trivial insulator Bi13Pt3I7 due to a pairing of adjacent layers, highlighting the
topological nature of the edge state in Bi14Rh3I9.

5.2.1 Identification of the atomic and electronic structure of
the different layers in Bi14Rh3I9 by STM

The Bi14Rh3I9 crystals which are analyzed within this work has been pre-
pared by Bertold Rasche from the group of Prof. Dr. M. Ruck from the Depart-
ment of Chemistry in Dresden (Germany). The crystals were grown by high-
temperature annealing of a stoichiometric mixture of Bi, Rh, and BiI3 (molar
ratio 11: 3: 3). The starting materials were ground under argon atmosphere
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Figure 5.3: a) Optical microscope image of the Bi14Rh3I9 crystal. Flat areas suitable
for STM measurements are visible. b) Bi14Rh3I9 crystal mounted to the molybdenum
sample holder using a graphite-based adhesive. Cu-tape used for the cleavage in
UHV is marked. Image has been taken after cleavage. c) STM overview image of the
freshly cleaved Bi14Rh3I9 surface (V = 1 V, I = 100 pA). Two different contrasts are
visible which are attributed to the two distinct layers of the material as marked.

in a glovebox. The homogeneous powder was sealed in an evacuated silica
ampule and heated to 700 °C in a tubular furnace at a rate of approximately
600 K/h. Fast cooling to 420 °C (cooling rate -4 K/min) and then slow cooling
to 365 °C (cooling rate -1 K/h) followed instantaneously. After three days, the
ampule was quenched in water. This technique yields black, platelet-shaped
crystals of Bi14Rh3I9 with sizes up to 1 x 1 x 0.2 mm3. An optical microscope
image of the crystal is shown in Fig. 5.3 a) revealing the small size of the crys-
tal. Obviously, large flat areas within the surface are visible which are suitable
for the positioning of the tungsten tip in the STM experiment. Prior to the
measurements, the Bi14Rh3I9 crystal has been mounted to the sample holder
using a graphite-based adhesive (Fig. 5.3 b)). Here, one had to take care of the
right choice of adhesive as the iodide in Bi14Rh3I9 compound is highly reac-
tive, whereas a reaction with the adhesive could lead to a change of sample
properties. As Bi14Rh3I9 is a layered structure with a weak coupling between
the layers, the same cleavage process was used as in the preparation of Sb2Te3
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(cf. section 4.2.1). The Cu-tape was pushed on the Bi14Rh3I9 surface prior to
the transfer of the sample into the UHV chamber and later pulled down at a
base pressure of 1 · 10−10 mbar.

A first STM overview image of the freshly cleaved sample surface is de-
picted in Fig. 5.3 c). It shows the topologically dark (001) surface and reveals
two different contrasts which are attributed to the two distinct layers of the
material. As we will see below, both layers are clearly distinguishable in the
STM due to their different atomic arrangement and different step heights,
which makes the identification of each layer rather straightforward. Taken
this into account, the upper layer (bright contrast) has been identified as the
insulating spacer layer and the lower layer (dark contrast) as the 2D TI layer.
Notice, that approximately 80 % of the top surface is covered by the insulat-
ing spacer layer which considerably complicates the search for the topological
edge state which is predicted to be located at the step edge of the 2D TI layer.
The surface coverage has been checked on several other Bi14Rh3I9 crystals but
always revealing the same unfavorable ratio of spacer layer and 2D TI layer.
Moreover, the appearance has also been found to be independent of different
cleavage approaches.

However, after some search, areas which show step edges of the 2D TI layer
could be located. The typical appearance of step edges of both layers is visu-
alized in the STM topography image of Fig. 5.4 a). A sequence of 4 consec-
utive layers is observed in the image whereas each layer can be identified
by its specific step height (see inset of Fig. 5.4 a)). The STM step height of
two adjacent layers combined exhibits ∼ 1.2 nm and corresponds to the re-
spective layer thickness deduced from XRD (1.25 nm) (cf. Fig. 5.1 a)). Thus,
in comparison with step heights from the model, one is able to attribute the
measured STM step height of ∼ 0.4 nm to the insulating spacer layer and the
height of ∼ 0.8 nm to the 2D TI layer. A more direct identification of the re-
spective layers, however, is realized by the atomic appearance of each layer.
Figure 5.4 c) and d) show atomically resolved STM images recorded on both
layers of the surface as marked by the respective colored box in Fig. 5.4 a).
One layer (Fig. 5.4 c)) exhibits a graphene-like honeycomb lattice with a unit
cell of ∼ 0.9 nm. It is identified by overlaying the polyhedron model deduced
from XRD and shows good agreement with the measurement. Obviously, sin-
gle atoms of the Rh centered Bi cubes which form the honeycomb can not be
resolved as a rather integrated signal throughout each honeycomb is found.
This fact can be explained by the chemical bonding within the honeycomb
lattice giving rise to delocalized states akin to the well known metallic states
of benzene rings. The Bi-Rh bonds within the cubes are strongly localized,
as are the bonds between the three-centered Bi atoms which form the bases
of the triangular-prismatic voids (cf. Fig. 5.1 and section 5.1). All together, a
quasi-2D bimetallic network with a rather constant electron density is formed
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Figure 5.4: a) Atomically resolved STM image (V = 1 V, I = 100 pA) showing the
layered structure of Bi14Rh3I9. Inset: height profile along the green line revealing
the different step heights of the layers. b) Typical dI/dV(V) spectra for the different
layers as labeled by the respective color (Vstab = 0.8 V, Istab = 100 pA, Vmod = 4 mV).
The energy gaps for each layer found in the spectra are marked by shaded colored
boxes. Inset: zoom into a narrow energy region around EF (-30 to 30 meV) for the 2D
TI spectrum. Both sides increase linearly (marked by the linear fit in green). c) and d)
Zoom into the marked areas of (a) displaying the two different layers. Atomic model
structure is overlaid providing good agreement with the measurement (color code as
in the model in Fig. 5.1 a)). The 2D TI layer (c) and the insulating spacer layer (d) are
identified. ((c) V = 1.5 V, I = 100 pA, (d) V = -1.3 V, I = 100 pA).

throughout the honeycomb lattice leading to the observed appearance in the
STM image [32]. Later I will come back to the atomic structure of the honey-
comb lattice and reveal that the underlying spacer layer considerably affects
the appearance of the 2D TI layer in the STM at different voltages.

The other layer (Fig. 5.4 d)) shows hexagonally arranged spots, which are
identified as the iodide atoms from the spacer layer by comparison with the
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superimposed model. The I-I atomic distance of ∼ 0.45 nm found in the STM
experiment nicely fits with the atomic distance deduced from the XRD (∼
0.45 nm). Thus, each layer of the Bi14Rh3I9 crystal is identifiable by its atomic
structure.

Beside the atomic appearance, both layers also differ in their respective
electronic structure. Figure 5.4 b) shows typical dI/dV(V) spectra for the 2D
TI layer (red curve) and the spacer layer (blue curve). As expected for an in-
sulating layer, a larger gap is found for the spacer (ΔV ≈ 350 mV) whereas
the 2D TI layer exhibit a gap between V = -180 mV and V = -360 mV which is
in excellent agreement with the gap found in the ARPES measurement (Fig.
5.1 d)). Moreover, the dI/dV(V) spectrum of the 2D TI layer exhibits van-
ishing dI/dV intensity at EF surrounded by a linear increase of the LDOS
on both side (cf. inset in Fig. 5.4 b)). This type of gap is attributed to a
2D Coulomb pseudo-gap of Efros-Shklovskii type originating from electron-
electron Coulomb interaction within a localized 2D system which reduces the
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Figure 5.5: a) STM overview image of the different layers as marked (V = 1 V, I =
100 pA). Inset: zoom into the area marked by a black box. Both layers show the
atomic arrangement of the spacer layer. b) Height profile of the layers marked by
the green line in (a). A ditch within the spacer layer is identified by its reduced step
height and marked as "ripped" spacer in (a) and (b). c) dI/dV(V) spectra (Vstab =
1 V, Istab = 100 pA, Vmod = 4 mV) taken at the spacer layer (blue curve) and at the
"ripped" spacer (turquoise curve) with the band gap of the spacer layer marked by
the shaded box. The exact position of the dI/dV(V) measurements are labeled in (a)
by the respective color.
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density of states near EF [188]. This feature is a further sign for the quasi-2D
nature of the honeycomb lattice, hence, the small interlayer coupling.

Identification of half a spacer layer

Fig. 5.5 a) shows an overview image of a stack of two spacer and one 2D TI
layer. Interestingly, the lower spacer layer seems to be disrupted at some ar-
eas (marked by arrows). However, from the atomic corrugation, one observes
that the layer underneath is not a 2D TI layer, but still shows the atomic ar-
rangement of the spacer layer (inset in Fig. 5.5 a)). The corresponding height
profile which is marked by the dark line and displayed in Fig. 5.5 b) reveals
a step height of ∼ 0.2 nm for the area where the spacer layer is disrupted.
This number corresponds to half an ordinary spacer layer step height. So ob-
viously, the Bi-I bonding within the spacer layer is broken by the cleavage
process leaving half of the spacer apart. Moreover, if we have a look at the
electronic structure of the "ripped" spacer in comparison with the ordinary
spacer by STS (Fig. 5.5 c)), one can see that the "ripped" spacer shows a fi-
nite dI/dV intensity in the energy range where the ordinary spacer exhibits
a band gap. The course of the remaining dI/dV(V) curve however shows
general agreement. Consequently, the insulating character of the layer is ob-
viously only reached if the spacer is complete.

5.2.2 Bias-dependent structural variations of the morphology
of the 2D TI and spacer layer in Bi14Rh3I9

In the following section, I will give a closer look at the atomic structure of
both the 2D TI and the spacer layer. In order to give an accurate interpretation
of the measured STM topography images, one has to keep in mind that the
tunneling current is mostly proportional to the density of states of the sample
(cf. eq. 3.3). Thus, the local density of states of the layers at specific energies
has a huge effect on the appearance of the atomic lattice in the STM image.

Atomic contrast of the insulating spacer layer

Figure 5.6 shows a series of STM topography images of the spacer layer mea-
sured at the same area and mapped at different bias voltages. As it is obvious
from first sight, the atomic appearance of the layer considerably depends on
the applied bias voltage between the tip and the sample. The applied volt-
age plays an important role in the appearance of the image as it determines
the range of the densities of states contributing to the image. Thus, regarding
equation 3.3, all the states from EF up to the applied voltage contribute to the
tunneling current I and thus to the STM image. Hence, one needs to get some
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Figure 5.6: a)-c) STM images of the same area on the spacer layer measured with
varying sample voltage, (a) (V = -1.3 V, I = 200 pA), (b) (V = +1 V, I = 200 pA) and
(c) (V = +2.3 V, I = 200 pA). Bias-dependent appearance of the spacer layer lattice is
visible.

information about local density of states of the layers at the particular bias
voltages in order to interpret the different appearances in the STM images.
Figure 5.7 shows fully relativistic DOS calculations in an energy range from -
3 to 3 eV for the individual layer atoms, for a) the 2D TI layer and b) the spacer
layer. The black curve in each plot displays the average DOS for the whole
compound Bi14Rh3I9. Obviously, the Bi 6p states of the 2D TI layer (red curve
in Fig. 5.7 a)) contribute the most to the average density at the unoccupied
states, whereas the I 5p states of the spacer layer (light blue curve in Fig. 5.7
b)) provide the dominant part of the overall density for the occupied states.
Interestingly for the spacer layer, the density of the I 5p states at the occupied
states considerably exceeds the part of the Bi 6p states (orange curve in Fig.
5.7 b)), whereas at the unoccupied states, the contribution of both elements
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Figure 5.7: a) Fully relativistic DFT calculation of the projected DOS to specific ele-
mental orbitals for the individual elements of the 2D TI layer. b) The same for the
spacer layer. The symmetry of the contributing orbital for each element is marked
for (a) and (b). (DOS calculation by Bertold Rasche).

is equal, indicating a strong hybridization between these two orbitals. This
hybridization leads to more delocalized wave-functions in line with the more
blurred appearance of the atomic structure at positive sample voltage (cf. Fig.
5.6 b) and c)). Further, a larger gap is visible just above EF, whereas a second,
smaller gap is located at E − EF = 0.5 eV. With respect to the dI/dV(V) spec-
trum of the 2D TI layer in Fig. 5.4 b) the calculation is shifted by ∼ 350 meV
which is inline with the findings in the work of Rasche et al. [32]. Moreover,
the small maximum in the DOS between the two gaps in Fig. 5.7 arises from
the Bi 6p states of the 2D TI layer and is absent in the DOS of the orbitals from
the spacer layer. This fits again with the measured dI/dV(V) spectra (Fig. 5.4
b)) which show an increase in the dI/dV signal above the gap and below EF
only for the 2D TI layer, whereas on the spacer layer the dI/dV(V) intensity
stays low over the whole energy range from -0.4 eV to EF.

With the above DOS calculation for the spacer layer, one may now inter-
pret the STM images measured at different bias voltages from Fig. 5.6. Con-
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sequently, the atoms visible in Fig. 5.6 a) of the spacer layer, which are mea-
sured at a bias voltage of V = -1.3 V, can be assigned to the iodide atoms if
compared to the calculation in Fig. 5.7 b). However, no preferred triangular
shaped alignment of the iodide atoms as expected from the model in Fig. 5.1
a) is visible, probably due to the lack of Bi 6p intensity, preventing the visibil-
ity of the octahedral coordination within a Bi-I zigzag chain. At positive bias
voltages (Fig. 5.6 b) and c)), the appearance of the spacer layer alters. At V =
+1 V (Fig. 5.6 b)) where, according to the calculation, both elements I and Bi
contribute equally to the DOS, the STM image shows a pattern where the tri-
angular appearance of the Bi bonded trimers of I is directly visible. Thus, one
get access not only to the iodide atoms on top, but also to the position of the
underlying Bi octahedra. At even higher positive bias voltage (V = +2.3 V),
the density of the Bi 6p states is slightly dominating the I 5p states, resulting in
the appearance shown in Fig. 5.6 c). Apparently, the appearance of the iodide
lattice in the STM image slightly blurs as the contribution from the underlying
Bi atoms gets stronger which can be interpreted as an increased delocalization
of the corresponding wave-functions. Note, however, that also the tip sample
distance increases with increasing bias voltage, so that the sharpness of the
STM image decreases additionally.

Atomic contrast of the 2D TI layer

For the 2D TI layer, the STM results also reveal some considerable bias-
dependent deviation from a perfect honeycomb lattice as present in Fig. 5.4
c). The reason is, however, different as in the case of the spacer layer. Namely,
beside the energy dependent density of states projected to the different ele-
mental orbitals, the arrangement of the underlying spacer layer considerably
affects the density of states of the 2D TI layer and, thus, the appearance of
this layer in the STM image. The vertical distribution of the wave-functions is
thereby changed and, thus, their contribution to the tunneling current prob-
ing the LDOS in vacuum above the sample. Figure 5.8 a) and b) shows an
atomically resolved area of the 2D TI layer at a bias voltage of V = -300 mV
and V = +300 mV, respectively, i.e. at much lower voltage than in Fig. 5.4 c),
where a perfect honeycomb lattice is visible for the 2D TI layer. The remain-
ing spacer layer within the area serves as a marker for the assignment of the
same atomic rows in both images. Obviously, both images show a deviation
from a perfect honeycomb lattice as well defined row patterns are observed.
Moreover, by comparing both images recorded at opposite bias voltage, one
observes that the atomic row shifts by one unit cell in the direction perpen-
dicular to the atomic rows and half a unit cell parallel to the rows. This can
be most easiest seen by following the gray lines in both images which mark
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Figure 5.8: a), b) STM image of the 2D TI and spacer layer recorded at different bias
voltages, (a) probing occupied states above the WTI gap and the area of the WTI gap
(V = -300 mV, I = 80 pA) and (b) probing unoccupied states (V = +300 mV, I = 80 pA).
The gray lines in both images mark the same positions. The distance between two
atomic rows is marked. The atomic lattice of the spacer layer serves as a reference
point for the gray lines. c), d) Zoom into the respective areas in (a) and (b) marked
by the black dashed box. e) Summed image of the STM plots in (c) and (d) with a
regular honeycomb lattice superimposed.

the same location2. Zooming into the area marked by a black dashed box in
both images makes the shift of the lattice even more explicit (Fig. 5.8 c) and
d)). In order to understand the row-like shape of the lattice as well as the
bias-dependent shift by one unit cell, K. Koepernik simulated STM images by
spatially resolving the densities of states restricted to specific energy intervals

2Thermal drift and piezo-creep is negligible in these data.
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Figure 5.9: Fully relativistic DFT calculation of the projected DOS for a 4 layer slab
terminated by a 2D TI layer (2D TI-spacer-2D TI-spacer). The red curve corresponds
to the DOS of the surface 2D TI layer alone, and the black curve to the total density
of states of the slab. For the surface 2D TI layer, the non-trivial gap is shifted by ≈
300 meV into the occupied states with respect to the gap position in the bulk DFT
calculation (Fig. 5.2 e)). The black double-arrows mark the energy regions of the
simulated STM images shown in Fig. 5.10. (Calculation by Klaus Koepernik).

ΔE = [E0, E1] for a slab consisting of 4 layers and terminated by a 2D TI layer
(2D TI-spacer-2D TI-spacer). The corresponding fully relativistic DOS calcu-
lation for the slab (Fig. 5.9) reveals a shift of the topological band gap by ≈
300 meV into the occupied states for the top surface 2D TI layer (red curve)
with respect to the bulk DFT calculation (Fig. 5.2 e)) and in agreement with
the experimental observation of the cleaved surface (Fig. 5.4 b)), such that the
gap is located at ΔE = [-300, -190] meV. However, the total DOS of the slab
(black curve in Fig. 5.9) reveals a finite density of states within the energy
region of the top surface 2D TI gap, which originates from the sub-surface
spacer layer and the inner 2D TI layer. Their density of states is shifted in
energy with respect to the surface 2D TI layer due to the surface electrostatic
potential, such that their gaps do not coincide anymore.

The two top layers of the slab (2D TI layer with an underlying spacer) are
shown in Fig. 5.10 d), where the black dotted box marks the area of the simu-
lated STM images in Fig. 5.10 a)-c). The STM images correspond to the local
density of states found for a plane being 1.94 Å above the last Bi atoms of the
2D TI layer and for an energy interval as labeled and as additionally marked
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Figure 5.10: Spatially resolved density of states for the 2D TI layer of Bi14Rh3I9 at a
plane 1.94 Å above the last Bi layer for a) an energy region within the gap of the top
surface 2D TI layer (ΔE = [-300, -190] meV), b) an energy region within the unoccu-
pied states (ΔE = [+50, +100] meV) and c) an energy range below EF but above the 2D
TI layer gap (ΔE = [-100, -50] meV). For comparison, the regular honeycomb lattice
is superimposed as white line pattern. In (a) and (b) contrast modulations within
the honeycomb lattice are visible (superimposed straight line pattern is a guide to
the eye) with a shift of one unit cell of the honeycomb lattice with respect to each
other. The simulation in (a) has a much smaller absolute value of densities, which is
not visible here as the images are normalized in contrast. d) Sketch of the topmost
2D TI layer (red) with the underlying spacer layer (blue). Dotted box marks the area
of (a)-(c). The less bright triangles in (a) are those under which a blue layer octa-
hedron lines up perfectly (positions marked by white circle), whereas in (b) the less
bright triangles are those under which no contribution of the spacer layer is present
(positions marked by black circle). (Calculations by Klaus Koepernik).

in the DOS calculation of Fig. 5.9 by black double-arrows. Notice that 1.94 Å
is smaller than typical tip-surface distances implying better lateral resolution
within the calculated data.

The bright dots in the simulated images are due to the Bi atoms. Obviously,
small intensity modulations between the Bi atoms are visible for occupied
states (Fig. 5.10 a)) and unoccupied states (Fig. 5.10 b)), as highlighted by a
respective pattern which acts as a guide to the eye. The contrast indeed shifts
about one unit cell in horizontal direction (∼ 0.9 nm), and half a unit cell in
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vertical direction between the two plots. In contrast, no preferred orientation
is observed for the energy interval in between the 2D TI gap and EF (Fig.
5.10 c)). Here, the LDOS between the three-centered Bi atoms which form the
bases of the triangular-prismatic voids are more intense than the Bi-Rh bonds
within the Rh centered Bi cubes. Note that the image in a) has a smaller
absolute value of densities because of being in the 2D TI gap. The pictures
are however normalized in contrast, so that this information is not visible.
Further, it was checked by DFT that this additional contrast shifting with bias
is visible throughout the whole vacuum section up to 4.1 Å, where the signal
gets too weak with respect to the noise within the numerical calculation.

The origin of the lattice modulation in the 2D TI layer can be explained by
the orientation of the honeycomb lattice with respect to the underlying zigzag
chains of the spacer layer. At energies corresponding to the band gap region
of the top 2D TI layer, the total density of states decreases at locations where
the Bi atoms of the triangular-prismatic voids lines up perfectly with a spacer
layer octahedron (positions marked by white circles in Fig. 5.10 d)). On the
other hand, at energies within the unoccupied states, the density obviously
vanishes at positions where the Bi triangles have no immediate neighbor in
the underlying spacer layer (positions marked by dark circles in Fig. 5.10 d)).
The different orientations of the 2D TI layer with respect to the underlying
spacer layer throughout the whole lattice thus leads to this periodic modu-
lations in the considered energy intervals. A tentative explanation would be
a hybridization of the Bi atoms of the 2D TI layer with the I atoms of the
underlying octahedra, leading to occupied bonding configurations and un-
occupied antibonding configurations. While the bonding configuration leads
to a reduced density in vacuum, the antibonding configuration leads to an
increased LDOS in vacuum with respect to the non-bonding configuration
represented by the Bi atoms above the prismatic voids.

As the atomic modulation shifts by about exactly one unit cell of the honey-
comb lattice between two images measured at opposite bias voltage, a mixing
of the two plots in Fig. 5.8 c) and d), obtains an appearance which resembles
a regular honeycomb lattice (Fig. 5.8 e)). Thus, the modulation of the hon-
eycomb lattice, originating from the orientation between the 2D TI and the
spacer layer is well defined and depends on the applied bias voltage in the
STM experiment. Notice that the observed rows in the STM images are per-
pendicular to the rows of the Bi-I octahedra of the spacer layer allowing to
trace the subsurface orientation by STM, as well as to easily determine the
zigzag direction of the honeycomb layer. I checked about ten different loca-
tions on the Bi14Rh3I9, as well as using different micro-tips, always revealing
the same modulation shift between voltages lying within the occupied and
unoccupied states. The appearance of an undisturbed honeycomb lattice for
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energies between the 2D TI gap and EF (Fig. 5.10 c)) could, however, not been
confirmed by the experiment. One reason is the lack of reliable data at such
small bias voltage, as the probing tip was unstable due to the reduced dis-
tance between tip and sample. However, the few atomically resolved images
in this particular bias range tend to exhibit a similar modulation as is present
for higher negative voltages, thus not confirming the theoretical simulation of
Fig. 5.10 c). STM images of the 2D TI layer with a regular honeycomb lattice
as shown in Fig. 5.4 c) are rather rarely observed and also found to be inde-
pendent of the applied bias voltage. It is likely that in this cases, the coupling
between the 2D TI and the underlying spacer layer is possibly reduced due to
a small detachment of the 2D TI layer by tip forces [189] or due to large defect
areas within the spacer layer underneath the probed 2D TI layer.

5.2.3 Probing the edge state at the step edge of the 2D TI layer
in Bi14Rh3I9

In the following two sections, the focus will be on the detection and char-
acterization of the topological edge state at the step edge of the 2D TI layer,
which is the fingerprint of Bi14Rh3I9 as a WTI distinguishing it from strong 3D
TIs. This property is also required for the use of weak 3D TIs in 1D quantum
networks. As already discussed above, the challenge is to find an appropri-
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Figure 5.11: a) STM image with a typical step edge of the 2D TI layer (V = 0.8 V, I =
100 pA). Inset: zoom into the step edge region with overlaid honeycomb lattice from
the model revealing the zigzag termination of the edge (dotted lines are guides to the
eye). b) dI/dV(V) spectra taken at the 2D TI (red curve), spacer layer (blue curve)
and step edge of the 2D TI layer (gray curve). Positions of the recorded STS curves
are marked in (a) by rectangles and labeled with the respective color (Vstab = 0.8 V,
Istab = 100 pA, Vmod = 4 mV).



5.2 Edge states at the dark side of Bi14Rh3I9 probed by STS 123

ate step edge on the 2D TI layer as the sample surface is mostly covered by
the insulating spacer layer (Fig. 5.3 c)). However, several 2D TI layer step
edges could be detected on the course of the measurements and a typical one
is depicted in Fig. 5.11 a). The 2D TI layer is again identified by its honey-
comb lattice (yellow) and the spacer layer by the triangular-shaped appear-
ance (blue). As in the case of most probed step edges, the edge exhibits a
zigzag-termination (see inset in Fig. 5.11 a)) with a few kinks and a few ad-
sorbates on top. I checked that the remaining adsorbates at the step edges are
not originating from the background pressure in the UHV chamber by vary-
ing the background pressure during cleavage and transfer into the cryostat
by a factor of ten. Furthermore, the time between the cleavage and the trans-
fer into the cryostat was also varied by a factor of ten, with both not chang-
ing the amount of adsorbates at the step edges. Therefore, one can conclude
that these adsorbates arise from the cleavage process itself and originate most
probably from remainders of the spacer layer.

Figure 5.11 b) shows the dI/dV(V) spectra taken on the different parts of
the surface as marked by the different colored rectangles in Fig. 5.11 a). The
electronic structure of the 2D TI and spacer layer have already been discussed
in the previous sections and are again plotted as red an blue curve. Most
importantly, the spectrum taken on the step edge of the 2D TI layer (gray
curve) shows a strong dI/dV intensity within the energy gap of the 2D TI. The
appearance of the respective dI/dV(V) curves, i.e. the maximum in intensity
for the curve on the step edge of the 2D TI layer and the minimum in intensity
for the 2D TI and spacer layer, are typical for each region and are found on all
areas of the sample, sometimes with a partly different intensity distribution,
which is attributed to different local chemistry or to a different density of
states of the probing tip.

Interestingly, the peak of the dI/dV(V) curve measured at the step edge
shows a maximum, which is slightly shifted towards lower energies with re-
spect to the 2D TI band gap, thus, is further located at the bottom part of
the band gap. Moreover, the detection of a topological state as a peak in the
dI/dV(V) signal differs from most STS measurements on strong TIs so far.
The appearance of the topological state in the STS experiment depends on
the energy dispersion of the state. In most strong TIs, the topological surface
states form a Dirac cone with a minimum in density at the Dirac point. Thus,
a minimum in the dI/dV(V) measurement at the position of the Dirac point
with a slight increase of intensity away from it is a fingerprint of a topological
surface state in the STS experiment [80, 78, 73, 84]. In the case of Bi14Rh3I9
however, the energy dispersion of the topological edge state looks different.
Figure 5.13 d) shows a tight-binding calculation including SO interaction for
a ruby lattice with a zigzag-terminated edge as it is for the 2D TI layer of
Bi14Rh3I9. At the bottom of the energy gap (lower energies), the edge state
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Figure 5.12: a) STM and b) spatially resolved dI/dV image measured at an energy
within the 2D TI band gap and in a region containing step edges of the 2D TI layer
as marked (Vstab = −250 mV, Istab = 100 pA, Vmod = 4 mV). Strong dI/dV intensity
appears only at the step edges.

(colored in blue) exhibits no dispersion along Γ-K and only increases linearly
towards the top of the gap. Thus, one would expect a maximum in the dI/dV
intensity for the edge state at the bottom part of the 2D TI gap as indeed ob-
served in the STS spectrum in Fig. 5.11 b). Note that the same tendency is
observed for all other probed step edges.

The edge state, which has so far been detected by locally recorded
dI/dV(V) spectra, can further be analyzed using spatially resolved dI/dV
maps (cf. section 3.1.3), which measures the local density of states of an area
at a distinct energy. Figure 5.12 b) shows a spatially resolved dI/dV image at
V = -250 mV, i.e. at an energy within the 2D TI band gap. The corresponding
topography image of the probed area is displayed in Fig. 5.12 a). It shows
a large 2D TI layer area with a L-shaped trench crossing the layer. Bright
stripes in the dI/dV image on both sides of the trench indicate the presence
of an edge mode, as also found on all other probed step edges of the 2D TI
layer. Note that this particular step edge does not run along a zigzag direc-
tion as can be easily seen from the stripes (see previous section) running from
left to right in Fig. 5.12 b) which cut the step edge at an angle close to 90° and
distinct from 60° and 120°.

In order to characterize some special properties of the edge state, a zoom
of the step edge area of the 2D TI layer is shown in Fig. 5.13 a). It shows a
spatially resolved dI/dV map at V = -337 mV providing a higher resolution
image of the edge state (bright stripe). The corresponding topographic image
of the 2D TI layer is shown in the inset. The Bloch type character of the state
becomes apparent as an oscillation with unit cell periodicity (marked by olive
rectangle in Fig. 5.13 a) and with corresponding profile height in c)) along
the zigzag direction. Further, a very narrow spatial distribution of the edge
state being confined to the last atomic row at the edge is observed. A profile
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Figure 5.13: a) Spatially resolved dI/dV image within the bulk band gap (Vstab =
−337 mV, Istab = 100 pA, Vmod = 4 mV) of the step edge area of the 2D TI layer
shown in the inset as a STM topography image (V = 0.8 V, I = 100 pA). Rectangles
mark the areas of profile lines in (b) and (c). The double arrow marks the electron
wave length of the edge state at this particular energy as deduced from the tight-
binding calculation [190] in (d). b) Profile line perpendicular to the step edge and
averaged in the parallel direction over the blue rectangle in (a) with FWHM of the
edge state marked. c) Profile line along the step edge taken from the olive rectan-
gle with marked peak distance corresponding to the size of one unit cell. d) Tight-
binding calculation for a ruby zigzag edge terminated ribbon which is on the base
of the 2D TI layer structure of Bi14Rh3I9. The blue line marks the dispersion of the
edge state in k-space. The energy scale has been adapted from the experimental data.
(Tight-binding calculation from ref. [190]).

line across the edge state (blue square) exhibits a full width at half maximum
(FWHM) of 0.83 nm only (Fig. 5.13 b)). This is an upper limit due to possible
convolution effects with the tip shape. Thus, the edge state is confined to a
single unit cell (a = 0.92 nm) as predicted by tight-binding calculations [190].
Such a width is much smaller than for edge states of the buried 2D TI made
of HgTe quantum wells (edge state width: ∼ 200 nm) [7, 191] implying the
possibility of much smaller devices.

The strong confinement of the edge state perpendicular to the edge is fur-
ther illustrated in Fig. 5.14 a). The STM image shows a 2D TI step edge across
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Figure 5.14: a) STM topography image (V = 0.8 V, I = 80 pA) of a 2D TI step edge.
Inset: dI/dV(V) spectra (Vstab = 0.8 V, Istab = 80 pA, Vmod = 4 mV) recorded at
equal distances across the step edge within the marked dashed rectangle showing
the evolution of the labeled edge state perpendicular to the step edge. b) Color plot
of the dI/dV(V) spectra from (a). Three different lateral regions are separated by
dotted lines and labeled within the topographic profile below. Different energetic
features are marked.

which locally resolved dI/dV(V) curves have been recorded at equivalent
distances. The curves are displayed in one plot with their area of origin la-
beled by the respective color. Again, it shows that the edge state is strongly
confined to the very last atomic row of the zigzag edge even exhibiting some
intensity at the slope of the step. The same data is displayed in Fig. 5.14 b)
as a color code representation of the energy dependent LDOS across the step
edge. The three different lateral regions are separated by dotted lines and
labeled within the topographic profile below. Further energetic features, like
the topological gap and the 2D Coulomb gap of the 2D TI layer become appar-
ent as marked. One observes that pronounced edge state intensity is visible
in the whole topological band gap and slightly weaker intensity even in the
energy region below. This is in agreement with the tight-binding calculation
(Fig. 5.13 d)), which shows that the edge state survives below the non-trivial
gap.

5.2.4 Evidence for the topological nature of the edge state in
Bi14Rh3I9

So far, we have observed an edge state at the step edge of the 2D TI layer
which is energetically located within the non-trivial band gap of the 2D TI
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Figure 5.15: a) STM image of a rather disordered step edge of the 2D TI layer with the
different regions as marked (V = 0.8 V, I = 80 pA). b) dI/dV image within the band
gap of the 2D TI layer (averaged from V = -180 mV to V = -350 mV, Istab = 80 pA,
Vmod = 4 mV) of the same area as (a). c), d) Zoom into (a), (b) as marked by rectan-
gles. Dashed ellipses highlight the positions of the kink and the two adsorbates.

layer. Moreover, signs of an edge state at all step edges probed by STS was
found with the edge state intensity present throughout the whole band gap
region. In the following, I want to check the requirements imposed for a
topological nature of the edge state in more detail. Namely, the topological
protection of the edge state implies that the state is continuous along all step
edges and continuous throughout the whole non-trivial band gap. Moreover,
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back-scatter processes due to scattering on impurities are prohibited due to
the helical nature of the edge state, as long as the impurities do not break
time-reversal symmetry. These properties all together pledge the topological
edge state to be an example of what is often called a "perfectly conducting
channel" [192, 20].

First, I want to analyze the spatial continuity of the edge state along the
step edge of the 2D TI layer. A crucial point here is, that signs of the edge
state must also be found at positions where adsorbates and impurities are
located as no scattering or interruption of the edge channel due to topologi-
cal protection occur, in contrast to trivial edge states. This behavior has been
checked at about ten different step edges with probed lengths from 6 nm to
40 nm. Figure 5.15 a) shows exemplarily an STM image of a rather disordered
step edge, exhibiting several kink positions and two adsorbates (marked by
dashed ellipses in the zoom of Fig. 5.15 c)). The corresponding dI/dV in-
tensity for the same area and for energies average over the 2D TI band gap
region is plotted in Fig. 5.15 b). The intensity in the course of the edge state
is reduced at positions of the step edge, where either a kink or two adsor-
bates are located (see dashed ellipses in Fig. 5.15 c) and d)). However, dI/dV
intensity is observed surrounding these locations towards the interior of the
2D TI layer. The displacement of the dI/dV intensity indicates that the edge
channel is pushed away from the step edge and simply moves around the ob-
stacle [15]. The decrease in intensity shows that the edge state is additionally
broadened in all three directions.

Figure 5.16 shows the same dI/dV image as in Fig. 5.15 b) however, in a dif-
ferent color code, including locally resolved dI/dV(V) spectra ((i)-(v)). These
spectra are recorded on the critical locations of the step edge (as marked in
the dI/dV image by the respective color) in order to resolve the exact evolu-
tion of the edge mode in these areas. The spectra taken on the 2D TI layer in
region (i) are flat within the band gap region with slightly different intensities
in different regions. The origin of the varying intensities becomes directly
visible in the dI/dV image by the diagonal stripe-like intensity fluctuation
within the interior of the 2D TI layer. As already discussed in section 5.2.2,
the stripes originate from the different coupling of the honeycombs of the 2D
TI to the underlying zigzag chain pattern of the insulating spacer layer giv-
ing rise to a commensurability induced superstructure forming stripes along
the zigzag direction of the honeycomb layer. This leads to an increased back-
ground intensity in the dI/dV(V) spectra taken at positions of the stripes
(e.g. green curve in Fig. 5.16 (i)) for energies of the 2D TI band gap and of
the occupied bands. Comparing these spectra with the spectra at most parts
of the step edge, for instance region (iii), a strong peak is revealed indicating
the edge state. The peak maximum is again at the lower part of the band gap
as expected from the edge state dispersion deduced by tight-binding calcula-
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Figure 5.16: Same dI/dV image as in Fig. 5.15 b) displayed with a different color code
including dI/dV(V) spectra [(i)-(V)] (Vstab = 0.8 V, Istab = 80 pA, Vmod = 4 mV) col-
ored with respect to their area of origin marked in the dI/dV image. 2D TI layer and
spacer layer are labeled and surrounded by dotted lines. The spectra in (i) originate
from the 2D TI layer, the grey spectra in (ii)-(v) from the step edge region, the blue
and red curves in (ii)-(v) from the spacer and the 2D TI layer, respectively. Shaded
areas in (i)-(v) mark the bulk band gap as deduced from ARPES [32].
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Figure 5.17: STM image (top, V = -262 mV, I = 100 pA) and corresponding dI/dV
image at an energy within the band gap (bottom, Vstab = −262 mV, Istab = 100 pA,
Vmod = 4 mV) of a rather straight step edge. A kink position is marked. The double
arrow marks the expected electron wave length at this particular energy as deduced
from tight-binding calculations (Fig. 5.13 d)) [190].

tions (cf. Fig. 5.13 d)). The sharpness of the peak depends on details of the
tip, e.g., it appears sharper in region (ii) which is measured after a tip switch.
Zooming into an area of small edge state intensity, region (iv), which is lo-
cated around a kink position (Fig. 5.15 c)), reveals the same peak, but a factor
of 10 lower in intensity with respect to region (iii), indicating a smaller cou-
pling of the edge state to the tunneling tip. Moreover, the edge state intensity
is pushed to the right, i.e. it moves around the obstacle as already observed in
the other color code representation in Fig. 5.15 d) and as predicted by Ringel
et al. [15]. The different geometry at some kinks may change the properties
of the edge state, but does not affect its existence. Coming back to the area
where two adsorbates are lying on the step edge (bottom part in Fig. 5.15 c)),
rather no intensity was found in the dI/dV map. However, if one considers
the dI/dV(V) spectrum measured on top of the adsorbates (v), the size of the
peak is further reduced, but can still be identified around V = -270 mV (see
arrow), demonstrating that the edge state at least partly channels below these
adsorbates. Thus, signatures of a spatially continuous edge state was found
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Figure 5.18: Stacked dI/dV images (Istab = 100 pA, Vmod = 4 mV) of the area shown
in the background STM image (V = 0.8 V, I = 100 pA) and recorded at voltages across
the band gap as marked on the left.

within all investigated step edge areas, pointing to a robust character with
respect to disorder as expected from topological protection.

Figure 5.17 shows another example of a 2D TI step edge (STM image on
top) again with an extremely narrow edge state running along a straight edge
and being pushed around a kink position (on the left of the image). More-
over, it shows that intensity fluctuations of the edge state along the edge are
small as expected for the prohibited backscattering. In order to sustain this
assumption, the electron wave length as deduced from tight-binding calcula-
tions (Fig. 5.13 d)) λtight−binding is added to Fig. 5.17 and 5.13 a). Obviously,
there is no structure with periodicity λtight−binding/2, i.e. no standing electron
waves, in remarkable contrast to conventional 1D electron systems, where
such oscillations exhibit LDOS intensity oscillations close to 100 % [193].
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We have already observed in Fig. 5.14 b) that a pronounced edge state in-
tensity is visible in the whole topological band gap. The energetic continuity
is further visualized by the stack of dI/dV maps in Fig. 5.18. The correspond-
ing STM image of the 2D TI layer is shown in the background. The edge state
intensity is visible along the whole edge at all energies within the band gap
and even present at energies below (-400 mV, -450 mV) however with weaker
intensity. This covers the observation made on other step edges, as for exam-
ple the edge state measured in Fig. 5.14 b), where slightly weaker intensity is
also visible at energies below the band gap. However at energies above the
energy gap, e.g. V = -100 mV in Fig. 5.18, the edge state disappears.

Thus, the most important ingredients of a topologically protected edge
state, continuity in space and energy, have been established. Further, one
observes no indications of standing waves of the edge state electrons at the
step edge, just as expected for topological edge states due to the prohibited
backscattering. Notice that edge states barely prone to backscattering have
also been observed on some of the step edges of the 2D TI Bi bilayers on
Bi(111) [194] or Bi2Te3(0001) [195], but in both cases the edge states energet-
ically overlap with bulk states, so that they intrinsically cannot be used for
electronic applications. In contrast, the edge state of the weak 3D TI Bi14Rh3I9
could provide perfect conduction channels at each step edge of the dark sur-
face, if the Fermi level is brought to the topological non-trivial gap, e.g., by
surface doping.

Scratching well-defined quantum networks into the surface of Bi14Rh3I9
by AFM

Theory predicts that the helical and, thus, perfect conduction remains robust
for step heights containing any odd number of exposed stacks, as also for
even numbers stabilized by disorder [15, 16, 17, 18, 19]. Thus, simply scratch-
ing the surface deeper than a single layer tends to induce one-dimensional
electron channels with a robust conductivity of at minimum e2/h [17]. The
topological nature of the edge state and, in particular, its prohibited backscat-
tering will cause electrons with opposite spins moving in opposite directions
at each of these step edges and being protected against localization. Eventu-
ally, tailored step edges could be connected to each other leading to quantum
networks not suffering from backscattering and localization. To this end, the
contact mode of the AFM is used to scratch partially straight step edges into
the surface. The scratches are produced within a commercial AFM (Bruker)
using a carbon coated silicon cantilever in AFM contact mode at ambient
conditions (contact force during scratching: F = 10−6 N). The AFM images
have been recorded in the tapping mode using the same carbon coated silicon
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Figure 5.19: a) AFM image of Bi14Rh3I9 surface with letters BiRhI scratched into
the surface by a carbon coated silicon cantilever in AFM contact mode at ambient
conditions (contact force during scratching: F = 10−6 N). Average depth of the cuts
∼ 15 nm. b) AFM image of the same surface after scratching a quantum network of
step edges into the surface using the same parameters as in (a). c) Height profile of
the area marked by the blue line in (b) reveals a distance of only ∼ 25 nm between
opposite edges. (Data by Bernhard Kaufmann).

cantilever (resonance frequency 275.1 kHz, force constant 43 N/m, oscillation
amplitude 30 nm, set point 70 % and velocity 2 μm/s).

Figure 5.19 a) shows the chemical symbols of the material scratched into the
surface, while Fig. 5.19 b) shows a network of AFM induced cuts which are
about 3 layers deep and which are lead close to each other (cf. height profile
in Fig. 5.19 c)). The distances between the centers of scratches are well below
100 nm and the edge channels are partly separated by 25 nm only. A further
reduction of the distance between opposite step edges, short enough for elec-
tron tunneling, would lead to a beam splitter for electrons, which could come
out of the splitter either left or right after traveling the parallel close-by step
edges long enough. However, in order to make such networks operational, it
is mandatory to move the non-trivial band gap to EF. This may be achieved
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Figure 5.20: Atomic model of Bi13Pt3I7 as deduced from XRD [196]. Two different
spacer layers (pure iodide spacer and Bi-I spacer) are present, alternately spacing
the 2D TI layers (red). The two different spacers lead to an alternating coupling
between adjacent 2D TI layers, giving rise to a dimerization. (Model derived by
Bertold Rasche).

by surface doping (e.g. by Iodine) recalling that the calculated bulk position
of EF is already within the non-trivial band gap (Fig. 5.2 e) and ref. [32]).

5.2.5 Absence of an edge state in the structural closely related
but topologically trivial material Bi13Pt3I7

In section 2.2.6, I discussed the topological protection of the surface state of
WTIs and concluded that only a pairing of the 2D TI layers, in addition to an
even number of layers may gap the surface states at the non-trivial surfaces
of a WTI [17, 16, 15], if the pairing asymmetry is larger than the symmetry
disorder. Whereas an even number of 2D TI layers alone, without any dimer-
ization of the layers, is stabilized by any type of weak disorder of the inter-
layer coupling. By the STS data, the topological nature of an odd number of
layers is confirmed by looking at step edges which are only 1 monolayer in
height. In order to demonstrate the first assumption and additionally further
consolidate the topological character of the edge states found in Bi14Rh3I9, the
very similar system Bi13Pt3I7 is investigated, where a dimerization of the 2D
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Figure 5.21: a) Fully relativistic DFT band structure of a single 2D TI layer
[(Bi4Pt)3I]3+ with numbered bands as used in Fig. 5.24 c). Green areas mark topo-
logical band gaps with calculated Z2 indices marked. b) Same as (a) for the 3D mate-
rial Bi13Pt3I7 using a modified spacer layer leading to the same lateral unit cell as for
[(Bi4Pt)3I]3+. Bands labeled as in the table of parities in Fig. 5.24 d). Pairs of bands
are additionally labeled by the same numbers as in (a), but index a and b. Trivial
band gaps corresponding to the non-trivial band gaps of the 2D TI are marked in
orange with Z2 indices marked (The area between band 23 and 24 is not a real gap
within DFT, since band 24 at Γ and band 23 at M overlap in energy). (DFT by Bertold
Rasche).

TI layers takes place due to a replacement of Rh by the heavier Pt, resulting
in the disappearance of the topological edge state.

Figure 5.20 shows the structural model of Bi13Pt3I7 as deduced from XRD.
The chemical composition is slightly different such that every second spacer
layer is replaced by a single layer of iodide ions [196]. Thus, there are two
distinct spacer layers, i.e. the structurally identical Bi-I spacer as in Bi14Rh3I9
and a pure iodide spacer, leading to an alternating coupling between adjacent
[(Bi4Pt)3I]3+ honeycomb layers (red layer in Fig. 5.20). This honeycomb layer
is again built by six Bi cubes, however with the central Rh replaced by the
heavier Pt. Due to the second spacer layer, the size of one unit cell in stacking
direction (2.1 nm) nearly doubles with respect to Bi14Rh3I9.

The electronic structure of the honeycomb layer has been analyzed by fully
relativistic DFT (Fig. 5.21 a)) and was found to be a 2D TI with two non-trivial
band gaps (colored in green) as in the case of Bi14Rh3I9. The three bands sur-
rounding the non-trivial band gaps in the 2D TI layer of Bi14Rh3I9 (Fig. 5.2
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Figure 5.22: a) Atomically resolved STM image (V = 1 V, I = 100 pA) of the cleaved
Bi13Pt3I7 surface. Inset: Height profile along the green line. b), c) Atomically resolved
STM images of the 2D TI and Bi-I spacer layers, respectively ((b) V = 1 V, I = 100 pA,
(c) V = 0.6 V, I = 100 pA).

a)) look nearly identical to the bands 9, 10, and 11 of [(Bi4Pt)3I]3+ except for
a chemical shift by 0.3 eV upwards, which is caused by the different numbers
of electrons within the 2D TI layers. Thus, the two materials probed in this
study consist of very similar 2D TIs with honeycomb structure. The fully rel-
ativistic DFT band structure for the whole Bi13Pt3I7 compound is displayed
in Fig. 5.21 b). For the sake of simplicity, the arrangement of the Bi-I polyhe-
dra within the spacer layer has been changed artificially, leaving the in-plane
unit cell unchanged with respect to the original 2D TI layers. However, we
checked that only small changes in the courses of the displayed bands are ob-
served by performing non-relativistic DFT calculations (not shown here) of
the real atomic arrangement as deduced from XRD. The band structure in-
cluding the determination of the Z2 indices reveals the topologically trivial
nature of Bi13Pt3I7. Moreover, the material is semi-metallic as the two gap-
like areas (colored in orange) are no real gaps in DFT since band 21 at the
M-point and band 22 at the K-point for the lower gap, as well as band 24
at Γ and band 23 at M for the upper gap slightly overlap in energy. Thus, in-
deed, the alternating coupling between adjacent 2D TI layers renders the WTI
topologically trivial as expected from analytic arguments and numerical toy
models [15, 16, 17, 18, 19]. Later I will come back to the calculations, in order
to analyze the precise mechanism which by dimerization renders Bi13Pt3I7
trivial.
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Figure 5.23: a) Large scale STM image (V = 1 V, I = 100 pA) showing step heights of
one unit cell only (2.1 nm) as marked. b) ARPES intensity plot (hν = 21.2 eV); full
lines with double arrows mark the two band gaps present, and the dotted lines the
energies of dI/dV maps in (c). c) Stacked dI/dV images (Istab = 100 pA, Vmod =
8 mV) of the area shown in the background STM image (V = 0.6 V, I = 100 pA) and
recorded within the band gaps at voltages marked on the left, same contrast as in Fig.
5.18. d) Local dI/dV(V) spectra (Vstab = 1 V, Istab = 100 pA, Vmod = 8 mV) recorded
at the positions marked by arrows in (c) and on the insulating spacer layer. Band
gaps as deduced from ARPES are marked in red. (ARPES by Jens Kellner).

Similar to the experimental procedures on Bi14Rh3I9, the surface of Bi13Pt3I7
has been cleaved in UHV prior to the STM measurements. Figure 5.22 a)
shows an overview image revealing two different layers. Again, the 2D TI
layer is identified by its honeycomb structure (Fig. 5.22 b)) and the spacer
layer by the hexagonally arranged spots, which are triangularly reconstructed
(Fig. 5.22 c)). As the step height of the spacer (cf. inset of Fig. 5.22 a)) corre-
sponds to the step height of the spacer layer in Bi14Rh3I9, one can deduce
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that the spacer in Fig. 5.22 a) and c) represents the bigger Bi-I spacer. Further,
one observes the same atomic appearance as for the identical [Bi2I8]2− spacer
in Bi14Rh3I9 which would not be expected for a pure iodide layer and which
substantiates the above conclusion. Note, that the 2D TI layer exhibits single
atoms on top, most probably remaining iodide ions from the spacers. Inter-
estingly, such iodide ions are absent within the last two unit cells close to the
zigzag-terminated step edges (Fig. 5.23 c), topography).

Fig. 5.23 a) shows a typical large scale STM image of the Bi13Pt3I7 surface
exhibiting several terraces interrupted by corresponding step heights. Most
importantly, these step heights are always found to cover a complete unit cell
in stacking direction (2.1 nm). The STM data also reveal an additional big-
ger [Bi2I8]2− spacer on the terraces (see topmost terrace with a step height of
2.4 nm), whereas a pure iodide spacer has not been observed throughout the
measurements. Obviously, the coupling is stronger for adjacent 2D TI layers
spaced by a pure iodide layer so that the cleavage takes place at the [Bi2I8]2−
spacer. Consequently, one ends up with a unit cell of dimerized layers always
resulting in an even number of 2D TI layers at each step edge.
Prior to the STS measurements, the experimental energy position of the
pseudo band gaps found in the DFT were primarily determined using ARPES
(Fig. 5.23 b)). The determination of these gaps is crucial since a possible ab-
sence or presence of edge state is expected within these areas. Remember that
these gaps are found to be trivial in DFT calculations albeit originating from
non-trivial gaps of the 2D TI (Fig. 5.21). The ARPES spectra were measured
on the cleaved Bi13Pt3I7 surface at 15 K using He I (hν = 21.2 eV) discharge
within a laboratory based UHV system. The overall energy resolution was
10 meV and the angular resolution 0.6°. The fact that the beam spot of the
incident light is of the order of the sample size (∼ 1 mm in diameter) causes
some background intensity in the ARPES data probably originating from the
carbon conductive adhesive. For the same reason, a slight softening of the
bands in the spectra is observable. However, two band openings around the
Γ-point are visible (marked by double arrows). With respect to the DFT cal-
culations, the Fermi level is shifted down by about 0.3 eV indicating surface
charging due to the cleavage process. The slightly smaller value compared
to Bi14Rh3I9 (∼ 0.4 eV) might be explained by the remaining iodide ions on
the surface of the 2D TI layer in Bi13Pt3I7 (Fig. 5.22 a), b) and Fig. 5.23 c),
topography), which reduces the n-type doping with respect to Bi14Rh3I9.

Within the energy gaps found in ARPES, STS does not show any major sign
of an edge state within all ten step edges probed. Figure 5.23 c) exemplarily
shows dI/dV maps recorded at the 2D TI step edge at energies within the
band gaps and as marked by dotted lines in the ARPES spectrum. Obviously,
no edge state is present as also checked at other energies. Notice that the
contrast in Fig. 5.23 c) is chosen identical to Fig. 5.18, where the edge state of
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Bi14Rh3I9 is clearly apparent. Identically, locally resolved dI/dV(V) spectra
at relevant positions show no edge state behavior within an energy range
from -0.8 eV to 0.5 eV. Partly, the intensity of the 2D TI layer is even higher
within the incomplete band gaps than the intensity found at the step edge.
Thus, indeed, the dimerized structure of Bi13Pt3I7, where stacks are built from
pairs of 2D TIs, is a trivial insulator without protected edge states as predicted
by topological analysis [15, 16, 17, 18, 19].

Topological analysis of Bi13Pt3I7 by DFT

Here, I come back to the DFT results and the topological analysis of the triv-
ial compound Bi13Pt3I7 and its non-trivial [(Bi4Pt)3I]3+ 2D honeycomb lattice.
For both structures, the parities for each band at the corresponding TRIMs
of the respective Brillouin zone have been determined including the corre-
sponding Z2 indices valid for the energy region above the corresponding
band (tabulated in Fig. 5.24 c) and d) for the [(Bi4Pt)3I]3+ 2D TI layer and
the whole Bi13Pt3I7 compound, respectively). Z2 indices corresponding to
band gaps are highlighted by dashed boxes. The band numbers are labeled
according to the assignment of bands in the DFT band structure calculations
(Fig. 5.21 a) and b)) and the TRIMs are marked in the representation of the
respective Brillouin zone (Fig. 5.24 a) and b)).

In the case of the 2D TI layer, the first column of parities describes the Γ
point, which is always a TRIM, while the other three points describe the re-
maining three TRIMs, i.e., the three different M points (see Fig. 5.24 a)). One
observes that Z2 gets non-trivial at band 5 below EF and gets trivial again at
band 11 such that the marked band gaps around EF are topologically non-
trivial containing edge states. Consequently, the [(Bi4Pt)3I]3+ layer is a 2D TI
according to LDA-PW92 (see section 5.2.6).

The exchange of parities between bands is quite complex. Multiple avoided
crossings between the different valence bands, all dominated by Bi 6p orbitals
from the 2D TI layer, can be conjectured from the individual band courses.
We have cross-checked that these avoided crossings also cause a change of
orbital character (px, py, pz) of the bands. A similar complexity in parity
exchange has been found for the single 2D TI [(Bi4Rh)3I]2+ layers in Bi14Rh3I9
(not shown here), thus both 2D TI layers are very similar.

If one compares the DFT band structures of the [(Bi4Pt)3I]3+ 2D TI layer
and the whole Bi13Pt3I7 compound in more detail (Fig. 5.21 a) and b)) a dou-
bling of the bands, at least for bands 9 and 10 of the 2D TI layer become
apparent. For this particular bands, the same band numbers were used in the
respective plots with additional labels a and b in Fig. 5.21 b). The band dou-
bling originates from the doubling of the unit cell due to dimerization. The
pairs of bands exhibit exactly inverted parities at each TRIM indicating that
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Figure 5.24: a) Brillouin zone (black hexagons) of the 2D TI [(Bi4Pt)3I]3+ with high
symmetry points (Γ, K, M) marked. The orange diamond connects the TRIMs
(marked by blue points) and the blue lines show the corresponding unit cell. The
k-space directions of the corresponding band structure displayed in Fig. 5.21 a) are
marked by green lines. Coordinate directions a* and b* in reciprocal space are ad-
ditionally marked. b) Same as (a) but for the 3D material Bi13Pt3I7. The k-space di-
rections of the corresponding band structure displayed in Fig. 5.21 b) are marked by
green lines. c) Table of parities of the different bands as numbered in the band struc-
ture in Fig. 5.21 a) at the different TRIMs for [(Bi4Pt)3I]3+. The Z2 indices valid in the
energy region above the corresponding band are shown on the right. Z2 indices of
band gaps are highlighted by dashed boxes. Directly below band 1, the topology is
trivial. d) Same as (c) for the 3D material Bi13Pt3I7. (Calculation of the band parities
by Klaus Koepernik).
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they represent the bonding and anti-bonding linear combinations of the cor-
responding original bands of the two 2D TIs which form the unit cell. Since
the product of the parities at the TRIMs for each pair of such bands results in a
minus sign, one gets a trivial band topology for each pair of bands. Thus, we
suggest that a simple doubling of the unit cell renders the WTI trivial which
is different to the mechanism proposed from most of the analytic theories,
which consider the fate of the edge states only. Thus, one can conclude that
a dimerization of adjacent layers does not only lead to a gap in the protected
edge state, but at the same time destroys its protection by the symmetric and
antisymmetric hybridization of the dimerized layers. This appears logical,
since a destruction of a protected state requires a destruction of its protection,
but should be rigorously analyzed in terms of topology separately.

5.2.6 Computational details

All band structure calculations shown in this chapter have been performed
by our colleagues from the department of chemistry of the TU Dresden (Prof.
Dr. Michael Ruck) and from the Leibniz Institute for Solid State and Materi-
als Research of the IFW Dresden (Prof. Dr. Jeroen van den Brink). They were

Figure 5.25: Sketch of a small part of the Bi14Rh3I9 model visualizing the presence
of inversion symmetry within the structure. The Rh centered Bi cubes of the 2D TI
layer are colored in purple and the I-Bi zigzag chains of the spacer layer in blue.
The red crosses on top of the Bi cubes mark the respective inversion centers. The
crystallographic directions are additionally labeled by a, b and c.
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performed using the Full-Potential Local-Orbital (FPLO) code [197] version
14.00, within the local density approximation (LDA) using the parametriza-
tion PW92 according to Perdew et al. [198]. The Blöchl corrected linear tetra-
hedron method with a 8×8×4 k-mesh for Bi13Pt3I7 and a 12x12x1 k-mesh
for the single 2D TI layer [(Bi4Pt)3I]3+ was employed. For the 2D TI layer
[(Bi4Rh)3I]2+ of the Bi14Rh3I9 compound, a 12x7x7 k-mesh has been em-
ployed. SO coupling is treated on the level of the four-component Dirac-
equation. The following basis states are treated as valence states: Bi: 5s, 5p,
5d, 6s, 7s, 6p, 7p, 6d; Pt: 5s, 5p, 5d, 6s, 6p, 6d, 7s; I: 4s, 4p, 4d, 5s, 6s, 5p,
6p, 5d. For the band structure calculation of Bi13Pt3I7, the atomic structure
as deduced from XRD experiments was used [196]. The single 2D TI layer
[(Bi4Pt)3I]3+ was calculated with an iodide layer placed above and beneath
the [(Bi4Pt)3I]3+ layer in order to adjust the charge. 10 Å of vacuum was
added in c-direction in order to separate adjacent layers in a 3D supercell
geometry. The cell constants and atomic positions were optimized within the
p6/mmm layer symmetry [32].

The calculation of the topological invariants was implemented following
ref. [14] using the fact that the crystals all have an inversion symmetry (Fig.
5.25) such that parities of the states at the TRIMs can be used to calculate the
four Z2 indices ν0;(ν1ν2ν3) (cf. section 2.2.5 and references [13, 14, 49, 54]).
Additional details can be found in the Supplementary Information of Rasche
et al. [32].
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Within this work, scanning tunneling spectroscopy and angle-resolved pho-
toemission spectroscopy has been used in order to analyze different types of
topology in relevant systems. The strong topological properties, which are
already characterized for a broad range of materials, have been studied for
the technologically relevant phase change materials. In the case of the weak
topology, i.e. the other topological class in 3D, the experimental study on sys-
tems which are build by graphene-like sheets, displays the first ever demon-
stration of weak topological properties.

Using spin-ARPES at the synchrotron BESSY in Berlin, the spin texture of
the Dirac cone within the fundamental gap of the phase change alloy Sb2Te3
has been observed, revealing a counter-clockwise rotation for the lower part
of the Dirac cone. A spin polarization of up to 90 % could be detected af-
ter subtraction of the bulk valence band contribution in accordance with
DFT calculation. Further, a Fermi velocity of vF = 3.8 ± 0.2 · 105 m/s has
been deduced, which agrees reasonably with vF = 3.2 · 105 m/s obtained
by DFT. This result is also in line with the Fermi velocity deduced from
the Landau level spectroscopy by STS, which provides a Fermi velocity of
vF = 4.44 ± 0.07 · 105 m/s for the topological surface state. In addition, the
linear dependence of the Landau level energies with the root of the applied
magnetic field

√
B confirmed the Dirac fermion nature of the topological sur-

face states as well as the field independent n = 0 Landau level of the Dirac
point. Moreover, in accordance with DFT calculations, ARPES data further
identified a novel, strongly spin-split Rashba-type surface state which is pro-
tected by a SO gap away from Γ and connects an upper and a lower bulk
valence band. This state is similarly to the TI state protected by symmetry
according to a fundamental criterion given by Pendry and Gurman in 1975.

A second phase change compound from the pseudobinary line of phase
change materials, i.e. Ge2Sb2Te5, which is at the borderline of the systems
predicted to exhibit topological properties, has been analyzed by ARPES and
STM. The experimental results reveal that metastable cubic Ge2Sb2Te5 epitaxi-
ally grown on Si(111) exhibits a valence band maxima at 0.14− 0.18 Å−1 away
from Γ̄ and a band gap of 0.4 eV. All DFT calculations of Ge2Sb2Te5 find a va-
lence band maxima away from Γ only for a Z2 topological invariant ν0 = 1,
which implies that the technologically most relevant phase change material

C. Pauly, Strong and Weak Topology Probed by Surface Science, MatWerk,
DOI 10.1007/978-3-658-11811-2_6, © Springer Fachmedien Wiesbaden 2015
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Ge2Sb2Te5 is a strong topological insulator. This finding opens up the possi-
bility of switching between an insulating amorphous and a topological phase
on ns time scales.

In order to give a direct proof of the topological properties of Ge2Sb2Te5
spin-resolved ARPES as in the case of Sb2Te3 is required. Moreover a better
resolution of the ARPES experiment would be helpful in order to distinguish
between the surface state and the bulk valence band. In the k||-range of 0 to
0.12 Å−1, the topological surface state lies below the Fermi level and should
be detectable in ARPES. Further, STS at low temperature and in a magnetic
field would be an appropriate technique in order to resolve the TI nature of
the surface states by Landau level spectroscopy.

In the second part of the thesis, STM and STS measurements on the cleav-
age plane of single crystal Bi14Rh3I9 have been carried out. This material is
the first synthesized WTI and is stacked by consecutive graphene-like 2D TIs
and insulating spacer layers. The cleavage plane is the topologically dark sur-
face with the surrounding surfaces exhibiting topologically protected surface
states. The different layers have been identified by atomically resolved STM.
Further, a bias-dependent surface modulation of the 2D TI layer was found in
excellent agreement with DFT, induced by the different stacking between the
2D TI layer and the underlying zigzag chain structure of the spacer layer.

The STS showed that 0.8 nm wide electron channels are present at surface
step edges of the topologically dark surface. These electron channels have
been found to be continuous in both energy and space within a large band gap
of 200 meV, thereby, evidencing its non-trivial topology. The absence of these
channels in the closely related, but topologically trivial insulator Bi13Pt3I7
corroborates the channels’ topological nature. The back-scatter-free electron
channels are hereby a direct consequence of Bi14Rh3I9’s structure, a stack of
2D TI, graphene-like planes separated by trivial insulators. It was further
demonstrated that the surface of Bi14Rh3I9 can be engraved using an AFM,
allowing networks of protected channels to be patterned with nm precision.
This might offer the opportunity to design spin filters [199] with extremely
small footprint compared to 2D TIs in heterostructures [7]. Moreover, the in-
terfacing with other materials such as superconductors or magnetic insulators
required for advanced quantum circuitry [200, 201] becomes directly accessi-
ble by shadow mask evaporation. In this sense, the discovery of the first weak
3D TI Bi14Rh3I9 might offer similar advantages as graphene does with respect
to conventional semiconductor heterostructures [47].
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