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Preface

Macroscopic objects, as we see them all around us, are governed by a variety of forces,
derived from a variety of approximations to a variety of physical theories. In contrast, the
only elements in the construction of black holes are our basic concepts of space and time.
They are, thus, almost by definition, the most perfect macroscopic objects there are in the

universe.
– Subrahmanyan Chandrasekhar

Superradiance is a very generic process involving dissipative systems, whereby
energy is transferred from one medium to another, typically stimulated by wave
scattering. With a 60-year-old history, superradiance has played a prominent
role in optics, quantum mechanics, and especially in relativity and astrophysics.
Superradiance in curved spacetime was born by the hand of Yakov Borisovich
Zel’dovich, who realized that rotation of any macroscopic body with internal
degrees of freedom could amplify incident radiation. Quantization of this process
leads rotating objects—including black holes—to spontaneously radiate. Soon after,
and inspired by this discovery, Hawking realized that a similar mechanism would
trigger black hole evaporation very generically, even in the absence of rotation.

A unified framework for superradiant effects can yield new insights into
previously disconnected phenomena, for instance superradiant instabilities can
occur in systems as diverse as fluids, stars, and black-hole spacetimes. Furthermore,
the very necessity of superradiance in a variety of different systems can be
understood by simple thermodynamical arguments. Recent developments in
theoretical physics—in particular the realization that superradiance leads to new
constraints on fundamental bosonic fields and to new hairy black holes—have
further highlighted the need for a unified description of superradiant phenomena.
Unfortunately, with the exception of the outstanding—but focused—work by
Bekenstein and Schiffer [1], a proper overview on superradiance, including various
aspects of wave propagation in black-hole spacetimes, does not exist. We hope that
the current work will fill this gap.

This book is addressed to researchers embarking on the subject, who wish to find
a concise overview of the state-of-the-art and on the relevant methods to attack these
problems. This work is also addressed to more experienced researchers wishing
to dive quickly into a certain topic, by browsing through the relevant references.
In view of the multifaceted nature of this subject, we present a unified treatment
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vi Preface

where various aspects of superradiance in flat spacetime are connected to their
counterparts in curved spacetime, with particular emphasis on the superradiant
amplification by black holes. In addition, we wish to review various applications
of black-hole superradiance which have been developed in the last decade. These
developments embrace—at least—three different communities, and our scope is to
present a concise treatment that can be fruitful for the reader who is not familiar
with the specific area. As will become clear throughout this work, some of these
topics are far from being fully explored. We hope this study will serve as a guide for
the exciting developments lying ahead, including the experimental implementation
and observation of rotational superradiance!

This work would not have been possible without the patient and constant
encouragement of Ana Sousa (who has also kindly prepared the illustrations for
us) and of Giulia Serra. We are indebted to Asimina Arvanitaki, Jacob Bekenstein,
Óscar Dias, Sam Dolan, Roberto Emparan, Sean Hartnoll, Shahar Hod, Luis Lehner,
Carlos Palenzuela, Robert Penna, Silke Weinfurtner for useful comments on a
preliminary draft of this manuscript, and especially to João Rosa for comments
and for comparing our superradiant amplification factors with his code. We are
also much indebted to Enrico Barausse, Emanuele Berti, Óscar Dias, Roberto
Emparan, Leonardo Gualtieri, Carlos Herdeiro, Luis Lehner, Hideo Kodama,
Akihiro Ishibashi, José Lemos, Avi Loeb, Hirotada Okawa, Frans Pretorius, Thomas
Sotiriou, Ulrich Sperhake, Helvi Witek, Shijun Yoshida, and Hirotaka Yoshino for
many and interesting discussions throughout the years.

We benefited from the generous support of a number of institutions. R. B. is
supported by FCT foundation through grant SFRH/BD/52047/2012, and from the
Fundação Calouste Gulbenkian through the Programa Gulbenkian de Estímulo
à Investigação Científica. V.C. acknowledges financial support provided under
the European Union’s FP7 ERC Starting Grant “The dynamics of black holes:
testing the limits of Einstein’s theory” grant agreement no. DyBHo–256667. P.P.
was supported by the European Community through the Intra-European Marie
Curie contracts aStronGR-2011-298297, AstroGRAphy-2013-623439 and by FCT-
Portugal through the projects IF/00293/2013 and CERN/FP/123593/2011. This
research was supported in part by the Perimeter Institute for Theoretical Physics.
Research at Perimeter Institute is supported by the Government of Canada through
Industry Canada and by the Province of Ontario through the Ministry of Economic
Development and Innovation. This work was supported by the NRHEP 295189 FP7-
PEOPLE-2011-IRSES Grant.
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Notation and Conventions

Unless otherwise and explicitly stated, we use geometrized units where G D c D 1,
so that energy and time have units of length. We also adopt the .� C C C : : : /

convention for the metric. For reference, the following is a list of symbols that are
used often throughout the text.

' Azimuthal coordinate
# Angular coordinate
m Azimuthal number with respect to the axis of rotation, jmj � l
l Integer angular number, related to the eigenvalue Alm D l.l C 1/ in four

spacetime dimensions
s Spin of the field
! Fourier transform variable. The time dependence of any field is � e�i!t

For stable spacetimes, Im.!/ < 0
!R; !I Real and imaginary part of the QNM frequencies
R; I Amplitude of reflected and incident waves, which characterize a wave-

function ˆ
Zslm Amplification factor of fluxes for a wave with spin s and harmonic indices

.l;m/. For scalar fields, Z0lm D jRj2=jIj2 � 1 with the asymptotic
expansion at spatial infinity,ˆ � Rei!t C Ie�i!t

Occasionally, when clear from the context, we will omit the indices s and
l and simply write Zm

n Overtone numbers of the eigenfrequencies
We conventionally start counting from a “fundamental mode” with n D 0

D Total number of spacetime dimensions (we always consider one timelike
and D � 1 spacelike dimensions)

xi



xii Notation and Conventions

L Curvature radius of (A)dS spacetime, related to the negative
cosmological constantƒ in the Einstein equations (G�� Cƒg�� D 0)

L2 D �.D � 2/.D � 1/=.2ƒ/ is the curvature radius of AdS (� sign) or dS
M Mass of the BH spacetime
rC Radius of the BH event horizon in the chosen coordinates
�H Angular velocity of a zero-angular momentum observer at the BH horizon,

as measured by a static observer at infinity
�S; V; T Mass parameter of the (scalar, vector or tensor) field

In geometric units, the field mass is �S;V;T „, respectively
a Kerr rotation parameter: a D J=M 2 Œ0;M�
g˛ˇ Spacetime metric; Greek indices run from 0 to D � 1
Ylm Spherical harmonics, orthonormal with respect to the integral over the

2-sphere
Sslm Spin-weighted spheroidal harmonics
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ADM Arnowitt-Deser-Misner
AGN Active Galactic Nucleus
AdS Anti-de Sitter
BH Black hole
CFT Conformal field theory
GR General Relativity
GW Gravitational Wave
LIGO Laser Interferometric Gravitational Wave Observatory
ODE Ordinary differential equation
NS Neutron star
PDE Partial differential equation
QCD Quantum Chromodynamics
QNM Quasinormal mode
RN Reissner-Nordström
ZAMO Zero Angular Momentum Observer
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Chapter 1
Introduction

Radiation-enhancement processes have a long history that can be traced back to
the dawn of quantum mechanics, when Klein showed that the Dirac equation
allows for electrons to be transmitted even in classically forbidden regions [1]. In
1971 Zel’dovich showed that scattering of radiation off rotating absorbing surfaces
results, under certain conditions, in waves with a larger amplitude [2, 3]. This
phenomenon is now widely known also as (rotational) superradiance and requires
that the incident radiation, assumed monochromatic of frequency !, satisfies

! < m� ; (1.1)

with m the azimuthal number with respect to the rotation axis and � the angular
velocity of the body. Rotational superradiance belongs to a wider class of classical
problems displaying stimulated or spontaneous energy emission, such as the
Vavilov-Cherenkov effect, the anomalous Doppler effect and other examples of
“superluminal motion”. When quantum effects were incorporated, it was argued
that rotational superradiance would become a spontaneous process and that rotating
bodies—including black holes (BHs)—would slow down by spontaneous emission
of photons satisfying (1.1). In parallel, similar conclusions were reached when
analyzing BH superradiance from a thermodynamic viewpoint [4, 5]. From a
historic perspective, the first studies of BH superradiance played a decisive role
in the discovery of BH evaporation [6, 7].

Interest in BH superradiance was recently revived in different areas, including
astrophysics and high-energy physics (via the gauge/gravity duality), and funda-
mental issues in General Relativity (GR). Superradiant instabilities can be used
to constrain the mass of ultralight degrees of freedom [8–10], with important
applications to dark-matter searches and to physics beyond the Standard Model.
BH superradiance is also associated to the existence of new asymptotically flat,
hairy BH solutions [11] and to phase transitions between spinning or charged black
objects in asymptotically AdS spacetime [12–14] or in higher dimensions [15].

© Springer International Publishing Switzerland 2015
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DOI 10.1007/978-3-319-19000-6_1

1



2 1 Introduction

Finally, superradiance is fundamental in deciding the stability of BHs and the fate
of the gravitational collapse in confining geometries. In fact, the strong connection
between some recent applications and the original phenomenon of superradiance
has not always been fully recognized. This is the case, for instance, of holographic
models of superfluids [16], which hinge on a spontaneous symmetry breaking of
charged BHs in anti-de Sitter (AdS) spacetime [17]. In global AdS, the associated
phase transition can be interpreted in terms of superradiant instability of a Reissner-
Nordstrom AdS BH triggered by a charged scalar field [13, 18].

1.1 Milestones

The term superradiance was coined by Dicke in 1954 [19], but studies on related
phenomena date back to at least 1947 with the pioneering work of Ginzburg and
Frank [20] on the “anomalous” Doppler effect. It is impossible to summarize all
the important work in the field in this book, but we think it is both useful and
pedagogical to have a chronogram of some of the most relevant milestones. We
will keep this list—necessarily incomplete and necessarily biased—confined mostly
to the realm of GR, although we can’t help making a reference to some of the
breakthrough work in other areas. A more complete set of references can be found
in the rest of this book.

1915 Einstein develops the General Theory of Relativity [21].
1916 Few months later, Schwarzschild derives the first solution of Einstein’s

equations, describing the gravitational field generated by a mass point [22]. Most
of the subtleties and implications of this solution will only be understood many
years later.

1920s In order to unify electromagnetism with GR, Kaluza and Klein propose a
model in which the spacetime has five dimensions, one of which is compactified
on a circle [23, 24].

1929 In his studies of the Dirac equation, Klein finds that electrons can “cross” a
potential barrier without the exponential damping expected from nonrelativistic
quantum tunneling [1]. This process was soon dubbed Klein paradox by Sauter.
The expression was later used to describe an incorrectly obtained phenomenon
of fermion superradiance (Klein’s original work correctly shows that no superra-
diance occurs for fermions). An interesting historical account of these events is
given by Manogue [25].

1931 Chandrasekhar derives an upper limit for white dwarf masses, above which
electron degeneracy pressure cannot sustain the star [26]. The Chandrasekhar
limit was subsequently extended to NSs by Oppenheimer and Volkoff [27].

1934 Vavilov and Cherenkov discover spontaneous emission from a charge
moving uniformly and superluminally in a dielectric. The effect was interpreted
theoretically by Tamm and Frank in 1937 [28]. In 1958, Tamm, Frank and
Cherenkov receive the Nobel prize in physics for these studies.
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1937 Kapitska discovers superfluidity in liquid helium.
1945 Ginzburg and Frank discuss transition radiation [29].
1947 Ginzburg and Frank discover an “anomalous Doppler effect” [20]: the

emission of radiation by a system moving faster than the phase velocity of
electromagnetic waves in a medium and followed by the excitation (rather than
by the standard de-excitation) to a higher energy level.

1947 Pierce describes a “travelling wave tube amplifier”, where an electron beam
extracts energy from an electromagnetic wave travelling at a speed less than its
vacuum value. The electromagnetic wave is forced to slow down using an helix
electrode, a spiral of wire around the electron beam [30, 31].

1953 Smith and Purcell experimentally show that motion near finite-size objects
induces radiation emission, or “diffraction radiation” [32].

1954 Dicke coins the term “superradiance” in the context of coherent emission
in quantum optics [19]. The first high-resolution measurement of superradiance
using coherent synchrotron radiation was recently achieved [33].

1957 Regge and Wheeler [34] analyze a special class of gravitational perturba-
tions of the Schwarzschild geometry. This effectively marks the birth of BH
perturbation theory.

1958 Finkelstein understands that the r D 2M surface of the Schwarzschild
geometry is not a singularity but a horizon [35]. The so-called “golden age
of GR” begins: in a few years there would be an enormous progress in the
understanding of GR and of its solutions.

1962 Newman and Penrose [36] develop a formalism to study gravitational
radiation using spin coefficients.

1963 Kerr [37] discovers the mathematical solution of Einstein’s field equations
describing rotating BHs. In the same year, Schmidt identifies the first quasar [38].
Quasars are now believed to be supermassive BHs, described by the Kerr
solution.

1964 The UHURU orbiting X-ray observatory makes the first surveys of the
X-ray sky discovering over 300 X-ray “stars”. One of these X-ray sources,
Cygnus X-1, is soon accepted as the first plausible stellar-mass BH candidate
(see e.g. [39]).

1967 Wheeler [40, 41] coins the term black hole (see the April 2009 issue of
Physics Today, and [42] for a fascinating, first-person historical account).

1969 Hawking’s singularity theorems imply that collapse of ordinary matter
leads, under generic conditions, to spacetime singularities. In the same year
Penrose conjectures that these singularities, where quantum gravitational effects
become important, are generically contained within BHs, the so-called Cosmic
Censorship Conjecture [43, 44].

1969 Penrose shows that the existence of an ergoregion allows to extract energy
and angular momentum from a Kerr BH and to amplify energy in particle
collisions [43].

1970 Zerilli [45, 46] extends the Regge-Wheeler analysis to general perturba-
tions of a Schwarzschild BH, reducing the problem to the study of a pair of
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Schrödinger-like equations, and computing the gravitational radiation emitted by
infalling test particles.

1970 Vishveshwara [47] studies numerically the scattering of gravitational
waves by BHs: at late times the waveform consists of damped sinusoids, now
called ringdown waves. The latter coincide with the BH quasinormal modes
(QNMs) [48–52].

1971 Zeldovich shows that dissipative rotating bodies amplify incident waves [2,
3]. In the same study, quantum spontaneous pair creation by rotating bodies
is also predicted, which effectively is a precursor to Hawking’s result on BH
evaporation. Aspects of the quantization procedure of test fields in the Kerr
geometry were further independently elaborated by Starobinski [53, 54] and
Deruelle and collaborators [55, 56].

1972–1974 Teukolsky [57] decouples and separates the equations for perturba-
tions in the Kerr geometry using the Newman-Penrose formalism [36]. In the
same year, Teukolsky and Press discuss quantitatively the superradiant scattering
from a spinning BH [58]. They predict that, if confined, superradiance can give
rise to BH bombs and floating orbits around spinning BHs [59].

1973 Working independently from Teukolsky, Unruh separates the massless spin-
1/2 equations on a Kerr background and proves the absence of superradiance for
massless fermions [60]. The result was later generalized to massive fermions by
Chandrasekhar [61] and by Iyer and Kumar [62].

1975 Using quantum field theory in curved space and building on Zeldovich’s
1971 result, Hawking finds that BHs have a thermal emission [6]. This result is
one of the most important links between general relativity, quantum mechanics
and thermodynamics.

1977 Blandford and Znajek propose a mechanism to extract energy from rotating
BHs immersed in force-free magnetic fields [63]. This is thought to be one of the
main mechanisms behind jet formation.

1976–1980 Damour, Deruelle and Ruffini discover that superradiance triggers an
instability of the Kerr BH solution against massive scalar fields [64]. The study
is then formalized by Detweiler [65] and by Zouros and Eardley [66].

1978 Friedman [67] shows that horizonless spacetimes with ergoregions are
unstable.

1983 Chandrasekhar’s monograph [68] summarizes the state of the art in BH
perturbation theory, elucidating connections between different formalisms.

1985 Leaver [69–71] provides the most accurate method to date to compute BH
QNMs using continued fraction representations of the relevant wavefunctions.
Recently, accurate spectral methods have been developed to handle PDEs [72].

1986 McClintock and Remillard [73] show that the X-ray nova A0620-00
contains a compact object of mass almost certainly larger than 3Mˇ, paving the
way for the identification of many more stellar-mass BH candidates.

1986 Myers and Perry construct higher-dimensional rotating, topologically spher-
ical, BH solutions [74].

1992 In a series of papers, Kojima develops the theory of linear perturbations of
a slowly-rotating, relativistic star [75–77].
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1998 Maldacena formulates the AdS/CFT duality conjecture [78]. Shortly after-
ward, the papers by Gubser et al. [79] and Witten [80] establish a concrete
quantitative recipe for the duality. The AdS/CFT era begins. In the same
year, the correspondence is generalized to nonconformal theories in a variety
of approaches. The terms “gauge/string duality”, “gauge/gravity duality” and
“holography” appear, referring to these generalized settings (we refer to [81]
for a review).

1999 Banks and Fischler [82] show that in braneworld scenarios BHs could be
produced in particle accelerators. Shortly after, it is proposed to look for BH
production in the LHC and in ultra high-energy cosmic rays [83, 84].

2001 Emparan and Reall provide the first example of a stationary asymptotically
flat vacuum solution with an event horizon of nonspherical topology: the “black
ring” [85].

2003 In a series of papers [86–88], Kodama and Ishibashi extend the Regge-
Wheeler-Zerilli formalism to higher dimensions.

2004 Small, rapidly spinning Kerr-AdS BHs are found to be unstable because
of the AdS boundary providing a natural confinement mechanism for superra-
diant radiation [12]. Rigorous growth-rate estimates for generic initial data are
provided in [89].

2005–2007 The LIGO and Virgo detectors reach design sensitivity [90].
2005–2009 The D1-D5 system is used as a toy model to understand the micro-

scopic origin of superradiant scattering [91, 92]. For horizonless geometries,
ergoregion instabilities lead precisely to Hawking radiation [93, 94].

2008 Gubser proposes a spontaneous symmetry breaking mechanism, giving an
effective mass to charged scalars in AdS [17]. Shortly afterwards, Hartnoll,
Herzog and Horowitz provide a nonlinear realization of the mechanism, building
the holographic analog of a superfluid [16]. Depending on the magnitude of the
induced mass, tachyonic or superradiant instabilities may be triggered in BH
spacetimes [13, 18, 95, 96].

2009 The string-axiverse scenario is proposed, where a number of ultralight
degrees of freedom—prone to superradiant instabilities around spinning BHs—
are conjectured to exist [97]. Precision measurements of mass and spin of BHs
may be used to explore some of the consequences of this scenario [8].

2011 Superradiant instabilities are shown to drive AdS BHs to hairy configura-
tions [13, 14].

2011 Floating orbits around Kerr BHs are predicted in scalar-tensor theories as a
generic outcome of superradiant amplification of scalar waves [98].

2012 Rotating Kerr BHs are shown to be linearly unstable against massive vector
field perturbations [9, 99, 100] and massive tensor field perturbations [10].
Competitive bounds on the photon and graviton mass are derived from the
observations of spinning BHs [101].

2013 Superradiance is shown to occur at full nonlinear level [102].
2014 The development of superradiant instabilities is studied nonlinearly [103].
2014 Asymptotically flat, hairy BH solutions are constructed analytically [104]

and numerically [11]. These are thought to be one possible end-state of superra-
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diant instabilities for complex scalar fields. The superradiance threshold of the
standard Kerr solution marks the onset of a phase transition towards a hairy BH.

2014 Reissner-Nordstrom de Sitter BHs are found to be unstable against charged
scalar perturbations [105]. The unstable modes satisfy the superradiant condi-
tion [106].
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Chapter 2
Superradiance in Flat Spacetime

2.1 Klein Paradox: The First Example of Superradiance

The first treatment of what came to be known as the Klein paradox can be traced
back to the original paper by Klein [1], who pioneered studies of Dirac’s equation
in the presence of a step potential. He showed that an electron beam propagating in
a region with a large enough potential barrier V can emerge without the exponential
damping expected from nonrelativistic quantum tunneling processes. When trying
to understand if such a result was an artifact of the step-potential used by Klein,
Sauter found that the essentials of the process were independent on the details of the
potential barrier, although the probability of transmission decreases with decreasing
slope [2]. This phenomenon was originally dubbed “Klein paradox” by Sauter1 in
1931 [2].

Further studies by Hund in 1941 [5], now dealing with a charged scalar field
and the Klein-Gordon equation, showed that the step potential could give rise to
the production of pairs of charged particles when the potential is sufficiently strong.
Hund tried—but failed—to derive the same result for fermions. It is quite interesting
to note that this result can be seen as a precursor of the modern quantum field
theory results of Schwinger [6] and Hawking [7] who showed that spontaneous pair
production is possible in the presence of strong electromagnetic and gravitational

1The Klein paradox as we understand it today has an interesting history. Few years after Klein’s
original study (written in German), the expression Klein paradox appeared in some British
literature in relation with fermionic superradiance: due to some confusion (and probably because
Klein’s paper didn’t have an English translation), some authors wrongly interpreted Klein’s results
as if the fermionic current reflected by the potential barrier could be greater than the incident
current. This result was due to an incorrect evaluation of the reflected and transmitted wave’s group
velocities, although Klein—following suggestions by Niels Bohr—had the correct calculation in
the original work [3]. Although not explicitly mentioned by Klein, this phenomenon can actually
happen for bosonic fields [4] and it goes under the name of superradiant scattering.

© Springer International Publishing Switzerland 2015
R. Brito et al., Superradiance, Lecture Notes in Physics 906,
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fields for both bosons and fermions. In fact we know today that the resolution of the
“old” Klein paradox is due to the creation of particle–antiparticle pairs at the barrier,
which explains the undamped transmitted part.

In the remaining of this section we present a simple treatment of bosonic and
fermionic scattering, to illustrate these phenomena.

2.1.1 Bosonic Scattering

Consider a massless scalar field ˆ minimally coupled to an electromagnetic
potential A� in .1C 1/–dimensions, governed by the Klein-Gordon equation

ˆ
I�

I� D 0 ; (2.1)

where we defined ˆI� � .@� � ieA�/ˆ and e is the charge of the scalar field. For
simplicity we consider an external potential A� D fA0.x/; 0g, with the asymptotic
behavior

A0 !
�
0 as x ! �1
V as x ! C1 : (2.2)

With the ansatz ˆ D e�i!tf .x/, Eq. (2.1) can be separated yielding the ODE

d2f

dx2
C .! � eA0/

2 f D 0 : (2.3)

Consider a beam of particles coming from �1 and scattering off the potential
with reflection and transmission amplitudes R and T respectively. With these
boundary conditions, the solution to Eq. (2.1) behaves asymptotically as

fin.x/ D Iei!x C Re�i!x ; as x ! �1 ;

fin.x/ D T eikx ; as x ! C1 ; (2.4)

where

k D ˙.! � eV/ : (2.5)

To define the sign of ! and k we must look at the wave’s group velocity. We require
the incoming and the transmitted part of the waves to have positive group velocity,
@!=@k > 0, so that they travel from the left to the right in the x-direction. Hence,
we take ! > 0 and the plus sign in (2.5).
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The reflection and transmission coefficients depend on the specific shape of the
potential A0. However one can easily show that the Wronskian

W D Qf1 dQf2
dx

� Qf2 dQf1
dx
; (2.6)

between two independent solutions, Qf1 and Qf2, of (2.3) is conserved. From the
Eq. (2.3) on the other hand, if f is a solution then its complex conjugate f � is another
linearly independent solution. Evaluating the Wronskian (2.6), or equivalently, the
particle current density, for the solution (2.4) and its complex conjugate we find

jRj2 D jIj2 � ! � eV

!
jT j2 : (2.7)

Thus, for

0 < ! < eV ; (2.8)

it is possible to have superradiant amplification of the reflected current, i.e, jRj >
jIj.

2.1.2 Fermionic Scattering

Now let us consider the Dirac equation for a spin- 1
2

massless fermion‰, minimally
coupled to the same electromagnetic potential A� as in Eq. (2.2),

��‰I� D 0 ; (2.9)

where �� are the four Dirac matrices satisfying the anticommutation relation
f��; ��g D 2g�� . The solution to (2.9) takes the form ‰ D e�i!t�.x/, where �
is a two-spinor given by

� D
�

f1.x/
f2.x/

�
: (2.10)

Using the representation

�0 D
�

i 0
0 �i

�
; �1 D

�
0 i
�i 0

�
; (2.11)

the functions f1 and f2 satisfy the system of equations:

df1=dx � i.! � eA0/f2 D 0 ;

df2=dx � i.! � eA0/f1 D 0 : (2.12)
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One set of solutions can be once more formed by the ‘in’ modes, representing a
flux of particles coming from x ! �1 being partially reflected (with reflection
amplitude jRj2) and partially transmitted at the barrier

�
f in
1 ; f

in
2

� D
� �

Iei!x � Re�i!x; Iei!x C Re�i!x
�

as x ! �1�
T eikx; T eikx

�
as x ! C1 : (2.13)

On the other hand, the conserved current associated with the Dirac equation (2.9)
is given by j� D �e‰��0��‰ and, by equating the latter at x ! �1 and x !
C1, we find some general relations between the reflection and the transmission
coefficients, in particular,

jRj2 D jIj2 � jT j2 : (2.14)

Therefore, jRj2 � jIj2 for any frequency, showing that there is no superradiance
for fermions. The same kind of relation can be found for massive fields [3].

The difference between fermions and bosons comes from the intrinsic properties
of these two kinds of particles. Fermions have positive definite current densities
and bounded transmission amplitudes 0 � jT j2 � jIj2, while for bosons the
current density can change its sign as it is partially transmitted and the transmission
amplitude can be negative, �1 < !�eV

!
jT j2 � jIj2. From the quantum field theory

point of view one can understand this process as a spontaneous pair production
phenomenon due to the presence of a strong electromagnetic field (see e.g. [3]). The
number of fermionic pairs produced spontaneously in a given state is limited by the
Pauli exclusion principle, while such limitation does not exist for bosons.

2.2 Superradiance and Pair Creation

To understand how pair creation is related to superradiance consider the potential
used in the Klein paradox. Take a superradiant mode obeying Eq. (2.8) and P � 1 to
be the probability for spontaneous production of a single particle-antiparticle pair.
The average number Nn of bosonic and fermionic pairs in a given state follows the
Bose-Einstein and the Fermi-Dirac distributions, respectively, [8]

NnB;F D 1

1=P � 1
; (2.15)

where the minus sign refers to bosons, whereas the plus sign in the equation above
is dictated by the Pauli exclusion principle, which allows only one fermionic pair to
be produced in the same state.
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Now, by using a second quantization procedure, the number of pairs produced in
a given state for bosons and fermions in the superradiant region (2.8) is [3]

NnB D
ˇ̌
ˇ̌! � eV

!

ˇ̌
ˇ̌ jT j2 ; NnF D jT j2 : (2.16)

From Eq. (2.15) we see that 0 � NnF � 1 while NnB ! 1 when P ! 1 and NnB ! 0

when P ! 0. Equations (2.15), (2.16) and (2.7) show that jRj2 ! jIj2 as P ! 0,
so that superradiance is possible only when P ¤ 0, i.e. superradiance occurs due
to spontaneous pair creation. On the other hand, we also see that the bounded value
for the amplification factor in fermions is due to the Pauli exclusion principle.

Although superradiance and spontaneous pair production in strong fields are
related phenomena, they are nevertheless distinct. Indeed, pair production can occur
without superradiance and it can occur whenever is kinematically allowed. On
the other hand, superradiance is enough to ensure that bosonic spontaneous pair
emission will occur. This is a well known result in BH physics. For example, in
Sect. 3 we shall see that even nonrotating BHs do not allow for superradiance,
but nonetheless emit Hawking radiation [7], the latter can be considered as the
gravitational analogue of pair production in strong electromagnetic fields.

To examine the question of energy conservation in this process, let us follow the
following thought experiment [4]. Consider a battery connected to two boxes, such
that a potential V increase occurs between an outer grounded box and an inner box.
An absorber is placed at the end of the inner box, which absorbs all particles incident
on it. Let us consider an incident superradiant massless bosonic wave with charge e
and energy ! < eV . From (2.7) we see that

jRj2 � eV � !

!
jT j2 D jIj2 ; (2.17)

The minus sign in front of eV�!
!

jT j2 is a consequence of the fact that the current
for bosons is not positive definite, and “negatively” charged waves have a negative
current density. Since more particles are reflected than incident we can also picture
the process in the following way: all particles incident on the potential barrier are
reflected, however the incident beam stimulates pair creation at the barrier, which
emits particles and antiparticles. Particles join the reflected beam, while the negative
transmitted current can be interpreted as a flow of antiparticles with charge �e. All
the particles incident with energy! are reflected back with energy! and in addition,
because of pair creation, more particles with charge e and energy ! join the beam.
For each additional particle another one with charge �e is transmitted to the box and
transmits its energy to the absorber, delivering a kinetic energy eV �!. To keep the
potential of the inner box at V , the battery loses an amount of stored energy equal
to eV . The total change of the system, battery plus boxes, is therefore Ediss D �!,
for each particle with energy ! that is created to join the beam.

Now, imagine exactly the same experiment but! > eV , when superradiance does
not occur, and jRj2 � jIj2. In this case the kinetic energy delivered to the absorber
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is ! � eV . An amount of energy eV is given to the battery and the system battery
plus boxes gains a total energy !. By energy conservation the reflected beam must
have energy �!, which we can interpret as being due to the fact that the reflected
beam is composed by antiparticles and the transmitted beam by particles.

Although the result might seem evident from the energetic point of view, we see
that superradiance is connected to dissipation within the system. As we will see in
the rest, this fact is a very generic feature of superradiance.

If we repeat the same experiment for fermions we see from (2.14) that jRj2 C
jT j2 D jIj2. Since the current density for fermions is positive definite the flux
across the potential barrier must be positive and, therefore, the flux in the reflected
wave must be less than the incident wave. Since fewer particles are reflected than
transmitted, then by energy conservation the total energy given to the battery-boxes
system must be positive and given by !. Thus the reflected beam has a negative
energy �!, which can be interpreted as being due the production of antiparticles. In
this case the kinetic energy delivered to the absorber will always be j! � eVj.

2.3 Superradiance and Spontaneous Emission
by a Moving Object

As counterintuitive as it can appear at first sight, in fact superradiance can be
understood purely kinematically in terms of Lorentz transformations. Consider
an object moving with velocity vi (with respect to the laboratory frame) and
emitting/absorbing a photon. Let the initial 4-momentum of the object be p�i D
.Ei;pi/ and the final one be p�f D .Ef ;pf / with Ef D Ei � „! and pf D pi � „k,
where .„!;„k/ is the 4-momentum of the emitted/absorbed photon, respectively.
The object’s rest mass can be computed by using Lorentz transformations to go to
the comoving frame,

Ei D �i.Ei � vi � pi/ ; (2.18)

and similarly for Ef , where �i D 1=

q
1 � v2i . Assuming vf D vi C ıv, to zeroth

order in the recoil term ıv the increase of the rest mass reads

	E � Ef � Ei D ��i„.! � vi � k/C O.ıv/ ; (2.19)

where the minus and plus signs refer to emission and absorption of the photon,
respectively. Therefore, if the object is in its fundamental state (Ei < Ef ), the
emission of a photon can only occur when the Ginzburg-Frank condition is satisfied,
namely [9, 10]

!.k/ � vi � k < 0 ; (2.20)
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where k D jkj and !.k/ is given by the photon’s dispersion relation. In vacuum,
!.k/ D k so that the equation above can never be fulfilled. This reflects the obvious
fact that Lorentz invariance forbids a particle in its ground state to emit a photon in
vacuum. However, spontaneous emission can occur any time the dispersion relation
allows for ! < k. For example, suppose that the particle emits a massive wave
whose dispersion relation is ! D p

�2 C k2, where � is the mass of the emitted
radiation. For modes with � � k, Eq. (2.20) reads

�2

2k2
< vi cos# � 1 � 0 ; (2.21)

where vi � k D vik cos# . Hence, only unphysical radiation with �2 < 0 can be
spontaneously radiated, this fact being related to the so-called tachyonic instability
and it is relevant for those theories that predict radiation with an effective mass
� through nonminimal couplings (e.g. this happens in scalar-tensor theories of
gravity [11] and it is associated to so-called spontaneous scalarization [12]).

Another relevant example occurs when the object is travelling through an
isotropic dielectric that is transparent to radiation. In this case ! D k=n.!/ where
n.!/ D 1=vph is the medium’s refractive index and vph is the phase velocity of
radiation in the medium. In this case Eq. (2.20) reads

cos# >
vph

vi
: (2.22)

Therefore, if the object’s speed is smaller than the phase velocity of radiation,
no spontaneous emission can occur, whereas in the opposite case spontaneous
superradiance occurs when # < #c D cos�1.vph=vi/. This phenomenon was
dubbed anomalous Doppler effect [9, 10]. The angle #c defines the angle of coherent
scattering, i.e. a photon incident with an angle #c can be absorbed and re-emitted
along the same direction without changing the object motion, even when the latter
is structureless, i.e. when Ei D Ef .

As discussed in [13], spontaneous superradiance is not only a simple conse-
quence of Lorentz invariance, but it also follows from thermodynamical arguments.
Indeed, for a finite body that absorbs nearly monochromatic radiation, the second
law of thermodynamics implies

.! � vi � k/a.!/ > 0 ; (2.23)

where a.!/ is the characteristic absorptivity of the body. Hence, the superradiance
condition is associated with a negative absorptivity, that is, superradiance is
intimately connected to dissipation within the system.
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2.3.1 Cherenkov Emission and Superradiance

The emission of radiation by a charge moving superluminally relative to the phase
velocity of radiation in a dielectric—also known as the Vavilov-Cherenkov effect—
has a simple interpretation in terms of spontaneous superradiance [14]. A point
charge has no internal structure, so 	E D 0 in Eq. (2.19). Such condition can only
be fulfilled when the charge moves faster than the phase velocity of radiation in the
dielectric and it occurs when photons are emitted with an angle

#c D cos�1.vph=vi/ : (2.24)

In general, vph D vph.!/ and radiation at different frequencies will be emitted
in different directions. In case of a dielectric with zero dispersivity, the refraction
index is independent from ! and the front of the photons emitted during the
charge’s motion forms a cone with opening angle 
 � 2#c. Such cone is the
electromagnetic counterpart of the Mach cone that characterizes a shock wave
produced by supersonic motion as will be discussed in Sect. 2.4.

2.3.2 Cherenkov Radiation by Neutral Particles

In their seminal work, Ginzburg and Frank also studied the anomalous Doppler
effect occurring when a charge moves through a pipe drilled into a dielectric [9, 10].
More recently, Bekenstein and Schiffer have generalized this effect to the case of
a neutral object which sources a large gravitational potential (e.g. a neutral BH)
moving through a dielectric [13]. As we now briefly discuss, this effect is similar to
Cherenkov emission, although it occurs even in presence of neutral particles.

Consider first a neutral massive object with mass M surrounded by a ionized,
two-component plasma of electrons and positively-charged nuclei.2 It was realized
by Milne and Eddington that in hydrostatic and thermodynamic equilibrium, an
electric field necessarily develops to keep protons and electrons from separating
completely [15–17]. In equilibrium, the partial pressure Pe;N of electrons and nuclei
is, respectively

@ log Pe;N

@r
D �me;Ng

kT
� eE

kT
; (2.25)

where me;N is the mass of an electron and of the nucleon, k is the Boltzmann
constant, T the temperature of the plasma and g the local gravitational accelera-
tion. Equality of the pressure gradient—achieved when electrons and protons are

2 Because we want to use thermodynamic equilibrium at the same temperature T, it is physically
more transparent to work with a plasma than with a dielectric, as done instead in [13].
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separated—happens for an electric field

eE D .mN � me/g

2
� mNg

2
: (2.26)

Consider now the same neutral massive object traveling through the ionized
plasma. As we saw, the gravitational pull of the object will polarize the plasma
because the positively charged nuclei are attracted more than the electrons. The
polarization cloud is associated with an electric dipole field E that balances the
gravitational force g and that acts as source of superradiant photons. This follows by
thermodynamical arguments, even neglecting the entropy increase due to possible
accretion [13]. The superradiant energy in this case comes from the massive object
kinetic energy. Thus, the effect predicts that the object slows down because of
superradiant emission of photons in the dielectric.

In fact, the effect can be mapped into a Cherenkov process by noting that, in order
to balance the gravitational pull, eE � �mNg. Poisson equation then implies [13]

r � E D 4
G
MmN

e
ı.r � r0/ ; (2.27)

where r0 is the massive object position and for clarity we have restored the factor G.
This equation is equivalent to that of an electric field sourced by a pointlike charge

Q D GmNM

e
� 5 	 104A

�
M

1017g

�
e : (2.28)

where A is the mass number of the atoms. Assuming that the plasma relaxation time
is short enough, such effective charge will emit Cherenkov radiation whenever the
Ginzburg-Frank condition (2.20) is met. Note that, modulo accretion issues which
are not relevant to us here, the above derivation is equally valid for BHs. As already
noted in [13] a primordial BH with M � 1017g moving fast through a dielectric
would Cherenkov radiate just like an elementary particle with charge Q � 5	 104e.
In particular, the Frank-Tamm formula for the energy dE emitted per unit length dx
and per unit of frequency d! reads

dE D Q2

4

!�.!/

�
1 � 1

ˇ2n2.!/

�
d!dx : (2.29)

where � and n are the permeability and the refraction index of the medium,
respectively, and ˇ D v=c. Therefore, the total power reads

PErad D cQ2

4


Z
d!�.!/!

�
1 � 1

ˇ2n2.!/

�
. Q2

8
�0c
!2c (2.30)

where the integral is taken over the Cherenkov regime. In the last step we assumed
�.!/ 
 �0 D 1=.�0c2/ and ˇ � 1. The upper limit is expressed in terms of a cutoff
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frequency which depends solely on the plasma’s properties !c . 2
c=a0, where
a0 is Bohr’s radius. As a result of this energy emission, the BH slows down on a
time scale

�C � M
PErad

� 2�0




M2

Q2

a20
Mc

� 1012
�
1017g

M

�
yr (2.31)

where we have used Eq. (2.28). Therefore, the effect is negligible for primordial
BHs [18] which were originally considered in [13], but it might be relevant
for more massive BHs travelling at relativistic velocities in a plasma with short
relaxation time.

2.3.3 Superradiance in Superfluids and Superconductors

Another example of linear superradiance in flat spacetime is related to superflu-
ids3 [13]. Superfluids can flow through pipes with no friction when their speed
is below a critical value known as Landau critical speed [19]. If the fluid moves
faster than the Landau critical speed, quasiparticle production in the fluid becomes
energetically convenient at expenses of the fluid kinetic energy.

This process can be understood in terms of linear superradiance similarly to
the Cherenkov effect previously discussed. In the fluid rest frame, consider a
quasiparticle (e.g. a phonon) with frequency!.k/ and wavenumber k. In this frame,
the walls of the channel move with velocity v relative to the fluid. Therefore, the
quantity !� v � k is the analog of the Ginzburg-Frank condition (2.20) and becomes
negative when

v > vc � min
!.k/
jkj ; (2.32)

where !.k/ gives the dispersion relation of the quasiparticle. As discussed above,
in this configuration it is energetically favorable to create a quasiparticle mode. This
quasiparticles formation contributes a component which is not superfluid because
its energy can be dissipated in various channels.

The same kind of reasoning can be used to predict the critical current flowing
through a superconductor above which superconductivity is disrupted. Supercur-
rents are carried by Cooper pairs that move through a solid lattice with no resistance.
However, whenever the kinetic energy of the current carriers exceeds the binding
energy of a Cooper pair, it is energetically more favorable for the electrons in a
pair to separate, with these broken pairs behaving as quasiparticles. Consider a

3In the context of the gauge-gravity duality, the holographic dual of a superfluid is also a
superradiant state, cf. Sect. 4.5.2.
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superconductor, taken to be at zero temperature for simplicity, with supercurrent
density J D nqvd, where n is the current carrier density, q is the carrier charge and
vd is the drift velocity of the carriers measured in the frame of the solid lattice. In the
rest frame of the superconductor “fluid”, a quasiparticle created due to the scattering
of a current carrier with the solid lattice has minimum momentum given by 2„kF,
where kF is the Fermi momentum of the electrons in the pair, and an energy 2	0

which is the minimum energy needed to broke a Cooper pair at zero temperature.
Landau arguments then predicts that to break a Cooper pair, i.e., to spontaneously
emit a quasiparticle, the drift velocity must be given by

vd > min
!.k/
jkj � 	0

„kF
: (2.33)

This in turn can be used to estimate the critical magnetic field above which
superconductivity is broken. Take, for example, a circular superconductor with
radius R, carrying a current density J. The magnetic field at the surface of the super-
conductor is then given by H D JR=2. The critical current density Jc D nq	0=„kF,
then predicts that the critical magnetic field strength is given by Hc D JcR=2
(see e.g. [20]).

2.4 Sound Amplification by Shock Waves

2.4.1 Sonic “Booms”

Curiously, very familiar phenomena can be understood from the point of view of
superradiance. One of the most striking examples is the “sonic boom” originating
from the supersonic motion of objects in a fluid.

Imagine a structureless solid object traveling through a quiescent fluid with
speed vi > cs where cs is the speed of sound in the medium. Since the object is
structureless then	E D 0 in Eq. (2.19), and in analogy with the Vavilov-Cherenkov
effect we see that the object will emit phonons with dispersion relation ! D csk,
when their angle with respect to the object’s velocity satisfy

#M D cos�1.cs=vi/ : (2.34)

Due to the supersonic motion of the object the emitted phonons will form a shock
wave in the form of a cone, known as the Mach cone, with an opening angle 
 �
2#M [21].

If there is any sound wave present in the fluid which satisfy the Ginzburg-Frank
condition (2.20), it will be superradiantly amplified as the object overtakes them. In
the fluid’s rest frame the wave fronts will propagate with an angle

cos# > cs=vi ; (2.35)
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which means that they are emitted inside the Mach cone and the cone surface
marks the transition between the superradiant and non-superradiant regions. Thus
the “sonic boom” associated with the supersonic motion in a fluid can be understood
as a superradiant amplification of sound waves.

Although very different in spirit, the effects we discussed can be all explained
in terms of spontaneous superradiance, and they just follow from energy and
momentum conservation and by considering the emission in the comoving frame.
As we shall discuss in the Sect. 2.5, this guiding principle turns out to be extremely
useful also in the case of rotational superradiance.

2.4.2 Superradiant Amplification at Discontinuities

A second instructive example concerning superradiant amplification by shock
waves refers to sound waves at a discontinuity. Consider an ideal fluid, locally
irrotational (vorticity free), barotropic and inviscid. Focus now on small propagating
disturbances—i.e., sound waves—such that Ev D Ev0 C ıEv, where Ev is the velocity
of the perturbed fluid. Then, by linearizing the Navier-Stokes equations around the
background flow, it can be shown that small irrotational perturbations ıEv D �rˆ
are described by the Klein-Gordon equation [22, 23],4

�ˆ D 0 ; (2.36)

where the box operator is defined in the effective spacetime

g�� � 1


cs

2
664

�1 ::: �vj
0

: : : : : : : : : : : : : : : :

�vi
0

::: .c2sıij � vi
0v

j
0/

3
775 : (2.37)

and where 
.r/ and cs.r/ are the density of the fluid and the local speed of sound,
respectively. The effective geometry on which sound waves propagate is dictated
solely by the background velocity v0 and local speed of sound c. The (perturbed)
fluid velocity and pressure can be expressed in terms of the master field ˆ as

ıEv D � Erˆ ; (2.38)

ıP D 
0

�
@ˆ

@t
C Ev0 � Erˆ

�
: (2.39)

4This formal equivalence will prove useful later on when discussing analogue BHs.
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We consider now a very simple example worked out by in [24] (and reproduced
also in Landau and Lifshitz monograph [21]), where the normal to the discontinuity
lies on the z D 0 plane. Suppose that the surface of discontinuity separates a medium
“2” at rest (z < 0) from a medium “1” moving with velocity Ev0 D vx � v along
the x-axis. The scattering of a sound wave in medium 2 gives rise in medium 1 to a
transmitted wave with the form5

ˆ1 D !

! � kxv0
T eikx xCiky yCik z�i! t : (2.40)

The equation of motion (2.36) forces the dispersion relation

.! � v0kx/
2 D c2s .k

2
x C k2y C k2/ : (2.41)

In medium 2, the incident wave gets reflected, and has the general form

ˆ2 D Ieikx xCiky yCikz z�i! t C Reikx xCiky y�ikz z�i! t : (2.42)

There are two boundary conditions relevant for this problem. The pressure must
be continuous at the interface, yielding the condition

R C I D T : (2.43)

Finally, the vertical displacement �.x; t/ of the fluid particles at the interface must
also be continuous. The derivative @�=@t is the rate of change of the surface
coordinate � for a given x. Since the fluid velocity component normal to the surface
of discontinuity is equal to the rate of displacement of the surface itself, we have

@�=@t D ıvz � v0@�=@x : (2.44)

Assuming for the displacement � the same harmonic dependence as we took for ˆ,
we then have the second condition

k

.! � v0kx/
2
T D kz

!2
.I � R/ : (2.45)

The sign of k is as yet undetermined, and it is fixed by the requirement that
the velocity of the refracted wave is away from the discontinuity, i.e., @!=@k D
c2s k=.! � v0kx/ > 0. It can be verified that for v0 > 2cs superradiant amplification
of the reflected waves (R > I) is possible, provided that k < 0 and consequently
that ! � v0kx < 0 [21, 24]. The energy carried away is supposedly being drawn
from the whole of the medium “1” in motion, although a verification of this would

5The slightly unorthodox normalization of the transmitted wave was chosen so that the final result
for the amplification factor exactly matches Landau and Lifshitz’s result, in their formalism.
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require nonlinearities to be taken into account. Such nonlinear results have not been
presented in the original work [21, 24]; in the context of BH superradiance, we show
in Sect. 3.5.2 that superradiance does result in mass (and charge) loss from the (BH)
medium, at nonlinear order in the fluctuation.

This example considers compressible fluids and sound waves, but it can be shown
that similar energy extraction mechanisms are at play for waves in incompressible
stratified fluids with shear flow [25–27]. An intuitive explanation in terms of
negative-energy states is given in [27].

2.5 Rotational Superradiance

One important aspect of the previous examples is that the linear velocity of
the medium from which the energy is drawn exceeds the phase velocity of the
corresponding oscillations [28]. It is clearly impossible to extend such process to
waves in vacuum and in plane geometry, because it would require superluminal
velocities, as already pointed out. However, in a cylindrical or spherical geometry
the angular phase velocity of an m-pole wave (m is an azimuthal number, specified
in more detail below), is !=m. If the body is assumed to rotate with angular velocity
�, then amplification is in principle possible for waves satisfying condition (1.1),
! < m�, if the previous example is faithful.

It should be also clear from all the previous examples that rotating bodies with
internal degrees of freedom (where energy can be dumped into) display superradi-
ance. Two different arguments can be made in order to show this rigorously [13, 28].

The first is of a thermodynamic origin. Consider an axi-symmetric macroscopic
body rotating rigidly with constant angular velocity about its symmetry axis.
Assume also the body has reached equilibrium, with well defined entropy S,
rest mass M and temperature T. Suppose now that a wavepacket with frequency
.!; ! C d!/ and azimuthal number m is incident upon this body, with a power
Pm.!/d!. Radiation with a specific frequency and azimuthal number carries angular
momentum at a rate .m=!/Pm.!/d! (c.f. Appendix C). Neglecting any spontaneous
emission by the body (of thermal or any other origin), the latter will absorb a fraction
Zm of the incident energy and angular momentum,

dE

dt
D ZmPmd! ;

dJ

dt
D Zm

m

!
Pmd! : (2.46)

Notice that the assumption of axi-symmetry is crucial. No precession occurs during
the interaction, and no Doppler shifts are involved. This implies that both the
frequency and multipolarity of the incident and scattered wave are the same, as
assumed in the equations above. Now, in the frame co-rotating with the body, the
change in energy is simply [19]

dE0 D dE ��dJ D dE

�
1 � m�

!

�
; (2.47)
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and thus the absorption process is followed by an increase in entropy, dS D dE0=T,
of

dS

dt
D ! � m�

! T
Zm Pm.!/d! : (2.48)

Finally, the second law of thermodynamics demands that

.! � m�/Zm > 0 ; (2.49)

and superradiance (Zm < 0) follows in the superradiant regime ! � m� < 0.
Consider next Zel’dovich’s original “dynamical” argument, and take for definite-

ness a scalar field ˆ, governed in vacuum by the Lorentz-invariant Klein-Gordon
equation, �ˆ D 0. An absorbing medium breaks Lorentz invariance. Assume that,
in a coordinate system in which the medium is at rest, the absorption is characterized
by a parameter ˛ as

�ˆC ˛
@ˆ

@t
D 0 : (2.50)

The � term is Lorentz-invariant, but if the frequency in the accelerated frame is
! and the field behaves as e�i!tCim' in the inertial frame the azimuthal coordinate
is ' D ' 0 � �t, and hence the frequency is !0 D ! � m�. In other words, the
effective damping parameter ˛!0 becomes negative in the superradiant regime and
the medium amplifies—rather than absorbing—radiation.

A very appealing classical example of rotational (electromagnetic) superradiance
is worked out in some detail for the original model by Zel’dovich [13, 28]. We now
present two further examples, one of which can also potentially be implemented in
the laboratory.

2.5.1 Example 1. Scalar Waves

Let us work out explicitly the case of a rotating cylinder in .r; z; '/ spatial
coordinates with a dissipative surface at r D R. For simplicity the scalar is assumed
to be independent of z,ˆ D �.r/e�i!tCim' . From what we said, by using Eq. (2.50),
the problem can be modelled by

1

r

�
r�0�0 C

�
!2 � i˛.! � m�/ı.r � R/� m2

r2

�
� D 0 ; (2.51)

which can be solved analytically in terms of Bessel functions,

� D
�

C0Jm.!r/ r < R
C1Jm.!r/C C2Ym.!r/ r > R

: (2.52)
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Fig. 2.1 Amplification values Z0m D jRj2=jIj2 � 1 of the scalar toy model for m D 1,�R D 0:5

and ˛R D 0:1; 2

The constants C1; C2 can be determined by continuity at r D R along with the
jump implied by the delta function. At infinity the solution is a superposition of
ingoing and outgoing waves, � ! Ie�i!r=.r!/3=2 C Rei!r=.r!/3=2, where the
constants I andR can be expressed in terms of C1 and C2. Figure 2.1 shows a typical
amplification factor Z0m � jRj2=jIj2 � 1 (in percentage) for m D 1, �R D 0:5 and
˛R D 0:1; 2.

2.5.2 Example 2. Sound and Surface Waves: A Practical
Experimental Setup?

A second example concerns amplification of sound waves at the surface of a rotating
cylinder of radius R, but can also be directly used with surface gravity waves. As we
discussed in Sect. 2.4.2, sound waves propagate in moving fluids as a massless scalar
field in curved spacetime, with an effective geometry dictated by the background
fluid flow (2.37).

We focus here on fluids at rest, so that the effective metric is Minkowskian, ds2 D



cs

��c2s dt2 C dr2 C r2d#2 C dz2
�

in cylindrical coordinates. Coincidentally, exactly
the same equation of motion governs small gravity waves in a shallow basin [29],
thus the results below apply equally well to sound and gravity waves.6

Solutions to Eq. (2.36) are better studied using the cylindrical symmetry of the
effective background metric. In particular, we may decompose the field ˆ in terms

6Notice that [29] always implicitly assumes a nontrivial background flow and the presence of a
horizon in the effective geometry. In contrast, in our setup this is not required. All that it needs is a
rotating boundary.
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of azimuthal modes,

ˆ.t; r; #; z/ D �.r/p
r
.r/

e�i!tCim#Cikz ; (2.53)

and we get

d2�

dr2
C
�
!2

c2s
� k2 � m2 � 1=4
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00

2


�
�.r/ D 0 : (2.54)

For simplicity, let us focus on k D 0 modes and assume that the density and the
speed of sound are constant, so that the last three terms in the potential above
vanishes and the background metric can be cast in Minkowski form. In this case,
Eq. (2.54) admits the general solution � D C1

p
rJm.!r=cs/ C C2

p
rYm.!r=cs/.

The constants C1 and C2 are related to the amplitude of the ingoing and outgoing
wave at infinity, i.e., asymptotically one has

� � Ie�i!r C Rei!r

D
r

cs

2
!

�
.C1 � iC2/e

i.!r=cs�m
=2�
=4/ C .C1 C iC2/e
�i.!r=cs�m
=2�
=4/� :

(2.55)

The ratio R=I can be computed by imposing appropriate boundary conditions. For
nonrotating cylinders the latter read [30]

�
rˆ0

ˆ

�
rDR

D � i
!R

‡
; (2.56)

in terms of the original perturbation function, where ‡ is the impedance of the
cylinder material. As explained before, when the cylinder rotates uniformly with
angular velocity �, it is sufficient to transform to a new angular coordinate # 0 D
# C �t which effectively amounts to the replacement of ! with ! � m� in
the boundary condition (2.56). An empirical impedance model for fibrous porous
materials was developed in [31], yielding a universal function of the flow resistance
� and frequency of the waves,

‡ D 
cs

h
1C 0:0511

�
2
�=! kg�1m3

�0:75 � i0:0768
�
2
�=! kg�1m3

�0:73i
:

(2.57)
Typical values at frequencies ! � 1000s�1 are ‡ � 
cs.1 � 0:2i/ [31].

We will define the amplification factor Zm to be

Zm D jRj2=jIj2 � 1 : (2.58)

Notice that, from (2.39), the amplification factor measures the gain in pressure.
Using Eq. (2.56) and the exact solution of Eq. (2.54), the final result for the
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amplification factor reads

Zm D
ˇ̌
ˇ̌̌ i Q! Q‡Jm�1 � 2. Q! � 1/Jm � i Q! Q‡JmC1 C Q! Q‡Ym�1 C 2i. Q! � 1/Ym � Q! Q‡YmC1

Q! Q‡Jm�1 C 2i. Q! � 1/Jm � Q! Q‡JmC1 C i Q! Q‡Ym�1 � 2. Q! � 1/Ym � i Q! Q‡YmC1

ˇ̌
ˇ̌̌2�1 ;
(2.59)

where we have defined the dimensionless quantities Q‡ D ‡=.
cs/, Q! D !=.m�/
and we indicate Ji D Ji.!R=cs/ and Yi D Yi.!R=cs/ for short. Note that the
argument of the Bessel functions reads m Q!v=cs, where v is the linear velocity at the
cylinder’s surface. Therefore, the amplification factor does not depend on the fluid
density and it only depends on the dimensionless quantities v=cs and Q!. Although
not evident from Eq. (2.59), Zm D 0 when Q! D 1 and it is positive (i.e. there is
superradiant amplification) for Q! < 1, for any v=cs.

As a point of principle, let us use a typical value for the impedance, Q‡ 
 .1 �
0:2i/, to compute the amplification of sound waves in air within this setup. We take
� D 1000; 2000 s�1 and a cylinder with radius R D 10 cm, corresponding to linear
velocities at the cylinder surface of the order of v D 100; 200ms�1, but below the
sound speed. The (percentage) results are shown in Fig. 2.2, and can be close to
100 % amplification for large enough cylinder angular velocity. Note the result only
depends on the combination �R=cs, which can be tweaked to obtain the optimal
experimental configuration.

Another interesting application is to build an “acoustic bomb”, similar in spirit
with the “BH bombs” that we discuss in Sect. 4. In other words, by confining
the superradiant modes near the rotating cylinder we can amplify the superradiant
extraction of energy and trigger an instability. In this simple setup, confinement can
be achieved by placing a cylindrical reflecting surface at some distance R2 (note
that this configuration is akin to the “perfect mirror” used by Press and Teukolsky
to create what they called a BH bomb [32]). The details of the instability depend
quantitatively on the outer boundary, specifically on its acoustic impedance. We will
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Fig. 2.2 Left panel: Amplification values Zm of acoustic waves for m D 1; R D 10 cm and
� D 1000; 2000 s�1 . Right panel: fundamental unstable mode for the “acoustic bomb”, a rotating
cylinder with radius R enclosed in a cylindrical cavity at distance R2. In this example we set
m D 1 and v=cs � 0:147. Note that the mode becomes unstable .!I > 0/ precisely when the
superradiance condition !R < � is fulfilled
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not perform a thorough parameter search, but focus on two extreme cases: Dirichlet
and Neumann conditions. Imposing the boundary conditions at r D R2, we obtain
the equation that defines the (complex) eigenfrequencies of the problem analytically,

Q! Q‡
hOJm.Ym�1 � YmC1/C OYm.JmC1 � Jm�1/

i
C 2i. Q! � 1/

hOJmYm � Jm OYm

i
D 0 ; (2.60)

Q! Q‡
h
.Jm�1 � JmC1/

	 OYmC1 � OYm�1



C OJm�1 .Ym�1 � YmC1/C OJmC1 .YmC1 � Ym�1/
i

C2i. Q! � 1/
h
Jm

	 OYmC1 � OYm�1



C OJm�1Ym � OJmC1Ym

i
D 0 ; (2.61)

for Dirichlet (ˆ.r D R2/ D 0) and Neumann (ˆ0.r D R2/ D 0) conditions,
respectively. In the equations above, we have further defined OJi D Ji.!R2=cs/ and
OYi D Yi.!R2=cs/ for short. In both cases the eigenmode equation only depends on
the ratio R2=R, Q! and v=cs. Neumann conditions,ˆ0.r D R2/ D 0, mimic rigid outer
boundaries. The fundamental eigenfrequencies ! D !R C i!I for these two cases
are shown in the right panel of Fig. 2.2 as functions of the mirror position R2=R.
Within our conventions, the modes are unstable when the imaginary part is positive
(because of the time dependence e�i!t). As expected, the modes become unstable
when !R < m�, i.e. when the superradiance condition is satisfied. In the example
shown in Fig. 2.2, the maximum instability occurs for R2 � 30R and corresponds to
a very short instability time scale,

� � 1

!I
� 10

�
1000Hz

�

�
s : (2.62)

Although our model is extremely simple, these results suggest the interesting
prospect of detecting sound-wave superradiance amplification and “acoustic bomb”
instabilities in the laboratory.

Finally, note that an alternative to make the system unstable is to have the fluid
confined within a single, rotating absorbing cylinder. We find however, that in this
particular setup the instability only sets in for supersonic cylinder surface velocities,
presumably harder to achieve experimentally.

2.6 Tidal Acceleration

Although the processes we have discussed so far all involve radiation, it is possible
to extract energy away from rotating bodies even in the absence of waves.7 A prime
example concerns “tidal acceleration”, which is most commonly known to occur
in the Earth-Moon system.

7This statement can be disputed however, since the phenomenon we discuss in the following does
involve time retardation effects and is therefore intimately associated with wave phenomena.



30 2 Superradiance in Flat Spacetime

Fig. 2.3 Tides on the Earth caused by our moon (as seen by a frame anchored on the Moon).
The tidal forces create a bulge on Earth’s ocean surface, which leads Moon’s orbital position by
a constant angle �. Earth rotates faster than the Moon in its orbit, thus a point A on the surface
of the Earth will differentially rotate with respect to the oceans, causing dissipation of energy and
decrease of Earth’s rotation period

As explained by George Darwin back in 1880 [33] (see also [34, 35] which
are excellent overviews of the topic), tides are caused by differential forces on the
oceans, which raise tidal bulges on them, as depicted in Fig. 2.3. Because Earth
rotates with angular velocity �Earth, these bulges are not exactly aligned with the
Earth-Moon direction. In fact, because Earth rotates faster than the Moon’s orbital
motion (�Earth > �), the bulges lead the Earth-Moon direction by a constant angle.
This angle would be zero if friction were absent, and the magnitude of the angle
depends on the amount of friction. Friction between the ocean and the Earth’s crust
slows down Earth’s rotation by roughly P�Earth � �5:6 	 10�22=s2, about 0.002 s
per century. Conservation of angular momentum of the entire system lifts the Moon
into a higher orbit with a longer period and larger semi-major axis. Lunar ranging
experiments have measured the magnitude of this tidal acceleration to be about
Pa D 3:82 cm=yr [36].

Tidal Acceleration and Superradiance in the “Newtonian” Approximation Let
us consider a generic power-law interaction between a central body of gravitational
mass M and radius R and its moon with mass mp at a distance r0. The magnitude is
(in this section we re-insert factors of G and c for clarity)

F D GMmp

rn
0

; (2.63)

and Newton’s law is recovered for n D 2. The tidal acceleration in M is given by

atidal D nGmp

Rn

�
R

r0

�nC1
D ngM

�
R

r0

�nC1 mp

M
; (2.64)

where gM is the surface gravity on M. This acceleration causes tidal bulges of height
h and mass � to be raised on M. These can be estimated by equating the specific
energy of the tidal field, Etidal � atidalR, with the specific gravitational energy,
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EG � gMh, needed to lift a unit mass from the surface of M to a distance h. We get

h

R
D n

�
R

r0

�nC1 mp

M
; (2.65)

which corresponds to a bulge mass of approximately � D �
4
nmp .R=r0/

nC1, where
� is a constant of order 1, which encodes the details of Earth’s internal structure.
Without dissipation, the position angle � in Fig. 2.3 is � D 0, while the tidal bulge
is aligned with moon’s motion. Dissipation contributes a constant, small, time lag �
such that the lag angle is � D .�Earth ��/� .

With these preliminaries, a trivial extension of the results of [34] yields a
tangential tidal force on M, assuming a circular orbit for the moon,

F# � n.n C 1/G�

2
m2

p

RnC3

r2nC3
0

.�Earth ��/� : (2.66)

The change in orbital energy over one orbit is related to the torque r0F# and readsR 2

0 r0F#�=2
d# D �r0F# . Thus, we get

PEorbital D n.n C 1/G�m2
p

2

RnC3

r2nC2
0

�.�Earth ��/� ; (2.67)

and, for gravitational forces obeying Gauss’s law (n D 2), the latter reduces to

PEorbital D 3G�m2
p

R5

r60
�.�Earth ��/� : (2.68)

Summarizing, tidal acceleration extracts energy and angular momentum from the
Earth. Conservation of both these quantities then requires the moon to slowly spiral
outwards. It can be shown that tidal acceleration works in any number of spacetime
dimensions and with other fields (scalar or electromagnetic) [37, 38].

This and the previous examples make it clear that any rotating object should be
prone to energy extraction and superradiance, provided some dissipation mechanism
of any sort is at work. When the tidally distorted object is a BH, the dissipation
mechanism is naturally provided by the presence of an event horizon which—as
we discuss in the next section—behaves in many respects as a viscous one-way
membrane [39]. Interestingly, by substituting �Earth ! �H in Eq. (2.68), setting
� � 1=3 
 O.1/, and with the simple argument that the only relevant dissipation
time scale in the BH case is the light-crossing time � � M, Eq. (2.68) was found
to agree [37] with the exact result for BH tidal heating obtained through BH
perturbation theory [40–44].



32 2 Superradiance in Flat Spacetime

References

1. O. Klein, Die reflexion von elektronen an einem potentialsprung nach der relativistischen
dynamik von dirac. Z. Phys. 53(3–4), 157–165 (1929). http://dx.doi.org/10.1007/BF01339716

2. F. Sauter, Uber das Verhalten eines Elektrons im homogenen elektrischen Feld nach der
relativistischen Theorie Diracs. Z. Phys. 69, 742–764 (1931)

3. C.A. Manogue, The Klein paradox and superradiance. Ann. Phys. 181, 261–283 (1988)
4. R.G. Winter, Klein paradox for the klein-gordon equation. Am. J. Phys. 27(5), 355–358 (1959).

http://scitation.aip.org/content/aapt/journal/ajp/27/5/10.1119/1.1934851
5. F. Hund, Z. Phys. 117, 1 (1941)
6. J.S. Schwinger, On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951)
7. S. Hawking, Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)
8. A. Hansen, F. Ravndal, Klein’s paradox and its resolution. Phys. Scripta 23, 1036 (1981)
9. V. Ginzburg, I. Frank, Radiation of a uniformly moving electron due to its transition from one

medium into another. J. Phys. (USSR) 9, 353–362 (1945)
10. V.L. Ginzburg, I.M. Frank, Dokl. Akad. Nauk Ser. Fiz. SSSR 56 583 (1947)
11. C.M. Will, The Confrontation between general relativity and experiment. Living Rev. Relativ

9, 3 (2006). arXiv:gr-qc/0510072 [gr-qc]
12. T. Damour, G. Esposito-Farese, Nonperturbative strong field effects in tensor—scalar theories

of gravitation. Phys. Rev. Lett. 70, 2220–2223 (1993)
13. J.D. Bekenstein, M. Schiffer, The many faces of superradiance. Phys. Rev. D58, 064014 (1998).

arXiv:gr-qc/9803033 [gr-qc]
14. V. Ginzburg, Radiation from uniformly moving sources (vavilov-cherenkov effect, transition

radiation, and some other phenomena). Acoust. Phys. 51(1), 11–23 (2005). http://dx.doi.org/
10.1134/1.1851624

15. E.A. Milne, Trans. Camb. Philos. Soc. 26, 63 (1923)
16. A.S. Eddington, The Internal Constitution of the Stars (Cambridge University Press, Cam-

bridge, 1988)
17. G. Michaud, G. Fontaine, Electric fields, accretion, and stellar winds in helium rich atmo-

spheres. Astrophys. J. 229, 694–699 (1979)
18. B. Carr, K. Kohri, Y. Sendouda, J. Yokoyama, New cosmological constraints on primordial

black holes. Phys. Rev. D81, 104019 (2010). arXiv:0912.5297 [astro-ph.CO]
19. L. Landau, E.M. Lifshitz, L.P. Pitaevskii, Statistical Physics (Pergamon, Oxford, 1980)
20. D. Dew-Hughes, The critical current of superconductors: an historical review. Low Temp. Phys.

27(9), 713–722 (2001). http://scitation.aip.org/content/aip/journal/ltp/27/9/10.1063/1.1401180
21. L. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon, Oxford, 1976)
22. W. Unruh, Experimental black hole evaporation. Phys. Rev. Lett. 46, 1351–1353 (1981)
23. M. Visser, Acoustic black holes: horizons, ergospheres, and hawking radiation. Classical

Quantum Gravity 15, 1767–1791 (1998). arXiv:gr-qc/9712010 [gr-qc]
24. H.S. Ribner, Reflection, transmission and amplification of sound by a moving medium. J.

Acoust. Soc. Am. 29, 435–441 (1957)
25. J.R. Booker, F.P. Bretherton, The critical layer for internal gravity waves in a shear flow. J.

Fluid Mech. 27, 513–539 (1967)
26. W.L. Jones, Reflection and stability of waves in stably stratified fluids with shear flow: a

numerical study. J. Fluid Mech. 34, 609–624 (1968)
27. J.F. McKenzie, Reflection and amplification of acoustic-gravity waves at a density and velocity

discontinuity. J. Geophys. Res. 77, 2915 (1972)
28. Y.B. Zel’dovich, Zh. Eksp. Teor. Fiz 62, 2076 (1972) [Sov. Phys. JETP 35, 1085 (1972)]
29. R. Schutzhold, W.G. Unruh, Gravity wave analogs of black holes. Phys. Rev. D66, 044019

(2002). arXiv:gr-qc/0205099 [gr-qc]
30. M. Lax, H. Feshbach, Absorption and scattering for impedance f on spheres and circular

cylinders. J. Acoust. Soc. Am. 20, 108 (1948)

http://dx.doi.org/10.1007/BF01339716
http://dx.doi.org/10.1007/BF01339716
http://dx.doi.org/10.1007/BF01339461
http://dx.doi.org/http://dx.doi.org/10.1119/1.1934851
http://scitation.aip.org/content/aapt/journal/ajp/27/5/10.1119/1.1934851
http://dx.doi.org/10.1103/PhysRev.82.664
http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1088/0031-8949/23/6/002
http://arxiv.org/abs/gr-qc/0510072
http://dx.doi.org/10.1103/PhysRevLett.70.2220
http://dx.doi.org/10.1103/PhysRevD.58.064014
http://arxiv.org/abs/gr-qc/9803033
http://dx.doi.org/10.1134/1.1851624
http://dx.doi.org/10.1134/1.1851624
http://dx.doi.org/10.1134/1.1851624
http://dx.doi.org/10.1103/PhysRevD.81.104019
http://arxiv.org/abs/0912.5297
http://dx.doi.org/http://dx.doi.org/10.1063/1.1401180
http://scitation.aip.org/content/aip/journal/ltp/27/9/10.1063/1.1401180
http://dx.doi.org/10.1103/PhysRevLett.46.1351
http://dx.doi.org/10.1088/0264-9381/15/6/024
http://arxiv.org/abs/gr-qc/9712010
http://dx.doi.org/10.1103/PhysRevD.66.044019
http://arxiv.org/abs/gr-qc/0205099


References 33

31. M.E. Delany, E.N. Bazley, Acoustical properties of fibrous absorbent materials. Appl. Acoust.
3, 105 (1969)

32. W.H. Press, S.A. Teukolsky, Floating orbits, superradiant scattering and the black-hole bomb.
Nature 238, 211–212 (1972)

33. G.H. Darwin, On the secular changes in the elements of the orbit of a satellite revolving about
a tidally distorted planet. Philos. Trans. R. Soc. Lond. 171, 713 (1880)

34. P. Hut, Tidal evolution in close binary systems. Astron. Astrophys. 99, 126–140 (1981)
35. The earth and moon: from halley to lunar ranging and shells. http://www.astro.ru.nl/~fverbunt/

binaries/earth.pdf
36. J.O. Dickey, P.L. Bender, J.E. Faller, X.X. Newhall, R.L. Ricklefs, J.G. Ries, P.J.

Shelus, C. Veillet, A.L. Whipple, J.R. Wiant, J.G. Williams, C.F. Yoder, Lunar laser
ranging: a continuing legacy of the apollo program. Science 265(5171), 482–490
(1994). http://www.sciencemag.org/content/265/5171/482.full.pdf. http://www.sciencemag.
org/content/265/5171/482.abstract

37. V. Cardoso, P. Pani, Tidal acceleration of black holes and superradiance. Classical Quantum
Gravity 30, 045011 (2013). arXiv:1205.3184 [gr-qc]

38. R. Brito, V. Cardoso, P. Pani, Tidal effects around higher-dimensional black holes. Phys. Rev.
D86, 024032 (2012). arXiv:1207.0504 [gr-qc]

39. K.S. Thorne, R. Price, D. Macdonald, Black Holes: The Membrane Paradigm (Yale University
Press, New Haven, 1986)

40. J.B. Hartle, Tidal friction in slowly rotating black holes. Phys. Rev. D8, 1010–1024 (1973)
41. J.B. Hartle, Tidal shapes and shifts on rotating black holes. Phys. Rev. D9, 2749–2759 (1974)
42. E. Poisson, Tidal interaction of black holes and Newtonian viscous bodies. Phys. Rev. D80,

064029 (2009). arXiv:0907.0874 [gr-qc]
43. T. Binnington, E. Poisson, Relativistic theory of tidal Love numbers. Phys. Rev. D80, 084018

(2009). arXiv:0906.1366 [gr-qc]
44. K. Glampedakis, S.J. Kapadia, D. Kennefick, Superradiance-tidal friction correspondence.

Phys. Rev. D89(2), 024007 (2014). arXiv:1312.1912 [gr-qc]

http://dx.doi.org/10.1038/238211a0
http://www.astro.ru.nl/~fverbunt/binaries/earth.pdf
http://www.astro.ru.nl/~fverbunt/binaries/earth.pdf
http://dx.doi.org/10.1126/science.265.5171.482
http://arxiv.org/abs/http://www.sciencemag.org/content/265/5171/482.full.pdf
http://www.sciencemag.org/content/265/5171/482.abstract
http://www.sciencemag.org/content/265/5171/482.abstract
http://dx.doi.org/10.1088/0264-9381/30/4/045011
http://arxiv.org/abs/1205.3184
http://dx.doi.org/10.1103/PhysRevD.86.024032
http://arxiv.org/abs/1207.0504
http://dx.doi.org/10.1103/PhysRevD.8.1010
http://dx.doi.org/10.1103/PhysRevD.9.2749
http://dx.doi.org/10.1103/PhysRevD.80.064029
http://arxiv.org/abs/0907.0874
http://dx.doi.org/10.1103/PhysRevD.80.084018
http://arxiv.org/abs/0906.1366
http://dx.doi.org/10.1103/PhysRevD.89.024007
http://arxiv.org/abs/1312.1912


Chapter 3
Superradiance in Black Hole Physics

As discussed in the previous section, superradiance requires dissipation. The latter
can emerge in various forms, e.g. viscosity, friction, turbulence, radiative cooling,
etc. All these forms of dissipation are associated with some medium or some matter
field that provides the arena for superradiance. It is thus truly remarkable that—
when spacetime is curved—superradiance can also occur in vacuum, even at the
classical level. In this section we discuss in detail BH superradiance, which is the
main topic of this book.

BHs are classical vacuum solutions of essentially any relativistic (metric) theory
of gravity, including Einstein General Theory of Relativity (GR). Despite their
simplicity, BHs are probably the most fascinating predictions of GR and enjoy some
extremely nontrivial properties. The most important property (which also defines the
very concept of BH) is the existence of an event horizon, a boundary in spacetime
which separates two causally disconnected regions. Among the various properties
of BH event horizons, the one that is most relevant for the present discussion is that
BHs behave in many respects as a viscous one-way membrane in flat spacetime.
This is the so-called BH membrane paradigm [1]. Thus, the existence of an event
horizon provides vacuum with an intrinsic dissipative mechanism, which is naturally
prone to superradiance. As we shall see, the very existence of event horizons allows
to extract energy from the vacuum, basically in any relativistic theory of gravity.

While most of our discussion is largely model- and theory-independent, for
calculation purposes we will be dealing with the Kerr-Newman family of BHs [2],
which describes the most general stationary electrovacuum solution of the Einstein-
Maxwell theory [3]. We will be specially interested in two different spacetimes
which display superradiance of different nature, the uncharged Kerr and the
nonrotating charged BH geometry.

© Springer International Publishing Switzerland 2015
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36 3 Superradiance in Black Hole Physics

3.1 Action, Equations of Motion and Black Hole Spacetimes

We consider a generic action involving one complex, charged massive scalar ‰ and
a massive vector field A� with mass mS D �S„ and mV D �V„, respectively,

S D
Z

d4x
p�g

�
R � 2ƒ
�

� 1

4
F��F�� � �2V

2
A�A

� � 1

2
g��‰�
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‰�‰
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�
i
q

2
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�
‰r�‰� �‰�r�‰

� � q2

2
A�A�‰‰�

�
C SM : (3.1)

where � D 16
 , ƒ is the cosmological constant, F�� � r�A� � r�A� is the
Maxwell tensor, and SM is the standard matter action that we neglect henceforth.
More generic actions could include a coupling between the scalar and vector sector,
and also higher-order self-interaction terms. However, most of the work on BH
superradiance is framed in the above theory and we therefore restrict our discussion
to this scenario. The resulting equations of motion are

�r� � iqA�
�
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: (3.2c)

These equations describe the fully nonlinear evolution of the system. For the most
part of our work, we will specialize to perturbation theory, i.e. we consider A� and
‰ to be small—say of order O.�/—and include their backreaction on the metric
only perturbatively. Because the stress-energy tensor is quadratic in the fields, to
orderO.�/ the gravitational sector is described by the standard Einstein equations in
vacuum, R�� D 0, so that the scalar and Maxwell field propagate on a Kerr-Newman
geometry. Backreaction on the metric appears at order O.�2/ in the fields. We
consider two particular cases and focus on the following background geometries:

3.1.1 Static, Charged Backgrounds

For static backgrounds, the uniqueness theorem [3] guarantees that the only
regular, asymptotically flat solution necessarily has  D 0 and belongs to the
Reissner-Nordström (RN) family of charged BHs. In the presence of a cosmological
constant, ƒ ¤ 0, other solutions exist, some of them are in fact allowed by
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superradiant mechanisms, as we shall discuss. For definiteness, we focus for the
most part of our work on the fundamental family of RN-(A)dS solution, described
by the metric

ds2 D �fdt2 C fdr2 C r2d#2 C r2 sin2 #d'2 ; (3.3)

where

f .r/ D 1 � 2M

r
C Q2

r2
� ƒ

3
r2 ; (3.4)

and the background vector potential A� D .Q=r; 0; 0; 0/, where M and Q are
the mass and the charge of the BH, respectively. When ƒ D 0 the spacetime is
asymptotically flat and the roots of f .r/ determine the event horizon, located at
rC D M C p

M2 � Q2, and a Cauchy horizon at r� D M � p
M2 � Q2. In this

case the electrostatic potential at the horizon is ˆH D Q=rC. When ƒ > 0, the
spacetime is asymptotically de Sitter (dS) and the function f .r/ has a further positive
root which defines the cosmological horizon rc, whereas whenƒ < 0 the spacetime
is asymptotically anti-de Sitter (AdS) and the function f .r/ has only two positive
roots.

Fluctuations of order O.�/ in the scalar field in this background induce changes
in the spacetime geometry and in the vector potential which are of order O.�2/, and
therefore to leading order can be studied on a fixed RN-(A)dS geometry. This is
done in Sect. 3.5 below.

3.1.2 Spinning, Neutral Backgrounds

For neutral backgrounds A� D 0 to zeroth order, and the uniqueness theorems
guarantee that the scalar field is trivial and the only regular, asymptotically flat
solution to the background equations is given by the Kerr family of spinning BHs.
Because we also wish to consider the effect of a cosmological constant, we will
enlarge it to the Kerr-(A)dS family of spinning BHs, which in standard Boyer-
Lindquist coordinates reads (for details on the Kerr spacetime, we refer the reader
to the monograph [4])
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with
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3
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3
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	# D 1C ƒ

3
a2 cos2 # ; 
2 D r2 C a2 cos2 # : (3.6)

This metric describes the gravitational field of a spinning BH with mass M=†2

and angular momentum J D aM=†2. When ƒ D 0, the roots of 	 determine the
event horizon, located at rC D M C p

M2 � a2, and a Cauchy horizon at r� D
M � p

M2 � a2. The static surface gtt D 0 defines the ergosphere given by rergo D
M C p

M2 � a2 cos2 # . As in the static case, when ƒ > 0 the spacetime possesses
also a cosmological horizon.

A fundamental parameter of a spinning BH is the angular velocity of its event
horizon, which for the Kerr-(A)dS solution is given by

�H D a

r2C C a2

�
1C ƒ

3
a2
�
: (3.7)

The area and the temperature of the BH event horizon respectively read
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3.1.3 Geodesics and Frame Dragging in the Kerr Geometry

The motion of free pointlike particles in the equatorial plane of this geometry is
described by the following geodesic equations [5, 6],
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r2Pr2 D r2E2 C 2M

r
.aE � L/2 C .a2E2 � L2/� ı1	 ; (3.11)

where ı1 D 1; 0 for timelike and null geodesics, respectively, and the dot
denotes differentiation with respect to the geodesic’s affine parameter. The first two
equations follow from the symmetry of the Kerr background under time translations
and rotations, while the last equation is simply the defining relation for timelike and
null geodesics. A more thorough analysis of the geodesics of the Kerr geometry can
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Fig. 3.1 Frame dragging
effects: sketch of the
trajectory of a
zero-angular-momentum
observer as it falls into a BH.
The BH is either static (upper
panel) or rotating clockwise
(lower panel). The infall into
a rotating BH is drag along
the BH’s sense of rotation

be found in the classic work by Bardeen et al. [5] or in Chandrasekhar’s book [6].
The conserved quantities E; L are, respectively, the energy and angular momentum
per unit rest mass of the object undergoing geodesic motion (or the energy and
angular momentum for massless particles).

Consider an observer with timelike four-velocity which falls into the BH with
zero angular momentum. This observer is known as the ZAMO (Zero Angular
Momentum Observer). From Eqs. (3.9) and (3.10) with L D 0, we get the following
angular velocity, as measured at infinity,

� � P'
Pt D � gt'

g''
D 2Mar

r4 C r2a2 C 2a2Mr
: (3.12)

At infinity � D 0 consistent with the fact that these are zero angular momentum
observers. However,� ¤ 0 at any finite distance and at the horizon one finds

�ZAMO
H D a

2MrC
: (3.13)

Thus, observers are frame-dragged and forced to co-rotate with the geometry. This
phenomenon is depicted in Fig. 3.1, where we sketch the trajectory of a ZAMO in a
nonrotating and rotating BH background.

3.1.4 The Ergoregion

The Kerr geometry is also endowed with an infinite-redshift surface outside the
horizon. These points define the ergosurface and are the roots of gtt D 0. The
ergosurface exterior to the event horizon is located at

rergo D M C
p

M2 � a2 cos2 # : (3.14)
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Fig. 3.2 The ergosphere of a Kerr BH is shown together with the horizon for a nearly-extremal
BH with a � 0:999M. The coordinates .x; y; z/ are similar to standard Cartesian-coordinate but
obtained from the Boyer-Lindquist coordinates

In particular, it is defined by r D 2M at the equator and r D rC at the poles.
The region between the event horizon and the ergosurface is the ergoregion. The
ergosurface is an infinite-redshift surface, in the sense that any light ray emitted
from the ergosurface will be infinitely redshifted when observed at infinity. The
ergosphere of a Kerr BH is shown in Fig. 3.2.

The ergosurface is also the static limit, as no static observer is allowed inside the
ergoregion. Indeed, the Killing vector �� D .1; 0; 0; 0/ becomes spacelike in the
ergoregion ����g�� D gtt > 0. We define a static observer as an observer (i.e., a
timelike curve) with tangent vector proportional to ��. The coordinates .r; #; �/ are
constant along this wordline. Such an observer cannot exist inside the ergoregion,
because �� is spacelike there. In other words, an observer cannot stay still, but is
forced to rotate with the BH.

Let’s consider this in more detail, taking a stationary observer at constant .r; #/,
with four-velocity

v� D .Pt; 0; 0; P'/ D Pt.1; 0; 0;�/ ; (3.15)
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This observer can exist provided its orbit is time-like, which implies v2 < 0. This
translates in a necessary condition for an existence of a stationary observer, which
reads

gtt C 2�gt' C�2g'' < 0 : (3.16)

Let’s consider the zeroes of the above. We have

�˙ D
�gt' ˙

q
g2t' � gttg''

g''
D �gt' ˙ p

	 sin#

g''
: (3.17)

Thus, a stationary observer cannot exist when r� < r < rC. In general, the allowed
range of � is �� � � � �C. On the outer horizon, we have �� D �C and the
only possible stationary observer on the horizon has

� D � gt'

g''
D �H ; (3.18)

which coincides with the angular velocity of a ZAMO at the event horizon. Note
also that a static observer is a stationary observer with � D 0. Indeed, it is easy to
check that �� changes sign at the static limit, i.e. � D 0 is not allowed within the
ergoregion.

3.1.5 Intermezzo: Stationary and Axisymmetric Black Holes
Have an Ergoregion

At this point it is instructive to take one step back and try to understand what are the
minimal ingredients for the existence of an ergoregion in a BH spacetime. Indeed,
in many applications it would be useful to disentangle the role of the ergoregion
from that of the horizon. Unfortunately, this cannot be done because, as we now
prove, the existence of an event horizon in a stationary and axisymmetric spacetime
automatically implies the existence of an ergoregion [7].

Let us consider the most general stationary and axisymmetric metric1:

ds2 D gttdt2 C grrdr2 C 2gt'dtd' C g''d'2 C g##d#2 ; (3.19)

1We also require the spacetime to be invariant under the “circularity condition”, t ! �t and
' ! �', which implies gt# D gt' D gr# D gr' D 0 [6]. While the circularity condition follows
from Einstein and Maxwell equations in electrovacuum, it might not hold true in modified gravities
or for exotic matter fields.
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where gij are functions of r and # only. The event horizon is the locus rC D rC.#/
defined as the largest root of the lapse function:

NrDr
C

�
	

g2t' � g''gtt



rDr

C

D 0 : (3.20)

In a region outside the horizon N > 0, whereas N < 0 inside the horizon. As
we discussed, the boundary of the ergoregion, rergo D rergo.#/, is defined by
gttjrDrergo

D 0, and gtt < 0 in a region outside the ergoregion, whereas gtt > 0

inside the ergoregion. From Eq. (3.20) we get, at the horizon,

gttjrDr
C

D g2t'
g''

ˇ̌
ˇ̌̌
rDr

C

� 0 ; (3.21)

where, in the last inequality, we assumed no closed timelike curves outside the
horizon, i.e. g'' > 0. The inequality is saturated only when the gyromagnetic
term vanishes, gt'

ˇ̌
rDr

C

D 0. On the other hand, at asymptotic infinity gtt ! �1.

Therefore, by continuity, there must exist a region rergo.#/ such that rC � rergo < 1
and where the function gtt vanishes. This proves that an ergoregion necessarily
exists in the spacetime of a stationary and axisymmetric BH. As a by-product, we
showed that the boundaries of the ergoregion (i.e. the ergosphere) must lay outside
the horizon or coincide with it, rergo � rC. In the case of a static and spherically
symmetric spacetime, gt' � 0 and the ergosphere coincides with the horizon.

3.2 Area Theorem Implies Superradiance

It was realized by Bekenstein that BH superradiance can be naturally understood
using the classical laws of BH mechanics [8]. In fact, given these laws, the argument
in Sect. 2.5 can be applied ipsis verbis. The first law relates the changes in mass M,
angular momentum J, horizon area AH and charge Q, of a stationary BH when it is
perturbed. To first order, the variations of these quantities in the vacuum case satisfy

ıM D k

8

ıAH C�HıJ CˆHıQ ; (3.22)

with k � 2
TH the BH surface gravity, �H the angular velocity of the
horizon (3.7) and ˆH is the electrostatic potential at the horizon [9]. The
first law can be shown to be quite generic, holding for a class of field
equations derived from a diffeomorphism covariant Lagrangian with the form
L.gabI RabcdI raRbcde; : : :I  ; ra ; : : :: : ::/. The second law of BH mechanics
states that, if matter obeys the weak energy condition [6, 8, 10] (see also the
discussion in Sect. 3.6.4 for a counterexample with fermions), then ıAH � 0.
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Whether or not the second law can be generalized to arbitrary theories is an open
question, but it seems to hinge on energy conditions [11, 12].

For the sake of the argument, let us consider a neutral BH, ˆ D 0. The ratio of
angular momentum flux L to energy E of a wave with frequency ! and azimuthal
number m is L=E D m=! (see Appendix C). Thus, interaction with the BH causes
it to change its angular momentum as

ıJ=ıM D m=! : (3.23)

Substitution in the first law of BH mechanics (3.22) yields

ıM D !k

8


ıAH

! � m�H
: (3.24)

Finally, the second law of BH thermodynamics, ıAH � 0, implies that waves with
! < m�H extract energy from the horizon, ıM < 0.

Likewise, the interaction between a static charged BH and a wave with charge q
causes a change in the BH charge as

ıQ=ıM D q=! ; (3.25)

and therefore in this case Eq. (3.24) reads

ıM D !k

8


ıAH

! � qˆH
: (3.26)

This argument holds in GR in various circumstances, but note that it assumes
that the wave is initially ingoing at infinity and that the matter fields obey the weak
energy condition. The latter condition is violated for fermions in asymptotically flat
spacetimes (cf. Sect. 3.6.4 below), while the former needs to be carefully analyzed
in asymptotically de Sitter spacetimes where a subtlety arises at the cosmological
horizon [13].

3.3 Energy Extraction from Black Holes: The Penrose
Process

Despite being classically perfect absorbers, BHs can be used as a “catalyst” to
extract the rest energy of a particle or even as an energy reservoir themselves, if
they are spinning or charged.

Classical energy extraction with BHs works in exactly the same way as in
Newtonian mechanics, by converting into useful work the binding energy of an
object orbiting around another. Let’s take for simplicity a point particle of mass
� around a much more massive body of mass M. In Newtonian mechanics, the
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Fig. 3.3 Cartoon of a BH-powered circuit. Two shafts are rigidly attached to a ring, which is
inside the ergoregion. The ring and therefore the shafts, are forced to rotate with the BH, turning
the magnet at the other end of the shafts end over end, thereby producing a current in any closed
circuit. Adapted from a diagram by Dan Watson [14]

maximum energy that can be converted in this way is given by the potential
difference between infinity and the surface of the planet, Work=.�c2/ D GM=.c2R/,
where R is the planet’s radius. A similar result holds true when the planet is replaced
by a BH; for a nonrotating BH, all the object’s mass energy can be extracted as
useful work as the particle is lowered towards the BH, as the Newtonian calculation
suggests! Notice that in the previous example, what one accomplished was to trade
binding energy with useful work, no energy was extracted from the BH itself.

Ways to extract energy from BHs make use of the existence of the ergoregion
whose boundary is also a static limit: all observers are dragged along with the
spacetime and cannot remain at rest with respect to distant observers. A cartoonish
application of this property to extract energy is depicted in Fig. 3.3. Quantitative
estimates of energy extraction from BHs were first made in a simpler context, which
we now discuss.

3.3.1 The Original Penrose Process

The possibility to extract energy from a spinning BH was first quantified by
Roger Penrose [15] some years before the discovery of BH superradiance, and
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it is related to the fact that the energy of a particle within the ergoregion, as
perceived by an observer at infinity, can be negative. Penrose conceived the
following gedankenexperiment. Consider the Kerr geometry (3.5) with vanishing
cosmological constant. Penrose’s thought experiment consists on a particle of rest
mass �0, at rest at infinity, decaying into two identical particles each with rest mass
�fin (Penrose considered these two to be photons, we will keep it generic) at a
turning point in its (geodesic) trajectory. Because the particle is initially at rest, the
conserved dimensionless energy parameter is E.0/ D E .0/=�0 D 1, and we denote
the conserved energy and angular momentum parameters of the two decay-products
by .E.1/;L.1// D .E .1/=�fin;L.1/=�fin/ and .E.2/;L.2// D .E .2/=�fin;L.2/=�fin/. Here
E ; L are the physical dimensionful energy and angular momentum of the particles.
From (3.11), the turning point condition, Pr.r D r0/ D 0, immediately gives

L.0/ D 1

r0 � 2M

	
�2aM C

p
2Mr0	



; (3.27)
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˙2aM E.1/; .2/ C

r
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2M C r.
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r0 � 2M
: (3.28)

Imposing conservation of energy and angular momentum,

E .1/ C E .2/ D E .0/ D �0 ; L.1/ C L.2/ D L.0/ ; (3.29)

one gets finally,
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It is thus clear that one of the decay products will have an energy larger than
the incoming particle. This is schematically shown in Fig. 3.4. How much larger,
depends on the details of the break-up process and is encoded in the quantity
0 < 1 � 4�2fin=�

2
0 < 1. That is, there will be a gain in energy at infinity provided

that the turning point satisfies r0 < 2M.1 � 4�2fin=�
2
0/ < 2M or, in other words,

provided that the decay takes place between the ergosurface and the event horizon.
The maximum gain of energy is obtained when the decay takes place at the

horizon and reads

�max D E .1/
E .0/ D 1

2

0
@
s
2M.1 � 4�2fin=�

2
0/

rC
C 1

1
A : (3.31)
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Fig. 3.4 Pictorial view of the original Penrose processes. A particle with energy E0 decays inside
the ergosphere into two particles, one with negative energy E2 < 0 which falls into the BH, while
the second particle escapes to infinity with an energy higher than the original particle, E1 > E0

As we noted, the efficiency depends on the details of the process. The maximum
efficiency occurs for conversion into photons, such that �2fin=�

2
0 D 0, and for which

we recover Penrose’s result 2E .1/=E .0/ D
	p

2M=rC C 1



.

In this latter case, it is possible to show that the negative-energy photon is doomed
to fall into the horizon [16], decreasing the BH mass and angular momentum
by ıE and ıL but in such a way that the irreducible mass, Mirr D p

MrC=2,
actually increases [6]. Furthermore, a generic condition on the energy and angular
momentum of the infalling particle can be computed as follows. In the ZAMO frame
the energy flux across the horizon is given by

ıEH D �
Z

r
C

d†�T�� n� / ıE ��HıL ; (3.32)

where T�� is a generic stress-energy tensor of the matter/radiation crossing the
horizon, n� D �

�

.t/ C�H�
�

.'/, �
�

.t/ � @�t is the time Killing vector, ��.'/ � @�' is the
axial Killing vector (see Appendix C), while E and L are the (conserved) specific
energy and angular momentum of the particle crossing the horizon. Since the locally
measured energy must be positive, assuming ıE and ıL are small, it follows that

EH / E ��HL > 0 H) �HL < E : (3.33)

The result above applies to any form of energy and angular momentum crossing
the horizon and is related to the area theorem. In addition, if the infalling particle
has a negative energy, the bound above implies that J < 0, i.e. the negative-energy
particle must be counter-rotating.
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3.3.2 The Newtonian Carousel Analogy

A simple Newtonian, non-relativistic analog of the Penrose process is the “carousel
process” depicted in Fig. 3.5. The process consists of two steps. In the first step
a point particle collides with a rotating thin cylinder with a “sticky” surface and
angular velocity �i. The calculations will be done in the inertial frame centered at
the cylinder’s original axis. For simplicity, we assume the collision to be completely
inelastic and we take the particle’s mass m to be much smaller than the mass M of the
cylinder so that, to first approximation, after the collision the particle is absorbed by
the cylinder without changing its shape. Furthermore, consider the particle to have
a velocity vin perpendicular to the axis of rotation of the cylinder and with a zero
impact parameter. Because of the sticky surface, after the collision the particle is
forced to co-rotate with the cylinder. In the second step a fraction � of the initial
mass is ejected from the surface of the cylinder. We want to understand under which
conditions the ejected particle has an energy larger than the initial one.

Conservation of angular and linear momenta implies that, after the collision with
the cylinder, the linear and angular velocities of the cylinder respectively are

vf D m

M C m
vin ; �f D M

M C m
�i : (3.34)

Because in this example the impact parameter vanishes, the particle has zero angular
momentum and the angular velocity of the cylinder decreases. After the collision,
the particle is stuck to the surface. Let a fraction � of the initial mass be ejected at
the radial direction forming an angle # with the initial direction of the particle (and
in the same direction of the angular velocity of the disk). Then, the components of

Fig. 3.5 The carousel analogy of the Penrose process. A body falls nearly from rest into a rotating
cylinder, whose surface is sprayed with glue. At the surface the body is forced to co-rotate with the
cylinder (analog therefore of the BH ergosphere, the surface beyond which no observer can remain
stationary with respect to infinity). The negative energy states of the ergoregion are played by the
potential energy associated with the sticky surface. If now half the object (in reddish) is detached
from the first half (yellowish), it will reach infinity with more (kinetic) energy than it had initially,
extracting rotational energy out of the system
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the particle’s velocity in the collision plane, vout D .vx; vy/, read

vx D ��f R cos# ; vy D vf C�f R sin# ; (3.35)

where R is the radius of the cylinder. Finally, we can compare the final energy of
the ejected particle, Kout D �mv2out=2, with the initial energy Kin D mv2in=2. To first
order in the mass ratio m=M, the efficiency reads

� � Kout
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D 1C
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�

R2�2
i
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� 1

�
C 2�

R�i
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�
sin# � R�i
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�
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M
C O

�	m

M


2�
:

(3.36)

Interestingly, the efficiency does not depend on the angle # to lowest order in the
mass ratio. When m � M the energy of the ejected particle is larger than the initial
kinetic energy provided

�i >
vinp
�R
: (3.37)

Thus, the rotating “sticky” surface plays the same role as the BH ergosphere. The
perfectly inelastic collision is the analog of the frame-dragging effect according
to which no observer within the ergoregion can remain stationary with respect to
infinity. The negative energy states of the ergoregion are played by the potential
energy associated with the sticky surface.

3.3.3 Penrose’s Process: Energy Limits

We have seen already that the energy gain provided by the Penrose mechanism is
modest, at least for equal-rest-mass fragments. Still open however, is the possibility
that the efficiency, or that the Lorentz factor of one of the fragments, is large for
some situations.2 Strong limits on the energy that can be extracted from the Penrose
process can be obtained [5, 17]: consider a particle with four-velocity U� and
conserved energy parameter E that breaks up and emits a fragment with energy
E0 and four-velocity u�. We want to impose limits on E0, given the three-velocity of
the fragment Ev as measured in the rest frame of the incident body. Suppose that the
breakup occurs in a spacetime with a Killing vector �� D @�t which is timelike
at infinity. In the laboratory frame we define an orthonormal tetrad, e�.˛/, where

2This possibility was at some stage considered of potential interest for the physics of jets emitted
by quasars.
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e�.0/ D U�. The four-velocity of the fragment in the locally flat space is given by

u.˛/ D dx.˛/

d�
D �

dx.˛/

dx.0/
; (3.38)

where � D dx.0/=d� D �
1 � v2��1=2 and v2 D v.i/v.i/. In the frame defined by e�.˛/

we can write u� D e�.˛/u
.˛/ D �.U� C v.i/e�.i// and �� D �.0/U� C �.i/e�.i/ (with

i D 1; 2; 3). We then have

E D ���U� D ��.0/ D ���U� D ��.0/ ; gtt D ���� D �E2 C �2 ; (3.39)

where �2 D �.i/�.i/. The energy of the ejected particle reads

E0 D ���u� D �
�
E C v.i/�.i/

� D � .E C v� cos#/ ; (3.40)

where # is the angle between the fragment velocity v.i/ and �.i/. Using (3.39) we
can write

E0 D �E C �v
�
E2 C gtt

�1=2
cos#; (3.41)

which implies the inequality

�E � �v
�
E2 C gtt

�1=2 � E0 � �E C �v
�
E2 C gtt

�1=2
: (3.42)

In the Kerr metric (3.5), gtt is always less than 1 outside the horizon; furthermore,
realistic configurations of matter outside BHs are likely to be well approximated
with circular geodesics, for which the maximum possible energy is E D 1=

p
3 [5].

Thus, for E0 to be negative, or equivalently, for the Penrose process to be possible,
it is necessary that

v >
Ep

E2 C 1
D 1

2
: (3.43)

This means that the disintegration process must convert most of the rest mass
energy of the initial body into kinetic energy for any extraction of energy to become
possible. In other words, the breakup process itself is relativistic. Such conclusion
might be avoided if one is willing to accept the existence of naked singularities or
wormholes, where gtt can in principle become very large.

It is interesting to note that the inequality (3.42) applies also in flat space, where
gtt D �1. In this case the bound reads

�E � �v �E2 � 1
�1=2 � E0 � �E C �v

�
E2 � 1�1=2 : (3.44)
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We conclude that (i) there is no great gain compared to what could be achieved from
a breakup process in flat space and (ii) the left-hand-side can never become negative,
as expected.

Bardeen et al. also showed that similar limits can be derived by following
two particles which collide at some point inside the ergoregion [5]. Following
similar steps to the ones we discussed above, they computed a lower bound on the
magnitude of the relative three-velocity w between them, obtaining w � 1=2, in
agreement with [17]. This leads to the conclusion that for the Penrose process to
be possible, the particles must first acquire relativistic energies through some other
mechanism.

In its simplest incarnation, energy extraction from spinning BHs in vacuum is
not efficient enough to explain highly-energetic phenomena such as the emission of
relativistic jets from quasars. However, in the presence of magnetic fields the limits
discussed above can be lowered significantly for charged particles [18, 19], or as we
discuss in Sect. 3.3.5, the situation can change completely by considering a variant
of the Penrose process known as the collisional Penrose process.

3.3.4 The Penrose Process in Generic Spacetimes

The overall picture discussed above for the Penrose’s extraction of energy from a
Kerr BH can be actually generalized to any stationary and axisymmetric spacetime
with an ergoregion. Consider a massive particle with specific energy E.0/ at infinity,
falling along the equatorial plane and finally decaying into two photons within the
ergoregion. In such circumstances, one photon can have negative energy, E.1/ < 0,
so that by energy conservation the second photon must have E.2/ > E.0/. In the
case of a Kerr BH the negative-energy photon is forced to fall into the horizon [16],
whereas the other can escape to infinity with an energy excess compensated by the
BH angular momentum. In fact, as shown by Chandrasekhar [6], the process can be
also understood in terms of the BH area theorem, i.e. energy extraction is related to
the property that the surface area of a BH never decreases in a continuous process.

Probably because of this analogy with the area theorem, there is some confusion
in the literature about the connection between the Penrose process and superradi-
ance. It is customary to claim that superradiance is the “wave analog” of the Penrose
process. In fact, we now discuss that these processes are distinct from each other.
Indeed, in the absence of other forms of dissipation, superradiance requires the
presence of an event horizon [7, 20], whereas the Penrose process only hinges on
the existence of an ergoregion. The latter can exist in rotating spacetimes other than
BHs (e.g. in very compact, fastly rotating stars).

Let us start by repeating the essentials of the Penrose process in a generic station-
ary, axisymmetric spacetime. Focusing on equatorial motion, the line element (E.1)
can be simplified as

ds2 D gtt.r/dt2 C grr.r/dr2 C g''.r/d'
2 C 2gt'.r/dtd' ; (3.45)
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where all metric coefficients are evaluated at # D 
=2. Generalizing the geodesics
analysis presented in Sect. 3.3.1, it is easy to show that a massive particle in this
spacetime has a negative energy if and only if it is counter-rotating (i.e. its angular
momentum along the rotation axis is negative, L < 0) and

gtt

	
1C g''

L2



<

g2t'
L2
: (3.46)

Because the right-hand side of the equation above is positive and regularity of the
spacetime requires g'' > 0, the condition above implies gtt > 0, i.e. that the
negative-energy particle is confined within the ergoregion. Likewise, for a particle
with specific energy E.0/ D 1 decaying into two particles with specific energies E.1/

and E.2/ at its turning point and rest masses �fin each, we obtain
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: (3.47)

The efficiency reads

� D E .1/
E .0/ D 1

2

�q
.1C gtt/.1 � 4�2fin=�

2
0/C 1

�
; (3.48)

and is limited by the maximum value of jgttj. The latter must be finite to ensure
regularity of the geometry3 and this limits the efficiency of Penrose’s process, in
addition to the bounds discussed above for the case of a Kerr BH.

Crucially, this derivation does not assume the existence of an event horizon
and is valid for any stationary and axisymmetric spacetime. At variance with
superradiance [7, 20], energy extraction from Penrose’s process only requires the
presence of an ergoregion.

While in the case of a Kerr BH the negative-energy particle is doomed to fall into
the BH [16], if the spacetime does not possess an event horizon Eq. (3.46) requires
that the negative-energy particle be confined within the ergoregion. In this case there
are two possibilities: (i) the particle does not interact with the rotating object and it
remains in orbital motion in the region gtt > 0, or (ii) the particle is absorbed by
the object and transfers its negative energy and angular momentum through other

3Interestingly, in the case of a naked singularity large-curvature regions become accessible to
outside observers and gtt can be arbitrarily large. This suggests that the Penrose effects around
spinning naked singularities can be very efficient. It is also possible that rotating wormholes
are prone to efficient Penrose-like processes, although to the best of our knowledge a detailed
investigation has not been performed.
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(nongravitational) mechanisms. As we will see in Sect. 4.11 the former possibility
is related to the so-called ergoregion instability.

As we discussed in Sect. 3.1.5 (see also [7]), any stationary and axisymmetric
spacetime with a horizon also possesses an ergoregion. Therefore, if the spacetime
is described by a spinning BH geometry, both superradiance and Penrose’s process
can occur. However, the converse is not necessarily true, e.g. a perfect-fluid star may
allow for Penrose’s process but not for superradiant scattering.

We showed that the Penrose mechanism extends trivially to generic axi-
symmetric stationary spacetimes. Specifically, it has been studied for rotating
wormholes [21], BHs in other theories of gravity such as the “Horava-Lifshitz”
gravity BH [22], Kerr-NUT BHs [23], BHs with a global monopole [24], charged
rotating BHs in Einstein-Maxwell axion-dilaton coupled gravity [25], and to
arbitrarily “deformed” Kerr BHs [26], where it was shown that the maximum
energy gain can be several times larger than for a Kerr BH.

The efficiency of the Penrose mechanism was also studied in the context of
higher-dimensional physics, for higher dimensional BHs and black rings [27], to
the five-dimensional supergravity rotating BH [28], and even to arbitrarily deformed
BHs [29].

Finally, the astrophysically more relevant Penrose process for a Kerr BH
immersed in a magnetic field, was studied in [18, 19, 30, 31] where it was shown
that the maximum efficiency could be up to ten times larger than in a vacuum Kerr
BH.

3.3.5 The Collisional Penrose Process: Ultra-High-Energy
Debris

A variant of the Penrose process which might be astrophysically more promising is
the collisional Penrose process, first proposed in 1975 [38] and studied in detail in
[32]. The process consists of two particles 1 and 2 colliding with four-momenta
p�1 and p�2 at some Boyer-Lindquist coordinate position r, and resulting in the
emission of two bodies 3 and 4 with four-momenta p�3 and p�4 . This process was
mostly studied in the equatorial plane where the geodesic equations are given by
Eqs. (3.9)–(3.11). In the local ‘lab’ reference frame, the four-momentum is p� D Px�
for massless particles, while for massive particles we can choose the geodesic’s
affine parameter to be �=� (� being the proper time and � the particle rest mass),
so that p�p� D ��2. Using (3.9)–(3.11) and imposing the local conservation of
four-momentum

p�1 C p�2 D p�3 C p�4 ; (3.49)

it is possible to numerically compute the ratio � between the energy of the post-
collision escaping particle 3 and the energy of the colliding particles, � � E3=.E1 C
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Fig. 3.6 Pictorial view of the different collisional Penrose processes. Left: initial particles with
ingoing radial momentum (pr

1 < 0 and pr
2 < 0). Particle 3 has initial ingoing radial momentum,

but eventually finds a turning point and escapes to infinity. The maximum efficiency for this was
shown to be quite modest � � 1:5 [32–35]. Right: initial particles with pr

1 > 0 and pr
2 < 0. In

this case particle 1 must have pr
1 > 0 inside the ergosphere. For this process the efficiency can be

unbound for extremal BHs [35, 36]

E2/. Imposing that the initial particles have ingoing radial momentum (pr
1 < 0 and

pr
2 < 0) and that particle 3 can escape and reach an observer at infinity, it was

shown that the process would result in modest maximum efficiencies (� . 1:5)
for the escaping particle, where the precise upper bound depends on the nature
of the colliding particles [32–35]. However, recently, Schnittman [36] found the
surprising result that one could achieve much higher energy gains (� . 15) by
allowing one of the colliding particles (say, particle 1) to rebound at a turning
point, so it has outgoing radial momentum (pr

1 > 0) when it collides with the
incoming particle 2. This outgoing momentum favors ejection of a high-energy
particle after the collision. A schematic view of the two processes is shown in
Fig. 3.6. This was further extended in [37], with the striking conclusion that particle
collisions in the vicinity of rapidly rotating BHs could, in principle, reach arbitrarily
high efficiencies. They allowed for one of the particles to have outgoing radial
momentum but with angular momentum L1 < 2E1M, such that this particle
cannot come from infinity but is still kinematically allowed to be created inside
the ergosphere by previous scattering events (however see [39] for a particular case
where there is no energy amplification taking into account multiple scattering).
These results are summarized in Fig. 3.7.

In principle multiple scattering events can also be used to increase the efficiency
of any possible collisional Penrose process. The energy of particles that cannot
escape to infinity may be substantially larger than the energy of those that can,
and even if these particles are unable to escape themselves, they may collide with
other particles and give rise to high-energy collision products that may escape and
be detected at infinity. This may lead to very large efficiencies, even away from
a D M [36, 37]. However, whether these processes play a role in the production of
observable gamma rays or ultra-high-energy cosmic rays is still an open problem.



54 3 Superradiance in Black Hole Physics

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

r/r+-1

1

1.1

1.2

1.3
η m

ax

b2 = 2M

b2 =1.999M

b2 = 1.99M

b2 = 1.9M

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

r/r+-1

10
0

10
1

10
2

10
3

10
4

η m
ax

b1/M=2+10
-2

b1/M=2+10
-3

b1/M=2+10
-4

b1/M=2

b1/M=2-10
-4

b1/M=2-10
-3

b1/M=2-10
-2

Fig. 3.7 Left: Maximum efficiency �max for the collision of equal-energy particles as a function
of the radius at which the reaction occurs, for pr

1 < 0, pr
2 < 0, L1=E1 � b1 D 2M, and an extremal

black hole (a D M). The case b1 D b2 D 2M corresponds to the decay of a single particle into two
photons discussed in Sect. 3.3.1. The maximum efficiency for this case is �max � 1:3, as shown
in [34]. Right: Same, but for pr

1 > 0, pr
2 < 0 and b2 D �2.1 C p

2/M. The curves for b1 > 2M
terminate at the turning point of particle 1. The process considered in [36] corresponds to the case
b1 � 2M, while [37] extended these results to the case b1 < 2M. From [37]

3.4 The ABC of Black Hole Superradiance

In this section we introduce the theory of superradiant scattering of test fields on
a BH background. Fluctuations of order O.�/ in the scalar or vector field in a
given background induce changes in the spacetime geometry of order O.�2/, and
therefore to leading order can be studied on a fixed BH geometry. Before entering
in the details of the problem, it is instructive to consider a model that captures the
basic ingredients of superradiant scattering in curved spacetime. For simplicity, we
assume asymptotic flatness.

Let us assume that the spacetime is stationary and axisymmetric. As we shall see,
in this case various types of perturbations propagating on fixed BH metrics can be
expressed in terms of a single master variable ‰ which obeys a Schroedinger-type
equation of the form

d2‰

dr2�
C Veff‰ D 0 ; (3.50)

where the potential Veff.r/ is model dependent and encodes the curvature of the
background and the properties of the test fields. The coordinate r� maps the region
r 2 ŒrC;1Œ to the entire real axis. Given the symmetries of the background,
we consider a scattering experiment of a monochromatic wave with frequency !
and azimuthal and time dependence e�i!tCim' . Assuming Veff is constant at the
boundaries, Eq. (3.50) has the following asymptotic behavior

‰ �
�
T e�ikHr

� C OeikHr
� as r ! rC ;

Reik
1

r
� C Ie�ik

1

r
� as r ! 1 :

(3.51)
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where rC is the horizon radius in some chosen coordinates, k2H D Veff.r ! rC/ and
k21 D Veff.r ! 1/. These boundary conditions correspond to an incident wave of
amplitude I from spatial infinity giving rise to a reflected wave of amplitude R and
a transmitted wave of amplitude T at the horizon. The O term describes a putative
outgoing flux across the surface at r D rC. Although the presence of a horizon and
a well-posed Cauchy problem would imply O � 0, here we shall generically keep
this term, in order to allow for a nonvanishing outgoing flux in absence of an event
horizon.

Let us assume that the potential is real.4 Then, since the background is stationary,
the field equations are invariant under the transformations t ! �t and ! ! �!.
Thus, there exists another solution N‰ to Eq. (3.50) which satisfies the complex
conjugate boundary conditions. The solutions ‰ and N‰ are linearly independent
and standard theory of ODEs tells us that their Wronskian is independent of r�.
Thus, the Wronskian evaluated near the horizon, W D �2ikH

�jT j2 � jOj2�, must
equal the one evaluated at infinity, W D 2ik1.jRj2 � jIj2/, so that

jRj2 D jIj2 � kH

k1
�jT j2 � jOj2� ; (3.52)

independently from the details of the potential in the wave equation.
In the case of a one-way membrane boundary conditions at the horizon, i.e. O D

0, one gets jRj2 < jIj2 when kH=k1 > 0, as is to be expected for scattering off
perfect absorbers. However, for kH=k1 < 0, the wave is superradiantly amplified,
jRj2 > jIj2 [40].

Again, we stress how dissipation is a crucial ingredient for superradiance:
without ingoing boundary conditions at the horizon, no superradiant scattering can
occur [7, 8, 20, 41, 42]. In absence of a horizon (for example in the case of rotating
perfect-fluid stars), regularity boundary conditions must be imposed at the center
of the object. By applying the same argument as above, the Wronskian at the
center vanishes, which implies jRj2 D jIj2, i.e. no superradiance. If the rotating
object does not possess a horizon, superradiance can only come from some other
dissipation mechanism, like friction due the atmosphere or viscosity, which anyway
require a precise knowledge of the microphysics governing the interior of the
object. Equivalently, we can argue that jOj2 and jT j2 are respectively proportional
to the outgoing and transmitted energy flux across the surface at rC. In absence
of dissipation, energy conservation implies that the outgoing flux will equal the
transmitted one, i.e. jOj2 D jT j2 and Eq. (3.52) would again prevent superradiance,
jRj2 D jIj2.

4As we shall discuss, this condition does not hold in various cases, for example for electromagnetic
and gravitational perturbations of a Kerr BH, whereas it holds for scalar perturbations of spinning
and charged BHs. When such condition does not hold, a more sophisticated analysis is needed, as
discussed below.
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3.5 Superradiance from Charged Static Black Holes

From the discussion of the previous section, it is clear that BH superradiance also
occurs for electrically charged waves scattered by a static, charged BHs whenever
(cf. Eq. (3.26))

! � qˆH < 0 : (3.53)

Because the background is spherically symmetric, this type of superradiance is
simpler to treat and in this section we start our analysis with this simpler case.

3.5.1 Linearized Analysis: Amplification Factors

The problem can be investigated at linearized level by considering a charged
scalar field ‰ propagating on a RN background, which is defined by Eq. (3.4)
with ƒ D 0. The Klein-Gordon equation for a minimally coupled charged
scalar field in this curved spacetime was given in Eq. (3.2a). Using the ansatz
‰.t; r; #; '/ D R

d!
P

lm e�i!tYlm.#; '/ .r/=r, the equation above can be written
in the Schroedinger-like form (3.50) with the potential

Veff.r/ D !2 � f

�
l.l C 1/

r2
C f 0.r/

r
C �2S

�
� 2qQ!

r
C q2Q2

r2
; (3.54)

where r is defined in terms of r� through dr=dr� D f D .r � rC/.r � r�/=r2. We
can compute the reflectivity of a scattering experiment as done at the beginning of

Sect. 3.4. In this specific case kH D ! � qˆH D ! � qQ=rC and k1 D
q
!2 � �2S.

Equation (3.52) then reduces to

jRj2 D jIj2 � ! � qQ=rCq
!2 � �2S

jT j2 : (3.55)

This equation shows that only waves with ! > �S propagate to infinity and that
superradiant scattering occurs, jRj2 > jIj2, whenever! < qQ=rC, which coincides
with the condition (3.53) derived from thermodynamical arguments.

The amplification factor for each frequency can be computed by integrat-
ing numerically the wave equation (cf. available MATHEMATICA R� notebook in
Appendix A). Figure 3.8 shows the amplification factor as a function of the
frequency for monopole, l D 0, waves and different BH Q and field q charge
parameters. The amplification factor can be as high as 40% for nearly extreme
BHs, substantially larger than the amplification factors of scalar fields in Kerr
backgrounds, as we will see. Note also that the critical threshold for superradiance
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Fig. 3.8 Amplification factor Z000 D jRj2=jIj2 � 1 as a function of the frequency for a massless
bosonic wave with l D 0 and charge q scattered off a RN BH with charge Q and mass M. The
threshold of superradiance, Z000 > 0, occurs when ! D qQ=r

C

to occur, Z000 > 0, is to numerical accuracy described by condition (3.53). The
amplification factor is proportional to Qq at intermediate values, but tends to 100%
at large values of q. We find that at large qM, the amplification factor satisfies

Z000 � 100� 80

Qq
.%/ : (3.56)

A detailed analysis in the time-domain has also recently been performed in
[43]. Their results agree with the frequency-domain computation here presented
and show indications that the maximum energy gain is always finite, independently
of the initial conditions, in accord with the linear stability of the (sub-extremal) RN
geometry. These results, in particular (3.56), are fully consistent with an analytical,
small-frequency expansion for the amplification factors [44].

As we shall see in the next sections, the existence of superradiance for static
charged BHs is a crucial ingredient for interesting applications in the context of the
gauge/gravity duality. For example the spontaneous symmetry breaking mechanism
near a RN-AdS BH [45], and applications therein related to holographic models of
superconductors [46], all hinge on this superradiant phenomenon.

3.5.2 Backreaction on the Geometry: Mass and Charge Loss

Superradiant scattering seems to imply that energy is being extracted from the
background which—at linearized order where superradiance is observed—is kept
fixed. This is not a particularity of superradiant scattering from BHs, but rather
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a very generic property. We will now show that when backreaction effects are
included, both the mass and charge of the BH decrease.

Take a spherically symmetric, linearized charged scalar field

‰ D �
 .t; r/

r
; (3.57)

where now we explicitly introduced a bookkeeping parameter � to help keep track
of the expansion order. When allowed to propagate in a RN background, such field
introduces backreactions in both the geometry and vector potential which are both
of order �2,

A� D
�

Q

r
C �2

Qt.t; r/

r
; �2

R
dtQr.t; r/

r2
; 0; 0

�
; (3.58)

where the form of the perturbation quantities Qt.t; r/; Qr.t; r/ at order O.�2/ was
chosen so that the radial electric field Er at large distances is

r2Er D Q C �2
�
Qr.t; r/ � rQ0

t.t; r/C Qt.t; r/
�
; (3.59)

and therefore the charge flux can be obtained via Gauss’s law to be

PQtot D �2
� PQr � r PQ0

t C PQt
�
: (3.60)

Likewise, the metric gets O.�2/ corrections of the form

ds2 D �
�

f � �2 2�.t; r/
r

�
dt2 C

�
f � �2 2�.t; r/

r
� �2X.t; r/

r

��1
dr2 C r2d�2 ;

(3.61)

with � the mass loss (or gain) induced by the scalar field. At large distances, we
know from the previous analysis of the scalar field equation at order O.�/ that the
solutions are oscillatory. Let the solutions at large distances be

 � f .t � r/C g.t C r/ ; (3.62)

where the first term represents an outgoing wave and the second an ingoing wave.
The field equations yield a vanishing PX.t; r/ at large distances, whereas the .t; r/
component of Einstein’s equations yields

2
r

f
P� D r

h�
 ��0 P C  0 P �i� P � � � P � iqQ

h
 
�
 ��0 �  � 0i ; (3.63)
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where the first term on the r.h.s dominates at large distance. Because . �/0 P C
 0 P � D 2g0.g�/0 � 2f 0.f �/0, we obtain

P� � g0.g�/0 � f 0.f �/0 ; (3.64)

where now primes stand for derivative with respect to the argument (.t � r/ and
.t C r/ for f and g respectively). In other words, for f 0 > g0—which can be seen to
be the condition for superradiance at order O.�/—the mass of the BH does decrease
at orderO.�2/. From the scalar field stress-tensor, which can be read off from (3.2c),
the energy flux at infinity can be computed using only the linearized result and reads

PE1 D � �g0.g�/0 � f 0.f �/0
�
: (3.65)

In other words, Eq. (3.64) tells us that the BH looses or gains mass at a rate which
matches exactly the energy dissipated or ingoing at infinity, respectively and which
is evaluated using only the linearized quantities. This is an important consistency
result and shows that the energy for superradiant amplification does come—at the
nonlinear level—from the medium, in this case the BH. For monochromatic scalar
waves,  � Ie�i!.tCr/ C Re�i!.t�r/ at large distances, one gets

P� D �!2 �jRj2 � jIj2� ; (3.66)

indicating that superradiance extracts mass.
Finally, the r component of Maxwell’s equations (3.2b) yields

qf
�
 � 0 �  . �/0

�C 2i
� PQr � r PQ0

t C PQt
� D 0 : (3.67)

From (3.60) this can be re-written as

2 PQtot D iqf
�
 � 0 �  . �/0

�
; (3.68)

which leads to loss of charge at order O.�2/ whenever the superradiance condition
for the scalar field is satisfied at order O.�2/. For monochromatic scalar waves,
 � Ie�i!.tCr/ C Re�i!.t�r/ at large distances, one finds

PQtot D �!q
�jRj2 � jIj2� : (3.69)

One can now use the first law of BH mechanics (3.22) to find

PAH D 8


k

� PM �ˆH PQ� D �8

k
! .! � qˆH/

�jRj2 � jIj2� : (3.70)

In the superradiant regime, jRj2 � jIj2 > 0 but a necessary condition is that ! �
qˆH < 0 thus yielding a positive area increase. Outside the superradiant regime
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! � qˆH > 0 but there is no amplification and jRj2 � jIj2 < 0. In conclusion, the
area always increases in agreement with the second law of BH mechanics.

3.6 Superradiance from Rotating Black Holes

Here we introduce the superradiant scattering of rotating BHs. We focus on the
asymptotically-flat case and consider the geometry (3.5) with ƒ D 0.

3.6.1 Bosonic and Fermionic Fields in the Kerr Geometry

The wave equation for linearized fluctuations around the Kerr geometry was studied
by Teukolsky, Press and collaborators in great detail [40, 48–50]. Following Carter’s
unexpected result on the separability of the Hamilton-Jacobi equation for the
geodesics in a Kerr geometry [51], he also noted that the analogue scalar field
equation was separable [52], as was explicitly shown in [53]. In a breakthrough
work (see [54] for a first-person historical account), it was shown that linearized
perturbations of the Kerr geometry could be described with a single master equation,
describing “probe” scalar (s D 0), massless Dirac (s D ˙1=2), electromagnetic
(s D ˙1) and gravitational (s D ˙2) fields in a Kerr background [48]. The master
equation reads

"�
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C �

s2 cot2 # � s
�
 D 0 ; (3.71)

where s is the field’s spin weight, and the field quantity  is directly related
to Newman-Penrose quantities as shown in Table 3.1. By Fourier transforming

Table 3.1 Wavefunction  
for each value of the spin
weight-s

s 0 (1=2, �1=2) (1, �1) (2, �2)

 ˆ (�0,
�1�1) (�0,
�2�2) (‰0 ,
�4‰4)

The spin coefficient is given by 
 � �1=.r �
ia cos #/. The quantities �0, �2, ‰0 and ‰4 are
Newman-Penrose scalars [47] describing electromag-
netic and gravitational perturbations, respectively.
The quantities �0 and �1 denote components of the
Dirac spinor along dyad legs
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 .t; r; #; '/ and using the ansatz

 D 1

2


Z
d!e�i!teim'S.#/R.r/ ; (3.72)

Teukolsky found separated ODE’s for the radial and angular part, which read,
respectively

	�s d

dr

�
	sC1 dR

dr

�
C
�

K2 � 2is.r � M/K

	
C 4is!r � �

�
R D 0 ; (3.73)

and

1

sin#

d

d#

�
sin#

dS

d#

�

C
 

a2!2 cos2 # � m2

sin2 #
� 2a!s cos# � 2ms cos#

sin2 #
� s2 cot2 # C s C Aslm

!
S D 0 ;

(3.74)

where K � .r2 C a2/! � am and � � Aslm C a2!2 � 2am!. Together with the
orthonormality condition

Z 


0

jSj2 sin#d# D 1 ; (3.75)

the solutions to the angular equation (3.74) are known as spin-weighted spheroidal
harmonics eim'S � Sslm.a!; #; '/. When a! D 0 they reduce to the spin-weighted
spherical harmonics Yslm.#; '/ [55]. For small a! the angular eigenvalues are (cf.
[56] for higher-order terms)

Aslm D l.l C 1/� s.s C 1/C O.a2!2/ : (3.76)

The computation of the eigenvalues for generic spin can only be done numeri-
cally [56].

Besides these equations, to have complete information about the gravitational
and electromagnetic fluctuations, we need to find the relative normalization between
�0 and �2 for electromagnetic fields and between‰0 and‰4 for gravitational pertur-
bations. This was done in [40, 57, 58] assuming the normalization condition (3.75)
and using what is now known as the Teukolsky-Starobinsky identities (see also [6]
for details).



62 3 Superradiance in Black Hole Physics

Defining the tortoise coordinate r� as dr=dr� D 	=.r2 C a2/, Eq. (3.73) has the
following asymptotic solutions

Rslm � T 	�se�ikHr
� C OeikHr

� ; as r ! rC ;

Rslm � I e�i!r

r
C R ei!r

r2sC1 ; as r ! 1 ; (3.77)

where kH D ! � m�H and �H D a=.2MrC/ is the angular velocity of the BH
horizon. Regularity at the horizon requires purely ingoing boundary conditions, i.e.,
O D 0 (see Sect. 3 in [59] for a careful discussion of boundary conditions).

3.6.2 Energy Fluxes of Bosonic Fields at Infinity and on the
Horizon

The perturbation equations (3.73) and (3.74) and their asymptotic behavior (3.77)
can be used to define the energy fluxes that the fields carry through the horizon and
to infinity. The expressions for the energy fluxes were computed in [40], to which we
refer the reader for further details. The total energy fluxes at infinity per unit solid
angle for scalar s D 0 and electromagnetic s D ˙1 are given by (see Appendix C):

d2E

dtd�
D lim

r!C1 r2Tr
t ; (3.78)

where T�� is the stress-energy tensor of the test field. For the scalar case s D 0, one
has

dEout

dt
D !2

2
jRj2 ; dEin

dt
D !2

2
jIj2 ; (3.79)

whereas, for the electromagnetic case s ˙ 1,

d2Eout

dtd�
D lim

r!C1
r2

2

j�2j2 ; d2Ein

dtd�
D lim

r!C1
r2

8

j�0j2 : (3.80)

From these definitions it can be shown that the fluxes, valid for s D 1, are given by

dEout

dt
D 4!4

B2
jRj2 ; dEin

dt
D 1

4
jIj2 ; (3.81)

where B2 D Q2 C 4ma! � 4a2!2 and Q D �C s.s C 1/. The corresponding fluxes
for s D �1 can be found using the Teukolsky-Starobinsky identities and can be
obtained from the above relations by doing the transformation: I ! �.8!2=B/I
and R ! �B=.2!2/R. Finally, for gravitational perturbations s ˙ 2 the fluxes
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can be computed using the effective stress-energy tensor for linearized gravitational
waves [60]. In terms of the Weyl scalars they are given by

d2Eout

dtd�
D lim

r!C1
r2

4
!2
j‰4j2 ; d2Ein

dtd�
D lim

r!C1
r2

64
!2
j‰0j2 ; (3.82)

which can be shown to give for s D 2,

dEout

dt
D 8!6

jCj2 jRj2 ; dEin

dt
D 1

32!2
jIj2 ; (3.83)

where jCj2 D B2
�
.Q � 2/2 C 36a!m � 36a2!2/

�C .2Q �1/.96a2!2�48a!m/C
144!2.M2 � a2/. For s D �2 the fluxes can be found once again using the
Teukolsky-Starobinsky identities and can be obtained from the above relations by
doing the transformation: I ! .64!4=C/I and R ! C�=.4!4/R.

The flux at the horizon for s D 0;˙1 can be computed evaluating the change in
energy of the hole. As showed in Appendix C it is given by

d2Ehole

dtd�
D !

kH
2MrCT��n�n� ; (3.84)

where n� is an inward unit vector, normal to the horizon surface.
Using (3.77), one finds for the scalar case

d2Ehole

dtd�
D MrC!kH

S20lm.#/

2

jT j2 ; (3.85)

whereas, the electromagnetic case for s D 1 gives

d2Ehole

dtd�
D !

8MrCkH

S21lm.#/

2

jT j2 : (3.86)

The case s D �1 can be obtained doing the transformation BT !
�32ikHM2r2C.�ikH C 2�/ T , where � D p

M2 � a2=.4MrC/.
For gravitational perturbations one can use the first law of BH mechanics (3.22)

to find the flux at the horizon [61]. The rate of change of the area can be found from
Eq. (3.24). Since ıM D ıEhole we find

d2A

dtd�
D 16
rCkH

.M2 � a2/1=2!

d2Ehole

dtd�
: (3.87)

We can also show that [61]

d2A

dtd�
D 2MrC	4

16.r2 C a2/4�.k2H C 4�2/
j‰0j2 ; (3.88)
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Equating (3.87) with (3.88) at the horizon, we find for s D 2

d2Ehole

dtd�
D S22lm.#/

2


!

32kH.k2H C 4�2/.2MrC/3
jT j2 : (3.89)

whereas the corresponding for s D �2 can be found doing the transformation
CT ! 64.2MrC/4ikH.k2H C 4�2/.�ikH C 4�/ T .

From Eqs. (3.85), (3.86) and (3.89) one can see that if the superradiance condition
is met, kH < 0, the energy flux at the horizon is negative, i.e. energy (and angular
momentum) are extracted from the BH.

3.6.3 Amplification Factors

For any scattering process experiment, energy conservation implies that

dEin

dt
� dEout

dt
D dEhole

dt
: (3.90)

This equation relates the asymptotic coefficients R, I and T , which can be
used to check the consistency of numerical computations a posteriori. Using
Eqs. (3.85), (3.86) and (3.89), it is also clear that when energy is extracted from
the BH, kH < 0 H) dEhole

dt < 0, there is superradiance, dEin
dt < dEout

dt , as it should by
energy conservation. Finally, from the energy fluxes at infinity one can define the
quantity

Zslm D dEout

dEin
� 1 ; (3.91)

which, depending on whether the superradiance condition is met or not, provides
the amplification or the absorption factor for a bosonic wave of generic spin s and
quantum numbers .l;m/ scattered off a Kerr BH. Using Eqs. (3.79), (3.80) and (3.81)
we find

Zslm D

8̂̂
<̂
ˆ̂̂:

jRj2
jIj2 � 1 ; if s D 0 ;

jRj2
jIj2

	
16!4

B2


˙1 � 1 ; if s D ˙1 ;
jRj2
jIj2

	
256!8

jCj2

˙1 � 1 ; if s D ˙2 :

(3.92)

From the symmetries of the differential equations (3.73) and (3.74), one can prove
the following relation

Zslm.!/ D Zsl�m.�!/ : (3.93)
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This symmetry relation can be used to fix the sign of !. In other words, if the full
dependence on m is known for a given .s; l/ and ! > 0, the corresponding ampli-
fication factor for �! follows immediately from Eq. (3.93). Thus, the amplification
factor Zslm in the entire real !-axis can be obtained by only looking at ! > 0.
In the following we will exploit these symmetries when computing superradiant
amplification factors numerically.

3.6.4 Dirac Fields on the Kerr Geometry

The absence of superradiance for massless Dirac fields was proved in 1973, through
the separation of the massless spin-1/2 equations on a Kerr background [10]. In
1976, the separation of variables was extended to massive Dirac particles [62],
a result soon generalized to the Kerr-Newman geometry [63, 64]. In 1978, these
results were used to show that generic massive Dirac fields do not exhibit super-
radiant scattering in the Kerr BH background geometry [65] (thereby correcting a
previous analysis [66]). The Dirac equation in curved spacetime is

��r� C i�e D 0 ; (3.94)

where Œ��; ��� D 2g�� , r� D @� � �� , r�
N D @� N C N ��, N D  ��0 is

the Dirac adjoint, �� is the spinor affine connection [6] and �e is the fermion mass.
The Dirac equation can be separated on a Kerr background using the ansatz

 D
�

R�S�p
2
� ;

RCSCp
	
;�RCS�p

	
;�R�SCp

2


�T

e�i!teim' ; (3.95)

where 
 D r C ia cos# . The functions R˙.r/ and S˙.#/ satisfy a system of first-
order differential equations, which can be reduced to the following second-order
form [63]

p
	

d

dr

�p
	

dR�
dr

�
� i�e	p

�C i�er

dR�
dr

C
"

K2 C i.r � M/K

	
� 2i!r � �eKp

�C i�er
� �2er2 � �

#
R� D 0 ; (3.96)

1
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�
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dS�
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�
C a�e sin#p

�C a�e cos#

dS�
d#

C
"

a2!2 cos2 # � m2

sin2 #
C a! cos# C m cos#

sin2 #
� cot2 #

4
� 1

2
C � � 2am! � a2!2

Ca�e.1=2 cos# C a! sin2 # � m/p
�C a�e cos #

� a2�2e cos2 #

#
S� D 0 ; (3.97)
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and RC and SC can be obtained once R� and S� are known [62]. The equations
above were extended by Page to the case of Kerr-Newman metric and they reduce
to Teukolsky’s equations (3.73) and (3.74) when �e D 0 and setting s D �1=2.
Near the horizon, the radial functions behave as

R˙.r/ ! A˙	
1�1
4 e�ikHr

� ; (3.98)

so that R� is vanishing at the horizon. Although the asymptotic solution exhibits the
usual kH term that appears due to the BH rotation relative to the reference frame (cf.
Eq. (3.77)), in this case superradiance is forbidden to occur, as we now discuss.

Absence of superradiance is a direct consequence of the properties of the stress-
energy tensor for fermions. Dirac’s equation (3.94) is associated with a conserved
current

J� D N �� ; (3.99)

whose conservation, r�J� D 0, implies that the net number current flowing down
the horizon is always positive

dN

dt
D �

Z
d#d'

p�gJr D 

X

lm

jACj2
Z

d# sin#.jSCj2 C jS�j2/ ; (3.100)

where the last step follows from the representation (3.95) and the orthonormality of
the eigenfunctions, Eq. (3.75) [65]. From the equation above, it is clear that dN=dt >
0, i.e. there is no net flux coming from the horizon, for any frequency. Indeed, using
the stress-energy tensor for a Dirac field, it is easy to show that the net energy flow
across the horizon per unit time and solid angle is � !dN=dt, signaling the absence
of energy and angular momentum extraction for fermions.

The same conclusion can be obtained by studying the reflection and transmission
coefficients in the scattering of a fermionic wave off a Kerr BH. Chandrasekhar
showed that Eq. (3.96) can be written as a Schroedinger-like equation in modified
tortoise coordinates [6]. Using the homogeneity of the Wronskian, the same analysis
performed at the beginning of Sect. 3.4, allows to relate the reflection coefficient R
and the transmission coefficient T as

jRj2 D jIj2 � !p
!2 � �2e=2

jT j2 : (3.101)

The reflection coefficient is always less than unity, showing that superradiance
cannot occur.

As discussed in Sect. 3.2, at the classical level superradiant amplification is a
consequence of Hawking’s area theorem [8, 67]. It might appear that the absence of
superradiance for fermions is at odds with this fact. However, as already pointed out
in the original analysis [10], the stress-energy tensor for fermions does not satisfy
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the weak energy condition, T�� t�t� > 0 for any timelike vector t�, which is one of
the assumptions behind Hawking’s theorem.

3.6.5 Linearized Analysis: Analytic Versus Numerics

The amplification factors Zslm for a bosonic wave of generic spin s and quantum
numbers .l;m/ (cf. Eq. (3.92)) scattered off a Kerr BH can be computed by
integrating numerically the Teukolsky equations presented in Sect. 3.6.1. When
the superradiance condition is not fulfilled, the same computation provides the
absorption cross section of a spinning BH. Remarkably, the problem was also solved
analytically in the low-frequency regime [68, 69]. Using matching-asymptotic
techniques (see Appendix B), the authors showed that in the low-frequency regime

Zslm D Z0lm

�
.l � s/Š.l C s/Š

.lŠ/2

�2
; (3.102)

Z0lm D �8MrC.! � m�H/!
2lC1 .rC � r�/2l

�
.lŠ/2

.2l/Š.2l C 1/ŠŠ

�2

lY
kD1

"
1C M2

k2

�
! � m�H


rCTH

�2#
; (3.103)

where TH D .rC � r�/=.4
r2C/ is the BH temperature and Z0lm is the amplification
factor for scalar waves. The formulas above are valid for any spin a � M provided
!M � 1. The superradiant condition is independent of the spin of the field and
Zslm > 0 whenever ! < m�H for any l and s. In addition, Eq. (3.102) shows that:
(i) the amplification factor is independent of the spin of the field when l � 2s2,
and (ii) in the low-frequency limit the amplification of electromagnetic waves is
only a factor 4 larger than that of scalar waves (this maximum is obtained when
l D m D 1), whereas the amplification of gravitational waves is a factor 36 larger
than that of scalar waves for l D m D 2.

Defining ˛ D 1 � !=.m�H/, the equations above predict Zslm / ˛ when
j˛j � .rC � r�/=.am/, and the exact coefficient can be extracted from Eqs. (3.102)
and (3.103). Thus, in this regime Zslm is linear and continuous in ! � m�H near the
threshold. Furthermore, the amplification is largest at !max � .2lC1/=.2lC2/m�H,
independently of s.

With the further assumption ! � m�H, Eq. (3.102) reduces to

Zslm D 8r2CTH!
2lC1.rC � r�/2l

�
�.1C l � s/�.1C l C s/

.2l C 1/ŠŠ�.l C 1/�.2l C 1/

�2

	 sinh

�
m�H

rCTH

�
�

�
l � im�H


rCTH
C 1

�
�

�
l C im�H


rCTH
C 1

�
: (3.104)
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Fig. 3.9 Left: Amplification factor Zslm as a function of the frequency ! of a wave scattered
off a Kerr BH with spin parameter a D 0:99M obtained by solving numerically the Teukolsky
equations and compared to the analytical result in the low-frequency limit. We consider scalar and
electromagnetic waves with l D m D 1 and gravitational waves with l D m D 2. Superradiance,
Zslm > 0, occurs when 0 < ! < m�H in all cases. Right: The amplification factor for gravitational
waves and for different values of the BH spin

which, although not reproducing the threshold behavior Zslm ! 0 as ! ! m�H,
reproduces well the exact numerical results even at moderately large frequencies,
whereas the full equation (3.102) breaks down before. A comparison between the
low-frequency analytical result (3.104) and the exact result obtained by solving the
Teukolsky equation numerically (the MATHEMATICA R� notebook to compute this
factor and data tables are publicly available at [70], cf. Appendix A) is presented in
the left panel of Fig. 3.9 for scalar, electromagnetic and gravitational waves scattered
off a nearly-extremal BH with a D 0:99M. In this figure we only focus on the
superradiant regime, 0 < ! < m�H. Data files of the amplification factors in the
entire parameter spaces are provided in a supplementary file (cf. Appendix A).

Equations (3.102) and (3.104) break down when !M � 1, a condition which is
generically fulfilled near the superradiant threshold ! � m�H (equivalently ˛ � 0)
and in the quasi-extremal limit, even at low m. In fact, it is clear from Fig. 3.9 that
the low-frequency limit (3.104) generically overestimates the amplification factors.
The behavior near the threshold has been also studied analytically using a different
matching asymptotic technique [68]. In the extremal case, a D M, defining ı2 D
2m2�Aslm�.sC1=2/2 [we recall that Aslm are the eigenvalues of the spin-s spheroidal
harmonics which satisfy Eq. (3.74)], when ı2 < 0 one finds [69]

Zslm D 4 S˛ jıj2
	
2m2j˛j


2jıj j�.1=2C s C jıj C im/j2j�.1=2 � s C jıj C im/j2
�.1C 2jıj/4 e
nŒ1�S˛ � ;

(3.105)
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where S˛ D sgn.˛/, and

Z�1
slm D S˛e
mŒS˛�1�

sinh.2
ı/2
˚
coshŒ
.m � ı/�2e
ıŒS˛�1� C coshŒ
.m C ı/�2e�
ıŒS˛�1�

�2 coshŒ
.m � ı/� coshŒ
.m C ı/� cosŒ�0 � 2ı log.2m2j˛j/�
 ; (3.106)

for ı2 > 0 and j˛j � m�4 max.1; j˛j2/. In the equation above

�0 D 4 argŒ�.1C2iı/�C2 argŒ�.1=2C sC im � iı/�C2 argŒ�.1=2C s� im � iı/� :
(3.107)

Note that the condition ı2 > 0 is satisfied by almost all modes [71], for example
it is satisfied for s D 1 for any l D m � 1 and for s D 2 for any l D m � 2, i.e.
for the cases that correspond to the largest amplification. The behaviors described
by Eqs. (3.105) and (3.106) are quite different. When ı2 < 0, Zslm is continuous
and monotonic near ˛ � 0, whereas when ı2 > 0 it displays an infinite number of
oscillations as ˛ ! 0 in the region j˛j � 1=m2 (provided ı � 1). Remarkably, as
understood already in [68], these oscillations are related to the existence of quasi-
stationary bound states near the event horizon of a nearly-extremal Kerr BH. These
quasi-bound states have been computed in [72–74].

When ı2 > 0, the oscillations have a small amplitude and—except for the
exceptional case m D 1 and 
ı . 1—can be ignored. In such case, for ˛ > 0

one finds

Zslm � e2
.ı�m/ ; (3.108)

and the amplification factor is discontinuous near the superradiant threshold. Finally,
when ˛ < 0 we have min.Zslm/ D �1, i.e. there are regions of the parameter space
in which the reflectivity is zero and the BH is totally transparent [68, 69].

Equations (3.105) and (3.106) are also valid in the quasi-extremal limit, a � M,
provided m <

p
M=.M � a/ and .rC � r�/=.am/ � j˛j � 1=m2. Since when

j˛j � .rC � r�/=.am/ the amplification factor is described by Eq. (3.102), near the
threshold Zslm / ˛ and it is continuous for any a < M. Note however that there
exists a regime which is not captured by the formulas above, namely when a � M
and ! � m�H such that ˛ � .rC � r�/=.am/. Describing this regime analytically
requires more sophisticated matching techniques. Various analytical treatments of
the Teukolsky’s equation can be found in [75–79] and they are in agreement with
the exact results. A representative example of the dependence of Zslm with the BH
spin is presented in the right panel of Fig. 3.9.

The maximum amplification factors are about 0:4, 4:4 and 138% for scattering
of massless scalar, electromagnetic and gravitational waves, respectively, and for
the minimum value of l D m allowed (namely l D m D 1 for scalar and
electromagnetic waves and l D m D 2 for gravitational waves). As evident from
Fig. 3.9, the maximum amplification occurs for BHs with a 
 M and very close
to the superradiant threshold, ! � m�H. Indeed, near the threshold the curve
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Fig. 3.10 Amplification factor Z0lm D jRj2=jIj2 � 1 as a function of the frequency for a massive
scalar field with l D m D 1 and mass �S scattered off a Kerr BH with angular momentum
parameter a D 0:99M. Superradiance, Z0lm > 0, occurs when �S < ! < m�H

becomes very steep (with a steepness that increases with the BH spin) and it attains
a maximum right before reaching ! D m�H where superradiance stops. Detailed
tables of the amplification factors for scalar, EM and gravitational waves for various
parameters are provided in accompanying data files (cf. Appendix A).

The previous analysis concerns massless fields, but the extension to massive
fields is, in principle, straightforward. As an example, we show in Fig. 3.10 the
amplification factors of a massive scalar field—with mass �S Nh—in the background
of a Kerr BH. It is clear from Eq. (3.2a) that no propagation is possible for energies
! < �S. Thus, superradiance can also occur for massive waves as long as the
condition �S < ! < m�H is satisfied. Waves with ! < �S are trapped near
the horizon and are exponentially suppressed at infinity. Figure 3.10 shows that
superradiance is less pronounced for massive fields; the larger the field mass �S, the
smaller the amplification factors are.

3.6.6 Scattering of Plane Waves

Generically, the field scattering off a BH is a superposition of multipoles. Of
particular interest for a variety of applications is a field which is a plane wave
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Fig. 3.11 Absorption cross-section of a scalar plane wave incident on a rotating Kerr BH (a=M D
0:99) along the axis and equator. The left panel shows that the absorption cross-section is always
positive, i.e., plane waves are never superradiantly amplified. However, as expected some partial
waves are indeed subjected to superradiance, as the right panel shows

at infinity. The multipolar expansion of a plane wave is straightforward to
perform [80].

Scalar Waves Let us focus on a massless scalar field, and assume without loss of
generality that there is an incoming monochromatic plane wave propagating along
the .sin �; 0; cos �/-direction. The absorption cross section � of a spinning BH can
then be computed as [80, 81]

� D 4
2

!2

X
lm

�lm �
X

lm

jS0lm.�/j2
�
1 � jRj2

jIj2
�

D �4

2

!2

X
lm

jS0lm.�/j2 Z0lm ;

(3.109)

where we used the asymptotic behavior as defined in (3.77). In other words, once
the amplification factors have been computed for any l and m, the cross-section is
trivial to obtain.

The results for two extreme cases—incidence along the equatorial (� D 
=2)
and axial (� D 0) directions—are summarized in Fig. 3.11 for a rapidly spinning
BH with a=M D 0:99. Because S0lm.0/ D 0 unless m D 0, the cross-section for
waves incident along the axial direction simplifies as

�.� D 0/ D �4

2

!2

1X
lD0

jS0l0.0/j2 Z0l0 : (3.110)

For generic incidence angles, the total cross-section is symmetric along the ! D
0 axis, as could be anticipated from the general symmetry properties of the wave
equation, cf. Eq. (3.93). The first important conclusion is that plane scalar waves
are never superradiantly amplified, or in other words, the absorption cross-section
is positive for all values of frequency !. As might be expected from the general
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equation (3.109), because the amplification factor can become positive, some of
the partial cross-sections �lm can become negative, as shown in the right panel of
Fig. 3.11 for the l D jmj D 1 modes [81].

Gravitational Waves The scattering of plane GWs off rotating BHs is an impor-
tant, decades-old problem [82–86]. One of the important differences with respect
to scalar waves, is that the symmetry along the ! D 0 axis is lost. In fact, for
scattering along the symmetry axis of a Kerr BH, the low-frequency differential
scattering cross reads

M�2 d�

d�

 cos8.#=2/

sin4.#=2/

�
1 � 4a! sin2.#=2/

�C sin8.#=2/

sin4.#=2/

�
1C 4a! sin2.#=2/

�
:

(3.111)

Thus, waves of different sign of ! are scattered differently from a rotating BH,
generically inducing nontrivial polarization on the scattered field.

The absorption cross-section of GWs off rotating BHs can be obtained in a
similar fashion to those of scalar waves. One finds, for incidence along the axis
of symmetry of a Kerr BH [82–86],

�.� D 0/ D 4
2

!2

1X
lD2

jS2l2.# D 0/j2 Z2l2 ; (3.112)

where again Z2l2 are the amplification factors studied previously5 (see Fig. 3.9).
Because the amplification of GWs can be two orders of magnitude larger than that
of scalars, the cross-section for scattering of plane waves can now become negative.
Thus, plane GWs can be superradiantly amplified. This is shown in Fig. 3.12, from
which two features stand out: negative-frequency waves—or waves counter-rotating
with respect to the BH—are always absorbed. On the other hand, positive-frequency
waves (which co-rotate with the BH) are amplified in the superradiant regime.

Generically, a plane wave is a superposition of positive and negative-frequencies.
For linearly polarized waves, for example, one can easily show that the net effect
always results in absorption [86].

Recently, the scattering of plane waves off a Kerr BH has been analyzed in the
context of superradiant amplification of the radiation from a BH-pulsar system [87].
In this case, the pulsar’s GW and EM luminosities show a characteristic modulation,
which is due to superradiant scattering and depends on the pulsar position relative
to the BH.

5Note that a planar tensor wave along � D 0 in Cartesian coordinates will have a sin 2' modulation
when transformed to spherical coordinates, in which the multipolar decomposition is performed.
This explains why Eq. (3.112) depends only on jmj D 2 and on a sum over all multipolar indices
l 	 2. Likewise, an EM wave along � D 0 would be modulated by sin' and its cross-section
would only depend on jmj D 1, whereas the cross-section (3.110) for a scalar wave along � D 0

only depends on m D 0.
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Fig. 3.12 Absorption cross-section of a gravitational plane wave incident on a rotating Kerr BH
(a=M D 0:99) along the rotation axis. The figure shows that counter-rotating (! < 0) plane waves
are more absorbed than co-rotating waves (! > 0), and that in the superradiant regime plane waves
are amplified

Acoustic Geometries The scattering of sounds waves off acoustic BH geometries,
in particular the one discussed in Sect. 3.9 was studied recently [88]. Clear hints of
superradiance were found, manifested as negative partial absorption “lengths” (as
this is a .2C 1/-dimensional geometry) for co-rotating modes at low frequencies.

3.6.7 Nonlinear Superradiant Scattering

In Sect. 3.5.2 we showed that when backreaction effects are taken into account then
superradiance of charged fields does indeed extract mass and charge away from the
BH. Fully nonlinear studies of superradiance—either for charged or rotating BHs—
are extremely scarse, with one notable exception. The authors of [89] performed
nonlinear scattering experiments, constructing initial data representing a BH with
dimensionless spin a=M D 0:99, and an incoming quadrupolar GW packet. Their
results are summarized in Fig. 3.13, for three different wavepacket frequencies,
M! D 0:75; 0:87; 1 (note that only the first is in the superradiant regime (1.1)).
The wavepackets carry roughly 10% of the spacetime’s total mass. These results
confirm that low frequency radiation does extract mass and spin from the BH (both
the mass MBH and spin JBH of the BH decrease for the superradiant wavepacket
with M! D 0:75), and that nonlinear results agree quantitatively with linear
predictions for small wavepacket amplitudes [40]. To summarize, although further
studies would certainly be interesting, superradiance is confirmed at full nonlinear
level for rotating BHs.
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Fig. 3.13 Evolution of a
highly spinning BH
(a=M D 0:99) during
interaction with different
frequency GW packets, each
with initial mass � 0:1M.
Shown (in units where
M D 1) are the mass,
irreducible mass, and angular
momentum of the BH as
inferred from AH properties.
From [89]

3.7 Boosted Black Strings: Ergoregions Without
Superradiance

In the previous sections, we saw that superradiance is generically caused by
a medium moving faster than the speed of the interaction in the medium (for
example the Cherenkov effect of Sect. 2.3.1 or sound amplification at discontinuities
explained in Sect. 2.4.2), or when the “angular velocity of the medium” is larger than
the angular phase velocity of the interaction (an example was discussed in Sect. 2.5,
another is provided by the topic of this work, rotating BHs). These considerations
seem to forbid gravitational superradiance for linear motion. However, there are
simple gravitational systems with ergoregions whose only motion is linear: consider
a black string in five-dimensional spacetime,6

ds2 D �f .r/dt2 C dr2

f .r/
C r2d�2

2 C dz2 ; (3.113)

where f .r/ D 1 � 2M=r. Now boost the spacetime along the z-direction with boost
v D tanhˇ and get [90]

ds2 D �dt2C dr2

f .r/
Cr2d�2

2Cdz2C.1�f .r// cosh2 ˇ .dt C tanhˇdz/2 ; (3.114)

It is easy to check that this solution has an event horizon at r D 2M and a
“momentum” ergosurface at r D 2M cosh2 ˇ.7 Since this solution is just a non-

6This example was suggested to us by Luis Lehner and Frans Pretorius.
7We follow the terminology of Dias, Emparan and Maccarrone who, in a completely different
context, arrived at conclusions very similar to ours, see Sect. 2.4 in [91].
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boosted black string as seen by a boosted observer, it is clear that no superradiant
amplification nor Penrose processes are possible. Let us show how this comes about.

Superradiance Consider perturbations of the metric (3.114) due to a scalar field
‰. Using the ansatz

‰ D  .r/

r
Y.#; '/e�i.!tCkz/ ; (3.115)

where Y.#; '/ are the spherical harmonics, the radial function  follows a
Schroedinger-type equation of the form (3.50). The solution  has the asymptotic
behavior given by (3.51) with kH D ! coshˇ � k sinhˇ and k1 D p

!2 � k2, from
which condition (3.52) follows. Now, at first sight one could be led to think that
superradiance is possible whenever the following condition is met:

kH < 0 H) ! < kv : (3.116)

However the boundary condition at infinity also implies j!j > jkj. Since �1 < v <
1 we can see that the condition (3.116) is never met and, as expected, superradiance
does not occur in this geometry. In other words, the potentially dangerous modes
are redshifted away.

Penrose Process To understand why the Penrose process is not possible consider
the negative energy particle that falls into the BH with energy and total linear
momentum given by E < 0 and p, respectively. Denoting the particle’s linear
momentum along the z-direction by pz, from arguments similar to those leading
to Eq. (3.33) it follows that (note that vH D �v is the velocity of a zero linear
momentum observer at the horizon)

E C pzv � 0 H) jE j � jpzvj : (3.117)

The first condition also implies that, for negative energy particles and 0 < v < 1,
pz > 0. Moreover, since 0 < v < 1, we have

jE j < pz : (3.118)

On the other hand, any particle must satisfy the relation

E2 D p2 C m2 � p2z H) jE j � jpzj : (3.119)

Therefore, energy extraction is impossible because the inequality (3.118) is never
satisfied for a negative energy particle.8

8This simple proof was suggested to us by Roberto Emparan.
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The absence of the Penrose process can also be understood through an analysis of
geodesic motion. Let us focus on zero angular momentum trajectories for simplicity.
Geodesics in the spacetime (3.114) are then described by the equations of motion,

Pt � .1 � f .r// cosh2 ˇ.Pt C tanhˇPz/ D E; (3.120)

Pz C .1 � f .r// cosh2 ˇ.Pt C tanhˇPz/ tanhˇ D P; (3.121)

Pr2 D .E2 � P2/

�
1 � M

r

�
� f .r/ı1 C M

��
E2 C P2

�
cosh 2ˇ C 2EP sinh 2ˇ

�
r

;

(3.122)

where E;P are the (conserved) energy and linear momentum per unit rest mass. In
the Penrose process, the breakup occurs at a turning point inside the ergoregion and
with negative energy, E < 0. From (3.122), the turning point condition, Pr.r D r0/ D
0, gives

E D
�PM sinh 2ˇ C

q
f .r0/r0

�
ı1.r0 C 2M.cosh2 ˇ � 1//C P2r0

�
r0 C 2M.cosh2 ˇ � 1/

; (3.123)

P D
EM sinh 2ˇ ˙

q
f .r0/r0

�
ı1.2M cosh2 ˇ � r0/C E2r0

�
r0 � 2M cosh2 ˇ

; (3.124)

where E has been chosen such that when r0 ! 1 we have E > 0. It is clear
from (3.123) that for E < 0 we need P tanhˇ > 0 and

PM sinh 2ˇ >
q

f .r0/r0
�
ı1.r0 C 2M.cosh2 ˇ � 1//C P2r0

�
H) P2M2 sinh2 2ˇ > f .r0/r0

�
ı1.r0 C 2M.cosh2 ˇ � 1//C P2r0

�
H) P2.r � 2M cosh2 ˇ/ < .2M � r/ı1 < 0 H) r � 2M cosh2 ˇ < 0 :

(3.125)

Thus the particle needs to be inside the ergosphere to have a negative energy. For
the Penrose process to occur we also need the positive energy fragment to be able
to travel back to infinity. When r ! 1 we have

Pr2 D E2 � P2 � ı1 ; r ! 1 : (3.126)

This means that only when E2 � P2 � ı1 > 0 is motion from r0 to infinity allowed.
Equation (3.122) however, says that there is only one turning point satisfying Pr.r D
r0/ D 0, given by

r0 D 2M
�
.P coshˇ C E sinhˇ/2 C ı1

�
P2 C ı1 � E2

: (3.127)
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The condition that r0 > 0 implies that the particles are not allowed to escape to
infinity since E2 � P2 � ı1 < 0. In fact since there is only one turning point and at
the horizon we have

Pr2 D .E coshˇ C P sinhˇ/2 ; r ! 2M ; (3.128)

which is always positive, both particles are forced to fall into the horizon and there
is no extraction of energy from the BH.

3.8 Superradiance in Higher Dimensional Spacetimes

With the exception of the boosted black string just discussed, we have so far only
considered BH superradiance in four-dimensional spacetimes. Generalization to
higher dimensions can be done along the same lines.9 The multitude of black objects
in higher dimensions makes this an interesting and relatively unexplored subject (for
a review on BHs in higher dimensions see [94]).

From the rigidity theorem, a stationary D-dimensional BH must be axisym-
metric [95, 96], meaning that it must have D � 3 rotational Killing vectors in
addition to the time translation Killing vector. Thus, to study superradiance in
higher-dimensions, one must take into account that there exist at most D�3 rotation
axis. The condition for superradiance in the background of a five-dimensional, topo-
logically spherical BH was computed in [97]; using the area theorem this condition
was generalized to arbitrary dimensions for Myers-Perry BHs with a single angular
momentum parameter [98] and finally with multiple angular momentum parameters
in [99]. More recently the condition was computed for asymptotically flat rotating
BHs with generic spacetime dimension and horizon topology using a Wronskian
approach [100]. The generalized superradiance condition (1.1) is given by

! <

i	D�3X
iD1

mi�
i
H ; (3.129)

where mi is a set of integers, corresponding to the azimuthal numbers with respect to
the different rotation axis, and �i

H represents the multi-component angular velocity
of the horizon.

Amplification factors for a scalar field where computed for Myers-Perry BH
with a single angular momentum parameter in [101–103]. They showed that the
superradiant amplification is less efficient in higher dimensions and the maximum

9There are no gravitational degrees of freedom in less than four dimensions, and a BH solution only
exists for a negative cosmological constant, the so-called BTZ solution [92]. This solution has some
similarities with the Kerr-AdS metric and, as we shall discuss in Sect. 3.10, superradiance does not
occur when reflective boundary conditions at infinity are imposed [93].
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amplification factor decreases with the dimension of the spacetime; for a doubly
spinning Myer-Perry BH in 5D, the amplification factors were computed in [104].
Motivated by extra dimensional models which predicted the possibility of creating
micro BHs in particle accelerators such as the LHC, amplification factors for a
singly-spinning higher-dimensional Myers-Perry BH induced on an asymptotically
flat four-dimensional brane were also computed. This was done for spin-0 parti-
cles [105–107] and spin-1 fields [108]. Superradiant amplification on the brane was
shown to be much larger than in the D-dimensional bulk and to be greatly enhanced
compared to the four-dimensional Kerr BH case.

Interesting tidal effects related to the superradiant energy extraction in higher-
dimensions were shown to occur in [7, 109]. As first suggested in [7] and later
confirmed [109], the energy extracted by superradiant scalar waves generated by
the circular motion of a point particle around a singly-spinning Myers-Perry BH
could be higher than the energy lost to infinity through the emission of scalar
waves, in contrast to the four-dimensional case, where the BH energy absorption
(or extraction) is negligible compared to the energy emitted to infinity [110].

3.9 Superradiance in Analogue Black Hole Geometries

The construction outlined in Sect. 2.4 established a formal equivalence between the
propagation of sound waves and the Klein Gordon equation in an effective, curved
spacetime. Under certain conditions, a horizon in the effective metric is present,
when the local fluid velocity surpasses the local sound speed. This object is usually
called an acoustic BH or “dumb hole” (cf. [112] for a review). Superradiance in
acoustic BH geometries was studied in some detail for the two-dimensional draining
geometry (“draining bathtub vortex”), described by a two dimensional fluid flow

Ev D �AEr C C E�
r

; (3.130)

in polar coordinates, where Er and E� are orthogonal unit basis vectors. The flow above
is that of an ideal fluid, which is locally irrotational (vorticity free), barotropic and
inviscid. The quantity A thus measures the flow radial speed and the circulation C
measures its angular speed. In these setups the notion of horizon and ergospheres is
very intuitive: the effective spacetime has an acoustic horizon at the point where the
radial speed is equal to the local sound speed, rC D Ac�1 and an ergosurface at the
location where the total speed equal the speed of sound, r2ergo D c�2.A2 C C2/.

With the following coordinate transformation [111],

dt ! dQt D dt � Ar

r2c2 � A2
dr (3.131)

d� ! d Q� D d� � CA

r.r2c2 � A2/
dr ; (3.132)



3.9 Superradiance in Analogue Black Hole Geometries 79

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

ω r+

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

Z
m

C=0.1r+
2

C=0.3 r+
2

C=0.5 r+
2

C=0.7 r+
2

C=0.9 r+
2

C=1.0 r+
2

m=1

-2.0 0.0 2.0

ω r+

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

Z
m

m=2

Fig. 3.14 Amplification factor Zm for the draining vortex as a function of ! for m D 1 (left
panel) and m D 2 (right panel), for a unit-amplitude incident wave. Results are normalized by
the effective horizon r

C

. Each curve corresponds to a different value of rotation C, as indicated.
Adapted from [111]

the effective metric (2.37) takes the form

ds2 D �
�
1 � A2 C C2

c2r2

�
c2dQt2C

�
1 � A2

c2r2

��1
dr2�2Cd Q�dQtCr2d Q�2 : (3.133)

Superradiance was studied in this effective acoustic spacetime in the frequency
domain, by studying the amplification factors [111]. For an incident wave of
amplitude I, the reflection coefficients are shown in Fig. 3.14, the amplification
factors for fluxes are Zm D jRj2 � jIj2; the reflection coefficient depends only
on the dimensionless parameter C=A [111] and therefore without loss of generality
one can set A D c D 1. the amplification factor grows with rotation parameter
C, albeit slowly (the numerics indicate a logarithmic growth at large C). At a
moderately large value of C D 1, the peak amplification factor for m D 1 modes
is 21.2 %. Amplification factors higher that 100 % are extremely hard to achieve,
which might be connected to entropy bounds, see Sect. 3.14 for a further discussions
on this. Superradiant wave scattering for the same geometry was analyzed in
the time domain in [113]. These studies were complemented by a low-frequency
analysis [114] and by an energy flux analysis [115].

Recently, [116] considered a similar, but slightly more realistic draining geom-
etry taking into account the varying depth of water. Superradiance in this analog
system depends now on two parameters, and can be as large as 60 % or higher.

Analogue geometries can be realized outside acoustic setups, and include Bose-
Einstein condensates for instance [112]. Superradiant scattering of sound wave
fluctuations from vortex excitations of Bose-Einstein condensates was considered
in [117, 118]. Bose-Einstein condensates are also interesting models for dark-matter
halos and boson stars; in this context, a gravitational analogue description also
displays superradiant scattering [119].
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3.10 Superradiance in Nonasymptotically Flat Spacetimes

The literature on superradiance amplification from BHs in Einstein’s theory with a
cosmological constant is limited. The dS and the AdS cases behave in a completely
different way: when the cosmological constant ƒ > 0 new effects related to the
presence of a dS cosmological horizon can occur, whereas when ƒ < 0 the AdS
boundary can effectively confine superradiantly-amplified waves thus providing the
arena for BH bomb instabilities. The latter effect is discussed at length in Sect. 4 so
in this section we focus only on the superradiant amplification, neglecting possible
instabilities that it might trigger.

Extracting Energy from dS BHs Superradiance of Kerr-dS BHs has also been
studied [13]. Extending the analysis of Sect. 3.4, the radial Teukolsky equation can
be solved in the asymptotic regions and the solution reads as in Eq. (3.51) with

kH D ! � m�H ; k1 D ! � m�c ; (3.134)

where �c is the angular velocity of the cosmological horizon at r D rc. Imposing
O D 0 at the event horizon, Eq. (3.52) takes the form

jRj2 D jIj2 � ! � m�H

! � m�c
jT j2 ; (3.135)

and therefore superradiance occurs only when

m�c < ! < m�H : (3.136)

Although the range of superradiant frequencies is smaller than in the asymptotically
flat case, the maximum superradiance amplification is slightly larger for positive
values of ƒ [13].

On a more formal account, [120] has proved asymptotic completeness for a
class of Klein-Gordon equations which allow for superradiance, including the
scalar equation on a Kerr-dS BH (see also references in [120] for recent formal
development on the local energy for the wave equation on the Kerr-dS metric).

Finally, an interesting effect related to dS superradiance was recently discovered
in [121]. There, it was shown that RN-dS BHs are linearly unstable to spherical,
charged scalar perturbations. The unstable modes were subsequently found to
satisfy a superradiance condition analog to Eq. (3.136) for static charged dS
BHs [122].

Extracting Energy from Black Holes in AdS Backgrounds AdS spacetime is
not globally hyperbolic, so fields which satisfy a hyperbolic wave equation on AdS
might not have a well-defined dynamics. Nonetheless scalar, vector and gravitational
waves propagating on AdS can be shown to possess some conserved energy, and
their dynamics correspond to that defined by choosing some positive, self-adjoint
wave operator [123]. Such formal analysis also determines all possible boundary
conditions that can be imposed at AdS infinity.
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These boundary conditions are indeed crucial for superradiance. It was shown
that, using “reflective” boundary conditions (i.e. either Dirichlet or Neumann)
at timelike infinity, all modes of a scalar field on a Kerr-Newman-AdS BH are
not superradiant whereas, for “transparent” boundary conditions, the presence of
superradiance depends on the definition of positive frequencies, which is subtle
in AdS [124]. For those BHs having a globally timelike Killing vector, a natural
definition of positive frequency implies absence of superradiance. This is to be
contrasted with the situation in asymptotically flat space previously discussed,
where superradiance occurs regardless of the definition of positive frequency. This
result has important implications for constructing a quantum field theory on a BH
background in AdS.

Nonetheless, even at the classical level, the issue of boundary conditions in
rotating AdS spacetimes is subtle. Imposing that the perturbations conserve the
symmetries of asymptotically global AdS, a set of Robin boundary conditions
for the Teukolsky equation of a Kerr-AdS BH was found [125] (cf. also [126]
for some applications). Furthermore, in a scattering experiment the boundary
conditions at infinity should allow for a nonvanishing flux, thus corresponding to
the “transparent” case discussed above. A thorough analysis of this problem was
recently performed in [127], where it was shown that superradiance occurs for AdS
BHs in any spacetime dimension whenever transmittive boundary conditions are
allowed at the AdS boundaries.

3.11 Superradiance from Stars

As is clear from the entire discussion and from the classical examples of Sect. 2,
rotation and a dissipation channel are enough to trigger superradiance. As such,
ordinary stars are also prone to superradiant amplification. A formal proof of
this was recently produced for stars in GR [128]. Explicit calculations require a
modeling of dissipation, which can be performed within a toy model similar to
that adopted by Zeldovich in his original study [129] (see also [130] who studied
the correspondence between superradiance and tidal friction on viscous Newtonian
anisotropic stars).

The toy model assumes the modified Klein-Gordon equation (2.50) inside the star
and in a co-rotating frame [131]. The term proportional to ˛ in Eq. (2.50) is added
to break Lorentz invariance, and describes absorption on a timescale � � 1=˛. The
constant ˛ can be related to more physical parameters describing the microscopic
details of the absorption process [129]. Following Zeldovich, if the frequency in
the accelerated frame is ! and the field behaves as e�i!tCim' , then in the inertial
frame the azimuthal coordinate is ' D ' 0 � �t, and hence the frequency is !0 D
! � m� (see also Sect. 2.5). In other words, the effective damping parameter ˛!0
becomes negative in the superradiant regime and the medium amplifies—rather than
absorbing—radiation [41, 42].
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Fig. 3.15 Superradiant amplification of a scalar field by a rotating star, where dissipation is
modeled through Eq. (2.50). Here, M˛ D 0:1; M� D 0:01. The amplification factor scales with
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plot

The modified wave equation (2.50) can be solved in any generic background
describing a Newtonian or GR star. Figure 3.15 shows the amplification factor for
a constant-density star in GR, with mass M, radius R, angular rotation frequency
M� D 0:01 and dissipation parameters M˛ D 0:1. Superradiant amplification does
exist, as shown generically in [128], and the amplification can be significant. We find
that the superradiant amplification factor scales linearly with M˛ for small M˛ and
it increases significantly as the star’s surface velocity increases. The amplification
factors can be of order of those around rotating Kerr BHs or higher.

For non-relativistic, Newtonian configurations (M=R; �R � 1) the wave
equation can be solved analytically inside and outside the star in terms of Bessel
functions. In this regime there is a simple analytic expression for the amplification
factor [129],

jAoutj2
jAinj2 � 1 D 4˛R2 .� � !/ .!R/2lC1

.2l C 1/ŠŠ.2l C 3/ŠŠ
: (3.137)

As can be seen from Fig. 3.15, this relation gives a very good approximation to the
numerical results for a good fraction of the parameter space, including relatively
compact stars. This relation is also interesting, as it allows one to predict the
amplification factor for rotating BHs. In the latter case, R � 2M and 1=˛ D M
is the only possible timescale in the problem. With this identification, the above
relation predicts that the amplification factor for l D 1 scalar waves scattered off a
slowly rotating BHs in GR reads

jAoutj2
jAinj2 � 1 D 16

45
M .� � !/ .2M!/3 : (3.138)
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On the other hand, a matched-asymptotic expansion calculation in full GR yields
approximately the same result (the coefficient turns out to be 2=9 instead of 16=45,
see Sect. 3.6.5).

3.12 Superradiance Beyond General Relativity

From our previous discussion, it is clear that superradiance is not a prerogative of
BHs in GR but it would occur in any gravitational theory that admits BH solutions.
Indeed, the analysis of Sect. 3.4 only requires the presence of an event horizon and
an asymptotically-flat spacetime. Clearly, the details of the superradiance amplifi-
cation would depend on the specific BH geometry and on the wave dynamics in the
modified theory and an interesting problem is to understand whether superradiance
can be stronger in modified theories of gravity.

Extended theories of gravity usually predict novel BH solutions which reduce
to the Kerr metric in the GR limit (see e.g. [132–134] for reviews). On the other
hand, constructing rotating metrics in closed form is usually very challenging and
most solutions are known analytically only in the slow-rotation limit [135] or
fully numerically [136]. To the best of our knowledge, no studies of superradiance
amplification in these spacetimes is available to date. However, at least for the
slowly-rotating BH solutions predicted in quadratic gravity [135], the deformations
from the Kerr geometry tend to decrease the proper volume of the ergoregion. This
suggests that at least the background geometry would contribute to decrease the
amplification factor. A simpler analysis would be to focus on theories which admit
the same BH solutions as GR [134, 137] but for which wave propagation is different.
In some of these theories the superradiance amplification has been shown to lead to
“BH-bomb instabilities” [138, 139] analog to those discussed in Sect. 4 below.

Another strategy consists in considering phenomenological nonKerr geometries
which are not necessarily solutions of any specific theory [140, 141]. However,
the lack of an underlying theory prevents to study the dynamics of gravitational
waves and only test fields propagating in a fixed background can be analyzed. Even
in this case, the separability properties of the Kerr metric are generically lost and
even the Klein-Gordon equation might not be separable. Probably because of these
technicalities, superradiance in such geometries has not been studied to date. On the
other hand, the Penrose process in a restricted class of such metrics was studied in
[26], showing that the maximum energy gain can be several times larger than for a
Kerr BH.

Finally, superradiance amplification of test fields propagating on some exact
solutions of Einstein’s equations which represent spinning geometries other than
Kerr were analyzed recently [142, 143]. Although strictly speaking these geometries
are GR solutions, they possess peculiar matter fields and they might be considered
as modified BH solutions.
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3.12.1 Superradiance of Black Holes Surrounded by Matter in
Scalar-Tensor Theories

In the context of scalar-tensor theories, superradiance amplification from spinning
BHs has been investigated in [144, 145], which showed that the presence of matter
may drastically affect the amplification of scalar waves. In these theories the Klein-
Gordon equation on a Kerr BH surrounded by matter takes the form Œ���2eff�‰ D 0,
where the effective mass term �eff depends on the specific scalar-tensor theory and
it is proportional to the trace of the stress-energy tensor.

Figure 3.16 shows a representative example of superradiance amplification for a
specific matter profile, namely

�2eff.r; #/ D 2G.r/
a2 C 2r2 C a2 cos 2#

: (3.139)

This choice simplifies the treatment significantly because the corresponding Teukol-
sky equation is separable and the problem can be solved with standard methods.
For small coupling, the standard GR results are recovered, with a maximum
amplification of about 0:4%. On the other hand, as the scalar-tensor coupling to
matter increases, the amplification factor can exceed the standard value by orders of
magnitude. This is due to the appearance of resonances at specific frequencies ! D
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!res that depend on the parameters of the model. In some cases, the amplification
factor can increase by six orders of magnitude or more, even in regions of the
parameter space which are phenomenologically allowed [145]. Understanding the
astrophysical implications of such huge amplification may be used to constrain the
parameter space of scalar-tensor theories.

The presence of Breit-Wigner resonances [146] in the amplification factor has
been interpreted in terms of very long-lived QNMs with !R � !res and !I �
!R [144, 145]. Such long-lived modes are associated to trapping by potential barriers
(see also Sect. 4.11.2 for a related problem) and they also exist in the case of massive
scalar perturbations of Kerr BHs [147], but in that case the potential well extends
to infinity, so that waves whose frequency is larger than the mass are exponentially
suppressed and no superradiant amplification can occur, as previously discussed.
Nonminimal scalar-matter interactions in scalar-tensor gravity produce an effective
scalar mass which is localized near the BH and vanishes at large distances. This
effective mass can trap long-lived modes and, nonetheless, allows for propagation
of scalar waves to infinity. This allows for a new class of long-lived QNMs of Kerr
BHs surrounded by matter. Correspondingly to the excitation of these modes, the
superradiant gain factor is resonantly amplified.10

3.13 Microscopic Description of Superradiance and the
Kerr/CFT Duality

It was shown by Hawking that when quantum effects are taken into account BHs
emit thermal radiation with the expected number of emitted particles given by [148]

hNi D � Zslm

e.!�m�H/=TH ˙ 1
; (3.140)

where the minus sign is for bosons and the plus sign for fermions and Zslm is
the absorption/amplification factor given by Eq. (3.102), whereas the same factor
for fermions can be found in [149] (in this case, as discussed in Sect. 3.6.4, we
always have Zslm < 0). In the extremal limit TH ! 0 there is only emission in the
superradiant regime ! < m�H with a rate �Zslm, where here the minus and the plus
signs are for fermions and bosons, respectively. This clearly shows that when the
BH temperature is different from zero, thermal Hawking radiation and spontaneous
superradiant emission are strongly mixed. In fact, as discussed in detail in [150],
the power spectrum of Hawking radiation comprises two terms: a black body term
and a greybody term. The former is associated to the probability that a certain

10It would be interesting to understand the large amplification of the superradiance energy in terms
of violation of some energy condition due to the effective coupling that appears in scalar-tensor
theories.
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particle is thermally produced near the horizon, whereas the latter term modifies
the thermal radiation due to the existence of the potential barrier created by the BH.
While the probability of Hawking emission (for both bosons and fermions) can be
greatly amplified by spin-spin interactions [150], one can show that superradiance
affects only the greybody term. Therefore, Hawking fermion emission can also be
amplified by the BH rotation even if fermions do not experience superradiance
amplification.

In the extremal limit, the only modes that are spontaneously emitted are
superradiant. This was used in [91, 151] to investigate the microscopic description
of superradiance within a string theory and gauge/gravity duality context. These
studies—which are closely related to the program aiming to account for the
microscopic degrees of freedom of BHs—have been met with a moderate degree
of success.

In [91] the authors were able to account for superradiant effects in a certain
extremal BH background (more specifically the D1-D5-P BH solutions of type IIB
supergravity), where the AdS3=CFT2 duality applies. In their picture the super-
radiant spontaneous emission was modeled as being due to the weak interaction
between left and right-moving modes in the CFT. From this picture they argued
that the superradiant bound (1.1) follows directly from the Fermi-Dirac statistics
of the spin-carrying degrees of freedom in the dual CFT. More importantly, they
showed that the superradiant emission rates agree in both sides of the duality.
In the future it would be interesting to extend this study to other systems, and
recover completely the superradiant amplification factors from the microscopic
description.

Another important step was done within the so-called Kerr/CFT duality [152]
(see also [153] for a recent review). The Kerr/CFT duality conjectures that the near-
horizon extremal Kerr BH is holographically dual to a chiral left-moving (half of
a) two-dimensional CFT with central charge c D 12J=„, where J is the angular
momentum of the extremal Kerr BH. In this picture the asymptotically flat region
is removed from the spacetime and the CFT lives in the timelike boundary of the
resulting spacetime.11 In [151] the authors attempted to reproduce the superradiant
scattering of a scalar field in a near-extremal Kerr geometry in terms of a dual two-
dimensional CFT in which the BH corresponds to a thermal state while the scalar
field is dual to a specific operator. They successfully showed that the amplification
factor (3.102) could be reproduced by the two point function of the operator dual to
the scalar field. The analysis and results should however be taken with caution, as the
boundary conditions—fundamental for the analysis—were shown to be inconsistent
with the field equations [155, 156].

11The geometry used in the original Kerr/CFT duality is the so-called near-horizon extreme Kerr
“NHEK” geometry found by Bardeen and Horowitz [154] which is not asymptotically flat but
resembles AdS3. That this geometry could have a dual CFT description was first pointed out in
[154].
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3.14 Open Issues

The following is an incomplete list of the issues that are, in our opinion, not
completely understood and which would merit further study.

• The Penrose process and BH superradiance has so far been explored only for
single spinning BHs. It is possible that they can occur also in BH binaries
even when the individual BHs are non-spinning. These are naturally much more
complex systems, but given that binaries are also relatively common in our
universe, they are worthwhile to explore. Furthermore, it would be interesting
to study the effect of spinning particles to the amplification factor in the Penrose
process.

• Superradiance in a BH-pulsar system has been recently discussed in [87],
showing that superradiance of GWs from the pulsar can produce a peculiar
modulation of the pulsar’s GW luminosity at the percent level. Whether or not
such effect is observationally important clearly deserves further study.

• Is there a fundamental bound on superradiant amplification? All the examples
we have dealt with so far share a common denominator: the amplification factors
Zslm . 100%.12 There are in fact suggestions that such bound also holds in some
acoustic BH geometries [115]. Such relatively small amplification factors may be
a consequence of a more fundamental principle at play. Hints of such principle
can be found with the following reasoning. Recall that the area law for rotating
BHs can be written as (3.22) or, in terms of Bekenstein-Hawking entropy SH, as
ıM D !k

2

ıSH

!�m�H
. We can write this explicitly in terms of the amplification factor,

by considering that a wavepacket of energy ıE was thrown into the BH,

Zm � �ıM
ıE

D !k

2


ıSH=ıE

m�H � !
: (3.141)

It is clear that the BH mass decreases in the superradiant regime simply because
the BH entropy must increase. This version of the first law doesn’t immediately
impose upper limits on the amplification factors, but that one should exist follows
from Bekenstein’s entropy bound for any infalling matter [157],

ıS � 2
R ı E ; (3.142)

where R is the size of the object and E its energy. This implies that

Zm � krC
!

m�H � ! ; (3.143)

12The only exception to this rule concerns BHs surrounded by matter coupled to scalar fields,
where the amplification factors can become unbounded (see Sect. 3.12.1). Because the laws of BH
mechanics will be different, these fall outside the scope of this discussion.
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leading to a competitive bound on the amplification factor for small frequencies.
Such bound becomes weaker close to the superradiant threshold. It is possible
that a more refined argument can strengthen the bound in this regime as well.

This analysis is over-simplified13 In particular, the Bekenstein entropy
bound (3.142) is valid only for systems with a fixed radius; in general, there will
be charge-dependent corrections. These may be important, as the bound (3.143)
predicts that Zm ! 0 when ! ! 0, in conflict with Fig. 3.8 (see, in particular,
the purple curve).

• The scattering of massive Dirac waves off a Kerr BH has some connection with
the original Klein paradox. Indeed, Chandrasekhar suggested that the effective
potential for the Schroedinger-like problem can display some singularities
outside the horizon in a certain region of the parameter space and in the case of
rotation [6]. If the potential is discontinuous, the transmission coefficient would
be prone to the Klein paradox, as discussed in Sect. 2.1. To the best of our
knowledge a quantitative analysis of this phenomenon has not been performed
yet.

• Clearly, an outstanding open issue is the systematic calculation of the absorption
cross-section of rotating BHs for generic angles of incidence. In particular, a
generalization of the low-frequency formulas available for GWs [86] to lower
spin-fields would certainly be of interest, as well as thorough numerical studies.

• Nonlinear effects and induced superradiance. The effect of nonlinear couplings
have practically been ignored in all existing literature on BH superradiance.
Interesting effects could include induced superradiant-like effects in fermions
when coupled to bosonic fields, or mass-like effects when higher-order self-
interaction terms are taken into account for boson fields. The backreaction of
superradiant waves on the metric has been investigated only very recently, see
Sect. 3.6.7.

• Sound waves in matter outside gravitational BHs can itself feel an effective
geometry with sonic horizons (differing from the true gravitational event horizon)
and be subjected to superradiant effects. Although this is one more example
of superradiance in analogue models, it is one with potentially important
applications in astrophysical environments and may even lead to superradiant
instabilities, c.f. Sect. 4 and [158, 159]) (see also [160] for a recent related
realization in the case of nonspinning BHs).

• Superradiance from BHs in modified theories of gravity has not been studied
yet. At linearized level this requires having a stationary, axisymmetric BH
solution and solving the modified wave dynamics in this background. Catalogs
of interesting gravity theories and corresponding BH solutions can be found in a
recent review [134].

• Superradiance and non-axisymmetric spacetimes. All vacuum stationary solu-
tions of Einstein’s equations are also axisymmetric. This simplifies the treat-
ment of superradiance considerably, because mode-mixing between different

13We thank Shahar Hod for drawing our attention to this point.
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azimuthal numbers are avoided. However, this property can be broken in other
theories or in non-stationary configurations. Whether or not mode mixing would
quench or favor superradiance is an interesting open problem.
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Chapter 4
Black Holes and Superradiant Instabilities

Superradiant amplification lends itself to extraction of energy from BHs, but can
also be looked at as the chief cause of a number of important instabilities in BH
spacetimes. Some of these instabilities lead to hairy BH solutions, whereas others
extract rotational energy from the BH, spinning it down.

4.1 No Black Hole Fission Processes

One intriguing way of de-stabilizing a BH cluster using superradiance is akin to
more familiar fission processes. These however can be shown—as we now do—not
to occur for BH clusters. Take a cluster of rotating BHs, as in Fig. 4.1, and send in
a low-frequency photon. If the cluster is appropriately built, it would seem possible
in principle that the photon is successively amplified as it scatters off, leading to
an exponential cascade. This kind of process is identical to the way fission bombs
work, where neutrons play the role of our wave.

It was pointed out by Press and Teukolsky [1] that such a process could not
occur for Kerr BHs, as the entire cluster would have to be contained in its own
Schwarzschild radius. Let us see how this works in a generic D-dimensional setting.
We take a cluster of N rotating BHs of size L, and total mass NMBH, where MBH is
the mass of each individual BH. Assuming all the conditions are ideal, the process
can only work if the mean free path l of a photon (or any other boson field) is smaller
than the size of the cluster,

l < L : (4.1)

Now, the mean free path is l D 1
n� , where n is the BH number density in the cluster

and � is an absorption cross section. The absorption cross-section could be negative
if a plane wave is amplified upon incidence on a rotating BH (this happens for
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Fig. 4.1 Scheme of the hypothetical chain reaction in a cluster of rotating BHs. The incident
arrow denotes an incident wave on the rotating BH, which is then amplified and exits with larger
amplitude, before interacting with other BHs. The superradiantly scattered wave interacts with
other BHs, in an exponential cascade

certain polarizations and angles of incidence only, see Sect. 3.6.6). Even in such
case, it is at most of order the BH area. These two properties are very important. That
the cross-section scales with the area can be seen on purely dimensional arguments
and it holds true for all BH spacetimes we know of. A negative total cross-section
is necessary to guarantee that whatever way the boson is scattered it will on the
average be superradiantly amplified. In other words, we require that a plane wave is
subjected to superradiance.1 To summarize,

� � VD�2rD�2C ; (4.2)

where VD�2 D 
D=2�1=�ŒD=2� is the volume of a unit .D � 3/ sphere. Thus, up to
factors of order unity, the condition for fission would amount to LD�2=.NrD�2C / < 1

or equivalently

NMBH

LD�3 >
L

rC
: (4.3)

1Note that say, an l D m D 1mode is a sum of modes with respect to some other coordinate frame,
where the following BH scatterer is sitting.
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Fig. 4.2 Scheme of a confined rotating BH, and how an initially small fluctuation—the single red
arrow—grows by successive reflections at the confining wall and amplifications by superradiance
in the ergoregion

This last condition is stating that the cluster lies within its own Schwarzschild radius,
making the fission process impossible even in the most idealized scenario.

4.2 Spinning Black Holes in Confining Geometries
are Unstable

Fission-like processes don’t work, but it was recognized early on that confinement
will generically turn superradiant amplification into an instability mechanism. The
idea is very simple and is depicted in Fig. 4.2: superradiance amplifies any incoming
pulse, and the amplification process occurs near the ergoregion. If the pulse is
now confined (say, by a perfectly reflecting mirror at some distance) it is “forced”
to interact—and be amplified—numerous times, giving rise to an exponentially
increasing amplitude, i.e. to an instability.

The details of the confinement are irrelevant and a simple picture in terms of a
small perfect absorber immersed in a confining box can predict a number of features.
A confining box supports stationary, normal modes. Once a small BH is placed
inside, one expects that the normal modes will become quasinormal and acquire a
small imaginary part, describing absorption—or amplification—at the horizon of
the small BH. Thus, it seems that one can separate the two scales—BH and box
size—and describe quantitatively the system in this way [2].

Normal modes supported by a box have a wavelength comparable to the box
size, in other words a frequency !R � 1=r0. For small BHs, M=r0 � 1, we then
have M! � 1, i.e., we are in the low-frequency limit. In this limit, the equation
for wave propagation can be solved via matched asymptotics [3], similar to what is
discussed in Appendix B. Let A denote the absorption probability at the horizon of a
rotating BH (which can be computed analytically in the small frequency regime [3–
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7]). By definition, a wave with initial amplitude A0 is scattered with amplitude A D
A0
�
1 � jAj2� after one interaction with the BH. In the superradiant regime jAj2 <

0. Consider now a wave trapped inside the box and undergoing a large number of
reflections. After a time t the wave interacted N D t=r0 times with the BH, and its
amplitude changed to A D A0

�
1 � jAj2�N � A0

�
1 � NjAj2�. We then get

A.t/ D A0
�
1 � tjAj2=r0

�
: (4.4)

The net effect of this small absorption at the event horizon is to add a small
imaginary part to the frequency, ! D !R C i!I (with j!Ij � !R). In this limit,
A.t/ � A0e�j!I jt � A0.1 � j!I jt/. Thus we immediately get that

!I D jAj2=r0 : (4.5)

For example, for a non-rotating BH [3]

jAj2 D 4


�
M!R

2

�2C2l
�2Œ1C l C s��2Œ1C l � s�

�2Œ1C 2l��2Œl C 3=2�
(4.6)

� .M=r0/
2lC2 � 1 (4.7)

where s D 0; 2 for scalar and gravitational fields. Comparing with Eq. (4.5), we
obtain

M!I � �.M=r0/
2lC3 : (4.8)

When the BH is rotating, the arguments leading to Eq. (2.47) indicate that
rotation can be taken into account by multiplying the previous result by the
superradiant factor 1�m�=!. In fact, low-frequency waves co-rotating with the BH
are amplified by superradiance. Starobinsky has shown that, at least for moderate
spin, the result in Eq. (4.6) still holds with the substitution [4–7]

!2lC2 ! .! � m�H/!
2lC1 ; (4.9)

where we recall that �H is the horizon angular velocity.
In other words, this intuitive picture immediately predicts that confined rotating

BHs are generically unstable and estimates the growth rate. The dependence of
the growth rate on the confining radius r0 is estimated to be independent on the
spin of the field, and this behavior is observed in a variety of systems. The details
need, of course, a careful consideration of the corresponding perturbation equations;
nevertheless such conclusions hold for several different scenarios [2, 8–11], as we
discuss in more detail in the next sections.
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4.3 Superradiant Instabilities: Time-Domain Evolutions
Versus an Eigenvalue Search

At linearized level BH superradiant instabilities are associated with perturbations of
a fixed BH background which grow exponentially in time. Because the background
is typically stationary, a Fourier-domain analysis proves to be very convenient. In a
stationary and axisymmetric background, a given perturbation ‰.t; r; #; '/ can be
Fourier transformed as

‰.t; r; #; '/ D 1

2


X
m

Z
d! Q‰m.!; r; #/e

�i!teim' ; (4.10)

and the perturbation function Q‰m will satisfy a set of PDEs in the variables r and
# . For the special case of a Kerr BH and for most types of fields, such PDEs can
be miraculously separated using spheroidal harmonics (cf. Sect. 3.6.1 and [12] for a
proof of separability using Killing-Yano tensors), whereas in more generic settings
other methods have to be used [13].

In any case, the system of equations for Q‰m together with suitable boundary
conditions at the BH horizon (discussed already in Sect. 3.6.1, and more thoroughly
in Section 3 in [14]) and at spatial infinity define an eigenvalue problem for the
frequency !. Due to the boundary conditions at the BH horizon and at spatial
infinity, the eigenfrequencies (or quasinormal modes) are generically complex,
! D !R C i!I [14].

In the rest of this section we discuss various superradiant instabilities obtained
by solving the corresponding perturbation equations in the frequency domain and
finding the complex eigenspectrum. Through Eq. (4.10), an instability corresponds
to an eigenfrequency with !I > 0 and the instability time scale is � � 1=!I . In the
case of superradiant modes this always occurs when the real part of the frequency
satisfies the superradiant condition, e.g. !R < m�H for a spinning BH. Although
QNMs do not form a complete basis, they correspond to poles of the corresponding
Green’s function, and play an important part in the time-domain problem [14], as
they arise in the contour-integration of (4.10). A complementary approach consists
in solving the perturbation equations directly in the time domain, by evolving an
initially-small field and monitoring its energy-density as a function of time. As we
will discuss, this approach has been used recently to study BH superradiance and
its development. When both time-domain and frequency-domain computations are
available, they yield consistent results [15, 16].
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4.4 Black Holes Enclosed in a Mirror

4.4.1 Rotating Black-Hole Bombs

Closed Mirrors One of the first conceptual experiments related to BH superradi-
ance concerns a spinning BH surrounded by a perfectly reflecting mirror [8, 17, 18].
As discussed in the previous section, confinement turns this system unstable against
superradiant modes.2 A perfectly reflecting wall is an artificial way of confining
fluctuations, but is a useful guide to other more realistic and complex systems.

For scalars, the relevant Eq. (3.73) can be solved imposing suitable in-going or
regularity boundary conditions at the horizon (discussed in Sect. 3.6.1) and a no-flux
condition at the mirror boundary r D rm in Boyer-Lindquist coordinates. The latter
can be realized in two different ways: either with Dirichlet R.rm/ D 0 (see [8] for a
full analysis of this case) or Neumann R0.rm/ D 0 conditions for the corresponding
Teukolsky master wavefunction.

The more realistic situation of electromagnetic waves trapped by a conducting
spherical surface is also slightly more involved and is explained in Appendix D. The
appropriate boundary conditions are that the electric field is tangent to the conductor
and that the magnetic field is orthogonal to it in the mirror’s frame [19, 20]. We find
that the relevant boundary conditions at r D rm are

@rR�1 D �i	
�˙B C Alm C !

�
a2! � 2am C 2ir

��
2	 .a2! � am C r2!/

R�1

C
�
a2! � am C r2!

� �
2ia2! � 2iam C 2M C 2ir2! C @r	 � 2r

�
2	 .a2! � am C r2!/

R�1;

(4.11)

where we have defined B D p
.�C a2!2 � 2am!/2 C 4ma! � 4a2!2 and R�1

is a radial Teukolsky function defined in Appendix D. The perturbations can be
written in terms of two Newman-Penrose scalars, �2 and �0, which are two linearly
dependent complex functions. This explains the existence of two different boundary
conditions, as would have been expected given the two degrees of freedom of
electromagnetic fields. For a D 0 we recover the condition (D.18) when using the
minus sign, while for the plus sign we recover the condition (D.19); accordingly, we
label these modes as axial and polar modes, respectively.

The boundary conditions described above are only satisfied for a discrete number
of QNM eigenfrequencies !. Our results for the characteristic frequencies are

2Any initial fluctuation grows exponentially, as we argued previously, leading to an ever increasing
field density and pressure inside the mirror. The exponentially increasing pressure eventually
disrupts the confining mirror, leading to an “explosion,” and to this system being termed a black-
hole bomb [18].
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Fig. 4.3 Fundamental (n D 0) QNM frequency for scalar and electromagnetic perturbations of a
confined Kerr BH as a function of the mirror’s location rm, for l D m D 1 and a D 0:8M. For
rm larger than a critical value the modes are unstable. We show the two different polarizations for
the electromagnetic BH bomb compared to the modes of a scalar field for Dirichlet and Neumann
boundary conditions at the boundary. For comparison we also show the flat space transverse electric
(TE) and transverse magnetic (TM) modes inside a resonant cavity, as computed in Eqs. (D.14)
and (D.16) of Appendix D

shown in Fig. 4.3 for l D m D 1 and a D 0:8M. As the generic argument of
the previous Sect. 4.2 anticipated, confined BHs develop an instability, i.e. some
of the characteristic frequencies satisfy !I > 0.3 Figure 4.3 (left panel) shows
that the time scale dependence on rm is the same for electromagnetic and scalar
fluctuations, as predicted in Sect. 4.2. Note that the electromagnetic growth rates
1=!I are about one order of magnitude smaller than those of scalar fields. This
is consistent with the fact that the maximum superradiant amplification factor for
vector fields is approximately one order of magnitude larger than those of scalars,
as shown in Fig. 3.9.

As also anticipated with the heuristic argument in the previous section, the
instability time scale grows with r2lC2

m and the oscillation frequency !R is inversely
proportional to the mirror position and reduces to the flat space result when rm � M.
Thus, for very small rm the superradiant condition ! < m�H is violated and the
superradiant instability is quenched. An analytic understanding of the onset of the
instability is provided in [21]; generic analytic studies can be found in [8, 22–24].
In the limit of very large cavity radius rm=M our results reduce to the TE and TM
modes of a spherical cavity in flat space [19] (see also Appendix D).

These findings are fully corroborated by a time-domain analysis, summarized
in Fig. 4.4 for the case of a scalar field with Dirichlet conditions at r D rm [15].
The exponential growth of the scalar field for rapidly spinning BHs is apparent. A
full nonlinear evolution of the Einstein-Klein-Gordon system in a confining mirror
was recently performed [25]; the results were promising but numerically unstable

3We recall that the time-dependence of the field is � e�i!t, and a positive imaginary component
of the frequency signals an instability.
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Fig. 4.4 Left: time evolution of a scalar field ‰ obeying Dirichlet conditions at some boundary,
on a logarithmic scale, up to t D 105M. The envelope of the Kerr (Schwarzschild) field grows
(decays) exponentially. Right: the growth rate M!I of the first few exponentially-growing modes,
as a function of mirror radius rm. The points show the growth rates calculated from time-domain
data, using runs up to t D 105M. The lines show the growth rates found in the frequency-domain
analysis [8]. From [15]

on time scales too short to observe superradiant-induced growth of the scalar, or to
probe the end-state of the instability. This remains an open issue to date.

Rotating BHs surrounded by artificial mirrors were studied also in the context
of higher dimensional BHs, with similar conclusions [26, 27]. Finally, as discussed
in Sects. 2.4.2 and 2.5.2, realizations of effective BH metrics in the laboratory are
possible through the use of acoustic setups. In this context, BH bombs were shown
to be unstable on short, and possibly experimentally accessible, time scales [28]. A
possible end-state of the instability are “distorted geometries”, which were recently
discussed at the linearized level [29]. Note however, that the boundary conditions
used in both these references are very special and correspond to a highly absorbing
boundary. A discussion of general boundary conditions for acoustic geometries can
be found elsewhere [30].

Accretion Disks: Open Mirrors The BH bomb scenario discussed previously can
serve as a model to describe astrophysical BHs surrounded by plasmas or accretion
disks. Ionized matter is a good low-frequency electromagnetic waves reflector (see
Sect. 4.9.1 below) and can thus play the role of the mirror (this was first realized
by Teukolsky [31] and it is discussed in more detail in Sects. 4.9.1 and 5.6). A very
important question which still needs clarification concerns the effectiveness of the
instability in these realistic situations. The matter surrounding the BH comes under
the form of thin or thick accretion disks and not as spherically shaped mirrors.
Confining the field along some angular direction means forbidding low angular
eigenvalue modes, implying that only higher-angular eigenvalue modes (with longer
time scales, cf. Eq. (4.9)) are unstable [32, 33].

Although the geometrical constraint imposed by accretion disks does not com-
pletely quench the instability, it can be argued that absorption effects at the mirror
could [33]. Consider an optimistic setup for which the electromagnetic wave is
amplified by �1 % each time that it interacts with the BH [1]. A positive net gain
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only ensues if the wall has a reflection coefficient of 99% or higher. On the other
hand, this argument assumes that the mirror itself does not amplify the waves. But
if it is rotating, it may too contribute to further amplification (an interesting example
of amplification induced by a rotating cylinder is discussed in [34]). Clearly, further
and more realistic studies need to be made before any conclusion is reached about
the effectiveness of “BH bomb” mechanisms in astrophysical settings.

4.4.2 Charged Black-Hole Bombs

As shown in Sect. 3.5, charged fields can also be amplified through superradiance
in a charged BH background. In complete analogy with the rotating BH bomb, one
may also consider building a charged BH bomb. Charged BH bombs were studied
in detail in [35, 36], both in the frequency and time-domain whereas analytic studies
were done in [37, 38]. It was shown that in the limit qQ ! 1 and for a mirror in
the near-horizon region, the characteristic frequency follows a linear scaling !I /
qQ=rC, implying that the instability growth time scale �ins � 1=!I can be made
arbitrarily small by increasing q. In [39] these results were extended to a charged
massless scalar field in the background of a charged stringy black hole with mirror-
like boundary conditions.

Although astrophysical BHs are thought to be neutral due to quantum effects and
plasma neutralization, this system is interesting from a conceptual point of view: the
very short instability time scale (as compared to the very long time scales involved
in the rotating case) make it a very promising testbed for fully nonlinear studies
following the development of the instability of BHs in a cavity.

4.5 Black Holes in AdS Backgrounds

Black holes in anti-de Sitter backgrounds behave as BHs in a box, as the AdS
boundary is timelike and is may confine fluctuations. One way to see this is through
the analysis of timelike geodesics: no timelike particle is able to reach spatial
infinity, and therefore AdS backgrounds can be looked at as really a confining
system. Another intuition into these spacetimes is brought about by following radial
null geodesics in the geometry (3.5) with a negative cosmological constant and zero
mass. According to (3.9)–(3.11), these are governed by

dr=dt D .r2=L2 C 1/ ; (4.12)

where L is the curvature radius of AdS spacetime, related to the negative cosmolog-
ical constant in the Einstein equations through

L2 D �3=ƒ : (4.13)
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In other words, an observer at the origin measures a finite time t D 
L=2 for a light
ray to travel from the origin to the AdS boundary at r D 1. This short result teaches
us that boundary conditions at spatial infinity are crucial to determine the evolution
of the system.

In view of the above, rotating or charged BHs in anti-de Sitter are expected to
behave as the “BH bombs” previously described: for small BH size—relative to the
AdS curvature radius—one expects superradiant instabilities, whereas for “large”
BHs the resonant frequencies are too large and outside the superradiant threshold.
Alternatively, slowly rotating BHs with�HL < 1 are expected to be stable whereas
rapidly spinning BHs are expected to be unstable [40].

4.5.1 Instability of Small Kerr-AdS Black Holes and New BH
Solutions

The previous arguments were shown to be correct in a series of works, starting
with the proof that “large” Kerr-AdS BHs are stable [40]. Small Kerr-AdS BHs
were subsequently shown to be mode-unstable against scalar-field fluctuations [9,
41, 42]. For small BHs, i.e. for rC=L � 1, the characteristic frequencies will be a
deformation of the pure-AdS spectrum L! D lC3C2n [43]. A matched asymptotic
expansion method yields the eigenfrequencies [9, 42],

L! D l C 3C 2n � i�

�
l C 3C 2n

L
� m�H

�
.r2C C a2/.rC � r�/2l


L2.lC1/
; (4.14)

where

� D .lŠ/2.l C 2C n/Š

.2l C 1/Š.2l/ŠnŠ

2lC3.2l C 1C 2n/ŠŠ

.2l � 1/ŠŠ.2l C 1/ŠŠ.2n C 3/ŠŠ

lY
kD1
.k2 C 4$2/ ; (4.15)

and

$ D
�

l C 3C 2n

L
� m�H

�
r2C C a2

rC � r�
: (4.16)

Here, r� is the smallest root of 	 in (3.6) and �H was defined in (3.7). The
numerical solution of the eigenvalue problem was first considered in [42] and
agrees remarkably well with the analytical result (4.14). As an example we used
a direct integration, shooting method to determine numerically the eigenvalues for
rC=L D 0:005, the results are summarized in Fig. 4.5, where we also show the
analytical prediction. At low rotations the imaginary component of the fundamental
eigenfrequency is negative, !I < 0, signalling a stable spacetime. As soon as
the superradiance condition is satisfied, i.e., when !R < m�H, the superradiant
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Fig. 4.5 Details of the superradiant instability against dipole (l D m D 1) scalar fields. We
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the perturbations become stable; as the dashed black line shows, this is also the critical point for
superradiance, at which !R D m�H. From [10]

mechanism sets in and the spacetime is unstable, !I > 0, with an instability time
scale given by � � 1=!I .

A numerical search of the parameter space shows that the peak growth rate for
the instability is around !I � 3 	 10�4 at rC=L � 0:07 for a nearly extremal BH.
For rC=L > 0:15 there are no signs of unstable modes.

Gravitational perturbations can be handled in a similar way4; these perturbations
have two degrees of freedom which have traditionally been termed gravitational
vector (or Regge-Wheeler or odd) perturbations and gravitational scalar (or Zerilli
or even) perturbations. For small rC=L, a similar matched asymptotic expansion
technique can be used [10]. For the lowest harmonic l D 2, the characteristic
frequencies satisfy

i.�1/L Q!C1L�5
 

rC � a

r2C

!5
L Q! �L2 Q!2 � 1

� �
L2 Q!2 � 4��.5 � 2i$/

C5400
h
"C .�1/L Q!i�.�2i$/ D 0 ; (4.17)

4A comprehensive discussion of the acceptable boundary conditions for gravitational fluctuations
is presented in [10, 44].
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where " D 1 describes gravitational scalar modes while " D �1 represents
gravitational vector modes (both with the boundary conditions corresponding to
a non-deformed AdS boundary [10]). Note also that [10] uses a slightly different
coordinate system with time coordinate Qt and characteristic frequency Q!. In the
Boyer-Lindquist coordinates we adopt here, the characteristic frequencies are ! D
† Q!, where† was defined in Eq. (3.6).

An approximate analytic solution (valid in the limit a=L � rC=L � 1) of the
transcendental equations above is

1/ Scalar modes: Q!IL ' 16

15


"
�3r6C

L6
C m a r4C

L5

 
1C 15.5� � 7/ r2C

L2

!#
C � � � ; (4.18)

2/ Vector modes: Q!IL ' 96

15


"
�4r6C

L6
C m a r4C

L5

 
1C 80.5� � 7/

3

r2C
L2

!#
C � � � ; (4.19)

where � ' 0:577216 is the Euler-Mascheroni constant. The overall behavior is
identical to that of scalar fields. For both scalar and vector modes the imaginary
part of the frequency is negative at a D 0, consistent with the fact that QNMs
of Schwarzschild-AdS are always damped [14, 45]. However, as a=L increases,
!I increases. As in the previous cases, at the critical rotation where the crossover
occurs, i.e. !I D 0, one has !R � m�H ' 0 to within 0:01%. For smaller rotations
one has !R � m�H > 0 and for higher rotations one has !R � m�H < 0 and
!I > 0. Therefore, the instability which is triggered at large rotation rates has a
superradiant origin since the superradiant factor becomes negative precisely when
the QNMs go from damped to unstable. These analytical matching results provide
also a good testbed check to our numerics. Indeed we find that our analytical and
numerical results have a very good agreement in the regime of validity of the
matching analysis. This is demonstrated in Fig. 4.6 where we plot the numerical
and analytical results for the fundamental l D 2 scalar and vector modes.

Finally, note that the strength of the scalar or vector gravitational instabilities
can be orders of magnitude higher than the strength of the same superradiant
instability sourced by a scalar field perturbation [9, 42]. The maximum growth rate
for the scalar and vector superradiant instability is of order L!I � 0:032; 0:058

respectively at .rC=L; a=L/ � .0:445; 0:589/; .0:32; 0:386/ (for further details see
[10]); the peak growth rates are therefore substantially larger than those for scalar
field fluctuations, as might be anticipated. Indeed the maximum growth rates are
two orders of magnitude larger than in the scalar case, as might be expected from
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Fig. 4.6 Imaginary part of the QNM frequency as a function of the rotation parameter a=L, for
fixed horizon radius r

C

=L D 0:005, for l D 2 gravitational scalar (right panel) and vector
modes ( left panel). Here ! D † Q!. The red dots are numerical points. The green curve is the
numerical solution of the matching transcendental Eq. (4.17), while the dashed black curve is the
approximated analytical solution (4.18) or (4.19) of (4.17). In both figures there is a critical rotation
where !I D 0 and !R � m�H ' 0 to within 0:01%. For lower rotations the QNMs are damped
and with !R � m�H > 0, while for higher rotations we have unstable superradiant modes with
!R � m�H < 0

the corresponding two orders of magnitude difference in superradiant amplification
factors.

Direct evolutions in the time-domain were recently reported for scalar fields
yielding instability time scales consistent with the frequency-domain analysis [46].
Finally, rigorous growth-rate estimates for generic initial data are provided in [47].

This mechanism is likely to render other rotating black objects in asymptotically
AdS spacetimes unstable. One example of such objects are rotating black rings,
recently discussed in [48].

Three-Dimensional BHs in AdS The only exception to this rule are .2 C 1/-
dimensional BHs, whose spectra shares some similarities to those of Kerr BHs.
Studies of the so-called rotating BTZ BH spacetime or “squashed” versions present
in modified theories of gravity thereof show that these geometries are stable [49, 50].
Note that in three dimensional GR there are no gravitational degrees of freedom, and
that stability results refer only to scalar or electromagnetic fluctuations.

The End-State of the Instability and New BH Solutions Small, rapidly spinning
BHs in AdS are unstable. Where does the instability drives the system to? For
such confining geometries, the final state cannot be a Kerr-AdS BH: energy and
angular momentum conservation guarantee that the BH would have exactly the same
parameters as the initial state, hence it would be unstable. Furthermore, the BH is
amplifying low-frequency radiation which can not penetrate the horizon. We are
thus led to the conclusion that the final state of the instability must be a rotating BH
surrounded by a bosonic “cloud”, generically a very dynamic spacetime due to GW
emission induced by the cloud.
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In certain cases, it is possible to suppress GW emission by considering contrived
matter content, as it was done in [51] where the authors have explicitly constructed
an AdS BH with scalar hair, albeit in five-dimensional spacetimes. The action
considered includes 2 complex scalar fields in five dimensions,

S D
Z

d5x
p�g

�
R C 12

L2
� 2

ˇ̌
ˇr E…

ˇ̌
ˇ2
�
; (4.20)

with

E… D …e�i!tCi 

�
sin .�=2/e�i�=2

cos .�=2/e�i�=2

�
: (4.21)

With the ansatz

ds2 D �fgdt2 C dr2=f C r2
"

h

�
d C cos �

2
d� ��dt

�2
C d�2 C sin2 �d�2

4

#
;

(4.22)

then all metric coefficients f ; g; h; � and the field ‰ are real functions of a radial
coordinate r. Notice that such ansatz is special in the sense that even though the
scalars are dynamical, the stress-tensor

Tab D @a E…�@b E…C @a E…@b E…� � gab@c E…@c E…� ; (4.23)

has the same symmetry as the metric. It is then possible to find five-dimensional
AdS BHs with scalar hair by simply solving a set of coupled ODEs [51]. The BHs
are neither stationary nor axisymmetric, but are invariant under a single Killing field
which is tangent to the null generators of the horizon. These solutions can then be
viewed either as the end-state of the superradiant instability, or as interpolations
between (equal angular momenta) Myers-Perry-AdS BHs and rotating boson stars
in AdS. In a phase diagram, these solutions bifurcate from the threshold of the
superradiant instability of the original Myers-Perry BH.

More general solutions representing the end-point of superradiant instabilities,
without the assumptions above, are thought to exist [41, 52]; in fact, two such
solutions have recently been studied [53, 54] and they underline the role of
superradiance in a vast set of physical phenomena including in the construction
of novel BH solutions.

4.5.2 Charged AdS Black Holes: Spontaneous Symmetry
Breaking and Holographic Superconductors

As might be anticipated, charged BHs in AdS are also unstable through super-
radiance, in line with what we discussed in Sect. 4.4.2 for charged BHs in a
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cavity. In fact, such instability has been studied extensively in the context of
the gauge-gravity duality and prompted the recent flurry of activity on so-called
holographic superconductors and superfluids [55, 56]. Curiously, the connection
of this phenomenon to superradiance was initially almost unnoticed, and has been
realized only some years after the original proposal (see [57–59]). We present here
a unified picture of this problem.

Instabilities of charged BHs in AdS have been studied in [60] under a different
guise, namely with the aim to provide a holographic dual description of a sponta-
neous symmetry-breaking mechanism at finite temperature. Gubser [60] considered
an Abelian Higgs theory in four-dimensional curved spacetime, which is given by
action (3.1) with a massless Maxwell field. A solution of the theory above is a RN-
AdS BH (cf. Eq. (3.4)) endowed with an electric potential5 ˆ D Q=r � Q=rC and a
vanishing scalar field. A small scalar fluctuation on this background is governed by
the Klein-Gordon equation with an effective mass term given by

m2
eff D �q2ˆ2

f .r/
; (4.24)

where f .r/ is given in Eq. (3.4) and for simplicity we have neglected the actual
mass term �S of the scalar field, whose role is not crucial in this analysis. Thus, the
effective mass squared is negative outside the horizon. If q is sufficiently large, the
negative potential well can produce unstable modes. Such modes only exist when
the spacetime is asymptotically AdS and have no analog in flat space.6 In fact,
there are two different mechanisms at play [58, 63], only one of which is associated
with superradiance. One (nonsuperradiant) is related to the near-horizon geometry
of the extremal RN BH which is described by AdS2. When m2

eff < m2
BL (where

mBL is the Breitenlohner-Freedman bound of the near-horizon AdS2 geometry), the
mode is effectively space-like and produces a tachyonic instability. Such instability
also exists for non-extremal BHs although it requires larger values of q. On the
other hand the second, superradiant, mechanism is related to the fact that charged
scalar perturbations can be superradiantly amplified by the RN BH, the energy being
trapped by the AdS boundary, which provides the arena for the instability. In fact,
the linearized analysis is equivalent to that presented in Sect. 3.5. This mechanism is
akin to the BH bomb and requires confinement due to the AdS boundary. Therefore,
it only exists in global AdS and not for planar RN-AdS black branes [58, 59].

In the context of the gauge-gravity duality, this instability has far-reaching
consequences, as it signals the onset of a phase transition towards a hairy BH

5As discussed in [60], the electric potential at the horizon should vanish to ensure regularity of the
one-form ˆdt.
6A similar mechanism occurs also for neutral fields with nonminimal couplings [61]. However,
in that case the instability occurs also in asymptotically-flat spacetime [62] and does not have a
holographic interpretation in terms of spontaneous symmetric breaking. In fact, this mechanism is
akin to superradiant instabilities triggered by nonminimal couplings, as those discussed in Sect. 4.9.
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Fig. 4.7 Left panel: the scalar operator of the boundary theory dual to the Abelian Higgs
model (3.1) (with massless Maxwell field) which is related to the asymptotic behavior of the scalar
hair through the AdS/CFT dictionary. A hairy BH geometry branches off the RN-AdS solution
and exists only below a certain critical temperature Tc � p


, where 
 is the charge density. The
behavior at T � Tc shows that the phase transition is of second order. Different curves correspond
to various values of the scalar charge q. Right panel: the electric conductivity of the dual theory
in the superfluid phase at various temperatures (decreasing from left to the right). A Dirac delta
function appears at ! D 0 and there is a frequency gap at small temperatures. From [64]

configuration that breaks the U.1/ symmetry of the initial RN-AdS solution. In
a quantum field theory, such spontaneous symmetry breaking (akin to the Higgs
mechanism) is associated to superfluidity and the scalar condensate is associated to
Cooper pairs [56, 57]. This same mechanism is at play in the Abelian Higgs model as
was demonstrated in the seminal work [55] where a “holographic superconductor”
was constructed as the nonlinear endstate of the superradiant instability. At small
temperatures, the RN-AdS BH becomes unstable through superradiance and spon-
taneously develops a spherically-symmetric scalar hair. This is in agreement with
our previous analysis, and only small BHs are unstable through this mechanism;
in addition, planar RN-AdS black branes are stable [58]. The scalarized phase
is energetically favored at low temperatures and corresponds to a nonvanishing
expectation value of a scalar operator O2 living on the boundary, as shown in the
left panel of Fig. 4.7.

The behavior of the scalar condensate near the critical temperature signals
a second-order phase transition. Other properties of the dual phase such as the
existence of a gap in the conductivity, infinite DC conductivity, the existence of
Cooper-like pairs and a Meissner-like effect, can all be studied by solving the linear
response of the hairy BH solutions to scalar and electromagnetic perturbations [56].
An example is presented in the right panel of Fig. 4.7, showing the conductivity of
the superfluid phase.

The results in [55] triggered a flurry of activity in this field that goes well
beyond the scope of this work (for a somehow outdated review see [65]). Relevant
to our discussion is the analysis of [66], in which nonequilibrium processes in
the holographic superfluid phase and the energy extraction from the normal phase
described by the RN-AdS BH have been investigated through time evolutions. An
example of such evolution is described in Fig. 4.8.
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Fig. 4.8 Example of the evolution of the scalar field on .t; z/-plane starting with a perturbed RN-
AdS solution in the theory. Left panel: the time interval 0 	 tTc 	 14 is shown, where Tc is
the critical temperature for the phase transition. Because of the instability of the RN-AdS BH, the
scalar density grows exponentially for tTc . 6 and for tTc & 6, the scalar density approaches a
stationary configuration. Right panel: the same evolution at initial times, 0 	 tTc 	 0:08. The
wave packet is reflected by the AdS boundary at t ' 0:04 and most of it is absorbed at the BH
horizon within tTc . 0:06. From [66]

It is also interesting to mention the case of a charged massive fermion coupled to
Einstein-Maxwell theory in AdS. As previously discussed, Pauli exclusion principle
implies that fermions cannot condensate and, in turn, superradiance does not occur.
From the holographic perspective, the quantum state will not have a coherent phase
and the U.1/ symmetry is unbroken (cf. [57] for a review). While classical fermionic
instabilities are prevented, Schwinger pair production of fermions can occur for
sufficiently light fermions, in analogy to the bosonic case. The result of this process
is the population of a Fermi sea delimited by a Fermi surface outside the BH,
giving rise to so-called “electron stars” [67] which are the (planar, AdS) cousins
of astrophysical NSs.

4.6 Massive Bosonic Fields

So far we have discussed two classes of BH-bomb systems: BHs enclosed in
a reflecting cavity and BHs in asymptotically AdS spacetimes. The former are
highly idealized and unrealistic configurations, whereas the latter—although of
great theoretical interest especially in the context of the gauge-gravity duality—are
of little relevance for astrophysical BHs.

Fortunately, sometimes “nature provides its own mirrors” [8, 18]. A massive
bosonic field naturally confines low-frequency radiation due to a Yukawa-like
suppression � e��r=r where � is the mass term. Thus, it was suspected since the
1970s [18, 68] that superradiance triggers instabilities in spinning BH geometries.

This section is devoted to the superradiant instability of spinning BHs triggered
by massive bosonic fields in asymptotically-flat spacetime, a topic that has recently
flourished with numerous developments in the last few years. The busy reader
will find a unified discussion of such instabilities in Sect. 4.6.5. We anticipate that
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superradiant instabilities triggered by massive bosons are relevant (i.e. their time
scale is sufficiently short) only when the gravitational coupling M�i . 1. We recall
that the physical mass of the fields is mi D �i„, where i D S;V;T for scalar, vector
and tensor fields, respectively. In Planck units (G D c D „ D 1), the following
conversions are useful

1 eV 
 7:5 	 109M�1ˇ 
 5:1 	 109 km�1 
 1:5 	 1015 s�1 : (4.25)

so that �iM � 0:75 when M � Mˇ and �i � 10�10 eV, i.e. for a ultralight bosonic
field.

4.6.1 The Zoo of Light Bosonic Fields in Extensions
of the Standard Model

All observed elementary particles are either fermions or bosons, according to the
statistics they obey, which in turn determines whether they have half-integer or
integer spin, respectively. Because superradiance does not occur for fermionic fields,
here we are interested in massive bosons. All observed elementary bosons are all
either massless or very massive, such as the W and Z bosons and the recently-
discovered Higgs boson, whose masses are of the order m � 100GeV. As we
discuss below, the condition �iM . 1 sets the range of mass „�i which is
phenomenologically relevant for a given BH mass M. A hypothetical boson with
mass in the electronvolt range would trigger a sufficiently strong instability only
for light BHs with masses M � 1020 g. Although the latter could be formed in the
early universe as “primordial” BHs [69–71] (see [72] for a review) and are also
promising dark-matter candidates, here we focus mostly on massive BHs, i.e. those
with masses ranging from a few solar masses to billions of solar masses.

Superradiant instabilities of such massive BHs require ultralight bosonic fields
in order to have astrophysically relevant time scales. Such bosons are almost
ubiquitous in extensions of the Standard Model of particle physics and in various
extensions of GR. The prototypical example of a light boson is the Peccei-Quinn
axion [73] introduced as a possible resolution for the strong CP problem in QCD,
i.e. the observed suppression of CP violations in the Standard Model despite the
fact that, in principle, the nontrivial vacuum structure of QCD allows for large CP
violations. The Peccei-Quinn mechanism is based on a global symmetry, whose
spontaneous breaking is associated to a new particle, the axion [74, 75]. The axion
should acquire a small mass due to nonlinear instanton effects in QCD and its mass
is theoretically predicted to be below the electronvolt scale. For a massive BH with
M � 5Mˇ, axions with mass of the order of 10�11 eV would have a superradiant
coupling �iM � 0:4, so that superradiant instabilities are potentially important. In
addition to solve the strong CP problem, light axions are also interesting candidates
for cold dark matter [76, 77].
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Other light bosons, such as familions [78] and Majorons [79], emerge from the
spontaneous breaking of the family and lepton-number symmetries, respectively. A
common characteristic of these light bosons is that their coupling to Standard-Model
particles is suppressed by the energy scale that characterizes the symmetry breaking,
so that it is extremely challenging to detect these fields in the laboratory. Thus,
massive BHs are probably the best candidates to investigate the putative effects of
light bosons in a range which is complementary to searches using cosmological
observations [80].

Furthermore, a plenitude of ultralight bosons might arise from moduli compact-
ification in string theory. In the “axiverse” scenario, multiples of light axion-like
fields can populate the mass spectrum down to the Planck mass, mP � 10�33 eV,
and can provide interesting phenomenology at astrophysical and cosmological
scales [81].

Light bosonic fields with spin are also a generic feature of extensions of the
Standard Model. For example massive vector fields (“dark photons” [82]) arise in
the so-called hidden U.1/ sector [83–87]. On the other hand, coupling massive spin-
2 fields to gravity is a much more involved problem from a theoretical standpoint,
but progress in this direction has been recently done in the context of nonlinear
massive gravity and bimetric theories (cf. [88, 89] for reviews). A light massive
graviton modifies the gravitational interaction at long distances and is a natural
alternative to explain the accelerating expansion of the Universe.

In addition to fundamental bosonic fields, effective scalar degrees of freedom
arise naturally due to nonminimal couplings or in several modified theories of
gravity [90]. For example, in so-called scalar-tensor theories, the gravitational
interaction is mediated by a scalar field in addition to the standard massless
graviton. The no-hair theorems of GR extend to scalar-tensor gravity under certain
conditions [91] so that GR BHs are also the unique vacuum, stationary solution
of these theories. However, if the scalar field is massive such BHs would be
unstable due to the superradiant instability. Due to a correspondence between scalar-
tensor theories and theories which replace the Einstein-Hilbert term by a generic
function of the Ricci curvature (so-called f .R/ gravity [90]), effective massive
scalar degrees of freedom are also present in these theories and trigger superradiant
instabilities [92].7

The phenomenological implications of superradiant instabilities triggered by
light bosons are discussed in Sect. 5.4, here we simply consider the mass of the
boson (either mS, mV or mT for spin-0, -1 and -2 particles, respectively) to be a free
parameter of the model.

7Interestingly, in the context of f .R/ gravity the effective scalar field is related to the scalar
curvature of the metric, which grows exponentially through superradiance. This suggests that, at
variance with the case of real massive fields in which the final state is likely a Kerr BH with lower
spin (as discussed in the rest), the end-state of superradiant instabilities in f .R/ gravity might be
different from a Kerr BH [92]. If such theories are to satisfy the no-hair theorem [91], the end state
of the instability should be a non-stationary solution.
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4.6.2 Massive Scalar Fields

The simplest and best understood case of superradiant instability triggered by
massive bosons is the case of a massive probe scalar field propagating on a fixed
Kerr geometry. The existence of this instability was originally suggested by Damour
et al. [68] and has been thoroughly investigated by several authors since then.

The linearized dynamics is governed by the massive Klein-Gordon equation

Œ� � �2S�‰ D 0 ; (4.26)

where the D’Alembertian operator is written on the Kerr metric and �S is the scalar
mass term (we recall that we use Planck units henceforth; the physical mass mS of
the field reads mS D �S„). In the Teukolsky formalism [93, 94], Eq. (4.26) can be
separated by use of spin-0 spheroidal wavefunctions [95] as discussed in Sect. 3.6.1
for the massless case. The ODE for the angular part is identical to the massless case
after the redefinition !2 ! !2 � �2S, whereas the potential of the radial equation
gets a further contribution proportional to �2S	r2.

Analytical Results The crucial parameter regulating the interaction between the
geometry and the massive scalar is the gravitational coupling M�S, which is just
the ratio between the gravitational radius of the BH and the Compton wavelength
of the field. In the scalar case analytical results are available in the M�S � 1 and
M�S � 1 limits.

For small M�S, it can be shown that the eigenvalue problem admits a hydrogenic-
like solution [23, 96, 97] with � � l.l C 1/ and

! � �S � �S

2

�
M�S

l C n C 1

�2
C i

�nlm

	am

M
� 2�SrC



.M�S/

4lC5 ; M�S � 1 ;

(4.27)

where n D 0; 1; 2: : : is analog to the principal quantum number in the hydrogen
atom and �nlm is a coefficient that depends on .n; l;m/; �011 D 48 for the dominant
unstable mode [97] (this result corrects the prefactor found in the original reference,
for further details we refer the reader to the appendix of [97]). Note that the QNMs
are complex, ! D !R C i!I , unless the superradiant condition is saturated. This
happens when

a D acrit 
 2�SMrC
m

: (4.28)

Because of the time dependence of the field, when a > acrit the imaginary part of
the modes is positive and the instability time scale can be defined as � � 1=!I . In
this case, the field grows exponentially in time, ‰ � et=� . The instability time scale
depends on the coupling �SM, on the spin a=M and on the mode numbers .l;m; n/.
The strongest instability occurs for l D m D 1, n D 0 and for highly-spinning BHs.
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In the same limit, M�S � 1, the eigenfunctions can be written in terms of
Laguerre polynomials [96, 98]

 .�S; a;M; r/ / Qrle�Qr=2L2lC1
n .Qr/ ; (4.29)

and becomes a universal function of the dimensionless quantity Qr D 2rM�S
2=.lC

n C 1/ [99]. For the single most unstable mode, l D m D 1 and n D 0, the
eigenfunctions simplify to  / Qre�Qr=2.

In the opposite regime, M�S � 1, the instability is exponentially suppressed.
By using a WKB analysis, Zouros and Eardley found that the shortest time scale
reads [100]

� � 107Me1:84M�S M�S � 1 : (4.30)

It can be shown that the super-radiant instability regime is bounded by the
relation

�S <
p
2m� ; (4.31)

and that the upper bound can be approached arbitrarily close in the eikonal regime,
M� � 1 [101].

Note that for a solar mass BH and a field of mass mS � 1 eV, the parameter
M�S � 1010 and the instability time scale is much larger than the age of the
universe. Therefore, the case M�S � 1 has little phenomenological relevance.
Below we discuss a more interesting case, when the gravitational coupling is of
order unity, M�S . 1.

Numerical Results Exact results for any value of M�S and a=M can be obtained
by solving the problem numerically. This was originally done in [11] and a very
complete analysis of the instability can be found in [102] which used an extension
of the continued-fraction method [14] to compute the unstable modes.8

Some representative results are displayed in Fig. 4.9, which shows !I as a
function of the gravitational couplings for various parameters. The instability
corresponds to !I > 0, which occurs when !R < m�H, i.e. when the mode
satisfies the superradiance condition (1.1). As expected, faster rotation leads to
shorter growth timescales. Furthermore, for a given l, the mode with the faster
growth rate has m D l, and clearly the axisymmetric mode with m D 0 is stable. As
in the analytical case, the dominant unstable mode has l D m D 1 and n D 0. For
this mode the shortest instability time scale is approximately

�S � � � 6:7 	 106M �
�

M

106Mˇ

�
yr ; (4.32)

8The spectrum of massive scalar perturbations of the Kerr metric contains both stable QNMs and
quasibound states, which are localized near the BH [97, 102, 103]. The quasibound states are those
that become unstable in the superradiant regime.
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Fig. 4.9 Left: Superradiant instability for the fundamental (n D 0) l D m D 1 modes as
a function of the gravitational coupling M�S and for various BH spin (see publicly available
MATHEMATICA R

� notebook in Appendix A). The dotted lines shows Detweiler’s approxima-
tion (4.27) [96] (with the coefficient corrected as in [97]), valid in the limit M�S 
 1. Although not
shown, the instability terminates (i.e. !I ! 0) when the superradiance condition is not satisfied.
Right: The same for the fundamental l D m D 1, l D m D 2 and l D m D 3 modes. The fastest
growth occurs for the l D m D 1 state at M�S � 0:42, with a D 0:999M. The dotted line shows
Zouros and Eardley’s approximation [100], valid when M� � 1 (cf. Eq. (4.30))

and occurs when M�S � 0:42, corresponding to a light scalar field of mass

�S � 0:42M�1 � 5:6 	 10�17
�
106Mˇ

M

�
eV : (4.33)

The exact numerical results can be used to check the validity of the analytical
approximation when �SM � 1. It turns out that the spectrum (4.27) and the
eigenfunctions (4.29) are a valid approximation of the exact results even for
moderately large coupling (roughly up to �SM . 0:2) and even at large BH spin.

More recently, massive Klein-Gordon perturbations of Kerr BHs were also
investigated through a time-domain analysis. This was done in [16] by adapting a
3C 1 code, whereas subsequently an elegant decomposition in spherical harmonics
was used to reduce the Klein-Gordon equation to an infinite set of hyperbolic partial
differential equations for perturbations with different harmonic indices, which can
then be solved with a 1C 1 code [15]. The results of these works are in remarkably
good agreement with the frequency-domain analysis. Furthermore, [16] provides
an explanation for an apparent discrepancy between time and frequency domain
calculations of the instability growth rates as obtained in [104]. This is related to an
interference effect between different overtones that will be discussed in the context
of massive vector fields below (cf. Fig. 4.11).

The End-State of the Instability and New BH Solutions Unlike the AdS case
discussed in Sect. 4.5, massive fields can confine only low-frequency radiation.
The issue of the final state of the instability is discussed in detail in Sect. 5.3. We
anticipate here that—because of the no-hair theorems ensuring that axisymmetric
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vacuum solutions of GR in asymptotically-flat spacetime are described by the Kerr
geometry [91, 105–107]—the final state of the superradiant instability of a Kerr BH
will still be a Kerr BH with smaller mass and spin. An important counterexample is
provided by the hairy BHs discussed in Sect. 5.5. In that case, similarly to the AdS
case, the metric remains stationary even if the scalar field oscillates in time [108].
This time dependence in the matter sector circumvents the hypothesis of the no-hair
theorem and, at the same time, prevents GW emission (cf. Sect. 5.5 for details).

Massive Charged Scalars Massive charged scalars propagating on a Kerr-
Newman background were studied (both analytically and numerically) in [109],
which found that the instability growth rate also depends on the coupling qQ, where
q and Q are the charges of the field and of the BH, respectively. For a given value
of the BH spin the shortest instability time scale is comparable to that of the neutral
case, although it occurs for different values of �SM and with qQ ¤ 0.

Because the BH-bomb effect occurs also for minimally-coupled, charged scalar
perturbations of a static, charged BH in a cavity (cf. Sect. (4.4.2)), one might be
tempted to conclude that a similar instability exist also when the cavity’s surface
is replaced by a massive perturbation. However, unlike their rotating counterpart,
asymptotically-flat charged BHs were shown to be stable against massive charged
scalar perturbations. This is due to the fact that the conditions required in order
to trigger the superradiant instability (existence of bound states in the superradiant
regime) are incompatible [110, 111]. The same absence of superradiant instability
has been recently proved for charged BHs in low-energy effective string the-
ory [112].

4.6.3 Massive Vector Fields

While superradiant instabilities of spinning BHs against massive scalar perturba-
tions have a relatively long history [8, 11, 18, 23, 68, 102, 113], the case of massive
bosonic fields with nonvanishing spin (i.e. massive vector and tensor fields) has been
investigated much more recently. This is due to technical difficulties that were only
recently overcome, as we now discuss.

The equation governing massive vector (spin-1) fields is the Proca equation

r�F�� D �2VA� ; (4.34)

where F�� D @�A� �@�A�, A� is the vector potential and we will focus again on the
case in which the differential operator is written on the Kerr background. Maxwell’s
equations are recovered when �V D mV=„ D 0, where mV is the mass of the vector
field. Note that, as a consequence of Eq. (4.34), the Lorenz condition r�A� D 0 is
automatically satisfied, i.e. in the massive case there is no gauge freedom and the
field A� propagates 2s C 1 D 3 degrees of freedom [103].
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Most studies of Proca fields on a BH geometry are restricted to the nonrotating
case [103, 114–116] and clearly fail to describe the superradiant regime. The main
reason is that the Proca equation (4.34) does not seem to be separable in the Kerr
background by using the standard Teukolsky approach. Recently, the problem has
been solved through novel semi-analytical techniques in the slow-rotation limit [97,
117] (cf. [13] for a review on the slow-rotation approximation) and through a fully
numerical evolution of the Proca system [16].

In the slow-rotation approximation [13] (briefly discussed in Appendix E),
the angular dependence of the perturbations can always be separated, leading to
perturbation equations that can be written as a system of ODEs in the schematic
form (E.7)–(E.8). This general framework also applies to the Proca system. By
expanding the vector field A� in a basis of vector spherical harmonics as in Eq. (D.3)
and by expanding the Kerr background to second order in the spin,9 the Proca
equation (4.34) reduces to two independent systems of ODEs [97, 117]:

DA‰
l
A C VA‰

l
A D 0 ; (4.35)

DP‰
l
P C VP‰

l
P D 0 ; (4.36)

where DA;P are second order differential operators, VA;P are 4 	 4 and 5 	 5

matrices, respectively, and we have defined the four- and five-dimensional vectors
of variables:

‰ l
A D .ul

.4/; u
l˙1
.2/ ; u

l˙1
.3/ ; u

l˙2
.4/ / ; (4.37)

‰ l
P D .ul

.2/; u
l
.3/; u

l˙1
.4/ ; u

l˙2
.2/ ; u

l˙2
.3/ / (4.38)

where the variables ul
.i/ are proportional to alm, f lm, hlm and klm in Eq. (D.3). Note

that the function ul
.1/ can be obtained from the Lorenz condition once the three

dynamical degrees of freedom ul
.2/, ul

.3/ and ul
.4/ are known. When the spin vanishes,

the equations above reduce to Proca perturbations of a Schwarzschild BH [103].
However, rotation introduces mixing between perturbations of different parity and
different multipolar indices [13].

By solving the systems (4.35) and (4.36) numerically, [97, 117] found the
following set of unstable modes in the small-mass limit:

!2R � �2V

"
1 �

�
M�V

l C n C S C 1

�2#
; (4.39)

M!I � �Sl .ma=M � 2rC�V / .M�V/
4lC5C2S ; (4.40)

9As discussed in detail in [13, 97], a second-order calculation is needed to describe the superradiant
regime in a self-consistent way, although a first-order computation turns out to be surprisingly
accurate in all cases explored so far.
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Fig. 4.10 Instability growth rate for the axial (left panel) and of the polar S D �1 (right panel)
Proca modes as a function of the BH rotation rate J=M2 for l D m D 1 and several values of
�V . The modes cross the axis and become unstable precisely when the superradiance condition,
!R < m�H is saturated. Note that the maximum growth rate for polar modes is about three orders
of magnitude larger than that for axial modes. From [97]

where n � 0 is the overtone number and S is the polarization; S D 0 for axial modes
and S D ˙1 for the two classes of polar modes. The coefficient �Sl depends on S
and l. The results above are valid for moderately large couplings M�V . 0:2 and
are in good agreement with the analytical results, the latter are available only for the
Proca axial modes [97]. Interestingly, Eq. (4.39) predicts a degeneracy for modes
with the same value of l C n C S when M�V � 1, which is akin to the degeneracy
in the spectrum of the hydrogen atom.

Massive vector perturbations of rotating BHs are expected to induce a stronger
superradiant instability than in the scalar case because, as previously discussed,
superradiance is stronger for electromagnetic waves. This is confirmed by Eq. (4.40)
which shows that for the dominant unstable mode (with l D m D 1, n D 0, and even
parity with S D �1) the strongest instability should occur on a time scale

� � �V � M.M�V /
�7

��11.a=M � 2�VrC/
; (4.41)

to be compared with the scalar case, �S � 48M.M�V /
�9

a=M�2�V r
C

, cf. Eq. (4.27). Roughly
speaking, the shortest instability time scale against vector polar perturbations is
of order �V � 10�2��1�11.M=Mˇ/ s, i.e. some orders of magnitude shorter than in
the scalar case. An example of the instability growth rate for Proca fields around
spinning BHs is shown in Fig. 4.10.

The results above are valid in the slow-rotation limit. Because of the superra-
diance condition, !R � �V < m�H, such limit also imposes that M�V be small.
A fully-numerical analysis of the Proca equation (as well as of the massive Klein-
Gordon equation) on a fixed Kerr geometry beyond the slow-rotation approximation
was done in [16]. By performing a time evolution of the field equations, the
exact unstable modes for spin a D 0:99M were found to be in surprisingly good
agreement with an extrapolation of Eqs. (4.39) and (4.40) to larger BH spin. A
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Fig. 4.11 Time evolution of the Proca field with gravitational coupling M�V D 0:40 in Kerr
background with a=M D 0:99, at different extraction radii. The l D m D 1 mode of the Newman-
Penrose scalar ˆ2 (upper panels) and of the scalar component ' (lower panels) are shown. From
[16]

second interesting effect uncovered in [16] was that generic initial data excites
several overtones (i.e., modes with different principal quantum number n). Because
these modes all have similar frequencies !R and very long time scales, the overall
waveform shows beating patterns [16]. An example of this effect is shown in
Fig. 4.11. While the beating pattern is fully compatible with the spectrum (4.39), it
also makes it difficult to extract the growth rate. Indeed, depending on the extraction
radius and because of the finite time of evolution, a beating pattern can affect the
estimate of the instability time scale [16].

4.6.4 Massive Tensor Fields

Massive tensor fields cannot be trivially coupled to gravity. The development of a
consistent theory of massive spin-2 fields has an interesting history and we refer the
reader to the recent reviews [88, 89].

At the linear level it is known, since the works of Fierz and Pauli, that there is
a unique ghost- and tachyon-free mass term that preserves Lorentz invariance and
describes the five polarizations of a massive spin-2 field on a flat background [118].
On a curved spacetime the most general linearized field equations describing a
massive spin-2 field read

8<
:

N�h�� C 2 NR˛�ˇ�h˛ˇ � �2Th�� D 0 ;

�2T
Nr�h�� D 0 ;�

�2T � 2ƒ=3
�

h D 0 :

(4.42)
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At the linear level these equations are only consistent if we assume the background
to be a vacuum solution of Einstein’s equations with a cosmological constant ƒ,
so that NR D 4ƒ, NR�� D ƒNg�� and barred quantities refer to the background.
Interestingly, the same equations can also describe the propagation of a massive
graviton in nonlinear massive gravity and in bimetric gravity in some special con-
figurations [119]. These equations were shown to lead to a superradiant instability
of Kerr BHs in these theories [119, 120].10

Around a Kerr BH there exist long-lived bound states which follow the same
kind of hydrogenic-like scaling (4.39) and (4.40) observed for massive bosons with
lower spin. In addition to these modes, a new polar dipole mode was found [119].
This mode was shown to be isolated, does not follow the same small-mass behavior
and does not have any overtone. For this mode, the real part is smaller than the mass
of the spin-2 field, and in the region M�T . 0:4 is very well fitted by

!R=�T 
 0:72.1� M�T / : (4.43)

In the limit M�T � 1, and for the static case, the imaginary part was found to scale
as

!I=�T 
 �.M�T/
3 : (4.44)

That this mode is different is not completely unexpected since in the massless limit
it becomes unphysical. This peculiar behavior seems to be the result of a nontrivial
coupling between the states with spin projection S D �1 and S D 0. In addition,
this mode has the largest binding energy (!R=�T � 1) among all couplings M�T ,
much higher than the ground states of the scalar, Dirac and vector fields.

Similarly to the Proca case, also the system (4.42) does not separate on a Kerr
background. To investigate the superradiant instability, Brito et al. [119] adopted a
slow-rotation approximation to first order in the spin. A representative example of
the unstable modes is presented in Fig. 4.12, where it is shown that the decay rate of
the dipole polar mode is very large even for small couplings M�T .

10In fact, even the Schwarzschild spacetime is unstable against a spherically symmetric mode in
these theories. The instability of the Schwarzschild metric against massive spin-2 perturbations
was first discovered in [121], where it was shown that the mass term for a massive spin-2 field can
be interpreted as a Kaluza-Klein momentum of a four-dimensional Schwarzschild BH extended
into a flat higher dimensional spacetime. Such “black string” spacetimes are known to be unstable
against long-wavelength perturbations, a mechanism known as the Gregory-Laflamme instability
[122, 123], which in turn is the analog of a Rayleigh-Plateau instability of fluids [124, 125].
Based on these results, Babichev and Fabbri [121] pointed out that massive tensor perturbations
on a Schwarzschild BH in massive gravity and bimetric theories would generically give rise to a
(spherically symmetric) instability. The unstable mode is absent in partially massless gravity [120]
and in solutions of bimetric theories other than the bi-Schwarzschild solution [126]. The former
case corresponds to the Higuchi bound �2T D 2ƒ=3, so that the scalar equation in (4.42) becomes
an identity and the scalar modes does not propagate.
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Fig. 4.12 Absolute value of the imaginary part of the polar quasibound modes as a function of the
BH rotation rate a=M to first order in the spin for different values of l and m and different values
of the mass coupling �T M. Left panel: polar dipole mode for l D m D 1. Right panel: polar mode
l D m D 2, S D �2. For any mode with m � 0, the imaginary part crosses the axis and become
unstable when the superradiance condition !R < m�H is met. From [119]

Indeed, the time scale for this unstable mode is [119]

�T � M.M�T /
�3

�polar.a=M � 2rC!R/
; (4.45)

where �polar � O.1/. This time scale is four orders of magnitude shorter than the
corresponding Proca field instability and, in fact, it is the shortest instability time
scale of a four dimensional, asymptotically-flat GR BH known to date.

4.6.5 A Unified Picture of Superradiant Instabilities of Massive
Bosonic Fields

The results presented in the previous sections for spin-0, spin-1 and spin-2 fields
suggest the following unified picture describing the superradiant instability of
massive bosonic fields around a spinning BH. For any bosonic field propagating on
a spinning BH, there exists a set of quasibound states whose frequency satisfies the
superradiance condition!R < m�H. This modes are localized at a distance from the
BH which is governed by the Compton wavelength 1=� and decay exponentially at
large distances. In the small gravitational coupling limit, M� � 1 (where� denotes
the mass of the field), the spectrum of these modes resembles that of the hydrogen
atom:

!R=� � 1 � .M�/2

2.j C 1C n/2
; (4.46)
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where j D l C S is the total angular momentum of the state with spin projections
S D �s;�sC1; : : : ; s�1; s, s being the spin of the field. For a given l and n, the total
angular momentum j satisfies the quantum mechanical rules for addition of angular
momenta, jl � sj � j � l C s, and the spectrum is highly degenerate.

In the nonspinning case, the decay rate of these modes is well described by

!I=� / �.M�/� � D 4l C 2S C 5 : (4.47)

In the spinning case, the imaginary part of the modes in the small M� limit
is described by the equation above with an extra factor .2rC� � ma=M/, which
changes the sign of the imaginary part in the superradiant regime. Indeed, when
!R < m�H the imaginary part becomes positive and !I corresponds to the growth
rate of the field (� � !�1

I being the instability time scale).
According to Eq. (4.47), the shortest instability time scale occurs for l D 1 and

S D �1. The only exception to the scaling (4.46) and (4.47) is given by the dipole
polar mode of a spin-2 field, whose frequency is given by Eq. (4.43) and the scaling
of the imaginary part is similar to Eq. (4.47) but with � D 3.

Despite the recent progress in understanding these instabilities, so far only the
massive spin-0 case is fully understood [11, 16, 102] and further work is needed
to reach the same level of understanding for higher-spin fields. Massive spin-1
instabilities are known in detail to second order in the BH spin [97, 117]. Beyond
the slow-rotation approximation, the only work dealing with Proca instability of
highly-spinning Kerr BHs is of numerical nature [16]. The case of massive spin-
2 fields is even less explored, because only first-order computations in the spin
are available [119]. We believe the progress made in recent years and the wide
theoretical and phenomenological interest in light bosons (cf. Sect. 5.4) should serve
as an extra motivation to explore these instabilities further.

4.7 Black Holes Immersed in a Magnetic Field

Magnetic fields can also confine radiation and work as “natural” mirrors. Strong
magnetic fields are believed to exist around astrophysical BHs, mainly supported by
accretion disks. Realistic astrophysical BHs are in general very complex systems
which involve the coupling of gravity to the surrounding accretion disk and
magnetic field. However some approximate solutions have been found that can give
an accurate qualitative, and in some cases quantitative, description of stationary
magnetized BH solutions.

The first approximate solution to be found describes a test uniform magnetic
field in a Kerr background [127]. In addition to this solution, there exists a class
of exact “Ernst” solutions of the Einstein–Maxwell equations, which describe
BHs immersed in a uniform magnetic field [128]. These solutions are not asymp-
totically flat. At infinity the Ernst solutions resemble another solution of the
Einstein–Maxwell found by Melvin [129, 130] and further studied by Thorne [131],
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describing a uniform magnetic field held together by its own gravitational pull.
Much like AdS spacetime which behaves as a covariant box for perturbations
(cf. Sect. 4.5), the Melvin solution also admits normal modes [2], because the
asymptotic boundary of the Melvin solution is able to confine perturbations. The
model introduced in Sect. 4.2 then predicts that a rotating BH immersed in this
spacetime should be superradiantly unstable.

Similarly to massive vector and tensor perturbations of a Kerr background (cf.
Sect. 4.6), perturbations do not separate in the Ernst backgrounds. Due to this
difficulty, up to date no study of the gravito-electromagnetic perturbation of this
solution has been performed. However scalar field perturbations have been studied
by several authors [2, 132–134]. This was first done in [132], who found that
in a Br � 1 expansion (with B being the magnetic field strength and r the
radial coordinate, both in geometric units) the massless scalar field equation (4.26)
is separable and is equivalent to a massive scalar perturbation propagating on a
Schwarzschild or Kerr metric with an effective mass �eff D Bm, where m is the
field’s azimuthal number. This was further developed in [133, 134] who showed that
the magnetic field triggers the same superradiant instability associated to massive
fields. However, this approximation becomes inaccurate at distances comparable
to or larger than � 1=B. To handle the problem of non-separability, Brito et al.
[2] used a slow-rotation approximation (cf. Sect. 4.6.3) and methods introduced
in [15] to study in full detail scalar perturbations of the Ernst solutions without
any approximation in the magnetic field strength B. In particular, they studied
perturbations around the most generic of these solutions, a magnetized version of
the Kerr-Newman metric, and found that in this background, the mode spectrum
reads

!R � Œ0:75n C 1:2m C 0:25l C 0:7�B C O.B3/ ; (4.48)

!IM � �

�
am=M � 2!RrC

1C 8B2M2 � 16B4M4

�
.BM/2.lC1/ : (4.49)

This estimate was computed including Wald’s result for the charge induction [127]
caused by the magnetic field, which implies that to have a vanishing total electric
charge at infinity a rotating BH should acquire a non-zero charge q D �2aMB. It is
clear that the instability time scale can be orders of magnitude smaller than the one
estimated using the Br � 1 approximation of [132–134], in terms of an effective
mass �eff D Bm (cf. Eq. (4.27)). An example of the instability growth rate for the
Kerr–Newman–Ernst BH is shown in Fig. 4.13.

The model presented in Sect. 4.2 suggests that magnetized Kerr–Newman BHs
should also be unstable against gravito-electromagnetic perturbations. The same
model predicts that the instability growth rate should follow the same scaling as
scalar perturbations (4.49). Moreover, since superradiant extraction is more efficient
for gravitational and electromagnetic perturbations (cf. Sect. 3.6.5) we expect them
to trigger a slightly stronger instability. This generic instability of BHs surrounded
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Fig. 4.13 Imaginary part of the fundamental modes of a Kerr–Newman–Ernst BH with Wald’s
charge q D �2aMB, computed at second order in the rotation, as a function of the BH rotation
J=M2, for l D m D 1, and different values of the magnetic field. The dotted thinner lines
correspond to a magnetized BH without charge q D 0. The only effect of the charge is to change
the superradiance threshold. From [2]

by magnetic fields can be used to impose intrinsic limits on the strength of magnetic
fields around rotating BHs as we discuss in more detail in Sect. 5.7.

4.8 Superradiant Instability of Black Holes Surrounded
by Conducting Rings

An interesting toy model of superradiant-triggered energy extraction in astrophys-
ical systems was proposed by Press [135]. As depicted in Fig. 4.14, the model
consists of two coaxial rings, the inner of which is resistive and rotates around the
common axis of symmetry, whereas the outer one is a conductor (which we take to
be nonspinning for simplicity). The astrophysical analog of such toy model (right
panel of Fig. 4.14) is obtained by replacing the inner ring by a Kerr BH, the event
horizon playing the role of the rotating resistor.11

In the two-ring model, the electric field is computed by solving Maxwell
equations in terms of retarded potentials [19, 135]. The key point of the derivation is
to recognize that Ohm’s law J D �E' (where J, � and E are the electric current on
the ring, the conductivity and the ' component of the electric field, respectively)
must be applied in the matter rest frame of each ring element. Using Lorentz

11The membrane paradigm assigns an electrical resistance of � 377Ohm to the horizon [136].
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Fig. 4.14 Left: Table-top model for superradiant amplification by two conducting rings. The
inner resistive ring rotates at relativistic speed, whereas the outer ring is a conductor and might
be nonrotating. Rotational energy is extracted from the resistive ring and may be larger than
radiative losses to infinity, yielding exponential growth of the stored field energy. Shading shows
schematically the location of positive and negative charge in an m D 2 unstable mode. Right:
the conjectured BH analog of the table-top model, where the resistive rotating ring is replaced by
a Kerr BH. Shading shows the charge density on the ring, and the image charge density on the
horizon. From [135]

transformations into the inner rotating ring frame yields

J0
1

O' D �E0 O' ! �

�
1 � m�

!

�
J1 D �E O'

1 ; (4.50)

where a prime denotes the ring rest frame, the hatted index is the orthonormal tetrad
component [135], � is the Lorentz factor associated to the inner ring angular velocity
�, i.e. � D .1 � v2/�1=2 where v is the linear velocity. Note the superradiant factor
emerging in the equation above when Ohm’s law is written in the inertial frame.

4.9 Nonminimal Interactions

Nonminimal couplings can produce effective mass terms in the perturbation equa-
tions and confine radiation, thus giving rise to superradiant instabilities akin to the
ones discussed above for massive bosonic fields. Here we discuss two representative
examples: (a) spinning BHs surrounded by a plasma, and (b) instabilities in a
modified theory of gravity.
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4.9.1 Plasma-Triggered Superradiant Instabilities

Consider a spinning BH surrounded by a plasma. If the total mass of the surrounding
matter is sufficiently small, its gravitational backreaction is negligible and the
background spacetime is uniquely described by the Kerr metric. In this configuration
even standard photons interacting with the plasma acquire an effective mass given
(in Planck units) by the plasma frequency [137, 138]

!p D
s
4
e2n

me
; (4.51)

where n is the electron density and me and e are the electron mass and charge,
respectively. As a consequence of the modified dispersion relation, Maxwell
equations within the plasma in flat spacetime read

r�F�� D !2p A� : (4.52)

The equation above is also valid in curved spacetime as long as the background is
slowly varying compared to !�1

p and the density gradient is small compared to the
gravitational field [138].

When the plasma density is constant and homogeneous, Eq. (4.52) coincides with
Proca equation (4.34), where the plasma frequency can be identified with the mass of
the vector field. More generically, the plasma density might have a nontrivial radial
and angular profile. In this case the instability can be investigated semi-analytically
by using the methods developed in [13, 117] or by a fully numerical analysis.

Superradiant instabilities triggered by plasma were analyzed in [139], where it
was shown that they are relevant only for small primordial BHs in the early universe,
as discussed in detail in Sect. 5.6.

4.9.2 Spontaneous Superradiant Instabilities in Scalar-Tensor
Theories

As discussed in Sect. 3.12.1, the presence of matter may drastically affect the
superradiant amplification of scalar waves in scalar-tensor theories [140, 141].
Indeed, the Klein-Gordon equation for a massless scalar field acquires an effective,
spacetime-dependent mass term �eff proportional to the trace of the stress-energy
tensor.

When �2eff > 0, a “spontaneous superradiant instability” might be present
for rotating BHs, similarly to the case of massive Klein-Gordon fields previously
discussed. Focusing on separable solutions of the Klein-Gordon equation with
ˆ D ‰.r/S.#/e�i!tCim' , [140, 141] found that if the (trace of the stress-energy
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Fig. 4.15 Superradiant instability for a matter profile characterized by Eq. (4.53) with �0 D 0,
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truncated when the modes become stable. From [140]

tensor of the) matter profile has the general form

T.r; #/ � 2
F.#/C G.r/

a2 C 2r2 C a2 cos 2#
; (4.53)

then the scalar acquires an effective mass �2eff � �20 C T, and the Klein-Gordon
equation is separable, where �0 is the original, constant, mass of the scalar [140,
141]. In this case, the scalar perturbations reduce to the following coupled system
of equations:

.sin#S0/0

sin#
C
�

a2
�
!2 � �20

�
cos2 # � m2

sin2 #
� F C �

�
S D 0;

	
d

dr

�
	

d‰

dr

�
C �

K2 �	
�
G C r2�20 C �

��
‰ D 0 ;

where	, K and � have been defined in Sect. 3.6.1, whereas�0 is a “bare” mass that
will be set to zero in the following, because we are interested in an effective mass
term that vanishes at large distances.

A representative case is summarized in Fig. 4.15 for a matter profile characterized
by �0 D 0, F D 0 and G D ‚Œr � r0�ˇ.r � r0/=r3, where ˇ parametrizes the
strength of the scalar-tensor coupling. Even though the effective mass term vanishes
at large distances, the instability is akin to the original BH bomb, i.e. a spinning
BH enclosed by a mirror located at r D r0: as discussed in Sect. 4.4, for small
r0 there is no instability, as the natural frequencies of this system scale like 1=r0
and are outside the superradiant regime. It is clear from Fig. 4.15 that this is a
superradiant phenomenon, as the instability is quenched as soon as one reaches the
critical superradiance threshold. At fixed large r0=M, and for any sufficiently large
ˇ, the instability time scale !�1

I is roughly constant. In agreement with the simpler
BH bomb system, a critical ˇ corresponds to a critical barrier height which is able to
reflect radiation back. After this point increasing ˇ further is equivalent to a further
increase of the height of the barrier and has no effect on the instability.
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Although spontaneous superradiant instabilities seem to be a generic feature
of scalar-tensor theories [141], so far they have been investigated only through
the ansatz (4.53), i.e. when the equations are separable. Further investigation is
necessary in order to understand realistic configurations such as accretion disks.
In that case, methods such as those used in [15, 16, 97, 117] would be required.

Finally, spontaneous superradiant instabilities of Kerr-de Sitter BHs in scalar-
tensor theories and the role of a positive cosmological constant were recently
investigated [142].

4.10 Kaluza-Klein Mass: Superradiant Instabilities
in Higher Dimensions

For higher-dimensional BH spacetimes, instabilities are the rule rather than the
exception. For example, black strings and black branes are unstable against long
wavelength modes along the flat dimension. This is known as the Gregory-
Laflamme instability [122, 143] (see also Sect. 4.6 for the relation between this
instability and the instability of the Kerr BH family against massive spin-2 fluctua-
tions [119, 121]). As another example, for D � 6 dimensions where no upper bound
on the rotation of Myers-Perry BHs exists, a Gregory-Laflamme-like instability
renders ultra-spinning BHs unstable [144–148]. Besides these instabilities, it was
shown that spinning black branes in D D d C n dimensions (and black strings for
the particular case n D 1) are unstable against massless bosonic fields due to a
superradiant instability when d D 4 [11, 149]. Spinning black branes in D D 4C n
have the form

ds2 D ds2Kerr C dxjdxj ; .j D 1; 2; : : : ; n/ ; (4.54)

where Kerr stands for the 4D Kerr geometry given in (3.5) with ƒ D 0. With the
ansatz ‰ D e�i!tCim'Ci�jxj

S0lm.#/ .r/, the massless Klein-Gordon equation (4.26)
in the background (4.54) results in the decoupled Teukolsky equations for a scalar
field with effective mass �2S � P

i �
2
i . Thus the propagation of massless fields

around this geometry is equivalent to the propagation of a massive field in the
vicinity of the 4D Kerr BH, the mass of field being played by the “Kaluza-Klein”
momenta along the flat dimensions. Since Kerr BHs are unstable against massive
bosonic fields, the black brane (4.54) is also unstable. Surprisingly it was found
that this is only true if d D 4 [11]. For d > 4 there is no stable bound orbits
for massive particles [150], which in terms of wave propagation means that there
is no well in the effective potential, and thus there are no (quasi)-bound states.
As discussed in Sect. 4.6, this is a fundamental property needed to trigger the
superradiant instability. Similar arguments were used to show that large doubly
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spinning black rings in D D 5 [151]12 are unstable. That this geometry must be
unstable was realized from the fact that in the large-radius limit they reduce to
boosted Kerr black strings, which are unstable due to the reasons stated above. The
superradiant instability for massive scalar fields around boosted Kerr black strings
was recently studied [154].

4.11 Ergoregion Instability

We argued in Sect. 3.3.4 that the standard Penrose process and superradiance from
spinning BHs are two distinct phenomena: the former only requires the existence of
an ergoregion, whereas the latter requires the existence of a horizon. For stationary
and axisymmetric BHs, this distinction is superfluous because the existence of
an ergoregion implies that of a horizon (cf. proof in Sect. 3.1.5). However, an
interesting effect occurs for those geometries that possess an ergoregion but not
a horizon: the so-called ergoregion instability [155]. The mechanism is simple: a
negative-energy fluctuation in the ergoregion is forced to travel outwards; at large
distances only positive-energy states exist, and energy conservation implies that
the initial disturbance gives rise to a positive fluctuation at infinity plus a larger
(negative-energy) fluctuation in the ergoregion. Repetition of the process leads to a
cascading instability. The only way to prevent such cascade from occurring is by
absorbing the negative energy states, which BHs do efficiently (and hence Kerr BHs
are stable against massless fields), but horizonless objects must then be unstable.13

This instability was discovered by Friedman while studying ultracompact slowly-
rotating stars with an ergoregion [155, 158], with subsequent work quantitatively
describing the unstable modes for a scalar field propagating on a slowly-rotating
metric in the large-l limit [159]. This approach has been extended in subsequent
work [160–162]. Most notably, [160] extended the analysis to the case of small
multipoles .l;m/, finding that the instability time scale is much shorter. Finally,
[163] studied axial gravitational modes (but again only to first order in the spin),
by neglecting the coupling to polar modes that arises in the slow-rotation limit.
They find that the time scale can be of the order of the seconds/minutes depending
on the compactness of the star. A discussion of these results and their connection to
the CFS instability and the r-mode instability is given in Sect. 5.

However, these works are based on an initial assumption which is not fully
consistent, because they consider a slowly-rotating, perfect-fluid star including some
terms to second order in the rotation but neglecting others (see below). Although

12Black rings have topology S1 � SD�3 unlike Myers-Perry BHs which have topology SD�2. The
first 5D black ring was found by Emparan and Reall [152, 153].
13The only exception to this rule and argument may occur if the ergoregion extends all the way
to infinity as in certain non-asymptotically flat geometries [156, 157]; we thank Óscar Dias for
drawing our attention to this point.
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this approximation is expected to be reliable for very compact stars [159], no
consistent treatment of the ergoregion instability has been developed to date. Below,
based on recent developments in the study of perturbations of slowly rotating
spacetimes [13, 97, 164, 165], we give the first fully-consistent treatment of this
problem.

4.11.1 Ergoregion Instability of Rotating Objects: A Consistent
Approach

The technical details of this computation are given in Appendix E and in a publicly
available MATHEMATICA R� notebook (cf. Appendix A). Our starting point is the
line element (E.2). To second order in the spin, the ergosphere condition gtt D 0

becomes

e�.1C 2h0/ D Œr2$2 sin2 # C e�h2.3 sin2 # � 2/� : (4.55)

The solution to Eq. (4.55) is topologically a torus. Thus, to characterize the
ergoregion it is necessary to include the second-order terms h0 and h2. All previous
analysis of the ergoregion instability neglected such terms, based on the fact that
for a very compact object e� � 0 and the terms proportional to h0 and h2 should
be subdominant relative to the term proportional to $2. However, it is easy to show
that this approach would give the wrong result for the ergosphere. For example, in
the particular case of a Kerr BH, Eq. (4.55) is solved by

rergo D 2M � a2

4M
cos 2# C O

�
a4

M4

�
; (4.56)

which agrees with the exact result to second order in the spin.14 On the other hand,
neglecting the second-order terms h0 and h2 in Eq. (4.55) would give the wrong

result, rergo D 2M
	
1C a2

2M2 sin2 #



CO
	

a4

M4



, i.e. the ergoregion would always be

larger than the Schwarzschild radius, in clear contrast with the correct result (4.56).
Clearly, computing the ergoregion of slowly-rotating spacetimes requires to go at
least to second order in the rotation. The formalism to construct slowly-rotating
geometries has been developed by Hartle & Thorne and is described in Appendix E.
The ergoregion of a compact rotating star, computed by solving Einstein’s equations
to second order in the angular momentum and using Eq. (4.55), is shown in Fig. 4.16.

In Fig. 4.17, we show the size of the ergoregion for a constant-density star (whose
metric in the static case is given in Eqs. (F.2) and (F.3)) for the consistent second-

14Note that the metric (E.2) is not written in Boyer-Lindquist coordinates, so the ergoregion
location does not coincide with that given in Eq. (3.14).
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Fig. 4.16 The toroidal ergoregion of a NS with APR equation of state and spinning at the mass-
shedding limit, � D �K � p

M=R3, for a mass slightly above the maximum value (to be
compared with Fig. 3.2 for a Kerr BH). The coordinates .x; y; z/ are Cartesian-like coordinates
obtained from .r; #; '/ of the line element (E.2)
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Fig. 4.17 Size of the ergoregion on the equatorial plane of a constant-density star with various
compactnesses for the consistent second-order case (top panel) and for the inconsistent case
obtained neglecting h0 and h2 in Eq. (4.56) (bottom panel). For a given rotational frequency �
and a given compactness, the boundaries of the ergoregion are the intersections between the
corresponding curve and the horizontal line. For example in the consistent case with R D 2:40M
and � � 0:6�K , the ergoregion extends between the two black markers, 0:25 . r=R . 0:95
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order case (top panel) and for the inconsistent case obtained neglecting h0 and h2 in
Eq. (4.56) (bottom panel). For a given rotational frequency�, the boundaries of the
ergoregion are the intersections between each curve and the horizontal line. The two
cases can differ substantially, especially as the compactness decreases. In particular,
two striking differences appear: (a) in the consistent case the ergoregion extends
to the center of the star, while it disappears in the inconsistent case, and (b) in the
consistent case the ergoregion can extend well beyond the radius of the star. Overall,
the inconsistent result tends to underestimate the size of the ergoregion.

The spectrum of perturbations of spinning geometries is generically involved,
due the coupling between modes with opposite parity and different harmonic index l.
Nonetheless, within a slow-rotation approach, certain classes of perturbations can be
studied consistently by neglecting such couplings [13, 97, 164, 166]. For example,
for perturbations of a perfect-fluid star to first order in the spin, the following master
equation can be derived:

d2‰

dr2�
C
�
!2 � 2m!$ � e�

�
l.l C 1/

r2
C �

2M.r/

r3
C 4
.P � 
/

��
‰.r/ D 0 ;

(4.57)

where dr=dr� D e.���/=2 and � D �3; 1 for gravitational-axial and probe-scalar
perturbations, respectively. For an ultracompact star with an ergoregion, the former
and the latter perturbations were studied in [163] and [159, 160], respectively,
finding a family of unstable modes.15 The instability growth rate increases with
the spin of the object, is typically maximum for l D m D 1modes, and is also larger
for gravitational perturbations than for scalar modes.

Nonetheless, our previous analysis shows that—to treat the ergoregion instability
consistently—one has to include a background geometry to second-order in the spin.
Here we consider the simplest case of a probe scalar field that propagates on the
background of a spinning NS. The perturbation equations to second order in the
spin are derived in Appendix E, the final result is the master equation

d2‰

dr2�
C �

!2 � 2m!$ � V
�
‰.r/ D 0 ; (4.58)

where

V D e�
�

l.l C 1/

r2
C 2M.r/

r3
C 4
.P � 
/C V2.!/

�
; (4.59)

and V2 is a second-order quantity in the spin that is a cumbersome function of the
background metric coefficients appearing in (E.2), of the pressure P and the density

, and of their derivatives. Indeed, because V2 contains second radial derivatives

15We remark that [159, 160] studied scalar perturbations propagating in the toy-model met-
ric (4.60).
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Fig. 4.18 The potential V for ! D 0 as defined in Eq. (4.59) for a constant-density spinning star
with R � 2:26M for different values of the angular velocity. As the mass-shedding limit� ! �K

is approached, the potential develops a deeper negative well. Note that V becomes negative only
because of second-order corrections and is positive when � D 0, although its minimum almost
crosses the real axis, giving rise to long-lived modes in the nonspinning case, cf. Sect. 4.11.2

of 
, solving the corresponding eigenvalue problem is quite challenging. For this
reason, here we consider a constant-density star which simplifies the problem
considerably. The effective potential V for this case is shown in Fig. 4.18 for various
spin rates.

We have solved the eigenvalue problem associated to Eq. (4.58) on the back-
ground of a constant-density spinning star to second order in the angular velocity.
The background problem is solved in the interior by requiring continuity of the
metric functions at the star radius R.16 For the scalar perturbations, the fact that

 D 
c D const in the interior and 
 D 0 in the exterior produces discontinuities in
V at the star’s radius, which can be taken into account by suitable junction conditions
for the derivative of the scalar field. At the stellar radius we impose  � D  C and
@r C D @r � � 	V �=.1 � 2M=r/2, where 	V D VC � V� and we defined
A˙ D lim�!0 A.R ˙ �/.

The fundamental modes of the system are shown in Fig. 4.19 for a constant-
density star with ultrahigh compactness, R � 2:26M, whose effective potential
is shown in Fig. 4.18. We present both first-order and second-order computations.
As expected, these two cases are in agreement with each other for small angular
velocities, but they are dramatically different when � & 0:1�K . Indeed, while
the modes remain stable to first order in the spin, they become unstable to second

16Note that, because of the absence of Birkhoff theorem in the spinning case, the exterior geometry
is not a slowly-spinning Kerr metric.
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Fig. 4.19 Real and imaginary parts of the fundamental l D m D 1 mode for a constant-density
star with ultrahigh compactness, R � 2:26M, as a function of the angular velocity of the star
normalized by the mass shedding limit. Note that the vertical axis of the bottom plot shows the
absolute value of !I and is in a log scale. The first order result fails to capture the instability
(!I > 0, rightmost part of the plots) because in this case the background geometry does not possess
an ergoregion. To second order, the threshold of the instability corresponds to a zero crossing of
both !R and !I , see text for details

order. Interestingly, the threshold of the instability corresponds (within numerical
accuracy) to a zero crossing also of the real part of the mode. In Fig. 4.19, we focus
only on !R > 0 by exploiting the symmetry of the field equations under m ! �m
and ! ! �!.

The fact that the second-order terms play such an important role in the stability
analysis can be understood by the fact that the ergoregion of the spacetime appears
only at the second order. Indeed, while our results are generically in qualitative
agreement with previous analysis [159–163], it is important to note that in all cases
the latter have been obtained by including some (but not all) second-order terms.
Should all second-order terms be neglected, no unstable mode would be found. The
results in Fig. 4.19 represent the first fully-consistent computation of the ergoregion
instability for a spinning compact star. The phenomenology of this instability is
discussed in detail in Sect. 5.8.1.
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Fig. 4.20 Examples of the potential governing linear perturbations of a static ultracompact star.
The black solid line and the red dashed line correspond to l D 10 gravitational axial perturbations
of a uniform star with R D 2:3M and of a gravastar with R D 2:1M, respectively

4.11.2 Ergoregion Instability and Long-Lived Modes

The underlying origin of the ergoregion instability is the existence of long-lived
modes in ultracompact spacetimes in the static limit; these modes are very slowly
damped and can become unstable when rotation is included. This has been first
discussed in the eikonal limit [159] and it has been recently put on a firmer basis in
[167].

Such long-lived modes exist in ultracompact spacetimes which possess a light
ring (i.e. an unstable circular orbit as in the Schwarzschild case) but not a
horizon [167, 168]. The reason for that is explained in Fig. 4.20 (cf. also Fig. 4.18
above), which shows the effective potential (F.1) (cf. Appendix F for details)
corresponding to two models of static ultracompact objects: a constant-density star
with compactness M=R � 0:435 (black solid curve) and of a thin-shell gravastar17

with compactness M=R � 0:476 (dashed red curve), respectively.18 Because
the radius of these objects is smaller than the light-ring location of the external
Schwarzschild spacetime, r D 3M, the effective potential develops a maximum at
that location. Furthermore, the centrifugal potential near the center of these objects
is responsible for the existence of a further stable null circular orbit in the object’s

17Thin-shell gravastars [169] are discussed in Sect. 5.8.2 in the context of so-called “BH mimick-
ers”.
18Other regular geometries which possess a light-ring are the perfect-fluid stellar objects with
multiple necks discussed in [170–172].
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interior. This corresponds to the minimum shown in Fig. 4.20, where the long-
lived modes are localized [167]. These modes (sometimes dubbed “s-modes” in
the context of ultracompact stars [166]) are computed in the WKB approximation in
Appendix F and they agree quite well with exact numerical results (cf. Fig. F.1 and
[167]).

The dependence of the frequency and damping time of these long-lived modes
to instability as functions of the spin in connection to the ergoregion has been first
discussed in [159], which considers an approximate line element

ds2 D �F.r/dt2 C B.r/dr2 C r2d�2 C r2 sin2 �.d� �$.r/dt/2 : (4.60)

Although not being a solution of Einstein’s equations coupled to a fluid, this metric
should approximate the exact geometry describing a spinning star in the case of
slow rotation and high compactness, as we discussed. In such approximate metric,
the ergoregion is defined by

$.r/ sin � >

p
F.r/

r
: (4.61)

In the eikonal limit, the Klein-Gordon equation in the background (4.60) can be
written in the form [159]

 00 C m2B

F
. N! C VC/. N! C V�/ D 0 ; (4.62)

where N! D !=m is a rescaled frequency, m is the azimuthal number associated to
the axisymmetry of the background, and

V˙ D �$ ˙
p

F

r
; (4.63)

are the effective potentials that describe the motion of (counter-rotating for the plus
sign and co-rotating for the minus sign) null geodesics in the equatorial plane of the
geometry (4.60).

Now, the boundary of the ergoregion (if it exists) corresponds to two real roots of
VC D 0 and VC < 0 inside the ergoregion. Because VC ! C1 at the center
and attains a positive finite value in the exterior, it is clear that the ergoregion
must contain a point in which VC displays a (negative) local minimum. This
simple argument shows the important result that the presence of an ergoregion
in a horizonless object implies the existence of stable counter-rotating photon
orbits [167].

Furthermore, Eq. (4.62) supports unstable modes, whose computation is briefly
presented in Appendix F in the WKB approximation. In the eikonal limit, the
instability time scale depends exponentially on the azimuthal number,

�ergo � 4˛e2ˇm ; (4.64)
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where ˛ and ˇ are two positive constants [159] (cf. Appendix F). The instability
can be understood from the fact that the corresponding modes are localized near the
stable photon orbit, which is situated within the ergosphere, and are confined within
the star. This confinement provides the arena for the instability to grow through
the negative-energy states that are allowed within the ergoregion [173]. Likewise,
this argument also explains why spinning BHs—that also possess a light ring and
an ergoregion—are linearly stable, because the presence of the horizon forbids the
existence of trapped modes.

4.11.3 Ergoregion Instability in Fluids

In the context of acoustic geometries introduced in Sect. 2.4.2 and expanded in
Sects. 2.5.2 and 3.9, sound waves propagate in moving fluids as a massless scalar
field in curved spacetime, with an effective geometry dictated by the background
fluid flow. There are simple acoustic setups with instabilities that can be framed in
the language of curved spacetime as ergoregion instabilities [30].

Let us focus again on the two-dimensional fluid flow of Sect. 3.9, but consider a
specific flow with vanishing radial speed (A D 0 in Eq. (3.133)), the so-called the
hydrodynamic vortex, whose line element is

ds2 D �c2
�
1� C2

c2r2

�
dt2 C dr2 � 2Cdtd� C r2d�2 C dz2 : (4.65)

This effective spacetime presents an ergoregion with outer boundary at rergo D C=c,
which coincides with the circle at which the (absolute value of the) background flow
velocity equals the speed of sound c. Henceforth we set the speed of the sound equal
to unity (c D 1).

The background velocity diverges at the origin as 1=r, signaling a physically
singular behavior. Possible experimental setups can be mimicked by imposing
boundary conditions at a finite position r D rmin, the precise form of which
depend on the specific experimental apparatus. Assume therefore that an infinitely
long cylinder of radius rmin is placed at the center of our coordinate system.
The cylinder is made of a certain material with acoustic impedance Z [174].
Low-impedance materials correspond to Dirichlet-type boundary conditions on the
master variable (see Sect. 2.5.2) and, for completeness, we also consider Neumann-
type conditions [30]).

Together with Sommerfeld conditions at large distance, the problem is an
eigenvalue problem for the possible frequencies, the solution of which is shown in
Fig. 4.21 for a specific cylinder position at rmin D 0:3 as a function of rotation rate
C. Notice that our generic arguments in favor of an ergoregion instability predict that
the geometry is unstable as long as the cylinder position is within the ergosurface. In
other words, as long as C > 0:3. Figure 4.21 shows that indeed the large-m threshold
of the instability asymptotes to C D 0:3, as can be seen from Fig. 4.21, and as
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Fig. 4.21 Real (left) and imaginary (right) components of the fundamental QNM frequencies,
plotted as a function of C, for rmin D 0:3 and different values of m. The top plots correspond
to Dirichlet-like boundary conditions, whereas the bottom plots correspond to Neumann-like
boundary conditions. Note the striking similarity with Fig. 4.19. From [30]

anticipated from our discussion. The striking similarity between Figs. 4.21 and 4.19
is also remarkable. Indeed, in this analog geometry we recover all the qualitative
features previously discussed for ultracompact stars. In particular, in both cases at
the threshold for the instability the frequency of the mode has a zero crossing and
the imaginary part of the mode has an inflection point. Further insights into the onset
of the instability were derived in [175].

The results also indicate (cf. Fig. 4.21) that all modes m > 5 are unstable for
rmin D 0:3 and circulation C D 0:5. Moreover, at fixed inner boundary location rmin

and fixed m the instability gets stronger for larger C, as might also be anticipated. All
the numerical results fully support the statement that the presence of an ergoregion
without event horizon gives rise to instabilities. A complementary facet of the
instability is shown in snapshots of the evolution, as those depicted in Fig. 4.22.
These snapshots compare the evolution of a stable (C D 0:5) and unstable (C D 1:5)
configuration, both for m D 2, and show clearly how the instability develops inside
the ergoregion and close to the inner boundary at rmin D 0:3. Notice the scale in the
last snapshot, and how the field decays in space but grows in time.

As might be expected in a centuries-old field, similar instabilities were reported
decades ago in fluid dynamics, within that specific field’s language. Broadbent and
Moore have conducted a thorough study of stability of rotating fluids, but imposing
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Fig. 4.22 Snapshots of the radial profiles of Re. m.t; r// for azimuthal number m D 2,
circulations C D 0:5 (stable case) and C D 1:5 (unstable case). Dirichlet-like boundary conditions
are imposed at rmin D 0:3. From [30]

slightly different boundary conditions [176]. In line with our findings, they uncover
an instability for compressible fluids related also to sound wave amplification (note
that incompressible fluids were also analyzed by Lord Kelvin and were found to be
marginally stable [177]). The evidence that the hydrodynamic vortex is an unstable
system and that the instabilities are directly related to the existence of an ergoregion
together with the absence of an event horizon agrees with the prediction in [155].
This confirmation further strengthens the similarities between effective spacetimes
in fluids and BHs.

4.11.4 Ergoregion Instability and Hawking Radiation

As we mentioned in Sect. 3.13, string theory has made great progress in understand-
ing the microphysics of BHs. In particular, for certain (nearly) supersymmetric BHs,
one is able to show that the Bekenstein-Hawking entropy SBH D A=4, as computed
in the strongly-coupled supergravity description, can be reproduced in a weakly-
coupled D-brane description as the degeneracy of the relevant microstates [178].
The AdS/CFT correspondence [179–181] allows further insights into these issues
by providing a dictionary relating the geometric description of the physics in the
near-horizon region with the physics of a dual conformal field theory. In particular,
the AdS/CFT indicates that Hawking evaporation should be a unitary process, in
keeping with the basic tenets of quantum theory. The discussion of BHs in the
context of the AdS/CFT correspondence makes it evident that the path integral over
geometries in the bulk may include multiple saddle-points, i.e., several classical
supergravity solutions [182]. Another point that was realized early on is that the
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geometric description of individual microstates would not have a horizon [183].
These ideas were incorporated by Mathur and colleagues in a radical revision of
the stringy description of BHs, the “fuzzball” proposal [184, 185]. They argue that
each of the CFT microstates corresponds to a separate spacetime geometry with
no horizon. The BH is dual to an ensemble of such microstates and so the BH
geometry only emerges in a coarse-grained description which “averages” over the
BH microstate geometries.

In a fuzzball microstate the spacetime ends just outside the horizon (because
compact directions “cap-off” [185]) thus avoiding issues like the information
paradox in BH physics. However, it seemingly introduces an unexpected problem:
if the horizon is not the traditional one, how is it possible to recover traditional
BH thermodynamics like the Hawking radiation rate? Surprisingly, for the few
microstates known explicitly—which rotate and possess an ergoregion—it was
shown that the Hawking radiation rate can be exactly reproduced from the ergore-
gion instability [186, 187] (because these effective geometries have no horizon, spin
will in general give rise to an ergoregion hence an instability [188]).

4.12 Black-Hole Lasers and Superluminal Corrections
to Hawking Radiation

A completely different, semi-classical realization of the BH-bomb mechanism
was put forward in [189]. In this model, one considers Hawking radiation from
a geometry with an outer and an inner horizon and in the presence of high-
energy modifications that change the dispersion relation !.k/ of photons at high
frequencies.19

For a geometry with a single (event) horizon, Hawking radiation is rather insen-
sitive to high-energy modifications, producing the classical thermal spectrum [190]
at frequencies much lower than the new scale. However, in the presence of two
horizons and if the dispersion relation is superluminal, the negative-energy partners
of Hawking quanta are able to bounce back and return to the outer horizon on a
superluminal trajectory. Indeed, the origin of the laser effect can be attributed to the
closed trajectories followed by the negative Killing frequency partners of Hawking
quanta, which can bounce between the two horizons due to the modified dispersion
relation. If the quanta are fermions, they suppress Hawking radiation, whereas if
they are bosons they stimulate a secondary emission which is correlated to the
original radiation, unlike in the usual Hawking effect. The process sustains itself as
in the BH-bomb mechanism (and, in fact, as in the stimulated emission of a laser),
the role of the mirror being played by the ergoregion between the two horizons

19The example considered in [189] was inspired by analogue BH models and, as should be clear
from Sect. 2.4.2, the geometry only plays the role of a spectator. The laser effect occurs in analogue
models as well as in true, gravitational BHs (for example, in the RN geometry).



144 4 Black Holes and Superradiant Instabilities

which allows for superluminal bouncing trajectories with negative energies (see
[189] for details). A thorough mode analysis of the BH laser effect shows that it is
described in terms of frequency eigenmodes that are spatially bound. The spectrum
contains a discrete and finite set of complex frequency modes which appear in pairs
and which encode the laser effect [191, 192]. Related, zero-frequency “undulation”
modes were dealt with in [193, 194].

The BH laser is a dynamical instability, the origin of which can be traced back
to the negative energy states behind the outer horizon, and which work in fact as an
ergoregion for the modes “living” there. One can then naturally associate the BH
laser instability with a superradiant instability [191, 192].

4.13 Black Holes in Lorentz-Violating Theories: Nonlinear
Instabilities

A related instability is thought to occur for BHs in Lorentz-violating theories [195,
196]. In these theories, BH solutions can exist (see e.g. [197–199] or a recent
overview [90]) with multiple, nested horizons, one for each maximal speed of
propagation in the theory. Each horizon traps the corresponding species of field
excitations. Consider two particles, with different propagation speeds, and therefore
two horizons. In this framework, the region between the two horizons is classically
accessible to the faster particle and it is a classically inaccessible ergoregion for the
slower one. If these particles are now allowed to interact gravitationally, it is possible
that an energy transfer occurs from the slower to the faster particle, resulting in a
nonlinear ergoregion instability. Hints of nonlinear instabilities were discussed in
[196], but it is not clear whether they are related to this particular mechanism.

4.14 Open Issues

Superradiant (or “BH bomb”) instabilities are a fascinating and rapidly growing
topic. Here we list some of the most urgent open questions related to this problem.

• Despite the recent progress in understanding superradiant instabilities of spinning
BHs triggered by massive bosons, the results for vector and tensor perturbations
are not complete. Massive spin-1 instabilities were investigated in detail only to
second order in the BH spin [97, 117]. To date the only work dealing with the
Proca instability of highly-spinning Kerr BH is [16]. For massive spin-2 fields,
only first-order computations in the spin are available [119] and no estimates for
highly-spinning BHs have been derived yet.
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• It was recently shown that RN-dS BHs are unstable under spherically-symmetric
charged scalar perturbations [200, 201].20 Given the fact that asymptotically flat
RN BHs are stable against these perturbations, this is a quite surprising and still
not very well understood result. In [201] it was shown that a necessary condition
for the instability to occur is that the field’s frequency !R satisfies:

qQ

rc
< !R <

qQ

rC
: (4.66)

This is exactly the superradiant condition for this spacetime (cf. Eq. (3.136)),
which suggests that the instability is of superradiant nature. However, it was also
found that not all the superradiant modes are unstable and only the monopole
l D 0 suffers from this instability. The instability only occurs at small values of
the coupling qQ . 1, as long as qQ � �M, where � is the mass of the scalar
field, and disappears when ƒ ! 0. The end-state of the instability is still an
open-problem, but the fact that the system is not confined, unlike in the RN-AdS
case (see Sect. 4.5.2), makes it likely that the instability will extract charge and
mass from the BH, evolving to a stable region in the parameter space.

• Recently, Shibata and Yoshino found that rapidly singly-spinning higher-
dimensional BHs with spherical topology are unstable against non-axisymmetric
perturbations (the so-called “bar”—mode instability) [205, 206] in D D 5; 6; 7; 8

dimensions (see also [207]). This was extended to equal angular momenta
Myers-Perry BHs in odd dimensions in [208] and analytically studied in the
large-D limit in [209]; these unstable BHs will emit gravitational radiation and
consequently spin down and decrease their mass [206]. The area theorem (cf.
Sect. 3.2) then requires that the unstable modes should satisfy the superradiant
condition (1.1), which indicates that the instability is of superradiant nature.
However not all the superradiant modes are unstable and unlike the superradiant
instability discussed in this section, this instability is not due to confinement.
A complete comprehension of the physical mechanism behind this instability is
still an open problem.

• An interesting open question is the effect of rotation in the outer disk of
the two-ring model discussed in Sect. 4.8, for example to investigate possible
resonant effects when both rings are spinning. Likewise, the BH analog of the
two-ring model proposed by Press [135], namely a Kerr BH surrounded by a
conductive disk—in particular whether such system is unstable or not, and on
which timescales—has not been studied yet.

20Higher dimensional RN-dS were shown to be unstable in D � 7 dimensions against gravito-
electromagnetic perturbations [202–204]. However this instability is of different nature.
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• One of the important missing studies concerns a detailed investigation of the
ergoregion instability of ultracompact spinning NSs or other compact objects.
Rapidly or (consistently built, see Sect. 4.11.1) slowly-spinning stars are all
basically uncharted territory. Gravitational perturbations of slowly-spinning NSs
can, in principle, be computed by extending recently-developed perturbative
methods to second order in the spin (including the star structure [210] and its
perturbations [13, 164, 165]).

• Massive fermions near a Kerr BH form bound states that, rather than inducing an
instability as in the bosonic case, condense and form a Fermi sea which extends
outside the ergosphere [211]. This analysis has been performed in the WKB limit
and hints at possible important nonlinear effects in the behavior of fermion fields.
Whether or not such systems can trigger superradiant instabilities at the nonlinear
level is unclear. In a different but related vein, Matsas and da Silva [212] opened
the possibility of overspinning a RN BH by quantum tunneling; such possibility
was later argued to be ruled out, and that cosmic censorship conjecture is actually
respected in this situation [213]. The physical mechanism is a quantum version of
superradiance, which protects the integrity of the BH horizon by spontaneously
emitting low-energy (! < m�) fermions. The final destiny of charged BHs is still
unclear, as quantum effects may still play an important role [214] (and references
therein).

• As we discussed in Sect. 4.7, BHs in strong magnetic fields are unstable. Because
these are confining geometries, the lesson from AdS spacetimes (see Sect. 4.5.1)
implies that non-axially symmetric BH solutions should exist. These would be
interesting to construct, even if only numerically.

• One of the most exciting open issues is the detection of rotational superradiance.
As we proposed in the context of the acoustic BH bomb discussed in Sect. 2.5.2,
there are compelling setups for experimental realizations, both in the acoustic
regime and in the electromagnetic regime.

• An intriguing mechanism to trigger instabilities in astrophysical systems con-
cerns the ergoregion instability in fluids, such as accretion disks around grav-
itational BHs. In an analogue description, sound waves in these systems are
described by an effectively-curved background geometry [215–217]. When the
accretion disk velocity surpasses the local sound speed, an acoustic ergoregion
appears, presumably giving rise to ergoregion instabilities. As far as we are
aware, these phenomena have not been explored.

• We mentioned in Sect. 4.13 that nonlinear ergoregion instabilities are thought
to occur for BHs with multiple horizons in Lorentz-violating theories. Explicit
examples do not exist yet.

• Superradiance of self-interacting fields, or fields with nontrivial dispersion rela-
tions have hardly been explored, with a noteworthy (but one-spatial dimensional)
toy-model [218].
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Chapter 5
Black Hole Superradiance in Astrophysics

BHs are one of the most striking predictions of Einstein’s GR and, in fact, they
are predicted by any relativistic theory of gravity [1]. Since Schmidt’s identification
of the first quasar [2], large consensus in the astronomy community has mounted
that nearly any galactic center harbors a supermassive BH and that compact objects
with mass above � 3Mˇ as found in some low-mass X-ray binaries should be BHs
(we discuss some alternatives to this paradigm in Sect. 5.8.2 below). Indeed, strong
evidence exists that astrophysical BHs with masses ranging from few solar masses
to billions of solar masses are abundant objects.

GR’s uniqueness theorems imply a very strong prediction: all isolated, vacuum
BHs in the Universe are described by the two-parameter Kerr family. Not only this
implies that BHs are perfect testbeds for strong-gravity effects due to their sim-
plicity, but it also means that observing any deviation from this “Kerr paradigm”—a
goal within the reach of upcoming GW [3–8] and electromagnetic [9, 10] facilities—
would inevitably imply novel physics beyond GR.

A special feature of vacuum stationary GR solutions is their axisymmetry [11].
This simplifies the treatment of superradiant instabilities considerably, as it excludes
mixing between modes with different azimuthal number m. Finally, the equivalence
principle guarantees that gravity couples universally to matter. Altogether, these
properties imply that any prediction based on gravitational effects of extra fields
around BHs should be very solid.

5.1 Superradiance and Relativistic Jets

Relativistic jets emitted by astrophysical sources are one of the most interesting
and mysterious phenomena in our Universe. The most powerful jets are seen in
active galactic nuclei (AGNs), and are believed to be the result of accretion of
matter by supermassive BHs [12]. AGNs are the most powerful sources in the
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Universe, making it very hard to conceive viable models for their production without
invoking very compact objects. Although the first AGNs (such as quasars and radio
galaxies) were discovered four decades ago, the engine powering these events is
still largely unknown. The energy needed for the acceleration of these relativistic
outflows of matter is widely believed to either come from gravitational binding
energy and/or from the object’s rotational energy. In the first case, accretion of
matter onto the BH leads to a transfer of gravitational binding energy to particles
which are tossed away along the rotational axis of the BH (see e.g. [13] for such a
process). Other mechanisms, akin to superradiance or to the Penrose process, make
use of the rotational energy of the BH. This is the case of the Blandford-Znajek
(BZ) mechanism [14] which occurs for BHs immersed in magnetic fields (see also
e.g. [15, 16] for a discussion on the relationship between the BZ mechanism and
superradiance or the Penrose process). In this mechanism the magnetic field lines,
which are anchored in the accretion disk, are twisted due to the frame dragging effect
near the rotating BH (see Sect. 3.1.3), thus increasing the magnetic flux. Similar to
the Earth-Moon system discussed in Sect. 2.6, due to dissipative effects, this can
lead to energy transfer from the BH to the magnetic field [17]. This energy is then
used to accelerate the surrounding plasma and to power a jet collimated along the
BH rotational axis. In general both the accretion process and the BZ mechanism
might contribute to the energy released in the jets, making it difficult to prove
from numerical simulations that the latter mechanism is at work, but recent general
relativistic magnetohydrodynamic (GRMHD) simulations seem to indicate that this
is indeed the case [16, 18–20].

5.1.1 Blandford-Znajek Process

In the BZ solution a Kerr BH is considered to be immersed in a stationary
axisymmetric force-free magnetosphere [14]. In [14] it was argued that in analogy
with what happens in pulsars, a rotating BH would trigger an electron-positron pair
cascade just outside the accretion disk and the horizon where the plasma is rarefied,
establishing an approximately force-free magnetosphere.1 In Fig. 5.1 we depict the
region where this force-free magnetosphere is localized plus the other regions that
characterize the magnetosphere. Region (FF) is where the transfer of energy takes
place. This energy is then deposited in region (A) where particles are accelerated.

1A condition for this to happen is that initially there is a small electric field component parallel to
the magnetic field (note that this is a Lorentz invariant condition). In [21], this was shown to occur
for rotating BHs immersed in a magnetic field.
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Fig. 5.1 Pictorial description of the magnetosphere surrounding a BH in the BZ mechanism.
The solid lines denote electric equipotential surfaces. The magnetosphere is composed of three
different regions: a region (D) which includes the accretion disk and the horizon, where the field is
degenerate, i.e., the electric field is perpendicular to the magnetic field, but not force-free. This last
condition is required for these regions to be able to anchor the magnetic field; a region (FF) where
the field is force-free. In this region the current flows along equipotential surfaces; an acceleration
region (A) in which the field is neither degenerate nor force free. In region (A) the equipotential
surfaces close up, and the energy extracted from the BH is used to accelerate charged particles. In
regions (D) and (A) the current can flow across the equipotential surfaces. Reproduction of figure
from [17]

To describe the force-free magnetosphere, in addition to Maxwell’s equations
with a source

r�F
�� D J�

�0
; (5.1)

the electromagnetic field must satisfy the following three conditions

F��J
� D 0 ; �F��F�� D 0 ; F��F

�� > 0 ; (5.2)

where �F�� � 1
2
���
�F
� is Maxwell’s tensor dual (we use the definition ���
� �

1p�g E��
� where E��
� is the totally anti-symmetric Levi-Civita symbol with

E0123 D 1), �0 is the vacuum permittivity and J� is the current generated by the
electron-positron plasma. The first condition implies—assuming that the vector
potential has the same symmetries (axisymmetry and stationarity) than the BH
spacetime—that the magnetic field lines lie along surfaces of constant A' . On the
other hand, if the second condition is satisfied but not the third one can always find
a local inertial frame where the electromagnetic field is purely electric. From these
equations, it also follows that one can define a function�EM.r; #/ as

�EM.r; #/ D � At;r

A';r
D � At;#

A';#
; (5.3)
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which can be interpreted as being the “angular velocity” of the electromagnetic field
as will become clear below.

The field equations must also be supplemented with appropriate boundary
conditions at the horizon and at infinity. At the horizon it was shown in [22] that
regularity implies (assuming A' to be finite)

	 sin#


2
Fr# D 2MrC .�EM ��H/

r2C C a2 cos2 #
A';# .rC; #/ ; (5.4)

where in the force-free approximation, Fr# can be shown to be a function of A' only.
On the other hand, the boundary conditions at infinity are not unique but they can
be chosen, e.g., by matching the field to known flat-space solutions.

The factor �EM � �H appearing in the boundary conditions above [compare it
with the superradiant condition (1.1)] already suggests that stationary axisymmetric
solutions of the inhomogeneous Maxwell’s equations (5.1) in a Kerr background are
akin to a superradiance-like process. In fact the conserved radial electromagnetic
energy and angular momentum fluxes at the horizon are given by [14]

ıEr
hole � �T r

� �
�

.t/ D �EM.�EM ��H/

 
A';#

r2C C a2 cos2 #

!2
.r2C C a2/�0;

(5.5)

ıJr
hole � T r

� �
�

.'/ D ıEr
hole

�EM
; (5.6)

and thus when 0 < �EM < �H there is a net radial negative energy and angular
momentum flux ıEr

hole < 0, ıJr
hole < 0 at the horizon, i.e., energy and angular

momentum are extracted from the BH. From Eq. (5.6) one sees that the function
�EM can indeed be interpreted as the “angular velocity” of the electromagnetic field.

By deriving specific solutions for the electromagnetic field, it is possible to
construct the function �EM through Eq. (5.3) explicitly. Particularly important are
the split monopole, and the paraboidal magnetic field solutions found perturbatively
in the slowly-rotating limit [14]. In these cases,�EM D �H=2 and�EM 
 0:38�H,
respectively (see e.g. [23] for a recent summary of these solutions and also [24–
27] for recent exact solutions found around extreme Kerr BHs). Recently [28]
studied the linear stability of the monopole solution and their results suggest that
the solution is mode stable. In fact, force-free simulations (e.g. [15, 29–32]) and
recent GRMHD simulations seem to indicate that magnetic fields generated by
accretion disks have large split monopole components [18–20] suggesting that the
BZ mechanism should occur in fully dynamical setups.
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5.1.2 Blandford-Znajek Process and the Membrane Paradigm

The understanding of the physics behind the BZ mechanism was at the origin
of a new paradigm to describe BHs, the so-called membrane paradigm. This
paradigm uses a 3 C 1 spacetime decomposition in which the BH event horizon
is regarded as a two-dimensional surface residing in a three-dimensional space,
while the region inside the horizon is “thrown away” from the picture since it is
causally disconnected from any observer outside the horizon.2 This surface can
be shown to behave as an electrically charged viscous fluid with finite surface
electrical resistivity, entropy and temperature. In this picture the interaction of
the membrane with the rest of the Universe is then governed by well-known
physical laws for the horizon’s fluid, such as the Navier-Stokes equation, Ohm’s
law, tidal force equations and the laws of thermodynamics. Originally all quantities
were computed in the ZAMO frame (see Sect. 3.1) in relation to which electric
and magnetic fields are defined and physical laws are formulated, although the
membrane paradigm has also been reformulated in a covariant form in [33]. For
stationary (or static) BH spacetimes the membrane paradigm is fully equivalent
to the standard spacetime approach as long as one is only interested in physics
occurring outside the horizon. The teleological nature of the paradigm makes it
more challenging to study time-dependent problems although some cases involving
weakly perturbed non-stationary spacetimes have successfully been studied [34].
For astrophysical purposes this paradigm has been quite successful to describe and
understand relativistic phenomena in BH spacetimes (see [34] for a pedagogical
introduction and a compilation of works which led to the full formulation of the
membrane paradigm. See also [33] for a derivation of the membrane paradigm
starting from an action principle).

In the membrane paradigm, one can understand how the BZ mechanism works
through an analogy with the tidal acceleration effect (see Sect. 2.6) [17]. Taking an
infinitesimal tube of magnetic flux ı in the force-free region (for example a tube
with walls given by surfaces 1 and 2 of Fig. 5.1) and which intersects the hole, it is
possible to show that the torque exerted by the membrane on this tube is [17]

� dıJ

dt
D �H ��EM

4

g''B?ı ; (5.7)

where B? is the magnetic field perpendicular to the membrane as seen by the
ZAMO’s observer and g'' is to be taken at the horizon. The power transmitted

2The use of a 3C 1 spacetime decomposition was mainly useful to write the equations in a more
familiar form for the astrophysics community. In fact most of the work done in this area in the last
decades has been done using this formalism. Recently the GR community has regained interest
in the subject and some remarkable effort has been done to develop a fully covariant theory of
force-free magnetospheres around rotating BHs [23].



162 5 Black Hole Superradiance in Astrophysics

Fig. 5.2 Circuit analogy of the BZ mechanism in which a battery transfers energy to a load. A
battery of electromotive force E with internal resistance RS drives a current I through the load
resistance RL (which could be for example an electric light). Maximum power transfer is attained
when RL D RS

to the flux tube due to this torque is then

P D ��EM
dıJ

dt
D �EM

�H ��EM

4

g''B?ı : (5.8)

This torque and power are transmitted through the tube up to region A, where angu-
lar momentum gets gradually deposited into charged particles. A direct comparison
with Eqs. (2.66) and (2.67) shows that from the point of view of the ZAMO’s
observer this is indeed a analogous process to tidal acceleration, and thus completely
analogous to superradiance.

The membrane picture also suggests an analogy between the BZ mechanism and
the circuit of Fig. 5.2, in which energy is transferred from a battery (the BH) to a
load (the acceleration region A) [17]. The current flowing along the resistance RS

produces a potential drop VS, while at RL it produces a potential drop VL such that
the electromotive force of the battery is given by E D VS CVL. From Ohm’s law the
current I flowing along the circuit is given by

I D E
RS C RL

; (5.9)

while the power dissipated in the load is given by

PL D I2RL D E2

R2S=RL C 2RS C RL
: (5.10)

On the other hand the efficiency of this process, defined by the ratio of the power
dissipated in the load to the total power generated by the source, reads

� D 1

RS=RL C 1
: (5.11)
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Although the efficiency has its maximum when RL � RS, the maximum power
output at the load is obtained when RL D RS. Note that in this case only half of the
energy is really transferred to the load, the other half being dissipated as heat due
to the source internal resistance. On the other hand, if RL � RS, then most of the
power output is dissipated as heat at the source, whereas if RL � RS the current I
generated at the source will be very low and thus the power transferred to the load
will be very small, even though the efficiency will tend to 100%.

In the BZ process case, the current flowing from surface 1 to 2 of Fig. 5.1 in
the horizon membrane’s produces a potential drop ıVH due the membrane internal
resistance RH, given by [17]

ıVH D IıRH D .�H ��EM/ı 

2

; (5.12)

where ıRH is related to RH through [17]

ıRH D RH
ı 

4
2g''B?
: (5.13)

The potential drop in region A can be thought as being due to a resistance ıRA, and
it can be shown to be given by [17]

ıVA D IıRA D �EMı 

2

; (5.14)

where it is assumed that the acceleration region A is sufficiently far away such that
frame dragging effects are negligible. Using Eqs. (5.12), (5.13) and (5.14), the ratio
between the potentials in the acceleration region and at the horizon are then given by

ıVA

ıVH
D ıRA

ıRH
D 1

�H=�EM � 1
: (5.15)

By comparison with Eq. (5.11), one can define the efficiency of the BZ mechanism
by � D �EM=�H [14].3 The sum of the potential drops is equal to the total
electromotive force E D ıVH C ıVA around a closed loop that passes along the
horizon from surface 1 to 2, then up the surface 2 poloidally to the region A in
which it crosses to surface 1 again and then back down to the horizon. Thus, the total

3This is not to be confused with the jet efficiency, defined by �jet D ˝
Ljet

˛
=
˝ PM˛ where

˝
Ljet

˛
is

the time-average jet luminosity and
˝ PM˛ is the time-average rate of matter accretion by the BH.

Recently, efficiencies up to �jet � 300% have been obtained in GRMHD simulations [16, 18, 19,
35] which is a strong indication that the BZ mechanism is at work.
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current I and the total power transmitted P to the acceleration region are given by

I D E
ıRA C ıRH

D 1

2
.�H ��EM/ g''B?ı ; (5.16)

P D ıRAI2 D �EM
.�H ��EM/

4

g''B?ı : (5.17)

Maximum power transmission then implies �EM D �H=2. From Eq. (5.15), this
happens when RA D RH and ıVA D ıVH , which corresponds to the condition
obtained from the circuit analogy. In [17] it was argued that the configuration
�EM D �H=2 would be likely to be achieved in a dynamical setup due to the back-
reaction of charged particles onto the field lines. In fact recent GRMHD simulations
seem to obtain�EM=�H 
 0:3 – 0:4, in agreement with this analysis [19, 20].

A key ingredient for this analogy to work is to understand the physical origin
behind the electromotive force E driving the current I. The membrane paradigm
suggests an analogy with Faraday’s unipolar inductor. Consider a rotating conduct-
ing disk, which can be idealized as a perfect conductor, immersed in a uniform
magnetic field perpendicular to the rotational axis of the disk. Due to the rotational
motion of the disk through the magnetic field there is a radial Lorentz force on
the free charges in the disk, which in turn produces a potential difference between
the center and the boundary of the disk. On the other hand, due to the magnetic
field, this current feels a Lorentz force opposite to the rotational motion of the
disk, producing a reaction torque on the conductor which will make it slow down
in analogy with the BZ mechanism. Completing this circuit with a wire attached
at the boundary and the center of the disk, one can effectively use the disk as a
battery. This is in fact the mechanism behind the electromotive force developed
by rotating magnetized stars [36, 37] and planets [38]. However, as was pointed
out in [15, 29] the membrane paradigm suggests that the horizon plays a similar
role to the surface of a magnetized rotating star, hiding the role played by the
ergosphere. Unlike the surface of a disk in which an electromotive force can indeed
drive an electric current, Einstein’s equivalence principle tells us that the BH horizon
is not a physical surface where electrics current can flow.4 In [29] the author
showed that inside the ergoregion there are no stationary axisymmetric solution of
the Einstein-Maxwell equations, describing a electromagnetic field supported by a
remote source, that satisfy both the second and third conditions of Eq. (5.2) along
the magnetic field lines (see also [40, 41]). This implies that near a rotating BH there
are no stationary solutions with a completely screened electric field. This is in fact
a purely gravitational effect caused by the dragging of inertial frames near the BH.
Although the force-free approximation is for all purposes a good approximation

4However from the point of view of BH complementarity introduced in [39], the membrane is
real as long as the observers remain outside the horizon, but fictitious for observers who jump
inside the BH. Since neither observer can verify a contradiction between each other, the two are
complementary in the same sense of the wave-particle duality.
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for the magnetosphere near a rotating BH, it fails to predict that current sheets
must form inside the ergoregion, where a strong enough unscreened electric field
perpendicular to the magnetic field must persist in order to sustain the potential drop
along the magnetic field lines. On the other hand, in the region where the force-free
approximation holds, it is the residual component of the electric field parallel to the
magnetic field that drives the poloidal currents [29].

We should stress that although the ergoregion is necessary for the BZ mechanism
to occur, the circuit and tidal acceleration analogies make it clear that dissipation
is also a fundamental ingredient. However the precise mechanism behind this
dissipation, and whether it is due to the horizon or the plasma surrounding the BH,
is unclear and still a matter of debate.

5.2 Superradiance, CFS Instability, and r-Modes
of Spinning Stars

Another important astrophysical process that bears some resemblance with super-
radiant phenomena is the Chandrasekhar-Friedman-Schutz (CFS) instability of
spinning NSs driven by gravitational radiation. This instability was discovered by
Chandrasekhar in 1970 while studying Maclaurin spheroids [42]. In 1978, Friedman
and Schutz extended the analysis to the case of compressible, perfect-fluid stars and
explained the instability in an elegant way [43]. In fact, such instability is very
generic and occurs whenever a mode that is retrograde in a frame corotating with
the star appears as prograde to a distant inertial observer (see [44–46] and references
therein).

The mechanism for the instability is depicted in Fig. 5.3. In the left panel we show
a stable configuration: a fluid perturbation of a static star with phase velocity !=m
moving counter-clockwise. Within our axis conventions, this perturbation carries
a positive angular momentum and also emits positive angular momentum through
GWs. The angular momentum emitted in GWs has to be subtracted by that of
the perturbation, whose amplitude consequently decreases. However, a drastically
different picture emerges when the star rotates (right panel of Fig. 5.3). In such case
the sign of the angular momentum carried by GWs depends only on the relative
motion of the perturbation with respect to the laboratory frame, whereas the sign
of the angular momentum of the perturbation depends only on the motion of the
mode relative to the star. Therefore, as the star rotates faster and faster in clockwise
direction, the counter-clockwise mode starts rotating more slowly as viewed from
the laboratory frame, decreasing the rate of angular momentum emission in GWs,
but not its intrinsic angular momentum, which remains roughly the same as in the
nonrotating case. For some critical angular velocity, the phase velocity of the mode
will vanish and the mode will freeze relative to the laboratory (as shown in the right
panel of Fig. 5.3). For a slightly higher stellar rotation rate, the initially counter-
clockwise mode rotates in the clockwise sense, thus emitting negative angular
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Fig. 5.3 Illustration of the CFS instability as seen from the laboratory frame. In the left panel
a bar-like mode of the fluid in a static star rotates counter-clockwise. This perturbation tends to
increase the angular momentum of the star. Because the perturbation carries away positive angular
momentum through GWs, it also reduces its amplitude. In the right panel the star rotates clockwise
(with rotational axis perpendicular to the plane of the figure) such that, in the laboratory frame,
the phase velocity of the mode vanishes and so does the emission of GWs. For a slightly higher
stellar spin, the mode would appear to rotate clockwise and it would emit GWs with negative
angular momentum. This negative value is subtracted from the (positive) angular momentum of
the perturbation, which therefore increases in amplitude. The larger the perturbation grows, the
larger is the angular momentum radiated in GWs, thus producing a positive feedback

momentum through GWs. This emission has to be compensated by an increase of
the (positive) angular momentum of the perturbation, which therefore increases in
amplitude. The larger the perturbation grows, the larger is the angular momentum
radiated in GWs, and the instability ensues. The instability evolves on a secular
timescale, extracting angular momentum from the star via GW emission, unless it
is suppressed by other mechanisms, such as viscosity.

This qualitative picture already shows some similarity with the fact that super-
radiant modes within the ergoregion appear to be prograde to a distant inertial
observer but are in fact retrograde in a frame corotating with the BH. To put this
in more quantitative terms, let us consider Newtonian stars within the Lagrangian
perturbation framework developed in [43]. We consider a normal mode (i.e. ignoring
GW dissipation) of the star in the form � D O�e�i.!t�m'/. In such case, the canonical
energy and angular momentum of the mode are related as [43, 45]

Ec D !

m
Jc ; (5.18)

which resembles Eq. (3.23), as expected for the perturbation of an axisymmetric
object. When the star rotates with angular velocity � > 0, the canonical angular
momentum must also satisfy the inequality [43, 45]

! � m� ��

m
� Jc=m2

h O�; 
 O�i � ! � m�C�

m
; (5.19)
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where 
 is the fluid density and the angular parenthesis denote the inner product over
the volume of the star. The equation above shows that, in the static � ! 0 limit,
corotating modes (with !=m > 0) must have Jc > 0, whereas counter-rotating
modes have Jc < 0. From Eq. (5.18), this implies Ec > 0 and therefore the modes
are stable. However, when the star rotates in the opposite direction relative to the
mode phase velocity, an initially counter-rotating mode can become corotating as
discussed before. When this happens Ec can change sign and the mode becomes
unstable when ! � m� (in the laboratory frame), with the inequality saturated for
marginally stable modes. Therefore, it is clear that the CFS instability requires the
existence of modes satisfying the superradiant condition (1.1).

The relativistic framework to study this instability was developed in a series of
papers during the 1970s [43, 47, 48], the crucial additional ingredient being the
emission of GWs generated by fluid and spacetime perturbations of the star. These
works confirmed the Newtonian analysis, finding that a mode becomes unstable
at the point where its phase velocity vanishes in the inertial frame, i.e. when
!=m D � (see [44, 45] for some reviews on the important of the CFS instability in
astrophysics).

The r-Mode Instability of Rotating Stars Some axial fluid modes of static,
Newtonian stars (as well as the axial gravitational modes of relativistic stars) are
degenerate at zero frequency. Therefore, even in the nonrotating case such modes
are marginally stable towards the CFS instability. As soon as rotation is turned on,
these r-modes become unstable for arbitrarily small rotation rates [49] (cf. [50] for
a review).

To first order in the stellar spin, the frequency of the r-modes in the inertial frame
reads

! D m�

�
1 � 2

l.l C 1/

�
: (5.20)

Therefore, modes with positive phase velocity, !=m > 0, relative to the laboratory
frame have always a negative phase velocity !=m � � < 0 in the star comoving
frame for any value of l and � (the special case of l D 1 fluid perturbations is
marginally stable to first order in the spin). This is confirmed by the canonical energy
of these modes which, to first order in �, reads [45]

Ec D A.! C m�/.! � m�/ ; (5.21)

where A > 0 is a constant depending on the amplitude of the modes, the harmonic
index l and on the stellar density. Therefore, to first order in the spin the instability
occurs when ! < m�, i.e. when the superradiant condition (1.1) holds. Such
analogy remains valid also to second order in � in the large-l limit.
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5.3 Evolution of Superradiant Instabilities:
Gravitational-Wave Emission and Accretion

We saw that quantum or classical fluctuations of any massive bosonic field can
trigger a superradiant instability of the Kerr metric, whose time scale � can be
extremely short. For a BH with mass M, the shortest instability time scale is

� �
	

M
106M

ˇ



yr for a ultralight scalar [51–55], and shorter for vector [53, 54, 56]

and tensor fields [55] for which superradiance is more efficient (cf. Sect. 4.6).
Little is known about the nonlinear development of the superradiant instability.

However, by analyzing the energy and angular momentum fluxes through the BH
horizon, it is reasonable to expect that a nonspherical bosonic cloud would grow
near the BH on a time scale � , extracting energy and angular momentum until
superradiance stops and the cloud is slowly re-absorbed by the BH and dissipated
through GW emission5 [54, 57–61]. During the evolution, the BH acquires an
effective “hair” as pictorially depicted in Fig. 5.4.

Although (at least for a real, stationary scalar field) the no-hair theorems [62–65]
guarantee that the final state of the instability has to be a Kerr BH with lower spin, it
is important to understand the time scales involved in this process, because a scalar
cloud surviving for cosmological times would be practically indistinguishable from
a full-fledged hairy BH and would have various important consequences.

In recent years superradiant instabilities have been used to turn astrophysical
BHs into effective particle detectors, by using the fact that putative ultralight
bosons (cf. Sect. 4.6.1) would make such massive BHs superradiantly unstable, in

Fig. 5.4 Pictorial description of a bosonic cloud around a spinning BH in a realistic astrophysical
environment. The BH loses energy ES and angular momentum LS through superradiant extraction
of scalar waves and emission of GWs, while accreting gas from the disk, which transports energy
EACC and angular momentum LACC. Notice that accreting material is basically in free fall after
it reaches the innermost stable circular orbit. A scalar cloud would be localized at a distance �
1=M�2S > 2M

5This expectation is also supported by the proof given in Sect. 3.5.2, where we showed that—when
backreaction effects are taken into account—superradiance of charged fields does indeed extract
mass and charge away from the BH.



5.3 Evolution of Superradiant Instabilities: Gravitational-Wave Emission and. . . 169

disagreement with current observations of spinning BHs. This exciting possibility is
discussed in Sect. 5.4. However, before venturing in the astrophysical implications
of superradiant instabilities, we need to assess whether or not the linearized analysis
previously presented is reliable. Indeed, essentially all previous works on superra-
diant instabilities were based on a linearized analysis, neglecting backreaction and
other competitive effects—such as GW emission and gas accretion—which can have
an impact on the development of the process.

5.3.1 Scalar Clouds Around Spinning Black Holes

This issue was recently addressed by performing a quasi-adiabatic, fully-relativistic
evolution of the superradiant instability of a Kerr BH triggered by a massive scalar
field, including the effect of GW emission and of gas accretion [60]. The starting
point of the analysis is the action (3.1) with vanishing gauge field, so that the model
describes a (generically complex) massive scalar field minimally coupled to gravity.

Following the development of the instability in a fully nonlinear evolution is
extremely challenging because of the time scales involved: �BH � M is the light-
crossing time, �S � 1=�S is the typical oscillation period of the scalar cloud and
� � M=.M�S/

9 is the instability time scale in the small-M�S limit. As previously
discussed, in the most favorable case for the instability, � � 106�S is the minimum
evolution time scale required for the superradiant effects to become noticeable.
Thus, current nonlinear evolutions (which typically last at most � 103�S [58])
have not yet probed the development of the instability, nor the impact of GW
emission. However, in such configuration the system is suitable for a quasi-
adiabatic approximation: over the dynamical time scale of the BH the scalar field
can be considered almost stationary and its backreaction on the geometry can be
neglected as long as the scalar energy is small compared to the BH mass [60].

At leading order, the geometry is described by the Kerr spacetime and the scalar
evolves in this fixed background. For small mass couplings M�S, the spectrum
of the scalar perturbations admits the hydrogenic-like solution (4.27), whereas the
eigenfunctions are given in Eq. (4.29) [66, 67]. The eigenfunction peaks at [57, 68]

rcloud � .l C n C 1/2

.M�S/2
M ; (5.22)

and thus extends well beyond the horizon, where rotation effects can be neglected.
The analytical result is a good approximation to the numerical eigenfunctions for
moderately large couplings, �SM . 0:2, even at large BH spin [60].

In the quasi-adiabatic approximation (and focusing on the l D m D 1

fundamental mode), the cloud is stationary and described by

‰ D A0Qre�Qr=2 cos .' � !Rt/ sin# ; (5.23)
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where the amplitude A0 can be expressed in terms of the mass MS of the scalar cloud
through [60]

A20 D 3

4
I2

�
MS

M

�
.�SM/4 : (5.24)

5.3.2 Gravitational-Wave Emission from the Bosonic
Condensate

A nonspherical monochromatic cloud as in Eq. (5.23) will emit GWs with frequency
2
=� � 2!R � 2�S, the wavelength � being in general smaller than the size of the
source, rcloud. Thus, even though the cloud is nonrelativistic, the quadrupole formula
does not apply because the emission is incoherent [57, 60, 61, 67]. However, due to
the separation of scales between the size of the cloud and the BH size for�SM � 1,
the GW emission can be analyzed taking the source to lie in a nonrotating (or even
flat [67]) background.

By performing a fully relativistic analysis within the Teukolsky formalism,
[60] found that the energy and angular-momentum fluxes of gravitational radiation
emitted from the cloud read

PEGW D 484C 9
2

23040

�
M2

S

M2

�
.M�S/

14 ; (5.25)

PJGW D 1

!R

PEGW : (5.26)

This result has been obtained for small values of the coupling M�S and by
neglecting spin effects, i.e. by considering a Schwarzschild background. The latter
is a well-motivated assumption, because the cloud is localized away from the
horizon, when spin effects are negligible. The energy flux above is in agreement
with a previous analysis [67] except for a different prefactor in Eq. (5.25) due to
the fact that [60] considered a Schwarzschild background, whereas [67] considered
a flat-metric approximation. This analytical result is an upper bound relative to
the exact numerical flux, the latter being valid for any �S and any BH spin [67].
Therefore, using Eq. (5.25) to estimate the energy loss in GWs is a very conservative
assumption, since the GW flux is generically smaller.

5.3.3 Gas Accretion

Astrophysical BHs are not in isolation but surrounded by matter fields in the form of
gas and plasma. On the one hand, addition of mass and angular momentum to the BH
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via accretion competes with superradiant extraction. On the other hand, a slowly-
rotating BH which does not satisfy the superradiance condition might be spun up by
accretion and might become superradiantly unstable precisely because of angular
momentum accretion. Likewise, for a light BH whose coupling parameter �SM is
small, superradiance might be initially negligible but it can become important as
the mass of the BH grows through gas accretion. It is therefore crucial to include
accretion in the treatment of BH superradiance.

Brito et al. [60] considered a very conservative and simple model in which mass
accretion occurs at a fraction of the Eddington rate (see e.g. [69]):

PMACC � fEdd PMEdd � 0:02fEdd
M.t/

106Mˇ
Mˇyr�1 : (5.27)

The formula above assumes an average value of the radiative efficiency � 
 0:1,
as required by Soltan-type arguments, i.e. a comparison between the luminosity of
active galactic nuclei and the mass function of BHs [12, 70]. The Eddington ratio
for mass accretion, fEdd, depends on the details of the accretion disk surrounding
the BH and it is at most of the order unity for quasars and active galactic nuclei,
whereas it is typically much smaller for quiescent galactic nuclei (e.g. fEdd � 10�9
for SgrA�). If we assume that mass growth occurs via accretion through Eq. (5.27),
the BH mass grows exponentially with e-folding time given by a fraction 1=fEdd of
the Salpeter time scale

�Salpeter D �T

4
mp
� 4:5 	 107 yr ; (5.28)

where �T is the Thompson cross section and mp is the proton mass. Therefore,
the minimum time scale for the BH spin to grow via gas accretion is roughly
�ACC � �Salpeter=fEdd � �BH and also in this case the adiabatic approximation is
well justified.

Regarding the evolution of the BH angular momentum through accretion,
[60] made the conservative assumption that the disk lies on the equatorial plane
and extends down to the innermost stable circular orbit (ISCO). If not, angular
momentum increase via accretion is suppressed and superradiance becomes (even)
more dominant. Ignoring radiation effects,6 the evolution equation for the spin
reads [72]

PJACC � L.M; J/

E.M; J/
PMACC ; (5.29)

6In the absence of superradiance the BH would reach extremality in finite time, whereas radiation
effects set an upper bound of a=M � 0:998 [71]. To mimic this upper bound in a simplistic way, a
smooth cutoff in the accretion rate for the angular momentum can be introduced [60]. This cutoff
merely prevents the BH to reach extremality and does not play any role in the evolution.
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where L.M; J/ D 2M=.3
p
3/
	
1C 2

p
3rISCO=M � 2



and E.M; J/ Dp

1 � 2M=3rISCO are the angular momentum and energy per unit mass, respectively,
of the ISCO of the Kerr metric, located at rISCO D rISCO.M; J/ in Boyer-Lindquist
coordinates.

5.3.4 Growth and Decay of Bosonic Condensates Around
Spinning Black Holes

The evolution of the cloud is governed by a simple set of differential equations [60].
Energy and angular momentum conservation requires that

PM C PMS D � PEGW C PMACC ; (5.30)

PJ C PJS D � 1

�S

PEGW C PJACC ; (5.31)

where MS and JS are the mass and the angular momentum of the scalar cloud, we
have neglected the subdominant contributions of the mass of the disk and of those
GWs that are absorbed at the horizon, and we have approximated the local mass and
angular momentum by their ADM counterparts. The latter approximation is valid as
long as backreaction effects are small, as we discuss below. The system is closed by
two further equations

PM D � PES C PMACC ; (5.32)

PJ D � 1

�S

PES C PJACC ; (5.33)

which describe the superradiant extraction of energy and angular momentum and
the competitive effects of gas accretion at the BH horizon. In the equations above
we have introduced the scalar energy flux that is extracted from the horizon through
superradiance,

PES D 2MS!I ; (5.34)

where M!I D 1
48
.a=M � 2�SrC/.M�S/

9 for the l D m D 1 fundamental mode.
These equations assume that the scalar cloud is not directly (or only very weakly)
coupled to the disk.

Representative results for the evolution of the system are presented in Fig. 5.5
where we consider the scalar-field mass �S D 10�18 eV and mass accretion near
the Eddington rate, fEdd D 0:1. We consider two cases: (I) the left set of plots
corresponds to a BH with initial mass M0 D 104Mˇ and initial spin J0=M2

0 D 0:5,
whereas (II) the right set of plots corresponds to M0 D 107Mˇ and J0=M2

0 D 0:8.
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Fig. 5.5 Evolution of the BH mass and spin and of the scalar cloud due to superradiance, accretion
of gas and emission of GWs. The two sets of plots show two different cases. In Case I (left set)
the initial BH mass M0 D 104M

ˇ

and the initial BH spin J0=M2
0 D 0:5. The BH enters the

instability region at about t � 6Gyr, when its mass M � 107M
ˇ

and its spin is quasi-extremal.
The set of plots on the right shows Case II, in which M0 D 107M

ˇ

and J0=M2
0 D 0:8, and the

evolution starts already in the instability region for this scalar mass � D 10�18 eV. For both cases,
the left top panels show the dimensionless angular momentum J=M2 and the critical superradiant
threshold acrit=M [cf. Eq. (4.28)]; the left bottom panels show the mass of the scalar cloud MS=M
(note the logarithmic scale in the x-axis for Case II); and the right panels show the trajectory of the
BH in the Regge plane [57] during the evolution. The dashed blue line denotes the depleted region
as estimated by the linearized analysis, i.e. it marks the threshold at which � � �ACC

In Case I, superradiance is initially negligible because �SM0 � 10�4 and
superradiant extraction is suppressed. Thus, the system evolves mostly through gas
accretion, reaching extremality (J=M2 � 0:998) within the time scale �ACC �
10�Salpeter. At about t � 6Gyr, the BH mass is sufficiently large that the superradiant
coupling �SM becomes important. This corresponds to the BH entering the region
delimited by a dashed blue curve in the Regge plane [57] shown in Fig. 5.5 for Case
I. At this stage superradiance becomes effective very quickly: a scalar cloud grows
exponentially near the BH (left bottom panel), while mass and angular momentum
are extracted from the BH (left top panel). This abrupt phase lasts until the BH spin
reaches the critical value acrit=M [cf Eq. (4.28)] and superradiance halts. Because
the initial growth is exponential, the evolution does not depend on the initial mass
and initial spin of the scalar cloud as long as the latter are small enough, so that in
principle also a quantum fluctuation would grow to a sizeable fraction of the BH
mass in finite time.

Before the formation of the scalar condensate, the evolution is the same
regardless of GW emission and the only role of accretion is to bring the BH into
the instability window. After the scalar growth, the presence of GW dissipation and
accretion produces two effects: (1) the scalar condensate loses energy through the
emission of GWs, as shown in the left bottom panel of Fig. 5.5 [the signatures of
this GW emission are discussed in Sect. 5.4.2 below]; (2) gas accretion returns to
increase the BH mass and spin.

However, because accretion restarts in a region in which the superradiance
coupling �SM is nonnegligible, the “Regge trajectory” J.t/=M.t/2 � acrit=M [cf.
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Eq. (4.28)] is an attractor for the evolution and the BH “stays on track” as its mass
and angular momentum grow. For Case I, this happens between t � 6:8Gyr and
t � 9:5Gyr, i.e. the Regge trajectory survives until the spin reaches the critical
value J=M2 � 0:998 and angular momentum accretion saturates.

A similar discussion holds true also for Case II, presented in the right set of
plots in Fig. 5.5. In this case, the BH starts already in the instability regime, its
spin grows only very little before superradiance becomes dominant, and the BH
angular momentum is extracted in about 10Myr. After superradiant extraction, the
BH evolution tracks the critical value acrit=M while the BH accretes over a time
scale of 1Gyr.

5.3.5 Superradiant Instabilities Imply No Highly-Spinning
Black Holes

While GW emission is always too weak to affect the evolution of the BH mass and
spin (nonetheless being responsible for the decay of the scalar condensate as shown
in Fig. 5.5), accretion plays a more important role. From Fig. 5.5, it is clear that
accretion produces two effects. First, for BHs which initially are not massive enough
to be in the superradiant instability region, accretion brings them to the instability
window by feeding them mass as in Case I. Furthermore, when J=M2 ! acrit=M the
superradiant instability is exhausted, so that accretion is the only relevant process
and the BH inevitably spins up again. This accretion phase occurs in a very peculiar
way, with the dimensionless angular momentum following the trajectory J=M2 �
acrit=M over very long time scales.

Therefore, a very solid prediction of BH superradiance is that supermassive BHs
would move on the Regge plane following the bottom-right part of the superradiance
threshold curve. The details of this process depend on the initial BH mass and spin,
on the scalar mass �S and on the accretion rate. A relevant problem concerns the
final BH state at the time of observation; namely, given the observation of an old BH
and the measurement of its mass and spin, would these measurements be compatible
with the evolution depicted in Fig. 5.5?

This problem is addressed in Fig. 5.6, which shows the final BH mass and spin in
the Regge plane [57] (i.e. a BH mass-spin diagram) for N D 103 Monte Carlo
evolutions. We consider a scalar field mass � D 10�18 eV and three different
accretion rates fEdd (defined as the fraction of mass accretion rate relative to the
Eddington limit) and, in each panel, we superimpose the bounds derived from the
linearized analysis, i.e. the threshold line when the instability time scale equals the
accretion time scale (cf. Sect. 5.4 below for details). As a comparison, in the same
plot we include the experimental points for the measured mass and spin of some
supermassive BHs listed in [73].

Various comments are in order. First, it is clear that the higher the accretion
rate the better the agreement with the linearized analysis. This seemingly counter-
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Fig. 5.6 The final BH mass and spin in the Regge plane for initial data consisting of N D 103

BHs with initial mass and spin randomly distributed between log10 M0 2 Œ4; 7:5� and J0=M2
0 2

Œ0:001; 0:99�. The BH parameters are then extracted at t D tF , where tF is distributed on a Gaussian
centered at NtF � 2�109 yr with width � D 0:1NtF . We considered �S D 10�18 eV. The dashed blue
line is the prediction of the linearized analysis obtained by comparing the superradiant instability
time scale with the accretion time scale, � � �Salpeter=fEdd, whereas the solid green line denotes the
region defined through Eq. (5.35). Old BHs do not populate the region above the green threshold
curve. The experimental points with error bars refer to the supermassive BHs listed in [73]

intuitive result can be understood by the fact that higher rates of accretion make it
more likely to find BHs that have undergone a superradiant instability phase over
our observational time scales. In fact, for high accretion rates it is very likely to
find supermassive BHs precisely on the “Regge trajectory” [57] given by J=M2 �
acrit=M [cf. Eq. (4.28)].

Furthermore, for any value of the accretion rate, we always observe a depleted
region (a “hole”) in the Regge plane [57], which is not populated by old BHs. While
the details of the simulations might depend on the distribution of initial mass and
spin, the qualitative result is very solid and is a generic feature of the evolution.
For the representative value �S D 10�18 eV adopted here, the depleted region
is incompatible with observations [73]. Similar results would apply for different
values7 of �S in a BH mass range such that �SM . 1. Therefore, as discussed

7Note that, through Eq. (5.27), the mass accretion rate only depends on the combination fEddM,
so that a BH with mass M D 106M

ˇ

and fEdd � 10�3 would have the same accretion rate of a
smaller BH with M D 104M

ˇ

accreting at rate fEdd � 10�1. Because this is the only relevant scale
for a fixed value of �SM, in our model the evolution of a BH with different mass can be obtained
from Fig. 5.5 by rescaling fEdd and �S.
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in [53, 55, 57] and reviewed in Sect. 5.4 below, observations of massive BHs with
various masses can be used to rule out various ranges of the boson-field mass �S.

Finally, Fig. 5.6 suggests that when accretion and GW emission are properly
taken into account, the holes in the Regge plane are smaller than what naively
predicted by the relation � 
 �ACC, i.e. by the dashed blue curve in Fig. 5.6. Indeed,
a better approximation for the depleted region is [60]

J

M2
& acrit

M
� 4�M [ M &

�
96

�10�ACC

�1=9
; (5.35)

whose boundaries are shown in Fig. 5.6 by a solid green line. These boundaries
correspond to the threshold value acrit [cf. Eq. (4.28)] for superradiance and to a BH
mass which minimizes the spin for which � 
 �ACC, for a given � [56]. As shown
in Fig. 5.6, the probability that a BH populates this region is strongly suppressed as
the accretion rate increases.

5.3.6 Summary of the Evolution of Superradiant Instabilities

Because the results of [60] play an important role for the discussion of the next
sections, it is relevant to summarize here the main features of the evolution of
superradiant instabilities:

• The sole role of GW emission is to dissipate the dipolar bosonic cloud that
forms as a result of the instability, but it does not have a significant effect on
the evolution of the BH parameters. Nevertheless, such GW emission has a
very peculiar signature, as discussed in Sect. 5.4.2 in the context of GW tests
of bosonic clouds around spinning massive BHs.

• The mass of the cloud remains a sizeable fraction of the BH total mass over
cosmological times, so that such systems can be considered as (quasi)-stationary
hairy BHs for any astrophysical purpose.

• Nonetheless, the energy-density in the scalar field is negligible because the cloud
typically extends over very large distances. Therefore, the geometry is very
well described by the Kerr metric during the entire evolution. The prospects of
imagining deviations from Kerr due to superradiantly-produced bosonic clouds
in the electromagnetic band [9, 10] are low, but such systems are a primary source
for observations aiming at testing the Kerr hypothesis through GW detection [4–
8] [cf. Sect. 5.4.2 for a discussion].

• The role of gas accretion is twofold. On the one hand, accretion competes against
superradiant extraction of mass and angular momentum. On the other hand
accretion might produce the optimal conditions for superradiance, for example by
increasing the BH spin before the instability becomes effective or by “pushing”
the BH into the instability region in the Regge plane.
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• The Monte Carlo simulations of [60] confirm that a very generic prediction of
BH superradiant instabilities is the existence of holes in the Regge plane. For
mass accretion near the Eddington rate, such depleted regions are very well
described by Eq. (5.35), which refines the estimate obtained just by comparing
the instability time scale against a typical accretion time scale (cf. Sect. 5.4
below). A more sophisticated analysis—including radiative effects and the
geometry of the disk—would be important to refine the bounds previously
derived [53, 55, 57, 74].

• Although the instability is strongly suppressed for higher multipoles, the first
few .l;m/ modes (and not only the dipole with l D m D 1) can contribute to
the depleted region in the Regge plane [57]. Because the superradiance condition
depends on the azimuthal number m, for certain parameters it might occur that
the modes with l D m D 1 are stable, whereas the modes with l D m D 2 are
unstable, possibly with a superradiant extraction stronger than accretion. When
this is the case, the depleted region of the Regge plane is the union of various
holes [57], as shown in Fig. 5.8 below.

5.4 Astrophysical Black Holes as Particle Detectors

The “BH bomb” instabilities presented in Sect. 4 have important astrophysical
implications that arise from the surprising connections between strong-field gravity
and particle physics. One generic prediction of these instabilities is that—over
the superradiance time scale—isolated, massive BHs should not spin above the
superradiant threshold. In other words, superradiant instabilities set an upper bound
on the BH spin which is smaller than the theoretical Kerr bound for the absence
of naked singularities. Another prediction is a peculiar emission of GWs through
various channels, as discussed below. These effects have been recently investigated
in the contexts of testing stringy axions and ultralight scalars [57, 60, 67, 74–
76] (these bounds being complementary to those coming from cosmological
observations [77, 78]), to derive bounds on light vector fields [53] and on the mass
of the graviton [55].

In this section we present an overview on this problem. As previously discussed,
for a bosonic field of mass �, the only parameter regulating the strength of the
gravitational coupling to a BH of mass M is the dimensionless combination �M.
The instability is maximum when �M � 1, i.e. when the Compton wavelength of
the bosonic field is roughly comparable to the size of the BH. However, the details
of the process depend on the nature of the bosonic field. As discussed in Sect. 4, for
a given coupling �M the instability time scale is shorter for bosonic fields with spin
due to spin-spin interactions.
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5.4.1 Bounds on the Mass of Bosonic Fields from Gaps
in the Regge Plane

A very generic and solid prediction of BH superradiant instabilities is the existence
of holes in the Regge plane, as discussed in Sect. 5.3. Indeed, the estimates for
the instability time scale, together with reliable spin measurements for massive
BHs, can be used to impose stringent constraints on the allowed mass range of
ultralight bosons [53, 55, 57, 76]. These bounds follow from the requirement that
astrophysical spinning BHs should be stable, in the sense that the superradiant
instability time scale � should be larger than some observational threshold. For
isolated BHs we can take the observational threshold to be the age of the Universe,
�Hubble D 1:38 	 1010 yr. However, for supermassive BHs we may worry about
possible spin growth due to mergers with other BHs and/or accretion. The most
likely mechanism to produce fastly-spinning BHs is prolonged accretion [79].
Therefore, a conservative assumption to estimate the astrophysical consequences
of the instability is to compare the superradiance time scale to the minimum time
scale over which accretion could spin up the BH. Thin-disk accretion can increase
the BH spin from a D 0 to a 
 M with a corresponding mass increase by a factorp
6 [72]. For simplicity we assume that mass growth occurs via accretion at the

Eddington limit, so that the BH mass grows exponentially with e-folding time given
by the Salpeter time scale (5.28).

In order to quantify the dependence of the boson mass bounds on the mass
and spin of supermassive BHs, in Fig. 5.7 we show exclusion regions in the BH
Regge plane. More precisely, using the results derived in Sect. 4, we plot contours
corresponding to an instability time scale of the order of the Salpeter time for four
different masses of the bosonic field and considering the unstable mode with the
largest growth rate. From top to bottom, the three panels refer to a spin-0, spin-
1 and spin-2 field, respectively. The plot shows that observations of supermassive
BHs with 105Mˇ . M . 1010Mˇ spinning above a certain threshold would exclude
a wide range of boson-field masses. Because superradiance is stronger for bosonic
fields with spin, the exclusion windows are wider as the spin of the field increases,
and they also extend almost down to J � 0 in the case of spin-1 and spin-2 bosons.
This latter feature is important because current spin measurements might be affected
by large systematics.

Nonetheless, it’s clear from Fig. 5.7 that almost any supermassive BH spin
measurement would exclude a considerable range of masses. Similar exclusion plots
exist in the region Mˇ . M . 105Mˇ for larger values of �. Indeed, the only
parameter that regulates the instability is the combination�M. Thus, the best bound
comes from the most massive BHs for which spin measurements are reliable, e.g.
the BH candidate Fairall 9 [80].
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Using these arguments, from the analysis of [53, 55, 57] we can obtain the
following bounds8:

mS . 5 	 10�20eV [ mS & 10�11eV ; (5.36)

mV . 5 	 10�21eV [ mV & 10�11eV ; (5.37)

mT . 5 	 10�23eV [ mT & 10�11eV ; (5.38)

for the mass of ultralight scalar, vector and tensor fields, respectively. Note that, for
a single BH observation, superradiant instabilities can only exclude a window in the
mass range of the fields, as shown in Fig. 5.7. Nonetheless, by combining different
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Fig. 5.7 Contour plots in the BH Regge plane [57] corresponding to an instability time scale
shorter than �Salpeter for different values of the boson field mass�„ and for the most unstable modes.
Top, middle and bottom panels show the case of scalar (spin-0), vector (spin-1) and tensor (spin-2)
massive fields. The experimental points (with error bars) refer to the supermassive BHs listed [73].
Supermassive BHs lying above each of these curves would be unstable on an observable time scale,
and therefore each point rules out a range of the boson field masses. Note that the rightmost part
of each curve is universal, a � acrit [cf. Eq. (4.28)], i.e. it does not depend on the spin of the field

8These bounds were obtained using a linearized analysis. By including the effects of GW emission
and gas accretion, [60] shows that the linearized prediction should be corrected by Eq. (5.35), cf.
Fig. 5.6 and discussion in Sect. 5.3. Nonetheless, such corrections would not affect the order of
magnitude of these constraints. In [76], the authors estimate the statistical and systematic errors
affecting these bounds, finding exclusions regions at approximately 2� and 1� for stellar-mass and
supermassive BHs, respectively.
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BH observations in a wide range of BH masses and assuming9 that spinning BHs
exist in the entire mass range Mˇ . M . 109Mˇ, one is able to constrain the
range above, where the lower bound comes from the lightest massive BHs (with
M 
 5Mˇ), whereas the upper bound comes from the heaviest supermassive BHs
for which spin measurements are reliable. If the largest known supermassive BHs
with M ' 2 	 1010Mˇ [82, 83] were confirmed to have nonzero spin, we could get
even more stringent bounds.

For each BH observation, the upper limit comes from the fact that when M� � 1

the time scale grows with some power of 1=.�M/ and eventually the instability is
ineffective on astrophysical time scales. The lower limit comes from the fact that the
instability exists only when the superradiant condition is satisfied, and this imposes
a constraint on � for a given azimuthal number m.10 Indeed, the rightmost part of
the curves shown in Fig. 5.7 for fixed � is universal and arises from saturation of the
superradiant condition, a � acrit, where acrit is given in Eq. (4.27). Such condition
does not depend on the spin of the field, and this explains why the upper bounds in
Eqs. (5.36)–(5.38) are the same for scalar, vector and tensor fields.

As discussed above, higher multipoles might also be relevant and modes with
(say) l D m D 2 can be unstable in regions of the Regge plane where the dipolar
l D m D 1 mode is not superradiant. This is depicted in Fig. 5.8 for a QCD axion,
which is described by the action (3.1) for a real scalar with no gauge field, �S D 0

and supplemented by the axion self-potential

U.‰/ D f 2a�
2
a

�
1 � cos

�
‰

fa

��
; (5.39)

where �a is the axion mass11 and fa is the axion decay constant, which depends on
the model but it is typically of the order of the GUT scale, fa 
 1016 GeV.

Under certain conditions, the constraint (5.38) on massive spin-2 fields also
applies to massive gravitons propagating on a Kerr BH [55], and sets a stringent
bound on the mass of the graviton [84]. Similarly, the bound (5.37) on massive spin-
1 fields might also be translated in a bound on the photon mass [53], although in this
case the coupling between photons and accreting matter might quench the instability
(see [53] for a discussion). A more rigorous analysis should be performed to assess
whether plasma interactions can affect the bounds discussed above in the case of
massive photons.

9Recently, the first detection of intermediate-mass BHs was reported [81], suggesting the BH mass
spectrum might be populated continuously from few solar masses to billions of solar masses.
10As m increases, larger values of � are allowed in the instability region and virtually any value
of � gives some unstable mode in the eikonal (l;m � 1) limit. However, the instability is highly
suppressed as l increases so that, in practice, only the first few allowed values of l D m correspond
to an effective instability.
11By expanding the potential (5.39) when ‰ 
 fa, the nonlinearities can be neglected and the
sine-Gordon potential reduces to a mass term for a Klein-Gordon field.
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parameters which would result in spindown within 106 yr. The description refers to a representative
evolution of a BH with M D 6M

ˇ

and initial spin a=M D 0:95. From [76]

5.4.2 Gravitational-Wave Signatures and Bosenova

Upcoming precise spin measurements of massive BHs [9, 10] will be useful to
refine the bounds discussed above. However, a very different phenomenology can be
probed through detection of GWs that are possibly emitted by bosonic clouds around
spinning BHs [57, 60, 76]. The GW phenomenology of superradiance has mostly
focused on axions and the discussion of this section will be mainly specialized to
these fields, although essentially all the results are valid for a generic massive scalar
field. When the specific analysis applies to a generic massive scalar, we will denote
its mass by �S, whereas �a and fa will specifically refer to axions as in Eq. (5.39).

As discussed in [57, 75, 76], a bosonic condensate around a spinning BH as the
one depicted in Fig. 5.4 would emit GWs through three different channels, which
are discussed below.

Axion Annihilation A nonspherical cloud anchored to a spinning BH [cf.
Eq. (5.23)] would possess a quadrupole moment and would emit GWs. In a
particle-like description of the interaction, such waves can be interpreted as arising
from the annihilation of the scalar field to produce gravitons [57]. As previously
discussed, the wavelength of such radiation would be in general smaller than the
size of the source. Thus, even when the cloud is extended over large distances
and is nonrelativistic, the quadrupole formula does not apply because the emission
is incoherent [57, 60, 67]. A detailed relativistic computation has been recently
performed in [67], finding that the emitted GW flux for the l multipole scales as

PEGW /
�

MS

M

�2
.�SM/4lC10 : (5.40)
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This result is formally valid only when �SM � 1, but it approximates the
exact results reasonably well also for moderately large values of the coupling. In
fact, it can be considered as an upper bound for the exact flux that has to be
computed numerically by solving the Teukolsky equation [60, 67]. This radiation
is monochromatic with frequency

fann � 10 kHz

�
�S„

10�11 eV

�
; (5.41)

and is therefore associated to a very peculiar signal. By estimating the annihilation
rate and the occupation number of a single axion level, [76] computed the GW
strain12 of this signal and discussed the prospect for detection with the Advanced
LIGO/Virgo experiments [4, 5] and with an eLISA-like mission [85]. Although
the frequency of the signal (5.41) is independent from the BH mass, in practice
�SM . 1 for the axion occupation number to grow sufficiently fast through
superradiance. Thus, ground-based detectors would be sensitive to stellar-mass BHs,
whereas space-based detectors are sensitive to signatures of axionic clouds around
supermassive BHs. The expected number of events estimated in [76] for these two
cases is shown in Fig. 5.9. Using recent mass distributions for stellar BHs and
supermassive BHs, [76] estimated an event rate as large as O.105/, assuming axions
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Fig. 5.9 Expected number of axion annihilation events observable with aLIGO/aVirgo [4, 5] (left
panel) and for space-based detectors AGIS and eLISA [85] as a function of the axion mass. Each
event in the left (resp. right) panel can last thousands (resp. millions) of years. In the left panel, the
vertical shaded region is disfavored by BH spin measurements assuming the QCD axion coupling
strength. Each of the three bands corresponds to cutting off the BH mass distribution at a maximum
mass of f30; 80; 160gM

ˇ

(dark, medium, and light blue, respectively) including optimistic and
pessimistic estimates of astrophysical uncertainties. In the right panel, the shaded bands bracket
the optimistic and pessimistic estimates. See [76] for details

12The GW strain is h D p
4P=.d2!2/, for a source emitting power P at angular frequency ! and

at distance d away from the detector. In the formalism of [76], the power P can be computed in
terms of transition rate � and occupation number N, the former depends on the emission process,
whereas the latter depends on superradiance.
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with masses in the optimal range for a given BH exist. The range of axion masses
that is detectable is complementary to that excluded by BH spin measurements (cf.
Sect. 5.4).

Level Transitions Because the scalar condensate has a hydrogenic-like spectrum
[cf. Eq. (4.27)], GW emission can occur from level transitions between states with
same harmonic indices (l;m) but different overtone numbers n, similarly to photon
emission through atomic transitions. This process occurs when the growth rate of
some n > 0 mode is stronger than that of the fundamental n D 0, as this can happen
for high values of .l;m/ [57] (a detailed analysis of this effect is presented in [61]).
The frequency of the emitted graviton is given by the frequency difference between
the excited (n > 0) state and the ground (n D 0) state,

!trans � �S

2
.M�S/

2

 
1

n2g
� 1

n2e

!
; (5.42)

and the corresponding wavelength is usually much longer than the size of the
system. Therefore, in this case the quadrupole formula is valid [57]. In this
approximation, the single axion transition rate reads [76]

�t � O.10�6 
 10�8/
.�SM/9

M
: (5.43)

Although this is usually tiny, the GW strain is enhanced by the occupation number
of the two levels, which grow exponentially through superradiance. Also in this case
the signal is monochromatic. For the dominant transition, the typical frequency is

ftrans � 13Hz

�
�S„

10�11 eV

�3 � M

5Mˇ

�
; (5.44)

which falls in the sensitivity bands of advanced ground-based detectors for an axion
with mass about 10�11 eV around a stellar-mass BH with M � 5Mˇ, whereas it
falls within eLISA milliHerz band for an axion with mass about 10�15 eV around
a supermassive BH with M � 105Mˇ. The number of axion transition events for
aLIGO/aVirgo as estimated in [76] is shown in Fig. 5.10. For space-based detectors,
the peak of sensitivity falls in the range of intermediate-mass BHs, for which precise
mass distributions are lacking. This affects the event estimates, but it is promising
that the reach radius for axion transition signals of a eLISA-like detector would
extend up to hundred megaparsec [76].

GW Bursts from Bosenova Explosions When nonlinear terms are taken into
account, novel effects in the scalar condensate might arise. For example, axion-
like fields described by the sine-Gordon potential (5.39) would collapse when
the mass of the axion cloud MS 
 1600.fa=mP/

2M, with mP being the Planck
mass [74, 75]. This process was dubbed “bosenova” in analogy with a similar
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Fig. 5.10 Same as the left
panel of Fig. 5.9 but for GWs
emitted thorough level
transitions in an optimal
scenario. See [76] for details
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phenomenon occurring in condensed-matter systems. For sufficiently strong self-
interactions (fa � mP) this can happen during the superradiant growth and before
extracting all the BH spin as allowed by the superradiant condition. For example,
if fa corresponds to the GUT scale, fa 
 1016 GeV, the bosenova occurs when
MS & 0:16M. As shown in the evolutions presented Sect. 5.3, the scalar cloud
can typically attain such fraction of the BH mass under conservative assumptions
(cf. Fig. 5.5 and [60]), and therefore the effects of bosenova can have interesting
phenomenological applications.

During the bosenova, a fraction of the cloud energy is absorbed by the BH,
whereas the majority of the rest is emitted in a GW burst, leaving just a small frac-
tion of the cloud bound to the BH [57, 74, 75]. This reduces the size of the cloud and
the effects of nonlinearities. After the first collapse, the cloud is replenished through
superradiance until the next bosenova possibly occurs (assuming the conditions
are such that nonlinearities can become important before superradiant extraction
is exhausted). This superradiance-bosenova cycle repeats until all available BH spin
is exhausted. Thus, at variance with annihilation and level transition, the signal from
bosenova explosions is a periodic emission of bursts, whose separation depends on
the fraction of the cloud which remains bound to the BH after each subsequent
collapse.

The typical frequency of a single burst is [74–76]

fbn � 30Hz

�
16rcloud

tbn

��
�aM

0:4l

�2 �
10Mˇ

M

�
; (5.45)

where tbn is the infall time and rcloud is the characteristic size of the cloud as given
in Eq. (5.22). For example, a typical bosenova burst from a 10Mˇ BH would last
approximately 1 ms and, as the result of multiple subsequent explosions, there
can be various spikes separated by a quiet period of approximately 300s [76]. A
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quadrupole estimate of the GW strain for such signal yields [74–76]

h � 10�21
�

kpc

d

�	 �

0:05


�16rcloud

tbn

�2 �
�aM

0:4l

��
M

10Mˇ

��
fa

f max
a

�2
; (5.46)

where � is the fraction of the cloud falling into the BH (typically � 
 5% [75]),
f max
a is the largest coupling for which bosenova occurs and d is the distance of the

source from the detector.
Finally, [86] have modeled the dynamics of the axion cloud by a simple cellular

automaton, showing that the process exhibits self-organized criticality.

5.4.3 Floating Orbits

When the bosonic field is coupled to matter, new effects related to stimulated
emission may be triggered, modifying the inspiral dynamics of compact bina-
ries [87–89]. Figure 5.11 illustrates one such process: a point particle of mass mp

orbits a supermassive BH on a quasi-circular orbit of Boyer-Lindquist radius r0. The
point particle is coupled to a scalar field through the trace of its stress-energy tensor
T , yielding the equation of motion for the scalar field,

�
� � �2s

�
ˆ D ˛T : (5.47)

Fig. 5.11 Pictorial description of floating orbits. An orbiting body excites superradiant scalar
modes close to the BH horizon which are prevented from escaping to infinity due to their being
massive (represented by the gray “wall”). Since the scalar field is massive, the flux at infinity
consists solely of gravitational radiation. From [87]
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the coupling ˛ is related to the specific theory under consideration [87, 90]. Within
a perturbation framework, for small masses mp the scalar field ˆ is small and its
backreaction in the geometry can be neglected. In other words, the particle follows
a geodesic in the spacetime of a rotating BH, emitting scalar and gravitational waves
of frequency proportional to the orbital frequency of the circular geodesic.

The power emitted as gravitational radiation can be estimated with the use of
the quadrupole formula to be PEg1 D 32=5 .r0=M/�5 m2

p=M2. This is the power
at spatial infinity in the low-frequency regime, the flux through the horizon being
negligible for large orbital radii. The scalar flux at infinity can be computed in the
low-frequency regime,

PEs1 D ˛2M2

12


�
1 � �2s r30=M

�3=2
r40

m2
p‚.�p � �s/ ; (5.48)

where ‚.x/ is the Heaviside function. As expected, for orbital radii large enough
that the orbital frequency �p < �s, scalar radiation is quenched at spatial infinity.
However, we learned in Sect. 4.6 that the Kerr spacetime admits the existence of
superradiant resonances at

!2res D �2s � �2s

�
�sM

l C 1C n

�2
; n D 0; 1; : : : (5.49)

Thus, one might expect enhanced scalar flux at the horizon close to these
resonances. Indeed, Fig. 5.12 shows that the flux of (scalar) energy at the horizon is
greatly enhanced close to these resonances. We can estimate the peak flux close to

-2×10
-16 0 2×10

-16

Δr0/rres

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

5 10 15 20 25

r0/M

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

(m
p/M

)-2
(d

E
lm

/d
t) -(dE11/dt)

s
r+

(dE22/dt)
g
T

Fig. 5.12 Dominant fluxes of scalar and gravitational energy (l D m D 1 and l D m D 2,
respectively) for �sM D 10�2, ˛ D 10�2 and a D 0:99M. The inset is a zoom around resonance.
From [87]



5.5 Are Black Holes in the Universe of the Kerr Family? 187

the resonant frequencies for large distances and for l D m D 1,

PEs;peak
r
C

� � 3˛2
p r0

M m2
pM

16
rC .M2 � a2/
	

a
2r

C

� .M
r0
/3=2



F
; (5.50)

with F D 1C 4P2. The scalar flux at the horizon grows in magnitude with r0 and it
is negative, due to superradiance, at sufficiently large distances.

Thus, for any �sM � 1, there exists a frequency !res . �s for which the total
flux PEs1 C PEs

r
C

C PEg1 C PEg
r
C

D 0, because the negative scalar flux at the horizon
is large enough to compensate for the other positive contributions. These points are
called floating orbits, because an energy balance argument suggests that at these
locations the small point particle does not inspiral (neither inwards nor outwards).
All the energy lost at infinity under GWs is provided entirely by the rotational energy
of the BH. Under ideal conditions, floating would stop only when the peak of the
scalar flux at the horizon is too small to compensate for the gravitational flux, j PEgj >
j PEs

peakj.
Floating orbits are not possible in GR [91]. Thus, they are a smoking-gun of new

physics; the orbital frequency at which the particle stalls exactly matches the mass
of the putative fundamental field, making BHs ideal self-tuned “particle detectors”.
The existence of floating orbits manifests itself in a sizeable and detectable
dephasing of gravitational waves, with respect to pure GR waveforms [69, 87–89].

5.5 Are Black Holes in the Universe of the Kerr Family?

A series of works established what is now known as uniqueness theorems in GR:
regular, stationary BHs in Einstein-Maxwell theory are extremely simple objects,
being characterized by three parameters only: mass, angular momentum and electric
charge [92–96]. Because of quantum and classical discharge effects, astrophysical
BHs are thought to be neutral to a very good approximation [14, 36, 37, 69, 97].
Therefore the geometry of astrophysical BHs in GR is simply described by the
two-parameter Kerr metric (3.5). On the other hand, NSs—the most compact,
nonvacuum objects that exist—cannot be more massive than � 3Mˇ [98]; taken
together, these two results imply that any observation of a compact object with
mass larger than � 3Mˇ must belong to the Kerr family. Therefore tests of strong-
field gravity targeting BH systems aim at verifying the “Kerr hypothesis” in various
ways [1].

We saw already that when (electro-vacuum) GR is enlarged to include minimally
coupled, massive scalar fields, Kerr BHs may become superradiantly unstable, cf.
Sect. 4.6. For real scalars, this leads to a bosonic cloud around the BH, whose
nonzero quadrupole moment results in periodic GW emission. Thus, the end-state is
thought to be a Kerr BH with lower spin [54, 58, 59], as dictated by the uniqueness
theorems. The analysis presented in the Sect. 5.3 confirms this picture [60].
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5.5.1 Circumventing the No-Hair Theorem with Complex
Scalars

However, there is a subtle way of circumventing the hypothesis of the uniqueness
theorem. Namely, the scalar field could be time dependent but in such a way that
the geometry remains stationary. This requires that the stress-energy tensor of the
scalar field shares the same symmetries of the metric, similarly to the AdS case
discussed in Sect. 4.5.1. Having such stationary configuration is impossible for a
single real scalar field, but for a complex scalar field with time dependence‰.t; x/ D
e�i!t .x/, it is possible precisely when the frequency saturates the superradiant
condition (1.1), i.e. when

! D m�H : (5.51)

This is easily seen from the analytic formula (4.27) together with the flux
result (3.79). Consequently, there is no scalar field flux through the horizon as
long as (5.51) is obeyed and the field is allowed to be complex.

we provide details on their construction, discussing properties of the ansatz, the
field equations, the boundary conditions and the numerical strategy.

This argument suggests the existence of asymptotically-flat rotating BHs with
complex scalar hair. In fact, the argument parallels the discussion of hairy solutions
in asymptotically AdS spacetimes, discussed in Sect. 4.5.1. Such solutions in
asymptotically flat spacetimes were indeed found and studied in the limit that the
BH is extremal [99, 100]. The solutions in full generality were found in [101],
while a detailed discussion on their construction and physical properties can be
found in [102]. The ultimate physical reason for the existence of a stationary
geometry endowed with an oscillating scalar field is that GW emission is halted
due to cancellations in the stress-energy tensor, which becomes independent on the
time and azimuthal variables, thus avoiding GW emission and consequent angular
momentum losses.

The fact that the condition (5.51) for the existence of hairy BHs lies precisely
at the threshold of the superradiant condition (1.1) arises from the fact that real
frequency bound states are possible if and only if Eq. (5.51) is satisfied. The hairy
BHs found in [101] can be thought of as nonlinear extensions of the linear bound
states, when the backreaction of the scalar condensate on the metric is included (see
also [103]).

The minimally coupled hairy solutions are described by the following
ansatz [101]

ds2 D e2F1

�
dR2

N
C R2d�2

�
C e2F2R2 sin2 #.d' � Wdt/2 � e2F0Ndt2 ;

‰ D �.r; #/ei.m'�!t/ ; (5.52)
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where N � 1 � RH=R, the parameter RH being the location of the event horizon.
The five functions of .R; #/, F0;F1;F2;N; �, are obtained by solving numerically
a system of nonlinear, coupled PDEs, with appropriate boundary conditions that
ensure both asymptotic flatness and regularity at the horizon; the latter requirement
implies condition (5.51).

The solutions form a five-parameter family described by the ADM mass M, the
ADM angular momentum J, the Noether scalar charge Q (which roughly measures
the amount of scalar hair outside the horizon), and by two discrete parameters: the
azimuthal harmonic index m and the node number n of the scalar field [101]. One
may regard n D 0 as the fundamental configuration and n � 1 as excited states.
Remarkably, these solutions interpolate between a Kerr BH when q � Q=2J D 0

and a rotating boson stars [104, 105] when q D 1. The latter are (horizonless)
gravitating solitons, that are discussed in Sect. 5.8.2 in the context of so-called “BH
mimickers”. Because the scalar charge Q is a free parameter, the solutions found
in [101] corresponds to hairy spinning BHs with primary hair (in contrast to BH
solutions with secondary hair, in which the scalar charge is fixed in terms of other
parameters, such as the mass [1]).

Figure 5.13 shows the parameter space for the ground-state (n D 0) solutions
with m D 1 [101]. Interestingly, uniqueness in the .M; J/ subspace is broken
because there is a region in which hairy BHs and the Kerr solution coexist with
the same values of mass and angular momentum. However, no two solutions were
found with the same .M; J; q/ [101]. In the region of nonuniqueness, hairy BHs

Fig. 5.13 The M-! parameter space of hairy BHs with a complex scalar field for n D 0 and
m D 1. These solutions exist in the shaded blue region. The black solid curve corresponds to
extremal Kerr BHs and nonextremal Kerr BHs exist below it. For q � Q=2J D 0, the domain of
existence connects to Kerr solutions (dotted blue line). For q D 1, hairy BHs reduce to boson stars
(red solid line). The final line that delimits the domain of existence of the hairy BHs (dashed green
line) corresponds to extremal BHs, i.e. with BHs with zero temperature. The inset shows the boson
star curves for m D 1; 2. Units in the axes are normalized to the scalar field mass �. Adapted from
[101]
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have larger entropy than the corresponding Kerr BHs. Therefore, the former cannot
decay into the latter adiabatically.

As found in [101], the quadrupole moment and the angular frequency at the ISCO
can differ significantly for hairy BHs, as compared to the standard Kerr values. This
is shown in Fig. 5.14

In fact, in one corner of the parameter space these solutions can be interpreted as
Kerr BHs perturbed by a small scalar field (and whose quadrupole moment is close
to that of Kerr), whereas in the opposite corner they describe a small BH within a
large boson star. In the latter case the properties of the solutions are resemble those
of a stellar configuration rather than those of a BH.

Finally, hairy BHs have a richer structure of ergoregions than Kerr. For example,
besides the ergosphere of Kerr-like configurations (cf. Fig. 3.2) also ergosaturn can
form in a certain region of parameter space [106].

Nonlinear, hairy solutions were also extended to encompass rotating, charged
geometries [68] whereas in [107, 108] these solutions were constructed and
analyzed analytically at linear level.

5.5.2 Other Hairy Solutions and the Role of Tidal Dissipation

Generalizations were soon found that encompass hairy BHs with self-interacting
scalar fields. For example, in [109] the authors studied a complex massive scalar
field with quartic plus hexic self-interactions, dubbed nonlinear Q-clouds. Without
the self-interactions, it reduces to the hairy solutions just described and correspond
to zero modes of the superradiant instability. Non-linear Q-clouds, on the other



5.5 Are Black Holes in the Universe of the Kerr Family? 191

hand, are also in synchronous rotation with the BH horizon; but they exist on a two-
dimensional subspace, delimited by a minimal horizon angular velocity and by an
appropriate existence line, wherein the nonlinear terms become irrelevant and the Q-
cloud reduces to a linear cloud. Thus, Q-clouds provide an example of scalar bound
states around Kerr BHs which, generically, are not zero modes of the superradiant
instability. Note that self-interaction terms only become important in the nonlinear
regime: accordingly, it could be anticipated that nonlinear solutions exist (where the
nonlinear terms play the role of an effective mass term) despite not corresponding
to any superradiant bound state in the linear regime.

Other hairy solutions were also found in higher dimensional, asymptotically flat
spacetime [110]; the construction parallels that of AdS spacetime (see Sect. 4.5.1
and [111]) and consists on finding rotating BHs with scalar hair and a regular
horizon, within five dimensional Einstein’s gravity minimally coupled to a complex,
massive scalar field doublet. They are described by their mass M, two equal
angular momenta and a conserved Noether charge Q, measuring the scalar hair.
For vanishing horizon size the solutions reduce to five dimensional boson stars.
In the limit of vanishing Noether charge density, the scalar field becomes point-
wise arbitrarily small and the geometry becomes, locally, arbitrarily close to that
of a specific set of Myers-Perry BHs (the higher-dimensional versions of the
Kerr solution [112]); but there remains a global difference with respect to the
latter, manifest in a finite mass gap. Thus, the scalar hair never becomes a linear
perturbation of the Myers-Perry geometry. This is a qualitative difference when
compared to Kerr BHs with scalar hair [101]. Whereas the existence of the latter
can be anticipated in linear theory, from the existence of scalar bound states on the
Kerr geometry (i.e. scalar clouds), the hair of these Myers-Perry BHs is intrinsically
nonlinear.

An aspect that deserves to be highlighted is condition (5.51) for stationary
solutions, which holds even when the hairy solution cannot easily be mapped onto
a linearly, superradiantly unstable spacetime. This condition is tightly connected to
tidal dissipation, in turn associated with superradiance, as we explained in Sect. 2.6
(see also [113, 114]). In summary, if the scalar “cloud” does not obey Eq. (5.51),
tidal forces (of gravitational or other nature) will act and the system cannot possibly
be in equilibrium. This fact is reminiscent of the phenomenon of “tidal locking” that
occurs, for instance, in the Earth-Moon system [113].

5.5.3 Formation of Hairy Solutions and Bounds on Bosonic
Fields

In parallel with the open problem of stability of the hairy BHs discussed above,
a relevant question is the mechanism of formation of such solutions. Formation
scenarios based on collapse or Jeans-like instability arguments are hard to devise.
Indeed, if the collapsing matter does not possess any scalar charge, it is reasonable
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to expect that collapse would form a Kerr BH, which might eventually migrate
towards a hairy BH solution through superradiant amplification of a scalar-field
fluctuation. However, as we discussed in Sect. 5.3, should these solutions arise from
a superradiant instability of the Kerr metric, the energy-density of the scalar field is
negligible and the geometry would be very well described by the Kerr solution [60].
In other words, superradiant instabilities require a Kerr BH to start with, and they
can at most produce “light” scalar clouds, i.e. condensates which backreact very
weakly on the geometry. The physical reason is that superradiance can only extract
a finite amount of mass from the BH (at most 29% of the initial BH mass [115]), and
therefore the scalar cloud can only grow to a limited value. Although it is unlikely
that configurations that deviate considerably from Kerr can arise from the evolution
of initially isolated Kerr BHs, they may arise as the end-state of some other initial
conditions, most likely involving a large scalar field environment; for instance they
could arise from the collapse of ordinary stars inside a large boson-star environment.

Finally, the putative existence of hairy BH solutions as the end-state of the
superradiant instability does not invalidate any of the results of Sects. 5.3 or 5.4.
The reason is of course that hairy BHs lie along the ! D m� � � line. In other
words, for a Kerr BH to evolve towards a hairy BH it will necessarily loose angular
momentum, in the same way as Kerr BHs do, and as taken into account in Sect. 5.3.

5.6 Plasma Interactions

Already in his PhD thesis, Teukolsky proposed that plasmas could be used as mirrors
to trigger superradiant instabilities [116, 117]. Because the frequency of amplified
radiation is much smaller than the plasma frequency !�1

p (cf Eq. (4.51)) of the
interstellar medium, photons scattered by a BH in vacuum would be reflected by
a spherically-symmetric plasma distribution.

This process was recently analyzed in [118] [cf. Sect. 4.9.1]. If the background
is slowly-varying relative to the plasma time scale !�1

p and the density gradients
are small compared to the gravitational field, then [119] the relevant dynamical
equation is given by Eq. (4.52), which is equivalent to the Proca equation (4.34)
when the plasma is homogeneous. In this simple case the plasma frequency !p

can be identified with the mass �V of the vector field and all the results discussed
for Proca fields around a Kerr BH can be directly applied [118]. In a more
realistic situation the plasma will have an inhomogeneous distribution due to
the local gravitational field near the BH, e.g., the density would peak at a few
Schwarzschild radii whereas it would be negligible near the horizon. In this case
a detailed model for matter distribution is necessary for a quantitative assessment,
although preliminary computations show that the frequency and the time scale of
the instability are insensitive to local inhomogeneities near the horizon [118]. As
an example of superradiance stimulated amplification in a realistic setting, [120]
studied superradiant confinement in a toroidal magnetosphere around a Kerr BH,
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arguing that the repeated amplification of EM (with time scales of the order of the
second for stellar-mass BHs) might be a model for periodic � -ray bursts.

This class of plasma-triggered superradiant instabilities are also relevant for
small primordial BHs in the early universe [121]. When formed at redshift z, such
BHs are surrounded by a mean cosmic electron density,

n D n0 .1C z/3 
 220 cm�3
�
1C z

103

�3
; (5.53)

which translates to a time-dependent plasma frequency through Eq. (4.51). Because
the cosmological evolution occurs on a much longer time scale than the BH
evolution, we can adopt an adiabatic approximation and treat n as constant during
the energy extraction phase at a given z.

In order for the superradiance instability to be effective at a given redshift z, the
instability time scale must be much shorter than the cosmological evolution time
scale. By comparing the time scale (4.41) (with l D m D 1 and after identifying
�S D !p) with the age of the Universe �age as a function of redshift, we show in
Fig. 5.15 the Regge plane for primordial BHs with mass in the range 10�9Mˇ <

M < Mˇ for three representative redshift values. Similarly to the previous cases,
at any plotted z, BHs located above the corresponding curve are unstable due to
superradiant instability with � < �age. It is easy to derive an upper bound on the BH
mass corresponding to the portion of the Regge plane where superradiant instability
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go through a cosmic era (at some redshift 103 < z < 2� 106) when the superradiant instability is
effective. From [118]
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starts becoming effective. This reads [118]

M

Mˇ
. 0:19

a

M

�
1C z

103

��3=2
: (5.54)

In other words, a primordial BH with mass M and spin a satisfying the relation
above will pass through an epoch at redshift z when the mean gas density is such
that the superradiant instability is effective.

As previously discussed, a spinning BH could lose most of its rotational energy
over a short time scale as a result of the superradiant instability. Because the
threshold curves shown in Fig. 5.15 extend almost down to J � 0, a single
primordial BH will essentially lose all its initial angular momentum, whereas its
mass loss reads [118]

	M

M

 a!R

1 � 2a!R

 10�3 a

M

�
1C z

103

�3=2 � M

10�3Mˇ

�
; (5.55)

where in the last step we assumed .M=Mˇ/ � 2 	 105.1 C z/�3=2. According to
this estimate, in the linear approximation the efficiency of the energy extraction at
z � 105 for M � 10�4Mˇ is roughly a=M 	 20%.

Primordial BHs are intensively investigated as a possible solution of the dark
matter problem (see e.g. [121] for a review). In [118], it was argued that as the
plasma density declines due to cosmic expansion, the superradiance energy (5.55)
is released and dissipated in the cosmic microwave background through Coulomb
collisions. By evaluating the resulting spectral distortions of the cosmic microwave
background in the redshift range 103 . z . 2 	 106, and by using the existing
COBE/FIRAS data [122], competitive upper limits on the fraction of dark matter
that can be associated with spinning primordial BHs in the mass range 10�8Mˇ .
M . 0:2Mˇ were obtained, as shown in Fig. 5.16.

5.7 Intrinsic Limits on Magnetic Fields

In Sect. 4.7 we showed that rotating BHs immersed in a magnetic field are unstable
against superradiant modes. In complete analogy with the discussion of Sects. 5.3
and 5.4, due to this instability, the energy density of the radiation in the region
r . 1=B, with B the magnetic field strength, would grow exponentially in time
at the expense of the BH angular momentum, with the end state being a spinning
BH with a spin set by the superradiant threshold.13 This implies an upper bound
on the spin of magnetized BHs, again leading to holes in the BH Regge plane (cf.

13As was pointed out in [124], for the (unrealistic) Ernst metric in which radiation cannot escape,
the end state is most likely a rotating BH in equilibrium with the outside radiation, similarly to
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Sect. 5.3). This was used in [124] to put intrinsic limits on magnetic fields around
astrophysical BHs.

In Fig. 5.17 we show the BH Regge plane with contour curves corresponding to
an instability time scale 1=!I, given by Eq. (4.49), of the order of the Salpeter time.
Since the contours extend almost up to J=M2 � 0, one interesting consequence of
these results is that essentially any observation of a spinning supermassive BH (even
with spin as low as J=M2 � 0:1) would provide some constraint on B. However,
these observations can possibly exclude only very large values of B. For example a
putative observation of a supermassive BH with M � 109Mˇ and J=M2 & 0:5 can
potentially exclude the range 107Gauss . B . 109Gauss.14

Although these results are only valid when B=BM . 1, this limit includes the
most interesting region of the parameter space. Indeed, the strongest magnetic
fields around compact objects observed in the Universe are of the order of 1013–
1015Gauss [125] and, in natural units, this value corresponds to B=BM � 10�6–10�4.
For astrophysical BHs, a reference value for the largest magnetic field that can be
supported in an accretion disk is given by B � 4	 108 .M=Mˇ/�1=2 Gauss [126] so
that the approximation B � BM is well justified.

the asymptotically AdS case discussed in Sect. 4.5.1. However, in realistic situations part of the
radiation will escape to infinity, reducing the BH spin (see discussion below).
14The strength of the magnetic field can be measured defining the characteristic magnetic field
BM D 1=M associated to a spacetime curvature of the same order of the horizon curvature. In
physical units this is given by BM � 2:4� 1019

�
M

ˇ

=M
�

Gauss.
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The main caveat of these bounds is that they were obtained using the Ernst
metric which, as we discussed in Sect. 4.7, is not asymptotically flat, but instead
describes a BH immersed in a magnetic field which is supported by some form
of matter at infinity. In most realistic models it is expected that the Ernst metric
is a relatively good approximation for the geometry of astrophysical BHs only up
to a cutoff distance associated with the matter distribution. Considering that the
accretion disk is concentrated near the innermost stable circular orbit, this would
imply that these results can be trusted only when B=BM & 0:1 [124], which is a
very large value for typical massive BHs. On the other hand, the Ernst metric is
more accurate to describe configurations in which the disk extends much beyond
the gravitational radius, as is the case in various models (cf. [69, 127]). In this case,
however, the magnetic field will not be uniform and the matter profile has to be
taken into account. While the simplistic analysis of [124] can provide the correct
order of magnitude for the instability, a more refined study is needed to assess the
validity of these results in the full range of B.

5.8 Phenomenology of the Ergoregion Instability

The ergoregion instability discussed in Sect. 4.11 has important phenomenological
implications. Indeed, building on the results by Friedman [128] that a horizonless
object with an ergoregion is unstable, a series of more recent works [129–134] have
established that this instability rules out extremely compact NSs and various exotic
alternatives to BHs.
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5.8.1 Ergoregion Instability of Ultracompact Stars

As shown in Fig. 4.19, the time scale of the ergoregion instability of a compact
spinning star can be as short as �ER � 107M (although this requires an extrapolation
to � � �K beyond the slowly-rotating regime). For a compact star with M 

1:4Mˇ, this corresponds to a short time scale of the order of seconds. A relevant
question concerns the dependence of the instability on the compactness of the star
and on its equation of state. A representative example is shown in Fig. 5.18, which
presents the frequency and time scale of the fundamental l D m D 1 mode as
functions of the stellar compactness R=M for a constant-density star, whose pressure
is given in terms of the constant density in Eq. (F.4).

The instability time scale grows very rapidly as the compactness decreases and
the l D m D 1 mode turns stable at R 
 2:35M. This result is valid to second
order in the spin, a consistent treatment was described in Sect. 4.11.1. On the other
hand, by neglecting some of the second-order terms in the perturbations equations,
various works have explored the dependence of the time scale on l, m and on the
stellar compactness. Yoshida and Eriguchi have presented a detailed analysis [136],
showing that various l D m modes can become unstable. The WKB analysis by
Comins and Schutz [135] shows that in the eikonal (l D m ! 1) limit an unstable
mode appears precisely when an ergoregion is formed, although the time scale is
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Fig. 5.18 The frequency (top panel) and the time scale (bottom panel) of the fundamental l D
m D 1 unstable mode of a constant-density NS as functions of the stellar compactness R=M. The
l D m D 1 mode turns stable at about R � 2:35M. Although not shown, higher multipoles with
l D m � 1 will remain unstable until R . 3M [135, 136] (cf. also Fig. 4.21 where higher unstable
multipoles are shown in a different system.)
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exponentially long, cf. Eq. (4.64). This is also confirmed by our previous analysis
of the ergoregion instability in analog-gravity system, see Fig. 4.21. Clearly, the
instability is phenomenologically relevant only if the associated time scale is shorter
than the age of the star. In addition, the compactness of a NS is bounded from
above by the requirement that the speed of sound in the stellar interior is smaller
than the speed of light. This causality bound translates into the lower constraint
R & 3M [137, 138] on the NS radius. This seems to exclude the ergoregion
instability because, as we have shown, the latter is associated with long-lived modes
which exist only for ultracompact stars with R . 3M in the nonspinning limit.15

Furthermore, causality also constrains the maximum angular velocity of a spinning
NS [140], thus disfavoring the formation of an ergoregion. However, it is likely
that an ergoregion forms for NSs whose radius is larger than 3M if the star is fastly-
spinning. In this case a theoretical bound on the NS compactness—based on the fact
that the fastest millisecond pulsars cannot be unstable to the ergoregion instability
on dynamical time scales—could be more stringent than the causality bound. It
would be interesting to compute the instability time scale for a realistic, fastly-
spinning NS model and check whether the ergoregion instability can exclude some
allowed region of the mass-radius-spin parameter space. A systematic study in this
direction is still lacking.

5.8.2 Supporting the Black-Hole Paradigm: Instabilities
of Black-Hole Mimickers

BHs in GR have a remarkable property: being vacuum solutions of Einstein’s field
equations they do not depend on any external scale and, therefore, can exist in any
size (or, equivalently, with any mass). Compact objects as compact and massive
as BHs but that do not possess an event horizon go under the generic name of
“BH mimickers” (see, e.g., [141]). Notwithstanding, ordinary matter—even when
in extreme conditions—cannot support the enormous self-gravity of a massive and
ultracompact object. For example, NSs—the densest material objects known in the
Universe—cannot sustain masses larger than16 
 3Mˇ. Therefore, supporting the
self-gravity of a BH mimicker requires (at least!) exotic matter, this is the price to
pay to avoid dealing with event horizons.

15Recently, [139] showed that long-lived modes necessarily exist for matter configurations whose
trace of the stress-energy tensor is positive (or zero). For a perfect-fluid star, this requires P > 
=3,
where P and 
 are the NS pressure and density. This is an extreme configuration which is unlike
to exist in ordinary stars, but it might occur in other models of ultracompact objects, as those
discussed in Sect. 5.8.2.
16Even constant-density NSs have a maximum compactness which is smaller than the BH limit
M=R D 1=2. Inspection of Eq. (F.2) shows that M=R 	 4=9 to ensure regularity of the geometry.
More realistic equations of state yield a maximum mass and a maximum compactness.
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There are at least two strong motivations to study BH mimickers as alternative
to ordinary BHs. First, despite the growing evidence in favor of the BH paradigm,
a definite proof that massive compact objects are endowed with an event horizon
is still lacking. The observation—or lack thereof—of a surface would be bullet-
proof indication that compact dark objects have star-like properties or are instead
BHs (see e.g. [142]). Such tests are extremely challenging to perform in the optical
window and, in fact, some claims exist [143] that performing these tests might even
be intrinsically impossible. However, these tests might become available with the
advent of GW astronomy: the oscillation modes of BHs have a very precise and
well-known structure, which can be tested against observations [144–146], while
the presence of a surface should be imprinted also on the GWs generated during
the merger of two objects [147–149] (but see [69, 134] for a discussion). Secondly,
the applications of the superradiant instabilities discussed in Sect. 5.4 assume that
massive compact objects are BHs, whose event horizon allows for superradiant
scattering. Therefore, it is important to understand whether BH mimickers are viable
alternatives, in order to quantify the generality of the bounds previously discussed.
In this section, we show that BH mimickers are associated with various instabilities,
which make these objects unlikely to form in realistic scenarios, thus giving further
theoretical support to the BH paradigm.

BH Mimickers Because the pressure of ordinary matter cannot sustain ultracom-
pact massive objects, BH mimickers have to rely on different support mechanisms.
Among the most popular alternatives are [141]:

• Boson stars made up of fundamental self-interacting scalar fields that are pre-
vented from gravitational collapse through the Heinsenberg uncertainty principle
(for reviews on the subject see [150–152]). Bosons stars can be as compact as a
NS and as massive as the BH candidate at the center of our galaxy [148, 152].
These compact objects can be classified according to the scalar potential in the
Klein-Gordon Lagrangian [148, 151, 153]. Similarly to ordinary compact stars,
boson stars are linearly stable below a critical mass [152, 153].

• Gravitational condensate stars (or gravastars [154]) are proposed as the end state
of a quantum phase transition in the vicinity of the would-be BH horizon. The
latter is effectively replaced by a transition layer and the BH interior by a segment
of de Sitter space [155]. The effective negative pressure of the de Sitter interior
contributes to sustain the self-gravity of the object for any compactness. In the
static case these models have been shown to be thermodynamically [154] and
dynamically [149, 156, 157] stable for reasonable equations of state.

• Superspinars are BH-like objects described by the Kerr metric with spin
parameter exceeding the Kerr bound, a > M. In these models, the region
containing naked singularities and closed timelike curves of the super-extreme
Kerr geometry is excised or assumed to be modified by, say, stringy correc-
tions [129, 130, 158].

• Wormholes are regular geometries which—at least in the context of BH
mimickers—are described by ds2wormhole D ds2Kerr C �ıgabdxadxb, where � � 1

parametrizes the deviations from the Kerr metric. Under certain assumptions on
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ıgab, the geometry describes a horizonless object with an excision at distance
O.�/ from the would-be horizon [159]. Traversable wormholes require exotic
matter or divergent stress tensors [160], thus some ultra-stiff matter is assumed
close to the would-be horizon.

Ergoregion Instabilities Spinning BH mimickers can develop an ergoregion and
become unstable, similarly to ultracompact stars as previously discussed. The
ergoregion instability of various boson-star and gravastar models has been studied
in detail in [129], showing that unstable modes generically exist (see also [132] for
a detailed discussion in the case of gravastars). While gravastars have been studied
only in the slowly rotating limit, numerical solutions of highly-spinning boson stars
are available.17 For a given compactness of the order of M=R � 1=2, gravastars and
boson stars develop an ergoregion when spinning above a certain threshold. As for
ultracompact stars, also in this case the instability arises from long-lived modes that
exist when these objects possess a light-ring, which typically happens when R . 3M
in the nonspinning limit.

The ergoregion instability of superspinars and Kerr-like wormholes was studied
in [130], showing that similar results hold. Because in this case the exact form of
the geometry is unknown, the stability analysis has been performed by imposing
Dirichlet boundary conditions at the excision surface at r D r0. The latter should
approximate the boundary conditions required by a hard surface at the would-be
horizon location. A detailed analysis of the instability of superspinars, including
different boundary conditions and various configurations, was performed in [131].
An example of such unstable modes is presented in Fig. 5.19. The instability turns
out to be effective in a significant region of the two-dimensional parameter space
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Fig. 5.19 Real (left panel) and imaginary (right panel) part of unstable l D m D 2 gravitational
modes of a superspinar as a function of the spin parameter, a=M, for several fixed values of the
surface location r0 where Dirichlet conditions (i.e., perfect reflectivity R D I) are imposed. See
[131] for details

17The angular momentum of a boson star is quantized [152]; this prevents performing a standard
slow-rotation approximation.
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.a=M; r0=M/. The most effective instability at low rotation rates corresponds to the
l D m D 2 fundamental mode, but when a � M and r0 � M unstable modes with
m D 0 also exist. In this case, the instability is related to the existence of stable
polar null circular orbits in the spacetime [131]. Finally, when r0=M < 0, a third
family of m D 0 modes exists, which is probably related to the existence of naked
singularities and closed timelike curves.

Nonlinear Instability The ergoregion instability requires an ultracompact object to
rotate above a certain critical spin, what happens when these objects are slowly rotat-
ing or almost static? Recently, a new mechanism has been put forward which could
exclude any ultracompact BH mimicker on the grounds that such an object would
be nonlinearly unstable [133]. This nonlinear instability is associated to the long-
lived modes discussed above [134]. Being trapped between the center of the object
and the light ring, and being localized near a second, stable null geodesic, these
modes may become unstable under fragmentation via a “Dyson-Chandrasekhar-
Fermi” mechanism [161–163] at the nonlinear level. To understand this mechanism,
it is illustrative to inspect the eigenfunctions of the linearized problem. An example
is shown in Fig. 5.20 for the case of a ultracompact star (qualitatively similar
results hold for other BH mimickers). As the multipolar index l increases, the
eigenfunctions becomes more and more elongated along the radial direction. If
we assume for simplicity that the perturbations are axisymmetric (m D 0), these
elongated, long-lived modes are unstable against the same “Dyson-Chandrasekhar-
Fermi” mechanism that affects thin cylinders or rings of matter [161–164]. The
minimum growth time scale of this instability scales as �DCF � ı
�1=2, where
ı
 is the density fluctuation. The requirement that nonlinearities take over is that
�DCF be much smaller than the lifetime of linear fluctuations. Because the latter
grows exponentially with l [cf. Eq. (4.64)], it is easy to show that fragmentation
becomes important already at moderately small values of l even for ı
=
 � 10�16
or smaller [134].

Fig. 5.20 Scalar eigenfunctions of a static, ultracompact star with radius R D 2:3M for m D 0

and l D 6; 10; 20 (from left to the right). The eigenfunctions have a typical width that scales as l�1

in the angular direction and a width in the radial direction that depends on the model, but typically
ranges between l�0:4� l�0:8. Therefore, the “aspect ratio” of the perturbation � l0:6� l0:2 grows in
the large-l limit and the perturbation becomes more and more elongated along the radial direction.
See [134] for details
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The fragmentation of the linear eigenfunction leads to a configuration which
consists on a spherically symmetric core surrounded by droplets of the star fluid,
whose sizes are much smaller than that of the original object [134] (see also
nonlinear results for fragmentation of black strings [165]). It is easy to see that
these smaller droplets, although of the same material as the original star, are much
less compact because they are much smaller and are therefore expected to be
themselves stable. Likewise, the core of the star is also less compact and stable. On
longer time scales, these droplets re-arrange and fall into the core, and the process
continues. The dynamical picture looks like that of a “boiling” fluid, and radiates
a nonnegligible amount of radiation. Exact calculations have not been performed
yet but, if this scenario is correct, a sizable fraction of the object’s initial mass can
disperse to infinity, possibly reducing the compactness of the final object to values
which no longer allow for the existence of light rings. In an alternative scenario,
nonlinear interactions over the ultralong lifetime of the unstable modes may lead to
the formation of small BHs close to the stable light ring [134].

Light Rings Imply Black Holes To summarize, ultracompact objects with R . 3M
are plagued by various instabilities. When these objects are spinning sufficiently
fast they suffer from the ergoregion instability and, even when they are only slowly
spinning or static, long-lived modes trapped by the light-ring can become unstable
at the nonlinear level. In the latter case, the instability can lead to fragmentation
(thus reducing the object’s compactness) or to gravitational collapse (thus forming
a BH). In both cases, the instability can be sufficiently strong to be dynamically
effective. As recently pointed out [139], exotic matter configurations with T > 0 are
necessarily characterized by the existence of long-lived modes. Altogether, these
results give further theoretical support to the BH hypothesis: the mere observation
of a light ring—a much simpler task than the observation of the event horizon, and
something that is within the reach of upcoming facilities [9, 10, 166]—would be
conclusive evidence for the existence of BHs.

5.9 Open Issues

• The role of the horizon in the BZ mechanism is still unclear and whether it is
necessary for the process to occur is still a matter of debate. In fact, some recent
numerical simulations [41] seem to indicate that the ergosphere alone is sufficient
for the process to occur.

• As was pointed out in [167], recent GRMHD simulations studying the BZ
mechanism suggest that the magnetosphere leading to BH jets has a large split-
monopole component [18–20]; however a simple explanation for why the system
tends to this solution is still missing.

• Recent numerical simulations suggest that BHs carrying linear momentum [168]
and coalescing BH–BH or BH–NS binary systems can also power jets [169].
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Although some work has been done to understand the mechanism behind these
jets [170, 171], a complete theoretical understanding is still needed.

• In the context of the BH analog of the two-ring model discussed in Sect. 4.8, it is
important to understand whether such mechanism (or extensions therein) can be
used to power gamma-ray burst, as discussed in [172]. More in general, a purely-
superradiant model for gamma-ray burst production has not yet been developed.

• The stability of the hairy solutions discussed in Sect. 5.5 remains an urgent open
issue; all the hairy solutions have ergoregions [106] and it is likely that in part
of the parameter space these solutions will be simply rotating too fast and will
themselves be unstable against an ergoregion instability, discussed in Sect. 4.11.
Indeed, as discussed above, fastly-spinning boson stars are unstable due to the
ergoregion instability, whereas Kerr BHs are not. Since the hairy solutions found
in [106] interpolate between these two geometries, it is reasonable to expect that
there exists some critical value of the scalar charge above which the solution is
unstable. All this remains to be proven.

• The GW phenomenology of massive bosons with spin remains to be investigated.
Specifically, more detailed computations of the superradiant rates for massive
vector and tensor fields are needed. Likewise, the role of nonlinearities for these
fields (e.g. generalizations of the bosenova collapse [57, 74, 75]) have not been
explored yet.

• More in general, the impact of nonlinearities on the bounds discussed in Sect. 5.4
has not been fully explored. Nonlinearities might slow down or even saturate the
superradiant growth of bosonic clouds, thus making the constraints derived from
BH superradiance less stringent. On the other hand, nonlinear effects similar to
the bosenova [74, 75] can provide novel smoking guns for bosonic condensates
around astrophysical BHs.

• Floating orbits are not possible with massless fields [91], and have so far been
discussed only in the context of massive scalars where the spacetime itself is
unstable (cf. Sect. 5.4.3). Outstanding issues are related to (1) the existence of
floating orbits for other massive fields; (2) the existence of this effect for stable
spacetimes; (3) understanding floating for eccentric orbits or its dependence on
the size of the floating body.

• Plasma-triggered superradiant instabilities have been studied in [118] but mostly
for homogeneous configurations. It would be interesting to extend such analysis
to more realistic matter profiles around a spinning BH, for example by extending
perturbative [173] or fully-numerical [54] methods (see [120] for a related
analysis).

• As mentioned above, a systematic study of the ergoregion instability in realistic
models of spinning NSs is still lacking. It would be interesting to compute the
time scale and check whether the instability can be used to rule out some region
of the NS mass-radius-spin parameter space.
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• Wormholes are interesting alternatives to the BH paradigm. Traversable worm-
holes are predicted in GR for matter that violates the null energy condition [160].
When rotating, such objects are expected to be unstable because of the ergoregion
instability, but a detailed computation, together with a discussion of possible
astrophysical implications, is not available yet.
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Chapter 6
Conclusions and Outlook

Energy extraction through superradiance is ubiquitous in physics and appears in
essentially any dissipative system under different guises. In fact, we have discussed
how superradiance can be understood in simple kinematical terms. In flat spacetime
the most common superradiant phenomenon is Cherenkov emission, but many
classical and quantum systems can be turned into superradiant amplificators. Sound
and surface waves can be amplified in a variety of settings that could be easily
devised in the laboratory.

In gravitational theories, superradiance is intimately connected to tidal accelera-
tion, even at Newtonian level. Relativistic gravitational theories predict the existence
of BHs, gravitational vacuum solutions whose event horizon behaves as a one-
way viscous membrane. This allows superradiance to occur in BH spacetimes,
and to extract energy from vacuum even at the classical level. When semiclassical
effects are taken into account, superradiance occurs also in static configurations,
as in the case of Hawking radiation from a Schwarzschild BH. The efficiency of
superradiant scattering of GWs by a spinning (Kerr) BH can be larger than 100%
and this phenomenon is deeply connected to other important mechanisms associated
to spinning compact objects, such as the Penrose process, the ergoregion instability,
the Blandford-Znajek effect, and the CFS instability. Rotational superradiance might
be challenging to observe in the laboratory, but its BH counterpart is associated with
a number of interesting effects and instabilities, which may leave an observational
imprint. We have presented a unified treatment of BH superradiant phenomena
including charged BHs, higher dimensions, nonasymptotically flat spacetimes,
analog models of gravity and theories beyond GR.

An important point of our analysis is the role played by the event horizon
and by the ergoregion in energy-extraction processes, such as superradiance, tidal
acceleration and the Penrose process. Extraction of energy and angular-momentum
requires dissipation and the latter is provided by the event horizon. It is often
assumed that the ergosphere (allowing negative energy states in its interior) is
responsible for energy amplification. While this is largely true, the ergoregion alone
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is not sufficient, the crucial role being played by the event horizon. Interestingly,
the distinction between ergoregion and horizon is superfluous because, as we have
shown, the existence of an event horizon in stationary and axisymmetric spacetimes
implies that of an ergoregion, so the two effects (dissipation and negative-energy
states) are indissolubly connected to each other.

One of the most interesting applications of BH superradiance is the possibility
of tapping the amplified radiation through various mechanisms of confinement,
thus producing a “BH bomb” instability. We have discussed various of such con-
fining mechanisms, including reflecting surfaces, AdS boundaries, massive fields,
magnetic fields and other nonminimal interactions. In the AdS case, superradiant
instabilities of charged BHs provide a holographic dual description of a spontaneous
symmetry-breaking mechanism at finite temperature, and are associated with a
phase transition between RN-AdS BHs and a novel hairy BH which is the ground
state at low temperatures.

The study of superradiant instabilities triggered by light bosons has flourished
in recent years, because of the exciting connections between BH superradiance and
particle physics. We have provided a unified picture of the state-of-the-art in this
field and have described the evolution of these instabilities in a Kerr BH. Superradi-
ant instabilities of massive bosons have important phenomenological effects, being
associated to very peculiar electromagnetic and GW emission from astrophysical
BHs. The effects we have discussed (formation of bosonic condensates near
spinning BHs, lack of highly-spinning BHs, emission of peculiar monochromatic
GWs and dipolar scalar waves) are currently investigated to constrain ultralight
bosons arising in various extensions of the Standard Model, to rule out dark-matter
candidates, and to study various astrophysical effects in the strong-curvature regime.

Furthermore, we have discussed novel hairy BH solutions that branch off the
superradiant threshold in the AdS case and in the asymptotically-flat case with mas-
sive complex scalars. These solutions can be interpreted as the nonlinear extension
of linear bound states of frequency saturating the superradiant condition (1.1), and
give rise to stationary hairy BHs that interpolate between Kerr BHs and regular
solutions without a horizon. These hairy BHs evade the no-hair theorem of GR and
might play an important role in astrophysical tests of the Kerr hypothesis.

BH superradiance has been discovered more than 40 years ago, but it is nowadays
more alive than ever. Not only new exciting theoretical developments have been
recently discovered, but it is likely that upcoming electromagnetic and GW facilities
will allow us to observe the effects of BH superradiance directly in the near future,
thus providing a new tool to test gravitational interactions and particle physics in
curved spacetime. Among the most urgent open problems are the fully nonlinear
evolution of the superradiant instability, the stability of hairy BHs, electromagnetic
and GW tests of bosonic condensates around massive BHs, observing superra-
diance in analog-gravity models in the laboratory, understanding completely the
holographic dual of superradiant states and their microscopic description.



Appendix A
List of Publicly Available Codes

The numerical and analytical methods used in this work have been implemented
in ready-to-be-used MATHEMATICA R� notebooks, which are publicly available [1].
Here we give a short description of them:

• superradiance charge.nb: Amplification factors of the superradiant scattering
of a charged wave off a spherically-symmetric or a slowly-rotating BH with
generic metric.

• superradiance spin.nb: Amplification factors of the superradiant scattering of
a neutral bosonic wave of generic spin off a Kerr BH, obtained by solving the
Teukolsky equations.

• Kerr massive scalar bound states.nb: solves the eigenspectrum of unstable
modes of a Kerr BH under massive scalar perturbations through Leaver’s
continued fraction method.

• HartleThorne.nb: (a) computes and solves Einstein’s equations for a rotating
self-gravitating perfect-fluid to second order in the spin and (b) derives in detail
the procedure to separate the Klein-Gordon equation in this background.

Some data presented in the main text are also available on the webpage [1]. For
example, the data files contained in the file superradiance spin.nb provide the
dependence of the amplification factor Zslm.!/ for a Kerr BH in the entire parameter
space. The number of digits in the tables is not indicative of the precision; our tests
indicate a precision of roughly one part in 105.
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Appendix B
Analytic Computation of the Amplification
Coefficients

In this section we compute the cross section of a Kerr BH for generic spin. We will
follow [2, 3]. We assume that the Compton wavelength of the particle is much bigger
than the gravitational size of the BH, i.e., !M � 1. We also consider the slowly
rotating regime a! � 1.

To solve the radial equation (3.73) we use a matching procedure, dividing the
spacetime in two overlapping regions, the near-region r � rC � 1=!, and the far-
region M � r � rC.

Changing variables to

x D r � rC
rC � r�

; (B.1)

Eq. (3.73) is approximately given by

x.1C x/2
d2R

dx2
C .s C 1/x.x C 1/.2x C 1/

dR

dx

C �
k2x4 C 2iskx3 � �x.x C 1/� isQ.2x C 1/C Q2

�
R D 0 ; (B.2)

where Q D !�m�H
4
TH

, 4
TH D .rC � r�/=r2C and k D !.rC � r�/.

(i) Near-Region Solution In this region we consider kx � 1 such that Eq. (B.2) is
then approximately given by

x.1C x/2
d2R

dx2
C .s C 1/x.x C 1/.2x C 1/

dR

dx

C �
Q2 � isQ.2x C 1/� �x.x C 1/

�
R D 0 : (B.3)
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The most general solution to Eq. (B.3), satisfying the ingoing boundary condition
is given by

R D A1x
�s�iQ.x C 1/�sCiQF.˛; ˇ; �;�x/ ; (B.4)

� D 1 � s � 2iQ ; (B.5)

˛ D �l � s ; (B.6)

ˇ D l � s C 1 : (B.7)

The large x behavior is

R � A1

�
xl�s�.�/�.ˇ � ˛/

�.� � ˛/�.ˇ/
C x�l�1�s�.�/�.˛ � ˇ/

�.˛/�.� � ˇ/

�
: (B.8)

(ii) Far-Region Solution In the asymptotic region Eq. (B.2) is approximately given
by

d2R

dx2
C 2.1C s/

x

dR

dx
C
�

k2 C 2isk

x
� �

x2

�
R D 0 ; (B.9)

The solution of this equation can be written in terms of the confluent hypergeometric
function

R D C1e
�ikxxl�sU.l � s C 1; 2l C 2; 2ikx/C C2e

�ikxx�l�s�1U.�l � s;�2l; 2ikx/ :
(B.10)

Expanding for small kx � 1, we obtain

R � C1x
l�s C C2x

�l�s�1 : (B.11)

Matching (B.8) and (B.11) we get

C1 D A1
�.1 � s � 2iQ/�.2l C 1/

�.l � s C 1/�.l C 1 � 2iQ/
; (B.12)

C2 D A1
�.1 � s � 2iQ/�.�1� 2l/

�.�l � 2iQ/�.�l � s/
: (B.13)

When r ! 1 and in the low-frequency limit, the solution of (3.73) behaves as

Rslm � Is
e�i!r

r
C Rs

ei!r

r2sC1 ; as r ! 1 : (B.14)
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To compute the fluxes at infinity, we must relate the C1 and C2 with Is and Rs.
Expanding (B.10) at infinity and matching to (B.14) we find

Is D 1

!

�
klC1Cs C2.�2i/lCs�.�2l/

�.�l C s/
C ks�l C1.�2i/s�l�1�.2l C 2/

�.l C s C 1/

�
; (B.15)

Rs D !�2s�1
�

klC1Cs C2.2i/l�s�.�2l/

�.�l � s/
C ks�l C1.2i/�l�s�1�.2l C 2/

�.l � s C 1/

�
:

(B.16)

To obtain the fluxes one can use the trick proposed in [4]: solve Eq. (3.73) replacing
s by �s, with the asymptotic behavior of R�slm given by

R�slm � I�s
e�i!r

r
C R�s

ei!r

r�2sC1 : (B.17)

Making use of the symmetries of the radial equation,

Rs l m!.r/ D .�1/mR�
s l �m �!.r/ ;

R�
s l m!.r/ D 	�sR�s l m!.r/ ; (B.18)

the absorption coefficient can then be computed using

Zslm D dEout

dEin
� 1 D

ˇ̌̌
ˇRsR�s

IsI�s

ˇ̌̌
ˇ � 1 : (B.19)

After some algebra one finally finds (3.102) (see also the Appendix of [4] for
details).



Appendix C
Angular Momentum and Energy

Consider a stationary and axially symmetric spacetime with Killing vector fields
�
�

.t/ � @�t and ��.'/ � @�'. For a stress-energy tensor T�� the conserved energy flux
vector is given by

�� D �T���
�
.t/ ; (C.1)

and the conserved angular momentum flux vector by

l� D T���
�
.'/ : (C.2)

Thus over a hypersurface d†� the energy and angular momentum fluxes are

ıE D ��d†� ; ıJ D l�d†� : (C.3)

Over a spherical surface d†� � n�r2dtd�, where n� is the radial outgoing normal
vector to the surface, we then have

ıJ

ıE
D �Tr

'

Tr
t

: (C.4)

Considering a scalar field ˆ.t; r; #; '/ D f .r; #/e�i!tCim' with the scalar stress-
energy tensor

T�� D ˆ;�ˆ;� � 1

2
g��ˆ˛ˆ

˛ ; (C.5)

one finds

ıJ

ıE
D m

!
: (C.6)
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This applies for generic fields (photons, gravitons, . . . ) as can be seen, by using
the electromagnetic stress-energy tensor or using the effective stress-energy tensor
for linearized gravitational waves [5]. We can also see it using the following simple
argument [6]. At infinity the wave is composed of many quanta each with energy
E D „! and angular momentum in the ' direction J D „m. Thus the ratio of the
total angular momentum to the total energy carried by the wave across a sphere must
be m=!.

C.1 Energy and Angular Momentum Fluxes at the Horizon

The energy flux at the horizon, as measured at infinity, is given by

ıEhole D �T �
� �

�

.t/d
3†� ; (C.7)

where ��.t/ � @�t is the time Killing vector of the Kerr metric and†� is the 3-surface
element of the hole given by

d3†� D n�2MrC sin#d#d'dt ; (C.8)

with the normal vector n� in the inward direction. Likewise we can define a
conserved angular momentum flux associated with the axial Killing vector ��.'/ �
@�',

ıJhole D T �
� �

�

.'/d
3†� : (C.9)

On the horizon we have

n� D �
�

.t/ C�H�
�

.'/ ; (C.10)

thus for any wave that enters the BH we obtain

d2Ehole

dtd�
��H

d2Jhole

dtd�
D 2MrCT��n�n� : (C.11)

Because of energy conservation, an angular momentum increment ıJ is related to
an energy increment ıE � ıM by Eq. (3.23) [6]. Inserting this in (C.11) gives

d2Ehole

dtd�
D !

kH
2MrCT��n�n� : (C.12)



Appendix D
Electromagnetic Fluctuations Around a
Rotating Black Hole Enclosed in a Mirror

Consider the evolution of a Maxwell field in a Schwarzschild background with
metric given by

ds2 D �f .r/dt2 C dr2

f .r/
C r2.d#2 C sin2 #d'2/ ; (D.1)

where, f .r/ D 1 � 2M=r and M is the BH mass. The perturbations are governed by
Maxwell’s equations:

F�� I� D 0 ;F�� D A�;� � A�;� ; (D.2)

where a comma stands for ordinary derivative and a semi-colon for covariant
derivative. Since the background is spherically symmetric, we can expand A� in
four-dimensional vector spherical harmonics (see [7]):

A�.t; r; #; '/ D X
l;m

2
4
0
@ 0

0

alm.t; r/NSlm

1
AC

0
@ f lm.t; r/Ylm

hlm.t; r/Ylm

klm.t; r/ NYlm

1
A
3
5 ; (D.3)

with the vector spherical harmonics given by,

NY|
lm D �

@#Ylm; @'Ylm
�
; NS|

lm D
�

1

sin#
@'Ylm;� sin#@#Ylm

�
; (D.4)

and where Ylm are the usual scalar spherical harmonics, m is the azimuthal number
and l the angular quantum number. The first term in the right-hand side has parity
.�1/lC1, and the second term has parity .�1/l. We shall call the former the axial
modes and the latter the polar modes.
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Upon defining

‡ lm D r2

l.l C 1/

�
@th

lm � @rf
lm
�
; (D.5)

and inserting (D.3) into Maxwell’s equations (D.2), and after some algebra, we get
the following system of equations

@2alm.t; r/

@r2�
C
�
� @2

@t2
� V.r/

�
alm.t; r/ D 0 ; (D.6)

@2‡ lm.t; r/

@r2�
C
�
� @2

@t2
� V.r/

�
‡ lm.t; r/ D 0 ; (D.7)

V D f
l.l C 1/

r2
: (D.8)

If we assume a time dependence alm ; ‡ lm / e�i!t, the equation for electromagnetic
perturbations of the Schwarzschild geometry takes the form

@2‰

@r2�
C �

!2 � V
�
‰ D 0 ; (D.9)

where the tortoise coordinate is defined through dr=dr� D f .r/, ‰ D alm for axial
modes and ‰ D ‡ for polar modes. The potential V appearing in Eq. (D.9) is given
by Eq. (D.8).

Let us now assume we have a spherical conductor at r D rm. The conditions to
be satisfied are then that the electric/magnetic field as seen by an observer at rest
with respect to the conductor has no tangential/parallel components, E# / F# t D
0; E' / F' t; Br / F' # D 0. This translates into

@ta
lm.t; rm/ D 0 ; f lm.t; rm/ � @tk

lm.t; rm/ D 0 : (D.10)

Using Maxwell’s equations (D.2), we get the relation

f lm.t; rm/� @tk
lm.t; rm/ D f

l.l C 1/
@r
�
r2@rf

lm � r2@th
lm
�
: (D.11)

Finally, using Eq. (D.5) we get

@r‡ D 0 : (D.12)

In other words, the boundary conditions at the surface r D rm are ‰ D 0 and
@r‰ D 0 for axial and polar perturbations respectively. This can be used to easily
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compute the electromagnetic modes inside a resonant cavity in flat space. Taking
M D 0 in Eq. (D.9) we find the exact solution

‰ D p
r
�
C1JlC1=2.r!/C C2YlC1=2.r!/

�
; (D.13)

where Ci are constants and Jn.r!/ and Yn.r!/ are Bessel functions of the first and
second kind, respectively. Imposing regularity at the origin r D 0 implies C2 D 0.
The Dirichlet boundary condition ‰ D 0 at r D rm, which can easily be shown to
correspond to the transverse electric modes (modes with Er D 0) [8], then gives

!TE D jlC1=2;n
rm

; (D.14)

where jlC1=2;n are the zeros of the Bessel function JlC1=2 and n is a non-negative
integer. On the other hand the eigenfrequencies for the Neumann boundary condi-
tion @r‰ D 0, which corresponds to the transverse magnetic modes (modes with
Br D 0) [8], can be computed solving

˚
@r
�p

rJlC1=2.r!/
�


rDrm
D .l C 1/JlC1=2.rm!/� rm!JlC3=2.rm!/p

rm
D 0 :

(D.15)

Defining QjlC1=2;n as being the zeroes of @r
�p

rmJlC1=2.rm!/
�

we find

!TM D
QjlC1=2;n

rm
: (D.16)

The eigenfrequencies for l D 1 and n D 0 are shown in Fig. 4.3 where we see that
when rm � M, the real part of the quasinormal frequencies of a BH enclosed in a
mirror asymptotically reduces to the flat space result. One can write down a relation
between the Regge-Wheeler function‰ [9–11] and the Teukolsky radial function R
(cf. Eq. (3.72)) given by

‰

r.r2 � 2Mr/s=2
D
	

r
p
	

jsj

Djsj�
	

r�jsjR


; s < 0;

‰

r.r2 � 2Mr/s=2
D
�

rp
	

�s

DsC
��

r2 � 2Mr

r

�s

R

�
; s > 0; (D.17)

where D˙ D d=dr ˙ i!=f . Using these relations and Teukolsky’s radial equa-
tion (3.73), one finds that the Dirichlet and the Neumann boundary conditions for
‰, correspond to the Robin boundary conditions for the radial function R given
respectively by

@rR�1 D r � 2M C ir2!

r.r � 2M/
R�1 ; (D.18)
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@rR�1 D r!Œ2M C r.�1 � ir!/� � il.l C 1/.2M � r/

.2M � r/r2!
R�1 : (D.19)

After having understood the nonrotating case, below we turn to the rotating case.
The main difficulty relies in describing the electromagnetic physical quantities in
terms of the Newman-Penrose quantities. We will show that doing so, will allow us
to generalize the conditions (D.18) and (D.19).

Newman-Penrose Approach In the Newman-Penrose formalism, the electromag-
netic field is characterized by three complex scalars from which one can obtain the
electric and magnetic field. The details of this procedure are not important for us
here so we refer the reader to [12]. In the frame of a ZAMO observer (cf. Sect. 3.1),
the relevant electric and magnetic field components read [12]

E.#/ D
�

	1=2.r2 C a2/p
2
�A1=2.r2 C a2 cos2 #/

�
�0

2
� �2


2	

�
C c:c:

�
�2a	1=2

A1=2
sin# Im.�1/ ;

E.'/ D
�
�i	1=2


�
�0

2
p
2

C �2p
2
2	

�
C c:c:

�
;

B.r/ D
�

a sin#p
2
A1=2

�
�2 �	
2

�0

2

�
C c:c:

�
C 2

r2 C a2

A1=2
Im.�1/ ; (D.20)

where 
 D �.r � ia cos#/�1, A D .r2 C a2/2� a2	 sin2 # and	 D r2�2Mr C a2.
If we assume a conducting spherical surface surrounding the BH at r D rm, then

Maxwell’s equations require that E.#/ D E.'/ D B.r/ D 0 at r D rm and we are left
with the boundary conditions at the conductor:

Re .
ˆ0/ D Re .
ˆ2/

	
; Im .
ˆ0/ D � Im .
ˆ2/

	
; Im.�1/ D 0 ; (D.21)

where we defined ˆ0 D �0 and ˆ2 D 2
�2�2 . This can be simplified to


ˆ0 D 
�ˆ�
2

	
: (D.22)

We use the decomposition

ˆ0 D e�i!tCim'Rs l m!Ss l m!.#/˙ ei!t�im'Rs l �m �!Ss l �m �!.#/ ; (D.23)

ˆ2 D e�i!tCim'R�s l m!S�s l m!.#/˙ ei!t�im'R�s l �m �!S�s l �m �!.#/ ;

(D.24)

where the plus and minus signs stand for different polarizations, while the radial
and the angular function, R and S, satisfy Teukolsky’s Eqs. (3.73) and (3.74),
respectively. The functions RsD1 can be written as a linear combination of RsD�1,
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and SsD�1 can be written as a linear combination of SsD1 and its derivative through
the Starobinski-Teukolsky identities [13–15]

D0D0�1R D BR1 ; L0L1S1 D BS�1 ; (D.25)

where B D p
.�C a2!2 � 2am!/2 C 4ma! � 4a2!2 and the linear operators are

given by

D0 D @r � i
K

	
; Ln D @# C m csc# � a! sin# C n cot#: (D.26)

Furthermore, from Teukolsky’s equations one can derive the following identities [9]

R�
s l m! D .�1/mRs l �m �! ; S�

s l m! D .�1/mS�s l �m �! : (D.27)

Finally, using (D.23), (D.27) and (D.25) we find that the boundary conditions (D.22)
can be written as the following conditions for the two polarizations:

@rR�1 D �i	
�˙B C Alm C !

�
a2! � 2am C 2ir

��
2	 .a2! � am C r2!/

R�1

C
�
a2! � am C r2!

� �
2ia2! � 2iam C 2M C 2ir2! C @r	 � 2r

�
2	 .a2! � am C r2!/

R�1 ;

(D.28)

which is the result shown in Sect. 4. Note that to for a D 0 we recover the
condition (D.18) when using the minus sign, while for the plus sign we recover
the condition (D.19).



Appendix E
Hartle-Thorne Formalism for Slowly-Rotating
Spacetimes and Perturbations

In this Appendix we summarize the formalism originally developed by Hartle and
Thorne [16] to construct slowly-rotating stars and that developed by Kojima [17, 18]
to include generic nonspherical perturbations (see also [19, 20] for extensions and
[21] for a review.).

E.1 Background

Let us start by considering the most general stationary axisymmetric spacetime (we
also assume circularity, see Sect. 3.1.5 and [22])

ds20 D gttdt2 C grrdr2 C 2gt'dtd' C g##d#2 C g''d'2 ; (E.1)

where gtt, grr, gt' , g## and g'' are functions of r and # only. Assuming slow
rotation, we construct a perturbative expansion in the angular momentum J (or in
some other parameter linear in J, which characterizes the rotation rate). To second
order in rotation, the metric above can be expanded as [16]

dQs2 D �e�
�
1C 2�2 .h0 C h2P2/

�
dt2 C 1C 2�2.m0 C m2P2/=.r � 2M/

1 � 2M=r
dr2

Cr2
�
1C 2�2.v2 � h2/P2

� �
d#2 C sin2 #.d' � �$dt/2

�
; (E.2)

where P2 D P2.cos#/ D .3 cos2 # � 1/=2 is a Legendre polynomial. The radial
functions � and M are of zeroth order in rotation,$ is of first order, and h0, h2, m0,
m2, v2 are of second order.

We consider a perfect fluid coupled to gravity with a barotropic equation of state
P D P.
/, where P and 
 are the pressure and the density of the fluid, respectively.
Under an infinitesimal rotation both P and 
 transform as scalars. As shown in [16,
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23], in order to perform a valid perturbative expansion it is necessary to transform
the radial coordinate in such a way that the deformed density in the new coordinates
coincides with the unperturbed density at the same location. It can be shown that
this transformation is formally equivalent to working in the original coordinates but
expanding the pressure and the density as

P � P0 C	P D P0 C .
0 C P0/.p0 C p2P2/ ; (E.3)


 � 
0 C	
 D 
0 C .
0 C P0/
@
0

@P0
.p0 C p2P2/ ; (E.4)

where P0 and 
0 denote the corresponding quantities in the nonrotating case. Finally,
the stress-energy tensor is the standard one,

T�� D .P C 
/u�u� C g��P ; (E.5)

where u� is the fluid four-velocity. By plugging the decompositions above into the
gravitational equations G�� D 8
T�� , and by solving the equations order by order
in the spin, we obtain a system of ODEs for the rotating background, which can be
solved by standard methods [16, 23, 24].

E.2 Perturbations of a Slowly-Rotating Object

Perturbations of slowly rotating and oscillating compact objects can be studied by
perturbing the solution discussed above. Scalar, vector and tensor field equations in
the background metric (E.2) can be linearized in the field perturbations. Any per-
turbation function ıX can be expanded in a complete basis of spherical harmonics,
similarly to the static case. Schematically, in the frequency domain we have

ıX�1:::.t; r; #; '/ D ıX.i/lmY lm .i/
�1:::

e�i!t ; (E.6)

where Y lm .i/
�1::: is a basis of scalar, vector or tensor harmonics, depending on the

tensorial nature of the perturbation ıX. As in the spherically symmetric case, the
perturbation variables ıX.i/lm can be classified as “polar” or “axial” depending on
their behavior under parity transformations.

The linear response of the system is fully characterized by a coupled system of
ODEs in the perturbation functions ıX.i/lm . In the case of a spherically symmetric
background, perturbations with different values of .l; m/, as well as perturbations
with opposite parity, are decoupled. In a rotating, axially symmetric background,
perturbations with different values of m are still decoupled but perturbations with
different values of l are not.
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To second order, the perturbation equations read schematically as (cf. [21] for
details)

0 D Al C Qam NAl C Qa2 OAl C Qa.Ql QPl�1 C QlC1 QPlC1/

CQa2
h
Ql�1Ql MAl�2 C QlC2QlC1 MAlC2

i
C O.Qa3/ ; (E.7)

0 D Pl C Qam NPl C Qa2 OPl C Qa.Ql QAl�1 C QlC1 QAlC1/

CQa2
h
Ql�1Ql MPl�2 C QlC2QlC1 MPlC2

i
C O.Qa3/ ; (E.8)

where Qa D a=M, Ql D
q

l2�m2

4l2�1 and the coefficients Al and Pl (with various
superscripts) are linear combinations of axial and polar perturbation variables,
respectively.

The structure of Eqs. (E.7)–(E.8) is interesting. In the limit of slow rotation there
is a Laporte-like “selection rule” [25]. Perturbations with a given parity and index l
are coupled to: (i) perturbations with opposite parity and index l ˙ 1 at order �a; (ii)
perturbations with same parity and same index l up to order �2a ; (iii) perturbations
with same parity and index l ˙ 2 at order �2a . Furthermore, from the definition of
Ql it follows that Q˙m D 0, and therefore if jmj D l the coupling of perturbations
with index l to perturbations with indices l � 1 and l � 2 is suppressed. This general
property is usually called [25] “propensity rule” in atomic theory, and states that
transitions l ! l C 1 are strongly favored over transitions l ! l � 1. Indeed, the
slow-rotation technique is well known in quantum mechanics and the coefficients
Ql are related to the usual Clebsch-Gordan coefficients.

E.2.1 Scalar Perturbations of a Slowly-Rotating Star

The formalism above can be applied to any type of perturbations of a generic
stationary and axisymmetric background. The simplest example is a probe scalar
field governed by the Klein-Gordon equation (2.36) and propagating on the
fixed geometry (E.2). The entire procedure is performed in a publicly available
MATHEMATICA R� notebook, cf. Appendix A.

We start by the standard decomposition of the scalar field in spherical harmonics
in Fourier space,

ˆ D
X

lm

Z
d! ‰l.r/Y

l.#; '/e�i!t : (E.9)
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By plugging this equation into (2.36) and using the line element (E.2), we obtain
the following equation in schematic form:

AlY
l C OAl cos2 #Yl C QBl cos# sin#Yl

;# D 0 ; (E.10)

where a sum over .l;m/ is implicit, and the explicit form of the radial coefficients
Al, OAl and QBl is given in the notebook. The coefficients OAl and QBl are proportional
to terms quadratic in the spin, so they vanish to first order. Indeed, to first order the
equation reduces to Al D 0 which can be explicitly written as in Eq. (4.57).

The separation of Eq. (E.10) can be achieved by using the identities [17]

cos#Yl D QlC1YlC1 C QlY
l�1 ;

sin#@#Yl D QlC1lYlC1 � Ql.l C 1/Yl�1 ;

cos2 #Yl D �
Q2

lC1 C Q2
l

�
Yl C QlC1QlC2YlC2 C QlQl�1Yl�2 ;

cos# sin#@#Yl D �
lQ2

lC1 � .l C 1/Q2
l

�
Yl C QlC1QlC2lYlC2 � QlQl�1.l C 1/Yl�2 ;

and so on, as well as the orthogonality property of scalar spherical harmonics. The
result reads

Al C Q2
lC1Œ OAl C l QBl�C Q2

l Œ
OAl � .l C 1/ QBl�

CQl�1QlŒ OAl�2 C .l � 2/ QBl�2�C QlC2QlC1Œ OAlC2 � .l C 3/ QBlC2� D 0 :

(E.11)

Therefore, at second order, perturbations with harmonic index l are coupled
to perturbations with l ˙ 2. Crucially, this coupling does not contribute to the
eigenfrequencies to second order [19, 21]. Therefore, for given values of l and m,
the eigenspectrum of the scalar perturbations is governed by a single ODE:

Al C Q2
lC1Œ OAl C l QBl�C Q2

l Œ
OAl � .l C 1/ QBl� D 0 : (E.12)

In the online notebook HartleThorne.nb we show that the equation above reduces
to (4.58) and we give the explicit form of V2, which is too involved to be reproduced
here.



Appendix F
WKB Analysis of Long-Lived and Unstable
Modes of Ultracompact Objects

As discussed in Sect. 4.11.2, ultracompact objects have two light rings [26]. From
a point of view of massless fields, which propagate as null particles in the eikonal
regime, the light rings effectively confine the field and give rise to long-lived modes,
which may become unstable if they form within the ergoregion. Here we perform a
WKB analysis of these trapped modes.

Let us first discuss static, spherically symmetric spacetimes described by a line
element given in Eq. (4.60) with $ D 0. Various classes of perturbations of this
geometry are described by a master equation of the form (3.50) where Veff D !2 �
Vsl.r/, and the effective potential for wave propagation reads [26]

Vsl.r/ D f

�
l.l C 1/

r2
C 1 � s2

2rB

�
f 0

f
� B0

B

�
C 8
.prad � 
/ıs2

�
; (F.1)

and the prime denotes derivative with respect to the coordinate r, which is related
to the tortoise coordinate r� through dr=dr� D p

f=B. In the potential (F.1) l � s,
s D 0; 1 for test Klein-Gordon and Maxwell fields, respectively, whereas s D 2 for
axial perturbations of a (generically anisotropic) fluid in GR (where prad D Tr

r and

 D �Tt

t are the radial pressure and the energy density of the fluid, respectively).
Figure 4.20 shows an example of Vsl.r/ for two representative ultracompact

objects: the so-called gravastar model discussed in Sect. 5.8.2 and a constant density
star which, in the static case, is described by the line element (4.60) with $ D 0

and

F.r/ D 1

4R3

	p
R3 � 2Mr2 � 3R

p
R � 2M


2
; (F.2)

B.r/ D
�
1 � 2Mr2

R3

��1
; (F.3)
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where R is the radius of the star. The pressure is given by

P.r/ D 
c

p
3 � 8
R2
c �p

3 � 8
r2
cp
3 � 8
r2
c � 3p3 � 8
R2
c

; (F.4)

where 
c D 3M=.4
R3/ is the density of the uniform star.
This potential Vsl.r/ shares many similarities with the geodesic potential to which

it reduces in the eikonal limit [27]: it has a local maximum, diverges at the origin and
is constant at infinity. Because the potential necessarily develops a local minimum,
it is possible to show that in the eikonal limit (l � 1) the spectrum contains long-
lived modes whose damping time grows exponentially with l [27–29]. To first order
in the eikonal limit, the potential can be approximated as Vsl.r/ � l2f=r2. Let us
define ra, rb and rc to be the three real turning points of !2R � Vsl.r/ D 0 as shown
in Fig. 4.20 for the black solid curve. When such turning points exist, the real part
of the frequency of a class of long-lived modes is given by the WKB condition:

Z rb

ra

drp
f=B

q
!2R � Vsl.r/ D 
 .n C 1=2/ ; (F.5)

where n is a positive integer. The imaginary part of the frequency!I of these modes
is

!I D � 1

8!R�
exp

"
�2

Z rc

rb

drp
f=B

q
Vsl.r/� !2R

#
; (F.6)

where

� D
Z rb

ra

drp
f=B

cos2 �.r/q
!2R � Vsl.r/

; �.r/ D �

4

C
Z r

ra

drp
f=B

q
!2R � Vsl.r/ :

(F.7)

By expanding Eqs. (F.5) and (F.6), one can show that, to leading order in the eikonal
limit, the mode frequency reads

! � a l � i b e�cl l � 1 ; (F.8)

where a, b and c are positive constants. By expanding Eq. (F.5) near the minimum
of the potential displayed in Fig. 4.20, it is possible to show that [26]

a � �LR2 �
p

f .rLR2/

rLR2
; (F.9)
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Fig. F.1 Real and imaginary parts of the long-lived modes of a uniform star for different
compactness (left panels) and for a gravastar with R D 2:2M (right panels). The lines are the WKB
results, whereas markers show the numerical results obtained in [26] by using direct integration or
continued fractions. For uniform stars we show gravitational axial modes, whereas for gravastar we
show both axial modes (red circles) and gravitational polar modes with vs D 0:1 (green squares),
where vs is related to the speed of sound on the shell [30]. See [26] for details

where �LR2 is the angular velocity of the stable null geodesic at the light-ring
location r D rLR2. Note that the damping time of these modes is exponentially large,
so that they are arbitrarily long-lived in the large-l limit. In Fig. F.1, we compare
the long-lived modes computed through the above WKB formula with the exact
numerical result [26] for two representative ultracompact objects, showing a quite
good agreement in the large-l limit.

Practically, the long-lived modes of a static ultracompact object are metastable
and it is reasonable to expect that they can turn unstable when rotation is included.
In the slow-rotation limit one may consider a probe scalar field propagating on the
approximate spinning geometry (4.60); the Klein-Gordon equation in the eikonal
limit reduces to Eq. (4.62), which is suitable for a WKB analysis similarly to the
nonrotating case [31, 32]. By defining W D B.r/

f .r/ . N! � VC/ . N! � V�/, the quasi-
bound unstable modes are determined by

m
Z rb

ra

p
W.r/dr D 


2
C n
 ; n D 0 ; 1 ; 2 ; : : : (F.10)

and their characteristic time scale can be computed through

� D 4 exp

�
2m

Z rc

rb

p
jWjdr

� Z rb

ra

d

d N!
p

Wdr ; (F.11)
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where ra, rb are solutions of VC D N! and rc is determined by the condition V� D N!.
This result agrees with Eq. (4.64) quoted in the main text. As discussed in Sect. 4.11,
the long-lived modes become unstable (i.e. their imaginary part changes sign) above
a critical spin and precisely when an ergoregion forms in the geometry [26, 31, 32].
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